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ABSTRACT 

Behavioral adaptations of the Eastern spruce budworm (Lepidoptera: Tortricidae) to 

natural White spruce (Picea glauca (Moench)) resistance 

Thomas Bourdier 

 

The purpose of this study is to have a better understanding of how individual 

behaviors of the spruce budworm (Choristoneura fumiferana) (Clem.) (Lepidoptera: 

Tortricidae) are influenced by the natural resistance of its host in a white spruce (Picea 

glauca (Moench)) plantation. In this system, there are trees resistant to this insect and 

others more susceptible to its attacks. Second-instar spruce budworm dispersal 

experiments did show a significant difference between the two tree types when the 

experiment was conducted outdoors, whereas indoors no difference was found. Feeding 

choice experiments with sixth-instar larvae showed no preference for susceptible foliage. 

However, female adult spruce budworm reared on resistant foliage preferred to lay most 

of their eggs on susceptible foliage when given a choice between both types of foliage. 

Moreover, this deterrence was correlated with certain monoterpenes we measured in the 

foliage of the host trees.  Our results suggest that  adult female responses to 

thesemonoterpenes present in the waxes of the resistant foliage depend on their feeding 

experience as larvae. Our findings could contribute to a new pest management strategy by 

using a mixed plantation of the two phenotypes of white spruce we used in this study. 

 

Key words: Spruce budworm, dispersal, feeding choice, oviposition, white spruce, pest 

management 
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Introduction 

The Canadian forestry industry contributes more than 450 000 jobs and the export of 

forest products generated 1.7% of Canada’s gross domestic product in 2010. Yet this 

industry is subject to important losses due to several natural factors such as weather, fire 

and insect defoliators (NRC 2010). 

With 11.5 million hectares disturbed, insects play a sizeable role in the forest 

industry yield. The eastern spruce budworm (Choristoneura fumiferana) (hereafter SBW) 

on its own, was responsible for 1 million ha of forest damage in Canada in 2008 and 

765 740 ha in Quebec in 2010 (NRC 2010; Rapport TBE 2010, Ressources naturelles et 

faune Québec). Since 1992, the beginning of the current outbreak in Quebec, these 

numbers have risen continuously and this is in part due to a lack of knowledge of the 

outbreak dynamics of the insect. 

Until now, the control of  spruce budworm outbreaks has been achieved mainly 

with the application of Bacillus thuringiensis (Bt) spray (Moreau and Bauce 2003; 

Frankenhuyzen et al., 1997). Even if a resistance to Bt has not yet been documented in 

SBW, it has occurred in several other pests such as diamondback moth (Lepidoptera: 

Plutelidae) (Tabashnik et al., 1990). Because of possible resistance adaptations to Bt 

spray which would result in decreased efficiency of control, and because of possible 

negative effects on beneficial insects (James et al., 1993), one might want to consider 

other pest management strategies. 

The co-evolution between an insect and its host plant leads the latter to develop 
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many characteristics to decrease the negative impacts that the insect will have on its 

fitness. Resistance is here defined as the characteristic of a plant that reduces the damage 

inflicted by herbivores (Futuyma, 2000). There is an array of mechanisms that allow a 

tree to defend itself against herbivory ranging from phenology (Alfaro et al., 2000; 

Lawrence et al., 1997; Quiring, 1994) to production of chemical compounds (Alfaro et 

al., 2002; King et al., 2004; Chapman, 2003) and mechanical defenses (Levin, 1973; Burr 

and Clancy, 1993). 

The chemical characteristics of foliage have been shown to be of major 

importance in the resistance of various conifer trees: Douglas-fir (Pseudotsuga menziesii) 

(Clancy et al., 1993), Balsam fir (Abies balsamea) (Bauce et al., 1994) and White spruce 

(Picea glauca) (Albert et al., 1983; Daoust et al., 2010; Despland et al., 2011) to 

different herbivorous insects. Among these chemicals, secondary metabolites have been 

the subject of several literature reviews: in particular, phenols (Mattson and Scriber, 

1987), tannins (Bernays, 1981; Mueller-Harvey, 1999) and terpenes (Gershenzon and 

Croteau, 1991; Tiberi et al., 1999). In the case of the spruce budworm, studies on 

monoterpenes have been yielded contradictory results: they are phagodeterrent to the 

larvae (Chen et al., 2002) but can also act as oviposition stimuli to adults (Grant et al., 

2007). Young balsam fir are more resistant than mature trees, and exhibit higher 

monoterpene levels compared to mature trees (Bauce et al., 1994). 

White spruce trees that suffer lower levels of defoliation have been identified 

(Daoust et al,. 2010). This natural resistance can be used as a form of insect pest control. 

In British Columbia, Canada, the use of genetically resistant trees is currently being 

tested to supplant spraying as the means of control of white pine weevil on Sitka spruce 
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(Alfaro et al., 2008; King and Alfaro, 2009). 

Other than chemical defenses, phenology can also be considered a form of natural 

resistance: budburst in trees depends both on genetic factors and on environmental cues 

and  can vary from year to year (Nienstaedt and King, 1969). An asynchrony in budburst 

compared to other trees in the population can allow a tree to escape attack from 

herbivores (Quiring, 1994). For the spruce budworm, emergence from diapause is 

generally in advance of conifer budburst (Thomson et al., 1984; Nealis and Nault, 2005). 

The optimal synchrony for SBW is when emergence occurs 2 weeks prior to host 

budbreak. It has been shown that when this time is extended (larvae emerging earlier than 

2 weeks before budbreak), the budworm population suffers a higher mortality rate. 

Indeed, during this period, young larvae occupy pollen cones and feed on previous years’ 

growth which is a lower quality food source (Shepherd, 1992). 

Our study took place in a fast growing white spruce plantation located in a zone of 

severe infestation (>50 larvae / 45 cm long branches) of spruce budworm in 

Drummondville, Quebec, Canada (45°53’0’’N, 72°29’0”W). In this plantation two 

distinct types of spruce trees have been highlighted according to their level of defoliation. 

The two types were named as per Clancy et al., (1993) susceptible and resistant to spruce 

budworm attack. Resistant trees showed less than 10% defoliation whereas up to 80% of 

foliage from susceptible trees was defoliated (Bauce and Kumbasli, 2007). Previous 

studies have attempted to explain the resistance at different levels of the plant-insect 

interactions. Daoust et al. (2010) showed an increase in monoterpene and condensed 

tannin concentrations in the needles, and a reluctance by sixth-instar larvae to feed on 

resistant needles. Removal of epicuticular waxes increased feeding on the resistant 
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needles, suggesting a difference in phagostimulation from waxes of susceptible and 

resistant trees. Longer pauses between meals were also observed on resistant needles, 

suggesting a toxic effect of resistant foliar contents (Despland et al., 2011). Other than 

tannins and monoterpenes, the presence of simple phenolics (notably the compounds 

pungenol and piceol) has been observed in resistant but not in susceptible trees. These 

two compounds have been shown to reduce larval survival and pupal mass and to extend 

the development time of the insect (Delvas et al., 2011). 

The eastern spruce budworm (Choristoneura fumiferana) is a univoltine insect 

from the order Lepidoptera. It passes through six different larval stages before 

undergoing complete metamorphosis to become an adult moth. Young larvae are very 

small and light yellow-green. They become darker with a dark brown head capsule in 

later instars. The larvae pupate within webbed foliage from late June to mid-July. The 

female moths lay eggs in masses on the underside of needles. The eggs hatch in July; the 

larvae immediately undergo a first moult and begin searching for a hibernaculum to pass 

the winter. The following spring, the second instar larvae emerging from diapause  

usually mine into the previous year`s needles  until bud flush. Older larvae prefer recent 

foliage but will feed on older foliage if the current needles are depleted (Royama, 1984). 

Larvae are oligophagous: the preferred hosts are, in order, the balsam fir (Abies 

balsamea), white spruce (Picea glauca), red spruce (Picea rubens) and the black spruce 

(Picea mariana) (Albert, 1980). The last SBW outbreak engendered a loss of 180 million 

m
3
 of trees in North America. Lately, a new outbreak has started in Quebec with the area 

defoliated more than doubling every year (MNRF, 2010). 

In order to control the budworm’s highly damaging outbreaks, we need to 
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understand the close relationship that exists between the budworm and its host better. 

Several individual behaviors and traits influence this insect’s population dynamics. We 

used foliage from the resistant and susceptible trees to see if we can relate plant 

chemistry to behavior at three different stages in the budworm life-cycle. In this study we 

investigated several traits of the SBW life history: 1) dispersal and survival of second-

instar larvae, 2) feeding of sixth-instar larvae and 3) oviposition by adults. 

Dispersal of forest insect defoliators results in redistribution of the population 

within and between tree crowns and stands (Beckwith and Burnell, 1982). The early 

larval and the adult stages are the two points of its life cycle when the spruce budworm 

disperses. While the latter has been studied for years and its importance is well-known 

(Greenbank et al., 1980; Dobesberger et al., 1983), the former still needs further 

investigation. Early-stage larval dispersal can be split into two phases. The first comes 

immediately after hatching when the young larvae search for a hibernation site (late 

August). The second comes during the following spring when the second-instar larva is 

searching for a feeding site (Jennings et al., 1983). In 2003, Nealis et al., introduced the 

concept of ‘Risk of dispersal’ as the product of two processes: (i) the propensity for 

budworm larvae to move in search of suitable feeding sites and the (ii) likelihood of 

mortality resulting from that movement. This concept suggests that we should observe 

greater dispersal from resistant than from susceptible trees. 

Spruce budworm caterpillars are able to discriminate between phytochemical 

components of host plants (Albert and Parisella, 1985). In our system, Daoust et al. 

(2010) have recently shown a significant difference in monoterpene concentrations in the 
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needles of resistant and susceptible trees. Chemical analyses were conducted only on the 

two most different trees in their study (the most resistant and the most susceptible) and 

they found that these chemical differences influence the pattern of feeding of SBW sixth-

instar larvae.  On susceptible foliage, insects are more likely to transition from probing to 

feeding behavior and have more frequent feeding bouts. We tested if their results can be 

generalized to the greater number of trees used in our study, and whether they can be 

correlated with behavior of young larvae and adult females. 

In selecting her oviposition site the female is making a crucial choice for the 

survival of her offspring (Mader et al., 2012). To make this decision the female uses 

visual and olfactory and chemical cues (see Wallace et al., 2004). When hatching occurs, 

usually a few days after oviposition, the female has chosen the initial feeding site for her 

offspring. The female SBW has been shown to be able to discriminate between different 

host species (Rivet and Albert, 1990). Compared to several species (balsam fir, red and 

black spruce), white spruce was always the preferred host species in both lab and field 

experiments (Städler, 1974).  Overall, we investigated if the female moth SBW is able to 

discriminate between two hosts of different quality within the same species. 

We examined SBW behavior between resistant and susceptible trees at three 

stages in the life-cycle: young larvae, older larvae, and adult females. Our hypothesis for 

these experiments was that, overall, susceptible trees are preferred by SBW. The 

hypotheses for each experiment were: (1) second-instar larvae disperse more from 

resistant trees than from susceptible trees, (2) sixth-instar larvae choose to eat susceptible 

needles more often and in higher quantities compared to resistant needles, (3) SBW 

female moths choose to lay more eggs and more egg masses on susceptible branches than 
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on resistant ones. Foliar chemistry was analyzed for each study tree to correlate with 

budworm behavior. 
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General methodology 

The trees used in the experiments were selected by assessing the level of 

defoliation to determine their type as susceptible or resistant. All foliage was collected in 

the field during spring and summer of 2010 and 2011. The selected trees were used for all 

of the following experiments. Thirteen trees were used (6 susceptible and 7 resistant) in 

2010 and 25 trees (13 resistant and 12 susceptible trees), including the 13 from 2010, in 

2011. The branches collected had their cut ends placed in containers of water and were 

stored at 5º C for a maximum of two days before being used in experiments. 

Caterpillars were obtained as diapausing second-instar larvae from the Forest Pest 

Management Institute, Sault Ste Marie, Ontario, Canada and were stored at a temperature 

of 5°C until used. Each larva was reared on foliage from a single tree in an incubator 

under a 16L:8D photoperiod at 22°C and 60% relative humidity. 

In 2010, all the trees were used as rearing trees. Each insect used in the different 

experiments was tested on trees that excluded their rearing tree. In 2011 however, in 

order to reduce the variables, we used only 1 resistant tree and 1 susceptible tree as 

rearing trees. 

The larvae used for the dispersal experiment were maintained on the same tree 

they had been tested on until sixth instar. Some of them were used in the oviposition 

experiment (but not in the feeding choice test) and tested on trees chosen randomly 

excluding their rearing tree. 

All the data generated during the different experiments were analyzed using the 



9 

 

software R (R Development Core Team, 2008). 
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Chapter 1: Spruce budworm second instar larvae 

dispersal 

 

Introduction 

Outbreaks of the spruce budworm occur at irregular intervals of approximately 30-40 

years (Royama, 1984; Jardon et al., 2003). These outbreaks can have a significant impact 

on the structure and composition of forest stands (Nealis and Régnière, 2004). Several 

behaviors are associated with the success and survival of the spruce budworm, one of 

which is dispersal. The most important dispersal event occurs during the moth stage 

where adults, mostly egg laying females, can travel up to 600 km (Dobesberger et al., 

1983). At smaller spatial scales,  some sort of dispersal occurs during all stages of the 

budworm’s life cycle. 

Field studies during the latest outbreak (Nealis and Régnière, 2004; Royama et 

al., 2005; Régnière and Nealis, 2007) confirmed Royama’s (1984) hypothesis that 

population densities fluctuate over large regions synchronously, irrespective of local tree 

mortality. Nevertheless, Régnière and Nealis (2007) suggested that larval dispersal was 

responsible for decreasing early-stage budworm larval survival over the length of an 

outbreak. Thus, this phenomenon plays a sizeable role in the dynamics of budworm 

populations. 

Larval dispersal occurs mainly at two of the six instars the larvae experience in 
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their development (Beckwith and Burnell, 1982). In the summer, just after hatching, the 

first instar larvae (L1) seek a suitable site to make their hibernacula. The fact that the 

eggs are laid in masses of 15-20 eggs, and hatching occurs in a short period of only a few 

hours (Régnière, 1987) can lead to a high level of competition with kin to find an 

overwintering site. The emerging larvae descend on  silk  threads  and  are  redistributed 

within  the  canopy,  mostly  to  the  interior  and  middle  of  the crown (Moody and 

Otvos, 1980; Régnière & Fletcher, 1983). This dispersal event takes place only over a 

short distance and has to occur rapidly because larval mortality increases rapidly as 

temperature decreases (Han et al., 2000). 

The second dispersal event occurs right after emergence of the larvae in the 

following spring before budbreak. At this time, larvae temporarily mine old needles 

(Trier and Mattson, 1997) or feed within pollen cones (when available) before finally 

penetrating fresh buds (Blais, 1952). This results in a high displacement rate of larvae 

seeking a feeding site into the crown of the host tree but also between crowns of different 

trees. These movements are associated with highly variable losses and are difficult to 

measure in a forest setting (Miller, 1958; Morris and Mott, 1963; Royama, 1984). 

The present chapter tests two different apparati for measuring second instar larval 

dispersal and compares dispersal rates from susceptible and resistant white spruce trees. 
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Methods 2010 

The insects were taken out of diapause on the day of the experiment and placed at 

ambient room temperature (20°C) for 2 hours before the experiment. One branch, 

measuring 10 cm in length, had its cut end placed into an Eppendorf tube filled with 

water to keep the needles fresh for the duration of the experiment. This tube was attached 

to a retort stand, 15 cm from the base. This stand was placed on a 25x15 cm tray filled 

with water to a depth of 2 cm. This was in order to prevent any larvae that dispersed from 

the branch from leaving the tray. Ten caterpillars were placed on each branch and 

branches from all 13 trees were tested simultaneously. This experiment was conducted 

outdoors on the Loyola campus of Concordia University (between the 7
th

 and the 21
st 

of 

May 2011), on four sunny days, from the morning to the late afternoon to maintain a 

relatively consistent natural light and temperature pattern. Every hour, trays were 

checked for dispersing larvae. Each tree was tested four times over the course of the 

experiment. 
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Figure 1: Experimental set-up to test dispersal activity during the summer of 2010 

 

After 6 hours, surviving caterpillars were reared to pupation stage on the foliage 

from the tree they were tested on for use in the two experiments described below. Pupal 

weight was monitored on all 13 rearing treatments. 

The final number of larvae which dispersed at the end of the experiment between 

both foliage types was compared using an unpaired Student’s t-test. The effect of foliage 

type, time, tree and replication on the dispersal was tested using a Poisson regression. 
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Results 2010 

The number of second-instar SBW larvae dispersing varied considerably between 

the different trees within each foliage type. Despite a tendency for more ballooning from 

resistant trees when comparing the mean number of dispersing insects from each foliage 

type (Fig. 2), our results did not show any significant difference in the final number of 

larvae which dispersed between foliage types (t-test, t = 1.5517, df = 11, p-value = 

0.1490). 

 

Figure 2: Mean (between the four different dates on which the experiments were done) number of 

caterpillars dispersing from resistant trees (A) and susceptible trees (B) over time. Each dashed line 

represents one tree; the red line represents the mean of all the trees of one type. 
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A Poisson regression revealed a significant effect of both the foliage type and the 

time on the number of larvae dispersing whereas the effect of tree and replication (the 

different dates on which the experiments were conducted) on dispersal was not 

significant (Appendix 1 (A)). 

We did not find any consistent pattern in dispersal rate from any of the trees 

between the different dates on which the experiments were performed. Fig. 3shows 

results from 4 of the 13 trees. 

 

 

Figure 3: Comparison of numbers of caterpillars dispersing from each tree on the different dates on 

which the experiments were performed. There was no pattern or clear effect of a given date on any of 

the 13 trees tested so data from only 4 trees are presented. 
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Methods 2011 

After assessing the results we obtained in the summer of 2010, we decided to 

change the experimental set-up for the summer of 2011. External conditions, even if they 

best represent what happens in nature, had too many variables. We believe that the wind 

could have dispersed some larvae farther than the limits of the tray we used to quantify 

the dispersal and so have removed few larvae from the system. Moreover, it is likely 

results in this setup are dependent on the weather conditions and we were able to conduct 

our experiment only when the weather was suitable. 

We then decided to use closed boxes (Fig. 4) equipped with a light in the lid 

section, large enough to accommodate 10 branches. The light in each box is separated by 

a pane of thermal glass from the rest of the box to minimize any change in temperature. 

For a similar reason, a fan was fitted in the lid alongside the light. Four holes in the boxes 

allow air circulation without wind. The bottom of the box was lined with double sided 

tape to capture the dispersing larvae. In each box we placed 7 branches from each type of 

foliage, each coming from a different tree. There was enough space between each branch 

so that without wind the dispersing larvae fell directly on the area under the branch they 

were placed on. The boxes were placed in a climate-controlled room to maintain a 

relatively constant temperature and humidity level and the lights in the boxes were kept 

on during the experiment. Experiments were conducted between May 15
th

 and 23
rd

 2011. 

The 10 cm long branches were placed randomly in each box. Each of them had 

their cut end placed into an Eppendorf tube filled with water to keep the needles fresh for 

the duration of the experiment. The top of each Eppendorf was covered with tree-
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tanglefoot, an organic pest barrier effective against crawling insects, to prevent larvae 

escaping by the base of the branches. Compared to the summer 2010 experiment 

(described above), we used 5, rather than 10, larvae per branch to reduce the competition 

between them. In nature at the second instar, one dispersal event has already occurred and 

the larvae are more spread out than at the first instar when they have just emerged from 

the egg masses. 

At the end of the experiment, all branches were removed from the boxes and each 

one of them was placed in an individual Petri dish sealed with parafilm. The Petri dishes 

were placed in a growth chamber at 20°c with a 16L:8D photoperiod. After 72 hours, we 

counted the number of larvae established on each branch. This delay allowed us to 

determine whether the larvae that did not disperse established successfully on the branch 

and were actually feeding on it. 

We had 12 replicates for each tree which makes a total of 156 replicates for the 

resistant type of foliage and 144 for the susceptible foliage. We counted the number of 

dispersing larvae every hour for 8 hours. The final number of larvae which dispersed at 

the end of the 8 hours was compared between both foliage types using an unpaired 

Student’s t-test. The effect of foliage type, time, tree and replication on the dispersal was 

tested using a Poisson regression. 
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Figure 4: Experimental set-up to test dispersal activity during the summer of 2011 
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Results 2011 

Dispersal of larvae from the different trees varied both between and within foliage 

types (Fig. 5). We found no significant differences in the final number of larvae dispersed 

at the end of the experiment between the two foliage types (t-test: t = 1.2024, df = 314, p-

value = 0.2301).  

  

Figure 5: Mean number (between the different replicates) of caterpillars dispersing from resistant 

trees (A) and susceptible trees (B) over time. Each dashed line represents one tree; the red line 

represents the mean of all the trees of one type. 
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The Poisson regression showed that the effect of foliage type on dispersal was not 

significant whereas time, tree and replication had significant effects (see Appendix 1 (B)).  
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Discussion 

Both years’ results show a slight tendency for greater dispersal from resistant trees 

than from susceptible ones (Fig. 2 and 5). The 2010 experiment demonstrated a 

significant effect of the foliage type on the number of larvae dispersing. This result 

suggests that early stage larvae were able to distinguish between two conspecific hosts of 

different quality. By increasing the number of replicates and removing the effect of the 

environment in the 2011 experiment, we still found significant differences in dispersal 

between individual trees, although these did not always correspond to the trees’ 

classification as susceptible or resistant. This might be due to high variability, both 

between replicates for a given tree but also between trees for a given type of foliage 

(Appendix 1).  

Moreover, it seems that the environmental conditions play an important role in the 

dispersal phenomenon. In the 2010 outdoor experiment, not only did we find a difference 

between foliage types but the dispersal observed was also higher than in the 2011 indoor 

experiment. By conducting the experiment outside on sunny days, we selected the ideal 

conditions for budworm dispersal which could have lowered their ‘Risk of dispersal’ 

(Nealis et al., 2003). This is confirmed by Miller (1958) who found greater larval 

dispersal during the sunniest days and at the warmest hours of the day in an outdoor 

experiment.  

These results suggest that second instar larvae do distinguish between the trees used 

in this experiment, but that the criteria they use do not always reflect those that confer the 

resistance to defoliation observed in the field. There is, to my knowledge no evidence that 
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second instar larvae use chemical cues to direct dispersal. Régnière and Nealis (2008) 

showed that losses during this phase was linked to previous defoliation but did not 

investigate the proximal reasons that cause the larvae to disperse. This issue will be 

explored further in Chapter 5. 

 

Régnière and Nealis (2008) demonstrated a density-dependent relationship between 

survival of early-instars and host tree conditions where defoliation-induced damage to the 

trees resulted in increased losses of spring-emerging larvae that are dispersing in search 

of feeding sites. Indeed, throughout the outbreak, the defoliation of the trees increases, 

which lowers the quantity of food available to the larvae. This process has direct 

consequences on the dispersal of emerging larvae where a higher defoliation of the host 

increases the dispersal of larvae (Régnière, personal communication). In our system, 

susceptible trees have higher SBW defoliation-induced damage than resistant ones 

(Bauce et al., 2006). Therefore, the increased dispersal we were expecting from resistant 

trees due to their chemical characteristics could have been counter-balanced by a higher 

defoliation on the susceptible trees. Unfortunately, we did not measure defoliation on the 

trees we used for this experiment and cannot confirm this hypothesis. 

On the other hand, budworms hibernating near host foliage disperse very short 

distances whereas larvae that hibernate in non-foliated portions of host trees must 

disperse to survive (Régnière and Nealis, 2008). In our experiment the insects were 

obtained from a commercial supplier so their parents had been fed on artificial diet. The 

larvae we used overwintered in artificial conditions but we can still expect the dispersal 

rate to be low because they are placed on suitable hosts. 
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Our results suggest that the resistant trees, which suffer less defoliation from SBW, 

can reduce their insect load by increasing dispersal of young larvae but that this 

resistance is likely to be linked to other processes such as environmental conditions. A 

smaller quantity of eggs laid on their branches by adult females and/or a higher mortality 

at other stages due for example to post-ingestive toxic mechanisms on the older larvae 

might also be responsible for the insect load reduction. 
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Chapter 2: Feeding choice test on sixth-instar 

larvae 

 

Introduction 

Food source quality has consequences for the whole life cycle of insects. It can affect 

their survival, growth rate, mating success and even the survival of their offspring 

(Noseworthy and Despland, 2006; Carisey and Bauce, 2002). Nevertheless, insects can 

compensate for low quality food sources, either physiologically (Despland and 

Noseworthy, 2006) or behaviorally (Simpson et al., 1988). Here we focused more on the 

latter kind of compensation. Insects have been shown to increase the quantity of food 

they would ingest when the quality of the food source decreases (Simpson et al., 1988; 

Lavoie and Oberhauser, 2004). This phenomenon, called compensatory feeding, has been 

observed in the SBW (Albert and Bauce, 1994; Toufexis et al., 1996). 

When selecting their food source, insects use a range of different cues including the 

chemical composition of plant tissue (Chapman 2003, Wright et al., 2003). In our system 

there are known feeding behavior differences: larvae feeding on needles from resistant 

trees were shown to have fewer feeding bouts and shorter duration of meals than those on 

needles from susceptible trees. Also, the number of insects that transitioned from probing 

to feeding was higher (79% vs. 34%) on susceptible foliage than on resistant (Daoust et 

al., 2010). Transition from probing to feeding behavior is likely to be due to surface 
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chemicals since the needle is not pierced yet. Daoust et al. (2010) found more 

monoterpenes in the needles of the resistant trees compared to the susceptible ones and 

concluded that because of their volatility these chemicals should be absorbed into the 

epicuticular waxes and are therefore hypothesized to be the cues responsible for the 

differences in behavior observed. In this experiment, we hypothesized that when given a 

choice between resistant and susceptible foliage: (1) sixth-instar larvae should choose to 

eat more of the susceptible foliage; (2) larvae reared on resistant foliage should be more 

selective than the ones reared on susceptible foliage. 
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Methods 2010 

Experiments were conducted between June 18th and 25th, 2010, the time of year when 

the foliage is the same as that which sixth-instar SBW feeds on in the field. A 2 cm 

branch of current year foliage from each type (S and R) was placed at opposite ends of a 

plastic arena 15 cm long and 3 cm wide. The arena edges were covered with petroleum 

jelly to prevent escape by the caterpillar. Eight plastic arenas (15 cm x 3 cm) were placed 

on two cylindrical rubber stoppers (approx 3 cm in height) to create ‘bridges’. Eight 

bridges were placed side by side on a plastic tray (35 cm x 45 cm) and the tray was filled 

with water to a depth of several millimeters. 

Naïve insects were reared on one of the 7 resistant or 7 susceptible trees until 

sixth-instar and food-deprived for 4 hours at room temperature in individual plastic cups 

before the experiment. Four sixth-instar caterpillars reared on susceptible foliage and 4 

caterpillars reared on resistant foliage were placed on each tray. One caterpillar was 

positioned at the middle of each bridge, and all bridges were identified according to the 

rearing diet of the caterpillar. Each bridge had foliage from a resistant and a susceptible 

tree placed at opposite ends. For each replicate, two trees (one of each type) were chosen 

randomly but excluding the rearing tree of the insect.  

The experiment was recorded for 20 hours using a Canon, GL2 Video Camcorder, 

3CCD Camera System, 20X/100X professional fluorite lens, 1.7 mega pixels and 

recorded onto a computer using Virtual Dub software (1.5.10, 19998-3003, Avery Lee) 

set at 1 frame/second. 

We used a consumption scale to rate the amount of foliage eaten by the 
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caterpillars, as follows: 0: did not feed, 1: started feeding but ate less than half the amount 

of foliage present, 2: ate more than half the foliage but did not finish it and 3: finished all 

the needles. We compared the following variables between the two foliage types in the 

assay: time to first contact and first foliage type contacted, index of consumption (range 

from 0 = intact to 3 = completely eaten) and number of contacts with each type of 

foliage. Rearing treatment (S vs R) was also included in the analysis. 

The videos were analyzed using the software The Observer developed by Noldus. 

When we started to analyze the data, we discovered out that one of the cameras had 

malfunctioned, which reduced our number of replicates to 48 out of the 96 expected. Of 

the 48 larvae from which we actually have the videos, only 18 stayed on their bridge and 

fed for the duration of the experiment. The other larvae were able to get over the 

petroleum jelly and either died in the water or crawled up on to another bridge. Out of the 

18 useable replicates, half of them had been reared on resistant foliage and the other half 

on susceptible foliage. 

 

The data did not satisfy the conditions for normality so we used a Wilcoxon 

signed rank test to compare the consumption indices between foliage types. We 

performed student t-tests to compare the time before first contact and on the number of 

switches between foliage types. A chi-square test of independence was used to compare 

the proportion of larvae that contacted each type of foliage first. In total 18 caterpillars 

were tested. 
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Results 2010 

The results, on the 18 replicates we have, do not show any difference in mean 

consumption of one foliage type over the other (W = 161, p-value = 0.9867) despite a 

tendency for higher consumption of susceptible foliage (Fig. 6). Considering the rearing 

type of foliage did not change the outcome of the test.  Neither larvae reared on resistant 

(χ² = 0.287, p = 0.866), nor those on susceptible foliage (χ ² = 0.350, p = 0.839) showed a 

departure from the expected equal consumption of both foliage types presented.  

 

 

Figure 6: (A) Mean (+/- SE, type I) consumption index of each foliage type according to the rearing 

foliage. (B) Mean (+/- SE, type I) time before contacting the first foliage according to the rearing 

foliage and the first foliage type contacted. n=9 larvae reared on resistant, n=9 larvae reared on 

susceptible. 

 

Combining both rearing diets, there was no difference between the two foliage types in 

the first choice made by the larvae (Chi² = 0.186, p = 0.911). Seven larvae out of the eight 

A B 
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which contacted the resistant foliage first had moved at least once to the other foliage in 

the first 10 minutes following that contact. In the same time period, 8 of the 10 larvae 

which contacted the susceptible foliage first had also switched to the other foliage type. 

The time to first contact with one of the needles was not significantly different 

when comparing between the two rearing diets (t-test, t = 0.332, df = 16, p-value=0.744). 
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Methods 2011 

We performed a similar experiment but in a different smaller, enclosed arena. The larvae 

were reared on foliage from the two rearing trees. Each larva was given a choice between 

two branches of different type of foliage selected among the 25 trees used in the 

behavioral experiments. The first experiment (in 2010) had a distance of 15 cm between 

the two food sources, in the second experiment we used large Petri dishes (15cm 

diameter) and set up a distance of 5 cm between the food sources. An external observer 

recorded the position of the larvae in each dish every 2 minutes for the first ten minutes, 

then every 5 minutes for the next 20 minutes, every 10 minutes for the following 30 

minutes and every 20 minutes for the following hour and every hour for the next 5 hours 

and finally at 24, 32, 48 and 72 hours after the start of the experiment. The position of the 

insect was noted as on resistant, on susceptible or neither of them. Experiments were 

conducted between June 20
th

 and 29
th

 2011. 

We tested a total of 114 larvae in this experiment with an equal number reared on 

each foliage type, but we had to discard from the dataset the larvae that did not feed as 

well as the ones that started their metamorphosis before the end of the experiment. This 

reduced our final number of replicates to 33 larvae reared on resistant and 29 reared on 

susceptible foliage.  As in the 2010 tests, we used: Wilcoxon signed rank test for the 

consumption indexes, student t-test for the time before first contact and the number of 

switches, and a chi-square test of independence for the proportion of larvae that contacted 

each type of foliage first. 
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Results 2011 

We did not find any statistically significant difference in mean consumption 

indices of the two foliage types (W = 141, p-value = 0.387) (Fig. 7). Including the rearing 

foliage in the analysis did not make any difference (larvae reared on resistant: W = 72, p-

value = 0.297; larvae reared on susceptible: W = 94, p-value = 0.896).  

In both years, the larvae reared on susceptible foliage had a higher average 

consumption index than the larvae reared on resistant foliage (2010: 1.39 vs. 2.06; 2011: 

1.56 vs. 1.88) but this was not significant in either of the two years. 

 

 

  

Figure 7: (A) Mean (+/- SE, type I) consumption index of each foliage type according to the rearing 

foliage. (B) Mean (+/- SE, type I) time before contacting the first foliage according to the rearing 

foliage and the first foliage type contacted. n=33 larvae reared on resistant, n=29 larvae reared on 

susceptible. 

 

A B 
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Of the 114 larvae tested, 50% chose the susceptible foliage first. No difference 

was noted when taking into account the rearing foliage type. Of the larvae which 

contacted the resistant foliage first, 75% of them had switched from their first choice to 

the other foliage at least once 10 minutes after the start of the experiment. This proportion 

was 63% for the larvae that contacted the susceptible foliage first. This difference was not 

significant (χ² = 3.70, p = 0.157). The average total number of switches observed was not 

different between the two rearing foliage types (1.71 for susceptible reared and 1.79 for 

resistant reared, t-test: t = 0.827, df = 61, p-value = 0.713); nor did it differ according to 

the foliage contacted first (1.80 after contacting susceptible first, and 1.68 for those that 

contacted resistant first, t-test: t = 0.827, df = 61, p-value = 0.512). There was no 

correlation between the first choice and the number of switches (Pearson correlation 

coefficient: r = -0.06). 

The larvae reared on resistant foliage found the food source faster than the ones 

reared on susceptible foliage (25.07 vs. 46.15 seconds) but not significantly so (t-test, t = 

0.612, df = 14, p-value = 0.550). 
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Discussion 

Previous work indicates that SBW can compensate when subjected to low quality 

food by increasing their consumption (Albert and Bauce, 1994) which is the reason why 

we expected budworms reared on resistant foliage to behave differently in their choice 

than larvae reared on susceptible foliage. However, this effect was not observed. 

Previous studies in the same plantation found no differences between the two 

foliage types in phagostimulatory power of internal leaf contents when evaluating meal 

duration and probing behavior when using different types of leaf extracts (S and R) in a 

choice test (Daoust et al., 2010; Despland et al. 2011). The present experiment confirms 

that there do not appear to be differences in phagostimulatory power between resistant 

and susceptible foliage. These results are in agreement with Mader et al. (2012) who 

found no difference in the number of feeding events and pauses between meals by sixth 

instar spruce budworms between the two types of foliage in a no-choice assay. 

Subtle behavioral differences were nonetheless observed between these foliage 

types. Daoust et al. (2010) highlighted what could be considered the first line of defence 

of the resistant trees: on resistant needles, fewer larvae transitioned from probing to 

feeding which resulted in fewer feeding bouts and a shorter first meal duration. After 

removing the epicuticular waxes of the resistant trees, which contain high levels of 

monoterpenes, this deleterious effect on the larvae decreased. In parallel, intermeal 

intervals have been shown to be twice as long on the resistant foliage leading to lower 

food consumption by the larva (Despland et al., 2011) which is consistent with our 

results. This result suggests a post-ingestive second line of defense which might be due to 



34 

 

the presence of two phenolics, pungenol and piceol, which have been identified in the 

resistant but not in the susceptible white spruce. They have been shown to reduce growth 

and development of budworm as well as increasing mortality (Delvas et al., 2011). 

Neither of these defense mechanisms would necessarily be detected in the choice 

experiment presented here. 

Most of the previously cited work which exhibits differences between the two 

foliage types has been done using leaf extracts from a few extremely different trees 

and/or larvae fed on artificial diet. Larvae reared on artificial diet have been shown to 

have completely different patterns of feeding than those reared on foliage (Ennis, 

Unpublished data) which is why we decided to rear our insects on foliage and test them 

on non-manipulated foliage from many different trees. 

Our results confirm previous work showing little or no difference between 

budworm feeding behavior on susceptible and resistant trees.  The subtle effects 

documented by Daoust et al. (2010) and Despland et al. (2011) would not show up as 

clearly in the choice assay used here as in the long-term no-choice observations made in 

those studies. These results suggest that the use of resistant trees in future plantation may 

increase the yield of these plantations due to a higher mortality in the budworm 

population from selective pressure exerted by the resistant trees. 
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Chapter 3: Oviposition preferences of adult 

spruce budworm are influenced by past larval 

experience 

Introduction 

The specific oviposition preferences exhibited by insects may be genetically 

determined and/or based on larval conditioning.  In the latter case, when selecting her 

oviposition site the female has two choices according to what she experienced as a larva: 

choosing the foliage on which she developed (Hopkins’ host selection principle, Hopkins, 

1917) or avoiding it if it contained noxious compounds (Mader et al., 2012) 

Female spruce budworm usually emerge in the late afternoon and start signaling 

for a mate at dusk by emitting odor plumes (Mader et al., 2012). Odor plumes attract 

adult males and cause them to disperse within the stand to find a mate (at the 100 meters 

scale). They mate only once and disperse the following day in the stand to lay their eggs 

(100 to 200 in total) in several clusters on different needles. Both adults are strong flyers 

and can sometimes undergo long-range dispersal (Saunders, 1987).  

Previous work (Honek, 1993) has shown that female pupal mass is a good 

predictor of fecundity. In our system, Bauce and Kumbasli (2007) have shown that 

females reared on resistant trees in the field were heavier than females reared on 

susceptible trees at the pupal stage. 

The female spruce budworm usually oviposits in late July and early August 
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(Morris and Mott, 1963). First-instar larvae are known to graze the surface of the needle 

and ingest some epicuticular waxes (Retnakaran et al., 1999) but most of the feeding 

occurs during the following spring after second instar larvae have overwintered. Spruce 

budworm larvae have limited mobility, and dispersal of larvae is associated with high 

losses (Régnière and Nealis, 2008). Therefore the female is making an important choice 

when selecting her oviposition site and the better the food source she chooses, the greater 

will be the survival of her progeny. 

To make this decision the female uses visual, tactile and olfactory cues as well as 

chemicals present in the foliar waxes. Prior to laying, females tap the substrate with pro- 

and mesothoracic legs. The sensilla on the tarsi and on the ovipositor are likely to detect 

chemicals in the waxes (Wallace et al., 2004). Several monoterpenes present in white 

spruce foliage have been shown to stimulate spruce budworm oviposition on neutral 

substrates (Grant et al., 2007). Egg laying females are able to discriminate between 

several oviposition substrates (Rivet and Albert, 1990) and when given a choice between 

several acceptable hosts such as balsam fir and other spruce species, white spruce was the 

most preferred (Wallace et al., 2004, Städler, 1974). 

We investigated if the female SBW moth is able to discriminate between two 

hosts of different quality within the same species and if their experience as larvae 

influenced this preference. 
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Methods 

We followed the protocol described in Wallace et al. (2004) to mate the adult 

SBW. The matings were performed within tree type between one to five days after 

metamorphosis. The copulating couples were removed from cages and the females were 

used the following day. Each female was placed in a 473 ml plastic container (Solo Cup 

Company, Urbana, Illinois) in which 2 cm long branches of previous year foliage from 

both tree types and a free water source had been placed. For each replicate, two trees (one 

of each type) were chosen randomly but excluding the rearing tree of the insect. 

Experiments were conducted between July 3
rd

 and 12
th

 in 2010 and July 5
th

 and 15
th

 in 

2011. 

Female behavior was recorded by an external observer. To perform this choice 

experiment, we made sure that all females contacted both types of foliage prior to laying. 

We recorded the number of eggs and the number of masses laid on each type of foliage. 

Each egg mass laid represented a separate oviposition event and so a separate choice 

made by the laying female. The number of masses laid was used to determine if the 

females were choosing one of the two foliage types more often than the other. 

The data for the number of eggs and the number of masses laid did not satisfy the 

condition for normality due to a high number of females laying only on one type of 

foliage. We therefore used a Wilcoxon ranked test for paired data to investigate any 

difference in the number of eggs laid between the two foliage types. Finally, female pupal 

masses and fecundity were compared between the two rearing foliage types using a 

student t-test. 
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Results 

Summer 2010 

 

Overall, females showed a strong preference for the susceptible foliage when laying their 

eggs (2.68 times more eggs on S than on R, Wilcoxon test: W = 246.5, p-value = 0.003). 

This difference is due to the females reared on resistant foliage which laid on average 

5.47 times more eggs on susceptible than on resistant foliage (Wilcoxon test: W = 217, p-

value = 0.012) (Table 1). There were no significant difference for females reared on 

susceptible foliage (Wilcoxon test: W = 187.5, p-value = 0.094) despite a tendency for 

more eggs on susceptible foliage (1.87 times more). Thus, females reared on resistant 

foliage laid a greater proportion of their eggs on susceptible foliage compared to females 

reared on susceptible foliage (Fig. 8 A). 

 

Table 1: Mean number of eggs laid on each type of foliage by females reared on susceptible and 

resistant foliage in the 2010 experiment. 

 Rearing foliage 

Resistant Susceptible Total 

Laying 

foliage 

Resistant 7.64 26.54 34.18 

Susceptible 41.83 49.85 91.68 

Total 49.47 76.39 125.86 
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Figure 8: Mean of total number of eggs laid (A) and proportion of total number of masses (B) laid by 

females from each rearing tree type on each kind of foliage 

 

Overall, the females lay more egg masses on susceptible foliage than on resistant 

foliage (Wilcoxon test W = 269.5, p-value = 0.01551) (Fig. 8 B). Only 12% (3/25) of the 

females tested failed to lay any eggs on the susceptible foliage whereas 40% (10/25) 

failed to lay eggs on the resistant foliage (χ² = 11.04, p-value = 0.004). 

We observed a significant difference in mean pupal mass of females reared on the 

two foliage types (Females reared on resistant = 56.34 mg, n = 56; reared on susceptible 

= 48.18 mg, n = 64; t-test, t = 12.805, df = 1, p-value = 0.04961).  However, of the 

females used in the oviposition experiment, we found that females reared on resistant 

foliage had lower fertility thanfemales reared on susceptible foliage (Table 1) (resistant 

reared: 49.47 eggs/female, n = 12; susceptible reared: 76.39 eggs/female, n = 13) but this 

result was not significant (t-test: t = -1.7243, df = 22.887, p-value = 0.09813). 

This result would suggest that despite a bigger mass which is supposed to enhance 

A B 
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their fertility, females reared on resistant foliage suffer reduced fitness from being fed on 

resistant foliage. Another possibility is that the eggs laid during the experiment did not 

represent the female’s full fecundity and that some remained within the ovary. This 

possibility was examined in the following field season. 

Summer 2011 

We increased the number of replicates (n=76 females tested: 30 reared on resistant 

foliage and 46 reared on susceptible) compared to 2010 where we tested only 25 females 

(12 reared on resistant and 13 reared on susceptible). 

We found no significant difference in fertility (t = -0.1659, df = 59.104, p-value = 

0.8688) despite a slight difference in the average number of eggs laid (70.02 eggs laid by 

females reared on resistant foliage (n=30) vs. 71.69 eggs laid by females reared on 

susceptible foliage (n=46)) (Table 2). We dissected the abdomen of 10 females chosen 

randomly (5 reared on each type of foliage) and found only one egg  in one of them, 

confirming that the number of eggs laid does represent total fecundity. This is reinforced 

by the fact that the pupal weight of the females does not differ between the two rearing 

foliage types (resistant reared= 50.18 mg, n = 177; susceptible reared= 48.35 mg, n = 

192; t-test: t = 1.049, df = 294.571, p-value = 0.295). 

Overall, the females exhibit a preference for the susceptible foliage over the 

resistant (mean=31.70 eggs/female laid on resistant foliage vs 39.35 eggs/female laid on 

susceptible foliage) (Fig. 9). This preference was significant (Wilcoxon test: W = 248.5, 

p-value = 0.002) among the females reared on resistant foliage who laid more eggs on 

susceptible foliage, whereas no difference was observed among the females reared on 
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susceptible foliage (Wilcoxon test: W = 1051.5, p-value = 0.691). 

 

Table 2: Mean number of eggs laid on each type of foliage by females reared on susceptible and 

resistant foliage in the 2011 experiment. 

 Rearing foliage 

Resistant Susceptible Total 

Laying 

foliage 

Resistant 24.56 36.25 60.81 

Susceptible 45.46 35.44 80.90 

Total 70.02 71.69 141.71 

 

There was no significant difference in the mean number of masses laid on each type of 

foliage despite a tendency for more masses on susceptible foliage (3.72 masses on 

resistant vs 4.38 masses on susceptible, Wilcoxon test: W = 2715, p-value = 0.5215 ). No 

significant differences in number of egg masses on each foliage type appear when 

splitting the analysis by rearing foliage (3.53 masses on resistant vs. 5.13 masses on 

susceptible from females reared on resistant, Wilcoxon test: W = 373, p-value = 0.2527, 

3.84 masses on resistant vs. 3.89 masses on susceptible from females reared on 

susceptible, Wilcoxon test: W = 1080.5, p-value = 0.8625). 
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Figure 9: Mean of total number of eggs laid (A) and proportion of total number of masses (B) laid on 

each rearing tree type on each kind of foliage 

 

Nevertheless, when examining the mean number of eggs per mass laid by the females we 

found that overall the females chose to invest more eggs per mass on susceptible foliage 

compared to resistant (Wilcoxon test: W = 1983.5, p-value = 0.055). This difference is 

due to the females reared on resistant foliage which laid on average 40% more eggs in 

each mass laid on susceptible foliage compared to the ones laid on resistant foliage 

(Wilcoxon test: W = 257, p-value = 0.029). The females reared on susceptible foliage 

showed no difference in the number of eggs per mass on any of the two foliage types 

(Wilcoxon test: W = 788, p-value = 0.4124). 

Of the  total number of females tested 3.8% of them failed to lay any eggs on 

susceptible foliage whereas 14.2% did not lay any eggs on resistant foliage (Chi² = 8.94, 

p-value = 0.03). Similarly, 76% of the females reared on resistant foliage invested more 

eggs on susceptible foliage than on resistant compared to 54% for the females reared on 

susceptible foliage (Chi² = 14.79, p-value = 0.002). Overall, these results are consistent 
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with those from 2010. 

There is a strong positive correlation between the female pupal mass and the 

fertility, using the data from both years combined (Pearson R = 0.689 (t = 4.5566, df = 

23, p-value = 0.0001) for females reared on resistant foliage and Pearson R = 0.828 (t = 

7.0819, df = 23, p-value <0.0001) for females reared on susceptible foliage) (Fig. 10 A). 

The slope of the two best fit lines is similar: equation for S reared is y=2.11x -60.92 

compared to R reared y=1.91x -51.49.  

The correlation between the female pupal mass and the proportion of eggs laid on 

susceptible foliage can be seen as an index of selectivity for each female. These 

correlations are negative meaning that when the pupal mass increases the selectivity of 

the female decreases (Fig. 10 B). This relationshipis significant for females reared on 

susceptible foliage (Pearson R = -0.553 (t = -3.1834, df = 23, p-value = 0.004)), but not 

for those reared on resistant foliage (Pearson R = -0.164 (t = -0.7996, df = 23, p-value = 

0.432)).  
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Figure 10: (A) Correlation between female pupal mass and fertility for moths reared on resistant and 

susceptible foliage from both years combined. (B) Index of selectivity: correlation between female 

pupal mass and proportion of eggs laid on susceptible foliage for moths reared on resistant and 

susceptible foliage from both years combined. 

  

A 
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Discussion 

Oviposition behavior was analyzed to determine if females were able to 

discriminate between intraspecific differences in host quality. The females could have 

behaved in four different ways in this experiment: (1) no preference shown between the 

two types of tree, (2) female spruce budworm select one type of host over the other no 

matter what they experience as larvae, (3) females preferentially lay on the foliage type 

they experienced as larvae (Hopkins host selection principle (HSP)), or finally (4) the 

choice made by the female is determined by what she experienced as a larva: the adults 

reared on resistant foliage recognize a less suitable host and chooses the opposite. 

The results from both years demonstrate that female spruce budworm moths 

modified their choice according to their experience as larvae. The adults that were fed on 

resistant foliage preferentially selected the susceptible foliage to lay most of their eggs 

whereas the females reared on susceptible foliage did not show any preference between 

the two foliage types. 

Our results show that larval nutritional experience has an impact on adult behavior 

and it seems that this acts in an adaptive way rather than following Hopkins HSP. The 

resistant trees have been shown to increase mortality of spruce budworm (Bauce et al., 

2006) and adult females that had been reared on them seem to be able to recognize them 

as a less suitable host. The resistant foliage contains more tannins, monoterpenes and 

simple phenolics which have been suggested to explain, at least in part, the tree resistance 

(Daoust et al., 2010, Delvas et al 2011). It seems likely that memory of these compounds 

experienced as larva helps the adult to detect and discriminate against the resistant 
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foliage. 

Monoterpenes in the wax layer have already been shown to diminish oviposition 

of other insect species (Muller and Riederer, 2005, Städler, 1986). In our system, 

however, it seems that previous experience is needed to cause a preference in the adult 

between two conspecific hosts with different monoterpene profiles. Indeed, no preference 

was noticed in the females reared on susceptible foliage when selecting a substrate to lay 

their eggs on. 

We found similar results to Mader et al. (2012) who carried out an analogous 

experiment. Compared to their protocol, we almost doubled the number of adults tested 

and used 25 different trees when they used only the most susceptible and most resistant 

trees, and still had a strong evidence for a choice in favor of the susceptible foliage for 

the females previously reared on resistant foliage. 

We showed no difference in female pupal mass or fertility between the two 

rearing diets, contrary to previous work showing that insects captured in the field on 

resistant trees had higher pupal mass (Bauce and Kumbasli 2006).  This discrepancy 

might be due to differential mortality occurring in the field, but not under the more 

favourable laboratory conditions.  We also show that larger females show a less strong 

preference for susceptible foliage, and appear to exhibit bet-hedging by spreading their 

eggs more among the two hosts available to them. 
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Chapter 4: Do differences in monoterpene profiles 

contribute to budworm defoliation resistance in 

white spruce? 

 

Intoduction 

White spruce is one of Canada’s most commercially important tree species 

(OMNR, 1995). Trees can grow up to 40 meters tall and have trunk diameter of up to one 

meter. They possess long, needle-shaped leaves with a thick and complex epicuticular 

wax layer (Campbell and Reece, 2002). The surface of the needle represents a highly 

complex environment with waxes composed of a mixture of long-chain aliphatic and 

cyclic compounds (Muller and Riederer, 2005). The concentration of secondary 

metabolites in the waxes is of major importance for host-plant discrimination by insects 

(Woodhead and Chapman, 1986) as well as for plant protection against herbivory. The 

defensive compounds produced by the plants are usually grouped into two different 

categories: toxic compounds and digestibility-reducing compounds (Chown and 

Nicolson, 2004) to which we could add a third: the phagodeterrent compounds. 

In our system, higher concentrations of some tannins and monoterpenes are 

present in the resistant trees than in susceptible trees (Daoust et al., 2010). Moreover, 

Daoust et al. (2010) found a deterrent effect of the epicuticular wax of resistant trees on 
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sixth instar larvae, suggesting that the waxes play a role in the defense process of these 

trees. As dispersal and oviposition choices are made without biting and therefore depend 

on surface cues, this monoterpene difference might play a role in the dispersal of young 

larvae and the oviposition preferences of the adult females. 

Conifers contain and produce monoterpenes for their defense but we know that 

the composition of the different monoterpenes and their concentration vary in relation to 

insect herbivory and in response to stress such as drought (Cates and Redak, 1988). Even 

though many studies have shown that most resistant (and susceptible) trees in a given 

year remained resistant (and susceptible) the following years, they have also shown that 

the monoterpenes that conferred the resistance changed between years (Cates and Redak, 

1988; Sadof and Grant, 1997).  We analyzed the needles of 25 trees from our system to 

quantify their monoterpenes and have also analyzed the waxes of these trees to see if we 

could find any noticeable difference in the chemical makeup of these trees with regards to 

resistance to the spruce budworm. 
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Methods 

Chemical analyses of the foliage of our trees were performed in the laboratory of 

Eric Bauce (Université Laval, Québec, QC, Canada) in February 2011 and 2012. We first 

analyzed the whole foliar chemistry using the same protocol as in Daoust et al. (2010). 

These results gave us the chemical concentration of the whole needle for foliage collected 

at 4 different dates (May 5
th

 and 18
th

, June 14
th

 and July 12
th

 2010 and May 7
th

 and 20
th

, 

June 15
th

 and July 12
th

 2011). Each date corresponds respectively to the presence of 

second, fourth and sixth larval instar caterpillars and  adults of the spruce budworm. 

We then analyzed the epicuticular waxes, from foliage collected on date, 

modifying the protocol developed by Albert and Parisella (1992) to extract epicuticular 

waxes. Fifty needles were put into 1 ml of hexane-tetradecane (1l-120µl) solution for 30 

seconds under Vortex agitation. This solution was then analyzed using a Varian model 

3900 gas chromatograph equipped with a flame ionization detector and a SPB-5 fused 

silica capillary column (30 m ×0.25 mm) (Varian, Inc., Palo Alto, California, USA). The 

needles used were then dried in an incubator and weighed to estimate the amount of 

waxes analyzed. 

Using both analysis methods allowed us to compare the distribution of the 

monoterpenes in both the needles and the waxes. If the monoterpenes play a role in 

repelling insect at non-feeding stadia, those monoterpenes will have to be contained in 

the waxes. To increase the power of our analysis we almost doubled the number of trees 

used in the second year of the experiments: In 2011, we used the same trees as in 2010 to 

investigate if there were any variations in the chemical concentrations of the different 
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compounds and we added 12 more trees. 

These results allowed us to assess if any differences observed in the behavior of 

the insect between different trees can be correlated with the changes in the chemical 

make-up of these trees. 

To counter the high correlation observed between the various monoterpenes (see 

Appendix 1), we chose to analyze them with principal component analysis (PCA).   PCA 

is a multivariate technique that analyzes a data table in which observations are described 

by several inter-correlated quantitative dependent variables. It is used to extract the 

important information from the table in order to represent it as a set of new orthogonal 

variables called principal components. We can then use this new reference to display the 

pattern of similarity of the observations and of the variables as points and arrows in maps. 

Then we used a logistic regression to test the probability of a tree to exhibit resistance, 

based on its monoterpene content. We used the first three components from the two PCAs 

as explanatory variables in the regression, to avoid the correlation between the different 

monoterpenes. 
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Results 2010 

The total concentration of monoterpenes increases gradually in the needles of the 

resistant trees with time whereas it decreases in the waxes (Fig. 11). Even if the general 

pattern is similar on the susceptible trees, the fluctuations with time are smaller. 

 

 

  

Figure 11: Concentration (ng/mg) of monoterpenes at four dates during the growing season 2010: 

Concentration in the needles (A) and concentration in the waxes (B). Both graphs show the mean 

concentration of each monoterpene, in the 7 resistant trees (left) and 6 susceptible trees (right). The 

numbers on the x-axis correspond to the four harvest dates described in the methods. 
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Figure 12: Proportion of total monoterpenes in the needles and in the waxes according to the four 

harvest dates (mean of the 7 different trees for each type of foliage). 

 

When we examine the partition of the monoterpenes between the needle and the 

waxes, we see a similar pattern between foliage types (Fig. 12). Indeed, the total 

monoterpene content is distributed almost evenly between the needle and the wax layer at 

the beginning of the season and the balance goes toward the needle with almost 90% of 

the monoterpenes present in the needle at this end of the season. 

  1          2          3          4                     1          2           3         4 
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Results 2011 

The same general pattern is observed as in 2010 in both foliage types: the total 

monoterpene content increases during the season in the needles whereas it decreases in 

the waxes (Fig. 13). However the total concentration, particularly in the resistant needles, 

is lower than it was in 2010. 

 

 

Figure 13: Concentration (ng/mg) of monoterpenes at four dates during the growing season 2011: 

Concentration in the needles (A) and concentration in the waxes (B). Both graphs show the mean 

concentration of each monoterpene, in the 13 resistant trees (left) and 12 susceptible trees (right). 

 

We have represented the different samples according to their scores in the analysis 

on the two first components of the PCA, which combined explain almost 75% of the 

variation observed (Appendix 3). The first three components account for 84.5% of the 
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variance. Keeping all the variables make the results difficult to interpret, so we pooled the 

multiple values for each tree (2 years, 4 sampling dates, needles and waxes) and used the 

mean concentration for each tree in a second PCA. Each tree is represented in the space 

of the three first components (Fig. 14) 

In this new PCA, the first three components explain 81% of the variance. The first 

component is composed mostly by the monoterpene variables that are highly correlated 

(Appendix 2): limonene, alpha pinene and camphene. The second component opposes 

bornyl acetate to alpha pinene, and the third one is borne by beta pinene and terpinolene 

(Table 3). 

 

Table 3: Loadings of the three first components from the PCA calculated with the mean monoterpene 

concentration for each tree. 

Comp.1 Comp.2 Comp.3 

Alpha pinene  0.464  0.627  -0.318 

Camphene  0.405  -0.234  -0.186 

Beta pinene  0  0  0.539 

Myrcene  0.357  0  -0.231 

D3carene  0.110  0  0.138 

Limonene  0.523  0.192  0.255 

Terpinolene  0.263  0  0.653 

Bornyl acetate  0.372  -0.710  0 
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Figure 114: Representation of each tree and each monoterpene variable on the first three principal 

components of the second PCA. On the top left, components 1 vs 3, on the top right, components 1 vs 

2 and on the bottom, components 2 vs 3. The position of each tree is used to build an ellipse 

characterizing each foliage type (resistant foliage in red and susceptible in blue). 

 

None of the three first components in any of the two models significantly 
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influences the probability to be resistant (Appendix 4). Nevertheless, the logistic 

regression with the PCA components from the complete data set has a higher Akaike 

information criterion (AIC) than the one computed with the PCA components of the 

mean of each tree (346.89 vs 37.82), so the latter is a better model. 

 

The correlation coefficient between the mean concentrations of monoterpenes in 

2010 and 2011 show a stronger correlation between the concentrations in the waxes (r=-

0.78) than in the needles (r=-0.47) (Fig. 15). In both years, the correlations are negative, 

contrary to expectations. 

 

 

Figure 15: Correlation in total monoterpene concentration (ng/mg) between the two years (A) in the 

needles and (B) in the waxes for the 13 trees (7 resistant trees in blue and 6 susceptible trees in red) 

that were used in both years. 

 

A B 
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Discussion: 

 

For a long time now, we have known that within a population of host trees, 

individual trees can differ in their vulnerability to budworm attack (Fleming, 1983). Here 

our goal was to test if this difference in vulnerability between the different trees could be 

explained by differences in monoterpenes between these trees. 

We have based our analysis on a group of chemicals widely used in tree defense 

against herbivory: the monoterpenes. These secondary plant compounds have been shown 

to act as feeding and oviposition deterrents to a variety of herbivores including the spruce 

budworm (Bauce et al., 1994; Clancy et al., 1993), which is why we focused our analysis 

on this group. 

Nevertheless, we did not find any consistent significant differences between the 

susceptible and resistant trees. We actually found a lot of variation between trees within a 

type of foliage but also within trees during the season and between years. 

The partition of the monoterpenes between the waxes and the needles (Fig. 8 B) 

suggests an adaptation of the trees to the life cycle of the insect. Indeed, we see that 

around 50% of the monoterpenes are present in the waxes when dispersal occurs, when 

the insects are not yet feeding and in contact only with the waxes. We can expect that the 

resistance at this stage is mostly due to the wax composition since the larvae are not yet 

feeding and only come into contact with the exterior of the needles. In the later larval 

stages, the bigger insects are feeding on the entire needle and so the monoterpenes are 

more efficient as a resistance mechanism throughout the needle. 
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This does not seem to be the best strategy of defense against oviposition by the 

females. Indeed, during oviposition the female contacts only the surface of the needle 

without any cues on its’ internal content. Therefore, it seems likely, if the monoterpenes 

actually act as oviposition deterrent, that the best strategy for the plant would be to 

maximize the monoterpene content of the waxes. Yet monoterpenes have also been 

shown to stimulate oviposition in other plant-insect systems (Leather, 1987). In our study 

organism, certain monoterpenes have been shown to stimulate oviposition on neutral 

substrates (Grant et al., 2007). 

The results of our study show that monoterpenes on their own do not seem to explain 

the resistance to defoliation observed in the field. It might be that the resistance implies 

several levels of action in which the monoterpenes might or might not be included. 

Moreover, Figure 15 suggests that monoterpene content is not stable between years: trees 

with high concentrations in 2010 had low concentrations in 2011 and vice versa. 
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Chapter 5: Correlation between chemical make-

up of the trees and behavioral experiments 

 

Introduction 

Insect-host plant co-evolution is a reciprocal evolutionary interaction between a 

plant and one or more of its natural enemies that occurs in cycles (Rausher, 2001). In the 

first phase, natural selection imposed by enemies causes the evolution of a new plant 

resistance that reduces the enemy attacks. Because this resistance reduces the survival of 

natural enemies, its evolution generates the evolution of counter-resistance by those 

enemies. Plant enemies exhibit a wide range of physiological, morphological and 

behavioral characters that seem to have evolved in order to circumvent the newly evolved 

plant resistance (Rausher, 2011; Thompson, 1988). Insect-plant co-evolution is believed 

to have generated much of the Earth’s biological diversity (Grimaldi and Engel, 2005), 

and it plays a key role in the design of control programs for insect pest species. 

Many factors influence host selection by spruce budworm, but ultimately plant 

acceptance is determined by chemical characteristics of the host and is very specific 

(Chapman, 2003; Schoohoven and Van Loon, 2002). In our study so far, we have on one 

hand the behavior of the larvae on the different trees at different stages of their life cycle 

and on the other hand the chemical make-up of the trees used in the experiments at three 

dates of the season that correspond to the stages tested in the behavioral experiments. 
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Here we examined whether any correlation between the total monoterpene content 

of the trees and the behavior of the insect on the trees could be detected. For each 

behavioral experiment, we used the chemical make-up of the trees corresponding to the 

date at which the insect were tested.  

In addition to the correlations we used a generalized linear model following a 

Poisson regression to test for effects of individual monoterpenes on the number of eggs 

laid by the females. We used only the concentration in the waxes of the 9 monoterpenes 

present at the oviposition time in both years  (alpha-phelladrene, terpinolene and thujone 

were removed because they were absent from these samples). The oviposition variable 

was the number of eggs laid on each tree with the two years of data pooled together. 



61 

 

Results 2010 

Despite relatively low R², we found a slight negative correlation between both behavioral 

experiments and the concentration in monoterpenes in the waxes (Fig. 16).  

None of these two correlations are significant: r=- 0.50, and r=-0.49, for the correlation 

between the monoterpenes content in the waxes and respectively the mean number of 

eggs laid (t = -1.4114, df = 6, p-value = 0.2078) and the mean number of larvae 

dispersing from the tree tested (t = -1.3777, df = 6, p-value = 0.2175).  

Due to a low number of replicates we were not able to discriminate between tree types in 

the different correlations. 

 

Figure 16: Correlation between behavioral experiments and monoterpene concentration (ng/mg) in 

the waxes from previous year growth at the appropriate date (May 5
th

 for dispersal and July 12
th

 for 

oviposition) for the 8 trees tested in the dispersal and oviposition experiments 2010. Not enough 

oviposition replicates for results on all trees. 

Eggs laid 

Dispersal 

Linear 
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Linear 
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Results 2011 

There is a significant positive correlation between the number of larvae which 

dispersed from the susceptible trees and the total concentration of monoterpenes in the 

waxes (r= 0.66, t = 2.372, df = 7, p-value = 0.049) whereas from the resistant trees, this 

correlation is not significant (r= -0.22, t = -0.717, df = 10, p-value = 0.489) (Fig. 17). 

 

Figure 17: Correlation between the number of larvae which dispersed and the monoterpene content 

(ng/mg) in the waxes on the previous year’s growth at the appropriate date (May 7
th

 2011). Each 

point represents the average of the different replicates for each tree. Data from resistant trees are in 

red and susceptible are in green. 
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There is no significant correlation between the total concentration of 

monoterpenes in the waxes and the mean number of eggs laid in any of the foliage types 

(resistant trees: r=0.05, t = 0.137, df = 7, p-value = 0.894; susceptible trees: r= 0.18, t = 

0.568, df = 9, p-value = 0.583) (Fig. 18). 

 

 

Figure 18: Correlation between the number of eggs laid and the total monoterpene content (ng/mg) in 

the waxes from the previous year’s growth on July 12
th

 2011 for the two types of foliage. Each point 

represents the average of the different replicates for each tree. Resistant trees are in red and 

susceptible trees are in green. 
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A generalized linear model following a Poisson regression for the number of eggs 

laid by the females showed that five monoterpenes affected the results of oviposition. 

Alpha pinene, limonene and bornyl acetate increased the number of eggs laid, with the 

strongest effect for bornyl acetate. Camphene and myrcene were the two monoterpenes 

with a repulsive effect, diminishing the number of eggs laid on foliage (Table 4). 

 

Table 4: Results of the Poisson regression on the mean number of eggs laid on each tree. Significance 

codes:  0.001 '***', 0.01 '**', 0.51 '*'  

 

Estimate  Std. Error  z value  Pr(>|z|) 

(Intercept)      22.90315     4.85330    4.719   2.37e-06 *** 

a.pinene  1.06377     0.51711    2.057    0.03967 * 

camphene         -0.77822     0.31137   -2.499   0.01244 * 

b.pinene         -0.04056     0.38606   -0.105   0.91633 

myrcene          -0.92175     0.33903   -2.719   0.00655 ** 

d.3.carene        1.57740     1.70659    0.924    0.35533 

limonene          0.77957     0.39475    1.975    0.04829 * 

bornyl.acetate   1.85093     0.57063    3.244    0.00118 ** 

 

A similar analysis, on the effect of the different monoterpenes on the number of 

larvae dispersing did not show any significant results. 
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Discussion: 

Here we examined whether the monoterpene profiles of the different trees could 

explain, on their own, the behavior of the insect on these trees. Our 2010 results tend to 

show that monoterpenes have different effects on the insect at two stages of its life cycle. 

Indeed an increase in monoterpenes in the waxes seems to be attractive to the young 

larvae with lower dispersal, whereas it seems to be repulsive to the adults with fewer eggs 

laid. Nevertheless these results should be interpreted with care due to a low number of 

replicates and to the low correlations indexes that we have.  With more replicates (2011) 

we found no evidence of such a pattern for the oviposition experiment. The dispersal 

experiment however demonstrates a significant effect of the monoterpene contents of the 

susceptible trees on the dispersal of young larvae whereas no relationship is shown on the 

resistant trees. 

Monoterpenes have been shown to have various contradictory effects on host 

preference by insects, according to their concentration and the specific monoterpenes 

concerned.  In spruce budworm, as early as 1974, Städler demonstrated that D-α and L-β 

pinene applied on paper substrates stimulated oviposition. This was confirmed by Grant 

et al. in 2007 who tested several monoterpenes and show that most of them were 

behaviorally active and promoted oviposition on the treated surfaces. However Tiberi et 

al. (1999) showed that application of limonene to host trees inhibited oviposition by the 

adult females. White spruce waxes contain a variety of different monoterpenes; in our 

analysis we found 12 different monoterpenes in the waxes of our trees, including α and β 

pinene as well as limonene. Of these 12 monoterpenes 9 were present in the waxes at the 
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oviposition time from which 5 were shown to affect the number of eggs laid by the 

female. Three of them, namely alpha-pinene, limonene and bornyl acetate were attractive 

and increased the number of eggs laid by the females whereas the other two, myrcene and 

camphene diminished the number of eggs laid. 

The young larvae have been shown to graze some of the waxes before deciding 

whether to establish and feed or disperse from the tree. Figure 15 does not show any clear 

relationship between the larvae’s decision and the monoterpenes present in the waxes. 

The direct effect of monoterpenes on larval dispersal has, to my knowledge, still to be 

tested. 

When determining if the preference and behavior of an insect on different hosts can 

be explained by a specific plant trait, previous research often tested this specific trait 

under artificial laboratoryl conditions to avoid other characteristics of the hosts which 

could obfuscate the relationship under study. For instance, to test the effect of certain 

chemicals, leaf extracts are often used instead of actual foliage (Grant et al., 2007; 

Städler, 1974; Wallace et al., 2004 among others). Yet these results are often hard to 

generalize and to apply in the field due to the interplay of many factors. On the other 

hand, field experiments are subject to many uncontrollable factors and it is often hard to 

explain their results. As a compromise, we carried out our experiment using actual foliage 

in controlled lab conditions. 

In accord with the literature (Städler, 1974, Grant et al., 2007, Tiberi et al. 1999), we 

found that different monoterpenes in the foliage have contradictory effect on the laying 

females. If alpha pinene has been found to be attractive to the female by several of these 

authors and in our study, the other monoterpenes involved in this study were found to 
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have conflicting effects, being attractive in some studies and repulsive in others. 
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Chapter 6: General discussion 

 

Insect-host tree association has important implications for forest management 

strategies (Lawrence et al., 1997). Blum (1988) suggested that breeding for tree 

characteristics of white spruce could be an effective way to increase the resistance to 

spruce budworm attacks. Several examples of tree selection to resistance of insects exist 

among which the most advanced in Canada is the selection of Sitka spruce (Picea 

sitchensis) to resist attacks from the white pine weevil, Pissodes strobi (Peck) 

(Coleoptera: Curculionidae) in British Columbia (Alfaro et al., 2007; King et al., 2004). 

In this system, they conducted a series of screening trials to search for spruce with 

resistance to the white pine weevil. Using the weevil population augmentation method 

(adding reared insects to the local insect population) to maintain an attack rate of 50%, 

the authors were able to obtain genetically resistant trees in as little as 4 years. These 

genotypes are now being used in British Columbia to construct tree populations that have 

strong and durable resistance to white pine weevil. 

Bernays and Chapman (1994) have suggested that an adaptation to the resistant 

characteristics of the trees may be possible over several generations assuming genetic 

variability within the population of insects. When designing durable management 

strategies a specific attention should be turned to avoiding fast adaptation. 

Based on the results from this study and from the other studies on this system 

(Daoust et al., 2010, Despland et al., 2011, Delvas et al. 2011, Mader et al., 2012), a 
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plantation strategy using the resistant trees may be worthwhile. Spruce budworm has 

been shown to develop poorly on the resistant trees with a high mortality rate (Bauce et 

al., 2006). A plantation strategy using a majority of resistant trees and a few susceptible 

trees would have a higher yield than the current plantations. Indeed, resistant trees suffer 

less defoliation by the spruce budworm which would lower the negative impacts on tree 

growth and survival engendered by the spruce budworm. The presence of a few 

susceptible trees in the plantation would slow budworm adaptation and protect the 

plantation. The susceptible trees, selected preferentially by egg laying females reared on 

resistant trees, would reduce the strong selective pressure placed by resistant trees on 

budworm populations. This last finding, seen in Mader et al. (2012) on only one 

extremely resistant and on extremely susceptible trees, and generalized in the present 

study using 25 different trees allows a continuous mixing of the population preventing 

budworm adaptation to resistant trees to occur. 

Further research investigating both individual and parental experience should be 

done before this plantation strategy can be implanted. Evaluation on behavior over many 

generations would help to evaluate how fast the budworm population could actually adapt 

to the resistance if this plantation strategy were deployed. Further research on tree 

resistance clarifying the complex roles of the monoterpenes should also been conducted. 
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Conclusions 

 

Despite a slight tendency for more dispersal from the resistant trees, our results do 

not show any consistent difference between the two tree types at this stage of the life 

cycle of spruce budworm. High variability was noticed both between trees within the 

same foliage type but also between the different replicates for a given tree. Second instar 

larvae are capable of distinguishing between the trees, but the criteria they use are not 

always the same ones as confer the resistance to defoliation observed in the field. 

Environmental conditions also seem to play a key role in this phenomenon. 

Sixth-instar budworm do not show behavioral modifications in response to rearing 

resistant foliage, nor do they exhibit preference for feeding on susceptible foliage.. 

We were able to show that the natural white spruce resistance to the spruce 

budworm was efffective at the adult stage of the insect. Females laying their eggs showed 

a strong preference for the susceptible trees when reared on resistant trees during their 

development, whereas females reared on susceptible foliage showed no preference. 

Larval experience, likely retained through metamorphosis, seem to be influencing adult 

oviposition preference in an adaptive way. Moreover, this deterrence was correlated with 

certain monoterpenes we measured in the foliage, and is likely linked to other compounds 

in the waxes. 

Currently, the results of this study encourage us to advise a use of mixed 

plantation in forestry management. Indeed, a mixed phenotypes plantation of white 
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spruce is expected to have a higher yield than a normal plantation. Resistant trees have a 

much lower defoliation by SBW, and the susceptible trees should slow down budworm 

adaptation to the resistant tree phenotype. It is possible that mixed plantations could 

allow for a smaller number of susceptible trees to act as herbivory ‘sinks’ in order to 

reduce selection pressure to overcome the resistance exhibited by resistant trees. While it 

may not be possible to reduce feeding on resistant trees it might be possible to reduce 

their insect load via the attractive effect of susceptible trees on ovipositing moths. 

Budworm dispersal at young larval stages is associated with high mortality, (Jennings et 

al. 1983) so if the tendency for more dispersal from the resistant trees is confirmed, that 

would also help to decrease the population size of the spruce budworm on resistant trees. 
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Appendixes 

Appendix 1: Results of the Poisson regression on dispersal of second instar larvae from susceptible 

and resistant foliage in the 2010 experiment (A) and the 2011 experiment (B). Significance codes:  

0.001 '***' 0.01 '**' 0.05 '*' 

(A) 

Estimate  Std. Error  z value  Pr (>|z|)     

(Intercept)  -1.217404    0.361860   -3.364   0.000767 *** 

Type        0.690653    0.342864   -2.014   0.043971 *   

Tree          0.030003    0.042408    0.707   0.479270     

Time          0.128121    0.045873    2.793   0.005223 **  

Replicate         -0.008799    0.016149   -0.545   0.585856     

 

 (B) 

Estimate  Std. Error  z value  Pr(>|z|) 

(Intercept)  -1.304     0.264    -4.929   8.25e-07 *** 

Type         0.145      0.250    0.582    0.560 

Tree         -0.043     0.016    -2.698   0.006 ** 

Time          0.029      0.012    2.363    0.018 * 

Rep          -0.356     0.044    -8.028   9.93e-16 *** 
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Appendix 2: Correlation between the concentrations of the different monoterpenes in the foliage 

(overall averages). The filled portion of the pie indicates the magnitude of the correlation. 
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Appendix 3: Representation of the individuals and variables on the first two principal components of 

the first PCA. On the left each number represents a sample corresponding to a specific date of 

harvest, tree and year of foliage. On the right, for more clarity, each sample is represented only by 

the type of foliage (resistant foliage in blue and susceptible in red). Each individual dot represents a 

tree sample. The labels are the different monoterpenes present in the foliage and the vectors show the 

contribution of the different monoterpenes to the axes. 
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Appendix 4: Logistic regression results 

(A) Logistic regression using PCA computed with means per tree 

Estimate   Std. Error z value   Pr(>|z|) 

Intercept  -0.031958  0.459222 -0.070  0.945 

Comp.1       -0.003401   0.032371   -0.105  0.916 

Comp.2        0.071754    0.060668    1.183  0.237 

Comp.3       -0.113156    0.082616   -1.370  0.171 

 

(B) Logistic regression using PCA computed with complete data 

Estimate  Std. Error  z value   Pr(>|z|) 

Intercept  -0.0683153 0.1283279 -0.532     0.594 

Comp.1    -0.0009679 0.0021469 -0.451     0.652 

Comp.2        0.0028006 0.0037428  0.748      0.454 

Comp.3        0.0053316 0.0064379  0.828      0.408 
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