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ABSTRACT

On the Stability of the Absolutely Continuous Invariant Measures of a
Certain Class of Maps with Deterministic Perturbation

Ivo Pendev

Keller [8] showed the instability of the absolutely continuous invariant measure

(acim) for a family of W -shaped maps. This instability is the result of the invariant

neighborhood of the fixed turning point at 1/2. The construction of these W -maps,

for which the Lasota-Yorke inequality fails to prove stability, has recently been gen-

eralized. In the Eslami-Misiurewicz paper [4], a map was defined, whose third iterate

has a fixed turning point at 1/2, raising the question of the stability of the map.

The goal of this thesis is to show the stability of this map. We define a family

of deterministic perturbations of the map and express their invariant densities as an

infinite sum with the purpose of showing that the normalized invariant densities are

uniformly bounded. This result is used to show the stability of absolutely continuous

invariant measure of this transformation.

iii



Acknowledgments

I would like to express my deepest gratitude to my supervisors Dr. Gora and Dr.

Boyarsky for introducing me to the field of dynamical systems and giving me the

opportunity to be where I am today. Their academic guidance, enormous patience

and support have been of utmost importance throughout my graduate studies.

I am also grateful to Dr. Dafni and Dr. Proppe for their scholarly and professional

advice. I would also like to express my gratitude to Dr. Eslami and Mr. Li for their

kindness in always finding the time to help me with many problems in the area of

dynamical systems.

Finally, I thank my parents, my sister and my wife for their unconditional help

and support, without which I would not have been able to complete this journey.

iv



TABLE OF CONTENTS

Chapter Page

1 Introduction 1

2 Measure-Theoretic properties of Maps of Intervals 3

2.1 Measure Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Precompactness of densities . . . . . . . . . . . . . . . . . . . 8

2.2 Functions of Bounded Variations in One Dimension . . . . . . . . . . . . 8

2.3 Ergodicity, Mixing and Exactness . . . . . . . . . . . . . . . . . . . . . 9

2.4 Frobenius-Perron Operator . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.2 Definition and Properties . . . . . . . . . . . . . . . . . . . . . 13

2.4.3 Representations of the Frobenius-Perron Operator . . . . . . . 15

2.4.4 Markov Maps and the Matrix Representation of the Frobenius-

Perron Operator . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Existence and Stability of Absolutely Continuous Invariant Measures . . . 21

2.5.1 Stability of Absolutely Continuous Invariant Measures for Piece-

wise Monotonic Transformation . . . . . . . . . . . . . . . . . 22

3 General Formula for Invariant Densities of Piecewise Linear Maps 29

3.1 Definitions and notation . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Formula for the invariant density of τ . . . . . . . . . . . . . . . . . . . 32

v



4 Deriving the Invariant Density for τε 35

4.1 Estimates on the Constant D . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Estimates on the density fε . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 The continuity of the invariant density of τ . . . . . . . . . . . . . . . . 46

5 Theoretical Proofs 48

Bibliography 57

vi



Chapter 1

Introduction

The question of stability of an absolutely continuous invariant measure (acim) arises

from the introduction of perturbed maps. Given a transformation τ with its invariant

measure f , and a family of perturbed maps {τε}ε≥0 with the corresponding invariant

measures {fε}ε≥0, the question is: assuming the distance of τ and τε approaches 0,

does fε → f as ε→ 0? Maps satisfying this property are called acim-stable maps. The

existence of the acim has been established by the famous Lasota-Yorke inequality [11].

For piecewise expanding maps on intervals, with slopes greater than 2 in magnitude,

this inequality guarantees that they have an absolutely continuous invariant measure.

Keller [8] introduced a family of maps Wa,b,r depending on three parameters, such

that in the limit these maps are approach a W0 map with slopes equal to 2. Keller

concluded that this map is not acim-stable. This kind of behavior is caused by the

existence of a small neighborhood around the fixed turning point at 1/2 which stays

invariant under perturbation. It was conjectured that this kind of construction of the

perturbed maps is the only way to show that acim stability fails.

This conjecture was proven wrong in [4] and [12]. In [4] the authors posed the

question whether the map τ : [0, 1]→ [0, 1], τ = (x+ 1/2)χ[0, 1/2] + (2−2x)χ[1/2, 1],

with invariant density f is acim-stable. This question was motivated by the third

iteration of τ , which has a fixed turning point at 1/2.

The main goal of this thesis is to prove the stability of the absolutely continuous
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invariant measure for this map. We define a family of deterministically perturbed

maps {τε}ε≥0 with the corresponding family of their invariant densities {fε}ε≥0 and

show that τε → τ almost uniformly.

The family of the normalized densities of τε is denoted as {f̃ε}ε≥0. We show that

f̃ε is uniformly bounded, which implies that it forms a weakly precompact set in L1.

Lemma 2.6, [1], says that given τε → τ almost uniformly and f̃ε → f weakly in L1,

then Pτf = f . Hence, as ε → 0, any convergent subsequence of f̃ε converges to f ,

the unique invariant measure of τ . This proves that limε→0 f̃ε = f .

In Chapter 2 we review basic measure-theoretic properties. Then the invariant

density of τ is calculated. We define deterministic perturbations of τ , τε. We state the

Lasota-Yorke inequality and elaborate on the nature of our problem. We also state

Lemma 2.6, [1], upon which the proof of the stability of the absolutely continuous

invariant measure of τ is based.

Chapter 3 deals with the general formula of {fε}ε, the family of invariant densities

of τε. This section is based on the work in [6] where a formula is developed for the

invariant densities of piecewise linear maps of the unit interval.

In Chapter 4, we show that fε and f̃ε, the normalized invariant measures of τε, are

uniformly bounded. The acim-stability of τ is proven.

Recently, two different papers, [5] and [7] offered an answer about the stability

of the acim for the map defined above. In [5], the Lasota-Yorke inequality [11] was

improved for piecewise expanding C1,1 maps. The constraints in the Lasota-Yorke

inequality were a motivation for the work done in [7], where it is shown that the har-

monic average of slopes is sufficient for Rychlik’s theorem [1] to hold. The conclusions

of these two papers are outlined in Chapter 5.
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Chapter 2

Measure-Theoretic properties of
Maps of Intervals

In this chapter we present some basic notions of measure theory upon which the intro-

duction of acim will be established. In addition to this, we introduce the Frobenius-

Peron operator which plays an important role in dealing with acims and we introduce

a special class of maps on intervals, called Markov maps, for which we have a very

convenient representation of the Frobenius-Perron operator.

In the last section of this chapter we introduce the idea of acim and we talk

discuss their existence and stability. We also elaborate on the main problem of this

thesis, and how this problem originates from the related question about the acim of

one-dimensional transformations.

2.1 Measure Theory

Definition 2.1. A collection of subsets B ∈ X is called a σ-algebra if the following

conditions are satisfied:

(a) X ∈ B,

(b) whenever B ∈ B, then X\B ∈ B,

(c) if Bn ∈ B, for n = 1, 2, ..., then ∪∞n=1Bn ∈ B.
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Definition 2.2. A real valued function µ : B → R is called a measure on B if:

(a) µ(B) ≥ 0 for any B ∈ B;

(b) for any sequence of disjoint sets {Bn}, Bn ∈ B, n = 1, 2, ..., µ(∪∞i=1Bn) =∑∞
n=1 µ(Bn).

The triplet (X,B, µ) is called a measure space. In the case where µ(X) = 1, we

are talking about a probability space or a normalized space.

Definition 2.3. Let (X,B, µ) be a measure space. We call a function f : X → R a

measurable function if for all x ∈ R, f−1(x,∞) ∈ B, or, equivalently, if f−1(B) ∈ B

for any Borel set B ⊂ R.

Definition 2.4. Let µ and ν be two measures on the same measure space (X,B).

Then ν is absolutely continuous with respect to µ if for any B ∈ B, µ(B) = 0 implies

ν(B) = 0. In this case we write ν << µ.

For two measures ν and µ, such that ν << µ, the following theorem states a

possibility to represent ν in terms of µ.

Theorem 2.1 (Radon-Nikodym Theorem). [1] Let (X,B, µ) be a measure space and

let ν be a finite measure on the same space such that ν << µ. Then, there exists a

unique f ∈ L1(X,B, µ) such that for all B ∈ B,

ν(B) =

∫
B

fdµ.

The function f is called the Radon-Nikodym derivative.

Definition 2.5. [1] Consider the normalized measure space (X,B, µ). For a map

τ : X → X we say that τ is nonsingular if and only if for any B ∈ B such that

µ(B) = 0 we have µ(τ−1(B)) = 0.
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Definition 2.6. [1] Let (X,B, µ) be a measure space. We call a transformation

τ : X → X a measure µ-preserving transformation if

µ(τ−1(B)) = µ(B),

for all B ∈ B. Equivalently, we say that τ preserves measure µ or µ is τ invariant.

Example 2.1. Consider the transformation τ : [0, 1]→ [0, 1] defined by,

τ(x) =

{
x+ 1

2
if 0 ≤ x ≤ 1

2

−2x+ 2 if 1
2
< x ≤ 1.

(2.1)

We will show that τ does not preserve the Lebesgue measure µ.

Figure 2.1: The inverse image of the set B = [0, 0.6] under the transformation τ(x)

Let B = [0, x], where x ≤ 1/2. Then τ−1(B) = τ−1([0, x]) = [1− x
2
, 1]. We can see

that the Lebesgue measure of the preimage of B is not equal to the Lebesgue measure

of B:

µ(τ−1(B)) = 1− (1− x

2
) =

x

2
6= x = µ(B). (2.2)

Now let 1/2 < x ≤ 1. Then, τ−1(B) = τ−1([0, x]) = [0, x− 1
2
] ∪ [1− x

2
, 1]. Again,

µ(τ−1(B)) = x− 1

2
+ 1− (1− x

2
) =

3x

2
− 1

2
6= x = µ(B). (2.3)

We conclude that τ does not preserve the Lebesgue measure.
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Here we use Devaney’s definition of chaos and we show that the map τ from

Example 2.1. is a chaotic map.

Definition 2.7. [2] Let A be a set. We say that τ : A→ A is a chaotic map if: 1) τ

has sensitive dependence on initial conditions; 2) τ is topologically transitive and 3)

periodic points are dense in A.

In order to clarify the definition above, we state the following three definitions:

Definition 2.8. [2] A map τ : A→ A has sensitive dependence on initial conditions

if there exists δ > 0 such that, for any x ∈ A and every neighborhood N of x, there

exists y ∈ N and n ≥ 0 such that |τn(x)− |τ y(x)| > δ.

Definition 2.9. [2] A map τ : A→ A is called topologically transitive if for any pair

of open sets U, V ⊂ A there exists k > 0 such that τ k(U) ∩ V 6= ∅.

Definition 2.10. [2] A point x ∈ A is called a periodic point of period n if τn(x) = x.

In [13] it was shown that if a certain map τ has a point of period 3, then we can

say that τ is a chaotic map. Looking back at Example 2.1, we can easily see that

τ(0) → 1/2, τ(1/2) → 1 and τ(1) → 0. Since τ has a point of period 3, we can

conclude that τ is a chaotic map.

Consider τ : X → X to be a chaotic map. Then, because of the sensitive de-

pendence on the initial conditions, the map is unpredictable, i.e., for almost every

x ∈ I, I ⊂ X, it is impossible to predict the set where the n-th iteration of the map

τ will belong. However, we can ask whether the trajectory visits certain sets more

often than others. In other words, we are interested in the average amount of time

the trajectory of a map spends in a certain subset.
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Definition 2.11. The characteristic function of a set B ⊂ X is defined as,

χB(x) =

{
1 if x ∈ B,
0 if x /∈ B. (2.4)

Let τ : (X,B, µ) → (X,B, µ) be a measure preserving transformation and let

B ∈ B. Then, the total amount of the first n iterations of x under τ that visit the

subset B is equal to
∑n−1

k=0 χB(τ k(x)). Consequently, the relative frequency of the

points τ i(x), i = 0, 1, ..., n− 1 that visit B, is defined as,

lim
n→∞

1

n

n−1∑
k=0

χB(τ k(x)), (2.5)

when the limit exists.

Theorem 2.2 (Birkhoff Ergodic Theorem). [1] Suppose τ : (X,B, µ) → (X,B, µ)

is a measure preserving transformation, where (X,B, µ) is σ-finite, and f ∈ L1(µ).

Then, there exists a function f ∗ ∈ L1 such that

1

n

n−1∑
k=0

f(τ k(x))→ f ∗, µ− a.e.,

Furthermore, f ∗ ◦ τ = f ∗ µ-a.e. and if µ(X) <∞, then
∫
X
f ∗dµ =

∫
X
fdµ.

As we shall see later in this chapter, our study will rely heavily on the idea of

densities. For certain one dimensional maps, especially those that exhibit chaotic be-

havior, the study of certain properties becomes much easier if we study their invariant

densities. Here, we define the notion of density.

Definition 2.12. Let (X,B, µ) be a measure space and define the set D(X,B, µ) as

D(X,B, µ) = {f ∈ L1(X,B, µ) : f ≥ 0 and ‖f‖1 = 1}. (2.6)

A function f ∈ D(X,B, µ) is called a density.
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2.1.1 Precompactness of densities

Let (X,B, µ) be a measure space and let F be a set of functions in Lp. The notions

of strong convergence and weak convergence are defined in [1]. We define strong

convergence as: fn → f in Lp-norm ⇔ ||fn − f ||p → 0, n → +∞; and we say that

fn → f weakly in Lp, 1 ≤ p < +∞ ⇔ ∀g ∈ Lp,
∫
fngdµ→

∫
fgdµ where 1

p
+ 1

q
= 1.

We state the notion of precompactness of sets in Lp [10].

Definition 2.13. The set F is called strongly precompact if every sequence of func-

tions {fn}, fn ∈ F , contains a strongly convergent subsequence {fan} that converges

to some f̄ ∈ Lp.

Definition 2.14. The set F is called weakly precompact if every sequence of functions

{fn}, fn ∈ F , contains a weakly convergent subsequence {fan} that converges to some

f̄ ∈ Lp.

In definitions (2.13) and (2.14) we write f̄ instead of f , because f̄ ∈ Lp rather

than f̄ ∈ F .

The following lemma [3], states a condition for weak precompactness of sets in L1.

Lemma 2.1. If g ∈ L1 is a nonnegative function, then the set of all functions f ∈ L1

for which

|f(x)| < g(x), for x ∈ Xa.e. (2.7)

is weakly precompact in L1.

2.2 Functions of Bounded Variations in One

Dimension

The famous Lasota-Yorke inequality, stated in the following section, relies on the

notion of functions of bounded variation. In this section we define what it means for

8



a one dimensional function f to be of bounded variation.

Let I = [a, b] be a bounded interval on the real line. We define a partition P in

the following way: let a = x0 < x1 < ... < xn = b be a sequence of points and denote

Ii = [xi−1, xi); then P = {Ii} is called a partition of [a, b] and the points {x0, x1, ...xn}

are called the endpoints of P . We also write P = P{x0, x1, ...xn}.

Definition 2.15. Let f : [a, b]→ R and let P = P{x0, x1, ...xn} be a partition of the

domain of f . We say that f is of bounded variation on [a, b] if there is an M > 0

such that for all partitions P,

n∑
k=1

|f(xk)− f(xk−1)| ≤M. (2.8)

Definition 2.16. For a function of bounded variation f : [a, b]→ R, the number

V[a,b]f = supP
{ n∑
k=1

|f(xk)− f(xk−1)|
}

(2.9)

is defined as the total variation or simply the variation of f .

2.3 Ergodicity, Mixing and Exactness

We extend our study of measure-preserving maps by introducing the notion of ergod-

icity. Ergodic maps are a special type of maps that need to be studied on the whole

space. This restriction becomes clearer once we define what an ergodic map is.

Definition 2.17. [1] Let τ : (X,B, µ)→ (X,B, µ) be a measure preserving transfor-

mation. If for any invariant set under τ , B ∈ B , either µ(B) = 0 or µ(X \ B) = 0,

we call τ an ergodic transformation.

Ergodicity along with the notions of mixing and exactness are the three most basic

features of maps with irregular behavior. Here we define the concepts of mixing and

exactness and we state the connection between them.

9



Definition 2.18. [1] Let τ : (X,B, µ)→ (X,B, µ) be a measure preserving transfor-

mation on a normalized space. If

lim
n→∞

(
1

n

n−1∑
i=0

∣∣µ(A ∩ τ−i(B))− µ(A)µ(B)
∣∣) = 0, for all A, B ∈ B,

we call τ weakly mixing, and if

lim
n→∞

µ(A ∩ τ−n(B)) = µ(A)µ(B),

then we say that τ is strongly mixing.

Definition 2.19. [1] We say that the map τ : (X,B, µ)→ (X,B, µ) is exact if

lim
n→∞

µ(τn(B)) = 1

for any B ∈ B with τ -invariant measure µ(B) > 0.

It is known that if τ is strongly mixing, then τ is ergodic, and that the exactness

of τ implies strong mixing. The following proposition uses this idea to show that the

map defined in Example 2.1 is an ergodic map.

Proposition 2.1. The map τ : [0, 1]→ [0, 1], defined as,

τ(x) =

{
x+ 1

2
if 0 ≤ x < 1

2
,

−2x+ 2 if 1
2
≤ x ≤ 1,

is an ergodic map with respect to the Lebesgue measure µ.

Proof. Let us denote I = [0, 1], I1 = [0, 1/2) and I2 = [1/2, 1]. Let a, b ∈ I1 and

a′, b′ ∈ I2 such that a < b < a′ < b′. Since,

µ(τ([a, b])) = b+ 1/2− a− 1/2 = b− a = µ([a, b]), and

µ(τ([a′, b′])) = | − 2b′ + 2 + 2a′ − 2| = 2(b′ − a′) = 2µ([a′, b′]),

10



we can say that the measure is being preserved on [0, 1/2) and gets doubled on [1/2, 1].

In addition to this, we note that every interval B ⊂ I1 gets mapped to I2 and,

moreover, once an interval is mapped on the left branch of τ , the next iteration maps

the interval to the right branch, the one that doubles the measure. Hence, there exists

an n such that τn(B) ⊃ [1/2, 1], which implies that τn+1(B) = [0, 1].

Figure 2.2: The image of the interval [a, b] = [0.45, 0.52] and τ([a, b]) = [0.95, 1], such
that µ([a, b]) = 0.07 > 0.05 = µ(τ([a, b]))

The only difficult case happens when µ(τ(B)) < µ(B). This occurs only when

B = [a, b], a < 1/2 < b such that 1/2 − a > 2(b − 1/2). Let µ(B) = p + q, where

p = 1/2 − a and q = [b − 1/2]. In order to obtain the measure of the image being

smaller than the measure of the interval, we let p > 2q.

Then, τ(B) = [1 − p, 1] and hence µ(τ(B)) = max(p, 2q) = p < µ(B). Then,

τ 2(B) = [0, 2p], τ 3(B) = [1/2, 1/2 + 2p], τ 4(B) = [1 − 4p, 1], τ 5(B) = [0, 8p] and

so on. We notice that all of these intervals stay away from the critical interval

B∗ = [a, b], a < 1/2 < b, and at most after one step the measure gets doubled. That

means that there is an n such that µ(τn(B)) = 1.

11



We have shown that τ(x) is an exact map which implies that this map is strongly

mixing, which proves the ergodicity of τ .

2.4 Frobenius-Perron Operator

2.4.1 Motivation

One of the essential tools used in the study of absolutely continuous invariant mea-

sures is the Frobenius-Peron (F-P) operator. Here we give a short introduction of

this operator and in the following section we state its precise definition.

For a chaotic one dimensional map τ : I → I, it is impossible to follow the

trajectories of the consecutive iterations τn when n → ∞. Instead of dealing with

every single iteration {τn}∞n=1, we can try to find the probability of τn falling into a

certain subinterval Ii of I. In other words, let us divide the interval I = [a, b] into m

subintervals where Ii = [xi−1, xi], a = x0 < x1 < ... < xm = b. For the map τ , the

probability with which τ(x) ∈ Ii is equal to the probability of x ∈ τ−1(Ii). If f is the

probability density function of the variable τ(x), we can write the last statement as

∫
Ii

fdλ =

∫
τ−1(Ii)

fdλ,

where λ is the normalized Lebesgue measure on I.

For τ being a non-singular map and f ∈ L1, let us define,

µ(Ii) =

∫
τ−1(Ii)

fdλ. (2.10)

Since τ is non-singular with respect to λ, λ(Ii) = 0 implies λ(τ−1(Ii)) = 0. Thus,

µ(Ii) = 0 which means that µ is absolutely continuous with respect to λ, i.e., µ << λ.

12



Then, by the Radon-Nikodym theorem, there exists a function φ ∈ L1, such that for

any measurable set Ii ⊂ I,

µ(Ii) =

∫
Ii

φ dλ. (2.11)

We let φ = Pτf . Then from (2.10) and (2.11) we obtain,

∫
τ−1(Ii)

fdλ =

∫
Ii

Pτfdλ.

2.4.2 Definition and Properties

Following the motivation in the previous section, we can give a precise definition of

the Frobenius-Perron operator:

Definition 2.20. [1] Let (X,B, µ) be a measure space and let τ : X → X be a

nonsingular transformation. For any f ∈ L1, we define the value of the Frobenius-

Perron operator Pτf as the unique function in L1 such that for any A ∈ B the

following equation holds: ∫
A

Pτfdµ =

∫
τ−1(A)

fdµ. (2.12)

The most basic properties of Pτ follow directly from the definition of the operator

itself.

Lemma 2.2. [1] For any nonnegative f1, f2 ∈ L1, and any nonsingular transforma-

tions τ : I → I and σ : I → I, the Frobenius-Perron operator P has the following

properties:

1) Pτf : L1 → L1 is a linear operator, i.e.,

Pτ (c1f1 + c2f2) = c1Pτf1 + c2Pτf2

13



for c1, c2 ∈ R;

2) Pτf ≥ 0, for f ≥ 0;

3) Pτf preserves integrals, i.e., ∫
I

Pτfdµ =

∫
I

fdµ;

4) Pτ◦σf = Pτ ◦ Pτf . In particular, Pτnf = Pn
τ f .

The following Lemma states a very important relation between Pτ and the density

of the measure µ that is τ -invariant and absolutely continuous with respect to the

measure λ.

Lemma 2.3. [1] Let τ : I → I be a nonsingular map and consider a nonnegative

f ∗ ∈ L1. Then Pτf
∗ = f ∗, i.e., f ∗ is the fixed point of Pτ if and only if µ is

τ -invariant where µ is defined as:

µ(A) =

∫
A

f ∗dλ. (2.13)

Proof. Assume µ is τ -invariant, i.e. for any A ∈ B

µ(τ−1(A)) = µ(A).

Then, by (2.13), ∫
τ−1(A)

f ∗dλ =

∫
A

f ∗dλ. (2.14)

However, by the definition of the Frobenius-Perron operator we have∫
τ−1(A)

f ∗dλ =

∫
A

Pτf
∗dλ =

∫
A

f ∗dλ.

Since this holds for any A ∈ B, we have Pτf
∗ = f ∗.

Now, we assume that f ∗ is a fixed point of Pτ , i.e.,∫
A

f ∗dλ =

∫
A

Pτf
∗dλ, for any A ∈ B.

14



By definition (2.20) and equation (2.13) we have

µ(A) =

∫
A

f ∗dλ =

∫
A

Pτf
∗dλ =

∫
τ−1(A)

f ∗dλ = µ(τ−1(A)).

Hence, we conclude that µ is invariant under the transformation τ .

2.4.3 Representations of the Frobenius-Perron Operator

For one dimensional nonsingular transformations that are piecewise monotonic, the

Frobenius-Perron operator has a very convenient representation. Moreover, based

on this form of the F-P, the study of this operator and its fixed points becomes

easier when we deal with so called Markov maps. In this section, we define the

class of piecewise expanding maps as well as the Markov maps and we derive the

representation of the Frobenuis-Perron operator for these classes of maps.

Representations of the Frobenius-Perron Operator for Piecewise Mono-
tonic Maps

Definition 2.21. We call the transformation τ : I → I, I = [a, b], a piecewise

monotonic transformation if there is a partition of I, a = a0 < a1 < a2 < ... < an = b,

and a number r ≥ 1 such that:

1) τ is a Cr function on each subinterval (ai−1, ai), i = 1, ..., n, that can be extended

to a Cr function on [ai−1, ai], i = 1, ..., n, and

2) |τ ′(x)| > 0 on (ai−1, ai), i = 1, ..., n.

This class of functions allows a very convenient and useful representation of the

Frobenius-Perron operator. Let Ii = [ai−1, ai] and τi(x) = {τ(x) : x ∈ Ii}, i = 1, ..., n.

Since τ is piecewise monotonic, we can find τ−1i (x) for each 1 ≤ i ≤ n. Call τi(Ii) = Bi

and hence τ−1i (Bi) = Ii . Then for any Borel set A in I,

τ−1i (A) =
n⋃
i=1

τ−1i (Bi ∩ A), (2.15)
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where the sets {τ−1i (Bi ∩ A)}ni=1 are mutually disjoint.

Then,by the definition of Pτ we have

∫
A

Pτfdλ =

∫
τ−1(A)

fdλ =

∫
∪ni=1τ

−1
i (Bi∩A))

fdλ =
n∑
i=1

∫
τ−1
i (Bi∩A))

fdλ.

Using a change of variables, the last expression can be written as

∫
A

Pτf(x)dλ =
n∑
i=1

∫
Bi∩A

f(τ−1i (x))|(τ−1i (x))′|dλ

=
n∑
i=1

∫
A

f(τ−1i (x))|(τ−1i (x))′|χBi(x)dλ

=

∫
A

n∑
i=1

f(τ−1i (x))|(τ−1i (x))′|χBi(x)dλ

=

∫
A

n∑
i=1

f(τ−1i (x))

|τ ′(τ−1i (x))|
χτ(Ii)(x)dλ.

Hence, since A is arbitrary, we are allowed to write a more concise version of the

Frobenius-Perron operator for piecewise monotonic maps:

Pτf(x) =
n∑
i=1

f(τ−1i (x))

|τ ′(τ−1i (x))|
χτ(Ii)(x). (2.16)

Example 2.2. Recall the map τ from Example 2.1. Here we will derive the Frobenius-

Perron operator for this map. Let I1 = [0, 1/2] and I2 = [1/2, 1]. We define

τ1(x) = x+
1

2
if 0 ≤ x ≤ 1

2
,

τ2(x) = −2x+ 2 if
1

2
< x ≤ 1.
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Consequently, τ−11 (x) = x− 1
2

and τ−12 (x) = 1− x
2
. Since |τ ′1(x)| = 1 and |τ ′2(x)| =

2, using (2.16) we write the Frobenius-Perron operator for the transformation τ as

Pτf(x) = f(x− 1

2
)χ[1/2,1] +

1

2
f(1− x

2
). (2.17)

2.4.4 Markov Maps and the Matrix Representation of the
Frobenius-Perron Operator

Conveniently, the Frobenius-Perron operator can be represented as a finite dimen-

sional matrix for a class of transformations known as Markov maps. In this section

we define the Markov maps and the corresponding representation of the Frobenius

-Perron operator.

Define the map τ : I → I, where I = [a, b]. Let P be a partition of I given

by a = a0 < a1 < ... < an = b and for i = 1, ..., n denote the subintervals Ii as

Ii = (ai, ai−1). The map τ on each Ii is called τi. A map τ is called a Markov map

if τi is a homeomorphism from Ii onto a connected union of intervals of P . Such a

partition is called a Markov partition with respect to τ .

Definition 2.22. Let τ : I → I be a piecewise monotonic transformation and let

P = {I}ni=1 be a partition of I. We define the incidence matrix Aτ = (aij)1≤i,j≤n,

with entries

aij =

{
1 if Ij ⊂ τ(Ii),
0 otherwise .

Note that if τ is Markov, then aij = 0 means that Ij ∩ τ(Ii) contains at most only

one point, more precisely an endpoint of Ii.

When we are dealing with piecewise linear Markov transformation, the Frobenius-

Perron operator has a very simple matrix representation. In the rest of this section

we will show this representation of the Frobenius-Perron operator and we will use it

to find the fixed point for Pτf that was calculated in Example 2.2.
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Let us fix a partition P on I and let S denote the class of all the functions that

are piecewise constant on the partition P . Then,

f ∈ S if and only if f =
n∑
i=1

πiχIi ,

for some constants π1, ..., πn. This f can be also represented as a column vector

πf = (π1, ..., πn)T .

Theorem 2.3 ([1]). Let τ : I → I be a piecwise linear Markov map on the partition

P = {Ii}ni=1. Then there exists an n× n matrix Mτ such that Pτf = MT
τ π

f for every

f ∈ S and πf is the column vector obtained from f .

The matrix Mτ is of the form Mτ = (mij)1≤i,j≤n, where

mij =
aij
|τ ′i |

=
λ(Ii ∩ τ−1(Ij))

λ(Ii)
, 1 ≤ i, j ≤ n,

where Aτ = (aij)1≤i,j≤n is the incidence matrix induced by τ and P.

Proof. Recall the equation (2.16), and let us define the function f by

f(x) = χIk(x) =

{
1 if x ∈ Ik,
0 otherwise .

(2.18)

Then, the Frobenius-Perron operator can be expressed as,

Pτf(x) =
n∑
i=1

χIk(τ
−1
i (x))

|τ ′(τ−1i (x))|
χτ(Ii)(x). (2.19)

Since τ is Markov, the range of τ−1i is Ii and

χIk(τ
−1
i (x)) =

{
1 if i = k,
0 otherwise .

(2.20)

Thus, we rewrite (2.19) as,

Pτf(x) = |τ ′(τ−1k (x))|−1χτ(Ik)(x). (2.21)
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Since τ is a piecewise linear function, τ ′i is a constant on Ii. Moreover, since τ−1k (x) ∈

Ik, we state Perron-Frobenius operator as

Pτf(x) = |τ ′k|−1χτk(Ik)(x). (2.22)

We represent f as

f =
n∑
k=1

πkχIk = (π1, ..., πn)T .

Then, we use the property of linearity of the Frobenius-Perron operator from Lemma

2.2, and equation (2.22) to write

Pτf(x) = Pτ

( n∑
k=1

πkχIk(x)

)
=

n∑
k=1

πkPτ (χIk(x)) =
n∑
k=1

πk|τ ′k|−1χτk(Ik)(x). (2.23)

Thus, we have expressed the P-F operator as a step function on the partition P , i.e.,

Pτf ∈ S. That means that Pτf can be expressed in terms of a column vector. Let

us say Pτf = (d1, ..., dn)T .

Let x ∈ Ij and let Pτf = dj. The k-th term in (2.23) is equal to πk|τ ′k|−1 whenever

x ∈ τk(Ik), i.e., whenever Ij ⊂ τk(Ik). Now we define

4jk =

{
1 if Ij ⊂ τk(Ik),
0 otherwise

as well as the n× n matrix

MT
τ = (mjk) = 4jk|τ ′k|−1.

Then, for x ∈ Ij, we rewrite (2.23)

Pτf = dj =
n∑
k=1

πk(mjk)

and since Pτf = (d1, ..., dn)T ,

Pτf =

 d1
...
dn

 = MT
τ

 π1
...
πn

 .
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Example 2.3. We continue working on the map τ from Example 2.1. We define the

partition P = {I1, I2}, where I1 = [0, 1/2] and I2 = (1/2, 1], and respectively we define

τ1(x) = x + 1
2

on I1 and τ2(x) = −2x + 2 on I2. Since τ1 is a homeomorphism of I1

onto I2 and τ2 is a homeomorphism of I2 onto I1∪I2, we see that τ is a Markov map.

Moreover, since τ(I1) = I2 and τ(I2) = I1 ∪ I2, we define the incidence matrix for

the map τ ,

Aτ =

[
0 1
1 1

]
.

The map has slopes 1 and −2 on I1 and I2 respectively and so the matrix Mτ is of

the form,

Mτ =

[
0 1
1
2

1
2

]
and MT

τ =

[
0 1

2

1 1
2

]
.

As we know, the invariant density of τ is the fixed point of Pτf . From Theorem 2.3,

the solution of Pτf = f can be obtained by solving

MT
τ π = π,

where π = [π1, π2]
T . Hence,[

0 1
2

1 1
2

] [
π1
π2

]
=

[
π1
π2

]
, or π1 = 1 and π2 = 2.

Hence, the unique normalized invariant density of τ is given by

(1, 2)∑2
i=1 πiλ(Ii)

=
(1, 2)

1 · 1
2

+ 2 · 1
2

= (2/3, 4/3).

If we look back at the Example 2.2, we we can see that the density defined as

f =

{
2/3 if x ∈ [0, 1/2),
4/3 if x ∈ [1/2, 1].

(2.24)

is indeed the fixed point of Pτf , where Pτf is defined in (2.20). In order to check

this result, we can see that if x ∈ I1, then (1 − x
2
) ∈ [1/2, 1] and f(1 − x

2
) = 4/3, so
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Pτf = 1/2 · 4/3 = 2/3 = f . On the other hand, if x ∈ I2 then (x − 1/2) ∈ [0, 1/2]

and so Pτf = 2/3 + 1/2 · 4/3 = 4/3 = f .

Now let us recall Lemma (2.3) and use it in this example. We have found a

function f such that Pτf = f . Thus, the measure

µ(A) =

∫
A

fdλ (2.25)

is invariant under the transformation τ and it is absolutely continuous with respect

to λ.

2.5 Existence and Stability of Absolutely

Continuous Invariant Measures

In [11], the authors showed the existence of invariant measures for piecewise expand-

ing C2 transformations. Here we state the original result as well as the inequality

contained in the proof of the theorem that became known as the Lasota-Yorke in-

equality.

Theorem 2.4 ([11]). Let τ : [0, 1] → [0, 1] be a piecewise C2 function such that

inf |τ ′| > 1. Then for any f ∈ L1, the sequence

1

n

n−1∑
k=0

Pk
τf

converges in norm to a function f ∗ ∈ L1. This limit function has the following prop-

erties:

a) f ≥ 0⇒ f ∗ ≥ 0;

b)
∫ 1

0
f ∗dm =

∫ 1

0
fdm;

c)Pτf
∗ = f ∗ and the measure dµ∗ = f ∗dm is invariant under τ ;
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d)The function f ∗ is of bounded variation and, moreover, there exists a constant c,

independent of the choice of the initial f , such that the variation of the limiting f ∗

satisfies the inequality

1∨
0

f ∗ ≤ c||f ||L1 ,

where
∨b
a f denotes the variation of fover [a, b].

One of the conditions required by this theorem is that there is a number N such

that sN > 2, where s = inf |τ ′|. We denote τN = φ, which is also a C2 piecewise map.

The measure of each subinterval Ii = [ai−1, ai], i = 1, ..., q of the map φ is denoted by

mi = m(Ii). In order for the Lasota-Yorke inequality to hold, we need |φ′i(x)| ≥ sN

for each i. We also denote ψi = φ−1i and σi(x) = |ψ′i(x)|. Then the Frobenius-Perron

operator for the map φ is

Pφf(x) =

q∑
i=1

f(ψi(x))σi(x)χi(x),

where χi(x) is the characteristic function of the interval Ii.

Theorem 2.5 (Lasota-Yorke inequality). [11] For a piecewise expanding C2 map τ

on the interval I = [0, 1] the following holds

1∨
0

Pφf ≤ 2s−N
1∨
0

f + α||f ||L1 , (2.26)

where α = (K + 2
β
), K :=

max |σ′i|
min(σi)

and β := min1≤i≤q(mi).

2.5.1 Stability of Absolutely Continuous Invariant
Measures for Piecewise Monotonic Transformation

The problem of the stability of acims poses the following question: instead of, being

given a piecewise expanding map τ and its invariant density f , what happens with
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the invariant densities of the family of perturbed maps {τε}, when ε > 0 is very small?

This can be stated in the following definition:

Definition 2.23. Let τ : X → X be a piecewise expanding map with its correspond-

ing invariant density f . We say that τ is acim-stable if limε→0 τε = τ implies that

limε→0 fε = f , where {τε} represents a family of ε-perturbed τ maps, and {fε} their

respective invariant densities.

The Lasota-Yorke inequality (Theorem 2.4) establishes the existence of an acim

for maps with slopes strictly greater than 2 in magnitude. The problem studied in

this thesis originates from a problem posed by Keller [4]. There, the author studies a

family of maps that have slope equal to 2 in the limit and hence the standard Lasota-

Yorke inequality cannot be used. This family of maps has another interesting feature.

Namely, the point 1/2 is a fixed turning point which causes interesting behavior of

these maps.

The main characteristic of these W -maps is the fact that as the parameters get

very small, this family of maps converges to the unperturbed W -map (W0), but their

acims do not converge to the one of W0. Keller concluded that this behavior occurs

because of the invariant neighborhood around the fixed point 1/2, and conjectured

that this construction is the only way that the acims will not converge to the one of

the unperturbed map.

In [4] and [12] this conjecture was proven wrong: it was shown that for a family of

Wa-maps, all with slopes greater than 2 in magnitude, as a→ 0, Wa → W0, fa does

not converge to f , the invariant density of W0. The same behavior of this map was

concluded in [2], where the authors presented a different family of perturbed three

parameter Markov W -transformations. In this paper, the question raised is whether
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the map τ = (x + 1
2
)χ[0,1/2] + (2− 2x)χ[1/2,1] is acim-stable. The question is inspired

by the third iterate of the τ -map, since looks similar to the W -map with a turning,

fixed point at 1/2.

Figure 2.3: The graph of the third iterate of τ

In Chapter 4, we answer this question by introducing a family of perturbation

maps {τε}ε≥0. Below, we define the notion of deterministic perturbation and the

necessary Skorokhod metric on T , but first we define T , the class of all piecewise

expanding transformations.

Definition 2.24. [1] Consider the interval I = [a, b] with the normalized Lebesgue

measure µ on I. We say that the map τ : I → I belongs to the class of maps T if:

a) τ is piecewise expanding map, which means that there exists a partition P = {Ii =

[ai−1, ai], i = 1, ..., q} of I such that τi := τ |Ii is C1 and |τ ′i(x)| ≥ si > 1 for any i and

for all x ∈ (ai−1, ai);

b) g(x) = 1
|τ ′(x)| is of bounded variation, where τ ′(x) is the appropriate one-sided

derivative at the endpoints of P.
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Definition 2.25. Let τ : I → I be a transformation and {τn} a family of maps

on the same space. We say that {τn} is a small deterministic perturbation of τ , if

dS(τ, τn) → 0 as n → ∞, where dS(τ1, τ2) is the Skorokhod metric on T (I), defined

as

dS(τ1, τ2) = inf{δ > 0 : ∃A ⊂ I and ∃σ : I → I such that λ(A) > 1− δ,

σ is a diffeomorphism, τ1|A = τ2 ◦ σ|A and ∀x ∈ A, |σ(x)− x| < δ,∣∣∣∣ 1

σ′(x)
− 1

∣∣∣∣ < δ}.

Lemma 2.4. For each ε ≥ 0, the map τε : [0, 1]→ [0, 1], defined as

τε(x) =

{
(1 + 2ε)x+ 1

2
− ε if 0 ≤ x ≤ 1

2
,

2(1− x) if 1
2
< x ≤ 1,

(2.27)

represents a small deterministic perturbation of the map τ = (x+ 1/2)χ[0, 1/2] + (2−

2x)χ[1/2, 1]. The graph of this map is shown in Fig. 4.1.

Proof. Here we show that that dS(τ, τε) → 0 as ε → 0, where dS(τ, τε) denotes the

Skorokhod metric. For that purpose, we have to find a diffeomorphism σ, that will

satisfy the conditions of the metric mentioned above.

The function σ is defined on I = [0, 1], such that τε|A = τ ◦ σ|A for A ⊂ I. Since

on the interval [1/2, 1], τε = τ we define σ(x) = x on I2 = [1/2, 1]. On [0, 1/2], σ has

to be a linear function and hence on I1, we write σ(x) = ax+ b, for a, b ∈ R. Then,

τ ◦ σ = ax+ b+
1

2
= (1 + 2ε)x+

1

2
− ε = τε,

or,

a = (1 + 2ε) and b = −ε.
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Hence, τε|A = τ ◦ σ|A where,

σ(x) =

{
(1 + 2ε)x− ε if 0 ≤ x ≤ 1

2
,

x if 1
2
< x ≤ 1.

Taking A = I, the Lebesgue measure λ(A) = 1 > 1−δ for δ > 0. Let ε < δ
2
. Then,

for x ∈ I2, |σ(x)− x| = 0 < δ, and for x ∈ I1, |σ(x)− x| = |2εx− ε| = |ε(2x− 1)| < δ.

Moreover, on I2,

∣∣∣∣ 1
σ′(x)
−1

∣∣∣∣ = 0 < δ, and on I1,

∣∣∣∣ 1
σ′(x)
−1

∣∣∣∣ =

∣∣∣∣ 1
1+2ε
−1

∣∣∣∣ =

∣∣∣∣ 2ε
1+2ε

∣∣∣∣ < 2ε < δ.

Hence, dS(τ1, τ2) < 2ε, and therefore dS(τ1, τ2)→ 0 as ε→ 0.

Our goal is to express fε, as an infinite sum. In this way, we can show that the

normalized densities f̃ε are uniformly bounded, which, by Lemma 2.1, implies weak

precompactness in L1.

Definition 2.26. For τε, τ ∈ T we say that τε → τ almost uniformly if for any ε > 0,

there exists a measurable set Aε ⊂ I, λ(Aε) > 1 − ε, such that τε → τ uniformly on

Aε.

Lemma 2.5. The family of perturbed maps {τε}ε≥0 defined in Lemma 2.4, converges

almost uniformly to the limiting map τ .

Proof. Let Aε = A ⊂ I such that, on the set A, τ → τ◦ as ε→ 0. Then, for x ∈ Aε,

|τε(x)− τ(x)| ≤ |τε(x)− τ ◦ σ(x)|+ |τ ◦ σ(x)− τ(x)| (2.28)

≤ |τε(x)− τ ◦ σ(x)|+M |σ(x)− x|, (2.29)

where M = τ ′(x∗), x∗ ∈ (σ(x), x) ∪ (x, σ(x)). By Lemma 2.4, since dS(τ, τε)→ 0, the

first summand of (2.29) approaches 0 and |σ(x) − x| < δ → 0 as ε → 0. Hence, we

conclude that τε → τ almost uniformly.
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The following lemma says that if we can establish that τε converges to τ almost

uniformly and fε → f weakly in L1, then the invariant density of τε converges to the

invariant density of τ .

Lemma 2.6. [1] Assume that τε converges to τ almost uniformly. Let fε be a fixed

point of Pε = Pτε, i.e., Pεfε = fε. If fε → f weakly in L1, then Pτf = f .

In [9], the authors state a stability theorem of isolated eigenvalues of the linear

operators satisfying the Lasota-Yorke inequality. A family of linear operators (Pε)ε≥0

is considered on the Banach space (B, || · ||). These operators satisfy the following

conditions: there are constants C1,M > 0 such that for all ε ≥ 0,

||Pn
ε ||L1 ≤ C1M ∀n ∈ N; (2.30)

there are C2, C3 > 0 and α ∈ (0, 1), α < M , such that for all ε ≥ 0

||Pn
ε f ||BV ≤ C2α

n||f ||BV + C3M
n||f ||L1 ∀n ∈ N ∀f ∈ B; (2.31)

as well as

if z ∈ σ(Pε), |z| > α, then z is not in the residual spectrum of Pε; (2.32)

and there is a monotone upper-semicontinuous function ϕ : [0,∞)→ [0,∞) such that

ϕε > 0 if ε > 0, where ϕε = 12dS(τ, τε), and

|||P0 − Pε||| ≤ ϕε → 0, (2.33)

where for any bounded linear operator P : B → B, |||P||| := sup{|Pf | : f ∈ B, ||f || ≤

1}.

Let us assume that the Frobenius-Perron operator P of a piecewise-expanding map

τ and the family (Pε)ε>0 corresponding to the family of perturbed maps τε all satisfy
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the conditions (2.30)-(2.33). The “closeness” of τε to τ is defined in the sense of the

Skorokhod metric.

Theorem 2.6 ([9]). Suppose that (Pε)ε>0 is a family of linear operators on B satis-

fying (2.30)-(2.33). Fix δ > 0 and r ∈ (α,M) and let η := log r/α
logM/α

. Then η > 0 and

there are constants ε0 = ε0(δ, r) > 0, a = a(r) > 0, b = b(δ, r) > 0 and d = d(δ, r) > 0

such that for 0 ≤ ε ≤ ε0 and z ∈ C Vδ,r

||(z − Pε)
−1f ||BV ≤ α||f ||BV + b||f ||L1 for allf ∈ B (2.34)

and

|||(z − Pε)
−1 − (z − P0)

−1||| ≤ ϕηε
(
c||(z − P0)

−1||BV + d||(z − P0)
−1||2BV

)
. (2.35)

Let λ be an isolated eigenvalue of P0 such that |λ| > α. Then δ can be chosen

very small so that Bδ ∩ δα(P0) = {λ} and we define

Π(λ,δ)
ε :=

1

2πι

∫
∂Bδ(λ)

(z − Pε)
−1dz. (2.36)

Corollary 2.1. With the same assumptions as Theorem (2.6), if λ is an isolated

eigenvalue of P0 with |λ| > 0 and if δ > 0 is such that Bδ ∩ δα(P0) = {λ}, we have:

1) There is a constant K1 = K1(δ, r) > 0 such that |||Π(λ,δ)
ε − Π

(λ,δ)
0 ||| ≤ K1 · ϕηε

for all ε ∈ [0, ε0].

2)There are constants K2 = K2(δ, r) > 0 and δ0 = δ0(r) > 0 such that ||Π(λ,δ)
ε f ||BV ≤

K2 · ||Π(λ,δ)
ε f ||L1 for all f ∈ B, δ ∈ (0, δ0] and ε ∈ [0, ε1].

3) If δ ∈ (0, δ0], then rank(Π
(λ,δ)
ε ) = rank(Π

(λ,δ)
0 ) for ε very small.
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Chapter 3

General Formula for Invariant
Densities of Piecewise Linear Maps

In [6] the author developed a formula for the invariant density of a linear map τ :

[0, 1]→ [0, 1], where the only restrictions on τ are that the map is onto and eventually

piecewise expanding.For this class of maps the invariant density can be represented

as an infinite series.

3.1 Definitions and notation

As it was already mentioned, we are dealing with a piecewise linear map τ : [0, 1]→

[0, 1]. There is no restriction on the slopes of the branches as long as |(τn)′| > 1, for

some n ≥ 1. By N we denote the total number of branches of τ . K represents the

number of not onto branches and L represents the number of branches that do not

touch zero and one. Obviously L ≤ K ≤ N .

We also define three sequences of numbers: the length of the branches αi with

0 < αi ≤ 1 and i = 1, ...N ; the heights of the lower endpoints of the branches γi with

0 ≤ γi ≤ 1−αi and i = 1, ...N ; and the slopes of the branches βi with i = 1, ...N and

βi 6= 0.
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Depending on the lengths of the branches and the heights of the endpoints, we

group the branches that are not onto in three different groups: “lazy” branches are

the ones such that γi + αi = 1; “greedy” branches are the one such that γi = 0; and

the ones such that 0 < γi and γi + αi < 1 are called “hanging” branches [6].

For example, let us look at the graph of the piecewise map φ, whose graph is given

in Figure (3.1). The first two branches are examples of “hanging” branches, the third

one is “greedy“ and the last branch is an example of a “lazy” branch.

Figure 3.1: The graph of the map of φ

Here we define the points ci that play a crucial role in deriving the invariant density

of τ . The points ci are the endpoints of the domains of the shorter branches that

do not touch zero or one (or simply not onto branches). Since one ci can represent

two endpoints for two different branches, we define a pair (c, i), c ∈ [0, 1], 1 ≤ i ≤ N

and c is one of the endpoints of the interval Ii. We also define the index function on

points: ci : j(ci, k = k).

We define ci to be the endpoints of the not onto branches such that either: they

are the right-hand side endpoints of increasing or the left-hand side endpoints of the

decreasing ’greedy’ branches; are the left-hand side endpoints of increasing or the
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right-hand side endpoints of the decreasing ’lazy’ branches; or the both endpoints of

the ’hanging’ branches. We enumerate them in a way that c1 < c2 < ... < cK+L, such

that (c, j) < (d, k) if either c < d or c = d and j < k.

We also group ci into two disjoint sets. Wu contains the ci that are the upper

endpoints of the ’greedy’ branches, the right-hand side endpoints of the domains of

the ’hanging’ branches and the left-hand side endpoints of the domains of decreasing

’hanging’ branches. On the other hand, Wl contains the ci that are the lower endpoints

of the ’lazy’ branches, the left-hand side endpoints of the domains of the ’hanging’

branches and the right-hand side endpoints of the domains of decreasing ’hanging’

branches. Also we group ci into Ul and Ur depending on whether ci is the left-hand

side or the right-hand side endpoint of the domain Ii of a certain branch.

The endpoints of of the domains of the branches are denoted by bi, where b1 = 0

and bj = α1

|β1| + ... +
αj−1

|βj−1| , for J = 1, 2, ..., N + 1. Depending on the slopes βj, we

define the set of numbers A = {a1, a2, ...aN} in such a way that:

if βj > 0, then aj = βjbj − γj = βjbj+1 − (γj + αj), and

if βj < 0, then aj = βjbj − (γj + αj) = βjbj+1 − γj.

The set A gives a convenient way of representing the map τ in the following way:

τ(x) = βj · x− aj.

Finally, we define the cumulative slopes for iterates of points as follows:

β(x, 1) = βj(x),

β(x, n) = β(x, n− 1) · βj(τn−1(x)), n ≥ 2.
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3.2 Formula for the invariant density of τ

We define the δ(condition) that equals one whenever the condition is satisfied and it

is equal to zero otherwise.

Definition 3.1. Let S be a matrix (Si,j)1≤j,k≤K+L with entries

Si,j =
∞∑
n=1

1

|β(ci, n)|
[
δ(β(ci, n) > 0)δ(τn(ci) > cj) + δ(β(ci, n) < 0)δ(τn(ci) < cj),

for ci ∈ Ur and all cj, and,

Si,j =
∞∑
n=1

1

|β(ci, n)|
[
δ(β(ci, n) < 0)δ(τn(ci) > cj) + δ(β(ci, n) > 0)δ(τn(ci) < cj),

for ci ∈ Ul and all cj.

Definition 3.2. Let Id be a (K+L)×(K+L) identity matrix and let v = [1, 1, ...1, 1]

be a K + L-dimensional vector. Let D = [D1, ..., DK+L] be the solution of the system

(−ST + Id)DT = D0v
T (3.1)

where D0 is either zero or one.

We also define,

χs(β, x) =

{
χ[0, x] for β > 0
χ[x, 1] for β < 0.

(3.2)

Now we state the main theorem of [6] that gives us the invariant density function

for eventually expanding, piecewise linear maps.

Theorem 3.1. ([6]) Let τ be an eventually expanding, piecewise linear map. Then

system (3.1) always has a non-vanishing solution. If 1 is not an eigenvalue of S, then

with D0 = 1. If 1 is an eigenvalue of S, then at least with D0 = 0. Let

h = D0 +
∑
ci∈Ur

Di

∞∑
n=1

χs(β(ci, n), τn(ci))

|β(ci, n)|
+
∑
ci∈Ul

Di

∞∑
n=1

χs(−β(ci, n), τn(ci))

|β(ci, n)|
, (3.3)
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where the constants Di, i = 1, ..., K satisfy the system (3.1). Then h is τ -invariant.

If all values τ(ci), i = 1, ..., K+L, are different, then the inverse statement also holds.

In particular, the system (3.1) is uniquely solvable (i.e., 1 in not an eigenvalue of S)

if min1≤j≤N |βj| > K + L+ 1.

Example 3.1. Consider the family of maps {τε}ε≥0, introduced in Lemma 2.4. For

each ε, τε is defined as

τε(x) =

{
(1 + 2ε)x+ 1

2
− ε if 0 ≤ x ≤ 1

2
,

2(1− x) if 1
2
< x ≤ 1.

(3.4)

From the graph of τε, [Figure 4.1], it is obvious that N = 2, K = 1 and L = 0. The

length of the branches are α1 = 1
2

+ ε and α2 = 1. The slopes of the the corresponding

branches are given by β = (1 + 2ε,−2), and the heights of the lower end-points are

given by γ = (1
2
− ε, 0).

From the values of β1 and β2 we derive the corresponding digits A = (a1, a2) such

that

a1 = β1b1 − γ1 = (1 + 2ε)0− (
1

2
− ε) = −1

2
+ ε,

and a2 = β2b2 − (γ2 + α2) = −2 · 1/2− (0 + 1) = −2.

Since there is only one branch of τε that is not onto, there is only one c1 = (0, 1).

That means that Wl = {c1}, Wu = ∅, Ul = {c1} and Ur = ∅. The cumulative slope is

given by β(0, 1) = 1
2

+ ε, β(0, 2) = (1
2

+ ε)2, β(0, 3) = −2(1
2

+ ε)2 and so on. Since

Ul = {c1} and Ur = ∅, and since τn(0) > 0 for n = 1, 2, ..., i.e., δ(τn(0) < 0) = 0 for

any n ≥ 1, S is represented by the constant

Sε =
∞∑
n=1

1

|β(0, n)|
[
δ(β(0, n) < 0)δ(τn(0) > 0)

]
. (3.5)

33



Using this fact, we rewrite the system (3.1) for the map τε as

(−Sε + 1)D = 1. (3.6)

Then the invariant density of the map τε is given by,

h = 1 +D

∞∑
n=1

χs(−β(0, n), τn(0))

|β(0, n)|
. (3.7)
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Chapter 4

Deriving the Invariant Density for
τε

The main goal of this thesis is to show that τ is acim-stable (Definition 2.23). We

recall the family of deterministically perturbed maps τε,

τε(x) =

{
(1 + 2ε)x+ 1

2
− ε if 0 ≤ x ≤ 1

2
,

2(1− x) if 1
2
< x ≤ 1,

and try to express the family of measures fε.

Figure 4.1: The graph of τε for ε = 0.05

We recall from the previous chapter that the invariant density is given by
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fε = 1 +D
∞∑
n=1

χs(−β(0, n), τn(0))

|β(0, n)|
,

where D = 1
−Sε+1

and,

Sε =
∞∑
n=0

δ(−β(0, n) < 0)δ(τn(0) > 0)

|β(0, n)|
.

Recall the function χs(β, x),

χs(β, x) =

{
χ[0, x] for β > 0,
χ[x, 1] for β < 0.

(4.1)

4.1 Estimates on the Constant D

We follow the trajectory of τε(0), stating the intervals in which τ iε(0) belongs for

i = 1, 2, 3...l, where l is defined below. Let I1 = [0, 1
2
] and I2 = [1

2
, 1]. Then τ(0) ∈ I1,

τ 2(0) ∈ I2, τ 3(0) ∈ I1, τ 4(0) ∈ I2, τ 5(0) ∈ I2, τ 6(0) ∈ I1, and the iterations of τε(0)

will follow this pattern up to a certain iteration.

Figure 4.2: The first 8 iterations of τε(0)
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We define the l-th iteration as the first time τ iε(0) will abandon this pattern, i.e.,

τ iε(0) ∈ I1, I2, I1, I2, I2, I1, I2, I2, I1, ... for 1 ≤ i < l. Then,

Sε =
∞∑
n=0

δ(β(0, n) < 0)δ(τn(0) > 0)

|β(0, n)|
= 0 + 0 +

1

2(1 + 2ε)2
+

1

2(1 + 2ε)3
+ 0 +

1

23(1 + 2ε)3

+
1

23(1 + 2ε)4
+ 0 +

1

25(1 + 2ε)4
+

1

25(1 + 2ε)5
+ 0 +

1

27(1 + 2ε)5
+ ...

=
1

2(1 + 2ε)2
+

1

2(1 + 2ε)3
(1 +

1

22
) +

1

23(1 + 2ε)4
(1 +

1

22
) +

1

25(1 + 2ε)5
(1 +

1

22
) + ...

=
1

2(1 + 2ε)2
+ (1 +

1

4
)

[
1

2(1 + 2ε)3
+

1

23(1 + 2ε)3
+

1

25(1 + 2ε)5
+ ...

]
︸ ︷︷ ︸

2
3
(l−3)-times

+...

Since, 1
2i(1+2ε)j

< 1
2i

for any i, j = 1, 2, ... we can bound Sε by

Sε <
1

2
+

5

4

(1

2
+

1

23
+

1

25
+ ...

)
+ ...

=
1

2
+

5

4

k1∑
i=1

(
1

2
)2i−1 + ...

∞∑
i=k1+1

δ(β(0, n) < 0)δ(τn(0) > 0)

|β(0, n)|
,

where k1 = [2
3
l − 2].

Next we need to calculate how big is the tail of Sε, i.e., what happens with this

sum after the l-th iteration. The cumulative slope up to l is 1
2(1+2ε)2

[
1

4(1+2ε)

]l−3
.

Hence, Sε is bounded by

Sε <
1

2
+

5

4

k1∑
i=1

(
1

2
)2i−1 +

1

2(1 + 2ε)2
[ 1

4(1 + 2ε)

]l−3 ∞∑
j=l+1

1

|β(τ j(0), i)|
. (4.2)

The following lemmas will be important for bounding Sε:

Lemma 4.1. For l = min{j ≥ 1 : τ jε abandons the pattern}, the following holds:

a) limε→0 l = +∞;

b) limε→0(lε) = 0;

c) limε→0
1

(1+2ε)l
= 1.
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Proof. a) The third iterate of τε is given by the formula:

τ 3ε (x) =



−2(1 + 2ε)2(x− ε
1+2ε

) if x ∈ [0, ε
1+2ε

),

4(1 + 2ε)(x− ε
1+2ε

) if x ∈ [ ε
1+2ε

, 1+4ε
4(1+2ε)

),

−22(x− ε
1+2ε

) + 1/2− ε if x ∈ [ 1+4ε
4(1+2ε)

), 1/2),

4(1 + 2ε)(x− 5/8)− 1 if x ∈ [1/2, 5/8),
−8(x− 3/4) if x ∈ [5/8, 3/4),

4(1 + 2ε)(x− 3/4) if x ∈ [3/4, 2+7ε+6ε2

2(1+2ε)2
),

−2(1 + 2ε)2x+ 2 + 7ε+ 6ε2 if x ∈ [2+7ε+6ε2

2(1+2ε)2
, 1].

(4.3)

Observing the graph of τ
(3)
ε (x), we see that τ 3ε (0) = 2ε(1 + 2ε) and that the next

iterations are below 1/2 and they land on the line y = 4(1 + 2ε)x− 4ε. This behavior

coincides with the defined pattern where every third iteration is less than 1/2. The

orbit will abandon the defined pattern the moment when the third iterate will be

greater than 1+4ε
4(1+2ε)

. We define m = min{i : (τ 3ε )i ≥ 1+4ε
4(1+2ε)

}. This means that we can

prove limε→0 l = +∞ by proving that limε→0m = +∞, where m = l−3
3

.

Figure 4.3: The first 4 iterations of τ 3ε (0) for ε = 0.015

In order to see when the third iterate of τε will be greater than 1+4ε
4(1+2ε)

, we use the
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general formula for iterating a linear function. If T (x) = ax+ b, then

Tm(x) = amx+ b
m∑
i=1

ai−1.

In our case x = 2ε(1 + 2ε) and the third iterate up to l has the form

τm(2ε(1 + 2ε)) = [4(1 + 2ε)]m[2ε(1 + 2ε)] + (−4ε)
m∑
i=1

[4(1 + 2ε)]i−1.

Then we can express the following inequality:

τm(2ε(1 + 2ε)) = [4(1 + 2ε)]m[2ε(1 + 2ε)] + (−4ε)
m∑
i=1

[4(1 + 2ε)]i−1 ≥ 1 + 4ε

4(1 + 2ε)
, or,

[4(1 + 2ε)]m(2ε)(1 + 2ε)− 4ε

[
1− [4(1 + 2ε)]m

1− 4(1 + 2ε)

]
≥ 1 + 4ε

4(1 + 2ε)
, or,

[4(1 + 2ε)]m(2ε)(1 + 2ε)− 4ε

1− 4(1 + 2ε)
+

4ε[4(1 + 2ε)]m

1− 4(1 + 2ε)
≥ 1 + 4ε

4(1 + 2ε)
, or,

[4(1 + 2ε)]m
[
−2ε(16ε2 + 14ε+ 1)

−(3 + 8ε)

]
≥ 1 + 4ε

4(1 + 2ε)
− 4ε

3 + 8ε
, or,

[4(1 + 2ε)]m
[

2ε(16ε2 + 14ε+ 1)

3 + 8ε

]
≥ 3 + 4ε

4(1 + 2ε)(3 + 8ε)
, or,

[4(1 + 2ε)]m ≥ 3 + 4ε

8ε(1 + 2ε)(16ε2 + 14ε+ 1)
, or,

m · ln[4(1 + 2ε)] ≥ ln
3 + 4ε

8ε(1 + 2ε)(16ε2 + 14ε+ 1)
, or,

m ≥
ln[ 3+4ε

8ε(1+2ε)(16ε2+14ε+1)
]

ln[4(1 + 2ε)]
.

Taking the limit as ε→ 0, we get

lim
ε→0

m ≥ lim
ε→0

{
ln(3 + 4ε)− ln(8ε)− ln(1 + 2ε)− ln(16ε2 + 14ε+ 1)

ln[4(1 + 2ε)]

}
,

or, lim
ε→0

m ≥ lim
ε→0

{
ln(3 + 4ε)

ln[4(1 + 2ε)]
− ln(8ε)

ln[4(1 + 2ε)]

}
= +∞.
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Since limε→0m = +∞ then, limε→0 l = +∞.

b) As in the proof in a), since τ : [0, 1]→ [0, 1], we will find the relation between

l and ε by solving the inequality:

τm(2ε(1 + 2ε)) = [4(1 + 2ε)]m[2ε(1 + 2ε)] + (−4ε)
m∑
i=1

[4(1 + 2ε)]i−1 ≤ 1, or,

[4(1 + 2ε)]m(2ε)(1 + 2ε)− 4ε

[
1− [4(1 + 2ε)]m

1− 4(1 + 2ε)

]
≤ 1, or,

[4(1 + 2ε)]m(2ε)(1 + 2ε)− 4ε

1− 4(1 + 2ε)
+

4ε[4(1 + 2ε)]m

1− 4(1 + 2ε)
≤ 1, or,

[4(1 + 2ε)]m
[
−2ε(16ε2 + 14ε+ 1)

−(3 + 8ε)

]
≤ 1− 4ε

3 + 8ε
, or,

[4(1 + 2ε)]m ≤ 3 + 4ε

2ε(16ε2 + 14ε+ 1)
, or,

[4(1 + 2ε)]
l−3
3 ≤ 3 + 4ε

2ε(16ε2 + 14ε+ 1)
, or,

[4(1 + 2ε)]l ≤ [4(3 + 4ε)(1 + 2ε)]3

[2ε(16ε2 + 14ε+ 1)]3
, or,

l ln 4(1 + 2ε) ≤ 3 ln
4(3 + 4ε)(1 + 2ε)

2ε(16ε2 + 14ε+ 1)
, or,

εl ln 4(1 + 2ε) ≤ 3ε ln
4(3 + 4ε)(1 + 2ε)

2ε(16ε2 + 14ε+ 1)
, or,

εl ≤ 3ε
ln 4(3+4ε)(1+2ε)

2ε(16ε2+14ε+1)

ln 4(1 + 2ε)
.

Taking the limit as ε→ 0, we get

lim
ε→0

εl ≤ lim
ε→0

3ε
ln 2(3+4ε)(1+2ε)

ε(16ε2+14ε+1)

ln 4(1 + 2ε)
(4.4)
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or,

lim
ε→0

εl ≤ lim
ε→0

3ε

[
ln 2(3 + 4ε)

ln 4(1 + 2ε)
+
�
��

�
��
�*0

ln(1 + 2ε)

ln 4(1 + 2ε)
− ln ε

ln 4(1 + 2ε)
−
��

���
���

��:0
ln(16ε2 + 14ε+ 1)

ln 4(1 + 2ε)

]

or lim
ε→0

εl ≤
��

���
���

��:0
lim
ε→0

3ε ln 2(3 + 4ε)

ln 4(1 + 2ε)
− lim

ε→0

3ε ln ε

ln 4(1 + 2ε)

or lim
ε→0

εl ≤ − lim
ε→0

3ε ln ε

ln 4(1 + 2ε)
=0.

c)

lim
ε→0

1

(1 + 2ε)l
= lim

ε→0
(1 + 2ε)−l = lim

ε→0
eln (1+2ε)−l = lim

ε→0
e−l ln (1+2ε).

Now,

lim
ε→0

[
− l ln (1 + 2ε)

]
= lim

ε→0

[
− l(2ε) ln (1 + 2ε)

2ε

]
=

lim
ε→0

[
(−2lε) ln (1 + 2ε)

1
2ε
]

= lim
ε→0

(−2lε) · lim
ε→0

[
ln (1 + 2ε)

1
2ε
]
.

Then, we can write

lim
ε→0

[
− l ln (1 + 2ε)

]
= −2 lim

ε→0
(lε) · ln lim

ε→0
(1 + 2ε)

1
2ε = −2 lim

ε→0
(lε) · ln(e−1) = 2 lim

ε→0
(lε).

(4.5)

Using the first part of Lemma (4.1), we can conclude that,

lim
ε→0

[
− l ln (1 + 2ε)

]
= 0. (4.6)
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Hence,

lim
ε→0

1

(1 + 2ε)l
= lim

ε→0
e−l ln (1+2ε) = e0 = 1.

Lemma 4.2. Consider the map τε(x) on [0, 1]. Then, the following two results hold:

a)The trajectory of 0 does not visit the left branch for more than two consecutive iter-

ations, i.e., for any i = 1, 2, ..., if τ iε(0) ∈ I1, then either τ i+1
ε (0) ∈ I2 or τ i+2

ε (0) ∈ I2

and;

b) For any i ≥ l+1, for the cumulative slope β(τ i(0), i), the following holds: 1
|β(τ i(0),i)| ≤

(1
2
)
i
3

Proof. a) We take into consideration that,

τε([0,
ε

1 + 2ε
]) = [1/2− ε, 1/2] ∈ [

ε

1 + 2ε
, 1/2],

and

τε([
ε

1 + 2ε
, 1/2]) = [1/2, 1].

Then, for any τ iε(0) ∈ I1 either τ iε(0) ∈ [0, ε
1+2ε

) or τ iε(0) ∈ [ ε
1+2ε

, 1/2]. If τ iε(0) ∈

[ ε
1+2ε

, 1/2], then τ i+1
ε (0) ∈ [1/2, 1]. Hence if τ iε(0) ∈ [ ε

1+2ε
, 1/2], then the next image

lands on the right branch.

If τ iε(0) ∈ [0, ε
1+2ε

], then τ i+1
ε (0) ∈ [ ε

1+2ε
, 1/2] and τ i+2

ε (0) ∈ [1/2.1]. Hence if τ iε(0) ∈

[0, ε
1+2ε

] then after two iterations the image lands on the right branch.

b) The cumulative slope β(τ i(0), i) for every i ≥ l + 1 is defined as

β(τ i(0), i) = β∗(0) · τ ′ε(τ l+1
ε (0)) · τ ′ε(τ l+2

ε (0)) · τ ′ε(τ l+3
ε (0)) · ...

where β∗(0) is the cumulative slope up to the l-th iteration. Then,
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1

|β(τ i(0), i)|
=

1

|β∗(0)|
· 1

|τ ′ε(τ l+1
ε (0))|

· 1

|τ ′ε(τ l+2
ε (0))|

· 1

|τ ′ε(τ l+3
ε (0))|

· ... (4.7)

Grouping every three consecutive multiplicands after l and following (4.2,a), we

get

1

|τ ′ε(τ
l+j
ε (0))|

· 1

|τ ′ε(τ
l+j+1
ε (0))|

· 1

|τ ′ε(τ
l+j+2
ε (0))|

≤ 1

2(1 + 2ε)2
, (4.8)

for j = 1, 2.... Then from (4.6), we obtain the desired inequality

1

|β(τ i(0), i)|
≤ 1

|β∗(0)|
· 1

2(1 + 2ε)2
· 1

2(1 + 2ε)2
· 1

2(1 + 2ε)2
· ... ≤

1

|β∗(0)|
· 1

2
· 1

2
· 1

2
· ... =

1

|β∗(0)|
· 1

2
i
3

,

for i ≥ l + 1.

Proposition 4.1. For any ε > 0, −4 < D < −3.

Proof. We start by bounding the constant Sε from above. Using Lemmas (4.1) and

(4.2) we can rewrite the inequality (4.11) as

Sε <
1

2
+

5

4

k1∑
i=1

(
1

2
)2i−1 +

1

2(1 + 2ε)2
[ 1

4(1 + 2ε)

] l−3
3

∞∑
j=l+1

(
1

2
)
i
3 (4.9)

=
1

2
+

5

4
(2 · 1

4
·

1− (1
4
)k1

1− 1
4

) +
1

2(1 + 2ε)2
[ 1

4(1 + 2ε)

] l−3
3 . (4.10)

By Lemma 4.1 c), limε→0

[
1

4(1+2ε)

] l−3
3 =0, and hence for small ε,

Sε <
1

2
+

5

4
(
1

2
· 4

3
) =

4

3
. (4.11)
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On the other hand, for small ε,

Sε ≥
1

2(1 + 2ε)2
+

1

2(1 + 2ε)3
+

1

23(1 + 2ε)3
+

1

23(1 + 2ε)4
≥ 10

8
. (4.12)

Substituting (4.11) and (4.12) in (3.6), we obtain a bound on D:

−4 < D < −3. (4.13)

4.2 Estimates on the density fε

Proposition 4.2. For the deterministically perturbed map τε, the following holds:

a) its invariant density fε is uniformly bounded, and uniformly bounded away from 0;

b) the normalized invariant density f̃ε is uniformly bounded.

Proof. a) From the definition of χs(β, x), we express

χs(−β(0, n), τn(0)) =

{
χ[0,τn(0)] for − β > 0,
χ[τn(0),1] for − β < 0.

=

{
χ[0,τn(0)] for β < 0,
χ[τn(0),1] for β > 0.

(4.14)

Then,

∞∑
n=1

χs(−β(0, n), τn(0))

|β(0, n)|
=

χ[τ(0),1]

|β(0, 1)|
+
χ[τ2(0),1]

|β(0, 2)|
+
χ[0,τ3(0)]

|β(0, 3)|
+
χ[0,τ4(0)]

|β(0, 4)|
+
χ[τ5(0),1]

|β(0, 5)|
+ ...

=
χ[ 1

2
−ε,1]

1 + 2ε
+
χ[1−ε−2ε2,1]

(1 + 2ε)2
+
χ[0,2(ε+2ε2)]

2(1 + 2ε)2
+
χ[0, 1

2
+ε+8ε3+O(3)]

2(1 + 2ε)3
+ ...

≥
χ[ 1

2
−ε,1]

1 + 2ε
+
χ[0, 1

2
+ε+8ε3+O(3)]

2(1 + 2ε)3
>

1

2(1 + 2ε)3
.
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The last inequality along with the bound of D in (4.12) enables us to give a proper

upper bound on the invariant density fε,

fε < 1− 3 · 1

2
= −1

2
. (4.15)

On the other hand,

∞∑
n=1

χs(−β(0, n), τn(0))

|β(0, n)|
=

χ[τ(0),1]

|β(0, n)|
+
χ[τ2(0),1]

|β(0, n)|
+
χ[0,τ3(0)]

|β(0, n)|
+
χ[0,τ4(0)]

|β(0, n)|
+
χ[τ5(0),1]

|β(0, n)|
+ ...

=
χ[ 1

2
−ε,1]

1 + 2ε
+
χ[1−ε−2ε2,1]

(1 + 2ε)2
+
χ[0,2(ε+2ε2)]

2(1 + 2ε)2
+
χ[0, 1

2
+ε+8ε3+O(3)]

2(1 + 2ε)3
+ ...

<
1

1 + 2ε
+

1

(1 + 2ε)2
+

1

2(1 + 2ε)2
+

1

2(1 + 2ε)3
+ ...

<
1

1 + 2ε
+

1

(1 + 2ε)2
+

1

2
+

1

2
+

1

22
+

1

23
+

1

23
+

1

24
+ ...

=
2(1 + 2ε)

(1 + 2ε)2
+ 1 +

l∑
i=1

2 · (1

4
)k + ...+

∞∑
i=l+1

1

2(1 + 2ε)3
· ( 1

4(1 + 2ε)
)
l−4
3 · 1

|β(τ i(0), i)|

<
2

1 + 2ε
+ 1 +

8(1− (1/4)l)

3
+

1

2(1 + 2ε)3
· ( 1

4(1 + 2ε)
)
l−4
3 ·

∞∑
i=l+1

(
1

2
)
i
3 .

For small ε the last inequality approaches 17
3

, i.e.,

∞∑
n=1

χs(−β(0, n), τn(0))

|β(0, n)|
< 2 + 1 +

8

3
=

17

3
. (4.16)

Using (4.15) we give a lower bound on hε,

−16 = 1− 3 · 17

3
< fε. (4.17)

Finally we can conclude that
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−16 < fε < −
1

2
. (4.18)

b) Once we have shown that fε is bounded and uniformly bounded away from 0,

what remains is to show that that the normalized density f̃ε is uniformly bounded.

Let f̃ε denote the normalized density fε. From (4.17) we have

−
∫

16dλ <

∫
fεdλ < −

∫
1/2dλ.

Taking the absolute value, we obtain

1/2 <

∣∣∣∣ ∫ fεdλ

∣∣∣∣ < 16. (4.19)

Inequality (4.18) implies that the normalized density f̃ε is bounded by

inf|fε|∣∣∣∣ ∫ fεdλ∣∣∣∣ < f̃ε <
sup|fε|∣∣∣∣ ∫ fεdλ∣∣∣∣ ,

inf|fε|
16

< f̃ε <
sup|fε|

1/2
,

1

32
< f̃ε < 32.

4.3 The continuity of the invariant density of τ

In the previous section we proved that the normalized invariant densities f̃ε of τε are

uniformly bounded. In this section we use Lemma (2.5) to show that the normalized

density of τε converges to f as ε→ 0.
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Proposition 4.3. The map τ : [0, 1]→ [0, 1], τ(x) = (x+1/2)χ[0,1/2]+(2−2x)χ[1/2,1]

is acim-stable.

Proof. Since f̃ε is uniformly bounded, by Lemma 2.1 we say that {f̃ε} is weakly

precompact in L1. Hence, {f̃ε} contains a weakly convergent subsequence {f̃εn} such

that f̃εn → f , f ∈ L1.

Since τε → τ almost uniformly (Lemma 2.5), by Lemma 2.6 we conclude that

Pεf = f , the unique, invariant normalized density of τ . Hence, the whole family

f̃ε → f weakly in L1.
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Chapter 5

Theoretical Proofs

Recent papers have extended the study on the stability of acim for piecewise expand-

ing maps. In this chapter we elaborate on the work done in [5] and [7], where an

answer to the problem in this thesis is also offered.

As we saw in Chapter 2, the Lasota-Yoke inequality is satisfied for piecewise

expanding transformations with slopes strictly greater than 2. In [5], the authors de-

veloped a more general Lasota-Yorke inequality where the condition s = inf |τ ′| > 2

is improved. In other words, the constant 2s−1 in (2.26) in replaced with a smaller

one. In this paper, a class of piecewise expanding C1,1 maps is defined as follows:

Definition 5.1. We say that the map τ : I → I, I = [0, 1] belongs to the class of

piecewise expanding C1,1 maps T (I) if it satisfies the following conditions:

a) There exists a partition P = {Ii = (ai−1, ai), i = 1, ..., q} such that τi := τ |Ii is

monotonic, C1, and it can be extended to the closed interval [ai−1, ai] as a C1 function;

b) τ ′i is Lipschitz, i.e., there exists a constant Mi such that |τ ′i(x) − τ ′i(y)| ≤

Mi|x− y| for al x, y ∈ Ii;

c) |τ ′i(x)| ≥ si > 1 for any i and for all x ∈ (ai−1, ai).

Similarly, a family of maps {τε} ⊂ T (I) if the above conditions are satisfied with

uniform constants si and Mi. We define s∗ := min1≤i≤q si and M := max1≤i≤qMi and
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we define the δ-condition, which helps us to differentiate the hanging branches of τ

from the others:

δ±i = δ{τ(a±i )/∈{0,1}} =

{
0 if τ(a±i ) ∈ {0, 1},
1 if τ(a±i ) /∈ {0, 1},

where τ(a±i ) denotes limx→a±i
τ(x). The new version of the Lasota-Yorke inequality

is given by:

Proposition 5.1. [5] Suppose τ belongs to the class of piecewise expanding C1,1 maps

on I. Then, for every f ∈ BV (I),∨
I

Pτf ≤ max
1≤i≤q

{
1

si
+ ηi

}∨
I

f +

[
M

s2
+

2 max1≤i≤q ηi
min1≤i≤qm(Ii)

] ∫
I

|f |dm, (5.1)

where

ηi :=


max{ δ

+
0

s1
,
δ+1
s2
} if i = 1,

max{ δ
−
q−1

sq−1
,
δ−q
sq
} if i = q,

max{ δ
−
i−1

si−1
,
δ+i
si+1
} if i = 2, ..., q − 1.

Inequality (5.1) contains the improvement of the original Lasota-Yorke inequality

(2.26) in terms of the coefficient

max
1≤i≤q

{
1

si
+ ηi

}
≤ α < 1, α > 0. (5.2)

The condition (5.2) is satisfied in the following case:

Theorem 5.1. [5] We say that the inequality (5.2) holds for a transformation τ ∈

T (I), or for an extension (τ ∗, I∗) that has (τ, I) as an attractor, if the following is

satisfied:

1

si
+

1

si+1

≤ α < 1, for i = 1, ..., q − 1. (5.3)
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The following two theorems, given in [5], state the existence and the stability of

absolutely continuous invariant measures of maps τ ∈ T (I), for which the condition

max1≤i≤q

{
1
si

+ ηi

}
≤ α < 1 is satisfied.

Theorem 5.2. [5] If a map τ ∈ T (I) satisfies the inequality (5.1) with the coefficient

max1≤i≤q

{
1
si

+ ηi

}
≤ α < 1, for some α > 0, then for any f ∈ BV (I) and n ∈ N,

||Pn
τ f ||BV ≤ αn||f ||BV +

(
1 +

K + 2β−1

1− α

)
||f ||L1 ,

where K := M/s2 and β := min1≤i≤qm(Ii). Furthermore, τ admits an acim with a

density of bounded variation and Pτ : BV (I)→ BV (I) is quasicompact.

Theorem 5.3. [5] Consider the one parameter family of maps {τε}ε≥0, where {τε}ε≥0 ⊂

T (I) uniformly. Suppose that there is an α, for which the condition, max1≤i≤q

{
1
si

+

ηi

}
≤ α < 1, 0 < α < 1 is satisfied. Let fε be a τε-invariant density whose existence is

satisfied by Theorem (5.2). If dS(τε, τ0)→ 0 as ε→ 0, then the following statements

hold.

1)The family {fε}ε>0 is relatively compact in L1 and any of its limit functions is

a τ0-invariant density.

2) If τ0 is ergodic, then so is τε for small ε and fε → f0 in L1 as ε → 0, (i.e. τ0

is acim-stable).

3)If τ0 is weakly mixing, then the eigenvalue gaps of {Pτε}ε, for small enough ε, are

uniformly bounded, i.e., 0 < γ < 1 − |λε2|. As a consequence, there exists a constant

C > 0 such that for all small enough ε and all densities f ∈ BV

||Pn
τεf − fε||L1 ≤ C(1− γ)n||f ||BV . (5.4)

Example 5.1. The last theorem offers another way of proving the stability of the

map τ = (x + 1/2)χ[0,1/2] + (2 − 2x)χ[1/2,1]. We observe the third iterate of τε =
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[(1 + 2ε)x+ 1/2− ε]χ[0,1/2] + (2− 2x)χ[1/2,1], whose graph of τ 3ε (x) is shown in figure

(5.1). This map is represented by the piecewise equation

τ 3ε (x) =



−2(1 + 2ε)2(x− ε
1+2ε

) if x ∈ [0, ε
1+2ε

),

4(1 + 2ε)(x− ε
1+2ε

) if x ∈ [ ε
1+2ε

, 1+4ε
4(1+2ε)

),

−22(x− ε
1+2ε

) + 1/2− ε if x ∈ [ 1+4ε
4(1+2ε)

), 1/2),

4(1 + 2ε)(x− 5/8)− 1 if x ∈ [1/2, 5/8),
−8(x− 3/4) if x ∈ [5/8, 3/4),

4(1 + 2ε)(x− 3/4) if x ∈ [3/4, 2+7ε+6ε2

2(1+2ε)2
),

−2(1 + 2ε)2x+ 2 + 7ε+ 6ε2 if x ∈ [2+7ε+6ε2

2(1+2ε)2
, 1].

(5.5)

Figure 5.1: The graphs of τ 3(x) and τ 3ε (x)

The partition on which τ 3ε is defined does not converge to the partition of τ 3. In

other words, if P = {I1, ..., I5}, Ii = (ai−1, ai), i = 0, ...5 , and Pε = {Iε1, ..., Iε7},

Ii = (aεi−1, a
ε
i), i = 0, ...7, are the partitions of τ 3 and τ 3ε respectively, then aεi 9 ai as

ε→ 0. Hence, we cannot directly apply Theorem (5.3).

In order to solve this problem, we define a map τ ∗ε (x) that has τ 3ε (x) as an attractor

in the following way: We extend the interval on which τ ∗ε (x) is defined, such that
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τ ∗ε (x) : [aε0, a
ε
7]→ [aε0, a

ε
7], where gε1(a

ε
0) = aε7 and gε7(a

ε
7) = aε0. The functions gε1 and gε7

are nothing else but the first and the last branch of τ 3ε (x), i.e, gε1(x) = −2(1+2ε)2(x−
ε

1+2ε
) and gε2 = −2(1 + 2ε)2x+ 2 + 7ε+ 6ε2. The fact that s1 = s7 > 2 guarantees that

τ 3ε (x) is the attractor for τ ∗ε (x).

Let s∗i = |(τ ∗ε )′i| for i = 1, ..., 7. Since s∗i > 2, for i = 1, ..., 7, and for every

ε > 0, we can say that condition (5.3) is satisfied, which implies that condition (5.2)

is satisfied.

Similarly, using τ 3(x) we define τ ∗(x) : [a0, a7] → [a0, a7], with |g′1| > 4/3

and |g′7| > 4/3 so that condition (5.3) will be satisfied, and τ 3(x) : [0, 1] → [0, 1]

will be its attractor. The map τ ∗(x) is piecewise expanding on the partition P =

{a0, 0, 1/4, 1/2, 5/8, 3/4, 1, a7}.

The map τ ∗ε (x) is also piecewise expanding on the partition Pε = {aε0, ε
1+2ε

, 1+4ε
4(1+2ε)

, 1/2, 5/8,

3/4, 2+7ε+6ε2

2(1+2ε)2
, aε7}, and τ ∗ε (x) ⊂ T

(
[aε0, a

ε
7]
)

for every ε > 0. As ε → 0, Pε → P and

dS(τ ∗, τ ∗ε )→ 0.

Hence, using Theorem (5.3), we have proven the acim-stability for the map τ ∗. As

τ 3 is the attractor of τ ∗, we obtain the acim-stability for τ 3. Since τ is an exact map,

it has a unique acim which means that the stability of τ 3 implies the acim-stability of

τ .

While in [5], a stronger Lasota-Yoke inequality was proven, in [7] the authors

showed that the harmonic average condition is sufficient for the use of the Rychlik’s

Theorem. That way, we can prove the acim-stability of the map τ without evoking

the Lasota-Yoke inequality.

The class of piecewise expanding maps T is defined in Definition (2.21). Moreover,

suppose that τ satisfies the condition (5.3), here denoted as

sH = max
i=1,...,q−1

{ 1

si
+

1

si=1

}
. (5.6)
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Figure 5.2: The graphs of τ ∗ and τ ∗ε shown in [5]

Let δ := min2≤i≤q−1m(Ii). It is important to note that in order to calculate δ, we do

not take into consideration the first and the last subinterval of the partition. We also

define gn = 1
|(τn)′| , for each n such that (τn)′ is defined.

Let P(n) =
∨n−1
i=0 τ

−i(P), and P = P(1). For a measurable subset A of [a, b], let

P(A) = {J ∈ P : λ(J ∩ A) > 0}. Let γn =
∑

J∈P(n) supJ gn.

For J ∈ P(n), we define oscJ
1
|τ ′| = maxJ

1
|τ ′| −minJ

1
|τ ′| , and we define

dn = max
J∈P(n)

oscJ
1

|τ ′|
. (5.7)

Definition 5.2. We say that a map τ ∈ T (I) satisfies the summable oscillation

condition, or τ ∈ T∑, if ∑
n≥1

dn ≤ D < +∞. (5.8)

Here we state the original Rychlik’s Theorem and then we explain how a piecewise

expanding map τ that satisfies the harmonic average of slopes condition, satisfies the

assumptions of the Rychlik’s Theorem.

Theorem 5.4. [7] A piecewise expanding map τ on an interval [a, b] admits an ab-

solutely continuous invariant measure if it satisfies the following conditions:
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1) There exists d > 0 such that for any n ≥ 1 and any J ∈ P(n),

sup
J
gn ≤ d · inf

J
gn; (5.9)

2) There exists ε > 0 and r ∈ (0, 1) such that for any n ≥ 1 and any J ∈ P(n),

m(τn(J)) < ε⇒
∑

J ′∈P(τn(J))

sup
J ′
g ≤ r; (5.10)

3) γ1 =
∑

J∈P supJ g < +∞. Moreover, if f is an τ -invariant density then

||f ||∞ ≤ γ1
d

ε(1− r)
. (5.11)

Theorem 5.5. [7] If τ ∈ T∑ and satisfies the harmonic average of slopes condition

sH < 1, then it satisfies the assumption of the Rychlik’s Theorem.

Theorem 5.6. [7] Let the family {τγ}γ>0 ⊂ T∑ satisfy the assumption of Rychlik’s

Theorem in a uniform way, i.e, with the same constants and τγ → τ0 almost uniformly

as γ → 0. If τ0 has exactly one acim, then fγ → f0 in L1 as γ → 0. In the general

case every limit point of the family {fγ}, as γ → 0, is an invariant density of τ0.

Theorem 5.7. [7] Let τγ ∈ T , γ ≥ 0. Let the invariant densities of {fγ}γ≥0 be

uniformly bounded in L∞. If τγ → τ0 almost uniformly as γ → 0, then any limit

point of {fγ}γ>0, as γ → 0, is a τ0-invariant density. If {τ0, f ·m} is ergodic, then

fγ → f0 in L1.
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Example 5.2. Recall that in Example (2.3) we have found that the probability density

for the map τ = τ0 = (x+ 1/2)χ[0,1/2] + (2−2x)χ[1/2,1] is f0 = 2
3
χ[0,1/2] +

4
3
χ[1/2,1]. The

question being posed in [2] is whether this map is acim-stabe i.e, whether the family of

densities {fε}ε>0 of the family of maps {τε}ε>0, where τε =
(
(1+2ε)x+ 1

2
− ε
)
χ[0,1/2] +

2(1− x)χ[1/2,1] converges to f0. As we said, Theorem (5.6) gives us a tool to answer

this question without referring to the Lasota-Yorke inequality.

Here again, it is easier to work with the third iterates of τ and τε. Since τ is exact

it means that τ 3 is also exact and has the same stability of the absolutely continuous

invariant measure. Hence, if we prove that τ 3 is acim-stable, then we conclude the

same for τ .

The third iterate of τ given by,

τ 3(x) =


4x if x ∈ [0, 1/4),

−2x+ 3/2 if x ∈ [1/4, 1/2),
4x− 3/2 if x ∈ [1/2, 5/8),
−8x+ 6 if x ∈ [5/8, 3/4),

4(x− 3/4) if x ∈ [3/4, 1].

On the partition P = {0, 1/4, 1/2, 5/8, 3/4, 1}, dn = maxJ∈P(n) oscJ
1
|τ ′| = 0 which

implies that
∑

n≥1 dn = 0 <∞, i.e, τ0 ∈ T∑(I). Moreover, since the slopes of τ 3 are

s1 = s3 = s5 = 4, s2 = 2 and s4 = 8, sH < 1 for i = 1, ..5, it satisfies the conditions

of the Rychlik’s Theorem.

Now we observe the third iterate of τε, given by equation (5.5) and whose graph is

shown in Figure [5.1].

We define the partition Pε = {0, ε
1+2ε

, 1+4ε
4(1+2ε)

, 1/2, 5/8, 3/4, 2+3ε
2(1+2ε)

, 1}, on which τ 3ε

is piecewise expanding. Note that as ε→ 0, ε
1+2ε
→ 0, 1+4ε

4(1+2ε)
→ 1/4 and 2+3ε

2(1+2ε)
→ 1.

The absolute values of the slopes of τ 3ε are s1 = s3 = s7 = 2(1 + 2ε)2, s2 = s4 = s6 =

4(1 + 2ε) and s5 = 8 and hence, as ε→ 0,

sH →
3

4
< 1.
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Here again
∑

n≥1 dn = 0 < ∞ and we conclude that τ 3ε uniformly satisfies the

summable oscillation condition and the harmonic average condition. Since τ 3ε → τ 3

as ε → 0, the family {τ 3ε }ε≥0 satisfies the conditions of Theorem 5.3. Since τ 3 is

acim-stable, we conclude that the same holds for τ .
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