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ABSTRACT

Pricing and Hedging GMWB Riders in a Binomial Framework

Menachem Wenger

The guaranteed minimum withdrawal benefit (GMWB) rider guarantees the return

of premiums in the form of periodic withdrawals while allowing policyholders to par-

ticipate fully in any market gains. The product has evolved into a lifetime version

(GLWB) and is a vital component of the variable annuity marketplace, representing

asset values of $294B as of September 2011.

GMWB riders represent an embedded option on the account value with a fee

structure that is different from typical financial derivatives. We present an in-depth

study into pricing and hedging the GMWB rider from a financial economic perspec-

tive. Our main contributions are twofold. We construct a binomial asset pricing

model for GMWBs under optimal policyholder behaviour which results in explicitly

formulated perfect hedging strategies in a binomial world. The numerical toolbox for

pricing GMWBs in a Black-Scholes world is expanded to include binomial methods.

To motivate our work, we begin with a review of the continuous model and a

comprehensive synthesis of results from the literature. Throughout, particular focus

is placed on the unique perspectives of the insurer and policyholder and the unifying

relationship. We also present an approximation algorithm that significantly improves

efficiency of the binomial model while retaining accuracy. Several numerical examples

are provided which illustrate both the accuracy and the tractability of the model.

Finally, we explore the effect of deterministic mortality on pricing GMWBs, and

run mortality simulations to obtain hedging results which support the diversification

principle.
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Chapter 1

Introduction

1.1 Background

The variable annuity marketplace has seen tremendous growth in sales since the

early 1990’s. The growth has corresponded to the increase in product offerings, both

in terms of the variable annuity (VA) base contracts and the accompanying riders.

Riders are optional add-ons to VAs, providing additional benefits in return for which

an additional charge is subtracted annually from the account value (AV).

Variable deferred annuities have two phases: the accumulation period and the

annuitization period. During the accumulation period, premiums are deposited with

the insurer and can be actively managed by the policyholder to achieve his investment

goals by allocating the funds to a selection of investment funds. The policyholder

may choose to take partial withdrawals and/or surrender the contract, although the

proceeds will likely be subject to contingent deferred sales charges (CDSC), more

commonly referred to as surrender charges (SC), and possible tax penalties depending

on the age of the policyholder. Upon annuitization the policyholder cedes control

over the funds and in return is guaranteed a periodic stream of payments. This phase

protects annuitants from longevity risk. The duration of the guaranteed period may
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range from a fixed number of years (term certain) up to guaranteed for life. The

policyholder may choose the payments to be fixed or variable. In the latter case, they

will fluctuate based partially on the performance of certain market funds.

The first riders introduced to the VA market were death benefit riders: these

guarantee a minimum death benefit to the beneficiaries if the policyholder dies during

the accumulation period. Initially offering a simple return of premium, the benefits

evolved to offer increasingly rich guarantees in the form of annual roll-ups and high-

est anniversary values. The next form of riders introduced were guaranteed living

benefits (GLBs). The guaranteed minimum accumulation benefit riders (GMABs)

guarantee a minimum account value at a specific date (i.e. 10 years from issue date),

while the guaranteed minimum income benefit riders (GMIBs) guarantee a minimum

annuitization amount by giving policyholders the choice between annuitizing a higher

guarantee base at contractually specified annuitization rates or the current account

value at the current annuitization rates. The contractual annuitization rates are

generally conservative and can be expected to lie below current rates.

Guaranteed minimum withdrawal benefit riders (GMWBs) were introduced in

2002 and guarantee the policyholder will recover at least the total premiums paid

into the policy in the form of periodic withdrawals, subject to the annual withdrawals

not exceeding a contractual percentage of the premiums. By allowing policyholders

to remain in the accumulation phase and retain full control of their investments,

policyholders reap the upside potential from equity investments while being protected

from downside risk. GMWBs evolved into the guaranteed lifetime withdrawal benefit

riders (GLWBs) which guarantee the annual maximal withdrawals for life, thereby

introducing a feature of the annuitization phase into the accumulation phase. GMWB

and GLWB riders represent embedded financial put options on the account values and

techniques from mathematical finance are needed to value these contracts.

The fee structures of these riders add complexity to pricing and risk management
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processes, relative to the standard financial equity market derivatives where a single

upfront premium is charged which has no impact on the future random payoffs. Con-

sistent with the fee structure of VAs, no upfront fees are charged for GMWB riders.

Rather, fees are deducted periodically from the AV to pay for the rider where the

fees are proportional to the AV. The AV is influenced by the withdrawal behaviour of

the policyholder and revenue flow from fees stops in the event of death or surrender.

As such there are multiple sources of uncertainty involved in the actual fees to be

received. Another subtle impact of the fee structure is that an increase in the fee rate

results in higher annual fee income but it also creates a drag on the AV, potentially

causing it to reach zero faster which results in earlier termination of fee revenues and

increased rider guarantee payouts.

The GLB riders have grown increasingly complex in recent years. Added features

range from periodic ratchets and annual roll-ups to specific one-time bonuses if certain

criteria are met. While these features were designed to increase the product appeal,

they were also designed to entice policyholders to keep their funds in the accounts for

longer periods of time to the benefit of the insurer.

Table 1.1 displays the growth figures in annual gross VA sales in the United States

over the past two decades. This aligns with the increase in rider offerings. There was

a decline in sales following the financial crisis of 2008 but the past two years has

seen positive growth figures. A report from LIMRA Retirement Research, November

2011 (LIMRA, 2011), shows an 88% election rate of GLB riders for VAs offering GLB

riders for the 3rd quarter of 20111. During the period Jan. 2009 - Sept. 2011, this

quarterly election rate ranged from 87% to 90%. Further, 91% of new VA sales in the

3rd quarter of 2011 offered GLB riders. Of the GLBs elected that quarter, 65% were

GLWBs. As of September 2011, 55% of all VA assets with GLB elected - both new

policies and in-force policies - were GLWBs. This represents an asset value of $294

1These percentages are all premium-dollar weighted.
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Year Sales ($)

1992 40
2002 117
2007 184
2008 156
2009 128
2010 140
2011 159

Table 1.1: Variable annuity sales (billions $). Sources: LIMRA (2012)

billion.

It is our belief that the GMWB and GLWB riders are not treated by insurers as

a source of direct profit but rather as a tool to drive sales of VAs and their accom-

panying profits. We will point out in the literature review the consensus among the

early papers that these riders were underpriced, supporting this hypothesis that they

were only a means to increase VA sales. Indeed, reinsuring all or most of the risk was

a popular risk management strategy for the initial GMWB products. Reinsurance

premiums increased as reinsurers became more informed of the high risk embedded

in these products. Around the time of the financial crisis in 2008 reinsurers stopped

offering coverage altogether on GMWB and GLWB riders at which point the impor-

tance of internal dynamic hedging programs rose rapidly.

With this in mind, we look at pricing and hedging the GMWB product in a

simplified framework consistent with the no-arbitrage principle from financial eco-

nomics. It is evident that the GLWB riders have come to define the VA market. The

GMWBs were the precursor to the GLWBs and as such, a mathematical analysis of

the GMWB product is interesting in its own right, even if the GMWB product is no

longer a dominant force in the market per se.
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1.2 Product Specifications

We introduce the product specifications and notation. At time t = 0, a policy (an

underlying VA contract plus a GMWB rider) is issued to a policyholder of age x and

an initial premium P is received. We assume no subsequent premiums. The premium

is invested into a fund which perfectly tracks a risky asset S = {St; t ≥ 0} with no

basis risk. One may think of the underlying funds as being deposited in a mutual fund

and {St} as the index tracked by it. The rider fee rate α is applied to the account

value W = {Wt; t ≥ 0}. Fees are deducted from the account value (continuously

or periodically depending on the model) as long as the contract is in force and the

account value is positive.

A guaranteed maximal withdrawal rate g is contractually specified and up to the

amount G := gP can be withdrawn annually2 until P is recovered through cumulative

withdrawals (ignoring time value of money), regardless of the evolution of {Wt}. The
policyholder also receives any remaining account value at maturity.

Policyholders have the option of withdrawing any amount provided it does not

exceed the remaining account value. If the account value hits zero, then the policy-

holder receives withdrawals at rate G until the initial premium has been recovered. If

annual withdrawals exceed G while the account value is still positive, then a surrender

charge is applied to the withdrawals and a reset feature may reduce the guarantee

value, i.e. the remaining portion of the initial premium not yet recovered. Policyhold-

ers also have the option of surrendering3 early and receiving the account value less a

surrender charge. Any guarantee value is forfeited by surrendering.

Assuming a static withdrawal strategy where G is withdrawn annually (continu-

2Contract specifications vary widely by insurer but extra features such as ratchets and rollups
may be present which cause potential increases to the balance guaranteed to the policyholder.
Consequently, G may increase depending on market performance and withdrawal behaviour but
will not decrease. In this case G is a function of {At} where A is a fictional account representing
the GMWB guarantee balance. In our simplified contract where G is constant there is no need to
introduce this additional dimension A.

3The terminology of lapses and surrenders are used interchangeably.
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ously or discretely), we set the maturity T := 1/g since the sum of all withdrawals

at T is TG = G/g = P . At time T the rider guarantee is worthless and the poli-

cyholder receives a terminal payoff of the remaining account value, if it is positive.

Essentially, this assumption translates over to a real-world trend of no annuitizations.

This assumption is partially justified as VAs are not usually maintained through to

annuitization.

1.3 Literature Review

There has been increased research into pricing and hedging GMWB products since

the initial paper on the topic by Milevsky and Salisbury (2006). In this section we

discuss a few of the more relevant works.

Working with continuous withdrawals and a standard geometric Brownian motion

model for {St}, Milevsky and Salisbury (2006) consider two policyholder behaviour

strategies. Under a static withdrawal strategy and no lapses the contract is de-

composed into a term certain component and a Quanto Asian Put option with the

numeraire being a modified account value process. Numerical PDE methods are used

to evaluate the ruin probabilities for {Wt} and the contract value V0. A dynamic

behaviour strategy is considered where optimal withdrawals occur. A set of linear

complementarity equations is derived for this free boundary value problem and solved

numerically for V0. It is found that the optimal strategy reduces to withdrawing G

continuously unless Wt exceeds a boundary value depending on the remaining guar-

antee balance of P − Gt, in which case an arbitrarily large withdrawal rate is taken

and the policyholder should lapse. Milevsky and Salisbury (2006) conclude that the

GMWB riders in effect in 2004 were underpriced relative to the capital markets cost.

The optimal behaviour approach is formalized in Dai et al. (2008) where the con-

tract value process {Vt} is formulated as the solution to a singular stochastic control
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problem with the control variable being the withdrawal rate. Unlike in Milevsky

and Salisbury (2006), time dependency and a complete description of the auxiliary

conditions are included in this model. To facilitate numerical solutions for the HJB

equations a penalty approximation formulation is solved using finite difference meth-

ods which converge to the viscosity solution.

Consistent with Milevsky and Salisbury (2006), numerical results provide support

that the provision for optimal behaviour is quite valuable and insurers appeared to

be underpricing GMWB riders. The optimal strategy consists of withdrawing at rate

G (continuously) except for in certain regions of the state space where an infinite

withdrawal rate is optimal, which means to “withdraw an appropriate finite amount

instantaneously making the equity value of the personal account and guarantee bal-

ance to fall to the level that it becomes optimal for him to withdraw [G]” (Dai et al.,

2008). However, Dai et al. (2008) allow the policyholder the option of withdrawing

any amount of the unrecovered initial premium, even if it exceeds the account value.

In other words, if the account value is zero, the policyholder can elect to receive the

remaining guarantee balance instantly subject to surrender charges rather than re-

ceive G annually. The impact of this assumption is amplified by not including a reset

feature in most of their work. The combination of this is the main cause of arriving

at optimal strategies differing from Milevsky and Salisbury (2006).

Chen and Forsyth (2008) extend Dai et al. (2008) to an impulse control prob-

lem representation where the control set allows for continuous withdrawal rates not

exceeding G and instantaneous finite withdrawals. This allows for modeling more

realistic but complex product features.

Bauer et al. (2008) develop an extensive and comprehensive framework to price

any of the common guarantees available with VAs, assuming that any policyholder

events such as surrenders, withdrawals, or death occurs at the end of the year. Deter-

ministic mortality is assumed. Monte-Carlo simulation is used to price the contracts
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assuming a deterministic behaviour strategy for the policyholders. To price the con-

tracts assuming an optimal withdrawal strategy, a quasi-analytic integral solution is

derived and an algorithm is developed by approximating the integrals using a multidi-

mensional discretization approach via a finite mesh. Hence, only a finite subset of all

possible strategies are considered. One drawback is that the valuation with optimal

behaviour for a single contract could take up to 40 hours (for a 25 year maturity).

Allowing for discrete withdrawals, Bacinello et al. (2011) consider a number of

guarantees under a more general financial model with stochastic interest rates and

stochastic volatility in addition to stochastic mortality. In particular for GMWBs,

a static behaviour strategy (G withdrawn annually and no lapses) is priced using

standard Monte Carlo whereas an optimal lapse approach (G withdrawn annually) is

priced with a Least Squares Monte Carlo algorithm.

Upper and lower bounds on the price process for the GMWB are derived in Peng

et al. (2012) under stochastic interest rates and assuming a static continuous with-

drawal strategy of G per year with no lapses. This paper was instrumental to the

development of our work because of a tangential result about the relationship between

the insured and insurer perspectives.

Ignoring mortality and working with a static withdrawal assumption and no lapses,

the primary focus of Liu (2010) is on developing semi-static hedging strategies under

both a geometric Brownian motion model and a Heston stochastic volatility model for

the underlying asset {St}. However, sufficient attention and detail is paid to pricing

the GMWB rider assuming the insured takes constant withdrawals of G/n at the end

of each period where there are n time steps per year. Liu (2010) observes that the

contract (GMWB plus VA) can be decomposed into a term certain component and a

floating strike Asian Call option on a modified process. Both a Monte Carlo approach

and a moment-matching lognormal approximation method (based on Levy, 1992) are

used to obtain results for increasing n.

8



1.4 Thesis Overview

In the literature review we pointed out that a range of methods have been applied

to price GMWBs under varying policyholder behaviour assumptions. Under a static

withdrawal strategy with no lapses the methods include numerical PDE techniques,

Monte Carlo simulation, and moment matching analytical approaches. Modeling

optimal withdrawal behaviour the methods include more advanced numerical PDE

techniques, numerical integration methods, and a Least Squares Monte Carlo ap-

proach.

Based on the product specifications listed in Section 1.2, optimal withdrawal be-

haviour reduces to withdrawing at rate G or lapsing. The rider guarantee represents

an intangible and fictional amount. Once the account value is zero, this amount is

accessible only through withdrawals at rate G, a product specification adopted by

both Milevsky and Salisbury (2006) and Bacinello et al. (2011). The work of Dai

et al. (2008) and Chen and Forsyth (2008) do not reflect this and therefore different

results are obtained.

Our contributions in this thesis are twofold. In a binomial world we set up an

asset pricing model for GMWBs assuming optimal behaviour and construct explicit

hedging strategies. In a Black-Scholes world, we expand the numerical toolbox for

pricing GMWBs to include binomial tree-based methods. Although in theory the

results should converge to those of the continuous withdrawal model with S log-

normally distributed; due to the non-recombining nature of the account value the

suggested method is found to be numerically expensive. We substantially improve

the numerical efficiency without sacrificing significant accuracy of results by adopting

an approximation method based on Costabile et al. (2006).

A binomial valuation approach has previously been considered by Bacinello (2005)

to price equity-linked life insurance with recurring premiums in the presence of early

surrenders. Although the underlying methodology is similar, we deal with the unique
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features and challenges of modeling GMWB riders for variable annuities. In addition

to surrender and mortality, both elements considered by Bacinello (2005), we have an

endogenously determined trigger date. The nature of the fees and withdrawals fur-

ther differentiate our work. Whereas Bacinello (2005) deals exclusively with pricing,

we pay equal attention to the hedging constructions in a binomial model, which is

facilitated by the consideration of the unique perspectives of the insurer and insured.

By focusing on a single product we have the liberty to consider a top-down approach

which provides more insight than generic formulations of backward induction schemes.

GMWB and GLWB carriers are exposed to three major types of risk: financial

market, mortality, and policyholder behaviour. The two dominant financial market

risks are equity market risk, namely poor market performance, and interest rate risk

primarily in a low interest rate environment.

A recent quote shows how critical financial market risk is to insurers: “Since

interest rates have been low and the stock market volatile, insurers like MetLife and

Prudential have lessened their variable annuity business. Sun Life Financial, out

of Canada, actually left the variable annuity business altogether”4. In this thesis

we begin by considering equity risk, then incorporate behaviour risk and finally we

consider deterministic mortality models. We do not model the interest rate risk,

instead assuming a deterministic rate. The financial aspects of the rider are interesting

in their own right and we spend significant time developing and analyzing a model

without mortality.

The order of the thesis is briefly outlined. In Chapter 2 we motivate the remain-

der of the thesis by reviewing the continuous model from Milevsky and Salisbury

(2006). The content is largely an integration of results from the literature and in

particular we formalize the relationship between the value processes for the GMWB

rider from the view of both the insured and the insurer. We present the binomial

4http://www.annuityfyi.com/blog/2012/01/not-everyone-is-running-from-variable-annuities/
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asset pricing model for GMWBs in Chapter 3. We start with a restricted model but

subsequently extend it to allow for surrenders. A dynamic delta hedging strategy is

shown to perfectly hedge the GMWB rider. We summarize a binomial approximation

algorithm designed to improve numerical efficiency. Numerical results are obtained

and compared with results from the literature. The modeling framework is further

extended in Chapter 4 to account for diversifiable mortality risk. The effectiveness of

diversification is studied with a numerical example by simulating the death times for

pools of insured, rapidly growing in size.

1.5 A Discussion on Imperfect Models and Subra-

tional Behaviour

Similar to the models mentioned in Section 1.3, we work with arbitrage-free and

complete financial markets and price the rider under the risk-neutral measure. To

justify this approach two simplifying assumptions are needed (see Jeanblanc et al.,

2009): i) equal borrowing and lending interest rates and ii) a liquid market. This

latter assumption means no transaction costs (i.e. the buying price of an asset is

equal to its selling price), any amount of shares may be purchased and shortselling is

permitted. Policyholders are also assumed to be rational.

Such an approach suffers from serious abstractions from the real-world market-

place. Although the rider is viewed as a complex financial derivative and priced as

such, it remains an add-on to the underlying base contract which has its own fees

and insurance components. That is, the rider is not available for purchase by itself.

Mortality markets are incomplete and the insurance market is not an openly traded

liquid market. From the policyholder’s perspective there are significant transaction

costs in the forms of surrender charges in order to exit a contract. The rider can not

be opted out of; the whole contract needs to be surrendered. There may be taxation
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issues for early surrenders, depending on the age of the insured. From the insurer’s

view, there are significant entry barriers to the market due to the strict regulatory

environment in which insurers operate. This means the behaviour deemed rational

by financial economic models working with liquid and frictionless markets may not

be an accurate representation.

Modeling policyholder behaviour risk involves two components. Determining the

optimal behaviour can be complicated, more so for GMWB products with extra

features such as ratchets or rollups which may make it optimal to not withdraw in

certain cases. The second component is deciding whether to model optimal behaviour

at all. Advocates of assuming sub-optimal behaviour argue that policyholders do not

always act in a rational optimizing manner. Charging for optimality places the insurer

at a competitive disadvantage but charging too little may prove costly if optimal

behaviour is realized. Even if insurers do not charge for optimality in practice it is

still of interest to examine optimal behaviour to understand the worst case scenarios.

Knoller et al. (2011) conduct a statistical analysis of the Japanese VA marketplace

to learn the extent to which rational lapsation occurs in the real world. The field of

behavioural finance helps explain why policyholders may act irrationally. Although

the paper concludes with strong support that surrenders are a dynamic reaction to

the underlying market performance, it is shown that there is clear heterogeneity

among policyholders and some irrationality. The emergency fund hypothesis and the

need for liquidity help explain irrational surrenders. On the other hand, there are

several reasons mentioned in the paper as to why an insured would hold onto the

contract rather than optimally surrender it. These include being unable to estimate

the optimal strategy, the presence of transaction costs and other heuristics and biases

that influence decision making.

Moenig and Bauer (2011) is another paper in this direction which recognizes that

contracts are not openly traded. Utilizing a utility-based approach for VAs with

12



GMWB riders, it is argued that policyholders purchase VAs for investment portfolios

and external factors likely play a role in withdrawal and lapse strategies. These factors

include the complete retirement portfolio and tax rates. Their results imply that the

market prices are indeed fair, contrary to the consensus in Section 1.3.

Given indivisibility of VAs and riders, liquidity constraints, and lack of an open

market for GMWB riders, ignoring the VA base contract and calculating the no-

arbitrage hedge cost in a risk-neutral framework directly contradicts the assumptions

of mathematical finance. Nevertheless, the models have their own merits and the

simplifications are necessary to work with a tractable model. To justify calling the fair

price the no-arbitrage price, we must assume the existence of a fully liquid secondary

market. In this case, optimal behaviour must be assumed. Indeed, if this were not

the case the rider would be underpriced and arbitrage situations would arise. While

a growing secondary market for payout annuities has been in place for several years,

a secondary market for variable annuities has been developing slowly in the past few

years. There are companies, such as J.G. Wentworth, which buy back annuities and

sell them to investors. However, the market is not openly run and is quite illiquid.

In addition, annuities must have non-qualified tax status to be eligible for resale.

There have been legal challenges to this secondary market of late. In 2010, state

insurance regulators voted to allow insurers to cancel guaranteed death benefits or

living benefits if a policyholder sells the contract5. The American Council of Life

Insurers argued that “If the institutional investor buys GMWBs en masse, it would

eliminate the policy holder behaviour variable, which will cause the GMWB feature

for all purchasers across the board to increase”6.

Notwithstanding all the difficulties with the risk neutral valuation framework we

work under similar assumptions to Milevsky and Salisbury (2006) and the related

literature. We implicitly assume the existence of a liquid open secondary market,

5http://www.lifehealthpro.com/2010/03/08/feature-regulator-group-moves-to-reign-in-secondar
6http://www.investmentnews.com/article/20100228/REG/302289992
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allowing us to operate in the risk neutral framework and obtain the arbitrage-free

hedge cost or fair value of the rider.
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Chapter 2

Valuation of GMWBs in a

Continuous-Time Framework

In this chapter we review the continuous model constructed by Milevsky and Salisbury

(2006) to price GMWBs. By incorporating elements introduced by both Peng et al.

(2012) and Liu (2010), this chapter provides a firm and comprehensive synthesis of

the theoretical model and motivates the developments in the following chapters. In

addition to providing derivations and details that have been omitted in the literature

we also contribute new results, in particular on the topic of existence and uniqueness

of a fair fee and the formal set-up of the model with lapses.

2.1 Financial Model

Let (Ω,F ,P) be a complete probability space where {B′
t}0≤t≤T is a 1-dimensional

standard Brownian motion defined on this space, B
′
0 = 0 a.s., and T < ∞. Define

Ft := σ{B′
s; 0 ≤ s ≤ t}, for all t ∈ [0, T ]. Consider the financial market consisting

of one risky asset and one riskless asset. The financial market is complete. The unit
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price of the risky asset {Sx,u
t }u≤t≤T follows the geometric Brownian motion process

dSt = μStdt+ σStdB
′
t, t ≥ u, Su = x. (2.1)

We write Sx
t instead of Sx,0

t and will often write St instead of Sx,u
t when the initial

conditions are easily understood from the context. The unit price of the riskless asset,

which is the money market account {Mt}0≤t≤T , follows the process

dMt = r(t)Mtdt, t ≥ 0, M0 = 1,

where r(t) is the risk-free interest rate at time t. Assuming a constant rate r we have

Mt = ert and Dt := (Mt)
−1 = e−rt for all t ≥ 0.

Applying Girsanov’s theorem for Brownian motion (see for instance Øksendal,

2003), we have that {Bt := B
′
t + θt}0≤t≤T is a standard Brownian motion under the

unique risk neutral measureQ equivalent to P where dQ
dP

:= NT , Nt = exp(−θB
′
t− 1

2
θ2t)

for 0 ≤ t ≤ T and θ = μ−r
σ
. Thus {Sx,u

t }u≤t≤T follows the process:

dSt = rStdt+ σStdBt, t ≥ u, Su = x. (2.2)

We work with the filtered probability space (Ω,FT ,F,Q) where F = {Fs}0≤s≤T .

2.2 GMWB Valuation

We formulate our assumptions as follows.

Assumption 2.1. We adopt the financial model from Section 2.1. We assume a

static withdrawal strategy where the policyholder takes continuous withdrawals at a

rate of G := gP per year. The maturity is T := 1
g
years. Early lapses are not

permitted. We also assume r > 0 for reasons to be explained.

The account value process {Wt} is reduced by the instantaneous rider fees αWtdt

and the instantaneous withdrawals Gdt. By (2.2) the account value W P,0
t follows the
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SDE

dWt = (r − α)Wtdt+ σWtdBt −Gdt, 0 ≤ t ≤ T, W0 = P. (2.3)

Observe that {Wt}t≥0 is a time-homogeneous diffusion (Markov) process and

W x,t
u

d
= W x,0

u−t. However, the price processes will not be time-homogeneous. This

SDE can be solved by the method presented in Øksendal (2003, p.79). Define

Ft := e−σBt+
1
2
σ2t then we have

d(FtWt) = Ft ((r − α)Wt −G) dt.

Let Ht := FtWt, then Wt = Ht/Ft and

d(Ht)

dt
= Ft ((r − α)Ht/Ft −G) = Ht(r − α)−GFt.

This is an ODE in t �→ Ht(ω), for all fixed ω ∈ Ω. With the initial condition H0 = P,

its solution is

Ht(ω) = Pe(r−α)t −G

∫ t

0

e(r−α)(t−s)+0.5σ2s−σBs(ω)ds

from which it follows that

Wt = Pe(r−α−0.5σ2)t+σBt −G

∫ t

0

e(r−α−0.5σ2)(t−s)+σ(Bt−Bs)ds (2.4)

= e(r−α−0.5σ2)t+σBt

[
P −G

∫ t

0

e−(r−α−0.5σ2)s−σBsds

]
.

The initial premium P can be factored out of (2.4) because G = gP = P/T . Let

{Zt} denote the account value process under a no-withdrawal strategy beginning with

Z0 = 1. Then Zt follows the SDE

dZt = (r − α)Ztdt+ σZtdBt, 0 ≤ t ≤ T, Z0 = 1,

with the solution

Zt = e(r−α−0.5σ2)t+σBt .

The α term can be thought of as a continuous dividend payout rate on the asset Zt.
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By (2.4) Wt can be expressed in terms of Zt:

Wt = PZt −G

∫ t

0

Zt

Zs

ds. (2.5)

Milevsky and Salisbury (2006) use a slight variant of this expression involving the

inverse of Z.

More generally, consider 0 ≤ t ≤ u ≤ T . By (2.4), with W0 = P and writing

u = t+ (u− t) we readily obtain

Wu = Wte
(r−α−0.5σ2)(u−t)+σ(Bu−Bt) −G

∫ u

t

e(r−α−0.5σ2)(u−s)+σ(Bu−Bs)ds

= Wt
Zu

Zt

−G

∫ u

t

Zu

Zs

ds.

We present an alternative form first appearing in Liu (2010). Apply a change of

variables v = t− s to (2.5). Then

Wt = PZt −G

∫ t

0

Zt

Zt−v

dv. (2.6)

By the time-reversibility property of Brownian motion, {Bt − Bt−v}v≥0 ∼ {Bv}v≥0

under Q (see Karatzas and Shreve (1991, Lemma 9.4)). Apply this property to (2.6),

then

Wt
d
= PZt −G

∫ t

0

Zvdv. (2.7)

From the Markov property for W we have

W x,t
u

d
= xZu−t −G

∫ u−t

0

Zvdv. (2.8)

In particular (2.7) simplifies for t = T to

WT
d
= P

(
ZT − 1

T

∫ T

0

Zsds

)
. (2.9)

This expression is quite familiar from Asian option theory and will be elaborated

on in the next section. Liu (2010) works primarily with a discrete-time analogue of
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(2.9)1.

An additional constraint must be included to account for the non-negativity of

the account value. That is, Wt ≥ 0 for all t ≥ 0. As stated in Milevsky and Salisbury

(2006), under this constraint the solution for Wt is:

W P,0
t = max

[
0,

(
Pe(r−α−0.5σ2)t+σBt −G

∫ t

0

e(r−α−0.5σ2)(t−s)+σ(Bt−Bs)ds

)]
(2.10)

= max

[
0, PZt −G

∫ t

0

Zt

Zs

ds

]
, (2.11)

and more generally

W x,t
u = max

[
0, xe(r−α− 1

2
σ2)(u−t)+σ(Bu−Bt) −G

∫ u

t

e(r−α−0.5σ2)(u−s)+σ(Bu−Bs)ds

]
.

Equation (2.8) becomes

W x,t
u

d
= max

(
0, xZu−t −G

∫ u−t

0

Zvdv

)
. (2.12)

Equation (2.10) can be heuristically justified. Relabeling Wt from (2.4) as W̃t then

W̃u ≤ 0 implies

P < G

∫ u

0

e−(r−α−0.5σ2)s−σBsds,

and since the integrand is positive, for all v ≥ u

P < G

∫ v

0

e−(r−α−0.5σ2)s−σBsds

which gives

W̃v ≤ 0 for all v ≥ u

and (2.10) follows. Once the account value hits zero, it remains at zero.

The next result will be used in Subsection 2.2.3.

Lemma 2.2. For any fee rate α and guaranteed withdrawal rate g there is a positive

1Liu (2010) justifies the continuous-time equivalence (2.9) using only the independence property
of Brownian motion, which is not sufficient to prove the above. The time-reversibility property is
needed. We also emphasize that the equivalence is in distribution only, which places limitations on
its usage.
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probability that the contract matures with a positive account value. That is,

Q(W P,0
T > 0) > 0

for all P > 0, g > 0, and α ≥ 0, where W P,0
T is given by (2.10).

Proof. To see this, observe that

W P,0
T > 0 if and only if

P

G
>

∫ T

0

e−(r−α−0.5σ2)s−σBSds.

By bounding and removing the deterministic portion from the integrand, we have

P

G
>

∫ T

0

e−(r−α−0.5σ2)s−σBSds

if

P

G
c−1 >

∫ T

0

e−σBsds,

where

c =

⎧⎪⎪⎨⎪⎪⎩
e−(r−α−0.5σ2)T if (r − α− 0.5σ2) < 0,

1 otherwise.

To obtain the desired conclusion it is sufficient to show that Q(
∫ T

0
e−aBsds < k) > 0

for all T, a, k > 0. This result is proved in Proposition A.1.

There are two perspectives from which to view the GMWB rider. A policyholder

is likely to view the VA and rider as one combined instrument and would be interested

in the total payments received over the duration of the contract. On the other hand,

although the rider is embedded into the VA the insurer might want to consider it as

a separate instrument. Namely, the insurer is interested in mitigating and hedging

the additional risk attributed to the rider.
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2.2.1 Policyholder Valuation

The random variable for the time-zero present value of the total payments received

by the policyholder over the duration of the contract is∫ T

0

Ge−rsds+ e−rTWT ,

where WT is given by (2.10). Referring to standard international actuarial notation

(IAN) we write the present value of a continuously paid term-certain annuity as

āT =

∫ T

0

e−rsds =
1− e−rT

r
.

Denote by V0 the value at t = 0 for the complete contract (VA plus GMWB rider).

As in Milevsky and Salisbury (2006) we have

V0(P, α, g) = EQ

[∫ T

0

Ge−rsds+ e−rTWT

]
= GaT + e−rTEQ[WT ]. (2.13)

Recall that T = 1/g and G = gP . Since P can be factored out of (2.4) it follows that

V0(P, α, g) = PV0(α, g), (2.14)

where V0(α, g) = gaT + e−rTEQ[W
1,0
T ]. When (P, α, g) is understood, we drop it from

the notation and write V0.

The value V0 is an implicit function of the fee rate α. The fair fee rate is defined

to be the rate α� that satisfies

V0(P, α
�, g) = P. (2.15)

That is, a risk-neutral policyholder expects to receive back exactly the initial premium

P . Existence and uniqueness results for α� are derived in Subsection 2.2.3. Equation

(2.15) does not have a closed form solution and numerical methods must be used to

find α�. From (2.14) observe that V0(α
�, g) = 1; that is, α� is independent of P .

Let {Vt}0≤t≤T be the process for the evolving value of the contract over time where

Vt is the valuation of the contract considering only future cashflows occurring after
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time t, discounted to time t, and conditional on the information Ft. Then

Vt = EQ

[∫ T

t

e−r(s−t)Gds+ e−r(T−t)WT |Ft

]
(2.16)

= GaT−t + e−r(T−t)EQ[W
P,0
T |Ft].

By the Markov property for Wt (see Øksendal (2003, Theorem 7.1.2)) we have

Vt = v(t,Wt),

Q-a.s. for all t ∈ [0, T ], where v : [0, T ]× R+ �→ R+ is given by

v(t, x) = GaT−t + e−r(T−t)EQ[W
x,t
T ].

Alternatively, using (2.11) and (2.12) V0 can be decomposed into the sum of

a term certain annuity component and either a Quanto Asian Put option on Z−1

(see Milevsky and Salisbury, 2006) or an Asian Call (floating strike) option on Z

(see Liu, 2010). In either formulation the value function v must be a function of

both Zt and some functional f({Zs; 0 ≤ s ≤ t}) because only the joint process

{Zu,f({Zs; 0 ≤ s ≤ u}) is Markovian. Therefore we choose to continue working

directly with (2.13). However the alternative forms will prove to be useful when

exploring different algorithms in Chapter 3.

2.2.2 Insurer Valuation

The alternative viewpoint, applicable to the insurer, is to explicitly consider the

embedded guarantee option represented by the rider as a standalone product. We

begin by introducing the concept of the trigger time, first defined by Milevsky and

Salisbury (2006).

Definition 2.3. The trigger time τ , defined by the stopping time

τ := inf{s ∈ [0, T ];W P,0
s = 0},
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is the first hitting time of zero by the account value process. The convention inf(∅) =
∞ is adopted. We have Wt = 0 for all t ≥ τ .

We define the respective non-decreasing sequences of stopping times {τt}t∈[0,T ] and

{τ̄t}t∈[0,T ] as

τt := τ ∨ t = max(τ, t)

and

τ̄t := τt ∧ T = min(τt, T ),

for all t ∈ [0, T ]. For 0 ≤ s ≤ t ≤ T and A ⊂ [0, T ], by the Markov property of Wt

we have

Q(τ̄t ∈ A|Fs) = F (s, t, A,Ws), (2.17)

Q-a.s. where

F (s, t, A, w) := Q(τ̄w,s
t ∈ A)

and

τ̄w,s
t = inf{u ≥ t;Ww,s

u = 0} ∧ T.

Remark 2.4. In Lemma 2.2, we showed for any t > 0 that Q(W P,0
t > 0) > 0 or

equivalently Q(τ ≤ t) < 1. Recall that

W P,0
t = 0 if and only if

P

G
≤

∫ t

0

e−(r−α−0.5σ2)s−σBSds.

An explicit distribution function for
∫ t

0
e−(r−α−0.5σ2)s−σBsds can be found if (r−α) <

3
2
σ2 (see (A.1) for the formulation based on Borodin and Salminen, 2002). This can

be used to calculate ruin probabilities Q(τ ≤ t) = Q(W P,0
t = 0). If (r − α) ≥ 3

2
σ2

then e−(r−α−0.5σ2)s < 1 for all s > 0. By removing this deterministic portion from the

integrand, an upper bound for Q(τ ≤ t) can be found by evaluating Q(
∫ t

0
e−σBsds ≥

P
G
) using (A.1) with a = 0. Ruin probabilities are typically calculated under the

physical measure. Because of the equivalence of the two measures, the preceding
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discussion remains unchanged except that r is replaced by μ when switching measures

from Q to P.

If τ ≤ T we say the option is triggered (or exercised) at trigger time τ . Since

trigger activity is contingent on the account value hitting zero, this is similar to an

American-style put option but one where the exercise date is determined endogenously

rather than explicitly by the policyholder.

Let U = {Ut; 0 ≤ t ≤ T} denote the stochastic process for the evolving rider value

over time. At time τ̄0 the rider guarantee entitles the policyholder to receive a term

certain annuity for T − τ̄0 years with an annual payment of G. Fee revenue is received

up to time τ̄0. At time τ̄0 no uncertainty remains. However, we still consider the

policy to be in-force and set the guarantee option value equal to the present value of

the remaining guaranteed payments. It is simpler in the model formulation to treat

the termination time as T rather than terminating it at time τ̄0.

This motivates the following definition for U which also appears in Peng et al.

(2012). For t ∈ [0, T ] we define

Ut := EQ

[
e−r(τ̄t−t)GāT−τ̄t

−
∫ τ̄t

t

e−r(s−t)αW P,0
s ds|Ft

]
. (2.18)

The value Ut is the risk-neutral expected discounted difference between future rider

payouts and future fee revenues. That is, Ut represents the remaining risk exposure

to the insurer in that it is positive when the expected fee revenues fall short of the

rider payouts. By the Markov property for {Wt} and (2.17) we have

Ut = u(t,Wt),

Q-a.s. for all t ∈ [0, T ], where u : [0, T ]× R+ �→ R is given by

u(t, x) = EQ

[
e−r(τ̄x,tt −t)Gā

T−τ̄x,tt

−
∫ τ̄x,tt

t

e−r(s−t)αW x,t
s ds

]
. (2.19)

The boundary condition u(t, 0) = GāT−t is implied in the above formulation.
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2.2.3 Analytic Results

With the goal of arriving at an existence and uniqueness result for α�, we first prove

two basic properties satisfied by V0.

Lemma 2.5. V0, defined by (2.13), is a strictly decreasing and continuous function

of α for α ≥ 0.

Proof. We fix P and g and omit them from the notation. A monotonicity result is

obtained by applying a comparison result for SDEs from Karatzas and Shreve (1991,

Proposition 2.18). Since α appears as a negative drift term in the SDE for Wt in

(2.3), we have Wt(α1) ≥ Wt(α2) a.s. for all t ∈ [0, T ] and for all 0 ≤ α1 < α2. Thus

EQ[WT (α1)] ≥ EQ[WT (α2)] which implies V0(α1) ≥ V0(α2).

To obtain the strictly decreasing property, note from Lemma 2.2 that Q(Aα) >

0 for all α ≥ 0 where Aα := {WT (α) > 0}. On the event Aα we have

WT (α) = e(r−α−0.5σ2)T+σBT ×
(
P −G

∫ T

0

e−(r−α−0.5σ2)s−σBsds

)
.

Let 0 ≤ α1 < α2 = α1 + h, where h takes an arbitrary positive value. Restricted to

the set Aα1+h, we obtain

WT (α1 + h) ≤ e−hTWT (α1) < WT (α1)

implying that Aα1 ⊇ Aα1+h. It follows that

V0(α1 + h) = GāT + EQ

(
e−rTWT (α1 + h)1{Aα1+h}

)
< GāT + EQ

(
e−rTWT (α1)1{Aα1+h}

)
≤ V0(α1).

To prove continuity fix α ≥ 0. Let h > 0 and denote

Xh
T := eσBT max

(
0, P −G

∫ T

0

e−(r−α−h− 1
2
σ2)s−σBsds

)
.
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From (2.10),

EQ(WT (α + h)) = e(r−α−h− 1
2
σ2)TEQ

(
Xh

T

)
.

Then Xh
T ≥ 0 for all h ≥ 0, and Xh

T ↑ a.s. as h ↓ 0. Applying the Monotone

Convergence theorem and by the continuity of the max function,

lim
h↓0

EQ(X
h
T ) = EQ(X

h=0
T ).

The Dominated Convergence theorem was used to interchange the limit and the

pathwise Lebesgue-Stieltjes integral. Therefore limh↓0 EQ(WT (α+ h)) = EQ(WT (α)).

If α > 0, then let h < 0 and limh↑0 EQ(WT (α + h)) = EQ(WT (α)) is obtained

using similar arguments. The Monotone Convergence theorem no longer applies;

instead the Dominated Convergence theorem justifies interchanging the expectation

and limit since Xh
T ≤ PeσBT and EQ(e

σBT ) = e0.5σ
2T < ∞. Therefore the continuity

of V0 follows from (2.13).

Proposition 2.6. Under Assumption 2.1 there exists a unique α� satisfying

V0(P, α
�, g) = P.

Proof. The existence of α� is obtained by showing that both V0(P, 0, g) ≥ P and

limα→∞ V0(P, α, g) < P and applying the continuity result from Lemma 2.5.

When α = 0, the guarantee is offered at no charge and it is obvious that V0 ≥ P .

More formally, setting α = 0 we have from (2.10)

WT ≥
[
Pe(r−0.5σ2)T+σBT −G

∫ T

0

e(r−0.5σ2)(T−s)+σ(BT−Bs)ds

]
,

and since EQ[e
−0.5σ2t+σBt ] = 1, we obtain from (2.13) that

V0(P, 0, g) ≥ P + EQ

[∫ T

0

e−rsG
(
1− e−(0.5σ2)(T−s)+σ(BT−Bs)

)
ds

]
= P,

where the expectation on the right evaluates to zero by Fubini’s theorem.
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As α → ∞, it becomes certain that the embedded GMWB option will be exercised

and thus V0 = GāT . More formally, for α > 0 we have

0 ≤ WT (α) ≤ Pe−αT e(r−0.5σ2)T+σBT ≤ Pe(r−0.5σ2)T+σBT (2.20)

a.s., and EQ[Pe(r−0.5σ2)T+σBT ] = PerT < ∞. The property BT < ∞ a.s. combined

with (2.20) gives lim
α→∞

WT (α) = 0 a.s. Applying the Dominating Convergence theorem,

lim
α→∞

V0(P, α, g) = G

∫ T

0

e−rsds < GT = P,

for r > 0.

The uniqueness of the solution follows directly from the strictly decreasing prop-

erty for V0(P, α, g) from Lemma 2.5.

Remark 2.7. Assumption 2.1 imposed that r > 0. In the case r = 0, the optimal

solution α� must satisfy WT (α
�) = 0 a.s. By Lemma 2.2, no solution exists.

The next result unifies the insured and insurer perspectives and was first presented

in Peng et al. (2012) for the case t = 0 under a more general structure with stochastic

interest rates. We omit the proof here. In Subsection 2.2.4 we extend this result to

the more general case of surrenders and a complete proof will be presented at that

time.

Proposition 2.8. For any α ≥ 0, the following relation holds for all t ∈ [0, T ] and

for all w > 0: v(t, w) = u(t, w) + w. That is, Vt = Ut +Wt a.s.

Remark 2.9. By definition of the fair fee rate α� we have U0(P, α
�, g) = 0 as a result

of Proposition 2.8. From Lemma 2.5 we have V0 < P and U0 < 0 for all α > α�.

Likewise, V0 > P and U0 > 0 for all α < α�. For any t, we say the contract is in

the money (ITM) if Vt > Wt and Ut > 0. Similarly, it is out of the money (OTM) if

Vt < Wt and Ut < 0. It is at the money (ATM) if Vt = Wt and Ut = 0.

Remark 2.10. In Section 1.1 we briefly discussed the fund drag created by an increase
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in the rider fee rate. The strictly decreasing property of V0 and Proposition 2.8

imply that U0 = V0 − P is a strictly decreasing function of α. Thus any increase in

expected revenue from an increase in α will always exceed any increase in expected

rider payouts.

2.2.4 Extending the Model: Surrenders

We allow the policyholder to surrender the policy prior to time T . In Section 1.5

policyholder behaviour was discussed in some detail in regard to an insurer’s risk

exposure. Although a policyholder may surrender for a number of reasons, for in-

stance due to an emergency cash crisis, rational behaviour in an economic sense is

assumed here. Early surrenders occur only if the proceeds from immediately lapsing

the product exceeds the risk-neutral value of keeping the contract in-force.

Upon surrender the policyholder closes out the contract by withdrawing the cur-

rent account value. The cash proceeds are reduced by a surrender charge on any

amount exceeding the annual maximal permitted withdrawal amount specified in the

rider contract. Typically, VA contract provisions include contingent deferred sales

charge (CDSC) schedules specifying surrender charges as a function of the duration

since issue year. An example is an 8-year schedule with a charge of 8% in year 1 and

decreasing by 1% each year, followed by no surrender charges after year 9.

We assume the proceeds from surrender charges are invested in the hedging port-

folio. Without surrender charges, it would be optimal to surrender the contract when

it is OTM. In this case the guarantee has relatively low value in terms of future pay-

outs and the policyholder has an incentive to lapse and avoid paying future annual

rider fees. The surrender charges act as a transaction cost and may make it too costly

to surrender or even if it is still optimal to surrender, the surrender charge provides

the insurer with income to compensate for the loss of future fees.

A surrender option in the context of guaranteed minimum death benefit riders is
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discussed in Milevsky and Salisbury (2001). It is argued that “when option premiums

are paid by installments - even in the presence of complete mortality and financial

markets - the ability to ‘lapse’ de facto creates an incomplete market”. The surrender

charges complete the market and make the guarantees hedgeable.

To describe the CDSC schedule let k : [0, T ] �→ [0, 1] be a deterministic non-

increasing piecewise constant RCLL (right continuous with left limits) function with

possible discontinuities at integer time values2. For a policy issued at time zero, ks is

the surrender charge applicable at time s. The no-lapse model is easily recovered by

setting ks = 1 for all s ∈ [0, T ) and kT = 0 in which case the opportunity to surrender

early is worthless. Similarly, we could model a contract which only allows surrenders

once a specific duration t1 is reached, by setting ks = 1 for s ∈ [0, t1) and ks < 1 for

s ∈ [t1, T ]. However the more common case has ks < 1 for all s ∈ [0, T ]. Further,

we assume kT = 0 to allow comparison to the no-lapse model where the contract

terminates at time T with no surrender charges.

The pricing task becomes an optimal stopping problem. The contract value pro-

cess for the VA plus GMWB is

Vt := sup
η∈Lt

V η
t , (2.21)

where

V η
t = EQ

[
Gāη−t + e−r(η−t)Wη(1− kη)|Ft

]
(2.22)

and Lt is the set of F−adapted stopping times taking values in [t, T ]. By considering

the stopping time η ≡ T it is trivial that Vt ≥ V T
t = V NL

t , where V NL
t denotes the

value process from (2.16). For any η ∈ Lt define the set F η := {η ∈ [τ̄t, T )} and

consider the modified stopping time ηa, where ηa = η on (F η)c and ηa = T on F η.

Then V η
t ≤ V ηa

t and it is sufficient to consider the set Lt,τ̄t ⊂ Lt, where Lt,τ̄t contains

2The developments hold true for any non-increasing function taking values in [0, 1] but we select
a function that is an accurate representation of CDSC schedules in products sold in the insurance
marketplace.
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all F−adapted stopping times taking values in [t, τ̄t)∪ {T}, and τ̄t is the trigger time

assuming no lapses (Definition 2.3). That is, if the rider is triggered without prior

surrender then the future guaranteed payments can not be immediately withdrawn

and optimal surrender will naturally occur at maturity time T .

By the Markov property of Wt we have

Vt = v(t,Wt)

Q−a.s. for all t ∈ [0, T ], where v : [0, T ]× R+ �→ R+ is given by

v(t, x) = sup
η∈L

t,τ̄
x,t
t

EQ

[
Gāη−t + e−r(η−t)W x,t

η (1− kη)
]
.

The fair fee rate remains defined as the rate α� such that

V0(P, α
�, g) = P.

Suppose that k0 = 0 and let α̂ := inf{α;V0(P, α, g) = P}. Then for all α ≥ α̂ we have

V0(P, α, g) = P , but there will be no buyers as it is optimal to surrender immediately.

Insurers will not charge α < α̂ because V0(P, α, g) > P . When lapses are permitted

but no surrender charges are imposed, there is no unique α� and the product is not

marketable. To preclude this trivial case, we impose the condition that k0 > 0.

Consider the rider value process given by (2.18). We include lapses by only ac-

counting for any guarantee payouts and rider fee revenues occurring prior to a lapse

event. The revenue from the surrender charge is also included. Then

Ut := sup
η∈Lt,τ̄t

Uη
t , (2.23)

where

Uη
t = EQ

[
Ge−r(τ̄t−t)1{η=T}āT−τ̄t

−
∫ η

t

αe−r(s−t)Wsds− e−r(η−t)Wηkη|Ft

]
.

By working with the reduced set Lt,τ̄t we only need to condition on {η = T}.
We introduce a value process for the option to surrender and denote it by L =
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{Lt; 0 ≤ t ≤ T}. Let UNL
t be the rider value given by (2.18) in the no-lapse model.

Then we define Lt := Ut − UNL
t ≥ 0 for all t ∈ [0, T ]. Since∫ T

η

αWse
−r(s−t)ds = −

∫ η

t

αWse
−r(s−t)ds+

∫ T

t

αWse
−r(s−t)ds

and

−Ge−r(τ̄t−t)1{η<τ̄t}āT−τ̄t
= Ge−r(τ̄t−t)1{η=T}āT−τ̄t

−Ge−r(τ̄t−t)āT−τ̄t
,

for η ∈ Lt,τ̄t , it follows that

Lt = sup
η∈Lt,τ̄t

Lη
t , (2.24)

where

Lη
t = EQ

[∫ T

η

αe−r(s−t)Wsds−Ge−r(τ̄t−t)1{η<τ̄t}āT−τ̄t
− kηWηe

−r(η−t)|Ft

]
.

This formulation is quite intuitive. For a fixed surrender strategy, the surrender

benefit is seen to be the expected value of the fees avoided by early surrender, minus

any future benefit payments missed if surrender occurs prior to a trigger time, and

minus the surrender charge paid at the time of surrender. It is natural that the

insured seeks to optimize this surrender benefit. The Markovian representations for

U and L are obvious and are omitted.

Proposition 2.8 formalized the precise relationship between {Ut} and {Vt} in the

no-lapse model. The next proposition generalizes that relationship to the current

model and is an extension of a result proved by Peng et al. (2012) for no lapses. The

complete contract V consists of three parts (i) the account value itself, (ii) the benefit

net of fees derived from the equity floor guarantee without the option of surrendering

and (iii) the additional benefit derived from the added option of surrendering.

Proposition 2.11. Let Vt, U
NL
t , Lt, Ut be defined by (2.21), (2.18), (2.24) and (2.23)

respectively. Then for all α ≥ 0 and for all t ∈ [0, T ], we have

Vt = Wt + UNL
t + Lt a.s., (2.25)
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and equivalently

Vt = Wt + Ut a.s. (2.26)

Proof. Fix t ∈ [0, T ]. Applying the product rule to the term (e−r(s−t)Ws) for any

s ∈ [t, T ],

d(e−r(s−t)Ws) = −re−r(s−t)Wsds+ e−r(s−t)dWs

= −re−r(s−t)Wsds+ e−r(s−t)[(r − α)Wsds+ σWsdBs −Gds]

= −αe−r(s−t)Wsds+ e−r(s−t)σWsdBs − e−r(s−t)Gds.

Fix η ∈ Lt,τ̄t . Integrating over the interval [t, η∧τ̄t], and observing thatWs∧τ̄t = Ws

for all s ∈ [t, T ], we obtain

e−r(η−t)Wη −Wt = −
∫ η

t

αWse
−r(s−t)ds−Gāη∧τ̄t−t +

∫ η

t

e−r(s−t)σWsdBs.

Note that Gāη−t = Gāη∧τ̄t−t + Ge−r(τ̄t−t)āη∨τ̄t−τ̄t . Having fixed η ∈ Lt,τ̄t we have

āη∨τ̄t−τ̄t = 1{η=T}āT−τ̄t
. Then

e−r(η−t)Wη +Gāη−t =

Wt +Ge−r(τ̄t−t)1{η=T}āT−τ̄t
−

∫ η

t

αWse
−r(s−t)ds+

∫ η

t

e−r(s−t)σWsdBs.

We have that

EQ

[∫ v

u

(Ws)
2ds

]
< EQ

[∫ v

u

Pe2(r−α−0.5σ2)s+2σBsds

]
< ∞,

thus by a standard result the above Itô integral term is a martingale (see Øksendal

(2003, Corollary 3.2.6)) and EQ[
∫ η

t
e−r(s−t)σWsdBs|Ft] = 0. Subtracting e−r(η−t)Wηkη

from both sides and taking conditional expectations w.r.t. Ft, we obtain

V η
t = Wt + Uη

t .

This holds for any η and remains true when taking the supremum. Therefore

Vt = Wt + Ut.
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Remark 2.12. For α�, such that V0 = P , we have that U0(α
�) = 0 and L0(α

�) =

−UNL
0 (α�). For any α ≥ 0, Proposition 2.8 and Proposition 2.11 imply

Lt = Vt − V NL
t

= sup
η∈Lt,τ̄t

EQ

[
e−r(η−t)Wη(1− kη)− e−r(T−t)WT −Ge−rηāT−η |Ft

]
.

This expression is interpreted as the insured selecting the surrender time to maximize

the tradeoff between receiving the account value (less surrender charges) today, rather

than at maturity, and foregoing the rights to any future withdrawals.

Rather than presenting a PDE approach, we have defined the price processes in

this chapter in terms of risk-neutral expectations. This was done partially to motivate

the developments in the following chapters of the thesis. In both the no-lapse and

the lapse model the PDEs for the processes can be explicitly written. In the latter

case, we obtain the linear complementarity formulation.

Beginning with the HJB equations for the more general stochastic control prob-

lem, Dai et al. (2008) reduce it to a linear complementarity formulation. Milevsky

and Salisbury (2006), Dai et al. (2008), and Chen and Forsyth (2008) work with an

additional dimension representing the guarantee balance because the control is the

withdrawal process. By considering a constant withdrawal rate and eliminating the

guarantee balance process, the linear complementarity formulation from Dai et al.

(2008) reduces to the PDE expression obtained in the optimal stopping problem set

up in this section.
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Chapter 3

Valuation of GMWBs in a

Binomial Asset Pricing Model

The discrete-time binomial asset pricing model was introduced in the seminal paper

by Cox, Ross and Rubinstein (1979) and has had a major impact on the financial

literature. The model can be treated as either the true underlying model in a binomial

world or as an approximating model of a true underlying continuous model.

Binomial models have a number of appealing properties. They are intuitive to

understand and utilize elementary mathematics. Indeed, binomial models have be-

come the standard pedagogical tool used to introduce students to dynamic pricing

theory. The binomial model converges to the Black and Scholes (1973) model and

yields good approximations for more complex financial options with no analytic solu-

tions in the continuous time pricing models. Due to the discrete time and finite state

space nature, lattice-based binomial methods can be quite valuable to observing and

deriving results which can then be studied in a more complex framework. Through

dynamic programming and backward induction algorithms, binomial pricing models

can easily be implemented in any standard programming environment (e.g. C++ or

Python although our tool of choice is Matlab).
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In contrast to standard Monte Carlo simulation methods, the binomial approach

works for American-style options with early exercise capability. More importantly an

explicit exact hedging strategy can be prescribed. A thorough comparison of binomial

and finite difference methods is provided in Geske and Shastri (1985). Although bi-

nomial methods can be seen to be a special case of finite difference methods there are

fundamental differences between the two general methods. Finite difference meth-

ods approximate the PDE whereas binomial methods approximate the underlying

stochastic process directly.

Binomial models are ideally suited for non path-dependent products. In such

a setting, aside from enabling a simple theoretical framework, it is computationally

efficient to obtain reliable numerical results. As we discuss in this chapter, the GMWB

product is path-dependent. From a theoretical viewpoint, a formally defined binomial

asset pricing model for the GMWB is of significant value, both as a tool for better

understanding the product and exploring new results, and as a pedagogical tool.

There are several textbooks treating binomial pricing theory at length. Our pri-

mary reference is Shreve (2004a) and a secondary reference is Duffie (2001). In the

following sections, we generalize the approach presented in Shreve (2004a).

3.1 A General Framework

We assume the existence of a financial market consisting of one risky asset S and one

riskless asset, the money market B. Let n be the number of timesteps per year then

N = T × n is the total number of timesteps modeled and δt = 1/n is the length of

each timestep. For i ∈ I+
N := {1, . . . , N − 1, N}, write Si and Bi for the respective

asset values at time iδt. Assuming a constant continuously compounded interest rate

r we have Bi = Bi−1e
rδt with B0 = 1. Given Si−1, the asset value Si takes one of two

values: Si−1u or Si−1d. The value u represents an up-movement in the asset value
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and d represents a down-movement in the asset value. For all i this random asset

growth factor should be independent of Si−1. To rule out arbitrage opportunities and

the trivial case of no randomness, u and d must satisfy (see Shreve, 2004a)

0 < d < erδt < u. (3.1)

Consider a sequence of N coin tosses. Let Ω = ΩN := {H,T}N and F := 2Ω.

That is, Ω is the N -ary Cartesian product of the set {H, T} and contains all possible

sequences of the N coin tosses. Denote a sample point of Ω by ω̄N := ω1 . . . ωN :=

(ω1, . . . , ωN). Consider the stochastic process ξ = (ξi)1≤i≤N , where ξi : Ω �→ {u, d} is

ξi(ω̄N) =

⎧⎪⎪⎨⎪⎪⎩
u if ωi = H,

d if ωi = T.

Then for any fixed ω̄N , ξi(ω̄N) maps i to the growth factor of S in period i. The

natural filtration is Fi = σ(ξj; j ≤ i). We work with the probability measure P on

the finite discrete probability space where for any set A ∈ FN

P(A) :=
∑
ω̄N∈A

p̃{# of H in ω̄N}(1− p̃){# of T in ω̄N}

and p̃ > 0 is the physical or real-world probability of observing a H at any particular

coin toss or correspondingly observing a u at any particular time step. This completes

the construction of the probability space (Ω,FN ,F = {Fi}0≤i≤N ,P).

The process {Si} follows Si = S0 ×
∏i

j=1 ξj where S0 is the initial value of the

risky asset. Then Si ∈ Fi and is dependent on only the first n components of any

random path ω̄N ∈ Ω. We write ω̄i = ω1 . . . ωi to refer to the specific path evolution

up to time i. For any j ≤ i, we write

ξj(ω̄i) =

⎧⎪⎪⎨⎪⎪⎩
u if ωj = H,

d if ωj = T.

Notation 3.1. Replace H and T with u and d respectively when defining Ω, therefore

36



the sample path ω̄N refers directly to the evolution of the underlying asset S where

each ωj ∈ {u, d}. Then for any ω̄i,

Si = S0

i∏
j=1

ξj(ω̄i) = S0

i∏
j=1

ωj = S0u
{# of u in ω̄i}d{# of d in ω̄i}. (3.2)

The financial market is complete with a unique risk-neutral measure Q defined by

Q(A) :=
∑
ω̄N∈A

p{# of u in ω̄N}qN−{# of u in ω̄N}

for any set A ∈ FN , where

p :=
erδt − d

u− d
(3.3)

and q := 1−p (see Cox et al. (1979) for derivation of p). Note that p ∈ (0, 1) by (3.1)

and there are no (Q,FN)-negligible sets and so all results hold surely.

If σ is the variance of the continuously compounded rate of return of S, then

following the Cox, Ross, and Rubinstein (CRR) parametrization for u and d we set

u = eσ
√
δt,

d = e−σ
√
δt.

We present two results justifying the validity of this parametrization.

Proposition 3.2. (Cox et al., 1979) Consider a single risky asset S. The con-

tinuously compounded rate of return of S over the time period [0, T ] is denoted

rsT = ln
(

ST

S0

)
. Suppose we have the empirical mean and variance of rsT , denoted

by μ̂T and σ̂2T respectively. Consider the binomial model with n timesteps per year,

δt = 1/n, and maturity T . If the binomial model parameters u, d, and p̃ are set equal

to:

u = eσ̂
√
δt,

d = e−σ̂
√
δt,

p̃ =
1

2
+

1

2

μ̂

σ̂

√
δt,
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then as n → ∞, the mean and variance of rsT under the binomial model converges to

μ̂T and σ̂2T respectively.

Proposition 3.3. Assume the existence of (Ω,FT ,F,Q) on which St follows the

geometric Brownian motion process, dSt = rStdt+σStdWt, where Wt is a Q-Brownian

motion. Consider the binomial model for Sn
i with n timesteps per year, δt = 1/n, and

maturity T , on the space (Ωb,F b
t ,F

b,Qb) constructed in this section. If the binomial

model parameters u, d, and p are set equal to:

u = eσ
√
δt,

d = e−σ
√
δt,

p =
erδt − d

u− d
,

then for all t ∈ [0, T ], as n → ∞, Sn
nt converges in distribution to St, where nt is an

integer and Sn
nt is the random asset value at time t.

Proof. See Cox et al. (1979) or Shreve (2004b, Exercise 3.8).

3.2 Valuation without Surrenders

3.2.1 The Account Value

We specify the underlying assumptions for this section.

Assumption 3.4. We assume the existence of the space (Ω,FN ,F = {Fi}0≤i≤N ,Q)

constructed in Section 3.1. Early surrenders are not allowed. Under the static with-

drawal strategy the policyholder receives G = gPδt each time period. We set T :=

1/g.1 At the end of each period the pro-rated rider fee is first deducted and then the

1The theoretical developments are presented assuming T to be an integer. For values of g such
that T is not an integer, the algorithms can be adapted to incorporate the final fractional period.
Set N = �T · n� + 1 and the final period has time length of T − (

N−1
n

)
years. All the parameters,

including the periodic payment G, need to be scaled for the terminal period to reflect the shortened
duration. This is the approach we use to obtain α� when T is not an integer.
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periodic withdrawal is subtracted. We restrict r > 0.

Notation 3.5. For conciseness we omit the δt-dependence from the notation for G, r,

and α. Denote r̄ := rδt and ᾱ := αδt.

Beginning with S0 = P , the binomial tree for {Si} is constructed forward in time.

For i ∈ I+
N , set

Si = ξiSi−1.

We define another binomial tree which contains two values at each node, Wi− and

Wi. The first is the account value after adjusting for market movements but before

fees are deducted or withdrawals are made and the latter is the account value after

adjusting for fees and withdrawals. We have

W0 = P,

Wi− =
Si

Si−1

Wi−1 = ξiWi−1,

Wi = max
{
Wi−e

−ᾱ −G, 0
}
,

for i ∈ I+
N . Although the tree for the underlying asset {Si} is recombining, the tree for

the account value {Wi} is non-recombining. For any i there are i+1 nodes for Si but

2i nodes for Wi on the respective trees. The subtraction of the periodic withdrawals

imposes a path dependency on the model.

Example 3.6. Figure 3.1 provides an example of a binomial tree for {Wi}2 with the

parameters: r = 5%, σ = 20%, g = 25% and δt = 1. Therefore p = 0.5775 and

α� = 3.07%. The withdrawal rate was selected to be unrealistically high to limit the

contract to 4 years, thus the tree has only 16 nodes in the final period.

2constructed with the software Tree Diagram Generator, version 1.0
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Figure 3.1: Sample binomial tree for account value process

3.2.2 Policyholder Perspective

The discrete-time counterpart to (2.16) is

VN = WN ,

Vi = EQ

[
N∑

m=i+1

Ge−r̄(m−i) + e−r̄(N−i)WN |Fi

]

= GaN−i + e−r̄(N−i)EQ[WN |Fi] (3.4)

for i ∈ IN−1, with IN−1 := [0, 1, . . . , N − 1] and am = 1−e− r̄m

er̄−1
. For i = 0 this reduces

to

V0 = GaN + e−r̄NEQ[WN ]. (3.5)

The process {Vi} represents the value of the combined annuity plus GMWB rider

contract at each timepoint just after the deduction of fees and withdrawals. By the

Markov property we have

Vi = v(i,Wi),
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where v : IN × R+ �→ R+ is

v(i, x) =

⎧⎪⎪⎨⎪⎪⎩
x i = N,

[G+ pv(i+ 1, w(xu)) + qv(i+ 1, w(xd))]e−r̄ i < N,

(3.6)

and w : R+ �→ R+ is given by

w(x) = max{xe−ᾱ −G, 0}. (3.7)

We remark that {e−r̄iVi +Gai }0≤i≤N is a (Q,F) martingale for all α.

We restate the definition of α� from Chapter 2. The fair fee rate α� satisfies

V0(P, α
�, g) = P. (3.8)

There is no closed form solution for α�. In our numerical results, we iteratively solved

for the fair fee using the bisection method.

Due to the path-dependent nature of the account value process, one practical

drawback of the backward induction approach for V is the necessity of storing large

arrays of data. To obtain V0 an array of size 2N is needed to record VN for all nodes

in the final period. In contrast, for recombining trees the array size needed is only

N + 1. When early surrenders are not permitted, we can directly calculate v(i, x)

without using trees and avoid any strain on memory capacity.

We first express WN analogously to (2.12). Since only the terminal values of WN

are required, the max condition seen in the tree for Wi can be disregarded prior to

period N . It follows that

WN = max
[
ξNe

−ᾱ
(
ξN−1e

−ᾱ
(
...

(
ξ2e

−ᾱ
(
Pξ1e

−ᾱ −G
)−G

)
...
)−G

)−G, 0
]

= max

⎡⎣0, P e−ᾱN

N∏
i=1

ξi −G

N−1∑
i=0

e−ᾱi

N∏
j=N−(i−1)

ξj

⎤⎦
= max

⎡⎣0,WMe−ᾱ(N−M)

N∏
i=M+1

ξi −G
N−M−1∑

i=0

e−ᾱi

N∏
j=N−(i−1)

ξj

⎤⎦ , (3.9)
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where M < N and the convention
∏N

N+1(·) = 1 is used. We apply the reversal

technique from Liu (2010) (see also (2.7)), which is justified by the exchangeability

property of the sequence {ξi}Ni=1, and consider the reversed sequence which is equal

in distribution. Conditioned on WM = x, we obtain

W x,M
N

d
= max

[
0, xe−ᾱ(N−M)

N−M∏
i=1

ξi −G
N−M−1∑

i=0

e−ᾱi

i∏
j=1

ξj

]
.

Let {Zi} be the account value process when there are no withdrawals, beginning with

Z0 = 1. Then

W x,M
N

d
= max

[
0, xZN−M −G

N−M−1∑
i=0

Zi

]

and in particular, with M = 0, x = P , and G = P/N we obtain

WN
d
= P max

[
0, ZN − 1

N

N−1∑
i=0

Zi

]
. (3.10)

As pointed out by Liu (2010), V0 can be expressed as an Asian (floating strike) Call

option on {Zi} plus a term certain component.

Many of the terminal nodes in the tree for {Wi} will be zero as a result of the peri-

odic withdrawals, fees, and possible negative returns on S. Consider the recombining

tree for {Zi} with N + 1 nodes for period N . At each node, for each path leading to

it the average must be computed to calculate WN . Suppose that for some i ≤ N we

have WN = 0 on all paths with i jumps of u and N − i jumps of d. Then WN = 0

for all paths with less than i jumps of u. Consequently, once we reach a node on the

tree for Z such that WN = 0 for all paths, no further paths need be considered.

There is an efficient permutation function in C++, next permutation, which quickly

loops through all distinct paths having i jumps of u and N− i jumps of d. By looping

through each node and all the paths at each node we can avoid the exponential growth

in memory storage although we show in our numerical results that the run-time will
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increase significantly. By (3.4), with ζ := N −m we can write

v(m, x) = Gaζ + e−r̄ζ

a∑
k=0

pζ−kqk
∑
Ξζ,k

max

(
xe−ᾱζuζ−kdk

−G

[
ζ−1∑
i=0

e−ᾱi

[
i∏

j=1

ωj

]]
, 0

)
,

(3.11)

where Ξζ,k is the set of
(
ζ
k

)
unique permutations of a path with ζ − k up and k down

movements and a is the first value of k for which the summand produces zero.

The continuity and monotonicity properties for V as a function of α presented

in Lemma 2.5 and the resulting existence and uniqueness of α� remain true in the

discrete binomial framework. However, in a finite probability space Q(WN > 0) = 0

for sufficiently large α. Consequently, strict monotonicity holds only on a bounded

interval for α.

Lemma 3.7. For all fixed (i, x) ∈ IN−1 × R++, the contract value function v(i, x),

defined by (3.6), as a function of α is continuous for α ≥ 0 and strictly decreasing on

[0, bx,i) where

bx,i := min{α ≥ 0 : W x,i
N = 0 a.s.} < ∞.

Further, if (i, x) satisfies

x > G
N−i∑
j=1

dj (3.12)

then bx,i > 0, otherwise bx,i = 0. For α ≥ bx,i, v(x, i) = GaN−i .

Proof. From the equivalent expression for v(i, x) in (3.11), the continuity result is im-

mediate. The maximum possible value for W x,i
N is obtained by the path corresponding

to ωj = u for all j = i+ 1, . . . , N . Thus

bx,i = min{α ≥ 0 : W x,i
N (uu . . . u) = 0}.
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From (3.9), W x,i
N (uu . . . u) = 0 if and only if

f(α) :=

(
x(e−ᾱu)N−i −G

N−i−1∑
j=0

(e−ᾱu)j

)
≤ 0.

But f ∈ C∞ and limα→∞ f(α) = −G < 0. We have f(0) > 0 if and only if (3.12)

holds. If f(0) > 0 then there exists 0 < bx,i < ∞. If f(0) ≤ 0, then bx,i = 0.

The remaining part of this proof is similar to Lemma 2.5. Assume (i, x) is such that

bx,i > 0. Let

Aα := {W x,i
N (α) > 0}.

Then Aα �= ∅ for α < bx,i. Fix α ∈ [0, bx,i) and consider α(1) such that α < α(1) < bx,i.

When restricted to the set Aα(1)
, (3.9) implies

0 < W x,i
N (α(1)) < W x,i

N (α),

which in turn implies Aα(1) ⊆ Aα. We conclude that v(i, x;α(1)) < v(i, x;α).

In particular, (3.12) holds for (i, x) = (0, P ) since G = P/N and d < 1. The

existence and uniqueness of α� is discussed in the next proposition. The proof is

deferred to Subsection 3.2.3.

Proposition 3.8. Under Assumption 3.4 there exists a unique α� ∈ [0, bP,0) such

that V0(P, α
�, g) = P .

Remark 3.9. For r = 0 we have V0(P, α, g) = P for all α ≥ bP,0. Thus r > 0 is

a necessary condition to ensure uniqueness of α�. When uniqueness fails to hold it

makes sense to define the fair fee as α� = inf{α : V0(P, α, g) = P}. When r = 0,

α� = b0,P although it should make no difference to charge any higher rate since in

any case WN = 0 a.s. In Chapter 2 it was shown in the trivial case of the model

with surrenders and k0 = 0 that we can have non-uniqueness even when r > 0 and

Q(WN = 0) < 1.
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3.2.3 Insurer Perspective

We begin by defining the discrete-time analogues of the trigger time from the contin-

uous model.

Definition 3.10. In the binomial model, the trigger time τ is defined as the stopping

time

τ(ω1 . . . ωN) := inf{i ≥ 1;Wi(ω1 . . . ωi) = 0},

where inf(∅) = ∞. For any fixed sequence ω̄i and for any k ≤ i we write τ(ω̄i) ≤
k if (ω̄iωi+1 . . . ωN) ∈ {τ ≤ k} for all possible paths (ω̄iωi+1 . . . ωN), where ωj ∈ {u, d}
for all i+ 1 ≤ j ≤ N .

It is convenient to define the respective non-decreasing sequences of stopping times

{τi}i=0,1,...,N and {τ̄i}i=0,1,...,N with τi := τ ∨ i and τ̄i := τi ∧ N for i ∈ IN . For

0 ≤ j ≤ i ≤ N and k ∈ {i, i+ 1, . . . , N} ∪ {∞}, by the Markov property of {Wi} we

have

Q(τj = k|Fi) = H(i, j, k,Wi−), (3.13)

where

H(k ∧N, j, k, x) =

⎧⎪⎪⎨⎪⎪⎩
1{x>0,w(x)=0} k ≤ N,

1{w(x)>0} k = ∞,

and for i ∨ 1 ≤ l < k ∧N

H(l, j, k, x) =

⎧⎪⎪⎨⎪⎪⎩
pH(l + 1, j, k, w(x)u) + qH(l + 1, j, k, w(x)d) x > 0,

0 x = 0.

For i = 0, we have

H(0, 0, k, x) = pH(1, 0, k, xu) + qH(1, 0, k, xd).

If τ = ∞ the contract matures with a positive account value at time Nδt = T and the

option is not exercised. Similar to the comment made in Subsection 2.2.2 (on page
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24), if τ < ∞ then at time τ no uncertainty remains and any hedging portfolios can

be liquidated at that time and the amount GaN−τ paid to the insured. It is simpler

to model the contract until period N even if trigger occurs earlier although this will

no longer be the case once mortality is introduced.

Since the value processes at each timepoint are ex-fees and ex-withdrawals, the

component (G−Wτ−e
− ᾱ) ≥ 0 is the rider payment made immediately at trigger time.

For any period i, the net rider payout at time iδt is (G−Wi−e
−ᾱ)+ −Wi−(1− e−ᾱ).

Then the discrete-time version of (2.18) is

Ui = EQ

[
N∑

j=i+1

e−r̄(j−i)
[(
G−Wj−e

−ᾱ
)+ −Wj−

(
1− e−ᾱ

)] |Fi

]

= EQ

[ (
G−Wτ̄−i

e−ᾱ
)
e−r̄(τ̄i−i)1{i+1≤τ̄i} +

N∑
m=τ̄i+1

Ge−r̄(m−i) (3.14)

−
τ̄i∑

m=i+1

e−r̄(m−i)Wm−
(
1− e−ᾱ

) |Fi

]
for i ∈ IN−1. The terminal value is UN = 0.

By the Markov property for {Wi} we have

Ui = u(i,Wi),

where u : IN × R+ �→ R is defined by3

u(i, x) =

⎧⎪⎪⎨⎪⎪⎩
0 i = N,

e−r̄[pu−(i+ 1, xu) + qu−(i+ 1, xd)] 0 ≤ i < N,

(3.15)

u− : I+
N × R+ �→ R is defined by

u−(i, x) = u(i, w(x)) + (G− xe−ᾱ)+ − x(1− e−ᾱ), (3.16)

and w(x) is provided by (3.7). The function u−(i, x) represents the rider value at time-

3There is some abuse of notation with u referring both to the up-movement in the binomial model
and to the rider value function. However, it is always clear from the context whether we are referring
to the constant value or to the rider value function.
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point i cum-fees and cum-withdrawals, where x is the AV before fees and withdrawals

are deducted.

Since the processes (3.4) and (3.14) are the respective discrete-time versions of

(2.16) and (2.18) it is expected that the V = U +W relationship proved in Proposi-

tion 2.8 holds in the binomial model. Indeed this can be shown directly from (3.4) and

(3.14). We provide an alternative proof applying backward induction to the functions

v(i, x) and u(i, x).

Proposition 3.11. Under Assumption 3.4, for all α ≥ 0 we have

Vi = Ui +Wi

for all i = 0, 1, . . . , N .

Proof. We apply backward induction and show that v(i, x) = u(i, x)+x for all (i, x) ∈
IN × R+. By definition v(N, x) = u(N, x) + x for all x ∈ R+. Assume v(i, x) =

u(i, x) + x holds for all x ∈ R+ for some 1 ≤ i ≤ N . We need to show that

v(i− 1, y) = u(i− 1, y) + y for all y ∈ R+. Applying the induction hypothesis,

v(i− 1, y) = e−r̄[G+ pv(i, w(uy)) + qv(i, w(dy))]

= e−r̄[pu(i, w(uy)) + qu(i, w(dy)) + p(w(uy) +G) + q(w(dy) +G)].

From (3.15) and (3.16) we have

u(i− 1, y) = e−r̄{pu(i, w(uy)) + qu(i, w(dy)) + p[(G− uye−ᾱ)+ − uy(1− e−ᾱ)]

+ q[(G− dye−ᾱ)+ − dy(1− e−ᾱ)]}.

Observe

w(y)− (G− ye−ᾱ)+ = ye−ᾱ −G.

Then

w(y) +G− (G− ye−ᾱ)+ + y(1− e−ᾱ) = y,

47



therefore

v(i− 1, y)− u(i− 1, y) = e−r̄[puy + qdy]

= y

since pu+ qd = er̄ by the definition of the risk-neutral probabilities (3.3).

Therefore

v(i− 1, y) = u(i− 1, y) + y

for all y ∈ R+ and the result holds.

Proof of Proposition 3.8. From Lemma 3.7, for α ≥ bP,0 > 0, we have V0(P, α, g) =

GaN < P for r > 0. By the definition of U in (3.14) we have U ≥ 0 for α = 0. By

Proposition 3.11,

V0(P, α = 0, g) = U0(P, α = 0, g) + P ≥ P.

By the continuity and strictly decreasing property from Lemma 3.7, there exists a

unique α� ∈ [0, bP,0).

3.2.4 Hedging

In the binomial asset pricing model with one risky asset and the money market

account, a contingent claim can be perfectly hedged through discrete-time rebalancing

because there are only two possible movements in the underlying asset each period.

Consider first the no-hedging strategy whereby the fee revenues are placed in the

money market and at time τ , if τ < ∞, the rider payoff is paid from this account.

The Fτ̄0-measurable random variable Cτ̄0 measures the total cost of the rider to the

insurer over the contract lifespan, discounted to time zero, when hedging is not used.

We introduce notation for the periodic fees, with F i := Wi−(1− e−ᾱ) for i ∈ I+
N and
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F0 = 0. We have

C τ̄0 = e−r̄τ̄0

[(
G− (Wτ̄−0

)e−ᾱ
)+

+GaN−τ̄0
−

τ̄0∑
i=1

F i × er̄(τ̄0−i)

]
.

Note that U0 = EQ[Cτ̄0 ], but we are concerned with the pathwise results of Cτ̄0 in

relation to the outcomes resulting from a dynamic hedging strategy.

To dynamically hedge the rider the insurer establishes a hedging portfolio, which

attempts to replicate the rider so that any rider claims can be fully paid out by the

portfolio. The party managing the rider risk does not have access to the account

value funds to mitigate any risk, rather the only sources of revenue are the rider fees.

Denoting the replicating portfolio by {Xi}, the objective is to have Xi = Ui for all i

in a pathwise manner.

Following Shreve (2004a), we define the adapted portfolio process {Δi}0≤i≤N−1.

On each time interval [iδt, (i+1)δt) until maturity and for all outcomes the replicating

portfolio should maintain a position of Δi(ω1 . . . ωi) units in S. Using the Markov

property of {Wi} we define

Δi := Δ(i,Wi, Si),

where Δ : IN−1 × R+ × R+ �→ R is given by

Δ(i, x, y) =
u−(i+ 1, ux)− u−(i+ 1, dx)

uy − dy
. (3.17)

This indicates that Δi = 0 for τ ≤ i ≤ N − 1. Hedging with S is no longer required

after the trigger time as no uncertainty remains. By the nature of the rider as an

embedded put-like option, Δ will always take non-positive values corresponding to

short positions in S. Any positive (negative) portfolio cash balance is invested in

(borrowed from) the money market.

Beginning with initial capital X0 = x0 ∈ R, the replicating portfolio {Xi} follows

Xi = (Xi−1 −Δi−1Si−1) e
r̄ +Δi−1Si + Fi − (G−Wi−e

−ᾱ)+ (3.18)
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for i ∈ I+
N . Over any period the change in the portfolio value of Xi−Xi−1 consists of

the sum of four components: a) the return in the money market earned on both the

prior portfolio balance and the proceeds from the shorted stock (Xi−1−Δi−1Si−1)(e
r̄−

1); b) the capital gain or loss on the shorted stock (Si−Si−1)Δi−1; c) the end of period

rider fees Fi; and d) the negative of that period’s rider claim (if any), paid at the

end of the period and given by (G − Wi−e
−ᾱ)+. Note that if the static hedging

strategy Δ ≡ 0 is used then XNe
−r̄N = −Cτ̄0 . That is, we just obtain the result from

no-hedging.

This next theorem is similar to Shreve (2004a, Theorem 2.4.8), and the proof

follows from there. As such, we omit the proof and provide it in Section 3.3 when we

generalize the result for lapses.

Theorem 3.12. Under Assumption 3.4, if the fee α is charged and the initial capital

is x0 = U0(P, α, g), then an insurer who maintains the replicating portfolio Xi by

following the portfolio process prescribed by (3.17) will be fully hedged. That is,

Xi = Ui

for i ∈ IN .

Remark 3.13. In particular, if τ ≤ N then Xτ = G × aN−τ . When α� is charged

we have U0 = 0 and no initial capital is required for the replicating portfolio. The

rider is different from the standard financial options in that there is no upfront cost

to finance the hedge but rather it is self-financed through periodic contingent fees.

If the fee charged is not the fair fee (α �= α�), then the insurer must make an initial

deposit to the hedging portfolio if α < α� or may consume from the portfolio at time

zero if α > α�. The insurer can justify a lower fee by either depositing capital into

the portfolio and selling the policy at a loss or by charging an initial fee per unit

premium at time zero to the insured. Likewise, charging a higher fee results in a time

zero profit of U0.
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3.3 Extending the Model: Surrenders

We extend the binomial pricing model to include the possibility for early surrenders.

See the beginning of Subsection 2.2.4 for a general discussion on surrenders.

Assumption 3.14. We modify Assumption 3.4 by allowing for early surrenders. Sur-

renders occur at the end of any time period, after the fees and withdrawals have been

deducted. For valuation purposes, the end of period time point is considered ex-post

fees and withdrawals but ex-ante surrenders.

Let ka : {0, 1, . . . T} �→ [0, 1] be the non-increasing function describing the sur-

render charge schedule, satisfying ka
0 > 0 and ka

T = 0. The surrender charge rate

ka
i is applied for surrenders during time [i, i + 1). We denote the corresponding

function for the surrender charge rate upon surrender at the end of period i by

k : {0, 1, . . . , N} → [0, 1]. Then ki = ka
�iδt. By the discussion in Subsection 2.2.4, for

all i ∈ IN we have

Vi = max
η∈Li

V η
i = max

η∈Li,τ̄i

V η
i , (3.19)

where

V η
i = EQ

[
Gaη−i +Wη(1− kη)e

−r̄(η−i)|Fi

]
(3.20)

and Li,τ̄i is the set of F−adapted stopping times taking values in {i, i + 1, . . . , N}
subject to the constraint η < τ̄i or η = N . Recall that τ̄i is the trigger time assuming

no lapses. The fair rider fee satisfies V0(P, α
�, g) = P .

With the objective of classifying the optimal surrender policy we introduce some

notation. For any 0 ≤ i ≤ N, define a rescaled filtration Fi = {F i
j := Fj+i; 0 ≤ j ≤

N − i}. For any η ∈ Li define

Y η,i :=
{
Y η,i
j = e−r̄((j+i)∧η)V η

(j+i)∧η +Ga(j+i)∧η
}

0≤j≤N−i
, (3.21)
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then Y η,i is a (Q,Fi) martingale. Define

η̃i := min{j ≥ i; Vj = Wj(1− kj)} ≤ N, (3.22)

then it is a well-known result from American contingent claims theory that η̃i is

optimal in the sense that Vi = V η̃i
i (proving this in our context is straightforward

based on Duffie (2001, p.35) but requires (3.21)). That is, η̃i is an optimal lapsation

policy for the insured to follow going forth from time iδt, given the current market

state and no prior surrender.

The backward induction scheme is constructed to evaluate V on a binomial tree.

By the Markov property for {Wi} we have

Vi = v(i,Wi),

where v : IN × R+ �→ R+ is given recursively as⎧⎪⎪⎨⎪⎪⎩
v(N, x) = x(1− kN) = x,

v(i, x) = max{(G+ pv(i+ 1, w(ux)) + qv(i+ 1, w(dx)))e−r̄, x(1− ki)}.

When solving for α� we may write v(0, P ) = [G + pv(1, w(uP ) + qv(1, w(dP ))]e−r̄,

since k0 > 0.

We turn towards the rider value U and option to surrender value L. Naturally

the discrete-time version of (2.23) is given by

Ui := max
η∈Li,τ̄i

EQ[

η∑
j=i+1

e−r̄(j−i)[(G−Wj−e
−ᾱ)+−Wj−(1−e−ᾱ)]−e−r̄(η−i)kηWη|Fi] (3.23)

where
∑i

j=i+1(·) = 0. Recall that Li := Ui − UNL
i ≥ 0, where UNL

i is the rider value

in the no-lapse case (3.14). Then

Li = max
η∈Li,τ̄i

Lη
i , (3.24)
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where

Lη
i = EQ

[
N∑

j=η+1

e−r̄(j−i)
[
Wj−

(
1− e−ᾱ

)− (
G−Wj−e

−ᾱ
)+]− e−r̄(η−i)kηWη|Fi

]
.

We write

Ui = u(i,Wi),

where u:IN × R+ �→ R is recursively defined by⎧⎪⎪⎨⎪⎪⎩
u(N, x) = −kNx = 0,

u(i, x) = max{e−r̄[pu−(i+ 1, ux) + qu−(i+ 1, dx)],−kix},

and u− : I+
N × R+ �→ R follows

u−(i, x) = u(i, w(x)) + (G− xe−ᾱ)+ − x(1− e−ᾱ). (3.25)

Denoting the rider value function in the no-lapse model from (3.15) by uNL(i, x), we

have Li = l(i,Wi), where l : IN × R+ �→ R+ is given by⎧⎪⎪⎨⎪⎪⎩
l(N, x) = −kNx = 0,

l(i, x) = max{e−r̄(pl(i+ 1, w(ux)) + ql(i+ 1, w(dx))),−uNL(i, x)− kix}.

This definition of l satisfies l = u− uNL as can be shown using backwards induction.

Note that uNL(i, 0) ≥ 0 which implies the boundary condition l(i, 0) = 0. Once the

rider is triggered, early surrender is suboptimal since the account value is zero and

any remaining guarantee is forfeited upon surrender.

Proposition 3.15. Under Assumption 3.14, for all α ≥ 0 and for all i ∈ IN , we

have

Vi = Ui +Wi, (3.26)

or equivalently

Vi = Li + UNL
i +Wi. (3.27)
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Proof. Equation (3.26) can be proved using backward induction on the recursive

functions v and u, similar to Proposition 3.11. We omit the details.

Remark 3.16. From (3.26) we also have η̂i = min{j ≥ i; Uj = −kjWj}.

The adapted portfolio process (Δi)0≤i<N is defined similarly to (3.17). We have

Δi = Δ(i,Wi, Si),

where Δ : IN × R+ × R+ �→ R is defined as

Δ(i, x, y) =
u−(i+ 1, ux)− u−(i+ 1, dx)

uy − dy
, (3.28)

and u−(i, x) is given by (3.25).

We define a sequence of stopping times which classify suboptimal behaviour. Re-

call η̃i from (3.22). Let η̃0 := η̃0 and for 1 ≤ j ≤ m we denote

η̃j = η̃zj ,

where z0 = 0, zj = (η̃j−1 + 1) ∧N , and m = min{i; η̃i = N a.s.}.
We introduce a consumption process C = {Ci}0≤i<N where Ci := c(i,Wi) and this

process is linked to the suboptimal behaviour. It represents the additional cash flow

received each time a policyholder behaves suboptimally by not surrendering. The

function c : IN−1 × R+ �→ R+ is defined by

c(i, x) := v(i, x)− [pv(i+ 1, w(ux)) + qv(i+ 1, w(dx)) +G]e−r̄ ≥ 0. (3.29)

Note that we can characterize, in terms of {η̃j}, precisely when C will be strictly

positive. We have Cη̃j > 0 for all 0 ≤ j < M := min{b; zb = N} ≤ m, where M is a

random variable. Otherwise Ci = 0.

There is a fine distinction between Cη̃j and Lη̃j for all j < M . Consider the two

surrender strategies of η̃j+1 and η = N . The first strategy corresponds to surrendering

at the next best time after η̃j and the latter strategy is equivalent to never surrendering
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early. Then Cη̃j = Vη̃j −V η̃j+1

η̃j
but Lη̃j = Vη̃j −V NL

η̃j . At any time when it is optimal to

surrender immediately, C provides the marginal value from surrendering now instead

of at the next optimal time, whereas L is the marginal value from acting now instead

of at maturity.

By Proposition 3.11 and Proposition 3.15 it is true that V η̃j+1

η̃j
= U η̃j+1

η̃j
+Wη̃j and

Vη̃j = Uη̃j +Wη̃j . Therefore C can be written in terms of U as

c(i, x) = u(i, x)− [pu−(i+ 1, ux) + qu−(i+ 1, dx)]e−r̄. (3.30)

The next theorem extends the hedging results presented in Shreve (2004a, The-

orem 4.4.4) by incorporating the complication of the periodic revenues and rider

claims, and shows that the insurer can perfectly hedge the rider risk by maintaining

a replicating portfolio following (3.28). Furthermore, the insurer may have positive

consumption under suboptimal surrender behaviour. Beginning with X0 = x0, the

replicating portfolio is constructed forward recursively. For all i ∈ I+
N we have

Xi = [Xi−1 −Δi−1Si−1 − Ci−1] e
r̄ +Δi−1Si + Fi − (G−Wi−e

−ᾱ)+. (3.31)

Theorem 3.17. Under Assumption 3.14, if the fee α is charged and the initial capital

is x0 = U0, then an insurer who maintains the replicating portfolio Xi defined by

(3.31) by following the portfolio process (3.28), depositing any fee revenue into the

portfolio, consuming when permitted, paying any rider claims as they come due and

liquidating the portfolio either upon early surrender (if any) or at timepoint N will be

fully hedged throughout the contract lifespan. More generally, for all i ∈ IN and all

surrender strategies, we have

Xi = Ui.

Proof. Following the approach presented in Shreve (2004a), we proceed by induction.

By assumption we have that X0 = U0. Assume for some 0 ≤ i < N that Xi = Ui.
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We need to show that for all ω̄i,

Xi+1(ω̄iu) = Ui+1(ω̄iu),

Xi+1(ω̄id) = Ui+1(ω̄id).

We omit the ω̄i notation for conciseness. Substituting Ui for Xi in (3.31), using (3.28),

(3.30), and the fact q = u−er̄

u−d
we obtain

Xi+1(u) = ΔiSi(u− er̄) + (Ui − Ci)e
r̄ + Fi+1(u)− (G−Wi+1−(u)e

−ᾱ)+

= q[u−(i+ 1, uWi)− u−(i+ 1, dWi)] + (pu−(i+ 1, uWi) + qu−(i+ 1, dWi)

+ Fi+1(u)− (G−Wiue
−ᾱ)+

= u−(i+ 1, uWi) + Fi+1(u)− (G−Wiue
−ᾱ)+

= u(i+ 1, w(uWi))

= Ui+1(u).

A similar argument shows that Xi+1(d) = Ui+1(d). Since ω̄i was arbitrary we have

Xi+1 = Ui+1 and the result holds.

Remark 3.18. Remark 3.13 remains true. Assuming the insured follows the optimal

surrender strategy η̃0, then Xη̃0 = Uη̃0 and on {η̃0 < τ̄0} we have that Xη̃0 = Uη̃0 =

−kη̃0Wη̃0 , whereas XN = UN = 0 on {η̃0 = N}. There is no consumption. If the

insured allows the first optimal surrender time {η̃0 < τ̄0} to elapse, then the insurer

will consume Cη̃0 and the remaining portfolio is still sufficient to hedge the contract

over the remaining lifespan. If the insured allows the next optimal surrender time

{η̃0 < η̃1 < τ̄0} to elapse, if it exists, then the insurer consumes an additional Cη̃1 and

this continues until the earlier of trigger or timepoint N .

Finally suppose the insured surrenders at a suboptimal time. For a given path

ω̄N , surrender occurs at a timepoint i �= η̃j for all 0 ≤ j ≤ M(ω̄N). Then the insured

receives Wi(1 − ki) and in turn foregoes Vi −Wi(1 − ki) > 0 of value. The insurer’s
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portfolio value is Xi + kiWi > 0 and the insurer has a positive consumption. Indeed

by (3.26) we have Vi −Wi(1− ki) = Ui +Wiki > 0, but Xi = Ui.

3.4 Binomial Asian Approximation Method

The contract (VA plus GMWB) can be decomposed into an Asian-type option, as

discussed in Chapter 2 (p. 22). Hull and White (1993) developed an approximation

method to value path-dependent financial options on a binomial lattice in a more

efficient manner. The key idea is to use only a representative set of averages at each

node and apply linear interpolation in the backwards induction scheme. A summary

of this method and related papers is provided in Costabile et al. (2006).

The following drawbacks of the Hull and White (1993) method are discussed

in Costabile et al. (2006). It is highly sensitive to a parameter h which controls

the number of representative averages considered at each node. Further, for any

given timestep the same set of averages is applied for each node. Finally, the set of

representative averages do not correspond to actual averages from the original non-

recombining lattice. It has been shown that the method in Hull and White (1993)

does not converge, since only a fixed h is considered.

Costabile et al. (2006) propose an approximation method which addresses these

issues and can be used for pricing European and American Asian (fixed strike) calls.

The method can be easily modified for any option payoff which depends on a valid

function of the asset price path. A proof of convergence is not provided but numerical

results show convergence for European Asian calls while American Asian calls do

not perform as well and appear to converge at a much slower rate. The options

considered by Costabile et al. (2006) have significantly shorter maturities compared

to the GMWB riders. The method reduces the number of contract values considered

in the backwards induction scheme from O(2N) to O(N4). In our work, memory
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constraints limited the number of time steps in the binomial trees to N = 28 but

with this method we can consider up to N = 128 timesteps. We briefly describe

the approximation method applied to GMWBs with lapses but refer the reader to

Costabile et al. (2006) for more details.

Using (3.9)4 we can rewrite (3.19) as

V0 = max
η∈L0

EQ

[
Gaη + P max

(
Zη

(
1− 1

N

η∑
i=1

1

Zi

)
, 0

)
(1− kη) e

−r̄η

]
, (3.32)

where

Zn =
n∏

i=1

e− ᾱξi = e− ᾱ nSn

S0

.

We have Vi = v(i, Zi,
∑i

j=1 Z
−1
j ), where v : IN ×R+×R+ �→ R+ is recursively defined

as follows. The backward induction scheme begins with i = N and

v(N, x, y) = P max

(
x

(
1− 1

N
y

)
, 0

)
.

For 0 ≤ i < N ,

v(i, x, y) = max

[[
G+ pv

(
i+ 1, xue− ᾱ, y +

(
xue− ᾱ

)−1
)

+ qv
(
i+ 1, xde− ᾱ, y +

(
xde− ᾱ

)−1
) ]

e− r̄, x

(
1− 1

N
y

)
(1− ki)

]
.

Let (i, j) denote the node reached by j up-movements and (i−j) down-movements

in the recombining tree for Z. We write z(i, j) for the value of Z at node (i, j). For

each node, we construct a set of j(i− j)+1 representative averages5 which is a subset

of the complete set of
(
i
j

)
averages for the paths at that node. Denote the first (and

lowest) element by A(i, j, 1) where

A(i, j, 1) =

j∑
h=0

(
ue− ᾱ

)−h
+

(
ue− ᾱ

)−j
i−j∑
h=1

(
de− ᾱ

)−h
.

This average is taken along the path beginning with j up-movements of u and followed

4For the no-lapse case, (3.10) may also be used. It cannot be used to model lapses since it is
equivalent in distribution only and not pathwise.

5We keep the terminology of average even though we do not divide by i+ 1.
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by (i − j) down-movements of d. Excluding the initial point and terminal point we

find the highest point of {Si} along the path (if there are more than one such points,

select the first one) and substitute that node with the node directly below it in the

{Zi} tree to obtain a new path and take its average. This is repeated j(i− j) times

to obtain the set A(i, j) = {A(i, j, k); 1 ≤ k ≤ j(i− j)+1}. The final path considered

will be the one with (i − j) down-movements followed by j up-movements. None of

the previous paths are allowed to be below this path.

When working with the function v on the tree for Z and applying backward

induction, linear interpolation must be used whenever the computed average is not

in the representative set for that node. Consider a node (i, j) where i < N and

j ≤ i and select any A(i, j, k) ∈ A(i, j). Denote Au := A(i, j, k) + z(i + 1, j + 1)−1

and Ad := A(i, j, k) + z(i + 1, j)−1. To compute v(i, z(i, j), A(i, j, k)), the values

v(i+1, z(i+1, j +1), Au) and v(i+1, z(i+1, j), Ad) are needed. Suppose that Au /∈
A(i+1, j+1), then write Au

l for the highest element of A(i+1, j+1) lower than Au.

Similarly, Au
h is the lowest element higher than Au. We obtain v(i+1, z(i+1, j+1), Au)

by applying linear interpolation to the corresponding contract values for Au
l and Au

h.

Similar steps are followed for Ad. The scheme from Costabile et al. (2006) has the

benefit that linear interpolation is not needed for many of the computations of v.

For the framework in Costabile et al. (2006), whether the algorithm begins with

the path giving the highest average, selects paths in the described manner, and stops

when the path giving the lowest average is obtained, or vice versa, the same set of

averages are obtained. This symmetry is a result of the underlying asset changing by

factors of u and d, where ud = 1. However, this symmetry does not hold in our model

because the process Z changes by factors of ue−α and de−α. For example, an up-move

followed by a down-move does not return Z to its initial value. The downward trend

of the Z-tree complicates the approximation algorithm. Consequently, the sets A(i, j)

will change depending on whether the lowest or highest path is initially considered.
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3.5 Numerical Results

The computational applications of the binomial model for the GMWB rider are

limited for two reasons. The binomial tree for the account value process is non-

recombining and the riders have significantly longer durations in contrast to the usual

European and American equity options which typically have durations not exceeding

one year. The withdrawal rate g can be expected to range from 5% to 10% correspond-

ing to maturities of 10 to 20 years. Clearly δt must be significantly smaller than one

if the value processes in the binomial world are to provide an accurate approximation

of the value processes in the Black-Scholes world established in Chapter 2.

For g = 5% the binomial tree will contain 220 > 106 nodes in the final period

with just one timestep per year. The backward induction (tree) algorithm (Method

A) requires too much memory for small values of δt. In the no-lapse model we saw

that (3.11) allows a direct approach (Method B), where the algorithm loops through

each path and minimal memory is required. We will see shortly that Method B is

significantly slower than Method A. Although Method B enables using marginally

smaller δt values, we quickly run into time constraints as the number of paths grows

at O(2N).

Beginning with the no-lapse case, we provide numerical results comparing our

model to previous results in the literature and find that even with large values for δt

our simple model is a reasonable approximation of more complex models. Moreover,

within a binomial world, it allows us to analyze the hedging results and the effect of

the parameters on the losses when hedging is not implemented.

3.5.1 Bisection Algorithm

The bisection algorithm is used to solve for α�. Define f : R+ �→ R+ by f(α) =

V0(P, α, g) − P . Then f(α�) = 0 by (3.8). Choose an initial pair (αu, αl) such that
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f(αu) < 0 and f(αl) > 0. Determine an acceptable error tolerance ε� and stop

iterations when |f(α)| < ε�. Beginning with iteration i = 1, set αi = αu+αl

2
. If

|f(αi)| < ε� then αi is an acceptable estimate for α�. If |f(αi)| ≥ ε� then set αu = αi

(αl = αi) if f(αi) < 0 (f(αi) > 0) and iterate again by incrementing i. We use

P = 100 and ε� ≤ 0.001 in all our results achieving accuracy of 1 × 10−5 for a unit

premium.

3.5.2 The Fair Rider Fee

Milevsky and Salisbury (2006) use numerical PDE techniques to solve for V0, as

defined by (2.13), and present the fair fees for various (g, σ) combinations. In Liu

(2010), a discrete-time model is developed (see Section 1.3) and the contract values

are estimated using Monte Carlo simulation with a geometric mean strike Asian call

option as a control variate. Both papers assume S is lognormally distributed. In

theory we expect convergence of results for both models and our binomial model.

However Liu (2010) obtains results significantly lower than those of Milevsky and

Salisbury (2006), from which it is concluded that Milevsky and Salisbury’s results are

on average 28% too high.

Table 3.1 provides a comparison between the two cited papers and the binomial

model. In the discrete models δt = 1/timesteps. The parameters are: P = 100,

g = 10%, r = 5%, σ = 20%, T = 1/g = 10. For δt = 1, results from the binomial

model and Liu (2010) are sufficiently close. We reach three timesteps per year under

Method B, and observe that our model supports Liu’s results, albeit to a limited

degree.

For the same parameters Table 3.2 displays sample run-times (in seconds) to cal-

culate V0 for a single value of α. The differences may seem small for n < 3 and

external factors also affect the run-times; however being that C++ is far more efficient

to run for identical code we see that Method B is significantly slower to run. Under
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M&S (2006) Liu (2010) Binomial

timesteps/year continuous 1 12 4000 1 2 3

α�(bps) 140 92.41 96.65 97.28 92.20 94.55 95.35

Table 3.1: Comparison of results for α� : g = 10%, r = 5%, σ = 20%

Timesteps Method A Method B
(Trees, Matlab) (Loop, C++)

n = 1 7.7× 10−4 3× 10−3

n = 2 0.80 2.5
n = 3 3× 103

Table 3.2: Computational time comparison (in seconds)

Method B with n = 3 and α = 95.35bps, it is seen that WN = 0 for all paths with

less than 11 up-moves and therefore the bottom 10 nodes in the recombining tree

for Z do not need to be evaluated. This does not prevent the run-time from rapidly

growing.

While the binomial model is a valuable theoretical framework for viewing the

GMWB rider, it is the Asian approximation method which reveals the practical value

of such a model. Implementing the Asian approximation method, we attain results up

to n = 10. Monthly timesteps should be attainable with more efficient programming

and superior hardware. The results in Table 3.3 strongly imply convergence to the

α� computed by Liu (2010).

Table 3.4 contains additional results for different g and σ values. The fair fees

are increasing in both g and σ and is quite sensitive to the latter. Sensitivity results

have been discussed at length in the literature (see Chen et al., 2008). The return

n 1 2 3 5 7 9 10

α�(bps) 92.30 94.64 95.40 96.05 96.33 96.48 96.54
V0(α = 97.3)($) 99.767 99.880 99.917 99.945 99.958 99.965 99.967

Table 3.3: Asian approximation results
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(α�, bps) σ = 20% σ = 30%

g% T MSa Lb Bc MSa Lb Bc

5 20 37 28.5 27.1(1) 90 76.5 74.8(1)
6 16.67 54 40.6 38.7(1) 123 103.7 101.5(1)
7 14.29 73 53.8 51.3(1) 158 132.3 129.4(1)
8 12.5 94 n/a 64.6(1) 194 n/a 158.3(1)
9 11.11 117 n/a 80.1(2) 232 n/a 189.3(2)
10 10 140 96.7 94.6(2) 271 221.2 219.1(2)

a Milevsky and Salisbury (2006) b Liu (2010) with n = 12
c Binomial with n in parentheses

Table 3.4: Comparison with previous results for α�, (r = 5%)

of premium guaranteed by the GMWB does not include time value of money and as

g increases, the maturity decreases and V0 increases in value for any fixed α because

of the interest rate effect. Consequently α� must increase. Our results consistently

support Liu (2010) at the expense of Milevsky and Salisbury (2006).

In Figure 3.2, V0 is plotted against α for different T values. The parameters are:

P = 100, r = 5%, σ = 20%, δt = 1, and g = 1
T
. The fair fee is the point of intersection

between the horizontal line V0 = 100 and the curves. When the curves are plotted

over the wider range [0,0.05] the linearity resemblance seen on [0, 0.01] disappears

and the curves have a more pronounced convex shape. As α increases, the likelihood

of trigger rises but the decrease in the expected discounted terminal account value is

less sensitive for sufficiently large α.

It is important to consider the sensitivity of V0 to α in a neighbourhood around

α�, for a given set of parameters. Figure 3.2 reflects the changing sensitivity for

different values of T . For the parameters in Table 3.1, the binomial method with

δt = 2 gives V0(100, 140 bps, 10%) = 98.02 and it can be deceptive to only look at

α�. The objective is to solve for the fair fee and in our pricing framework, charging

a different fee leads to arbitrage no matter the size of |α − α� |. However in the real

world with the constraints of Section 1.5, mispricing may not lead to arbitrage and
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Figure 3.2: Plotting V0 as a function of α for varying T . Parameters are: r = 5%,
σ = 20%, and g = 1/T .

it is crucial to look at this sensitivity in addition to α�.

3.5.3 Distribution of Trigger

Milevsky and Salisbury (2006) numerically solve the Kolmogorov backward equation

for P(τ ≤ T ) and provide results for different combinations of (μ, σ) with the param-

eters g = 7% and α = 40bps. In Table 3.5 these results are compared with those

obtained from our binomial model. To avoid fractional years, we set T = 14 and

g = 7.14%.

In Milevsky and Salisbury (2006), St is modeled by geometric Brownian motion

dSt = μStdt+ σStdB
′
t,

where B
′
t is P-Brownian motion. Referring to the parametrization from Proposi-

tion 3.2 we have

rsT := ln

(
ST

S0

)
=

(
μ− 1

2
σ2

)
T + σB

′
T ,
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therefore EP[r
s
T ] = (μ− 1

2
σ2)T and V arP[r

s
T ] = σ2T . We set

u = eσ
√
δt,

d = e−σ
√
δt,

p̃ =
1

2
+

1

2

(
μ− 1

2
σ2

)
1

σ

√
δt.

Note that p̃ < 1 holds only if μ < 1
2
σ2 + σ 1√

δt
. For δt = 1 this condition is violated

for σ = 10% and μ = 12%.

In general, the probability mass function of τ w.r.t. P can be calculated in the

binomial model with (3.13), where

P(τ = i) = H(0, 0, i, P )

for i ∈ {1, 2, . . . , N,∞}. Of course, p must be replaced with p̃.

The level of accuracy in Table 3.5 varies by parameters. For fixed μ, as σ in-

creases the binomial model results shift from underestimating the continuous model

to overestimating it.

Remark 3.19. Applying (3.13) with two timesteps a year, 228 paths need to be eval-

uated and we run into capacity issues in both Matlab and C++. For δt = 0.5, we

use the approach in (3.11) except that rather than working with e−rTWT , we use the

indicator function 1{WT=0} remembering to take account of the probabilities for the

lower nodes with more than a down movements.

Remark 3.20. We stated the exact distribution function for τ in Remark 2.4 subject

to the constraint (μ− α) < 3
2
σ2. In Table 3.5 this constraint only holds for

(μ, σ) ∈ {(0.04, 0.18), (0.04, 0.25), (0.06, 0.25), (0.08, 0.25)}.

However, by Remark 2.4 upper bounds can be obtained through (A.1).
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3.5.4 Comparison of Hedging and No Hedging

We investigate the impact of volatility on the fees, triggers and losses. The parameters

are: g = 10%, T = 10, P = 100, and δt = 1. The risk free rate r is 5% and the

drift term μ of the underlying asset is 7.5%. We consider σ = 15% and σ = 30%.

The respective fair fees α� are 41.8bps and 216.7bps. The probability mass function

for τ under the physical measure is displayed in Figure 3.3. Recall that τ = ∞ when

WT > 0. The two σ values were selected to magnify the interaction between volatility,

the trigger time distribution and consequently the rider payouts. Higher volatility

implies more adverse market returns and a greater likelihood of early trigger. An

additional effect on trigger comes from the rider fee. The fee rate is very sensitive to

volatility and the fees drag down the account value further, resulting in more frequent

early trigger times.

We consider the strategies of no hedging and dynamic delta hedging prescribed in

Subsection 3.2.4. Define Π := e− r̄NXN to be the discounted profit. When Δ follows

the prescribed portfolio process (3.17) we obtain the hedging profit, ΠH . If Δ ≡ 0

we obtain the profit under no hedging, ΠNH . The superscripts are omitted when it is

clear which profits we are analyzing. Figure 3.4 plots both −ΠH and −ΠNH against

τ0 for the complete set of outcomes (210 = 1024 paths). The values are per $100

initial premium.

The dynamic delta hedging strategy results in no losses. Without hedging, the

range of potential losses by each random trigger time has a decreasing trend because

a later trigger time implies additional periods of fee revenue and fewer periods of any

rider guarantee payout. The effect of the volatility σ is particularly visible for those

pathwise outcomes where τ = ∞. When σ = 15% there is a 87% probability of a

positive terminal account value but the gains are small. On the other hand, there

is only a 50% probability that τ = ∞ when σ = 30% but the potential profits are

large due to the high fees. Figure 3.5 shows the cumulative distribution function of
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Figure 3.3: Probability mass function - P

Values per $100 σ = 15% σ = 30%

EP(Π
NH) 1.84 4.19

SDP(Π
NH) 4.28 21.34

TV aR0.10(Π
NH) 9.30 32.60

Table 3.6: Profit metrics for no hedging (no lapses)

the profits when there is no hedging.

We present several metrics for ΠNH under P. The standard deviation is denoted

SD(Π). The tail value at risk is TV aRγ(Π) := EP[−Π|Π ≤ −V aRγ(Π)] where

V aRγ(Π) = − inf{x : P(Π ≤ x) > γ}. Table 3.6 shows the values for this sensitivity

analysis of σ. It only amplifies the effect of σ on the insurer’s risk and highlights the

importance of a thorough hedging scheme.

3.5.4.1 Hedging in a Continuous Model

In the binomial model a perfect hedge is attainable. Suppose instead the underlying

asset follows the geometric Brownian motion process given by (2.1). A perfect hedge

in this case entails continuously rebalancing the hedging positions by taking a position

at any time t of W
S

∂U
∂W

units of S (see Chen et al., 2008). In practice, the positions will

be rebalanced only a finite number of times each year which introduces hedging errors.

We model the fees and withdrawals to occur only at year-end in order to contrast with

the previous result in the binomial model for δt = 1. This differs from the continuous
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(a) (b)

Figure 3.4: Hedging and no-hedging losses, with r = 5% and g = 10%

Figure 3.5: CDF of ΠNH w.r.t. P
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model of Chapter 2 where fees and withdrawals are deducted continuously. For all

k ∈ I = {1, . . . , T} and for all s ∈ (k − 1, k] we have

Ws = Wk−1+e
(r− 1

2
σ2)(s−(k−1))+σ(Bs−Bk−1),

Wk+ = max(Wke
−α −G, 0),

where G = Pg. The risk-neutral value of the annuity plus GMWB rider is

V0(P, α, g) =
T∑
i=1

Ge−ri + e−rTEQ(WT+).

The parameters used are P = 100, g = 10%, r = 5%, μ = 7.5%, σ = 15%, and

T = 10. We used Monte Carlo simulation to obtain α� ≈ 45bps (50,000 paths were

simulated). By the Markov property of {Wt} the value of the embedded rider is

Uk = u(k,Wk+) for k ∈ {0, 1, . . . , T}, where

u(k, x) = EQ

⎡⎣ T−k∑
i=τx∧1

(G−W x
i e

−α)+e−ri1{τx≤T−k} −
τx∧(T−k)∑

i=1

e−riW x
i (1− e−α)

⎤⎦
and τx = inf{s ≥ 0; W x

s = 0}. For any non-integer t ∈ [0, T ] we have Ut = u(t,Wt),

where

u(t, x) = e−r(�t�−t)EQ[u(�t�, (W x
�t�−te

−α−G)+)+ (G−W x
�t�−te

−α)+−W x
�t�−t(1− e−α)].

We analyzed the effectiveness of a dynamic hedging strategy with weekly rebalancing

for 500 path outcomes generated under P. For t ∈ {0, 1
52
, 2
52
, . . . , 519

52
, 10} and w ∈ R+,

Monte Carlo simulations (using 1000 paths) yielded Ut(w − 1) and Ut(w + 1). We

approximated ∂U
∂W

with Δt(Wt) =
Ut(Wt+1)−Ut(Wt−1)

2
where the same set of generated

paths was used to obtain both values in the numerator. Using the same paths and

taking the central difference has been shown to reduce variability of results (Glasser-

man, 2004). Figure 3.6 displays the discounted losses for no hedging and for weekly

hedging for each generated path. Based on the simulations, P(τ = ∞) = 84.4%. As

supported by Table 3.7, the weekly hedging considerably mitigates the equity risk.
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(a) No hedging (b) Weekly hedging

Figure 3.6: Continuous model with g =10%, r =5%, μ = 7.5% , σ=15%, α=45bps

Values per $100 No Hedging Hedging (Weekly)

EP[Π] 1.86 0.07
SDP[Π] 4.63 0.36

TV aR0.10(Π) 10.15 0.61

Table 3.7: Profit metrics for continuous model with weekly hedging and no hedging

There are negative hedging errors in contrast to the case when the underlying model

is binomial.

3.5.5 The Fair Rider Fee with Surrenders

We compare our results for α� with those in the literature. For the parameter set of

g = 7%, r = 5%, and ki = 1% for all i, Table 3.8 compares the binomial model with

δt = 1 to Milevsky and Salisbury (2006). Although the results are proportionally

closer, as compared to Table 3.1, it is inconclusive if the differences are mostly due to

δt = 1 or if the results presented by Milevsky and Salisbury (2006) in the lapse case

suffer from the same inaccuracies as in the no-lapse case.

We apply the Asian approximation method with the parameters g = 10%, r =
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σ(%) 15 18 20 25 30

Milevsky and Salisbury (2006) 97 136 160 320 565
Binomial (δt = 1) 33 89 138 283 455

Table 3.8: Comparison of α� to previous results; with g = 7%, r = 5%, and k = 1%.

n α�(bps) V0(α=146.4)($) α�(actual)

1 131.00 99.689 130.54
2 141.98 99.933 141.75
3 143.37 99.949
4 146.04 99.994
5 146.40 100
6 146.70 100.005

Table 3.9: Asian approximation results - lapses

5%, σ = 20%, and k = 3% in Table 3.9. The convergence is slower than in the

no-lapse case, but that is a result of the early surrender decisions which are being

approximated. This is consistent with the findings of Costabile et al. (2006). The

rightmost column shows α� under the original binomial model. The increase in α�

when n is increased from one to two suggests that a sizeable portion of the differences

in Table 3.8 can be attributed to the low value of n in the binomial model.

We set r equal to the instantaneous risk-free rate long term mean and σ equal

to the variance long term mean used in the stochastic interest rate and volatility

processes in Bacinello et al. (2011). We found that comparing V0 for varying α, in

the no lapse case the binomial model provides close estimates even for δt = 0.5. In

Table 3.10 we list the difference in the contract value between the two methods for

varying α and P = 100, g = 10%, r = 3%, σ = 20%, and k = 3%. The models have

fundamental differences and we do not expect to attain exact results in the limit.

Sensitivity results for g, r, and σ are shown in Table 3.11. The baseline case is set

to g = 10%, r = 5%, σ = 20%, and a CDSC of k = 3%. The fair fee α� is increasing

with g and σ but decreasing with r. It is most sensitive to r. This is due to the long

duration of the contract. Clearly a stochastic interest rate approach is well-justified.
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α(%) 1 2 3 4 5

V B
0 (α)− V BMOP

0 (α)a,b: (no lapse) -0.186 -0.113 -0.035 0.05 0.096
V B
0 (α)− V BMOP

0 (α): (lapse) 0.153 0.546 0.75 0.78 1.04

a V B
0 refers to the binomial method, with δt = 0.5.

b V BMOP
0 refers to Bacinello et al. (2011).

Table 3.10: Comparison of V0 with previous results: g = 10%, P = 100, r = 3%, σ =
20%, and k = 3%.

g% α� (bps) V0(α1) ($) σ% α� V0(α1) r% α� V0(α1)

5 30 97.21 10 10 97 1 1199 108.21
6 47 97.87 15 44 97.84 2 673 105.54
7 68 98.44 18 87 99.08 3 397 103.29
8 90 98.95 20 142 100 4 244 101.43
9 110 99.38 25 318 102.46 5 142 100
10 142 100 30 562 105.12 6 77 98.87

a Baseline case is g = 10%, r = 5%, σ = 20%, k = 3%, α1 = 142bps.
b For the first column, δt = 1 for g ≤ 9%. All other values use δt = 2.

Table 3.11: Sensitivity results for α�

Under the parameters of g = 10%, r = 5%, σ = 25%, and δt = 1, the impact of the

CDSC schedule on α� is shown in Table 3.12. Allowing surrenders with no penalties,

the fair fee will be exorbitant to compensate for this option. As the penalties increase,

the fee approaches the corresponding fee in the no-lapse model. For sufficiently high

penalties, the option to surrender yields no marginal value.

3.5.6 Hedging and No Hedging with Surrenders

We consider the parameters: P = 100, g = 10%, r = 5%, σ = 25%, and δt = 1. The

drift of S is μ = 7.5%. The surrender charge schedule applied is ki = max(.09−.01i, 0)

for i = 1 . . . 10. Figure 3.7 plots the aggregate losses, discounted to time zero, for

the set of all outcomes for both the no-surrender model and the model with early

surrenders. The respective fair fees are charged. In Figure 3.7b the no-hedging results

are denoted by L and T: the former are outcomes where it is optimal to lapse while
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Description of Schedule α�(bps)

No-Lapse Model 152
ki = 0 for i = 1, . . . , 9 491
ki = 1% for i = 1, . . . , 9 430
ki = 3% for i = 1, . . . , 9 309
ki = 5% for i = 1, . . . , 9 217
ki = 7% for i = 1, . . . , 9 169
ki = 8% for i = 1, . . . , 9 155
ki ≥ 8.38% for i = 1, . . . , 9 152
ki = (10− i)%, for i = 1, . . . , 9 171
ki = (9− i)%, for i = 1, . . . , 9 188

Table 3.12: Impact of k on α�

the latter are those for which no lapse occurs.

Table 3.13 shows the P−distribution of trigger times and surrender times, where η�

denotes an optimal early surrender. Note that P(τ = ∞) ≈ 60% when surrenders are

not allowed, but this reduces to P(τ = ∞) ≈ 0.65% when surrenders are permitted.

Allowing lapses causes a shift as it becomes preferable in many outcomes when the

market is doing well for the policyholder to lapse rather than face the likelihood of

the rider maturing without being triggered.

For the outcomes where it is optimal to lapse, the profits to the insurer are de-

creasing for years 3-7. This is due to the design of k. The higher surrender charge in

earlier years outweighs the additional fees received when lapses occur later.

We look at L0 in Figure 3.8. When α is small, there is little incentive to surrender

early and L0 ≈ 0. For greater values of α, there is incentive to surrender and avoid

paying future fees. This is reflected in the growth of L0.
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(a) (b) SC begins at 8% and decreases 1% per annum

Figure 3.7: Hedging and no hedging, with and without lapses: g = 10%, r = 5%,
σ = 25%.

No Lapses Model with Lapses

i P(τ = i) P(τ = i) P(η� = i)

3 0 0% 20.28%
4 0 0% 16.73%
5 2.90% 2.90% 4.91%
6 5.80% 5.80% 8.11%
7 7.83% 7.83% 3.57%
8 6.29% 9.08% 4.42%
9 9.48% 7.37% 2.37%
10 7.23% 5.98% 0
∞ 60.47% .65% 0

Sum 1 39.61% 60.39%

Table 3.13: Probability distribution of τ and lapses for Figure 3.7
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Figure 3.8: Value of L0: g = 10%, r = 5%, σ = 25%, δt = 1, and a declining SC
schedule
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Chapter 4

Extending the Model: Including

Mortality

The simplification of disregarding mortality was used in several papers for GMWBs

including Milevsky and Salisbury (2006) and Dai et al. (2008). Mortality factors do

need to be considered in practice. Depending on the goal of the analysis, the level

of preciseness attained by including mortality may not justify the added complexity

and dimensionality of the model. In particular, in the papers mentioned the focus

was on studying the optimal policyholder behaviour strategy and including mortality

only detracts from the presentation of the results.

Mortality risk is typically assumed to be independent of financial risk. Further,

under the assumption of independent lives and deterministic forces of mortality (haz-

ard rates) a simple application of the strong law of large numbers justifies the claim

that mortality risk is diversifiable. By issuing a sufficiently large portfolio of homoge-

neous policies the insurer can completely account for the mortality risk by taking the

expected value of claim payments under the appropriate mortality probability distri-

bution (Boyle and Schwartz, 1977). Therefore under these assumptions mortality risk

is not priced by capital markets in an economic equilibrium (no-arbitrage) approach
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and there is no difference between the physical and risk-neutral measures (Milevsky

et al., 2006). In a stochastic mortality framework the non-diversifiable component of

mortality risk must be priced into the contract.

Milevsky et al. (2006) list capacity constraints in immediate annuity markets as

one of several industry trends which justify charging for mortality risk. We remark

that in variable annuity markets, both finite demand and regulatory limits on capital

at risk lend support to modeling capacity constraints in order to determine whether

there is a non-negligible impact.

The effect of mortality for GMWBs clearly depends on the death benefits (DBs).

When benefit payments are similar for both death and survival, there is minimal

impact. Indeed, Bacinello et al. (2011) found that guaranteed minimum death benefit

(GMDB) riders add little value to the contract in the presence of other living benefit

riders and a relatively short maturity.

There are several possibilities for the contract specifications in the event of death.

The trivial case is the return of the current account value (without any surrender

charges deducted) while the default option is often a return of premium (ROP) clause

with the payoff being the maximum of the current account value and the total pre-

miums reduced by withdrawals. More complex options may have the death benefit

increase over time through ratchets or rollups. GMWB riders usually include the

ROP death benefit but allow the policyholder the option of adding richer death ben-

efit riders.

We extend the model from Chapter 3 to include mortality under the independence

of lives assumption and deterministic forces of mortality. It is straightforward to

obtain the price processes V and U , which for each insured are dependent on the

survival status. The rider fee is obtained assuming diversifiable mortality risk, as is

the hedging portfolio; however, we consider a numerical simulation to emphasize that

under capacity constraints and finite number of policies there is mortality risk and

78



the product is not fully hedged.

4.1 Mortality Framework

In this section we establish a mortality framework. The classical actuarial theory and

notation used follows that of Bowers et al. (1997). In addition, the measure-theoretic

aspects and inclusion of counting processes follows closely the frameworks of Møller

(1998) and Wang (2008).

Assumption 4.1. Homogeneous policies are issued to a pool of lx policyholders, each

of age x. Measured from issue date, the random times of death, denoted by {T x
j ; j =

1, . . . , lx} where T x
j is the time of death for policyholder j, are absolutely continuous,

independent and identically distributed, and lie on a probability space (ΩM ,FM ,PM).

Consider a representative random variable T x where T x d
= T x

j . The support of

T x is [0, T �) where T � ≤ ∞ is the maximum remaining lifetime for a person age x.

Corresponding to the binomial model with δt = 1/n and n ∈ N+, let Kx denote

the period in which death occurs. Then Kx = �T x/δt�. In other words, Kx = i is

equivalent to (i− 1)δt < T x ≤ iδt. For j = 1, . . . , lx, define the counting processes

Dx,j = {Dx,j
i := 1{Kx

j ≤i}; i = 1, . . . , N}.

We work with the filtration generated by {Dx,j}1≤j≤lx . The filtration is FM,x :=

{FM,{x,lx}
i }1≤i≤N where FM,{x,lx}

i := FM,x,1
i ∨ · · · ∨ FM,x,lx

i and FM,x,j
i = σ(Dx,j

l ; l =

1, . . . , i).We work with the resulting filtered probability space (ΩM ,FM,{x,lx}
N ,FM,x,PM).

Remark 4.2. The notation G∨H, where G and H are σ-algebras, means the σ-algebra

generated by G ∪ H.

We define the process which produces 1 while the insured j is still alive by Ax,j
i :=

1−Dx,j
i for i ∈ IN .
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By Assumption 4.1, T x has a density function fTx . Its cdf is denoted FTx(t) :=

P(T x ≤ t). The deterministic force of mortality, μx(t), is defined as the conditional

probability density function of T x at time t, given survival to that time. Then

μx(t) :=
fTx(t)

1− FTx(t)
. (4.1)

We introduce some additional actuarial notation:

jpx+i : = P(Kx > i+ j|Kx > i) = P(T x > (i+ j)δt|T x > iδt),

j|lqx+i : = P(i+ j < Kx ≤ i+ j + l|Kx > i),

and we write px+i for 1px+i, jqx+i for 0|jqx+i, and qx+i for 1qx+i. It follows that

iqx = FTx(iδt), ipx = 1 − iqx, and j|lqx+i = j+lqx+i − jqx+i. From (4.1) we have

fTx(iδt) = μx(iδt)iδtpx and jpx+i = e−
∫ jδt
0 μx+iδt(u)du (see Bowers et al. (1997) for

details). Note that FTx , fTx , and μx are defined on the reals, while jpx+i and j|lqx+i

are defined on the integers.

Bowers et al. (1997) provide several analytical laws of mortality.

Definition 4.3. Under the Makeham law

μx(t) := A+Bcx+t

where B > 0, A ≥ −B, c > 1 and x+ t ≥ 0.

As a result, under the Makeham law:

ipx = exp

(
−iδtA− B

ln(c)
(cx+iδt − cx)

)
.

Example 4.4. The parameters used to develop the illustrative life table under the

Makeham law in Bowers et al. (1997) are: A = 0.7× 10−3, B = 0.05× 10−3 and c =

100.04. Figure 4.1 plots both fTx(t) and P(T x > t) for x = 60 and t ∈ [0, 50].

We state one additional useful result from Wang (2008). For i ≤ j,

P(T x > jδt|FM,x
i ) = (1−Dx

i )j−ipx+i
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Figure 4.1: Using the Makeham law, with A = 0.7× 10−3, B = 0.05× 10−3 and c =
100.04

and

P(iδt < T x ≤ jδt|FM,x
i ) = (1−Dx

i )j−iqx+i.

4.2 Death Benefit Design

We consider both the ratchet DB and the return of premium DB. The ratchet DB

has the feature that on each ratchet date, the death benefit base will increase to the

current account value, provided the account value is higher. Let

0 ≤ t1 < t2 < · · · < tm ≤ T

represent the set of ratchet dates prior to maturity. Then the rescaled set, in terms

of binomial time periods, is

I =

{
t1
δt
,
t2
δt
, . . . ,

tm
δt

}
⊂ IN .

The GMWB and GMDB are treated as one rider with the aim of solving for the

fair fee α� as before. Alternatively, one could separate the two and specify the GMDB

81



rider fee exogenously. Let DBi be the death benefit guarantee base at timepoint i,

with DB0 = P . Then DBi = db(i,Wi− , DBi−1), where db : IN × R+ × R+ �→ R+ is

defined as ⎧⎪⎪⎨⎪⎪⎩
db(0, x, y) = x,

db(i, x, y) = max
(
w(x)1{i∈I},

w(x)
xe−αy

)
.

(4.2)

If I = ∅, then the ratchet DB reduces to a simple return of premium DB.

Note that DBi = 0 for i ≥ τ . However we assume that conditional on survival

to the trigger date, the guaranteed payments are paid regardless of life status; that

is, the present value of the remaining payments is paid upon death if trigger has

previously occurred. The death benefit of max(DBi,Wi+1−) is paid at time (i+1)δt,

if death occurs during the (i + 1)th period but prior to trigger time. In the limit as

δt → 0 this corresponds to the death benefit being paid at the instantaneous time of

death.

The death benefit base in (4.2) is reduced by withdrawals in a pro-rata manner,

meaning it is reduced by the same proportion as the account value. Another method

is called dollar-for-dollar withdrawal adjusted. Assume a policyholder holds a deep

in the money GMDB, with DBi � Wi (where x � y means y is much less than

x). By withdrawing 0.9Wi and ignoring surrender charges, under the dollar-for-dollar

reduction method the policyholder holds a GMDB with only 10% of the previous

account value but a death benefit base of DBi − 0.9Wi � 0. Under the pro-rata

method, the new death benefit base is 0.1DBi � DBi − 0.9Wi.

4.3 Pricing and Hedging

A key underlying assumption for the remainder of our work is stated.

Assumption 4.5. There is independence between biometric and financial risks. Let

(ΩS,FS
N ,F

S,QS) and (ΩM ,FM,{x,lx}
N ,FM,x,PM) be the filtered probability spaces con-
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structed in Section 3.1 and Section 4.1 respectively. We work with the product space

(Ω,FN ,F,Q) where Ω := ΩM ×ΩS, F := {Fi}Ni=0, Fi := FM,{x,lx}
i ×FS

i := σ({A×B :

A ∈ FM,{x,lx}
i , B ∈ FS

i }) and Q := PM ×QS.

We present the more general model allowing for early surrenders and as in Sec-

tion 3.3 optimal policyholder behaviour is assumed. The no-lapse model is obtained

under the following assumption.

Assumption 4.6. (No-lapse model) The surrender charges satisfy ki = 1 for all i <

N and kN = 0. This implies that the set of admissible lapse strategies is L0 = {N}.

Without loss of generality, from now until after Theorem 4.8 we let lx = 1. The

value process {V M
i }0≤i≤N is defined as

V M
i = Ax

i max
η∈Li,τ̄i

EQ

[
Dx

τ̄i∧η
(
max(DBKx−1,WKx−)e− r̄(Kx−i) +GaKx−1−i

)
+ Ax

τ̄i∧η
(
Gaη−i +Wη(1− kη)e

− r̄(η−i)
) |Fi

]
.

Observe that all η ∈ Li are FS-stopping times and are independent of the mortality

probability measure. Any lapse strategy η is only exercised if the insured is still alive.

It remains true that the optimal lapse strategy must lie in Li,τ̄i ⊂ Li.

Conditioning on the time of death and taking the expectation w.r.t. PM (justified

by the independence of QS and PM) we obtain

V M
i = Ax

i Vi,

where

Vi = max
η∈Li,τ̄i

V η
i
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and

V η
i = EQS

[
τ̄i∧η−1∑
j=i

j−i|qx+i

(
max (DBj,Wj+1−) e

− r̄(j+1−i) +Gaj−i

)
(4.3)

+ τ̄i∧η−ipx+i

(
Gaη−i +Wη(1− kη)e

− r̄(η−i)
) ∣∣∣FS

i

]
.

The definition for the fair fee rate α� remains unchanged and it satisfies V M
0 = P .

Select any η ∈ L0. Denote RṼ η
i to be the total contract payouts up to timepoint i

under this surrender strategy and discounted to t = 0. Then

RṼ η
i =

τ∧η∧i−1∑
j=0

(
Ax

j − Ax
j+1

) [
max(DBj,Wj+1−)e

− r̄(j+1) +Gaj
]
+ Ax

τ∧η∧iGaη∧i .

Let RV η
i := EPM [RṼ η

i ]. Then we have

RV η
i =

τ∧η∧i−1∑
j=0

j|qx
[
max(DBj,Wj+1−)e

− r̄(j+1) +Gaj
]
+ τ∧η∧ipxGaη∧i .

For any 0 ≤ i ≤ N, define a rescaled filtration FS,i = {FS,i
j := FS

j+i; 0 ≤ j ≤ N − i}.
Then the process

Y η,i =
{
Y η,i
j = e− r̄((j+i)∧η)

(j+i)∧ηpxV
η
(j+i)∧η +

RV η
(j+i)∧η

}
0≤j≤N−i

(4.4)

is a (QS,FS,i) martingale. The optimal surrender strategy, η̂i, is given by (3.22) (the

proof is similar and uses the martingale (4.4)).

Since {Wi, DBi}i=0,1,...N is a 2-dimensional Markov process we have

V M
i = Ax

i v(i,Wi, DBi),

where v : IN × R+ × R+ �→ R+ is recursively defined by

v(N, x, y) = x
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and for 0 ≤ i ≤ N − 1

v(i, x, y) = max{e− r̄[px+i(G+ pv(i+ 1, w(ux), db(i+ 1, ux, y))

+ qv(i+ 1, w(dx), db(i+ 1, dx, y)))

+ qx+i((pmax(y, ux) + qmax(y, dx))1{x>0} + 1{x=0}GaN−i )], x(1− ki)}.

This implies the boundary condition v(i, 0, y) = GaN−i .

The rider value process must account for the following cash flow components. The

rider fee is paid prior to trigger while the insured is alive and has not surrendered. If

surrender occurs prior to trigger time then no cost is incurred for the GMWB rider.

In the event that no surrender occurs and the insured is alive at trigger time, the

periodic GMWB guarantee is paid out until maturity regardless of death. If death

occurs prior to the earlier of trigger time or surrender time, then any excess of the

death benefit over the current account value is a cost incurred by the rider. Putting

this together, we have

UM
i = Ax

i max
η∈Li,τ̄i

EQ

[ η∑
j=i+1

e− r̄(j−i)
[
Ax

τ̄i

(
G−Wj−e

− ᾱ
)+ − Ax

jWj−
(
1− e− ᾱ

)
− kηWηe

− r̄(η−i)Ax
η

]
+Dx

η (DBKx−1 −WKx−)+ e− r̄(Kx−i)|Fi

]
. (4.5)

Then UM
i = Ax

i Ui = Ax
i u(i,Wi, DBi), where u : IN × R+ × R+ �→ R is described by⎧⎪⎪⎨⎪⎪⎩

u(N, x, y) = 0,

u(i, x, y) = max{e− r̄(pu−(i+ 1, ux, y) + qu−(i+ 1, dx, y)),−kix},
(4.6)

and u− : I+
N × R+ × R+ �→ R is given by

u−(i, 0, y) = GäN−i+1 ,

u−(i, x, y) = px+i−1[(G− xe− ᾱ)+ − x(1− e− ᾱ) + u(i, w(x), db(i, x, y))] (4.7)

+ qx+i−1(y − x)+.

The notation äi+1 = 1 + ai is an annuity due. Under Assumption 4.6 it is easy
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to check that the term −kix is never binding. Note that Ax
i−1u

−(i,Wi− , DBi−1) is

measurable w.r.t. FS
i × FM,{x,lx}

i−1 . It is the rider value at timepoint i evaluated once

the market movement for the past period is known, but prior to any transactions

occurring (i.e. fees, withdrawals or death benefits). That is, the insurer knows the

exact market growth in the funds over the past period but is waiting to find out about

the status of the policyholder.

We denote {UM,NL
i } to refer to (4.5) when Assumption 4.6 is in place. The

marginal rider value from the option to surrender is LM
i := UM

i −UM,NL
i ≥ 0 and can

be written as

LM
i = Ax

i max
η∈Li,τ̄i

EQ

[ N∑
j=η+1

e− r̄(j−i)
[
Ax

jWj−
(
1− e− ᾱ

)− Ax
τ̄i

(
G−Wj−e

− ᾱ
)+]

− Ax
η

[
kηWηe

− r̄(η−i) +Dx
N (DBKx−1 −WKx−)+ e− r̄(Kx−i)

] |Fi

]
. (4.8)

Then LM
i = Ax

i l(i,Wi, DBi), where l : IN × R+ × R+ �→ R+ is given by

l(N, x, y) = 0,

l(i, x, y) = max{px+ie
−r̄(pl(i+ 1, w(ux), db(i+ 1, ux, y))

+ ql(i+ 1, w(dx), db(i+ 1, dx, y))),−uNL(i, x, y)− kix}.

Backward induction verifies that l(i, x, y) = u(i, x, y)− uNL(i, x, y).

Proposition 4.7. For any α > 0 we have

V M
i = UM

i + Ax
iWi (4.9)

or equivalently

V M
i = UM,NL

i + LM
i + Ax

iWi (4.10)

Q-a.s. for all 0 ≤ i ≤ N .

Proof. The equality (4.9) can be proved either directly from (4.3) and (4.5) or through

backward induction applied to the functions v, u, and u−. The procedure is similar
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to the proof of Proposition 3.11. We omit the details.

The Fs-adapted portfolio process {Δi} is defined by Δi = Δ(i, Si,Wi, DBi), where

Δ : IN−1 × R3
+ �→ R is given by

Δ(i, w, x, y) =
u−(i+ 1, ux, y)− u−(i+ 1, dx, y)

wu− wd
. (4.11)

Note that Δ(i, w, 0, y) = 0. For a given policy, the insurer follows {Δi} only up until

the death of the policyholder or the surrender of the policy.

Similar to Section 3.3, we define a consumption process {Ci}0≤i≤N−1 where Ci =

c(i,Wi, DBi) and c : IN × R+ × R+ �→ R+ is defined as

c(i, x, y) : = v(i, x, y)− e− r̄[px+i(G+ pv(i+ 1, w(ux), db(i+ 1, ux, y))

+ qv(i+ 1, w(dx), db(i+ 1, dx, y)))]

+ qx+i((pmax(y, ux) + qmax(y, dx))1{x>0} + 1{x=0}GaN−i )]

= u(i, x, y)− e− r̄[pu−(i+ 1, ux, y) + qu−(i+ 1, dx, y)]. (4.12)

The second equality can be verified using Proposition 4.7, similar to (3.30). Under

Assumption 4.6 we have C ≡ 0.

Construct the replicating portfolio by starting with initial capital X0 = x0 and

following the portfolio process {Δi}. For i ∈ I+
N we have

Xi =
(
Xi−1 − Ax

i−1(Δi−1Si−1 + Ci−1)
)
er̄+Ax

i−1Δi−1Si+Ax
i

[
Fi −

(
G−Wi−e

− ᾱ
)+]

− (Ax
i−1 − Ax

i )
[
(DBi−1 −Wi−)

+1{τ≥i} +GäN−i+1 1{τ<i}
]
. (4.13)

The fees, payouts, portfolio process, and consumption process have all been defined

in FS. Of course they are only applicable while the policy is in force (prior to death

or surrender). For that reason, the terms are accompanied by Ax
i factors in (4.13).

Given a surrender strategy η ∈ L0, the insurer will close out its position at timepoint

η and the process of interest is {Xi∧η}0≤i≤N . The time zero profit is Π = e− r̄ ηXη,

since if death occurs prior to η then the portfolio remains unchanged for all periods
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between death and η, aside from interest accumulation.

Although we no longer have almost sure equivalence of UM and X with respect

to the product measure Q, an analogous result holds by considering the conditional

expectation with respect to PM .

Theorem 4.8. Suppose the fee rate α is charged and the initial capital is x0 = UM
0 .

Then the following relation holds between Xi, described by (4.13), and UM
i , given by

(4.5):

QS(EPM [Xi − UM
i ] = 0) = 1

for all i ∈ IN .

Proof. We proceed by induction. By assumption we have that X0 = UM
0 . Suppose

that EPM [Xi] = EPM [UM
i ] QS-a.s. for some i ∈ IN−1. For a process Hi we write

Hi(ω̄i; j) for its value at time i for the specific path ω̄iωi+1 . . . ωN ∈ ΩS (where ωj can

take any value in {u, d} for all j > i) and the specific set (Kx)−1(j) ∈ FM,{x,1}
N . For

any fixed ω̄i we need to show that⎧⎪⎪⎨⎪⎪⎩
EPM [Xi+1(ω̄iu;K

x)] = EPM [UM
i+1(ω̄iu;K

x)],

EPM [Xi+1(ω̄id;K
x)] = EPM [UM

i+1(ω̄id;K
x)].

We prove the first equality, the second one is shown in an identical manner. For

conciseness, we omit ω̄i.

Observe that EPM [UM
i+1(u;K

x)] = i+1pxUi+1(u). Also Xi+1(u; j) = Xi+1(u;K
x >

i+ 1) for all j > i+ 1, since Xi+1 ∈ Fi+1. From (4.13) we have Xi+1(u; j) = Xi(; j)e
r̄

for all j ≤ i. Therefore

EPM [Xi+1(u,K
x)] =

N∑
j=1

j−1|qxXi+1(u, j) + NpxXi+1(u,K
x > N)

=
i∑

j=1

j−1|qxXi(; j)e
r̄+i|qxXi+1(u, i+ 1)+i+1pxXi+1(u,K

x>i+1).
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After applying (4.13) to Xi+1(u, i+ 1) and Xi+1(u;K
x > i+ 1), we obtain

EPM [Xi+1(u,K
x)] = EPM [Xi(;K

x)]er̄ +i px[ΔiSi(u− er̄)− Cie
r̄

− px+i((G−Wiue
− ᾱ)+ −Wiu(1− e− ᾱ)) (4.14)

− qx+i((DBi −Wiu)
+1{τ>i} +GäN−i 1{τ≤i})].

By the induction hypothesis,

EPM [Xi(;K
x)]er̄ = ipxUie

r̄.

Then substituting (4.11) and (4.6) and applying (4.7) (in the form U−
i+1, but condi-

tioning on τ > i), we have

EPM [Xi+1(u,K
x)] = ipx[(Ui − Ci)e

r̄ + (U−
i+1(u)− U−

i+1(d))q −Gpx+i1{τ≤i}

+ 1{τ>i}(px+iUi+1(u)− U−
i+1(u))− qx+i(GäN−i 1{τ≤i})]

= ipx[U
−
i+1(u)1{τ≤i} −Gpx+i1{τ≤i} + 1{τ>i}px+iUi+1(u)

− qx+iGäN−i 1{τ≤i}]

= i+1px[1{τ>i}Ui+1(u) +GaN−(i+1) 1{τ≤i}

= i+1pxUi+1(u).

This completes the proof.

Suppose homogeneous policies are sold to lx independent policyholders aged x,

each with an initial premium of P and the fair rider fee α� is charged. For the pool

of lx insureds, the number of deaths between time iδt and (i+ 1)δt is

Dlx,x
i :=

lx∑
j=1

(
Ax,j

i − Ax,j
i+1

)
for i ∈ IN−1. The number of members alive at time i is

Alx,x
i =

lx∑
j=1

Ax,j
i = lx −

i−1∑
j=1

Dlx,x
j .
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By the strong law of large numbers (SLLN), as lx → ∞,

Dlx,x
i

lx
→ i|qx and

Alx,x
i

lx
→ ipx

PM -a.s., for all i ∈ IN .

The aggregate replicating portfolio process is the sum of the individual replicating

portfolio processes given by (4.13):

X
{lx}
i =

lx∑
j=1

Xj
i ,

where Xj
i ∈ FS

i × FM,x,j
i for 1 ≤ j ≤ lx and 1 ≤ i ≤ N . The aggregate rider value

process is

U
M,{lx}
i =

lx∑
j=1

UM,j
i = Alx,x

i Ui,

since U j
i = 0 if Ax,j

i = 0. We define two processes {X�
i = EPM [X

{1}
i ]}i=0,1,...,N and

{U�
i = EPM [U

M,{1}
i ]}i=0,1,...,N , both of which lie in (ΩS,FS

N ,F
S,QS). Then by the

SLLN we have {
X

{lx}
i

lx

}
→ {X�

i } and

{
U

M,{lx}
i

lx

}
→ {U�

i }

PM -a.s., as lx → ∞. Beginning with X�
0 = 0, from (4.14) we have

X�
i = X�

i−1e
r̄ + i−1px

[
Δi−1(Si − Si−1e

r̄)− Ci−1e
r̄ + px+i−1

[
Fi −

(
G−Wi−e

− ᾱ
)+]

− qx+i−1

[
(DBi−1 −Wi−)

+1{τ≥i} +GäN−i+1 1{τ<i}
] ]

for i ∈ I+
N . It is immediate that U�

i = ipxUi. Finally, from Theorem 4.8 we have

X�
i = U�

i

QS-a.s., for i ∈ IN .

Mortality risk diversification is attained in the limit as lx → ∞, and we have

perfect hedging. The fair fee was determined assuming optimal surrender behaviour

on the part of each policyholder, given survival. If policyholders act irrationally then

90



the insurer can consume from each portfolio at each occurrence of this irrationality.

The limiting aggregate portfolio process for the pool is constructed on the basis of

homogeneous behaviour of all policyholders, whether or not they act rationally.

Remark 4.9. The limiting process was obtained assuming homogeneous policies. This

assumption can be weakened to allow for varying initial premiums P by policy, al-

though each policy must have an issue age of x and a common rider fee α. This is

true since P can be scaled out of all the processes and the rider fee is independent

of the premium P . Let the premium for policy i be Pi. Suppose {Pi; i ≥ 1} satisfies∑n
i=1 Pi → ∞ as n → ∞. Further assume that {Pi} is monotonically increasing and

satisfies supn≥1
nPn∑n
i=1 Pi

< ∞ or that {Pi} is monotonically decreasing in which case

no condition is needed. From Theorem 1 in Etemadi (2006), as lx → ∞, we have∑lx
j=1 PjA

x,j
i∑lx

j=1 Pj

→ ipx

PM -a.s. for all i ∈ IN . Therefore{
X

{lx}
i∑lx
i=1 Pi

}
→ {X�

i },

with a similar result for U�. The average is taken on a per premium dollar basis and

both X�and U� have P = 1.

4.4 Numerical Results

We consider two examples. The mortality is modeled using Example 4.4.

Example 4.10. Figure 4.2 plots the fair rider fee α� against the issue age x for a

GMWB with a return of premium DB and an annual ratchet DB without lapses. The

parameters are: g = 7.14%, T = 14, r = 5%, σ = 20%, and δt = 1. The ratchet adds

considerably more value to the contract. The figure on the right zooms in on the ages

40-70. The GMWB plus return of premium DB rider is largely insensitive to x. The
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Figure 4.2: α� as a function of issue age x

payouts upon death or survival are fairly similar in this instance. Under the model

from Section 3.2 without mortality, we have α� = 53bps or V0(100, 53bps) = 100. For

the return of premium DB with x = 60, we have α� = 58bps and V M
0 (100, 53bps) =

100.35. Depending on the product specifications and parameters, mortality may have

only a small effect.

Example 4.11. The diversifiable mortality risk assumption is often quick to be used

in the literature. Given the prescribed portfolio process (4.11) which assumes the risk

is diversifiable, we consider the hedging losses when there are only a finite number

of policies sold. For lx ∈ {10, 1000, 100000} we simulated the time of deaths for each

policy to obtain {T̂ x
j }1≤j≤lx , and computed the average losses per policy per $100

premium for each path in the binomial model. The parameters used are: x = 60,

g = 10%, T = 10, r = 5%, σ = 15%, δt = 1, and P = 100. Surrenders are not

allowed.

For the GMWB with an annual ratchet DB, Figure 4.3 shows the convergence

of the hedging losses to zero under the delta hedging strategy as lx increases. The

values are time-zero present values and the losses under no hedging are also displayed.

92



Values per $100 Hedging No Hedging

lx 10 1000 100000 10 1000 100000 ∞
GMWB + Ratchet DB

EQ[Π|{T̂ x
j }1≤j≤lx ] 0.122 0.030 0.004 0.122 0.030 0.004 0

SDQ[Π|{T̂ x
j }1≤j≤lx ] 0.768 0.175 0.008 5.631 5.787 5.860 5.860

GMWB + Return of Premium DB

EQ[Π|{T̂ x
j }1≤j≤lx ] 0.261 0.054 0.001 0.261 0.054 0.001 0

SDQ[Π|{T̂ x
j }1≤j≤lx ] 0.446 0.091 0.004 5.560 5.736 5.776 5.777

Table 4.1: Profit metrics with and without hedging, with GMDBs

Figure 4.4 plots the losses for the limiting portfolio X�. Table 4.1 provides the profit

metrics EQ[Π|{T̂ x
j }1≤j≤lx ] and SDQ[Π|{T̂ x

j }1≤j≤lx ] for hedging and no hedging where

Π is the average profit per policy discounted to t = 0. The results are also given when

the DB rider is a ROP. The results for both DBs were obtained using the same sets

of simulated death times. The column with lx = ∞ represents the results for X�.

The fair fee with the ratchet is 57bps and with the ROP is 44bps. The metrics were

calculated using the exact binomial distribution under Q for the financial risk and the

simulated deaths for the mortality risk. For the purpose of examining convergence

w.r.t. lx, we assume no market price of risk (i.e. μ = r).

Selling a limited number of policies or facing capacity constraints does not impose

a significant risk to the insurer in this case because the payouts are similar upon

death or survival and diversification occurs rapidly. The average hedging profits are

higher with the ROP, but the profits (losses) have more volatility with the ratchet

since it pays higher benefits and has higher fees. Under Q the expected profits are

equal under hedging and no hedging. It is the variance that is reduced by hedging.

Without mortality risk, each policy in the pool is subject to a common equity

risk and in the binomial world the correct hedging strategy works for any number

of policies. Mortality risk introduces incompleteness into the model. Under the
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Figure 4.3: Convergence of losses for GMWB plus ratchet DB as lx → ∞ where
the average losses per policy under simulated mortality are shown for each market
outcome.
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Figure 4.4: Losses for GMWB plus ratchet DB with complete diversification (X�)

assumption of mortality risk diversification the market regains completeness. This

occurs in the limit by selling sufficiently large pools of relatively small contract sizes.

Aside from risk pooling and diversification, other risk-management options are

reinsurance and longevity bonds. Additionally the typical large life insurer with

significant amounts of underwritten business in life insurance and annuities has a

degree of natural risk reduction since these instruments have partially offsetting risks.

Assuming none of these option are available - there are no re-insurers, longevity

bonds do not exist and the insurer only sells annuities - the insurer’s main tool

for mitigating its risk exposure is by selling a large number of policies of relatively

small amounts, thus reducing fluctuations in the realized mortality rates around the

expected mortality rates.
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Conclusion and Future Work

Based on the continuous model from Milevsky and Salisbury (2006), we constructed

a binomial asset pricing model for the GMWB rider incorporating optimal policy-

holder surrender behaviour. The ability to model early surrenders using the basic

tools is one distinct advantage over Monte Carlo methods. The other advantage was

demonstrated by easily obtaining an explicit hedging strategy in a binomial (CRR)

world that was proved to perfectly hedge the product. A drawback of this model

is the O(2N) growth of the non-recombining binomial trees. Nevertheless, by the

tractability of the model and its finite nature, it is straightforward to obtain numer-

ical results concerning any aspect of the product, provided that δt is manageable.

The qualitative conclusions drawn from such an analysis are expected to hold true

in the more general continuous model. Indeed, our numerical results are consistent

with those presented in more complex models.

When treating the binomial model as an approximation of an underlying con-

tinuous model, solving for the fair fee with just two time periods a year produced

results close to those obtained with Monte Carlo methods. Although currently we

face memory capacity constraints, future technological advancements may increase

the applicability of the binomial model as a practical pricing and hedging method.

At the very least, it is a useful machinery to obtain preliminary results before resorting

to more powerful tools.

With a little more programming expertise, the Asian approximation method (Sec-
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tion 3.4) could produce results for monthly timesteps. It remains to study the effec-

tiveness of hedging strategies based on the Asian approximation method. As a result

of the rider fees, the tree for Z trends downwards which has implications on the

Asian approximation method (see Section 3.4, closing paragraph). The effect of this

asymmetry on the results needs to be examined and quantified.

The diversification argument for mortality risk is sometimes abused in the liter-

ature. After applying diversification arguments to obtain the fair fee and hedging

results, we imposed capacity constraints by considering finite pools and saw that di-

versification occurs fairly rapidly. The results support the common claim that insurers

are able to diversify mortality risk.

This work was presented for a basic GMWB rider. Although including additional

features such as rollups and ratchets requires adding the dimension ofA (the guarantee

balance), it remains straightforward to model the product in a binomial framework

assuming static withdrawals and optimal lapses. However, the optimal strategy is no

longer restricted to withdrawing G or lapsing. It may be optimal to not withdraw

but still keep the policy in force. The methods presented in this thesis are ill-suited

to deal with this and more general mesh techniques, similar to Bauer et al. (2008)

but simplified to binomial movements, would be necessary.

The framework developed in this thesis models a withdrawal at the end of each

binomial period. This was done to approximate the continuous model from Milevsky

and Salisbury (2006). In practice, withdrawals occur a finite number of times per

year (i.e. annually as in Bauer et al. (2008) or even more frequently such as monthly).

The binomial model can be generalized by considering n periods per year but k ≤ n

withdrawals, where k/n ∈ N. When k = n, this reduces to the model developed in this

thesis. Between withdrawal dates, the binomial tree will have recombining branches

and computational results could be obtained for larger n. Rather than growing at

O(2nT ), the tree grows at a reduced rate of O(n/k + 1)kT .
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Suboptimal Behaviour

Modern insurance products allow for much optionality and decision making on the

part of the policyholder. Future research will focus on further developing tractable

models to address policyholder behaviour risk, but which reflect the unique charac-

teristics of the insurance markets. We have considered the two extremes in terms of

policyholder lapse behaviour: no lapses and optimal lapses. It is clear that neither

of these extremes are observed in practice. Otherwise a pool of homogeneous poli-

cies would instantaneously surrender at the moment it is optimal to do so. Pricing

under optimal lapses is justified by the argument that policyholders have the right

to act optimally. However, in Section 1.5 we pointed out vital differences between

the GMWB product and standard financial options, of which the lack of a liquid

secondary market is paramount.

Several recent papers, including De Giovanni (2010) and Li and Szimayer (2010),

are based on rational expectation approaches that address the emergency fund hypoth-

esis and interest rate hypothesis and more accurately price unit-linked life insurance

products. These papers can be linked back to Stanton (1995) where a model was

developed for rational mortgage prepayments for Mortgage-Backed Securities (MBS)

for pools of mortgages with heterogeneous transaction cost structures. There are

several modeling differences though. Namely, the recent papers deal with a single

representative policy but Stanton (1995) explicitly treats heterogeneous pools. There

is a phenomena known as the burnout effect which refers to the changing demograph-

ics of a pool over time. Stanton (1995) models this and also includes randomized

decision times to address the observed lack of uniformity in behaviour for a set of

homogeneous holders.

We have considered new modeling approaches for GMWBs based on both Stanton

(1995) and Li and Szimayer (2010) but only discuss the former here. We model a

pool of policyholders with heterogeneous behaviour, owing to either different levels
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of rationality or imperfect financial competence. In this case, burnout reflects the

higher proportion of subrational policyholders over time as more rational policyholder

lapse when optimal. Our problem differs from Stanton (1995) because in a pool of

homogeneous policies every insured faces identical surrender transaction costs.

As a first step, we consider that policyholders may be unable to perfectly determine

optimal behaviour and will only become aware of the correct decision once the contract

is significantly out of the money (OTM). A population can be subdivided into cohorts

by the levels of financial ability and rationality. Initially we focus on single cohorts

only. We introduce a fictional penalty term which is added to the surrender costs to

reflect the imperfect understanding of the policyholder. This penalty term is fictional

in the sense that upon surrender the penalty term does not influence the cash flow

received. However it modifies the optimal surrender decision and allows us to model

suboptimal behaviour in the typical optimal behaviour framework.

Let θ denote the penalty term. It represents the degree of out-of-moneyness needed

to convince the policyholder to surrender. Denote the optimal surrender strategy by

η� = argmax
η∈L0

EQ

[
Gaη + e− r̄ ηWη(1− kη)(1− θ)

]
.

Then the value is

V θ
0 = EQ

[
Gaη� + e− r̄ η�Wη�(1− kη�)

]
.

We introduce an intensity rate ρ to model the absence of instantaneous reaction of a

group of homogeneous policyholders with identical contracts. This intensity rate can

be thought of as driving a randomized decision time, similar to Stanton (1995). A

base lapse rate λ is incorporated to reflect the emergency fund hypothesis.

The surrender intensity rate γi is expressed as

γi =

⎧⎪⎪⎨⎪⎪⎩
λ V c

i > Wi(1− ki)(1− θ),

λ+ ρ V c
i ≤ Wi(1− ki)(1− θ),
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where V c
i is the continuation value of the contract. Let qRa = 1 − e−ρ denote the

annual probability of lapsing when it is optimal to do so - given the penalty term.

Then qRδt = 1− (1− qRa )
δt is the probability for a period of length δt. We denote the

total probability of lapsing in any period i by⎧⎪⎪⎨⎪⎪⎩
qe = 1− e−λδt V c

i > Wi(1− ki)(1− θ),

qr = 1− e−(λ+ρ)δt V c
i ≤ Wi(1− ki)(1− θ).

A backward induction scheme is formulated for V θ
i = v(i,Wi). Beginning with

period N , we have v(N, x) = x for all x ∈ R+. For 0 ≤ i < N and x ∈ R+,

vc(i, x) = (pv(i+ 1, w(ux) + qv(i+ 1, w(dx)) +G)e−r

is the continuation value. Taking into account the different lapse probabilities:

v(i, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vc(i, x), if x = 0;

qex(1− ki) + (1− qe)v
c(i, x), if vc(i, x) > x(1− ki);

vc(i, x), if x(1− ki)(1− θ) < vc(i, x) ≤ x(1− ki);

qrx(1− ki)(1− θ)

+ (1− qr)v
c(i, x),

if vc(i, x) ≤ x(1− ki)(1− θ).

In the third case v(i, x) = vc(i, x) because even though x(1 − ki) is received upon

surrender, x(1−ki)−vc(i, x) must be attributed to the penalty term which is computed

separately. The cash flows associated with the penalty term are described by ψi =

ψ(i, x) where ψN ≡ 0. The continuation value ψc is defined by

ψc(i, x) = (pψ(i+ 1, w(ux)) + qψ(i+ 1, w(dx)))e−r.
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The value function ψ is given by

ψ(i, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if x = 0;

ψc(i, x)(1− qe), if vc(i, x) > x(1− ki);

ψc(i, x)(1− qe)

+ qe(x(1− ki)− vc(i, x)),

if x(1− ki)(1− θ) < vc(i, x) ≤ x(1− ki);

ψc(i, x)(1− qr) + qrx(1− ki)θ, if vc(i, x) ≤ x(1− ki)(1− θ).

Then we have V0 = v(0, P ) + ψ(0, P ).

Preliminary Results There is a flaw with this model. V0 behaves unpredictably

and is no longer a strictly decreasing function of α. In fact there are jumps and

non-unique solutions to α�. This is seen in the provided (α, V0) plot for θ = 9% and

θ = 10%. Consider a fee rate α1 and the path ω̄i such that Wi falls between the

surrender boundary with the penalty term and the surrender boundary without it.

As α increases, the account value drops and will fall below the lower boundary which

causes a surrender. But since the penalty term is fully recovered, this bumps the

contract value up to the surrender boundary without the penalty.

Despite this flaw, we obtained numerous comparative statics that are intuitive

with a subrational approach. Future work will try to address this issue. As a final

comment, we believe the simple yet elegant result used repeatedly in this thesis which

unifies the perspectives of the insurer and policyholder in the general case of optimal

behaviour will play a key role in exploring subrational models, although additional

terms may need to be added to maintain the relationship.
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V0 as a function of α with ρ = ∞ and λ = 0.
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Appendix A

Additional Proofs and Results

In this section some additional details and proofs are provided.

Proposition A.1. For any T, a, k > 0 we have P(
∫ T

0
e−aBsds < k) > 0, where Bs is

a standard P-Brownian motion process1.

Proof. Write
∫ T

0
e−aBsds =

∫ u

0
e−aBsds +

∫ T

u
e−aBsds. Define u := k

2ea
and condition

on the events A = {Bs > −1; ∀s ∈ [0, u]} and C = {Bs > M ; ∀s ∈ [u, T ]}, where M

satisfies e−aM = k
2(T−u)

. Then

P(

∫ T

0

e−aBsds < k) ≥ P(

∫ u

0

e−aBsds+

∫ T

u

e−aBsds < k, A ∩ C),

and A implies
∫ u

0
e−aBsds < uea = k

2
. Likewise B implies

∫ T

u
e−aBsds < (T−u)e−aM =

k
2
. By Borodin and Salminen (2002, formula 1.1.2.4)

Px( inf
0≤s≤t

Bs > y) = 2Φ(
x− y√

t
)− 1, y ≤ x,

where Φ is the cdf of the standard normal distribution. To see P(C | A) > 0, condition

further on those ω-paths where Bu > M+ε for any ε > 0. Thus P(A∩C) = P(A)P(C |
A) > 0.

Fact A.2. Let Bs be a P-Brownian motion process. The distribution for
∫ T

0
e−as−bBsds,

1I thank Dr. Anthony Quas, University of Victoria, for assistance with this result.
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for any T ≥ 0, a, b ∈ R, b �= 0, a < b2 is provided in Borodin and Salminen (2002,

formula 2.1.10.4):

P(

∫ T

0

e−as−bBsds ≤ k) =

∫ k

0

|b|
(

b2y
4

)− a
b2

√
2y

e
−a2T

2b2
− 1

b2ym b2T
2

(
− a

b2
− 1

2
,
1

b2y

)
dy, (A.1)

for any k ≥ 0. For Re(μ) > −3
2
and Re(z) > 0,

my (μ, z) =
8z

3
2Γ(μ+ 3

2
)e

π2

4y

π
√
2πy

∫ ∞

0

e−z cosh(2u)−u2

y M(−μ,
3

2
, 2z sinh2(u)) sinh(2u) sin(

πu

y
)du

and Kummer’s function (of the first kind) is defined as

M(a, b, x) := 1 +
∞∑
k=1

a(a+ 1) · · · (a+ k − 1)xk

b(b+ 1) · · · (b+ k − 1)k!
.
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