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Abstract 

Novel chloroplast membranes are involved in protein synthesis and protein import for the 

biogenesis of the photosynthetic thylakoid membranes in Chlamydomonas reinhardtii 

 

Matthew Peters 

The cytological organization of de novo photosystem II biogenesis in chloroplasts 

was examined using a unique technique of cellular subfractionation. The cellular 

subfractions were biochemically examined for three chloroplast membrane 

compartments. The results revealed membranes that are specialized in the synthesis of 

photosystem II proteins that are encoded by the chloroplast genome and synthesized by 

bacterial-like ribosomes within this semiautonomous organelle. Furthermore, a novel 

class of envelope membrane was identified which has a higher density than envelope 

membrane that was previously described. The localization of newly synthesized proteins 

and lipids after cellular subfractionation were also determined. Similarly, intermediates of 

chlorophyll synthesis were localized in the cellular subfractions, and it was confirmed 

that they are not only localized to the envelope membrane. The results reveal novel 

membranes that are involved in the synthesis of chloroplast genome-encoded subunits of 

photosystem II and the import of chloroplast proteins from the cytosol. They also 

contribute to the current realization in the field that organelles are highly 

compartmentalized and that certain compartments are specialized in biogenesis processes. 
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Introduction 

The thylakoid membranes of plants and algae chloroplasts, and cyanobacteria, 

house the photosynthetic machinery, which catalyzes the oxidation of water for the 

production of ATP and NADPH via the light-driven electron transport chain (Nevo et 

al. 2012). In plants and green algae, the chloroplasts evolved through the 

endosymbiosis of a cyanobactrium after the development of the endoplasmic 

reticulum and the mitochondria (Goksoyr 1967). Like the mitochondria, chloroplasts 

are a semi-autonomous organelle type and have maintained their own genetic system, 

as well as an elaborate membrane system (The Arabidopsis Genome Initiative 2000). 

The nuclear and chloroplast genomes are coordinated in their activities; this 

coordination is mediated by the double envelope membrane which encloses the 

chloroplast (Beck 2005; Block et al. 2007). 

The complex cytological organization of chloroplasts includes both the 

thylakoid membrane network and the envelope membranes. These segregate several 

aqueous compartments: the lumen within the thylakoid membranes, the stroma of the 

chloroplasts, and the inter-envelope space of the envelope membranes (Ohad, 

Siekevitz, and Palade 1967). The lumen is believed to be a contiguous compartment 

which is enclosed by the thylakoid membranes (Shimoni et al. 2005). The stroma of 

the chloroplast, analogous to the cytosol of a cell, is the aqueous, proteinaceous matrix 

between the inner envelope membrane and the thylakoid membranes (Ohad, 

Siekevitz, and Palade 1967). The inter-membrane space of the envelope membranes is 

the space between the inner and outer envelope membranes. These membranes and 

compartments form six locations which house different protein complements. In 

addition, the thylakoid membranes of chloroplasts are morphologically and 
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functionally divided into the grana thylakoids, which are appressed within stacks of 

flattened thylakoid vesicles , and the unappressed, stromal thylakoids, which extend 

between grana and are located at the stroma-exposed ends of grana (Ohad, Siekevitz, 

and Palade 1967; Shimoni et al. 2005). Photosystem II (PSII) is a multisubunit 

complex which is embedded in grana thylakoid membranes and catalyzes the first 

light absorbing, water oxidizing step of photosynthesis (Nelson and Ben-Shem 2004; 

Guskov et al. 2009). Stroma thylakoid membranes contain photosystem I (PSI), which 

catalyzes the second light-absorbing, NADPH-producing step of photosynthesis 

(Andersson and Anderson 1980). The lipid components of the thylakoid membranes 

and the inner envelope membrane of the chloroplast are primarily 

monogalactosyldiacylglycerol and digalactosyldiacylglycerol (MGDG and DGDG, 

respectively), and these account for 75% of the lipids of the chloroplast (Joyard et al. 

1998). 

  There are several problems posed by the combination of the complex 

membrane systems and dual genetic systems of chloroplast for the de novo biogenesis 

of the photosystems, particularly PSII. A functional PSII protein complex includes 

protein subunits which are encoded by both the nuclear genome, such as the light 

harvesting complex II (LHCII), the oxygen evolving complex (OEC), and many 

extrinsic proteins of the reaction center complex (RCC). On the other hand, the 

chloroplasts genome encodes core proteins of the RCC (D1, D2, CP43, CP47, and 

cytochromeb559) (Minagawa and Takahashi 2004; Nelson and Ben-Shem 2004; Rokka 

et al. 2005; Roose, Wegener, and Pakrasi 2007). The polypeptides of the LHCII and 

OEC are synthesized on cytosolic ribosomes, translocated across the double envelope 

membranes of the chloroplast, and integrated into the thylakoid membranes, where 

they assemble with the RCC of PSII to form the PSII-LCHII supercomplex (Chua and 
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Schmidt 1978; Nielsen et al. 1997). The RCC is composed of over 20 protein subunits 

and, similarly, the extrinsic RCC proteins must be integrated into the thylakoid 

membranes after being synthesized on cytosolic ribosomes and translocated into the 

chloroplast (Roose, Wegener, and Pakrasi 2007). The core polypeptides of the RCC 

are synthesized on the ribosomes of chloroplasts, which are similar to bacterial 

ribosomes, and co-translationally integrated into the thylakoid membranes, where the 

individual proteins associate with one another and the extrinsic polypeptides of the 

RCC to form the complete RCC (Siddell and Ellis 1977; Yamaguchi et al. 2003). PSII 

is not only composed of polypeptides, its catalytic function is dependent on cofactors 

and pigments which are folded into the polypeptides, particularly chlorophyll (Guskov 

et al. 2009). 

Because the appressed, granal membranes are inaccessible to ribosomes, the 

core RCC proteins of PSII, and the imported LCHII and OEC cannot be inserted 

directly into the thylakoid membranes where they are functional in the PSII-LHCII 

supercomplex (Yalovsky, Schuster, and Nechushtai 1990). Several models for the 

cytological localization of de novo PSII biogenesis have been developed, and recently 

the cytological organization of the co-translational insertion of the core RCC into the 

thylakoid membranes has been studied extensively (reviewed in Zerges 2000; Adam 

et al. 2011; Komenda, Sobotka, and Nixon 2012). One model suggests that the core 

RCC subunits are co-translationally inserted into the stromal thylakoid membranes 

(Chua et al. 1973; Margulies and Michaels 1974). The association of ribosomes with 

the stromal thylakoid membranes presents the clearest evidence for translation at this 

site (Falk 1969; Alscher, Patterson, and Jagendorf 1978). This, in combination with 

the lack of ribosomes on the granal thylakoid membranes, has led to the supposition 

that the stromal thylakoid membranes are the major site of thylakoid membrane 
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biogenesis. It is possible, however, that the ribosomes on stromal thylakoid 

membranes are synthesizing proteins for repair of PSII, and not de novo complex 

assembly. The synthesis of PSII subunits on the stromal thylakoid membranes is 

known to be required for repair synthesis (Tyystjärvi and Aro 1996; van Wijk, 

Andersson, and Aro 1996). During a light-induced stress condition called 

photoinhibition, PSII is susceptible to photodamage even under low light conditions. 

In these conditions, the D1 subunit of the core RCC is repaired on the stromal 

thylakoid membranes after the damaged PSII complex has migrated out of the granal 

thylakoid membranes. Therefore, it has been difficult to determine whether stroma 

thylakoids are where chloroplast mRNAs are translated for thylakoid membrane 

biogenesis, although this remains the prevailing belief in the research community.  

An alternative model suggests that thylakoid membrane biogenesis and PSII 

biogenesis occurs in the inner envelope membrane of the chloroplast. This model 

suggests that the site of galactolipid synthesis and the late steps of chlorophyll 

synthesis are the envelope membranes of the chloroplast (Block et al. 1983; Pineau et 

al. 1986; Joyard et al. 1990). In addition, thylakoid membrane biogenesis has been 

suggested to be dependent on vesicle formation and trafficking (Kroll et al. 2001). In 

this model, the elements composing thylakoid membranes and PSII – protein subunits, 

lipids, and chlorophylls – would assemble on the inner envelope of the chloroplasts 

before being transferred to the thylakoid membranes by vesicle transport mediated by 

VIPP1 (Vesicle Inducing Protein in Plastids 1, or Very Important Protein in Plastids 

1) among other proteins. This model has come under increasing scrutiny as the role of 

VIPP1 in thylakoid membrane biogenesis has been re-examined, and alternative 

functions to the original designation of VIPP1 have been suggested (Nordhues et al. 

2012; Vothknecht et al. 2012). 



5 

 

Recently, PSII biogenesis has been considered using cyanobacteria as model 

organisms. In the cyanobacteria Synechocystis sp. PCC 6803 (hereafter referred to as 

Synechocystis), the protein that cleaves the C-terminal end of D1, CptA, and the core 

RCC proteins D1 and D2 have been found in membranes containing proteins of the 

plasma membrane, which is analogous to the inner membrane of the chloroplast (Zak 

et al. 2001). These authors concluded that the initial steps of PSII biogenesis occur in 

the plasma membrane, after which the heterodimer of D1 and D2 is transported, 

possibly by vesicles, to the thylakoid membranes where the remaining steps of PSII 

biogenesis are completed. More recently, also in Synechocystis, an intermediate 

membrane sub-compartment associated with PSII biogenesis has been identified using 

a two-step cellular subfractionation procedure (Schottkowski et al. 2009). The 

membranes identified contained PratA, which binds to D1 and facilitates the 

processing of D1 by CptA, as well as chlorophyll precursors. This membrane sub-

compartment was found in an intermediate region between the thylakoid membranes 

and the plasma membrane, where the initial steps of PSII biogenesis is hypothesized 

to take place. Finally, electron tomography studies of Synechoccocus elongatus PCC 

7942 observed layers of the thylakoid membranes merging to form perforations where 

ribosomes were concentrated. It was speculated that these perforations might be areas 

of thylakoid membrane biogenesis independent of the plasma membrane (Nevo et al. 

2007). 

The site of de novo PSII biogenesis has also been studied in Chlamydomonas 

reinhardtii. This unicellular green alga has one large chloroplast (Ohad, Siekevitz, and 

Palade 1967). The chloroplast of C. reinhardtii cells has a basal region which contains 

the pyrenoid, a structure where the first step of carbon fixation is concentrated 

(Michael, McKay, and Gibbs 1991). The lobes of C. reinhardtii chloroplasts are 
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finger-like projections from the basal region that envelope the nuclear-cytosolic 

compartment of the cell (Uniacke and Zerges 2007) (see Appendix 5 for schematic of 

C. reinhardtii cell). Using in situ localization under biogenesis conditions of 

chloroplast ribosomal subunits, mRNAs of the core RCC proteins and IF of a D2 

translation factor (RB38/RBP40) identified regions of de novo PSII synthesis lateral to 

the pyrenoid. These regions were termed T-zones for Translation-zones (Uniacke and 

Zerges 2007).  

As the core proteins of the RCC are co-translationally inserted into membranes 

(Margulies and Michaels 1974; Margulies and Michaels 1974; Margulies 1983; 

Hurewitz and Jagendorf 1987), T-zones, proposed regions of the chloroplast for the de 

novo biogenesis of PSII, should have a membrane sub-compartment associated with 

them. These T-zone associated membranes (T-ZAM) should have several defining 

characteristics predicted from the earlier in situ characterization (Uniacke and Zerges 

2007). First, T-ZAMs should have both the large and small ribosomal subunits of the 

chloroplast associated with them. Second, T-ZAMs should also be associated with the 

translation factor RB38/RBP40 (Barnes et al. 2004; Schwarz et al. 2007). Third, T-

ZAMs should not be thylakoid membranes. Fourth, T-ZAMs should be a minor 

membrane sub-fraction. Fifth, T-ZAMs should be less abundant in the dark than in the 

light because localization of translation markers to T-zones was not seen during in situ 

studies of dark-adapted C. reinhardtii cells (Uniacke and Zerges 2007). Sixth, T-

ZAMs should contain intermediates in the assembly of PSII and possibly other 

photosynthesis complexes. These would be subcomplexes with a few subunits, which 

have been characterized previously (Rokka et al. 2005). Seventh, T-ZAMs should 

contain the newly synthesized proteins of PSII. To identify T-ZAMs a cellular 



7 

 

subfractionation technique was developed, the cellular subfractions were analyzed 

biochemically, and the results were compared to the criteria above. 

In addition to the predictions made from the in situ localization patterns 

described previously (Uniacke and Zerges 2007), other experiments addressed the 

possibility that T-ZAMs are involved more broadly in thylakoid membrane 

biogenesis, and are not only a PSII biogenesis membrane. As well as have the 

predicted characteristics, a thylakoid biogenesis membrane should also incorporate the 

synthesis of lipids and chlorophylls. These functions have generally been assigned to 

the envelope membranes of the chloroplast, reinforcing the claims that the envelope 

membranes are the region of thylakoid membrane biogenesis (Joyard et al. 1998). For 

this reason, and to ensure that the envelope membranes were not mistakenly 

contaminating thylakoid membrane or T-ZAM fractions, after cellular 

subfractionation marker proteins for the thylakoid membranes, T-ZAMs, and envelope 

membranes where used to identify where these membrane compartments were. The 

envelope membrane was identified by the translocons of the outer and inner 

chloroplasts envelope, Toc75 and Tic110 respectively (Schleiff and Becker 2011). 

Materials and Methods 

Strains and Culture Conditions 

 C. reinhardtii wild-type strain 4A+ was cultured photoautotrophically with 

stirring by magnetic bar in a light intensity of 100 μE m
−1

 s
−2

 and at 24
o
C in high salt 

minimal medium (HSM) (Sueoka 1960) with constant aeration. Where indicated, a 

cell wall deficient strain was used (CC-503), and grown in the same conditions with 

the addition of 1.0% sorbitol to the HSM. Dark-adapted cultures where incubated in 
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darkness for 2 h by wrapping flasks in aluminum foil while in mid-long phase of 

growth (2-4 x 10
6 
cells/ml). 

Cellular Subfractionation 

 Cultures (500ml) in mid-log phase of growth (2-4 x 10
6
 cells/ml) were pelleted 

(4,000 x g for 5 minutes at 4
o
C) and resuspended in 6 ml ice cold Buffer 1 (25 mM 

MgCl2, 20 mM KCl, 10 mM Tricine pH 7.5 with 1/100 concentration of plant protease 

inhibitor cocktail (Sigma)). A sample of whole cells was collected at this step and 

stored at -80
o
C. Subsequently all manipulations were carried out on ice or at 4

o
C. The 

cells were broken by French Press (1,000 p.s.i.; three passages). Complete breakage 

was confirmed by light microscopy at 400X magnification as the absence of cells and 

chloroplast fragments. The lysate was centrifuged at 100,000 x g for 1 h at 4
o
C to 

pellet membranes and high molecular weight complexes. The supernatant was 

collected and the pellet resuspended in 2.5 M sucrose (in Buffer 1) in the same tube. A 

layer of 2.2 M sucrose (in Buffer 1) was layered on top of the 2.5 M sucrose followed 

by the formation of a 0.5 M to 2.0 M sucrose gradient (in Buffer 1). The gradients 

were centrifuged at 100,000 x g for 16 h at 4
o
C. The gradients were collected as c.a. 

0.75 ml fractions, while respecting the borders of the visible band of thylakoid 

membranes. The pellet of the gradient was resuspended in Buffer 2 (60 mM KCl, 20 

mM Hepes pH 7.0, 0.2 mM EDTA, 20% Glycerol). 

Immunoblot analyses 

 Immunoblots were used to analyze the fractions of the gradient for protein 

composition. Equal portions of each fraction were resolved by SDS-PAGE to 

determine the fraction of the total cellular pool associated with known chloroplast 

structures: thylakoid membranes and envelope membranes. These were revealed by 
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monitoring marker proteins for these compartments. Chlorophyll was also used as a 

marker for thylakoid membranes. Immunoblots were, otherwise, done according to 

standard techniques and visualized with chemiluminescence. Antisera dilutions used 

for the immunoblots were: PsaAp 1:20,000 (gift of K. Redding); D2 1:2000 (gift of J. 

Nickelsen); RBP40 1:1500 (gift of J. Nickelsen); L7/L12 1:2000 (gift of E. Harris); 

S20 1:2000 (gift of E. Harris); Tic110 1:1000 (gift of E. Schleiff); Toc75 1:1000 (gift 

of E. Schleiff). 

Measuring Concentration of Protein and Chlorophyll 

 Fractions from the gradients were characterized for their concentrations of 

protein and chlorophyll. The protein concentration was measured using the 

Bicinchoninic Acid assay (Smith et al. 1985). The pigments of the fractions were 

extracted in cold (-20
o
C) methanol. The samples were then centrifuged at 17,000 x g 

and the pigments of the supernatant were assayed spectrophotometrically. 

Measurements were taken at 652 nm and 665 nm (Porra 2002). The proportion of 

chlorophyll and protein in each fraction was determined. 

Measurement of the Chlorophyll Intermediates Protochlorophyllide and 

Chlorophyllide 

 Equal proportions of each fraction (100 µl) from a gradient were diluted 50-

fold in Buffer 1, mixed, and centrifuged (100,000 x g for 1 h at 4
o
C) to concentrate the 

membranes. The pellets were then resuspended in Buffer 1. Acetone was added to a 

final concentration of 80% (vol/vol) to solubilise the pigments and membranes. 

Hexane was added to separate the polar pigments from the non-polar pigments. The 

acetone phase (lower) was then collected and its pigment content quantified using an 

AMINCO-Bowman Series 2 Luminescence Spectrometer at an excitation of 440nm. 
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Peaks at 633 nm and 677 nm correspond to protochlorophyllide and chlorophyllide 

respectively (Pineau et al. 1986). 

Blue Native (BN)-PAGEs 

 BN-PAGEs were preformed as described by (Schägger and von Jagow 1991) 

with slight variations. The membranes from gradient fractions containing 100 µg of 

protein were diluted in Buffer 1, concentrated by ultracentrifugation (100,000 x g; 1 h; 

4
o
C) and resuspended in ACA 750 (750 mM aminocaproic acid, 50 mM Bis-Tris, and 

0.7 mM EDTA pH 7). Membranes were then solubilized on ice in 0.8% n-dodecyl-β-

d-maltoside (β-DM) for 30 min. The soluble material was then separated from the 

insoluble material by centrifugation at 17,000 x g in a microcentrifuge for 25 min at 

4
o
C. The supernatant was collected, transferred to a new 1.5 ml microfuge tube. 

Loading buffer, a 6X solution of 0.5% Coomassie Brilliant Blue G-250, 750 mM 

aminocaproic acid and 1.5% β-DM, was added to the supernatant. The protein 

complexes were then separated on a 4.5% – 12% acrylamide gel, containing 0.5 M 

aminocaproic acid and 50 mM Bis-Tris HCl pH 7.0, overnight with voltages ranging 

from 60V – 300V at 4
o
C. The gels were subsequently stained with Coomassie Blue 

(Sambrook and Russell 2001). 

In vivo radio pulse-labelling of newly synthesized proteins by chloroplast ribosomes 

 To label the newly-synthesized proteins in the chloroplast, cultures of a cell 

mutant strain (CC-503) were grown until mid-log phase in HSM (with 1% sorbitol) as 

described above. The cells were harvested by pelleting (4,000 x g for 5 min at 4
o
C) 

and then resuspended in HSM made with HPLC water. The cells were then allowed to 

recover by exposure to a fluorescent lamp for 15 minutes. Then 750µl of [
35

S] H2SO4 

was added (1.5 mCi). The pulse labelling was done for 5 minutes at 12
o
C before 
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Buffer 1 was added and the cells were broken by bead beating three times for 50 

seconds with 1 minute intervals on ice in a 2 ml conical screw cap microfuge tube. 

The supernatant of the lysate was collected and the beads were washed with Buffer 1, 

before the lysate was pelleted (100,000 x g for 1 h at 4
o
C). The supernatant was then 

collected and the pellet resuspended in 2.5 M sucrose (with Buffer 1). A gradient was 

formed above the 2.5 M sucrose cushion as described earlier, and it was centrifuged 

for 16 h at 100,000 x g at 4
o
C. The gradient was collected in 0.75 ml fractions with 

cut-off blue-tip pipettes and, as previously, the pellet of the gradient was resuspended 

in Buffer 2. Proportional amounts of every fraction were used to and denatured in 

protein loading buffer (Laemmli 1970) and the proteins were separated by 12-18% 

SDS-PAGE with 4 M urea which was stained with Coomassie Blue, shrunk in 50% 

methanol (v/v) and 10% acetic acid (v/v) to concentrate the signal, dried for 1 h at 

80
o
C with gradual heating, and then exposed to a phosphorimager screen and scanned 

with a Typhoon. 

In organello Protein Labelling of Isolated Spinach Chloroplasts 

 Chloroplasts from spinach (Spinacia oleracea) were also used in protein 

labelling experiments. The leaves of spinach were homogenized by blending three 

times for 20 sec in a Warring Blender in Buffer 3 (0.35 M sucrose, 25 mM Hepes pH 

7.8, and 10 mM EDTA pH 8.0). The homogenate was filtered through 4 layers of 

cheesecloth. The filtrate was centrifuged at 4,000 x g for 3 min at 4
o
C to pellet 

chloroplasts and other organelles and debris. Two cycles of filtering and pelleting 

were used to separate the chloroplasts from the homogenate. Finally, the chloroplasts 

were resuspended in 0.33 M sorbitol and 35 mM HEPES pH 7.8 and the chlorophyll 

content was measured so chloroplasts could be diluted to 200 µg/ml of chlorophyll. 

The 4X Labelling Mix (Buffer 4) was then added to a final concentration of 0.35 M 
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sorbitol, 43.5 mM Hepes pH 7.6, 10 mM MgCl2, 1 mM 3-PGA, 0.4 mM spermidine 

(freebase), 1 mM Mg-ATP, 10 mM DTT, 40 µM of each amino acid excluding 

methionine and cysteine. In a 1 mL reaction, 10 µL (10 µCi) of a mix of 

[
35

S]methionine and [
35

S]cysteine (PerkinElmer EasyTag Express Protein Labelling 

Mix) was added, as well as 1/1000 concentration of cyclohexamide to inhibit any 

translation competent cytosolic polysomes with 80S ribosomes. Protein synthesis by 

70S chloroplast ribosomes, which are resistant to cycloheximide, was allowed to 

continue for 15 min or 5 min at 4
o
C and halted with the addition of 1/1000 

concentration of chloramphenicol. The temperature was maintained at 4
o
C for the 

duration of the pulse in an effort to reduce the speed of migration of the newly 

synthesized subunits. Chloroplasts were then pelleted and resuspended in 5 mM 

MgCl2, and vortexed vigorously for 2 min to lyse them hypotonically. The lysate was 

made to a final concentrations of 25 mM MgCl2, 20 mM KCl, 10 mM Tricine-HCl pH 

7.5 and 1% of plant protease inhibitor cocktail (Sigma), before the membranes were 

pelleted by ultracentrifugation (100,000 x g; 1 h; 4
o
C). The pellet was then 

resuspended in 2.5 M sucrose (in Buffer 1) and a linear sucrose gradient from 0.5 M - 

2.0 M was formed above it. The gradient was then centrifuged for 16 h at 100,000 x g 

(4
o
C). The gradient was divided into three fractions: envelope membranes, thylakoid 

membranes, and T-ZAMs, and the pellet was resuspended directly in SDS-PAGE 

protein loading buffer. The membranes of the three fractions were diluted in Buffer 1 

and re-pelleted (100,000 x g; 1 h; 4
o
C) before being resuspended in SDS-PAGE 

protein loading buffer. The proteins were then separated on a 12% acrylamide gel. 

The gel was stained, shrunk, and dried and then exposed to a phosphorimager screen. 

Radiolabelled proteins were revealed by a Typhoon phosphorimager. 

In vivo pulse [
14

C] Acetate Labelling of lipids of C. reinhardtii cells 
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 In vivo labelling was done on whole cells of C. reinhardtii to indentify the site 

of lipid synthesis and concurrently the site of protein synthesis was examined. 2.5 x 

10
7
 cells in mid-log phase were collected from HSM cultures, concentrated in 500 µL 

of HPLC-HSM, and acclimatized under a fluorescent lamp for 15 min. The labelling 

was allowed to continue for 5 min at 12
o
C in the presence of 40 µCi of [

14
C] acetate 

(Sodium acetate, [1,2-
14

C], 1 mCi/ml, ViTrax, VC258). Then Buffer 1 was added, and 

chloramphenicol was added to a 1/1000 dilution to end the reaction. The cells were 

then broken by two 50 sec agitations in a bead beater at maximum with glass beads 

and placed for 1 minute on ice during the interim. The supernatant was collected and 

centrifuged (1 h; 100,000 x g; 4
o
C) to pellet the membranes. The membranes were 

resuspended in 2.5 M sucrose (in Buffer 1) followed by isopycnic separation by 

sucrose gradient ultracentifugation as described above. The gradient was not collected 

in 0.75 ml fractions, but the different membrane types were collected separately. A 

methanol:chloroform extraction was then performed on the fractions collected from 

the sucrose gradient to isolate the lipids and proteins from the sample (Seigneurin-

Berny et al. 1999). The lipids from the chloroform phase were concentrated by 

successive cycles of air drying and resuspension in chloroform. The concentrated 

lipids were then applied to a silica gel plate for fractionation by thin-layer 

chromatography (TLC). Plates were placed in a glass tank containing TLC buffer (85 

ml chloroform, 15 ml methanol, 10 ml acetic acid, 3 ml water). The proteins were 

resuspended Laemmli buffer and separated by 12% SDS-PAGE, which was stained 

with Coomassie Blue (Sambrook and Russell 2001). Both the TLC plate and the gel 

were exposed to phosphorimager screens and signals were revealed by Typhoon 

phosphorimager. 
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Results 

Isolation of Membranes by Sucrose Density Gradient Centrifugation 

Previously, T-zones were localized to the lateral regions of the pyrenoid in the 

chloroplasts of C. reinhardtii by in situ localization of RB38/RBP40 and other 

translation factors (Uniacke and Zerges 2007). Comparison with PsaAp and HSP70B, 

marker proteins for thylakoid membranes and stroma, respectively, established that T-

zones are contiguous with the stroma but overlapped the thylakoid membranes. To 

isolate membranes, with the newly synthesized proteins, trials with continuous and 

discontinuous sucrose density gradient centrifugation were performed. When 

membranes are floated from a 2.5 M sucrose layer, non-membrane associated proteins 

either pellet or remain soluble in the 2.5 M sucrose. This ensures that membranes and 

membrane-associated material are analyzed in the gradient fractions. To ensure that 

soluble proteins did not mix with the gradient during its formation a layer of 2.2 M 

sucrose was layered on the 2.5 M cushion prior to the formation of the gradient above. 

A linear sucrose gradient was then formed above the layer of 2.2 M sucrose. This 

gradient ranged from 0.5 M to 2.0 M sucrose. Visual inspection showed that the 

majority of green membranes formed a band located approximately half-way up the 

gradient. However, a small but significant amount of green membranes remained 

below the major band (Fig. 1). Even more faintly, above the major green band, there 

was a faint yellow band of membranes, corresponding to the expected density and 

colour of chloroplast envelope membranes (Keegstra and Yousif 1986).  

Distribution of Marker Proteins for T-zones and Thylakoid Membranes in Gradients 

from Cells Cultured in Moderate Light 

Each fraction from the gradient and the pellet were examined for the presence 

of thylakoid protein markers PsaAp and D2, to determine where the thylakoid 
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membranes were in the gradient. These marker proteins were concentrated in fractions 

derived from the major green band (Fig. 1, fractions 6-9), and from here on is referred 

to as the thylakoid membranes. Only trace levels of PsaAp and D2 were detected in 

the fractions 10 - 2.5 M. D2 was detected in the pellet, suggesting that this protein 

dissociated from the membranes in handling, or there were some unbroken or dense 

chloroplast fragments. However, this result suggests that fractions 10-12, and the 2.2 

M and 2.5 M do not correspond to either granal or stromal thylakoid membranes. The 

whole gradient was also examined for T-zone marker proteins: both ribosomal 

subunits and RB38/RBP40. These marker proteins were found in the thylakoid 

membranes, but also, in almost equal levels, in the gradient fractions 10-12 (Fig. 1). 

The 2.2 M layer and 2.5 M cushion of the gradient also contained T-zone markers, as 

did the pellet. These results confirm that fractions 10-12 fulfill with the first three 

predictions of T-ZAMs: 1) they are enriched for both the large and small the 

ribosomal subunits; 2) and RB38/RBP40; and 3) they have much lower levels of 

PsaAp and D2, suggesting they are not thylakoid membranes. Because these three 

criteria have been met these fractions which are denser than thylakoid membranes will 

from now be called putative T-ZAMs (pT-ZAMs). 

Chlorophyll and Protein Concentration of Gradient Fractions 

The chlorophyll and protein concentration of the gradient fractions were used 

to compare the relative amounts of thylakoid membrane and pT-ZAM. Thylakoid 

membrane fractions of the gradient contained between 10% and 30% of the total 

chlorophyll of the gradient, while those of the pT-ZAMs had below 5% (Fig. 1). The 

protein distribution of the gradients was more even than the distribution of 

chlorophyll, and in the pT-ZAM fractions the proportion of total protein exceeded the 

proportion of total chlorophyll. Nonetheless, the pT-ZAM fractions could be 
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considered minor compared to the thylakoid membrane fraction in accordance with 

the fourth prediction. 

Effect of Dark-Adapting Cells on Protein Distribution 

In situ studies showed that localization of the translation marker proteins to the 

T-zones is most evident in cells under moderate light intensity and rare in cells 

adapted to darkness for two hours (Uniacke and Zerges 2007). To determine whether 

the amount pT-ZAMs showed a similarly light-dependent pattern, a culture in mid-log 

phase under moderate light was shifted to the dark for two hours before cell breakage. 

Fractions from gradients obtained using the he dark-adapted cells showed the same 

thylakoid membrane pattern of D2 and PsaAp (Fig. 2, fractions 6-9). However the 

dark-adapted cells had fewer T-zone marker proteins in both the thylakoid membranes 

and the pT-ZAMs. Only comparatively small amounts of the L7/L12 or RB38/RBP40 

associated with membranes (Fig. 2, fractions 9 and 10). S20 was the only T-zone 

marker found throughout the thylakoid membranes, and was also concentrated at the 

interface between the thylakoid membranes and pT-ZAMs (fractions 9 and 10) and in 

the 2.5 M sucrose fraction. Trace amounts were found in fraction 11 and the 2.2 M 

sucrose fraction (Fig. 2). The other T-zone markers were found at the interface 

between the thylakoid membranes and pT-ZAMs (Fig. 2, fractions 9 and 10), and 

were concentrated in the 2.5 M fraction, with slight amounts in the 2.2 M fraction and 

in the pellet. This pattern of membrane association of the T-zone markers was 

reproduced twice in four attempts. It confirms prediction five from the in situ studies 

that the T-ZAMs are inactive in dark-adapted cells. 

Protein Complexes of the pT-ZAMs 
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Blue Native-PAGE (BN-PAGE) was used to analyze the protein complexes of 

the pT-ZAMs and compare them to the thylakoid membranes. The methodology of 

BN-PAGEs necessitated that equal amounts of protein are loaded in each lane, 

therefore, unlike the analysis of gradients described above, fractions are not loaded 

proportionately and the pT-ZAMs are over-represented. This technique facilitated 

analysis of complexes by visual inspection and Coomassie stain. A 1-2 M sucrose 

gradient was used, and the fractions were pooled to ensure there was enough material 

and that the entire gradient was represented. Visual inspection of the BN-PAGE did 

not reveal any difference between the thylakoid (Fig. 3, left panel, lanes 2-3 and 4-5) 

membranes and pT-ZAMs (lanes 9-10 and 12-13). After staining with Coomassie 

Blue (Fig. 3, right panel) protein complexes, were disproportionately concentrated in 

either the thylakoid membranes (lanes 2-3 and 4-5) or the pT-ZAMs (lanes 9-10 and 

12-13). Though there were many equally shared complexes, complex 1 was shown to 

be largely concentrated in thylakoid membranes, whereas complex 2 was largely in 

the pT-ZAMs. This was confirmed by immunoblot analysis of BN-PAGEs and 2D 

BN/SDS-PAGEs (conducted by Dr. Schottkowski, Appendix 1), suggesting that in 

accordance with prediction six the pT-ZAMs have free core RCC subunits of PSII. 

Site of Protein Synthesis in Chloroplasts 

The site of protein synthesis in chloroplasts was examined by radio-labelling 

the newly synthesized proteins with [
35

S] methionine and [
35

S] cysteine in both whole 

C. reinhardtii cells and isolated spinach chloroplasts. After labelling, the cells or 

chloroplasts were treated similarly, both were broken, the membranes pelleted, and 

then separated on sucrose gradients. Proteins in the gradient fractions were denatured 

and resolved by SDS-PAGE. In isolated spinach chloroplasts this revealed enriched 

levels of radiolabelled signal in the T-ZAMs compared to their low abundance (Fig. 
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4). After two successful attempts, this result could not be repeated, nor could it be 

reproduced using C. reinhardtii cells. C. reinhardtii cells failed to show any pattern of 

radiolabel enrichment in the pT-ZAMs. This lack of newly synthesized proteins in the 

T-ZAMs invalidated the seventh prediction from the in situ identification of T-Zones. 

Despite this, because six of the seven predictions were corroborated, from here on, the 

pT-ZAMs will be considered T-ZAMs.  

Site of Lipid Synthesis in Chloroplasts 

To examine where the major acyl lipids of the chloroplast membrane bilayers 

(MGDG and DGDG) are synthesized in C. reinhardtii, radio pulse labelling 

experiments were carried out with [
14

C] acetate. These membrane types were found in 

the envelope membranes, the thylakoid membranes, and the T-ZAMs. The 2.2 M 

sucrose fraction, the 2.5 M sucrose cushion and the pellet were also collected for 

analysis. The lipids were isolated from the fractions, and resolved on a TLC plate 

(Fig. 6). Exposing the TLC to a phosphorimager screen revealed a distinct shift in the 

concentration of newly synthesized lipids between the pulse and pulse-chase (Fig. 5, 

see Appendix 2 for quantification). In the pulse the envelope membranes, thylakoid 

membranes, and T-ZAMs had stronger MGDG bands than DGDG. After an hour long 

chase period all three membrane fractions (envelope membranes, thylakoid 

membranes, and T-ZAMs) had stronger DGDG bands than MGDG bands. As MGDG 

is the precursor to DGDG synthesis (van Besouw and Wintermans 1978), this 

suggests that the synthesis of lipids is taking place in all three membrane fractions, 

which are able to supply themselves with the lipids necessary for maintenance. 

Similarly, the shift seen in the envelope fraction suggests that galactolipids of these 

membranes are synthesized locally. In the T-ZAMs there is a slight shift between 

MGDG and DGDG from the pulse to the pulse-chase, which suggests that some 
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synthesis, necessary for biogenesis, could be talking place, but there is no enrichment 

of newly synthesized lipids in the T-ZAMs. It should be noted, because envelope 

protein markers were later found in the thylakoid membranes in is not clear if there is 

enrichment of MGDG and DGDG in the thylakoid membranes. This is considered 

later in the discussion (Fig. 9, 10, and see below) 

Chlorophyll Precursors in Gradient Fractions 

To consider if T-ZAMs had a wider role in thylakloid biogenesis and confirm 

the site of chlorophyll synthesis protochlorophyllide and chlorophyllide, the 

precursors of chlorophyll were measured. After an acetone:hexane extraction, the non-

polar lipid phase was excited with light of 440 nm wavelength and the peaks at 633 

nm and 677 nm, representing protochlorophyllide and chlorophyllide, were measured 

with a spectrofluorometer. The results revealed that most of the chlorophyll precursors 

are in the thylakoid membrane fractions with lesser amounts found in the T-ZAMs 

(Fig. 8). None were found in the fractions above the thylakoid membranes which have 

the density of chloroplast envelope, the accepted location of chlorophyll synthesis 

(Joyard et al. 1998). Some chlorophyll precursors were found in the thylakoid 

membrane fractions contaminated with envelope (Fig. 9, 10, and see below). This 

later result caused a reassessment of the chlorophyll precursor localization (see 

discussion). 

Thylakoid Membrane and T-ZAMs Association of Envelope Proteins 

Immunoblot analysis was also used to determine the location of Tic110 and 

Toc75 in the gradient fractions. It was revealed that these envelope proteins markers 

cofractionated with the densest thylakoid membranes (Fig. 9), with little or none 

found in the fractions of lower buoyant density above the thylakoids membranes 
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where envelope membranes are expected (Keegstra and Yousif 1986; Becker et al. 

2004; Eggink et al. 2004). This localization of Tic110 and Toc75 to the lower 

thylakoid membrane fractions raises doubt about the confidence of the results 

regarding the locations of lipid synthesis and chlorophyll precursor. It should also be 

noted that in rare and poorly understood conditions Tic110 and Toc75 cofractionate 

with both the thylakoid membranes and T-ZAMs, as well as in the expected envelope 

location (Fig. 10). This will be considered more in the discussion. 

Discussion 

The cytological localization of PSII biogenesis and the organization of 

thylakoid membrane biogenesis, have been examined using a unique cellular 

subfractionation technique to identify membranes, which were characterized by 

immunoblot analysis, BN-PAGE, and other techniques. Immunoblot analysis showed 

that the high density fractions of the sucrose gradient contained membranes enriched 

in T-zone markers, suggesting that these membranes are T-ZAMs. The T-ZAMs were 

not thylakoid membranes, because the protein marker for thylakoid membranes were 

found in lighter sucrose density fractions (Fig. 1). The T-ZAMs were present in 

moderate light condition, and absent in dark-adapted cells in which T-zones are absent 

(Fig. 2). Further analysis by Blue Native-PAGE revealed that these dense membranes 

contained free PSII subunits and PSII assembly intermediates, suggesting that the T-

ZAMs are the site of de novo PSII synthesis and insertion into membranes (Fig. 3 and 

Appendix 1). Furthermore, immunoblot analysis following cellular subfractionation 

showed the cofractionation of envelope membranes and thylakoid membranes (Fig. 9 

and 10). The localization of chlorophyll synthesis was also determined to be at the 

thylakoid membranes, though some may also take place in the T-ZAMs (Fig. 8). The 

major site of lipid synthesis in chloroplasts was also identified as the thylakoid 
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membranes, though lipids are synthesized in minor amounts in both the T-ZAMs and 

envelope membranes of chloroplasts (Fig. 5). Together, these results support a need to 

re-examine where the components of PSII are synthesized and assembled for the de 

novo assembly of the complex. 

 Recent work suggested that PSII biogenesis occurs in a compartment that is 

distinct from the thylakoid membranes (Uniacke and Zerges 2007; Nevo et al. 2007; 

Stengel et al. 2012; and reviewed in Komenda, Sobotka, and Nixon 2012). The 

isolation and identification of a compartment located near the plasma membrane 

where PSII biogenesis takes place has been achieved in Synechocystis (Schottkowski 

et al. 2009). Using similar techniques in C. reinhardtii a membrane compartment, 

called Low-Density Membranes, associated with mRNA translation has been 

identified (Zerges and Rochaix 1998). By extending the techniques of these studies we 

have isolated novel membranes with T-zone characteristics, which may be involved in 

de novo PSII biogenesis (Fig. 1). These novel membranes, the T-ZAMs, contain 

chlorophyll but lack the thylakoid marker proteins D2 or PsaAp. Conversely, there is 

an abundance of a translation factor specific to the chloroplast encoded psbD gene 

encoding the D2 subunit of PSII, RB38/RBP40 (Barnes et al. 2004; Schwarz et al. 

2007), and ribosomal proteins in the T-ZAMs, all of which were found co-localized in 

the T-zones (Uniacke and Zerges 2007). The absence of thylakoid protein makers and 

the presence of T-zone protein markers in the biogenesis conditions of moderate light 

fulfill the first three criteria for T-ZAMs: that they should have the large and small 

chloroplast ribosomal subunits as well as the translation factor RBP40/RB38, but 

shouldn’t be thylakoid membranes (Fig. 1). The fifth prediction of T-ZAMs, that T-

ZAMs shouldn’t be present in the dark, is fulfilled since in dark-adapted cells the T-

zone protein markers are reduced in these novel, high density membranes (Fig. 2).  
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The lack of thylakoid membrane protein markers in the T-ZAMs indicates that 

the thylakoid membranes and T-ZAMs are distinct membrane types. A protein marker 

unique to the T-ZAMs has not been identified, however under conditions of 

photoautotrophic growth in moderate light, T-ZAMs are enriched in T-zone markers 

relative to other membrane fractions (Fig. 1). The levels of translation markers in T-

ZAM fractions are approximately the same as those in thylakoid membrane fractions, 

despite T-ZAM fractions containing less protein and chlorophyll compared to 

thylakoid membrane fractions (fulfilling the fourth prediction of T-ZAMs) (Fig. 1). It 

should be emphasized that there is a drastic enrichment of T-zone markers on the 

basis of mass amount of membrane, as between 2- and 8-fold less protein of the T-

ZAM fractions was analyzed than thylakoid membrane fractions when proportional 

amounts of material were analyzed from the gradient fractions. It is possible that some 

T-ZAMs co-fractionate with thylakoid membranes. This does not imply a strong 

contamination of T-ZAMs with thylakoid membranes as only trace amounts of 

thylakoid membrane markers were detected in the lower part of the gradient where the 

T-ZAMs have been identified. Another possible reason that markers of translation are 

found in the thylakoids is that many of them are localized to the stromal thylakoid 

membranes where repair synthesis of photodamaged of D1 occurs even at low light 

intensity (Tyystjärvi and Aro 1996; van Wijk, Andersson, and Aro 1996). After 2 h of 

darkness the few markers of translation that remained associated with membranes 

were concentrated in the gradients at the transition between T-ZAMs and thylakoid 

membranes (Fig. 2). 

The sixth prediction, the presence of PSII assembly intermediates in the T-

ZAMs, a strong prediction of a PSII biogenesis membrane compartment, was 

confirmed using BN-PAGEs (Fig. 3 and Appendix 1). This result was first suggested 
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by staining of BN-PAGEs, and confirmed by immunobloting of BN-PAGEs and 

BN/SDS-PAGEs (conducted by Dr. Schottkowski). The immunoblots revealed that 

the T-ZAMs had free subunits of PSII which were not present in thylakoid 

membranes, though both T-ZAMs and thylakoid membranes had PSII assembly 

complexes.  

Finally, as protein radio-labelling experiments where successful in determining 

the location of D1 repair synthesis (van Wijk, Andersson, and Aro 1996), a seventh 

prediction was made to resolve where PSII biogenesis and, possibly, lipid and 

chlorophyll synthesis takes place in chloroplasts. Protein radio-labelling experiments 

were conducted followed by the newly-developed cellular subfractionation system, to 

determine the location of de novo PSII subunit synthesis. Using chloroplasts from 

spinach, results were initially encouraging. Despite little apparent protein in the T-

ZAMs when stained, autoradiography revealed an enrichment of newly synthesized 

proteins in the T-ZAMs (Fig. 4). This was repeated twice in spinach chloroplasts, 

however, these were results were not reproducible, in either spinach chloroplasts or C. 

reinhardtii. Nor were the newly synthesized proteins chased out of the T-ZAMs to the 

thylakoid membranes, thus the assembly pathway between T-ZAMs and thylakoid 

membranes could not be confirmed in either spinach or C. reinhardtii. Further studies 

however suggested that only the initial steps of PSII biogenesis take place in the T-

ZAMs (Appendix 1 and 4). These translation and assembly steps maybe on the order 

of 2-3 min (Rokka et al. 2005), thus seeing the newly synthesized proteins in the T-

ZAMs before they migrate out may be prohibitively difficult. 

Although determining the site of de novo protein synthesis through protein 

pulse-radio-labelling remained elusive, the site of lipid synthesis in chloroplasts was 

illuminated using a similar analysis, and suggested a new location for broader 
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thylakoid membrane biogenesis. The radio-labelling of newly synthesized lipids 

showed the majority of newly synthesized MGDG in the thylakoid membrane fraction 

of chloroplasts. After a chase, the majority of DGDG, which is the subsequent step of 

the biochemical pathway, was also in the thylakoid membranes (Fig. 5). The lower 

part of these membranes are contaminated with the translocon apparatus of the 

envelope membranes (Fig. 9 and 10). This suggests that the lipid synthesis in the 

thylakoid membrane could be from the envelope membrane. The alternative location 

of lipid synthesis to the thylakoid membranes seems more likely. This location 

corroborates previous evidence for the location of radio-labelled galactolipids in 

chloroplasts which only considered the envelope membranes and thylakoid 

membranes (Joyard et al. 1980). The authors concluded that synthesis was taking 

place in the envelope membranes, despite the signal first appearing in the thylakoid 

membranes, as either the reaction was too fast to capture or the envelope membranes 

were contaminating the thylakoid membranes. The T-ZAMs however are not a major 

site of lipid synthesis, and are unlikely to supply the thylakoid membranes with either 

MGDG or DGDG, and thus not a region of broader thylakoid biogenesis (Fig. 5). 

The original location of chlorophyll intermediates to the envelope membranes 

of chloroplasts was previously established with only cursory examination of thylakoid 

membranes, but has been used to support the hypothesis that chlorophyll precursor are 

synthesized in the envelope membranes and transported to the thylakoid membranes, 

where the last step of synthesis occurs (Pineau et al. 1986; Block et al. 2007). 

Recently this model has been reconsidered by exhaustive analyses, which examined 

the chlorophyll intermediates of the envelope membranes, the thylakoid membranes, 

and the soluble stroma phase. In both Beta vulgaris and Cucumis savitus 98.5-99% of 

the protochlorophyllide was found in the thylakoid membranes, with the remainder, 1-
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1.5%, found in the envelope membrane fractions (Mohapatra and Tripathy 2003; 

Mohapatra and Tripathy 2007). This suggested to the authors that chlorophyll 

synthesis occurs in the thylakoid membranes. The authors further concluded, due to 

the lack of intermediates in the soluble stromal phase, that it is unlikely there is 

trafficking of intermediates between membrane compartments in the chloroplasts 

(Mohapatra and Tripathy 2007). The presence of chlorophyll intermediates in the 

thylakoid membranes was largely confirmed by our own results, though some 

intermediates were also found in the T-ZAMs of the chloroplast (Fig. 8). The presence 

of chlorophyll intermediates in the T-ZAMs suggests that some chlorophyll is 

synthesized there for the purpose of co-translational insertion into the de novo 

synthesized subunits of PSII. It is unlikely that envelope membrane contamination is 

affecting this result as chlorophyll intermediates were found in all thylakoid 

membrane fractions, even those fractions where Tic110 and Toc75 were not seen (Fig. 

9, fractions 7-8). Thus, it seems, chlorophyll synthesis is not only localized to the T-

ZAMs or envelope membranes, but more broadly distributed throughout the 

chloroplast in thylakoid membranes as well. 

The suggestion that MDGD and DGDG are also synthesized in the thylakoid 

membranes of the chloroplast is not surprising, because they are the major lipid 

constituent of the thylakoid membranes and no mechanism of lipid transfer from the 

envelope membranes to the thylakoid membranes has been identified in the 

chloroplasts (Kroll et al. 2001; Vothknecht et al. 2012). However, the enzymes which 

catalyze the final step in both MDGD and DGDG biosynthetic pathway were found in 

the envelope membranes (Froehlich, Benning, and Dörmann 2001). These 

contradictions might be resolved by the observation that both enzymes in the 

galactolipid synthesis pathway were also found in the thylakoid membranes, but, like 
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previous studies, the authors considered that the thylakoid membranes were 

contaminated with envelope membranes (Joyard et al. 1980). It should also be noted 

that acyltransferases used in the synthesis of thylakoid membrane lipids have been 

found in the thylakoid membranes in situ by histochemical staining and EM 

(Michaels, Jelsema, and Barrnett 1983). 

The isolation of chloroplast envelope membranes has long been a settled issue 

despite the lack of unambiguous evidence. To identify a chloroplast membrane 

fraction after isolation, proteins of the translocation apparatus are used. These 

proteins, however, are also found in the thylakoid membrane fractions, despite loading 

equal protein amounts of the fractions and thus over-representing envelope fractions 

(Joyard et al. 1982; Schnell, Blobel, and Pain 1990; Froehlich, Benning, and Dörmann 

2001). This discrepancy has been ignored because thylakoid membranes are 

considered to be contaminated with envelope membranes, without further explanation 

(Froehlich, Benning, and Dörmann 2001). Recently, this hypothesis has begun to be 

overturned as results suggest a more complex cytological localization of the 

translocation apparatus. The four isoforms of Tic20, which had been identified as a 

channel forming protein (Kovács-Bogdán et al. 2011), have been independently found 

in different membrane sub-compartments (Machettira et al. 2011). This study 

examined proportional amounts of each fraction of a gradient by immunoblotting and 

did not over represent the envelope membrane fractions. This has established that a 

majority of the envelope membrane translocons co-fractionate or have the same 

density as the thylakoid membranes (Fig. 9 and 10). This contamination led to the re-

examination of previous work on envelope localization and chloroplasts membrane 

organization. Concomitant with this reassessment the in situ localization of Tic110 

and Toc75 under biogenesis conditions was examined. This revealed that the 
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translocation apparatus of the envelope localized to regions adjacent to the T-zones 

(conducted by Dr. Schottkowski, see Appendix 3).  

Early studies of the translocation apparatus of the chloroplast envelope 

membranes showed a strong association between the inner and outer membranes, 

which were not dependent on active protein translocation (Akita, Nielsen, and 

Keegstra 1997; Nielsen et al. 1997). The contact sites between the inner and outer 

membrane of the chloroplast have long been suggested as the sites of active 

translocation, and it is speculated they are analogous to membrane contact sites in 

mitochondria (Dobberstein, Blobel, and Chua 1977; Schnell, Blobel, and Pain 1990). 

Recently, the membrane contact sites in mitochondria between the inner and outer 

mitochondria membrane have been characterized at the molecular level. A complex, 

which includes the mitochondrial translocons, maintains contact sites and determines 

the cristae architecture, and has been postulated to be involved in mitochondria 

membrane biogenesis (Harner et al. 2011; Hoppins et al. 2011; von der Malsburg et al. 

2011; and reviewed in van der Laan et al. 2012). The in situ localization of Tic110 

and Toc75 adjacent to T-zones and co-fractionation with thylakoid membranes, 

suggests that chloroplasts envelope membrane contact sites may be more extensive in 

C. reinhardtii than previously believed and may include thylakoid membranes via a 

protein bridge. It is also possible that envelope membranes are denser than previously 

described or our preparation and handling of the membranes affected their density. 

This connection would facilitate the insertion of membrane proteins, particularly 

LCHII and OEC, into the thylakoid membranes where they assemble with nascent 

PSII complexes. The in situ examination of the localization of Tic110 and Toc75 

suggested that under biogenesis conditions, the translocation apparatus of the 

envelope membranes forms distinct regions called the ‘import-envelopes’ at the lobe 
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junctions of C. reinhardtii. This import-envelopes, composed of multiple membrane 

contact sites between in the inner and outer envelope membranes, may then also 

associate the with the thylakoid membranes, forming protein bridges which are 

maintained during cellular subfractionation. The formation of import-envelopes and 

protein bridges near the T-zones would facilitate the assembly of nuclear and 

chloroplast synthesized proteins in a spatio-temporal pathway into fully functional 

PSII (see Appendix 6 for further discussion). 
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Figure 1: Distribution of Marker Proteins in Cells Maintained in Moderate Light 

Conditions. A gradient of a culture grown in constant moderate light (top) was 

examined by immunoblot for marker proteins of the thylakoid membranes (D2 and 

PsaAp) and T-zones (L7/L12, S20, and RB38/RBP40) after division into 0.75 ml 

fractions. The fractions were also examined for chlorophyll and protein content, here 

expressed as a percentage of the total found on the gradient (bottom). 
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Figure 2: Distribution of Marker Proteins in Membranes from Dark-Adapted Cells. A 

gradient of a culture treated with 2 h of darkness was examined by immunoblot for 

marker proteins of the thylakoid membranes (D2 and PsaAp) and T-zones (L7/L12, 

S20, and RB38/RBP40) after division into 0.75 ml fractions. 
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Figure 3: Blue-Native PAGE of Complexes from Fractions of a Gradient. The 

membranes of cells from a culture grown in constant moderate light was separated on 

a gradient of 1.0-2.0 M sucrose and the protein complexes of the fractions were 

examined by BN-PAGE; unstained on left, stained with Coomassie Blue on right. 

High-lighted are bands which vary through the gradient. The lower band, complex 1, 

is stronger in the thylakoid membranes. The upper band, complex 2, is stronger in the 

T-ZAMs. (See Appendix 1 for further confirmation.) 
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Figure 4: In organello Radiolabelling of Proteins from the Chloroplasts of Spinach. 

Spinach chloroplasts were isolated and then labelled with [
35

S] methionine and [
35

S] 

cysteine for 15 minutes (left) or 5 minutes (right). The membranes of the chloroplasts 

were then separated by floatation on sucrose density gradient ultracentrifugation. The 

gradient was divided into envelope membrane (1), thylakoid membrane (2), and T-

ZAMs (3) fractions. The proteins from these fractions were then separated by SDS-

PAGE, which was stained with Coomassie Blue and then exposed to a 

phosphorimager screen. 
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Figure 5: C. reinhardtii in vivo Radio-labelling of Chloroplast Lipids, Pulse and 

Pulse-Chase. Whole cells of C. reinhardtii were radio-labelled with [
14

C] acetate for 5 

minutes (left) or radio-labelled for 5 minutes followed by a chased for 1 hour (right) 

before the cells were broken and the membranes fractionated by sucrose density 

gradient ultracentrifugation. A TLC plate (see Fig. 6) was used to fractionate the 

isolated lipids of the gradient fractions before exposing it to a phosphorimager screen. 

The major bands include: chlorophyll and carotenoids (pigments), 

monogalactosyldiacylglycerol (MDGD), digalactosyldiacylglycrol (DGDG), 

phospholipids (PL), and sulpholipids (SL). 
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Figure 6: Unexposed TLC plate of C. reinhardtii in vivo Radio-labelling of 

Chloroplast Lipids, Pulse and Pulse-Chase. 
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Figure 7: C. reinhardtii Whole Cell Radio-labelling of Chloroplast Lipids, Pulse. 

Whole cells of C. reinhardtii were exposed to [
14

C] acetate for 5 minutes; the 

membranes were separated by sucrose density gradient ultracentrifugation and divided 

into the Envelope Membranes (ENV), Thylakoid Membranes (TM), T-zone associated 

membranes (T-ZAM). A TLC plate was used to separate the lipids before exposure to 

a phosphorimager screen. The major bands include the chlorophyll and carotenoids, 

monogalactosyldiacylglycerol (MDGD), digalactosyldiacylglycrol (DGDG).  
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Figure 8: Distribution of Chlorophyll Precursors. The fractions collected following 

sucrose density gradient ultracentrifugation were tested for the chlorophyll precursors 

chlorophyllide and protochlorophyllide. Thylakoid membrane fractions (6-9) had the 

most chlorophyll precursors, while T-ZAM fractions (10-12) contained some 

chlorophyll precursors. 
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Figure 9: Distribution of Envelope Membrane Protein Markers. Membranes from cells 

grown in moderate light conditions were separated on a gradient, which, after 

collection in 0.75 ml fractions, was examined by immunoblot for thylakoid membrane 

(D2), envelope membrane (Toc75 and Tic110), and T-zone (50S r-subunit) marker 

proteins. 
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Figure 10: Distribution of Envelope Membrane Marker Proteins II. Membranes from 

cells grown in moderate light conditions were separated on a gradient which were 

examined by immunoblot for thylakoid membrane (D2 and PsaA), envelope 

membrane (Tic110 and Toc75), and T-zone (L7/L12, S20, and RB38/RBP40) marker 

proteins. 
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Appendix 1: 2D BN/SDS-PAGE of Thylakoid Membranes and T-ZAMs. A) A BN-

PAGE showing the qualitative difference between thylakoid membranes and T-ZAMs 

(Translation). The T-ZAMs don’t accumulate the photosynthetically active PSII 

dimer. B, D, and F) A blot of a 2D gel of thylakoid membranes sequentially probed 

for D1, D2, and CP43. C, E, and G) A blot of a 2D gel of T-ZAMs sequentially 

probed for D1, D2, and CP43. Free D1 and D2 accumulate in the T-ZAMs, and there 

is more of the CP43 pre-complex (conducted by Dr. Schottkowski). 
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Appendix 2: Quantification of Fig. 5 Lipid Pulse and Pulse-Chase.  

 
MGDG 

 
DGDG 

 

 
Pulse Pulse-Chase Pulse Pulse-Chase 

Env 40 23 17 22 

Thy 157 118 61 115 

BT 89 73 35 75 

2.2 M 36 32 18 28 

2.5 M 32 19 16 18 

P 64 68 23 54 
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Appendix 3: In situ Localization of Tic110 and Toc75. The import apparatus of 

envelope membranes was localized to regions adjacent to the T-zones in moderate 

light conditions (A and C) termed the ‘import-envelope’. In dark-adapted cells neither 

the T-zone nor the import-envelope pattern appeared (B and D) (conducted by Dr. 

Schottkowski). 
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Appendix 4: 

 The lysis conditions for the chloroplasts isolated from spinach cells were 

determined empirically, and a light microscope at 400X magnification was used to 

confirm lysis. The methods of lysis considered were: Yeda Press, Dounce 

Homogenizer, 5 mM MgCl2 with and without vortexing, and 2 mM EDTA with and 

without vortexing. The conditions which lysed the chloroplasts most thoroughly were 

5 mM MgCl2 and 2 mM EDTA both with vortexing. As ribosome subunit attachment 

is partially dependent on Mg
2+

 concentration 5 mM of MgCl2 with vortexing was used 

for the lysis of chloroplasts (Chua et al. 1973). 

  In addition, the use of chloramphenicol before the breakage of C. reinhardtii 

cells was considered because it is an antibiotic which stops translating ribosomes on 

RNA, and might affect the distribution of ribosomes in the gradient. This was done by 

adding 1/1000 concentration of chloramphenicol to cultures for 10 min before the 

breakage of cells. The breakate was then treated as previously and the samples 

collected from the gradient as previously. There, however, was no effect of 

chloramphenicol on the distribution of ribosomes through the gradient, nor was there 

an effect on the distribution T-ZAMs.  
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Appendix 5: C. reinhardtii cell schematic. 
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Abstract 

The photosynthetic electron transport system of chloroplasts is composed of 

complexes of polypeptides which are encoded by two genomes. Nuclear genome-

encoded polypeptide subunits are synthesized in the cytoplasm, imported across the 

chloroplast envelope, and assembled with subunits encoded by the plastid genome. 

The latter include integral membrane subunits synthesized directly into 

chloroplast membrane by plastid ribosomes. Previous work revealed translation zones in 

the chloroplast and cytoplasm as privileged locations of the synthesis of PSII-LHCII 

polypeptides. Our results reveal two novel chloroplast membranes in these regions. A “PSII 

translation membrane” in the chloroplast was revealed by a cellular subfractionation scheme 

to be a platform for the synthesis and membrane insertion of chloroplast genome-encoded 

subunits. “Import envelope” was identified is a specialized domain of the chloroplast 

envelope by immunofluorescence microscopy. Light-responsive changes in the localization of 

the protein import machinery reveal the chloroplast envelope is dynamic. The locations and 

protein compositions of these membranes support a model for the spatiotemporal 

organization of PSII-LHCII biogenesis. The findings build upon growing evidence for 

complex organization of biogenesis processes and provide a cytological context and 

biochemical methods for research into photosystem II biogenesis and other 

problems of chloroplast biology. 
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\body Introduction 

Membrane biogenesis requires the concerted synthesis and localization of the correct lipids, 

proteins, and cofactors. In the cytosol of eukaryotic cells, the endoplasmic reticulum 

organizes these processes to form new membranes, which are then routed to the correct 

intracellular compartment: e.g. an organelle, the nuclear envelope, or the plasma membrane 

(1). Chloroplasts and mitochondria, by contrast, have internal membranes that arise within 

these organelles; the photosynthetic thylakoid vesicles and inner membrane, respectively. 

This distinction probably reflects the early evolution of these semiautonomous organelles as 

free-living bacteria prior to endosymbiosis with progenitor eukaryotic cells. While our 

understanding of the ER is advanced and rapidly expanding, little is known about the spatial 

organization of the pathways that underlie the biogenesis of the inner mitochondrial 

membrane and thylakoids (reviewed by 2-4).  

Thylakoids are the network of flattened vesicles that harvest light and use the energy 

to generate ATP and NADPH. Embedded in thylakoid membranes are the four major 

complexes of the photosynthesis apparatus: photosystem I (PSI), photosystem II (PSII), the 

cytochrome b6/f complex, and the chloroplast ATP synthase. PSII is a model used to study of 

the general principles underlying the biogenesis of photosynthesis complexes (5). The 

polypeptide subunits of PSII are encoded by two genomes and expressed by the distinct 

genetic systems of the nuclear-cytosolic compartments and the chloroplast. The nuclear 

genome-encoded subunits are synthesized in the cytosol by 80S ribosomes, imported across 

the chloroplast envelope, and transported to thylakoids. These include the subunits of two 

complexes bound to the PSII periphery; the light harvesting complex II (LHCII) and the 

oxygen evolving complex (OEC) (6). Other PSII subunits are encoded by the plastid genome 

and synthesized by membrane-bound 70S bacterial-like ribosomes in the chloroplast stroma 

(2). These plastid-encoded polypeptides include the polytopic integral membrane PSII 

subunits D1, D2, CP43, and CP47. The fully assembled PSII-LHCII supercomplex consists of a 

dimer of two PSII core complexes, each with an OEC on the thylakoid luminal side and two 

peripheral LHCII’s within the membrane (6, 7). Despite our knowledge of the pathways 

involved in PSII biogenesis, major gaps exist in our understanding of their cytological 

organization.  

Precisely where plastid-encoded subunits are synthesized is under debate (2, 3). The 

accepted model holds that their nascent polypeptides are inserted into stroma-exposed 
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thylakoid membranes, based on demonstrations of thylakoid-bound ribosomes by cellular 

subfractionation and electron microscopy (reviewed by 2, 3).  

An alternative model of synthesis and assembly of PSII subunits in a specific region 

within the chloroplast of Chlamydomonas reinhardtii is based on results of fluorescence 

confocal microscopy (2, 8, 9). These studies revealed that markers for PSII biogenesis 

colocalized in specific region within the chloroplast; a “translation (T) zone”. These marker 

proteins were r-proteins of both chloroplast ribosomal subunits, the PSII-specific translation 

factor RBP40, chloroplast mRNAs encoding PSII subunits, and the D1 subunit in a mutant 

defective in its incorporation into assembling PSII complexes. In this model the 

abovementioned ribosomes bound to the thylakoid membranes are synthesizing proteins for 

processes other than de novo PSII assembly e.g. the repair of photo-damaged PSII complexes 

and the de novo assembly of other photosynthesis complexes (8). Thus, we predicted the 

existence of an unknown membrane located specifically in T-zones functions as a platform 

for the synthesis and membrane insertion of the plastid-encoded PSII subunits. Because this 

model is based entirely on in situ evidence, its further consideration requires biochemical 

evidence for such “PSII translation membranes”.  

Here, we identified PSII translation membranes by developing an analytical cellular 

subfractionation scheme that generates subcellular fractions containing these membranes 

according to criteria based on the in situ results reviewed above. PSII translation membranes 

were predicted to: 1) have the T-zone marker proteins (r-proteins of both subunits of the 

chloroplast ribosome, RBP40) but not most other proteins; 2) be a minor chloroplast 

membrane, because T-zones occupy a small proportion of the chloroplast; 3) be neither 

thylakoid nor envelope; 4) have free PSII subunits, assembly intermediates, or both; and 5) 

not be involved in PSI subunit assembly, because a chloroplast mRNA encoding a major PSI 

subunit was not recruited to T-zones (8). These and other results provide evidence of a novel 

spatiotemporal pathway of PSII biogenesis beginning in T-zone-localized PSII translation 

membranes and progresses outwards to contribute to the functional PSII pool in thylakoid 

membranes throughout the chloroplast.  
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Results 

Cellular subfractionation reveals PSII translation membranes. 

The analytical cellular subfractionation scheme was established to reveal PSII 

translation membranes by conducting trails to compare different culture conditions and 

methods of cell breakage and subfractionation and thereby optimize each step to reveal 

membrane fractions meeting our first criterion: the presence of marker proteins of T-zones 

(chloroplast r-proteins, RBP40) but not of thylakoid membranes (chlorophyll and subunits of 

PSI and PSII, PsaAp, and D2, respectively). Immunoblot analyses were conducted on 

proportional amounts of each fraction in order to determine the distribution of the cellular 

pool of each protein relative to markers for known compartments (10). 

This procedure revealed membrane fractions that met our criteria for PSII translation 

membranes. From a representative gradient (Fig. 1A), the fractions with r-protein markers of 

the 30S and 50S subunits of the chloroplast ribosome (8-13) only partially overlapped the 

fractions with thylakoid membranes (8-10).  (Fraction 14 is the 2.5 M sucrose from which 

membranes were floated.) Thylakoids were identified by their enrichment in chlorophyll, 

PsaAp, and D2. Notably, the densest region of the gradient (fractions 11-13) had both r-

proteins and RBP40, but only trace levels of the thylakoid membrane marker proteins. A role 

of the membranes in these fractions (8-13) in PSII translation is supported by the specific 

role of RBP40 in the translation of a chloroplast mRNA encoding the D2 (11). Stroma-

exposed thylakoid membranes, a proposed site of PSII subunit synthesis, were not in these 

densest fractions because the marker protein for them (PsaAp) was predominantly with the 

thylakoid membranes (fractions 8-10). PSII translation membranes are minor, our second 

criterion, because fractions 11-13 contained 13% of total protein and 21% of total 

chlorophyll, compared to 50% and 80% in the thylakoid membrane fractions,  respectively. 

Therefore, it was striking that these densest fractions had a substantial pool of the 

membrane-associated ribosome subunits and RBP40 and were distinct from the bulk of the 

thylakoids. PSII translation membranes probably are not involved in PSI subunit synthesis, 

our fifth criterion, because only thylakoid membrane fractions contained Ycf4p, a protein 

that binds newly synthesized PSI subunits for the assembly of this complex (Fractions 7-9, 

Fig. 1C) (12).  

PSII translation membranes are physically associated with these T-zone marker 

proteins as opposed to simply trapping them within vesicles. First, the stroma marker 

protein HSP70B would also have been trapped but it was not detected in fractions 10-12 (Fig. 
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1C). Second, RBP40 and the r-protein of the 50S ribosome subunit could be extracted from 

PSII translation membranes by incubation with agents that remove peripheral membrane 

proteins (Fig. 2). The 30S subunit r-protein marker protein was considerably more resistant 

to extraction; it was weakly extracted only by high ionic strength conditions (2.0 M NaCl). In 

summary, it is most probable that both subunits are membrane-bound, either as assembled 

translating ribosomes, individual subunits, or both.  

Results of blue-native PAGE reveal free D1 and D2 in PSII translation membranes. 

For PSII biogenesis, newly synthesized plastid-encoded subunits associate in specific 

combinations to form three assembly intermediates; the reaction center (RC) with D1 and 

D2, a CP43-precomplex, and a CP47-precomplex. The RC and CP47 pre-complex associate to 

form RC47 (reviewed by 5). RC47 associates with the CP43 pre-complex to form the 

monomeric PSII core complex RCC1. RCC1 dimerizes to form RCC2 and associates with the 

nucleus-encoded subunits of the OEC and LHCII to form the PSII-LHCII supercomplex. 

Considering that this process occurs within a few minutes, we predicted that PSII translation 

membranes would have free PSII subunits, assembly intermediate complexes, or both (13). 

However, the use these assembly intermediates as markers of de novo PSII biogenesis should 

consider that the PSII damage-repair cycle also involves the synthesis of D1 and the partial 

disassembly of PSII (14). Therefore, the valid markers for de novo assembly are free PSII 

subunits other than D1 (e.g. D2), the RC, the CP43- and CP47-precomplexes, as well as the 

absence of RCC2 and the PSII-LHCII supercomplex.  

We therefore analysed the assembly states of D1, D2 and CP43 in thylakoid and PSII 

translation membrane fractions by blue native (BN) PAGE and immunoblot analysis (15). 

Analyses of equal amounts of membrane were required to have comparable solubilisation 

conditions. This necessitated over representation of PSII translation membranes on a per cell 

basis. Thus, we determined the proportion of PSII subunits that were either free or in 

assembly precomplexes in each fraction using the level of RCC1 as a standard. When 

immunoblots of BN gels were immuno-probed with antisera against D2, we detected RCC1 

and RC47 in thylakoid and PSII translation membrane fractions, while RCC2 was detected 

only in thylakoid membrane fractions (Fig. 3A). This result reveals that the PSII translation 

membranes are qualitatively different from thylakoids in their composition of PSII complexes 

consistent with early stages in PSII biogenesis.  

Lanes with thylakoid or PSII translation membranes were subjected to a second 

dimension of denaturing SDS-PAGE and immunoblot analysis (Fig. 3B-G). In both thylakoid 
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and PSII translation membrane fractions, D1 was detected in RCC1, RC47, the RC, and as free 

subunit. RCC2 was not detected in on our 2D gels for unknown reasons. Some D1 was shifted 

in the gel to higher molecular mass complexes of approximately 40 and 58 kDa, a result of 

incomplete denaturation prior to the second dimension of SDS-PAGE. This shift was useful 

because it resolved the RC (shifted) and the free D1 subunit (not). As mentioned above, free 

D1 is a marker for both repair and de novo biogenesis of PSII (8, 16). When the same blots 

were reprobed for D2, this subunit was detected in the expected positions corresponding to 

33 kDa and as the partial denaturation product of 59 kDa (as described above for D1). Most 

notably, free D2 was detected the PSII translation membrane sample (Fig. 3E) but not the 

thylakoid membrane sample (Fig. 3D). By contrast, in both samples, D2 signal was detected 

in the spots corresponding to RCC1, RC47, and the RC, revealing that PSII translation 

membranes are not privileged sites for intermediate stages in PSII assembly. When the blot 

was stripped and reprobed with the antiserum against CP43, the CP43 pre-complex was 

detected at a higher level in the PSII translation membranes (Fig. 3G) than in the thylakoid 

membrane sample (Fig. 3F). This result indicates that assembly of the CP43 pre-complex 

occurs predominantly in the PSII translation membranes. Previous studies have detected 

newly synthesized CP43 in this complex and not as free subunit (13, 17), consistent with the 

absence of free CP43 here. Together, these results indicate that PSII translation membranes 

serve as a platform for the synthesis of plastid-encoded PSII subunits and the assembly of 

the CP43-precomplex.  

Envelope membranes containing the TIC and TOC import machinery cofractionate with 

chloroplast ribosomes and thylakoid membranes. 

The inner membrane of the chloroplast envelope is also accessible to chloroplast 

ribosomes and RBP40 and it has been speculated that thylakoid membranes arise from the 

inner envelope membrane (reviewed by 2, 18). We presumed that the PSII translation 

membranes are not envelope because our previous in situ analyses for PSII subunit synthesis 

in T-zones would have detected such a localization pattern (8). Moreover, there are no 

reports of chloroplast ribosome association with an inner envelope membrane, to our 

knowledge. Nevertheless, because any cellular subfractionation study should test markers 

for all potentially relevant intracellular compartments, the gradient fractions were tested for 

polypeptide subunits of the TOC and TIC protein import complexes of the outer and inner 

envelope membranes, respectively (19, 20). Although we expected to find these marker 

proteins in fractions of low density, as reported for envelope membranes (fractions 4-6) (21), 

they cofractionated with the chloroplast r-proteins and RBP40 in a high-density region of the 



58 

 

gradient, i.e. with PSII translation membranes (Fig. 1B). However, analyses of other 

preparations revealed Toc75 and Tic110 primarily in thylakoid membrane fractions with low 

levels in PSII translation membrane fractions (Fig. 1C). Although we do not know the basis, 

this occasional separation of PSII translation membranes and envelope membranes reveals 

that these are distinct membrane types.  

The chloroplast protein import machinery localizes to novel envelope domains at lobe 

junctions 

To explore the basis of the unexpectedly high density of the envelope membranes 

with the protein import machinery, we characterized the in situ distributions of Toc75 and 

Tic110 by immunofluorescence (IF) staining and fluorescence microscopy. T-zones were co-

stained for the chloroplast psbA mRNA with fluorescence in situ hybridization (FISH) while 

weaker, non-localized psbA FISH signal co-stained the rest of the chloroplast (Fig. 4).  

The results revealed a dramatic localization of Toc75 and Tic110 where the junctions 

of the two chloroplast domains; lobes and the basal region (Fig. 4A and C, Fig. 5A). We term 

these regions “lobe junctions”. These results raise the intriguing possibility that novel 

domains of chloroplast envelope are specialized in the import of nucleus-encoded 

polypeptides and localized at the lobe junction, termed here “import envelope”. In light of 

this finding, the results in Fig. 1B and C suggest that import envelope domains have a higher 

density than the rest of the chloroplast envelope (21). 

Light-responsive changes in the localization of the protein import machinery were 

observed (Fig. 4, compare A&C with B&D). Dark-adaptation of cells for 2 h diminished the 

localization Toc75 and Tic110 to lobe junctions (Fig. 4B and D). Statistical analyses revealed 

that 54% of cells from light conditions showed the T-zone localization of the psbA mRNA (n= 

278). Of these, strong IF-staining of import envelope domains with Toc75 or Tic110 were 

observed in 73% (n=120) and 79.5% (n=156), respectively. Of the dark-adapted cells, 41% 

showed the T-zone localization of the psbA mRNA (n=149) and, of these, the localized IF-

signals of Toc75 or Tic110 were seen in 15.7% (n=89) and 21% (n=60), respectively. 

Therefore, the localization of the protein import machinery to lobe junctions appears to be 

dynamic and responsive to light. 

 

Discussion 
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Our results reveal a complex cytological organization of the dual pathways that supply the 

polypeptides for the biogenesis of the PSII-LHCII supercomplex. Biochemical and in situ 

evidence support the existence of two novel membrane compartments of the chloroplast. 

PSII translation membranes were identified on as a platform for the synthesis of plastid-

genome encoded PSII subunits and the assembly of the CP43 precomplex. These membranes 

have higher buoyant density than thylakoid membranes, a range that has not been resolved 

previously, to our knowledge. Another novel chloroplast compartment was identified; lobe 

junctions, where we propose that the nucleus-encoded subunits of PSII, LHCII and OEC are 

imported and assembled upon RCC1 and RCC2, based on the following results. First, lobe 

junctions are surrounded by envelope domains enrich in the TOC and TIC complexes (Fig. 4A 

and C). These complexes import the subunits of the LHCII and the OEC (20). Second, previous 

in situ results support localized synthesis of LHCII subunits in the cytoplasm adjacent to lobe 

junctions (22). Third, import envelope at lobe junctions appears to be distinct from 

previously described chloroplast envelope membranes in density (Fig. 1Band C) (23). Fourth, 

a study of the ultrastructure of the Chlamydomonas chloroplast noted “frequent focal 

fusions of the two membranes of the chloroplast envelope” at a lobe junction (24). Evidence 

has also been reported for localized import at contact sites of the inner and outer envelope 

membranes (25). Therefore, we propose that lobe junctions are where nucleus-encoded 

subunits are imported and assembled upon the newly generated PSII monomers, dimers, or 

both to form the supercomplex.  

The novel import envelope domains of lobe junctions appear to relationships with T-

zones. First, the Toc75 or Tic110 IF signal often extended close to the psbA FISH signal in a T-

zone, although these signals did not overlap extensively (Fig. 4A and C). Second, there was a 

strong correlation of appearance of both signals in the same cells. Third, the localization of 

the TOC and TIC complexes to lobe junctions was enhanced by light, a condition associated 

with an elevated rates of PSII biogenesis and chloroplast protein import in Chlamydomonas 

and Maize (8, 26, 27) (Fig. 4, compare A&C with B&D). These results support a role of the 

“import envelope” domains at lobe junctions in importing the nucleus-encoded subunits of 

PSII, LHCII, and OEC for the biogenesis of the PSII-LHCII supercomplex (Fig. 5C).  

Our model proposes that PSII translation membranes in T-zones and the import 

envelope surrounding lobe junctions are parts of spatiotemporal organization of the PSII-

LHCII supercomplex biogenesis (Fig. 5C). In T-zones, PSII translation membranes are a 

platform for the synthesis and assembly of the plastid-encoded PSII subunits. Chloroplast 

ribosome subunits and PSII subunit mRNAs are recruited to these membranes by translation 
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independent mechanisms, e.g. by tethering  by membrane bound RNA-binding proteins (22). 

The small ribosome subunit binds with remarkably high affinity (Fig. 2). It seems reasonable 

to suppose that such a high affinity interaction is required by components that nucleate the 

assembly of a translation competent ribosome, such as the small ribosomal subunit. Then, 

PSII monomers migrate to the lobe junctions where they dimerize and are built upon by 

nucleus-encoded subunits of PSII and its LHCII and OEC, imported locally by the import 

envelope domains of the lobe junctions. Thus, lobe junctions are convergence points for the 

pathways that provide polypeptides subunits encoded by the chloroplast and nuclear 

genomes. Assembled PSII-LHCII supercomplexes migrate to photosynthetic membranes of 

thylakoid lamellae which extend into lobes or around the pyrenoid to occupy the periphery 

of the chloroplast basal region (Fig. 5A). At each stage, migration occurs by lateral diffusion in 

thylakoid membranes which extend as continuous, elongated lamellae from T-zones to the 

ends of the lobes at the anterior cell pole, while lamellae wrap around the pyrenoid to the 

posterior pole of the chloroplast (28). Generality of this model is supported by the 

identification of a PSII biogenesis compartment in the cyanobacterium Synechocystis sp. PCC 

6803 and highly localized GFP-tagged Tic20 paralogue at the periphery of the chloroplast 

envelope in Arabidopsis thaliana (29-31). In addition, mitochondria have a compartment 

analogous to lobe junctions; the cristae junctions, where the outer and inner membranes 

make contact via interactions involving the protein import machinery (32, 33). The effect of 

light on the relocalization of the TIC and TOC import machinery to lobe junctions might be 

relevant to the light stimulation of chloroplast protein import which has been observed in 

Chlamydomonas and vascular plants (26, 27). Moreover, the Rubisco holoenzyme might be 

assembled in the pathways described here because its small subunit is imported via the TOC 

and TIC pathway and the chloroplast mRNA encoding the large subunit localizes in situ in T-

zones and is translated in association with membrane (22, 34, 35). Our findings build upon 

growing evidence of complex cytological organizations of biogenesis processes in 

chloroplasts and cyanobacteria. 

Finally, the preliminary evidence suggests that the pathways underlying thylakoid 

membrane biogenesis are not organized in a single thylakoid biogenesis compartment 

analogous to the endoplasmic reticulum.  PSII translation membranes are probably not a site 

of PSI subunit synthesis for two reasons: YCF4p does not cofractionate with them and the 

chloroplast mRNA encoding the PSI subunit PsaAp is not recruited to T-zones (Fig. 1C) (8). 

Other thylakoid membrane components, lipids and pigments, are synthesized, at least in 

large part, at the chloroplast envelope (3, 36-38).  Therefore, most evidence indicates that 

the various pathways that synthesize thylakoid membrane components are dispersed to 
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different chloroplast compartments. In summary, our findings build upon growing evidence 

of complex cytological organizations of biogenesis processes in chloroplasts and 

cyanobacteria. 

Methods 

Culture conditions. C. reinhardtii strains, wild-type CC-4051 or the cell wall mutant CC-503, 

were cultured photoautotrophically in high-salt-minimal medium (HSM), with aeration, at 

24oC, under a light intensity of c.a. 100 µE m-2 sec-1 until mid-log phase (2-4 x 106 cells ml-1) 

(39).  

Analytical cellular subfractionation. Cells from a 500 ml culture were pelleted by 

centrifugation at 4,000 x g for 5 min at 4°C, resuspended in MKT-buffer (25 mM MgCl2, 20 

mM KCl, 10 mM Tricine-Cl pH 7.5, Protease Inhibitor (Sigma-Aldrich). Cells were broken by 

three passes through a chilled French Pressure Cell at 1,000 psi. Breakage was verified by 

light microscopy (400 and 1000X magnification). The lysate was ultracentrifuged at 100,000 g 

for 1 h at 4° C. The supernatant was collected and stored at -80oC. The pellet was 

resuspended in 2.5 M sucrose, overlaid with a linear sucrose gradient (0.5-2.2 M). All sucrose 

solutions were prepared in MKT-buffer. The gradient was ultracentrifuged at 100,000 g for 

16 h at 4° C. Fractions (0.75 ml) were collected and the pellet was resuspended in KHEG-

Buffer (60 mM KCl, 20 mM HEPES, 0.2 mM EDTA, 20% Glycerol). Gradients contained only 

membrane and associated material based on the buoyant density of bacterial ribosomes in 

equilibrium CsCl gradient ultracentrifugation (1.67-1.69 g/ml) would be equivalent to an 

unachievably high sucrose concentration (4.9 M) (40).  

Quantification of protein and chlorophyll. Protein concentration was determined using the 

bicinchoninic acid assay (41). Chlorophyll was quantified as described previously (42).  

Immunoblot analysis. Equal proportions of the fractions were solubilized in SDS-PAGE 

loading buffer, denatured at 42oC for 30 min. Proteins were resolved by SDS-PAGE, 

transferred to nitrocellulose membrane (Protran, Schleicher & Schuell), and immuno-probed 

with polycolonal rabbit antisera as described previously (43). The antisera against D1 and 

CP43 were purchased (Agrisera). The antisera against the r-proteins had been raised against 

proteins isolated from highly purified C. reinhardtii ribosomal subunits (S-20 (30S) and L-30 

(50S)) (44). Others were recombinant proteins and reported previously; PsaAp (45), HSP70B 

(46), RBP40 (11).  
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FISH, IF staining, and fluorescence microscopy. FISH and IF-staining of cells of strain CC-503 

were performed as described previously (8, 47). The psbA FISH probes were labeled with 

Alexa Flour 488 and the IF-staining used Alexa Fluor 568-conjugated anti-rabbit secondary 

antibody (Invitrogen). Images were captured on a Leica DMI6000B microscope (Leica 

Microsystems) using a 40x/0.75 objective, a Hamamatsu OrcaR2 camera and Volocity 

acquisition software (Perkin Elmer). Image analyses used the Colocalization Finder plugin of 

ImageJ (http://www.rsb.info.nih.gov/ij) (48). 

BN/SDS-PAGE. BN-PAGE was performed as described previously with the following minor 

modifications (15). Aliquots of sucrose gradient fractions containing 6 g of chlorophyll were 

concentrated by centrifugation (100,000 g; 1 h; 4 oC) and resuspended in ACA 750 (750mM 

aminocaproic acid, 50 mM Bis-Tris, and 0.5 mM EDTA, pH 7.0). Membranes were then 

solubilized on ice in 0.8% n-Dodecyl-β-D-Maltoside (β-DM) for 5 min. Non-solubilized 

material and cell debris was pelleted by centrifugation at 13.000 rpm for 30 min in a 

microfuge at 4oC. The supernatant was added to 1/10 Vol of 5% Coomassie Brilliant Blue G-

250 , 750mM aminocaproic acid whereupon protein complexes were then separated by 

electrophoresis in a 4.5% – 12% acrylamide gel containing 0.5 M aminocaproic acid and 50 

mM Bis-Tris HCl pH 7.0. Protein was either transferred to PVDF or used for separation in the 

2nd dimension by reducing SDS-PAGE and transferred to nitrocellulose membrane and 

immuno-probed as described previously (49). 

Membrane washing. Aliquots of PSII translation membranes were diluted 25-fold in washing 

buffer (20 mM KCl, 10 mM Tricine and 2.0 mM EDTA pH 7.2, protease inhibitor cocktail 

(Sigma-Aldrich)) and pelleted by centrifugation in a microfuge for 1 h at 13,000 x g. Pellets 

were resuspended in 30 µl of one of the following: washing buffer, 500 mM KCl, 20 mM 

Na2CO3, 1.0 M NaCl, 2.0 M UREA, incubated ice for 30 min, and then centrifuged for 30 min 

at 13,000 x g in a microfuge. The supernatants were collected and the pellet was washed 

once to remove residual soluble material and then finally resuspended in 30 µl SDS-PAGE 

sample buffer. SDS-PAGE and immunoblot analysis were carried out as described previously 

(43). 
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Fig. 1) Immunoblot analyses of cellular subfractions reveals novel membranes with marker 

proteins for the translation of plastid mRNAs encoding PSII subunits and T-zones.  

Each panels shows analyses of a different preparation using the same cellular subfractionation 

scheme. (A) Fractions were assayed by immunoblot for markers of PSII translation membranes 

(RBP40, r-proteins for the 30S and 50S subunits of the chloroplast ribosomes) and thylakoid 

membranes (D2 and PsaAp). Lanes have the supernatant of the initial 100,000 x g centrifugation 

(SU), fractions from the gradient (1-13), the 2.5M sucrose cushion (14), the pellet (P). The upper 

image shows the distribution of chlorophyll in the gradient. Percentages of total chlorophyll 

(%Chl) and protein (%Prot) in each fraction are given. (B) In certain gradients, Toc75 and Tic110 

cofractionated with the PSII translation membrane fractions (11-13) while in others (C) they 

cofractionated with thylakoid membrane (fractions 11-13). Profiles of HSP70B and Ycf4p are 

shown.  
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Fig. 2) Membrane association of ribosome subunits and RBP40. Samples of PSII translation 

membranes were incubated with the agents indicated to allow any release of bound proteins 

and then membranes were pelleted by centrifugation. The integral membrane protein D2 serves 

as a marker for membranes and could be detected by long exposure times. Comparisons of the 

non-membrane supernatant (S) and membrane pellet (P) by immunoblot analysis revealed the 

degrees of extraction of RBP40 and the marker r-proteins of the 30S and 50S subunits of the 

chloroplast ribosome.  
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Fig. 3) Blue-Native PAGE reveals PSII subunits in early assembly stated in PSII translation 

membranes.  

One dimensional BN-PAGE analysis of the assembly states of the PSII subunit D2 in sucrose 

gradient fractions with thylakoids (lanes 1-2) and PSII translation membranes (lanes 3-5). RCC1 

levels are similar because samples were loaded on the basis of equal chlorophyll to ensure 

comparable solubilization conditions and use RCC1 as a standard for qualitative analyses. Two 

dimensional BN-PAGE-reducing SDS-PAGE reveals the assembly states of D1, D2 and CP43 in 

thylakoids (Panels B, D, F) and PSII translation membrane membranes (Panels C, E, G). The pair 

of blots was first immuno-probed for D1 (B and C); then immuno-probed for D2 (D and E), and 

then stripped and immuno-probed for CP43 (F and G). Overlays of B/D and C/E allow 

discrimination of the D1 and D2 signals. PSII monomeric complex, RCC1; PSII dimeric complex, 

RCC2; the monomeric complex lacking CP43, RC47; PSII reaction center, RC, CP43-precomplex, 

CP43pre; Unassembled subunits, U.P.  
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Fig. 4) The TOC and TIC protein import complexes are localized to novel domains of 

chloroplast envelope at lobe junctions in a light-dependent fashion. 

Cells were IF-stained for Toc75 (A and B) or Tic110 (C and D), marker proteins for the TOC and 

TIC protein import complexes, respectively (red). Co-staining of the psbA mRNA by FISH (green) 

reveals T-zones as strong punctate signal (thin arrows) and the chloroplast as a weaker diffuse 

signal. IF-signals of Toc75 or Tic110 localized at lobe junctions are indicated with arrowheads (A 

and C). Cells are oriented with their nuclear-cytosolic compartment is on the left and the basal 

chloroplast with the pyrenoid on the right. Light-cultured cells (A and C), dark-adapted cells (B 

and D). Bars = 2m. 
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Fig. 5) A model for the spatiotemporal organization of PSII-LHCII supercomplex biogenesis. 

(A) An illustration of a Chlamydomonas cell shows the nucleus (N), flagella (F), cytosol, and the 

chloroplast with thylakoid lamellae (dark green lines), the pyrenoid (P), T-zone (blue), lobes, and 

lobe junctions (red). The chloroplast lobes are finger-like projections which extend from the 

globular basal region in the posterior (bottom) to the anterior (upper) poll of the cell thereby 

encompassing the nuclear-cytosolic compartments (28). (B) A highly simplified illustration of the 

PSII-LHCII supercomplex shows the plastid-encoded subunits of the reaction center (RC) and the 

nucleus-encoded subunits of the LHCII and the OEC. See Caffarri et al (2009) for the precise 3D 

structure (50). (C) An illustration shows the compartments and steps in our model. 1) In the T-

zone, plastid-encoded subunits are synthesized into PSII translation membranes. 2) Free 

subunits assemble to form the PSII RC and the CP43 pre-complex. 3) Intermediates move by 

lateral diffusion in the membrane to lobe junctions. 4) In thylakoid membranes or an 

intermediate PSII biogenesis membrane in lobe junctions, the RC associate with the CP47 pre-

complex to form the PSII monomeric complex, RCC1. 5) RCC1’s dimerize to form RCC2. 6) In lobe 

junctions, nuclear genome-encoded subunits OEC and LHCII locally imported by the TOC and TIC 
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complexes (purple) in import envelope and assembled. 7) The PSII-LHCII supercomplex migrates 

to thylakoids throughout the chloroplast (5). 

 

 

 

 

 

Supplemental data fig. 1 

The antisera against spinach Toc75 and Tic110 are highly specific in Chlamydomonas because 

each only detects a protein of the expected molecular mass (51). Fractions of another gradient 

were also assayed for the subunits of the Toc75 and Tic110, markers of the TOC and TIC protein 

import complexes in the outer and inner membranes of the chloroplast envelope, respectively.  


