
Automatic Program Verification and Test Case Generation of
Ruby Programs

Loren J. Segal

A thesis
in

The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Applied Science (Software

Engineering)
Concordia University

Montréal, Québec, Canada

September 2012
c© Loren J. Segal, 2012

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Loren J. Segal
Entitled: Automatic Program Verification and Test Case Generation of

Ruby Programs
and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Software Engineering)

complies with the regulations of this University and meets the accepted standards
with respect to originality and quality.

Signed by the final examining committee:

Chair
Dr. S. Bergler

Examiner
Dr. J. Paquet

Examiner
Dr. G. Butler

Co-supervisor
Dr. P. Grogono

Supervisor
Dr. P. Chalin

Approved
Chair of Department or Graduate Program Director

20
Dr. Robin A. L. Drew, Dean
Faculty of Engineering and Computer Science

Abstract
Automatic Program Verification and Test Case Generation of Ruby

Programs

Loren J. Segal

The Ruby programming language is typically not seen as a language that can be
formally verified. Our research attempts to bridge this gap by introducing novel
techniques to annotate Ruby programs with type specifications, contracts, and trans-
late them to statically verifiable components. We introduce a novel tool, RubyCorrect,
which uses these techniques to perform extended static checking (ESC) on Ruby pro-
grams, as well as to generate executable test cases through symbolic execution. These
analyses serve to improve code quality and development productivity. We aim to show
that Ruby programs can benefit from existing static verification tools and techniques
if they are simply made available to Ruby developers.

1

Chapter 1

Introduction

The Ruby programming language is known for its expressiveness, syntactic mal-
leability, and heavy use of dynamically typed code. As such a dynamic language,
writing tools to verify or otherwise audit Ruby programs is considered far more dif-
ficult than it is for a statically typed language such as Java, which, unlike Ruby,
has many verification tools available to it [Flanagan et al., 2002, Chalin et al., 2008,
Havelund and Pressburger, 2000, Huisman and Jacobs, 2000]. With the emergence of
Ruby on Rails [Ruby on Rails, 2010], the Ruby language has seen an unprecedented
increase in popularity and real world usage, becoming a part of the online presence
of many well-established companies such as IBM, Amazon, BBC, Cisco, NASA, and
more [Working With Rails, 2010]. As Ruby becomes used for larger and larger ap-
plications, the ability to verify a program written in this language becomes a vital
step in the development process, and there is a real need for such methodologies and
tools.

This thesis investigates the use of static verification and symbolic execution techniques
in order to improve the verifiability of Ruby programs. We introduce a novel toolchain
called RubyCorrect with the two tools, RubyEsc and RubyCaseGen to take advantage
of some of the benefits of these methodologies and enable the verification of Ruby
programs.

2

1.1 Problem Statement

Just like any other programming language, Ruby stands to benefit from automated
verification techniques such as static verification and symbolic execution. Both of
these techniques have been shown to detect many forms of program faults that pro-
grammers can miss. Sadly, these techniques do not currently translate well into
dynamically typed languages because programs written in these languages lack crit-
ical type information at compile time. Furthermore, there is little effort being made
to apply these techniques to such dynamic languages.

Rather than attack this problem head on, the Ruby community instead has promoted
Test Driven Development (TDD) in order to avoid such problematic code. However,
programming errors are not always caught by manual testing, and can therefore lead
to significant program faults. Unfortunately, few tools or methodologies besides TDD
and manual code reviews currently exist to catch such errors. The Ruby community
is therefore left with programming practices that cannot automatically guarantee
program validity to any degree.

1.2 Contributions

The methodologies and tools discussed in this thesis aim to introduce a few novel
contributions to the Ruby community, namely:

• A tool (RubyEsc) that introduces static verification techniques to the Ruby lan-
guage and a discussion of static verification methodologies for such dynamically
typed languages,

• A tool (RubyCaseGen) that allows a user to automatically generate test cases
for simple Ruby programs,

• The application of symbolic execution techniques to Ruby programs.

In addition to the above new contributions, we also study techniques for the transla-
tion and verification of Ruby programs. Specifically, we look at:

3

• The use of type annotations to provide static typing in Ruby
programs [Furr et al., 2009b, Segal, 2012],

• As well as a comparison of intermediate verification languages (Boogie and
Pilar) in order to easily translate Ruby programs into a verifiable form.

1.3 Scope

Ruby offers a vast amount of freedom to the programmer. As such, there are many
cases both common and uncommon, where it is not possible to perform analysis
on certain Ruby programs with existing techniques. With this in mind, we will be
limiting much of the analysis of Ruby programs to exclude the use of any runtime
modification of programs (dynamic evaluation or modification of program structure
via the eval() function, or other means), or at best, include these usages in very
simple scenarios.

We also only consider programs that have been annotated with extra type or be-
havioural information. Although there is much research in the field of type inference
for the Ruby language [Furr et al., 2009a, An et al., 2011]—and dynamic languages in
general [Anderson and Drossopoulou, 2006, Aycock, 2000, Salib, 2004]—we simplify
the process by specifying these types manually. We leave room for future research
to apply the work in type inference to our methodologies. Therefore, the techniques
and tools used in this thesis will not be applicable to existing programs without
modification, although in some cases the modification required is very minor.

The techniques discussed in this thesis build upon the techniques and tools used for
other languages. Specifically, we base much of our work upon the Pilar intermedi-
ate verification language (IVL) of the Sireum framework [Robby, 2007] used to verify
SPARK and Java code. Pilar and Sireum are discussed in Chapter 2. A brief back-
ground of all the existing verification techniques in this thesis are also discussed.

4

Chapter 2

Background

2.1 Static Verification

Static verification is the process of verifying a program without having to execute
it. Often in this approach, a program is encoded as a series of simple logical predi-
cates known as verification conditions (VCs). The process of encoding a program into
these VCs is known as VC generation, or VCGen. These VCs are then passed on to a
theorem prover (such as Yices, CVC3, Z3, or Isabelle) which determines whether the
compound statements are “consistent” or not. One such process of encoding a pro-
gram as logical statements and passing it off to a prover is known as Extended Static
Checking (ESC) [Leino, 1998]. Many tools exist for this type of verification, including
ESC/Java and Microsoft’s Boogie (which will be discussed in Section 2.8).

Static verification generally relies on the presence of specifications for given methods
as a means of expressing their intended behavior. This means that for any program
to be verified, it must have a “contract” that specifies its pre and/or post states.
Without a contract, a prover can establish consistency, but cannot prove correct-
ness. Contracts are themselves predicates which are passed to a prover, and are
not always trivial to write. The following Java code, annotated with JML (the Java
Modeling Language [Leavens et al., 1999, Leavens et al., 2006, Leavens et al., 2011]),
illustrates the specification of a cube() function:

5

// @requires n > 0;
// @ensures \result == n * n * n;
public int cube(int n) {

int x = n;
for (int i = 0; i < 3; i++) x *= n;
return x;

}

Figure 2.1.1: A Java/JML program specifying and implementing a cube function

From the complex implementation of the cube function, it may not be clear to see
that there is a defect in the loop. In fact, the cube function as written will compute
n4, not n3. Running this program through an ESC tool should show that this program
is incorrect, thanks to the ensures specification in the comments above.

However, even with tool support and well written specifications, ESC is not a per-
fect solution. One main drawback to this method is that although logical predi-
cates grow linearly with program size [Barnett and Leino, 2005], the execution time
of theorem provers does not, and it is very difficult to optimize them. Instead, the
common method of improving prover performance is to make use of large server clus-
ters and distribute the work over multiple machines in order to minimize the cost
[James et al., 2008], but this requires large amounts of hardware resources.

2.2 Symbolic Execution

Symbolic execution is a static verification technique that is seen as a generalized
form of concrete execution [King, 1976] and runtime verification. By using symbolic
execution, we can run a program in a controlled fashion, capturing its state at every
point during the program flow. As the name implies, a symbolic execution tool will
execute the program with symbolic (rather than concrete) values, allowing the tool
to specify or even deduce constraints that will cause the program to pass or fail
[King, 1976]. This makes it very effective for test case generation as will be detailed
in Chapter 7. We use Kiasan (discussed below) in order to provide symbolic execution
of our Ruby programs.

One benefit of symbolic execution over ESC is performance. The runtime performance

6

of a symbolic execution of a program can be close to its real execution. Symbolic ex-
ecution does have performance issues, and does suffer from state space explosion and
loop exhaustion, but recent work in the field has shown promising results and optimiza-
tions [Deng et al., 2007b]. In addition, symbolic execution can discover properties of
a program without the specifications that must be present for proper ESC; though
the presence of specifications can help to constrain and greatly optimize the work
done by a symbolic execution tool.

2.3 Contract Based Programming

In contract based programming, also known as design by contract, the developer
specifies a list of events or states that must occur both before and after a method is
executed. The specification could, for instance, require a range bound on an integer
value passed into a method, or specify that a method should return a specific value.
These two types of specifications are further classified as pre- and post-conditions,
each specifying the respective required inputs and ensured outputs. Such specifica-
tions are known as contracts because they are agreements between the developer and
the users of the code about the expected inputs and outputs of a method, as well as
any side-effects. The user is required to supply valid inputs, and the developer ensures
that the method will return the specified outputs. We therefore use this concept of
contract based programming to validate specified methods in RubyEsc as well as in
RubyCaseGen, to a lesser extent, in order to generate executable versions of these
specifications.

2.4 The Ruby Programming Language

Ruby is a multi-paradigm, general purpose, dynamically typed, programming lan-
guage with a focus on pure class based object orientation and functional program-
ming. Created by Yukhiro “Matz” Matsumoto in 1993, the language takes inspiration
from Lisp, Smalltalk, Perl, Eiffel and Ada [Ruby, 2010].

Ruby’s power comes from its clean, easy-to-read, syntax. Ruby allows code to be

7

formatted in many different ways. For instance, to create getters and setters for
“attributes” (otherwise known as properties or fields) in the language, a programmer
only needs to call one method, attr_accessor:

class MyClass
Creates methods ‘foo’/‘foo=’
attr_accessor :foo

end

Figure 2.4.1: Creating attributes in a
Ruby class

class MyClass
def foo; @foo end
def foo=(v) @foo = v end

end

Figure 2.4.2: Creating getters & setters
manually

This builtin functionality is not exposed through a keyword, even though it might
look like one, but a regular method call. Developers are therefore able to create
their own custom “keyword-like” method calls just like the standard library does in
order to create tiny domain specific languages within the Ruby syntax. Such power
also makes Ruby potentially unpredictable, because any method can be defined on
any class to perform similar metaprogramming tasks. The idiom is used commonly in
many frameworks and libraries, such as the following Ruby on Rails model (class) dec-
laration:

class Person < ActiveRecord::Base
acts_as_versioned
belongs_to :store
has_many :friends
property :name

end

Figure 2.4.3: Metaprogrammed class methods

All of the method calls in the example above are class methods defined by library
code. Their behaviour, although fairly understandable at the human level, can be
extremely complex, and can modify the class by creating an arbitrary number of
new methods, or even create new classes as needed. In order to manage this extra
complexity, documenting and verifying this behaviour becomes of greater importance.
Ironically, it is this extra complexity that makes it so hard to create tools that can
verify Ruby programs without the aid of extra meta-data.

8

2.5 YARD

YARD (Yay! A Ruby Documentation Tool) is a documentation tool for the Ruby
programming language. The project was initially created in 2007 as a replacement for
the then-standard RDoc documentation tool. YARD sets out to add meta-data tags
to the documentation syntax in the Ruby community; this syntax was popularized
by Java via the well known Javadoc tool [Kramer, 1999]. Lately, the @tag style
syntax has made its way to many other languages, seeing widespread use in Objective-
C, C, C++, Python, PHP, and Javascript codebases, with many tools to support
these documentation strings. Doxygen [van Heesch, 2011] is one of the better known
documentation tools that supports meta-data syntax, but unfortunately does not
have robust support for Ruby. Furthermore, Ruby has unique properties and syntax
that makes it hard for existing multi-language tools to support it fully. Since Ruby
can declare new classes or methods at runtime, the tool cannot guarantee that the
standard Ruby syntax will be used to create such classes or methods. Moreover, as
was just shown, such metaprogramming is very commonly used in real world Ruby
libraries and frameworks to create classes or methods in this fashion. Finally, Ruby
meta-data should allow for the extra specification of types, since it is a dynamically
typed language. This type information is crucial to the application of YARD to static
checking, runtime verification and test generation.

Reverses the contents of a String or IO object.
#
@param [String, #read] contents the contents to reverse
@return [String] the contents reversed lexically
def reverse(contents)

contents = contents.read if respond_to? :read
contents.reverse

end

Figure 2.5.1: Ruby documentation of a method containing YARD meta-data tags
with type information

The power of embedding meta-data declarations inside of documentation is extremely
apparent once it is used. Simply having the information specified in an easy-to-parse
manner makes it possible for tools to verify and validate the written documentation for
correctness. This is currently supported by tools such as Exstatic [Mount et al., 2004],

9

and is also one of YARD’s future goals. In addition to verifying the documentation
itself, meta-data can also be used to formally describe behavioural properties of the
program. There are many examples of formal specification being embedded into such
documentation strings, especially in the world of Java, through specification languages
such as JML [Leavens et al., 2006, Flanagan et al., 2002] (seen briefly above). Using
YARD, we can leverage the meta-data syntax to perform similar static and runtime
checking in Ruby.

This meta-data is especially important in a dynamic language such as Ruby. Lan-
guages such as JML focus on specifying contracts and omit type checking, because
they are implemented for a language with compiler-enforced type checking. Ruby has
no type specifications, which is often necessary for runtime checks and mandatory for
static checking, and therefore adding this information via YARD tags is an important
step in allowing for the verification of many Ruby programs. Adding such tags also
limits the complexity of metaprogrammed behaviour. As noted in the introduction,
we necessarily ignore code that is evaluated at runtime through eval(), however we
can occasionally “cheat” if YARD specifications are provided. If the overall behaviour
provided by the evaluated code is predictable, it is possible to specify this informa-
tion in a YARD meta-data tag, bypassing the complexity of Ruby’s runtime system.
Although this reduces the flexibility of the language syntax, developers can decide
when and where to specify this information in more detail, still leaving them some
flexibility to incrementally add meta-data to a program.

2.6 Mirah

Mirah is a statically typed variant of the Ruby programming language. It is a rela-
tively new language, originating in 2008 and originally developed by the maintainers
of JRuby (a Ruby interpreter that runs on the JVM). It is an open source project
licensed under the Apache 2.0 license. Its goal is to provide the expressive syntax of
Ruby with the performance of statically typed object oriented languages like Java.
The compiler is mostly a trans-compiler similar to languages like Scala and Fantom
[Odersky, 2007, Frank, 2005], translating Ruby into languages supported by the back-
end. Currently only Java is supported as a target language. Mirah is able to generate

10

both .java and .class files from Ruby-like programs. Mirah itself runs on top of
JRuby. Because of Mirah’s syntactic similarity to Ruby, it is used as a bridge language
to convert dynamically typed Ruby (with annotations) into statically typed Java pro-
grams which can be verified using existing tools like Sireum framework, discussed in
the next section.

Although Mirah retains most of the Ruby syntax, it makes a few adjustments to the
core grammar in order to allow for the type declarations needed to generate statically
typed programs. These type declarations are only needed for method arguments and
the method return type, as Mirah comes with an inference engine that automatically
deduces the type of local variables. Another important difference between Mirah and
Ruby is that Mirah does not implement Ruby’s standard library. Instead, developers
are expected to use the standard libraries and native data structures of the target
language, though abstractions are being worked on to allow for backend portability
between Mirah programs.

2.7 The Sireum Framework

The Sireum framework is a collection of tools developed by the KSU SAnToS team
that aids in program verification, from source translation to lower level logic prover
and model checking tasks [Robby, 2007]. The system uses a pipes and filters archi-
tecture to call on various components in the framework, depending on what kind of
verification the end-user needs. Sireum itself is used mainly to perform model check-
ing and symbolic execution, though its functionality is slowly growing towards ESC
through the addition of extra components in the pipeline. Although there are many
components in the Sireum architecture, this section discusses the two relevant com-
ponents, Pilar and Kiasan, that are used by the RubyCaseGen tool (later discussed
in Chapter 7).

11

Figure 2.7.1: Kiasan component architecture pipeline within the Sireum framework

2.7.1 Pilar

Pilar is an intermediate verification language used by Sireum to describe source pro-
grams in a consistent syntax (and internal structure) across all components in the
pipeline. By using Pilar across the framework, any specific component can be easily
re-used for other source languages and purposes. We describe the feature set of the
Pilar language in much greater detail in Chapter 4, as well as compare its features
with alternate IVLs (mainly, Microsoft’s Boogie).

2.7.2 Kiasan

Kiasan is the symbolic execution component for the Sireum framework. Pilar is fed
into Kiasan and executed symbolically in order to generate the various states for each
path executed in a program. These states are then exported as XML and can be
analyzed in order to generate test cases. The full pipeline is seen in Figure 2.7.1.
Kiasan has separate profiles to support execution in particular environments (vir-
tual machines). Currently, there are profiles to support the execution inside Java
[Deng et al., 2006, Deng et al., 2012] and Spark/Ada [Belt et al., 2011]. Because of
the complexity required to adapt a profile to Ruby, and because of the similarities
between the JVM and Ruby’s object model, we opted to re-use the JVM profile.

12

This, however, requires us to translate Ruby source into JVM bytecode. Fortunately,
as discussed in Section 2.6, there already exist a few tools that can perform this
translation in a number of ways.

2.8 Boogie

Boogie is a tool and intermediate verification language created by the RiSE team at
Microsoft in order to implement extended static checking, primarily for their .NET
family of languages (C# specifically), though it also exists as a backend for tools that
verify the C language (HAVOC, VCC) [Microsoft Research, 2012, Cohen et al., 2009].
The tool accepts programs translated into its IVL (also named Boogie) and performs
verification condition generation (VCGen) on that given input. Boogie uses Z3, a
theorem prover (also developed by Microsoft), to handle the verification conditions
and report the satisfiability of the given theorems. Boogie has an extensive syntax
and is detailed in Chapter 4.

13

Chapter 3

The State of Verification and
Testing in Dynamic Languages

Next generation high level languages are becoming more and more synonymous with
dynamic (and/or dynamically typed) languages through their implicit introspective
runtime functionality. Due to this shift of pushing functionality away from compi-
lation to runtime interpreters, less is known about these programs at compile-time,
which leads to more problems that can go unchecked prior to execution of the pro-
gram. This means that:

• it is inherently more difficult to perform static analysis on this class of languages,
and,

• runtime (unit) testing gains a more prevalent role in the verification process of
these programs.

While research in verifying programs in these languages is attempting to catch up
with the level set by research in verifying statically typed languages such as Java,
the practice of runtime testing is becoming a dominant part of development processes
that make use of dynamic languages. In this chapter, we identify ongoing research
in program verification, and analyze data from surveys conducted on testing in these
dynamic (and dynamically typed) languages.

14

3.1 Dynamic Versus Dynamically Typed

It should be clearly stated that this thesis is meant to discuss both dynamic and dy-
namically typed languages. We define dynamic as the ability of the language to mutate
its own program structure at runtime (e.g., add or modify classes, data structures,
typing rules, and functions). We define dynamically typed as a language that only
performs type checking at runtime, if ever. Most dynamic languages used today are
also dynamically typed, although not all dynamically typed languages are dynamic. In
this thesis, we consider (mainly) the languages Python, Ruby, Scheme and JavaScript,
all of which are both dynamic and dynamically typed.

Unless otherwise noted, when we say dynamic in this thesis, we refer to languages
that are both dynamic and dynamically typed.

3.2 The Infeasibility Assumption

Although many papers mention the infeasibility or difficulty of formal static analysis
in dynamic languages [Holkner and Harland, 2009, Furr et al., 2009a], few of them
actually attempt such static verification or analysis in these languages. It is generally
taken as the “infeasibility assumption” that these languages are poorly suited for such
formal verification. Although this assumption is more than likely accurate to some
degree, we summarize below research that specifically tackles the problem of verifying
the correctness of programs written in various dynamically typed languages.

There is much existing research that is focused on type inference, such as Christopher
Anderson’s work on inference in JavaScript [Anderson and Drossopoulou, 2006], Ay-
cock’s and Salib’s work in Python [Aycock, 2000, Salib, 2004], Furr et. al’s work in
Ruby [Furr et al., 2009b], or most significantly, the soft typing paper by Cartwright
and Fagan [Cartwright and Fagan, 2004]. Although these works are not technically
classified under verification, all of these researchers believe that inference is a means
to static program analysis, since type information is crucial to most verification pro-
cesses. More importantly, however, these researchers all agree (with Cartwright and
Fagan being the most explicit about this ideal through their soft typing proposal) that

15

programs need not lose their expressiveness in order to gain the optimizations and
verifiability of statically typed languages. With this mindset, they believe that verifi-
cation will not be achievable until a proper type system is devised that is compatible
with the existing syntax and semantics of dynamically typed languages.

Due to this focus on “solving the type system first”, we have observed a lack of re-
search in the field of dynamic language verification. We believe that if there were
less emphasis on maintaining the expressiveness of the dynamic languages in ques-
tion, there would be more advancements in this field. It should be noted however,
that of the researchers named above, Cartwright was the only one who managed to
move beyond his work in soft typing and actually apply it to program verification
[Cartwright and Felleisen, 1996].

3.3 Classifying Dynamic Languages

Much of the problems with type inference in dynamic languages stem around the fact
that in addition to being dynamically typed, these languages can also change their
entire structure, including their typing rules, at runtime. This means that even if type
inference worked perfectly at compile time, it is still not enough to say these programs
can be verified unless all of their runtime states were also known at compile time. This
argument remains a huge problem for proponents of type inference in these languages,
as well as those who are interested in using this research for verification.

More recent pragmatic research, however, has shown that there may actually be a
class of dynamic programs that can be verified fully (both static and runtime states),
even though they are written in dynamic languages. As John Aycock argues in his
paper Aggressive Type Inference [Aycock, 2000], “giving people a dynamically-typed
language does not mean that they write dynamically-typed programs” (the same ar-
gument would be made for dynamic programs). Indeed, research published in the last
few years studying the “dynamism” such dynamic languages have shown that although
the vast majority of dynamic programs make modifications to their structure at run-
time, a much smaller number of these programs actually perform any modification af-
ter the program is initially loaded in memory. Surveys using data from real programs

16

in both Python [Holkner and Harland, 2009] and JavaScript [Richards et al., 2010]
have echoed similar results. Although these findings are preliminary, the data hints
that there may effectively be a more practical classification of programs using these
dynamic languages into those that are dynamic after load time, and those that are
not. The existence of such a classification is further validated by the fact that there
has been some recent successful compiler optimization work for dynamic programming
languages that takes advantage of this type of program behaviour, specifically for the
JavaScript programming language [Gal et al., 2009]. In any case, such a distinction
would allow researchers to focus on the latter as being effectively as verifiable as a
program written in a static language. We believe that it would therefore be helpful
to see more data in the same vein, for other dynamic programming languages.

3.4 Verification in Dynamic Languages

Although we pointed out that much research is focused on type systems in these
dynamic languages, there are a few significant findings directly related to verifica-
tion. Most of this work is able to skirt the type system by performing verification
that is less dependent on type information such as data flow analysis and symbolic
execution.

There are quite a few data flow analysis techniques and tools proposed for dynamic
languages, specifically with their prolific usage in emerging web applications. Being
able to verify these programs prior to deployment is becoming a valid security concern,
and has plenty of practical application. PHP, for instance, is a dynamic language
that has become the target of a few research papers attempting to perform static
detection of code that may be vulnerable to common security vulnerabilities such as
SQL injection and cross site scripting [Huang et al., 2004, Xie and Aiken, 2006]. It
is important to note that both of these researchers relied on annotations to fill in the
gaps in the verification, rather than strictly relying on type inference methodologies.
As a result of this pragmatic decision, they have achieved more complete verification
in their research.

JavaScript, in general, is also becoming the focus of much work in verification, as it is

17

a dynamic language that has been adopted by almost every web presence due to its
prevalent browser support—through the ECMAScript standard [ECMA, 2009]. This
popularity has put it in focus for much research, allowing for the application of many
verification techniques to this language. Kudzu, a recently developed symbolic exe-
cution framework targeted for JavaScript [Saxena et al., 2010], is one of the products
of this research. Another focus is on “DHTML” (Dynamic HTML), which is the use
of JavaScript to generate or manipulate HTML pages in a web browser, which has
been the focus of at least one study [Tateishi et al., 2006].

We have found, however, that there is not much research being done in other dynamic
languages though we believe that it would be interesting to see such research applied
to such languages in order to develop better tools and integration with IDEs, as
proposed by [Dolby, 2005].

3.5 Testing in Dynamic Languages

Testing is seen as an important process for programs written in dynamic languages
[Marvie, 2008]. This would not be apparent if looking at academic research alone, as
there is nearly no research in testing methodologies dedicated to dynamic languages.
This can be attributed to a few factors, namely:

• Testing a dynamic program is conceptually the same as testing a static one.

• Testing is usually performed at runtime in the target environment, which poses
no problem for dynamic languages, since their state is known and testable at
runtime.

We have, however, identified a practical survey on the subject of the use of testing
programs written in dynamic languages. The work of [Saeed, 2008] specifically ad-
dresses the differences between testing in static and dynamic languages according to
respondents in industry. Their data reflects the factors we identified above, conclud-
ing, “there is no difference found in [validation] methodologies for dynamic and static
languages. The only difference is that dynamic languages emphasize more on testing
and debugging as compared to static languages”. Therefore, except for the degree

18

to which it is emphasized in practice, research in testing is the same for static and
dynamic languages alike.

19

Chapter 4

Comparison of Intermediate
Verification Languages: Boogie and
Pilar1

4.1 Motivation

In this chapter we compare two intermediate verification languages, Boogie and Pilar,
in order to determine which language and associated tools are best suited to support
the implementation of RubyCorrect. We look at the following criteria to make our
decision on which IVL to use:

• the degree of similarity between Ruby and the supported features of each IVL,

• how easy it would be to perform automatic source translation to a given IVL,

• the tooling support (performance, ease of use, maturity) surrounding each IVL.

Section 4.6 contains a discussion of our findings and our selected IVL based on these
criteria.

1Portions of this chapter were accepted for publication and presented at the 4th International
Conference on Verified Software: Theories, Tools, and Experiments [Segal and Chalin, 2012].

20

4.2 Comparison of Language Features

4.2.1 Basic Assertion Language

Both Boogie and Pilar have similar assertion languages that can be used to encode
verification conditions and be sent to various theorem provers to verify program in-
put. The basic assertion language used in both IVLs can be defined by the simple
commands assert(expr) and assume(expr). These commands assert the validity of
an expression or assume the validity of an expression respectively. The expressions
themselves must be boolean expressions comprising of variables, literals, arithmetic,
or equality operators. Boogie also specifically allows two logical quantifiers, forall and
exists, though Pilar allows function calls and function types as expression values,
which Boogie does not.

In addition to these two basic commands, Boogie adds an extra command to this basic
set known as havoc, which acts similarly to assume, encoding that some variable is
assumed to now contain some unknown value.

4.2.2 Basic Control Flow

Boogie and Pilar are both, at their core, block based languages. They support con-
trol flow and branching through this fundamental concept of blocks. This allows
them to model the control flow graph of source languages quite closely. It should
be noted that BoogiePL (the original version of Boogie) was purely block based and
had no abstraction for procedures, which illustrates the fundamental nature of this
construct.

4.2.2.1 Location and Blocks

In Boogie, a block refers to a sequence of statements to be executed in order. Every
procedure has at least one block, though if a block is not specified at the start of a
procedure, Boogie will create an anonymous implicit block. The Boogie procedure
in Figure 4.2.1(a) shows two blocks, one implicit, and one explicit. The first two

21

procedure run() {
var x: int, y: int;
x := x + 1; // #1
y := x + y; // #2

subtractX:
x := x - y; // #3

}

(a) Locations in Boogie

procedure run() {
local Integer x, Integer y;
x := x + 1; // #1

y := x + y; // #2
#subtractX.

x := x - y; // #3
}

(b) Locations in Pilar

Figure 4.2.1: Locations in Boogie and Pilar

statements are part of the implicit block that Boogie adds to the start of the procedure
and the last statement is part of the subtractX block. If no goto statement is provided
for a jump, Boogie will automatically jump to the next block in sequence. Therefore,
the statements 1, 2 and 3 will be executed in order.

Pilar has the same basic concept of blocks, but they are called “locations”. The
equivalent of the Boogie example is shown in Figure 4.2.1(b). Pilar requires the
explicit declaration of the first location, though it does not need to be named. Finally,
as shown, Pilar and Boogie will both implicitly jump to the next block (or location)
in the source, if an explicit jump is not provided.

In addition to standard block sequences, Pilar also supports non-deterministic choice
through a “choice operator” (explained further in the next subsection), similar to
Dijkstra’s guarded commands [Dijkstra, 1975], which potentially allows for parallel
execution of statements. Although this feature is not discussed, it can be useful for the
modeling of concurrent systems, or where there is non-deterministic behaviour. It is
unclear how Boogie would be able to model similar concurrent (or non-deterministic)
systems.

4.2.2.2 Branching and Looping

Both Boogie and Pilar can deal with control flow in terms of unstructured goto or
return statements, which can be placed in any location or block. Boogie, however,
has many convenience syntaxes for elements such as if statements and loops, and does

22

var x: int, r: int;
x := 0; r := 0;
while (x < 10) {

if (x < 5) { r := r + 1; }
else { r := r + 2; }
x := x + 1;

}

(a) Boogie

local Integer x, Integer r;
x := 0; r := 0;
#loop. :: (x < 10)

+> goto if;
| else goto endloop;

#if. :: (x < 5)
+> r := r + 1; goto endif;
| else r := r + 2; goto endif;

#endif
x := x + 1; goto loop;

#endloop

(b) Pilar

Figure 4.2.3: while and if statements in Boogie and Pilar

not require goto statements or blocks for these. To exemplify the syntax for both
languages, consider a Java for-loop with an if statement inside of it:

int x, r = 0;
for (x = 0; x < 10; x++) {

if (x < 5) r = r + 1;
else r = r + 2;

}

Figure 4.2.2: Basic branching and looping syntax in Java

Figure 4.2.3 presents one possible encoding of such a loop into Boogie and Pilar
respectively. Boogie resembles the high level Java syntax much more closely and is
therefore much more convenient to encode to. Specifically, a translator would not
need to keep track of (or even consider) location names as is the case for the Pilar
equivalent code. Since most popular languages use structured looping and branching
constructs such as if/else and for/while, this significantly simplifies translations.

4.2.3 Annotations

Pilar relies heavily on its @AnnotationName arguments... annotation syntax to en-
code source language-specific constructs. Annotations can be attached to any Pilar
node, from method declarations to variable references. As we will see, contracts are
specified through annotations by attaching them to method declarations. In this

23

sense, annotations are a very important part of the language syntax. Even types can
be encoded using annotations:

procedure inc(x @Type Integer) { # x := x + 1 }

However, it seems as though abuse of this annotation syntax can end up delegating
too much of a source language’s features to individual back-end tools, leading to too
much complexity in the back-end tooling. For instance, encoding types as annotations
entirely bypasses the inheritance and sub-typing semantics that one would get “for
free” by using the record keyword to declare a type. It would therefore rarely be
recommended to encode types in this manner in Pilar.

Boogie also allows for annotations (though they are called tool directives) in the form
(where Ref is a reference type):

var { :NonNull } x: Ref;

Such a variable x would be marked as NonNull. The equivalent Pilar would be
MyClass x @NonNull. Neither of these formats have any semantic meaning in the
default language. Tools would have to look for these annotations and encode the
semantic meaning themselves, either via another source transformation or a compu-
tation.

It is important to note that although Boogie has annotations, they can not be used
everywhere, i.e., on assignments, variable references, or control flow syntaxes. This
can affect tooling if the tool wishes to use annotations to keep track of source code
position information to and from the source and destination languages.

4.2.4 Specification of Contracts

4.2.4.1 Specifying Pre and Post Conditions

Boogie has a special construct for specifying pre and post conditions of a procedure.
An example is shown in Figure 4.2.4: multiple requires or ensures clauses are
allowed, and the old operator refers to the state of a specific variable in the pre-state

24

procedure inc(x:int)
returns (r:int)
requires x >= 0;
requires x < 100;
ensures old(x) + 1 == r;

{ r := x + 1; }

(a) Boogie

procedure inc(Integer x)
@pre(x >= 0) @pre(x < 100)
@post(old(x) + 1 == x) {

x := x + 1;
return x;

}

(b) Pilar

Figure 4.2.4: Pre and post conditions in Boogie and Pilar

(before the procedure run).

Pilar has no set syntax for declaring such clauses. In Pilar, one would use annotations
to encode pre- and post-conditions and rely on tools to process this information.
For instance, if VC generation is performed, it would be the tool’s responsibility to
check for properly named annotations. Although this allows for more flexibility, it
also requires more discipline to ensure that the tools used to translate the source
to Pilar are compatible with the tools used to process the generated Pilar code. It
would also be the source translation tool’s responsibility to insert contracts using the
correctly named annotations (as expected by the rest of the tools in the workflow).
Therefore, one possible Pilar equivalent of the Boogie example is shown beside it in
Figure 4.2.4.

4.2.4.2 Specifying Loop Invariants

Loop invariants in Boogie are specified with the invariant keyword attached to
looping constructs. Again, Pilar uses annotations to define these invariants. An
example of a loop invariant in Boogie and Pilar is shown in Figure 4.2.5.

while (x<10) invariant y==0; { }

(a) Boogie
(x<10) @invariant(y==0) +> ...

(b) Pilar

Figure 4.2.5: Loop invariants in Boogie and Pilar

25

4.2.5 Modeling Data Structures and Object Oriented Type
Systems

One of the most basic features an IVL should support is the encoding of language spe-
cific data structures. Both Pilar and Boogie have relatively different syntactic meth-
ods of encoding data structures, though their semantics are roughly the same.

Pilar has a syntactic record element which is similar, in a sense, to C’s struct, and
is the singular method of encoding any data structure in the language. A record, like
a Java class, can inherit from another and it can also be declared abstract. Boogie,
on the other hand, has no construct to represent classes or data structures. One must
use the type keyword along with var declarations to model a structure by defining
symbols in a flat namespace which represent the fields.

The flat namespace that Boogie uses is an important difference in the way heap-based
structures are modeled between the two languages. Specifically, Boogie gives the user
full control over defining how to model “memory allocation”, and has no concept of
object instantiation. In fact, a considerable amount of detail can be found in the
Boogie manual [Leino, 2008] about the ways in which the heap can be encoded. On
the other hand, Pilar handles allocations through a new keyword. Although Boogie’s
methodology allows for much more flexibility, it is not exactly clear which languages
require this much control over heap modeling. The cost of this flexibility is complexity
in modeling object-based systems. For example, Figure 4.2.6 models the field arrSize

from class Stack. However, to do this in a flat namespace, the field must be translated
into a variable map of references to values, where references are the instances of the
Stack class, and values are of the type defined for arrSize. To reference the field
data under this scheme, we write Stack.arrSize[o] where o is of type Ref. We must
also have introduced this reference type Ref, whereas the Pilar code does not require
defining a reference pointer type.

var Stack.arrSize: [Ref]int;

Figure 4.2.6: A class field member modeled in Boogie

Boogie does not impose any typing rules. They may or may not be specified prior

26

to static analysis. Again, this makes Boogie more flexible for languages with non-
traditional type systems, while Pilar tends to be optimized for OO-based languages.
In order to model type relationships of the source language in Boogie, we would require
the use of axioms (discussed in Section 4.3.2.2) and an extra supertype declaration
as follows:

const Object
axiom Stack <: Object;

Figure 4.2.7: Modeling class inheritance in Boogie

The code above declares the class Stack to be a subclass of Object. The same semantics
is implicitly defined in our Pilar example, since a record will automatically extend
Object (if no explicit superclass is defined). The inheritance syntax of Pilar is like
that of Java:

record ColorPoint extends Point { }

Figure 4.2.8: Modeling class inheritance in Pilar

However, unlike Java, Pilar supports multiple inheritance. Note that Boogie can
emulate multiple inheritance by modeling the relationships through independent ax-
ioms.

4.2.5.1 Generics Support

Boogie and Pilar both support generics (or “parameterized types”) on type declara-
tions. Below is a comparison of how Java generics could be encoded into each IVL. It’s
important to note, however, that although both languages can encode a generic type,
only Boogie performs compile-time type checking on the translated source. That is,
only Boogie will raise an error when performing an illegal action such as assigning a
value to a variable with the wrong parameterized type, as we see in Figure 4.2.9.

In Pilar, type enforcement is only handled by the specific profile and tooling used;
therefore, variable assignments are not guaranteed to be type-safe when passed to the
tool.

27

type R t;
var R.data: <a>[R a]a;

procedure m(this: R int)
modifies R.data; {

R.data[this] := true;
}

(a) Boogie

record R<‘a> { ‘a data; }

procedure m(this: R<Integer>) {
this.data := true; // compiles

}

(b) Pilar

Figure 4.2.9: Generics in Boogie and Pilar

In addition to this limitation, Pilar cannot encode complex sub-typing relationships
in parameterized types. For instance, the Java syntax class A<? extends String>

cannot be translated into Pilar’s generics syntax. On the other hand, Boogie’s type
system is flexible enough to specify this kind of a sub-typing relationship.

4.2.5.2 Defining Interfaces

Although neither language has explicit support for interfaces, they can be emulated
in both languages. Again we see in Figure 4.2.10 that the Pilar version is much more
similar to that of a standard OO language syntax such as Java, except we extend
the base class rather than implement the interface. Note that we are only specifying
type relationships here— neither of these declarations add any behaviour that affects
method dispatch logic. Such behaviour must be added by the source translation tool,
or, in the case of Pilar, optionally through a profile.

const IFactory: Type <: Object;
const MyFact: Type <: IFactory;

(a) Boogie

abstract record IFactory { }
record MyFact extends IFactory { }

(b) Pilar

Figure 4.2.10: Interfaces in Boogie and Pilar

28

4.3 Unique Language Features

Although some of the features below are discussed in a comparative context in this
thesis, the following is a brief list of some of the features or goals that are uniquely
targeted by each IVL.

4.3.1 Pilar

4.3.1.1 Profiles

Sireum/Pilar introduces an abstracted mechanism for defining the Pilar semantics
for a given language. These semantics are encoded in what is called a profile. Each
profile is specific to a source language and defines behaviours such as method lookup
semantics and type checking rules (if any). Note that these behaviours are only
applied by other tools in the Sireum framework; external tools would not utilize these
profiles. In other words, profiles are tools written specifically for use within Sireum.
They are a user-customizable, though Pilar ships with default profiles for Java and
Spark. We do not discuss the details of writing a custom profile, as we have no
experience with this. Eventually, however, this would be necessary for proper native
Ruby support inside of Sireum/Kiasan.

4.3.1.2 Pluggable Type System

Pilar does not define any default semantics for type declaration or the use of variables
with certain types. Because of this, it is possible to declare variables without any
type at all, and therefore express the type systems of many different untyped lan-
guages through Pilar’s syntax. In addition, by using annotations, Pilar’s type system
can be expanded to define non-standard type systems. For instance, the annotation
@NonNull could be used to denote a non-nullable type. It is through the use of custom
tooling (or profiles, in the case of Pilar) that these annotations and type declarations
can take on meaning.

In many cases introducing types into an IVL is unnecessary, since this information

29

type Any, Ref, Type;
const unique Object: Type;
const unique LinkedNode: Type;
var LinkedNode.data: [Ref]Any;
var LinkedNode.next: [Ref]Ref;
axiom LinkedNode <: Object;

(a) Boogie

record Stack {
data; // untyped field
LinkedNode next;

}

(b) Pilar

Figure 4.3.1: Defining a data structure in Boogie and Pilar

is often already checked in the compiler of the source language. This is the reason
that Pilar’s type system is pluggable. It’s useful to note that BoogiePL (the previous
version of Boogie) had less of a focus on a type system (and had been more or less
“untyped”), but has since moved toward a much more complete and strict type system
(that does not easily allow for “untyped” declarations).

4.3.1.3 Untyped & Dynamic Type System Support

Pilar has support for untyped and dynamically typed languages because of its plug-
gable type system (discussed in Section 4.3.1.2). As we saw in Section 4.2.5, a data
structure can be defined using the record keyword and a list of members. These
members can have a type specified, or none at all. Boogie, on the other hand, does
not support this form of “untyped” data members, and enforces that all members
have a type.

Figure 4.3.1 shows the difference between representing a simple data structure (class)
in both languages. There are two main observations to be made from this example.
Firstly, the Boogie variant looks slightly more verbose than the Pilar source. This is
because Boogie does not immediately impose any restrictions on type definitions. In
fact, the definition is actually incomplete, since it does not bound the next field to
a LinkedNode type. This type of checking would only be enforced if explicit checks
(in the form of axioms) were added to the Boogie source, adding much more required
specification in order to model the same data. Pilar could perform this type checking
transparently through the tooling (if enabled). Secondly, we can see that Pilar makes
it easier to denote a completely untyped field. The Boogie source defines type Any,

30

procedure add(x, y) { # return x + y; }
procedure sub(x, y) { # return x - y; }

procedure applyToOneAndTwo(f) {
local result;
call result := f(1, 2);
return result;

}

procedure test() {
local x, y;
call x := applyToOneAndTwo(add);
call y := applyToOneAndTwo(sub);
...

}

Figure 4.3.2: A first-class function/procedure object in Pilar

but it is incomplete, since it does not handle primitive types. Again, an axiom would
be required to define this semantic in the language2.

In addition to support for untyped data structures, Pilar also supports untyped pro-
cedure arguments, variables, as well as untyped functions. Pilar can call procedures
with unknown arguments, effectively allowing for a dynamically typed programming
style. An example of this style is shown in the next section.

4.3.1.4 Functional Programming

Pilar can easily translate semantics of languages with first-class functions and proce-
dures because it too has this capability; i.e., functions and procedures are first class
citizens. In practice, this means that Pilar can assign procedure objects to variables,
as well as pass them as arguments to other procedure calls—e.g., see Figure 4.3.2.
Note that although the example does not list the type of f, the declaration for a
function object would actually look like:
2We attempted to test the output of Spec# using the dynamic keyword in order to emulate how
Boogie would behave for untyped fields, but this keyword seemed to be unsupported by the
compiler. It is therefore unclear how this translation would be done by Boogie, or if it can be
done at all.

31

(Integer v1 * Integer v2 -> Integer) f;

Functions in Pilar can also be defined in a short-hand form. For example, the following
creates a function and assigns it to c, which can then be called as c("x") or c("y")

(returning 5 or 6 respectively):

c := ^{ "x" -> 5, "y" -> 6 };

Finally, Pilar can accept lambda functions for an even more inline form of the
above:

procedure Add1(Integer n) {
local result;
call result := (Integer x => x + 1)(n);
return result;

}

Boogie does not support this form of first-class functions or lambdas, and therefore
cannot (as easily) model this type of behaviour. In Boogie, procedures can only be
declared in global space and their names can only be referenced as the first argument
of a call statement. Similarly, function statements can also only be declared in the
toplevel scope and cannot be passed as arguments, assigned to variables, or returned
from functions (as they are not objects). As an extra restriction, the body of a Boogie
function must be a single expression.

4.3.1.5 Method Overloading and Multiple Dispatch

Pilar’s built-in profiles for Java and Sparkhave semantics to perform multiple dis-
patch to overloaded methods by selecting the most appropriate method based on
the type information in the given methods signatures. For instance, it can correctly
dispatch a method call equals(x, y) to the correct method given the definitions in
Figure 4.3.3.

32

procedure equals(Integer x, Integer y) {
return x == y;

}
procedure equals(Meter x, CentiMeter y) {

return x * 100 == y;
}

Figure 4.3.3: Method overloading and multiple dispatch in Pilar

Note that Pilar will use sub-typing relations to find the most specific type match.
This means that it can only support multiple dispatch on types defined explicitly via
the record syntax, and not types defined through annotations.

In contrast, Boogie has no support for method overloading and therefore has no se-
mantics to do this kind of dispatch. In Boogie, overloading must be handled by
performing name mangling on method names (since method names are unique sym-
bols) and encoding an appropriate means to do the dispatch directly in a Boogie
program. This would yield extra overhead in performing translation on languages
that have overloading, where method names are not necessarily unique.

4.3.1.6 Exception Handling

Pilar allows for explicit exception handling through the catch keyword, which allows
control to jump to any location when an exception is thrown anywhere inside the
procedure. For instance:

procedure error() {
local x, y, o;
#start. x := 10 / 0;
#mid. y := 10 / 0;
#end. return 0;
#exception. return -1;
catch ArithmeticException o

from start to end goto exception;
}

Figure 4.3.4: Native exception handling support in Pilar

The Pilar code in Figure 4.3.4 will catch any division errors raised between the start

and end locations only (and therefore only catch the assignment on x) and jump

33

to the exception location. This exception handling construct is designed to closely
mimic the semantics of the Java Virtual Machine (JVM)’s own exception handling
behaviour.

Boogie does not have such a construct, but exception handling can be modeled by
creating an extra out-variable and checking the state of this variable at each function
call. Figure 4.3.5 depicts how exception handling might be done in Boogie. This
methodology is used to emulate exceptions in RubyEsc’s translation of Ruby to Boogie
and is discussed in Section 6.4.2.6. A similar approach is also used to model exceptions
in the Eiffel programming language [Tschannen et al., 2011].

// setting ‘e’ to nonzero value will raise an exception
procedure externalFunction() returns (r: int; e: int) { e := 1; }
procedure error() {

var result: int; var exc: int;
call result, exc := externalFunction();
if (exc != 0) { goto exceptionBlock; }
return;

exceptionBlock:
// perform some exception handling

}

Figure 4.3.5: Emulating exception handling in Boogie

4.3.2 Boogie

4.3.2.1 Defining Mathematical Operators

Boogie has the ability to customize the definition of logical constructs from inside the
language. Specifically, it is possible to redefine the meaning of mathematical opera-
tors such as +, −, ∗, /, and % to implement the properties of the source language.
For instance, in Java, primitive types have bit-specific precision and are subject to
properties such as overflow, underflow, and, for floats, decimal precision.

In Boogie, these properties can be mapped with axioms (seen in Section 4.3.2.2). For
example, the Boogie 2 manual defines the semantics of division and modulo of an
integer type in Java as follows:

34

axiom (∀ x:int, y:int • {x%y}{x/y} x%y = x − x/y ∗ y);
axiom (∀ x:int, y:int • {x%y}
(0 < y ⇒ 0 ≤ x%y ∧ x%y < y)∧ (y < 0 ⇒ y < x%y ∧ x%y ≤ 0));

Pilar on the other hand has no syntactic mechanism to give meaning to such operators.
The semantics for Pilar operators are only defined by the tools that read in Pilar
input. Therefore, while these operators can also be redefined in Pilar, it is more
difficult because it requires access to the tools that process the Pilar input instead of
just the Pilar input itself.

4.3.2.2 Axioms and Mathematical Quantifiers

Boogie allows the user to define certain expressions that should remain true through-
out the execution of a program via the axiom keyword. These axioms can be defined
either when translating a source file or manually entering proofs, and can use mathe-
matical and logical quantifiers such as exists and forall to specify certain properties
manually.

For example, as shown below, an axiom can be written to specify that there will
always exist some x and y integers that sum to the value 22. Note that the ∃ symbol
is equivalent to using the exists keyword, similarly for ∀ and forall.

axiom ∃x:int, y:int • x + y = 22;

Although it is theoretically possible to encode these statements as procedures (as Pilar
source would have to do), there are often times when this syntax is more convenient
for certain proofs and closer to the source language than the procedural syntaxes. By
defining certain properties (such as integer overflow), these axioms can form the basis
for creating a profile for a specific source language.

Axioms can also be used to specify properties of the source language itself, such
as encoding type inheritance rules (in an OO language) or the definition of certain
mathematical operators. Both of these features will be looked at later.

35

4.3.2.3 Comprehensive Type System

Boogie’s type system allows for the specification of type aliases, map types, and
parametrized types. Most importantly, all of these type declarations are checked
within Boogie, that is, it is not legal to make assignments from one type to another.
This is often useful to encode source languages with similar typing restrictions, and
offers a good sanity check when performing such translation.

4.4 Implementation Considerations

After comparing the syntax and semantics of the language, it would also be useful to
take a step back and compare the current landscape of each project. For instance,
there are a few practical considerations to note when using either IVL. Such a decision
should be based on tooling support, support for theorem provers, as well as platform
support for the tools themselves. Of course, we should also consider which source
languages are currently supported by each IVL.

4.4.1 Language Support

Boogie was initially developed as the backend for the Spec# project (a design-by-
contract extension of C#), and is therefore highly optimized for C# programs (or
Spec# programs), and .NET programs in general. Boogie can directly read MSIL
bytecode (compiled .NET programs) in addition to its natural text-based syntax. In
addition to C# support, there are a few projects (HAVOC [Microsoft Research, 2012]
and vcc [Cohen et al., 2009]) which can translate annotated C into Boogie, and there
are translators for other languages such as Dafny [Leino, 2010a] and Chalice [Leino, 2010b].

Pilar is part of the Sireum platform [Robby, 2007], which incorporates multiple tools
in order to perform various verification techniques on programs. Pilar currently sup-
ports Java through the use of JML annotations as well as the ability to directly read
JVM bytecode, which makes it a viable option for a whole host of JVM-based lan-
guages (like Groovy [Henry, 2006], Clojure [Hickey, 2008], Scala [Odersky et al., 2008]).
In addition, it also supports a contract based subset of Ada called Spark [Barnes, 2003].

36

By making use of the Sireum platform, Pilar can be used to perform model check-
ing [Robby et al., 2003], symbolic execution and automated test case generation
[Deng et al., 2007a]. Such tools do not exist for Boogie, however Boogie can perform
extended static checking, which is not yet possible in the Sireum framework. It is also
important to note that although Pilar is used by Sireum, there is currently no builtin
support in the framework to accept Pilar input as text and perform computations on
the resulting model.

4.4.2 Support for Theorem Provers

Boogie can interface with Z3 [Ramakrishnan and Rehof, 2008], Simplify or SMT-LIB
(a format supported by CVC3 [Barrett and Tinelli, 2007], Yices [Dutertre and de Moura, 2006]
and others). This means it is usable with many different provers. Sireum (the tooling
framework for Pilar) supports Yices and has experimental support for Z3. Support
for SMT-LIB would likely be a good idea for Pilar’s roadmap, since it would give
coverage for Yices, Z3 and others at the same time.

4.4.3 Support for Environments and Platforms

Pilar is built on Java, which makes it runnable on virtually any environment and
platform. Pilar is also an open source project under the Eclipse Public License (EPL)
and can be modified if it does not function on a target platform.

Boogie is built on top of the .NET framework (using C#) and is also open source,
under the Microsoft Public License (Ms-PL). This makes it runnable under Windows
environments, and partially under Linux (and OS X) environments through the Mono
.NET implementation, but it is not fully supported. As mentioned, Boogie uses Z3 as
its default prover, but Z3 is not open source and also has compatibility problems under
non-Windows environments (though there are Linux and OS X builds available).

37

4.5 Related Work

IVLs other than Boogie and Pilar exist. We first mention FreeBoogie [Grigore, 2007,
Chrząszcz et al., 2009] an open-source implementation of Boogie that is built on Java
and therefore has superior multi-platform support to Boogie’s .NET codebase. It is
licensed under the MIT license, and is fairly actively developed [Grigore, 2009].

Why, both the name of a VCGen-based verification platform and the IVL it uses,
supports many of the features discussed in this chapter [Filliâtre and Marché, 2007].
Its tooling is built for Java and C VCGen, with back-end support for many theorem
provers including Isabelle, for which there is currently experimental support in Boo-
gie [Böhme et al., 2010] but no support in Pilar. Why is published under the GPLv2
license, making it open source and easily modifiable, similar to Pilar.

Spec# [Barnett et al., 2005] is the main source language for which Boogie is targeted.
The language extends the popular C# .NET language, by adding contracts and a
non-null type system, among other features. The Boogie tool has native understand-
ing of C# bytecode in order to directly communicate with the Spec# compiler and
IDE. Spec# introduces many of the features that Boogie supports, including method
contracts, class invariants and field checking.

Dafny [Leino, 2010a] is a high level object-oriented language that has built-in sup-
port for code contract specifications. It is developed by the RiSE team, the same
team developing Boogie. The goal of this language is to provide the same level of
abstraction of a modern object-oriented language while still providing access to the
same verification power provided by Boogie. In fact, Dafny sits directly above the
IVL, translating and sending the program to Boogie for verification before performing
final compilation to C# (and .NET).

4.6 Discussion

Our comparison raised many strengths and weakness of each language and related
tools. Recall that our criteria was based on: similarity of features, ease of source
translation, and available tooling support.

38

In terms of similarity of features, we found that Pilar would prove to support much
more of Ruby’s functionality. Its support for dynamic typing, inherent support for
object type systems, and anonymous functions map much more closely to Ruby. This
affects the ease of source translation, but only to a certain degree. Although Boogie
lacks native support for some of these features, it is still possible to model most of the
behaviour of Ruby using Boogie syntax; and there were certain features that Boogie
was much better at modeling (such as contracts). We concluded that the level of
difficulty in performing automatic source translation across these two languages was
similar when judged over the entire set of features that need to be supported.

In the end, the decision came down to tool support and language maturity. We
decided that we would use Boogie for RubyEsc because it was the only IVL with
tooling support for extended static checking. Recall that Kiasan does not yet have
support for ESC. We also noticed that Boogie’s language specification was much more
up to date, and the features had better documentation.

Note that we will still also make indirect use of Pilar and the Sireum framework
in RubyCaseGen, since it uses Kiasan to perform automatic test case generation,
something that Boogie does not support. However, we will not be dealing with Pilar
directly, and we will only interact with the tool through JVM bytecode inputs (via
Mirah’s Ruby to Java translation). In the future it might be possible to consoli-
date RubyCorrect to use the Sireum framework exclusively, once better support for
extended static checking is introduced.

39

Chapter 5

Overview of the RubyCorrect
Architecture

5.1 Overview

The RubyCorrect system contains a set of tools to perform extended static checking
and automatic test case generation of Ruby programs. In this chapter, the overall
architecture of the RubyCorrect system is discussed in order to better understand
the workflow and requirements of each tool as well as the interaction between the
components that are used. Note that this chapter focuses on the novel additions
to the Sireum pipeline (Section 2.7), and information on reused components can be
found in Chapter 2.

5.2 Pipeline Architecture

The overall RubyCorrect architecture is setup as a Pipes and Filters architecture
[Meunier, 1995]. This design choice allows easier mixing and matching of third-party
components, since these components are usually black box entities. The pipes-and-
filters architecture is quite suitable because most operations in each tool can effectively
be abstracted as a set of sequential translations on input data (Ruby source) which

40

*.mirah

*.rb
YARD

annotated

RubyCaseGen

ruby2mirah
RubyCaseGen

Mirah
JRuby

*.class
JVM

Bytecode

Kiasan
Sireum

Test Case
Generator
RubyCaseGen

Test
Cases
*.rb

RubyEsc

ruby2boogie
RubyEsc

Boogie
Microsoft

Results
Parser
RubyEsc

Proof
Results

Yices

Z3

Figure 5.2.1: RubyCorrect pipeline architecture overview

is then fed into subsequent tools for analysis (or further manipulation). Figure 5.2.1
illustrates the overall composition of the components in the architecture. The compo-
nents highlighted in blue are the new components implemented by the RubyCorrect
system, while the unhighlighted components are existing third-party backend tools
that are used to handle verification of the input. The two sub-components are dis-
cussed in further detail in the following sections.

The starting point for either of the tools in the RubyCorrect suite is a YARD anno-
tated Ruby program. The annotation syntax, as well as required and recommended
annotations for use with the tools, are given in the following section. These anno-
tations are necessary to bridge the gap between Ruby’s dynamic behaviour and the
backend tools, which are typically geared towards statically typed languages.

The annotated Ruby sources are then translated into languages that can be accepted
by the backend tools in order to generate results. Note that each tool is effectively
a wrapper and glue for the major third-party backend tools. The decision to reuse
existing components to handle the proving and verification of the given input was
made to minimize the amount of implementation for the RubyCorrect system. This
is especially important for the RubyCaseGen component, which actually relies on
translation from Ruby to Java in order to take advantage of the Kiasan symbolic
execution framework. Rather than implementing support for Ruby within Kiasan,

41

it was decided to use Mirah, an existing static variant of the Ruby language, which
already compiles to Java bytecode. This design decision is further discussed in Sec-
tion 5.5.

5.3 Annotating Ruby Code

The major requirement for proper usage of the RubyCorrect system is the availability
of annotated Ruby code. As mentioned in the introduction, in order to make it feasible
for a Ruby program to be fully understood at compile time, it is necessary to provide
annotations in the source to document aspects of the program’s behaviour. This is
especially true when dealing with Ruby’s dynamic type system, since the language
syntax does not allow for variable type information to be specified, information which
is essential for the tooling backends.

In order to provide this information to the backend components, RubyCorrect relies
on an annotation language embedded into Ruby source files and leveraged during the
translation steps of each tool. Fortunately, the annotation syntax is not novel, and
is provided by the YARD documentation tool [Segal, 2012]. The basic annotation
syntax is embedded inside of Ruby comment lines, similar to the Javadoc annotation
syntax [Kramer, 2001], and is illustrated in Figure 5.3.1—the Fixnum class represents
integers, in Ruby. Only the set of annotation names are new, and are discussed in
the following sections. These annotation names are inspired by the annotation syn-
tax of the Java Modeling Language (JML) [Leavens et al., 1999, Leavens et al., 2006,
Leavens et al., 2011].

A Ruby comment block
#
@param [Fixnum] x
@requires x > 0
@ensures $result == x * x * x
def cube(x) x * x * x end

Figure 5.3.1: Basic YARD annotation syntax inside of Ruby source

42

5.3.1 Annotating Dynamically Typed Arguments and Vari-
ables

In order to provide type information to the backend tools, RubyCorrect expects
@param and @local annotations to be defined in front of argument and variable
declarations, respectively. For instance, Figure 5.3.2 illustrates the syntax to anno-
tate method arguments and local variables inside of a method. It is important to note
that local variables are specified at the method level, not the block level. Although
Ruby allows block-local variables, YARD cannot easily understand block-local anno-
tations, and therefore RubyCorrect does not currently support multiple block-local
variable annotations. In this case, the source should be manually adjusted to use
separate variable names for each occurrence of a new variable type in the block. This
is also important, since Ruby’s dynamic type system allows variables to be redefined
under a new type. Such variable redefinitions should also be renamed to new variable
types.

@param [String] name
@local [Fixnum] num_times
def say_hello(name)

num_times = 5
num_times.times { puts ‘Hello ’ + name }

end

Figure 5.3.2: Annotating method arguments and local variables in Ruby source

The basic syntax for either annotation is specified by the grammar in Figure 5.3.3 in
BNF notation. The notation “.*” represents any arbitrary text, and “[A-Za-z_]”
represents a character class of any alpha text (including underscores). Note that
TypeNames can be a list of types. Ruby allows a variable to contain multiple orthog-
onal types, but such a specification is currently undefined within our tool.

43

Symbol ::= [A-Za-z_]+;
OptionalDescription ::= .*;
TagName ::= ‘param’ | ‘local’;
TypeName ::= Symbol;
Identifier ::= Symbol;
TypeNames ::= (TypeName ‘,’ TypeNames) | TypeName;
VariableAnnotation ::= ‘@’ TagName ‘[’ TypeNames ‘]’

Identifier OptionalDescription;

Figure 5.3.3: Grammar rules for @param and @local annotation tags

5.3.2 Annotating Method Contracts

Method contracts are associated with a method declaration using the @requires and
@ensures clauses for pre- and post-conditions, respectively. The syntax is simply
the annotation tag followed by a Ruby expression listing the logical condition. The
annotations also allow for three special identifiers to be specified,

• $result — which represents the resulting value of the method call,

• $exception — which represents a raised exception object (nil by default), and,

• old(VARIABLE) — which represents the initial value of a given VARIABLE
at the start of the method call (prior to any further assignments).

An example of an annotated method contract is given in Figure 5.3.4.

Increases the value of an item in the hash table
#
@param [String] key the key name
@param [Fixnum] amount the amount to increase by
@return [Fixnum] the new amount for a given key
@requires key.length > 0
@requires amount > 0
@ensures old(values[key]) == values[key] - amount
@ensures $result == values[key]
def increase_value(key, amount)

values[key] += amount
values[key]

end

Figure 5.3.4: Annotating method contracts in Ruby source

44

5.3.3 Annotating Class Field Members

Because Ruby is a dynamic language, it also allows for the dynamic creation of class
field members, which in Ruby are known as instance variables. An instance variable
in Ruby is prefixed with a “@”, such as @count. They are never declared at the class
level, and therefore only available at runtime. This means that it is impossible to
know which instance variables exist prior to running the program. To deal with this,
RubyCorrect introduces an @ivar annotation with the same syntax as @param and
@local, but defined on the class definition instead of the method declaration.

@ivar [String] name
class Person

def initialize(name) # constructor
@name = name

end
end

Figure 5.3.5: Class field member annotation defined on a Ruby class

5.3.3.1 Instance Variables and Attributes

Note that unlike a language like Java, instance variables in Ruby have no “visibility”
other than private. In other words, instance variables are never accessible from outside
of the class, and must be exposed through method declarations (getters and setters).
One such family of convenience methods to declare getters and setters for an instance
variable are the attr_* methods. These methods declare (at load time) the getter
and setter methods on a class. Note that the special method name= is called when a
Ruby program parses obj.name = “Name”, and is therefore the mechanism to handle
attribute-like setters inside of the language.

class Person
def name; @name end
def name=(value) @name = value end

end

Figure 5.3.6: Manually defined getter and setter methods in a Ruby program

45

The manually defined getter and setter methods illustrated above can instead be
rewritten using the single line attr_accessor :name. The methods attr_reader

and attr_writer could also be used to define readonly or writeonly attributes, re-
spectively.

5.3.4 Annotating Class Invariants

Class invariants in Ruby programs can be defined using the @invariant annotation
followed by a Ruby expression indicating the property that must be held. Invariants
should be defined on the class declaration, in other words, just before the class key-
word. Figure 5.3.7 shows a Stack class with some invariants constraining instance
variable (class field member) values.

@ivar [Fixnum] num_elements
@ivar [Fixnum] max_elements
@invariant @num_elements >= 0
@invariant @num_elements < @max_elements
class Stack

...implementation...
end

Figure 5.3.7: Annotating method contracts in Ruby source

5.3.5 Annotating Closures and Loops

Loop annotations allow for the translation of loop runtime semantics. The need for
loop annotations is not specific to Ruby [Hunt et al., 2006], but because of Ruby’s
support for closures (discussed below), they serve to denote which blocks might be
looping constructs.

It is important to note that support for loop annotations in RubyCorrect is simplis-
tic at best, and only the @invariant annotation is used to denote loop invariants.
Other tools like JML support annotations such as @assignable and @decreasing

[Leavens et al., 2011]; these annotations are not considered in our implementation,
but could be supported in future versions.

46

5.3.5.1 Closure Blocks and Looping

Although Ruby has a standard keyword to denote loop constructs, most Ruby pro-
grammers use closure blocks for iteration, allowing anonymous blocks to be called in
an iterative fashion. For instance, the times method on the Fixnum (integer) class
allows for a given block to be repeated a number of times. The following example
prints “Hello 0” to “Hello 4”:

5.times {|i| puts "Hello #{i}" }

In addition to this primitive looping method, there is also an each interface method
defined on various core collection classes (Array, Hash) which perform iteration over
their data. Collection iteration is most often seen in the form:

array = [1,2,3,4,5]
array.each {|x| puts x }

Any method can handle a closure by calling the yield keyword with optional argu-
ments to be passed to the block. For this reason, virtually any method call with
an associated closure can be a looping construct. This makes it difficult to detect
which methods are calling a closure in an iterative fashion, which methods are calling
the block exactly one time, and which methods are conditionally calling the block at
most one time. For reference, Figure 5.3.8 shows how the Array each method could
be implemented.

class Array
def initialize(*args) @elements = args end

def each
@elements.size.times do |i|

yield(@elements[i])
end

end
end

arr = Array.new(1, 2, 3, 4, 5)
arr.each {|x| puts x }

Figure 5.3.8: Implementing a looping construct in Ruby

47

Fortunately, invariants do not discriminate on the amount of iteration performed,
be it 0, 1, or 100 times, and so we can annotate any closure block with a potential
invariant. Figure 5.3.9 shows how the @invariant annotation can be applied to a
closure. Similarly to while loops, the invariant is asserted at both the beginning and
the end of the closure block. Note that just as with class invariants, the annotation
simply takes an expression in the context of the given block; that is, block local
variables can also be used in the annotation expression.

@local [Fixnum] j
@return [Fixnum]
def nine_loop

j = 9
@invariant i + j == 9
(0..10).each do |i|

j -= 1
end
j

end

Figure 5.3.9: Annotating a closure in a Ruby program

5.3.5.2 Keyword Looping Constructs

Ruby also has looping constructs built into the syntax of the language, but they are
not often used. The main looping keywords are for, while, and until (which acts
as a while loop with the inverse condition). Figure 5.3.10 shows what each of these
looping constructs might look like in a Ruby program. Note that for looping takes
an iterable object (a class or object that implements the each method), similar to the
for-each iteration syntax introduced in Java 5 [Flanagan, 2005]. In other words, the
for syntax is simply syntactic sugar to direct calling of each with a closure block, as
discussed in the previous section.

48

for x in [1,2,3,4,5]
puts "Number #{x}"

end

x = 0
while x < 10

x += 1
puts "Number #{x}"

end

x = 0
until x == 10

x += 1
puts "Number #{x}"

end

Figure 5.3.10: Keyword looping constructs in Ruby

Annotating these kinds of loops are no different from closure loops, as they simply
are annotated with the proper invariants:

j = 9
@invariant i + j == 9
for i in (0..10)

j -= 1
end

Figure 5.3.11: Annotated for loop in a Ruby program

5.3.6 Annotating Frame Conditions

Two annotations, @modifies and @pure are available to model how a method might
modify the heap. The @modifies clause takes an instance variable name that is
modified by the method, whereas @pure specifies that the method performs no mod-
ifications to the heap whatsoever (by default we assume that a method will modify
the heap in some arbitrary way unless otherwise specified). Figure 5.3.12 and Fig-
ure 5.3.13 show examples of these annotations in action.

49

... other annotations ...
@modifies @counter
def increment

@counter += 1
end

Figure 5.3.12: Annotating heap modifica-
tions in a Ruby program

... other annotations ...
@pure
def get_username

@username
end

Figure 5.3.13: Annotating a pure method
in a Ruby program

5.3.7 Summary of Annotations

RubyCorrect introduces the annotations, for various contexts, listed in Table 5.3.1.
Each context represents the node types where the annotation is valid, in other words,
annotations in the class context should be placed as comments in immediately above
the class declaration. Annotations can be reused in different contexts, as is the case
for the @invariant annotation, which is used for both class and loop invariants.

RubyCorrect Annotations Summary List
Annotation Description
Class Declaration Context
@ivar [Type] name Annotates the type of an instance variable (field member)
@invariant expression Annotates a class invariant expression
Method Declaration Context
@param [Type] name (∗) Annotates the type of a method parameter
@local [Type] name Annotates the type of a local variable
@return [Type] (∗) Annotates the return type of a method
@modifies @ivar Specifies that a method modifies an ivar
@pure Specifies that a method will not modify the heap
@raise [Type] (∗) Specifies that a method raises an exception of a given type
Loop or Closure Context
@invariant expression Annotates a loop or closure invariant
(∗) Denotes an annotation already supported by YARD

Table 5.3.1: Summary of supported annotations in RubyCorrect tools

50

5.4 The RubyEsc Tool

The design of the RubyEsc tool mostly takes advantage of the Boogie static verifier,
which in turn relies on the Z3 theorem prover. RubyEsc simply acts as a conversion
pipe to translate annotated Ruby into Boogie syntax and finally parse the results in
order to return them to the user.

Figure 5.4.1: Process diagram of RubyEsc execution

As mentioned earlier, the pipeline architecture allows each subcomponent in the tool
to be treated as a black box. We use processes to compose the pipeline. For example,
on a Windows system, input data sent to Boogie.exe via an file input, and all result
parsing is taken from the data sent to standard output when the program completes.
The overall RubyEsc tool is executed within a Ruby process. Figure 5.4.1 shows the
interaction of processes during execution of the tool.

The Ruby2Boogie component relies on the YARD runtime Ruby library to parse an-
notations out of Ruby source while performing translation to Boogie. During transla-
tion, the tool maps source locations of nodes in the Ruby program to corresponding
locations in the translated Boogie output. These mappings are used to parse the
Boogie results back to the original offending locations in the Ruby program, if any
errors were reported. This translation, as well as the parsing of results, is further
discussed in Chapter 6.

51

5.5 The RubyCaseGen Tool

RubyCaseGen follows the same overall architectural pattern as RubyEsc. The main
difference is that more steps are needed to translate the annotated Ruby input for
the backend analysis tool (Kiasan). Figure 5.5.1 illustrates the overall interaction of
components. Specifically, we translate Ruby programs into Mirah, a subset language
of Ruby that runs on the JVM, in order to interoperate with the Kiasan symbolic
execution framework. Rather than building support for Ruby within Kiasan (feasi-
ble, but requiring effort beyond the scope of the prototypical work of this thesis), we
leverage existing Ruby dialects in order to use Kiasan without modification. This
means that rather than performing a translation from Ruby to Pilar (the input lan-
guage understood by Kiasan), we instead perform translation from Ruby to Mirah.
This translation and the design details regarding Mirah compatibility are discussed
further in Chapter 7.

Figure 5.5.1: Process diagram of RubyCaseGen execution

52

Chapter 6

Static Verification of Ruby
Programs

6.1 Motivation

Static verification of programs is a useful mechanism to give programmers informa-
tion about the correctness of their program logic without the need to run the code.
Although static languages can provide many standard sanity checks at compile time,
this is often not enough to stop many logic errors. Furthermore, in a dynamic lan-
guage like Ruby, the compiler is even less useful at providing such feedback, and even
more errors can go unnoticed in the absence of proper unit testing. We therefore
think it is important to target static verification in the Ruby language in order to
provide improved early error detection and program correctness.

As mentioned in the introduction, given Ruby’s dynamic properties, it would be infea-
sible to guarantee full correctness over all Ruby programs without modification. We
therefore target a subset of the Ruby language and add annotations to fill in any gaps
that the language cannot provide automatically to our backend tools. This process
is performed as a proof of concept for the general methodology of performing static
verification inside of Ruby. We make the assumption that if a basic toolchain and
workflow can be created using annotations to aid in the process, further research can
then begin to slowly remove many of these training wheels in the form of annotations

53

until the entire workflow is streamlined to a form that could potentially be adopted
as idiomatic Ruby. Realistically, we do not see all annotations disappearing, but
developments in type inference can begin to reduce the burden on the programmer
to provide annotations; those that are left could be used to form a “best practices”
guide to writing verifiable Ruby programs.

6.2 Methodology

This chapter will discuss the overall workflow of writing verifiable Ruby programs
using proper annotations as well as the major design and implementation details of
the RubyEsc tool. In Section 6.3, we provide a detailed listing of the elements in
our verifiable subset of the Ruby language, i.e., what Ruby features are and are not
supported by the tool. We then provide details for how the annotated Ruby program
would be converted into a Boogie specification, discussing the translation of each of
the major supported features. Finally, we briefly discuss how RubyEsc displays the
results from Boogie back to the user, mapping any incorrect or unverifiable statements
back to source locations in the original program.

The RubyEsc tool was run across various Ruby test programs that contain only our
supported features to validate its usability and effectiveness. A brief look at the
performance characteristics of the tool is also considered.

6.3 A Verifiable Subset of the Ruby Language

As with most modern programming languages, Ruby’s grammar is complex and sup-
ports a large collection of syntactic constructs. In order to limit the scope of imple-
mentation, we select a small but idiomatic set of features to support. This section
outlines the major features that are supported as well as those whose support is
explicitly omitted.

54

Ruby Features Supported by RubyEsc
Keywords class, module, def, while, until, if, else, elsif, return
Literals true, false, nil, strings, symbols, array & hash initializers
Method Declarations Unsupported on instance objects, varargs unsupported
Variable Declarations @param, @local annotations used for type specs
Instance Variables Requires @ivar annotation on class for type specification
Global Variables Unsupported
Arrays Only 1D arrays supported
Hashes Unsupported
Constant Declarations No redefinition supported
Method Calls Argument count must match declaration
Operators =, <, >, <=, >=, ==, !=, !, *, +, -, /
Closures Supported as anonymous method declaration
Looping Constructs while, until, closures
Expressions No support for conditionals/loops as expressions
Exception Handling Basic support for method-level rescue blocks

Table 6.3.1: Summary of features supported by RubyEsc

6.3.1 Summary of Supported Features

Table 6.3.1 summarizes the features supported by RubyEsc with any relevant caveats.
Features and language syntax not mentioned in this table should be considered un-
supported.

6.3.2 Known Limitations

6.3.2.1 Logic Outside of Method Declarations

Ruby is considered a scripting language in which there is no “main entry point” to
the program. Instead, the executed file is parsed top to bottom, and any statements
outside of method or closure declarations are immediately executed. Although this
is valid Ruby, this behaviour is unsupported by RubyEsc and all such statements
are simply omitted from verification. Figure 6.3.1 shows an example of omitted
statements and the corresponding Boogie output (without prelude). In this example,
only a single line, line 4, is translated by our tool. Note that it is possible to collect all
unassociated statements and list them within some “main entry point” method since

55

Boogie does not care about execution order of individual methods, but for simplicity
we do not do this. It is also useful to note that the Mirah compiler (used in Chapter 7)
will properly move these statements into a traditional main method when compiling
to Java; this technique could be borrowed.

1 # @ivar [Fixnum] x
2 class A
3 # @modifies @x
4 def run; @x = 1 end
5
6 5.times { puts "In class" }
7 end
8
9 if __FILE__ == "test.rb"

10 puts "Hello world"
11 end

Figure 6.3.1: Statements omitted when listed outside of method declarations

6.3.2.2 Loading of Files Using require() and load()

The require() and load() statements in Ruby will read and evaluate other Ruby
source files (or dynamically linked native libraries) from disk. These statements can
be placed anywhere in a source file, as they are simple method calls. In general,
RubyEsc does not support loading of external files. It is, however, possible to check
multiple files at a time by listing these files together when calling the checker com-
mand. The files will be concatenated together in the order which they appear in the
command.

One reason for only supporting multiple files via command line is due to the way
loading is performed inside of Ruby. Ruby uses a $LOAD_PATH global variable to denote
the paths to be searched for a given file, upon a call to require(). This variable can
be modified at runtime, and it is therefore difficult to know exactly what the state
of this variable is upon each call. This variable can also be influenced by system
environment changes and command line switches to the Ruby interpreter, creating
different initial conditions at each run of the program, all of which cannot be captured
in source code alone. Finally, the RubyGems package manager library modifies the

56

behaviour of require (see Section 6.3.2.3) in order to load from common system
paths for libraries installed as “Ruby gems” (third party libraries). This behaviour is
also influenced by environment and configuration settings.

Therefore, explicit annotations would be required to properly know the search paths
for calls to require(). Instead of forcing the user to specify initial condition state in
the source code as annotations, we simply have the user specify the exact files which
are to be loaded during course of execution and check those files only.

It should be noted that this methodology also has an extra advantage over directly
parsing require() calls. Since all files are specified in an opt-in fashion by the user,
it is possible for the user to explicitly omit files that are not compatible with RubyEsc,
or static checking in general (due to lack of type information, code contracts, or due
to overly dynamic behaviour). For instance, if an annotated file requires some extra
unannotated files, the user would only expect the annotated file to be checked. If
require() calls are omitted, the user can decide to include these extra files only once
they have been annotated and made compatible with the tool.

6.3.2.3 Reopening Classes & Redefining Methods

Similarly to the dynamic behaviour of loading files at runtime seen in Section 6.3.2.2,
classes and methods can be “reopened” and redefined (respectively) at runtime. Re-
opening a class means that the state or methods inside of the class might change
after its initial definition by the existence of another class construct located in the
code.

RubyEsc makes the assumption, based on research cited in Section 3.3, that this
dynamic behaviour occurs at “load time” of the program (when files are parsed and
runtime modification might occur, but before main execution of the program begins).
Based on this assumption, the tool parses through all files in order and takes the
final state of all definitions as the definitions that are used during static checking.
For example, consider Figure 6.3.2 class Post which modifies the body method at a
later point by reopening the class. This method is redefined from originally returning
a String to returning a Fixnum. Behaviour like this is legal and occasionally occurs
inside of Ruby code, although it is not common to change the object type being

57

returned from a method. In any case, RubyEsc will assume that the body method
of the Post class will return a Fixnum object throughout the entire execution of the
program, even though at one point it was defined differently.

class Post
@return [String]
def body; return @body end

end

...Other code...

class Post # reopened class
@return [Fixnum]
def body; return 42 end

end

Figure 6.3.2: Reopening a class to modify method behaviour

It is worth mentioning that there is a class of bugs that this assumption can miss,
namely if “Other code” in the example contains top level code that executes immedi-
ately and makes use of Post’s body method, however we argue that this is not typical
of Ruby code, and we simply do not support this practice. It could be possible to
support this practice by keeping a separate copy of a class at each mutated state, and
use the correct version of that class at each respective use. We do not implement this
for simplicity sake.

6.3.2.4 Multiple Type Specifications on Variable Declarations

It is possible in Ruby (and other dynamic languages) for a variable container to
reference objects of different distinct types throughout the lifetime of the variable.
For instance, some variable myVar can reference a String object at the beginning of
a method and then be reassigned to reference a Fixnum object by the end of the
method. Since the annotations used by RubyEsc are provided at the method level, it
is not possible to specify a variable that changes its type specification in the middle of
a method. Note that YARD does support annotations on any statement, so it could
be possible for RubyEsc to search for these annotations and know to create a copy of
this variable with the new type, but this is currently not supported by the tool.

58

6.3.2.5 Implicit Return Values of Constructs

In Ruby, there is no distinction between statements and expressions; every statement
is also an expression. This applies to any syntax in the language, including class and
method declarations. Consider the following example class declaration, which assigns
the class object to a variable klass:

klass = class A; self end
p klass # => A

The above code is valid because Ruby always returns the last executed statement of
any block as the result of the parent block. In this case, the expression self (repre-
senting the class object, in that scope) returns the class object A, and, as a terminal
statement, is the implicit return value of the class block. This same syntax can be
used to return the result of if/else blocks or switch statements. RubyEsc does not
support implicit returns from any of these blocks.

Note that this same behaviour applies to methods in the Ruby language, where a
value is the implicitly returned as the result of the method if it is the last executed
statement. Recall that all statements return a value, and there is no such thing as
a statement with no return value, though the return value can be nil. Consider the
method definition:

@param [Fixnum] x
@return [Fixnum]
def ifswitch(x)

if x == 5
100

else
0

end
end

Even though there are no return statements in this method, it will still return an
integer value of either 100 or 0, depending on the input. This is because the last
executed statement is always either 100 or 0.

For simplicity, RubyEsc does not handle implicit returns in method declarations ei-
ther, and all returns must be explicit. Although it is not idiomatic to use explicit

59

return statements in Ruby, it could be possible to support this in future implementa-
tions by creating a control-flow graph of each method and detecting terminal state-
ments. Note that if this were done, the return types of each terminal statement must
still match, as discussed in Section 6.3.2.4.

6.3.2.6 Standard Library Support

Ruby comes packaged with a large standard library that enables most basic runtime
functionality. This standard library is implemented in a mix of native C and Ruby
code, and is not annotated with type information, let alone contract specifications.
Because RubyEsc relies on annotated Ruby code, it would be necessary to add an-
notations for all of these methods, but this is quite an undertaking. For simplicity,
we provide only basic annotations for some or the core Ruby classes; these annotated
definitions are injected as a prelude to the main Ruby input.

6.4 Converting Annoted Ruby into Boogie

Table 6.4.1 lists the different Boogie nodes implemented by RubyEsc with the Ruby
constructs that map to each of these nodes. This section describes the process with
which annotated Ruby code is translated into these Boogie nodes, highlighting the
nontrivial node translations.

6.4.1 Modeling Objects & Classes

In order to understand the basics of translation, we must first discuss how Ruby’s
object system is translated into Boogie. This translation is unique to a language
like Ruby and forms the basis of the control flow and logic translations discussed
later.

60

Ruby Feature(s) Associated Boogie Node Type
Statements
assert method call AssertStatement
variable assignment AssignmentStatement
assume method call AssumeStatement
method definition AxiomStatement
method calls, operator usage CallStatement
@ensures @requires @modifies annotations ContractStatement
exception handling GotoStatement
if statement IfStatement
exception handling LabelStatement
return statement ReturnStatement
initial variable assignment, literals, arrays, fields VariableStatement
looping and while statement WhileStatement
Expressions
simple operator binary expressions BinaryExpression
instance variable reference FieldReference
method definition FunctionExpression
method argument Parameter
parenthesis usage ParenthesisExpression
simple unary expressions UnaryExpression
variable refs, arrays, instance variables, literals VariableReference

Table 6.4.1: Boogie statement nodes implemented by RubyEsc

6.4.1.1 Objects & Integers

Ruby is a high level language with no native types. Although there are optimizations
at the implementation level in Ruby’s interpreter to deal with integers in an efficient
way, integers are mapped as objects of the Fixnum class inside of a Ruby program.
In practical terms, this means that an integer is just like any other kind of object,
and can be assigned to any variable container regardless of its initial type (since Ruby
allows for variable re-assignment).

Boogie, however, sees integers as a distinct type, and typically cannot mix with user-
defined reference types. Boogie is also statically typed, and cannot mix types across
variable assignment or method call arguments. Although we know all types in an
annotated Ruby program (thanks to required YARD type specifications), this still
causes a problem when modeling a typical object-oriented language with reference
types and separate native integer types; in short, having two separate object spaces

61

makes translation much more difficult. In order to use Boogie in a useful fashion,
it is necessary to allow integer types and object types to coexist in the same object
space while still being able to perform basic math operations that Boogie supports
on integers.

Fortunately, Ruby’s own reference implementation (CRuby) gives us clues on how this
can be done, as the details that drive the optimizations on integers can be used in
Boogie to model an object system where native integers and references can co-exist in
the same space. Ruby’s implementation, written in C (as the name CRuby implies),
uses a special type VALUE which is simply a native long C type. In other words, the
definition of VALUE is defined in ruby.h as:

typedef unsigned long VALUE;

This is typical of several language implementations with reference types. What is not
typical, however, is how objects and integers share the value space. CRuby partitions
the long value space by using a bit flag at the least significant bit to denote whether
the value is an object reference (lsb = 0) or an immediate integer value (lsb = 1).

We are therefore able to model this value space similarly in Boogie by using a type
alias from our VALUE type to the Boogie int type as follows:

type VALUE = int;

This alias simplifies translation of all Ruby programs, as we no longer need to make
distinctions between Fixnum objects and other objects when performing transla-
tion.

6.4.1.2 The Heap

To properly model object state (member data) in Ruby’s object oriented type system,
we introduce a global variable $heap in all translated Boogie programs. This variable
represents a mapping of object references to their respective object value, given a
specific field. The actual Boogie definition is as follows:

62

var $heap: [VALUE][field]VALUE;

The field type is used in order to partition object state into separate buckets by their
separate member fields. This allows us to model heap modifications in a more finely
grained manner, i.e., at the level of a field modification rather than at the coarse level
level of an entire object being modified. Since Boogie requires state modification to
be explicitly noted in the modifies clause of a procedure declaration, it is important
to be able to model this in the most specific manner possible.

6.4.1.3 Methods

Boogie has a similar construct to object-oriented methods known as procedures. Al-
though they are in a flat namespace and have no concept of object state, it is easy to
model a Ruby method as a Boogie procedure (also using cues from Ruby’s reference
implementation).

Name mangling. In order to properly map method names to a flat procedure
namespace, the name of a translated Boogie procedure is based on the full path to the
method in Ruby. For instance, the base procedure name of a Ruby instance method
named replace inside of a class named StringStream would be StringStream#replace

(the # denotes an instance method as opposed to a class method, since Ruby allows
for separate instance and class methods with the same name).

We perform further name mangling on a translated method name in order to add the
type class of each argument (including the receiver object type) to the final procedure
name. This is necessary to deal with polymorphic methods, since the contracts gener-
ated for the procedure are always specific to a given receiver class and its arguments
(i.e., heap modifications are performed in the context of the class type). Therefore,
each method requires a separate procedure definition for each combination of argu-
ment types it may receive. For a method with arguments that contain polymorphic
types, there may be more than one combination, and therefore more than one gen-
erated procedure. In these cases, a copy of the procedure is re-generated with the
newly mangled name and the body and contracts are re-rewritten to use these new
argument types. Because there may be a large number of argument combinations,

63

class Math
@return [Fixnum]
@pure
def zero

return 0
end

end

(a) Ruby Code

procedure Math#zero$Math(self: VALUE)
returns ($result: VALUE, $exception: VALUE) {
$exception := $nil;
$result := 0;
return;

rescueBlock:
}

(b) Translated Boogie

Figure 6.4.1: A simple Ruby method and its Boogie translation

only the initial procedure body is generated automatically; other variants are only
generated upon translation of a method call to such a variant.

Out-variables. It should be noted that all methods in Ruby return some value from
the execution of a method body. Therefore, all translated Boogie procedures have
at least one out-variable to represent this return value. There are no void methods
in Ruby. We also have another out-variable representing a possible exception object
that can be returned from a method if an exception is raised. Details on exception
handling will be discussed in Section 6.4.2.6.

Mapping arguments. Finally, all methods contain at least one argument named
self, denoting the receiving object of the class that the method is defined on. Note
that in the case of a class method, this translation remains unchanged, as self will
contain a reference to the class object itself (since classes are also objects in Ruby).
The use of the name self is meant to match the equivalent self keyword in Ruby
which refers to this same object.

Generating equivalent function form. In order for Ruby methods to be accessed
inside of contracts, we must also translate methods into a Boogie function statement
(and respective axiom). This process is discussed in Section 6.4.4.1. For simplicity, we
omit the function and axiom definitions from all Boogie code listings unless otherwise
noted.

Figure Figure 6.4.1 shows an example of a simple Ruby method and its equivalent
Boogie procedure.

64

6.4.1.4 Operators

In Ruby, operators are implemented as methods. This means that although operators
are typically used in their standard infix form, they can also be called as regular
methods. The following example illustrates how the string concatenation operator
can be written equivalently in both infix and method call forms:

"string1" + "string2" # valid syntax; operator usage
"string1".+("string2") # valid syntax; using a method call

Operators are defined on classes just like any other method, using the def keyword and
the literal operator name as the method name (unary plus and unary minus operators
use different method names since the operator name is in use for their respective
binary forms). This means that translation of operator definitions is equivalent to
the translation of method definitions.

6.4.1.5 Instance Variables

Instance variables are equivalent to member fields in other object oriented languages,
but Boogie has native support of neither of these concepts, so they must be modeled
using native Boogie syntax. Fortunately we rely entirely on the modeling of the heap
(discussed in Section 6.4.1.2) to implement member fields. Access to instance variables
are simply translated as access to heap data. Figure 6.4.2 shows the equivalent Boogie
translation of access to an instance variable @counter in class A.

@counter = 0
c = @counter

(a) Ruby Code

$heap[self][A$counter] := 0;
c := $heap[self][A$counter];

(b) Translated Boogie

Figure 6.4.2: Translation of Ruby instance variables in Boogie

6.4.1.6 Arrays

Arrays are modeled as simple container objects. Array access using the arr[i] syntax
is an operator, and therefore translated as a standard method call. Because we model

65

the basic Array class functionality in the preamble (see Section 6.4.5), array literals
are created via standard object construction and we use the Array#push method to
load the array with its initial values. All further operations on arrays are also simply
method calls.

The only difference with Array objects is that their annotation uses the “container”
form, similar to Java generic specifications. Appendix A shows a Ruby program ini-
tializing and testing an Array literal alongside its translated Boogie procedure.

6.4.2 Translating Control Flow

6.4.2.1 Basic Control Flow

Ruby is an object-oriented programming language, with methods containing the ma-
jority of executable Ruby code (exceptions to this rule are discussed in Section 6.3.2.1).
Method bodies contain a single entry point but multiple exit points, and are executed
in a sequential fashion from the first to last statement, exiting at any return state-
ment or exception. There are more obscure ways to exit control from a block of code
in Ruby, but these forms are unsupported.

To model basic control flow, we map a method in Ruby to a procedure element in
Boogie and translate each Ruby statement as an equivalent Boogie statement inside
of the procedure body. Note that as mentioned in Section 6.3.2.5, Ruby sees any
statement as an expression, but Boogie has specific delineation about which syntaxes
can be used as statements or expressions. One notable difference illustrated in previ-
ous sections is the use of if condition blocks as expressions inside of larger statements.
As mentioned, we do not support this syntax, and assume that statement syntaxes
in Boogie must also be formulated as statements in Ruby code. We also assume that
all exit points are clearly marked with return statements, even though Ruby does
not require this. The statements outlined in Table 6.4.1 show the type of statements
that can be found inside of a translated Ruby method. Note that nodes marked as
“statements” cannot be used as expressions inside of Ruby.

66

var retval$1: VALUE;
call retval$1, $exception := Object#$eq$Fixnum$Fixnum(5, 6);
assert retval$1 == $true;

Figure 6.4.3: Translation of Ruby statement assert(5 == 6) into Boogie

6.4.2.2 Method Calls

The most basic functionality of a Ruby program is the method call. Since Ruby is an
object-oriented language, most behaviour is translated to a method call on the target
object. In order to call a method we rely on the call assignment syntax in Boogie.
Note that Boogie has two forms of procedure calls, one simple call form, and the call
assignment form. We always use the assignment form, since there is always at least
one out-variable, and Boogie requires that procedures with out-variables be called in
the assignment form of the syntax with the same number of variables as defined by
the procedure.

The translation of a simple statement such as assert(5 == 6) would therefore be
translated into a method call using the equality operator on two Fixnum objects. This
translation is illustrated in Figure 6.4.3. The use of the out-variable $exception is
discussed in Section 6.4.2.6.

In order to find the target procedure of a method call, we perform a lookup based
on the type of the target object and the types of the arguments passed in (using the
YARD annotated type specifications). The first argument to any method call is always
the target object itself, as this is the calling convention discussed in Section 6.4.1.3.
The details of this method lookup are discussed in Section 6.4.3.

6.4.2.3 Conditional Branching

Ruby has two keywords for performing conditional branching, if and unless; the
latter performs the negation of the conditional branch. Both of these syntaxes are
mapped to an IfStatement Boogie node in RubyEsc (with the respective negation
of the condition). As mentioned above, if statements in Ruby code must be used in
“statement form”, i.e., the resulting value of the if block must not be used by any

67

x = 10
if x == 2

x = 1
else

x = 0
end

(a) Ruby

x := 10;
call retval$1, $exception :=

Object#eqFixnum$Fixnum(x, 2);
if (retval$1 == $true) {

x := 1;
}
else {

x := 0;
}

(b) Boogie

Figure 6.4.4: Translation of if statement from Ruby to Boogie

other statement or expression, because Boogie does not support this functionality.
Figure 6.4.4 illustrates a translation of a Ruby if statement into its equivalent Boogie
syntax. Recall that infix operators like equality checking are actually method calls,
so translation is performed on the condition expression itself, and the resulting out-
variable is returned.

Note that if conditions in Boogie must always be of the native type bool. Ruby does
not have this requirement (any non boolean conditions are simply tested against nil
and zero values), so we must translate any non-boolean conditions into boolean ones.
In this case, the return value from the method call is a boolean object, but of the Ruby
VALUE type, not Boogie’s native bool type. We must therefore convert this condition
into a binary expression that tests against the Ruby boolean constant object $true.
This type of translation is done for any node that is not of type BinaryExpression,
and is performed in any place where a native bool type is required.

6.4.2.4 Closures

Ruby supports anonymous blocks, or closures. This means that a block of extra
code can be passed along with any method call, and if the receiving method uses
the keyword yield, the block of code will be executed from that receiving method.
Figure 6.4.5 shows what a simple yield idiom might look like, yielding an integer (n+5)
as a parameter to the block of the calling method. As discussed in Section 4.3.1.4,
Boogie does not have good native support for this kind of functionality, and so it

68

executes a block of code
passing n+5 as an argument to the block
def add5_to(n) yield(n + 5) end

def main
result = 10
add5_to(5) do |x| # block body

puts "#{x} is #{result}" # output ’10 is 10’
end

end

Figure 6.4.5: A simple block passed to a method in Ruby

executes a block of code
passing n+5 as an argument to the block
def add5_to(n) yield(n + 5) end

create copy method with unrolled block
def main_add5_to(n, resultIN) # pass local state

x = n + 5
puts "#{x} is #{resultIN}" # output ’10 is 10’

end

def main
result = 10
main_add5_to(5, result)

end

Figure 6.4.6: After unrolling the block in receiving method

must be emulated.

In order to do this, we create a copy of the receiving method with the closure block
unrolled at the point where the yield was called. Closures also have access to all
local state of the method it was passed from, so we must pass all object state in and
out of the closure procedure so that it has read-write access to this state. We name
mangle in and out-variables, adding the $in and $out suffixes to respective variables
to avoid variable name collisions with the receiving method. Figure 6.4.6 shows what
this might look like if it were done in Ruby.

Finally, because closures are like methods, they can have their own contract anno-
tations (and invariants), so we must also translate all contract annotations, however

69

these contracts do not make use of requires and ensures clauses. Instead we per-
form manual assertions at the start and end of the unrolled block of all pre and post
condition contracts. We do this because there might be code after the yield call
which changes state and could cause the contract to become invalid (similarly for
code between the start of the method and the call to yield).

Because this translation is complex, we list the resulting Boogie in Appendix B.

Inlining to avoid contractual islands. One quirk of automatically unrolling a
local block into a separate Boogie procedure is that procedures in Boogie are treated
like contractual islands. This means that when Boogie performs a call on a separate
procedure, it judges the result not by the actual execution of the procedure, but
rather, solely on the outcome specified in the post-condition contracts. In other words,
moving code out to a separate procedure might seem like an intuitive way to unroll
behaviour, but doing this means that the code is never actually executed alongside
the code it was unrolled from. If we increment a counter inside of a block and move
this into a separate procedure, Boogie will never know this code was executed unless
a post condition on that procedure says it was. This would mean that we would have
to specify every behaviour of the closure as a post condition of the method, which is
a very difficult translation.

Fortunately we can use a trick in Boogie to get around this “contractual island”
problem. By using a special {:inline} tool directive on the closure procedure we
can have Boogie inline the body of the closure procedure directly into the caller
method when it does its own desugaring of the input code.

6.4.2.5 Looping

Ruby has a few different ways to loop, but we only support while loops and the each

idiom. We discuss both methods in this section.

While loops. While loops have a direct analog in Boogie via the WhileStatement
node, therefore translation for a while loop is straightforward. While loops in Boogie
can contain an invariant clause that checks whether an expression holds true for the
duration of the loop. We can generate an invariant expression by annotating the

70

while loop with an @invariant YARD tag followed by the expression.

Collections enumeration. The each enumeration idiom is a slightly more complex
looping mechanism. Ruby’s Array class (and other container classes) implements an
each method which accepts a block of code (closure) to be executed for each element
in the array. For instance, the following Ruby example would print the numbers 1, 2
and 3 to the screen:

[1,2,3].each {|i| puts(i) }

Fortunately we have a generalized approach to translating closures, and we use the
method described in Section 6.4.2.4 to generate unrolled procedures from these clo-
sures in our modeled Array#each method. The each method internally performs a
while loop over its collection data.

6.4.2.6 Exception Handling

We model raised exceptions much in the same way that we model method return
values. Instead of having a single out-variable for the return value of a method, we
create a separate special out-variable for the $exception variable, which is filled with
an Exception object when a program calls the raise method.

It is important to note that all exceptions in Ruby are unchecked, and therefore we
perform no checking of exceptions by default in programs. However, by using the
YARD @raise annotation on a method definition, we note that calls to that method
should check for a raised exception after the call. If the exception check finds an
exception, we goto a special rescueBlock label at the end of every Boogie procedure.
If the Ruby method contains a rescue block (a method-level try-catch statement),
we place the relevant code after this label and set $exception to $nil. Figure 6.4.7
illustrates what a procedure call looks like if a method contains a @raise tag in its
specification.

Note that we do not have full support for Ruby exception handling, namely, Ruby
allows for multiple rescue blocks with guards for specific exception types. We do not
support this checking, and instead only implement the “naked” rescue block. Ruby

71

call retval$1, $exception := A#might_raise$A(self);
if ($exception != $nil) { goto rescueBlock; }
// ...other code...

rescueBlock:
$exception := $nil; // if rescue block exists in Ruby method

Figure 6.4.7: Boogie translation of a method call to a method that has a @raise
annotation

also has a more granular begin ... rescue ... end syntax which is analogous to
Java’s try-catch statement. We do not support this syntax either.

6.4.3 Method Call Lookup Semantics

Ruby Lookup Semantics. Since Ruby is dynamically typed, method calls are seen
as messages passed to a receiving object (either with the implicit self or using the
object.method_name() notation to pass a message to an object). Ruby interpreters
implement their own lookup semantics in order to find the proper method definition
associated with that message. The lookup semantics for method resolution in a Ruby
runtime are listed below. Note that the following list is specific to Ruby’s object
and inheritance model, and is listed for comparison to our lookup techniques:

• Search in methods defined directly in receiver’s singleton class,

• Search in methods defined in modules mixed into receiver’s singleton
class,

• Search in methods of receiver’s class,

• Search in methods defined in modules mixed into receiver’s class,

• Search in methods of superclass (and its mixins),

• If nothing is found, call method_missing on the receiver (performing new
lookup),

• Default method_missing implementation will raise NoMethodError .

72

RubyEsc Lookup Semantics. We do not implement the complete lookup semantics
in RubyEsc. Specifically, our lookup semantics omit lookups on the singleton class,
as YARD is unable to keep track of annotations on methods defined in singleton
classes. For this reason, we do not discuss the details of the singleton class. We also
do not perform a separate lookup on method_missing, since we have not modeled
this behaviour in our preamble.

The lookup semantics performed by RubyEsc are as follows:

• Search in receiver’s class,

• Search in inheritance chain of receiver (superclasses and mixins together),

• If nothing is found, abort translation with lookup error.

Although the semantics are simpler, we capture the core behaviour of Ruby method
lookup semantics. In order to determine the class of a receiver, we use the type
annotations provided by YARD. YARD is also used to perform lookups by class name
and in the inheritance tree (which YARD has modeled in its own object graph).

Boogie procedure lookup. Upon performing method lookup, we also perform a
search for the translated Boogie procedure given the receiver and argument types. As
discussed in Section 6.4.1.3, we generate a separate procedure for each combination
of argument types passed in via method call. If this procedure does not exist, we
generate a new procedure node on the fly with the proper types.

6.4.4 Translating Contracts

6.4.4.1 Generation of Functions and Axioms

We noted earlier that one problem with translation of Ruby code into contracts is
that Boogie contract expressions cannot contain procedure calls or perform any state
modification in the same way that procedure bodies can. This is problematic since
almost every Ruby operation is a method call, and all methods are translated to
procedures.

In order to get around this limitation, we translate every Boogie procedure into a set

73

@return [Fixnum]
@ensures $result + 5 == 10
def main

return 5
end

(a) Ruby method with simple arithmetic post-condition

function $fn.main(self: VALUE) returns ($result: VALUE);
function $fn.main.exc(self: VALUE) returns ($exc: VALUE);
axiom (forall self: VALUE :: $fn.Object#eq(

$fn.Fixnum#add($fn.main(self), 5), 10) == $true);
procedure main(self: VALUE) returns ($result: VALUE, $exc: VALUE)

ensures $fn.Object#eq($fn.Fixnum#add($result,5), 10) == $true;
{

$result := 5; return;
}

(b) Generated Boogie

Figure 6.4.8: Generated function and axioms for a given Ruby method with contracts

of equivalent functions with a $fn. prefix in its name. However, functions cannot
contain requires or ensures clauses, and instead define their behaviour using an axiom
statement. We therefore also translate the pre and post conditions of each method
into axiom statements that reason about the function form of the method. This allows
us to translate any method call within the contract specifications of a method into a
function expression in the Boogie output, rather than a call statement. Figure 6.4.8
shows the translation of a method whose post condition performs some basic integer
math and equality testing (name mangling and exception translation removed for
clarity).

6.4.4.2 Special Contract Expressions

In order to support the underlying functionality of Boogie contracts, we introduce a
few special variables and functions that can be used inside of contracts:

• $result — the value returned by the method call,

• $exception — the exception object raised by a method call,

74

• old(variable) — the previous value of variable prior to method execution.

We also introduce a special annotation syntax that allows us to embed Boogie code
directly into an annotation. This syntax is discussed in Section 6.4.5, since it is only
meant for internal usage in the preamble.

6.4.4.3 Pre & Post Conditions

As shown in previous examples, we use the Boogie requires and ensures clauses to
map pre- and post-conditions specified by @requires and @ensures annotations on
a method respectively. The translation uses the function form of a method call, as
illustrated in Figure 6.4.8.

6.4.4.4 Invariants

Invariants are only supported on while loops, both in Boogie and in RubyEsc. In such
cases, loops are annotated with an @invariant tag followed by an expression, similar
to pre- and post-condition annotations. This tag is also used when looping with the
each enumeration method and a closure block.

6.4.4.5 Frame Conditions

Boogie allows us to model which parts of the program state a method can modify,
and these specifications are known as frame conditions. To specify our frame condi-
tions, we use the modifies clause attached to the procedure definition. Boogie actually
requires a modifies clause whenever a procedure performs assignment on global vari-
ables (like our $heap variable discussed in Section 6.4.1.2). This means that most
methods require some sort of modifies clause.

By default we assume that all methods will modify the heap. This is done to satisfy
Boogie’s strict checking on state modification. We therefore specify the following
modifies clause on all methods with no @modifies annotation:

modifies $heap;

75

This is a very general frame condition. It basically says that this procedure can
change any heap object. In order for Boogie to reason about our program in a useful
way, we need to provide more specific conditions.

Declaring mutable fields. Using the @modifies clause with an instance vari-
able name, we can declare that a given method will perform mutations only on the
specified field members. However, these specific frame conditions are not modeled
with modifies. Instead we use a technique described in Boogie’s own technical man-
ual [Leino, 2008] and provide a special post condition guaranteeing that only the
specified fields in the heap were modified. For example, given a set of instance vari-
ables var1 and var2 in class A, we specify a frame condition that guarantees only
these fields were modified:

ensures (∀ o:VALUE, f :field • $heap[o][f] = old($heap[o][f]) ∨
(o = self ∧ (f = A$var1 ∨ f = A$var2)))

This post condition is applied to each method with at least one @modifies clause.

Pure methods. Some methods perform no modification to the heap. To specify this,
we use a @pure annotation. Methods specified as being pure will omit the modifies
clause in their procedure specification.

6.4.5 Preamble

As discussed in Section 6.3.2.6, we do not model the entire Ruby standard library,
but we do cover a small subset of the Object, Fixnum, Array, NilClass and boolean
classes. These modeled classes and methods are annotated in a preamble Ruby source
file which is parsed with YARD along with the input file. In order to avoid needless
translation of these methods to Boogie, we use an extra annotation tag @core to
specify that methods in these core classes should only be generated if they are called by
something in the Ruby program. The preamble file is provided in Appendix C.

Because we are modeling core data types, we must occasionally generate contracts
that use pure Boogie syntax. To do this, we introduce a special syntax to contract
annotations: if an annotation is parsed as a single String literal value (wrapped in

76

double quotes), it is treated as literal Boogie code and not translated. This special
syntax provides an easy way to forego translation of Ruby code in contracts.

6.5 Parsing Results

In order to return useful results back to the user (location of problem in Ruby code),
we keep track of every Ruby code location in the original code. We associate every
generated Boogie node (c.f. Table 6.4.1) with the closest related Ruby node. Then,
once the Boogie output is generated, we keep track of the location (line and column)
of each Boogie node. When Boogie reports an error, it prints a line and column which
is used to perform a reverse search for the resulting Ruby node. This node is then
printed back to the user as the source of the failure. Figure 6.5.1 shows sample output
in the case of a verification failure.

$ ruby_correct esc examples/ruby_esc/example1.rb
Verification Errors (2):

- A postcondition might not hold on this return path:13:
return x * x

- This is the postcondition that might not hold:
@ensures $result == x * x * x

Figure 6.5.1: Sample output for RubyEsc

6.6 Validation Using Sample Code

In order to validate our translation, we generated sample Ruby contracts and code,
packaged into individual “experiments”, that cover the basic features discussed in
this chapter. Each experiment is placed in a Ruby file that is processed via the
RubyEsc tool; these programs are all listed in Appendix D. We measure the line of
code count (LOC), annotation count (ANN), the number of VCs successfully verified
by Boogie (VERF), the number of logic errors discovered by Boogie (ERR), the

77

FILE LOC ANN VERF ERR EERR PTIME (sec) RTIME (sec)

array.rb 46 1 3 0 0 0.28 1.51
boolean.rb 8 0 1 1 1 0.05 0.95
class_methods.rb 8 1 3 0 0 0.05 1.00
closures.rb 10 2 2 0 0 0.05 1.06
condition.rb 9 1 1 0 0 0.05 1.03
contracts.rb 4 4 2 0 0 0.05 0.98
dispatch_lookup.rb 19 6 9 0 0 0.08 1.06
dynamic_dispatch.rb 22 13 7 0 0 0.08 1.05
equality.rb 9 1 1 3 3 0.05 1.05
exception.rb 17 8 4 0 0 0.08 1.06
exception2.rb 19 8 5 0 0 0.07 1.19
literals.rb 7 1 1 0 0 0.05 1.06
looping.rb 17 4 1 2 0 0.11 1.35
math.rb 6 7 0 2 2 0.06 1.24
operators.rb 9 1 1 0 0 0.06 1.03
stack.rb 18 7 4 1 1 0.08 1.23

Legend
ANN Annotation count EERR Expected error count

VERF Correct verification condition count PTIME Ruby2Boogie parsing time
ERR Incorrect verification condition count RTIME boogie.exe execution time

Table 6.6.1: Results of RubyEsc across various Ruby example files

number of expected errors1 (EERR), time taken to convert the Ruby code into Boogie
(PTIME), and the time taken to run Boogie on the resulting Boogie code (RTIME).
We measured the results of 16 total files on a machine with a 3.30Ghz Intel R© CoreTM

i5-2500k CPU running Windows 7 and Boogie 2.2.40414.0705. The resulting data
is listed in Table 6.6.1. We note that in some cases, logic errors were expected to
be discovered by Boogie, as we were testing various programs with both correct and
incorrect specifications.

The example files range from tests on simple Ruby expressions (such as integer math,
boolean logic and the use of literal values) to more complex tests on contract trans-
lation, dynamic dispatch, array modeling, exception handling, looping and instance
variable modeling with frame conditions.

In order to validate these examples, we created an integration test suite that runs the
Ruby files, as well as some simpler Ruby expressions to test basic language translation

1Expected errors are logic errors that are intentionally introduced into the test programs to
exercise Boogie’s ability to detect invalid programs, i.e., implementations that do not match a
post-condition.

78

support. Our tests either check that the resulting verification is successful (when
EERR= 0), or that the incorrect Ruby specification line exists in the error output
from the tool (when EERR> 0). In total, our test suite runs 24 examples in an
average of 26 seconds.

In some cases, the number of errors that Boogie reports does not match the number
of errors expected from the input program. These results represent translations that
are not properly supported inside of RubyEsc. We specifically note the inconsistency
in looping.rb, in which Boogie returns 2 program errors when we expected 0. This
is due to a difficulty in specifying a proper loop invariant that Boogie requires for
verification; the translation occurs as expected, but the invariant is incorrect.

The results show that RubyEsc can effectively verify a subset of small Ruby programs
that make use of supported features, namely, simple array handling (push, pop, size
checking), integer arithmetic, dynamic dispatch, contract specification, control flow,
operator support, exceptions, and closures. The programs are small, but they exercise
the exact features that the tool supports in specially crafted tests. Future work would
attempt to test our implementation across larger and more complex programs, but
this would require a more complete model of Ruby’s standard library. This future
work, as well as general conclusions about the effectiveness of how RubyEsc could be
used in Ruby, are further discussed in Chapter 9.

79

Chapter 7

Automatic Test Case Generation
Using Symbolic Execution

7.1 Motivation

Although extended static checking can be of use in any programming language, the
barrier to entry for this level of verification is much higher than the alternatives
(as will be discussed in Section 9.1). That is, generally speaking, a developer must
annotate all methods in a program with contracts in order to get some benefit of ESC.
We therefore want to take a multi-pronged approach to providing verification of Ruby
code. Symbolic execution [King, 1976] through Kiasan offers a path to this goal with
less up-front developer investment. Specifically we want a tool that does not require
the developer to write code contracts in order for the tool to produce useful results.
It also allows us to explore a very different tangible result: instead of a true or false
response from a tool like RubyEsc, we can instead receive snapshots of the state of
our program when it failed, giving us insight into the caused of our program failure
in ways that we may have been unaware of. In short, while ESC is used to confirm
“pre-existing” expectations of a program, symbolic execution can be used to discover
what we may not know about our program. This information can then be used
to generate test cases (through our tool) and provide extra quality assurance and
productivity throughout a program’s lifecycle.

80

We have also studied symbolic execution because we believe it is a much closer fit
for verification of Ruby programs, and dynamic languages in general. The concept
of symbolic execution allows us to inspect real state changes in an intuitive manner
and theoretically could allow us to model a much more complete snapshot of Ruby’s
dynamic runtime behaviour which existing ESC tools could not easily achieve. In
other words, we believe that the potential for a verification system based on symbolic
execution is much greater than that for ESC, at least for dynamic languages.

In order to explore this potential, we created RubyCaseGen as a prototype of a
symbolic execution engine for Ruby. We admit that building a full model of Ruby’s
runtime in a symbolic execution engine would be an extremely arduous process, and
therefore we decide to piggyback off of other technologies (namely Mirah, which
generates statically typed Java code) to create a simple working tool that verifies a
working subset of the Ruby language. We discuss, in detail, the techniques used to
build the tool using these technologies, as well as a look at optimizations performed on
the generated test cases. We also discuss the limitations of this verification process.
Finally, we show results of the experiments performed on various Ruby programs
using RubyCaseGen.

7.2 RubyCaseGen Pipeline Description

This section outlines the basic pipeline for running a Ruby program through Ruby-
CaseGen. In short, we perform the following steps automatically:

1. translate annotated Ruby to Mirah,
2. decorate the Mirah program with extra constraints from code contracts,
3. compile Mirah program to a JVM bytecode file,
4. run Sireum/Kiasan on the resulting bytecode to generate symbolic state reports,
5. resolve symbolic values in the Kiasan result files, and
6. generate Ruby output in the form of executable test cases based on the concrete

state values.

81

@param [String] host
@param [Fixnum] port
@return [Connection]
def connect(host, port) end

(a) Ruby

def connect(host:String,
port:int):Connection

end

(b) Mirah

Figure 7.2.1: A comparison of equivalent Ruby and Mirah method declarations

7.2.1 Converting Annotated Ruby into Mirah

Because the goal is to create a tool that tests Ruby code and not Mirah code, we
want to be able to convert annotated Ruby code into equivalent Mirah code. As
mentioned in Section 2.6, Mirah syntax is very similar to Ruby with the exception
of type declarations in the method signature. Figure 7.2.1 shows a comparison of a
Ruby method signature with its equivalent Mirah version. It is useful to note that as
discussed in the background section on the language, Mirah uses the standard library
of the backend language (Java, in our case), and therefore the String class refers to
that found in Java’s core library instead of the Ruby String class. We also translate
the Ruby Fixnum class to the native Java int type.

Our conversion tool is run as the first step of execution of RubyCaseGen in order to
generate a program.mirah file that is then compiled by Mirah. Conversion is fairly
straightforward, and simply replaces the argument names (and end of line) with the
type specifications found in the @param and @return annotations of the corresponding
arguments. We can therefore perform test case generation via Mirah without the user
ever directly interacting with the language.

7.2.2 Adding Contract Annotations

In addition to adding type specifications to the Mirah method declarations, pre-
condition annotations are also decorated in method bodies using Kiasan assume
statements. For all pre-conditions annotated via @requires clauses, we place a

82

class Fibonacci
@param [Fixnum] n
@return [Fixnum]
@requires n >= 0
def fib(n)

if n < 2
n

else
fib(n - 1) + fib(n - 2)

end
end

end

(a) Ruby

import org.sireum.{...}.Kernel

class Fibonacci
def fib(n:int):int

Kernel.assumeTrue(n >= 0)
if n < 2

n
else

fib(n - 1) + fib(n - 2)
end

end
end

(b) Mirah

Figure 7.2.2: Mirah translation of a Ruby Fibonacci implementation

Kernel.assumeTrue(expr) statement at the top of the method1. This is possible
because Mirah is a JVM language and can interoperate with the Kiasan library.
Kiasan uses these assume statements in the bytecode to generate constraints on data
types when it performs symbolic execution.

Note that contract specification for symbolic execution adds extra constraint infor-
mation to the underlying engine (e.g. which numeric ranges might be invalid for a
given parameter), but these constraints are completely optional to Kiasan. This
means that unlike RubyEsc, it is not a requirement to provide pre or post-condition
annotations in order to use RubyCaseGen.

7.2.3 Compiling the Mirah Program

After conversion and decoration of constraints, the Mirah program is passed off to
the mirah binary which outputs a .class file using the same base filename, similar
to Java compilation. This step is completely implemented by Mirah itself, we simply
initiate the compilation step and wait for the resulting output file. Figure 7.2.2 shows
the resulting Mirah translation of a complete Fibonacci method implementation in
Ruby.
1The fully qualified method is org.sireum.kiasan.profile.jvm.extension.Kernel.assumeTrue.
This method made accessible using Mirah’s import statement.

83

It is important to also note that we do not deal with @ensures clauses in our contract
translation. This is because RubyCaseGen is not meant as a code contract verification
tool, but rather as a bug finding tool. As mentioned, the motivation is to lessen the
burden on the developer and be able to test Ruby code with as few modifications
as possible. We therefore only optionally rely on @requires and solely to provide
constraint hints to the symbolic execution engine (in order to generate more accurate
test cases).

7.2.4 Running Kiasan

Kiasan relies on the JVM platform, and the system must have Java installed in
order to run this portion of the tool. We execute Kiasan by running Java using
org.sireum.KiasanVM as the main class and passing 3 arguments to the program:
the class name containing a method, the method name to verify, and the method
descriptor2 for the method. These 3 values are user supplied, although RubyCaseGen
can attempt to auto-generate the method descriptor value using the Ruby annotations
if it is not provided on the command-line.

7.2.5 Resolving Symbolic Values

Kiasan generates a set of numbered N-symcase.xml files which contain the basic
structure of a method’s state before and after the method is executed (for a series of
initial states); however, all of the values are unresolved symbolic values. In order to
resolve these values to concrete usable ones, we call on Kiasan again to perform the
resolution. Kiasan will internally call on the Yices theorem prover to resolve these
values and generate an equivalent object structure which is exported as a sibling
XML document under the names N-testcase.xml. This XML document contains the
concrete values in the method’s pre and post execution states and can be used to
generate test cases.

2The method descriptor is a JVM specific value that represents the parameters and return type of
the method signature [Liang, 1999].

84

7.2.6 Generating Ruby Test Cases

In order to generate test cases formatted as Ruby code, we read the series of N-
testcase.xml documents (each document is translated to one test case) and use only
the pre-execution state to recreate the initial conditions of the method and then
call the method that is tested by the tool. The test cases generated the standard
library test_unit, which has a structure and syntax similar to Java’s JUnit: a test
class is created by subclassing the main test case class, and all implemented methods
beginning with test are executed with various optional assertions performed on the
results.

7.3 Example Usage

RubyCaseGen is designed to test a single method of a class at a time. Therefore, the
parameters to the tool are the class name followed by the method name. Optionally,
the JVM method descriptor can be passed as the third parameter if the tool is unable
to automatically detect the method signature (discussed in Section 7.2.4). The output
of the tool is the Ruby executable code that tests the input program—the code can
be piped directly into a Ruby interpreter to execute the tests. Figure 7.3.1 illustrates
sample output of the tool for a class implementing the Fibonacci series (debugging
output and some test cases omitted) followed by the execution of these tests when
piped into a Ruby process.

7.4 Techniques & Optimizations

In addition to the basic translation, Kiasan execution, and generated Ruby test code,
we perform a set of extra operations on the data in order to provide more optimal
results on the input programs. We outline our extra techniques and optimizations in
this section.

85

$ ruby_correct case_gen Fibonacci fib
require ’test/unit’
require ’examples/ruby_case_gen/Fibonacci’

class TestFibonacci < Test::Unit::TestCase
omitted tests for n=0..3

def test_4
this = Fibonacci.new
n = 4
result = this.fib(n)
assert_equal 3, result

end
end

$ ruby_correct case_gen Fibonacci fib | ruby
Running tests:

....

Finished tests in 0.00301s, 1332.889 tests/s, 1332.889 assertions/s.

4 tests, 4 assertions, 0 failures, 0 errors, 0 skips

Figure 7.3.1: RubyCaseGen output for Fibonacci implementation

7.4.1 Array Inference Modifications in Mirah

Mirah compiles Ruby code into Java’s object model using Java’s data structures.
This means that Mirah automatically attempts to infer array objects as being of
the Java List type. Since Kiasan is not properly developed to support Java’s List
types, this leads to many conflicts of supportable features. In short, it is extremely
difficult to provide any useful examples to RubyCaseGen that use arrays without our
modifications (these limitations are discussed in more detail in Section 7.5).

Because Mirah is open source, it is possible to modify the type inference implemen-
tation in order to recognize implicit arrays as being of native Java array types rather
than Lists. Kiasan can handle native array types well, and this inference modification
removes the conflict of features between Kiasan and Mirah, allowing us to properly
test code that uses basic 1-dimensional arrays.

86

A few minor API changes between the use of Lists and arrays are worth noting.
Firstly, Mirah by default generates immutable Lists, which means that the modifica-
tion to native arrays does not actually sacrifice mutability. Secondly, Java’s native
arrays use the .length property instead of the .size() method, and this adjustment
is made in Ruby code samples that use arrays. Note that in Ruby, size and length
are both valid method names to return the size of an Array, so this API change still
produces valid Ruby.

7.4.2 Minimizing Type Annotations

Although RubyCaseGen performs no specific behaviour on its own to allow for fewer
type annotations, we discuss the implications of Mirah’s type inference support, be-
cause it is relevant to the amount of annotations needed in a program.

Mirah relies heavily on its type inference in order to determine the types of variable
assignments and other expressions. This means that the language itself is responsible
for and able to perform type checking on variables. Typically, the only places where
Mirah is unable to determine types automatically are: method parameters, return
types (for complex flow paths only) and explicit casting of a polymorphic type. In
these cases, Mirah uses explicit type annotation discussed earlier in this chapter,
as well as a casting syntax in the form of TheClassName(obj_to_cast) (which is
compatible with Ruby syntax and library implementations).

Because Mirah performs most of the type inference for us, including, in many cases,
inference on return types, we are left with fewer types to fill in. Specifically, we
can omit the use of @local annotations completely, as were used in RubyEsc. Also,
in many cases, even @return annotations can be omitted. This leaves us with only
@param annotations to write, which are used to translate to Mirah syntax (as discussed
in Section 7.2.2).

Note that the total annotation count of the experiments is used as a metric in the
case study (see Section 7.6), as one of the goals of RubyCaseGen is “developer ease
of use”.

87

7.4.3 Handling Successful Flow Paths

By default, RubyCaseGen generates all test cases that it is able to for both successful
and unsuccessful program states. This feature can be turned off by passing the
--errors-only switch to the command line tool. Although the major goal of this
verification tool is to find bugs, it is also useful for a tool to automatically generate
obvious unit tests for a given function. Kiasan provides us with many different cases,
some pathological, but also some successful cases.

We therefore use these successful states to generate a special form of test with asser-
tions on the method’s return value. Figure 7.3.1 shows such a test case.

7.4.4 Handling Failure States

Catching failure states is a major goal of RubyCaseGen. Since we do not encode
post-conditions, we instead define “failure states” as flow paths that raise an ex-
ception. Note that exceptions can be explicitly raised by assertions in a method
body, and therefore post-conditions can be implemented as a set of assertions in the
method.

In the case of a program exception, the generated test case does not compare the post-
execution state. Instead, the tested method is called and the exception is thrown to
the test suite itself. We decided against explicitly catching the exception, as this
would not benefit the test code from a functional perspective, and it would require
a mapping from Java exception classes back to their Ruby equivalents (the opposite
mapping of the one Mirah performed).

7.4.5 Pruning Duplicate Test Cases

In some cases, Kiasan’s symbolic execution engine returns multiple execution cases
that all share the same initial conditions, and therefore, the exact same resulting test
code. Rather than listing these duplicate cases, these test cases are automatically
pruned from the generated code output.

88

Given two initial method states s1, s2, a distinct test case is defined formally
as (p1, p2 are parameter names, including receiver object, of respective states, and
toRuby refers to the function that converts p1, p2 into Ruby source):

∃p1, p2 • (p1 ∈ s1 ∧ p2 ∈ s2) ∧ (p1 /∈ s2 ∨ p2 /∈ s1 ∨ (p1 = p2 ∧ toRuby(p1) 6= toRuby(p2)))

Our duplicate check algorithm looks for all pairs of states in which the above does
not hold true. Note that this not an exhaustive duplication check. For instance,
parameters can contain complex objects whose own attributes and field members
might be equivalent in memory, but are generated to Ruby code in different orders
as follows:

this = Stack.new.tap do |o|
o.elements = [1, 2]
o.size = 2

end

(a) Initial state A

this = Stack.new.tap do |o|
o.size = 2
o.elements = [1, 2]

end

(b) Initial state B

We therefore depend on the structure Kiasan’s XML format to ensure that we do not
miss any duplicates. Of course, because maintaining duplicate tests does not impact
test coverage in any negative way, it is okay for RubyCaseGen to occasionally miss
some edge cases, and the heuristics in the algorithm can be improved over time.

7.5 Known Limitations

In a similar fashion to RubyEsc, we do not model the complete Ruby programming
language in our tool. Instead we provide a working subset of the language. Unlike
RubyEsc however, RubyCaseGen has different limitations. Because we translate Ruby
into Mirah and pass the compiled Mirah bytecode into Kiasan, we are reliant entirely
on Mirah’s compatibility with Ruby’s feature set and Kiasan’s support for Java. We
discuss the limitations of each technology below.

89

7.5.1 Limitations of Mirah

Since translation is performed from Ruby to Mirah, we can only support the features
of Ruby that are supported by Mirah. Recall that Mirah is a fairly new language
and does not support all of the functionality of the Ruby language. Mirah is also
not meant to be an exact implementation of the Ruby language, and therefore there
are also features that are inherently incompatible with Mirah’s design. For instance,
metaprogramming (and dynamic behaviours of Ruby) are not implemented in Mirah
(this is not an issue, since our research does not cover Ruby metaprogramming any-
how). Nevertheless, it is still more mature than our RubyEsc, and supports at least
all of the features discussed in Chapter 6.

7.5.1.1 Metaprogramming

As mentioned, Mirah supports none of Ruby’s dynamic metaprogramming behaviour.
Although our research also ignores the metaprogrammed behaviour of Ruby programs
in general, there are some uses of metaprogramming that are extremely common and
supported by our RubyEsc tool. Specifically, Ruby attributes are defined through
the attr_accessor metaprogramming declaration which generates getter and set-
ter methods for a given instance variable. Mirah supports this statement through
a feature called “macros”, which allows the explicit support of certain class level
declarations—however Mirah does not allow explicit type declarations on these at-
tributes, performing type inference instead. The problem is that this inference is not
very reliable and causes many unwarranted compilation failures. It is therefore more
difficult to rely on Mirah’s use and support for idiomatic metaprogrammed attributes,
and Ruby programs often need to be translated to remove the use of attributes defined
with the idiomatic attr_accessor and attr_reader.

7.5.1.2 Support for Native Arrays

Mirah does not translate Ruby array objects into native Java array types, even for
arrays of native types such as int or double types. Instead of native arrays, the List

Java interface is used to manage immutable collections in a Mirah program. Although

90

this is not a problem with respect to Ruby, since Ruby has no native types, this does
lead to trouble with Kiasan, as it has better support for native arrays than list types.
This issue is discussed in Section 7.5.2.2. Although it is possible to explicitly specify
a native Array type, all closure-based looping (using the each method) is performed
on List objects only.

In the end, we decided to use a modified version of Mirah that translates implicitly
defined array objects into native Java arrays rather than List objects. Since Mirah
already uses immutable data types, there are only a few minor functional differences
to our modifications, as were discussed in Section 7.4.1.

7.5.2 Limitations of Kiasan

In addition to limitations imposed by Mirah, we are also limited by the functionality
of Kiasan.

7.5.2.1 Nonlinear Formulas

Kiasan uses Yices as its backend SMT solver3 and constraint generator. This means
that Kiasan’s power is in turn limited by what Yices is capable of. One specific limita-
tion of Yices is its inability to properly handle nonlinear relationships in mathematical
equations. This severely limits the type of mathematical experiments we can run on
the system, as we must make sure the examples are useful but also simple enough to
be linear. One experiment we attempt to perform is verification of a program that
performs “divide by zero”; this is a nonlinear formula. Fortunately in this case, Yices
is able to detect the failure test case, but unfortunately, it also generates an incorrect
“successful” test case.

3Kiasan currently has experimental support for Z3 as a backend theorem prover, which is expected
to have better support for nonlinear relationships than Yices. However, due to technical issues,
we were not able to test this experimental support.

91

7.5.2.2 Modeling of Java Standard Library

One other important limitation of Kiasan/Java is its lack of support for the complete
standard library. Kiasan has very limited support for higher level data structures
such as the ArrayList class, and even simpler methods like String concatenation.
The lack of proper collection class modeling is particularly limiting, since Mirah
translates all array usage into List types. Without the modifications to Mirah dis-
cussed in Section 7.4.1, we would typically receive the following error when verifying
methods:

Ignored classes should be substituted:
java.util.ArrayList.<init>(int) : void, thus, path abandoned.

7.6 Experiments Using Test Case Generation

7.6.1 Defect Detection and Test Case Generation

In order to validate the tool’s ability to detect defects, we create a set of 12 Ruby
programs and run these programs to observe how RubyCaseGen handles a range of
bug classifications. Since we are not testing Ruby translation as we did in Chapter 6,
we focus on higher level experiments, such as how the tool deals with assertion er-
rors, exceptions, null pointers, array bound errors, and arithmetic errors
(namely division by zero). We also generate some experiments to exercise the tools
weaker points, such as dealing with large loops and recursion. We measure the total
number of test cases generated (CASE), the number of pathological4 cases detected
(FAIL), the number of test cases that were generated incorrectly (INV), and ex-
ecution time for all experiments. In total, we measured 12 files on a machine with
a 3.30ghz Intel R© CoreTM i5-2500k CPU running Windows 7 and Mirah 0.0.11 (with
custom modifications). Table 7.6.1 shows our collected data and measurements.

4Pathological cases are test cases that we expect to fail so we can exercise Kiasan’s ability to
automatically detect incorrect program logic. To do this, we craft syntactically valid programs
with intentional errors. This differs from INV , which represents test cases for correct programs
that Kiasan did not properly generate.

92

FILE METH LOC ANN CASE FAIL INV TIME(s)

AddOne.rb add 18 1 1 1 0 6.21
ArrayAccess.rb element 12 1 3 2 1 6.27
Container.rb swap 14 4 5 2 0 6.30
DispatchLookup.rb main 19 3 1 0 0 6.64
Div0.rb test 5 2 2 1 1 5.92
Exceptions.rb try_div0 16 1 1 1 0 6.25
Fibonacci.rb fib 9 2 4 0 0 6.39
Fractal.rb run 45 2 – – – 6.60
IvarState.rb main 16 3 2 1 0 6.30
NullPointer.rb main 11 1 – – – 5.87
Stack.rb use 20 1 1 0 0 6.46
Tak.rb tak 18 4 3 0 0 7.09

Legend
METH Method being tested FAIL Pathological case count

ANN Annotation count INV No. of incorrect tests
CASE Total test case count TIME Tool execution time

Table 7.6.1: Results of RubyCaseGen across various Ruby example files

We note that in some cases, specifically for the loop and recursion experiments, the
tool was unable to generate any test cases (or failed due to program crash); these
failures are due to limitations in Kiasan as discussed in Section 7.5.2. We note them
with a dash (–) in the case count. We also discovered that it was difficult to generate
examples with ample pathological cases for many bug classifications. In at least one
classification (arithmetic errors), Kiasan is limited to linear formulas, which means
division by zero can find a pathological case, but returns the incorrect “success” cases.
We count these scenarios as invalid tests, or INV in the legend.

7.6.2 Annotation Count Comparison

7.6.2.1 Methodology

In order to verify usability, we compare the number of annotations needed to use
RubyCaseGen against the number of annotations needed to use RubyEsc. This is
important, because all Ruby programs will require extra added annotations in order
to be compatible with either tool, and therefore, in order to maximize adoption rates,
it is important for the tool to be as unobtrusive as possible.

Weights. It is important to note that not all annotations are created equal, and that

93

some annotations like @param and @return are much easier to add into a program
than the more complex contract based annotations such as @requires, @ensures,
@modifies, and @invariant. We therefore wish to calculate the weighted value of
each program’s annotation count, using the table below to define the weights of each
annotation based on the perceived difficulty of adding each annotation.

Annotation Weight
@invariant 4
@ensures 3
@requires 2
All Other 1

We note that the weight of specifying a pre-condition is simpler than specifying the
post-condition. This is because pre-conditions do not have to reason about the logic
of the method itself. Practically speaking, they are typically just simple constraints,
such as n > 0, whereas post-conditions must capture the entire logic of the method.
Invariants are even more difficult to specify, since they must capture both the pre and
post states of a loop. Specifying proper loop invariants are complex enough to war-
rant an entire specialization of verification research [Sankaranarayanan et al., 2004,
Flanagan and Qadeer, 2002, Henzinger et al., 2008].

Weighting is important to determine the true cost of these annotations. Because
many of the annotations in RubyCaseGen are removed thanks to inference in Mirah,
and because this can be replicated in RubyEsc with proper inference support, it
is less important to compare the added cost of @param and @return annotations.
We therefore want to compare the annotations that cannot be easily inferred by a
tool.

Translation. The comparison is performed against all of the Ruby programs tested
in the validation of RubyEsc (see Section 6.6). These programs are translated using
the minimum number of annotations required to compile to a valid Mirah program
and be run through RubyCaseGen. We remove @ensures clauses, because they are
not used by this tool, but we maintain @requires clauses because they can be used
to specify useful constraints when performing symbolic execution.

Test Cases Omitted. We note that we do not run our translated programs through
RubyCaseGen. We simply prepare the programs as valid input. We do verify that

94

Total Annotations Weighted Value

Filename RubyEsc RubyCaseGen RubyEsc RubyCaseGen Delta

array.rb 1 0 1 0 -1
boolean.rb 0 0 0 0 –
class_methods.rb 1 0 1 0 -1
closures.rb 2 2 2 2 –
condition.rb 1 0 3 0 -3
contracts.rb 4 0 8 0 -8
dispatch_lookup.rb 6 2 10 2 -8
dynamic_dispatch.rb 13 1 19 1 -18
equality.rb 1 0 1 0 -1
exception.rb 7 1 13 1 -12
exception2.rb 7 0 11 0 -11
literals.rb 1 0 1 0 -1
looping.rb 1 0 1 0 -1
math.rb 7 4 12 5 -7
operators.rb 1 0 1 0 -1
stack.rb 7 2 14 3 -11

Table 7.6.2: Comparison of annotation counts needed for RubyEsc and RubyCaseGen
across various equivalent Ruby example files

all programs can be parsed by our tool (which they can), but we are not interested
in the number of test cases generated by the tool. This is because these modified
programs are often not formulated in such a way that can generate more than one
path condition (and test case). They also rely heavily on contract based assertions
which are not supported by RubyCaseGen.

7.6.2.2 Results

Table 7.6.2 lists the results of our comparison. In most cases, the RubyCaseGen com-
patible version contains fewer annotations than the RubyEsc version. We observe that
the weighted distribution illustrates that although RubyCaseGen requires annotations
in some cases, these annotations are still extremely low in perceived difficulty. This
contrasts with the weighted values of RubyEsc which are amplified by the perceived
difficulty of the annotations.

It should again be noted that the most complex annotations were intentionally re-
moved from the RubyCaseGen compatible programs. Although it can be argued that
this skews the comparison, we believe that this distinction is the entire point of the

95

comparison. The fact that this tool can function without requiring complex specifi-
cations is the exact usability goal that we attempt to meet. This comparison is not
meant to show which tool can perform better verification; such a comparison would be
apples to oranges, as each tool performs a very distinct type of verification. Instead,
this comparison aims to show which tool has a smaller adoption cost in a typical
development workflow. We show that RubyCaseGen has a much lower development
cost due to the smaller number of annotations required.

96

Chapter 8

Related Work

In this chapter we identify ongoing work and technologies in the realms of static
verification, symbolic execution, and runtime testing that relate to our tool Ruby-
Correct, either via the technology or the methodologies and techniques used in the
research. Although there are many static verification and symbolic execution tools
and platforms such as ESC/Java [Flanagan et al., 2002], JML4 [Chalin et al., 2008],
and LOOP [van den Berg and Jacobs, 2001], we focus on those that provide potential
benefit to future research in RubyCorrect. In addition, although most related work
is not directly relevant to dynamic languages, we identify a few that are specifically
related to Ruby.

8.1 Static Verification

8.1.1 Why

Why is an intermediate verification language and static verification (VCGen) tool
[Filliâtre and Marché, 2007]. We mention this research because it is another IVL
supporting many of the features of both Boogie and Pilar, but we did not consider it
in the comparison, mainly due to the need to limit the scope (in time and space) of the
thesis effort and manuscript. Its tooling is built for Java and C VCGen, with back-
end support for many theorem provers including Isabelle, for which there is currently

97

experimental support in Boogie [Böhme et al., 2010] but no support in Pilar. Why is
published under GPLv2, making it open source and easily modifiable.

8.1.2 Diamondback Ruby

Diamondback Ruby (DRuby) is an active research project by the University of Mary-
land in order to attempt to provide type inference to the Ruby language [An et al., 2011].
DRuby is interesting because it provides an annotation syntax that can specify the
behaviour of Ruby’s complete object model, and is more complete than YARD’s
annotation syntax. DRuby also has a fairly complete mapping of annotations for
methods in Ruby’s standard library, which means it has practical usage for real world
code. Applying this more complex annotation syntax could yield better results for
RubyCorrect in the future.

8.1.3 Laser

Laser is a static analysis and lint-like analysis tool for the Ruby programming lan-
guage [Edgar, 2011]. It translates Ruby programs into an intermediate representation
and performs a best-effort type inference based on work by DRuby (above) and Ec-
static [Madsen et al., 2007]. This IR is then used to provide basic analyses such as
incorrect parameter counts on method calls and closures, missing method errors, un-
caught exceptions, as well as dead code and unused variable checking. The tool is
written in Ruby and is available as open source under the AGPLv3 license. The
methodology described in this research for performing type inference on Ruby pro-
grams could eventually be applied to RubyCorrect in order to reduce the number of
annotations required to perform verifications.

98

8.2 Symbolic Execution

8.2.1 Java Path Finder

Java Path Finder (JPF) is a suite of verification tools, including symbolic execution,
for JVM bytecode [Pǎsǎreanu et al., 2008]. JPF is developed by NASA, is written
in Java and is open source under NASA’s NOSA1.3 license. We focus mainly on the
symbolic execution portion of this tool because it is extremely similar in functionality
to Kiasan, as well as RubyCaseGen. Specifically, JPF can also perform test case
generation directly to executable code, except it focuses only on Java code and uses
JUnit. However, since RubyCaseGen performs translation down to Java, it would be
feasible to perform future experiments with JPF as an alternative to Kiasan as the
backend symbolic execution engine.

8.2.2 Valigator

Valigator is another symbolic execution engine for the JVM (though written in Scala)
[Henzinger et al., 2008]. This research is specifically interesting because it can per-
form inference on loop invariants and bounds, which could be used to reduce the most
complex of the annotations required by RubyCorrect. However, the tool takes input
in a custom C-like language, and therefore would be more difficult to integrate into
our architecture. Valigator is also not available under an open source license and is
only available as a binary, but the source is available under academic-only licenses on
request.

8.3 Runtime and Fuzz Testing

8.3.1 Heckle

Heckle is a runtime testing framework for the Ruby language [Clark and Davis, 2012].
It performs fuzz testing, which introduces random data into program inputs to de-
tect program faults [Godefroid et al., 2008]. It is written in Ruby and available under

99

the MIT open source license. Heckle works specifically by generating an AST of a
given Ruby program and performing controlled mutations on certain nodes to, for
instance, replace literals with random values, and swap if-then-else condition bod-
ies. We mention this work because it is similar to the symbolic-to-concrete value
resolution done by a SymExec tool like Kiasan. However, unlike Kiasan, Heckle
requires pre-existing tests with high path coverage to validate whether a change de-
tected a program fault, whereas SymExec can generate those test cases from program
execution alone. One benefit of a tool like Heckle is that because it executes at run-
time, it inherently supports all of the functionality of Ruby, even its most dynamic
behaviours. It could therefore be interesting to see a combination of Heckle and
RubyCorrect could improve coverage of the Ruby language while still maintaining its
practical benefits.

100

Chapter 9

Conclusion and Future Work

Throughout this thesis we discussed the methodologies and techniques to perform-
ing static verification of Ruby programs using extended static checking and sym-
bolic execution through two novel tools, RubyEsc and RubyCaseGen, respectively. In
this chapter, we discuss our findings and our vision for improving the RubyCorrect
toolchain in the future.

9.1 Extended Static Checking with Ruby

The initial hypothesis in attempting ESC for a dynamic language like Ruby was
that even a dynamic language should have some identifiable constant properties.
Chapter 3 results are in support of this hypothesis. The experiment conducted to
test this hypothesis involved building the RubyEsc component of the RubyCorrect
toolchain and using this tool to observe whether a Ruby program could in fact be
translated and verified as a static program.

Overall, the results from RubyEsc were positive. We were able to verify simple-yet-
idiomatic programs on a small scale without too many technical issues. We were able
to verify programs using Ruby’s basic object model, dynamic dispatch, exception
handling, and closures. Translating the syntax from Ruby to Boogie proved to not
be overly difficult, although there are some Ruby features such as local or parameter

101

variable containers supporting multiple orthogonal types that are not yet covered by
our tool and would require more work to properly model in Boogie.

One issue with our tests was that we were heavily limited by our minimal model
of the full Ruby standard library. Modeling the full standard library would be very
time consuming, as Ruby’s stdlib is quite large. The core library (of Ruby 1.9.3)
alone contains 17 modules, 87 classes, and 1603 methods—each method would require
contracts, which are nontrivial to write—and that is just the core library. The rest
of the standard library (of which libraries like thread are a part) is much larger. (To
give a measure of the magniture of this effort, the JML specifications of some of the
standard Java libraries took several person-years to develop.)

Speaking more generally, we also found that writing good specifications for Ruby
programs is difficult, though this difficulty is not at all limited to Ruby. ESC in
general is no easy task, and it is certainly debatable how much effort the Ruby
community would be willing to devote to writing these relatively costly specifications
when runtime testing is so much cheaper. Nevertheless, we have shown that with
good specifications, our tool can provide a reliable and effective means of verifying
program logic. In other words, we have shown that, for a subset of Ruby, it is possible
to have statically verifiable programs in a dynamic language with extremely minor
program modifications.

9.2 Symbolic Execution with Ruby

One of the appeals of symbolic execution is that it allows us to inspect program
state before and after the execution for a wide range of initial conditions. In other
words, symbolic execution gives us the ability to determine inputs that will cause a
program to pass or fail. This is extremely powerful, especially in the Ruby community,
which relies heavily on test-driven development (TDD). The ability to generate test
cases is the feature of RubyCaseGen that provides real potential impact for the Ruby
community, as there is currently no other tool that can do this.

Our initial results with RubyCaseGen are minimal, but promising. We have shown
that there are some classifications of programs that could be run through our tool

102

to create useful test cases which could theoretically improve QA and productivity,
though a larger case study (as future work) would be needed to confirm this. We
have also shown that using this tool is significantly easier than using a full static
checker like RubyEsc (see Section 7.6.2). This is important, because it is a key goal
of the tool. We were not able to adequately check whether the tool could be used
to detect “hidden” bugs, but this would require our tool to be able to handle large
production-ready codebases, which we cannot yet do.

9.3 Future Work

Improving Coverage. The most impactful improvement that could be made to
RubyCorrect would be to increase the support for various features of Ruby. We
acknowledged from the start that we omit support for some very basic functionalities
of Ruby, but we want to improve this support. Specifically, we would like to see a more
complete model of Ruby’s standard library for RubyEsc to use in its verification, and
we would like to see proper handling of arrays and standard libraries in RubyCaseGen,
although the latter would require moving away from Java as the underlying target
language.

Case Studies. Once the tools are at a point where they can process full real world
programs, it would be possible to perform a practical case study of using extended
static checking to leverage design-by-contract programming in Ruby, as well as how
symbolic execution can be used to find defects and generate test cases for existing
software systems. This would be the ultimate test of RubyCorrect’s practicality.

Other Experiments. Of course, there are different avenues that can be taken
to reach this ultimate goal. Some of these new avenues were briefly addressed in
Chapter 8. Specifically, tools like Java Path Finder, Valigator can be experimented
with to potentially improve the coverage of ruby_case_gen (as mentioned, we had
difficulties testing code generated by Mirah through Kiasan, perhaps another symbolic
execution engine would perform better). We can also look at improving type inference
and type specifications in general by following the lead of projects like DRuby and
Laser. Finally, there are some potential lessons to be learned from runtime testing

103

that can be merged into RubyCorrect for a hybrid approach to static verification—
symbolic execution mostly tries to do this, but perhaps we can leverage more of the
very versatile Ruby runtime.

9.4 Conclusion

We have seen that Ruby can in fact be translated into a multitude of static forms
given a very minimal set of program annotations. The translation to Mirah is most
striking—we have shown that a program written entirely in Ruby syntax can be
translated to a purely static Java program with only a handful of annotations. Fur-
thermore, we show through our novel tool, RubyCorrect, that there are practical
benefits to performing design-by-contract as well as the potential QA and productiv-
ity benefits in generating test cases for Ruby programs. In essence, our tool, along
with our method of annotating Ruby programs, shows that static analysis is a viable
avenue of research for a dynamic language such as Ruby. Rather than focusing on
improving type inference as a basis to prove that Ruby can be verified, we use an-
notations as training wheels to show that annotated Ruby can be verified, and those
verifications can prove useful. We leave room for research in dynamic language type
inference to fill in the gaps and remove the requirement for some of the extra type
annotations. We believe that once this research moves forward, it will eventually be
possible, using the techniques outlined in this thesis, to perform static analysis on
completely unmodified Ruby programs.

104

Bibliography

[An et al., 2011] Jong-hoon David An, Avik Chaudhuri, Jeffrey S. Foster, and Michael
Hicks. Dynamic inference of static types for Ruby. In ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), Austin, TX, USA,
January 2011.

[Anderson and Drossopoulou, 2006] C. Anderson and S. Drossopoulou. Type infer-
ence for Javascript. PhD thesis, Department of Computing, Imperial College Lon-
don, March 2006.

[Aycock, 2000] J. Aycock. Aggressive type inference. In Proceedings of the 8th Inter-
national Python Conference, pages 11–20, 2000.

[Barnes, 2003] John Barnes. High Integrity Software – the SPARK Approach to Safety
and Security. Addison-Wesley, 2003.

[Barnett and Leino, 2005] Michael Barnett and K. Rustan M. Leino. Weakest-
precondition of unstructured programs. In Michael D. Ernst and Thomas P. Jensen,
editors, PASTE, pages 82–87. ACM, 2005.

[Barnett et al., 2005] Michael Barnett, K. Rustan M. Leino, and Wolfram Schulte.
The Spec# programming system: An overview. In Bertrand Meyer and Jim Wood-
cock, editors, Proceedings of the International Workshop on the Construction and
Analysis of Safe, Secure and Interoperable Smart devices (CASSIS 2004), volume
4171 of Lecture Notes in Computer Science, pages 49–69. Springer, 2005.

[Barrett and Tinelli, 2007] Clark Barrett and Cesare Tinelli. CVC3. In Damm and
Hermanns [2007], pages 298–302.

105

[Belt et al., 2011] Jason Belt, John Hatcliff, Robby, Patrice Chalin, David Hardin,
and Xianghua Deng. Bakar kiasan: Flexible contract checking for critical systems
using symbolic execution. In Mihaela Gheorghiu Bobaru, Klaus Havelund, Ger-
ard J. Holzmann, and Rajeev Joshi, editors, NASA Formal Methods, volume 6617
of Lecture Notes in Computer Science, pages 58–72. Springer, 2011.

[Böhme et al., 2010] Sascha Böhme, Michal Moskal, Wolfram Schulte, and Burkhart
Wolff. HOL-Boogie - an interactive prover-backend for the verifying C compiler.
J. Autom. Reasoning, 44(1-2):111–144, 2010.

[Cartwright and Fagan, 2004] Robert Cartwright and Mike Fagan. Soft typing. SIG-
PLAN Not., 39:412–428, April 2004.

[Cartwright and Felleisen, 1996] Robert Cartwright and Matthias Felleisen. Program
verification through soft typing. ACM Computing Surveys, 28:349–351, June 1996.

[Chalin et al., 2008] P. Chalin, P. James, and G. Karabotsos. JML4: Towards an
industrial grade IVE for Java and next generation research platform for JML.
Verified Software: Theories, Tools, Experiments, pages 70–83, 2008.

[Chrząszcz et al., 2009] J. Chrząszcz, M. Huisman, and A. Schubert. BML and Re-
lated Tools. In Formal Methods for Components and Objects, pages 278–297.
Springer, 2009.

[Clark and Davis, 2012] Kevin Clark and Ryan Davis. Heckle. http://ruby.sadi.

st/Heckle.html (accessed July 30 2012), 2012.

[Cohen et al., 2009] Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinen-
bach, Michal Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies. Vcc:
A practical system for verifying concurrent c. In Stefan Berghofer, Tobias Nipkow,
Christian Urban, and Makarius Wenzel, editors, Theorem Proving in Higher Order
Logics, volume 5674 of Lecture Notes in Computer Science, pages 23–42. Springer
Berlin / Heidelberg, 2009. 10.1007/978-3-642-03359-9_2.

[Damm and Hermanns, 2007] Werner Damm and Holger Hermanns, editors. Proceed-
ings of teh 19th International Conference on Computer Aided Verification (CAV
2007), volume 4590 of Lecture Notes in Computer Science. Springer, 2007.

106

http://ruby.sadi.st/Heckle.html
http://ruby.sadi.st/Heckle.html

[Deng et al., 2006] Xianghua Deng, Robby, and John Hatcliff. Kiasan: A verifica-
tion and test-case generation framework for Java based on symbolic execution. In
ISoLA, page 137. IEEE, 2006.

[Deng et al., 2007a] Xianghua Deng, Robby, and J. Hatcliff. Kiasan/kunit: Auto-
matic test case generation and analysis feedback for open object-oriented systems.
In Testing: Academic and Industrial Conference Practice and Research Techniques
- MUTATION, 2007. TAICPART-MUTATION 2007, pages 3 –12, sept. 2007.

[Deng et al., 2007b] Xianghua Deng, Robby, and John Hatcliff. Towards a case-
optimal symbolic execution algorithm for analyzing strong properties of object-
oriented programs. Software Engineering and Formal Methods, IEEE International
Conference on, 0:273–282, 2007.

[Deng et al., 2012] Xianghua Deng, Jooyong Lee, and Robby. Efficient and formal
generalized symbolic execution. Autom. Softw. Eng., 19(3):233–301, 2012.

[Dijkstra, 1975] E.W. Dijkstra. Guarded commands, nondeterminacy and formal
derivation of programs. Communications of the ACM, 18(8):453–457, 1975.

[Dolby, 2005] J. Dolby. Using static analysis for IDE’s for dynamic languages. In The
Eclipse Languages Symposium, 2005.

[Dutertre and de Moura, 2006] B. Dutertre and L. de Moura. The Yices SMT solver.
Tool paper at http://yices.csl.sri.com/tool-paper.pdf, August 2006.

[ECMA, 2009] ECMA. Ecma-262: Ecmascript language specification, 5th edi-
tion. http://www.ecma-international.org/publications/files/ECMA-ST/

ECMA-262.pdf, December 2009.

[Edgar, 2011] Michael Joseph Edgar. Static analysis for Ruby in the presence of
gradual typing. Technical Report TR2011-686, Dartmouth College, 2011.

[Filliâtre and Marché, 2007] Jean-Christophe Filliâtre and Claude Marché. The
why/krakatoa/caduceus platform for deductive program verification. In Damm
and Hermanns [2007], pages 173–177.

[Flanagan and Qadeer, 2002] Cormac Flanagan and Shaz Qadeer. Predicate abstrac-
tion for software verification. SIGPLAN Not., 37(1):191–202, January 2002.

107

http://yices.csl.sri.com/tool-paper.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf

[Flanagan et al., 2002] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge,
Greg Nelson, James B. Saxe, and Raymie Stata. Extended static checking for
java. SIGPLAN Not., 37(5):234–245, May 2002.

[Flanagan, 2005] D. Flanagan. Java in a Nutshell. O’Reilly Media, 2005.

[Frank, 2005] B. A. Frank. The Fantom programming language. http://www.

fantom.org/, 2005.

[Furr et al., 2009a] Michael Furr, Jong-hoon (David) An, and Jeffrey S. Foster.
Profile-guided static typing for dynamic scripting languages. SIGPLAN Not.,
44:283–300, October 2009.

[Furr et al., 2009b] Michael Furr, Jong-hoon (David) An, Jeffrey S. Foster, and
Michael Hicks. Static type inference for Ruby. In Proceedings of the 2009 ACM
symposium on Applied Computing, SAC ’09, pages 1859–1866, New York, NY,
USA, 2009. ACM.

[Gal et al., 2009] Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David
Mandelin, Mohammad R. Haghighat, Blake Kaplan, Graydon Hoare, Boris
Zbarsky, Jason Orendorff, Jesse Ruderman, Edwin W. Smith, Rick Reitmaier,
Michael Bebenita, Mason Chang, and Michael Franz. Trace-based just-in-time
type specialization for dynamic languages. In Proceedings of the 2009 ACM SIG-
PLAN conference on Programming language design and implementation, PLDI ’09,
pages 465–478, New York, NY, USA, 2009. ACM.

[Godefroid et al., 2008] Patrice Godefroid, Michael Y. Levin, and David A. Molnar.
Automated whitebox fuzz testing. In Proceedings of the Network and Distributed
System Security Symposium. The Internet Society, 2008.

[Grigore, 2007] Radu Grigore. Efficiency of Extended Static Checkers. Technical
report, PhD Research Plan. UCD Dublin, December 2007.

[Grigore, 2009] Radu Grigore. FreeBoogie. http://code.google.com/p/

freeboogie, July 2009.

[Havelund and Pressburger, 2000] K. Havelund and T. Pressburger. Model checking
Java programs using Java pathfinder. International Journal on Software Tools for

108

http://www.fantom.org/
http://www.fantom.org/
http://code.google.com/p/freeboogie
http://code.google.com/p/freeboogie

Technology Transfer (STTT), 2(4):366–381, 2000.

[Henry, 2006] Kevin Henry. A crash overview of Groovy. ACM Crossroads, 12(3):5,
2006.

[Henzinger et al., 2008] Thomas Henzinger, Thibaud Hottelier, and Laura KovÃącs.
Valigator: A verification tool with bound and invariant generation. In Iliano
Cervesato, Helmut Veith, and Andrei Voronkov, editors, Logic for Programming,
Artificial Intelligence, and Reasoning, volume 5330 of Lecture Notes in Computer
Science, pages 333–342. Springer Berlin / Heidelberg, 2008. 10.1007/978-3-540-
89439-1_24.

[Hickey, 2008] Rich Hickey. The Clojure programming language. In Johan Brichau,
editor, DLS, page 1. ACM, 2008.

[Holkner and Harland, 2009] Alex Holkner and James Harland. Evaluating the dy-
namic behaviour of python applications. In Proceedings of the Thirty-Second Aus-
tralasian Conference on Computer Science - Volume 91, ACSC ’09, pages 19–28,
Darlinghurst, Australia, Australia, 2009. Australian Computer Society, Inc.

[Huang et al., 2004] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai,
Der-Tsai Lee, and Sy-Yen Kuo. Securing web application code by static analysis
and runtime protection. In Proceedings of the 13th international conference on
World Wide Web, WWW ’04, pages 40–52, New York, NY, USA, 2004. ACM.

[Huisman and Jacobs, 2000] M. Huisman and B. Jacobs. Java program verification
via a Hoare logic with abrupt termination. Fundamental Approaches to Software
Engineering, pages 284–303, 2000.

[Hunt et al., 2006] J.J. Hunt, F.B. Siebert, P.H. Schmitt, and I. Tonin. Provably
correct loops bounds for realtime java programs. JTRES, 6:162–169, 2006.

[James et al., 2008] P.R. James, P. Chalin, L. Giannas, and G. Karabotsos. Dis-
tributed, multi-threaded verification of Java programs. In Seventh International
Workshop on Specification and Verification of Component-Based Systems, page 3.
SAVCBS, 2008.

109

[King, 1976] James C. King. Symbolic execution and program testing. Commun.
ACM, 19:385–394, July 1976.

[Kramer, 1999] Douglas Kramer. API documentation from source code comments: a
case study of Javadoc. In Proceedings of the 17th annual international conference
on Computer documentation, SIGDOC ’99, pages 147–153, New York, NY, USA,
1999. ACM.

[Kramer, 2001] D. Kramer. How to write doc comments for Javadoc. Javadoc
Home Page: http://jsp2. java. sun/products/jdk/javadoc/writingdoccomments/in-
dex. html, 2001.

[Leavens et al., 1999] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A no-
tation for detailed design. In Haim Kilov, Bernhard Rumpe, and Ian Simmonds, ed-
itors, Behavioral Specifications of Businesses and Systems, pages 175–188. Kluwer
Academic Publishers, Boston, 1999.

[Leavens et al., 2006] G.T. Leavens, A.L. Baker, and C. Ruby. Preliminary design
of JML: A behavioral interface specification language for Java. ACM SIGSOFT
Software Engineering Notes, 31(3):1–38, 2006.

[Leavens et al., 2011] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon,
Clyde Ruby, David R. Cok, Peter Müller, Joseph Kiniry, Patrice Chalin, and
Daniel M. Zimmerman. JML Reference Manual. Available from http://www.

jmlspecs.org, May 2011.

[Leino, 1998] K. Rustan M. Leino. Extended static checking. In David Gries and
Willem P. de Roever, editors, PROCOMET, volume 125 of IFIP Conference Pro-
ceedings, pages 1–2. Chapman & Hall, 1998.

[Leino, 2008] K. Rustan M. Leino. This is Boogie 2. Technical Report KRML 178,
Microsoft Research, June 2008. Available from http://research.microsoft.com/

en-us/um/people/leino/papers/krml178.pdf.

[Leino, 2010a] K. Rustan M. Leino. Dafny: An automatic program verifier for func-
tional correctness. In Edmund M. Clarke and Andrei Voronkov, editors, Logic
for Programming, Artificial Intelligence, and Reasoning (LPAR), volume 6355 of
Lecture Notes in Computer Science, pages 348–370. Springer, 2010.

110

http://www.jmlspecs.org
http://www.jmlspecs.org
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf

[Leino, 2010b] K. Rustan M. Leino. Verifying concurrent programs with Chalice.
In Gilles Barthe and Manuel V. Hermenegildo, editors, VMCAI, volume 5944 of
Lecture Notes in Computer Science, page 2. Springer, 2010.

[Liang, 1999] S. Liang. The Java native interface: programmer’s guide and specifica-
tion. Addison-Wesley Professional, 1999.

[Madsen et al., 2007] M. Madsen, P. Sørensen, and K. Kristensen. Ecstatic-type in-
terference for Ruby using the cartesian product algorithm. Master’s thesis, Aalborg
University, 2007.

[Marvie, 2008] R. Marvie. An introduction to test-driven code generation. The
Python Papers, 2(4), 2008.

[Meunier, 1995] R. Meunier. The pipes and filters architecture. In Pattern languages
of program design, pages 427–440. ACM Press/Addison-Wesley Publishing Co.,
1995.

[Microsoft Research, 2012] Microsoft Research. The HAVOC property checker. http:

//research.microsoft.com/en-us/projects/havoc/, 2012.

[Mount et al., 2004] S. N. I. Mount, R. M. Newman, R. J. Low, and A. Mycroft.
Exstatic: a generic static checker applied to documentation systems. In Proceedings
of the 22nd annual international conference on Design of communication: The
engineering of quality documentation, SIGDOC ’04, pages 52–57, New York, NY,
USA, 2004. ACM.

[Odersky et al., 2008] Martin Odersky, Lex Spoon, and Bill Venners. Programming
in Scala: A Comprehensive Step-by-step Guide. Artima Incorporation, USA, 1st
edition, 2008.

[Odersky, 2007] M. Odersky. The Scala language specification, version 2.7. Program-
ming Methods Laboratory, EPFL, 2007.

[Pǎsǎreanu et al., 2008] Corina S. Pǎsǎreanu, Peter C. Mehlitz, David H. Bushnell,
Karen Gundy-Burlet, Michael Lowry, Suzette Person, and Mark Pape. Combining
unit-level symbolic execution and system-level concrete execution for testing nasa

111

http://research.microsoft.com/en-us/projects/havoc/
http://research.microsoft.com/en-us/projects/havoc/

software. In Proceedings of the 2008 international symposium on Software testing
and analysis, ISSTA ’08, pages 15–26, New York, NY, USA, 2008. ACM.

[Ramakrishnan and Rehof, 2008] C. R. Ramakrishnan and Jakob Rehof, editors.
Proceedings of the 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2008), volume 4963 of Lecture
Notes in Computer Science. Springer, 2008.

[Richards et al., 2010] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan
Vitek. An analysis of the dynamic behavior of javascript programs. In Proceed-
ings of the 2010 ACM SIGPLAN conference on Programming language design and
implementation, PLDI ’10, pages 1–12, New York, NY, USA, 2010. ACM.

[Robby et al., 2003] Robby, Matthew B. Dwyer, and John Hatcliff. Bogor: An ex-
tensible and highly-modular model checking framework. In Proceedings of the 9th
European Software Engineering Conference held jointly with the 11th ACM SIG-
SOFT Symposium on the Foundations of Software Engineering, pages 267–276,
2003.

[Robby, 2007] Robby. Sireum: A Software Analysis Platform. SAnToS, Kansas State
Univerity, February 2007. Available from http://sireum.org.

[Ruby on Rails, 2010] Ruby on Rails. Ruby on Rails. http://www.rubyonrails.org

(accessed November 25 2010), 2010.

[Ruby, 2010] Ruby. About Ruby. http://ruby-lang.org/en/about, 2010.

[Saeed, 2008] M. Saeed & F. Saeed. Systematic review of verification & validation
in dynamic languages. Master’s thesis, Blekinge Institute of Technology, Sweden,
August 2008.

[Salib, 2004] M. Salib. Starkiller: A static type inferencer and compiler for Python.
PhD thesis, Massachusetts Institute of Technology, May 2004.

[Sankaranarayanan et al., 2004] Sriram Sankaranarayanan, Henny Sipma, and Zohar
Manna. Non-linear loop invariant generation using Gröbner bases. In POPL, pages
318–329. ACM, 2004.

112

http://sireum.org
http://www.rubyonrails.org
http://ruby-lang.org/en/about

[Saxena et al., 2010] Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao,
Stephen McCamant, and Dawn Song. A symbolic execution framework for
javascript. In Proceedings of the 2010 IEEE Symposium on Security and Privacy,
SP ’10, pages 513–528, Washington, DC, USA, 2010. IEEE Computer Society.

[Segal and Chalin, 2012] Loren Segal and Patrice Chalin. A comparison of inter-
mediate verification languages: Boogie and Sireum/Pilar. In Proceedings of the
4th International Conference on Verified Software: Theories, Tools, Experiments,
pages 130–145, Philadelphia, PA, USA, 2012.

[Segal, 2012] Loren Segal. YARD: Yay! A Ruby Documentation Tool. http://

yardoc.org (accessed July 30 2012), 2012.

[Tateishi et al., 2006] Takaaki Tateishi, Hisashi Miyashita, Kouichi Ono, and Shin
Saito. Automated verification tool for DHTML. Automated Software Engineering,
International Conference on, 0:363–364, 2006.

[Tschannen et al., 2011] Julian Tschannen, Carlo A. Furia, Martin Nordio, and
Bertrand Meyer. Verifying Eiffel programs with Boogie. CoRR, abs/1106.4700,
2011.

[van den Berg and Jacobs, 2001] Joachim van den Berg and Bart Jacobs. The LOOP
compiler for Java and JML. In TACAS, pages 299–312, 2001.

[van Heesch, 2011] Dimitri van Heesch. Doxygen. http://doxygen.org, 2011.

[Working With Rails, 2010] Working With Rails. High Profile Organisations using
Rails. http://www.workingwithrails.com/high-profile-organisations (ac-
cessed November 25 2010), 2010.

[Xie and Aiken, 2006] Yichen Xie and Alex Aiken. Static detection of security vul-
nerabilities in scripting languages. In 15th USENIX Security Symposium, pages
179–192, July 2006.

113

http://yardoc.org
http://yardoc.org
http://doxygen.org
http://www.workingwithrails.com/high-profile-organisations

Appendix A

Modeling Ruby Arrays in Boogie

114

@local [Array<Fixnum>] arr
def main

arr = [1,2,3]
assert arr[1] == 2

end

(a) Ruby

procedure #main$$ROOTCLASS(self: VALUE)
returns ($result: VALUE, $exception: VALUE)
modifies $heap; {

var arr: VALUE;
var ARRAY$1: VALUE;
var retval$1: VALUE;
var retval$2: VALUE;
var retval$3: VALUE;
var retval$4: VALUE;
var retval$5: VALUE;
var retval$6: VALUE;
$exception := $nil;

// arr = [1,2,3]:
call retval$1, $exception := Array#initialize$Array(ARRAY$1);
call retval$2, $exception := Array#push$Array$Fixnum(ARRAY$1, 1);
call retval$3, $exception := Array#push$Array$Fixnum(ARRAY$1, 2);
call retval$4, $exception := Array#push$Array$Fixnum(ARRAY$1, 3);
arr := ARRAY$1;

// assert arr[1] == 2:
call retval$5, $exception := Array#$aref$Array$Fixnum(arr, 1);
call retval$6, $exception := Object#$eq$Object$Fixnum(retval$5, 2)

;
assert retval$6 == $true;

rescueBlock:
}

(b) Boogie

Figure A.0.1: Translating array initialization and access to Boogie

115

Appendix B

Translating Closures from Ruby to
Boogie

@param [Fixnum] n
def add(n)

yield(n + 3)
end

def main
x = 1
@ensures x == old(x) + y
add(2) do |y|

x += y
end
assert x == 6

end

(a) Ruby

116

procedure #add$$ROOT$Fixnum(self: VALUE, n: VALUE)
returns ($result: VALUE, $exception: VALUE)
modifies $heap;

{
$exception := $nil;

rescueBlock:
}

procedure {:inline 100} #add$$ROOT$Fixnum$lambda$#main$$ROOT$1(
self: VALUE, n: VALUE, self$lambda$in: VALUE, x$lambda$in: VALUE)

returns ($result: VALUE, $exception: VALUE, x$lambda$out: VALUE)
modifies $heap;

{
var y$lambda$out: VALUE;
var retval$1: VALUE;
var retval$2: VALUE;
$exception := $nil;
x$lambda$out := x$lambda$in;
call retval$1, $exception := Fixnum#$add$Fixnum$Fixnum(n, 3);
y$lambda$out := retval$1;
call retval$2, $exception :=

Fixnum#addFixnum$Object(x$lambdaout, ylambda$out);
x$lambda$out := retval$2;
assert x$lambda$out == x$lambda$in + y$lambda$out;

rescueBlock:
}

procedure #main$$ROOT(self: VALUE)
returns ($result: VALUE, $exception: VALUE)
modifies $heap;

{
var x: VALUE;
var retval$1: VALUE;
var retval$2: VALUE;
$exception := $nil;
x := 1;
call retval$1, $exception, x :=

#add$$ROOT$Fixnum$lambda$#main$$ROOT$1(self, 2, self, x);
call retval$2, $exception := Object#$eq$Fixnum$Fixnum(x, 6);
assert retval$2 == $true;

rescueBlock:
}

(b) Boogie

117

Appendix C

RubyEsc Preamble

preamble.rb
@core
class Object

@return [self]
@ensures "$result != $nil"
def self.new

object = allocate
object.initialize
return object

end

@return [self]
@ensures "$result != $nil"
def self.allocate; end

def initialize; end

@param [Object] other
@ensures "self == other ==> $result == $true"
@ensures "self != other ==> $result == $false"
@return [Boolean]
@pure
def ==(other) end

@param [Object] other
@ensures "self != other ==> $result == $true"
@ensures "self == other ==> $result == $false"
@return [Boolean]

118

@pure
def !=(other) end

@ensures "self == $nil ==> $result == $true"
@return [Boolean]
@pure
def nil?; end

end

@core
class Fixnum < Object

@param [Fixnum] other
@ensures "$result == self + other"
@return [Fixnum]
@pure
def +(other) end

@param [Fixnum] other
@ensures "$result == self - other"
@return [Fixnum]
@pure
def -(other) end

@param [Fixnum] other
@ensures "$result == self * other"
@return [Fixnum]
@pure
def *(other) end

@param [Fixnum] other
@ensures "$result == self / other"
@return [Fixnum]
@pure
def /(other) end

@param [Fixnum] other
@ensures "$result == self % other"
@return [Fixnum]
@pure
def %(other) end

@param [Fixnum] other
@ensures "self < other ==> $result == $true"
@return [Boolean]
@pure
def <(other) end

119

@param [Fixnum] other
@ensures "self > other ==> $result == $true"
@return [Boolean]
@pure
def >(other) end

@param [Fixnum] other
@ensures "self <= other ==> $result == $true"
@return [Boolean]
@pure
def <=(other) end

@param [Fixnum] other
@ensures "self >= other ==> $result == $true"
@return [Boolean]
@pure
def >=(other) end

@ensures "$result == -self"
@return [Fixnum]
@pure
def -@; end

@ensures $result == -self if self < 0
@ensures $result == self if self >= 0
@return [Fixnum]
@pure
def abs; end

@param [Fixnum] n
@requires n >= self
@return [Fixnum]
def upto(n)

i = self
@invariant (i - old(i)).abs <= 1
while i <= n

yield(i)
i += 1

end
self

end

@param [Fixnum] n
@requires n <= self
@return [Fixnum]
def downto(n)

i = self

120

@invariant (i - old(i)).abs <= 1
while i >= n

yield(i)
i -= 1

end
self

end
end

@core
class Boolean

@ensures "self == $true ==> $result == $false"
@ensures "self == $false ==> $result == $true"
@return [Boolean]
@pure
def !; end

end

@core
class TrueClass < Boolean
end

@core
class FalseClass < Boolean
end

@core
class Exception < Object; end

@core
class RuntimeException < Exception; end

@core
class NilClass

@ensures "$result == $true"
@pure
def !; end

end

@ivar [Array<$T>] elements
@ivar [Fixnum] size
@core
class Array < Object

@ensures "(forall x:VALUE :: $arrget($heap[self][Array$elements
], x) == $nil)"

@ensures @size == 0
@modifies @size

121

@modifies @elements
def initialize; end

@param [$T] element
@ensures "$arrget($heap[self][Array$elements], old($heap[self][

Array$size])) == element"
@ensures "(forall x:VALUE :: x != old($heap[self][Array$size])

==> $arrget($heap[self][Array$elements], x) == old($arrget(
$heap[self][Array$elements], x)))"

@ensures @size == old(@size) + 1
@modifies @elements
@modifies @size
def push(element) end

@ensures @size == old(@size) - 1
@ensures "$result == old($arrget($heap[self][Array$elements],

$heap[self][Array$size] - 1))"
@ensures "$arrget($heap[self][Array$elements], $heap[self][

Array$size] - 1) == $nil"
@ensures "(forall x:VALUE :: x != $heap[self][Array$size] ==>

$arrget($heap[self][Array$elements], x) == old($arrget($heap[
self][Array$elements], x)))"

@modifies @elements
@modifies @size
@return [$T]
def pop; end

@param [Fixnum] idx
@ensures "$result == $arrget($heap[self][Array$elements], idx)"
@ensures $result == nil if idx >= @size
@return [$T]
@pure
def [](idx) end

@param [Fixnum] idx
@param [$T] value
@ensures "$arrget($heap[self][Array$elements], idx) == value"
@ensures $result == value
@ensures "(forall x:VALUE :: x != idx ==> $arrget($heap[self][

Array$elements], x) == old($arrget($heap[self][Array$elements
], x)))"

@ensures @size == idx+1 if idx+1 > @size
@modifies @elements
def []=(idx, value) end

@ensures $result == @size
@return [Fixnum]

122

@pure
def size; end

@local [Fixnum] i
def each

i = 0
@invariant i >= 0
while i < @size

yield(@elements[i])
i += 1

end
end

@local [Fixnum] i
def each_with_index

i = 0
@invariant i >= 0
while i < @size

yield(@elements[i], i)
i += 1

end
end

end

123

Appendix D

RubyEsc Example Programs

array.rb
@local [Array<Fixnum>] x
def array_test

x = []
assert x.size == 0
assert x[0] == nil
x.push 1
assert x.size == 1
assert x[0] == 1
assert x[1] == nil
x.pop
assert x.size == 0

end

def array_test2
x = []
assert x.size == 0
x.push 1
assert x[0] == 1
assert x.size == 1
x.push 2
assert x[0] == 1
assert x.size == 2
x.push 3
assert x[0] == 1
assert x[1] == 2
assert x[2] == 3
assert x.size == 3

124

assert x.pop == 3
assert x.size == 2
assert x[2].nil?
assert x[1] == 2
assert x[0] == 1
assert x.pop == 2
assert x.pop == 1
assert x.pop == nil
assert x.pop == nil
assert x.pop == nil
assert x.pop == nil
assert x.pop == nil
assert x.size == 0
assert x.size == -3

end

def array_test3
x = [1,2,3]
assert x[0] == 1
assert x[1] == 2
assert x[2] == 3

end

boolean.rb
def test_truthy

truthy = false
assert truthy

end

def test_truthy2
truthy2 = true
assert truthy2

end

class_methods.rb
class A

@return [A]
def self.creator

return new
end

end

def main

125

A.creator
end

closures.rb
@param [Fixnum] n
def add(n)

yield(n + 3)
end

def main
x = 1
@ensures x == old(x) + y
add(2) do |y|

x += y
end
assert x == 6

end

condition.rb
@ensures $result == 9
def if_then

x = 10
if x == 2

x = 5
else

x = 9
end
return x

end

contracts.rb
class Math

@return [Fixnum]
@ensures $result == 100
def one_hundred; return 100 end

@return [Fixnum]
@ensures $result == one_hundred + 100
def two_hundred; return 200 end

end

126

dispatch_lookup.rb
class A

@param [Fixnum] n
@return [Fixnum]
@ensures $result == n + 5
def five(n)

return n + 5
end

end

class B < A
@ensures $result == 10
@return [Fixnum]
def run

return self.five(5)
end

end

class C < B; end

class D
@param [C] c
def run_all(c)

assert c.run == 10
end

end

def main
D.new.run_all(C.new)

end

dynamic_dispatch.rb
class Base

@return [Fixnum]
@ensures $result == 5
@pure
def foo

return 5
end

end

class A < Base
@return [Fixnum]
@ensures $result == 10
@pure

127

def foo
return 10

end
end

class B < A
@param [Base] object
@return [Fixnum]
@ensures $result == object.foo
@pure
def bar(object)

return object.foo
end

end

@local [B] b
@local [A] a
@local [Base] base
def main

b = B.new
a = A.new
base = Base.new
assert b.bar(a) == 10
assert b.bar(base) == 5

end

equality.rb
def equality_test; assert !false end
def equality_test2; assert !true end

@local [Boolean] x
def equality_test3

x = !true
assert x

end

def equality_test4
assert true == !true

end

exception.rb
class DivideByZeroException < Exception
end

128

class Div0
@param [Fixnum] n
@return [Fixnum]
@ensures $exception != nil if n == 0
@ensures $result == 10 / n if n != 0
@raise [DivideByZeroException]
def ten_div_by(n)

raise DivideByZeroException if n == 0
return 10 / n

end
end

class Main
@return [Fixnum]
@local [Div0] div
@ensures $result == 0
def try_div0

div = Div0.new
div.ten_div_by(0)
return 1

rescue
return 0

end
end

exception2.rb
class A

@raise [Exception]
def foo

raise Exception
end

end

@ivar [Fixnum] counter
class B

@local [A] a
@modifies @counter
def main

@counter = 0
call1
assert @counter == 2

end

@ensures @counter == old(@counter) + 2

129

@modifies @counter
def call1

call2
@counter += 1

end

@ensures @counter == old(@counter) + 1
@modifies @counter
def call2

@counter += 1
end

end

literals.rb
@ivar [String] otherval2
class Stack

def initialize
@otherval = "HELLO"
@arr = []
@arr_size = 0

end
end

looping.rb
def loop

j = 9
i = 0
@invariant j + i == 9
while i < 9

j = 9 - i
end

end

@local [Fixnum] counter
def loop2

counter = 0
@local [Fixnum] x
[1,2,3].each {|x| counter += x }
assert counter == 6

end

def loop3
counter = 0

130

@local [Fixnum] v
[1,2,3].each_with_index {|x,v| counter += v }

assert counter == 3
end

math.rb
@requires x >= 0
@ensures $result == x + y - 2
@param [Fixnum] x
@param [Fixnum] y
@return [Fixnum]
def inc(x, y)

return x + y
end

@param [Fixnum] x
@ensures $result == x * x * x
def cube(x)

return x * x
end

operators.rb
@local [Fixnum] x
def main

x = 0
x += 5
x -= 1
x *= 2
x /= 2
x %= 2
assert x == 0

end

stack.rb
@ivar [Fixnum] size
@ivar [Array<Fixnum>] elements
class Stack

@ensures @size == 0
def initialize

@size = 0
@elements = []

131

end

@ensures @size == old(@size) + 1
def push(element)

@size = @size + 1
@elements.push element

end

@requires @size > 0
@ensures @size == old(@size) - 1
def pop

@size = @size - 1
@elements.pop

end
end

@local [Stack] stack
def use

stack = Stack.new
stack.pop

end

132

	Introduction
	Problem Statement
	Contributions
	Scope

	Background
	Static Verification
	Symbolic Execution
	Contract Based Programming
	The Ruby Programming Language
	YARD
	Mirah
	The Sireum Framework
	Pilar
	Kiasan

	Boogie

	The State of Verification and Testing in Dynamic Languages
	Dynamic Versus Dynamically Typed
	The Infeasibility Assumption
	Classifying Dynamic Languages
	Verification in Dynamic Languages
	Testing in Dynamic Languages

	Comparison of IVLs: Boogie and Pilar
	Motivation
	Comparison of Language Features
	Basic Assertion Language
	Basic Control Flow
	Location and Blocks
	Branching and Looping

	Annotations
	Specification of Contracts
	Specifying Pre and Post Conditions
	Specifying Loop Invariants

	Modeling Data Structures and Object Oriented Type Systems
	Generics Support
	Defining Interfaces

	Unique Language Features
	Pilar
	Profiles
	Pluggable Type System
	Untyped & Dynamic Type System Support
	Functional Programming
	Method Overloading and Multiple Dispatch
	Exception Handling

	Boogie
	Defining Mathematical Operators
	Axioms and Mathematical Quantifiers
	Comprehensive Type System

	Implementation Considerations
	Language Support
	Support for Theorem Provers
	Support for Environments and Platforms

	Related Work
	Discussion

	Overview of the RubyCorrect Architecture
	Overview
	Pipeline Architecture
	Annotating Ruby Code
	Annotating Dynamically Typed Arguments and Variables
	Annotating Method Contracts
	Annotating Class Field Members
	Instance Variables and Attributes

	Annotating Class Invariants
	Annotating Closures and Loops
	Closure Blocks and Looping
	Keyword Looping Constructs

	Annotating Frame Conditions
	Summary of Annotations

	The RubyEsc Tool
	The RubyCaseGen Tool

	Static Verification of Ruby Programs
	Motivation
	Methodology
	A Verifiable Subset of the Ruby Language
	Summary of Supported Features
	Known Limitations
	Logic Outside of Method Declarations
	Loading of Files Using require() and load()
	Reopening Classes & Redefining Methods
	Multiple Type Specs. on Variables
	Implicit Return Values of Constructs
	Standard Library Support

	Converting Annoted Ruby into Boogie
	Modeling Objects & Classes
	Objects & Integers
	The Heap
	Methods
	Operators
	Instance Variables
	Arrays

	Translating Control Flow
	Basic Control Flow
	Method Calls
	Conditional Branching
	Closures
	Looping
	Exception Handling

	Method Call Lookup Semantics
	Translating Contracts
	Generation of Functions and Axioms
	Special Contract Expressions
	Pre & Post Conditions
	Invariants
	Frame Conditions

	Preamble

	Parsing Results
	Validation Using Sample Code

	Automatic Test Case Generation Using Symbolic Execution
	Motivation
	RubyCaseGen Pipeline Description
	Converting Annotated Ruby into Mirah
	Adding Contract Annotations
	Compiling the Mirah Program
	Running Kiasan
	Resolving Symbolic Values
	Generating Ruby Test Cases

	Example Usage
	Techniques & Optimizations
	Array Inference Modifications
	Minimizing Type Annotations
	Handling Successful Flow Paths
	Handling Failure States
	Pruning Duplicate Test Cases

	Known Limitations
	Limitations of Mirah
	Metaprogramming
	Support for Native Arrays

	Limitations of Kiasan
	Nonlinear Formulas
	Modeling of Java Standard Library

	Experiments Using Test Case Generation
	Defects and Test Cases
	Annotation Count Comparison
	Methodology
	Results

	Related Work
	Static Verification
	Why
	Diamondback Ruby
	Laser

	Symbolic Execution
	Java Path Finder
	Valigator

	Runtime and Fuzz Testing
	Heckle

	Conclusion and Future Work
	Extended Static Checking with Ruby
	Symbolic Execution with Ruby
	Future Work
	Conclusion

	Bibliography
	Modeling Ruby Arrays in Boogie
	Translating Closures from Ruby to Boogie
	RubyEsc Preamble
	RubyEsc Example Programs

