
NATIVE LANGUAGE OLAP QUERY EXECUTION

Hiba Tabbara

A thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Doctor of Philosophy

Concordia University

Montréal, Québec, Canada

September 2012

c© Hiba Tabbara, 2012

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Miss Hiba Tabbara

Entitled: Native language OLAP query eXecution

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

complies with the regulations of this University and meets the accepted standards
with respect to originality and quality.

Signed by the final examining commitee:

Dr. Chun-Yi Su Chair
Dr. Rokia Missaoui External Examiner
Dr. Rachida Dssouli Examiner
Dr. Peter Grogono Examiner
Dr. Joey Paquet Examiner
Dr. Todd Eavis Supervisor

Approved by Dr. Volker Haarslev
Chair of Department or Graduate Program Director

20 June 2012 Robin Drew, Ph.D., Dean
Faculty of Engineering and Computer Science

Abstract
Native language OLAP query eXecution

Online Analytical Processing (OLAP) applications are widely used in the compo-
nents of contemporary Decision Support systems. However, existing OLAP query
languages are neither efficient nor intuitive for developers. In particular, Microsoft’s
Multidimensional Expressions language (MDX), the de-facto standard for OLAP,
is essentially a string-based extension to SQL that hinders code refactoring, limits
compile-time checking, and provides no object-oriented functionality whatsoever.

In this thesis, we present Native language OLAP query eXecution, or NOX, a
framework that provides responsive and intuitive query facilities. To this end, we
exploit the underlying OLAP conceptual data model and provide a clean integration
between the server and the client language. NOX queries are object-oriented and sup-
port inheritance, refactoring and compile-time checking. Underlying this functionality
is a domain specific algebra and language grammar that are used to transparently
convert client side queries written in the native development language into algebraic
operations understood by the server. In our prototype of NOX, JAVA is used as the
native language. We provide client side libraries that define an API for programmers
to use for writing OLAP queries. We investigate the design of NOX through a series
of real world query examples. Specifically, we explore the following: fundamental
SELECTION and PROJECTION, set operations, hierarchies, parametrization and query
inheritance. We compare NOX queries to MDX and show the intuitiveness and ro-
bustness of NOX. We also investigate NOX expressiveness with respect to MDX from
an algebraic point of view by demonstrating the correspondence of the two approaches
in terms of SELECTION and PROJECTION operations.

We believe the practical benefit of NOX-style query processing is significant. In
short, it largely reduces OLAP database access to the manipulation of client side, in
memory data objects.

iii

Acknowledgments

It was always the insightful comments and positive criticism of my supervisor Dr.
Todd Eavis that helped me be on the right track to complete my thesis work. Without
his continuous support the research presented in this thesis would not have been
possible.

I would like to thank all my colleagues in the Computer Science and Software
Engineering department at Concordia University, as well as the staff and faculty of
the department for their commitment to further education.

This thesis will not have been completed without the full support and love of my
family especially my mom, dad, brother and sister. Special thanks go to my study
mates and friends Bassel Bitar, Rania Khattab, Mazen El Masri, Genevieve Turmel,
Rasha Samaha and Jocelyne Faddoul for their continuous encouragement.

iv

Contents

List of Figures ix

List of Tables xi

List of Listings xii

1 Introduction 1

1.1 Motivation for the current research 3
1.2 Core Research Objectives . 5
1.3 Overview of Proposed Solution . 8
1.4 Research Evaluation . 11
1.5 Thesis Outline . 12

2 Background Material 14

2.1 Data Warehousing . 15
2.1.1 The Data Warehouse Architecture 15
2.1.2 The Star Schema . 16

2.2 What is OLAP? . 17
2.3 Multidimensional Modeling . 19
2.4 OLAP Hierarchies . 20
2.5 OLAP Operators . 22

2.5.1 Slice . 22
2.5.2 Dice . 23
2.5.3 The other Algebraic Multidimensional Operators 23

2.6 JavaCC and JJTree Parsing . 25

v

2.7 What is Document Type Definition (DTD)
Schema? . 28

2.8 Conclusion . 29

3 Related Work 30

3.1 Relational Databases Querying Languages 31
3.1.1 Object Relational Mapping (ORM) Frameworks 32
3.1.2 Language Specific Database Libraries 37

3.2 Multidimensional Databases Querying Languages 40
3.3 OLAP Algebras in Research . 45
3.4 Conclusion . 50

4 Native language OLAP query eXecution (NOX) 51

4.1 The Sidera System Architecture . 52
4.2 The NOX Framework . 54
4.3 Conceptual Model . 58
4.4 The NOX Algebra . 59
4.5 The NOX Grammar . 65
4.6 The Client Side API . 75

4.6.1 The NOX Pre-processor . 82
4.6.2 JJTree in the NOX Pre-processor 89

4.7 Conclusion . 94

5 NOX Application Programming 95

5.1 UML of a Sample OLAP Query . 96
5.2 SELECTION . 98

5.2.1 SELECTION Syntax in NOX . 98
5.2.2 A Simple SELECTION . 100
5.2.3 A More Sophisticated SELECTION Query 105

5.3 PROJECTION . 114
5.3.1 PROJECTION Syntax in NOX 116
5.3.2 A Simple PROJECTION . 118

5.4 Set Operations . 119
5.5 Query Inheritance . 128
5.6 Result Sets . 132

vi

5.7 Evaluation of the NOX Language . 141
5.7.1 Extension of the Project Method 141

5.8 Conclusion . 147

6 Manipulating Hierarchies 148

6.1 Supplemental Hierarchy Classes . 148
6.2 Hierarchies Examples . 150

6.2.1 Hierarchy Example 1 . 153
6.2.2 Hierarchy Example 2 . 155
6.2.3 Hierarchy Example 3 . 159
6.2.4 Hierarchy Example 4 . 159

6.3 Conclusion . 164

7 Parameterization in NOX 165

7.1 Parameter Parsing in NOX . 167
7.2 Parameter Parsing Pseudocode . 170
7.3 Parameter Insertion DOM Utility . 172
7.4 Run-time Parameter Handling . 174
7.5 NOX Parametrization in Practice . 176
7.6 Parametrized NOX Queries versus Parametrized MDX Queries 180
7.7 Conclusion . 185

8 The NOX Language Expressiveness 186

8.1 Grammatical Structure . 188
8.2 OLAP SELECTION . 190

8.2.1 SELECTION Production Rules in MDX 190
8.2.2 Mapping the SELECTION Production Rules between MDX and

NOX . 194
8.2.3 SELECTION Constraints . 198

8.3 OLAP PROJECTION . 205
8.3.1 PROJECTION Production Rules in MDX 206
8.3.2 Mapping of PROJECTION Production Rules between MDX and

NOX . 210
8.3.3 PROJECTION Constraints . 214
8.3.4 Display Multiple Attributes from a Single Hierarchy 216

vii

8.3.5 Nested Attribute Display . 218
8.4 Conclusion . 220

9 Conclusion 222

9.1 Research Methodology and Contribution 225
9.2 Future Work . 226

Bibliography 229

Appendices 239

A Abbreviations 240

B DTD Schema 243

C Complex Query in XML 246

D MDX Grammar Production Rules 252

E NOX Grammar Production Rules 256

viii

List of Figures

1 The Sidera system model . 11
2 Typical data warehouse architecture 16
3 Star schema example . 18
4 A three dimensional data cube example 20
5 A Customer hierarchies example . 21
6 A dimension table corresponding to the Customer hierarchies example 22
7 An OLAP slice . 23
8 An OLAP dice . 24
9 OLAP drill-down and roll-up . 24
10 OLAP pivoting . 25
11 Simple parse tree . 27
12 Reference operator matching between multidimensional and relational

algebra operations . 49
13 The core architecture of the parallel Sidera OLAP server [EDD+07] . 54
14 The Sidera frontend [EDD+07] . 55
15 The Sidera backend node [EDD+07] 56
16 NOX processing stack . 57
17 NOX conceptual query model . 58
18 A simple symmetric hierarchy . 59
19 Selection operation [AR] . 62
20 Projection operation [AR] . 62
21 Drill-across operation [AR] . 63
22 Set operations (Union) operation [AR] 63
23 Change Level operation [AR] . 63
24 Change Base operation [AR] . 63
25 UML class diagram for NOX . 78

ix

26 UML class diagram for the NOX API library 81
27 The client compilation model. 84
28 Simple query parse tree. 91
29 UML class diagram for NOX programmer OLAP classes 97
30 DOM tree representation of the XML string in Listing 5.3 107
31 A subtree of the more complex query parse tree 109
32 ComplexQuery2: Subtree rooted at “CondAndNode” node of Figure 31 110
33 ComplexQuery3: Subtree rooted at tne first “EqualityExpression” node

of Figure 31 . 111
34 ComplexQuery4: Subtree rooted at the second “EqualityExpression”

node of Figure 31 . 112
35 UML class diagram for the NOX API Result Set classes 140

x

List of Tables

1 OLAP Queries Comparison between NOX and MDX 143
2 Parametrized NOX Queries versus Parametrized MDX Queries 183
3 Objectives and the Chapters/Sections where they were implemented . 224

xi

Listings

2.1 DTD declaration . 28
3.1 In JDOQL [JDO, Rus03] . 33
3.2 In OQL [GBB+00, ODM] . 33
3.3 Predicate class and match method for querying the Student table . . 35
3.4 In Java using db4o [DB4] . 39
3.5 In .NET using LINQ [LIN] . 39
3.6 MDX query 1 . 42
3.7 MDX query 2 . 42
3.8 MDX query 3 . 42
3.9 A more sophisticated MDX query . 43
4.1 “ClientQuery.dtd” used to validate NOX XML files 66
4.2 Example of a Selection XML string 70
4.3 Example of INTERSECTION XML string 72
4.4 Pseudocode for OLAP compilation 76
4.5 Base class OLAP query with stub methods 83
4.6 Saving first and last tokens of a class that extends OlapQuery using

JJTree . 92
4.7 Pseudocode for constructing the parse tree in Java1.5.jjt (using JavaCC

and JJTree) . 93
5.1 Simple OLAP query . 102
5.2 Re-written version of Listing 5.1 that contains the XML string and

sends it to the server . 104
5.3 Simple query XML string . 106
5.4 A more complex OLAP query . 108
5.5 MDX SELECT statement . 113
5.6 A more complex MDX query corresponding to the query in Listing 5.4 115

xii

5.7 Simple OLAP query projection . 120
5.8 Simple MDX query projection corresponding to the query in Listing 5.7121
5.9 Set INTERSECTION operation using the select method in NOX 122
5.10 The “Inner” query used in the INTERSECTION operation of Listing 5.9 123
5.11 MDX set INTERSECTION query corresponding to the query in Listing 5.9124
5.12 Set INTERSECTION operation using the project method in NOX . . . 125
5.13 The “Inner” Query used in the INTERSECTION operation of Listing 5.12 126
5.14 MDX set INTERSECTION query corresponding to the query in Listing 5.12127
5.15 Example 1: Over-riding a query class 129
5.16 MDX query corresponding to the NOX query of Listing 5.15 131
5.17 Example 2: Over-riding query classes 133
5.18 MDX query corresponding to the NOX query of Listing 5.17 134
5.19 Simplified version of OlapResultSet grammar 135
5.20 Partial listing of Result Set . 136
5.21 Trivial report method . 139
5.22 A more complex MDX query . 144
5.23 project method extended in NOX and equivalent to MDX Listing 5.22145
6.1 Class OlapHierarchy . 151
6.2 Class OlapPath . 152
6.3 Simple OLAP dimension . 154
6.4 Class GeographicHierarchy . 155
6.5 Manipulating hierarchies: example 1 156
6.6 MDX query corresponding to the query in Listing 6.5 156
6.7 Manipulating hierarchies: example 2 158
6.8 MDX query corresponding to the query in Listing 6.7 158
6.9 Manipulating hierarchies: example 3 160
6.10 MDX query corresponding to the query in Listing 6.9 161
6.11 Manipulating hierarchies: example 4 162
6.12 MDX query corresponding to the query in Listing 6.11 163
7.1 Parametrized query invocation . 167
7.2 class MainQuery with parameter parm1 168
7.3 Parameters parsing pseudocode . 170
7.4 XML corresponding to the query with parameter parm1 171

xiii

7.5 XMLparametersInsert pseudocode . 173
7.6 Intermediate Java file with execute() method 175
7.7 class ExampleQuery2 with two parameters 177
7.8 class ExampleQuery3 with four parameters 178
7.9 Parametrized MDX query example [MSD] 181
7.10 Parameter assignment using ADOMD 182
7.11 Parametrized MDX query using ADOMD [Mic] 184
8.1 MDX SELECT statement . 189
8.2 Top level NOX grammar . 189
8.3 Production rules for the MDX WHERE clause 191
8.4 Grammar rules for the “Hierarchy List” 198
8.5 MDX query returning values for customers living in the United States 199
8.6 NOX query returning values for customers living in the United States 200
8.7 XML description of the hierarchy used in the return statement of the

select method of the query in Listing 8.6 201
8.8 MDX query returning values for customers living in the United States

and who bought products in “Category”with key 1 202
8.9 NOX query returning values for customers living in the United States

and who bought products in “Category” with key 1 203
8.10 MDX query returning values for customers living in the United States

or the United Kingdom and who bought products in “Category” with
key 1 . 204

8.11 NOX query returning values for customers living in the United States
or the United Kingdom and who bought products in “Category” with
key 1 . 205

8.12 MDX SELECT-FROM-WHERE syntax . 206
8.13 Production rules for the MDX <axis_specification> 208
8.14 MDX query returning a subcube with sales measure on one axis and

calendar year members on another axis 215
8.15 NOX query returning a subcube with sales measure on one axis and

calendar year members on another axis 215
8.16 MDX query returning a subcube with sales measure on one axis and

some specified calendar years on another axis 217

xiv

8.17 NOX query returning a subcube with sales measure on one axis and
some specified calendar years on another axis 217

8.18 MDX query returning a subcube with sales measure on one axis and
the crossjoin of two sets on another axis 219

8.19 NOX query returning a subcube with sales measure on one axis and
two sets on two other axes . 220

B.1 DTD example . 244
C.1 XML string corresponding to the query in Listing 5.4 246
D.1 MDX grammar . 252
E.1 NOX grammar . 256

xv

Chapter 1

Introduction

Information is often seen as a kind of digital treasure in the current era, with captured

data providing a wealth of information and analytical opportunities. In industrial

settings, data warehousing and Online Analytical Processing (OLAP) have become

two of the most significant technologies in this regard. Together, they enable efficient,

multidimensional analysis of data in a multitude of industries such as retail sales,

telecommunications, financial services and real estate [CD97] [SBSR08]. In practice,

consumer-focused companies collect terabytes of information on past transactions

that, in turn, enables them to define and target both new and potential customers.

Real world examples of the value and scope of the data analysis process include:

1. WalMart uses approximately half a petabyte of customer transaction data to

forecast demand and increase revenue [Hay04]. Analysis of sales transactions

after a hurricane resulted in the discovery that the normal volume of pop-tarts

and beer sold increased by a factor of seven. An analysis of cold medicine

purchases revealed that they are often accompanied with purchases of soup and

1

orange juice.

2. Pharmaceutical companies use data mining techniques to discover and extract

useful patterns from their large sets of data. Manipulation and classification

of this data helps improve the quality of drug discovery processes and delivery

methods while still competing on lower costs [Ran05].

3. Financial companies rely on data warehousing to explore new customer oppor-

tunities. For examples, users employ tools such as Microsoft Analysis Services

and SAP’s Business Information Warehouse for the analysis of data held in

the data warehouse. Ultimately, OLAP allows decision-makers to quickly and

interactively analyze the multi-dimensionally modeled data relevant to various

business considerations [Hil10].

Because of its impact, effective data collection and analysis has grown into a

multi-billion dollar industry that is dominated by some of the world’s largest software

companies. Still, the supporting data management applications and interfaces remain

complex and unintuitive, particularly for users and developers with little OLAP ex-

perience. For this reason, important opportunities exist for improved — or even

completely new - data access and query models in this domain.

2

1.1 Motivation for the current research

Over the past three decades, relational database management systems (RDBMS)

have secured their place as the cornerstone of contemporary data management envi-

ronments [Sel08]. During that time, logical data models and query languages have

matured to the point whereby database practitioners can almost unequivocally iden-

tify common standards and best practices. In particular, the ubiquitous relational

data model and the Structured Query Language (SQL) have become synonymous

with the notion of efficient storage and access of transactional data.

That being said, a number of new and important domain-specific data manage-

ment applications have emerged in the past decade. At the same time, general pro-

gramming languages have evolved, driven by a desire for both greater simplicity,

modeling accuracy, reliability, and development efficiency. As such, a motivation

to explore new data models, as well as the languages that might exploit them, has

emerged [CW00].

One particular area of interest is the aforementioned Business Intelligence (BI)/OLAP

domain. Typically, such systems work in conjunction with an underlying relational

data warehouse that houses an integrated, time sensitive, repository of one or more

organizational data stores. At its heart, BI attempts to abstract away some of the

often gory details of the large warehouses so as to provide users with a cleaner, more

intuitive view of enterprise data. Very often, in fact, BI applications effectively serve

as wrappers for the supporting warehouses and, with varying levels of success, seek to

3

hide some of the warehouse’s physical and design complexity. Beyond trivial exploita-

tion of the BI facilities, however, meaningful analysis can become quite complex and

can necessitate a considerable investment of the developer’s time and energy [SC05].

We note, however, that although BI has long been recognized as providing the

technologies, applications and practices for the collection, integration and analysis of

data, no standard query interface for OLAP DBMSs has been developed. In practice,

Microsoft’s Multidimensional Expressions query language (MDX) — extended SQL

— has become a de-facto choice in many production environments. Still, as will be

discussed later in the thesis, use of such languages (MDX) can have a negative impact

on programmer productivity. In particular, they force the programmer to become an

expert in two very different languages (the implementation language and the query

language) with completely different mental models. Moreover, the embedded query

strings cannot be checked at compile time and the code cannot easily be refactored

when the backend data model changes.

For this reason, there is a growing belief that the “one size fits all” approach

does not and cannot meet current data management demands [SC05]. We believe

that there is a need for more intuitive and powerful access languages that have the

potential to dramatically enhance productivity, particularly in domains such as Busi-

ness Intelligence that have unique but fairly well understood data models and query

patterns.

4

1.2 Core Research Objectives

As noted, the OLAP/BI domain has not achieved the same level of standardization

as seen in the world of transactional or operational databases. Of particular signifi-

cance in this context is the awkward relationship between the development language

and the data itself. For systems building directly upon an underlying relational data

warehouse, BI querying still often relies upon non-procedural SQL or one of its pro-

prietary variations. Unlike transactional databases, however, which are often cleanly

modeled by a set-based representation, the nature of BI/OLAP environments argues

against the use of such languages. In particular, OLAP concepts such as data cubes,

dimensions, aggregation hierarchies, granularity levels, and drill down relationships

map poorly at best to the standard logical model of relational systems.

A second related concern is the relative difficulty of integrating non-procedural

query languages into application level source code. Larger development projects typ-

ically encounter one or more of the following limitations:

• The non Object-Oriented nature of the model minimizes the ability to separate

the application’s interface from its implementation.

• There are few possibilities for the code re-use that is afforded by OOP concepts

such as inheritance and polymorphism.

• Utilizing two fundamentally distinct programming models concurrently (i.e.,

procedural OOP versus non-procedural non-OOP) complicates development.

5

• The use of embedded query strings (i.e., JDBC/SQL) severely limits the devel-

oper’s ability to efficiently refactor source code in response to changes in schema

design.

• Comprehensive compile-time type checking is often impossible since queries are

simply passed to the backend DBMS at run time.

A final concern relates to the MDX language specifically. While it is true that

the syntax of MDX is certainly more “OLAP friendly” than the set based SQL, it is

important to note — particularly from an academic perspective — that MDX lacks

any real formal basis. OLAP operators are not well-defined and no clean conceptual

model is recognized. MDX is simply based on an ad hoc grammar that lacks an

algebraic backbone. Not only is this aesthetically unappealing, it also limits query

optimization opportunities by the supporting DBMS since it is difficult to cleanly

represent the core operations of the language and the potential relationship between

them.

Given the above, we may briefly list the primary research objectives of the current

thesis as follows:

• We would like to provide an OLAP-specific algebra and associated language

grammar that defines the core operations associated with the OLAP domain.

• The algebra should be backed by a conceptual data model that directly supports

these operations.

6

• The combination of algebra, grammar and data model should then provide or

permit the following:

– An intuitive Object-Oriented query model,

– Associated code re-use afforded by OOP concepts such as inheritance and

polymorphism,

– The ability of developers to efficiently refactor source code in response to

changes in schema design,

– Comprehensive compile-time type checking.

• The formal elements of the framework (algebra, grammar, data model) should

be supported by a practical implementation (i.e., language libraries) providing

the following features:

– Developers should be able to write queries that interact with massive,

remote data repositories using standard OOP principles and practices.

– It should be possible to pass run-time parameters in a simple and intuitive

way.

– Query functionality should include support for the hierarchical access pat-

terns typical of OLAP settings.

– In terms of usability, the new approach should compare favorably to current

languages such as MDX and SQL.

7

– Object-Oriented manipulation of results sets should be a component of the

API.

1.3 Overview of Proposed Solution

In practice, the introduction of new database query languages or models requires

the implementation of significant infrastructure. In the current case, we note that

our OLAP research was initially inspired by the Safe Query Object (SQO) approach

first introduced by Cook in 2005 [CR05, CR06]. There, query functionality was

encapsulated in the native language of the application developer (e.g., Java), with a

series of classes and methods that allowed the developer to conceptually represent the

database as a local, in-memory data object. While Safe Query Objects were proposed

for general relational environments — and were actually quite limited as a result —

the general idea maps well to environments with more consistent conceptual data

models. OLAP, in fact is one such domain.

Building upon this initial concept, we have proposed what we now refer to as the

Native language OLAP query eXecution system (NOX). Briefly, NOX consists of the

following elements:

• OLAP conceptual model. NOX allows developers to write code directly at

the conceptual level; no knowledge of the physical or even logical schema is

required.

8

• OLAP algebra. Given the complexity of directly utilizing the relational al-

gebra in the OLAP context (via SQL or MDX), we define fundamental query

operations against a cube-specific OLAP algebra.

• OLAP grammar. Closely associated with the algebra is a DTD-encoded

OLAP grammar that provides a concrete foundation for client language queries.

• Client side libraries. NOX provides a small suite of OOP classes correspond-

ing to the objects of the conceptual model. Collectively, the exposed methods

of the libraries form a clean programming API that can be used to instantiate

OLAP queries. In the prototype, we note that Java is used as the development

language.

• Augmented compiler. At its heart, NOX is a query re-writer. During a

pre-processing phase, the framework’s compilation tools (JavaCC/JJTree) ef-

fectively re-write source code to provide transparent model-to-DBMS query

translation.

• Cube result set. OLAP queries essentially extract a subcube from the original

space. The NOX framework exposes the result in a logical, read-only multi-

dimensional array.

In practice, each of these elements plays a role in the definition, instantiation,

and execution of a NOX query. Specifically, a developer would access the database

as follows. Using the client side API, the query is encoded in the native language.

9

In addition to the fundamental Query class(es), the API exposes model elements

such as dimensions, hierarchies, cube cells, etc. At compile time, the NOX pre-

parser (JavaCC/JJTree) analyzes the source code to identify query elements (i.e.,

API components). Query logic, as well as query types, are verified. If valid, the

query is converted into an algebraic representation that is physically encoded in an

XML grammar. The XML string is then encapsulated within a network call to the

DBMS and the updated source is recompiled by the standard (Java) compiler. At

run-time, the network call to the backend DBMS is automatically invoked and query

results are returned to the client and loaded into a result set object. It is important to

note that the entire process, except of course the initial query specification, is entirely

transparent to the developer.

Finally, we note that while NOX can be seen as a standalone framework whose core

principles could be applied to existing DBMSs, it is currently implemented as a com-

ponent of a larger research system known as Sidera. This DBMS system, described by

Eavis et al [EDD+07], provides a robust parallel server for high performance OLAP

environments. As illustrated in Figure 1, the NOX infrastructure, including the li-

braries and compiler tools, is accessible on the client PC/workstation. The output of

the compilation phase is then transferred to the backend DBMS for optimization and

execution, before the result is returned again to the client.

10

L o c a l
O L A P
s e r v e r

B a c k e n d N o d e

L o c a l
O L A P
s e r v e r

B a c k e n d N o d e

L o c a l
O L A P
s e r v e r

B a c k e n d N o d e

P u b l i c O L A P
s e r v e r

I n t e r f a c e s

F r o n t e n d N o d e

N a t i v e q u e r y
i s e x e c u t e d
o n B a c k e n d
n o d e s

X M L Q u e r y i s
p a r s e d a n d
c o n v e r t e d i n t o
n a t i v e f o r m a t

S i d e r a O L A P
S e r v e r

O L A P
V i s u a l i z a t i o n

C l i e n t B r o w s e r

E n t e r p r i s e
R e p o r t i n g a n d

Q u e r y i n g

C l i e n t P C

P u b l i c
W e b

I n t e r f a c e

U s e r i n f o

W e b S e r v e r

C a c h e

Q u e r y i s c o n v e r t e d
i n t o X M L

Q u e r y i s d e f i n e d
v i sua l l y

Q u e r y i s d e f i n e d
p r o g r a m m a t i c a l l y a n d d i r e c t l y
c o n v e r t e d i n t o X M L

Figure 1: The Sidera system model

1.4 Research Evaluation

Because the purpose of NOX, and client side querying in general, is to provide an

intuitive and accessible query environment, it is important to demonstrate that the

research does indeed provide this functionality. Our evaluation takes two forms. First,

we provide extensive examples of NOX queries on common OLAP access patterns. In

particular, we provide examples of OLAP operations such as “slice and dice”, “roll up”

and ”drill down”, and pivot. We also demonstrate the ease with which aggregation

hierarchies can be traversed. Query examples illustrating the use of run-time param-

eters are listed as well. In many cases, we provide comparative examples using the

MDX language so that readers can assess the relative simplicity/complexity of the

two models. We emphasize the fact that because NOX provides a fully functionality

prototype, all NOX queries listed in this thesis have been parsed, converted, and

compiled using the structural components described above.

11

In addition to the implementation itself, we also provide an analysis of the lan-

guage elements of NOX and MDX. Because MDX is associated with no formal algebra,

we have performed the formal evaluation by way of a comparative classification of

common OLAP query forms. In other words, we examine fundamental query pat-

terns or classes, defining the algebraic features of each. We then show that the NOX

native language model is in fact capable of supporting the primary forms found in

practical settings. We note, of course, that NOX is also able to provide functionality

that MDX can not, such as OOP-style inheritance, simplified refactoring, and compile

time checking.

1.5 Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 introduces the basic

data warehouse architecture, the OLAP multidimensional model and its grammar,

JavaCC and JJTree language parsing, and the Document Type Definition (DTD)

schema. In Chapter 3, we follow this up with a literature review of query languages

in both the relational databases world and the OLAP world. We also look at the dif-

ferences between existing string based query languages that are still much used nowa-

days, as well as native language facilities utilized for querying relational databases.

We then present our new framework for querying OLAP systems in Java, namely

Native language OLAP query eXecution (NOX), in Chapter 4. Chapter 5 illus-

trates the fundamentals of NOX application programming and demonstrates its usage

through examples that have been implemented and tested in Java. Next, in Chapter 6,

12

we explore how NOX manipulates OLAP hierarchies and compare its performance to

that of MDX in this context. Chapter 7 describes how passing parameters is done in

NOX. We then investigate the formal basis by which we map the slicing and dicing

operations of the NOX grammar to those of the MDX grammar in Chapter 8. Finally,

Chapter 9 concludes the thesis and provides some pointers to future work.

13

Chapter 2

Background Material

In this chapter, we introduce some concepts that we need to be familiar with be-

fore discussing the details of our research. This thesis core material is considered to

combine ideas from a number of different fields: Data warehouses, OLAP systems,

OLAP hierarchies and OLAP operations, Multidimensional modeling, JavaCC

and JJTree, and DTD schema.

Section 2.1 gives an overview of a typical Data warehouse, its architecture, its

materialization and its star schema implementation. Section 2.2 introduces OLAP

systems, data cubes, and the grammars used for OLAP, while Section 2.3 illustrates

multidimensional modeling and its materialization. Then, the essential hierarchical

structure of dimensions in a data warehouse is investigated in Section 2.4. Section 2.5

describes the commercial OLAP operations, while Section 2.6 introduces JavaCC and

JJTree parsing in Java. Finally, Document Type Definition (DTD) definition of legal

building blocks of XML-format documents is presented in Section 2.7.

14

2.1 Data Warehousing

Decision Support Systems (DSS) are defined as interactive computer-based systems

intended to help decision makers utilize data and models in order to identify and

solve problems and make decisions [Pow99]. A Data Warehouse is a repository of

multiple heterogeneous data sources, organized under a unified schema in order to

facilitate management decision making [HK06]. Data warehouse technology includes

data cleansing, data integration, and OLAP analysis techniques with functionalities

such as summarization, consolidation, and aggregation, as well as the ability to view

information from different perspectives. In warehouses, data is typically represented

in the form of decision cubes.

2.1.1 The Data Warehouse Architecture

A data warehouse can be seen as a three-tier architecture [CD97, HK06]. The canon-

ical data warehouse architecture is shown in Figure 2 [SH98], with the possible data

sources shown at the bottom of the figure. Information is extracted from various

legacy systems and operational sources, and is then consolidated, summarized, and

loaded into the data warehouse using a process commonly known as ETL (Extract,

Transform, and Load). Strictly speaking, this first step is not one of the three tiers,

as its functionality is external to the warehouse proper.

At the first tier, there is the data warehouse server, along with several data marts.

Essentially, each data mart is a small warehouse designed for a specific department or

business process. At this stage, we can assume that the ETL processing is complete

15

and the data warehouse is fully loaded and contains the data required for basic “de-

cision support”. The second tier houses the OLAP server/engine that allows users to

access and analyze data in the warehouse, typically using more advanced techniques.

Finally, the third tier includes the front end tools that provide a graphical interface

for top managers and decision makers.

Figure 2: Typical data warehouse architecture

2.1.2 The Star Schema

The Star Schema, proposed by Kimball [KR02], is perhaps the simplest and most

intuitive logical model for data warehouse design. The term “Star Schema” is derived

from the fact that a graphical depiction of the schema resembles a star. Star Schemas

consist of two basic table types: dimension tables and fact tables. A fact table

contains measurement records such as the “total sales” in the fact table of the star

schema given in Figure 3. These records model the business process and provide us

16

with measurements (or facts) in terms of the key dimensions in our data warehouse.

In effect, these are the numbers that allow decision makers to actually make decisions.

Dimensions are data warehouse “subjects”. Dimensions in our example are Location,

Product, Customer and Date tables. In practice, Fact tables are typically massive,

holding perhaps billions of records (or facts), while Dimension tables are relatively

small and contain information about the entries of a particular attribute in the fact

table.

Note that the dimension tables are generally denormalized, meaning that the tables

maintain some of the redundancy that a good OLTP (OnLine Transaction Process-

ing) system typically eliminates. An example of a denormalized table, where some

data is repeated, is given in Figure 6. At query time, each dimension table is joined

to the fact table as necessary. In this setting, denormalizing the dimension tables sig-

nificantly decreases the number of costly joins that would otherwise be required with

a normalized schema. Since the dimension tables are comparatively small when com-

pared to the enormous fact tables, the redundancy produced by the denormalization

is of little interest in most OLAP contexts.

2.2 What is OLAP?

The term OLAP was first presented by E. F. Codd in 1992. It was presented in

the context of a vendor sponsored paper called “Providing OLAP (on-line analytical

processing) to user-analysts: An IT mandate” [CCS92], where he described twelve

rules of OLAP. Codd indicated twelve features that should be present in any OLAP

17

Fact Table

Location Key

Date Key

Product Key

Customer Key

Total Sales

Product

Name

Category

List Price

Product Key

Customer

Customer Key

Name

Address

Location

Location Key

City

Prov/State

Country

Date

Date Key

Day

Month

Year

Figure 3: Star schema example

application. The following four points, taken from that report, are probably the most

significant of the twelve:

• Multidimensional conceptual view. In contrast to relational databases that

manipulate individual records or concepts, the focal point in OLAP is the rela-

tionship between multiple dimensions.

• Transparency. The end user should not have to worry about the details of

data access or conversions. In addition, OLAP systems should be part of open

systems that support heterogeneous data sources. Ultimately, the system should

present a single logical schema of the data.

• Flexible reporting. Reporting must present data in a fully integrated manner,

and minimize any restrictions in the way that basic data elements of dimensions

are combined.

18

• Unlimited dimensional and aggregation levels. A serious tool should support

more than just a few concurrent dimensions (Codd actually indicated that 15 -

20 would be ideal).

2.3 Multidimensional Modeling

Both data warehouses and OLAP systems are based on a multidimensional model.

Specifically, we logically represent data in a d-dimensional space such as the one de-

picted in Figure 4. In this context, the multidimensional model can be described as a

data abstraction allowing one to view aggregated data from a number of perspectives

(dimensions). In fact, for a d-dimensional space, there are exactly 2d distinct dimen-

sion combinations that represent the underlying Star Schema, each from a unique

perspective. In OLAP terminology, we refer to this as the data cube.

As previously noted, low level information is divided into facts and dimensions.

An individual fact represents an item or transaction of interest to the user. In the

multidimensional data cube model, facts are aggregated into measures that are con-

tained within cells of the data cube. In Figure 4, one can see the measure values on

the front face of the cube. Simply put, a given measure represents a series of fact

values that have been aggregated for a given combination of dimensions. In Figure 4,

for example, if we assume that the measure represents “Total Sales”, then we can see

that total sales for Customer 3 in Location 1 for Product 2 has the value 7.

We note that the MD (Multi Dimensional) model is logical in nature. In other

words, it makes no assumptions about how the data is physically stored. Advanced

19

7 1 7

2 0 6 5

L o c a t i o n

C u s t o m e r

P r o d u c t

3

2

4

2

1

3 421

1

Figure 4: A three dimensional data cube example

OLAP servers may in fact take the data from the tables of the original Star Schema

and further process it. The new data may be stored in a series of new tables or even

a multi-dimensional array that represents a one-to-one mapping between the logical

data cube and the physical storage. We refer to the first type of system as ROLAP

(relational OLAP), while the second is known as MOLAP (multi-dimensional OLAP).

We will not go into details of the physical storage format, as it is distinct from the

primary focus of our research.

2.4 OLAP Hierarchies

Data granularity refers to the level of detail at which measures are presented. This

is determined by a combination of the granularities within each dimension of the

cube. For example, in Figure 4 the lowest level of granularity or detail in of the

Customer dimension is Customer ID. However, the vast majority of common business

20

and scientific dimensions actually have a hierarchal structure. As a concrete example,

the customer hierarchy, given in Figure 5, can be thought of in terms of NAME,

TYPE, and REGION. In OLAP environments, the traversal of such “aggregation

hierarchies” is perhaps the most fundamental of all query forms. Usually, OLAP tools

only cope with hierarchies that ensure summarizability or that can be transformed

so that summarizability conditions hold [LS97]. Summarizability refers to the correct

aggregation of measures where a higher hierarchy level takes into account existing

aggregations in a lower hierarchy level [MZ04].

As it turns out, there are in fact many different types of hierarchies in real-world

applications. In the simplest case, we can think of a tree of dimension levels that is

A l l

S o u t hN o r t h

C o n s u m e r

J o h n J o e

C o n s u m e rC o r p o r a t e

M a r yS u e

R e g i o n

T y p e

N a m e

Figure 5: A Customer hierarchies example

constructed as a series of one-to-many relationships. An example of such a hierarchy

is shown in Figure 5. Physically, simple trees like this are represented by additional

columns in the associated dimension table, as depicted in the example in Figure 6.

In fact, this is what we call a denormalized dimension. In a normalized model, there

21

would be three separate tables. In data warehouses, we typically denormalize the

separate tables into a single table in order to improve performance by eliminating

table joins.

C u s t o m e r

1

N a m e T y p e R e g i o nI D

2

4

3

J o h n

J o e

S u e

M a r y

C o r p o r a t e

N o r t h

S o u t h

C o n s u m e r

N o r t h

N o r t h

C o n s u m e r

C o n s u m e r

Figure 6: A dimension table corresponding to the Customer hierarchies example

2.5 OLAP Operators

Commercial OLAP systems may provide many OLAP functions and analytical exten-

sions. In practice however, there are five fundamental operations that represent the

bulk of query processing: Slice, Dice, Roll-up, Drill-down and Pivot. In the following

section, we emphasize the slice and dice operations as they are the most relevant to

the current thesis. Other operations are described briefly.

2.5.1 Slice

The slice operation performs a selection on one dimension of the given cube, thus

resulting in a subcube. A slice is a subset of a multi-dimensional cube corresponding

to a single attribute on one of the dimensions of the cube while allowing the other

22

Figure 7: An OLAP slice

dimensions to vary. Figure 7 shows a slicing operation where the sales figures of all

states and all product categories of the company in the year 2009 are “sliced” out of

the data cube.

2.5.2 Dice

The dice operation is a slice on more than two dimensions of a data cube (or more

than two consecutive slices). Figure 8 shows a dicing operation where the sales

figures of a limited number of product categories are returned, and the time and

region dimensions cover the same range as before.

2.5.3 The other Algebraic Multidimensional Operators

• Roll-up: The Roll-up operation acts on the hierarchical structure of a dimension.

It aggregates values at a coarser level of granularity. Figure 9 shows a roll-up

operation where values referring to insect protection, sun protection and first

aid are summed up to values referring to outdoor protective equipment at a

23

Figure 8: An OLAP dice

Figure 9: OLAP drill-down and roll-up

coarser level of the hierarchy of the dimension.

• Drill-down: The Drill-down operation also acts on the hierarchical structure of

a dimension. It performs the opposite of what Roll-up does. It decomposes the

aggregation at a finer level of detail. Figure 9 shows the drill-down operation

where values referring to outdoor protective equipment are decomposed into

values referring to insect protection, sun protection and first aid at a finer level

of the hierarchy of the dimension.

24

Figure 10: OLAP pivoting

• Pivot: The pivot operation acts on a cube by re-organizing its axes. The result

can be more dramatic with a tabular representation. Figure 10 shows the pivot

operation where the years dimension and the equipments dimension switched

places.

2.6 JavaCC and JJTree Parsing

Java Compiler Compiler (JavaCC) and JJTree are language design tools that play a

fundamental role in the Java prototype at the heart of this research. In this section, we

give an overview of the structure and processing logic of both JavaCC and JJTree. At

least a basic grasp of their processing logic is required for a meaningful understanding

of the material presented in the thesis. JavaCC is the most popular parser generator

for use with Java applications. In short, a parser generator is a tool that reads

a grammar specification and converts it to a program that can recognize matches

25

to the grammar. In addition to the parser generator itself, JavaCC provides other

standard capabilities related to parser generation such as tree building (via a tool

called JJTree included with JavaCC), actions and debugging. The generated tree is

known as AST (Abstract Syntax Tree) or parse tree.

JJTree is a pre-processor to JavaCC that inserts parse tree building actions at

various places in the JavaCC source. The output of JJTree is run through JavaCC

to create the parser and its parse tree. Each node of the tree denotes a construct

found in the source code. By default, JJTree generates code to construct parse tree

nodes for each nonterminal in the language. This behavior can be modified so that

some nonterminals do not have nodes generated, or so that a node is generated for

a part of a production expansion [Jav, JJT]. An example of a parse tree is depicted

in Figure 11, where a node is denoted by an oval shape with the name of the node

written inside the shape.

JJTree defines a Java interface Node that all parse tree nodes must implement.

The interface provides methods for operations such as setting the parent of the node,

and for adding children and retrieving them. Now, the structure of the trees gives

the abstract syntax of the input, but not, by default, the tokens. We can capture the

tokens as needed.

26

Compilation Unit

Extends Olap
Query And Body

Class Or Interface
Body Declaration

Class Or Interface
Body Declaration

Method
Declarator

Block
Statement

Block
Statement

Variable
Declarator ID

Variable
Declarator ID

Variable
Initializer

Conditional
Expression

Equality
Expression

Relational
Expression

Relational
Expression

Add
Expression

Add
Expression

Mult
Expression

Mult
Expression

Prim
Expression

Prim
Expression

Prim PrefixPrim Prefix Prim Suffix

LiteralName Node

Figure 11: Simple parse tree

27

2.7 What is Document Type Definition (DTD)

Schema?

As we will see, XML plays an important role in the concrete specification of our

OLAP queries. A Document Type Definition (DTD) defines the legal building blocks

of an XML document. It defines the document structure with a list of legal elements

and attributes. A DTD describes the structure of XML documents by declaring each

eligible element and its attribute list. Element declarations name the allowable set

of elements within the document, and specify whether and how declared elements

and character data may be contained within each element. Attribute list declarations

name the allowable set of attributes for each declared element, including the type of

each attribute value, if not an explicit set of valid value(s). A DTD is associated with

an XML document via a Document Type Declaration, which is a tag that appears

near the start of the XML document. The declaration establishes that the document

is an instance of the type defined by the referenced DTD [DTDb]. An example of a

Document Type Declaration is given in Listing 2.1.

<?xml ve r s i on = ‘ ‘1 .0 ’ ’ encoding = ‘ ‘UTF−8 ’ ’ s tanda lone = ‘ ‘no ’ ’?>
<!DOCTYPE QUERY SYSTEM ‘ ‘ dtd/ClientQuery . dtd ’ ’>

Listing 2.1: DTD declaration

For more information about DTD schema, refer to Appendix B

28

2.8 Conclusion

We introduced in this chapter the concept of a data warehouse, its architecture and

its design. A data warehouse is a repository of multiple heterogeneous data sources,

organized under a unified schema in order to facilitate management decision making.

The Star Schema is perhaps the simplest and most intuitive logical model for data

warehouse design. Online Analytical Processing (OLAP) was introduced, including

core functionalities such as aggregation, as well as the ability to view information from

different angles. We also introduce the multidimensional modeling of OLAP systems,

namely the data cube logical model. In addition, we discussed OLAP hierarchies

as well as fundamental OLAP operations such as slice, dice, roll-up, drill-down and

pivot. Next, we introduced the JavaCC (Java Compiler Compiler) and JJTree parsing.

These are parser generator and tree building tools, respectively. We concluded the

chapter with a brief discussion of the DTD, a mechanism that defines the legal building

blocks of an XML document.

29

Chapter 3

Related Work

Much research has been done in the area of query frameworks for relational database

systems (RDBMS). Our research is inspired by Cook’s work who introduced the

notion of native querying language in RDBMS [CR06]. Traditionally, a popular ap-

proach has been to utilize Object Relational Mapping (ORM) Frameworks. In fact,

the limitations of these frameworks led to Cook’s native querying language. Other

approaches include those that have language specific database libraries that allow

queries to be written in the embedding language itself. While these techniques as

well as Cook’s native language model targeted the relational database environment,

we target the multidimensional database domain and propose the NOX framework.

For OLAP systems, Multidimensional Expression (MDX) language provides a

specialized syntax for querying and manipulating the multidimensional data stored in

data cubes. MDX has been supported by many OLAP vendors and has become the de-

facto standard for OLAP systems. However, MDX is still a string-based language with

many limitations. A string-based language is a language whose code is introduced as

30

strings when inserted within another language code. We compare and evaluate the

NOX language against MDX considering it is widely used among OLAP developers.

Concerning the multidimensional algebras, there are many in research. One alge-

bra YAM2, created by Abello and Romero [RA07], is the product of comparing many

existing algebras and finding their backbone algebra. We refer to this approach and

use related concepts to develop the NOX algebra.

In this chapter, Section 3.1 explores recent relational databases querying languages

that influence the industry and research work. Languages that query OLAP systems

are investigated in Section 3.2. Section 3.3 illustrates the multidimensional OLAP

algebraic operators and compares them to the relational operators.

3.1 Relational Databases Querying Languages

For more than 30 years, Structured Query Language (SQL) has been the de-facto

standard for data access within the relational DBMS world. In conjunction with

APIs such as ODBC and JDBC, it has served as the “query backbone” for small data

management environments and massive enterprize settings alike. That being said,

SQL despite numerous updates to the standard is now a relatively old language.

For this reason, numerous attempts have been made to modernize database access

mechanisms. Two themes in particular are noteworthy in the current context:

• The Object Relational Mapping (ORM) frameworks presented in Subsection 3.1.1

• Simplified database access extending the development languages themselves.

31

This is discussed in Subsection 3.1.2

3.1.1 Object Relational Mapping (ORM) Frameworks

In an attempt to minimize the impedance mismatch associated with tuple-to-object

integration, ORM frameworks have been successfully used to define type-safe map-

pings — typically with XML configuration files or languages-based annotations —

between the tuples of the DBMS and the native objects of the external applications.

As much as possible, the ORM framework attempts to provide transparent persis-

tence, the illusion that the DBMS-backed data is nothing more nor less than a simple

object. With respect to the Java language, JDO (Java Data Objects) [JDO] became

the early standard, with EJB [EJB] and its Java Persistence API (JPA), emerging

shortly after. The standards are now quite similar, with both providing POJO (Plain

Old Java Objects) style persistence for individual objects. JDO, for instance, ac-

complished this with a compile-time enhancement that modifies the byte-code to

insert the appropriate mapping information. OQL is another ORM query language

for databases that influenced the design of some of the newer database query lan-

guages such as JDOQL and EJB. JDOQL is an object-based query language that lets

programmers write in SQL while retaining the Java object relationship. Listing 3.1

provides an example of a query written in JDOQL. The query is created by querying

the Student class with the condition “age < 20”. Though JDOQL is “more” object

oriented than other ORM languages, it is still partially string-based as shown in the

example.

32

Query query = pers i s tenceManager . newQuery (Student . class ,

" age < 20") ;

Co l l e c t i on s tudents = (Co l l e c t i o n) query . execute () ;

Listing 3.1: In JDOQL [JDO, Rus03]

An OQL query is given in Listing 3.2. The query asks for students who are younger

than 20 years. The OQL language is modeled after SQL as shown in the example

and is string-based.

St r ing oq l = " s e l e c t ∗ from student in Students where

student . age < 20" ;

OQLQuery query = new OQLQuery(oq l) ;

Object s tudents = query . execute () ;

Listing 3.2: In OQL [GBB+00, ODM]

The open source community has also been active in this area, with the Hiber-

nate framework [BK06] being the most mature project to date. Originally developed

with its own proprietary API, it now also supports the JPA. Unlike JDO’s compile-

time enhancers, Hibernate uses run-time Reflection as the basis of its tuple-to-object

conversions.

33

While the aforementioned mechanisms provide certain advantages to the devel-

oper, particularly in terms of basic OOP syntax, they are far from a perfect solution.

Primary limitations include:

• While the ORM frameworks do provide transparent persistence for individual

objects, this transparency largely vanishes in the face of more complex query

requirements. Here, the systems employ string based query languages such as

JDOQL (JDO), JPQL (JPA), or HQL (Hibernate) to execute joins, complex

selections, subqueries, etc. In practice, this leaves the ORM models in some-

thing of a grey area between pure transparent persistence and glorified SQL

substitution.

• Since modern Integrated Development Environments (IDEs) will not automat-

ically refactor field names that appear in strings, refactorings can cause class

models and query strings to be inconsistent.

• Developers are constantly required to switch contexts between implementation

language and query language, and they have to learn the two languages.

• There is no explicit support for creating reusable query components.

To address the above problems, Cook describes in [CR05] how to express a query

in the native language like plain Java or C# using Safe Query Objects. Note that

by native language, we are referring to the application development language, rather

than the database access language. The goals for these native queries are:

34

• 100% native: Queries should be completely expressed in the implementation

language, rather than a mix of two distinct languages

• 100% object-oriented: Queries should provide encapsulation and inheritance

functionality

• 100% refactor-able: Queries should be fully accessible to modern IDE refactor-

ing functionality (i.e., class/method updates)

• 100% type-safe: Query specifications should be checked for type safety at com-

pile time

In [CR06], Cook presented Safe Query Objects, a technique for representing queries as

statically typed objects while still supporting remote execution by a database server.

To illustrate this idea, in the Java code of Listing 3.3, Cook expresses a query written

in the Java programming language itself. He uses an abstract base class for queries,

the “Predicate” class, and a method named “match” that defines the query. Of course,

a way to pass a Student object to the expression, as well as a way to pass the result

back to the query processor are also needed. Cook does this by defining a STUDENT

parameter and by returning the result of the expression as a boolean value.

public abstract class Pred i ca te <ExtentType> {

public <ExtentType> Pred i cate () {}

public abstract boolean match (ExtentType candidate) ;

}

Predicate<Student> pr ed i c a t e = new Pred i ca te <Student > () {

public boolean match (Student student) {

35

return student . getAge () < 20 &&

student .Name . Contains (" f ") ;

}

L i s t <Student> students = database . query <Student> (p r ed i c a t e) ;

Listing 3.3: Predicate class and match method for querying the Student table

The underlying idea here is to allow programmers to think of the target as though it

were merely an object(s) residing in memory. In the example, it is as if we have an

“in-memory” list of students and we want to “query” this list to find those students

under the age of 20 and whose names contain the letter “f”. Because in Cook’s

paper [CR06] they are dealing with arbitrary relational databases, they cannot use a

loop to access the objects of the database since the database in fact is not an object

and it is certainly not local. Instead, the method “match” is defined that returns a

boolean value representing the success of the query operation against each possible

data value in a given table. The proper type checking is performed by the native

language’s regular compiler. The value of the boolean result indicates whether a

given student in the Student table meets the criteria.

The key to safe query objects is that type-checked class definitions are translated

into code to call standard database interfaces such as JDBC [HC97] or JDO [Rus03].

This new code is added to the class that contains the query to override a method

(responsible for sending the new new code) in the base class. The translation could

be performed on the classes during compilation, on byte-codes after compilation, or

36

during loading. Cook’s prototype uses OpenJava [TCIK99], which follows the first

approach.

While Cook’s full representation of a query is used for relational databases, our

work will be applied in OLAP systems. In fact, we are adapting this idea of translating

the programmer’s code into a new querying format that can be delivered to the server,

though it must be noted that we have a different set of problems and concerns which

are specific to OLAP.

3.1.2 Language Specific Database Libraries

Another approach to simplified database access extends the development languages

themselves. In fact, this has been an ongoing research theme, with work stretching

back more than 20 years [AB87]. We look briefly at a few of the more interesting

examples. The Ruby language [Rub] provides one of the simplest interfaces by em-

ploying an ActiveRecord which is a library built for Ruby that dynamically examines

method invocations against the database schema. Explicit field/member mappings

are not even required. The Haskell language has been extended with HaskellDB [Has].

Its monad-based syntax expression is intriguing in that queries are “decomposed” into

a series of distinct algebraic operations (e.g., restrict, project). Even C++ has been

extended to support native database access. ARARAT [GL07] is a C++ template

library whose objective is type safe, and largely transparent, generation of SQL state-

ments. With each of these examples, we note that the expressive power of the query

facilities is limited and that an “SQL backdoor” may be needed in more sophisticated

37

environments.

Perhaps the most notable of the language-centric approaches is Microsoft’s LINQ

extensions for its .NET family of languages (C# and VisualBasic) [BRK+08]. Syn-

tactically, LINQ resembles embedded SQL in that, for more complex queries at least,

the standard SELECT-FROM-WHERE format is employed (for better or for worse).

While LINQ has been quite popular with developers, it has been subsumed under

the new ADO.NET model [AMM07]. The overarching theme of ADO.NET is the

Entity Framework (EF), a comprehensive attempt to pull back the abstraction level

of development projects from the object-oriented logical level to the entity-focused

conceptual level. In other words, use of EF and its Entity Data Model makes it

possible, in theory, to program directly against user level concepts. Source code, pos-

sibly written with LINQ, is then parsed into an internal command tree, which can

subsequently be used to generate optimized SQL. While the move towards greater

abstraction is quite appealing, initial reaction has been mixed, with many develop-

ers concerned about the design and development complexity associated with the EF.

Db4o (Database for objects) is another database language that allows to use the na-

tive program language to query the database [NGD+08]. It is an embeddable open

source object database for Java and .NET developers. In .NET, LINQ support is

fully integrated in db4o. Although db4o offers nice language integrated queries, it

suffers from some drawbacks of which a notable one is the difficulty to overcome its

slow performance when retrieving a lot of objects.

Listing 3.4 presents a query in db4a that is used in Java context. A list of students

38

who are less than 20 years old and whose grade is gradeA is returned. Note the match

method that is common to db4o and Cook’s safe queries.

Predicate<Student> pr ed i c a t e = new Pred i ca te <Student > () {

public boolean match (Student student) {

return student . age () < 20 && student . grade () == gradeA ;

}

List<Student> students = db . query <Student> (p r ed i c a t e) ;

Listing 3.4: In Java using db4o [DB4]

A query written in LINQ is given in Listing 3.5. Again, it returns students who are

less than 20 years old and whose grade is gradeA. Note the usage of FROM-WHERE-

SELECT which is similar to SQL syntax.

var r e s u l t = from Student s in conta ine r

where s . Age < 20 && student . Grade == gradeA

s e l e c t s ;

Listing 3.5: In .NET using LINQ [LIN]

In addition to the disadvantages mentioned earlier for individual database query lan-

guages, the main hindrance of db4o and LINQ, as is the case with many of the other

tools, is the lack of interoperability that is taken for granted in the SQL world, such

as industry standard connectivity, reporting tools, backup and recovery standards

and OLAP functionality!

39

3.2 Multidimensional Databases Querying Languages

In terms of OLAP, there was also a flurry of interest in the design of supporting

algebras [AGS97, GL97]. The primary focus of this work was to support an algebraic

application programming interface (API) that would ultimately lead to transparent,

intuitive support for the underlying data cube. In a more general sense, these algebras

identified core elements of the OLAP conceptual data model. Recently, the various

algebras have been directly compared so as to extract the operations common to each

model [RA07].

A somewhat orthogonal pursuit in the OLAP context has been the design of

domain-specific query languages and/or extensions. SQL, for example, has been

updated to include the CUBE, ROLLUP, and WINDOW clauses in an attempt to

more intuitively support standard OLAP query patterns [Mel02]. It must be noted,

however, that support for these operations in DBMS platforms is inconsistent at

best, leading most OLAP/BI vendors to provide their own proprietary implemen-

tations [DKK05]. In addition to SQL, many commercial applications support Mi-

crosoft’s MDX query language [WZP05]. MDX provides a specialized syntax for

querying and manipulating the multidimensional data stored in data cubes. MDX

has been embraced by wide majority of OLAP vendors and has become the de-facto

standard for OLAP systems [SHW+06]. Still, MDX remains an embedded string

based language with an irregular structure and is somewhat representative of the

language philosophy of the 1980s and 1990s.

40

To give the reader a better sense of the MDX language, we will now present a

series of simple MDX examples. The cube we are working with contains the following

feature attributes:

• Customers

• Time

• Product

• DMA

The Measure attributes consist of:

• Store Cost

• Profit

• RunningTotalSubs

The MDX query depicted in Listing 3.6 is a very simple query for finding store costs

(a measure attribute in the data cube) associated with all customers in 1997.

The MDX query given in Listing 3.7 is similar to the previous MDX query, but

this time the query is doing a drill down on the customers in the USA region.

In the query given in Listing 3.8, we are doing a crossjoin on Customer and Gender

to get all combinations by year, and we are using a different measure value Profit.

We note that while the queries included here are quite simple, and consequently

quite readable, more sophisticated MDX queries can be virtually incomprehensible to

41

SELECT

{ [Time] . [1 9 9 7] } ON COLUMNS ,

{ [Customers] . [A l l Customers] } ONROWS

FROM [S a l e s]

WHERE ([Measures] . [Store Cost])

Listing 3.6: MDX query 1

SELECT

{ [Time] . [1 9 9 7] } ON COLUMNS ,

{ [Customers] . [A l l Customers] . [USA] .CHILDREN }

ONROWS

FROM [S a l e s]

WHERE ([Measures] . [Store Cost])

Listing 3.7: MDX query 2

SELECT

{ [Time] . [1 9 9 7] } ON COLUMNS,

{

{ [Customers] . [A l l Customers] . [USA] .CHILDREN } ∗
{ [Gender] . [A l l Gender] . [F] , [Gender] . [A l l Gender] . [M] }

} ONROWS

FROM [S a l e s]

WHERE ([Measures] . [P r o f i t])

Listing 3.8: MDX query 3

42

anyone other than the developers themselves. An example of a rather incomprehen-

sible MDX query is depicted in Listing 3.9. In the query, measure VariantPercentage

is created and defined using a formula in terms of RunningTotalSubs and some hi-

erarchical attributes. Tuples are used here which complicates the query even more.

They are used to indicate that RunningTotalSubs of a hierarchy path in the time

hierarchy which refers to some date in 2004 is subtracted from that of 2005 date in

the time hierarchy then divided by the total RunningTotalSubs of “all” “time” hier-

archy. The “SELECT” on COLUMNS is similar to what we saw before, where the

RunningTotalSubs and the VariantPercentage are displayed. However, “SELECT”

on ROWS is more complex in this example. There is a CROSSJOIN of TopCount

([DMA] .children , 5000 ,([RunningTotalSubs])) and [Time].[2004].& [1].[1].[1]

,[Time].[2005].&[1].[1].[1] ,[Time]). This means that the top 5000 RunningTotal-

Subs of the children of [DMA] are crossjoined with the hierarchy path referring to

2004 date of the time hierarchy, the hierarchy path referring to the 2005 date of the

time hierarchy and “All Time”. These are all what will be displayed on ROWS and

COLUMNS. They are selected FROM “Customers” cube where the slicing operation

performs selection of “product ID” to be equal to 14.

WITH

MEMBER [Measures] . [Var ientPercentage] AS

‘ (([Time] . [2 0 0 4] . \ & [1] . [1] . [1] ,

43

[RunningTotalSubs]) −
([Time] . [2 0 0 5] . \ & [1] . [1] . [1] ,

[RunningTotalSubs])) /

([Time] . [A l l Time] , [RunningTotalSubs]) ’

SELECT {

[RunningTotalSubs] ,

[Measures] . [Var ientPercentage] }

ON COLUMNS ,

CrossJo in (

TopCount (

{ [DMA] .CHILDREN} , 5000 ,

([RunningTotalSubs])) ,

{ [Time] . [2 0 0 4] . \& [1] . [1] . [1] ,

[Time] . [2 0 0 5] . \ & [1] . [1] . [1] ,

[Time] })

ON ROWS

FROM [Customers]

WHERE ([Product] . [Product ID] . \& [1 4])

Listing 3.9: A more sophisticated MDX query

Finally, we note that no discussion of OLAP query languages and models would be

complete without a brief reference to the ill-fated JOLAP standard [JOL03]. Delivered

in 2003, the JOLAP JSR-69 was an industry-backed attempt to define an enterprise-

ready, Java-oriented meta data and query framework for OLAP applications. Drawing

upon the Common Warehouse Metamodel [CWM03], JOLAP introduced a purely

compositional query API that layered itself on top of elements of the CWM’s logical

44

metamodel. JOLAP object model provides a core layer of services and interfaces

that are available to all clients. While intuitively appealing, the JOLAP specification

proved to be extraordinarily complex for both vendors and query writers. To date, no

client or server side application has ever been developed around JOLAP. It currently

serves as both an inspiration for OLAP centered projects and a cautionary tale.

3.3 OLAP Algebras in Research

A great deal of effort has been devoted to multidimensional modeling in OLAP set-

tings with several models having been introduced in the literature [ASS01, VS99].

A multidimensional algebra is as crucial for satisfactory data warehouse querying as

the relational algebra (select, project, join, etc.) is for satisfactory relational database

querying. Romero and Abello, in [RA07], compare existing multidimensional algebras

in the literature so that their common backbone is discovered.

In terms of the models themselves, Romero and Abello highlight the following:

• [LW96] introduces a multidimensional algebra of five operators, namely “Add

Dimension”, “Transfer”, “Cube Aggregation”, “Join”, “Union”, representing map-

pings between either Cubes or relations and Cubes. The authors illustrate, in

their paper, how the multidimensional algebra gets translated to SQL. In fact,

this algebra was one of the first multidimensional algebras introduced in the

literature and its aim was to construct Cubes for local operational databases.

• [AGS97] presents an algebra of six operators which are “Push”, “Pull”, “Destroy

45

Dimension”, “Restriction”, “Join”, “Merge”. These operators are invented to be

translated to SQL. They are minimal. No operator can be expressed in terms of

other operators and no operator can be excluded without affecting the algebra.

• [GL97] presents an algebra of seven operators that are based on the relational

algebra operations. The seven operators are “Selection”, “Projection”, “Carte-

sian product”, “Union/Difference/Intersection”, “Fold/Unfold”, “Classification”,

“Summarization”. They also define a calculus that is equivalent to the proposed

algebra.

• [TD97] et al and [TD01] et al present an algebra with eight operators based

on [AGS97]. These operators are “Restriction”, “Metric Projection”, “Aggrega-

tion”, “Cartesian Product”, “Join”, “Union/Difference”, “Extract”, “Force”. The

authors presume the algebra to express complex OLAP queries in a concise way.

In addition to the above, additional algebras were presented by Romero and

Abello, including but not limited to [CT98], [HS98], [VS99], [GMR98], [FS00], [FBV00]

and [FK04]. In addition to reviewing the existing work in the area, Romero and

Abello propose a multidimensional reference algebra that we will present in the next

few paragraphs. In this thesis, we essentially adapt Romero and Abello’s reference

algebra as the underlying mechanism for OLAP query transformation.

In their framework, Romero and Abello describe the following concepts that are

common to virtually all OLAP models.

46

• A Dimension: A dimension contains a hierarchy of Levels where a level con-

tains Descriptors.

• A Fact: A fact table contains Cells. These cells contain Measures.

• A Base: A base is a minimal set of levels that identify a cell that may be a

primary key in the database.

• A Cube: A cube is a set of cells placed in the multidimensional space. It should

be positioned with regard to the Base.

• A Star: A star is one Fact and several Dimensions.

The reference algebra of Romero and Abello is presented as a framework called

YAM2 [ASS05]. The YAM2 algebra was introduced in detail in [ASS03], where it was

proven to be complete, meaning that any other multidimensional operation can be

expressed in terms of it. These algebraic operations are as follows:

• Selection: This operation selects the subset of points of interest out of the

whole n-dimensional space by means of a logic clause C over a Descriptor.

• Projection: This operation selects a number of Measures from the Cube.

• Roll-up and Drill-down: The “Roll-up” operation groups cells in the Cube

based on an aggregation hierarchy. It modifies the granularity of data. The

“Drill-down” operation is the inverse of Roll-up. It can only be performed if

a Roll-up has been previously applied and the correspondence between cells is

preserved.

47

• ChangeBase: This operation reallocates exactly the same instances of a Cube

into a new n-dimensional space with exactly the same number of points, by

means of a one-to-one relationship.

• Drill-across: This operation changes the subject of analysis of the Cube by

means of one-to-one relationship.

• Set Operations: These operations operate on two Cubes (like in set theory) if

both are defined over the same n-dimensional space. Union, Difference and

Intersection are the usual set operations performed.

Figure 12 shows the table given by Romero and Abello [RA07] that depicts the

mapping between the two sets of algebraic operators:

• the set of relational operators as the columns names

• the set of multidimensional operators as the rows names

In the figure, the intersection of the columns and rows means that the correspond-

ing two operators are equivalent when applied on the subscript names of the tick

sign. SELECTION as the multidimensional operator is equivalent to SELECTION as the

relational operator when applied over Descriptors (features) fields. PROJECTION as

the multidimensional operator is equivalent to PROJECTION as the relational opera-

tor when applied over Measures fields. The tick sign without restriction means both

operators are equivalent. In the table, the set operators including Union and Dif-

ference are equivalent as both relational operators and multidimensional operators.

48

����������	
����
�� �������
�� ��
�����
�� �
���
���
��

�������
��
�
���� ���������
��

�������
�� √������ � � � � �

��
�����
�� � √��������� � � � �

�
����
� � � � � √������ !���� √������������

���������
��� � √������ !���� √������ !���� � � �

�""���#$� � � √������ !�� � � �

��#
%��

��#$�
� √������ !�� � � � ��&����'����

���$�'���� � √������ !���� √������ !���� � � �

���
������������� � � � √� � �

Figure 12: Reference operator matching between multidimensional and relational
algebra operations

The + sign means that one multidimensional operator is equivalent to more than one

relational operator. In the table, we see that Roll-up, Drill Across and ChangeBase

multidimensional operators involve equivalence to more than one relational operators.

Roll-up operator is equivalent to the two relational operators Group-by and Aggrega-

tion. Drill-across operator is equivalent to the two relational operators Projection and

Join. ChangeBase specifically Alternate Base operator is equivalent to the two rela-

tional operators Projection and Join. In our research, we focus mostly on SELECTION

and PROJECTION. We also cover, from a pratical point of view, the set operations and

the manipulation of navigational hierarchies (Roll-ups and Drill-downs).

49

3.4 Conclusion

We presented in this chapter the important related work to this thesis. In RDBMS,

ORM languages play a critical role in querying the database, as they define type-safe

mappings between the tuples of the DBMS and the native objects of the external

applications. However, as we demonstrated by example, these languages are par-

tially or totally string-based. To tackle this problem, we introduced Cook’s work that

describes how to express a query in the native language itself using Safe Query Ob-

jects. Cook’s work in querying relational databases instigated our work in querying

OLAP systems. To complete the review of work that is done in RDBMS, we intro-

duced the language specific database libraries that extend the development languages

themselves such as db4o and LINQ.

In the OLAP world, the MDX language is the de-facto language to query OLAP.

We illustrated its usage through examples. MDX, being a string-based and often

obscure language, has motivated us to build a framework where querying an OLAP

system is done in the native language itself.

Finally, we tried to emphasize that a very important part of any querying frame-

work is the algebra that is used. We presented in this chapter a number of multi-

dimensional algebraic operations that were introduced by contemporary researchers.

Romero and Abello derived a common algebra they called YAM2 which is the algebra

we adapted in our work.

50

Chapter 4

Native language OLAP query

eXecution (NOX)

The native language OLAP query eXecution system, abbreviated as NOX, has been

constructed from the ground up so as to emphasize the transparency in the term

“transparent persistence”, which is the illusion that the server’s data is nothing more

nor less than a simple object. Doing so, of course, requires considerable infrastructure.

Our current research work focuses on building the client side libraries and parsing

infrastructure that allows programmers to write OLAP queries in the native program-

ming language used. OLAP queries, written by the programmer, then become acces-

sible to IDE and compiler features like compile-time type checking, auto-completion,

and refactoring. Moreover, we avoid the requirement for the programmer to learn a

second programming language, for example, SQL or MDX.

In this chapter, we begin in Section 4.1 by discussing the Sidera system server

architecture to which NOX sends its OLAP queries. We then discuss the design,

51

implementation, and use of the NOX framework where Section 4.2 introduces the pri-

mary NOX components, and Section 4.3 discusses the underlying conceptual model.

Section 4.4 illustrates the core operations of the OLAP algebra in the NOX model.

Section 4.5 expands the model to include the NOX grammar and its DTD represen-

tation. Finally, we present in Section 4.6 the full details of the client architecture,

specifically the NOX pre-processor.

4.1 The Sidera System Architecture

In this section, we describe the Sidera system architecture. Eavis et al in their paper

titled “Sidera: a cluster-based server for Online Analytical Processing” presented a

comprehensive architectural model for a fully parallelized OLAP server [EDD+07].

The model consists of a network-accessible frontend server and a series of protected

backend servers. Each backend server handles a portion of the user request. Other ar-

chitectures have utilized existing DBMS servers to provide backend storage and query

resolution services with minimal implementation efforts, but have limited support for

advanced OLAP functionality such as cubing and hierarchical querying. Another lim-

itation is that they return local results to the primary server where the data will then

be merged and aggregated. In relatively large production systems, the bottleneck

on the frontend becomes significant. Sidera eliminates this bottleneck by operat-

ing within a fully coordinated architecture that allows each node to participate in

global sorting, merging and aggregation operations. This brings the full computa-

tional capacity of the whole cluster for every OLAP query. Note that prototypes of

52

the backend and the frontend implementations have been developed and published

by Eavis et al. in [EDD+07] and [ETT10] simultaneously. A description of the whole

framework was published by Taleb et al. in [TET11].

Figure 13 illustrates the fundamental design of Sidera. Here, the frontend node

serves as an access point for user queries. Query reception and session management

is performed at this point but the frontend does not participate in query resolution,

other than to collect the final result from the backend instances and return it to the

user. In turn, the backend nodes are fully responsible for storage, indexing, query

planning, I/O, buffering, and meta data management. In addition, each node houses

a Parallel Service Interface (PSI) component that allows it to hook into the the global

PSI layer.

Figure 14 is an illustration of the Sidera frontend, a multi-threaded head node

that handles logins, authentication, and transfer of queries to the backend nodes.

The head node represents the server’s public interface. Its core function is to receive

user requests and to pass them along to the backend nodes for resolution. It does not

participate in query resolution directly, and thus does not represent a performance

bottleneck for the system. The numbered sequence in the figures indicates the pro-

cessing cycle for a typical query. Figure 15 depicts the processing loop on the backend

server instances. While the frontend provides the public interface, it is of course the

backend network that performs virtually all of the query resolution.

We note that Sidera has been used as the target platform as it allows us to explore

both query processing on the client and query optimization on the server (a separate

53

Figure 13: The core architecture of the parallel Sidera OLAP server [EDD+07]

research project). The NOX framework was implemented and tested to send queries

to the Sidera framework and receive results back. Having complete freedom with the

code base is a distinct advantage for this kind of research. That being said, it is

important to note that the principles discussed in this thesis can in theory be applied

to existing DBMS platforms, assuming the implementation of suitable mappings to

the given DBMS backend.

4.2 The NOX Framework

We now turn to the problem of providing native language functionality in the OLAP

setting, the key contribution of this thesis. The NOX framework, being a query

54

Figure 14: The Sidera frontend [EDD+07]

language framework, we begin with a brief overview of its primary physical and logical

elements. They include the following:

• OLAP conceptual model. As with the Entity Framework, NOX allows de-

velopers to write code directly at the conceptual level. No knowledge of the

physical or even logical level is required.

• OLAP algebra. Given the complexity of directly utilizing the relational alge-

bra, in the OLAP context, we define fundamental query operations against a

cube-specific OLAP algebra.

• OLAP grammar. Closely associated with the algebra is a DTD-encoded

OLAP grammar that provides a concrete foundation for client language queries.

• Client side libraries. NOX provides a small suite of OOP classes correspond-

ing to the objects of the conceptual model.

55

Figure 15: The Sidera backend node [EDD+07]

• Programming API. Collectively, the exposed methods of the libraries form a

clean programming API that can be used to instantiate OLAP queries.

• Augmented compiler. At its heart, NOX is a query re-writer. During a

pre-processing phase, the framework’s compilation tools (JavaCC/JJTree) ef-

fectively re-write source code to provide transparent model-to-DBMS query

translation.

• Cube result set. OLAP queries essentially extract a subcube from the original

space. The NOX framework exposes the result in a logical read-only multi-

dimensional array.

56

Figure 16 provides a concise illustration of the NOX processing stack. In short, the

developer’s view of the OLAP environment consists of the elements of the top three

levels. From the developer’s perspective, all OLAP data is housed in a series of one

or more cube objects housed in local memory. The fact that these repositories are

not only remote, but possibly Gigabytes or even Terabytes in size, might be irrelevant

to the developer since he is querying a cube as if it is an object residing in memory.

However, the time needed to get the results back depends on the size of the subcube

result.

(Remote) DBMS Server

Programming API

Class libraries

DBMS communication facilities

JavaCC
Parser

Generator

OLAP
DTD

DOM
Faciliities

Application code

JJTree
Tree

Builder

Sub cube Result
Set

Figure 16: NOX processing stack

57

4.3 Conceptual Model

In the OLAP context, the conceptual view of the data has reached a level of maturity

whereby virtually all analytical applications essentially support the same high level

view of the data. Briefly, we consider analytical environments to consist of one or

more data cubes. Each cube is composed of a series of d dimensions (sometimes called

feature attributes) and one or more measures. The dimensions can be visualized as

delimiting a d -dimensional hyper-cube, with each axis identifying the members of

the parent dimension (e.g., the days of the year). Cell values, in turn, represent the

aggregated measure (e.g., sum) of the associated members. Figure 17 provides an

illustration of a very simple three dimensional cube. We can see, for example, that

20 units of Product FH1 were sold in the Berkeley location during the month of Jan-

uary (assuming a Count measure). Beyond the basic cube, however, the conceptual

Time
(month)

Location
(city)

Product (number)

San Jose

Los Angeles

Berkeley

Dec

Jan

Feb

Sk11 FH12 AM54

Measure
Value

20 35 31

14 20 12

21 40 24

Figure 17: NOX conceptual query model

OLAP model relies extensively on aggregation hierarchies provided by the dimensions

58

themselves. In fact, hierarchy traversal is one of the more common and important

elements of analytical queries. In practice, there are many variations on the form

of OLAP hierarchies [MZ06] (e.g., symmetric, ragged, non-strict). For our purposes,

however, it is enough at this point to supplement the NOX conceptual model with

the notion of an arbitrary graph-based hierarchy that may be used to decorate one

or more cube dimensions. Figure 18 illustrates a simple geographic hierarchy that an

organization might use to identify intuitive customer groupings. The path in yellow

is an example of an OLAP path where each value on the OLAP path comes from a

different level in the hierarchy.

USA

Los
Angeles

New YorkCalifornia

AlbanySan Jose New
York

Store 1 Store 2 Store 3 Store 4 Store 5 Store 6

Country

State

City

Store

Figure 18: A simple symmetric hierarchy

4.4 The NOX Algebra

Given the clean, conceptual model described above, it is possible to consider the ap-

plication of an OLAP algebra that directly exploits the model’s structure. A number

of researchers have identified the core operations of such an algebra as detailed in

Section 3.3. We will shortly see how the exploitation of a formal algebra ultimately

59

allows developers to program directly against the conceptual model, rather than to a

far more complex physical or even logical model.

As indicated, a core set of operations for NOX common to virtually all proposed

OLAP algebras has been identified. Below, we list and briefly describe these opera-

tions.

• SELECTION (σpcube): provides the identification of one or more cells from within

the full d -dimensional search space. This is one of the two core OLAP operations

and is commonly referred to as “slicing” and “dicing”. A logic predicate p defines

cells of interest within the d-dimensional space. The logic predicate has the

syntactical form where mathematical expressions can be compared to each other

and different conditional expressions can be combined with logical operators

such as AND and OR. The selection operation is given in Figure 19.

• PROJECTION (πmeasure1,...,measurencube): provides the identification of presenta-

tion attributes, including both measure attributes and feature attributes. This

is the second core OLAP operation and it is mainly concerned with screening

results in an output mechanism such as diagrams, objects or simply text. In

other words, it does selection of a subset of display attributes (measures or

features). The projection operation is depicted in Figure 20.

• DRILL-ACROSS (cube1 ∞ cube2): performs the integration of two independent

cubes, where each cube possesses common dimensional axes. In effect, this is a

cube “join” (possibly a self join) that changes or extends the subject of analysis,

60

by showing measures regarding a new fact. The n-dimensional space remains

exactly the same, only the data placed in it change so that new measures can be

analyzed. For example, if the cube contains data about profits, this operation

can be used to analyze data regarding expenses using the same dimensions.

Figure 21 illustrates the drill-across operation.

• UNION (cube1 ∪ cube2): performs the union of two cubes over the same n-

dimensional space sharing common dimensional axes. The union operation is

presented in Figure 22.

• INTERSECTION (cube1 ∩ cube2): performs the intersection of two cubes over the

same n-dimensional space sharing common dimensional axes.

• DIFFERENCE (cube1 - cube2): performs the difference of two cubes over the same

n-dimensional space sharing common dimensional axes.

• CHANGE LEVEL (γleveli→levelj
f(measure1),...,f(measuren)

) does the modification of the granular-

ity of aggregation for the current result set. This process is typically referred to

as “drill down” and “roll up”. The roll-up operation groups cells in a Cube based

on an aggregation hierarchy while the drill-down goes down through an aggre-

gation hierarchy, and showing more detailed data. The gamma representation

of the change level operation means that as the level of the data is changing, the

measure values are changing according to functions that aggregates or decom-

poses data values (along the levels of the hierarchy). The change level operation

is given in Figure 23.

61

Figure 19: Selection operation [AR]

Figure 20: Projection operation [AR]

• CHANGE BASE (χbase1→base2): allows two different kinds of changes in the n-

dimensional space: it performs the addition or deletion of one or more dimen-

sions from the current result set or just rearranges the multidimensional space

by reordering the dimensions (this is also known as Pivoting). When addition

or deletion of dimensions is done, aggregated cell values must be re-calculated

accordinglY. Figure 24 depicts the change base operation.

• PIVOT (φbase): does the rotation of the cube axes to provide an alternate per-

spective of the cube. No recalculation of cell values is required. Figure 10 given

in Chapter 2 illustrates the pivot operation.

Several explanatory notes are in order at this stage. First, the SELECTION is

62

Figure 21: Drill-across operation [AR]

Figure 22: Set operations (Union) operation [AR]

Figure 23: Change Level operation [AR]

Figure 24: Change Base operation [AR]

63

the driving operation behind most analytical queries. In fact, if suitable defaults

for identifying presentation attributes, such as a certain key or a set of keys, are

available for the PROJECTION, many queries can be expressed with nothing more than

a selection. Second, the final two operations CHANGE BASE and PIVOT, are distinct

from the first seven in that each is only relevant as a query against an existing result

set. This is because CHANGE BASE and PIVOT provide alternative presentations of data

such as rearranging or rotating the result cube. Third, it is important to recognize

that while logical data warehouse models typically require explicit joins between fact

(measure) and dimension tables, there is no such requirement at the conceptual level.

Data is viewed at the conceptual level as objects residing in memory. The result is a

dramatic reduction in complexity for the developer. Depending upon the architecture

of the supporting analytics server, of course, join operations may still be performed at

some point. Finally, and perhaps most importantly, the OLAP algebra is implicitly

read only, in that database updates (change in the data or schema) are performed via

distinct ETL processes. Remember from Chapter 2 that information is loaded into

the data warehouse using a process known as ETL (Extract, Transform, and Load).

It is well known that updates significantly complicate the logic of ORM frameworks.

As discussed in Section 3.3, Abello and Romero provide the YAM2 reference frame-

work for OLAP algebras. Our algebra is similar, with the addition of the PIVOT oper-

ation which is a special case of the CHANGE BASE operation. The special case is when

CHANGE BASE changes its visual orientation by rotating the cube along its axis with a

one-to-one correspondence between its dimensions. Finally, we note that YAM2 has

64

in fact been proven to possess the following properties [RA05] and [ASS03]:

• Closed, meaning when the algebra operations are applied to a cube-query, its

result is another cube-query.

• Complete, meaning that any valid cube-query can be the result of a combination

of a finite set of the algebra operations applied to the right cell, and

• Minimal, meaning that none of the algebra operations can be dropped without

affecting the algebra and none of the operations can be expressed in terms of

the others.

Therefore, the NOX algebra is also closed, and complete. However, it is not minimal

as the PIVOT operation can be expressed in terms of CHANGE BASE.

4.5 The NOX Grammar

NOX encapsulates the operations of the algebra in a formal grammar encoded by

a Document Type Definition (DTD). Section 2.7 gave an overview of what a DTD

schema is. (We note that the XML Schema could be used as well). The NOX grammar

DTD is relatively complex as it effectively represents the foundation for an expressive,

XML-based analytics language.

Listing 4.1 depicts the current DTD-encoded grammar of the NOX query language.

While NOX is very much a research prototype, the grammar is nonetheless quite

sophisticated as it is required to support most of the features of a DBMS access

65

language. Below, we look more closely at a few of the most significant grammar

elements.

<?xml version=" 1 .0 " encoding="UTF−8"?>

<!ELEMENT QUERY (DATA_QUERY | META_QUERY)>

<!−− Data que r i e s−−>

<!ELEMENT DATA_QUERY (CUBE_NAME,OPERATION_LIST? ,FUNCTION_LIST?)>

<!ELEMENT CUBE_NAME (#PCDATA)>

<!ELEMENT OPERATION_LIST (OPERATION+)>

<!ELEMENT OPERATION (

SELECTION |

PROJECTION |

CHANGE_LEVEL |

CHANGE_BASE |

DRILL_ACROSS|

UNION |

INTERSECTION |

DIFFERENCE)>

<!−− Se l e c t i o n −−>

<!ELEMENT SELECTION (DIMENSION_MEASURE_LIST)>

<!ELEMENT DIMENSION_MEASURE_LIST

((DIMENSION, (LOGICAL_OP, (DIMENSION | | MEASURE)) ∗) | |

(MEASURE, ((LOGICAL_OP,DIMENSION) , (LOGICAL_OP, (DIMENSION | |

MEASURE)) ∗)) | |

(MEASURE, ((LOGICAL_OP, (DIMENSION | |

MEASURE)) ∗ , (LOGICAL_OP,DIMENSION))))>

<!ELEMENT DIMENSION (DIMENSION_NAME, EXPRESSION)>

<!ELEMENT DIMENSION_NAME (#PCDATA)>

<!−− Pro j ec t i on −−>

<!ELEMENT PROJECTION (MEASURE_DIMENSION_LIST)>

66

<!ELEMENT MEASURE_DIMENSION_LIST ((MEASURE, (LOGICAL_OP, (DIMENSION

| | MEASURE)) ∗) | |

(DIMENSION, ((LOGICAL_OP,MEASURE) , (LOGICAL_OP, (DIMENSION | |

MEASURE)) ∗)) | |

(DIMENSION, ((LOGICAL_OP, (DIMENSION | |

MEASURE)) ∗ , (LOGICAL_OP,MEASURE))))>

<!ELEMENT MEASURE(MEASURE_NAME, (COND_OP,SIMPLE_EXP) ?)>

<!ELEMENT MEASURE_NAME (#PCDATA)>

<!−− Dimension Express ions −−>

<!ELEMENT EXPRESSION (RELATIONAL_EXP | COMPOUND_EXP | SIMPLE_EXP)>

<!ELEMENT COMPOUND_EXP (EXPRESSION, LOGICAL_OP, EXPRESSION)>

<!ELEMENT RELATIONAL_EXP (SIMPLE_EXP, COND_OP, SIMPLE_EXP)>

<!ELEMENT SIMPLE_EXP (EXP_VALUE | ARITHMETIC_EXP)>

<!ELEMENT ARITHMETIC_EXP (SIMPLE_EXP, ARITHMETIC_OP, SIMPLE_EXP)>

<!ELEMENT EXP_VALUE (

CONSTANT |

ATTRIBUTE |

HIERARCHY_LIST |

FUNCTION_LIST)>

<!ELEMENT CONSTANT (#PCDATA)>

<!ELEMENT ATTRIBUTE (#PCDATA)>

<!−− Dimension Operators −−>

<!ELEMENT LOGICAL_OP (#PCDATA)>

<!−− AND | OR −−>

<!ELEMENT COND_OP (

RELATIONAL_OP |

EQUALITY_OP |

OLAP_OP)>

<!ELEMENT RELATIONAL_OP (#PCDATA)>

<!−− GT | GTE | LT | LTE) −−>

67

<!ELEMENT EQUALITY_OP (#PCDATA)>

<!−− EQUALS | NOT_EQUAL −−>

<!ELEMENT OLAP_OP (#PCDATA)>

<!−− IN_RANGE | IN_LIST)> −−>

<!ELEMENT ARITHMETIC_OP (#PCDATA)>

<!−− ADD | SUBTRACT | MULTIPLY | DIVIDE) −−>

<!−− Generic Functions −−>

<!ELEMENT FUNCTION_LIST (FUNCTION+)>

<!ELEMENT FUNCTION (PARENT, FUNCTION_NAME, ARGUMENT_LIST?)>

<!ELEMENT PARENT (#PCDATA)>

<!ELEMENT FUNCTION_NAME (#PCDATA)>

<!ELEMENT ARGUMENT_LIST (ARGUMENT+)>

<!ELEMENT ARGUMENT (#PCDATA)>

<!−− Hierarch i e s −−>

<!ELEMENT HIERARCHY_LIST (HIERARCHY+)>

<!ELEMENT HIERARCHY (HIERARCHY_NAME, HIERARCHY_OP,

OLAP_PATH_LIST)>

<!ELEMENT HIERARCHY_NAME (#PCDATA)>

<!ELEMENT HIERARCHY_OP (#PCDATA)>

<!−− IN_RANGE | IN_LIST)> −−>

<!−− Hierarch i e s Paths −−>

<!ELEMENT OLAP_PATH_LIST (OLAP_PATH+)>

<!ELEMENT OLAP_PATH (VALUE+)>

<!ELEMENT VALUE (#PCDATA) >

<!−− Union −−>

<!ELEMENT UNION (DATA_QUERY)>

<!−− I n t e r s e c t i o n −−>

<!ELEMENT INTERSECTION (DATA_QUERY)>

68

<!−− Di f f e r ence −−>

<!ELEMENT DIFFERENCE (DATA_QUERY)>

<!−− Rol lup / D r i l l down −−>

<!ELEMENT CHANGE_LEVEL (DIMENSION_NAME, TARGET_LEVEL)>

<!ATTLIST CHANGE_LEVEL

d i r e c t i o n (UP | DOWN) #REQUIRED>

<!ELEMENT TARGET_LEVEL (#PCDATA)>

<!−− Changing the base −−>

<!ELEMENT CHANGE_BASE (DIMENSION_LIST)>

<!ATTLIST CHANGE_BASE

mod i f i c a t i on (ADD | REMOVE) #REQUIRED>

<!−− Dr i l l across −−>

<!ELEMENT DRILL_ACROSS (DATA_QUERY)>

<!−− <!ATTLIST DRILL_ACROSS

output (BOTH | REPLACE) #REQUIRED> −−>

<!−− Meta data q u e r i e s : t h i s w i l l be ex tended l a t e r−−>

<!ELEMENT META_QUERY (CUBE_NAME)>

<!ATTLIST META_QUERY

s c a l e (FULL | PARTIAL) #REQUIRED>

Listing 4.1: “ClientQuery.dtd” used to validate NOX XML files

In Listing 4.1, #PCDATA stands for Parsed Character Data and specifies char-

acter data. #REQUIRED stands for values that must be given, meaning they may

not be empty strings.

Each query is associated with a single cube (though references to other cubes are

possible), as well as an optional Operation List and an optional Function List.

69

The Operation_List contains the algebraic elements of the query, and each may

occur exactly zero or one time in a single query. One important operation is the

selection which is defined as a listing of one or more dimensions, each associated with

an expression, and possibly one or more measures. In effect, the expression represents

a query restriction on the associated dimension or measure (this will become clearer

in Chapter 5). Simple expressions may be combined to form compound expressions

(via logical AND and OR) and can be recursively defined. In other words, as with any

meaningful programming language, conditional restrictions can be almost arbitrarily

complex. An example of a Selection XML string is given in Listing 4.2 where an

expression “age > 40” is defined on the “Customer” dimension.

<SELECTION>

<DIMENSION_MEASURE_LIST>

<DIMENSION>

<DIMENSION_NAME>

Customer

</DIMENSION_NAME><EXPRESSION>

<RELATIONAL_EXP>

<SIMPLE_EXP>

<EXP_VALUE>

<ATTRIBUTE>

age

</ATTRIBUTE>

</EXP_VALUE>

</SIMPLE_EXP><COND_OP>

<RELATIONAL_OP>

GT

</RELATIONAL_OP>

</COND_OP><SIMPLE_EXP>

70

<EXP_VALUE>

<CONSTANT>

40

</CONSTANT>

</EXP_VALUE>

</SIMPLE_EXP>

</RELATIONAL_EXP>

</EXPRESSION>

</DIMENSION>

</DIMENSION_MEASURE_LIST>

</SELECTION>

Listing 4.2: Example of a Selection XML string

There are several elements such as LOGICAL_OP, RELATIONAL_OP and EQUAL-

ITY_OP that are defined as #PCDATA, so they are free to be any sequence of

characters. However, their values should be relevant to the meaning that they

hold. For example, LOGICAL_OP should be either AND or OR, RELATIONA_OP

should be either GT, GTE, LT or LTE, and EQUALITY_OP should be EQUALS

or NOT_EQUAL.

Listing 4.1 also shows the FUNCTION_LIST and HIERARCHY_LIST elements

that can be values of EXP_VALUE. When an expression value is a FUNCTION_LIST,

it is associated with a PARENT dimension, a FUNCTION_NAME such as in_range

and an ARGUMENT_LIST which consists of one or more arguments such as num-

ber values. When an expression value is a HIERARCHY_LIST, it is made of one or

more hierarchies. A HIERARCHY consists of a HIERARCHY_NAME, a HIERAR-

CHY_OP and an OLAP_PATH_LIST. A HIERARCHY_OP can be in_range and

71

in_list. An OLAP_PATH_LIST is made of one or more OLAP_PATH where each

OLAP_PATH defines a path in a hierarchy. An OLAP_PATH consists of one or

more values, where each value come from a different level of the hierarchy. Listing 4.1

also illustrates the simplicity of the set operation specifications. Three kinds of set

operations are given in Listing 4.1: intesection, union and difference. Each operation

acts on some data query. An example of a set operation INTERSECTION is given in

Listing 4.3. In this example, intersection is done on two selection criteria, namely

“Customer.getAge > 40” and “Customer.getAge < 60”. From programming point of

view, consider for example, a string equality check in a language such as Java, where

we would write myString.equals("Joe"), rather than something like myString ==

"joe". This same approach allows us to represent set operations simply as a nested

data query, defined relative to the current query. The way this will be implemented

in NOX is given in the next chapter.

<QUERY>

<DATA_QUERY>

<OPERATION_LIST>

<OPERATION>

<INTERSECTION>

<DATA_QUERY>

<OPERATION_LIST>

<OPERATION>

<SELECTION>

<DIMENSION_MEASURE_LIST>

<DIMENSION>

<DIMENSION_NAME>

Customer

72

</DIMENSION_NAME><EXPRESSION>

<RELATIONAL_EXP>

<SIMPLE_EXP>

<EXP_VALUE>

<ATTRIBUTE>

age

</ATTRIBUTE>

</EXP_VALUE>

</SIMPLE_EXP><COND_OP>

<RELATIONAL_OP>

GT

</RELATIONAL_OP>

</COND_OP><SIMPLE_EXP>

<EXP_VALUE>

<CONSTANT>

40

</CONSTANT>

</EXP_VALUE>

</SIMPLE_EXP>

</RELATIONAL_EXP>

</EXPRESSION>

</DIMENSION>

</DIMENSION_MEASURE_LIST>

</SELECTION>

</OPERATION>

<OPERATION>

<SELECTION>

<DIMENSION_MEASURE_LIST>

<DIMENSION>

<DIMENSION_NAME>

Customer

</DIMENSION_NAME><EXPRESSION>

<RELATIONAL_EXP>

<SIMPLE_EXP>

<EXP_VALUE>

<ATTRIBUTE>

73

age

</ATTRIBUTE>

</EXP_VALUE>

</SIMPLE_EXP><COND_OP>

<RELATIONAL_OP>

LT

</RELATIONAL_OP>

</COND_OP><SIMPLE_EXP>

<EXP_VALUE>

<CONSTANT>

60

</CONSTANT>

</EXP_VALUE>

</SIMPLE_EXP>

</RELATIONAL_EXP>

</EXPRESSION>

</DIMENSION>

</DIMENSION_MEASURE_LIST>

</SELECTION>

</OPERATION>

</OPERATION_LIST>

</DATA_QUERY>

</INTERSECTION>

</OPERATION>

</OPERATION_LIST>

</DATA_QUERY>

</QUERY>

Listing 4.3: Example of INTERSECTION XML string

As for CHANGE_LEVEL, CHANGE_BASE, DRILL_ACROSS and META_DATA,

they are included the in grammar in basic form. They are part of future work and

further development of these operations are needed.

74

4.6 The Client Side API

Within the NOX query language framework, the conceptual model and its associated

grammar are intended to provide an abstract development environment for expressive

analytical programming. The NOX framework was implemented and tested to send

queries to the Sidera framework and receive results back. In this section, we provide

a detailed overview of the NOX query transformation model.

In a nutshell, NOX provides persistent transparency via a source code re-writing

mechanism that interprets the developer’s OOP query specification in JAVA and

decomposes it (by NOX pre-processor) into the core operations of the OLAP algebra.

Persistent transparency means that the programmer queries a cube as if it is an object

residing in local memory. These operations are given concrete form within the NOX

grammar and then transparently delivered (via standard socket calls) at run-time to

the backend analytics server for processing. Results are again transparently injected

back into the running application. In our proposed framework, OLAP compilation is

a multi step process. This process is described in Listing 4.4.

75

1 . Find the OLAP que r i e s (that need to be executed) in the

source code . OLAP que r i e s are l o c a t ed by the par s e r through

s p e c i a l keywords . This w i l l be exp la ined in f u r t h e r d e t a i l in

the next chapter .

2 . Parse each opera t i on (such as s e l e c t , p ro j e c t , . . .) method

and convert i t i n to an a l g e b r a i c form repre s en ted in XML. How

the conver s i on i s done w i l l be i l l u s t r a t e d in the next

subs e c t i on .

3 . Rewrite part o f the programmer ’ s source code to inc lude new

network methods that connect to the s e r v e r and t r a n s f e r the

cor re spond ing XML. The r ewr i t i n g proce s s w i l l be exp la ined in

the next chapter . I t i s important to note here that the

o r i g i n a l programmer ’ s own source code that w i l l not a c t ua l l y

be executed . The r ewr i t t en code i s the one that w i l l be

executed in the next s tep .

4 . Recompile the new source code .

5 . The s e r v e r r e c e i v e s the XML, ex t r a c t s the grammatical

e lements and hands o f f the r e s u l t s to the under ly ing query

eng ine .

6 . Eventual ly , query r e s u l t s w i l l be t r an spa r en t l y passed back

to the c l i e n t app l i c a t i o n v ia the same network mechanism . In

other words , the r e s u l t s w i l l be sent back from the s e r v e r in

XML format . Then , on the c l i e n t s ide , they w i l l be converted ,

us ing r e s u l t s e t manipulat ion by our prototype (w i l l be

presented in d e t a i l in the next chapter) , i n to the appropr ia t e

type f o r the nat ive language (JAVA) and ‘ ‘ i n s e r t e d ’ ’ back in to

the program i t s e l f .

Listing 4.4: Pseudocode for OLAP compilation

76

We note at this point that we have chosen to provide external libraries for NOX

rather than direct language modification. This is partly to encourage portability

between languages, as we consider the NOX model to be broadly applicable to any

modern OOP language. In our prototype, we use JAVA as the OOP language to im-

plement NOX functionality. However, it is also due to the fact that while OLAP/BI

is an immensely important commercial domain, OLAP-specific language extensions

would have virtually no relevance to the vast majority of developers working in arbi-

trary domains.

Figure 25 depicts the UML class diagram for NOX. The diagram shows three parts

that are separated by dashed lines. The first part shows the NOX API client query

classes that make up the client side libraries of NOX. These are the classes that are

ultimately imported by the programmer in order to specify a specific OLAP query.

Specifically, the classes will define the query’s dimensions, hierarchies and measures

and are created by extending the existing classes OlapDimension, OlapHierarchy and

OlapMeasure respectively. The second part of the diagram illustrates an example

of NOX program-specific query classes used for an OLAP query instance. In this

example, classes CustomerDimension, StoreDimension and DateDimension extend

the OlapDimension class. The classes CustomerHierarchy, GeographicHierarchy and

StoreHierarchy extend the OlapHierarchy class. Finally, classes ProfitMeasure and

SalesMeasure extend the OlapMeasure class.

77

O
la

pQ
ue

ry

C
us

to
m

er
H

ie
ra

rc
hy

St
or

eH
ie

ra
rc

hy
St

or
eD

im
en

si
on

C
us

to
m

er
D

im
en

si
on

D
at

eD
im

en
si

on

O
la

pD
im

en
si

on
O

la
pH

ie
ra

rc
hy

O
la

pP
at

h

O
la

pC
on

ne
ct

io
n

O
la

pR
es

ul
tC

ub
e

O
la

pR
es

ul
tD

im
en

si
on

O
la

pM
ea

su
re

O
la

pM
ea

su
re

O
pe

ra
to

r

G
eo

gr
ap

hi
cH

ie
ra

rc
hy

Pr
of

itM
ea

su
re

Sa
le

sM
ea

su
re

M
ai

nQ
ue

ry

-in
cl

ud
es

1
*

*

1
1

*

1

*

*

*
*

*

*

*

1

1

M
ai

nC
ub

e

*

*

*

*

1
*

*

*

*

*

*

1

1

N
O

X
A

P
I

cl
ie

nt
re

su
lt-

se
t

cl
as

se
s

N
O

X
A

P
I

cl
ie

nt
qu

er
y

cl
as

se
s

N
O

X
pr

og
ra

m
sp

ec
ifi

c
qu

er
y

cl
as

se
s

*

*

*

1

*

1

*

1

C
ub

eC
oo

rd
in

at
e

*

1
*

*

1

1
1

1
1

1
1

1
1

O
la

pH
os

t
1

1

Figure 25: UML class diagram for NOX
78

A more thorough UML class diagram for the NOX API classes, along with their

attributes and methods is given in Figure 26. The fields and methods of each class

are provided. Briefly explaining the diagram:

• The OlapQuery class (parent of all OLAP queries) has many-to-many relation-

ships with the OlapDimension class, the OlapMeasure class and the OlapHier-

archy class with these three classes being used to build the query. In other

words, an OLAP query can examine one or more dimensions, their hierarchies

and one or more measures (implicitly from fact tables). Dimensions, hierarchies

and measures can, of course, be used in more than one query.

• The OlapQuery class has a one-to-one relationship with the OlapConnection

class which in turn has a one-to-one relationship with the OlapHost class. Note

that each query gets delivered via standard socket calls to the backend analytics

server for processing.

• The MainCube class — which can be any cube name — has a many-to-many

relationship with the OlapDimension class and the OlapMeasure class, with

a cube consisting of one or more dimensions (features) and one or more fact

tables (measures). Features and measures can be common to other cubes in the

hypercube space.

• The OlapMeasureOperator class has a many-to-many relationship with the

OlapMeasure class, where operators are applied on measures.

• The OlapPath class has a many-to-one relationship with the OlapHierarchy

79

class, where an OLAP hierarchy includes one or more OLAP paths but an

OlapPath belongs to only one hierarchy. Remember an OLAP path is a se-

quence of values where each value on the OLAP path comes from a different

level in the hierarchy. An example of an OLAP path is given in yellow in

Figure refsymmetricc.

• Finally, we note that due to its fundamental significance to warehousing and

OLAP processing, a pre-defined Date class is included in the NOX API. The

class extends the OlapDimension class and includes sub classes for Days, Months

and Years. Of course, the developer is free to further extend the class to add

additional functionality.

We note that additional class diagrams and UML representations for the program

specific query classes will be presented in Chapter 5.

80

+O
la

pQ
ue

ry
()

+O
la

pQ
ue

ry
(in

cu
be

N
am

e
:S

tri
ng

)
+s

el
ec

t()
:B

oo
le

an
+p

ro
je

ct
()

:O
bj

ec
t[]

+u
ni

on
()

:O
la

pQ
ue

ry
+i

nt
er

se
ct

io
n(

):
O

la
pQ

ue
ry

+d
iff

er
en

ce
()

:O
la

pQ
ue

ry
+e

xe
cu

te
()

:M
ai

nC
ub

e

#c
ub

e
:M

ai
nC

ub
e

O
la

pQ
ue

ry

#D
im

en
si

on
()

#D
im

en
si

on
(in

na
m

e
:S

tri
ng

)

-n
am

e
:S

tri
ng

O
la

pD
im

en
si

on

+O
la

pH
ie

ra
rc

hy
()

+i
nc

lu
de

s(
in

pa
th

...
O

la
pP

at
h)

:B
oo

le
an

+i
nc

lu
de

sL
is

t(i
n

pa
th

...
O

la
pP

at
h)

:O
bj

ec
t

+i
nR

an
ge

(in
pa

th
1

:O
la

pP
at

h,
in

pa
th

2
:O

la
pP

at
h)

:B
oo

le
an

+r
an

ge
Li

st
(in

pa
th

1
:O

la
pP

at
h,

in
pa

th
2

:O
la

pP
at

h)
:O

bj
ec

t
+m

em
be

rs
()

:B
oo

le
an

O
la

pH
ie

ra
rc

hy

+O
la

pP
at

h(
)

+O
la

pP
at

h(
in

pa
th

...
S

tri
ng

)
+g

et
O

la
pP

at
h(

):
S

tri
ng

[]

-p
at

h
:S

tri
ng

[]
O

la
pP

at
h

+s
et

H
os

t(i
n

ho
st

N
am

e
:S

tri
ng

)
+s

et
H

os
t(i

n
ip

A
:I

nt
eg

er
,i

n
ip

B
:I

nt
eg

er
,i

n
ip

C
:I

nt
eg

er
,i

n
ip

D
:I

nt
eg

er
)

+s
et

D
at

ab
as

e(
in

da
ta

ba
se

:S
tri

ng
)

+s
et

U
se

rN
am

e(
in

us
er

N
am

e
:S

tri
ng

)
+s

et
P

as
sw

or
d(

in
pa

ss
w

or
d

:S
tri

ng
)

+c
on

ne
ct

()

-h
os

t:
O

la
pH

os
t

-d
at

ab
as

e
:S

tri
ng

-u
se

rN
am

e
:S

tri
ng

-p
as

sw
or

d
:S

tri
ng

O
la

pC
on

ne
ct

io
n

+g
et

M
ea

su
re

()
:O

la
pM

ea
su

re
+g

et
C

os
ts

()
:D

ou
bl

e
+g

et
S

al
es

()
:D

ou
bl

e

-m
ea

su
re

:O
la

pM
ea

su
re

-c
os

ts
:D

ou
bl

e
-s

al
es

:D
ou

bl
e

O
la

pM
ea

su
re

-to
p_

k
-c

ou
nt

O
la

pM
ea

su
re

O
pe

ra
to

r

-in
cl

ud
es

1

*

*
*

*

*

* *

1

1

+C
ub

e(
)

+C
ub

e(
in

cu
be

N
am

e
:S

tri
ng

)

-c
ub

eN
am

e
:S

tri
ng

M
ai

nC
ub

e

*

*

*

*

*

*

N
O

X
A

P
I

cl
ie

nt
qu

er
y

cl
as

se
s

+O
la

pH
os

t(i
n

ho
st

N
am

e
:S

tri
ng

)
+O

la
pH

os
t(i

n
ip

A
:I

nt
eg

er
,i

n
ip

B
:I

nt
eg

er
,i

n
ip

C
:I

nt
eg

er
,i

n
ip

D
:I

nt
eg

er
)

-h
os

tN
am

e
:S

tri
ng

-ip
A

:I
nt

eg
er

-ip
B

:I
nt

eg
er

-ip
C

:I
nt

eg
er

-ip
D

:I
nt

eg
er

O
la

pH
os

t

+D
at

eD
im

en
si

on
()

+D
at

eD
im

en
si

on
(in

da
y

:D
ay

,i
n

m
on

th
:M

on
th

,i
n

ye
ar

:Y
ea

r)
+g

et
D

ay
()

:I
nt

eg
er

+s
et

D
ay

(in
da

y
:D

ay
)

+g
et

M
on

th
()

:I
nt

eg
er

+s
et

M
on

th
(in

m
on

th
:M

on
th

)
+g

et
Y

ea
r(

):
In

te
ge

r
+s

et
Y

ea
r(

in
ye

ar
:Y

ea
r)

-d
ay

:D
ay

-m
on

th
:M

on
th

-y
ea

r:
Y

ea
r

D
at

eD
im

en
si

on

+g
et

D
ay

()
:I

nt
eg

er
+s

et
D

ay
(in

da
y

:I
nt

eg
er

)

-d
ay

:I
nt

eg
erD
ay

*

*

+g
et

M
on

th
()

:I
nt

eg
er

+s
et

M
on

th
(in

m
on

th
:I

nt
eg

er
)

-m
on

th
:I

nt
eg

er
M

on
th

+g
et

Y
ea

r(
):

In
te

ge
r

+s
et

Y
ea

r(
in

ye
ar

:I
nt

eg
er

)

-y
ea

r:
In

te
ge

r
Ye

ar

11

Figure 26: UML class diagram for the NOX API library
81

4.6.1 The NOX Pre-processor

NOX must identify query-specific elements of the source code (JAVA in our prototype)

and transform them as required. To accomplish this, NOX includes a pre-processing

module that transforms code before passing it to the standard Java compiler. The pre-

processor is produced with the JavaCC parser generator and its JJTree Tree builder

plug-in [Jav, JJT]. Briefly, JJTree is used to define parse tree building actions that

are executed during the later parse process. In the NOX case, JJTree identifies

query-specific code constructs (e.g., class definitions) that should be augmented. The

output of JJTree is then used by JavaCC to construct a Java parser that actually

locates and transforms appropriate methods. We note that although NOX utilizes

a complete Java 1.5 grammar for its parser, the pre-processor only examines and/or

processes tree nodes defined by JJTree. In practice, this makes the pre-processing

step extremely fast.

So what is the pre-processor looking for? NOX is supported by client libraries that

define the relevant query components. The fundamental structure is the OlapQuery

class. Listing 4.5 provides a partial listing of its contents. Use of this structure allows

programmers to over-ride the OlapQuery and provide only the operations necessary

for the query at hand (often just selection). The remaining methods are effectively

no-ops. Note that these methods never actually get executed. They are only stubs

that are used to allow the regular programming language compiler to verify that the

structure of the query is valid. The body of these methods will be replaced by some

programmer-specific code. The “execute” method would then serve as being both the

82

public abstract class OlapQuery {

public boolean s e l e c t () {return fa l se ; }

public Object [] p r o j e c t () {return null ; }

public OlapQuery d r i l l_ a c r o s s () {return null ; }

public OlapQuery union () {return null ; }

public OlapQuery i n t e r s e c t i o n () {return null ; }

public OlapQuery d i f f e r e n c e () {return null ; }

public Resul tSet execute () {

return new Resu l tSet () ;

}

}

Listing 4.5: Base class OLAP query with stub methods

invocation mechanism and the element of the class definition that would be re-written

during parsing the query.

Figure 27 graphically illustrates the process described thus far. In the box at the

top left, we see the parser generation tools that produce the translating pre-processor.

The dashed line to the pre-processor itself indicates that this association is static, and

the parser building tools are not invoked directly at either compile time or run-time.

83

NOX Pre-
processor

text text

DOM
Query

Generator

Query
DTD

Final
executable
application

DOM TreeDOM UtilitiesJJTree Parse
Tree actions

JJTree
(Java1.5.jjt)

JavaCC
(java1.5.jj)

Java
source file

XML query
string

Modified
Java

Source

DOM ModuleParser generation
module

Standard
Java

Compiler

Figure 27: The client compilation model.

84

In terms of the compilation process, the pre-processor takes as input the original

Java source file and then, using the parse tree constructed from this source, converts

source elements into an XML decomposition of the OlapQuery. Examples of source

elements that get converted are select, project, intersection, union and difference.

These will be converted into selection, projection, intersection, union and difference.

Other elements are mapped according to the children / parent relationships and

according to the stored values. Different combinations are checked and mapped to

the proper XML elements and values. Throughout this process, various DOM utilities

and services are exploited in order to generate and verify the XML. Finally, once the

source has been transformed, it is run through a standard Java compiler and converted

into an executable class file. We note that, in practice, the NOX translation step

would be integrated into a build task (ANT, makefile, IDE script, etc.) and would

be completely transparent to the programmer. The details of the components of

Figure 27 are as follows:

• Parser Generation Module:

1. JJTree (Java1.5.jjt): This component is part of the Java Compiler. It

acts like a pre-processor to the JavaCC parser generator and is mainly used

to build the program parse tree. In fact, we can add some functionality to

this component to allow us to choose which parts of the parse tree to build.

Ultimately, JJTree generates code to construct parse tree nodes during the

parsing process. We can also rename the nodes and choose to highlight

85

tokens that help us during the process of parsing the client program.

In practice, the Java1.5.jjt is compiled with JavaCC and it produces a

JJTree Parse Tree that corresponds to the client program. It also produces

the JavaCC (Java1.5.jj) component that produces a Java parser for the

client program. A more detailed description of how JJTree is used in our

system is given in Section 4.6.2.

2. JJTree Parse Tree Actions: A parse tree is generated by JJTree. Nodes

in the tree correspond to grammar rules in the Java language. More details

and examples are given in Chapter 5.

3. JavaCC (Java1.5.jj): This is the parser generator that is produced by

JJTree (Java1.5.jjt) and is compiled by JavaCC to produce the Java Parser

for the client source file.

• DOM Module:

1. Query DTD: This is an XML Schema that defines the various compo-

nents of the Sidera systems such as OLAP queries, meta queries, database

structure and query results. It is used both on the client side and the

server side of the Sidera architecture. On the client side, it validates the

XML string generated during the process of OLAP query parsing. The

grammar DTD used in our system was given in Section 4.5.

2. DOM Tree: The DOM Tree is an intermediate component between the

JJTree parse tree and the XML corresponding to the OLAP query. The

86

DOM Tree is useful for two main reasons. The first is that it can be directly

validated against the OLAP query grammar DTD schema. After finishing

construction of the DOM query tree, the DOM tree translation to an XML

query string is a relatively straightforward step. The second reason is that

its construction is flexible and intuitive when using the DOM methods in

the DOM Query Generator.

3. DOM Utilities: A library of DOM related utilities is used to manipulate

DOM trees and XML strings. They provide functions to build, access and

modify DOM tree objects. Also, the processes of transforming DOM trees

into XML strings and vice versa are well supported.

4. DOM Query Generator: This component contains a number of methods

used by the modified JavaCC compiler to generate DOM nodes, where

these nodes make up the DOM tree corresponding to the client OLAP

query. The DOM tree is then tanslated to an XML string using a DOM

utility.

• Java Source file: This is written by the programmer where he defines a query

to extend the OlapQuery class. In the extended query class, the programmer

over-rides the “operation” method(s) needed to implement the OLAP query

and then instantiates and “executes” the query object. An example of a Client

Java program that implements a “select” operation is given in Listing 5.1 of

Section 5.2.

87

• XML Query String: This contains the tags and values that were translated

from the OLAP query given by the programmer.

• NOX Pre-processor: This is the parser that is the product of the JavaCC

Java Compiler. It is executed to parse the Client Java Program using DOM

utilities. The NOX pre-processor traverses the parse tree to find the subtree that

corresponds to the OLAP query. While searching the subtree for components

of the query in a depth-first fashion, it builds the corresponding XML DOM

tree. Keywords in the subtree guide the search process. Methods of the DOM

Query Generator are used to produce the DOM tree. Then, the DOM tree is

validated using the OLAP query DTD and translated to XML string using a

DOM utility. The pre-processor locates the OLAP queries in the source code,

parses the OLAP operations methods and converts them into an XML string.

In addition, the NOX pre-processor will rewrite the programmers “execute”

method to send the XML to the server. Rewriting of the “execute” method is

done using JavaCC and JJTree actions. Hence, the Client Java Program and

the XML query string are both input to the NOX pre-processor and the output

will be the modified Client Java Source. Although the XML query string is

produced from the OLAP query given by the programmer, it is not part of the

client source file. The pre-processor with the help of DOM utilities produce

the XML query string from the client source file that will be included in the

over-writing “execute” method. All of this is transparent to the programmer.

88

• Modified Java Source: This is the program that is produced after parsing

and compiling the Client Java Program. This program will have the program-

mer’s rewritten “execute” method that establishes a connection to the OLAP

server and sends it the XML string corresponding to the OLAP query. This

updated client Java program needs to be recompiled. Again, this entire pro-

cess is transparent to the programmer. In fact, the programmer does not even

know that an updated Java program exists. Debugging in this case becomes a

problem and it is interesting to tackle this problem in future work.

• Standard Java Compiler: Obviously, this is the regular Java Compiler that

just needs to be invoked against the updated client Java program.

4.6.2 JJTree in the NOX Pre-processor

As described earlier, JavaCC is a parser generator for Java applications and JJTree

is a pre-processor to JavaCC that inserts parse tree building actions at various places

in the JavaCC source. JJTree can generate code to construct parse tree nodes for

each nonterminal in the language. In the NOX pre-processor, we have modified

this behavior so that some nonterminals do not have nodes generated, while other

nonterminals have nodes generated for parts of their productions’ expansion. Hence,

the parse tree is built so that nodes, needed in parsing the programmer’s OLAP query

and building the corresponding DOM tree and eventually the XML corresponding

string, are generated.

We use an example of a parse tree, shown in Figure 28, that is generated by

89

JJTree in the NOX pre-processor to illustrate how parsing of the associated OLAP

query is done. In this figure, a node is denoted by an oval shape with the name of the

node written inside the shape. We added a new reserved word to the JavaCC/JJTree

parser in NOX, which is denoted by the token called “OlapQuery” that is preceded

by the word “extends”. This is done so that the parser locates each class that extends

“OlapQuery”. Then, it parses the class code that describes the OLAP query by

locating words (that gets transformed to nodes in the parse tree) to translate it to

XML.

When parsing the OLAP query code, NOX is actually parsing the subtree (of the

parse tree produced by NOX) corresponding to the query. Hence, while the client

Java program is being parsed using JavaCC and JJTree, each time the parser finds

an “OlapQuery” query, it generates a node called “ExtendsOlapQueryandBody” and

the subtree under this node will be the located subtree that will be parsed by NOX

parser to generate the XML query. Also, the first and the last token of the body

of the “ExtendsOlapQueryandBody” class body will be located by the NOX JJTree

methods so that the “execute” method will be rewritten to include the XML query

before sending it to the server. The method to do this using JJTree is given in

Listing 4.6. The method will not be valid from a Java point of view. JJTree has its

own syntax for writing code.

90

Compilation Unit

Extends Olap
Query And Body

Class Or Interface
Body Declaration

Class Or Interface
Body Declaration

Method
Declarator

Block
Statement

Block
Statement

Variable
Declarator ID

Variable
Declarator ID

Variable
Initializer

Conditional
Expression

Equality
Expression

Relational
Expression

Relational
Expression

Add
Expression

Add
Expression

Mult
Expression

Mult
Expression

Prim
Expression

Prim
Expression

Prim PrefixPrim Prefix Prim Suffix

LiteralName Node

Figure 28: Simple query parse tree.

91

void ExtendsOlapQueryandBody (boolean i s I n t e r f a c e) :

{

boolean extendsMoreThanOne = fa l se ;

Token t ;

}

{

" extends " <OLAPQUERY>

{ t = getToken (1) ; }

"{" (Clas sOrInter faceBodyDec larat ion (i s I n t e r f a c e)) ∗
{ j j tTh i s . j j t S e tF i r s tToken (t) ;

j j tTh i s . j j tSetLastToken (getToken (0)) ;

}

"}"

}

Listing 4.6: Saving first and last tokens of a class that extends OlapQuery using
JJTree

Figure 28 shows the root of the parse tree generated by JJTree in the NOX pre-

processor along with some of the tree’s branches. This tree corresponds to the query

given in Lisitng 5.1 (will be presented in Chapter 5. The tree’s root node is named

“Compilation Unit”, which is the default name given by JJTree. The child of the

root node is an “ExtendsOlapQueryandBody” node, which is the root of the subtree

that contains the OLAP query. The parser generated by JavaCC and JJTree in NOX

recursively visits the nodes of the “ExtendsOlapQueryandBody” subtree, and when it

finds a method name (saved as a token in a node of the tree), it checks its value if it

is one of the OLAP operators, such as select and project. Then, the parser has found

an OLAP query operation. This is an example of how NOX detects names that are

92

used to build the OLAP operation’s XML query string. A middle step, which is an

implementation detail, is that the parser first generates a DOM tree, and then the

DOM tree is translated to XML.

Finally, we present two pieces of pseudocode to illustrate building the complete

process of a parse tree and preprocessing the input file. We note, however, that we

will not go through much implementation detail as it becomes somewhat tedious for

the reader. The first pseudocode is given in Listing 4.7 to show the steps of how to

build a parse tree. This pseudocode is implemented in NOX in JavaCC1.5.jjt using

JavaCC and JJTree. In JJTree, we can add additional tokens as part of the grammar.

We can also return a tree and set a root of a tree. Some nonterminal variables that we

do not need to have their nodes (in the parse tree) produced will have their producion

rules set to void.

1 . Add a new r e s e rved word ‘ ‘OLAPQUERY’ ’ as a token in the

grammar

2 . Set ‘ ‘ CompilationUnit ’ ’ as the name o f the root node o f the

Abstract Syntax Tree

3 . Set #void for some nonterminals that we do not need to

produce nodes in the parse t r e e

4 . Mark que r i e s that extend ‘ ‘ OlapQuery ’ ’ with a s p e c i a l name

node ‘ ‘ ExtendsOlapQueryAndBody ’ ’ and save the token o f the

query class name (as in L i s t i n g 4 . 5) .

5 . Set names to c e r t a i n nontermina l s in the par s e r and save the

tokens so they are manipulates while walking the parse t r e e

by doing the f o l l ow i ng :

{ j j tTh i s . j j t S e tF i r s tToken (getToken (1)) ; }

93

{((SimpleNode)n) . end = getToken (0) ; }

6 . Return the root o f the AST t r e e o f the java input f i l e by

embedding a Java ac t i on ‘ ‘ return j j tTh i s ’ ’ at the end o f

‘ ‘ CompilationUnit ’ ’ product ion o f the JavaCC grammar .

7 . Get the ‘ ‘ CompilationUnit ’ ’ root node o f the parse t r e e and

walk the t r e e by c a l l i n g the i n t e r p r e t () method as f o l l ow s :

(pa r s e r . j j t r e e . rootNode () . i n t e r p r e t () ;)

Listing 4.7: Pseudocode for constructing the parse tree in Java1.5.jjt (using JavaCC
and JJTree)

4.7 Conclusion

In this chapter, we presented mainly the client side libraries and parsing infrastructure

of NOX. We first described the Sidera System Architecture, a comprehensive archi-

tectural model for a fully parallelized OLAP NOX queries are sent, by the client, to

the Sidera system in XML format. Then, the Sidera system will process the data

and return its result to the client. We also presented the components of NOX both

at the primary physical and logical levels. The primary components are the NOX

conceptual model, its OLAP algebra and related grammar, client side libraries, pro-

gramming API, augmented compiler, and cube result set. The OLAP algebra in our

framework is similar to the YAM2 algebra proposed by Romero. Finally, we illustrate

the usage of JJTree in the NOX pre-processor. Some pseudocode is given to describe

building the parse tree and preprocessing the input file.

94

Chapter 5

NOX Application Programming

The NOX framework, as described in the preceding chapter, provides a clean and in-

tuitive development model for the (Java) programmer. In the prototype, we provide

object-oriented programming libraries of interface/abstract classes that the program-

mer uses to construct queries. Developers then are able to make use of object-oriented

concepts in building their queries. Simply put, they can think of the cube simply as

an object residing in memory. In fact, it is one of the primary advantages of this

framework that programmers can visualize an entire Terabyte size OLAP database

as a series of objects in local memory. We can do this easily in our design because

the server provides an OOP domain model, with the underlying code verification

translation steps completely transparent to the client side programmer.

In this chapter, we demonstrate the practical use of NOX through a number of

query examples. Section 5.1 uses UML notation to graphically illustrate the structure

of a basic OLAP query. Section 5.2 describes the select method and illustrates its

use through a small but typical SELECTION example, as well as a more sophisticated

95

query. Section 5.3 depicts the project method and illustrates its use through a small

but typical PROJECTION example. In Section 5.4, we discuss how OLAP set operations

are represented in NOX. In Section 5.5, we expose the query inheritance feature of

the framework. Section 5.6 explains how NOX manipulates the results of the OLAP

query returned from the server. Finally, the last section evaluates the NOX framework

in comparison to the MDX language.

5.1 UML of a Sample OLAP Query

Figure 29 shows the UML class diagram of the dimensions, hierarchies and measures

for a specific OLAP query example. In this example, the name of the OLAP query

is MainQuery and it inherits the library class OlapQuery. It takes 3 parameters

as input to the query and it has a select() method (i.e., the SELECTION algebraic

operation) and a project() method (the PROJECTION algebraic operation). These

methods use the Customer dimension, the Store dimension and the Date dimension

and their corresponding hierarchies. The project() method also displays values for

the PROFIT measure and the SALES measure.

96

+C
us

to
m

er
H

ie
ra

rc
hy

()

C
us

to
m

er
H

ie
ra

rc
hy

+S
to

re
H

ie
ra

rc
hy

()

St
or

eH
ie

ra
rc

hy

+S
to

re
()

+S
to

re
(in

na
m

e
:S

tri
ng

)
+g

et
N

am
e(

):
S

tri
ng

+g
et

S
to

re
H

ie
ra

rc
hy

()
:S

to
re

H
ie

ra
rc

hy

-n
am

e
:S

tri
ng

-s
to

re
H

ie
ra

rc
hy

:S
to

re
H

ie
ra

rc
hy

St
or

eD
im

en
si

on

+C
us

to
m

er
()

+C
us

to
m

er
(in

na
m

e
:S

tri
ng

)
+g

et
A

ge
()

:I
nt

eg
er

+g
et

N
am

e(
):

S
tri

ng
+g

et
ID

()
:I

nt
eg

er
+g

et
C

us
to

m
er

H
ie

ra
rc

hy
()

:C
us

to
m

er
H

ie
ra

rc
hy

+g
et

G
eo

gr
ap

hi
cH

ie
ra

rc
hy

()
:G

eo
gr

ap
hi

cH
ie

ra
rc

hy

-a
ge

:I
nt

eg
er

-n
am

e
:S

tri
ng

-ID
:I

nt
eg

er
-c

us
tH

ie
ra

rc
hy

:C
us

to
m

er
H

ie
ra

rc
hy

-g
eo

H
ie

ra
rc

hy
:G

eo
gr

ap
hi

cH
ie

ra
rc

hy

C
us

to
m

er
D

im
en

si
on

D
at

eD
im

en
si

on

+g
et

P
ro

fit
()

:D
ou

bl
e

+s
et

P
ro

fit
(in

pr
of

it
:D

ou
bl

e)

-p
ro

fit
:D

ou
bl

e
Pr

of
itM

ea
su

re

+g
et

S
al

es
()

:D
ou

bl
e

+s
et

S
al

es
(in

sa
le

s
:D

ou
bl

e)

-s
al

es
:D

ou
bl

e
Sa

le
sM

ea
su

re

+M
ai

nQ
ue

ry
()

+M
ai

nQ
ue

ry
(in

cu
be

N
am

e
:S

tri
ng

)
+M

ai
nQ

ue
ry

(in
pa

rm
1

:S
tri

ng
,i

n
pa

rm
2

:D
ou

bl
e,

in
pa

rm
3

:I
nt

eg
er

)
+s

el
ec

t()
:B

oo
le

an
+p

ro
je

ct
()

:O
bj

ec
t[]

-p
ar

m
1

:S
tri

ng
-p

ar
m

2
:I

nt
eg

er
-p

ar
m

3
:D

ou
bl

e

M
ai

nQ
ue

ry

1
1

*
1

1

*

N
O

X
pr

og
ra

m
sp

ec
ifi

c
qu

er
y

cl
as

se
s

O
la

pD
im

en
si

on

1

+G
eo

gr
ap

hi
cH

ie
ra

rc
hy

()

G
eo

gr
ap

hi
cH

ie
ra

rc
hy

1

O
la

pM
ea

su
re

*

1

*

*

*

1
1

1

*

1
1

*

1
1

O
la

pQ
ue

ry

Figure 29: UML class diagram for NOX programmer OLAP classes
97

5.2 SELECTION

The select() method is the method responsible for the SELECTION algebraic operator

(σpcube) presented in Section 4.4. SELECTION is identifying one or more cells from

the d-dimensional space by a logic predicate p. It is known as “slicing” and “dicing”

in the industry.

5.2.1 SELECTION Syntax in NOX

The syntax diagram for the select method in NOX is given as follows:

select method ::=

select method header

variable declarations

NOX object creation {declaration, instantiation and initialization}

return statement

The select method header is followed by some optional variable declarations and

NOX object creation that are used in the OLAP query. The NOX objects are declared

98

and instantiated and possibly initialized. The last statement returns the selection cri-

teria, formulated as a boolean expression.

Next, we give the syntax diagrams for the select method header, the NOX ob-

ject creation {declaration, instantiation and initialization} and the return

statement.

select method header ::=

boolean select ()

NOX object creation {declaration, instantiation and initialization}
::=

OLAP Dimension creation OLAP Measure creation

OLAP Hierarchy creation OLAP Path creation

OLAP Property creation

99

return statement ::=

return boolean logic predicate ;

The first syntax diagram shows the return type of the select method which is boolean.

The return type of a selection operator is always a single boolean value. The sec-

ond syntax diagram identifies the type of NOX objects that are created. There are

the OLAP dimensions and their properties, OLAP hierarchies and their paths, and

OLAP measures. The OLAP hierarchies cannot exist without their dimensions. Also,

each OLAP property is defined as a member of a certain dimension. The parallel

lines corrspond to parallel constructs creation. The last syntax diagram returns the

boolean logic expression that corresponds to the SELECTION criteria of the OLAP

query. Examples in the following subsections demonstrate how these programming

constructs define an OLAP query in NOX.

5.2.2 A Simple SELECTION

NOX is used on the client-side and is responsible for compiling, translating, sending

the query in a certain format and receiving the final result from the server side. This

is all transparent to the programmers. It allows them to think of the target of the

“query” as though it were merely an object(s) residing in local memory.

To illustrate how application programming is done in NOX, we begin with a query

that specifies a simple selection criteria, namely that we would like to list total sales

100

for the year 2001. Listing 5.1 provides the corresponding OlapQuery definition, along

with a small main method that demonstrates how the query’s execute method would

be invoked. In this example, we will ignore the PROJECTION method that would

specify the measure and display attributes in order to focus our attention on the

SELECTION operation. We also ignore the network connection and authentication

methods. We can see that the select method instantiates a DateDimension and

invokes its getYear() method. Because Dates are virtually universal in analytical

processing, NOX provides a fully functional Date class “out of the box” (with the

standard empty method bodies). In terms of the SELECTION criterion, note how it is

specified simply via a boolean-generating return statement.

In Lisiting 5.1, the select() method is not called as it is only defined to contain

the query code and then translated to XML query string. It is the execute() method

that contains the corresponding XML query string that will be called. The execute()

method is defined in Listing 4.5 and called in Listing 5.1. The select() method is

defined in Listing 4.5 and over-ridden in Listing 5.1.

It is crucial that we understand why such an approach is used. From the program-

mer’s perspective, the query is executed against the physical data cube such that the

selection criteria will be iteratively evaluated against each cell. If the selection test

evaluates to true, the cell is included in the result; if not, it is ignored. In reality, of

course, the server would almost certainly not resolve a query in this manner. After

the source code has its parse tree produced, constructs such as select, project, in-

tersection, union and difference get converted into XML elements such as selection,

101

class SimpleQuery extends OlapQuery {

public SimpleQuery (S t r ing cubename) {

super (cubeName) ;

}

public boolean s e l e c t () {

DateDimension date = new DateDimension () ;

return date . getYear () == 2001 ;

}

// . . . p r o j e c t i on exc luded

}

public class Demo1 {

public stat ic void main (St r ing [] a rgs) {

// . . .DBMS network connect ion

SimpleQuery myQuery = new SimpleQuery (‘ ‘ SalesByDate ’ ’) ;

Resu l tSet r e s u l t = myQuery . execute () ;

// . . . manipulate r e s u l t s e t

}

}

Listing 5.1: Simple OLAP query

102

projection, intersection, union and difference. Other elements are mapped according

to the children / parent relationships in the parse tree and according to values stored.

Different combinations of nodes and tokens are checked and mapped to the proper

XML elements and values. Throughout this process, various DOM utilities and ser-

vices are used in order to generate and verify the XML. Finally, once the query is

decomposed and sent to the server, the backend DBMS is free to resolve the query.

In terms of the decomposition itself, it is of course represented in an XML string

generated by the pre-processor. This string is inserted into the query’s execute method

and subsequently invoked in the main method. At run-time, this invocation produces

a network call to the DBMS to send the query and receive its results. Again, we

stress that all of this processing is entirely invisible to the end user. Listing 5.2 is a

re-written version of the select OLAP query example described earlier. The select()

method is not anymore included in the re-written version of the execute() method

as it was defined in the first place just to include the OLAP query. Instead, an

execute() method will replace the select() method containing the XML query string

of the original OLAP query defined in the select() method. The execute() method

returns an empty cube is returned, as it is only visualized as an object in memory

by the programmer. It actually contains no data as the real result data cube is sent

from the server after the OLAP query is resolved.

To complete this first example, Figure 28 of Chapter 4 shows the relevant portion

of the parse tree that is constructed by the pre-processor. This tree corresponds to

the query given in Lisiting 5.1.

103

class SimpleQuery extends OlapQuery {

SimpleQuery (S t r ing cubeName) {

super (cubeName) ;

}

public Cube execute () {

St r ing xmlQuery =

‘ ‘<?xml ve r s i on = ‘ ‘1 .0 ’ ’ encoding = ‘ ‘UTF−8 ’ ’ s tanda lone = ‘ ‘no ’ ’?>

<!DOCTYPE QUERY SYSTEM ‘ ‘ dtd/ClientQuery . dtd ’ ’><QUERY>

<DATA_QUERY> <CUBE_NAME> sample </CUBE_NAME>

<OPERATION_LIST> <OPERATION> <SELECTION> <DIMENSION_LIST>

<DIMENSION> <DIMENSION_NAME> Date </DIMENSION_NAME>

<EXPRESSION> <RELATIONAL_EXP> <SIMPLE_EXP> <EXP_VALUE>

<ATTRIBUTE> year </ATTRIBUTE> </EXP_VALUE> </SIMPLE_EXP>

<COND_OP> <EQUALITY_OP> EQUALS </EQUALITY_OP> </COND_OP>

<SIMPLE_EXP> <EXP_VALUE> <CONSTANT> 2001 </CONSTANT>

</EXP_VALUE> </SIMPLE_EXP> </RELATIONAL_EXP> </EXPRESSION>

</DIMENSION> </DIMENSION_LIST> </SELECTION>

</OPERATION> </OPERATION_LIST> </DATA_QUERY> </QUERY>’ ’ ;

Communicator comm = new Communicator () ;

comm. sendQuery (xmlQuery) ;

return new Cube () ;

}

}

Listing 5.2: Re-written version of Listing 5.1 that contains the XML string and sends
it to the server

104

While the trees can become fairly complex for larger queries, in this simple case

we can see the special “Extends OLAP Query And Body” node that has been in-

serted by JJTree, as well the long branch of selection criteria nodes that identifies the

programmer’s query logic.

By “walking the tree”, the pre-processor — in conjunction with the DOM facilities

— is able to produce the final query XML string depicted in Listing 5.3 that is

actually sent to the server. A DOM tree representation of the XML string is given in

Figure 30.

5.2.3 A More Sophisticated SELECTION Query

An example of a more complex query is given in Listing 5.4. This query performs

a “slicing” and “dicing” operation where the sales values are returned for customers

whose age is more than 40 years old, where the months are between May and October

of 2007, where the supplier’s balance /100 < 45623 and the products are either the

“interior” parts of “automotive” vehicles or the “lights” of the “exterior” parts of the

“automotive” vehicles. The “Product Hierarchy” of the “Product” dimension is used

to specify OLAP paths to specific levels in the hierarchy. This is explained in detail in

Chapter 6. Complex queries made of SELECTION and PROJECTION operations can be

formulated by having select method and project method in the OLAP query. Sim-

ilarly, set operations are formulated by query union, intersection and difference

methods in the OLAP query.

105

<QUERY>

<DATA_QUERY>

<CUBE_NAME>sample</CUBE_NAME>

<OPERATION_LIST>

<OPERATION>

<SELECTION>

<DIMENSION_LIST>

<DIMENSION>

<DIMENSION_NAME>date</DIMENSION_NAME>

<EXPRESSION>

<RELATIONAL_EXP>

<SIMPLE_EXP>

<EXP_VALUE>

<ATTRIBUTE>year</ATTRIBUTE>

</EXP_VALUE>

</SIMPLE_EXP>

<COND_OP>

<EQUALITY_OP>EQUALS</EQUALITY_OP>

</COND_OP>

<SIMPLE_EXP>

<EXP_VALUE>

<CONSTANT>2001</CONSTANT>

</EXP_VALUE>

</SIMPLE_EXP>

</RELATIONAL_EXP>

</EXPRESSION>

</DIMENSION>

</DIMENSION_LIST>

</SELECTION>

</OPERATION>

</OPERATION_LIST>

</DATA_QUERY>

</QUERY>

Listing 5.3: Simple query XML string

106

QUERY

DATA_QUERY

CUBE_NAME =
"sample"

OPERATION_LIST

OPERATION

SELECTION

DIMENSION_LIST

DIMENSION

DIMENSION_NAME
= "date"

expression

relational_exp

simple_exp

exp_value

attribute = "year"

cond_op

equality_op =
"equals"

simple_exp

exp_value

constant = "2001"

Figure 30: DOM tree representation of the XML string in Listing 5.3

107

class ComplexQuery extends OlapQuery {

public boolean s e l e c t () {

DateDimension date = new DateDimension () ;

Customer customer = new Customer () ;

OlapProperty dateMonth = new OlapProperty (date . getMonth ()) ;

Supp l i e r s upp l i e r = new Supp l i e r () ;

Product1 product = new Product () ;

ProductHierarchy proHierarchy = product . getProductHierarchy () ;

return ((customer . getAge () > 40) &&

((date . getYear () == 2007) && (dateMonth . inRange (5 ,10)))

&&

((s upp l i e r . getBalance () / 100) < 45623 .00) &&

(proHierarchy . i n c l ud e s (new

OlapPath (‘ ‘ automotive ’ ’ , ‘ ‘ e x t e r i o r ’ ’ , ‘ ‘ l i g h t s ’ ’) ,

new OlapPath (‘ ‘ automotive ’ ’ , ‘ ‘ i n t e r i o r ’ ’))) ;

}

}

Listing 5.4: A more complex OLAP query

108

CompilationUnit

ExtendsOlapQueryandBody

ClassOrInterfaceBodyDeclaration ClassOrInterfaceBodyDeclaration

MethodDeclarator BlockStatement BlockStatement

ConditionalExpression

EqualityExpression

CondAndNode

CondAndNode

CondAndNode

EqualityExpression EqualityExpression

PrimPrefix

ConditionalExpression

CondAndNode

RelationalExpression

RelationalExpression

AdditiveExpression AdditiveExpression

PrimExpression

PrimPrefix

NameNode

PrimSuffix

ConditionalExpression

PrimPrefix

Literal

EqualityExpression

See Figure
ComplexQuery3
for the Subtree
rooted at the
above node:
EqualityExpression

See Figure
ComplexQuery4
for the Subtree
rooted at the above
node:
EqualityExpression

See Figure
ComplexQuery2 for the
Subtree rooted at
the above node:
CondAndNode

Figure 31: A subtree of the more complex query parse tree

A subtree of the query parse tree generated by the pre-processor is depicted in

Figure 31. Traversing the tree, in an in-order way, the reader will note three subtrees

that are given in Figure 32, Figure 33 and Figure 34 respectively. Special tokens

are located by the NOX pre-processor while traversing the nodes of the OLAP query

parse tree and the XML string of the query is constructed accordingly.

109

CondAndNode

EqualityExpression EqualityExpression

PrimPrefix

PrimExpression

PrimSuffix

NameNode

PrimPrefix

ConditionalExpression

EqualityExpression

ConditionalExpression

EqualityExpression

PrimPrefix

ConditionalExpression ConditionalExpression

PrimPrefix PrimPrefix

Literal Literal

PrimPrefix

ConditionalExpression

EqualityExpression

PrimSuffixPrimSuffix

RelationalExpression RelationalExpression

PrimPrefix

LiteralPrimExpression

PrimPrefix

NameNode

PrimSuffix

Figure 32: ComplexQuery2: Subtree rooted at “CondAndNode” node of Figure 31

110

EqualityExpression

PrimPrefix

ConditionalExpression

AdditiveExpression

PrimPrefix

MultExpression

RelationalExpression

AdditiveExpression

MultExpression MultExpression

PrimExpression

PrimPrefix PrimSuffix

NameNode

PrimPrefix

Literal

PrimExpression PrimExpression

PrimPrefix

Literal

AdditiveExpression

RelationalExpression

PrimPrefix

Literal

PrimExpression

PrimPrefix PrimSuffix

NameNode

PrimPrefix

Literal

Figure 33: ComplexQuery3: Subtree rooted at tne first “EqualityExpression” node of
Figure 31

111

EqualityExpression

PrimExpression

PrimPrefix PrimSuffix

NameNode

PrimPrefix

Literal

PrimSuffix

PrimExpression

PrimPrefix

NameNode ConditionalExpression

PrimPrefix

Literal

PrimPrefix

Literal

PrimSuffixPrimSuffixPrimSuffix

PrimSuffix

ConditionalExpression

Figure 34: ComplexQuery4: Subtree rooted at the second “EqualityExpression” node
of Figure 31

112

NOX parses the query in Listing 5.4 by walking its parse tree and then sends the

resulting XML string, given in Listing C.1 in Appendix C, to the server.

As we will be comparing NOX queries with MDX queries, we give a brief expla-

nation of the grammatical structure of MDX. Listing 5.5 depicts the canonical MDX

query format. The SELECT-FROM-WHERE is syntactically similar to SQL but definitely

its functionality is different. In the SELECT clause, the axis_specification defines the

data cube axis where features/measures are displayed/returned. The FROM clause

specifies the cube name and the WHERE clause specifies the cube cells selection con-

straints. MDX calls it a slicer_specification but it is not only concerned with slicing

but dicing as well.

<select_statement> : := [WITH <formu la_spec i f i c a t i on >]

SELECT [< ax i s_ sp e c i f i c a t i o n >

[, <ax i s_ sp e c i f i c a t i o n >]∗]

FROM [< cube_spec i f i c a t i on >]

[WHERE [< s l i c e r_ s p e c i f i c a t i o n >]]

[< ce l l_props >]

Listing 5.5: MDX SELECT statement

The MDX equivalence of the query is shown in Listing 5.6. The “slicing” and “dic-

ing” condition with the comparison operators “<” and “>” is expressed in MDX using

the FILTER statement in the axis_specification (responsible for display in concept)

113

part of the query. On the other hand, the “slicing” and “dicing” condition with the

equality comparison operators can be expressed in either the FILTER statement in

the axis specification part or the WHERE part of the query. At the very least, this

can be considered confusing since the building constructs of the query specification

should be data specific, which is not the case in MDX. As such, MDX does not pro-

vide the concept of separation of concerns which, as much as possible partitions the

program into distinct non-overlapping features or behaviors. Thus, the modularity of

programming and encapsulation of data is not achieved in MDX. Though the size of

the MDX is smaller in this case, other codes tend to scale more in size as queries get

more complicated.

5.3 PROJECTION

The project() method in the OlapQuery class is the method responsible for the

PROJECTION algebraic operator (πattribute1,...,attributencube). PROJECTION identifies pre-

sentation attributes, including both the measure attributes and dimension members

(features).

114

SELECT

FILTER({} , (([Supp l i e r s] . [Balance])

/ 100 < 45623.00)

AND ([Customer] . [Age] > 40))

ONROWS

FROM SampleCube ;

WHERE ([Date] . [Year] .& [2007) ,

[Date] . [Month] . & [5] : [Date] . [Month] . & [1 0] ,

{ [Product] . [ProductHierarchy] . [automotive] .

[e x t e r i o r] . [l i g h t s] ,

[Product] . [ProductHierarchy] . [automotive] . [i n t e r i o r] })

Listing 5.6: A more complex MDX query corresponding to the query in Listing 5.4

115

5.3.1 PROJECTION Syntax in NOX

The syntax diagram for the project method in NOX is given as follows:

project method ::=

project method header

variable declarations

NOX object creation {declaration, instantiation and initialization}

projections assignment statement

return statement

The project method syntax starts with the project method header, followed

by some optional variable declarations and NOX object creation that are used

in the OLAP query. The NOX objects are declared and instantiated and possibly

initialized. The OLAP hierarchies would be one such example. The main display

statement in the project method is the projections assignment statement which

lists the display criteria, whether features or measures.

116

Next, we give the syntax diagrams for the project method header, the projec-

tions assignment statement and the return statement. NOX object creation

{declaration, instantiation and initialization} is the same as the one given in

the previous section for SELECTION.

project method header ::=

Object[] project ()

The project method as shown in the syntax diagram above returns type Object[].

In Java, this implies an array of Objects, indicative of its purpose within the NOX

framework to identify various display attributes (strings, ints, floats, etc.).

projections assignment statement ::=

projections := { list of Objects to display } ;

In the above syntax diagram, the right hand side operand of the projections assign-

ment statement list Objects to be displayed. In terms of compilation, any object

works. However, in terms of logic errors, some types will not make sense to be dis-

played, such as a boolean operator.

117

return statement ::=

return projections ;

The last syntax diagram returns the Object[] type expression that corresponds to

the display criteria of the OLAP query. We demonstrate how the project method

programming constructs define an OLAP query in NOX by a simple example. More

complex examples are given throughout the thesis chapters.

5.3.2 A Simple PROJECTION

To illustrate how PROJECTION is done in NOX, we begin with a query that speci-

fies a simple PROJECTION criterion, namely that we would like to return the cells for

the MonthlySales measure and display the names of the customers and their age.

Listing 5.7 provides the corresponding OlapQuery definition. The project method

returns the type Object[] which is the type of projections that must be used to list

the features/measures to be displayed. In this example, the project method instanti-

ates a Customer dimension and invokes its getName() and getAge() methods. It also

instantiates a Measure and invokes its getMonthlySales() to return the MONTHLY

SALES measure. Here the types of the getters, when assigned to the projections

set, are flexible since they are casted to type Object. Features from the same dimen-

sion are bound to one axis of the result cube. An example is returning the features

Age and Name on one dimension/axis because they belong to the same dimension,

118

namely Customer. As for the input cube to the OLAP query, in this example, it is

given as the parameter to the query constructor, namely “SalesByDate”. We note

here (similar to what was explained earlier in the select() example of Listing 5.1 that

the project() method is not called as it is only defined to contain the query code and

then translated to XML query string. It is the execute() method that contains the

corresponding XML query string that will be called. The execute() method is defined

in Listing 4.5 and called in Listing 5.7. The project() method is defined in Listing 4.5

and over-ridden in Listing 5.7.

The equivalence in MDX of the NOX query given in Listing 5.7 is depicted in

Listing 5.8. The measure MONTHLY SALES is displayed on the COLUMNS axis. Cus-

tomer’s Name and Age are displayed on the ROWS axis.

5.4 Set Operations

Previously, we suggested that set operations are defined quite simply in the NOX

grammar. As it turns out, their specification in the native language is just as straight-

forward. Listing 5.9 provides a simple illustration. In this case, the programmer

defines the “outer” query using the standard select method (and possibly others).

In the INTERSECTION method, the “inner” query is specified merely by returning the

query object that defines that query. No additional syntax is required. Using this in-

formation, the NOX pre-processor can combine both queries into a single XML string

corresponding to the nested style of the grammar. The re-written execute() method

will then include the XML string. This process is transparent to the programmer.

119

class SimpleQueryProject extends OlapQuery {

public SimpleQueryProject (S t r ing cubename) {

super (cubeName) ;

}

public Object [] p r o j e c t () {

Customer customer = new Customer () ;

Measure measure = new Measure () ;

Object [] p r o j e c t i o n s = {measure . getMonthlySales () ,

customer . getName () , customer . getAge () } ;

return p r o j e c t i o n s ;

}

// . . . s e l e c t i o n exc luded

}

public class Demo1 {

public stat ic void main (St r ing [] a rgs) {

// . . .DBMS network connect ion

SimpleQueryProject myQuery = new

SimpleQueryProject (‘ ‘ SalesByDate ’ ’) ;

Resu l tSet r e s u l t = myQuery . execute () ;

// . . . manipulate r e s u l t s e t

}

}

Listing 5.7: Simple OLAP query projection

120

SELECT { [Measures] . [Monthly Sa l e s] } ON COLUMNS,

[Customer] . [Name] , [Customer] . [Age] ONROWS

FROM SampleCube ;

Listing 5.8: Simple MDX query projection corresponding to the query in Listing 5.7

This is why the select() method does not need to be called neither in the constructor

method of the InnerQuery nor in the intersection method of the OuterQuery. The

“inner” query class is given in Listing 5.10.

In general, set operations are syntactically modeled on an OOP paradigm. As men-

tioned in the previous chapter, just similar to a String equality check in Java, where

we would write myString.equals("Joe"), rather than something like myString ==

"joe". In the intersection example given in Listing 5.9 and Listing 5.10, this same

approach is expressed as outerQuery.intersection().

The MDX query corresponding to the set INTERSECTION query of Listing 5.9

is shown in Listing 5.11, where the FILTER statement is used to return sets with

the “slicing” and “dicing” condition satisfied, and then these sets are used as argu-

ments to the INTERSECT statement used to do set INTERSECTION in MDX. The

INTERSECT operation in this example takes two arguments. The first argument

has two conditions, namely FILTER ({}, [Customer].[age] < 35) and FILTER ({},

[Customer].[age] > 18). The second argument has one condition, namely FILTER({},

[Product].[weight] > 10). These correspond to the conditions given in the select()

121

class OuterQuery extends OlapQuery{

public OuterQuery (St r ing cubename) {

super (cubeName) ;

}

public boolean s e l e c t () {

CustomerDimension customer = new CustomerDimension () ;

ProductDimension product = new ProductDimension () ;

return ((customer . getAge () < 30) && (product . getWeight () >

10 . 0)) ;

}

public OlapQuery i n t e r s e c t i o n () {

return new InnerQuery () ;

}

}

Listing 5.9: Set INTERSECTION operation using the select method in NOX

122

class InnerQuery extends OlapQuery {

public InnerQuery (St r ing cubename) {

super (cubeName) ;

}

public OlapQuery InnerQuery () {

return null ;

}

public boolean s e l e c t () {

CustomerDimension customer = new CustomerDimension () ;

return ((customer . getAge () > 18)) ;

}

}

Listing 5.10: The “Inner” query used in the INTERSECTION operation of Listing 5.9

123

SELECT

INTERSECT (

(FILTER({} , [Customer] . [age] < 35) ,

FILTER({} , [Customer] . [age] > 18)) ,

FILTER({} , [Product] . [weight] > 10)

)

ON COLUMNS

FROM SampleCube

Listing 5.11: MDX set INTERSECTION query corresponding to the query in Listing 5.9

methods of Listing 5.9, where the method intersection() does the intersection between

these two conditions. One condition is the compound condition (customer.getAge()

< 30) && (product.getWeight() > 10.0). The other condition is (customer.getAge()

> 18).

Another example of the NOX set INTERSECTION is given in Listing 5.12, where

the programmer now defines the “outer” query using the project method. Its “inner”

query class is provided in Listing 5.13. Here, we use Object includesList(OlapPath

...path) method which identifies and ultimately displays values for members of

some hierarchical paths in the dimensions hierarchies. This method is used in the

project method, hence displaying values for members that belong to the requested

hierarchical paths that are passed as arguments to the method. More details about

124

class OuterQueryProject extends OlapQuery {

public Object [] p r o j e c t () {

DateDimension date = new DateDimension () ;

CalendarHierarchy ca l endarHie rarchy =

date . getCalendarHierachy () ;

Object [] p r o j e c t i o n s = { ca l endarHie rarchy . i n c l u d e sL i s t (new

OlapPath (‘ ‘ 2001 ’ ’) ,new OlapPath (‘ ‘ 2002 ’ ’) ,new

OlapPath (‘ ‘ 2003 ’ ’)) } ;

return p r o j e c t i o n s ;

}

public OlapQuery i n t e r s e c t i o n () {

return new InnerQueryProject () ;

}

}

Listing 5.12: Set INTERSECTION operation using the project method in NOX

OLAP hierarchies and paths will be presented in the next chapter.

Listing 5.14 shows the MDX query corresponding to the set INTERSECTION query

of Listing 5.12, where two sets are used as arguments of the INTERSECT statement,

each set containing 3 different years. Hence, the query results in displaying the

INTERSECTION of the two sets on the ROWS axis.

Similar to the INTERSECTION method in NOX that supports the functionality of

the intersection of sets in OLAP, NOX’s UNION and DIFFERENCE methods depict the

UNION and DIFFERENCE of sets in OLAP, respectively.

125

class InnerQueryProject extends OlapQuery{

public OlapQuery InnerQueryProject () {

return void ;

}

public Object [] p r o j e c t () {

DateDimension date = new DateDimension () ;

CalendarHierarchy ca l endarHie rarchy =

date . getCalendarHierachy () ;

Object [] p r o j e c t i o n s = { ca l endarHie rarchy . i n c l u d e sL i s t (new

OlapPath (‘ ‘ 2002 ’ ’) ,

new OlapPath (‘ ‘ 2003 ’ ’) ,new

OlapPath (‘ ‘ 2004 ’ ’)) } ;

return p r o j e c t i o n s ;

}

}

Listing 5.13: The “Inner” Query used in the INTERSECTION operation of Listing 5.12

126

SELECT

INTERSECT (

{ [Date] . [Calendar Year] .& [2 0 0 1] ,

[Date] . [Calendar Year] .& [2 0 0 2] ,

[Date] . [Calendar Year] .& [2 0 03] }

, { [Date] . [Calendar Year] .& [2 0 0 2] ,

[Date] . [Calendar Year] .& [2 0 0 3] ,

[Date] . [Calendar Year] .& [2 0 04] })

ONROWS

FROM SampleCube

Listing 5.14: MDX set INTERSECTION query corresponding to the query in Listing 5.12

127

5.5 Query Inheritance

NOX queries are easily extendable due to the fact that inheritance is well-supported

in NOX, as will be illustrated in this section. One of the reasons that we represent

algebraic operations in separate methods is simply because most operations are se-

mantically unique, making it very hard to combine operations into a single native

language method (with a single return type). However, a second rationale is just

as important. Namely, we feel that it is extremely valuable to allow the re-use of

previous, often very complex, queries. We saw a simple example of this with the

“inner” query in the previous section. A more powerful opportunity would be to allow

programmers to re-use portions of already defined queries. Perhaps the most obvi-

ous example would be to re-define the project method to simply identify a different

measure or display attribute. With virtually all current approaches(e.g, MDX) this

would involve cutting and pasting a previous chunk of source code, a process that is

both inefficient and error prone.

With NOX’s distinct query methods, we now have a great deal more latitude in

this regard. Listing 5.15 demonstrates how a “new” query extends an “old” one, in this

case providing a new PROJECTION method. Because NOX obeys inheritance chaining,

it sees that a new PROJECTION has been specified, and creates a new query with the

SELECTION method of the “old” query and the PROJECTION method of the “new” query.

This is because in inheritance chaining, either inherited methods can be used directly

as they are or inherited methods can be overrideen by creating new instance methods

128

in the subclass that has the same signature as the one in the superclass. Any subse-

quent changes to the source of OlapQuery will be automatically integrated into the

new query upon re-compilation. The method inRange(OlapPath ... path) ac-

cepts a variable length sequence of OlapPath’s as its arguments that are essentially

used to match programmer-defined values against members of a dimension hierar-

chical path(s). This method is used in the select method, hence aggregating values

for members that belong to the matched hierarchical paths. More details about the

inRange(OlapPath ... path) method will be given in the next chapter.

class ThreeYears extends OlapQuery {

public boolean s e l e c t () {

CustomerDimension customer = new CustomerDimension () ;

DateDimension date = new DateDimension () ;

TimeHierarchy t imeHierarchy = date . getTimeHierachy () ;

OlapPath fromYear = new OlapPath ("1996") ;

OlapPath toYear = new OlapPath ("2001") ;

return (t imeHierarchy . inRange (fromYear , toYear) &&

customer . getAge () == 35) ;

}

public Object [] p r o j e c t () {

CustomerDimension customer = new CustomerDimension () ;

SalesMeasure measure = new SalesMeasure () ;

Object [] p r o j e c t i o n s = {measure . getCount () ,

customer . getName () } ;

129

return p r o j e c t i o n s ;

}

}

class ExtendsThreeYears extends ThreeYears {

public Object [] p r o j e c t () {

ProductDimension product = new ProductDimension () ;

SalesMeasure measure = new SalesMeasure () ;

Object [] p r o j e c t i o n s = {measure . g e tSa l e s () ,

product . getLabe l () } ;

return p r o j e c t i o n s ;

}

}

Listing 5.15: Example 1: Over-riding a query class

With MDX, in contrast, inheritance is not supported. Re-use of sets is permitted

only by using the WITH SET statement as illustrated in Listing 5.16. This is very

limited in the context of OLAP querying!

Another example of query inheritance in NOX is depicted in Listing 5.17. Here,

the base query provides a SELECTION method, and two queries extend this base query,

where each includes PROJECTION method. When this query inheritance scenario is

expressed in MDX, as shown in Listing 5.18, it is a big drawback that the slicing

criteria have to be repeated, as different members are displayed on the resulting cube

axes. This is demonstrated in the FILTER expression in the “axis specification”,

130

WITH

SET [3 Years] AS ’ [Time] . [1 9 9 6] : [Time] . [2 0 0 1] ’

SELECT

{ [Customer] . [name] } on COLUMNS

{ [Measures] . [count] } on ROWS

FROM InventoryCube

WHERE ([3 Years] , [Customer] . [age] . [3 5]) ;

SELECT

{ [Product] . [l a b e l] } on COLUMNS

{ [Measures] . [s a l e s] } on ROWS

FROM InventoryCube

WHERE ([3 Years] , [Customer] . [age] . [3 5]) ;

Listing 5.16: MDX query corresponding to the NOX query of Listing 5.15

131

where different sets are filtered according to the same slicing condition.

5.6 Result Sets

We come now to the representation of the query results. One of the great advantages

of ORM systems is that they allow data to be more or less transparently mapped

back into client applications. NOX offers the same functionality in the context of

multi-dimensional cube results. Specifically, the framework retrieves results from the

server and transforms them into a multi-dimensional array object that can be directly

accessed via the OlapResultSet reference.

To understand how result sets are represented, it is first necessary to see how

they are constructed. Once the analytics server has resolved the query, it packages

the result into an XML message. A DTD is again used to define the OlapResultSet

format. A listing of the DTD is provided in Listing 5.19. In short, the OlapResultSet

is structured as a combination of meta data and cell data. The meta data consists

of the relevant dimensions, along with those dimension members actually included

in the query result. The cell data, on the other hand, is listed in a compressed row

format that maps cell values to the corresponding axis coordinates.

Listing 5.20 provides a partial representation of a simple result set. Note how each

customer member is associated with a monotonically increasing Member ID, starting

from zero. In actual fact, these ID values are cube index coordinates and will be used

by the NOX client libraries to efficiently construct the OlapResultSet object. In the

Raw Data section of the file, we can see how each cell value is associated with the

132

class SelectQuery extends OlapQuery {

public boolean s e l e c t () {

CustomerDimension customer = new CustomerDimension () ;

return (customer . getAge () > 35 && customer . getAge () < 65) ;

}

}

class ExtendToProjectQuery1 extends SelectQuery {

public Object [] p r o j e c t () {

CustomerDimension customer = new CustomerDimension () ;

SalesMeasure measure = new SalesMeasure () ;

Object [] p r o j e c t i o n s = {measure . getCount () , customer . getName () } ;

return p r o j e c t i o n s ;

}

}

class ExtendToProjectQuery2 extends SelectQuery {

public Object [] p r o j e c t () {

ProductDimension product = new ProductDimension () ;

SalesMeasure measure = new SalesMeasure () ;

Object [] p r o j e c t i o n s = {measure . g e tSa l e s () , product . getLabe l () } ;

return p r o j e c t i o n s ;

}

}

Listing 5.17: Example 2: Over-riding query classes

133

SELECT

FILTER({} , [Customer] . [age] > 35

AND [Customer] . [age] < 65) on COLUMNS

FROM InventoryCube ;

SELECT

{ [Measures] . [count] } on COLUMNS,

FILTER({ [Customer] . [name] } , [Customer] . [age] > 35

AND [Customer] . [age] < 65) on ROWS

FROM InventoryCube ;

SELECT

{ [Measures] . [s a l e s] } on COLUMNS,

FILTER({ [Product] . [l a b e l] } , [Customer] . [age] > 35

AND [Customer] . [age] < 65) on rows

FROM InventoryCube ;

Listing 5.18: MDX query corresponding to the NOX query of Listing 5.17

134

<!ELEMENT RESULT_CUBE (META_DATA, RAW_DATA)>

<!ELEMENT META_DATA (CUBE_NAME, DIM_COUNT, DIMENSION_LIST)>

<!ELEMENT DIMENSION_LIST (DIMENSION+)>

<!ELEMENT CUBE_NAME (#PCDATA)>

<!ELEMENT DIM_COUNT (#PCDATA)>

<!ELEMENT DIMENSION (DIM_NAME, MEMBER_LIST)>

<!ELEMENT DIM_NAME (#PCDATA)>

<!ELEMENT MEMBER_LIST (MEMBER+)>

<!ELEMENT MEMBER (MEMBER_NAME, MEMBER_ID)>

<!ELEMENT MEMBER_NAME (#PCDATA)>

<!ELEMENT MEMBER_ID (#PCDATA)>

<!ELEMENT RAW_DATA (ROW+)>

<!ELEMENT ROW (ID_LIST , VALUE)>

<!ELEMENT ID_LIST (MEMBER_ID+)>

<!ELEMENT VALUE (#PCDATA)>

Listing 5.19: Simplified version of OlapResultSet grammar

135

coordinates of three dimensions. The first row, for example, houses the values <0,

1, 2, 345.24>. Assuming that Customer is the first dimension in the meta data list,

this implies that the cell value 345.24 is associated with Customer[0] = Joe. We note

that regardless of the storage format of the server (ROLAP, MOLAP, or otherwise),

this XML is trivial to produce with a simple linear pass through the result.

<RESULT_CUBE>

<META_DATA>

<CUBE_NAME>Sa l e s</CUBE_NAME>

<DIM_COUNT>3</DIM_COUNT>

<DIMENSION_LIST>

<DIMENSION>

<DIM_NAME>Customer</DIM_NAME>

<MEMBER_LIST>

<MEMBER>

<MEMBER_NAME>Joe</MEMBER_NAME>

<MEMBER_ID>0</MEMBER_ID>

</MEMBER>

<MEMBER>

<MEMBER_NAME>Mark</MEMBER_NAME>

<MEMBER_ID>1</MEMBER_ID>

</MEMBER>

<!−− . . . a d d i t i o n a l members −−>

</MEMBER_LIST>

</DIMENSION>

<DIMENSION>

<DIM_NAME>Date</DIM_NAME>

<MEMBER_LIST>

<MEMBER>

<MEMBER_NAME>2001</MEMBER_NAME>

<MEMBER_ID>0</MEMBER_ID>

</MEMBER>

136

<MEMBER>

<MEMBER_NAME>2002</MEMBER_NAME>

<MEMBER_ID>1</MEMBER_ID>

</MEMBER>

<!−− . . . a d d i t i o n a l members −−>

</MEMBER_LIST>

</DIMENSION>

<!−− . . . a d d i t i o n a l dimensions −−>

</DIMENSION_LIST>

</META_DATA>

<RAW_DATA>

<ROW>

<ID_LIST>

<MEMBER_ID>0</MEMBER_ID>

<MEMBER_ID>1</MEMBER_ID>

<MEMBER_ID>2</MEMBER_ID>

<!−− . . . a d d i t i o n a l members IDs −−>

</ID_LIST>

<VALUE>345.24</VALUE>

</ROW>

<ROW>

<ID_LIST>

<MEMBER_ID>0</MEMBER_ID>

<MEMBER_ID>1</MEMBER_ID>

<MEMBER_ID>2</MEMBER_ID>

<!−− . . . a d d i t i o n a l members IDs −−>

</ID_LIST>

<VALUE>96.78</VALUE>

</ROW>

<!−− . . . a d d i t i o n a l rows/ c e l l s −−>

</RAW_DATA>

</RESULT_CUBE>

Listing 5.20: Partial listing of Result Set

137

Once the XML result is received at the client, it is immediately transformed into

a multi-dimensional object. In case the result set is too big to fit in memory, paging

might be necessary. The XML is parsed using the same DOM facilities used to cre-

ate the original query (of course with a different DTD). Meta data is inserted into a

series of lookup data structures (i.e., maps and dictionaries) that not only allow effi-

cient searches, but also permit transparent mapping between “user friendly” member

names and the server generated member IDs that are virtually meaningless to the end

user. Of course, these same Member IDs are critical to the module that builds the

physical Result Set object. Specifically, the Result Set Builder begins by construct-

ing an initially empty multi-dimensional array conforming to the specifications (i.e.,

dimension and member count) of the meta data. We note that this array must be

dynamically generated as the number of dimensions in the result cannot be known in

advance. Once this “shell” has been generated, a simple linear pass through the Raw

Data section of the XML file allows direct insertion of cell values as per the associated

member ID coordinates.

The Result Set API exposes a series of methods that allow for the simple manipu-

lation of the cube results. Individual cell values can be retrieved merely by specifying

the appropriate coordinates, either by axis value or member value. More sophisti-

cated access can also be layered on top of the simpler access primitives. For example,

Listing 5.21 shows how one might produce a simple report of all cells in the cube.

One merely has to retrieve the member values for each dimension and then, with a

set of nested FOR loops, combines the relevant coordinates for each cell.

138

St r ing dimension0

// . . . members r e t r i e v e d

for (int member_id_0:= members_id0_dimension0 ; member_id_0

<=members_id0n_dimension0 ; member_id_0++){

for (int member_id_1:= members_id1_dimension1 ; member_id_1

<=members_id1n_dimension1 ; member_id_1++){

coo rd ina t e s = new LinkedList<CubeCoordinate >() ;

c oo rd ina t e s . add (new CubeCoordinate (dimension0 , member_id_0)) ;

c oo rd ina t e s . add (new CubeCoordinate (dimension1 , member_id_1)) ;

System . out . p r i n t l n (r e s u l t . ge tCe l lVa lue (coo rd ina t e s)) ;

}

}

}

Listing 5.21: Trivial report method

Figure 35 shows the UML class diagram for the NOX API Result Set classes, where

three classes OlapResultCube class, OlapResultDimension class and CubeCoordinate

class are given. The CubeCoordinate class describe coordinates. Each coordinate is

declared as a string value that belongs to some dimension. The OlapResultDimen-

sion defines coordinates that belong to some dimension. It does this by declaring a

dimension name along with its TreeMap that contains different coordinate member

names and their axis offset. OlapResultCube describes the cube that contains the

different dimensions. It includes the cube name, the number of dimensions in the

cube, cube data, the TreeMap that contains the differnt dimension information, and

the dimensions order.

139

+OlapResultCube()
+OlapResultCube(in cubeName : String)
+getDimCount() : Integer
+setDimCount(in cubeName : String)
+getCubeName() : String
+setCubeName(in cubeName : String)
+getResultDimension(in dimension : String) : OlapResultDimension
+setDimensionArray(in dimensionOrder : ArrayList<OlapResultDimension>)
+getDimensionArray() : ArrayList<OlapResultDimension>
+getCellValue(in coordinates : LinkedList<CubeCoordinate>) : float
+getCellValue(in offset_array : Integer[]) : float
+setCellValue(in coordinates : LinkedList<CubeCoordinate>, in cellValue : float)
+setCellValue(in offset_array : Integer[], in cellValue : float)
+displayCube()
+displayCubeCells()
+formatDisplayString(in label : String) : String

OlapResultCube
-cubeName : String
-dimCount : Integer
-cubeData : CubeData
-dimensionMap : TreeMap<String, OlapResultDimension>
-dimensionOrder : ArrayList<OlapResultDimension>

+OlapResultDimension()
+OlapResultDimension(in dimensionName : String)
+getDimensionName() : String
+setDimensionName(in dimensionName : String)
+addMember(in member : String, in axisOffset : Integer)
+getDimensionMember() : Set<String>
+getOffset(in member : String) : Integer

OlapResultDimension
-dimensionName : String
-axisMap : TreeMap<String , Integer>

1 *

+CubeCoordinate(in dimension : OlapResultDimension, in member : String)
+getDimension() : OlapResultDimension
+getLabel() : String
+getOffset() : Integer

-dimension : OlapResultDimension
-member : String

CubeCoordinate

1

*

NOX API
client

result-set
classes

Figure 35: UML class diagram for the NOX API Result Set classes

140

5.7 Evaluation of the NOX Language

Table 1 compares the NOX OLAP query model to the MDX OLAP query model

and illustrates how NOX is superior to MDX in the context of OLAP querying.

Advantages of the NOX model over MDX are evident in OLAP query design, imple-

mentation, functionality, data encapsulation, separation of concerns, reusability and

its high level native language representation.

To illustrate how obscure an MDX query can be, relative to a NOX query, we

present in the coming subsection an MDX query and its equivalent NOX query.

5.7.1 Extension of the Project Method

With its flexible Object Oriented features, the NOX model can be easily extended to

accommodate all functionalities of MDX. Listing 5.22 depicts the MDX version of a

more “sophisticated” query, where measure VariantPercentage is created and defined

as a formula in terms of RunningTotalSubs and some hierarchical attributes. Tuples

are used here to indicate that RunningTotalSubs of a hierarchy path in 2004 in the

time hierarchy is subtracted from that of 2005 in the time hierarchy, then divided by

the total RunningTotalSubs of the “all” element in the time hierarchy. The “SELECT”

on COLUMNS displays the RunningTotalSubs and the VariantPercentage. However,

“SELECT” on ROWS is more complex in this example. There is a CROSSJOIN of

TopCount ([DMA] .children , 5000 ,([RunningTotalSubs])) and [Time].[2004

].& [1].[1].[1] ,[Time]. [2005].&[1].[1].[1] ,[Time]). This means that the top

5000 RunningTotalSubs of the children of [DMA] are crossjoined with the hierarchy

141

. .
NOX Queries MDX Queries

. .

. .
NOX is encoded in the same The MDX language is distinct,
native query language as and very different from,
the implementation programming language. the implementation language.
. .

. .
NOX queries are checked MDX queries are validated only at
at compile-time. run-time because they are string-based.
. .

. .
NOX queries can MDX queries cannot
easily be refactored. be refactored.
. .

. .
It is relatively simple to re-use More challenging reuse
the object-oriented OLAP hierarchies of hierarchies due to their
as will be illustrated in Chapter 6. low-level representation
. .

. .
Passing parameters to queries Passing parameters to queries
is flexible and intuitive is basic and primitive
as will be explained in Chapter 7. .
. .

. .
NOX queries are easily extendable MDX query language
as Inheritance is well-supported. is not easily extendable (if at all).
. .

142

. .
NOX Queries MDX Queries

. .

. .
NOX result sets are returned as Results are dependent on the
a cube object and are flexible embedding language that is responsible
in their manipulation and display. for their display.
. .

. .
NOX queries have an intuitive nature MDX queries have
of set operations. limited use of set operations
. .

. .
NOX supports the concept of separation of Slicing and Dicing operations are divided
concerns, where slicing and dicing between two totally different parts
operations are focused in the select of the select query namely the FILTER
method and the display requirements function in the “slicer specification” part
in the project method and the WHERE part of the MDX query.
. .

. .

. MDX queries are not well separated
NOX supports programming modularity into modules where each module
and encapsulation of data. accomplishes one feature.
. Queries do not support data hiding.
. .

. .
As NOX queries get larger, As MDX code becomes more obscure,
object oriented features become the development cycle increases significantly
even more valuable. The code due to difficulty of writing the code,
becomes more scalable debugging and testing issues
. .

Table 1: OLAP Queries Comparison between NOX and MDX

143

path of 2004 of the time hierarchy, the hierarchy path of 2005 of the time hierarchy,

and the “all” element. These are the values that will be displayed on ROWS and

COLUMNS. Finally, we note that the Selection is from ”consumers” cube and the

slicer_spefication (selection) is that “Zone Id” is equal to 14.

WITH

MEMBER [Measures] . [Var ientPercentage] AS

‘ (([Time] . [2 0 0 4] . \ & [1] . [1] . [1] ,

[RunningTotalSubs]) −
([Time] . [2 0 0 5] . \ & [1] . [1] . [1] ,

[RunningTotalSubs])) /

([Time] . [All Time] , [RunningTotalSubs]) ’

SELECT {

[RunningTotalSubs] ,

[Measures] . [Var ientPercentage] }

ON Columns ,

CrossJo in (

TopCount (

{ [DMA] . ch i l d r en } , 5000 ,

([RunningTotalSubs])) ,

{ [Time] . [2004] . \& [1] . [1] . [1] ,

[Time] . [2005] . \ & [1] . [1] . [1] ,

[Time] })

ON ROWS

FROM [consumers]

WHERE ([Zone Id] . \& [14])

Listing 5.22: A more complex MDX query

144

To write the same OLAP query in NOX, we can extend the basic model with

a number of relevant methods and programming constructs. Note that we did not

implement these in the prototype but included them as part of the future work. Our

motivation in this section is simply to demonstrate how flexible and easy to extend the

NOX model in general and its specific prototype for this thesis in particular in order

to support the OLAP required functionality. Listing 5.23 depicts the NOX version of

the query, where the following two new programming constructs are presented.

1. The MainQuery that extends OlapQuery has project and select methods. The

select method returns the cube cells that match the criterion that zone id =

14, whereas the project method includes a method call to the project method

of the VariantPercentage. This is a new method that can be addded easily to

the API. However, its implementation is not trivial.

2. Another new addition to the NOX API is the measureOperators class that

contains operators which can be applied to measures. In this example, the

operator is TopCount and takes three arguments: the first is the members to

select from, the second is the number of the members, starting at the top,

that are selected, and the third is the measure corresponding to the selected

members.

Class Var iantPercentage extends OlapQuery {

public Object p r o j e c t () {

Measure measures = new Measure () ;

145

TimeDimension time = new TimeDimension () ;

TimeHierarchy t imeHierarchy = time . getTimeHierarchy () ;

OlapPath pathTime1 = new OlapPath (‘ ‘ 1 January 2004 ’ ’) ;

OlapPath pathTime2 = new OlapPath (‘ ‘ 1 January 2005 ’ ’) ;

Object p r o j e c t i o n s [] = { measures . getRunningTotalSubs

(t imeHierarchy . i n c l u d e sL i s t (pathTime2)) −
measures . getRunningTotalSubs

(t imeHierarchy . i n c l u d e sL i s t (pathTime1))) /

measures . getRunningTotalSubs (t imeHierarchy . g e tA l l ()) } ;

return p r o j e c t i o n s ;

}

}

class MainQuery extends OlapQuery {

public Object p r o j e c t () {

Var iantPercentage var iantPercentage ;

OlapPath pathTime1 = new OlapPath (‘ ‘ 1 January 2004 ’ ’) ;

OlapPath pathTime2 = new OlapPath (‘ ‘ 1 January 2005 ’ ’) ;

Measure measures = new Measure () ;

measureOperator topCount = Measures . getOperator (’ ’TopCount ’ ’) ;

DMA dma = new DMA() ;

Object p r o j e c t i o n s [] = {Measures . getRunningTotalSubs () ,

var iantPercentage . p r o j e c t () , t imeHierarchy . i n c l u d e sL i s t

(pathTime1 , pathTime2) , t imeHierarchy . g e tA l l () ,

measureOperators . topCount (dma . getChi ldren () ,5000 ,

Measures . getRunningTotalSubs ()) }

return p r o j e c t i o n s ;

}

public boolean s e l e c t () {

Zone zone = new Zone () ;

return (zone . ge t Id () == 14)

}

}

Listing 5.23: project method extended in NOX and equivalent to MDX Listing 5.22

146

5.8 Conclusion

In this chapter, we described the API side of the NOX model. We demonstrated its

object-oriented programming libraries through data encapsulation and inheritance.

We illustrated the NOX API by presenting some UML diagrams pertaining to NOX in-

terface/abstract classes. We also presented examples of using the select and project

methods showing how easy and intuitive it is to build OLAP queries in NOX. The

set operations, INTERSECTION, UNION and DIFFERENCE are implemented using NOX

in an intuitive way. In addition, query inheritance provides the programmer with

an intuitive way of reusing queries by the inheritance feature in Java in general, and

NOX in particular. Result sets were simply returned from the server and embedded

in a cube whose cells are accessed by the programmer. Finally, to show how powerful

NOX is, we compare it to the de-facto OLAP language, MDX.

147

Chapter 6

Manipulating Hierarchies

As previously noted, hierarchical queries are extremely common in OLAP environ-

ments. Such roll up (or drill-down) processing is perhaps the most fundamental and

thus important of all OLAP operations. NOX provides an intuitive way of specifying

hierarchies simply because of its contemporary object-oriented features. Moreover,

these OOP facilities give rise to additional query functionality, namely the ability to

extend and reuse OLAP hierarchical queries.

In this chapter, we start in Section 6.1 by presenting the components of the frame-

work that are responsible for building the OLAP hierarchies. Then, we give examples

in Section 6.2 that demonstrate the flexibility and ease of expressing hierarchical

queries using the NOX model.

6.1 Supplemental Hierarchy Classes

Recall that the NOX framework provides a series of classes that define various com-

ponents of the object-oriented data model, such as dimensions and measures. In the

148

case of hierarchies, we extend the original design with a pair of new classes:

1. OlapHierarchy class

2. OlapPath class

The OlapHierarchy class provides the stub methods that are inherited by its sub-

classes. The OlapPath is essentially just a wrapper for a String Array that lists

textual members of a full or partial hierarchy path. Listing 6.1 depicts the extend-

able OlapHierarchy class. The two methods, includes(OlapPath ... path) and

inRange(OlapPath ... path), each accepting a variable length sequence of Olap-

Paths as an argument, are essentially used to match programmer-defined values

against members of a dimension hierarchical path(s). They are used in the select

method, hence aggregating values for members that belong to the matched hierarchi-

cal paths. The includes method is used to request aggregated values of cube cells

for members that belong exactly to the hierarchical paths passed as arguments. The

inRange method requests aggregated values of cube cells whose hierarchical paths

match the two arguments and all the hierarchical paths in between. The type re-

turned by these two methods is boolean which matches the type returned by the select

method. The type of the parameters passed is OlapPath which is described in List-

ing 6.2. Conversely, the two methods, Object includesList(OlapPath ...path)

and Object rangeList(OlapPath ...path), are used to identify and ultimately dis-

play values for members of some hierarchical paths in the dimensions hierarchies.

149

They are used in the project method, hence displaying values for members that be-

long to the requested hierarchical paths. The includesList method identifies values

for members that belong to the hierarchical paths passed as arguments to the method.

The rangeList method identifies values for members that belong to the hierarchical

paths passed as its two arguments and all the hierarchical paths in between. The

type returned by these two methods is Object which matches the type returned by

the project method. The type of the parameters passed is OlapPath that is described

in Listing 6.2.

The second main class used in building OLAP hierarchies queries is the Olap-

Path class whose implementation is given in Listing 6.2. The class has a private field

called path which is an array of strings that holds values of a path in some hierar-

chy. The constructor method OlapPath(String ... path) and the public method

setOlapPath(String ... path) are used to build a path in a given hierarchy with

string values passed as parameters. The order of the values given is important. Each

value corresponds to a member of a level in the hierarchy, and the values are given in

the order of the levels in that hierarchy.

6.2 Hierarchies Examples

In this section, we present a series of examples that demonstrate how OLAP hierarchy

queries may be implemented in practice (with an emphasis on the core SELECTION

and PROJECTION operations). Because we now have an arbitrarily defined dimension

to restrict (as opposed to the built-in Date dimension), we need a mechanism to

150

public class OlapHierarchy {

public OlapHierarchy () {

}

public boolean i n c l ud e s (OlapPath . . . path) {

return fa l se ;

}

public Object i n c l u d e sL i s t (OlapPath . . . path) {

return null ;

}

public boolean inRange (OlapPath path1 , OlapPath path2) {

return fa l se ;

}

public Object rangeL i s t (OlapPath path1 , OlapPath path2) {

return null ;

}

}

Listing 6.1: Class OlapHierarchy

151

public class OlapPath {

private St r ing [] path ;

public OlapPath () {}

public OlapPath (St r ing . . . path) {

int i = 0 ;

for (S t r ing s : path) {

this . path [i] = s ;

i++;

}

}

public void setOlapPath (St r ing . . . path) {

int i = 0 ;

for (S t r ing s : path) {

this . path [i] = s ;

i++;

}

}

public St r ing [] getOlapPath () {

return path ;

}

}

Listing 6.2: Class OlapPath

152

statically type-check the relevant dimension attributes (Again, we do NOT want to

use embedded strings to identify meta data elements). To do this, the programmer

simply creates subclasses that inherit the library-provided OlapDimension class and

adds the relevant attributes and getter methods (NOX can strip the “get” from

the getters to obtain case insensitive attribute names). Both dimension attributes

and hierarchies can be specified in this manner. Listing 6.3 illustrates this simple

approach. GeographicHierarchy is a simple extension of the NOX OlapHierarchy

class as shown in Listing 6.4. Given this simple Customer class, and a geographic

hierarchy corresponding to that of Figure 18 of Chapter 4, we can now discuss the

hierarchical query in the following example.

6.2.1 Hierarchy Example 1

In this example, we want to find data for older customers from California cities who

purchased products in the first half of 2007.

In NOX

The hierarchical query in NOX is depicted in Listing 6.5, where the SELECTION con-

ditions are expressed on both Date and Customer. We can see how the NOX path

object is used to identify the elements of a partial hierarchy path. (Note that the

path strings refer to raw cube data, NOT typed-checked meta data). Furthermore,

we see the use of the built-in includes method to constrain the hierarchy condition.

How does one interpret the expression hierarchy.includes(path)? Again, all se-

lection criterion are defined relative to the current cube cell. Logically, this condition

153

class Customer extends Dimension{

private int age ;

private St r ing name ;

private int ID ;

private GeographicHierarchy geoHierarchy ;

Customer () {

super () ;

}

Customer (S t r ing name) {

super (name) ;

}

public int getAge () {

return age ;

}

public St r ing getName () {

return name ;

}

public GeographicHierarchy getGeographicHierarchy () {

return geoHierarchy ;

}

public int getID () {

return ID ;

}

}

Listing 6.3: Simple OLAP dimension

154

public class GeographicHierarchy extends OlapHierarchy {

public GeographicHierarchy () {}

}

Listing 6.4: Class GeographicHierarchy

simply asks “Is this partial path consistent with the hierarchy members of this cell?”,

a representation that is indeed synonymous with the original query. We note that

while there are many variations on hierarchy traversal, the NOX model always uses

this same simple logical approach.

In MDX

The hierarchical query is given in MDX in Listing 6.6, where the geographic hierarchy

path to California is declared as a member in the Customer dimension using the WITH

MEMBER statement in MDX. We can see from the example how intuitive and object

oriented hierarchies are expressed in NOX compared to MDX.

6.2.2 Hierarchy Example 2

In this example, we want to display values for the sales and costs measures for the

two periods June-2001 and June-2002.

155

public boolean s e l e c t () {

DateDimension date = new DateDimension () ;

Customer customer = new Customer () ;

GeographicHierarchy h i e ra r chy =

customer . getGeographicHierarchy () ;

OlapPath path= new OlapPath (‘ ‘USA ’ ’ , ‘ ‘ C a l i f o r n i a ’ ’) ;

return (customer . getAge () > 65 &&

hie ra r chy . i n c l ud e s (path) &&

(date . getYear () == 2007 && date . getMonth () <= 6)) ;

}

Listing 6.5: Manipulating hierarchies: example 1

WITHMEMBER [Customer] . [C a l i f o r n i a] AS

[Customer] . [Geographic Hierarchy] . [USA] . [C a l i f o r n i a]

SELECT

FILTER({} , (([Date] . [Month] <= 6) AND ([Customer] . [Age] > 65)))

on ROWS

FROM SampleCube ;

WHERE ([Date] . [Year] .& [2007) , [Customer] . [C a l i f o r n i a])

Listing 6.6: MDX query corresponding to the query in Listing 6.5

156

In NOX

In the previous example given in Listing 6.5, the path object was declared and the

constructor method called in the declaration statement:

OlapPath path= new OlapPath(“USA”, “California”);.

Another way to construct OLAP paths is given in the example in Listing 6.7, where

the paths are built with the constructor method while passed as parameters in the

parameter list of the includesList method. In this example, it is a project method

that is used for the OLAP query. The result of this PROJECTION is that the two

measures sales and costs are displayed for members that belong to the “June-2001”

partial path (of one level this time) of the hierarchy TimeHierarchy and to the

“July-2001” partial path of the same hierarchy. The two partial paths are displayed

with the measure values as the output of the projection.

In MDX

The query of the example in this subsection is given in MDX in Listing 6.8. Each of

the two OLAP paths in the hierarchy is given as “name of the dimension” followed

by “name of the hierarchy”, followed by members’ values at different levels of the

hierarchy. In this case, it is one member value which is at the first level of the

hierarchy. “June-2001” is given in this MDX example as an OLAP path [Date].[Time

Hierarchy].[June-2001].

157

public Object [] p r o j e c t () {

DateDimension date = new DateDimension () ;

Measure measure = new Measure () ;

TimeHierarchy t imeHierarchy = date . getTimeHierachy () ;

Object [] p r o j e c t i o n s = {measure . g e tSa l e s () , measure . getCosts () ,

t imeHierarchy . i n c l u d e sL i s t (

new OlapPath (‘ ‘ June−2001 ’ ’) ,

new OlapPath (‘ ‘ July −2001 ’ ’)

)

} ;

return p r o j e c t i o n s ;

}

Listing 6.7: Manipulating hierarchies: example 2

SELECT

{ [Measures] . [s a l e s] , [Meausres] . [c o s t s] } on COLUMNS,

{ [Date] . [Time Hierarchy] . [June −2001] , [Date] . [Time

Hierarchy] . [July −2001]} on ROWS

FROM SampleCube ;

Listing 6.8: MDX query corresponding to the query in Listing 6.7

158

6.2.3 Hierarchy Example 3

In this example, we want to find data for older customers (older than 65 years) from

the three California cities San Diego, Los Angeles, and San Francisco who purchased

products in the first half of 2007.

In NOX

The NOX version of the query is given in Listing 6.9, where three path objects

are created corresponding to the three cities San Diego, San Francisco and Los

Angeles (at the third level of the geographic hierarchy) that are members of the

state of California . California (at the second level of the hierarchy) is a member

of the USA which is a member at the first level of the hierarchy.

In MDX

The MDX version of the query is given in Listing 6.10. The three geographic hier-

archy paths to California cities “San Diego”, “San Francisco” and “Los Angeles” are

declared as calculated members in the Customer dimension using the WITH MEM-

BER statement in MDX.

6.2.4 Hierarchy Example 4

In this example, we want to display the values of the costs measure for each of the

six years from 1996 to 2001.

159

public boolean s e l e c t () {

DateDimension date = new DateDimension () ;

Customer customer = new Customer () ;

GeographicHierarchy h i e ra r chy =

customer . getGeographicHierarchy () ;

OlapPath pathSanDiego =

new OlapPath (‘ ‘USA ’ ’ , ‘ ‘ C a l i f o r n i a ’ ’ , ‘ ‘ San Diego ’ ’) ;

OlapPath pathSanFran =

new OlapPath (‘ ‘USA ’ ’ , ‘ ‘ C a l i f o r n i a ’ ’ , ‘ ‘ San

Franc i sco ’ ’) ;

OlapPath pathLosAng =

new OlapPath (‘ ‘USA ’ ’ , ‘ ‘ C a l i f o r n i a ’ ’ , ‘ ‘ Los Angeles ’ ’) ;

return (customer . getAge () > 65 &&

hie ra r chy . i n c l ud e s (pathSanDiego , pathSanFran ,

pathLosAng)

&&

(date . getYear () == 2007 && date . getMonth () <= 6)

) ;

}

Listing 6.9: Manipulating hierarchies: example 3

160

WITHMEMBER [Customer] . [USA San Diego] AS

[Customer] . [Geographic Hierarchy] . [USA] . [C a l i f o r n i a] . [San

Diego]

MEMBER [Customer] . [USA San Franc i sco] AS

[Customer] . [Geographic Hierarchy] . [USA] . [C a l i f o r n i a] . [San

Franc i sco]

MEMBER [Customer] . [USA Los Angeles] AS

[Customer] . [Geographic Hierarchy] . [USA] . [C a l i f o r n i a] . [Los

Angeles]

SELECT

FILTER({} , (([Date] . [Month] <= 6) AND ([Customer] . [Age] > 40)))

on ROWS

FROM SampleCube ;

WHERE ([Date] . [Year] .& [2007) , [Customer] . [USA San Diego] ,

[Customer] . [USA San Franc i sco] , [Customer] . [USA Los Angeles])

Listing 6.10: MDX query corresponding to the query in Listing 6.9

161

public Object [] p r o j e c t () {

DateDimension date = new DateDimension () ;

Measure measure = new Measure () ;

TimeHierarchy t imeHierarchy = date . getTimeHierachy () ;

OlapPath fromYear = new OlapPath ("1996") ,

toYear = new OlapPath ("2001") ;

Object [] p r o j e c t i o n s = {measure . getCosts () ,

t imeHierarchy . rangeL i s t (fromYear , toYear)

} ;

return p r o j e c t i o n s ;

}

Listing 6.11: Manipulating hierarchies: example 4

In NOX

Listing 6.11 depicts the OLAP query as a project method in NOX. Two path objects

are used that specify years 1996 and 2001 which are members of the first level of

the time hierarchy. The method rangeList of the time hierarchy (inherited from

OlapHierarchy) is then used with the two path values passed as its parameters. In

this case, values are aggregated and displayed for each of the year members in the

range between and including 1996 and 2001 (inclusive).

162

WITHMEMBER [Date] . [1 9 9 6] AS

[Date] . [Time Hierarchy] . [1 9 9 6]

MEMBER [Date] . [2 0 0 1] AS

[Date] . [Time Hierarchy] . [2 0 0 1]

SELECT

[Date] . [1 9 9 6] : [Date] . [2 0 0 1] on ROWS

[Measures] . [c o s t] on COLUMNS

FROM SampleCube ;

Listing 6.12: MDX query corresponding to the query in Listing 6.11

In MDX

Listing 6.12 depicts the OLAP query in MDX. The two time hierarchy paths for

members of the years 1996 and 2001 are declared as calculated members in the Date

dimension using the WITH MEMBER statement in MDX. The : (colon) operator is

used in MDX to specify a range. So the range of years between 1996 and 2001 (in-

clusive) are expressed as [Date].[1996]:[Date].[2001] and displayed on the ROWS

axis. The cost measure values are displayed on the COLUMNS axis.

163

6.3 Conclusion

In this chapter, we discussed an environment for defining OLAP queries that directly

exploits the dimension hierarchies. Supplemental hierarchy classes were added to the

NOX library to permit the implementation of hierarchies in the framework. Examples,

given in the last section of this chapter, both in NOX and MDX show how practical

and intuitive NOX is, compared to MDX, in defining hierarchy queries. In short, we

attempted to emphasize in this chapter the importance of object-oriented facilities of

NOX. In particular, extending and reusing (inheriting) existing hierarchy queries are

made possible through the OOP features of NOX.

164

Chapter 7

Parameterization in NOX

Passing parameters to queries at run-time is crucial to relational databases in general.

In OLAP, particularly, it is of significant importance to users, where parametrized

OLAP queries provide a generic feature that adds to the flexibility of data analysis

done on a data warehouse.

In the NOX framework, since the API data model is object-oriented, the dynamic

behaviour of its parametrized queries is well-integrated and flexible. Parametrization

in NOX provides a channel of communication with the outside world in an intuitive

way. Some of the key characteristics of passing parameters in NOX are:

• Values of parameters can be passed in a variety of ways , namely:

– they can be read from standard input,

– they can come from a GUI or menu,

– they can be accepted from other programs in different formats,

– they are open to more innovative interface methods.

165

• A query that is written in NOX is designed to accept parameters of different

types.

• The order of passing parameters in NOX is not important, adding flexibility to

the framework.

• Parameters can be partially specified, so some of the parameters can be assigned

statically while others can be assigned dynamically in different invocations of

the query class.

• Parameter variable names are not fixed and programmers can define their own

naming conventions, making the NOX framework agile.

Having flexible order of passing parameters is important in NOX. The developer can

pass the parameters in any order and then the parameters are matched by NOX

using the names of the parameters and not their order. Having both static and

dynamic invocations of parameters of the query class is also important as it allows the

developer to have different invocations combination of parameters. Hence, it allows

for more freedom of assigning values to parameters. In this chapter, we present the

parametrization of OLAP queries in the NOX framework. Section 7.1 illustrates,

using a simple example, passing of parameters in NOX whereas Section 7.2 depicts

the algorithm of how parameters are parsed in NOX. Section 7.3 describes The DOM

utility used to insert parameters, at run-time, in the XML-string corresponding to

the OLAP query. NOX run-time handling of parameters is explained in Section 7.4.

In Section 7.5, we present examples of parametrized OLAP queries that demonstrate

166

NOX’s intuitive and flexible usage of parameters. Finally, Section 7.6 compares the

functionality of parametrized NOX queries with respect to that of parametrized MDX

queries.

7.1 Parameter Parsing in NOX

In a nutshell, a parametrized OLAP query class in NOX is instantiated in the main

method of the program by calling its constructor with the values of parameters at

run-time. It is easy and practical to pass parameters to queries in NOX this way.

In its simplest form, a parametrized query invocation might look like the example

depicted in Listing 7.1.

myquery = new MainQuery (‘ ‘ Joe ’ ’) ;

myquery . execute () ;

Listing 7.1: Parametrized query invocation

where “Joe” is the parameter value that is passed to the NOX engine at run-time.

We begin with a simple example that illustrates the usage of parameters in NOX.

The invocation of the MainQuery using the execute method was given in Listing 7.1,

where MainQuery is assumed to have a select method. The OLAP query class

MainQuery describing this SELECTION is depicted in Listing 7.2.

167

class MainQuery extends OlapQuery {

private double parm1 ;

public MainQuery (S t r ing cubeName1) {

super (cubeName1) ;

}

public MainQuery (S t r ing cubeName1 , double parm1) {

super (cubeName1) ;

this . parm1 = parm1 ;

}

public setParm1 (double parm1) {

this . parm1 = parm1 ;

}

boolean s e l e c t () {

Customer customer = new Customer () ;

return (customer . getAge () > parm1) ;

}

}

Listing 7.2: class MainQuery with parameter parm1

The select method returns values for customers whose age is greater than parm1,

a parameter passed to the query at run-time. A parameter is detected by the NOX

parser when a NameNode (which is one kind of node in the parse tree) is matched to

a variable that does not have a value. To illustrate this idea, recall from Section 5.2.2

168

the leaf with type NameNode found in the parse tree depicted in Figure 28. In this

case, NameNode is assigned the variable name parm1 where parm1 is not assigned

a value until run-time. Assigning a value at compile-time does not generate an error

since the standard parsing happens as in Section 5.2.2. Of course, the programmer

is responsible for any compile-time and run-time errors that are produced with the

program. In NOX, we are not adding any new compile-time or run-time parameter

checking. The programmer is responsible for error catching and the resolution of

errors.

In the NOX framework, parameters should be declared as private fields in the

OLAP query class, and then may be used in any of its OLAP operation methods.

Of course, other fields can be declared as private by the programmer. Field names

are defined by the programmer; no specific naming conventions are imposed by NOX.

This adds flexibility but at the same time adds responsibility on the programmer side

to have readable well-defined queries. In the example, parm1 is a parameter declared

as a private field in the MainQuery class and then used in the select method of

the class. Note the constructor public MainQuery(double parm1) that is used to

assign a value to parm1 while creating a MainQuery OLAP query instance. Having

this kind of data encapsulation feature is an example of the strength of expressing

the OLAP query in an object-oriented manner.

A second way to pass parameters is by using the parameter(s) setter method(s),

in this example, the public setParm1(double parm1) method, defined by the

programmer.

169

7.2 Parameter Parsing Pseudocode

As explained in Chapter 4, when an input Java file is parsed with the NOX parser,

an XML string is generated that corresponds to each query method in the file. In the

case of parameters, each parameter variable is read and detected as a parameter by

the parser. The parameter is then added to the XML query with a leading special

flag “?”. Pseudocode for parameter parsing is presented in Listing 7.3.

1 . Input Java source f i l e

2 . Detect the OLAP query by NOX par s e r

3 . Parse the OLAP query us ing NOX par s e r and

c r ea t e parse t r e e .

4 . Detect each parameter by :

a . Finding NameNode l e a f

b . Checking i f the NameNode va r i ab l e name (parameter name in

case o f parameters) i s not a s s i gned a value .

5 . Create the XML s t r i n g cor re spond ing to the query .

6 . Add each detec ted parameter to the XML s t r i n g with a l ead ing

s p e c i a l f l a g ‘ ‘ ? ’ ’ .

Listing 7.3: Parameters parsing pseudocode

To illustrate this idea, an example is presented in Listing 7.4, where the XML string

that corresponds to the query in Listing 7.2 includes the parameter parm1. The

leading flag “?” is added by the parser before the parameter parm1 in the XML

string. Note here that any parameter variable name can be used by the programmer

and the parser will detect it, which adds to the agility of the NOX framework.

170

<QUERY>

<DATA_QUERY>

<CUBE_NAME> SampleCube </CUBE_NAME>

<OPERATION_LIST>

<OPERATION>

<SELECTION>

<DIMENSION_MEASURE_LIST>

<DIMENSION>

<DIMENSION_NAME>

Customer

</DIMENSION_NAME>

<EXPRESSION>

<RELATIONAL_EXP>

<SIMPLE_EXP>

<EXP_VALUE>

<ATTRIBUTE>

age

</ATTRIBUTE>

</EXP_VALUE>

</SIMPLE_EXP>

<COND_OP>

<RELATIONAL_OP>

GT

</RELATIONAL_OP>

</COND_OP>

<SIMPLE_EXP>

<EXP_VALUE>

<CONSTANT>

?parm1

</CONSTANT>

</EXP_VALUE>

</SIMPLE_EXP>

</RELATIONAL_EXP>

</EXPRESSION>

</DIMENSION>

171

</DIMENSION_MEASURE_LIST>

</SELECTION>

</OPERATION>

</OPERATION_LIST>

</DATA_QUERY>

</QUERY>

Listing 7.4: XML corresponding to the query with parameter parm1

7.3 Parameter Insertion DOM Utility

In this section, we describe a utility function, named XMLparametersInsert, that is

responsible for inserting parameter values in an XML document. This utility is part of

the NOX DOM utilities library that provides additional methods for manipulating the

DOM XML objects. Pseudocode for the algorithm of the XMLparametersInsert

utility is depicted in Listing 7.5. Here, XMLparametersInsert is defined as a

function that inputs an XML string with some flagged parameters and outputs the

XML string with the parameters replaced by their values. The details of generating

the intermediate DOM tree representation of the XML string are not included to

simplify the readability of the pseudocode.

The algorithm of XMLparametersInsert scans the input XML string for pa-

rameters. For each located parameter in the XML string, it will match this parameter

to the corresponding field in the class. It will do that by comparing the parameter

name sequentially to each field name in the list of class field names until the param-

eter is found. Then, it will replace the parameter with the value of the field found.

172

The last step of the algorithm is to return the updated XML string. Note that the

names of the OLAP Query object at run-time can be extracted directly by run-time

methods that already exist in Java. Using these methods, the fields are returned

one by one and their names compared to the parameters names the parser is looking

for.

Function XMLparametersInsert

Input : XML s t r i n g with f l a gg ed parameters , OlapQuery ob j e c t

with i t s dec l a r ed f i e l d s

Output : XML s t r i n g with parameters r ep laced by t h e i r va lue s

REPEAT

Check i f parameter p e x i s t s in XMLstring by l o c a t i n g the s p e c i a l

l e ad ing cha rac t e r ‘? ’

IF (p e x i s t s) THEN

FOR each f i e l d f in the cur r ent OlapQuery ob j e c t

IF (f and p are the same va r i ab l e name) THEN

Replace ?p in XMLstring with the value o f f

END IF

END FOR

ELSE // no more parameters in XMLstring

Exit REPEAT loop

UNTIL no more parameters in XMLstring

RETURN the updated XMLstring

Listing 7.5: XMLparametersInsert pseudocode

173

7.4 Run-time Parameter Handling

As described in Section 7.1, an XML string is constructed for each query class during

the parsing phase. If the query contains some parameters, these parameters will be

marked by a leading flag “?” in the XML string. Parameters that are input to the

program at run-time will also be passed to the OLAP query object at run-time, hence

the XML query string needs to be updated before it is sent to the server. For this

purpose, the DOM utility function XMLparametersInsert presented in Section 7.3

is used, a method that takes the XML query string (with parameters) as input and

outputs the XML query string with the parameters replaced with their associated

values.

From Chapter 4, we know that during parse-time, an intermediate output Java file,

that is transparent to the programmer, is produced. Moreover, the “special” methods

in each OLAP query class, with reserved names for OLAP querying operations such

as project() and select(), are replaced with the execute() method that contains

the corresponding XML string. We add a call to the XMLparametersInsert utility

function to the body of the execute() method in order to detect if parameters exist.

And, if they do exist, the NOX parser will replace them at run-time with their values.

The call to XMLparametersInsert will always be part of the body of execute().

Remember that the execute() method also contains function calls to pass the re-

sulting XML string to the server. Listing 7.6 shows the intermediate Java file that is

produced by the NOX parser when processing the OLAP query (with parameters) of

174

Listing 7.2. The execute() method returns an empty cube, as it is only visualized

as an object in memory by the programmer. It actually contains no data as the real

result data cube is sent from the server after the OLAP query is resolved.

class MainQuery extends OlapQuery {

private double parm1 ;

public MainQuery (S t r ing cubeName1) {

super (cubeName1) ;

}

public MainQuery (S t r i gn cubeName1 , double parm1) {

super (cubeName1)

this . parm1 = parm1 ;

}

public setParm1 (double parm1) {

this . parm1 = parm1 ;

}

double getParm1 () {

return this . parm1 ;

}

public Cube execute () {

St r ing xmlQuery =

‘ ‘<QUERY> <DATA_QUERY> <CUBE_NAME> sample </CUBE_NAME>’ ’ +

‘ ‘<OPERATION_LIST> <OPERATION> <SELECTION>’ ’ +

‘ ‘<DIMENSION_MEASURE_LIST> <DIMENSION> <DIMENSION_NAME>’ ’ +

‘ ‘ Customer </DIMENSION_NAME> <EXPRESSION>’ ’ +

‘ ‘<RELATIONAL_EXP> <SIMPLE_EXP> <EXP_VALUE>’ ’ +

‘ ‘<ATTRIBUTE> age </ATTRIBUTE>’ ’ +

‘ ‘</EXP_VALUE> </SIMPLE_EXP> <COND_OP> <RELATIONAL_OP>’ ’ +

175

‘ ‘GT </RELATIONAL_OP> </COND_OP><SIMPLE_EXP> <EXP_VALUE>’ ’ +

‘ ‘<CONSTANT> ?parm1 </CONSTANT>’ ’ +

.

.

.

DOMuti l i t ies dom;

xmlQuery = dom. XMLparametersInsert (xmlQuery) ;

Communicator comm = new Communicator () ;

comm. sendQuery (xmlQuery) ;

return new Cube () ;

}

}

Listing 7.6: Intermediate Java file with execute() method

7.5 NOX Parametrization in Practice

In this section, we provide parametrized OLAP query examples to demonstrate the

flexible and simple usage of parameters in the NOX language. In the OLAP query

in Listing 7.7, two parameters parm1 and parm2 are passed to the program while

instantiating the query object. The parameters’ values can be statically or dynam-

ically set. Observe the usage of parameters in this example, where one parameter

value is compared to the count measure, while the other parameter value is used as

a lower bound on the range of IDs of customers’ values returned. As noted earlier,

error-checking does not occur in the query itself as it would be quite difficult to ana-

lyze arbitrary code. Programmers are responsible to do error-checking themselves in

176

the main program or the calling function. In this example, if parm2 is passed with

the value 10, some kind of error should be generated by the programmer.

class ExampleQuery2 extends OlapQuery {

private double parm1 ;

private int parm2 ;

public MainQuery (S t r ing cubeName1) {

super (cubeName1) ;

}

public MainQuery (S t r i gn cubeName1 , double parm1 , int parm2) {

super (cubeName1)

this . parm1 = parm1 ;

this . parm2 = parm2 ;

}

public setParm1 (double parm1) {

this . parm1 = parm1 ;

}

double getParm1 () {

return this . parm1 ;

}

public setParm2 (int parm2) {

this . parm2 = parm2 ;

}

int getParm2 () {

return this . parm2 ;

}

177

boolean s e l e c t () {

Customer customer = new Customer () ;

Measure measure = new Measure () ;

OlapProperty custID = new OlapProperty (customer . getID ()) ;

return (measure . getCount () > parm1 && custID . inRange (parm2 , 9))

;

}

}

Listing 7.7: class ExampleQuery2 with two parameters

Another example is given in Listing 7.8, where in addition to the two parameters of

the previous example, two other parameters parm3 and parm4 are used. In the

query, parm3 is compared to the age of customers so that values for customers older

than parm3 are returned, with parm4 being used as a parameter to hold the member

value of an OLAP path level, namely the country member value of the geographic

hierarchy of the customer dimension.

class ExampleQuery3 extends OlapQuery {

private St r ing parm1 ;

private double parm2 , parm3 ;

private St r ing parm4 ;

public MainQuery (S t r ing cubeName1) {

super (cubeName1) ;

}

public MainQuery (S t r ing cubeName1 , S t r ing parm1 , double parm2 ,

double parm3 , S t r ing parm4) {

super (cubeName1)

178

this . parm1 = parm1 ;

this . parm2 = parm2 ;

this . parm3 = parm3 ;

this . parm4 = parm4 ;

}

public setParm1 (St r ing parm1) {

this . parm1 = parm1 ;

}

St r ing getParm1 () {

return this . parm1 ;

}

public setParm2 (double parm2) {

this . parm2 = parm2 ;

}

double getParm2 () {

return this . parm2 ;

}

public setParm3 (double parm3) {

this . parm3 = parm3 ;

}

double getParm3 () {

return this . parm3 ;

}

public setParm4 (St r ing parm4) {

this . parm4 = parm4 ;

}

St r ing getParm4 () {

return this . parm4 ;

179

}

boolean s e l e c t () {

Customer customer = new Customer () ;

DateDimension date = new DateDimension () ;

GeographicHierarchy h i e ra r chy =

customer . getGeographicHierarchy () ;

Measure measure = new Measure () ;

OlapProperty custID = new OlapProperty (customer . getID ()) ;

OlapProperty dateMonth = new OlapProperty (date . getMonth ()) ;

return (measure . getCount () > parm2 && custID . inRange (parm1 , 9)

&& customer . getAge () > parm3

&& hie ra r chy . i n c l ud e s (new OlapPath ("USA") , new

OlapPath (parm4))

&& (date . getYear () == 2007 &&

dateMonth . inRange (1 , 5))) ;

}

}

Listing 7.8: class ExampleQuery3 with four parameters

7.6 Parametrized NOX Queries versus Parametrized

MDX Queries

In this section, we compare parametrized NOX queries to parametrized MDX queries.

We first discuss how MDX passes parameters to its queries. Then, we compare the

180

parametrization used in MDX queries to that used in NOX queries.

MDX distinguishes parameters from other constructs in its queries by prefixing

each parameter name with the at sign (@). An example of a parametrized MDX query

in XML for Analysis (XMLA) is presented in Listing 7.9, where the @CountryName

is a parameter whose value will be retrieved at run-time [MSD]. Note the awkward

way of passing parameters through the use of XML.

<Envelope xmlns="http :// schemas . xmlsoap . org / soap/ enve lope /">

<Body>

<Execute xmlns="urn : schemas−microso f t−com : xml−ana l y s i s ">

<Command>

<Statement>

s e l e c t [Measures] . members on 0 ,

F i l t e r (Customer . [Customer Geography] . Country . members ,

Customer . [Customer Geography] . CurrentMember .Name =

@CountryName) on 1

from [Adventure Works]

</Statement>

</Command>

<Prope r t i e s />

<Parameters>

<Parameter>

<Name>CountryName</Name>

<Value>’ United Kingdom ’</Value>

</Parameter>

</Parameters>

</Execute>

</Body>

</Envelope>

Listing 7.9: Parametrized MDX query example [MSD]

181

Since its creation, MDX has been augmented and/or modified in an attempt to keep

pace with the expanding OLAP domain. Nevertheless, its inherently rigid string-

based nature makes it hard to adapt to the continuously evolving programming lan-

guages in the industry. Table 2 compares the quality of OLAP query representation

in NOX to the quality of their representation in MDX. In terms of the first point

in the table, for example, we have already presented a parametrized MDX query in

Listing 7.9 in which the parameter is named @CountryName. By contrast, the simple

naming policy in NOX allows allows pragrammers to use the variable name that best

suits the application.

With respect to the third point, we note that MDX syntax is dependent on its

embedding application. Two examples depict this point, as follows:

• When parametrized MDX queries are used with OLE DB, the ICommandWith-

Parameters interface should be utilized.

• When parametrized MDX queries are used with ADOMD.NET, the Adomd-

Command.Parameters collection should be employed.

For ADOMD.NET, the parameter is assigned as in Listing 7.10, where conn is the

ADOMD connection.

AdomdCommand cmd = new AdomdCommand(MDX, conn) ;

cmd . Parameters .Add("Param1" , "abcde") ;

Listing 7.10: Parameter assignment using ADOMD

182

. .
Parametrization in NOX Queries Parametrization in MDX Queries

. .

. .
Same representation of parameters as Awkward representation of parameters by
any other Java variable name prefixing the name with the at sign (@)
. .

. .
Parameters are type-checked Error-prone as most errors
at compile-time are discovered at run-time
. .

. .
No additional libraries are needed Dependant on the application
to pass parameters to NOX queries where the MDX query string is embedded.
. .

. .
NOX is object-oriented In practice, real world programmers
and using parameters report that parametrization is
is straightforward not well-developed in MDX
. .

. .
NOX has a good foundation for The awkwardness of MDX
parametrization which makes makes parametrization hard to extend
extending parameters relatively simple and difficult to maintain
. .

Table 2: Parametrized NOX Queries versus Parametrized MDX Queries

183

Listing 7.11 depicts how parameters are passed using the ADOMD client. It should

be relatively obvious that this model is not programmer friendly. As for the OLE DB,

programmers often complain that OLE DB does not work at all with parameters in

MDX [Mic]. They suggest that Microsoft is not maintaining MDX parametrization

well.

// us ing Microso f t . Ana l y s i sS e r v i c e s . AdomdClient ;

s t r i n g MDX = "with member [Measures] . [Test] as Str (@Param1) "

+ "SELECT [Measures] . [Test] on 0 , "

+ " [Product] . [Category] . [Category] . Members on 1 "

+ "from [Adventure Works] " ;

AdomdConnection conn = new

AdomdConnection ("Provider=MSOLAP. 3 ; Data Source=l o c a l h o s t ;

I n i t i a l Catalog=Adventure Works DW;

In t eg ra t ed Secur i ty=SSPI ; P e r s i s t Secu r i t y In f o=f a l s e ; ") ;

conn . Open () ;

AdomdCommand cmd = new AdomdCommand(MDX, conn) ;

cmd . Parameters .Add("Param1" , "abcde") ;

System . Data . DataSet ds = new System . Data . DataSet () ;

AdomdDataAdapter adp = new AdomdDataAdapter (cmd) ;

adp . F i l l (ds) ;

Console . WriteLine (ds . Tables [0] . Rows [0] [1]) ;

conn . Close () ;

Listing 7.11: Parametrized MDX query using ADOMD [Mic]

184

7.7 Conclusion

Parametrization in NOX facilitates the dynamic customization of OLAP queries at

run-time. These parametrized queries provide programmer-friendly interaction with

different entities in the system. As we have illustrated in this chapter, passing pa-

rameters to NOX queries is done in a simple and straightforward way. While passing

parameters to string-based queries in the MDX language is awkward and error-prone,

passing parameters to the object-oriented queries in the NOX language is high-level

and flexible.

185

Chapter 8

The NOX Language Expressiveness

We have demonstrated extensively in the previous chapters of this thesis, using the

Java prototype developed for this research, the practicality of the NOX model. It

should be clear that this model can be extended by DBMS developers to further

develop the prototype into a native language OLAP tool. That being said, the ad-

vantages are of little practical value if one cannot demonstrate that the proposed

approach is capable of representing the range of query patterns developers have come

to expect in the OLAP domain.

Being a descendant of SQL, MDX suffers from the limitations of the underlying

SQL-like SELECT-FROM-WHERE format. Moreover, MDX, as an industrial language

supported by Microsoft, did not receive the formal research focus that typically leads

to more powerful and flexible programming languages. As a result, although MDX

has a grammar, it does not have a formal algebra. On the other hand, NOX has

a well-structured algebra that supports operations done in OLAP. As such, in the

context of multi-dimensional systems, NOX has the potential to be more intuitive

186

compared to MDX.

In this chapter, we examine the NOX model from an algebraic perspective, and

compare its expressiveness to that of MDX, the de-facto standard query language in

this domain. We do so as follows:

• Demonstrating the correspondence between MDX and NOX and analyzing the

associated grammars in terms of the core SELECTION and PROJECTION operations

• Identifying a small set of query forms representative of the two operations and

providing concrete instantiations in both MDX and NOX

This approach grounds the research and shows how NOX provides intuitive query

functionality while concurrently minimizing the constraints of MDX.

Because most operations in OLAP are a combination of selections and projections,

we will focus exclusively on these operations and compare their algebraic formal

representation in MDX and NOX. In future work, we hope to extend the same logic

of thinking to other OLAP operations like Change Level and Change Base, which are

actually executed against result sets that are typically much smaller compared to the

disk-based warehouse database. Drill-Across is much less common than is the case in

OLTP settings and will also be part of future work.

In this chapter, the grammatical structure of MDX and NOX are depicted in Sec-

tion 8.1. Section 8.2 illustrates the correspondence of OLAP SELECTION between the

MDX language and the NOX language, whereas Section 8.3 illustrates the correspon-

dence for the OLAP PROJECTION operation. We note at the outset that only the

187

relevant parts of the grammars are given in order to explain the logic. For complete

listings of the MDX and NOX grammar production rules, refer to Appendix D and

Appendix E respectively.

8.1 Grammatical Structure

As presented in Chapter 4, the NOX framework is implemented in Java. The inter-

mediate XML-based representation of its queries, based upon the NOX algebra, is

generated as part of the re-writing process. The MDX and NOX syntax grammars

are quite different syntactically. Listing 8.1 depicts the canonical MDX query for-

mat. As explained in Chapter 5, the SELECT clause includes the axis_specification

that defines the data cube axis where features/measures are displayed/returned. The

cube name is specified in the FROM clause. The cube cells selection constraints are

given in the WHERE clause known as slicer_specification. We will only address the

use of axis and slicer specifications in this chapter. We note the use of the optional

cell_props that are attributes that may be useful for the presentation of data. While

they might be useful in that specific context, cell properties are not directly associ-

ated with the algebraic operations and will be ignored as other display-related MDX

language extensions in this chapter.

Listing 8.2 provides an abbreviated representation of the grammar associated with

NOX processing. The complete NOX Grammar is given in Appendix E. Here, we can

see that a query is formulated as a cube name, which is the equivalent of the MDX

FROM clause. SELECTION and PROJECTION are two of the algebraic operations that

188

are listed in the <operation> tag. Note that while MDX queries are actually written

in the syntax of Listing 5.5, the NOX grammar is purely an internal representation

and is never encoded by the programmer.

<select_statement> : := [WITH <formu la_spec i f i c a t i on >]

SELECT [< ax i s_ sp e c i f i c a t i o n >

[, <ax i s_ sp e c i f i c a t i o n >]∗]

FROM [< cube_spec i f i c a t i on >]

[WHERE [< s l i c e r_ s p e c i f i c a t i o n >]]

[< ce l l_props >]

Listing 8.1: MDX SELECT statement

<query> : := <data_query>

| <meta_query>

<data_query> : := <cube_name>

[, <ope r a t i on_ l i s t>] [, <f un c t i o n_ l i s t>]

<ope r a t i on_ l i s t> : := <operat i on> [, <operat i on>]∗

<operat ion> : := <s e l e c t i o n>

| <p r o j e c t i o n> | . . .

Listing 8.2: Top level NOX grammar

In demonstrating the correspondence between the MDX production rules and the

189

NOX production rules, three primary data types of MDX are mapped to NOX: mem-

bers of dimensions/hierarchies, tuples, and sets [Nol99]. We focus on these types

because the other data types of MDX, namely the scalar, dimension/hierarchy and

level, are transparently mapped to NOX during the process of mapping the three

primary types between MDX and NOX.

8.2 OLAP SELECTION

The OLAP SELECTION operation refers to the specification of values for some or

all of the dimensions of the multi-dimensional data cube. It results in a subcube.

In other words, it provides rules and constraints against the cube that restrict and

isolate the values requested in the final result. In the industry, it is mapped to slicing

and dicing operations. In this section, we demonstrate the correspondence of the

production rules of the OLAP SELECTION operation between MDX and NOX. We start

with presenting the MDX production rules and their main programming constructs

in Subsection 8.2.1. Then, we map NOX production rules and their programming

constructs to those of MDX in Subsection 8.2.2. Subsection 8.2.3 includes three

parts that evaluate the grammars by identifying three sets of core query forms that

represent common query patterns.

8.2.1 SELECTION Production Rules in MDX

As is the case with SQL queries, SELECTION is one of the basic operations in OLAP.

MDX supports slicing and dicing through the syntax of the WHERE clause in the

190

<select_statement> production rule. Listing 8.3 provides the producrion rules

for the MDX <slicer_specification>.

[WHERE [< s l i c e r_ s p e c i f i c a t i o n >]]

<s l i c e r_ s p e c i f i c a t i o n > : := {<set> | <tuple >}

<tuple> : := <member>

| (<member> [, <member>]∗)

| <tuple_value_express ion>

Note : Each member must be from a d i f f e r e n t dimension

or from a d i f f e r e n t h i e ra r chy

<set> ::= <member>:<member>

| <set_value_express ion>

| <open_brace>[<set>|<tuple>

[, <set>|<tuple >]∗]< close_brace>

| (<set>)

Note : Each member must be from the same h i e ra r chy

and the same level .

<tuple_value_express ion> : := <set >.CURRENTMEMBER

| <set >[.ITEM]({< str ing_value_express ion>

[,< str ing_value_express ion >]∗}

| <index>)

<set_value_express ion> : := <dim_hier >.MEMBERS

| <level >.MEMBERS

| <member>.CHILDREN

| . . .

<cube_name> : := [[[<data_source >.] <catalog_name >.]

[<schema_name>.]< i d e n t i f i e r >

191

<data_source> : := <i d e n t i f i e r >

<catalog_name> : := <i d e n t i f i e r >

<schema_name> : := <i d e n t i f i e r >

<dim_hier> : := [<cube_name>.]<dimension_name>

| [[<cube_name>.]< dimension_name>.]<hierarchy_name>

<dimension_name> : := <i d e n t i f i e r >

| <member>.DIMENSION

| <level >.DIMENSION

| <hierarchy >.DIMENSION

<dimension> : := <dimension_name>

<hierarchy> : := <hierarchy_name>

<hierarchy_name> : := <i d e n t i f i e r >

| < member>.HIERARCHY

| <level >.HIERARCHY

<level> ::= [<dim_hier >.]< i d e n t i f i e r >

| <dim_hier >.LEVELS(<index>)

| <member>.LEVEL

<member> : := [< level >.]< i d e n t i f i e r >

| <dim_hier>.< i d e n t i f i e r >

| <member>.< i d e n t i f i e r >

| <member_value_expression>

<member_value_expression> : := <member>.{PARENT | FIRSTCHILD

| LASTCHILD | PREVMEMBER

| NEXTMEMBER | . . . }

192

<open_brace> : := {

<close_brace> : := }

<open_bracket> : := [

<close_bracket> : :=]

<underscore> : := _

<alpha_char> : := a | b | c | . . . | z | A | B | C | . . . | Z

<d i g i t > : := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Listing 8.3: Production rules for the MDX WHERE clause

Adding a “where <slicer_specification>” in MDX does not change what is re-

turned on Rows or Columns in the query; it changes the values returned for each

cell. A <slicer_specification> is either a set or a tuple, as shown in the production

rules in Listing 8.3. NOX constructs are mapped to MDX constructs in their basic

forms of the most important operations, namely SELECTION and PROJECTION. This

is demonstrated in the next subsection. NOX can be easily extended to include the

other operations of MDX. The following are the basic constructs in MDX (that will

be mapped to NOX):

• A tuple can be a member of a dimension or a hierarchy. It can also be a number

of members from different dimensions or hierarchies specified between paren-

thesis, “(” and “)”, and separated by commas. The <tuple_value_expression>

grammar rule contains different kinds of productions for building expressions

193

that result in a tuple value. The <tuple_value_expression> expressions are

not implemented in NOX yet and will be added to future work.

• A set is a collection of tuples. It can be a range of members from the same

hierarchy and the same level specified by the range’s first member and its last

member. It can also be a number of members from the same hierarchy and the

same level specified between braces, “{” and “}”, and separated by commas. Pro-

duction rules corresponding to the <set_value_expression> MDX production

rule will be added to NOX as future work.

• A member is specified, in its basic form, as an identifier in a dimension or

an identifier in a level in a hierarchy of a dimension. This identifier cor-

responds to an attribute name. The other production rules for the <mem-

ber_value_expression> build expressions that result in a member value. The

<member_value_expression> form of expressions are not implemented in the

NOX language yet and will be part of the future work.

8.2.2 Mapping the SELECTION Production Rules between MDX

and NOX

NOX supports the SELECTION operation through the syntax of the SELECT method

defined in the NOX language by the <selection> production rule in the NOX gram-

mar. Listing 4.1 (from Chapter 4) illustrates the corresponding grammar for the NOX

SELECTION operation.

194

In the NOX grammar, the <selection> production rule depicts the same func-

tionality as the <slicer_specification> rule of the MDX grammar. From a high

level, one can see that a SELECTION is a list of dimensions specification, each con-

sisting of a combination of expressions (relational, arithmetic, etc.) and optionally

including hierarchical elements or attributes. More specifically, the <selection> is

a <dimension_measure_list>, where the <dimension_measure_list> has at least

one condition on some member in a dimension or in a hierarchy of a dimension and

can be combined by logical operators with other conditions on members or on mea-

sures. The translation from MDX to NOX of the three basic constructs described in

Subsection 8.2.1 goes as follows:

• The logical operator <logical_op> “AND” in the NOX grammar, that is used to

aggregate values corresponding to multiple members from different hierarchies

or dimensions, translates to a tuple in the MDX grammar.

• The logical operator <logical_op> “OR” in the NOX grammar, that is used to

aggregate values corresponding to multiple members from the same hierarchy

and the same level, translates to a set in the MDX grammar.

• As for a member in the NOX grammar, it is defined by its dimension name

and an expression. The dimension name is simply an identifier that describes

the name of the dimension. An expression is at least one conditional expres-

sion where two simple expressions are compared to each other. The conditional

195

expression can be combined by logical operators with other conditional expres-

sions. The logical operators have the same functionality as in the <dimen-

sion_measure_list> production rule described earlier. A simple expression can

be a mathematical expression. It can also be an identifier that corresponds to

the name of the attribute in the dimension (specified earlier in the <dimen-

sion_name> tag). In addition, it can be a hierarchy list <hierarchy_list> or

a function list <function_list>.

The grammar rules for the <hierarchy_list> are shown in Listing 8.4. We can

have conditions on one or more hierarchies that belong to the dimension specified by

the value of the <dimension_name> tag. Each hierarchy is defined by its name, its

operator and one or more OLAP hierarchy paths, where:

1. A hierarchy OLAP path is specified by listing, at each level in the hierarchy, the

member name. For example, we have a geographic hierarchy where the first level

is country and the second level is state. To define the hierarchy OLAP path that

corresponds to California, the member at the first level will be “United States”

and the member at the second level will be “California”. Its hierarchy diagram

is the same as the diagram in Figure 18 of Chapter 6. Its XML representation

as described by the NOX grammar is the following:

<olap_path_list>

<olap_path>

<value> United States </value>

196

<value> California </value>

</olap_path>

</olap_path_list>

2. A hierarchy name is an identifier that describes the hierarchy.

3. A hierarchy operator can be “inRange” or “inList”. When “inRange” is used, we

have to specify two OLAP paths that correspond to two members in the same

level in the hierarchy. Then, it implicitly aggregates values for all members

between, and inclusive of, the two members specified. This is like a set in the

MDX grammar where the production rule is <set> ::= <member>:<member>.

When “inList” is used as the hierarchy operator, we have to specify one or more

OLAP path values that correspond(s) to one or more members. These members

belong to the same level in the hierarchy and the values returned are aggregated

together.

The combination of the above mappings is similar to a production rule for a set in

the MDX grammar,

<set> ::= <open_brace>[<set>|<tuple> [, <set>|<tuple>...]]<close_brace>,

where <set> and <tuple> are already matched to NOX and arbitrary combinations

of them may be used.

197

<h i e r a r chy_ l i s t> : := <hie ra r chy>+

<hie ra r chy> : := <hierarchy_name> , <hierarchy_op> ,

<olap_path_l ist>

<hierarchy_name> : := #PCDATA

<hierarchy_op> : := #PCDATA

<olap_path_l ist> : := <olap_path>

<olap_path> : := <value>+

<value> : := #PCDATA

Listing 8.4: Grammar rules for the “Hierarchy List”

8.2.3 SELECTION Constraints

As mentioned previously, the OLAP query SELECTION operation provides constraints

that restrict the values requested. Given the grammars described above, we now turn

to the evaluation itself. Because database queries are by definition open ended, there

are specific patterns for the most common queries performed. For SELECTION, we

can identify and categorize three types of constraints that cover different levels of

complexity. Combinations of the three can be used, of course, to produce queries of

arbitrary complexity.

1. Single dimension constraint

198

2. Multiple dimension constraint (open-ended)

3. Multiple members from a single dimension hierarchy

In the next three sections, we will analyze each category of constraints and represent

the associated queries in MDX and NOX forms.

Single Dimension Constraint

We begin with a single constraint on a single dimension or hierarchy. In this example,

we are interested in returning the value of the “Internet Sales Amount” measure for all

calendar years but only for customers who live in the United States. The SELECTION

then is specified as:

σ(Country=‘UnitedStates′)(Sales).

The MDX version of the query is given in Listing 8.5. Here, the query is sliced so that

aggregated values for the member “United States” of the fully qualified path name in

the “Customer Geography” hierarchy are returned. Figure 18 of Chapter 6 shows the

path to ”United States” in the hierarchy.

SELECT { [Measures] . [I n t e rn e t Sa l e s Amount] } ON COLUMNS,

[Date] . [Calendar Year] .MEMBERS ON ROWS

FROM [Adventure Works]

WHERE ([Customer] . [Customer Geography] . [Country] . [United Sta t e s])

Listing 8.5: MDX query returning values for customers living in the United States

Listing 8.6 illustrates the NOX version of the query. More specifically, it shows

199

the corresponsing SELECT method. The developer has instantiated a new Customer

and its corresponding GeographicHierarchy. After getting the hierarchy object, its

method “includes(OlapPath ... path)” is called with the argument that is an object of

type “OlapPath(“United States”)” for customers who live in the United States. Hence,

the return statement identifies those cells whose hierarchy paths include the “United

States”. Note that the display attributed Date and Internet Sales are not part of

the SELECTION specification. They are associated with the PROJECTION that will be

discussed in the next section.

class se l ec tQuery1 extends OlapQuery {

boolean s e l e c t () {

Customer customer = new Customer () ;

CustomerHierarchy geoh i e ra rchy =

customer . getGeographicHierarchy () ;

return (geoh i e ra rchy . i n c l ud e s (new OlapPath ("United Sta t e s "))) ;

}

}

Listing 8.6: NOX query returning values for customers living in the United States

For completeness, the NOX XML description of the hierarchy used in the return

statement of the SELECT method of the query in Listing 8.6 is depicted in Listing 8.7.

200

<DIMENSION>

<DIMENSION_NAME>

Customer

</DIMENSION_NAME><EXPRESSION>

<SIMPLE_EXP>

<EXP_VALUE>

<HIERARCHY_LIST>

<HIERARCHY>

<HIERARCHY_NAME>

GeographicHierarchy

</HIERARCHY_NAME><HIERARCHY_OP>

inc l ud e s

</HIERARCHY_OP><OLAP_PATH_LIST>

<OLAP_PATH>

<VALUE>

United Sta t e s

</VALUE>

</OLAP_PATH>

</OLAP_PATH_LIST>

</HIERARCHY>

</HIERARCHY_LIST>

</EXP_VALUE>

</SIMPLE_EXP>

</EXPRESSION>

</DIMENSION>

Listing 8.7: XML description of the hierarchy used in the return statement of the
select method of the query in Listing 8.6

Multiple Dimension Constraints

We turn now to the case in which multiple dimension constraints are defined. We

extend our previous query by ensuring that only totals associated with the Auto

201

Product category are included. Formally, the query is defined as:

σ(Country=‘UnitedStates′ &&Category=‘1′)(Sales).

Listing 8.8 gives the MDX version of the query. In the WHERE clause of this query,

in addition to the values returned for “United States” as explained in the previous

query, aggregated values for “Category” key 1 of the “Product” dimension are also

returned. Here, MDX uses the operator “&” to refer to the member that is the key in

the “Product” dimension. The values aggregated together are then returned by the

query.

SELECT { [Measures] . [I n t e rn e t Sa l e s Amount] } ON COLUMNS,

[Date] . [Calendar Year] .MEMBERS ON ROWS

FROM [Adventure Works]

WHERE ([Customer] . [Customer Geography] . [Country] . [United Sta t e s] ,

[Product] . [Category] . & [1])

Listing 8.8: MDX query returning values for customers living in the United States
and who bought products in “Category”with key 1

Listing 8.9 depicts the NOX version of the SELECTION operation of the query. The

tuple in MDX is expressed as an && (AND operator) of two conditions in NOX. So,

the first condition of returning values for customers in the United States is conjuncted

with the condition of having product category equals to one. “product” is instantiated

from the class “Product”, its method “getCategory()” is called and the value returned

is compared to one. In both cases of MDX and NOX, there is no limit on the number

202

of dimensions used in the specification.

class se l ec tQuery2 extends OlapQuery {

boolean s e l e c t () {

Customer customer = new Customer () ;

Product product = new Product () ;

CustomerHierarchy geoh i e ra rchy =

customer . getGeographicHierarchy () ;

return (geoh i e ra rchy . i n c l ud e s (new OlapPath ("United Sta t e s "))

&& product . getCategory () == ’ 1 ’) ;

}

}

Listing 8.9: NOX query returning values for customers living in the United States
and who bought products in “Category” with key 1

Multiple members from a single dimension hierarchy

Finally, we address the somewhat more complex case in which different members of

the same hierarchy are required. We want to show the value of the “Internet Sales”

for all calendar years for customers who bought products in the Auto category and

live in either the United States or the United Kingdom. Formally, we have:

σ((Country=‘UnitedStates′ || Country=‘UnitedKingdom′)&& Category=‘1′)(Sales).

Listing 8.10 shows how this would be done with MDX. Here, we need to include a set

in the WHERE clause to return the logical disjunction of its members. The WHERE

203

clause implicitly aggregates values for all members in the set. For example, the above

query shows aggregated values for the United States and the United Kingdom in each

cell.

SELECT { [Measures] . [I n t e rn e t Sa l e s Amount] } ON COLUMNS,

[Date] . [Calendar Year] .MEMBERS ONROWS

FROM [Adventure Works]

WHERE ({ [Customer] . [Customer Geography] . [Country] . [United Sta t e s] ,

[Customer] . [Customer Geography] . [Country] . [United

Kingdom] } ,

[Product] . [Category] . & [1])

Listing 8.10: MDX query returning values for customers living in the United States
or the United Kingdom and who bought products in “Category” with key 1

Listing 8.11 shows the equivalence in NOX of the WHERE clause of the MDX

query. Obviously, it is simpler than the MDX query, at least from a readability

perspective. In addition to the conditions in the previous examples, another condition

on the value of the first level of the geographic hierarchy of the customer is given.

So, the values returned are aggregated for customers living in the United States and

customers living in the United Kingdom. This is translated to an OR operator (||) in

NOX or to the method “includes(OlapPath ... path)” when more than one hierarchy

paths are included and values belonging to customers in any of the hierarchies are

aggregated and returned.

204

class se l ec tQuery3 extends OlapQuery {

boolean s e l e c t () {

Customer customer = new Customer () ;

Product product = new Product () ;

CustomerHierarchy geoh i e ra rchy =

customer . getGeographicHierarchy () ;

return (geoh i e ra rchy . i n c l ud e s (new OlapPath ("United Sta t e s ") ,

new OlapPath ("United Kingdom"))

&& (product . getCategory () == ’ 1 ’)) ;

}

}

Listing 8.11: NOX query returning values for customers living in the United States
or the United Kingdom and who bought products in “Category” with key 1

Note that in our NOX Java prototype, we use && (AND operator) to aggregate

values corresponding to multiple members from different hierarchies or dimensions.

We use || (OR operator), or we use a keyword (includes, inRange) that translates

to an OR operator, to aggregate values corresponding to multiple members from the

same hierarchy and the same level.

8.3 OLAP PROJECTION

While SELECTION provides dimension constraints, the purpose of an OLAP PROJECTION

is to identify display attributes, including measures and features. In this section,

205

we show that there are production rules in the NOX grammar of the Java OLAP

querying language that are equivalent to some of the core MDX grammar production

rules that correspond to the <axis_specification> part of the <select_statement> in

MDX, hence, demonstrating the correspondence of OLAP PROJECTION between MDX

and NOX. Subsection 8.3.1 explains the PROJECTION production rules in MDX, then

Subsection 8.3.2 provides the mapping of PROJECTION production rules between MDX

and NOX and illustrates by example the main constructs used in the grammar. The

last subsection 8.3.3 includes three parts that cover the most common projection

classes based on OLAP query patterns, similar to what was presented for OLAP

SELECTION previously.

8.3.1 PROJECTION Production Rules in MDX

We show again the syntax of the MDX select statement in Listing 8.12.

<select_statement> : := [WITH <formu la_spec i f i c a t i on >]

SELECT [< ax i s_ sp e c i f i c a t i o n >

[, <ax i s_ sp e c i f i c a t i o n > . . .]]

FROM [< cube_spec i f i c a t i on >]

[WHERE [< s l i c e r_ s p e c i f i c a t i o n >]]

[< ce l l_props >]

Listing 8.12: MDX SELECT-FROM-WHERE syntax

As was the case with the slicer, MDX expects projection criteria to be expressed in

one of the three forms of a member, tuple or set. In the case of PROJECTION though,

206

MDX supports these constructs through the syntax of the <axis_specification> in

the <select_statement>, where the formal syntax of <axis_specification> is as

follows:

<axis_specification> ::= [NON EMPTY] <set> [<dim_props>] ON <axis_name>

Note here that though the <axis_specification> is expressed in terms of a <set> in

MDX, it is only one of the production rules of the MDX grammar. Moreover, there is

some level of recursion in the MDX Grammar, that makes the MDX grammar itself

vague and hard to understand. Listing 8.13 depicts the more detailed production rules

of the internal MDX grammar and its recursive style for the <axis_specification>.

Query axes specify the edges of a cellset returned by a Multidimensional Expres-

sions (MDX) SELECT statement. Specifying the edges of a cellset allows the restric-

tion of the returned data that is visible to the client. In MDX, an edge is a set assigned

to an axis. To specify query axes, we use the <axis_specification> to assign a set to

a particular query axis. Each <axis_specification> value defines one query axis. The

number of axes in the dataset is equal to the number of <axis_specification> values

in the SELECT statement. Each query axis has a number: zero (0) for the x-axis,

1 for the y-axis, 2 for the z-axis, and so on. In the syntax for the <axis_name>

which is part of the right hand side of the <axis_specification> production rule, the

<index> value specifies the axis number. An MDX query can support up to 128

specified axes, but very few MDX queries will use more than 5 axes. For the first

5 axes, the aliases COLUMNS, ROWS, PAGES, SECTIONS, and CHAPTERS can

be used instead. In MDX, the <axis_specification> in the select statement is the

207

mechanism for displaying a data cube. An <axis_specification> consists of a set and

one or more axis keywords.

The production rules of the grammar of the <axis_specification> clause are given

in Listing 8.13.

<ax i s_ sp e c i f i c a t i o n> : := [NON EMPTY] <se t> [<dim_props>] ON

<axis_name>

<axis_name> : := COLUMNS

| ROWS

| PAGES

| CHAPTERS

| SECTIONS

| AXIS(<index>)

<dim_props> : := [DIMENSION] PROPERTIES <property> [,

<property> . . .]

<tup l e> : := <member>

| (<member> [, <member> . . .])

| <tuple_value_express ion>

Note: Each member must be from a d i f f e r e n t dimension

or from a d i f f e r e n t h i e ra r chy

<se t> : := <member>:<member>

| <set_value_express ion>

| <open_brace>[<s e t>|<tup l e>

[, <s e t>|<tup l e> . . .]]<c lose_brace>

| (<s e t>)

Note: Each member must be from the same h i e ra r chy

and the same l e v e l .

208

<tuple_value_express ion> : := <se t>.CURRENTMEMBER

| <se t> [. ITEM] ({<str ing_va lue_expres s ion>

[,<str ing_va lue_expres s ion> . . .] }

| <index>)

<set_value_express ion> : := <dim_hier>.MEMBERS

| <l e v e l>.MEMBERS

| <member>.CHILDREN

| . . .

<cube_name> : := [[[<data_source> .] <catalog_name> .]

[<schema_name> .]< i d e n t i f i e r>

<data_source> : := <i d e n t i f i e r>

<catalog_name> : := <i d e n t i f i e r>

<schema_name> : := <i d e n t i f i e r>

<dim_hier> : := [<cube_name> .]<dimension_name>

| [[<cube_name> .]< dimension_name> .]<hierarchy_name>

<dimension_name> : := <i d e n t i f i e r>

| <member>.DIMENSION

| <l e v e l>.DIMENSION

| <h ie ra r chy>.DIMENSION

<dimension> : := <dimension_name>

<hie ra r chy> : := <hierarchy_name>

<hierarchy_name> : := <i d e n t i f i e r>

| < member>.HIERARCHY

| <l e v e l>.HIERARCHY

209

<l e v e l> : := [<dim_hier> .]< i d e n t i f i e r>

| <dim_hier>.LEVELS(<index>)

| <member>.LEVEL

<member> : := [<l e v e l> .]< i d e n t i f i e r>

| <dim_hier>.<i d e n t i f i e r>

| <member>.<i d e n t i f i e r>

| <member_value_expression>

<member_value_expression> : := <member>.{PARENT | FIRSTCHILD

| LASTCHILD | PREVMEMBER

| NEXTMEMBER | . . . }

<open_brace> : := {

<close_brace> : := }

<open_bracket> : := [

<c lose_bracket> : :=]

<underscore> : := _

<alpha_char> : := a | b | c | . . . | z | A | B | C | . . . | Z

<d i g i t> : := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Listing 8.13: Production rules for the MDX <axis_specification>

8.3.2 Mapping of PROJECTION Production Rules between MDX

and NOX

NOX supports PROJECTION through the syntax of the PROJECT method defined in the

NOX grammar by the <projection> production rule. The NOX grammar production

210

rules that describe the PROJECT method are given in Listing 4.1 (from Chapter 4).

The <projection> statement of the NOX grammar in Listing 4.1 depicts the same

functionality as the <axis_specification> in the <select_statement> of the MDX

grammar in Listing 8.13. The <projection> then is a <measure_dimension_list> as

shown in the NOX grammar production rules specific for PROJECTION in Listing 4.1.

The <measure_dimension_list> has at least one condition on some measure and can

be combined by logical operators with other conditions on measures or on members

in a dimension or a hierarchy of a dimension. As described in the previous subsection,

the <axis_specification> is a specification of a set over an axis. The main restriction

on a set is that all its elements have to be of the same structure. By structure we

mean the following:

• If the set is a set of members, all members have to come from the same dimension

or the same hierarchy (even though they can be from different levels).

• If the set is a set of tuples, then the dimensionality should be the same and the

corresponding members of the tuples have to be from the same dimension or

the same hierarchy.

So, these two cases correspond to NOX as follows:

• Case 1: The set in the <axis_specification> production rule is a set of members.

In this case, the members have to be from the same dimension or from the same

hierarchy. In the NOX grammar, the <projection> production rules translate

to this behaviour by including members of a dimension or a hierarchy in the

211

<measure_dimension_list>.

• Case 2: The set in the <axis_specification> production rule is a set of tuples.

The corresponding members of tuples in a set have to match in dimensionality,

meaning from the same dimension or from the same hierarchy. Of course, the

number of members in tuples in a set is the same and the order is important.

Can we say that a set of tuples is the crossjoin of two sets? To answer this ques-

tion, let’s examine the crossjoin function another time. The Crossjoin function

returns the cross product of two or more specified sets. The order of tuples in

the resulting set depends on the order of the sets to be joined and the order of

their members. Consider two sets:

1. S1 = x1, x2, ..., xn, and

2. S2 = y1, y2, ..., yn,

the cross product of these sets is:

S1×S2 = {(x1, y1), (x1, y2), ..., (x1, yn), (x2, y1), (x2, y2), ..., (x2, yn), ..., (xn, y1), (xn, y2),

..., (xn, yn)}. For any Sk ⊆ (S1 × S2), we assign two sets:

1. Sk1 to be the set of the members in the first positions of the tuples in Sk,

and

2. Sk2 to be the set of the members in the second positions of the tuples in

Sk.

Calculating the cross join Sk1 × Sk2, we have (Sk1 × Sk2) ⊆ (S1 × S2). Hence,

212

if we have in MDX in the <axis_specification> a set of tuples Sk on some axis

Am, we can replace this <axis_specification> with two <axis_specification>,

one with the set of members Sk1 on Am and another with the set of members

Sk2 on the next axis available for use. Sk1 and Sk2 are as described above. Now,

we’re back to case 1 in this proof and we do the translation of sets the same way,

namely, we have members from the same dimension or from the same hierarchy

in each set. In NOX grammar, the <projection> production rules translate

to this behaviour by including members of a dimension or a hierarchy in the

<measure_dimension_list>.

The above restrictions of having a set of members such that all members come

from the same dimension or the same hierarchy and having a set of tuples with the

same dimensionality are not forced in the NOX prototype. This is an important

feature to be added in future work. We described earlier how to translate a set from

MDX to NOX in Subsection 8.2.2. The same applies here with the addition that all

members from each dimension will fall on one axis of the result cube and all measures

on some other axis of the result cube. Hence, the result cube will have an axes count

that is equivalent to the number of dimensions used in the PROJECT method in the

query, plus one for the measures axis.

It is important to note that in NOX the query logic is separate from the display

requirements. While the grammar in NOX supports the identification of display

attributes, it provides no means to specify the actual layout of the results. Therefore,

it is expected that other applications (reports, GUI, etc.) used by the client will

213

take care of the layout. This simplifies the job for programmers and depicts clear

accountabilities between applications, especially when it comes to complex queries

where displaying the results involves data from multiple axis, which will be shown in

the examples provided.

8.3.3 PROJECTION Constraints

As was the case with the SELECTION, we focus the evaluation process on a small set

of Projection classes indicative of common OLAP query patterns. We identify

the following three possibilities:

1. Display a single dimension and measure

2. Display multiple attributes from a single hierarchy

3. Nested attribute display

Display a single dimension and measure

We begin with the basic case involving the requirement to display a single dimension

and measure. In this example, we are interested in displaying the “Internet Sales

Amount” measure value, along with all members of the Calendar Year.

We can formalize the PROJECTION as:

πInternetSalesAmount,[CalendarY ear].MEMBERS(Sales).

Listing 8.14 illustrates how this might be done using MDX. In this case, no slicer is

required. The end result will be the aggregation of all cube cells into a simple table.

214

SELECT { [Measures] . [I n t e rn e t Sa l e s Amount] } ON COLUMNS,

[Date] . [Calendar Year] .MEMBERS ON ROWS

FROM [Adventure Works]

Listing 8.14: MDX query returning a subcube with sales measure on one axis and
calendar year members on another axis

The query in Listing 8.15 is the equivalence in NOX of the <axis_specification>

of the MDX query. The NOX query is only slightly more verbose. The “Calendar

Year” hierarchy object is instantiated by the method “getCalendarYearHierarchy()” in

the Date class/dimension. After returning the hierarchy object, the method “mem-

bers()”, included within the base Hierarchy class, is used to identify all members at

the Year level of the Date hierarchy. The “getInternetSales()” method in the Mea-

sure class is called to instantiate the InternetSales measure. Hence, the subcube

returned by the query has the internet sales for customers on one axis and the calendar

year members on another axis. Note as well that the return type of the PROJECTION

method is listed as an Object array, rather than the boolean used for SELECTION.

class projectQuery1 extends OlapQuery {

public Object [] p r o j e c t () {

Measure measures = new Measure () ;

Date date = new Date () ;

CalendarYearHierarchy ca lendarYearHierarchy =

date . getCalendarYearHierarchy () ;

215

Object [] p r o j e c t i o n s = {measures . g e t I n t e r n e t S a l e s () ,

ca lendarYearHierarchy . members () } ;

return p r o j e c t i o n s ;

}

}

Listing 8.15: NOX query returning a subcube with sales measure on one axis and
calendar year members on another axis

8.3.4 Display Multiple Attributes from a Single Hierarchy

It is often necessary to select multiple members from a hierarchy for display on a given

axis. Let’s assume that we want to display the “Internet Sales Amount” measure and

provide labels for the year 2005 and the date range 2008 to 2011 inclusive. Formally,

we could specify the PROJECTION as follows:

πInternetSalesAmount, CalendarY ear=2005, (CalendarY ear >= 2008 && CalendarY ear <= 2011)(Sales).

Listing 8.16 depicts the query in MDX. In this case, the date members are listed as

a set, with the date range defined using MDX’s colon notation. Again, no slicer is

required for this simple query.

216

SELECT { [Measures] . [I n t e rn e t Sa l e s Amount] } ON COLUMNS,

{ [Date] . [Calendar Year] . [2 0 0 5] ,

[Date] . [Calendar Year] . [2 0 0 8] : [Date] . [Calendar Year] . [2 0 1 1] }

ONROWS

FROM [Adventure Works]

Listing 8.16: MDX query returning a subcube with sales measure on one axis and
some specified calendar years on another axis

The NOX version of the query is illustrated in Listing 8.17. The “Calendar Year”

hierarchy calendarYearHierarchy object is instantiated by the method “getCal-

endarYearHierarchy()” in the Date class/dimension. After returning the hierarchy

object, the method “includesList(OlapPath ... path)”, included within the base Hier-

archy class, is called with the argument “OlapPath(“2005”)”, that has the value “2005”

for the first level of the hierarchy. Another method of the calendarYearHierarchy

“includesRange(OlapPath ... path)” is called to identify the ordered list of years in the

Date hierarchy. In this case, it is called with the two arguments “OlapPath(“2008”)”

and “OlapPath(“2011”)” respectively. Note that the DBMS schema designer is ex-

pected to identify sort orders for hierarchy levels.

class projectQuery2 extends OlapQuery {

public Object [] p r o j e c t () {

Measure measures = new Measure () ;

Date date = new Date () ;

217

CalendarYearHierarchy ca lendarYearHierarchy =

date . getCalendarYearHierarchy () ;

Object [] p r o j e c t i o n s =

{ ca lendarYearHierarchy . i n c l u d e sL i s t (new OlapPath ("2005")) ,

ca lendarYearHierarchy . inc ludesRange (new OlapPath ("2008") ,

new OlapPath ("2011")) ,

measures . g e t I n t e r n e t S a l e s () } ;

return p r o j e c t i o n s ;

}

}

Listing 8.17: NOX query returning a subcube with sales measure on one axis and
some specified calendar years on another axis

8.3.5 Nested Attribute Display

Finally, we turn to the case in which one or more attributes are to be nested within a

single display axis. In the language of MDX, this what is known as a crossjoin opera-

tion and it is extremely common in the MDX domain. Let’s assume in addition to the

“Internet Sales Amount” measure on one axis, we want to display the combination of

products in the Category range 1 to 5 and the members of the Calendar Year. More

formally, we say the following:

π(InternetSalesAmount) CrossJoin (Category >=‘1′ && Category <= ‘5′)CalendarY ear.MEMBERS(Sales).

Listing 8.18 depicts the MDX version of the query. The set that is returned on

the Rows axis is the crossjoin of two sets: One is the set of members that range

218

from Category 1 products to Category 5 products in the “Category” hierarchy of the

“Product” dimension, and the other is the set of the members of the calendar years

in the “Calendar Year” hierarchy of the “Date” dimension.

SELECT

{ [Measures] . [I n t e rn e t Sa l e s Amount] } ON COLUMNS,

CrossJoin (

{ [Product] . [Category] . & [1] : [Product] . [Category] .& [5] } ,

{ [Date] . [Calendar Year] .MEMBERS }) ONROWS

FROM [Adventure Works]

Listing 8.18: MDX query returning a subcube with sales measure on one axis and the
crossjoin of two sets on another axis

The query in Listing 8.19 depicts the NOX version of the query.

In the MDX version of the query, the crossjoin of two sets is projected on one

axis of the result cube. In the NOX version of the query, this crossjoin is translated

to two different sets implicitly projected on two axes of the result cube. One of the

axis contains the members at the first level of the “Calendar Year” hierarchy of the

“Date” dimension. Another axis contains the categories in the range between 1 and

5 that are returned as members at the first level of the “Category” hierarchy of the

“Product” Dimension. The last axis contains the InternetSales measure. Note that

the NOX model does not actually provide display functionality, leaving that instead

to the external application. As such, true crossjoin functionality is not provided by

NOX. Instead, the query is really defined as a multi-dimensional variation on the first

219

query defined in this subsection.

class projectQuery3 extends OlapQuery {

public Object [] p r o j e c t () {

Measure measures = new Measure () ;

Date date = new Date () ;

CalendarYearHierarchy ca lendarYearHierarchy =

date . getCalendarYearHierarchy () ;

Product product = new Product () ;

CategoryHierarchy categoryHierarchy =

product . getCategoryHierarchy () ;

Object [] p r o j e c t i o n s = { ca lendarYearHierarchy . members () ,

categoryHierarchy . inc ludesRange (new OlapPath (1) ,new

OlapPath (5)) ,

measures . g e t I n t e r n e t S a l e s () } ;

return p r o j e c t i o n s ;

}

}

Listing 8.19: NOX query returning a subcube with sales measure on one axis and two
sets on two other axes

8.4 Conclusion

In this chapter, we demonstrated how the NOX model, which offers a query language

that is both native and OLAP-specific, is capable of representing the range of query

220

patterns developers have come to expect in the OLAP domain. We accomplished this

through examining the NOX model from an algebraic perspective and comparing its

expressiveness to MDX, the de-facto standard query language in this domain. We

focused on SELECTION and PROJECTION due to the fact that these are by far the most

prominent OLAP operations.

The concept of native language OLAP querying has been discussed in the industry

but no active development or analysis has been made to advance and publicize such a

model. The main advantages of using native languages are that they provide elegant

scaling, improved development cycles, compile time checking, ease of testing and

better debugging tools. By taking a practical approach and presenting examples with

a well-structured algebra that satisfies operations done in OLAP, we demonstrated

that NOX and intuitive and it minimizes the constraints of existing BI languages.

This, in turn, should attract DBMS developers.

221

Chapter 9

Conclusion

With the popularity of data warehousing and OLAP techniques in the business in-

telligence world, having a query language that is both native and OLAP-specific is

a significant advantage for developers working in the Business Intelligence domain.

Much development effort has been spent on building OOP interfaces for general pur-

pose relational database management systems. However, no domain-specific native

language facility has focused on OLAP querying. Given the awkward, almost com-

pletely unstandardized nature of the current OLAP application marketplace, we be-

lieve that NOX offers exciting possibilities for those building and utilizing products

and services in this extremely important area [ETT10] [TET11].

The main objective of this thesis, identified in the introduction, is to present the

Native language OLAP query eXecution (NOX) framework specifically tailored to

the BI/OLAP domain. The current version of NOX represents a comprehensive im-

plementation of the native language query model. All the examples along with their

related concepts mentioned in this thesis are fully implemented and tested. They

222

are integrated into the Sidera system and executed there. In building a consistent

OLAP conceptual model, we have been able to provide transparent cube persistence

functionality that allows the programmer to view remote, possibly very large, an-

alytical repositories merely as local objects. In addition to the ability to program

against the conceptual model, our framework also provides compile-time type check-

ing, clean refactoring opportunities, and direct Object-Oriented manipulation of the

OLAP queries and their result sets. While we chose to target Java in this implemen-

tation, the fundamental concepts are language agnostic and could easily be applied

to other modern OOP languages. In meeting the main objective, we:

1. Designed a grammar that presents the developer with an Object Oriented rep-

resentation of the primary OLAP operations pertaining to the OLAP-specific

algebra.

2. Built the NOX parser for Java application OLAP programming and demon-

strated how developers write queries in NOX to interact with remote data cubes

using standard OOP principles and practices.

3. Incorporated parameter passing in NOX in a simple and intuitive manner.

4. Evaluated NOX by comparing and contrasting it to MDX, the de-facto “string-

based” OLAP query language.

5. Demonstrated the flexibility of OLAP hierarchies in NOX.

6. Made code re-use possible as afforded by OOP concepts such as inheritance.

223

7. Encapsulated direct Object-Oriented manipulation of Results Sets by allowing

data to be transparently mapped back into the client applications as objects in

the NOX API.

8. Demonstrated the formal validation of NOX in the OLAP context by mapping

its SELECTION and PROJECTION grammar production rules to those of the MDX

grammar.

. To summarize the accomplishments of the thesis, Table 3 provides the mapping

between the objectives given in the introduction and the corresponding chapters/sec-

tions that address them.

. .
Objective Corresponding Sections/Chapters

. .

1 Sections 4.2, 4.3, and 4.6

2 Sections 4.4 and 4.5

3 Chapter 5

4 Chapter 7

5 Chapters 5 and 6

6 Chapter 6

7 Section 5.5

8 Section 5.6

9 Chapter 8

Table 3: Objectives and the Chapters/Sections where they were implemented

224

9.1 Research Methodology and Contribution

Computer science research methodologies can be divided into three distinct methods:

theoretical, experimental and simulation [DC02]. Our research was mainly done using

the experimental research methodology and then validated with relevant theoretical

methods. Experimental methods were used to build the model of the OLAP-specific

NOX framework and compare its empirical results with those of the de-facto language

for OLAP querying, MDX. Comparison of the two grammars of NOX and MDX then

allowed us to demonstate the validity of the NOX model.

Ultimately, the main contribution of this thesis is to help programmers write their

OLAP queries in the native language itself. While the underlying compilation and

translation mechanism is somewhat complex, all of the framework’s sophistication is

virtually hidden from the developer. As stated at the outset, the focus of the NOX

model is clearly on the BI/OLAP domain. In fact, NOX is intended to specifically

support higher level analytics servers. It is not expected to resolve all possible queries

that might be executed against an underlying relational data warehouse. The pri-

mary motivation for this approach is the rejection of the “be all things to all people”

mantra that tends to plague systems that must maintain a fully generic, lowest com-

mon denominator profile [SMA+07]. Conventional RDBMSs, conceptual mapping

frameworks such as JOLAP suffer from this same “curse of generality”. JOLAP was

introduced in Chapter 3. In the current context, the targeting of a specific appli-

cation domain ultimately relieves the designer from having to manually construct a

225

comprehensive data model, along with its constituent processing constructs.

In addition, it is important to note that a second contribution is the construction

of the NOX prototype itself. Specifically, we demonstrated the practical viability

of a language model that is easily extendable and portable and provides a fully-

implementable OLAP native language system.

9.2 Future Work

In this thesis, we have modeled the primary components of the native OLAP language

execution framework and tested them extensively by running OLAP queries of dif-

ferent kinds. The model flexibility and object-oriented nature offer various research

opportunities for future work such as the following:

• Mapping between a NOX query and its corresponding XML string, generated

by NOX framework, is a language problem to be addressed in two steps, namely:

– The parsing problem: Given the grammar G and a string s the parsing

problem answers the question whether or not s ∈ L(G). If s ∈ L(G), the

answer to this question may be either a parse tree or a derivation [JS].

– The correspondence between the parse tree, produced by the NOX pre-

processer, and the DOM tree (representative of the query’s xml string

produced).

• Extending the grammar to include additional operations relevant to the data

warehouse context, possibly including:

226

– Hierarchical navigation functions such as ancestor, first child, sibling, etc.

– Numeric functions such as correlation, covariance, etc.

• Query optimization would be interesting for future work.

• Adding more programming constructs to the NOX API to increase the ex-

pressiveness of the language. Extending the usage of parameters would be a

possibility in this context. For example, having different types of parameters

such as arrays of parameters will increase the expressiveness of the language.

• As the input Java file is re-written (by the NOX parser) before it is compiled

by the regular compiler, debugging using debugging tools becomes a problem.

Very important future work will be to tackle this problem.

• Adding additional programming constructs to the NOX API to complete the

implementation of the grammar of the language

– Change level algebraic operator

– Change base algebraic operator

– Drill across algebraic operator

• Limitation of not having the whole object-oriented paradigm is in the present

version of NOX. Adding object-oriented functionalities such as providing inter-

faces in NOX will add to the powerfulness of NOX.

• Another limitation is that the basic constructs of MDX are not fully imple-

mented in NOX. Constructs in MDX such as <tuple_value_expression,

227

<set_value_expression> and <member_value_expression> need to be matched

to constructs with similar functionality in NOX.

• Restrictions of having a set of members such that all members come from the

same dimension or the same hierarchy and having a set of tuples with the same

dimensionality are not enforced in the NOX prototype. This is an important

feature to be done in future work.

• Developing an interactive, real-time interface to the data warehouse. While

this can be accomplished with, for example, an interactive Java shell, a more

interesting option would be to port NOX to a full fledged, interpreted OOP

language like Python.

• Testing of the prototype has been done by using ad hoc “case by case” method.

Employing more formal testing mechanisms might be an interesting problem.

• The NOX language may be implemented in other languages that are in popular

use, with possibilities including languages such as C++ and Delphi.

228

Bibliography

[AB87] M. P. Atkinson and O. P. Buneman. Types and persistence in database

programming languages. ACM Computing Surveys, 19(2):105–170, 1987.

[AGS97] R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimensional

databases. In Proceedings of the 13th International Conference on Data

Engineering (ICDE 1997), pages 232–243, Washington, DC, USA, 1997.

IEEE Computer Society Press.

[AMM07] A. Adya, J. A. Blakeley , S. Melnik, and S. Muralidhar. Anatomy of

the ADO.NET entity framework. In ACM SIGMOD International con-

ference on Management of Data, pages 877–888, New York, NY, USA,

2007. ACM.

[AR] A. Abello and O. Romero. On-line analytical processing. Technical report,

Universitat Politecnica de Catalunya.

[ASS01] A. Abello, J. Samos, and F. Saltor. A framework for the classification

and description of multidimensional data models. In DEXA 2001, volume

2113, pages 668–677, 2001.

229

[ASS03] A. Abello, J. Samos, and F. Saltor. Implementing operations to navigate

semantic star schemas. In Proceedings of DOLAP’2003. ACM, 2003.

[ASS05] A. Abello, J. Samos, and F. Saltor. Yam2 (yet another multidimensional

model): An extension of uml. In Information Systems, Elsevier, 2005.

[BK06] C. Bauer and G. King. Java Persistence with Hibernate. Manning Publi-

cations Co., Greenwich, CT, USA, 2006.

[BRK+08] J. A. Blakeley, V. Rao, I. Kunen, A. Prout, M. Henaire, and C. Kleiner-

man. .NET database programmability and extensibility in Microsoft SQL

Server. In ACM SIGMOD International conference on Management of

Data, pages 1087–1098, New York, NY, USA, 2008. ACM.

[CCS92] E. Codd, S. Codd, and C. Salley. Providing OLAP (on-line analytical

processing) to user-analysts: An IT mandate. Technical report, E.F. Codd

and Associates, 1992.

[CD97] S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP

technology. ACM SIGMOD Record, 26:65–74, 1997.

[CR05] W. Cook and S. Rai. Safe query objects: Statically typed objects as

remotely executable queries. Proceedings of the 27th International Con-

ference on Software Engineering (ICSE), pages 97–106, 2005.

[CR06] W. Cook and C. Rosenberger. Native queries for persistent objects. A

Design White Paper, 2006.

230

[CT98] L. Cabibbo and R. Torlone. From a procedural to a visual query lan-

guage for OLAP. In Proceedings of the 10th Internationla Conference on

Scientific and Statistical Database Management (SSDBM), pages 74–83,

1998.

[CW00] S. Chaudhuri and G. Weikum. Rethinking database system architecture:

Towards a self-tuning risc-style database system. In Proceedings of the 26th

International Conference on Very Large Data Bases, VLDB ’00, pages 1–

10, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[CWM03] CWM, Common Warehouse Metamodel, 2003. http://www.cwmforum.

org.

[DB4] db4objects. http://www.db4o.com.

[DC02] G. Dodig-Crnkovic. Scientific methods in computer science. In Conference

for the Promotion of Research in IT at New Universities and at University

Colleges in Sweden, April 2002.

[DKK05] J. P. Dittrich, D. Kossmann, and A. Kreutz. Bridging the gap between

OLAP and SQL. In International conference on Very Large Data Bases

(VLDB), pages 1031–1042, 2005.

[DTDa] Document Type Definition, Wikepedia. http://en.wikipedia.org/

wiki/Document_Type_Definition.

231

[DTDb] Definition of the XML document type declaration from Extensible Markup

Language (XML) 1.0 (Fourth Edition). http://www.w3.org/TR/2008/

REC-xml-20081126/.

[EDD+07] T. Eavis, G. Dimitrov, I. Dimitrov, D. Cueva, A. Lopez, and A. Taleb.

Sidera: a cluster-based server for online analytical processing. In Proceed-

ings of the 2007 OTM confederated international conference on On the

move to meaningful internet systems: CoopIS, DOA, ODBASE, GADA,

and IS - Volume Part II, OTM’07, pages 1453–1472, Berlin, Heidelberg,

2007. Springer-Verlag.

[EJB] EJB 3.0 (Enterprise JavaBeans). http://java.sun.com/products/ejb/.

[ETT10] T. Eavis, H. Tabbara, and A. Taleb. The nox framework: Native language

queries for business intelligence applications. In Torben Bach Pedersen,

Mukesh K. Mohania, and A Min Tjoa, editors, DaWak, volume 6263 of

Lecture Notes in Computer Science, pages 172–189. Springer, 2010.

[FBV00] E. Franconi, F. Baader, and P. Vassiliadis. Multidimensional data models

and aggregation. In M. Jarke, M. Lenzerini, Y. Vassilious, and P. Vassil-

iadis, editors, Fundamentals of Data Warehousing. Springer, Heidelberg,

2000.

[FK04] E. Franconi and A. Kamble. The GMD data model and algebra for mul-

tidimensional information. In A. Persson and J. Stirna, editors, CAiSE

2004. LNCS, volume 3084, pages 446–462. Springer, Heidelberg, 2004.

232

[FS00] E. Franconi and U. Sattler. In A Data Warehouse Conceptual Data Model

for Multidimensional Aggregation: A Preliminary Report, 2000.

[GBB+00] R. Gattell, D. Barry, M. Berler, J. Eastman, D. Jordan, C. Russell,

O. Schadow, T. Stanienda, and F. Velez, editors. The Object Data Stan-

dard ODMG 3.0. Morgan Kaufmann, 2000.

[GL97] M. Gyssens and L. Lakshmanan. A foundation for multi-dimensional

databases. In Proceedings of 23rd International Conference on Very Large

Data Bases (VLDB 1997), pages 106–115, San Francisco, CA, USA, 1997.

Morgan Kaufmann Publishers Inc.

[GL07] J. Gil and K. Lenz. Eliminating impedance mismatch in C++. In Inter-

national conference on Very Large Data Bases (VLDB), pages 1386–1389.

VLDB Endowment, 2007.

[GMR98] M. Golfarelli, D. Maio, and S. Rizzi. The dimensional fact model: A

conceptual model for data warehouses. In International Journal of Coop-

erative Information Systems (IJCIS), volume 7(2-3), pages 215–247, 1998.

[Has] HaskellDB. http://www.haskell.org/haskellDB/.

[Hay04] C. Hays. What wal-mart knows about customers’ habits. The New York

Times, 2004.

[HC97] G. Hamilton and R. Cattell. Jdbc: A java sql api. Sun Microsystems,

1997.

233

[Hil10] I. Hilgefort. Reporting and Analytics Using SAP BusinessObjects. Galileo

Press, 2010.

[HK06] J. Han and M. Kamber, editors. Data Mining: Concepts and Techniques.

Morgan Kaufmann, 2006.

[HS98] M.-S. Hacid and U. Sattler. Modeling multidimensional database: A for-

mal object-centered approach. In Proceedings of the 6th European Con-

ference on Information Systems (ECIS), pages 83–102, 1998.

[Jav] Javacc, the java compiler compiler. https://javacc.dev.java.net/.

[JDO] JDO (Java Database Objects). http://java.sun.com/products/jdo/.

[JJT] Java.net, JJTree reference documentation. https://javacc.dev.java.

net/doc/JJTree.html.

[JOL03] JSR-69 JavaTM OLAP Interface (JOLAP), JSR-69 (JOLAP) Expert

Group, 2003. http://jcp.org/aboutJava/communityprocess/first/

jsr069/index.html.

[JS] J. Jeuring and D. Swierstra, editors. Grammars and Parsing.

[KR02] R. Kimball and M. Ross, editors. The Data Warehouse Toolkit. Addison-

Wesley, 2002.

[LIN] LINQ: .NET Language Integrated Query. http://msdn.microsoft.com/

en-us/library/bb308959.aspx.

234

[LS97] H. Lenz and A. Shoshani. Summarizability in olap and statistical data

bases. pages 132–143. IEEE Computer Society, 1997.

[LW96] C. Li and X.S. Wang. A data model for supporting on-line analytical

processing. In Proceedings of 5th International Conference on Informa-

tion and Knowledge Management (CIKM 1996), pages 81–88. ACM Press,

1996.

[Mel02] J. Melton. Advanced SQL 1999: Understanding Object-Relational, and

Other Advanced Features. Elsevier Science Inc., New York, NY, USA,

2002.

[Mic] Microsoft Connect: Your feedback improving Microsoft products.

http://connect.microsoft.com/SQLServer/feedback/details/

251601/run-mdx-query-with-parameters-using-oledb.

[MSD] MSDN Library: Using Parameters in MDX. http://msdn.microsoft.

com/en-us/library.

[MZ04] E. Malinowski and E. ZimĞnyi. Olap hierarchies: A conceptual perspec-

tive. CAiSE, 3084:477–491, 2004.

[MZ06] E. Malinowski and E. Zimanyi. Hierarchies in a multidimensional model:

From conceptual modeling to logical representation. Data Knowl. Eng.,

59(2):348–377, 2006.

235

[NGD+08] M. C. Norrie, M. Grossniklaus, C. Decurtins, A. de Spindler, A. Vancea,

and S. Leone. Semantic data management for db4o. In ICOODB’08, pages

21–38, 2008.

[Nol99] C. Nolan. Manipulate and query OLAP data using adomd and multidi-

mensional expressions. Microsoft Systems Journal, pages 97–106, 1999.

[ODM] ODMG web site. http://www.odmg.org.

[Pow99] D. Power. Decision Support Systems Glossary. http://DSSResources.

COM/glossary/, 1999.

[RA05] O. Romero and A. Abello. Improving automatic SQL translation for rolap

tools. In Proceedings of 9th Jornadas en Ingenieris del Software y Bases

de Datos (JISB 2005), volume 3284(5), pages 123–130, 2005.

[RA07] O. Romero and A. Abello. On the need of a reference algebra for OLAP.

In Proceedings of the 9th International Conference on Data Warehousing

and Knowledge Discovery (DAWAK 2007), pages 99–110, 2007.

[Ran05] J. Ranjan. Applications of data mining techniques in pharmaceutical

industry. Journal of Theoretical and Applied Information, 2005.

[Rub] Ruby programming language. http://www.ruby-lang.org/en/.

[Rus03] C. Russell. Java data objects (jdo) specification jsr-12. Sun Microsystems,

2003.

236

[SBSR08] A. Simitsis, A. Baid, Y. Sismanis, and B. Reinwald. Multidimensional

content exploration. In In VLDB, 2008.

[SC05] M. Stonebraker and U. Cetintemel. "one size fits all": An idea whose time

has come and gone. In Proceedings of the 21st International Conference

on Data Engineering, ICDE ’05, pages 2–11, Washington, DC, USA, 2005.

IEEE Computer Society.

[Sel08] M. Seltzer. Beyond relational databases. Communications of the ACM,

51:52–58, July 2008.

[SH98] M. Stonebraker and J. Hellerstein, editors. Readings in Database Systems,

third edition. Morgan Kaufmann, 1998.

[SHW+06] G. Spofford, S. Harinath, C. Webb, D. Hai Huang, and F. Civardi, editors.

MDX Solutions with Microsoft SQL Server Analysis Services 2005 and

Hyperion Essbase, Second Edition. John Wiley and Sons, 2006.

[SMA+07] M .Stonebraker, S. Madden, D. J. Abadi, Stavros Harizopoulos, Nabil

Hachem, and Pat Helland. The end of an architectural era (it’s time for a

complete rewrite). In International conference on Very Large Data Bases

(VLDB), pages 1150–1160, 2007.

[TCIK99] M. Tatsubori, S. Chiba, K. Itano, and M. Killijian. Openjava: A class-

based macro system for java. OORaSE’99, ACM Workshop on Object-

Oriented Reflection and Software Engineeringon, pages 117–133, 1999.

237

[TD97] H. Thomas and A. Datta. A conceptual model and algebra for on-line

analytical processing in data warehouses. In Proceedings of 23rd the 7th

Workshop on Information Technologies and Systems (WITS 1997), pages

91–100, 1997.

[TD01] H. Thomas and A. Datta. A conceptual model and algebra for on-line an-

alytical processing in decision support databases. In Information Systems

12(1), pages 83–102, 2001.

[TET11] A. Taleb, T. Eavis, and H. Tabbara. The NOX OLAP query model: From

algebra to execution. In Alfredo Cuzzocrea and Umeshwar Dayal, editors,

DaWaK, volume 6862 of Lecture Notes in Computer Science, pages 167–

183. Springer, 2011.

[VS99] P. Vassiliadis and T. Sellis. A survey of logical models for OLAP

databases. In SIGMOD Record 28, volume 4, pages 64–69, 1999.

[WZP05] M. Whitehorn, R. Zare, and M. Pasumansky. Fast Track to MDX.

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

238

Appendices

239

Appendix A

Abbreviations

ADOMD: ActiveX Data Objects Multidimensional

API: Application Programming Interface

AST: Abstract Syntax Tree

BI: Business Intelligence

CWM: Common Warehouse Metamodel

DB4O: Database for Objects

DSS: Decision Support Systems

DTD: Document Type Definition

EJB: Enterprise JavaBeans

ETL: Extract, Transform, Load

EM: Entity Mapping

FASMI: Fast Analysis Shared Multidimensional Information

HOLAP: Hybrid OnLine Analytical Processing

HQL: Hibernate Query Language

240

IDE: Integrated Development Environment

IT: Information Technology

JavaCC: Java Compiler Compiler

JDBC: Java Database Connectivity

JDO: Java Database Objects

JDOQL: Java Database Objects Query Language

JOLAP: Java OLAP Interface

JPA: Java Persistence API

JPQL: Java Persistence Query Language

LINQ: Language Integrated Query

MD: Multi Dimensional

MDX: Multi Dimensional eXpressions OLAP query language

MOLAP: Multidimensional OnLine Analytical Processing

NOX: Native language OLAP query eXecution

ODBC: Open Database Connectivity

OLAP: OnLine Analytical Processing

OLTP: OnLine Transaction Processing

OLEDB: Object Linking and Embedding, Database

OOP: Object Oriented Programming

OQL: Object Query Language

ORM: Object Relational Mapping

#PCDATA: Parsed Charater Data POJO: Plain Old Java Object

241

PSI: Parallel Service Interface

RDBMS: Relational Database Management Systems

ROLAP: Relational OnLine Analytical Processing

SQL: Structured Query Language

XML: Extensible Markup Language

XMLA: Extensible Markup Language for Analysis

242

Appendix B

DTD Schema

In this appendix, we go into more details what a DTD schema and a DTD markup

are.

In a DTD markup, declarations are used to declare which elements types, attribute

lists, entities and notations are allowed in the structure of the corresponding class of

XML documents. An Element Type Declaration defines an element and its possible

content. A valid XML document only contains elements that are defined in the DTD.

An element’s content is specified by some key words and characters [DTDa]:

• EMPTY for no content

• FOR for any content

• , for orders

• | for alternatives (“either ... or”)

• () for groups

• * for any number (zero or more)

243

• + for at least once (one or more)

• ? for optional (zero or one)

• If there is no *, + or ?, the element must occur exactly one time

An example of a DTD is depicted in Listing B.1. To illustrate, we report the following:

• #PCDATA stands for Parsed Character Data and is the keyword to specify

mixed content, meaning an element may contain character data as well as child

elements in arbitrary order and number of occurrences.

• The QUERY element contains a DATA_QUERY or a META_QUERY .

• The DATA_QUERY element contains either a CUBE_NAME, an optional

OPERATION_LIST, and an optional FUNCTION_LIST.

• The CUBE_NAME element contains plain text.

• The OPERATION_LIST element contains at least one OPERATION.

• The OPERATION element contain one of the following elements: SELECTION

or PROJECTION or CHANGE_LEVEL or CHANGE_BASE or DRILL_ACROSS

or UNION or INTERSECTION or DIFFERENCE)>.

This DTD example is not complete, as we just wanted to demonstrate how a DTD is

defined.

<?xml version=" 1 .0 " encoding="UTF−8"?>

<!ELEMENT QUERY (DATA_QUERY | META_QUERY)>

244

<!−− Data que r i e s−−>

<!ELEMENT DATA_QUERY (CUBE_NAME,OPERATION_LIST? ,FUNCTION_LIST?)>

<!ELEMENT CUBE_NAME (#PCDATA)>

<!ELEMENT OPERATION_LIST (OPERATION+)>

<!ELEMENT OPERATION (

SELECTION |

PROJECTION |

CHANGE_LEVEL |

CHANGE_BASE |

DRILL_ACROSS|

UNION |

INTERSECTION |

DIFFERENCE)>

Listing B.1: DTD example

245

Appendix C

Complex Query in XML

<QUERY>

<DATA_QUERY>

<CUBE_NAME>

SampleCube

</CUBE_NAME><OPERATION_LIST>

<OPERATION>

<SELECTION>

<DIMENSION_MEASURE_LIST>

<DIMENSION>

<DIMENSION_NAME>

Customer

</DIMENSION_NAME><EXPRESSION>

<RELATIONAL_EXP>

<SIMPLE_EXP>

<EXP_VALUE>

<ATTRIBUTE>

age

</ATTRIBUTE>

</EXP_VALUE>

</SIMPLE_EXP><COND_OP>

<RELATIONAL_OP>

246

GT

</RELATIONAL_OP>

</COND_OP><SIMPLE_EXP>

<EXP_VALUE>

<CONSTANT>

40

</CONSTANT>

</EXP_VALUE>

</SIMPLE_EXP>

</RELATIONAL_EXP>

</EXPRESSION>

</DIMENSION><LOGICAL_OP>

AND

</LOGICAL_OP><DIMENSION>

<DIMENSION_NAME>

DateDimension

</DIMENSION_NAME><EXPRESSION>

<RELATIONAL_EXP>

<SIMPLE_EXP>

<EXP_VALUE>

<ATTRIBUTE>

year

</ATTRIBUTE>

</EXP_VALUE>

</SIMPLE_EXP><COND_OP>

<EQUALITY_OP>

EQUALS

</EQUALITY_OP>

</COND_OP><SIMPLE_EXP>

<EXP_VALUE>

<CONSTANT>

2007

</CONSTANT>

</EXP_VALUE>

</SIMPLE_EXP>

</RELATIONAL_EXP>

247

</EXPRESSION>

</DIMENSION><LOGICAL_OP>

AND

</LOGICAL_OP><DIMENSION>

<DIMENSION_NAME>

DateDimension

</DIMENSION_NAME><EXPRESSION>

<SIMPLE_EXP>

<EXP_VALUE>

<FUNCTION_LIST>

<FUNCTION>

<PARENT>

month

</PARENT><FUNCTION_NAME>

inRange

</FUNCTION_NAME><ARGUMENT_LIST>

<ARGUMENT>

5

</ARGUMENT><ARGUMENT>

10

</ARGUMENT>

</ARGUMENT_LIST>

</FUNCTION>

</FUNCTION_LIST>

</EXP_VALUE>

</SIMPLE_EXP>

</EXPRESSION>

</DIMENSION><LOGICAL_OP>

AND

</LOGICAL_OP><DIMENSION>

<DIMENSION_NAME>

Supp l i e r

</DIMENSION_NAME><EXPRESSION>

<RELATIONAL_EXP>

<SIMPLE_EXP>

<ARITHMETIC_EXP>

248

<SIMPLE_EXP>

<EXP_VALUE>

<ATTRIBUTE>

balance

</ATTRIBUTE>

</EXP_VALUE>

</SIMPLE_EXP><ARITHMETIC_OP>

DIVIDE

</ARITHMETIC_OP><SIMPLE_EXP>

<EXP_VALUE>

<CONSTANT>

100

</CONSTANT>

</EXP_VALUE>

</SIMPLE_EXP>

</ARITHMETIC_EXP>

</SIMPLE_EXP>

<COND_OP>

<RELATIONAL_OP>

LT

</RELATIONAL_OP>

</COND_OP><SIMPLE_EXP>

<EXP_VALUE>

<CONSTANT>

45623.00

</CONSTANT>

</EXP_VALUE>

</SIMPLE_EXP>

</RELATIONAL_EXP>

</EXPRESSION>

</DIMENSION><LOGICAL_OP>

AND

</LOGICAL_OP><DIMENSION>

<DIMENSION_NAME>

Product1

</DIMENSION_NAME><EXPRESSION>

249

<SIMPLE_EXP>

<EXP_VALUE>

<HIERARCHY_LIST>

<HIERARCHY>

<HIERARCHY_NAME>

ProductHierarchy

</HIERARCHY_NAME><HIERARCHY_OP>

inc l ud e s

</HIERARCHY_OP><OLAP_PATH_LIST>

<OLAP_PATH>

<VALUE>

"automotive "

</VALUE><VALUE>

" e x t e r i o r "

</VALUE><VALUE>

" l i g h t s "

</VALUE>

</OLAP_PATH>

<OLAP_PATH>

<VALUE>

"automotive "

</VALUE><VALUE>

" i n t e r i o r "

</VALUE>

</OLAP_PATH>

</OLAP_PATH_LIST>

</HIERARCHY>

</HIERARCHY_LIST>

</EXP_VALUE>

</SIMPLE_EXP>

</EXPRESSION>

</DIMENSION>

</DIMENSION_MEASURE_LIST>

</SELECTION><PROJECTION>

<MEASURE_DIMENSION_LIST>

<DIMENSION>

250

<DIMENSION_NAME>

DateDimension

</DIMENSION_NAME><EXPRESSION>

<SIMPLE_EXP>

<EXP_VALUE>

<HIERARCHY_LIST>

<HIERARCHY>

<HIERARCHY_NAME>

TimeHierarchy

</HIERARCHY_NAME><HIERARCHY_OP>

rangeL i s t

</HIERARCHY_OP><OLAP_PATH_LIST>

<OLAP_PATH>

<VALUE>

"1996"

</VALUE>

</OLAP_PATH><OLAP_PATH>

<VALUE>

"2001"

</VALUE>

</OLAP_PATH>

</OLAP_PATH_LIST>

</HIERARCHY>

</HIERARCHY_LIST>

</EXP_VALUE>

</SIMPLE_EXP>

</EXPRESSION>

</DIMENSION>

</MEASURE_DIMENSION_LIST>

</PROJECTION>

</OPERATION>

</OPERATION_LIST>

</DATA_QUERY>

</QUERY>

Listing C.1: XML string corresponding to the query in Listing 5.4

251

Appendix D

MDX Grammar Production Rules

In this appendix, we show the grammar that describes the MDX language. Listing D.1

shows the productions rules for this grammar.

Listing D.1: MDX grammar

<MDX_statement> : := <se lec t_statement>

| <create_formula_statement>

| <drop_formula_statement>

<se lec t_statement> : := [WITH <fo rmu l a_spe c i f i c a t i on>]

SELECT [<ax i s_ sp e c i f i c a t i o n>

[, <ax i s_ sp e c i f i c a t i o n> . . .]]

FROM [<cube_spec i f i c a t i on>]

[WHERE [<s l i c e r _ s p e c i f i c a t i o n>]]

[<ce l l_props>]

<ax i s_ sp e c i f i c a t i o n> : := [NON EMPTY] <se t> [<dim_props>] ON

<axis_name>

<axis_name> : := COLUMNS

| ROWS

252

| PAGES

| CHAPTERS

| SECTIONS

| AXIS(<index>)

<dim_props> : := [DIMENSION] PROPERTIES <property> [,

<property> . . .]

<s l i c e r _ s p e c i f i c a t i o n> : := {<se t> | <tup l e>}

<tup l e> : := <member>

| (<member> [, <member> . . .])

| <tuple_value_express ion>

Note: Each member must be from a d i f f e r e n t dimension

or from a d i f f e r e n t h i e ra r chy

<se t> : := <member>:<member>

| <set_value_express ion>

| <open_brace>[<s e t>|<tup l e>

[, <s e t>|<tup l e> . . .]]<c lose_brace>

| (<s e t>)

Note: Each member must be from the same h i e ra r chy

and the same l e v e l .

<tuple_value_express ion> : := <se t>.CURRENTMEMBER

| <se t> [. ITEM] ({<str ing_va lue_expres s ion>

[,<str ing_va lue_expres s ion> . . .] }

| <index>)

<set_value_express ion> : := <dim_hier>.MEMBERS

| <l e v e l>.MEMBERS

| <member>.CHILDREN

| . . .

253

<cube_name> : := [[[<data_source> .] <catalog_name> .]

[<schema_name> .]< i d e n t i f i e r>

<data_source> : := <i d e n t i f i e r>

<catalog_name> : := <i d e n t i f i e r>

<schema_name> : := <i d e n t i f i e r>

<dim_hier> : := [<cube_name> .]<dimension_name>

| [[<cube_name> .]< dimension_name> .]<hierarchy_name>

<dimension_name> : := <i d e n t i f i e r>

| <member>.DIMENSION

| <l e v e l>.DIMENSION

| <h ie ra r chy>.DIMENSION

<dimension> : := <dimension_name>

<hie ra r chy> : := <hierarchy_name>

<hierarchy_name> : := <i d e n t i f i e r>

| < member>.HIERARCHY

| <l e v e l>.HIERARCHY

<l e v e l> : := [<dim_hier> .]< i d e n t i f i e r>

| <dim_hier>.LEVELS(<index>)

| <member>.LEVEL

<member> : := [<l e v e l> .]< i d e n t i f i e r>

| <dim_hier>.<i d e n t i f i e r>

| <member>.<i d e n t i f i e r>

| <member_value_expression>

<member_value_expression> : := <member>.{PARENT | FIRSTCHILD

254

| LASTCHILD | PREVMEMBER

| NEXTMEMBER | . . . }

<open_brace> : := {

<close_brace> : := }

<open_bracket> : := [

<c lose_bracket> : :=]

<underscore> : := _

<alpha_char> : := a | b | c | . . . | z | A | B | C | . . . | Z

<d i g i t> : := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

255

Appendix E

NOX Grammar Production Rules

In this appendix, we show the grammar that describes the NOX language. Listing E.1

shows the productions rules for this grammar.

Listing E.1: NOX grammar

<query> : := <data_query>

| <meta_query>

<data_query> : := <cube_name>

[, <ope r a t i on_ l i s t>] [, <f un c t i o n_ l i s t>]

<ope r a t i on_ l i s t> : := <operat i on> [, <operat i on> , . . .]

<operat i on> : := <s e l e c t i o n>

| <p r o j e c t i o n>

| . . .

<s e l e c t i o n> : := <dimension_measure_list>

<dimension_measure_list> : :=

256

<dimension> (, <log i ca l_op> , (<dimension> |

<measure>)) ∗
| <measure> , <log i ca l_op> , <dimension>

(, <log i ca l_op> , (<dimension> | <measure>)) ∗
| <measure> (, <log i ca l_op> , (<dimension> |

<measure>)) ∗ ,

<log i ca l_op> , <dimension>

<pro j e c t i o n> : := <measure_dimension_list>

<measure_dimension_list> : :=

<measure> (, <log i ca l_op> , (<dimension> | <measure>)) ∗
| <dimension> , <log i ca l_op> , <measure>

(, <log i ca l_op> , (<dimension> | <measure>)) ∗
| <dimension> (, <log i ca l_op> , (<dimension> |

<measure>)) ∗ ,

<log i ca l_op> , <measure>

<measure> : := <measure_name> [, <cond_op> , <simple_exp>]

<measure_name> : := #PCDATA

<dimension> : := <dimension_name> , <expr e s s i on>

<dimension_name> : := #PCDATA

<expre s s i on> : := <re la t i ona l_exp>

| <compound_exp>

<compound_exp> : := <exp r e s s i on> , <log i ca l_op> , <expr e s s i on>

<re la t i ona l_exp> : := <simple_exp> , <cond_op> , <simple_exp>

<simple_exp> : := <exp_value>

| <airthmetic_exp>

<arithmetic_exp> : := <simple_exp> , <arithmetic_op> , <simple_exp>

257

<exp_value> : := <constant>

| <a t t r i b u t e>

| <h i e r a r chy_ l i s t>

| <fun c t i o n_ l i s t>

<constant> : := #PCDATA

<at t r i b u t e> : := #PCDATA

<log i ca l_op> : := #PCDATA

<cond_op> : := <re l a t i ona l_op>

| <equal ity_op>

| <olap_op>

<re la t i ona l_op> : := #PCDATA

<equal ity_op> : := #PCDATA

<olap_op> : := #PCDATA

<arithmetic_op> : := #PCDATA

<fun c t i o n_ l i s t> : := <func t i on>+

<func t i on> : := <parent> , <function_name> [, argument_list]

<parent> : := #PCDATA

<function_name> : := #PCDATA

<argument_list> : := <argument>+

<argument> : := #PCDATA

258

<h i e r a r chy_ l i s t> : := <hie ra r chy>+

<hie ra r chy> : := <hierarchy_name> , <hierarchy_op> ,

<olap_path_l ist>

<hierarchy_name> : := #PCDATA

<hierarchy_op> : := #PCDATA

<olap_path_l ist> : := <olap_path>

<olap_path> : := <value>+

<value> : := #PCDATA

259

