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Abstract 

In this thesis, I present a small experiment of teaching the singular value decomposition 

(SVD) of matrices using a computational approach. The goal of the experiment was to 

check if students who completed the first two undergraduate linear algebra courses are 

prepared for this topic and if they would be satisfied with the computational approach.  

 The experiment took place in the summer of 2011 and consisted in two sessions 

of lectures of four hours each, in a computer lab, on the premises of Concordia 

University. The same four students attended both sessions. 

 The approach consisted in first introducing students to the general ideas and 

then gradually zooming into the details of the theory and the computational techniques 

and algorithms.  In the instructional sessions, lecturing by the teacher alternated with 

participants’ exploring the theoretical results and algorithms using prepared Maple 

worksheets.   

 Before the sessions started, participants were asked to respond to a 

questionnaire (Pre-test) that verified their knowledge of basic linear algebra concepts 

necessary for understanding the SVD theory. After the session, participants were asked 

to respond to another questionnaire (Post-test) addressing their understanding of SVD 

and their opinions about the teaching approach and the teaching of SVD in an 

undergraduate program. Participants’ responses to test questions were collected and 

analyzed.  

 One of the immediate conclusions is that without a good understanding of the 

fundamental concepts of linear algebra the topic of singular value decomposition of 

matrices could prove challenging for even the top achieving undergraduate students.  

 The participants showed interest in the teaching method, but mentioned that 

more time would be required to really benefit from learning about the numerical 

advantages and the vast applications of the singular value decomposition. 
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Chapter 1. Introduction 

At Concordia University, mathematics students have the option to study linear algebra 

in a computer environment. The courses MAST 234 Linear Algebra with Applications I 

and MAST 235 Linear Algebra with Applications II, intended for mathematics majors, 

take place in a computer lab equipped with the Computer Algebra System “Maple”. A 

class in those courses usually starts with a brief instructor’s theoretical introduction to a 

topic, after which students solve exercises that illustrate the theory using Maple at 

individual computer stations. The instructor circulates among the stations, helping to 

solve technical problems, answering questions and pointing to those aspects of the 

output that illustrate the theoretical concepts introduced in the lecture. Exercises are 

prepared by the instructor in a Maple worksheet before class. The worksheet is posted 

on the course website. The worksheet serves also as a place for students to write class 

notes. Students are expected to come to class a few minutes earlier to access the course 

website and download the worksheet for the day.  

 The courses include several examples of applications and algorithms (e.g., 

iterative methods for solving systems of linear equations such as the Jacobi and Gauss-

Seidel methods). Overall, however, the approach remains “structural”1: Theory is 

presented in the language of the structural algebraic properties of systems of linear 

equations, matrices, vector spaces and linear transformations. Maple affords only an 

illustration of the structural theory, and gives students an opportunity to get a better 

“feel” of the abstract objects of the theory. We will call this approach “structural with 

computer illustrations”.  

 We believe that the computational power of Maple could be used to better 

highlight the algorithmic aspects of linear algebra in those courses. In this thesis, we 

describe one modest attempt at such “computational approach” to teaching one topic, 

namely the topic of the singular value decomposition (SVD) of matrices.    

                                                      
1
 The notion of “structural approach” to linear algebra is understood here as an approach based on 

“analytic-structural thinking” about linear algebra concepts in the sense of Sierpinska (2000). 
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 The topic of SVD is sometimes taught by the end of the MAST 235 course, as a 

culmination of the theory that brings all the concepts introduced in the linear algebra 

courses together. The approach is usually structural, as presented in Poole’s “Linear 

Algebra” textbook (Poole, 2006), but students are shown the Maple commands to 

produce the SVD of a matrix.  It is the highlight of the leading thread of the courses, 

namely the problem of the factorization of matrices into simpler components, aimed at 

directly providing important information about the matrix and the linear transformation 

it defines. The notions of eigenvalue and eigenvector, introduced by the end of the first 

course (MAST 234), are presented as tools of diagonalization of matrices. This is possible 

for a very restricted class of matrices only (square matrices with a sufficient number of 

linearly independent eigenvectors). Orthogonal diagonalization, presented in the second 

course (MAST 235), is applicable to an even more restricted class of matrices (symmetric 

matrices). SVD is applicable to all matrices. 

 The advantages of the SVD factorization, however, go beyond the theoretical 

fact that it is the most generally applicable tool. These advantages can be appreciated 

when a computational rather than analytic-structural point of view is taken. In 

particular, SVD is the most numerically stable technique for determining the rank-

deficiency and nearness to singularity of a matrix.  

 Therefore, SVD would be a very natural crowning topic in a computer-based 

linear algebra course. This thesis is a result of our reflection on this idea, supported by a 

small scale implementation of a plan of teaching SVD to a group of students who have 

previously successfully completed the MAST 234 and 235 courses in a year where the 

topic was omitted.  The “teaching experiment”, especially the resulting participants’ 

understanding of SVD and their opinions about the instruction, demonstrated the many 

shortcomings of the devised plan and indicated the directions for its improvement. We 

hope that this thesis will help future instructors wishing to take a computational point of 

view to devise better teaching plans and avoid the pedagogical and didactical mistakes 

that we have made.  
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 This thesis is organized as follows. Chapter 2, which follows the Introduction 

directly, is a review of the literature concerning the teaching of mathematics in general, 

and linear algebra in particular, with computers. Chapter 3 presents the singular value 

decomposition as, on the one hand, a mathematical result, and, on the other, an object 

of teaching, particularly as a topic in one of Concordia University’s linear algebra 

courses. Three textbooks used in the Concordia University linear algebra courses run in 

a computer lab are reviewed here. In Chapter 4, a small-scale teaching experiment on 

teaching the singular value decomposition is described, and an analysis of the 

participating students’ reactions to it is presented. A discussion of the results of the 

experiment, and recommendations on teaching the SVD drawn form it constitute the 

content of the final Chapter 5. The thesis contains a list of references and an appendix. 

The appendix contains the Recruitment Letter and the Consent Form used in the 

experiment.  
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Chapter 2. Literature review 

In this chapter, I will review concepts and ideas found in a selection of research papers 

in the area of teaching mathematics, particularly linear algebra, with computers. 

2.1 Teaching Mathematics with Computers 

In this day and age electronic devices in general and computers in particular are an 

integral part of our lives. They came to be widely used in education, mainly for 

administrative purposes but also, to some extent, for the presentation and study of the 

content. Universities, Concordia included, started blending regular classes and online 

communication (Garrison & Vaughan, 2008), or offering fully online courses. At 

Concordia University, for example, a college level “Vectors and matrices” course is 

offered as an online alternative to a regular classroom course. Computer Algebra 

Systems such as Maple (Maplesoft. A Cybernet Group Company, 2012), Matlab 

(MathWorks, 2012) or Mathematica (Wolfram, 2012), and statistical software packages 

such as SAS/STAT (SAS Institute Inc., 2008) are used in some university mathematics 

courses. The use of such proprietary software in secondary schools does not seem to be 

widespread (Boileau, 2012). Those advanced software packages are more often used by 

mathematicians, in research and various applications; they are valued for their powerful 

functions that allow users to get precise results of very complicated calculations; have 

facilities for image processing, graphics and two and three–dimensional data 

visualization. Most of these mathematical software packages allow for data acquisition 

and analysis, symbolic calculations and application development, simulation and 

prototyping.   

 Some mathematics education researchers advocate the use of such software 

also in the teaching of mathematics, saying that the mathematical software may be 

used as a problem solving assistant, as a tool for visualization and validation of 

mathematical results and as a tool for discovery and pattern recognition  (Lagrange, 

2005); (Thomas & Hong, 2004); (Berry, Graham, & Watkins, 1994). Computer Algebra 
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Systems are claimed to facilitate the conversion and coordination between the algebraic 

and graphical registers (Winsløw, 2003). A common argument is that teaching 

mathematics with computers can reinforce concepts and motivate learning by 

alleviating the burden of procedural manipulation. In other words, students can follow 

the logical reasoning without being trapped in the algorithm. The impressive graphical 

possibilities of mathematical software incite some to say that its use in teaching is likely 

to motivate students’ geometric intuition. Certainly, lecturers can use those graphical 

possibilities to show students some mathematical aspects that would not be as 

accessible only with pen and paper: higher dimensional graphs, trajectories, solutions of 

linear equations, effects of matrix transformations. Once the teacher is armed with 

computers, he or she can do things that are not otherwise possible in the math class. 

For example, if a student proposes an inappropriate solution to a problem, it is much 

easier, with the use of mathematical software, to show that his or her approach is 

incorrect. In a traditional blackboard and prepared calculations environment, it is much 

more time consuming to prove the student wrong and he or she might be left 

unconvinced by only verbal explanations. The interaction between students and their 

teacher need not be diminished: a good way to raise students’ attention and to make 

them more willing to participate would be to ask them to anticipate what will happen 

when the “enter” key will be pushed. One of the most important roles of a teacher is to 

demonstrate thought processes. This can be achieved by presenting computer 

algorithms and by showing their intermediate steps. 

 There exist experiments in teaching mathematics with mathematical software 

(Trouche, 2005); (Drijvers & Gravemeijer, 2005) where some gain in conceptual 

understanding has been achieved.  However, these experiments have not been widely 

applied (Artigue, 2005). Indeed, the financial, temporal and institutional (curricula) 

constraints of mathematics teaching may constitute obstacles to a widespread use of 

(proprietary) mathematical software in education (Boileau, 2012). So far, research has 

not convincingly demonstrated that the benefits of teaching and learning mathematics 

with mathematical software justify the expense of money, and time and effort required 
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to learn the syntax of the software and prepare and organize the learning process 

(Pruncut, 2007). It is an agreed upon fact that the presence of technology creates new 

challenges for students. They have to understand how a certain “instrumented 

technique” (Lagrange, 2005) relates to their prior knowledge acquired in the traditional 

environment. They have to learn to interpret and anticipate the returned results and 

also to distinguish when it is worthwhile to use the tool instead of solving the 

mathematical problem on paper. This additional degree of complexity is perceived by 

some as a burden. Only when the student overcomes the constraints (syntactic, 

organizational) of the mathematical software can this perceived burden be alleviated. 

 There are researchers who worry that using computers in a mathematics course 

can turn students into button-pushers and that they will rely solely on mathematical 

software to assist them in solving the problem (Thomas & Hong, 2004); (Crowe & Zand, 

2000). Also, in the particular case of teaching Linear Algebra, such a concrete approach 

by using visualization and examples in low dimensions may lead to irrelevant 

interpretations and misunderstandings (Sierpinska, Dreyfus, & Hillel, 1999).  

2.2 Teaching Linear Algebra with Computers 

The vast majority of researchers and undergraduate students agree that Linear Algebra 

is a difficult course. Students complain about its apparent disconnection from other 

areas of mathematics and its formalism (Dorier & Sierpinska, 2001). These observations 

have been done both in lecture-driven, paper-and-pencil based theoretical courses 

(Dorier, Robert, Robinet, & Rogalski, 2000), and in experiments with hands-on, 

computer-based approaches (Sierpinska, Dreyfus, & Hillel, 1999); (Pruncut, 2007). 

Undergraduate Linear Algebra courses that go beyond techniques of solving systems of 

linear equations in the language of vectors and matrices and geometrical applications 

cannot avoid using analytic-structural thinking (Sierpinska, 2000) and reasoning in terms 

of axiomatic definitions and properties, which are well known to be difficult for 

students. Such Linear Algebra courses are rich in concepts and are characterized by 
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frequent transitions between representation modes (analytic, algebraic, and geometric) 

(Hillel, 2000).  

 Most students master the algorithmic skills involved in linear algebra, but many 

fail to achieve a “conceptual understanding of the subject” (Sabella & Redish, 1995). 

They may know the algorithms but have difficulty in choosing the appropriate one in 

solving a given problem (Dubinsky, 1997). Carlson states that solving systems of linear 

equations and calculating products of matrices is easy for students, but they become 

confused and disoriented with subspaces, linear independence, spanning and various 

aspects of bases and dimension (Carlson, 1993). Harel (1989) singles out the problem 

that students have with the linear-algebraic notations and explains that for them, 

abstract concepts arrive too quickly and without a firm intuitive base. Geometric 

interpretations of linear transformations, expected to make the concept more intuitively 

meaningful for students, do not necessarily facilitate their understanding because this 

requires a good spatial sense and a conceptual connection between geometric and 

algebraic objects which are both cognitively demanding.  

 Mathematics education researchers have proposed and tried various ways of 

helping students overcome their difficulties with the subject. Some of them involved the 

use of technology, particularly mathematical software. One has already been mentioned 

above: the teaching of the notion of linear transformation in the dynamic geometry 

environment Cabri (Cabrilog, 2009) has been tried, not very successfully, by Sierpinska, 

Dreyfus and Hillel (1999); (Sierpinska, 2000). Another was proposed by Dubinsky and his 

associates, based on the use of the computer programming language ISETL (Dubinsky, 

1995).  

 Dubinsky (1997) named three sources of students’ difficulties. The first is that 

teachers “succumb to the student demand that we first show them how to solve a 

certain kind of problem and then ask them to solve many instances of this same 

problem.” (Dubinsky, 1997, p. 93)  This causes students to have difficulties in 

understanding the concepts because they never get the chance to build their own 

thoughts about them. Second, he affirms that students lack the background concepts 
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essential to learning linear algebra. The third source, Dubinsky states, is the fact that the 

teachers do not use efficient pedagogical strategies to entice students to construct their 

own ideas about important concepts. Dubinsky proposes that pedagogical strategies 

based on cooperative learning and programming computers may have a better effect. 

He puts the emphasis on the idea of “having students construct implementations of 

mathematical concepts on computers, essentially by writing programs.” (Dubinsky, 

1997, p. 99) In the author’s view, programming in ISETL can help students visualize 

linear transformations dynamically. For example, in the initial stages of learning linear 

transformations, students could program a computer to transform a given vector, or a 

figure such as a square or a circle, by the action of a 2x2 matrix. Later on, students could 

be engaged in discussing the linear-algebraic aspects of the solution space of a linear 

system of differential equations. The author considers that applying Euler’s method to 

approximate the solution for a given initial value has a nice computer graphics potential 

and would lead students to enhance their understanding. 

  It must be noted that using computers in linear algebra is not just a matter of 

choosing a particular pedagogical strategy. It is a fact that there is no important 

application of linear algebra that does not require a computer. A good example is the 

standard way of computing the eigenvalues of a matrix: first find the characteristic 

polynomial of the matrix and then find the roots of this polynomial. For large matrices 

this approach is hopeless, but using mathematical software such as Maple, Matlab or 

Mathematica that have been programmed with analytic or numerical methods, these 

eigenvalues or their approximations can always be computed.  
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Chapter 3. Singular Value Decomposition of Matrices as a 

Mathematical Result and a Topic in a Linear Algebra Course 

In this chapter, the significance of the singular value decomposition of matrices (SVD) as 

a mathematical result will be demonstrated and some approaches to teaching this topic 

in an undergraduate linear algebra course will be discussed.  

3.1 Singular Value Decomposition as a mathematical result 

The brief account of the history of SVD in this section is based on the following sources: 

(Stewart, 1992) and (Wikipedia, 2012). 

 The singular value decomposition of a matrix is a relatively new result in the 

history of mathematics. It was developed by mathematicians who tried to determine if 

two real bilinear forms could be made equal by orthogonal transformations. 

 In the 1870s, Eugenio Beltrami and Camille Jordan discovered that singular 

values form a complete set of invariants under orthogonal substitutions. It was only in 

1910 that the term “valeurs singulières” of a matrix   was coined (by Emile Picard) for 

the square roots of the eigenvalues of the associated symmetric matrix     which is 

what we call singular values today. The first proof of the SVD for any complex matrix 

(not necessarily square) was done by Carl Eckart and Gale Young less than one hundred 

years ago, in 1936. By finding a first computational algorithm, Gene H. Golub and 

William M. Kahan introduced the SVD into numerical analysis (Golub & Kahan, 1965). 

However, it was Golub and Christian Reinsch who later developed the improved version 

that is used in most mathematical software today (Golub & Reinsch, 1970). 

 The singular value decomposition is an extension of the diagonalization of a 

matrix. The diagonalization of a matrix is applicable only to square matrices and only to 

those that satisfy a quite demanding condition. The matrix must have a sufficient 

number of linearly independent eigenvectors;   for an     matrix. For an     

square matrix  , if diagonalizable, there exists an invertible     matrix   and an     
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diagonal matrix   such that        . The diagonal entries of   are the eigenvalues 

of  , and the column vectors of   are the corresponding eigenvectors of  . It is said that 

the matrix   “diagonalizes”  .   

 SVD lifts the assumptions of squareness and existence of a basis of eigenvectors; 

it is applicable to any type of matrices, even rectangular ones. It is founded on 

orthogonality theory and especially the theorem (“Spectral Theorem”) that any real 

symmetric matrix can be orthogonally diagonalized, i.e., that there exists an orthogonal 

matrix that diagonalizes it; the converse is also true. The theorem can be generalized to 

complex matrices that are Hermitian (those that are identical with their conjugate 

transpose – a complex analog of the real symmetric matrices). SVD holds in general for 

complex matrices. 

 Let   be an     complex matrix. The singular value decomposition of   is the 

factorization          where   is an     unitary matrix that holds the left 

singular vectors of  ;   is an     “pseudo-diagonal” matrix that holds the singular 

values of  , and   is an     unitary matrix holding the right singular vectors of  . The 

concept of unitary matrix is the complex analog of the real orthogonal matrix.  

 Over the years, mathematicians found several key applications to SVD.  Some of 

them are in numerical methods related to linear algebra. A list of these include: the 

general pseudo-inverse of a matrix (the Moore-Penrose inverse), the computation of 

the four fundamental subspaces associated with a matrix (column space, row space, null 

space of   and null space of   ), estimation of the rank, computation of the inverse, 

perturbation theory (sensitivity of linear equations to data errors) and solving linear 

equations with inequality constraints.  

 Among important applications in other fields we can name: noise reduction, 

image compression, data analysis and prediction. 
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3.2 Singular Value Decomposition as an object of teaching 

This section contains an overview of the presentation of the topic of the Singular Value 

Decomposition of matrices in the textbooks that have been used in the MAST 234 and 

MAST 235 Linear Algebra with Applications courses.  

 Since the inception of these courses at Concordia University in 1997, three 

textbooks have been used:  

2001-2005 

Szabo, F. (2002). Linear algebra. An introduction using Maple. Boston: 

Harcourt/Academic Press. 

2006-2008 

Poole, D. (2006). Linear algebra. A modern introduction. Boston: Thomson Brooks/Cole  

2009-2012 

Cheney, W. & Kincaid, D. (2009). Linear algebra. Theory and applications. Boston: Jones 

and Bartlett.  

 

 Before 2001, lecture notes written by the instructor have been used, titled, 

“Linear algebra and its applications” (1997) and “Linear algebra with Scientific 

Notebook” (1998-2000).  

 The above-listed three textbooks contain chapters on SVD and the topic was 

taught until 2008. Then, for some reason, it was abandoned. In fact, it appears that, in 

general, SVD is not often taught in undergraduate linear algebra courses. A search of 

textbooks available in the Concordia libraries revealed only a few linear algebra 

textbooks with the notion of singular values or SVD theory. Among those that include at 

least one chapter about the topic, some are applied linear algebra books (Gelbaum, 

1988), others are books about the use of computers and numerical methods in teaching 

linear algebra  (Bau & Trefethen, 2000); (Natt, 2010). Following this trend, one might 

expect the MAST 234 and 235 courses to include SVD, since they have been designed to 

teach linear algebra in a computer environment. Yet, between 2009 and 2012, the topic 

did not appear in the course outlines.  
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 The prominent mathematician Gilbert Strang considers that SVD deserves being 

taught in linear algebra courses no matter whether the approach is computational or 

structural. In his Linear Algebra video lectures (Strang, 2010), he called SVD “a highlight 

of linear algebra” and emphasized that it is the best possible matrix factorization, with 

“especially good” matrices: orthogonal and diagonal. He added that SVD gained more 

exposure lately and that it is “bringing together everything in the linear algebra course”. 

Other mathematicians and mathematics instructors have caught on to the idea and 

there are now interesting and dynamically illustrated online expositions of SVD and its 

applications; e.g., (Davis & Uhl, 2011), (Will, 2003). 

3.2.1 An introduction to Linear algebra with Maple by F. Szabo 

SVD occupies the last chapter of the textbook by F. Szabo (2002), and appears, 

therefore, as the crowning of the whole course. It comes after chapters on vector 

spaces, linear transformations, eigenvalues and eigenvectors, norms and inner products, 

and orthogonality. The chapter is titled “Singular values and singular vectors” and the 

topic is introduced by a brief statement of the main ideas it is based on: 

In this chapter, we show that every rectangular real matrix A can be decomposed into a product 

     of two orthogonal matrices   and   and a generalized diagonal matrix D. The product 

     is called the singular value decomposition of  . 

The construction of      is based on the fact that for all real matrices  , the matrix 

    is symmetric and that… therefore exists an orthogonal matrix   and a diagonal 

matrix   for which         . We know from our earlier work that the diagonal 

entries of   are the eigenvalues of     . We now show that they are nonnegative in all 

cases and that their square roots, called the singular values of  , can be used to 

construct     . Due to the nature of the singular value decomposition algorithm, all 

numerical results in this chapter are approximations. (Szabo, 2002, p. 619) 

 In the chapter, the reader is given Maple commands to produce the SVD of a 

matrix, but the algorithm mentioned in the introduction above is not presented or 

discussed.  

 The Author begins with purely algebraic definitions and results and then 

illustrates them with concrete numerical examples in Maple. He first proves that the 

eigenvalues of the matrix     are nonnegative using the Spectral Theorem. Then, he 
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uses this result to define the singular values of a real matrix   as the square roots of the 

eigenvalues of the matrix     .  

 Two numerical examples follow, one for a square and one for a rectangular 

matrix. The first example asks students to find the singular values of the matrix  [
  
  

]. 

This is a good opportunity for the teacher to reinforce the definition of singular values, 

by correcting the possible first-impulse answers that might consider eigenvalues of the 

matrix   instead of the matrix    , which is all the more likely since the matrix is 

triangular.  In addition, the discrepancy between the results of finding the singular 

values based on the Maple output of the command “Eigenvalues(Transpose(A).A)” 

(√   √  , √   √   ) and obtaining them directly using the command 

“SingularValues(A)” (
 

 
√   

 

 
√  , 

 

 
√   

 

 
√   ) could lead students into thinking 

that they obtained the wrong result. The teacher could then challenge the students to 

show that both results are in fact correct. In the second example, the singular values of 

a 3 x 5 rectangular matrix and of its transpose are to be computed. Here, the instructor 

could highlight the fact that the singular values exist even for rectangular matrices and 

that the matrix and its transpose have the same positive singular values. 

 The examples are followed by relating singular values with matrix norms. First, 

the theorem that the largest singular value of a matrix is identical with its two-norm is 

given and proved. The definition of the two-norm used in the proof is ‖ ‖  

   {
‖  ‖ 

‖ ‖ 
   ‖ ‖    }. This theorem is intended to give more meaning to the concept 

of singular values by relating it to previously learned notions – matrix norms, in this 

case. Norms are measures, real numbers, associated with vectors and matrices, 

computable using Maple commands, and they are given much prominence in the 

textbook.  This approach differs from the next textbook that will be discussed here, by 

Poole (2012) , where the same meaning of the concept of the maximal singular value is 

represented in geometric terms and given a graphical representation in the context of 

the image of the unit circle under the transformation by the matrix: the image is an 
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ellipse and the length of its major half-axis is shown to be equal to the maximal singular 

value of the matrix.   

 In Szabo’s textbook, the theme of relations between singular values and matrix 

norms is pursued in an example following the previous theorem. In the example, 

students are asked to confirm that the Frobenius norm of a matrix  , defined previously 

as ‖ ‖  √           ,  is the square root of the sum of the squares of its singular 

values, for a 4 x 4 matrix with integer entries. 

 At this point, the instructor could highlight the use of the Frobenius norm, by 

talking about the notion of distance between matrices. He could find concrete examples 

of matrices that are “close” to singular matrices and show that in such cases the 

distance expressed in terms of Frobenius norm is small. 

 Before proving the SVD theorem, the Author lists theoretical results that make 

the singular value decomposition valuable.  These “properties” constitute good starting 

points for in-class discussions, quizzes and validation based on Maple numerical 

examples. For instance, a challenging exercise would be to ask students to come up with 

an example of an ill-conditioned matrix, using the fact that the condition number can be 

written as 
       

        
 .  

 By devising a session of questions and answers, followed by validating these 

answer with concrete numerical examples in Maple, the teacher could showcase how 

much of information about the matrix itself is held by the singular values. As an 

example, consider the following exercise: given that the square matrix   has singular 

values 2, 1 and 1, what can be deduced about the matrix?  

 We can claim that the rank of the matrix is equal to three, because there are 

three non-zero singular values. Thus, the matrix has three linearly independent 

columns. 

 We can compute the determinant of the matrix, based on the identity 

        ∏  . Given that the determinant is non-zero, we know that A is invertible. Its 

inverse      will have singular values 1, 1, and 1/2. 



15 

 

 We can state that the matrix is well-conditioned (because 
       

        
   ) so it is 

relatively far from a singular matrix.  

 We can immediately find the 2-norm of A, ‖ ‖   , as the largest singular 

value of the matrix and the Frobenius norm of A , ‖ ‖  √          = √ . 

 It can be easily shown that the transpose matrix    has the same singular values 

as  .  

 Using a concrete numerical example of a positive definite symmetric matrix, the 

instructor could show that, in this case, the eigenvalues and singular values coincide. For 

all other matrix types he should emphasize that eigenvalues relate directly to the 

original matrix  , while the singular values are computed from     . 

 Applications of SVD are also included: the computation of the four fundamental 

subspaces, of the pseudo-inverse and of the least square solutions of a system of linear 

equations.  A section is dedicated to a practical example of how SVD, by way of the 

Kronecker product expansion of a matrix, is used in. The Author mentions the 

remarkable result that the error in approximating an image to the     singular value of 

the corresponding matrix is the next singular value,     . He expresses this in terms of 

distance to the original matrix, using the 2-norm: ‖    ‖        .  I think that 

the aim of the author is to entice students to discover the usefulness of Linear Algebra 

by learning about these applications.  

 The approach used in the textbook can be described as structural with Maple 

illustrations, but certain computational notions are also introduced. An example of such 

notion is the condition number of a matrix and the underlying idea of well-

conditionedness of a matrix in relation to the perturbation theory. When defining the 

effective rank of a matrix, the Author mentions that one can use the computer version 

of the Gaussian elimination to reduce a matrix to its row echelon form.  However, he 

states that this method is not numerically stable, due to the accumulation of round-off 

errors. Instead, “a more reliable method is to find the singular value decomposition of 

the matrix and then discard the small singular values.” (Szabo, 2002, p. 644). 
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 Compared with other books or articles on singular value decomposition, the 

textbook under discussion here, “Linear Algebra. An introduction using Maple” (Szabo, 

2002) does not include any geometrical representations of the matrix transformation 

that maps   to   . The book lacks the classical example of how the image of the unit 

sphere in    becomes the surface of an ellipsoid in     if the transformation matrix is 

of maximum rank. 

 An aspect worth mentioning is the fact that mathematics textbooks that 

incorporate important reference to the use of particular mathematical software in 

teaching need frequent revisions because of the ageing of the software. The textbook 

under discussion was published in 2002, and Maple versions 5 and 6 were used for the 

numerical examples. Most of these examples use the now “deprecated” Maple package 

linalg. Using a newer version of the software together with the textbook could be 

confusing for students. Another problem with using particular software within a 

textbook is that the software’s representation of the mathematical objects could be 

based on a different conceptualization of those objects than is usually assumed in the 

theory. In particular, the linalg package represents vectors as lists or one-row matrices 

and matrices as lists of rows. The proofs in the textbook under discussion (Szabo, 2002) 

are based on the representation of vectors as one-column matrices. For example, the 

proof that, for all real     matrices  , the eigenvalues of the matrix     are 

nonnegative, uses a representation of the dot product of two vectors   and   as      

which conceives of vectors as one-column matrices. The same conceptualization 

appears in viewing the system      as the question of whether   belongs to the 

column space of  . In the example that directly follows this proof, a matrix is defined in 

linalg as a list of rows, and in further examples vectors are declared as rows. This 

inconsistency of representation can be confusing for the students.  
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3.2.2 A “modern introduction” to linear algebra by D. Poole 

Poole’s textbook (2012) represents a structural approach to linear algebra, with 

meaning sought mainly in the geometric intuitions underlying the concepts, and a few 

suggestions of “exploration” using a computer algebra system (CAS).  

 The text, however, comes in a package with supplementary materials and 

resources some of which allow more extensive use of CAS. Besides the Student 

Solutions Manual that accompanied also Szabo’s textbook, the package included an 

Instructor’s Guide, a test Bank and three internet resources. One was an electronic 

version of the textbook. Another was an online course management system complete 

with a large bank of problems for weekly assignments and periodic tests. The problems 

were programmed for electronic grading and the instructor could easily modify the 

problems and the programming of the grading to suit his or her purposes (iLrn Testing, 

2003). The instructor of the MAST 234-5 courses who used Poole’s textbook made 

important use of the iLrn Testing system, both for class management and assignments2. 

Finally, the textbook was accompanied by a CD-ROM with  

… data sets for more than 800 problems in Maple, MATLAB, and Mathematica, as well 

as data sets for selected examples. Also contains CAS enhancements to the vignettes and 

explorations that appear in the text and includes manuals for using Maple, MATLAB, and 

Mathematica. (Poole, 2012, p. xv) 

The instructor used some of the Maple-based problems on the CD-ROM in preparation 

of classroom activities.  

 It has to be mentioned, that neither the textbook, nor the “ancillaries” 

accompanying it present the algorithms for computing SVD, and the computational 

advantages of using SVD are not highlighted in the materials.   

 Here, I will describe only the presentation of the SVD topic in the hard copy of 

the textbook.   

                                                      
2
 This was before the Moodle class management system was imposed on instructors in the Mathematics 

and Statistics Department.  
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 Similarly to Szabo’s textbook, this one also presents SVD as the last topic, but it 

does not devote a separate chapter to it. “The Singular Value Decomposition” section is 

part of Chapter 7, “Distance and Approximation” and comes after sections on “Inner 

Product Spaces”, “Norms and Distances” and “Least Square Approximation”.  The 

Author introduces SVD referring to results about diagonalization of matrices from 

previous chapters. He starts by recalling the Spectral Theorem. Then, he writes that 

certain non-symmetric matrices are still diagonalizable but in this case the diagonalizing 

invertible matrix cannot be orthogonal. However, while not every matrix is 

diagonalizable, every matrix, regardless of its shape, has a factorization of the form 

        , where   and   are orthogonal and   is pseudo-diagonal, and the 

factorization is called “the singular value decomposition of the matrix A”. He calls this a 

“remarkable result” and deems SVD to be one of the most important matrix 

factorizations. 

 After showing that       is symmetric and that this implies that all eigenvalues 

of this matrix are real and nonnegative, he defines the singular values of A as the square 

roots of the eigenvalues of     . 

 The Author gives a geometric interpretation for the above definition writing that 

the singular values of A are the lengths of the vectors     ,     ,… ,     , where {    , 

   ,… ,   } is an orthonormal basis of eigenvectors of     . Using a concrete numerical 

example of a 2 x 2 matrix, he shows that the image of the unit circle under the 

transformation is an ellipse and that the singular values    and    are the lengths of the 

major and minor half-axes of this ellipse. 

 The proof of the SVD theorem follows and the Author underlines the idea that 

the matrices U (whose columns are left singular vectors of A) and V (whose columns are 

the right singular values of A) are not uniquely determined by A. Using a 2x3 and a 3x2 

matrix, he shows the steps to compute their singular values, without the use of 

mathematical software. 

 Next, the Kronecker (or dyadic) decomposition of a matrix is presented as “the 

outer product form” of the SVD, and the Author mentions that this expansion is very 
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useful in applications. One of these applications, the digital image compression, is 

showcased at the end of the section.   

 The Author proves next that the matrices U and V contain the orthonormal bases 

for the four fundamental subspaces (col (A), null (  ), row (A) and null (A)). 

 Consistent with his geometric perspective, he continues by stating that SVD 

provides a “new geometric insight into the effect of matrix transformations”.  The fact 

that an m x n matrix transforms the unit sphere in    into an ellipsoid in   , noted in 

previous sections, is stated as a theorem and proved. A nice graphical visualization of 

this transformation for a 2 x 3 matrix is included.   

 The steps involved in this transformation are presented: the orthogonal matrix 

   maps the unit sphere onto itself. Then, the m x n pseudo-diagonal matrix D collapses 

    of the dimensions of the unit sphere (r is the rank of the matrix) and the other r 

nonzero diagonal entries distort it into an ellipsoid. Finally, the orthogonal matrix U 

aligns the axes of the ellipsoid with the orthonormal vectors    in   . Once again, a 

graphical representation of these steps is included. 

 Among the applications of the singular value decomposition of a matrix, the 

Author lists: the computation of the rank as the number of nonzero singular values;   

expressing the matrix norms and the condition number of the matrix in terms of its 

singular values; the matrix pseudo-inverse (          , where    holds on its 

diagonal the inverses of the nonzero singular values of A) and the least squares 

approximation (the system       has a unique least squares solution of minimal 

length:  ̅ =     ). Every application is supported by a numerical example.  

3.2.3 Theory and applications of linear algebra, by W. Cheney and D. Kincaid 

In Cheney and Kincaid’s Linear Algebra textbook (2009), the topic of SVD occupies a little 

more than a page. The text is part of a section devoted to “Matrix Factorizations and 

Block Matrices” in Chapter 8 “Additional Topics”. 

 The Authors affirm that SVD has “many uses, among them a way to produce a 

reliable estimate of the rank of a matrix.” (p. 501) The SVD theorem is stated and proved 
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next. The steps involved in the proof are similar to the ones in the other two books. In a 

footnote to the proof, the Authors mention the creators of the most well-known 

algorithm for computing SVD: W. Kahan and G. Golub. They also refer to the 

applications of this algorithm: signal processing, data analysis and Internet search 

engines. 

 In my opinion, this textbook does not apportion SVD the space that it deserves. 

The Authors adopt a purely structural-algebraic approach, with no geometrical or 

computational insights. The computational advantages of SVD and its wide range of 

applications are mentioned just in passing, with no concrete examples. 
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Chapter 4.  Trying a Computational Approach to Teaching the 

Singular Value Decomposition of Matrices with a Small Group of 

Students 

This chapter presents the content of the teaching experiment and participants’ 

responses to a Pre- and a Post-test. The Pre-test measured the participants’ 

preparedness for the SVD lectures in terms of their memory and understanding of basic 

linear algebra concepts. The Post-test looked at some aspects of participants’ 

understanding of the SVD lectures and their opinions about the teaching approach used 

in the lectures.  

 The Pre-test was administered right before the beginning of the first session of 

the lectures. The lectures were prepared before the Pre-test and the plan was not 

changed to accommodate the shortcomings of the participants’ understanding of the 

basic notions of linear algebra. The instructor (the author of the thesis) only allowed 

time for questions during the lectures to clarify any issues that might arise. Therefore 

the teaching plan and the actual content of the teaching experiment were essentially 

the same. In section 4.1, the description of the teaching plan will be worded partly in 

the past tense, stating what the instructor actually did, but without describing the 

individual participants’ reactions. Only their general activity as expected will be 

described.     

4.1 The teaching plan  

The plan for teaching SVD from a computational point of view will be presented here 

using the rubrics of the Concordia University “lesson plan template”3.  

 There were two four-hour classroom sessions planned for the “teaching 

experiment”. More were initially hoped for, but it was a challenge to recruit volunteer 

students and to synchronize their availability. A separate session for revising the basic 

                                                      
3
 http://teaching.concordia.ca/resources/lesson-plan-template/ 

http://teaching.concordia.ca/resources/lesson-plan-template/
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linear algebra notions used in the lectures was initially planned to ensure a better 

understanding, but it had to be given up because of the little available time. In a 

questionnaire administered at the end of the experiment, some of the participants 

stated that they would have liked more time allocated to the experiment, especially to 

the section presenting the numerical algorithms.  

4.1.1 Session 1, titled “The Singular Value Decomposition of a matrix, theory and 

applications” 

Purpose 

The goals of this first session are: to inform the participants about the purpose and plan 

of the experiment, and what they will be expected to do;  to collect some data about 

their knowledge of basic linear algebra concepts (Pre-test), and to introduce the topic of 

SVD using a PowerPoint presentation with an overview of the history of its discovery, 

the fundamental theoretical results and a glimpse of its applications, interrupted by 

brief illustrations of the concepts on prepared Maple worksheets.  

Learning outcomes 

At the end of this lesson students should be able to remember the properties of the 

matrices involved in the singular value decomposition and the underlying geometric 

representation. In addition, they should grasp the advantages of SVD: the fact that it can 

be applied to any matrix and the wide range of its applications.   

Bridge-in 

Participants will modify the Maple worksheets, run the examples with new input data, 

and actively interact during class. They will build new plots to visualize the effects of 

matrix transformations.  They will comment on the difference in results and remark the 

computer round-off errors. They will be enticed to use specific matrices to validate 

previous theoretical results (for example for symmetric, positive-definite matrices). 
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Pre-test 

Before the session started, participants were asked to respond to a questionnaire about 

their mathematical background and answer 15 linear algebra questions. The linear 

algebra questions were asked not so much as a guide for the instructor to adjust his 

teaching to the level of students’ knowledge – the lectures were prepared before the 

participants’ responses were known to the instructor – but as part of a measure of the 

impact of participating in the experimental SVD sessions on students’ understanding of 

linear algebra.  The second part of the measure was the post-test. It was assumed that if 

there was improvement between the pre-test and post-test for a student, then the 

impact of the sessions on his or her understanding of linear algebra was positive.   

The Pre-test questions 

The pre-test was called “Preliminary questionnaire” and it contained the following 

questions: 

INITIALS: Please print your initials 

PROGRAM: What program are you registered in? 

LINEAR ALGEBRA KNOWLEDGE 

 What was the latest Linear Algebra course that you took? 

 How long ago? 

 What was your final mark? 

Please answer all questions below to the best of your knowledge. When not sure about 

an answer, write “N.S.” next to the question 

 Question 1: Orthogonal vectors in a vector space 

1a. Given two orthogonal vectors in a vector space: what is their 

dot product?   

1b. What is the angle between them? 

 Question 2: Multiplication of a row vector by a matrix 

Complete the following sentence:  

Multiplying a row vector by a matrix   is a linear combination of 

 ’s …. 
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 Question 3: Orthogonal matrices 

What properties of vectors remain unchanged (are preserved) 

when multiplied by orthogonal matrices?  

 Question 4: Fundamental subspaces of a vector space 

4a. What are the row space and the null space of a matrix  ?  

4b. What is the relationship between the row space and the null 

space of a matrix? 

 Question 5: Multiplication of a square matrix by a vector 

Complete the sentence:  

The non-zero vectors (     ) that, after being multiplied by the 

square matrix   (     ) remain in the same direction as the 

original vector, are…  

 Question 6: Roots of the characteristic polynomial of a matrix 

Given a matrix  , we know that the roots of its characteristic 

polynomial are -1 and +1. How one can go about computing   ? 

 Question 7:  Symmetric matrices 

Given   and  , real square matrices, next to each of the sentences below write 
True or False (if False, give a counter-example): 
7a.     is symmetric 

7b.    is symmetric 

7c. If     exists, then     is symmetric 

7d.    is symmetric 

7e.     is symmetric (does   have to be square?) 

 Question 8: Positive definite matrices 

8a. What is the definition of a positive definite matrix?  
8b. Complete the sentence:   is positive definite if and only if all its eigenvalues 
are… 

 Question 9: Matrix rank 

9a. How would you define the rank of a matrix? 
9b. How would you go about computing it? 

 Question 10: Elementary row operations 

What properties of the original matrix are not modified when 
Elementary Row Operations are applied? 

 Question 11: Matrix decompositions 

11a. Give 3 examples of matrix decompositions. 
11b. In what area of mathematics do you think that these decompositions are 
useful? Explain. 

 Question 12: Matrix determinant 

If all the eigenvalues of a matrix are known, how can its 

determinant be computed? 
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 Question 13: Linear independence 

13a. Given 3 distinct, non-zero vectors in ℝ3, how can we prove that they are 
linearly independent? 

13b. Can a set of 8 distinct, non-zero vectors in ℝ7 be linear independent? 
Explain. 

 Question 14: Diagonalizable matrices 

When is an       matrix, with real entries, diagonalizable? 

 Question 15: Basis 

Complete the sentence:  

Given a basis of a finite vector space, … element of the vector 

space can be expressed …  as a … of basis vectors. 

Expected answers to the Pre-test questions 

Below, the Linear Algebra questions are justified and expectations about the 

participants’ responses are presented. Some notes about how the teaching experiment 

could alleviate some of the possible students’ misconceptions are also made. 

Question 1: Orthogonal vectors in a vector space 

The question was: “1a. Given two orthogonal vectors in a vector space: what is their dot 

product?  1b. What is the angle between them?” 

 While the theory of eigenvalues and eigenvectors and diagonalization of 

matrices abstracts from the magnitude of vectors (norms) and relations between their 

positions (angles), SVD looks at matrices from a much more geometrical perspective. 

The concept of orthogonality is essential in grasping the decomposition. This justifies 

asking a question about the meaning of orthogonality first in the Pre-test.  

 The perspective is geometrical in a very general sense, not just in the sense of 

shapes in the Euclidean plane or space. Linear algebra has developed a language that 

allows to speak about geometric relations in any number of dimensions, thus making 

the theory applicable not only to two and three-dimensional geometric problems but to 

any situations that can be modeled in terms of vector spaces and linear transformations 

between them. The language represents the mutual position between vectors by means 

of an operation on these vectors, the inner product, of which the dot product is a classic 

example. Instead of saying that two vectors are orthogonal if the angle between them is 

the right angle or measures 90 degrees, linear algebra defines the expression “vectors v 
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and w are orthogonal relative to a given inner product” as equivalent to “ the inner 

product of v and w is equal to 0”.   The angle t between vectors v and w is defined as 

represented by the number 
     

‖ ‖ ‖ ‖
 , and it applies to vectors in any inner product space, 

including spaces of real functions.   

 In the hope that participants gained a little of this generalized geometric 

perspective in their undergraduate Linear Algebra courses, we expected them to know  

that “orthogonal vectors” translates into “dot product is equal to 0” in case the dot 

product is the chosen inner product, which is the case in the SVD theorem presented in 

the lectures. We expected them to say that the angle between orthogonal vectors is  
 

 
, 

rather than, say, “90 degrees”, because the measurement of angles in terms of degrees 

reveals thinking of the cosine as a relation between the sides of a right-angled triangle 

(characteristics of school mathematics) rather than as a real function, as it is understood 

in linear algebra.  

Question 2: Multiplication of a row vector by a matrix 

The question was: “Complete the following sentence: Multiplying a row vector by a 

matrix   is a linear combination of  ’s ….” 

 The expected correct answer was: multiplying a row vector by a matrix   is a 

linear combination of the rows of  . Participants could hesitate between linear 

combination of rows versus columns. Participants could use Maple to verify these 

possibilities. Moreover, they could reject the linear combination of columns conjecture 

by observing that multiplication of a row vector by a matrix produces a row vector, 

whereas a linear combination of columns would produce a column vector.  

Question 3: Orthogonal matrices 

The question was: “What properties of vectors remain unchanged (are preserved) when 

multiplied by orthogonal matrices?” 

 We expected that participants would mention the preservation of norms of 

vectors and angles between vectors, since they have been taught that orthogonal 

matrices preserve inner products: ⟨      ⟩ = ⟨    ⟩. 
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 This question was asked because orthogonal matrices and the fact that they 

preserve norms and angles play a pivotal role in the SVD. In the planned teaching 

sessions, their computational advantages would be highlighted as well: their inverse can 

be easily computed by transposing the matrix.  

Question 4: Fundamental subspaces of a vector space 

The question was: “4a. What are the row space and the null space of a matrix A?  

4b. What is the relationship between the row space and the null space of a matrix?” 

 The notions of row space and nullspace of a matrix are taught early in the MAST 

234 course. They are some of the standard examples of subspaces when the notion of 

subspace is introduced. We expected, therefore, that participants who achieved highly 

in the course would be able to answer question 4a easily. Regarding question 4b, they 

could recall the relation between the dimensions of these subspaces (as adding up to 

the number of columns of the matrix), the fact that the nullspace is the orthogonal 

complement of the rowspace and therefore the space   where   is the number of 

columns of   can be decomposed into a direct sum of these subspaces.  

 In the lecture, in the section dedicated to the immediate SVD applications, the 

computation of the four fundamental subspaces was to have a prominent role. The 

relationships that exist between them will be highlighted and shown in a graphical 

manner. Therefore, if participants did not remember these notions well, the lecture was 

planned to clarify these notions for them. 

Question 5: Multiplication of a square matrix by a vector 

The question was: “Complete the sentence: The non-zero vectors (n x 1) that, after 

being multiplied by the square matrix A (n x n) remain in the same direction as the 

original vector, are…” 

 This question aimed at testing the capacity of the participants to move from the 

graphical thinking “register” to the more frequently used algebraic one. The notion of 

vector direction might be challenging for some students. Rewriting the question in the 
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form: “Given a matrix   and a scalar  , what is name of non-zero vectors   satisfying 

     ?”, would probably get the correct answer, eigenvectors, most of the time. 

Question 6: Roots of the characteristic polynomial of a matrix 

The question was: “Given a matrix  , we know that the roots of its characteristic 

polynomial are -1 and +1. How one can go about computing   ?” 

 The question doesn’t say anything about the size of the matrix or the multiplicity 

of the eigenvalues. It cannot be taken for granted, therefore, that the matrix is 

diagonalizable. However, questions about calculating a power greater than 2 of a matrix 

in the MAST 234-5 Linear Algebra courses rarely if ever involve non-diagonalizable 

matrices. Students who completed the more theoretically-oriented Linear Algebra 

course MATH 251-2 and had seen the Jordan and Rational Canonical Forms of matrices 

might be perhaps more likely to consider the case of a non-diagonalizable matrix. This 

would be the sign of theoretical thinking in linear algebra. However, in view of the 

existing research – (Sierpinska, Nnadozie, & Oktaç, 2002); (Dorier & Sierpinska, 2001) – 

this way of thinking is not common even among the best MATH 251-2 students.  

 Therefore, we expect that participants will assume that the matrix can be 

diagonalized, and that therefore there exists a transformation matrix   and a diagonal 

matrix  , with values    and   on the diagonal, such that         . Raising this to 

power seven, we get             . The matrix   is obtained by computing the 

eigenvectors corresponding to the eigenvalues –   and  . Students could notice that, 

with   and –   on the diagonal,     , and therefore,     .  The question did not 

ask about the outcome of raising the matrix to power 7, however, but only about ways 

of calculating it. 

To answer this question, participants do not have to make a mental link between 

eigenvalues and the roots of the characteristic polynomial. However, this link will be 

necessary in understanding the lecture where the numerically unstable aspect of 

computing the eigenvalues as roots of the characteristic polynomial will be brought to 
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the fore. The complexity of computing the singular values by hand will help students 

strengthen their belief in the usefulness of mathematical software. 

Question 7:  Symmetric matrices 

The question was: “Given   and  , real square matrices, next to each of the sentences 

below write True or False (if False, give a counter-example): 7a.     is symmetric; 7b. 

   is symmetric; 7c. If     exists, then     is symmetric; 7d.    is symmetric; 7e.     

is symmetric (does   have to be square?) 

 It will be interesting to see if the participants will attempt to prove any of the 

parts of this question in an analytic-structural way (by using the fact that if   is 

symmetric then     ).  

A good understanding of the properties of symmetric matrices is at the heart of 

understanding SVD. Sub-question 7e, in particular, is very important, because it helps in 

gaining the knowledge of how singular values can be computed (as square roots of the 

eigenvalues of the symmetric matrix    . During the lecture, the fact that regardless of 

the shape of matrix  , the matrix      is always symmetric will be emphasized. 

Question 8: Positive definite matrices 

The question was: “8a. What is the definition of a positive definite matrix? 8b. Complete 

the sentence: A is positive definite if and only if all its eigenvalues are…” 

 We expected that the definition of a positive definite matrix: an       

symmetric real matrix   is positive definite if the number        is positive for all non-

zero column vectors     , would be known by the students. If they did not remember 

this definition, we expected them to at least know the test of positive-definiteness 

hinted at in question 8b.  

 The concept of positive definite matrices and the attributes of their eigenvalues 

will be part of the theoretical examples accompanying the SVD theory section in the 

lecture. Participants will have a chance to get to refresh their memory of this concept by 

using Maple commands and by validating their own examples. In one of the exercises, 

participants will have a chance to verify that if a matrix is positive definite then its 
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eigenvalues are equal to its singular values. This might help consolidate their 

understanding of positive definite matrices.  

Question 9: Matrix rank 

The question was: “9a. How would you define the rank of a matrix? 9b. How would you 

go about computing it?” 

 Participants can be expected to define the rank of a matrix in terms of the 

number of pivots in the reduced row echelon form of the matrix, or the number of non-

zero rows in that form. Row reduction is the expected answer to question 9b.   

 While teaching SVD, the idea that the rank of a matrix is equal to the number of 

its non-zero singular values and is more numerically stable than row reduction will be 

introduced. Students will build examples of matrices that are not of maximum rank, 

apply SVD and validate that there is at least one zero singular value in the 

decomposition.  

Question 10: Elementary row operations 

The question was: “What properties of the original matrix are not modified when 

Elementary Row Operations are applied?” 

 Students are used to elementary row operations because in the Linear Algebra 

courses the technique of row reduction is used in many situations.  One of the situations 

is the topic of elementary matrices and the effect of multiplying by such matrices on 

other matrices. Multiplying a matrix by another simple one to obtain a certain effect will 

appear in the lectures in the context of multiplication by Givens rotation matrices. 

Question 11: Matrix decompositions 

The question was: “11a. Give 3 examples of matrix decompositions. 11b. In what area of 

mathematics do you think that these decompositions are useful? Explain.” 

 This question tested the students’ knowledge of matrix factorizations. It is 

expected that they list at least diagonalization and the QR decomposition. 
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Question 12: Matrix determinant 

The question was: “If all the eigenvalues of a matrix are known, how can its determinant 

be computed?” 

 In the Linear Algebra courses, students learn that similar matrices have the same 

determinants. This could suggest to them the idea that the absolute value of the 

determinant can be computed by multiplying the eigenvalues.    

 In the SVD lecture, a similar result will be introduced and tested using Maple: the 

absolute value of a determinant is equal to the product of its singular values. At that 

time, references will be made to the relation between eigenvalues and the matrix 

determinant. Also, it will be stressed that if any singular value is zero the matrix 

becomes singular. These conclusions should help students clarify the role of the 

determinant and its relationship to both eigenvalues and singular values. 

Question 13: Linear independence 

The question was: “13a. Given 3 distinct, non-zero vectors in ℝ3, how can we prove that 

they are linearly independent? 13b. Can a set of 8 distinct, non-zero vectors in ℝ7 be 

linear independent? Explain.” 

 It was expected that participants would know the structural definition of linearly 

independent vectors. Some of the students, however, might formulate definitions based 

on creating a matrix with the given vectors and finding its rank, reflecting their tendency 

to use the analytic-arithmetic mode of thinking in linear algebra. 

 In the SVD lectures, the fact that the number of linearly independent rows (or 

columns) of the matrix to be decomposed is equal to the number of non-zero singular 

values of the given matrix will be highlighted. In addition, it will be stated that the 

matrices holding the left and right singular vectors (  and   respectively) have linearly 

independent rows (or columns) since they are orthogonal. Linear independence of the 

rows (columns) of an       matrix, perceived as vectors in   , in relation to matrix 

invertibility and matrix orthogonality will be explained.  
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Question 14: Diagonalizable matrices 

The question was: “When is an       matrix, with real entries, diagonalizable?” 

 Participants are expected to name at least some sufficient conditions for 

diagonalization: for example, if a     matrix has   distinct eigenvalues then it is 

diagonalizable.  Ideally, they would mention the theorem that an n x n square matrix is 

diagonalizable if and only if the sum of the dimensions of its eigenspaces is equal to n.

 In the lectures, SVD will be introduced as an extension of the diagonalization of a 

matrix. A comparison between the conditions for matrix diagonalization and for matrix 

singular value decomposition will be made in the first session, concerned with the more 

theoretical and structural aspects of the decomposition. The fact that SVD can always be 

applied, even for rectangular matrices, will be underlined. 

Question 15: Basis 

The question was: “Complete the sentence: Given a basis of a finite vector space, … 

element of the vector space can be expressed …  as a … of basis vectors”.  

 A fundamental notion of linear algebra is that of the basis of a vector space. At 

the completion of a linear algebra course, any student should know that there are many 

possible bases in a vector space, but they all have the same number of vectors. Also, it 

should be clear in their mind that any vector in a vector space can be expressed, 

uniquely, as a linear combination of the basis vectors, which act as a coordinate system. 

During the SVD lecture these definitions will be reinforced.  Moreover, it will be clearly 

stated that, as opposed to diagonalization, in SVD one has to find a basis in the domain 

and usually another one in the range to create a pseudo-diagonal matrix and that such 

bases always exist. 

Instructor’s input  in the f irst session  

The instructor introduced the concepts and results about SVD using the lecture format 

interrupted from time to time by questions from students and exercises for them.  The 

session can be divided into six parts or phases. First the theoretical results were 

introduced, and then students were directed to modify and execute the corresponding 
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numerical examples.  Using the projection screen, the teacher went through the slides 

underlining the theoretical aspects, the advantages, the geometrical representations 

and the applications of SVD.  

Session I, Part 1– Historical introduction 

The session started with historical information about the invention of SVD, in the 

context of differential geometry first with further developments in the domain of 

numerical methods. The intention was to present the topic as a relatively recent 

invention in mathematics, and so convey the notion that mathematics is a living area of 

activity: that it is a “hot” topic. This was expected to make the subject more exciting for 

the participants. This part of the lecture was meant also to familiarize participants with 

the key words of the topic – Singular Value Decomposition, singular values, and 

orthogonal transformations – without defining them. The introduction served thus also 

as an advanced organizer.  

 Below I reproduce, in a concise form, the content of the slides presented to the 

participants. 

SVD (Singular Value Decomposition) was first developed by differential geometers 
who wanted to determine whether a real bilinear form could be made equal to 
another by orthogonal transformations of the two spaces it acts on.  

In 1873 and 1874 respectively, E. Beltrami and C. Jordan discovered that the singular 
values form a complete set of invariants under orthogonal substitutions. In 1889, 
Sylvester also arrived at the SVD for real square matrices. 

In 1910, Emile Picard was the first to call the numbers σk singular values (or rather, 
“valeurs singulières”) 

In 1915, Autonne used the polar decomposition to arrive at the SVD. 

The first proof of the SVD for rectangular and complex matrices was done by Carl 
Eckart and Gale Young in 1936. 

J. E. Schmidt and H. Weyl took part in the final developments of the SVD in the mid-
1900s. 

Methods for computing the SVD date back to Kogbetlianz in 1954, 1955 and 
Hestenes in 1958, resembling closely the Jacoby eigenvalue algorithm, which uses 
plane rotations or Givens rotations. 

These were replaced by the Golub-Kahan method published in 1965, which uses 
Householder transformations or reflections. 
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In 1970, Golub and Rensch published a variant of the Golub-Kahan method that is 
still the one most used today. 

The Golub-Rensch algorithm was later improved by using different flavors of the 
Lanczos bidiagonalization algorithm. (Wikipedia, 2012). 

 

 The introduction ended with a first mention of the usefulness of SVD: 

From a numerical point of view SVD is more stable than the eigenvalue 
decomposition because the multiplying matrices are orthogonal (no inverses to be 
computed). 

Also, SVD is less prone to data perturbations. 

 

 The usefulness of SVD in computations aimed at deciding about basic properties 

of a matrix was highlighted at many points in the session.  

Session I, Part 2 – Informal descriptions of the main idea of the SVD theorem 

The general idea of the lecture was to go from a very informal presentation of the SVD 

theorem and gradually make the formulation more and more detailed and precise. The 

informal presentations were going from verbal, to diagrammatic, to geometric. The 

basis of the presentations was the view of matrices as transformations: 

A matrix represents a linear transformation from one vector space, the domain, to 
another, the range. Compared to eigenvalues, which are relevant only when the 
matrix is regarded as a transformation from one space onto itself, singular values 
are relevant when the matrix is regarded as a transformation from one space to a 
possibly different space of not necessarily the same dimension.  

 

 The SVD states that for any linear transformation it is possible to choose an 
orthonormal basis for the domain and a possibly different orthonormal basis for the 
range. 

 

 Behind this formulation was a view of diagonalization of a matrix transformation 

as the result of a process of choosing a basis (or changing the coordinate system) in 

which the transformation simply stretches the space along the vectors of the basis (or 

axes) by factors equal to eigenvalues. SVD is likewise viewed as a product of choosing a 

basis so that the transformation is seen as a “stretcher” (Will, 2003), except that in the 
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general case of rectangular matrices, two changes of basis may be needed, one for the 

domain and one for the range of the transformation. The SVD theorem states that even 

in such general case, particularly convenient bases can be found, namely orthonormal 

bases.    

 Before making the formulation more precise, it was necessary to introduce the 

notion of singular value. The first informal description of singular value was referring to 

its relationship with the singularity of a matrix. This was meant to justify the name 

“singular” for singular values: they are indicators of the singularity of a matrix.  

The term singular value relates to the distance of the given matrix to a singular 
matrix (a matrix that has at least one column linearly dependent on the other 
columns). 

A square diagonal matrix is nonsingular if and only if its diagonal elements are 
nonzero. 

The SVD implies that any square matrix is nonsingular if, and only if, its singular 
values are nonzero.  

 

 In the MAST 234-5 courses, given the simplicity of the matrices in the examples, 

row reduction and calculating determinants were the most commonly used techniques 

for determining the singularity of a matrix. It was therefore necessary to add a comment 

on the relevance of the new technique based on SVD: 

The most numerically reliable way to determine if a matrix is singular is to test its 
singular values. This is far better than trying to compute determinants, which have 
very bad numerical properties. 

Traditionally, courses in linear algebra use the reduced row echelon form (RREF), 
but the RREF is an unreliable tool for computation in the face of inexact data and 
arithmetic. Therefore, SVD can be regarded as a modern, computationally powerful 
replacement for the RREF. 

 The next step in the description of SVD was to visualize the matrices in the 

decomposition as rectangles (Figure 1, (AI Access)). Immediately, two forms of the 

decomposition were visualized: the full and the reduced SVD. The visualization and its 

description were displayed on the PowerPoint slide, where it appeared in the general 

form of decomposition of complex matrices, and in the Maple worksheet for students, 
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where only the version for real matrices was given. Here, we reproduce the version for 

real matrices only.  

Any     matrix has a singular value decomposition. The factorization can be 
performed in two distinct ways:  
(1) the full SVD 
       where    is an     rectangular, generalized diagonal matrix;   is an 
    square, orthogonal matrix,   is an     square, orthogonal matrix.  
  holds the left singular vectors of  ;   has the singular values as its non-zero 
diagonal entries; and   holds the right singular vectors of  .  

 This text was followed by a diagram, as shown in Figure 1. 

 

Figure 1. Visualization of the full SVD with matrices as rectangles  

Next, the reduced SVD was presented and visualized: 

(2) the reduced SVD (for    ) 

        
  where     is an     diagonal matrix;    is an     rectangular 

matrix whose columns are orthogonal and norm are 1 ,    is an     rectangular 
matrix whose columns are orthogonal and norms are 1.  

A similar diagram was displayed for the reduced SVD (Figure 2, (AI Access)).  

 

Figure 2. Visualization of the reduced SVD 

The diagram was explained: 

This decomposition can be obtained by removing the     rightmost columns of 
 , the      lowest rows of    and by keeping the square upper-left part of    
(containing the strictly positive singular values), and discarding the rest.  

 Two comments were given, one concerning the uniqueness of the reduced SVD 

and another highlighting the computational advantages of using the reduced SVD: 
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It can be shown that the reduced Singular Value Decomposition is unique (up to the 
signs of the singular vectors) if and only if all the positive singular values are distinct. 

From a numerical point of view the reduced decomposition of SVD requires less 
storage (m+5n compared to 3m+3n, where m ≥ n). This can become significant 
when m >> n.  

 In a third step of gradual formalization of the presentation of the SVD, the 

contents of the matrices was represented in slightly more detail (Figure 3 (Strang, 

2010)). The columns of   and the rows of   were drawn as thin rectangles and labeled 

as    and   
 respectively; the singular values were labeled as well as   . Moreover, the 

relation between the left and right singular vectors and the fundamental subspaces of a 

matrix was already mentioned at this point.  

 

Figure 3. More detailed diagrammatic representation of SVD 

 In a fourth step of the informal presentation of SVD, a graphical representation 

of the action of a matrix on the unit circle was displayed, in terms of the combination of 

actions of the matrices   ,   and   (Figure 4 (Strang, 2010)).  

  

Figure 4. A breakdown of the action of a matrix on a unit circle into actions of its SVD components 

 This figure was commented upon as follows, suggesting viewing the general in 

the particular geometric instance: 
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As we have already seen an      matrix   can be regarded as the matrix 
representation of a linear transformation from    into   .  

Consider the SVD of A :  

As   is an orthogonal     matrix, its columns form an orthonormal basis of   .  

As   is an orthogonal     matrix, its columns form an orthonormal basis of   . 

Let   be a vector in   .  

For simplicity, we assume   to be full rank, say,      .  

Then to obtain Ax, we take the following steps :  

First, represent   in the orthonormal basis of    made of the columns of   (the 
right singular vectors).   

Then multiply ("stretch") each of the   coordinates of   in the orthonormal basis of 
   by the corresponding singular value of  .  

Use these numbers as the first   coordinates of an    vector    in a basis made of 
the left singular vectors of    (i.e. the columns of  ).  

Set the remaining      coordinates of    to 0.  

The vector    obtained in this way is equal to   .  

 This more detailed geometrical explanation, which highlights the view of the 

action of matrices   and    as changes of the coordinate system was further visualized 

in terms of transformations of the orthogonal grid in the plane with the comment, “The 

image of the unit circle through the matrix M is an ellipse whose major and minor axes 

define the orthogonal grid in the range”, and a diagram shown in Figure 5 (Austin, 

2012).  

 

 

Figure 5. Visualization of SVD in terms of orthogonal grid transformations and stretching 

This visualization was then generalized to higher dimensions.  
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In   , consider the set of all unit vectors: their tips form the n-dimensional unit 
sphere. It can be shown that the tips of the  -transformed vectors are on an r-
dimensional ellipsoid. Moreover, the directions of the principal axes of this ellipsoid 
are the columns of    (whose antecedents are the columns of    ). The half-lengths 
of these principal axes are the singular values of  . 

A drawing represented in Figure 6 (AI Access) was simultaneously shown, visualizing the 

generalization in three dimensions.   

 

Figure 6. Transformation of a sphere into an ellipsoid 

Session I, Part 3 – Theoretical results about SVD 

The above informal introduction of SVD was concluded by stating, again, the SVD 

theorem, and listing properties of a matrix that can be read off its SVD: 

1. Every matrix has a singular value decomposition. 

2. The singular values     are uniquely determined. 

3. If   is square and    are distinct, the left and right singular vectors        

are uniquely determined up to complex signs, and, if   is real, they are 

uniquely determined up to signs. 

4. The rank of   is  , the number of nonzero singular values. 

5.                        and 

                                  

6. The two-norm of   is its largest singular value: ‖ ‖     

7. Nonzero eigenvalues of     are nonzero   
 ;  eigenvectors are   . 

Nonzero eigenvalues of     are nonzero   
 ,  eigenvectors are   . 

8. Equivalent forms of SVD are:  

                   
    

                   
      

9. For a square matrix  ,               . 

10. For symmetric positive definite matrices A, the eigenvalue 

decomposition and SVD are identical. 

11. The Kronecker expansion of a matrix. 
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 The presentation of these theoretical results led to discussions with the 

students, who had to be reminded certain linear algebra definitions and notations. They 

were told that no formal proof will be attempted, but most of the above results will be 

illustrated in the next Maple worksheets.  

Session 1, Part 4 – Numerical examples illustrating SVD, using Maple 

Some of the above listed results (1, 4, 6, 7, 8, 5, 9, 10 and 11, in this order) were then 

illustrated with a few simple, small (2x2, 2x4) matrices with integer entries, using Maple 

(not by calculating the singular values and vectors from their defining properties).   

Illustrating Property 4: The rank of A is r, the number of nonzero singular values 

The first example shown to students was the SVD of the matrix  

   [
  
   

] 

This triangular 2x2 matrix, with integer entries, was chosen because students could 

compute its singular values without the use of mathematical software. Thus, they could 

become reassured of the validity of the theoretical results presented to them. 

 The SVD of this matrix was then produced using the Maple command 

“SingularValues” (Figure 7).  

 

 

Figure 7. Example of obtaining the SVD of a matrix using Maple 

 Students were shown how to interpret the output of the command and that they 

could verify that the matrices U and Vt were orthogonal (using the command 

“IsOrthogonal([matrix name])), and that the rank of A produced by the command 

“Rank(A)” is the same as the number of non-zero singular vectors.  
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 In relation with the same matrix A , the use of the command SingularValues with 

output restricted to the list of singular values only – “SingularValues(A, output=[‘S’])” – 

produced the exact singular values ( √   √  ) and not their decimal approximations 

as in Figure 7. Students were made aware that different versions of the “SingularValue” 

Maple command will generate singular values in either exact or decimal format. 

 Students were also shown a figure containing the column vectors of the matrices 

U and Vt and attention was drawn to the perpendicularity of these vectors, thus offering 

a visual support to the notion of orthogonal matrix (Figure 8). 

 

Figure 8.  A visualization of the notion of orthogonal matrix 

 Students could then change the entries of the matrix A and observe the 

properties of rank and orthogonality of the matrices U and Vt for themselves.  

 The second example was a singular matrix (still 2x2), to highlight the role of the 

assumption that it is the number of non-zero singular values that represents the rank of 

the matrix, and not the number of all singular values.  

 The third example was a rectangular matrix (2x4, integer entries) to highlight the 

applicability of SVD to not necessarily square matrices.      

Illustrating Property 6. The two-norm of   is its largest singular value: ‖ ‖     

The discussion of the property was extended to relations between singular values and 

two matrix norms: the two-norm and the Frobenius norm. The students were reminded 
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the definitions of the vector norm and of the induced matrix norm. For a 2x4 matrix A, 

students were given to observe that the output of the matrix two-norm command 

“MatrixNorm(A,2)” and the maximal singular value of the matrix coincide and that the 

Frobenius norm command “MatrixNorm(A, Frobenius)”, the computation of 

“sqrt(Trace(Transpose(A).A))” and of the square root of the sum of the squares of the 

singular values of A all produce the same result.   

Illustrating Properties 7 and 8 for real matrices: Nonzero eigenvalues of     are 

nonzero   
 ;  eigenvectors are   . Nonzero eigenvalues of     are nonzero   

 ,  

eigenvectors are   . Equivalent forms of SVD are:           
   ,         

      

It is only at this point that singular values of a matrix   are presented as square roots of 

the eigenvalues of the matrix     . Textbook presentations of the SVD topic usually 

start by defining singular values this way. In this lecture, the starting point was an 

overview of the general shape of the matrix components of the SVD of a matrix; the 

lecturer was then only gradually “zooming in” to look at the entries of the component 

matrices.   

 As in the illustration of the previous property, students were invited to validate 

them by calculating (in Maple) objects in the two ways deemed equivalent by a property 

and comparing the results. For example – applying the “SingularValues(A,output=[…])” 

and “Eigenvectors(   )” commands and comparing the results, for the matrix: 

  [
  
   

] 

 Students’ worksheets contained the commands allowing them to execute the 

comparison (using “evalb” – to evaluate the “Boolean value” of an equality as true or 

false) and try it also on a different matrix of their choice. We include an excerpt of the 

worksheet in Figure 9.  

 Illustration of Properties 9 and 10 was done in a similar fashion. The determinant 

of the same matrix   as above was calculated in two ways, using the “Determinant” 

command and the product of singular values.  For illustration of the Property 10, 

regarding SVDs of positive definite matrices, the matrix [
  
  

] was used (Figure 9).  
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Figure 9. Validating the property of singular values of A as square roots of eigenvectors  of the associated 
symmetric matrix A

T
A 

Illustration of Property 5: Relations between matrices U  and V  and the fundamental 

subspaces of the matrix A 

This property was awarded the most attention in the sequence of examples.  It was 

named “The fundamental theorem of linear algebra” or “SVD vector basis theorem”. 

 The diagram in Figure 3 was reproduced in the students’ worksheet, and 

statements about the relationship between column vectors of the matrices U  and V  

and bases of the fundamental spaces of the matrix were listed Figure 10. 

 

Figure 10.  The "Fundamental Theorem of Linear Algebra" 

        The relationships were illustrated using the 2x4 matrix   [
 
 
   
   

  
 

 
  

]  . The 

decimal approximations of the matrices        were found using the command 

“                                               , but the exact values of the 
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singular values and vectors were also calculated using the “Eigenvectors” command.  

This produced the SVD component matrices: 

  [

 

√ 
 

 

√ 
 

√ 

 

√ 

],   [√  
 

 
 
 
 
 
 
 
 
 
] and   

[
 
 
 
 

 
 

√  

 
 
 
 

 

 
 

√  

 
 
 

 

√  

 
 
   
   

 
 

√  

 
   
 
 ]
 
 
 
 

 

Multiplying the matrix   by the matrix  , the result was:  

     [ √  

 √  
 
 
 
 
 
 
 
 
 
] 

The students were told to observe that “because the 3 rightmost columns of V were 

mapped to zero by A , they are a basis for the nullspace of A”.  Next, students were 

asked to “compute NullSpace(A) to validate” this statement. The command 

“            ” produced a basis that was slightly different from the last three 

columns of  . The students were asked to explain why these bases are in reality the 

same. 

Illustration of Property 11: The Kronecker decomposition of a matrix 

First, the teacher presented, in its algebraic form, the theoretical result that any matrix 

A can be written as a sum of products of norm 1 vectors resulting from the singular 

values decomposition of A: 

If         , then A can be written as  

                            
           

             
 ,  

where   is the rank of  , and    and    are the columns of   and    respectively. 

Then, he directs students to a numerical example of a 2 x 4 matrix of rang 1, 

                                                  [
  
  

    
  
  

] 

The participants are asked to confirm that the rank of   is indeed 1 and to obtain the 

decomposition of  , using the SingularValues command in a Maple worksheet: 

                                             . 

 The next step is to confirm, for this particular matrix, that the Kronecker identity 

holds. To achieve this, students will compute the 2 x 4 matrix         
  using the 

“Multiply” Maple command, and will compare the result with the original matrix  . This 
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comparison is another good opportunity for the teacher to underline the fact that 

round-off errors exist, due to the algorithmic nature of SVD. 

 Next, students are encouraged to repeat the above procedure for matrices of 

different shape and rank and confirm that the identity still holds (barring inherent 

round-off errors). 

Session 1, Part 5: Singular value and Eigenvalue decomposition comparison 

In this part of the lecture, the following points were made:  

1) Eigenvalues are important in situations where the matrix is a linear 
transformation from one vector space onto itself (for example: systems of linear 
differential equations). Singular values are essential where the matrix is a 
transformation from one vector space to a different vector space, possibly of 
different dimensions (for example: systems of equations that are over or 
underdetermined). 

2) As such, eigenvalues can be computed only for square matrices. Singular values 
exist for any m x n rectangular matrix (due to the fact that      is always a 
symmetric matrix). 

3) The eigenvalue decomposition uses the same basis for row and column spaces 
and this basis is not necessarily orthonormal. SVD uses different orthonormal 
matrices (U and V) for the decomposition. 

4) The reason for the eigenvalues decomposition is to find a basis for the space in 
which the linear transformation can be represented by a diagonal matrix. This basis 
may be complex even if the matrix A is real. Moreover, if the number of linearly 
independent eigenvectors is not equal to the dimension of the space, such a basis 
does not even exist. 

 In the SVD case, we try to find one change of basis in the domain and usually a 
different one in the range, so that the matrix becomes diagonal. Such bases always 
exist and, if A is real, they are real. 

5) In the case of SVD, the fact that the change-of-basis matrices are orthonormal 
means that they preserve lengths and angles, so they do not magnify errors. As 
such, perturbations of any size in the original matrix cause perturbations of roughly 
the same size in the singular values. On the other hand, the eigenvalues of certain 
matrices are sensitive to perturbations. 

6) The condition number of a matrix A is defined as:         ‖ ‖ ‖   ‖  if A is 
nonsingular and +∞ if A is singular. This number expresses how sensitive the matrix 
A is to perturbations in its elements. Using SVD the above number can be easily 

computed as:     
  

  
 , and it is always ≥ 1. 

 Matrices with condition numbers close to 1 are well-conditioned. If         is 
very high for a given matrix, the matrix is said to be ill-conditioned. 
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The computation of eigenvalues of symmetric matrices is numerically stable. On the 
other hand, the computation of eigenvalues as roots of the characteristic 
polynomial:                , is extremely sensitive to perturbations, which 
means it does not provide for a robust software algorithm. The most numerically 
reliable way to determine whether matrices are singular is to test their singular 
values. This is far better than trying to compute determinants, which have atrocious 
scaling properties. Also, because reducing a matrix to its reduced row echelon form 
(RREF) is an unreliable tool for computation due to its sensitivity to inexact data, 
SVD can be seen as a modern, computationally stable replacement for RREF. 

 

 At this point, the example of the 20 x 20 diagonal matrix with diagonal entries 

equal to the consecutive numbers from 1 to 20 was presented (Wilkinson, 1963). This 

matrix was used to illustrate the fact that the computation of the eigenvalues is ill-

conditioned: a small perturbation in the coefficients of the characteristic polynomial 

could dramatically change its eigenvalues. 

 Next, the students were encouraged to slightly modify the coefficients of 

different monomials of the given characteristic polynomial and to observe the effects of 

these changes on the computed eigenvalues. 

 In retrospect, I think I could have made the same point using a smaller matrix. 

Maple compacts square matrices larger than        , thus students had difficulties in 

visualizing the initial matrix given in the lecture. Using the       matrix as in Figure 11 , 

I could have shown that by modifying the coefficient of    from 15 to 15.01, the 

eigenvalues “shift” from the expected {         } to {                     

                             }.  

 Commenting on these results, I could have highlighted the fact that the third and 

fourth eigenvalues became complex numbers and that the error in the fifth eigenvalue 

is significant (a perturbation of magnitude      in the coefficient introduced a delta of 

        in the fifth eigenvalue computation: from 5 to 5.2049).  
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Figure 11. Showing that the eigenvalues computation is ill-conditioned on the example of a special 5 x 5 diagonal 
matrix 

 

Session 1, Part 6: Applications of SVD 

The following applications of SVD were briefly presented in the lecture: 

- The pseudo-inverse of a matrix 

- Calculating the inverse of an invertible square matrix 

- Low-rank approximation 

- Closest orthonormal matrix 

- Signal and image processing 

- Data compression 

- Data analysis              
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The pseudo-inverse of a matrix  

This part of the session started with a presentation of the definitions of the exact 

pseudo-inverse of a matrix of full rank. Participants were informed that when the rows 

are linearly independent,      is invertible the exact pseudo-inverse is then defined as 

               . When the columns are linearly independent,       is invertible; 

and the exact pseudo-inverse is defined as                   . Then, the students 

were presented with the following four criteria met by the exact pseudo-inverse 

(Wikipedia, 2012): 

1.          

2.             

3.               

4.                

 Participants were also told about the following basic properties of the pseudo-

inverse: 

1. If the matrix   is invertible, then        . 

2. The pseudo-inverse of the pseudo-inverse is the original matrix:         . 

3. The pseudo-inverse commutes with transposition:              . 

 If the singular value decomposition of   is         , then the exact pseudo-

inverse of A can be easily obtained from           , where    has    
⁄  on its 

diagonal for non-zero singular values and 0 everywhere else. 

 Next, the notion of approximative pseudo-inverse was introduced:    

        
     

 , where the matrices are size   appropriate submatrices of      .   

 Only now, the participants are told that the main application of the pseudo-

inverse is solving systems of linear equations with more equations that variables. The 

general solution of the system       is given in the form                    , 

where   is an arbitrary vector and   is the identity matrix. Thus, the closest solution in 

the least-square sense is obtained when       and it is         (   is the exact 

pseudo-inverse if   is of full rank and the approximative pseudo-inverse if not). 
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 A numerical example of a system of equations with the coefficient matrix not of 

full rank was given. Participants were asked to compute the pseudo-inverse of the 

matrix associated to the system, following its singular value decomposition. Then, they 

were asked to validate that         is the closest solution to   in the least-squares 

sense. 

Calculating the inverse of an invertible square matrix 

For an invertible square matrix  , with the singular value decomposition         , 

its inverse can be determined without tedious determinants computations as 

            . 

 Students were presented with a Maple worksheet in which the above method of 

computing the inverse of   was employed. Then, they were asked to compare this result 

for the inverse to the one returned by the Maple command     and to validate that 

they are equal, barring round-off errors. The participants were encouraged to modify 

the initial square matrix, to validate that it is invertible and then observe that computing 

the matrix inverse starting from its singular value decomposition or by using Maple 

commands (    or       ) generate the same results. 

Low-rank approximation 

From the Kronecker expansion           
           

             
 , where   is 

the rank of  , we observe that if we set all but the first   singular values to zero and we 

use only the first   columns of   and   we get the best low-rank approximation for  , 

i.e. the matrix given by            
           

             
 . 

 The theoretical results that  ‖    ‖        and  

‖    ‖   √    
      

  were also mentioned. 

Closest orthonormal matrix 

The notion that distances between matrices can be determined using matrix norms was 

revisited. The question addressed here was how to determine the closest orthonormal 

matrix to a given matrix     
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 If   has the singular value decomposition         , then it can be shown that 

 , the closest orthonormal matrix to  , can be obtained by replacing all the singular 

values of   with  . Thus,        . Participants were asked to notice that   is indeed 

orthonormal, being the product of two orthonormal matrices. Participants were asked 

to compute   with the above formula and determine the distance to   (in terms of 

Frobenius norm). Then, they were required to construct another random orthonormal 

matrix, compute the distance to it and compare it to the distance to  .  

Signal and image processing 

The fact that SVD can be used in digital signal and image processing was highlighted. An 

example of a scanned image with slight imperfections (Austin, 2012) was given to 

students in a Maple worksheet. The instructor explained that by removing the small 

singular values and applying a low rank approximation to the original image matrix, the 

resulting image looks improved, because the noise was eliminated. The students were 

asked to comment on the choice of selecting only the first three significant singular 

values in the low rank approximation of the original matrix. 

Data compression 

The teacher made clear fact that a picture can be stored into a large matrix in which 

each pixel is represented by a number that records the light intensity. To demonstrate 

this, an image with associated matrix of rank 200 was displayed. Several images, 

obtained by taking rank approximations – via Kronecker expansion – of ranks 1, 2, 5, 15 

and 50 respectively were displayed in succession. Students observed that the quality of 

the image improved with every increase in rank and that the image corresponding to 

the rank 50 approximation was already very close to the original. They were asked to 

comment on the reduction in storage space if the rank 50 approximation of the original 

image is saved. 

 A second example, in which the original 25 x 15 image can be broken down into 

small, repetitive patterns, was also shown. The instructor highlighted the fact that the 

original matrix had only three non-zero singular values, thus only three vectors    with 
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15 entries each, three vectors    with 25 entries each and three singular values    need 

to be stored. Students observed that this makes up for 123 total numbers stored 

compared to the original 375, a 67% compression rate. 

Data analysis 

The instructor guided students through an example where noise arose during a data 

collection process. The example displayed 10 points representing collected data given 

by their x, y coordinates. (Austin, 2012) Then the corresponding 2 x 10 matrix was built 

and the Maple SingularValues command was applied to it. Now, the participants 

observed that the second singular value was much smaller than the leading one, thus 

they could assume that this was due to noise in the collected data. They were asked to 

make this second singular value 0 and notice the changes that this entails: the points 

representing the coordinates were closer to the line defined by   . 

 The teacher mentioned that this example introduces the modern field of 

Principal Component Analysis, a set of techniques that use singular values to detect 

dependencies and redundancies in data. 

Guided practice  

The teacher elicited the students’ opinion on the outcome of the numerical examples. 

The participants could interrupt at any time to ask questions. There was time allocated 

for exercises and the teacher commented on the results. The students were asked to 

work on a short home assignment.  

Closure 

At the end of this session, the instructor recapitulated the key-points of the lecture and 

announced the main themes of the next session. 
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4.1.2 Session 2, titled “Computational aspects of SVD” 

Purpose  

The purpose of this second session was to familiarize the participants with the 

computational aspects of SVD.  

Learning outcomes  

In the proposed computational approach to teaching SVD, participants were expected to 

become acquainted with the numerical algorithms behind SVD and their advantages 

with regard to numerical stability to data perturbations, complexity and algorithm 

performance.  

Bridge-in 

Students were asked to change initial values of algorithms and confirm certain 

theoretical aspects (for example the non-uniqueness of the decomposition) on 

examples. The teacher encouraged students to modify the Maple scripts by trying the 

algorithms on new matrices, or with new initial vector values.  

Instructor’s input  

The instructor taught numerical procedures behind the singular value decomposition, 

using the lecture format interrupted from time to time by questions from students and 

exercises for them.  The session had three parts:  

1) General outline of the procedure;  

2) Detailed presentation of the first step of the procedure, i.e., bidiagonalization;   

3) Detailed presentation of the second step of the procedure, i.e., diagonalization. 

Session 2, Part 1– General outline of a procedure to compute the SVD 

This session started by a general description of the steps involved in the algorithm of 

computing SVD of a matrix, supported with a visual representation (Figure 12 (Eiland, 

2011)).    
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 Students’ Maple worksheets contained a verbal description of the steps in terms 

of their outcome, and the visual representation.  

The algorithm of computing the SVD of a matrix involves two major steps: 

1) Reduce the initial matrix to a bidiagonal form  

2) Diagonalize the bidiagonal form  

 

Figure 12. Representation of the steps to compute SVD of a matrix 

 The same text was displayed on the projector screen and the instructor 

explained the text by pointing to relevant aspects of the visual representation. The 

instructor said that the first step is usually done using Householder transformations, but 

in this lecture a different method will be shown, namely a double recursion that 

computes only the diagonal and the superdiagonal elements, called the Golub-Kahan-

Lanczos algorithm.  The instructor stressed that this bidiagonalization algorithm is 

applicable to matrices of any shape. He also said that the second step can be done using 

QR transformations or, as he will demonstrate later, by Givens rotations. 

Session 2, Part 2 – Bidiagonalization algorithm (Golub-Kahan-Lanczos) 

This part of Session 2 was devoted to the first step of the algorithm, i.e., the 

bidiagonalization procedure.  The source for this algorithm was Demmel (2000).  Below 

is an approximate script of the lecture.  

Given an     square matrix   ,  the Golub-Kahan-Lanczos bidiagonalization 
procedure computes a matrix that has non-zero values only on the diagonal and the 
superdiagonal (bidiagonal form), by using orthonormal transformation matrices. In 
other words, orthogonal     matrices   and   and a bidiagonal     matrix   can 
be computed, such that 

 

            (1) 
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 The Golub-Kahan-Lanczos bidiagonalization procedure can also be applied to 
      rectangular matrices (with    ).   

Rewriting (1) and using the information that   is bidiagonal:   

          

 

 

 As a side note, the indices in the accompanying figures were 1-based, but the algorithm 

used 0-based indices (a convention used in many object-oriented programming languages).   

The constants      and    are given by:       
     and        

      , where 
   and    are columns of the matrices   and  , respectively. 

 From         we have:  

 

 [ 1  2 ...  n] = [ 1  2  ...   n] 

 

 

 

The columns of   and   can be derived from a double recursion as described 
below.  

Equating the     columns in (3) we get:  

 

                            (4) 

 

 At this point understanding of the product of a matrix by a column vector as a 

linear combination of the columns of the matrix is necessary. It is also necessary to 

understand the concise notation in (4) as representing any of the columns of the 

matrices of the left and right of the equality sign. Knowing from the Pre-test results that 



55 

 

participants had trouble with multiplication of matrices and vectors, this could have 

been a difficult point for them. Some may have been lost at this point. 

The equality (4) is equivalent to:    

 

                                 (4`) 

 

On the other hand, from          and using the fact that       , since V is 
orthogonal, we get            .  By transposing both sides, we obtain,  

           (5) 

 

Now (5) can be re-written as:  

 

 

AT[u1 u2 .. un] = [v1 v2 .. vn] 

 

 

Equating the     columns in (6) we get: 

 

                       (7) 

 

The equality (7) is equivalent to 

 

                        (7`) 

 

The double recursion consists of the equations (4') and (7'). 

Also, since all columns of   and   are normalized we have, from (4’) and (7’):  

 

   ‖               ‖,     ‖           ‖   (8) 
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 If the participants were not very familiar with recursive processes – although 

some may have seen iterative methods in the context of solving linear systems (e.g. the 

Jacobi iteration method) or discrete dynamical systems (e.g. Markov chains) – the idea 

of how the equations (4’) and (7’) represented a recipe for computing the entries alpha 

and beta of the bidiagonal form of the given matrix could have been somewhat obscure 

for them. It was hoped, however, that the upcoming program of calculation and the 

concrete numerical examples would clarify the notion.  

The Golub-Kahan-Lanczos bidiagonalization procedure has the following steps:  

 

Step 1:  Choose an initial normalized vector    and set         and        

 

Step 2:  For              , do: 

 

Compute a vector in the direction of the next    , from 4`: 

 

   
                    

 

Calculate its 2-norm, which, by (8), is the corresponding alpha entry of the 
bidiagonal form of the given matrix  : 

 

      ‖  
 ‖  

 

Normalize   
  to obtain the next column of the matrix  : 

  

    
  

 

  
  

   

If      , compute a vector in the direction of the next   , from 7`: 
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Calculate its 2-norm, which, by (8), is the corresponding beta entry of the bidiagonal 
form of the given matrix  : 

 

      ‖    
 ‖ 

 

Normalize     
  to obtain the next column of the matrix   : 

 

       
 

  
    

   

 

Step 3: Form the matrices  ,   and   using the obtained coefficients alpha, beta, 
and vectors   and  : The matrix   is obtained by concatenating the vectors   .   

The matrix   has    on the diagonal,    on the superdiagonal and zeros everywhere 
else; this is the bidiagonal form of the matrix  . The matrix   is obtained by 
concatenating the vectors   .  

 At this juncture the participants were directed to an example in their 

worksheets. They were given the following       matrix with integer entries: 

   [
     
      
       

] 

They were instructed to consider the initial, normalized vector, 

    

[
 
 
 
 
 

√ 
⁄

 
√ 

⁄

 
√ 

⁄ ]
 
 
 
 

 

take its decimal approximation (using the “evalf” command in Maple) and to follow the 

steps described in the above bidiagonalization procedure. The commands for the steps 

were already written for them in the worksheet and participants only had to press 

ENTER at each command. They could see that after three steps an approximation of the 

bidiagonal form of the initial matrix was computed (we name it “ ”):  

 

  [
                       

                               
                     

] 
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 Then, students were asked to repeat the same steps, starting with different 

initial vectors and notice that the resulting bidiagonal forms differ. In the next part of 

the session, they were shown that the diagonalization procedure does not depend on 

the choice of the initial vector: all those different bidiagonal forms lead nevertheless to 

the same set of singular values.  

Session 2, Part 3 – The diagonalization algorithm (with Givens rotations) 

In this part of the session, the diagonalization step of the singular value decomposition 

of a matrix was presented. This step takes the bidiagonal form of the matrix obtained at 

the end of the bidiagonalization step and, following a series of transformations using 

Givens rotations, reduces the superdiagonal values to values lesser than a preset 

threshold (Eiland, 2011). The resulting quasi-diagonal matrix holds approximations of 

the singular values on the diagonal, with the assumed accuracy. This part of the session 

was introduced by a return to the visual representation displayed in Figure 12.  

 Next, participants were directed to their worksheets which contained the 

following procedure (Demmel & Kahan, 1990) to calculate a Givens rotation matrix for a 

vector: 

rotate:=proc(f:numeric, g:numeric) 

                 module() 

                 option package; 

                 local t,tt; 

                 export cx,sx,rx; 

                 if f=0 then 

                    cx:=0;sx:=1;rx:=g 

                 elif evalf(abs(g)) <evalf(abs(f)) then 

                    t:=g/f;tt:=sqrt(1+t*t);cx:=1/tt;sx:=t*cx;rx:=g*tt; 

                 else 

                    t:=f/g;tt:=sqrt(1+t*t);sx:=1/tt;cx:=t*sx;rx:=g*tt; 

                 end if 

                 end module 

                 end proc 
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 The Maple command “GivensRotationMatrix(V,i,j)” was not used because the 

point was to show participants  the procedures behind the Maple command, even if 

they were not explained in detail. Participants were told that the Givens rotation 

matrices are used to turn an entry in a row or a column of a matrix into 0. To create a 

zero in a row of the original matrix, it is enough to post-multiply it with the transpose of 

an appropriate Givens rotation matrix. To create a zero in a column, the original matrix 

is pre-multiplied by a Givens rotation matrix. After a sufficient number of such 

multiplications, the original transformed into a matrix that is still bidiagonal, but the 

superdiagonal entries are reduced. 

 Due to time constraints, the Givens rotation matrices were not given the 

attention that they deserve. This would have been a very good opportunity to show 

graphically, in   , the effect of multiplying a Givens rotation matrix with a given vector. 

Participants could have computed the angle that rotates the given vector onto the y-

axis, for example. Then, they could have constructed the corresponding Givens rotation 

matrix and use Maple to multiply it with the original vector and graphically display the 

resulting vector.   

 At this point, the instructor directed participants to Figure 13 (Eiland, 2011), and 

explained in general terms the main idea of a full iteration cycle of transforming a given 

bidiagonal matrix with one having smaller superdiagonal entries. In the diagram, the 

plus sign (+) represents the target entry, or the entry to be annihilated.    The 

participants were told that the diagram depicts the full cycle of reducing the 

superdiagonal entries of a 5 x 5 matrix. 
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Figure 13. A visual representation of the full iteration cycle of reducing superdiagonal entries of a matrix through 
multiplications by Givens rotation matrices 

 Next, participants were directed to their worksheets and asked to perform a 

cycle of 2(n-1) multiplications (n being the size of the original square matrix) by 

appropriate Givens rotation matrices of the bidiagonal matrix   obtained at the end of 

the second part of this session, alternating between post-multiplication by the 

transpose of a Givens matrix and pre-multiplication by such a matrix. The initial matrix 

thus was:  

 

  [
                       

                               
                     

] 

 

The resulting matrix was: 

 

   [
                                         

                       
                  

] 
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               Participants were asked to note that at least one of the values on the 

superdiagonal of   is much smaller than the corresponding value from the original 

matrix  .  

 Next, participants were told that we may still not be satisfied with the reduction. 

Normally, we decide on how small we want the superdiagonal entries to be by 

establishing a threshold value (we name it “EPS”, short for “epsilon”). We then iterate 

the cycles of pre- and post-multiplications by appropriate Givens rotation matrices until 

the superdiagonal entries are less than EPS.  The end product of this process is a matrix 

that is almost diagonal, with the required degree of accuracy. The diagonal entries are 

satisfactory approximations of the singular values of the original matrix. Participants 

were directed to their worksheets, where they were given a program that repetitively 

performs the cycle described above and stops only when the entries located above the 

diagonal are less than a given EPS value. The program, written by the author of this 

thesis, is presented in Figure 14.  

 

Figure 14. Diagonalization program by means of Givens rotation matrices 
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 Participants were asked to run this program for the bidiagonal matrix obtained 

at the end of Golub-Kahan-Lanczos bidiagonalization algorithm, namely: 

 

  [
                       

                                    
                     

] 

 

assuming the “epsilon” value to be     . The resulting matrix is displayed in Figure 15.  

 

 

Figure 15. The output of the diagonalization program for the bidiagonal matrix A and EPS = 1/10 

  

 Participants were asked to compare the diagonal entries of the resulting matrix 

with the output of the command “SingularValues” applied to the matrix A and observe 

that the outputs agree on at least three places after the decimal point.   

 The instructor concluded by saying that the accuracy of the result can be 

improved by decreasing the threshold value (EPS) but highlighted the fact that a smaller 

EPS implies more computation cycles, execution time and memory consumption. 

Guided practice  

Guided practice in this session consisted in participants’ performing the examples 

programmed in their worksheets, observing the outputs and comment on the 

complexity, execution time and memory consumption of the presented algorithms. They 

could also interrupt the instructor at any time and ask for clarifications.  
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Closure 

The instructor closed the study session by summarizing the advantages of SVD from 

theoretical and numerical standpoints. He also encouraged students to widen their 

interest about the subject of singular value decomposition. Students were informed 

about web sites, articles and books for further study. They were also provided with all 

materials from the sessions. Finally, they were asked to stay after the session to fill out a 

final questionnaire. 

Post-test: Check for understanding  

Students were asked to fill a questionnaire composed of questions about SVD and 

questions about the teaching approach. The purpose of the first part of this 

questionnaire was to find if the computational teaching approach helped them in 

getting a clearer picture of key linear algebra concepts in general and of SVD in 

particular. The second part of the questionnaire addressed their views regarding the 

instruction style and material. The questions are reproduced below. 

Post-test questions, Part I 

1. To what type of matrices is SVD applicable? Why? 

2. Is the SVD decomposition unique (i.e. given an       rectangular matrix  , such 

that        with orthogonal matrices   (     ),   (     ) and    (     )  

pseudo-diagonal; are the matrices       unique with this property)? 

3. Why do you think the term “singular” was attached to the singular values of a 

matrix? 

4. Name three applications of the singular value decomposition. 

5. What are the left singular vectors of a matrix  ? What are the right singular 

vectors of a matrix  ? Do they belong to the same vector space? 

6. What is the benefit of having the matrices   and   in the SVD orthogonal? Bases 

of which subspaces can be obtained by partitioning the matrices   and   of SVD 

with regards to the rank   of  ?  

7. What matrix norm can be expressed only in terms of singular values? 
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8. What is the condition number of a matrix and how can it be expressed in terms 

of singular values?  

9. In which step of the presented computer algorithm for computing SVD are the 

Givens rotation matrices used? Why are Givens rotation matrices used in the 

SVD algorithm? 

10. How can one compute the rank of a matrix by knowing its singular values? 

11. For a real matrix  , what type of numbers are its singular values? Hint: Two 

characteristics are needed: First, select one of: positive; negative; positive or 

zero; negative or zero; positive or negative; positive or negative or zero. Second, 

select one of: complex; real; rational; integer; natural.  

12. For what type of matrices are the singular values and the eigenvalues equal? 

13. What theoretical result allows using SVD in data compression? 

14. The reason for the eigenvalues decomposition is to find a basis for the space so 

that the matrix becomes diagonal. Does this basis always exist? Does this basis 

always have real entries? SVD tries to find one change of basis in the domain and 

usually another one in the range so that the matrix becomes diagonal. Do these 

bases always exist? Do these bases always have real entries?  

15. Given the SVD decomposition of the matrix   :          , how can the exact 

pseudo-inverse (  ) be written?  

Post-test questions, Part II 

1. What type of classes would you prefer: A. “Chalk and talk”: teacher gives a 

lecture, students take notes. B. Interactive lecture: students can interrupt the 

instructor by asking questions, discussing among themselves and the teacher. C. 

Computer lab classes: students solve problems on the computer; no lecture and 

no teacher guidance. D. Interactive lectures in a computer environment.  Explain.  

2. Which type of class do you think the SVD classes you participated in belong to?  

3. In your opinion, does using mathematical software in teaching helps students 

better understand new concepts? 

4. What did you like in the teaching approach that was used in this experiment? 
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5. What did you NOT like in the teaching approach that was used in this 

experiment? 

6. Do you have any suggestions about how the teaching approach could be 

improved?  

7. Do you consider SVD a subject appropriate to be taught at the undergraduate 

level?  

8. Do you think that learning SVD could improve the overall understanding of linear 

algebra concepts?  

4.2 Recruitment of participants in the experiment 

Four students volunteered to participate in the teaching experiment. We label them 

“Nat”, “Desse”, “Chal” and “Carrie”. The first three were recommended by the most 

recent instructor of the MAST 235 Linear Algebra with Applications II course as his top 

students in the past term. Their final grades in the course were A+, A+ and A, 

respectively. They were all young people, in the age range of 20-25. Carrie was older. 

She already had one BSc degree and was close to completing a second one, in 

mathematics.  Her final grade in the Linear Algebra course was A+.   

 All participants were already familiar with Maple. Nat, Desse and Chal studied 

the Linear Algebra course in a Maple environment. Carrie took her Linear Algebra course 

in the more traditional “chalk-and-talk” environment, but was familiar with the 

LinearAlgebra package in Maple and the software in general.   

4.3 Results of the teaching experiment  

In this section, I present the participants’ responses to the Pre-test, my expectations as 

to their understanding of my lectures based on those responses, their behavior during 

the sessions, and their responses to the Post-test. 
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4.3.1 Participants’ responses to the Pre-test 

First, participants’ responses to the individual questions on linear algebra of the Pre-test 

will be presented. Next, based on a summary of the responses, expectations about their 

potential to understand and benefit from the lectures will be described.  

 For the purpose of assessment of the participants’ background knowledge of 

basic concepts of linear algebra before the teaching experiment and later the 

comparison of participants’ performance on the Post-test and the Pre-test, we assign 

points to their answers: 1 point for a correct answer, 0.5 points for a partly correct 

answer and 0 points to an incorrect answer or no answer. The number of no answer or 

“don’t remember” or “don’t know” responses will be counted for each student. Based 

on the accumulated points, each student will be assigned a “pre-grade” calculated as 

the percentage of their points out of the maximum number of points they could obtain 

in answering the linear algebra questions. The maximum number of points was 25: 

there were 15 “questions” but some of them had sub-questions and so there were 25 

individual questions in total.    

Question 1:  Orthogonal vectors in a vector space  

1a. Given two orthogonal vectors in a vector space: what is their dot product?   

1b. What is the angle between them? 

All students answered “0” to the first question. Desse’s answer was a bit more 

elaborate. She gave a typical example of a pair of orthogonal vectors, namely the pair of 

two-dimensional unit vectors, and stated: “u and v are orthogonal; by definition their 

product is equal to zero”. Therefore, while she appeared to treat the example as an 

illustration of the definition of orthogonality only, the meaning she attached to the 

concept was associated with such typical examples of it. All students answered “90 

degrees” to the second question, with Chal adding “or Pi/2 radians” to it.  

 Therefore, although orthogonality is firmly associated with the zero dot product, 

it could also be associated with the measure of angles in degrees, as in high school 

geometry.   
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 We consider the answer “0” to Question 1a as correct (1 point), the answer “90 

degrees” to Question 1b as partly correct (0.5 points) and the answer containing “Pi/2 

radians” as correct (1 point).  

Question 2: Multipl ication of a row vector by a matrix  

Complete the following sentence: multiplying a row vector with a matrix A is a linear 
combination of A’s…. 

This question generated the same, incorrect response from all participants: “columns”. 

The students might have confused the actual question with something that they have 

learned: multiplying the matrix A with a column vector is a linear combination of A’s 

columns. 

 None of the students considered using an example to validate their claim. With 

the “LinearAlgebra” package of Maple, they could have easily obtained the product of, 

say, a row vector                    and a matrix, say,                 

            , and observed the output to check if they get a combination of rows or 

columns. They could have also reasoned that, if we multiply a row vector by a matrix, 

the result is a row vector, whereas a linear combination of the columns of a matrix gives 

a column vector. Obviously, however, the participants did not reflect on their answers 

and responded automatically to what appeared to them as trivial question.   

Question 3: Orthogonal matrices  

What properties of vectors remain unchanged (are preserved) when multiplied by 
orthogonal matrices? 

Again, the participants’ responses were either incorrect, or, in Nat’s case, there was no 

answer. Desse and Chal confused orthogonal matrix transformations with dilations and 

claimed that the resulting vector will preserve direction and it could either stay the 

same or be “scaled”.  Carrie wrote that the property that is preserved is invertibility 

although this property applies to square matrices and not to vectors.   

Question 4: Fundamental subspaces of a vector space  

4a. What are the row space and the null space of a matrix A?  
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4b. What is the relationship between the row space and the null space of 

a matrix? 

Only Nat and Carrie provided correct answers to question 4a. Chal appeared to answer 

the question about the rank of a matrix: “the number of pivot elements on the reduced 

form of that matrix”. Desse also appeared to associate the question with the concept of 

rank. Her answer was: “Row space: collection of rows of A. Nullspace: linearly 

dependent rows (If rank of 3 by 3 matrix is less than 3)”. Desse may have been thinking 

about the theorem stating that the dimension of the nullspace of an     matrix is 

equal to    , where   is the number of linearly independent columns or rows. But she 

seems to be thinking about the number     rather than    .   

 There was only one correct answer to question 4b, by Nat, who said that “the 

nullspace is orthogonal to the rowspace”. Carrie gave no answer and the other students 

formulated relationships that did not hold. Chal offered the relationship 

                           which he could have confused with             

            . Desse displayed an even deeper confusion, using expressions such as 

“span of row space” and claiming that “span of row space is in the null space”.   

Question 5: Multipl ication of a square matrix by a vector  

Complete the sentence:  

The non-zero vectors (n x 1) that, after being multiplied by the square matrix A  
(n x n) remain in the same direction as the original vector, are…  

Only Carrie provided the expected answer, “eigenvectors”. Nat provided no answer, and 

Desse and Chal answered “linearly dependent”. They appeared to interpret the question 

as concerned with relations between vectors that have the same direction, and, if this is 

the case, their answers were not incorrect, even if not what we expected. Therefore, we 

assign 0.5 points to Desse and Chal for this question. This unexpected interpretation 

could have been avoided, had the question been formulated using the word “vector” in 

singular rather than plural. 
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Question 6: Roots of  the characteristic polynomial of a matrix  

Given a matrix A, we know that the roots of its characteristic polynomial are -1 and 
+1. How one can go about computing   ? 

Only Carrie’s response was approximately correct and we assign it 1 point. She 

described the procedure that is commonly taught in undergraduate linear algebra 

courses in the context of this type of problems (with concrete numeric matrix A), 

without worrying about the possibility of +1 or -1 being multiple roots in which case the 

matrix might be non-diagonalizable: “We have two eigenvalues. We find the 

corresponding eigenvectors in order to diagonalize  . From        , rewrite, raise 

  to the 7th power then multiply”.   

 Chal’s and Nat’s responses started similarly as Carrie’s, but Chal’s falls short of 

saying what one would do after having diagonalized the matrix, and Nat’s response ends 

after stating that +1 and -1 are the eigenvalues of the matrix A. We assign 0.5 points to 

Chal’s answer and 0 points to Nat’s.  

 Desse said she was “not sure” (she wasn’t sure in questions 3 and 4b, either), but 

proposed finding the eigenvalues although they are given in the problem. It is quite 

possible that she failed to recall that roots of the characteristic polynomial are the 

eigenvalues; in a Maple environment, students rarely have to calculate eigenvalues 

manually or using Maple to solve the characteristic equation. Usually the command 

“Eigenvalues” is used. Her response suggests also that she could be a procedural 

learner: she would be able to carry out the procedure described by Carrie but only if she 

were given a concrete numerical matrix to start with. Then the first step would be to 

find the eigenvalues. She cannot imagine what she would do in a hypothetical situation.   

Question 7: Symmetric matrices 

Given   and  , real square matrices, next to each of the sentences below write True or 

False (if False, give a counter-example): 

7a.     is symmetric 

7b.    is symmetric 

7c. If     exists, then     is symmetric 

7d.    is symmetric 
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7e.     is symmetric (does   have to be square?) 

All responses to question 7a were correct, “True”. Nat included a numerical example 

with two symmetric 2 x 2 matrices.  

 All but Chal’s responses were correct in question 7b.  In question 7c, Carrie, Chal 

and Desse had correct answers, and Nat did not answer at all.  

 In question 7d, Carrie responded correctly, “false”, but gave an incomplete 

reason why the product of two symmetric matrices is not necessarily symmetric: “AB is 

not possible unless A and B are of the same size”. With a numeric example in Maple she 

showed the error message that is fired when this condition is not met. She failed to 

consider the case where the matrices are of the same size, in which case the product is a 

symmetric matrix if and only the matrices commute. She obtains 0.5 points for this 

answer. Nat did not answer and Chal’s and Desse’s answers were incorrect (“True”).  

 In question 7e, Carrie and Nat gave correct and complete answers. Desse’s 

answer is partly correct (“True”) but she did not respond to the second part of the 

question. Chal’s answer was incorrect: “False, because        and it is not 

necessa[ri]ly symmetric”. 

Question 8: Positive definite matrices  

8a. What is the definition of a positive definite matrix?  

8b. Complete the sentence: A is positive definite if and only if all its eigenvalues 
are… 

No one remembered the definition of a positive definite matrix in question 8a. Desse 

did not even recall having “covered such material”, although the concept has certainly 

appeared in MAST 235. Chal was the only student who answered question 8b correctly. 

Nat completed question 8b by “real” and Carrie and Desse did not answer the question.  

Question 9: Matrix rank  

9a. How would you define the rank of a matrix? 

9b. How would you go about computing it? 
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All answers to question 9a were correct, but there were two types of responses. One 

type could be called “analytic-structural” since it referred to a property of a set, namely 

linear independence of the columns of the matrix: Carrie and Nat wrote that rank is “the 

number of linearly independent columns of the matrix”. The other type could be called 

“analytic-arithmetic” because it referred to the particular entries of the matrix after row 

reduction: “the number of pivots on the reduced row echelon form of that matrix” 

(Desse and Chal). Of course, it is not necessary to obtain a “reduced” row echelon form. 

 In question 9b, two answers were correct: Carrie and Chal referred to row 

reducing the matrix and counting the number of leading 1’s or the number of columns 

with leading 1’s. Nat answered “Gauss-Jordan Elimination” which refers to a procedure 

for solving systems of linear equations which may include row reduction of the 

coefficient matrix. The concept of rank is valid also outside of the context of solving 

linear systems. Nat either did not abstract the notion of rank from this context, or just 

confused the terminology. We gave him the benefit of the doubt and assigned 1 point to 

this answer. Desse’s answer was rather sloppy: “By performing several elementary row 

operations or calling the command Rank(A) in Maple”. But her answer to question 9b 

shows that she is aware that the “several” row operations must be sufficient to obtain 

an echelon form, so, again, with the benefit of the doubt, 1 point is assigned. 

Question 10: Elementary row operations  

What properties of the original matrix are not modified when Elementary Row 
Operations are applied? 

No answer was completely satisfactory. Carrie’s was the best, however. She was correct 

in enumerating the row and null spaces, and the solution set. She was not correct in 

adding the column space. She could have also listed the fact that the columns preserve 

linear independence under elementary row operations or just said that the rank of the 

matrix is preserved. She was awarded 0.5 points for her answer. Chal and Nat each 

mentioned one correct property preserved under elementary row operations: linear 

independence of columns and the solution space, respectively. Their answers were also 
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assigned 0.5 points. Desse mentioned the determinant, which is preserved intact only 

through the “AddRow” elementary operation. Her answer was assigned 0 points.  

Question 11: Matrix decompositions  

11a. Give 3 examples of matrix decompositions. 

11b. In what area of mathematics do you think that these decompositions are 
useful? Explain. 

Only Carrie’s answer in question 11a was correct. She mentioned QR, diagonalization 

and LU.  Chal and Nat claimed they “never studied” matrix decompositions. Chal’s and 

Desse’s answers suggest that, for them, “matrix decomposition” refers to the 

components of a matrix such as row, column or minors. However, in his answer, Chal 

wonders if the question refers to “decomposition of a matrix in diagonal matrix with 

main diagonal with eigenvalues of the original matrix?”  For this, his answer was 

assigned 0.5 points.   

 Carrie was the only one to attempt question 11b and she offered a satisfactory 

answer: “Decomposing a matrix allows data to be manipulated more efficiently. I have 

been told there are applications in computer science. I would like to know what other 

applications there are.”  

 This question tested the students’ familiarity with matrix factorizations. From 

their answers it follows that this topic was not covered in the linear algebra courses that 

they have attended. With the teaching of the numerical algorithms of computing SVD, 

that rely heavily on matrix factorization and QR decompositions, the use of matrix 

decomposition will be exhibited. 

Question 12: Matrix determinant 

If all the eigenvalues of a matrix are known, how can its determinant be computed? 

Carrie, Chal and Nat did not remember or know the relationship between the matrix 

eigenvalues and its determinant. Surprisingly, Desse was the only one to offer an answer 

and it was correct: “By multiplying eigenvalues”. She used Maple to illustrate or validate 

her answer. She took the matrix  
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  [
   
   
   

] 

She asked Maple to calculate                 , obtained a list of rather 

complicated expressions, but, not bothered by the output, she calculated            

          , obtained -33.0000000 – 3.467703671         , and compared it with the 

output of               , which was -33.  Desse appears to have developed quite a 

skill in using Maple and perhaps a habit of validating theoretical results about 

equivalence of two objects or processes by obtaining them in two different ways in 

Maple and then comparing the results, probably practiced in the MAST 234 and 235 

courses by the instructors.   

Question 13: Linear independence  

13a. Given 3 distinct, non-zero vectors in ℝ3, how can we prove that they are 
linearly independent? 

13b. Can a set of 8 distinct, non-zero vectors in ℝ7 be linearly independent? Explain. 

Question 13a was answered correctly by all but one student (Chal). The correct answers 

were all different:  

Carrie: “We prove that there is not solution other than the trivial one to AX = 0 (c1v1 + 

c2v2 +… = 0 and solve for constants” 

Desse: “Compute a matrix with the three vectors (3 by 3 matrix), find the rank, and if the 

rank is 3, the three vectors are linearly independent” 

Nat: “The three vectors and put in row and then the process of Gauss-Jordan elimination 

will give you the Identity Matrix” 

 We note that the answers by Carrie and Nat are general enough to apply to 

vectors of any dimension, and Carrie’s answer is analytic-structural in that it could apply 

to vectors in any vector space. Desse’s answer is specific to the particular dimension and 

vector space given in the question.  

 Chal’s answer described a method of verifying if a given set of vectors spans the 

space and not a method of verifying if the set is independent.  

 Question 13b elicited all correct answers with acceptable explanations.  
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Question 14: Diagonalizable matrices  

When is an n x n matrix, with real entries, diagonalizable? 

None of the answers was correct. Carrie said she did not remember the conditions. Chal 

asserted that the matrix must “not be a singular matrix”. Desse wrote that the matrix is 

diagonalizable “when the transition matrix exists and is invertible”, which additionally 

shows that she does not seem to be aware that a transition matrix (from one basis to 

another) is necessarily invertible.  Nat required that the matrix must have n distinct 

eigenvalues, which is a sufficient condition but not a necessary one.   

 A general observation of Chal’s answers so far is that the linear algebra notions 

are not well crystallized in his mind, therefore he often jumps to incorrect conclusions. 

Question 15: Basis  

Complete the sentence: Given a basis of a finite vector space, … element of the 
vector space can be expressed …  as a … of basis vectors.  

Only Carrie’s answer was completely correct and as expected. Chal and Nat gave partly 

correct answers. Chal filled the second blank with “if not zero vector”, thus incorrectly 

excluding the zero vector from being spanned by the basis vectors. He filled the other 

blanks correctly.  Nat modified the sentence by adding “n” after “vector space”; then he 

put “the n+1” in place of the first blank; he ignored the second blank and filled the last 

blank correctly with “linear combination”.  Desse said she doesn’t know. 

4.3.2 Expectations about participants’ understanding of the subject of SVD based 

on their performance on the Pre-test 

Below is a summary of the four students’ performance on the Pre-test in terms of the 

numbers of points they were assigned in each question and in total (Table 1).    

As we can see from Table 1, there were five questions that none of the 

participants answered correctly (questions 2, 3, 8a, 8b, 14). The linear algebra topics 

covered by these questions were: orthogonal matrices, positive definiteness, and 

necessary and sufficient conditions to diagonalize a square matrix.  
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On the other hand, all students answered correctly questions 1, 7a, 9a, 9b and 

13b. This suggests that they have better understood and remembered the concepts of 

orthogonal vectors, symmetric matrix properties, rank, and linear independence of 

vectors. 

Nat showed strength in the area of fundamental subspaces of a vector space. He 

was the only participant to answer correctly both questions regarding this topic. Not 

answering questions 11 and 12 is an indication that he did not remember and/or 

understand well concepts such as matrix decompositions and the relationship between 

eigenvalues and the determinant of a square matrix. 

Desse was the only participant to work out the relationship between eigenvalues 

and the determinant. She did not initially remember it, but using concrete examples in 

Maple, she was able to come up with the correct answer. She exhibited weakness in the 

areas of fundamental subspaces of a vector space and elementary row operations. The 

latter is a little surprising, because she seemed to be familiar with algorithms and 

numerical methods. On the other hand, in the MAST 234-5 courses, elementary row 

operations do not occupy much space; row reduction is left to Maple. 

Chal obtained the poorest overall results. Surprisingly, he was the only 

participant to give a correct answer on the questions regarding positive definiteness, 

but this could be an effect of the randomness of his answers. 

The only student to get full marks on questions 5, 6 and 11a was Carrie. She 

appeared to have acquired a good understanding of the concepts of eigenvalues, 

characteristic polynomial and matrix decompositions. She got the best overall score. 
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Table 1. Participants' performance on the Pre-test 

 Based on the participants’ performance on the Pre-test the following conjectures 

can be drawn about their potential to understand the SVD lectures:  

Nat and Carrie seem to have a better understanding of linear algebra notions. 

Overall, they remembered the definitions of important concepts, such as fundamental 

subspaces, better than Desse and Chal. Chal’s answers suggest that he mixes up 

definitions and that his understanding of linear algebra concepts is rather superficial. 

Desse exhibited poor memory, but when in doubt, she tried to validate her 

“conjectures” with numerical examples in Maple.  

 Looking at the pre-grades of the four participants, only Carrie can be said to have 

“passed the test”, with 66%. The pre-grades of the other participants were all below 
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50%. These results are surprising, given that Nat, Desse and Chal completed their last 

Linear Algebra course three months before the experiment, and Carrie completed hers 

one year before. Carrie took a more theoretically-oriented course, without CAS support, 

which required students to engage their analytic-structural thinking for solving 

assignment and test problems. Signs of the analytic-structural mode of thinking could be 

observed in several of Carrie’s responses to the Pre-test. The Pre-test may have been 

more favorable to this mode of thinking than to the analytic-arithmetic mode which is 

usually fostered in the Maple lab Linear Algebra courses. As mentioned above, Desse 

sometimes quite successfully took advantage of Maple affordances to put her analytic-

arithmetic mode to use in solving theoretical questions. Nat and Chal did not appear to 

have used such opportunities. They had poor memory of the theoretical concepts of the 

course and did not think of using Maple to turn the questions in the Pre-test into 

opportunities for numerical exploration or even search for definitions using the Maple 

“Help” utility.  Nat had a tendency to give up answering a question if he was not sure or 

did not remember the concepts: he was the participant with the highest number of non-

attempted questions. Chal appeared to rush into an answer without taking time to 

reflect on the question: his answers were sometimes chaotic. He did, however, spend 

time thinking about the questions and shared some of his thoughts and questions in the 

responses.   

4.3.3 Participants’ behavior during the sessions 

Most of the time students listened to instructor’s presentation of the lecture. Whenever 

they had to clarify certain theoretical aspects, they interrupted the flow of the lecture 

with their questions. Carrie showed the most interest in asking theoretical questions. 

 There were times when the instructor asked questions to refresh the students’ 

knowledge of linear algebra notions or to quiz their understanding of the singular value 

decomposition related topics. 

 During the lectures, students executed the prepared numerical examples 

included in the Maple worksheets. There was very minimal need in assisting them with 
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their tasks in the Maple environment. The teacher explained the steps involved and 

encouraged participants to repeat the execution with modified initial data and to 

observe the results. Then, students were free to comment on their findings. Desse was 

the most inclined to validate conjectures using numerical examples. 

 Students were given assignments to work on at home between the two sessions. 

For example, they were asked to use Maple commands to determine the Kronecker 

decomposition of a       matrix.  

4.3.4 Participants’ responses to the Post-test, Part I – Linear Algebra questions 

As in our analysis of the Pre-test, points in the Post-test were assigned to students’ 

answers as follows: 1 point for a correct answer, 0.5 points for a partly correct answer 

and 0 points to an incorrect answer or no answer. The number of no answer or “don’t 

remember” or “don’t know” responses will be counted for each student. Each student 

will be assigned a “post-grade” calculated as the percentage of their points out of the 

maximum number of points they could obtain in answering the questions. The 

maximum number of points was 23: there were 15 “questions” but some of them had 

sub-questions and so there were 23 individual questions in total.    

Question 1: SVD applicabi l ity  

1a. To what type of matrices is SVD applicable?  

1b. Why? 

Carrie, Desse and Nat captured correctly the essence of SVD: the fact that it is applicable 

to matrices of any shape. They all got 1 point for their answers to 1a. Chal did not 

answer correctly: he wrote that SVD is applicable only to square matrices and was given 

0 points. 

 The expected answer to question 1b was that SVD is applicable even for 

rectangular matrices because the matrix       is square and symmetric and, as such, its 

eigenvalues are always positive, real numbers. Carrie and Chal provided answers that 
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correctly referred to the fact that the matrix       is square and symmetric. Chal, 

however, appeared to believe that this implies that the matrix   itself must be square.  

Carrie: The procedure uses      (     , square and symmetric. 

Chal: Because to compute singular values, we must have a symmetric matrix     from 

a matrix. Therefore, the matrix should be square. 

 Both appeared to be associating SVD with the computational procedures of 

calculating it rather than with the structural properties of the decomposition, which is 

not surprising in view of the importance given to the former in the lectures. Both were 

awarded 1 point for 1b.  

Desse’s response to 1b was merely an elaboration of her answer to question 1a: 

“Can be square or rectangular, with different ranks. That is the main point of SVD”. Nat 

gave no answer.  Both were awarded 0 points.   

Question 2: SVD uniqueness  

Is the SVD decomposition unique (i.e. given an       rectangular matrix  , such that 

       with orthogonal matrices   (     ),   (     ) and    (     )  pseudo-

diagonal; are the matrices       unique with this property)? 

During the first SVD session, students were presented with this result regarding the 

uniqueness of the singular value decomposition: the singular values are uniquely 

determined and if   is square and all singular values are distinct, the left and right 

singular vectors are uniquely determined up to complex signs (if   has real entries, up to 

sign). For the same singular values ordering, it follows that if A is square and all singular 

values are distinct, the matrices   and   are unique up to complex signs.  

 Carrie only mentioned the uniqueness of the singular values without referring to 

their order and did not talk about the matrices   and   that hold the left and right 

singular vectors respectively. She was awarded 0.5 points. 

 Chal and Desse captured the non-unique aspect of SVD, but did not speak about 

the uniqueness of the singular values and about the conditional uniqueness of the 

singular vectors. Chal mentioned the fact that by reordering the singular values on the 

diagonal of matrix   we obtain a different decomposition. Desse stated that “there can 
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be a little variation in the matrix   ”. They were also given 0.5 points. Nat provided no 

answer. 

Question 3: SVD naming  

Why do you think the term “singular” was attached to the singular values of a matrix? 

Carrie remembered the fact that the “values serve as an indication of how close the 

matrix   is to being 'singular'”, which was the expected answer. 

 Chal tried to express the idea that the name comes from the distance to a 

singular matrix but his explanation was very hard to follow:  

Chal: A singular matrix is a matrix such that determinant of that matrix is null. 

Therefore, I guess that singular values of a matrix refer to the distance between a 

matrix and the decompositions of that matrix such that we get a 0 determinant in the 

decomposition matrices (except the diagonal one).”  

He was assigned 0.5 points for his response. 

 Desse answered that the name “comes from the singularity of the matrix”, but 

mentioned nothing about “distance to a singular matrix”.  We awarded her 0.5 point.  

 Nat did not provide the right answer. He stated that SVD could be used to 

compute the pseudo-inverse of a given matrix, which is correct but irrelevant in this 

question. Next, he said that the term “singular” comes from the fact that a pseudo-

inverse can be computed for singular matrices. He was assigned 0 points for this 

response. 

Question 4: SVD applications  

Name three applications of the singular value decomposition. 

Responses to this question were as expected in the case of Carrie, Chal and Desse. Nat 

mentioned only two applications: image processing and “data correction (if one singular 

value is dominant and the other is not)”.  It is not clear what Nat meant in the second 

example; perhaps he referred to the numerical stability to “data perturbations”. Carrie, 

Chal and Desse all mentioned data compression. Noise reduction was mentioned by 

Carrie and Desse. Other applications mentioned by one student each were: pseudo-
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inverse, determinant computation, rank computation, image processing. All students 

(Nat included) were awarded 1 full point for their responses. 

Question 5: Singular vectors  

5a. What are the left singular vectors of a matrix  ?  

5b. What are the right singular vectors of a matrix  ? 

5c. Do they belong to the same vector space? 

Carrie, Chal, and Desse provided the expected correct answer to 5a that the left singular 

vectors are the columns of  . Nat did not provide an answer to this. In question 5b, only 

Carrie and Chal correctly wrote that the right singular vectors are the rows of   . Desse 

confused the right singular vectors with the columns of   . She was assigned 0.5 point 

for this. Nat provided no answers to 5a and 5b. As for question 5c, the only correct 

answer was Carrie’s. Desse and Chal incorrectly claimed that the vectors do belong to 

the same vector space and Nat, again, provided no answer.  

Question 6: Matrices   and   in SVD 

6a. What is the benefit of having the matrices   and   in the SVD orthogonal?  

6b. Bases of which subspaces can be obtained by partitioning the matrices   and   of 

SVD with regards to the rank    of  ?  

Only Carrie and Desse attempted the question 6a. However, only Carrie’s answer was 

correct. She captured the most important point:  that there is no need to compute 

matrix inverses since the inverse of an orthogonal matrix is equal with its transpose. 

Desse wrote that the orthogonality is preserved when multiplying orthogonal matrices. 

While this statement is correct, the singular value decomposition of   does not involve 

multiplication of orthogonal matrices (matrix   is pseudo-diagonal and not orthogonal). 

Therefore she was assigned 0 points for her answer. Chal wrote that he doesn’t know 

and Nat left a blank.  

 In 6b there were two correct or almost correct responses: Carrie’s and Desse’s. 

Carrie correctly listed the four fundamental subspaces (row space, column space, null 

space and null space of the transpose matrix). Desse listed: null space, row space, 
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column space and the “null space of column”. Although she did not remember the 

correct name of one of the subspaces, she was assigned 1 point on this question. Nat 

gave an incomplete answer listing only the column space and the null space. He was 

awarded 0.5 points. Chal left a blank. 

Question 7: Matrix norm in terms of singular values   

What matrix norms can be expressed only in terms of singular values? 

Carrie and Nat did not provide an answer to this question. By listing rank, norm and 

diagonal, Desse probably mistakenly answered the question: which attributes of a 

matrix can be computed using singular values? The only response that came close to the 

expected answer was Chal’s. Chal remembered that one norm is equal with the largest 

singular value of the matrix, without naming the norm (2-norm). He was given 1 point 

for his response. 

Question 8: Condition number of a matrix in terms of singular values  

What is the condition number of a matrix and how can it be expressed in terms of 

singular values?  

The only response that could count as correct was Chal’s who stated that the condition 

number of a matrix is the ratio between its largest and its smallest singular value. Carrie 

wrote that the condition number of a matrix is “the product of its singular values and 

serves as an indication of how ‘large’ the matrix is”, confusing condition number with 

information about the relationship between singular values and the determinant of a 

matrix. Desse was even further off: “Singular matrix. Can be expressed through  ,   and 

  by multiplying these matrices”. It is very difficult to make sense of her reasoning. It is 

obvious that she mixed up several definitions. Nat gave no answer.  

Question 9: Givens rotations usage in the SVD algorithm  

9a. In which step of the presented computer algorithm for computing SVD are the 

Givens rotation matrices used?  

9b. Why are Givens rotation matrices used in the SVD algorithm? 
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Only Carrie and Desse provided answers to 9a. Carrie’s response to 9a was:  “when 

converting a bi-diagonal matrix to a diagonal matrix” which was the expected answer. 

Desse’s answer was: “Bidiagonalization part 2”.  It is not clear if she was aware of the 

purpose of this second part, i.e., diagonalization. Giving her the benefit of the doubt, we 

awarded her 1 point as well for this question. Chal said he didn’t know and Nat left a 

blank.   

 Except Chal, who said he did not know, all the other participants handled 

question 9b correctly. They used different words to express that the Givens rotation are 

used to minimize the elements on the superdiagonal of the matrix. Carrie wrote “reduce 

the size”; Desse – “minimize the elements”, and Nat – “to eliminate”. Even if he wrote 

“to eliminate”, Nat probably meant “to bring close to 0”, so he was given the benefit of 

the doubt and assigned 1 point for his answer. 

Question 10: Rank and singular values  

How can one compute the rank of a matrix by knowing its singular values? 

All students except Nat correctly remembered that the rank of a matrix equals the 

number of its non-zero singular values. Nat mentioned the number of singular values, 

but failed to write that only the non-zero singular values count towards computing the 

rank. He was assigned only 0.5 points. 

Question 11: Singular values type  

How can one compute the rank of a matrix by knowing its singular values?  

Hint: Two characteristics are needed:  

First, select one of: positive; negative; positive or zero; negative or zero; positive or 

negative; positive or negative or zero.  

Second, select one of: complex; real; rational; integer; natural. 

Carrie and Chal answered correctly: Positive or zero; real. Desse answered that the 

singular values could be negative. She forgot that the singular values are the square 

roots of the eigenvalues of a matrix, therefore they cannot be negative, and was 

awarded 0 points. Nat gave no answer.  
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Question 12: Equality of singular values and eigenvalues  

For what type of matrices are the singular values and the eigenvalues equal? 

Only Desse gave the expected correct answer: “symmetric positive definite matrix”. Nat 

required that to have identical eigenvalues and singular values, the matrix must be 

symmetric and diagonally dominant. The latter condition guarantees only that the 

matrix is positive semi-definite, but we accepted his answer as worth 1 point 

nevertheless.  

 Carrie’s response was: “Square, invertible. Positive definite”. She did not 

mention that the positive definite matrix must be symmetric. However, in the linear 

algebra courses she took, a positive definite matrix is usually defined as a symmetric 

matrix   such that        for any vector   of appropriate size. Positive definite 

matrices are indeed square and invertible, but it seems that she believes that any 

invertible matrix has identical eigenvalues and singular values. Therefore, she is 

awarded 0.5 points.  

 Chal required that, to have identical eigenvalues and singular values, the matrix 

must be symmetric and idempotent. The answer was considered incorrect.  

Question 13: SVD and data compression  

What theoretical result allows using SVD in data compression? 

The expected correct responses to this question were: Kronecker expansion or low-rank 

approximation. Only Nat provided a correct answer: “Lowest Rank approximation”.  Chal 

wrote that he didn’t know.  Neither Carrie nor Desse named any theoretical results. 

Their answers pointed to some aspects associated with data compression: “If the 

singular values are small, the data is not very relevant” (Carrie); “Instead of using a lot of 

space, with SVD can be found a minimum amount of data to be stored” (Desse).  They 

were given 0 points.  
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Question 14: Singular values and eigenvalues  

The reason for the eigenvalues decomposition is to find a basis for the space so that 

the matrix becomes diagonal.  

14a. Does this basis always exist?  

14b. Does this basis always have real entries?  

SVD tries to find one change of basis in the domain and usually another one in the 

range so that the matrix becomes diagonal.  

14c. Do these bases always exist?  

14d. Do these bases always have real entries?  

All participants’ answers to question 14a were correct. They were brief and 

straightforward (“No”), except for Chal who added “If we have a matrix with just the 

value 0 as eigenvalues”, which reveals certain some misconception of the conditions for 

diagonalization.  

 Responses to 14b and 14c were all correct and brief (“No” for 14b and “yes” for 

14c).   

 In question 14d, only Carrie and Chal provided correct answers (“Yes”). Desse 

incorrectly said “No”, and Nat introduced an unnecessary constraint; he required that 

the matrix be positive definite for the entries to be real.  

Question 15: Exact pseudo-inverse and SVD 

Given the SVD decomposition of the matrix   :          , how can the exact 

pseudo-inverse (  ) be written?  

Carrie and Desse provided the expected correct answer           , and Nat came 

close with            . All three were given 1 point for their answers. Chal wrote 

that he didn’t know.  

Summary of participants’ performance on Post -test, Part I  

We present the points scored by the participants in the first part of the Post-test in 

Table 2.  

 The Pre-test provided us with a measure of the participants’ “preparedness” for 

the lectures on SVD. The Pre-test scores were a better predictor of participants’ 
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performance on the Post-test than their grades from Linear Algebra courses, although 

also not a very accurate one. The expectations were verified in the case of Carrie, Chal 

and but not Nat. Carrie appeared to be best prepared: she remembered most of the 

important fundamental notions from her previous linear algebra courses and her 

knowledge of them was analytic-structural and theoretical rather than analytic-

arithmetic and procedural. It was therefore no surprise that she scored the highest on 

the Post-test.  

 Desse scored only a little higher than Chal in the Pre-test and this relation was 

maintained in the Post-test. Desse’s interest in numerical methods and verifying 

theoretical ideas on concrete examples was probably satisfied in the SVD lectures and 

this could have helped her to remember more from them than she could remember of 

the theoretical knowledge addressed in the Pre-test. Her ratio of good versus incorrect 

answers was improved in the Post-test relative to the Pre-test.  

 Chal still answered many questions on first-impulse but, since the number of un-

attempted ones increased from four (out of 25) to six (out of 23), we can say that he 

became a little less likely to offer any association that came to his mind. He also 

provided fewer incorrect answers.  

Nat’s poorest score in the Post-test was surprising both because of his high 

performance in the linear algebra course and the fact that he scored better than Desse 

and Chal on the Pre-test. He left blanks in many questions. Perhaps he preferred not to 

give an answer rather than risk an incorrect one.  It was also noticeable that he would 

sometimes get stuck in giving the same explanation even in incorrect contexts. He 

appeared to like the idea of dominant values (as in “diagonally dominant matrix”, 

question 12, or “dominant singular value” question 4).   

Some of the predictions regarding the participants’ challenges in understanding 

certain topics of the lectures were confirmed. The lack of a good understanding of the 

properties of symmetric matrices, of eigenvalues or of the conditions for matrix 

diagonalization led them to give incorrect answers in the post-test. Participants found 

that the time allocated to describe the algorithms was not sufficient. Those not used to 
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the compact representation of computer algorithms had to be explained the meaning of 

the notations.  

 

Table 2. Participants' performance on the first part of the Post-test  

4.3.5 Participants’ responses to Post-test, Part II – Views about the 

teaching approach 

The set of questions in Part II of the Post-test was aimed at finding the participants’ 

views about the teaching approach and obtaining their suggestions for improvement. 

Below are these questions and a brief analysis of the students’ answers. 

Question 1: Preference for type of classes  

What type of classes would you prefer:  

A. “Chalk and talk”: teacher gives a lecture, students take notes.  
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B. Interactive lecture: students can interrupt the instructor by asking questions, 

discussing among themselves and the teacher.  

C. Computer lab classes: students solve problems on the computer; no lecture and no 

teacher guidance.  

D. Interactive lectures in a computer environment.  

Explain.  

Two of the four participants expressed their preference for interactive lectures in a 

computer environment (Chal, Desse). Chal explained his preference by stressing “mix 

between theory and practice” and interest: “not boring and much more interesting”. 

Desse stressed that “a computer helps a lot to compute the answer and to understand 

the material”. 

 Carrie selected both A and D and remarked that “each type of class has its 

advantages; the type and goal of the course do make a difference”. She also noted that 

a small-sized class “with an approachable teacher and a computer to play with and 

practice on” would be the ideal way to learn.  Desse expressed a similarly conditional 

preference in Question 3, where she said that “it also depends on the subject: calculus 

and statistics are better when taught with A”.  

 Only Nat chose option B, which mentions “lecture” and teacher-student 

interactions but not the computer. This preference explains perhaps his low 

performance on the Post-test; he may have felt uncomfortable in the SVD sessions 

where the computer played a very important role. To some extent, it may explain, his 

low performance on the Pre-test; he did not seem to remember much from a linear 

algebra course conducted in the form of interactive lectures in a computer 

environment.   

 

    

Question 2: Identif ication of the approach used in the SVD lectures   

Which type of class do you think the SVD classes you participated in belong to?  

All students concurred that SVD lectures fits best in the “interactive lecture in a 

computer environment” type of class. Even Nat agreed with that and explained that SVD 
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is best learned in this type of class because it alleviates the burden of tedious 

computations and allows focusing on the theoretical aspects. 

Question 3. Opinion about usefulness of mathemat ical software 

In your opinion, does using mathematical software in teaching helps students better 

understand new concepts? 

Participants did agree with the statement that mathematical software helps in better 

understanding new concepts and that explained that it allows focusing on concepts and 

applications by relieving us from tedious calculations. However, Carrie’s  and Desse’s 

views were not unconditional. Carrie added that this is true as long as the software used 

works well and does not hinder the process of learning. Desse emphasized the fact that 

the use of computers in class depends on the subject.  

Question 4: Aspects of the lectures that participants l iked  

What did you like in the teaching approach that was used in this experiment? 

In order to avoid misrepresentation of the participants’ answers, their responses will be 

quoted verbatim.  

Nat: “The teacher stopped to allow us to try the different applications of Singular 
Value Decomposition and he had some examples that we could try and he showed 
us some practical examples like with the rank approximation and image reduction.” 

Desse: “Better to understand and to practice by changing the matrices and vectors 
to see what happens.” 

Chal: “The theory was well written.” 

Carrie: “Good explanations, instructor was sensitive to questions, very 
knowledgeable.”   

 Thus, participants stressed the clarity of teacher’s explanations and 

presentation, the possibility to ask questions, try examples and see applications. Desse 

appreciated the fact that she could freely change initial input values and visualize the 

effects of these changes and said that in helped her understand. 

Question 5: Aspects that the participants did not l ike  

What did you NOT like in the teaching approach that was used in the experiment? 
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Again, we quote participants’ views verbatim: 

Nat: “The time was not distributed well. 8 hours in two days probably did not allow 
you to have a good understanding of the material. If it was broken down too smaller 
sessions the learning would have be better.” 

Desse: “The last part of the material was too complicated, needed more 
explanation.” 

Chal: “The practice section was much like change the data in a previously done 
exercise in Maple.  I prefer when we have all the exercise to do by ourselves; we 
learn more...” 

Carrie: “There was a lot of material for 2 days and 4 hours was a bit long for learning 
new concepts.” 

 Participants felt that the material was vast and the time allotted to it was not 

sufficient. There was both not enough time overall and the sessions were too long.  

 Unlike Desse, Chal was not satisfied with just running examples using different 

numbers in matrices. He would have preferred more freedom in the exercises.  

Question 6: Suggestions for improvement  

Do you have any suggestions about how the teaching approach could be improved?  

Participants reiterated the opinion that there should be more time for the material. 

Carrie joined Chal in proposing that students should be given more autonomy in the 

exercises. Desse proposed that the topic be taught right after the MAST 235 course so 

that one remembers the material related to SVD better.  

Question 7. Appropriateness of SVD in an undergraduate program  

Do you consider SVD a subject appropriate to be taught at the undergraduate level?  

On this topic, the opinions were very divided. Carrie was the only one to answer a 

resounding “yes”. Desse thought that SVD is more suitable as an optional course at the 

undergraduate level. Nat answered that it should be taught as a 300-level course and 

with pre-requisites classes that teach the basics of linear algebra and the use of Maple 

software. 

 Chal considered that adding SVD to a linear algebra course would make it much 

harder, especially that they don’t learn much even about eigentheory at this level. 
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Question 8: Usefulness of the SVD topic in understanding l inear algebra  

Do you think that learning SVD could improve the overall understanding of linear 

algebra concepts?  

We quote participants’ responses verbatim below.  

Nat: “There are some interesting applications in SVD which might show the 
usefulness of linear algebra.” 

Desse: “Yes, it better helps to understand the usage and utility of linear algebra, its 
applications.” 

Chal: “Yes, because it was a good reminder of many notions of linear algebra and I 
think that it was a good complement to eigentheory; and I liked that.” 

Carrie: “Yes, SVD seems like a culmination of many linear algebra concepts.  
Learning the concepts without SVD is like travelling a road and never reaching the 
destination.  It gives some meaning to the concepts.”  

 Only Chal gave a straightforward positive answer to the question. The other 

participants looked at SVD as giving more meaning to linear algebra. Carrie stressed the 

fact that SVD gives more meaning to the concepts. Nat and Desse only highlighted the 

possibility of becoming more aware of the usefulness of linear algebra outside of 

mathematics. They did not mention that it helps understanding it. In fact, Desse 

suggested before that understanding linear algebra is a prerequisite to understanding 

SVD.  
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Chapter 5. Discussion and Recommendations for Teaching the 

Singular Value Decomposition of Matrices 

There were useful lessons learned from the teaching experiment. One important lesson 

was related to the students’ preparedness for the study of the SVD. Participants’ 

responses to the tests made us aware that even students who were at the top of their 

class in previous linear algebra courses would need a substantial revision of the basic 

concepts.  It may be true what Gilbert Strang said (2010) that SVD is a culmination of 

linear algebra in that it brings together all its fundamental concepts, but if students 

haven’t mastered these concepts to some degree, there is nothing to bring together and 

the SVD topic may be lost on them.  

 Three of the participants completed two undergraduate courses of linear algebra 

with Maple. In these courses, new concepts were introduced in a structural way; then 

Maple was used to illustrate them and to confirm conjectures. The pre-test scores imply 

that even top students in those courses retain little of the theory three months after the 

end of the courses; they don’t seem to make the necessary links between linear algebra 

notions. They may acquire some skills in using the computer software, but they are not 

always able to use Maple to explore or verify theoretical relationships when they are 

not sure about them.  In view of their scores on the Post-test, which, after all, required 

only a very general grasp of ideas in the lectures, these three participants must have had 

hard time following the lectures.   

 The fourth participant attended undergraduate linear algebra courses taught 

without Maple, using a strictly structural approach. She scored somewhat better on the 

Pre-test and had a deeper understanding of the concepts, but was hungry for 

knowledge of applications of the linear algebra theory which these courses hardly even 

mention.  The lectures, she admitted, satisfied this hunger to some extent, and she did 

benefit from the sessions more than the other participants in terms of a conceptual 

understanding of the SVD.  
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Another lesson learned from the experiment may be concerned with the 

mathematical organization of the lectures. Some topics could have been introduced 

differently and some were not emphasized enough.  

One of the neglected topics was the concept of Givens rotation matrices. In the 

teaching experiment, the matrices were very quickly introduced as an operator acting 

on a matrix; indeed, as a mere module in a larger computer program for diagonalizing a 

bidiagonal matrix. All the participants learned about the Givens matrices was their 

numerical effect. The concept, however, is valuable well beyond the SVD context. In 

particular, it allows learners to make links between the geometric and numerical 

meanings of multiplication by a matrix. From the numerical point of view, we may be 

interested in turning one entry of a vector to 0. Geometrically, this can be obtained by 

rotating the vector so that it becomes aligned with one of the axes. Students have 

enough knowledge of the standard matrix of rotation in two dimensions to compute the 

    Givens rotation matrix that reduces a required entry of a given vector to 0. Their 

knowledge of the definition of the cosine of an angle between two vectors in terms of 

dot product and norms would be made use of here as well. This experience could then 

be extended to     matrices and then to matrices of higher dimensions.   

A truly computational approach to teaching SVD would require more attention 

paid to numerical stability. In particular, the difference between ill- and well-

conditioned matrices could be studied in more depth.  Systems of linear equations with 

ill- and well-conditioned coefficient matrices could be considered. Then, students could 

observe, in the two cases, how small perturbations in the coefficients propagate into 

the solutions of these systems. 

In showing that the computation of the eigenvalues of a matrix as roots of its 

characteristic polynomial is not numerically stable, a matrix of smaller size could have 

been used. Wilkinson’s classical 20 x 20 matrix example is not well suited for Maple, 

because its elements are not visually displayed, leading students to doubt that the 

correct entries were assigned to it. The pedagogical idea, both here and in preceding 

examples, is to let students explore general concepts in situations that are accessible for 
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them through operations that can be executed manually or with only small help of the 

mathematical software and only then generalize and formalize them so that they can be 

encapsulated in concise algebraic notation or a computer program.   

The second session of the teaching experiment revealed that presenting the 

numerical algorithm behind a linear algebra concept raised the participants’ interest.  

However, it requires more time. Students have to get familiar with the compact 

notations that typically accompany numerical algorithms. They have to understand how 

such a construct can be “unpacked” and to get a feel about how the algorithm operates 

by executing a number of its initial steps.  

One more lesson that will be mentioned here is that teacher-student 

interactions need to be less authoritarian on the part of the teacher and students must 

be left more freedom in the exercises.  As one of the participants suggested, one does 

not learn much from just running teacher-prepared examples with different initial input. 

Students should be allowed to experiment with their own examples and conjectures 

with the teacher acting only as an on-demand advisor.  

The mathematical significance of SVD is highlighted by many authors. Austin 

affirms that “[b]esides having a rather simple geometric explanation, the SVD offers 

extremely effective techniques for putting linear algebraic ideas into practice.” (Austin, 

2012). Certainly, owing to its algorithmic and well-conditioned nature, SVD is an 

excellent candidate for numerical or applied linear algebra courses, taught to more 

advanced undergraduate students. Notions such as algorithm stability to input data 

perturbations could be taught in comparison with eigenvalues’ computation.  

SVD definitely deserves a place in courses with a numerical or applied emphasis. Golub 

and Van Loan ascribe a central significance to the SVD in their definitive explication of 

numerical matrix methods. (Kalman, 1996). 

In spite of its significance, SVD is a topic rarely reached in undergraduate linear 

algebra courses and often skipped in graduate courses (Will, 2003). Our teaching 

experiment suggests some reasons for this state of affairs: if we want students to really 

benefit from SVD in terms of an improved conceptual understanding of fundamental 

linear algebra concepts, of becoming aware of the numerical advantages of SVD, and of 
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the vast applications of linear algebra, then we need a lot of time, a month or more. The 

curriculum is already packed so it is difficult to squeeze in one more topic.  

I hope that the results of this modest teaching experiment will help in making the 

right decision concerning the topic of singular value decomposition in the linear algebra 

curriculum at Concordia University. 
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Appendix 

The recruitment letter 

Dear student, 

[Your instructor] recommended you as a student with strong performance, seriously 

interested in mathematics, with both the required potential and the motivation to learn 

additional topics of applied linear algebra. My name is Zoltan Lazar; I am a student in 

the MTM (Master of Teaching Mathematics) program and part of my graduation thesis 

is to conduct an experiment of teaching the concept of singular values decomposition of 

a matrix using Maple software.  

 The participation will consist in spending 2 consecutive days (4 hours each) in a 

computer assisted environment on the premises of Concordia University. Tentatively 

(depending on students’ and rooms availability), the target days are either on the last 

week of July or the first week of August. Participation in the teaching experiment will 

have no adverse effect on the mathematics courses you are taking at Concordia 

University. On the contrary, they may improve your understanding of linear algebra and 

of computer algorithms.  

 Also, by taking part in this study, the researchers could better understand how 

students feel about this teaching methodology. This understanding can ultimately 

contribute to devising better approaches to introducing new linear algebra notions.  

If interested, please fill and print the attached consent form and confirm your 

participation (and the preferred days among July 27, 28, 29; August 1, 2, 3) by replying 

to this email.  

Kind regards, 

Zoltan Lazar 
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The Consent form 

CONSENT TO PARTICIPATE IN A TEACHING EXPERIMENT INTRODUCING THE CONCEPT 

OF SINGULAR VALUE DECOMPOSITION (SVD) IN A COMPUTER ASSISTED ENVIRONMENT 

 

This is to state that I agree to participate in a teaching experiment conducted by Zoltan 

Lazar, graduate student in the Master of Teaching Mathematics (MTM) program 

(zoltan.lazar@sympatico.ca). This teaching experiment is part of his graduation thesis. 

 

A. PURPOSE 

I have been informed that the purpose of the teaching experiment is to study how 

students respond to the introduction of a new mathematical subject (Singular Value 

Decomposition, or SVD), using computer software (Maple). The goal is to analyze if this 

teaching approach facilitates students’ understanding. 

 

B. PROCEDURES 

I have been informed that I will participate in the study in the role of a student. The 

participation will involve spending 2 days (4 hours each) with the researcher on the 

following activities: 

1. Filling out a short preliminary questionnaire on linear algebra notions ; 

2. Viewing a PowerPoint presentation of SVD and a brief list of its applications ; 

3. Using Maple to interactively learn the concept of SVD; 

4. Listening to an interactive lecture on the numerical algorithms used in the singular 

value decomposition of a matrix; 

5. Filling a final questionnaire to assess my understanding of SVD.I was informed that 

the aim of the final questionnaire is NOT to assess my knowledge and ability to do 

mathematics but to evaluate the effectiveness of the teaching approach. I was also 

assured that all my reactions and responses will be kept strictly confidential and treated 

as anonymous in any publications that may result from this study. My participation in 

the teaching experiment will have no adverse effect on my performance in the 

mailto:zoltan.lazar@sympatico.ca
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mathematics courses I am taking at Concordia University. On the contrary, they may 

improve my understanding of linear algebra. 

 

C. RISKS AND BENEFITS 

I am aware that I may experience some discomfort in the session due to frustration with 

the lecture or the problems to solve. But I am also aware that I can help researchers to 

better understand how students feel about this teaching methodology. This 

understanding can contribute to devising better approaches to introducing new linear 

algebra notions and to teaching mathematics in general. 

 

D. CONDITIONS OF PARTICIPATION 

I understand that I am free to withdraw my consent and discontinue my participation at 

any time without negative consequences.  

I understand that my participation in this teaching experiment is confidential (the 

researcher will know, but will not disclose my identity).  

I understand that the data collected from this study may be published. 

 

I HAVE CAREFULLY STUDIED THE ABOVE AND UNDERSTAND THIS AGREEMENT. I FREELY 

CONSENT AND VOLUNTARILY AGREE TO PARTICIPATE IN THIS STUDY. 

 

Name (please print)            ___________________________________________ 

SIGNATURE                    ____________________________________________ 

 

If at any time you gave questions about your rights as a research participant, please 

contact Adela Reid, Research Ethics and Compliance Officer, Concordia University, at 

(514)848-2424x7481 or by email at areid@alcor.concordia.ca.  

If you have any specific doubts or questions about this research, you can contact Dr. 

Anna Sierpinska, the supervisor of Zoltan Lazar (sierpins@mathstat.concordia.ca; tel 514- 

848 2424 ext. 3239). 

mailto:areid@alcor.concordia.ca
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