NATIVE LANGUAGE OLAP QUERY EXECUTION

HiBa TABBARA

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FORrR THE DEGREE OF DOCTOR OF PHILOSOPHY
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

SEPTEMBER 2012
(© HiBA TABBARA, 2012



CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Miss Hiba Tabbara
Entitled: Native language OLAP query eXecution

and submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy (Computer Science)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Dr. Chun-Yi Su Chair

Dr. Rokia Missaoui External Examiner

Dr. Rachida Dssouli Examiner

Dr. Peter Grogono Examiner

Dr. Joey Paquet Examiner

Dr. Todd Eavis Supervisor
Approved by Dr. Volker Haarslev

Chair of Department or Graduate Program Director

20 June 2012 Robin Drew, Ph.D., Dean

Faculty of Engineering and Computer Science



Abstract

Native language OLAP query eXecution

Online Analytical Processing (OLAP) applications are widely used in the compo-
nents of contemporary Decision Support systems. However, existing OLAP query
languages are neither efficient nor intuitive for developers. In particular, Microsoft’s
Multidimensional Expressions language (MDX), the de-facto standard for OLAP,
is essentially a string-based extension to SQL that hinders code refactoring, limits
compile-time checking, and provides no object-oriented functionality whatsoever.

In this thesis, we present Native language OLAP query eXecution, or NOX, a
framework that provides responsive and intuitive query facilities. To this end, we
exploit the underlying OLAP conceptual data model and provide a clean integration
between the server and the client language. NOX queries are object-oriented and sup-
port inheritance, refactoring and compile-time checking. Underlying this functionality
is a domain specific algebra and language grammar that are used to transparently
convert client side queries written in the native development language into algebraic
operations understood by the server. In our prototype of NOX, JAVA is used as the
native language. We provide client side libraries that define an API for programmers
to use for writing OLAP queries. We investigate the design of NOX through a series
of real world query examples. Specifically, we explore the following: fundamental
SELECTION and PROJECTION, set operations, hierarchies, parametrization and query
inheritance. We compare NOX queries to MDX and show the intuitiveness and ro-
bustness of NOX. We also investigate NOX expressiveness with respect to MDX from
an algebraic point of view by demonstrating the correspondence of the two approaches
in terms of SELECTION and PROJECTION operations.

We believe the practical benefit of NOX-style query processing is significant. In
short, it largely reduces OLAP database access to the manipulation of client side, in

memory data objects.

il



Acknowledgments

It was always the insightful comments and positive criticism of my supervisor Dr.
Todd Eavis that helped me be on the right track to complete my thesis work. Without
his continuous support the research presented in this thesis would not have been
possible.

I would like to thank all my colleagues in the Computer Science and Software
Engineering department at Concordia University, as well as the staff and faculty of
the department for their commitment to further education.

This thesis will not have been completed without the full support and love of my
family especially my mom, dad, brother and sister. Special thanks go to my study
mates and friends Bassel Bitar, Rania Khattab, Mazen El Masri, Genevieve Turmel,

Rasha Samaha and Jocelyne Faddoul for their continuous encouragement.

v



Contents

List of Figures

List of Tables

List of Listings

1

Introduction

1.1 Motivation for the current research . . . . . . .. .. .. ... ... ..
1.2 Core Research Objectives . . . . . .. . .. ... ... ... .....
1.3 Overview of Proposed Solution. . . . . . .. ... .. ... ... ...
1.4 Research Evaluation . . . .. ... ... ... ... 0.
1.5 Thesis Outline . . . . . . . . . . . .. .. ... .

Background Material
2.1 Data Warehousing . . . . . . . .. ...
2.1.1 The Data Warehouse Architecture . . . . . . . ... ... ...
2.1.2 The Star Schema . . . . . . ... .. ... ... ... ....
2.2 What is OLAP? . . . . . . . . . .
2.3 Multidimensional Modeling . . . . . ... .. ... ... ...
2.4 OLAP Hierarchies. . . . . . . . . . . . .. ... ... .. .. .....
2.5 OLAP Operators . . . . . . . . ..
2.5.1 Slice . . . . ..
25.2 Dice . . ..
2.5.3 The other Algebraic Multidimensional Operators . . . . . . .
2.6 JavaCC and JJTree Parsing . . . . . . . ... ... ... ... ....

ix

xi

xii



2.7 What is Document Type Definition (DTD)

Schema? . . . . .. .. 28
2.8 Conclusion . . . . . ... 29
Related Work 30
3.1 Relational Databases Querying Languages . . . . . .. ... .. ... 31
3.1.1  Object Relational Mapping (ORM) Frameworks . . . . . . .. 32
3.1.2 Language Specific Database Libraries . . . . . . . . . ... .. 37
3.2 Multidimensional Databases Querying Languages . . . . . . . . . .. 40
3.3 OLAP Algebras in Research . . . . . . ... ... ... ... ..... 45
34 Conclusion . . . . . . ... 50
Native language OLAP query eXecution (NOX) 51
4.1 The Sidera System Architecture . . . . . . . . .. ... ... ... .. 52
4.2 The NOX Framework . . . . . . . .. .. ... L 54
4.3 Conceptual Model . . . . . . . . .. ... 58
4.4 The NOX Algebra . . . . . . . . .. ... ... 59
4.5 The NOX Grammar . . . . . . . .. .. .. 65
4.6 The Client Side APT . . . . . . . .. ... oL 75
4.6.1 The NOX Pre-processor . . . . . .. ... ... ... ..... 82
4.6.2 JJTree in the NOX Pre-processor . . . . .. ... ... .... 89
4.7 Conclusion . . . . . . .. 94
NOX Application Programming 95
5.1 UML of a Sample OLAP Query . . . . . ... ... ... ... .... 96
9.2 SELECTION . . . . . . . . . . e e e e 98
5.2.1 SELECTION Syntax in NOX . . . . . ... ... .. ... .... 98
5.2.2 A Simple SELECTION . . . . . . . . . .. . ... ... 100
5.2.3 A More Sophisticated SELECTION Query . . . . . . . .. ... 105
5.3 PROJECTION . . . . . . . . . e s e e 114
5.3.1 PROJECTION Syntax in NOX . . . .. ... ... ... ..... 116
5.3.2 A Simple PROJECTION . . . . . . . . . . .. ... ... 118
5.4 Set Operations . . . . . . . . . ... 119
5.5 Query Inheritance . . . . . . . ... Lo 128
5.6 Result Sets . . . . . . . 132

vi



5.7 Evaluation of the NOX Language . . . .. ... ... ... ......

5.7.1

Extension of the Project Method . . . . . . . . ... ... ..

5.8 Conclusion . . . . . . . .

Manipulating Hierarchies

6.1

Supplemental Hierarchy Classes . . . . . . . ... ... ... .....

6.2 Hierarchies Examples . . . . . . . . . . .. ... ..

6.2.1
6.2.2
6.2.3
6.2.4

Hierarchy Example 1 . . . . . . ... ... ... ... .....
Hierarchy Example 2 . . . . . ... ... ... ... ...
Hierarchy Example 3 . . . . . .. .. ... ... oL
Hierarchy Example 4 . . . . . . . . ... ... ... .. ....

6.3 Conclusion . . . . . . . .

Parameterization in NOX

7.1
7.2
7.3
7.4
7.5
7.6
7.7

The
8.1
8.2

8.3

Parameter Parsing in NOX . . . . . . .. ... ... ... ...

Parameter Parsing Pseudocode . . . . . . . ... ... ... ... ..
Parameter Insertion DOM Utility . . . . . ... ... ... ... ...

Run-time Parameter Handling . . . . . . .. ... ... ... ... ..

NOX Parametrization in Practice . . . . . . . . . . . . .. ... ...

Parametrized NOX Queries versus Parametrized MDX Queries . . . .

Conclusion . . . . . . . .

NOX Language Expressiveness

Grammatical Structure . . . . . . . ..

OLAP SELECTION . . . . . . . o ittt et e e e

8.2.1
8.2.2

8.2.3

SELECTION Production Rulesin MDX . . . . . . . .. .. ...
Mapping the SELECTION Production Rules between MDX and

OLAP PROJECTION . . . . . . . vttt e e e e

8.3.1
8.3.2

8.3.3
8.3.4

PROJECTION Production Rules in MDX . . . . .. .. ... ..
Mapping of PROJECTION Production Rules between MDX and

PROJECTION Constraints . . . . . . . ... ... ... .....
Display Multiple Attributes from a Single Hierarchy . . . . . .

vil

148
148
150
153
155
159
159
164

165
167
170
172
174
176
180
185



8.3.5 Nested Attribute Display . . . . . . . ... .. ... ... ...

84 Conclusion . . . . . . .

9 Conclusion
9.1 Research Methodology and Contribution . . . . ... ... ... ...
9.2 Future Work . . . . . . . .

Bibliography

Appendices

A Abbreviations

B DTD Schema

C Complex Query in XML

D MDX Grammar Production Rules

E NOX Grammar Production Rules

viil

222
225
226

229

239

240

243

246

252

256



List of Figures

© 00 I O Ot = W N =

—_ = =
N = O

13
14
15
16
17
18
19
20
21
22
23
24
25

The Sidera system model . . . . . . . . . .. ... ... ... ... .. 11
Typical data warehouse architecture . . . . . . . .. .. .. ... ... 16
Star schema example . . . . . . .. ..o oo 18
A three dimensional data cube example . . . . . . .. ... ... ... 20
A Customer hierarchies example . . . . . . . . .. ... ... ... .. 21

A dimension table corresponding to the Customer hierarchies example 22

An OLAP slice . . . ... . 23
An OLAP dice . . . . . . . . 24
OLAP drill-down and roll-up . . . . . . . ... ... ... ... .... 24
OLAP pivoting . . . . . . .. . . 25
Simple parse tree . . . . . ..o 27
Reference operator matching between multidimensional and relational

algebra operations . . . .. ..o L Lo 49
The core architecture of the parallel Sidera OLAP server [EDDT07] . 54
The Sidera frontend [EDD*O7] . . . . ... .. ... ... ... ... 55
The Sidera backend node [EDDT07] . . . . .. ... ... ... .... 56
NOX processing stack . . . . . . .. ... 57
NOX conceptual query model . . . . . . .. ... ... ... .. ... 58
A simple symmetric hierarchy . . . . . . .. ... ... 59
Selection operation [AR| . . . . . ... oo 62
Projection operation [AR] . . . ... ... .. oL 62
Drill-across operation [AR] . . . . .. ... ... Lo 63
Set operations (Union) operation [AR] . . . ... ... ... ... .. 63
Change Level operation [AR|. . . . .. ... ... ... ... 63
Change Base operation [AR| . . . . ... .. ... 0L 63
UML class diagram for NOX . . . . . . ... ... ... ... ..... 78

X



26
27
28
29
30
31
32
33

34

35

UML class diagram for the NOX API library . . . . . ... ... ... 81

The client compilation model. . . . . . . ... ... ... 84
Simple query parse tree. . . . . .. ... 91
UML class diagram for NOX programmer OLAP classes . . . .. .. 97
DOM tree representation of the XML string in Listing 5.3 . . . . . . 107
A subtree of the more complex query parse tree . . . . . . ... ... 109

ComplexQuery2: Subtree rooted at “CondAndNode” node of Figure 31 110
ComplexQuery3: Subtree rooted at tne first “EqualityExpression” node

of Figure 31 . . . . . . . . . . 111
ComplexQuery4: Subtree rooted at the second “EqualityExpression”

node of Figure 31 . . . . . . . . .. ..o 112
UML class diagram for the NOX API Result Set classes . . . . . . .. 140



List of Tables

1 OLAP Queries Comparison between NOX and MDX . . . . ... .. 143
2 Parametrized NOX Queries versus Parametrized MDX Queries . . . . 183
3 Objectives and the Chapters/Sections where they were implemented . 224

X1



Listings

2.1
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.1
4.2
4.3
4.4
4.5
4.6

4.7

5.1
5.2

5.3
5.4
5.5
5.6

DTD declaration . . . . . . ... ... oL 28
In JDOQL [JDO, Rus03] . . . . . . . ... .. 33
In OQL [GBBT00, ODM] . . . . . . ... ... . . . ... ... 33
Predicate class and match method for querying the Student table . . 35
In Java using dbdo [DB4] . . . . ... ..o Lo 39
In NET using LINQ [LIN] . . . . . ... ... . ... 39
MDX query 1 . . . . . . 42
MDX query 2 . . . . .. 42
MDX query 3 . . . . ... 42
A more sophisticated MDX query . . . . .. . ... ... ... ... 43
“ClientQuery.dtd” used to validate NOX XML files . . .. .. .. .. 66
Example of a Selection XML string . . . .. .. ... ... ... ... 70
Example of INTERSECTION XML string . . . ... ... ...... 72
Pseudocode for OLAP compilation . . . .. ... ... ... ..... 76
Base class OLAP query with stub methods . . . . . . ... ... ... 83
Saving first and last tokens of a class that extends OlapQuery using

JITree . . . o o 92
Pseudocode for constructing the parse tree in Javal.5.jjt (using JavaCC

and JJTree) . . . . . .. 93
Simple OLAP query . . . . . . .. .. .. 102
Re-written version of Listing 5.1 that contains the XML string and

sends it to the server . . . . . . ... oo 104
Simple query XML string . . . . . .. ... oo 106
A more complex OLAP query . . . . ... ... ... ... ...... 108
MDX SELECT statement . . . . . . . . .. .. ... .. ... ..... 113

A more complex MDX query corresponding to the query in Listing 5.4 115

xii



5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
7.1
7.2
7.3
7.4

Simple OLAP query projection . . . . . .. ... ... ... ..... 120
Simple MDX query projection corresponding to the query in Listing 5.7121
Set INTERSECTION operation using the select method in NOX . . . . 122
The “Inner” query used in the INTERSECTION operation of Listing 5.9 123
MDX set INTERSECTION query corresponding to the query in Listing 5.9124
Set INTERSECTION operation using the project method in NOX . . . 125
The “Inner” Query used in the INTERSECTION operation of Listing 5.12 126
MDX set INTERSECTION query corresponding to the query in Listing 5.12127

Example 1: Over-riding a query class . . . . .. . .. ... ... ... 129
MDX query corresponding to the NOX query of Listing 5.15 . . . . . 131
Example 2: Over-riding query classes . . . . . . . ... .. ... ... 133
MDX query corresponding to the NOX query of Listing 5.17 . . . . . 134
Simplified version of OlapResultSet grammar . . . . . . . . . .. ... 135
Partial listing of Result Set . . . . . . . ... ... ... ... ... 136
Trivial report method . . . . . . . . . .. ... 139
A more complex MDX query . . . . . .. .. ... 144
project method extended in NOX and equivalent to MDX Listing 5.22145
Class OlapHierarchy . . . . . ... .. ... ... ... ... ... 151
Class OlapPath . . . . . . . ... . 152
Simple OLAP dimension . . . . . . .. ... ... ... ... ..... 154
Class GeographicHierarchy . . . . . . . . . ... ... .. ... .... 155
Manipulating hierarchies: example 1 . . . . . .. ... ... .. ... 156
MDX query corresponding to the query in Listing 6.5 . . . . . . . .. 156
Manipulating hierarchies: example 2 . . . . . .. . .. ... ... .. 158
MDX query corresponding to the query in Listing 6.7 . . . . . . . .. 158
Manipulating hierarchies: example 3 . . . . . . .. .. ... ... .. 160
MDX query corresponding to the query in Listing 6.9 . . . . . . . .. 161
Manipulating hierarchies: example 4 . . . . . . .. .. .. ... ... 162
MDX query corresponding to the query in Listing 6.11 . . . . . . .. 163
Parametrized query invocation . . . . . . .. ... 167
class MainQuery with parameter parm1 . . . . . . . .. .. ... ... 168
Parameters parsing pseudocode . . . . .. ..o L 170
XML corresponding to the query with parameter parml . . . . . . . 171

xiii



7.5
7.6
7.7
7.8
7.9
7.10
7.11
8.1
8.2
8.3
8.4
8.5
8.6
8.7

8.8

8.9

8.10

8.11

8.12
8.13
8.14

8.15

8.16

XMLparameterslnsert pseudocode . . . . . . . . .. ... 173

Intermediate Java file with execute() method . . . . . . . ... .. .. 175
class ExampleQuery2 with two parameters . . . . . . . ... .. ... 177
class ExampleQuery3 with four parameters . . . . . . . . . ... ... 178
Parametrized MDX query example [MSD| . . . ... ... ... ... 181
Parameter assignment using ADOMD . . . ... ... ... ...... 182
Parametrized MDX query using ADOMD [Mic| . ... ........ 184
MDX SELECT statement . . . . . . . . .. .. ... .. .. ...... 189
Top level NOX grammar . . . . . . .. ... ... .. ... ... ... 189
Production rules for the MDX WHERE clause . . . . . . . ... ... 191
Grammar rules for the “Hierarchy List” . . . . . . ... .. ... ... 198

MDX query returning values for customers living in the United States 199
NOX query returning values for customers living in the United States 200
XML description of the hierarchy used in the return statement of the
select method of the query in Listing 8.6 . . . . . . .. .. ... ... 201
MDX query returning values for customers living in the United States
and who bought products in “Category’with key 1 . . . . . . . . . .. 202
NOX query returning values for customers living in the United States
and who bought products in “Category” with key 1 . . . . . . . . .. 203
MDX query returning values for customers living in the United States
or the United Kingdom and who bought products in “Category” with
key 1 . . o o 204
NOX query returning values for customers living in the United States

or the United Kingdom and who bought products in “Category” with

key 1 . . o o 205
MDX SELECT-FROM-WHERE syntax . . . . . . . . . .. ... ...... 206
Production rules for the MDX <axis specification> . . . . . . . . .. 208

MDX query returning a subcube with sales measure on one axis and
calendar year members on another axis . . . . . .. .. .. ... ... 215
NOX query returning a subcube with sales measure on one axis and
calendar year members on another axis . . . . . . .. ... ... ... 215
MDX query returning a subcube with sales measure on one axis and

some specified calendar years on another axis. . . . . .. . ... ... 217

Xiv



8.17 NOX query returning a subcube with sales measure on one axis and
some specified calendar years on another axis. . . . . . ... .. ... 217
8.18 MDX query returning a subcube with sales measure on one axis and
the crossjoin of two sets on another axis . . . . . ... ... ... .. 219

8.19 NOX query returning a subcube with sales measure on one axis and

two sets on two other axes . . . . . . .. ... Lo 220
B.1 DTDexample . . . . . .. . .. 244
C.1 XML string corresponding to the query in Listing 5.4 . . . . . . . .. 246
D.1 MDX grammar . . . . . . . ... 252
E.1 NOX grammar . . . . . . . .. ... 256

XV



Chapter 1

Introduction

Information is often seen as a kind of digital treasure in the current era, with captured
data providing a wealth of information and analytical opportunities. In industrial
settings, data warehousing and Online Analytical Processing (OLAP) have become
two of the most significant technologies in this regard. Together, they enable efficient,
multidimensional analysis of data in a multitude of industries such as retail sales,
telecommunications, financial services and real estate [CD97| [SBSRO08|. In practice,
consumer-focused companies collect terabytes of information on past transactions
that, in turn, enables them to define and target both new and potential customers.

Real world examples of the value and scope of the data analysis process include:

1. WalMart uses approximately half a petabyte of customer transaction data to
forecast demand and increase revenue |[Hay04]. Analysis of sales transactions
after a hurricane resulted in the discovery that the normal volume of pop-tarts
and beer sold increased by a factor of seven. An analysis of cold medicine

purchases revealed that they are often accompanied with purchases of soup and



orange juice.

2. Pharmaceutical companies use data mining techniques to discover and extract
useful patterns from their large sets of data. Manipulation and classification
of this data helps improve the quality of drug discovery processes and delivery

methods while still competing on lower costs [Ran05.

3. Financial companies rely on data warehousing to explore new customer oppor-
tunities. For examples, users employ tools such as Microsoft Analysis Services
and SAP’s Business Information Warehouse for the analysis of data held in
the data warehouse. Ultimately, OLAP allows decision-makers to quickly and
interactively analyze the multi-dimensionally modeled data relevant to various

business considerations [Hil10].

Because of its impact, effective data collection and analysis has grown into a
multi-billion dollar industry that is dominated by some of the world’s largest software
companies. Still, the supporting data management applications and interfaces remain
complex and unintuitive, particularly for users and developers with little OLAP ex-
perience. For this reason, important opportunities exist for improved — or even

completely new - data access and query models in this domain.



1.1 Motivation for the current research

Over the past three decades, relational database management systems (RDBMS)
have secured their place as the cornerstone of contemporary data management envi-
ronments [Sel08]. During that time, logical data models and query languages have
matured to the point whereby database practitioners can almost unequivocally iden-
tify common standards and best practices. In particular, the ubiquitous relational
data model and the Structured Query Language (SQL) have become synonymous
with the notion of efficient storage and access of transactional data.

That being said, a number of new and important domain-specific data manage-
ment applications have emerged in the past decade. At the same time, general pro-
gramming languages have evolved, driven by a desire for both greater simplicity,
modeling accuracy, reliability, and development efficiency. As such, a motivation
to explore new data models, as well as the languages that might exploit them, has
emerged [CWO00].

One particular area of interest is the aforementioned Business Intelligence (BI)/OLAP
domain. Typically, such systems work in conjunction with an underlying relational
data warehouse that houses an integrated, time sensitive, repository of one or more
organizational data stores. At its heart, BI attempts to abstract away some of the
often gory details of the large warehouses so as to provide users with a cleaner, more
intuitive view of enterprise data. Very often, in fact, BI applications effectively serve

as wrappers for the supporting warehouses and, with varying levels of success, seek to



hide some of the warehouse’s physical and design complexity. Beyond trivial exploita-
tion of the BI facilities, however, meaningful analysis can become quite complex and
can necessitate a considerable investment of the developer’s time and energy [SCO05].

We note, however, that although BI has long been recognized as providing the
technologies, applications and practices for the collection, integration and analysis of
data, no standard query interface for OLAP DBMSs has been developed. In practice,
Microsoft’s Multidimensional Expressions query language (MDX) — extended SQL
— has become a de-facto choice in many production environments. Still, as will be
discussed later in the thesis, use of such languages (MDX) can have a negative impact
on programmer productivity. In particular, they force the programmer to become an
expert in two very different languages (the implementation language and the query
language) with completely different mental models. Moreover, the embedded query
strings cannot be checked at compile time and the code cannot easily be refactored
when the backend data model changes.

For this reason, there is a growing belief that the “one size fits all” approach
does not and cannot meet current data management demands [SC05]. We believe
that there is a need for more intuitive and powerful access languages that have the
potential to dramatically enhance productivity, particularly in domains such as Busi-
ness Intelligence that have unique but fairly well understood data models and query

patterns.



1.2 Core Research Objectives

As noted, the OLAP/BI domain has not achieved the same level of standardization
as seen in the world of transactional or operational databases. Of particular signifi-
cance in this context is the awkward relationship between the development language
and the data itself. For systems building directly upon an underlying relational data
warehouse, Bl querying still often relies upon non-procedural SQL or one of its pro-
prietary variations. Unlike transactional databases, however, which are often cleanly
modeled by a set-based representation, the nature of BI/OLAP environments argues
against the use of such languages. In particular, OLAP concepts such as data cubes,
dimensions, aggregation hierarchies, granularity levels, and drill down relationships
map poorly at best to the standard logical model of relational systems.

A second related concern is the relative difficulty of integrating non-procedural
query languages into application level source code. Larger development projects typ-

ically encounter one or more of the following limitations:

e The non Object-Oriented nature of the model minimizes the ability to separate

the application’s interface from its implementation.

e There are few possibilities for the code re-use that is afforded by OOP concepts

such as inheritance and polymorphism.

e Utilizing two fundamentally distinct programming models concurrently (i.e.,

procedural OOP versus non-procedural non-OOP) complicates development.



e The use of embedded query strings (i.e., JDBC/SQL) severely limits the devel-
oper’s ability to efficiently refactor source code in response to changes in schema

design.

e Comprehensive compile-time type checking is often impossible since queries are

simply passed to the backend DBMS at run time.

A final concern relates to the MDX language specifically. While it is true that
the syntax of MDX is certainly more “OLAP friendly” than the set based SQL, it is
important to note — particularly from an academic perspective — that MDX lacks
any real formal basis. OLAP operators are not well-defined and no clean conceptual
model is recognized. MDX is simply based on an ad hoc grammar that lacks an
algebraic backbone. Not only is this aesthetically unappealing, it also limits query
optimization opportunities by the supporting DBMS since it is difficult to cleanly
represent the core operations of the language and the potential relationship between
them.

Given the above, we may briefly list the primary research objectives of the current

thesis as follows:

e We would like to provide an OLAP-specific algebra and associated language

grammar that defines the core operations associated with the OLAP domain.

e The algebra should be backed by a conceptual data model that directly supports

these operations.



e The combination of algebra, grammar and data model should then provide or
permit the following:
— An intuitive Object-Oriented query model,

— Associated code re-use afforded by OOP concepts such as inheritance and
polymorphism,
— The ability of developers to efficiently refactor source code in response to

changes in schema design,

— Comprehensive compile-time type checking.

e The formal elements of the framework (algebra, grammar, data model) should
be supported by a practical implementation (i.e., language libraries) providing

the following features:
— Developers should be able to write queries that interact with massive,
remote data repositories using standard OOP principles and practices.

— It should be possible to pass run-time parameters in a simple and intuitive
way.
— Query functionality should include support for the hierarchical access pat-

terns typical of OLAP settings.

— In terms of usability, the new approach should compare favorably to current

languages such as MDX and SQL.



— Object-Oriented manipulation of results sets should be a component of the

APL.

1.3 Overview of Proposed Solution

In practice, the introduction of new database query languages or models requires
the implementation of significant infrastructure. In the current case, we note that
our OLAP research was initially inspired by the Safe Query Object (SQO) approach
first introduced by Cook in 2005 [CR05, CR06]. There, query functionality was
encapsulated in the native language of the application developer (e.g., Java), with a
series of classes and methods that allowed the developer to conceptually represent the
database as a local, in-memory data object. While Safe Query Objects were proposed
for general relational environments — and were actually quite limited as a result —
the general idea maps well to environments with more consistent conceptual data
models. OLAP, in fact is one such domain.

Building upon this initial concept, we have proposed what we now refer to as the
Native language OLAP query eXecution system (NOX). Briefly, NOX consists of the

following elements:

e OLAP conceptual model. NOX allows developers to write code directly at
the conceptual level; no knowledge of the physical or even logical schema is

required.



e OLAP algebra. Given the complexity of directly utilizing the relational al-
gebra in the OLAP context (via SQL or MDX), we define fundamental query

operations against a cube-specific OLAP algebra.

e OLAP grammar. Closely associated with the algebra is a DTD-encoded

OLAP grammar that provides a concrete foundation for client language queries.

e Client side libraries. NOX provides a small suite of OOP classes correspond-
ing to the objects of the conceptual model. Collectively, the exposed methods
of the libraries form a clean programming API that can be used to instantiate
OLAP queries. In the prototype, we note that Java is used as the development

language.

e Augmented compiler. At its heart, NOX is a query re-writer. During a
pre-processing phase, the framework’s compilation tools (JavaCC/JJTree) ef-
fectively re-write source code to provide transparent model-to-DBMS query

translation.

e Cube result set. OLAP queries essentially extract a subcube from the original
space. The NOX framework exposes the result in a logical, read-only multi-

dimensional array.

In practice, each of these elements plays a role in the definition, instantiation,
and execution of a NOX query. Specifically, a developer would access the database

as follows. Using the client side API, the query is encoded in the native language.



In addition to the fundamental Query class(es), the API exposes model elements
such as dimensions, hierarchies, cube cells, etc. At compile time, the NOX pre-
parser (JavaCC/JJTree) analyzes the source code to identify query elements (i.e.,
API components). Query logic, as well as query types, are verified. If valid, the
query is converted into an algebraic representation that is physically encoded in an
XML grammar. The XML string is then encapsulated within a network call to the
DBMS and the updated source is recompiled by the standard (Java) compiler. At
run-time, the network call to the backend DBMS is automatically invoked and query
results are returned to the client and loaded into a result set object. It is important to
note that the entire process, except of course the initial query specification, is entirely
transparent to the developer.

Finally, we note that while NOX can be seen as a standalone framework whose core
principles could be applied to existing DBMSs, it is currently implemented as a com-
ponent of a larger research system known as Sidera. This DBMS system, described by
Eavis et al [EDD107|, provides a robust parallel server for high performance OLAP
environments. As illustrated in Figure 1, the NOX infrastructure, including the li-
braries and compiler tools, is accessible on the client PC/workstation. The output of
the compilation phase is then transferred to the backend DBMS for optimization and

execution, before the result is returned again to the client.
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Figure 1: The Sidera system model

1.4 Research Evaluation

Because the purpose of NOX, and client side querying in general, is to provide an
intuitive and accessible query environment, it is important to demonstrate that the
research does indeed provide this functionality. Our evaluation takes two forms. First,
we provide extensive examples of NOX queries on common OLAP access patterns. In
particular, we provide examples of OLAP operations such as “slice and dice”, “roll up”
and "drill down”, and pivot. We also demonstrate the ease with which aggregation
hierarchies can be traversed. Query examples illustrating the use of run-time param-
eters are listed as well. In many cases, we provide comparative examples using the
MDX language so that readers can assess the relative simplicity/complexity of the
two models. We emphasize the fact that because NOX provides a fully functionality

prototype, all NOX queries listed in this thesis have been parsed, converted, and

compiled using the structural components described above.
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In addition to the implementation itself, we also provide an analysis of the lan-
guage elements of NOX and MDX. Because MDX is associated with no formal algebra,
we have performed the formal evaluation by way of a comparative classification of
common OLAP query forms. In other words, we examine fundamental query pat-
terns or classes, defining the algebraic features of each. We then show that the NOX
native language model is in fact capable of supporting the primary forms found in
practical settings. We note, of course, that NOX is also able to provide functionality
that MDX can not, such as OOP-style inheritance, simplified refactoring, and compile

time checking.

1.5 Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 introduces the basic
data warehouse architecture, the OLAP multidimensional model and its grammar,
JavaCC and JJTree language parsing, and the Document Type Definition (DTD)
schema. In Chapter 3, we follow this up with a literature review of query languages
in both the relational databases world and the OLAP world. We also look at the dif-
ferences between existing string based query languages that are still much used nowa-
days, as well as native language facilities utilized for querying relational databases.
We then present our new framework for querying OLAP systems in Java, namely
Native language OLAP query eXecution (NOX), in Chapter 4. Chapter 5 illus-
trates the fundamentals of NOX application programming and demonstrates its usage

through examples that have been implemented and tested in Java. Next, in Chapter 6,
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we explore how NOX manipulates OLAP hierarchies and compare its performance to
that of MDX in this context. Chapter 7 describes how passing parameters is done in
NOX. We then investigate the formal basis by which we map the slicing and dicing
operations of the NOX grammar to those of the MDX grammar in Chapter 8. Finally,

Chapter 9 concludes the thesis and provides some pointers to future work.
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Chapter 2

Background Material

In this chapter, we introduce some concepts that we need to be familiar with be-
fore discussing the details of our research. This thesis core material is considered to
combine ideas from a number of different fields: Data warehouses, OLAP systems,
OLAP hierarchies and OLAP operations, Multidimensional modeling, JavaCC
and JJTree, and DTD schema.

Section 2.1 gives an overview of a typical Data warehouse, its architecture, its
materialization and its star schema implementation. Section 2.2 introduces OLAP
systems, data cubes, and the grammars used for OLAP, while Section 2.3 illustrates
multidimensional modeling and its materialization. Then, the essential hierarchical
structure of dimensions in a data warehouse is investigated in Section 2.4. Section 2.5
describes the commercial OLAP operations, while Section 2.6 introduces JavaCC and
JJTree parsing in Java. Finally, Document Type Definition (DTD) definition of legal

building blocks of XML-format documents is presented in Section 2.7.
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2.1 Data Warehousing

Decision Support Systems (DSS) are defined as interactive computer-based systems
intended to help decision makers utilize data and models in order to identify and
solve problems and make decisions [Pow99]. A Data Warehouse is a repository of
multiple heterogeneous data sources, organized under a unified schema in order to
facilitate management decision making [HK06|. Data warehouse technology includes
data cleansing, data integration, and OLAP analysis techniques with functionalities
such as summarization, consolidation, and aggregation, as well as the ability to view
information from different perspectives. In warehouses, data is typically represented

in the form of decision cubes.

2.1.1 The Data Warehouse Architecture

A data warehouse can be seen as a three-tier architecture [CD97, HK06|. The canon-
ical data warehouse architecture is shown in Figure 2 [SH98|, with the possible data
sources shown at the bottom of the figure. Information is extracted from various
legacy systems and operational sources, and is then consolidated, summarized, and
loaded into the data warehouse using a process commonly known as ETL (Extract,
Transform, and Load). Strictly speaking, this first step is not one of the three tiers,
as its functionality is external to the warehouse proper.

At the first tier, there is the data warehouse server, along with several data marts.
Essentially, each data mart is a small warehouse designed for a specific department or

business process. At this stage, we can assume that the ETL processing is complete
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and the data warehouse is fully loaded and contains the data required for basic “de-
cision support”. The second tier houses the OLAP server/engine that allows users to
access and analyze data in the warehouse, typically using more advanced techniques.
Finally, the third tier includes the front end tools that provide a graphical interface

for top managers and decision makers.
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Figure 2: Typical data warehouse architecture

2.1.2 The Star Schema

The Star Schema, proposed by Kimball [KR02|, is perhaps the simplest and most
intuitive logical model for data warehouse design. The term “Star Schema” is derived
from the fact that a graphical depiction of the schema resembles a star. Star Schemas
consist of two basic table types: dimension tables and fact tables. A fact table
contains measurement records such as the “total sales” in the fact table of the star

schema given in Figure 3. These records model the business process and provide us
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with measurements (or facts) in terms of the key dimensions in our data warehouse.
In effect, these are the numbers that allow decision makers to actually make decisions.
Dimensions are data warehouse “subjects”. Dimensions in our example are Location,
Product, Customer and Date tables. In practice, Fact tables are typically massive,
holding perhaps billions of records (or facts), while Dimension tables are relatively
small and contain information about the entries of a particular attribute in the fact
table.

Note that the dimension tables are generally denormalized, meaning that the tables
maintain some of the redundancy that a good OLTP (OnLine Transaction Process-
ing) system typically eliminates. An example of a denormalized table, where some
data is repeated, is given in Figure 6. At query time, each dimension table is joined
to the fact table as necessary. In this setting, denormalizing the dimension tables sig-
nificantly decreases the number of costly joins that would otherwise be required with
a normalized schema. Since the dimension tables are comparatively small when com-
pared to the enormous fact tables, the redundancy produced by the denormalization

is of little interest in most OLAP contexts.

2.2 What 1s OLAP?

The term OLAP was first presented by E. F. Codd in 1992. It was presented in
the context of a vendor sponsored paper called “Providing OLAP (on-line analytical
processing) to user-analysts: An IT mandate” [CCS92|, where he described twelve

rules of OLAP. Codd indicated twelve features that should be present in any OLAP
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Figure 3: Star schema example

application. The following four points, taken from that report, are probably the most

significant of the twelve:

e Multidimensional conceptual view. In contrast to relational databases that
manipulate individual records or concepts, the focal point in OLAP is the rela-

tionship between multiple dimensions.

e Transparency. The end user should not have to worry about the details of
data access or conversions. In addition, OLAP systems should be part of open

systems that support heterogeneous data sources. Ultimately, the system should

present a single logical schema of the data.

e Flexible reporting. Reporting must present data in a fully integrated manner,
and minimize any restrictions in the way that basic data elements of dimensions
are combined.
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e Unlimited dimensional and aggregation levels. A serious tool should support

more than just a few concurrent dimensions (Codd actually indicated that 15 -

20 would be ideal).

2.3 Multidimensional Modeling

Both data warehouses and OLAP systems are based on a multidimensional model.
Specifically, we logically represent data in a d-dimensional space such as the one de-
picted in Figure 4. In this context, the multidimensional model can be described as a
data abstraction allowing one to view aggregated data from a number of perspectives
(dimensions). In fact, for a d-dimensional space, there are exactly 2¢ distinct dimen-
sion combinations that represent the underlying Star Schema, each from a unique
perspective. In OLAP terminology, we refer to this as the data cube.

As previously noted, low level information is divided into facts and dimensions.
An individual fact represents an item or transaction of interest to the user. In the
multidimensional data cube model, facts are aggregated into measures that are con-
tained within cells of the data cube. In Figure 4, one can see the measure values on
the front face of the cube. Simply put, a given measure represents a series of fact
values that have been aggregated for a given combination of dimensions. In Figure 4,
for example, if we assume that the measure represents “Total Sales”, then we can see
that total sales for Customer 3 in Location 1 for Product 2 has the value 7.

We note that the MD (Multi Dimensional) model is logical in nature. In other

words, it makes no assumptions about how the data is physically stored. Advanced
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Figure 4: A three dimensional data cube example

OLAP servers may in fact take the data from the tables of the original Star Schema
and further process it. The new data may be stored in a series of new tables or even
a multi-dimensional array that represents a one-to-one mapping between the logical
data cube and the physical storage. We refer to the first type of system as ROLAP
(relational OLAP), while the second is known as MOLAP (multi-dimensional OLAP).
We will not go into details of the physical storage format, as it is distinct from the

primary focus of our research.

2.4 OLAP Hierarchies

Data granularity refers to the level of detail at which measures are presented. This
is determined by a combination of the granularities within each dimension of the
cube. For example, in Figure 4 the lowest level of granularity or detail in of the

Customer dimension is Customer ID. However, the vast majority of common business
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and scientific dimensions actually have a hierarchal structure. As a concrete example,
the customer hierarchy, given in Figure 5, can be thought of in terms of NAME;,
TYPE, and REGION. In OLAP environments, the traversal of such “aggregation
hierarchies” is perhaps the most fundamental of all query forms. Usually, OLAP tools
only cope with hierarchies that ensure summarizability or that can be transformed
so that summarizability conditions hold |[LS97|. Summarizability refers to the correct
aggregation of measures where a higher hierarchy level takes into account existing
aggregations in a lower hierarchy level [MZ04].

As it turns out, there are in fact many different types of hierarchies in real-world

applications. In the simplest case, we can think of a tree of dimension levels that is

_®_

N

9/9

Type

Figure 5: A Customer hierarchies example

constructed as a series of one-to-many relationships. An example of such a hierarchy
is shown in Figure 5. Physically, simple trees like this are represented by additional
columns in the associated dimension table, as depicted in the example in Figure 6.
In fact, this is what we call a denormalized dimension. In a normalized model, there
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would be three separate tables. In data warehouses, we typically denormalize the
separate tables into a single table in order to improve performance by eliminating

table joins.

Customer
ip | Name Type Region
1 John Consumer North
2 Joe Consumer North
3 Sue Corporate North
4 Mary Consumer South

Figure 6: A dimension table corresponding to the Customer hierarchies example

2.5 OLAP Operators

Commercial OLAP systems may provide many OLAP functions and analytical exten-
sions. In practice however, there are five fundamental operations that represent the
bulk of query processing: Slice, Dice, Roll-up, Drill-down and Pivot. In the following
section, we emphasize the slice and dice operations as they are the most relevant to

the current thesis. Other operations are described briefly.

2.5.1 Slice

The slice operation performs a selection on one dimension of the given cube, thus
resulting in a subcube. A slice is a subset of a multi-dimensional cube corresponding

to a single attribute on one of the dimensions of the cube while allowing the other
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Figure 7: An OLAP slice

dimensions to vary. Figure 7 shows a slicing operation where the sales figures of all
states and all product categories of the company in the year 2009 are “sliced” out of

the data cube.

2.5.2 Dice

The dice operation is a slice on more than two dimensions of a data cube (or more
than two consecutive slices). Figure 8 shows a dicing operation where the sales
figures of a limited number of product categories are returned, and the time and

region dimensions cover the same range as before.

2.5.3 The other Algebraic Multidimensional Operators

e Roll-up: The Roll-up operation acts on the hierarchical structure of a dimension.
It aggregates values at a coarser level of granularity. Figure 9 shows a roll-up
operation where values referring to insect protection, sun protection and first

aid are summed up to values referring to outdoor protective equipment at a
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Figure 9: OLAP drill-down and roll-up

coarser level of the hierarchy of the dimension.

Drill-down: The Drill-down operation also acts on the hierarchical structure of
a dimension. It performs the opposite of what Roll-up does. It decomposes the
aggregation at a finer level of detail. Figure 9 shows the drill-down operation
where values referring to outdoor protective equipment are decomposed into
values referring to insect protection, sun protection and first aid at a finer level

of the hierarchy of the dimension.
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Figure 10: OLAP pivoting

e Pivot: The pivot operation acts on a cube by re-organizing its axes. The result
can be more dramatic with a tabular representation. Figure 10 shows the pivot
operation where the years dimension and the equipments dimension switched

places.

2.6 JavaCC and JJTree Parsing

Java Compiler Compiler (JavaCC) and JJTree are language design tools that play a
fundamental role in the Java prototype at the heart of this research. In this section, we
give an overview of the structure and processing logic of both JavaCC and JJTree. At
least a basic grasp of their processing logic is required for a meaningful understanding
of the material presented in the thesis. JavaCC is the most popular parser generator
for use with Java applications. In short, a parser generator is a tool that reads

a grammar specification and converts it to a program that can recognize matches
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to the grammar. In addition to the parser generator itself, JavaCC provides other
standard capabilities related to parser generation such as tree building (via a tool
called JJTree included with JavaCC), actions and debugging. The generated tree is
known as AST (Abstract Syntax Tree) or parse tree.

JJTree is a pre-processor to JavaCC that inserts parse tree building actions at
various places in the JavaCC source. The output of JJTree is run through JavaCC
to create the parser and its parse tree. Each node of the tree denotes a construct
found in the source code. By default, JJTree generates code to construct parse tree
nodes for each nonterminal in the language. This behavior can be modified so that
some nonterminals do not have nodes generated, or so that a node is generated for
a part of a production expansion [Jav, JJT|. An example of a parse tree is depicted
in Figure 11, where a node is denoted by an oval shape with the name of the node
written inside the shape.

JJTree defines a Java interface Node that all parse tree nodes must implement.
The interface provides methods for operations such as setting the parent of the node,
and for adding children and retrieving them. Now, the structure of the trees gives
the abstract syntax of the input, but not, by default, the tokens. We can capture the

tokens as needed.
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2.7 What is Document Type Definition (DTD)

Schema?

As we will see, XML plays an important role in the concrete specification of our
OLAP queries. A Document Type Definition (DTD) defines the legal building blocks
of an XML document. It defines the document structure with a list of legal elements
and attributes. A DTD describes the structure of XML documents by declaring each
eligible element and its attribute list. Element declarations name the allowable set
of elements within the document, and specify whether and how declared elements
and character data may be contained within each element. Attribute list declarations
name the allowable set of attributes for each declared element, including the type of
each attribute value, if not an explicit set of valid value(s). A DTD is associated with
an XML document via a Document Type Declaration, which is a tag that appears
near the start of the XML document. The declaration establishes that the document
is an instance of the type defined by the referenced DTD [DTDb|. An example of a

Document Type Declaration is given in Listing 2.1.

<?xml version=°1.0"" encoding="‘UTF-8’" standalone=‘‘no’ 7>

~DOCTYPE QUERY SYSTEM °‘‘dtd/ClientQuery.dtd’ ">

Listing 2.1: DTD declaration

For more information about DTD schema, refer to Appendix B
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2.8 Conclusion

We introduced in this chapter the concept of a data warehouse, its architecture and
its design. A data warehouse is a repository of multiple heterogeneous data sources,
organized under a unified schema in order to facilitate management decision making.
The Star Schema is perhaps the simplest and most intuitive logical model for data
warehouse design. Online Analytical Processing (OLAP) was introduced, including
core functionalities such as aggregation, as well as the ability to view information from
different angles. We also introduce the multidimensional modeling of OLAP systems,
namely the data cube logical model. In addition, we discussed OLAP hierarchies
as well as fundamental OLAP operations such as slice, dice, roll-up, drill-down and
pivot. Next, we introduced the JavaCC (Java Compiler Compiler) and JJTree parsing,.
These are parser generator and tree building tools, respectively. We concluded the
chapter with a brief discussion of the DTD, a mechanism that defines the legal building

blocks of an XML document.
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Chapter 3

Related Work

Much research has been done in the area of query frameworks for relational database
systems (RDBMS). Our research is inspired by Cook’s work who introduced the
notion of native querying language in RDBMS [CRO06|. Traditionally, a popular ap-
proach has been to utilize Object Relational Mapping (ORM) Frameworks. In fact,
the limitations of these frameworks led to Cook’s native querying language. Other
approaches include those that have language specific database libraries that allow
queries to be written in the embedding language itself. While these techniques as
well as Cook’s native language model targeted the relational database environment,
we target the multidimensional database domain and propose the NOX framework.
For OLAP systems, Multidimensional Expression (MDX) language provides a
specialized syntax for querying and manipulating the multidimensional data stored in
data cubes. MDX has been supported by many OLAP vendors and has become the de-
facto standard for OLAP systems. However, MDX is still a string-based language with

many limitations. A string-based language is a language whose code is introduced as
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strings when inserted within another language code. We compare and evaluate the
NOX language against MDX considering it is widely used among OLAP developers.

Concerning the multidimensional algebras, there are many in research. One alge-
bra YAM?, created by Abello and Romero [RA07], is the product of comparing many
existing algebras and finding their backbone algebra. We refer to this approach and
use related concepts to develop the NOX algebra.

In this chapter, Section 3.1 explores recent relational databases querying languages
that influence the industry and research work. Languages that query OLAP systems
are investigated in Section 3.2. Section 3.3 illustrates the multidimensional OLAP

algebraic operators and compares them to the relational operators.

3.1 Relational Databases Querying Languages

For more than 30 years, Structured Query Language (SQL) has been the de-facto
standard for data access within the relational DBMS world. In conjunction with
APIs such as ODBC and JDBC, it has served as the “query backbone” for small data
management environments and massive enterprize settings alike. That being said,
SQL despite numerous updates to the standard is now a relatively old language.
For this reason, numerous attempts have been made to modernize database access

mechanisms. Two themes in particular are noteworthy in the current context:
e The Object Relational Mapping (ORM) frameworks presented in Subsection 3.1.1

e Simplified database access extending the development languages themselves.
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This is discussed in Subsection 3.1.2

3.1.1 Object Relational Mapping (ORM) Frameworks

In an attempt to minimize the impedance mismatch associated with tuple-to-object
integration, ORM frameworks have been successfully used to define type-safe map-
pings — typically with XML configuration files or languages-based annotations —
between the tuples of the DBMS and the native objects of the external applications.
As much as possible, the ORM framework attempts to provide transparent persis-
tence, the illusion that the DBMS-backed data is nothing more nor less than a simple
object. With respect to the Java language, JDO (Java Data Objects) [JDO] became
the early standard, with EJB [EJB| and its Java Persistence API (JPA), emerging
shortly after. The standards are now quite similar, with both providing POJO (Plain
Old Java Objects) style persistence for individual objects. JDO, for instance, ac-
complished this with a compile-time enhancement that modifies the byte-code to
insert the appropriate mapping information. OQL is another ORM query language
for databases that influenced the design of some of the newer database query lan-
guages such as JDOQL and EJB. JDOQL is an object-based query language that lets
programmers write in SQL while retaining the Java object relationship. Listing 3.1
provides an example of a query written in JDOQL. The query is created by querying
the Student class with the condition “age < 20”. Though JDOQL is “more” object
oriented than other ORM languages, it is still partially string-based as shown in the

example.
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Query query = persistenceManager.newQuery(Student.class,
"age < 20");

Collection students = (Collection)query.execute () ;

Listing 3.1: In JDOQL [JDO, Rus03|

An OQL query is given in Listing 3.2. The query asks for students who are younger
than 20 years. The OQL language is modeled after SQL as shown in the example

and is string-based.

String oql = "select % from student in Students where
student .age < 20";

OQLQuery query = new OQLQuery(oql);

Object students = query.execute();

Listing 3.2: In OQL [GBB*00, ODM]

The open source community has also been active in this area, with the Hiber-
nate framework [BK06| being the most mature project to date. Originally developed
with its own proprietary API, it now also supports the JPA. Unlike JDO’s compile-
time enhancers, Hibernate uses run-time Reflection as the basis of its tuple-to-object

conversions.
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While the aforementioned mechanisms provide certain advantages to the devel-
oper, particularly in terms of basic OOP syntax, they are far from a perfect solution.

Primary limitations include:

e While the ORM frameworks do provide transparent persistence for individual
objects, this transparency largely vanishes in the face of more complex query
requirements. Here, the systems employ string based query languages such as
JDOQL (JDO), JPQL (JPA), or HQL (Hibernate) to execute joins, complex
selections, subqueries, etc. In practice, this leaves the ORM models in some-
thing of a grey area between pure transparent persistence and glorified SQL

substitution.

e Since modern Integrated Development Environments (IDEs) will not automat-
ically refactor field names that appear in strings, refactorings can cause class

models and query strings to be inconsistent.

e Developers are constantly required to switch contexts between implementation

language and query language, and they have to learn the two languages.

e There is no explicit support for creating reusable query components.

To address the above problems, Cook describes in [CR05| how to express a query
in the native language like plain Java or C# using Safe Query Objects. Note that
by native language, we are referring to the application development language, rather

than the database access language. The goals for these native queries are:
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e 100% native: Queries should be completely expressed in the implementation

language, rather than a mix of two distinct languages

e 100% object-oriented: Queries should provide encapsulation and inheritance

functionality

e 100% refactor-able: Queries should be fully accessible to modern IDE refactor-

ing functionality (i.e., class/method updates)

e 100% type-safe: Query specifications should be checked for type safety at com-

pile time

In [CRO6], Cook presented Safe Query Objects, a technique for representing queries as
statically typed objects while still supporting remote execution by a database server.
To illustrate this idea, in the Java code of Listing 3.3, Cook expresses a query written
in the Java programming language itself. He uses an abstract base class for queries,
the “Predicate” class, and a method named “match” that defines the query. Of course,
a way to pass a Student object to the expression, as well as a way to pass the result
back to the query processor are also needed. Cook does this by defining a STUDENT

parameter and by returning the result of the expression as a boolean value.

public abstract class Predicate <ExtentType> {
public <ExtentType> Predicate () {}
public abstract boolean match (ExtentType candidate);

Predicate<Student> predicate = new Predicate <Student > () {
public boolean match(Student student) {
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return student.getAge() < 20 &

student .Name. Contains ("f");

List <Student> students = database.query <Student> (predicate);

Listing 3.3: Predicate class and match method for querying the Student table

The underlying idea here is to allow programmers to think of the target as though it
were merely an object(s) residing in memory. In the example, it is as if we have an
“in-memory” list of students and we want to “query” this list to find those students
under the age of 20 and whose names contain the letter “f”. Because in Cook’s
paper [CRO6]| they are dealing with arbitrary relational databases, they cannot use a
loop to access the objects of the database since the database in fact is not an object
and it is certainly not local. Instead, the method “match” is defined that returns a
boolean value representing the success of the query operation against each possible
data value in a given table. The proper type checking is performed by the native
language’s regular compiler. The value of the boolean result indicates whether a
given student in the Student table meets the criteria.

The key to safe query objects is that type-checked class definitions are translated
into code to call standard database interfaces such as JDBC [HC97] or JDO [Rus03].
This new code is added to the class that contains the query to override a method
(responsible for sending the new new code) in the base class. The translation could

be performed on the classes during compilation, on byte-codes after compilation, or
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during loading. Cook’s prototype uses OpenJava |[TCIK99|, which follows the first
approach.

While Cook’s full representation of a query is used for relational databases, our
work will be applied in OLAP systems. In fact, we are adapting this idea of translating
the programmer’s code into a new querying format that can be delivered to the server,
though it must be noted that we have a different set of problems and concerns which

are specific to OLAP.

3.1.2 Language Specific Database Libraries

Another approach to simplified database access extends the development languages
themselves. In fact, this has been an ongoing research theme, with work stretching
back more than 20 years [AB87|. We look briefly at a few of the more interesting
examples. The Ruby language [Rub| provides one of the simplest interfaces by em-
ploying an ActiveRecord which is a library built for Ruby that dynamically examines
method invocations against the database schema. Explicit field/member mappings
are not even required. The Haskell language has been extended with HaskellDB [Has].
Its monad-based syntax expression is intriguing in that queries are “decomposed” into
a series of distinct algebraic operations (e.g., restrict, project). Even C++ has been
extended to support native database access. ARARAT |[GLO07] is a C++ template
library whose objective is type safe, and largely transparent, generation of SQL state-
ments. With each of these examples, we note that the expressive power of the query

facilities is limited and that an “SQL backdoor” may be needed in more sophisticated
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environments.

Perhaps the most notable of the language-centric approaches is Microsoft’s LINQ
extensions for its .NET family of languages (C# and VisualBasic) [BRK"08]. Syn-
tactically, LINQ resembles embedded SQL in that, for more complex queries at least,
the standard SELECT-FROM-WHERE format is employed (for better or for worse).
While LINQ has been quite popular with developers, it has been subsumed under
the new ADO.NET model [AMMO07|. The overarching theme of ADO.NET is the
Entity Framework (EF), a comprehensive attempt to pull back the abstraction level
of development projects from the object-oriented logical level to the entity-focused
conceptual level. In other words, use of EF and its Entity Data Model makes it
possible, in theory, to program directly against user level concepts. Source code, pos-
sibly written with LINQ, is then parsed into an internal command tree, which can
subsequently be used to generate optimized SQL. While the move towards greater
abstraction is quite appealing, initial reaction has been mixed, with many develop-
ers concerned about the design and development complexity associated with the EF.
Db4o (Database for objects) is another database language that allows to use the na-
tive program language to query the database [NGDT08|. It is an embeddable open
source object database for Java and .NET developers. In .NET, LINQ support is
fully integrated in db4o. Although db4o offers nice language integrated queries, it
suffers from some drawbacks of which a notable one is the difficulty to overcome its
slow performance when retrieving a lot of objects.

Listing 3.4 presents a query in db4a that is used in Java context. A list of students
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who are less than 20 years old and whose grade is gradeA is returned. Note the match

method that is common to db4o and Cook’s safe queries.

Predicate<Student> predicate = new Predicate <Student > () {
public boolean match(Student student) {
return student.age() < 20 && student.grade() = gradeA;

List <Student> students = db.query <Student> (predicate);

Listing 3.4: In Java using dbdo [DB4]

A query written in LINQ is given in Listing 3.5. Again, it returns students who are
less than 20 years old and whose grade is gradeA. Note the usage of FROM-WHERE-

SELECT which is similar to SQL syntax.

var result = from Student s in container
where s.Age < 20 && student.Grade = gradeA

select s;

Listing 3.5: In .NET using LINQ [LIN]

In addition to the disadvantages mentioned earlier for individual database query lan-
guages, the main hindrance of db4o and LINQ), as is the case with many of the other
tools, is the lack of interoperability that is taken for granted in the SQL world, such
as industry standard connectivity, reporting tools, backup and recovery standards

and OLAP functionality!
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3.2 Multidimensional Databases Querying Languages

In terms of OLAP, there was also a flurry of interest in the design of supporting
algebras [AGS97, GL97|. The primary focus of this work was to support an algebraic
application programming interface (API) that would ultimately lead to transparent,
intuitive support for the underlying data cube. In a more general sense, these algebras
identified core elements of the OLAP conceptual data model. Recently, the various
algebras have been directly compared so as to extract the operations common to each
model [RAOT].

A somewhat orthogonal pursuit in the OLAP context has been the design of
domain-specific query languages and/or extensions. SQL, for example, has been
updated to include the CUBE, ROLLUP, and WINDOW clauses in an attempt to
more intuitively support standard OLAP query patterns [Mel02]. It must be noted,
however, that support for these operations in DBMS platforms is inconsistent at
best, leading most OLAP/BI vendors to provide their own proprietary implemen-
tations [DKKO05]. In addition to SQL, many commercial applications support Mi-
crosoft’s MDX query language [WZP05|. MDX provides a specialized syntax for
querying and manipulating the multidimensional data stored in data cubes. MDX
has been embraced by wide majority of OLAP vendors and has become the de-facto
standard for OLAP systems [SHW106]. Still, MDX remains an embedded string
based language with an irregular structure and is somewhat representative of the

language philosophy of the 1980s and 1990s.
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To give the reader a better sense of the MDX language, we will now present a
series of simple MDX examples. The cube we are working with contains the following

feature attributes:

Customers

e Time

Product

e DMA

The Measure attributes consist of:

e Store Cost

e Profit

e RunningTotalSubs

The MDX query depicted in Listing 3.6 is a very simple query for finding store costs
(a measure attribute in the data cube) associated with all customers in 1997.
The MDX query given in Listing 3.7 is similar to the previous MDX query, but
this time the query is doing a drill down on the customers in the USA region.
In the query given in Listing 3.8, we are doing a crossjoin on Customer and Gender
to get all combinations by year, and we are using a different measure value Profit.
We note that while the queries included here are quite simple, and consequently

quite readable, more sophisticated MDX queries can be virtually incomprehensible to
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SELECT
{ [Time].[1997] } ON COLUMNS

{ [Customers|.[ All Customers| } ON ROWS

FROM [Sales]|
WHERE ( |[Measures |.| Store Cost| )

Listing 3.6: MDX query 1

SELECT

{ [Time].[1997] } ON COLUMNS |,

{ [Customers|.[ All Customers|.|[USA]|.CHILDREN }
ON ROWS

FROM |[Sales|
WHERE ( | Measures |.|[ Store Cost] )

Listing 3.7: MDX query 2

SELECT
{ [Time].[1997] } ON COLUMNS
{
{ [Customers|.[ All Customers|.[USA]|.CHILDREN } x
{ [Gender|.[ All Gender|.|[F|, [Gender|.[All Gender]|.[M] }
] ONROWS
FROM |[Sales|
WHERE ( |Measures |.|[ Profit]| )

Listing 3.8: MDX query 3
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anyone other than the developers themselves. An example of a rather incomprehen-
sible MDX query is depicted in Listing 3.9. In the query, measure VariantPercentage
is created and defined using a formula in terms of RunningTotalSubs and some hi-
erarchical attributes. Tuples are used here which complicates the query even more.
They are used to indicate that RunningTotalSubs of a hierarchy path in the time
hierarchy which refers to some date in 2004 is subtracted from that of 2005 date in
the time hierarchy then divided by the total RunningTotalSubs of “all” “time” hier-
archy. The “SELECT” on COLUMNS is similar to what we saw before, where the
RunningTotalSubs and the VariantPercentage are displayed. However, “SELECT”
on ROWS is more complex in this example. There is a CROSSJOIN of TopCount
( [DMA] .children , 5000 ,( [RunningTotalSubs| ) ) and [Time].[2004].& [1].[1].[1]
.| Time].[2005].&[1].[1].[1] ,|Time| ). This means that the top 5000 RunningTotal-
Subs of the children of [DMA] are crossjoined with the hierarchy path referring to
2004 date of the time hierarchy, the hierarchy path referring to the 2005 date of the
time hierarchy and “All Time”. These are all what will be displayed on ROWS and
COLUMNS. They are selected FROM “Customers” cube where the slicing operation

performs selection of “product ID” to be equal to 14.

WITH

MEVBER | Measures | . | VarientPercentage | AS

“(([Time|.[2004] . \&|1].[1].[1],
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[ RunningTotalSubs|) —
([Time|.[2005].\&[1].[1].[1],

| RunningTotalSubs|)) /

(| Time|.| All Time|, [RunningTotalSubs]| )’

SELECT {

[RunningTotalSubs|

[ Measures | .| VarientPercentage]| }
ON COLUMNS

CrossJoin (
TopCount (
{[DMA].CHILDREN}, 5000 |,
( |RunningTotalSubs| ) ) |,

{|Time].[2004] .\ & [1].[1].[1] ,
[Time].[2005].\&[1].[1].[1]
| Time] } )

ON ROWS

Y

FROM | Customers |
WHERE ( [Product|.[Product ID].\&[14] )

Listing 3.9: A more sophisticated MDX query

Finally, we note that no discussion of OLAP query languages and models would be
complete without a brief reference to the ill-fated JOLAP standard [JOLO03]. Delivered
in 2003, the JOLAP JSR-69 was an industry-backed attempt to define an enterprise-
ready, Java-oriented meta data and query framework for OLAP applications. Drawing
upon the Common Warehouse Metamodel [CWMO03|, JOLAP introduced a purely

compositional query API that layered itself on top of elements of the CWM’s logical
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metamodel. JOLAP object model provides a core layer of services and interfaces
that are available to all clients. While intuitively appealing, the JOLAP specification
proved to be extraordinarily complex for both vendors and query writers. To date, no
client or server side application has ever been developed around JOLAP. It currently

serves as both an inspiration for OLAP centered projects and a cautionary tale.

3.3 OLAP Algebras in Research

A great deal of effort has been devoted to multidimensional modeling in OLAP set-
tings with several models having been introduced in the literature [ASS01, VS99|.
A multidimensional algebra is as crucial for satisfactory data warehouse querying as
the relational algebra (select, project, join, etc.) is for satisfactory relational database
querying. Romero and Abello, in [RA07|, compare existing multidimensional algebras
in the literature so that their common backbone is discovered.

In terms of the models themselves, Romero and Abello highlight the following:

e |LW96| introduces a multidimensional algebra of five operators, namely “Add
Dimension”, “Transfer”, “Cube Aggregation”, “Join”, “Union”, representing map-
pings between either Cubes or relations and Cubes. The authors illustrate, in
their paper, how the multidimensional algebra gets translated to SQL. In fact,
this algebra was one of the first multidimensional algebras introduced in the

literature and its aim was to construct Cubes for local operational databases.

e |AGS97| presents an algebra of six operators which are “Push”, “Pull”, “Destroy
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Dimension”, “Restriction”; “Join”, “Merge”. These operators are invented to be
translated to SQL. They are minimal. No operator can be expressed in terms of

other operators and no operator can be excluded without affecting the algebra.

e |GLI7| presents an algebra of seven operators that are based on the relational
algebra operations. The seven operators are “Selection”; “Projection”, “Carte-
sian product”, “Union/Difference/Intersection”, “Fold/Unfold”, “Classification”,
“Summarization”. They also define a calculus that is equivalent to the proposed

algebra.

e [TDI7] et al and [TDO1| et al present an algebra with eight operators based
on [AGS97|. These operators are “Restriction”, “Metric Projection”, “Aggrega-
tion”, “Cartesian Product”, “Join”, “Union/Difference”, “Extract”, “Force”. The

authors presume the algebra to express complex OLAP queries in a concise way.

In addition to the above, additional algebras were presented by Romero and
Abello, including but not limited to [CT98|, [HS98|, [VS99], [GMRIS]|, [FS00], [FBV0O]
and [FKO04]. In addition to reviewing the existing work in the area, Romero and
Abello propose a multidimensional reference algebra that we will present in the next
few paragraphs. In this thesis, we essentially adapt Romero and Abello’s reference
algebra as the underlying mechanism for OLAP query transformation.

In their framework, Romero and Abello describe the following concepts that are

common to virtually all OLAP models.
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e A Dimension: A dimension contains a hierarchy of Levels where a level con-

tains Descriptors.

A Fact: A fact table contains Cells. These cells contain Measures.

e A Base: A base is a minimal set of levels that identify a cell that may be a

primary key in the database.

A Cube: A cube is a set of cells placed in the multidimensional space. It should

be positioned with regard to the Base.

A Star: A star is one Fact and several Dimensions.

The reference algebra of Romero and Abello is presented as a framework called
YAM? [ASS05]. The YAM? algebra was introduced in detail in [ASS03|, where it was
proven to be complete, meaning that any other multidimensional operation can be

expressed in terms of it. These algebraic operations are as follows:

e Selection: This operation selects the subset of points of interest out of the

whole n-dimensional space by means of a logic clause C over a Descriptor.

e Projection: This operation selects a number of Measures from the Cube.

e Roll-up and Drill-down: The “Roll-up” operation groups cells in the Cube
based on an aggregation hierarchy. It modifies the granularity of data. The
“Drill-down” operation is the inverse of Roll-up. It can only be performed if
a Roll-up has been previously applied and the correspondence between cells is
preserved.
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e ChangeBase: This operation reallocates exactly the same instances of a Cube
into a new n-dimensional space with exactly the same number of points, by

means of a one-to-one relationship.

e Drill-across: This operation changes the subject of analysis of the Cube by

means of one-to-one relationship.

e Set Operations: These operations operate on two Cubes (like in set theory) if
both are defined over the same n-dimensional space. Union, Difference and

Intersection are the usual set operations performed.

Figure 12 shows the table given by Romero and Abello [RA07| that depicts the

mapping between the two sets of algebraic operators:

e the set of relational operators as the columns names

e the set of multidimensional operators as the rows names

In the figure, the intersection of the columns and rows means that the correspond-
ing two operators are equivalent when applied on the subscript names of the tick
sign. SELECTION as the multidimensional operator is equivalent to SELECTION as the
relational operator when applied over Descriptors (features) fields. PROJECTION as
the multidimensional operator is equivalent to PROJECTION as the relational opera-
tor when applied over Measures fields. The tick sign without restriction means both
operators are equivalent. In the table, the set operators including Union and Dif-

ference are equivalent as both relational operators and multidimensional operators.
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Union

Reference Operator Selection | Projection Join / Diff Group by | Aggregation
Selection VDescs
Projection VMeasures
Roll-up v Descs_ID + VMeasusres +
Drill-across V bescsio+ | V Descs.in+
Add Dim. \/ Descs_ID
Remove
changeBase Dim. V Deses.in
Alt. Base \/ Descs_ID + \/ Descs_ID +
Union/Difference v

algebra operations
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the manipulation of navigational hierarchies (Roll-ups and Drill-downs).

Figure 12: Reference operator matching between multidimensional and relational

The + sign means that one multidimensional operator is equivalent to more than one
relational operator. In the table, we see that Roll-up, Drill Across and ChangeBase
multidimensional operators involve equivalence to more than one relational operators.
Roll-up operator is equivalent to the two relational operators Group-by and Aggrega-
tion. Drill-across operator is equivalent to the two relational operators Projection and
Join. ChangeBase specifically Alternate Base operator is equivalent to the two rela-
tional operators Projection and Join. In our research, we focus mostly on SELECTION

and PROJECTION. We also cover, from a pratical point of view, the set operations and




3.4 Conclusion

We presented in this chapter the important related work to this thesis. In RDBMS,
ORM languages play a critical role in querying the database, as they define type-safe
mappings between the tuples of the DBMS and the native objects of the external
applications. However, as we demonstrated by example, these languages are par-
tially or totally string-based. To tackle this problem, we introduced Cook’s work that
describes how to express a query in the native language itself using Safe Query Ob-
jects. Cook’s work in querying relational databases instigated our work in querying
OLAP systems. To complete the review of work that is done in RDBMS, we intro-
duced the language specific database libraries that extend the development languages
themselves such as db4o and LINQ.

In the OLAP world, the MDX language is the de-facto language to query OLAP.
We illustrated its usage through examples. MDX, being a string-based and often
obscure language, has motivated us to build a framework where querying an OLAP
system is done in the native language itself.

Finally, we tried to emphasize that a very important part of any querying frame-
work is the algebra that is used. We presented in this chapter a number of multi-
dimensional algebraic operations that were introduced by contemporary researchers.
Romero and Abello derived a common algebra they called YAM? which is the algebra

we adapted in our work.
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Chapter 4

Native language OLAP query
eXecution (NOX)

The native language OLAP query eXecution system, abbreviated as NOX, has been
constructed from the ground up so as to emphasize the transparency in the term
“transparent persistence”, which is the illusion that the server’s data is nothing more
nor less than a simple object. Doing so, of course, requires considerable infrastructure.

Our current research work focuses on building the client side libraries and parsing
infrastructure that allows programmers to write OLAP queries in the native program-
ming language used. OLAP queries, written by the programmer, then become acces-
sible to IDE and compiler features like compile-time type checking, auto-completion,
and refactoring. Moreover, we avoid the requirement for the programmer to learn a
second programming language, for example, SQL or MDX.

In this chapter, we begin in Section 4.1 by discussing the Sidera system server

architecture to which NOX sends its OLAP queries. We then discuss the design,
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implementation, and use of the NOX framework where Section 4.2 introduces the pri-
mary NOX components, and Section 4.3 discusses the underlying conceptual model.
Section 4.4 illustrates the core operations of the OLAP algebra in the NOX model.
Section 4.5 expands the model to include the NOX grammar and its DTD represen-
tation. Finally, we present in Section 4.6 the full details of the client architecture,

specifically the NOX pre-processor.

4.1 The Sidera System Architecture

In this section, we describe the Sidera system architecture. Eavis et al in their paper
titled “Sidera: a cluster-based server for Online Analytical Processing” presented a
comprehensive architectural model for a fully parallelized OLAP server [EDD*07].
The model consists of a network-accessible frontend server and a series of protected
backend servers. Each backend server handles a portion of the user request. Other ar-
chitectures have utilized existing DBMS servers to provide backend storage and query
resolution services with minimal implementation efforts, but have limited support for
advanced OLAP functionality such as cubing and hierarchical querying. Another lim-
itation is that they return local results to the primary server where the data will then
be merged and aggregated. In relatively large production systems, the bottleneck
on the frontend becomes significant. Sidera eliminates this bottleneck by operat-
ing within a fully coordinated architecture that allows each node to participate in
global sorting, merging and aggregation operations. This brings the full computa-

tional capacity of the whole cluster for every OLAP query. Note that prototypes of
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the backend and the frontend implementations have been developed and published
by Eavis et al. in [EDD707] and [ETT10] simultaneously. A description of the whole
framework was published by Taleb et al. in [TET11].

Figure 13 illustrates the fundamental design of Sidera. Here, the frontend node
serves as an access point for user queries. Query reception and session management
is performed at this point but the frontend does not participate in query resolution,
other than to collect the final result from the backend instances and return it to the
user. In turn, the backend nodes are fully responsible for storage, indexing, query
planning, I/O, buffering, and meta data management. In addition, each node houses
a Parallel Service Interface (PSI) component that allows it to hook into the the global
PSI layer.

Figure 14 is an illustration of the Sidera frontend, a multi-threaded head node
that handles logins, authentication, and transfer of queries to the backend nodes.
The head node represents the server’s public interface. Its core function is to receive
user requests and to pass them along to the backend nodes for resolution. It does not
participate in query resolution directly, and thus does not represent a performance
bottleneck for the system. The numbered sequence in the figures indicates the pro-
cessing cycle for a typical query. Figure 15 depicts the processing loop on the backend
server instances. While the frontend provides the public interface, it is of course the
backend network that performs virtually all of the query resolution.

We note that Sidera has been used as the target platform as it allows us to explore

both query processing on the client and query optimization on the server (a separate
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Figure 13: The core architecture of the parallel Sidera OLAP server [EDD*07]

research project). The NOX framework was implemented and tested to send queries
to the Sidera framework and receive results back. Having complete freedom with the
code base is a distinct advantage for this kind of research. That being said, it is
important to note that the principles discussed in this thesis can in theory be applied
to existing DBMS platforms, assuming the implementation of suitable mappings to

the given DBMS backend.

4.2 The NOX Framework

We now turn to the problem of providing native language functionality in the OLAP

setting, the key contribution of this thesis. The NOX framework, being a query
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language framework, we begin with a brief overview of its primary physical and logical

elements. They include the following:

e OLAP conceptual model. As with the Entity Framework, NOX allows de-
velopers to write code directly at the conceptual level. No knowledge of the

physical or even logical level is required.

e OLAP algebra. Given the complexity of directly utilizing the relational alge-
bra, in the OLAP context, we define fundamental query operations against a

cube-specific OLAP algebra.

e OLAP grammar. Closely associated with the algebra is a DTD-encoded

OLAP grammar that provides a concrete foundation for client language queries.

e Client side libraries. NOX provides a small suite of OOP classes correspond-

ing to the objects of the conceptual model.
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e Programming API. Collectively, the exposed methods of the libraries form a

clean programming API that can be used to instantiate OLAP queries.

e Augmented compiler. At its heart, NOX is a query re-writer. During a
pre-processing phase, the framework’s compilation tools (JavaCC/JJTree) ef-

fectively re-write source code to provide transparent model-to-DBMS query

translation.

e Cube result set. OLAP queries essentially extract a subcube from the original
space. The NOX framework exposes the result in a logical read-only multi-
dimensional array.
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Figure 16 provides a concise illustration of the NOX processing stack. In short, the
developer’s view of the OLAP environment consists of the elements of the top three
levels. From the developer’s perspective, all OLAP data is housed in a series of one
or more cube objects housed in local memory. The fact that these repositories are
not only remote, but possibly Gigabytes or even Terabytes in size, might be irrelevant
to the developer since he is querying a cube as if it is an object residing in memory.

However, the time needed to get the results back depends on the size of the subcube

result.
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|
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Figure 16: NOX processing stack
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4.3 Conceptual Model

In the OLAP context, the conceptual view of the data has reached a level of maturity
whereby virtually all analytical applications essentially support the same high level
view of the data. Briefly, we consider analytical environments to consist of one or
more data cubes. Each cube is composed of a series of d dimensions (sometimes called
feature attributes) and one or more measures. The dimensions can be visualized as
delimiting a d-dimensional hyper-cube, with each axis identifying the members of
the parent dimension (e.g., the days of the year). Cell values, in turn, represent the
aggregated measure (e.g., sum) of the associated members. Figure 17 provides an
illustration of a very simple three dimensional cube. We can see, for example, that
20 units of Product FH1 were sold in the Berkeley location during the month of Jan-

uary (assuming a Count measure). Beyond the basic cube, however, the conceptual

Location
(city)

San Jose

Los Angeles

Berkeley

Dec 20 35 31

Time
(month) Yan 14 20 12 Y

>< Measure
Feb | 21 | 40 | 24 Value

Sk11 FH12  AM54

Product (number)

Figure 17: NOX conceptual query model

OLAP model relies extensively on aggregation hierarchies provided by the dimensions
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themselves. In fact, hierarchy traversal is one of the more common and important
elements of analytical queries. In practice, there are many variations on the form
of OLAP hierarchies [MZ06]| (e.g., symmetric, ragged, non-strict). For our purposes,
however, it is enough at this point to supplement the NOX conceptual model with
the notion of an arbitrary graph-based hierarchy that may be used to decorate one
or more cube dimensions. Figure 18 illustrates a simple geographic hierarchy that an
organization might use to identify intuitive customer groupings. The path in yellow
is an example of an OLAP path where each value on the OLAP path comes from a

different level in the hierarchy.

Country I USA
T

Y v v

State California New York
‘
v v v v

. Los New

City Angeles San Jose Albany York
.

A ; } v v ; }

Store Store 1 Store 2 Store 3 Store 4 Store 5 Store 6

Figure 18: A simple symmetric hierarchy

4.4 The NOX Algebra

Given the clean, conceptual model described above, it is possible to consider the ap-
plication of an OLAP algebra that directly exploits the model’s structure. A number
of researchers have identified the core operations of such an algebra as detailed in
Section 3.3. We will shortly see how the exploitation of a formal algebra ultimately
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allows developers to program directly against the conceptual model, rather than to a
far more complex physical or even logical model.

As indicated, a core set of operations for NOX common to virtually all proposed
OLAP algebras has been identified. Below, we list and briefly describe these opera-

tions.

e SELECTION (o,cube): provides the identification of one or more cells from within
the full d-dimensional search space. This is one of the two core OLAP operations
and is commonly referred to as “slicing” and “dicing”. A logic predicate p defines
cells of interest within the d-dimensional space. The logic predicate has the
syntactical form where mathematical expressions can be compared to each other
and different conditional expressions can be combined with logical operators

such as AND and OR. The selection operation is given in Figure 19.

e PROJECTION (Timeasurey ... measure,cttbe): provides the identification of presenta-
tion attributes, including both measure attributes and feature attributes. This
is the second core OLAP operation and it is mainly concerned with screening
results in an output mechanism such as diagrams, objects or simply text. In
other words, it does selection of a subset of display attributes (measures or

features). The projection operation is depicted in Figure 20.

e DRILL-ACROSS (cube; oo cubey): performs the integration of two independent
cubes, where each cube possesses common dimensional axes. In effect, this is a

cube “join” (possibly a self join) that changes or extends the subject of analysis,
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by showing measures regarding a new fact. The n-dimensional space remains
exactly the same, only the data placed in it change so that new measures can be
analyzed. For example, if the cube contains data about profits, this operation
can be used to analyze data regarding expenses using the same dimensions.

Figure 21 illustrates the drill-across operation.

UNION (cube; U cubes): performs the union of two cubes over the same n-
dimensional space sharing common dimensional axes. The union operation is

presented in Figure 22.

INTERSECTION (cube; N cubey): performs the intersection of two cubes over the

same n-dimensional space sharing common dimensional axes.

DIFFERENCE (cube; - cubey): performs the difference of two cubes over the same

n-dimensional space sharing common dimensional axes.

level;—level ;
f(measurey),...,f(measurer)

CHANGE LEVEL (v ) does the modification of the granular-
ity of aggregation for the current result set. This process is typically referred to
as “drill down” and “roll up”. The roll-up operation groups cells in a Cube based
on an aggregation hierarchy while the drill-down goes down through an aggre-
gation hierarchy, and showing more detailed data. The gamma representation
of the change level operation means that as the level of the data is changing, the
measure values are changing according to functions that aggregates or decom-
poses data values (along the levels of the hierarchy). The change level operation

is given in Figure 23.
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Figure 20: Projection operation [AR|

e CHANGE BASE (Xpase; sbase,): allows two different kinds of changes in the n-
dimensional space: it performs the addition or deletion of one or more dimen-
sions from the current result set or just rearranges the multidimensional space
by reordering the dimensions (this is also known as Pivoting). When addition
or deletion of dimensions is done, aggregated cell values must be re-calculated

accordinglY. Figure 24 depicts the change base operation.

e PIVOT (¢pgse): does the rotation of the cube axes to provide an alternate per-
spective of the cube. No recalculation of cell values is required. Figure 10 given

in Chapter 2 illustrates the pivot operation.

Several explanatory notes are in order at this stage. First, the SELECTION is
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Figure 24: Change Base operation [AR]
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the driving operation behind most analytical queries. In fact, if suitable defaults
for identifying presentation attributes, such as a certain key or a set of keys, are
available for the PROJECTION, many queries can be expressed with nothing more than
a selection. Second, the final two operations CHANGE BASE and PIVOT, are distinct
from the first seven in that each is only relevant as a query against an existing result
set. This is because CHANGE BASE and PIVOT provide alternative presentations of data
such as rearranging or rotating the result cube. Third, it is important to recognize
that while logical data warehouse models typically require explicit joins between fact
(measure) and dimension tables, there is no such requirement at the conceptual level.
Data is viewed at the conceptual level as objects residing in memory. The result is a
dramatic reduction in complexity for the developer. Depending upon the architecture
of the supporting analytics server, of course, join operations may still be performed at
some point. Finally, and perhaps most importantly, the OLAP algebra is implicitly
read only, in that database updates (change in the data or schema) are performed via
distinct ETL processes. Remember from Chapter 2 that information is loaded into
the data warehouse using a process known as ETL (Extract, Transform, and Load).
It is well known that updates significantly complicate the logic of ORM frameworks.

As discussed in Section 3.3, Abello and Romero provide the YAM? reference frame-
work for OLAP algebras. Our algebra is similar, with the addition of the PIVOT oper-
ation which is a special case of the CHANGE BASE operation. The special case is when
CHANGE BASE changes its visual orientation by rotating the cube along its axis with a

one-to-one correspondence between its dimensions. Finally, we note that YAM? has
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in fact been proven to possess the following properties [RA05| and [ASS03]:

e (Closed, meaning when the algebra operations are applied to a cube-query, its

result is another cube-query.

e Complete, meaning that any valid cube-query can be the result of a combination

of a finite set of the algebra operations applied to the right cell, and

e Minimal, meaning that none of the algebra operations can be dropped without
affecting the algebra and none of the operations can be expressed in terms of

the others.

Therefore, the NOX algebra is also closed, and complete. However, it is not minimal

as the PIVOT operation can be expressed in terms of CHANGE BASE.

4.5 The NOX Grammar

NOX encapsulates the operations of the algebra in a formal grammar encoded by
a Document Type Definition (DTD). Section 2.7 gave an overview of what a DTD
schema is. (We note that the XML Schema could be used as well). The NOX grammar
DTD is relatively complex as it effectively represents the foundation for an expressive,
XML-based analytics language.

Listing 4.1 depicts the current DTD-encoded grammar of the NOX query language.
While NOX is very much a research prototype, the grammar is nonetheless quite

sophisticated as it is required to support most of the features of a DBMS access
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language. Below, we look more closely at a few of the most significant grammar

elements.

<?xml version="1.0" encoding="UTF-8" 7>
< |[HLEMENT QUERY (DATA QUERY | META QUERY)>

<!— Data queries—:>
< !ELEMENT DATA QUERY (CUBE NAME, OPERATION LIST? ,FUNCTION LIST?)>
< !HLEMENT CUBE NAME (#PCDATA)>
< !HHEMENT OPERATION LIST (OPERATION+)>
< !ELEMENT OPERATION (

SELECTION |

PROJECTION |

CHANGE_LEVEL |

CHANGE BASE |

DRILL ACROSS|

UNION |

INTERSECTION |

DIFFERENCE ) >

<!— Selection —>
< !HHEMENT SELECTION (DIMENSION MEASURE LIST)>
< /EIEMENT DIMENSION MEASURE LIST
( (DIMENSION, (LOGICAL_ OP, (DIMENSION || MEASURE) ) %) ||
(MEASURE, ( (LOGICAL_OP,DIMENSION) , (LOGICAL OP, (DIMENSION | |
MEASURE) ) ) ) ||
(MEASURE, ( (LOGICAL_OP, (DIMENSION | |
MEASURE) ) * , (LOGICAL_OP,DIMENSION) ) ) )>
< !ELEMENT DIMENSION (DIMENSION NAME, EXPRESSION)>
< |[FLEMENT DIMENSION NAME (#PCDATA)>

<!— Projection —>
< !ELEMENT PROJECTION (MEASURE_ DIMENSION LIST)>
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< !ELEMENT MEASURE DIMENSION LIST ((MEASURE, (LOGICAL OP, ( DIMENSION

|| MEASURE)) %) ||
(DIMENSION ( (LOGICAL_OP,MEASURE) , (LOGICAL_OP, (DIMENSION | |
URE) ) «)) ||
(DIMENSION ( (LOGICAL_OP, (DIMENSION | |
) *

URE) ) * , (LOGICAL_OP,MEASURE) ) ) )>
< |ELEMENT MEASURE(MEASURE_NAME, (COND_OP,SIMPLE_EXP) ?)>
< |ELEMENT MEASURE NAME (#PCDATA)

<!— Dimension Ezpressions —>
< |HHEMENT EXPRESSION (RELATIONAL EXP | COMPOUND EXP | SIMPLE EXP)>
< !ELEMENT COMPOUND EXP (EXPRESSION, LOGICAL OP, EXPRESSION)>

< |HLEEMENT RELATIONAL EXP (SIMPLE EXP, COND OP, SIMPLE EXP)>
<!ELEMENT SIMPLE EXP (EXP_ VALUE | ARITHMETIC EXP)>

< !HEEMENT ARITHMETIC EXP (SIMPLE EXP, ARITHMETIC OP, SIMPLE EXP)>

< |ELEMENT EXP_VALUE (
CONSTANT |
ATTRIBUTE |
HIERARCHY LIST |
FUNCTION _LIST)>

< |FIEMENT CONSTANT (#PCDATA)>
< |FHLEMENT ATTRIBUTE (/PCDATA)>

<!— Dimension Operators —>
< |ELEMENT LOGICAL OP (#PCDATA)>
<!— AND | OR —>

< 'ELEMENT COND OP (
RELATIONAL_OP |
EQUALITY OP |
OLAP_ OP)>

< |ELEMENT RELATIONAL OP (#PCDATA)
<|\— GT | GTE | LT | LTE) —>
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< [ELEMENT EQUALITY OP (#PCDATA)>
<!— EQUALS | NOT EQUAL ——>

< |ELEMENT OLAP_OP (#PCDATA)>
<|— IN_RANGE | IN_LIST)> —>

< |[HLEMENT ARITHMETIC OP (#PCDATA)>
<!— ADD | SUBTRACT | MULTIPLY | DIVIDE) —>

<!— Generic Functions —>

< !HLEMENT FUNCTION LIST (FUNCTION+)>

< !HHEMENT FUNCTION (PARENT, FUNCTION NAME, ARGUMENT LIST?)>
< |HLEMENT PARENT (#PCDATA)>

< |HLEMENT FUNCTION NAME (#PCDATA)>

< |[HLEMENT ARGUMENT LIST (ARGUMENT+-)>

< |ELEMENT ARGUMENT (#PCDATA)>

<!— Hierarchies —>

< !HLEMENT HIERARCHY LIST (HIERARCHY+)>

< |[HLEMENT HIERARCHY (HIERARCHY NAME, HIERARCHY OP,
OLAP PATH LIST)>

< |[FLEMENT HIERARCHY NAME (#PCDATA)>

< |ELEMENT HIERARCHY OP (#PCDATA)>

<!— IN RANGE | IN_LIST)> —>

<!— Hierarchies Paths —>

< !FLEEMENT OLAP PATH LIST (OLAP_ PATH+)>
< |HLEMENT OLAP PATH (VALUE+)>

< |FLEMENT VALUE (#PCDATA) >

<!— Union —>
< !FLEMENT UNION (DATA QUERY)>

<!— Intersection —>
< |[HLEEMENT INTERSECTION (DATA QUERY)>
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<!— Difference —>
< |HHEMENT DIFFERENCE (DATA QUERY)>

<!— Rollup/Drill down —>
< !ELEMENT CHANGE LEVEL (DIMENSION NAME, TARGET LEVEL)>
<!ATTLIST CHANGE LEVEL
direction (UP | DOWN) #REQUIRED-
<!ELEMENT TARGET LEVEL (#PCDATA)>

<!— Changing the base —>
< |ELEMENT CHANGE BASE (DIMENSION LIST)>
<!ATTLIST CHANGE BASE

modification (ADD | REMOVE) #REQUIRED>

<!— Drill across —>
< !ELEMENT DRILL ACROSS (DATA QUERY)>
<!— <!ATTLIST DRILL ACROSS
output (BOTH | REPLACE) #REQUIRED> —>

<!— Meta data queries: this will be extended later—:>
< !ELEMENT META QUERY (CUBE NAME)>
<!ATTLIST META QUERY

scale (FULL | PARTIAL) #REQUIRED-

Listing 4.1: “ClientQuery.dtd” used to validate NOX XML files

In Listing 4.1, #PCDATA stands for Parsed Character Data and specifies char-
acter data. #REQUIRED stands for values that must be given, meaning they may
not be empty strings.

Each query is associated with a single cube (though references to other cubes are

possible), as well as an optional Operation List and an optional Function List.
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The Operation List contains the algebraic elements of the query, and each may
occur exactly zero or one time in a single query. One important operation is the
selection which is defined as a listing of one or more dimensions, each associated with
an expression, and possibly one or more measures. In effect, the expression represents
a query restriction on the associated dimension or measure (this will become clearer
in Chapter 5). Simple expressions may be combined to form compound expressions
(via logical AND and OR) and can be recursively defined. In other words, as with any
meaningful programming language, conditional restrictions can be almost arbitrarily
complex. An example of a Selection XML string is given in Listing 4.2 where an

expression “age > 40”7 is defined on the “Customer” dimension.

<SELECTION>

<DIMENSION MEASURE_LIST>
<DIMENSION>

<DIMENSION NAME>

Customer

< /DIMENSION NAME><EXPRESSION>
<RELATIONAL EXP>

<SIMPLE _EXP>

<EXP_VALUE>

<ATTRIBUTE>

age

< /ATTRIBUTE>
</EXP_VALUE>

< /SIMPLE_EXP><COND_OP>
<RELATIONAL_OP>

GT

< /RELATIONAL_OP>
</OOND_OP><SIMPLE EXP>
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<EXP_VALUE->
<CONSTANT>

40

< /CONSTANT>
</EXP_VALUE>

< /SIMPLE_EXP>

< /RELATIONAL EXP-
< /JEXPRESSION>

< /DIMENSION>

< /DIMENSION MEASURE_ LIST>
< /SELECTION>

Listing 4.2: Example of a Selection XML string

There are several elements such as LOGICAL OP, RELATIONAL OP and EQUAL-
ITY OP that are defined as #PCDATA, so they are free to be any sequence of
characters. However, their values should be relevant to the meaning that they
hold. For example, LOGICAL OP should be either AND or OR, RELATIONA OP
should be either GT, GTE, LT or LTE, and EQUALITY _OP should be EQUALS
or NOT EQUAL.

Listing 4.1 also shows the FUNCTION LIST and HIERARCHY LIST elements
that can be values of EXP _VALUE. When an expression value is a FUNCTION _LIST,
it is associated with a PARENT dimension, a FUNCTION NAME such as in_range
and an ARGUMENT LIST which consists of one or more arguments such as num-
ber values. When an expression value is a HIERARCHY _LIST, it is made of one or
more hierarchies. A HIERARCHY consists of a HHERARCHY NAME, a HIERAR-

CHY OP and an OLAP_ PATH LIST. A HIERARCHY OP can be in_range and
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in_list. An OLAP_PATH LIST is made of one or more OLAP _PATH where each
OLAP_ PATH defines a path in a hierarchy. An OLAP PATH consists of one or
more values, where each value come from a different level of the hierarchy. Listing 4.1
also illustrates the simplicity of the set operation specifications. Three kinds of set
operations are given in Listing 4.1: intesection, union and difference. Each operation
acts on some data query. An example of a set operation INTERSECTION is given in
Listing 4.3. In this example, intersection is done on two selection criteria, namely
“Customer.getAge > 40”7 and “Customer.getAge < 60”. From programming point of
view, consider for example, a string equality check in a language such as Java, where
we would write myString.equals("Joe"), rather than something like myString ==
"joe". This same approach allows us to represent set operations simply as a nested
data query, defined relative to the current query. The way this will be implemented

in NOX is given in the next chapter.

<QUERY>

<DATA_ QUERY>
<OPERATION _LIST>
<OPERATION>
<INTERSECTION>
<DATA QUERY>
<OPERATION LIST>
<OPERATION>
<SELECTION>
<DIMENSION MEASURE_LIST>
<DIMENSION>
<DIMENSION NAME>

Customer
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< /DIMENSION NAME><EXPRESSION>
<RELATIONAL EXP>

<SIMPLE EXP>

<EXP_VALUE>

<ATTRIBUTE>

age

< /ATTRIBUTE>

< /EXP_VALUE>

< /SIMPLE _ EXP><COND_OP>
<RELATIONAL_ OP>

GT

< /RELATIONAL OP>

< /OOND_OP><SIMPLE_EXP>
<EXP_VALUE>

<CONSTANT>

40

< /CONSTANT>

< /EXP_VALUE>

< /SIMPLE_EXP>

< /RELATIONAL EXP>

< /EXPRESSION>

< /DIMENSION>

< /DIMENSION MEASURE_ LIST>
< /SELECTION>

< /OPERATION>

<OPERATION>

<SELECTION>

<DIMENSION MEASURE_LIST>
<DIMENSION>

<DIMENSION NAME>

Customer

< /DIMENSION NAME><EXPRESSION>
<RELATIONAL EXP>

<SIMPLE EXP>

<EXP_VALUE>

<ATTRIBUTE>
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age

</ATTRIBUTE>

< /EXP_VALUE>

< /SIMPLE_EXP><COND_OP>
<RELATIONAL OP>

LT

</RELATIONAL_OP>

< /OOND_OP><SIMPLE_EXP>
<EXP VALUE-

<CONSTANT>

60

< /CONSTANT>

< /EXP_VALUE>

< /SIMPLE_EXP>

< /RELATIONAL EXP-
</EXPRESSION>

< /DIMENSION>

< /DIMENSION MEASURE_ LIST>
< /SELECTION>

< /OPERATION>

< /OPERATION _LIST>

< /DATA_QUERY>

< /INTERSECTION>

< JOPERATION>
</OPERATION_LIST>

< /DATA_QUERY>

</QUERY>

Listing 4.3: Example of INTERSECTION XML string

As for CHANGE LEVEL, CHANGE BASE, DRILL ACROSS and META DATA,
they are included the in grammar in basic form. They are part of future work and

further development of these operations are needed.
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4.6 The Client Side API

Within the NOX query language framework, the conceptual model and its associated
grammar are intended to provide an abstract development environment for expressive
analytical programming. The NOX framework was implemented and tested to send
queries to the Sidera framework and receive results back. In this section, we provide
a detailed overview of the NOX query transformation model.

In a nutshell, NOX provides persistent transparency via a source code re-writing
mechanism that interprets the developer’s OOP query specification in JAVA and
decomposes it (by NOX pre-processor) into the core operations of the OLAP algebra.
Persistent transparency means that the programmer queries a cube as if it is an object
residing in local memory. These operations are given concrete form within the NOX
grammar and then transparently delivered (via standard socket calls) at run-time to
the backend analytics server for processing. Results are again transparently injected
back into the running application. In our proposed framework, OLAP compilation is

a multi step process. This process is described in Listing 4.4.
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1.

Find the OLAP queries (that need to be executed) in the
source code. OLAP queries are located by the parser through
special keywords. This will be explained in further detail in

the next chapter.

Parse each operation (such as select, project, ...) method
and convert it into an algebraic form represented in XML. How
the conversion is done will be illustrated in the next

subsection .

Rewrite part of the programmer’s source code to include new
network methods that connect to the server and transfer the
corresponding XML. The rewriting process will be explained in
the next chapter. It is important to note here that the
original programmer’s own source code that will not actually
be executed. The rewritten code is the one that will be

executed in the next step.

Recompile the new source code.

The server receives the XML, extracts the grammatical
elements and hands off the results to the underlying query

engine .

Eventually , query results will be transparently passed back
to the client application via the same network mechanism. In
other words, the results will be sent back from the server in
XML format. Then, on the client side, they will be converted,
using result set manipulation by our prototype (will be
presented in detail in the next chapter), into the appropriate

(N3

type for the native language (JAVA) and inserted ’’ back into

the program itself.

Listing 4.4: Pseudocode for OLAP compilation
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We note at this point that we have chosen to provide external libraries for NOX
rather than direct language modification. This is partly to encourage portability
between languages, as we consider the NOX model to be broadly applicable to any
modern OOP language. In our prototype, we use JAVA as the OOP language to im-
plement NOX functionality. However, it is also due to the fact that while OLAP/BI
is an immensely important commercial domain, OLAP-specific language extensions
would have virtually no relevance to the vast majority of developers working in arbi-
trary domains.

Figure 25 depicts the UML class diagram for NOX. The diagram shows three parts
that are separated by dashed lines. The first part shows the NOX API client query
classes that make up the client side libraries of NOX. These are the classes that are
ultimately imported by the programmer in order to specify a specific OLAP query.
Specifically, the classes will define the query’s dimensions, hierarchies and measures
and are created by extending the existing classes OlapDimension, OlapHierarchy and
OlapMeasure respectively. The second part of the diagram illustrates an example
of NOX program-specific query classes used for an OLAP query instance. In this
example, classes CustomerDimension, StoreDimension and DateDimension extend
the OlapDimension class. The classes CustomerHierarchy, GeographicHierarchy and
StoreHierarchy extend the OlapHierarchy class. Finally, classes ProfitMeasure and

SalesMeasure extend the OlapMeasure class.
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Figure 25: UML class diagram for NOX
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A more thorough UML class diagram for the NOX API classes, along with their
attributes and methods is given in Figure 26. The fields and methods of each class

are provided. Briefly explaining the diagram:

e The OlapQuery class (parent of all OLAP queries) has many-to-many relation-
ships with the OlapDimension class, the OlapMeasure class and the OlapHier-
archy class with these three classes being used to build the query. In other
words, an OLAP query can examine one or more dimensions, their hierarchies
and one or more measures (implicitly from fact tables). Dimensions, hierarchies

and measures can, of course, be used in more than one query.

e The OlapQuery class has a one-to-one relationship with the OlapConnection
class which in turn has a one-to-one relationship with the OlapHost class. Note
that each query gets delivered via standard socket calls to the backend analytics

server for processing.

e The MainCube class — which can be any cube name — has a many-to-many
relationship with the OlapDimension class and the OlapMeasure class, with
a cube consisting of one or more dimensions (features) and one or more fact
tables (measures). Features and measures can be common to other cubes in the

hypercube space.

e The OlapMeasureOperator class has a many-to-many relationship with the

OlapMeasure class, where operators are applied on measures.

e The OlapPath class has a many-to-one relationship with the OlapHierarchy
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class, where an OLAP hierarchy includes one or more OLAP paths but an
OlapPath belongs to only one hierarchy. Remember an OLAP path is a se-
quence of values where each value on the OLAP path comes from a different
level in the hierarchy. An example of an OLAP path is given in yellow in

Figure refsymmetricc.

e Finally, we note that due to its fundamental significance to warehousing and
OLAP processing, a pre-defined Date class is included in the NOX API. The
class extends the OlapDimension class and includes sub classes for Days, Months
and Years. Of course, the developer is free to further extend the class to add

additional functionality.

We note that additional class diagrams and UML representations for the program

specific query classes will be presented in Chapter 5.
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4.6.1 The NOX Pre-processor

NOX must identify query-specific elements of the source code (JAVA in our prototype)
and transform them as required. To accomplish this, NOX includes a pre-processing
module that transforms code before passing it to the standard Java compiler. The pre-
processor is produced with the JavaCC parser generator and its JJTree Tree builder
plug-in [Jav, JJT|. Briefly, JJTree is used to define parse tree building actions that
are executed during the later parse process. In the NOX case, JJTree identifies
query-specific code constructs (e.g., class definitions) that should be augmented. The
output of JJTree is then used by JavaCC to construct a Java parser that actually
locates and transforms appropriate methods. We note that although NOX utilizes
a complete Java 1.5 grammar for its parser, the pre-processor only examines and/or
processes tree nodes defined by JJTree. In practice, this makes the pre-processing
step extremely fast.

So what is the pre-processor looking for? NOX is supported by client libraries that
define the relevant query components. The fundamental structure is the OlapQuery
class. Listing 4.5 provides a partial listing of its contents. Use of this structure allows
programmers to over-ride the OlapQuery and provide only the operations necessary
for the query at hand (often just selection). The remaining methods are effectively
no-ops. Note that these methods never actually get executed. They are only stubs
that are used to allow the regular programming language compiler to verify that the
structure of the query is valid. The body of these methods will be replaced by some

programmer-specific code. The “execute” method would then serve as being both the
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public abstract class OlapQuery {

public boolean select () {return false;}
public Object || project() {return null;}
public OlapQuery drill across() {return null;}
public OlapQuery union() {return null;}
public OlapQuery intersection () {return null;}
public OlapQuery difference () {return null;}

public ResultSet execute ()

return new ResultSet () ;

}
}

Listing 4.5: Base class OLAP query with stub methods

invocation mechanism and the element of the class definition that would be re-written
during parsing the query.

Figure 27 graphically illustrates the process described thus far. In the box at the
top left, we see the parser generation tools that produce the translating pre-processor.
The dashed line to the pre-processor itself indicates that this association is static, and

the parser building tools are not invoked directly at either compile time or run-time.
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Figure 27: The client compilation model.
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In terms of the compilation process, the pre-processor takes as input the original
Java source file and then, using the parse tree constructed from this source, converts
source elements into an XML decomposition of the OlapQuery. Examples of source
elements that get converted are select, project, intersection, union and difference.
These will be converted into selection, projection, intersection, union and difference.
Other elements are mapped according to the children / parent relationships and
according to the stored values. Different combinations are checked and mapped to
the proper XML elements and values. Throughout this process, various DOM utilities
and services are exploited in order to generate and verify the XML. Finally, once the
source has been transformed, it is run through a standard Java compiler and converted
into an executable class file. We note that, in practice, the NOX translation step
would be integrated into a build task (ANT, makefile, IDE script, etc.) and would
be completely transparent to the programmer. The details of the components of

Figure 27 are as follows:

e Parser Generation Module:

1. JJTree (Javal.5.jjt): This component is part of the Java Compiler. It
acts like a pre-processor to the JavaCC parser generator and is mainly used
to build the program parse tree. In fact, we can add some functionality to
this component to allow us to choose which parts of the parse tree to build.
Ultimately, JJTree generates code to construct parse tree nodes during the

parsing process. We can also rename the nodes and choose to highlight
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tokens that help us during the process of parsing the client program.

In practice, the Javal.5.jjt is compiled with JavaCC and it produces a
JJTree Parse Tree that corresponds to the client program. It also produces
the JavaCC (Javal.5.jj) component that produces a Java parser for the
client program. A more detailed description of how JJTree is used in our

system is given in Section 4.6.2.

2. JJTree Parse Tree Actions: A parse tree is generated by JJTree. Nodes
in the tree correspond to grammar rules in the Java language. More details

and examples are given in Chapter 5.

3. JavaCC (Javal.5.jj): This is the parser generator that is produced by
JJTree (Javal.5.jjt) and is compiled by JavaCC to produce the Java Parser

for the client source file.

e DOM Module:

1. Query DTD: This is an XML Schema that defines the various compo-
nents of the Sidera systems such as OLAP queries, meta queries, database
structure and query results. It is used both on the client side and the
server side of the Sidera architecture. On the client side, it validates the
XML string generated during the process of OLAP query parsing. The

grammar DTD used in our system was given in Section 4.5.

2. DOM Tree: The DOM Tree is an intermediate component between the

JJTree parse tree and the XML corresponding to the OLAP query. The
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DOM Tree is useful for two main reasons. The first is that it can be directly
validated against the OLAP query grammar DTD schema. After finishing
construction of the DOM query tree, the DOM tree translation to an XML
query string is a relatively straightforward step. The second reason is that
its construction is flexible and intuitive when using the DOM methods in

the DOM Query Generator.

3. DOM Utilities: A library of DOM related utilities is used to manipulate
DOM trees and XML strings. They provide functions to build, access and
modify DOM tree objects. Also, the processes of transforming DOM trees

into XML strings and vice versa are well supported.

4. DOM Query Generator: This component contains a number of methods
used by the modified JavaCC compiler to generate DOM nodes, where
these nodes make up the DOM tree corresponding to the client OLAP
query. The DOM tree is then tanslated to an XML string using a DOM

utility.

e Java Source file: This is written by the programmer where he defines a query
to extend the OlapQuery class. In the extended query class, the programmer
over-rides the “operation” method(s) needed to implement the OLAP query
and then instantiates and “executes” the query object. An example of a Client
Java program that implements a “select” operation is given in Listing 5.1 of

Section 5.2.
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e XML Query String: This contains the tags and values that were translated

from the OLAP query given by the programmer.

e NOX Pre-processor: This is the parser that is the product of the JavaCC
Java Compiler. It is executed to parse the Client Java Program using DOM
utilities. The NOX pre-processor traverses the parse tree to find the subtree that
corresponds to the OLAP query. While searching the subtree for components
of the query in a depth-first fashion, it builds the corresponding XML DOM
tree. Keywords in the subtree guide the search process. Methods of the DOM
Query Generator are used to produce the DOM tree. Then, the DOM tree is
validated using the OLAP query DTD and translated to XML string using a
DOM utility. The pre-processor locates the OLAP queries in the source code,
parses the OLAP operations methods and converts them into an XML string.
In addition, the NOX pre-processor will rewrite the programmers “execute”
method to send the XML to the server. Rewriting of the “execute” method is
done using JavaCC and JJTree actions. Hence, the Client Java Program and
the XML query string are both input to the NOX pre-processor and the output
will be the modified Client Java Source. Although the XML query string is
produced from the OLAP query given by the programmer, it is not part of the
client source file. The pre-processor with the help of DOM utilities produce
the XML query string from the client source file that will be included in the

over-writing “execute” method. All of this is transparent to the programmer.

88



e Modified Java Source: This is the program that is produced after parsing
and compiling the Client Java Program. This program will have the program-
mer’s rewritten “execute” method that establishes a connection to the OLAP
server and sends it the XML string corresponding to the OLAP query. This
updated client Java program needs to be recompiled. Again, this entire pro-
cess is transparent to the programmer. In fact, the programmer does not even
know that an updated Java program exists. Debugging in this case becomes a

problem and it is interesting to tackle this problem in future work.

e Standard Java Compiler: Obviously, this is the regular Java Compiler that

just needs to be invoked against the updated client Java program.

4.6.2 JJTree in the NOX Pre-processor

As described earlier, JavaCC is a parser generator for Java applications and JJTree
is a pre-processor to JavaCC that inserts parse tree building actions at various places
in the JavaCC source. JJTree can generate code to construct parse tree nodes for
each nonterminal in the language. In the NOX pre-processor, we have modified
this behavior so that some nonterminals do not have nodes generated, while other
nonterminals have nodes generated for parts of their productions’ expansion. Hence,
the parse tree is built so that nodes, needed in parsing the programmer’s OLAP query
and building the corresponding DOM tree and eventually the XML corresponding
string, are generated.

We use an example of a parse tree, shown in Figure 28, that is generated by
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JJTree in the NOX pre-processor to illustrate how parsing of the associated OLAP
query is done. In this figure, a node is denoted by an oval shape with the name of the
node written inside the shape. We added a new reserved word to the JavaCC/JJTree
parser in NOX, which is denoted by the token called “OlapQuery” that is preceded
by the word “extends”. This is done so that the parser locates each class that extends
“OlapQuery”. Then, it parses the class code that describes the OLAP query by
locating words (that gets transformed to nodes in the parse tree) to translate it to
XML.

When parsing the OLAP query code, NOX is actually parsing the subtree (of the
parse tree produced by NOX) corresponding to the query. Hence, while the client
Java program is being parsed using JavaCC and JJTree, each time the parser finds
an “OlapQuery” query, it generates a node called “ExtendsOlapQueryandBody” and
the subtree under this node will be the located subtree that will be parsed by NOX
parser to generate the XML query. Also, the first and the last token of the body
of the “ExtendsOlapQueryandBody” class body will be located by the NOX JJTree
methods so that the “execute” method will be rewritten to include the XML query
before sending it to the server. The method to do this using JJTree is given in
Listing 4.6. The method will not be valid from a Java point of view. JJTree has its

own syntax for writing code.
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Figure 28: Simple query parse tree.
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void ExtendsOlapQueryandBody (boolean islInterface):

{
boolean extendsMoreThanOne = false;
Token t;

}

{

"extends" <OLAPQUERY>
{ t = getToken(1); }
"{" ( ClassOrInterfaceBodyDeclaration (isInterface) )x
{ jjtThis.jjtSetFirstToken (t);
jjtThis . jjtSetLastToken (getToken (0));
}
II}H
}

Listing 4.6: Saving first and last tokens of a class that extends OlapQuery using
JJTree

Figure 28 shows the root of the parse tree generated by JJTree in the NOX pre-
processor along with some of the tree’s branches. This tree corresponds to the query
given in Lisitng 5.1 (will be presented in Chapter 5. The tree’s root node is named
“Compilation Unit”, which is the default name given by JJTree. The child of the
root node is an “ExtendsOlapQueryandBody” node, which is the root of the subtree
that contains the OLAP query. The parser generated by JavaCC and JJTree in NOX
recursively visits the nodes of the “ExtendsOlapQueryandBody” subtree, and when it
finds a method name ( saved as a token in a node of the tree), it checks its value if it
is one of the OLAP operators, such as select and project. Then, the parser has found

an OLAP query operation. This is an example of how NOX detects names that are
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used to build the OLAP operation’s XML query string. A middle step, which is an
implementation detail, is that the parser first generates a DOM tree, and then the
DOM tree is translated to XML.

Finally, we present two pieces of pseudocode to illustrate building the complete
process of a parse tree and preprocessing the input file. We note, however, that we
will not go through much implementation detail as it becomes somewhat tedious for
the reader. The first pseudocode is given in Listing 4.7 to show the steps of how to
build a parse tree. This pseudocode is implemented in NOX in JavaCC1.5.jjt using
JavaCC and JJTree. In JJTree, we can add additional tokens as part of the grammar.
We can also return a tree and set a root of a tree. Some nonterminal variables that we
do not need to have their nodes (in the parse tree) produced will have their producion

rules set to void.

1. Add a new reserved word ‘‘OLAPQUERY’’ as a token in the
grammar

2. Set ‘‘CompilationUnit’’ as the name of the root node of the
Abstract Syntax Tree

3. Set #void for some nonterminals that we do not need to
produce nodes in the parse tree

4. Mark queries that extend °‘OlapQuery’
node ‘‘ExtendsOlapQueryAndBody’’ and save the token of the

with a special name

query class name (as in Listing 4.5).

5. Set names to certain nonterminals in the parser and save the
tokens so they are manipulates while walking the parse tree
by doing the following:

{ jjtThis.jjtSetFirstToken (getToken (1))}
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{((SimpleNode)n).end = getToken(0); }

6. Return the root of the AST tree of the java input file by
embedding a Java action ‘‘return jjtThis’’ at the end of
‘“CompilationUnit’’ production of the JavaCC grammar.

7. Get the ‘‘CompilationUnit’’ root node of the parse tree and
walk the tree by calling the interpret () method as follows:
(parser.jjtree .rootNode().interpret () ;)

Listing 4.7: Pseudocode for constructing the parse tree in Javal.5.jjt (using JavaCC
and JJTree)

4.7 Conclusion

In this chapter, we presented mainly the client side libraries and parsing infrastructure
of NOX. We first described the Sidera System Architecture, a comprehensive archi-
tectural model for a fully parallelized OLAP NOX queries are sent, by the client, to
the Sidera system in XML format. Then, the Sidera system will process the data
and return its result to the client. We also presented the components of NOX both
at the primary physical and logical levels. The primary components are the NOX
conceptual model, its OLAP algebra and related grammar, client side libraries, pro-
gramming API, augmented compiler, and cube result set. The OLAP algebra in our
framework is similar to the YAM? algebra proposed by Romero. Finally, we illustrate
the usage of JJTree in the NOX pre-processor. Some pseudocode is given to describe

building the parse tree and preprocessing the input file.
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Chapter 5

NOX Application Programming

The NOX framework, as described in the preceding chapter, provides a clean and in-
tuitive development model for the (Java) programmer. In the prototype, we provide
object-oriented programming libraries of interface/abstract classes that the program-
mer uses to construct queries. Developers then are able to make use of object-oriented
concepts in building their queries. Simply put, they can think of the cube simply as
an object residing in memory. In fact, it is one of the primary advantages of this
framework that programmers can visualize an entire Terabyte size OLAP database
as a series of objects in local memory. We can do this easily in our design because
the server provides an OOP domain model, with the underlying code verification
translation steps completely transparent to the client side programmer.

In this chapter, we demonstrate the practical use of NOX through a number of
query examples. Section 5.1 uses UML notation to graphically illustrate the structure
of a basic OLAP query. Section 5.2 describes the select method and illustrates its

use through a small but typical SELECTION example, as well as a more sophisticated
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query. Section 5.3 depicts the project method and illustrates its use through a small
but typical PROJECTION example. In Se