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Abstract

This paper addresses stability analysis of sampled-data piecewise-affine (PWA) systems consisting of a continuous-time plant
in feedback connection with a discrete-time emulation of a continuous-time state feedback controller. The sampled-data system
is considered as a continuous-time system with a variable time delay. Conditions under which the trajectories of the sampled-
data closed-loop system will converge to an attracting invariant set are then presented. It is also shown that when the sampling
period converges to zero, these conditions coincide with sufficient conditions for non-fragility of the stabilizing continuous-time
PWA state feedback controller.
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1 Introduction

State feedback control of PWA systems has received
increasing interest over the last few years. Hassibi and
Boyd (1998); Johansson (2003); Rantzer and Johans-
son (2000); Rodrigues and Boyd (2005). These ref-
erences consider continuous-time processes controlled
by continuous-time controllers. However, the imple-
mentation in a microprocessor requires emulation of a
continuous-time controller as a discrete-time controller.
Although linear sampled-data control is a well-studied
topic Chen and Francis (1995), controller emulation for
systems with possible discontinuities at the switching,
such as sampled-data PWA systems, has not had many
research contributions. In fact, only recently these sys-
tems have started to be addressed in the literature in
references such as Imura (2003a,b); Azuma and Imura
(2004); Sun and Ge (2002); Sun (2004); Zhai et al.
(2004); Rodrigues (2007). See Rodrigues (2007) for a
more detailed description of previous work on sampled-
data switched systems.

⋆ This paper was not presented at any IFAC meeting. Corre-
sponding author L. Rodrigues. Tel. (514) 8482424 Ext.3135
Fax (514) 8483175.

Email addresses: bsamadi@alumni.concordia.ca
(Behzad Samadi), luisrod@encs.concordia.ca (Luis
Rodrigues).

The approach by Imura (2003a,b); Azuma and Imura
(2004) was probably the first where the term ”sampled-
data PWA systems” is used, although the systems
described in that work do not posses the typical struc-
ture of a continuous-time plant being controlled by
a discrete-time controller. The problem addressed in
Imura (2003a,b); Azuma and Imura (2004) is one where
the controller is continuous-time and the switching
events are the ones controlled by the system logic in-
side a computer. In other words, in these systems it
is assumed that the designer has command over the
switching times of the system, which is not always pos-
sible. For this class of systems, Azuma and Imura (2004)
present a probabilistic analysis of controllability. By
contrast, the work in Rodrigues (2007) addresses the
classical structure of a sampled-data system whereby
the system is continuous-time and the controller is be-
ing implemented (emulated) in discrete-time inside a
computer. However, the sampling time was considered
to be constant in that work. For a general and unified
framework for the design of nonlinear controllers using
the emulation method, the reader is referred to Laila
et al. (2002).

Departing from previous research, this paper addresses
stability analysis of sampled-data PWA systems using
a time delay approach, whereby the discrete-time PWA
controller is seen as a continuous-time PWA controller
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with a delay that varies with time. To the best of our
knowledge, the first use of time varying delays to model
sampled-data nonlinear systems was given in Teel et al.
(1998). The proposed method in Teel et al. (1998) ex-
ploited a Razumikhin type theorem for input-to-state
stability of functional differential equations that was
proved in Teel (1998) to analyze sampled-data systems.
In Razumikhin type theorems, a Lyapunov function is
used for stability analysis of time delay systems. The
main problem of this approach is to obtain an upper
bound of the time derivative of the Lyapunov function
which does not depend on past states (Kharitonov,
1999). Avoiding this problem by using a Lyapunov-
Krasovskii functional usually leads to less conservative
results (Jianga and Han, 2008). In this paper, using a
Lyapunov-Krasovskii functional, linear matrix inequal-
ities (LMIs) are derived to describe sufficient condi-
tions for convergence of the sampled-data PWA system
trajectories to an attracting invariant set. One of the
advantages of the proposed method is that it can be ap-
plied to sampled-data PWA systems with variable sam-
pling time as opposed to Rodrigues (2007) that deals
with a constant sampling time. Furthermore, a very im-
portant property of the conditions derived in this paper
is that when the sampling time converges to zero, they
reduce to LMIs for non-fragility of the continuous-time
PWA controller. Therefore, for a correct implementa-
tion in discrete-time, the result derived in this paper
requires that the controller be robust to variations in its
parameters. This is in itself an interesting result.

The paper starts by analyzing the stability of a sampled-
data system when a PWA continuous-time controller
is emulated in discrete-time. A numerical example is
then included to show the performance of the proposed
method. Finally, the paper closes by stating the conclu-
sions.

2 Stability of Sampled-Data PWA Systems

Consider the following continuous time PWA system

ẋ = Aix + ai + Bu, for x ∈ Ri (1)

where x ∈ R
n is the state vector, u ∈ R

m is the input
vector, Ai ∈ R

n×n, ai ∈ R
n for i = 1, . . . ,M and B ∈

R
n×m. The region Ri defined as

Ri = {x|Eix + ei ≻ 0}, (2)

where Ei ∈ R
pi×n and ei ∈ R

pi and ≻ represents
an elementwise inequality. Each polytopic region Ri

can be outer approximated by a (possibly degenerate)
quadratic curve as

Ri ⊆ εi = {x|x̄T ĒT
i Λ̄iĒix̄ > 0} (3)

where Λ̄i ∈ R
(pi+1)×(pi+1) is a matrix with nonnegative

entries and

x̄ =





x

1



 , Ēi =





Ei ei

0 1



 (4)

Considering a stabilizing PWA controller of the form

u(t) = Kix(t) + ki, x(t) ∈ Ri (5)

where Ki ∈ R
m×n and ki ∈ R

m, the closed-loop system
is assumed to be asymptotically stable. It is also assumed
that the vector field of the open-loop PWA system (1)
with u(t) = 0 is continuous across the boundaries of two
or more regions and ai = 0 for i such that 0 ∈ Ri.

If the PWA controller (5) is implemented as a digital con-
troller and is connected to the PWA system (1) through
a sample-and-hold, there is no guarantee that x(t) and
its sample at tk would be in the same region. Therefore,
assuming x(t) ∈ Ri and x(tk) ∈ Rj , the closed-loop sys-
tem can be described by

ẋ(t) = Aix(t) + ai + B(Kjx(tk) + kj), (6)

where tk for k ∈ N is the sampling time and tk ≤ t <
tk+1. The closed-loop system (6) can be rewritten as

ẋ(t) = Aix(t) + ai + B(Kix(tk) + ki) + Bw, (7)

for x(t) ∈ Ri and x(tk) ∈ Rj where

w(t) = (Kj−Ki)x(tk)+(kj−ki), x(t) ∈ Ri, x(tk) ∈ Rj

(8)
The input w(t) is a result of the fact that x(t) and x(tk)
are not necessarily in the same region.

Following Naghshtabrizi et al. (2006), the time elapsed
since the last sampling time will be denoted by

ρ(t) := t − tk, tk ≤ t < tk+1 (9)

and τmax is defined as the maximum interval between
sampling times.

tk+1 − tk ≤ τmax,∀k ∈ N (10)

Consider a Lyapunov-Krasovskii functional of the form

V (xs, ρ) := V1(x) + V2(xs) + V3(xs, ρ) (11)

where

xs(t) :=





x(t)

x(tk)



 , tk ≤ t < tk+1
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V1(x) := xTPx

V2(xs) :=

∫ 0

−τmax

∫ t

t+r

ẋT(s)Rẋ(s)dsdr

V3(xs, ρ) := (τmax − ρ)(x(t) − x(tk))TX(x(t) − x(tk))

and P , R and X are positive definite matrices. It is shown
in Samadi (2008) that V (xs, ρ) satisfies

λmin(P )‖x‖2 ≤ V (xs, ρ) ≤ σa‖xs‖2 + σb (12)

where

σa = λmax(P ) + 2(τmax − ρ)λmax(X) +
τ2
max

2
λmax(R̄),

σb =
τ2
max

2
λmax(R̄),

λmin(.) and λmax(.) mean the minimum and maximum
eigenvalues of a matrix, respectively, and

R̄ = arg max
i,j

λmax(R̄ij) (13)

R̄ij =











AT
i

KT
j BT

aT
i + kT

j BT











R
[

Ai BKj ai + Bkj

]

(14)

The main result of this paper is now presented.

Theorem 1 For the sampled-data PWA system (7), as-
sume there exist symmetric positive definite matrices
P,R,X and matrices Ni, i = 1, . . . ,M such that

• for all i ∈ I(0),

Ωi + τmaxM1i + τmaxM2i < 0 (15)











Ωi + τmaxM1i τmax





Ni

0





τmax

[

NT

i 0
]

−τmaxR











< 0 (16)

• for all i /∈ I(0), Λ̄i ≻ 0,

Ωi + τmaxM1i + τmaxM2i < 0 (17)

















Ωi + τmaxM1i τmax











Ni

0

0











τmax

[

NT

i 0 0
]

−τmaxR

















< 0 (18)

where

Ωi =











Ψi





P

0



 B

BT

[

P 0
]

−γI











,

Ψi =





P

0





[

Ai BKi

]

+





AT

i

KT

i BT





[

P 0
]

−





I

−I



 X
[

I −I
]

− Ni

[

I − I
]

−





I

−I



NT

i + ηI2n×2n,

M1i =











AT

i

KT

i BT

BT











R
[

Ai BKi B
]

,

M2i =











I

−I

0











X
[

Ai BKi B
]

+











AT

i

KT

i BT

BT











X
[

I −I 0
]

,

Ωi =

















Ψi











P

0

0











B

BT

[

P 0 0
]

−γI

















,

Ψi =











P

0

0











[

Ai BKi Bki + ai

]

+











AT

i

KT

i BT

kT

i BT + aT

i











[

P 0 0
]

−











I

−I

0











X
[

I −I 0
]

−





Ni

0





[

I − I 0
]

−











I

−I

0











[

NT

i 0
]

+





ηI2n×2n 0

0 0



 +











ET

i 0

0 0

eT

i 1











Λ̄i





Ei 0 ei

0 0 1



 ,
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M1i =

















AT

i

KT

i BT

kT

i BT + aT

i

BT

















R
[

Ai BKi Bki + ai B
]

,

M2i =

















I

−I

0

0

















X
[

Ai BKi Bki + ai B
]

+

















AT

i

KT

i BT

kT

i BT + aT

i

BT

















X
[

I −I 0 0
]

Let there be nonnegative constants ∆K and ∆k such that

‖w‖ ≤ ∆K‖x(tk)‖ + ∆k (19)

Define

µθ =

√
γ∆k√

θη −√
γ∆K

(20)

and the region

Φθ = {xs| ‖xs‖ ≤ µθ} (21)

for some positive constant η and 0 < θ < 1 that verify

∆K <

√

θη

γ
(22)

Then, all the trajectories of the system (7) in X converge
to the following invariant set

Ω = {xs| V (xs, ρ) ≤ σaµ2
θ + σb} (23)

2

PROOF. Note that the Lyapunov-Krasovskii func-
tional V (xs, ρ) is positive definite and ẋ in (6) is con-
tinuous for tk < t < tk+1. The proof is now divided into
two parts.

(1) First, it is shown that the inequalities (15), (16),
(17) and (18) are sufficient conditions for the fol-
lowing inequality to hold

V̇ (xs, ρ) ≤ −ηxT
s xs + γwTw (24)

for tk < t < tk+1.
Since V1(x) = xTPx, one has

V̇1(x) = ẋTPx + xTP ẋ (25)

V2(xs) can be written in the following form

V2(xs) =

∫ 0

−τmax

g(t, r)dr (26)

where

g(t, r) =

∫ t

t+r

ẋT(s)Rẋ(s)ds (27)

Thus,

V̇2(xs) =

∫ 0

−τmax

∂

∂t
g(t, r)dr (28)

The expression

∂

∂t
g(t, r) = ẋT(t)Rẋ(t)− ẋT(t + r)Rẋ(t + r) (29)

then yields

V̇2(xs) = τmaxẋT(t)Rẋ(t) −
∫ t

t−τmax

ẋT(s)Rẋ(s)ds

(30)
From (10) one has ρ ≤ τmax and considering the
fact that R is positive definite, this leads to

V̇2(xs) ≤ τmaxẋT(t)Rẋ(t) −
∫ t

t−ρ

ẋT(s)Rẋ(s)ds

(31)
Since R is positive definite, for any matrix Ni ∈
R

n×2n one has

[

ẋT(s) xT
s (t)Ni

]





R −I

−I R−1









ẋ(s)

NT
i xs(t)



 ≥ 0

(32)
and therefore

−ẋ(s)
T
Rẋ(s) ≤xT

s (t)NiR
−1NT

i xs(t)

− 2xT
s (t)Niẋ(s) (33)

Integrating both sides from t− ρ to t and using (9)
yields,

−
∫ t

t−ρ

ẋ(s)
T
Rẋ(s)ds≤ ρxT

s (t)NiR
−1NT

i xs(t)

−2xT
s (t)Ni

[

I −I
]

xs(t)

(34)
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It follows from (31) and (34) that

V̇2(xs)≤ τmaxẋTRẋ + ρxT
s NiR

−1NT
i xs

−2xT
s Ni

[

I −I
]

xs (35)

For V3(xs, ρ), since ρ̇ = 1 for tk < t < tk+1, one can
write

V̇3(xs, ρ) = − (x(t) − x(tk))TX(x(t) − x(tk))

+ 2(τmax − ρ)(x(t) − x(tk))TXẋ(t)
(36)

From (25), (35) and (36), it follows that a sufficient
condition for (24) is the following inequality

ẋTPx + xTP ẋ + τmaxẋTRẋ + ρxT
s NiR

−1NT
i xs

−2xT
s Ni

[

I −I
]

xs

−xT
s





I

−I



X
[

I −I
]

xs

+2(τmax − ρ)xT
s





I

−I



 Xẋ + ηxT
s xs − γwTw ≤ 0

(37)

For i ∈ I(0), one has

ẋ =
[

Ai BKi

]

xs + Bw, (38)

for x(t) ∈ Ri and x(tk) ∈ Rj . Replacing ẋ from
(38) into (37) yields

xT
s









P

0





[

Ai BKi

]

+





AT
i

KT
i BT





[

P 0
]

+τmax





AT
i

KT
i BT



 R
[

Ai BKi

]

+ ρNiR
−1NT

i

−Ni

[

I −I
]

−





I

−I



NT
i

−





I

−I



X
[

I −I
]

+(τmax − ρ)





I

−I



X
[

Ai BKi

]

+(τmax − ρ)





AT
i

KT
i BT



X
[

I −I
]

+ ηI



xs

+xT
s





P

0



 Bw + wTBT
[

P 0
]

xs

+τmaxxT
s





AT
i

KT
i BT



RBw

+τmaxwTBTR
[

Ai BKi

]

xs

+(τmax − ρ)xT
s





I

−I



XBw

+(τmax − ρ)wTBTX
[

I −I
]

xs

+τmaxwTBTRBw − γwTw < 0 (39)

Since (39) is affine in ρ, if it holds for ρ = 0 and
ρ = τmax, then it is satisfied for any ρ ∈ [0, τmax].
For ρ = 0, the inequality (39) can be written as
(15). Using Schur complement for ρ = τmax, the
inequality (39) can be converted to (16).

For i /∈ I(0), one has

ẋ =
[

Ai BKi ai + Bki

]

x̄s + Bw, x ∈ Ri (40)

where

x̄s =





xs

1



 (41)

It follows from (3) that

[

xT 1
]





ET
i 0

eT
i 1



 Λ̄i





Ei ei

0 1









x

1



 > 0, x ∈ Ri

(42)
where Λ̄i ≻ 0. Using (40) and (42), a sufficient con-
dition for (39) when x ∈ Ri with i /∈ I(0) can be
written as

x̄T
s





















P

0

0











[

Ai BKi ai + Bki

]

+











AT
i

KT
i BT

aT
i + kT

i BT











[

P 0 0
]

+ τmax











AT
i

KT
i BT

aT
i + kT

i BT











R
[

Ai BKi ai + Bki

]
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+ ρ





Ni

0



R−1
[

NT
i 0

]

−





Ni

0





[

I −I 0
]

−











I

−I

0











[

NT
i 0

]

−











I

−I

0











X
[

I −I 0
]

+ (τmax − ρ)











I

−I

0











X
[

Ai BKi ai + Bki

]

+ (τmax − ρ)











AT
i

KT
i BT

aT
i + kT

i BT











X
[

I −I 0
]

+η











I 0 0

0 I 0

0 0 0





















x̄s + x̄T
s











P

0

0











Bw

+ wTBT
[

P 0 0
]

x̄s + τmaxx̄T
s











AT
i

KT
i BT

kT
i BT + aT

i











RBw

+ τmaxwT‘BTR
[

Ai BKi Bki + ai

]

x̄s

+ (τmax − ρ)x̄T
s











I

−I

0











XBw

+ (τmax − ρ)wTBTX
[

I −I 0
]

x̄s

+ τmaxwTBTRBw − γwTw

+ x̄T
s











ET
i 0

0 0

eT
i 1











Λ̄i





Ei 0 ei

0 0 1



 x̄s < 0 (43)

Inequality (17) is equivalent to (43) for ρ = 0 and
using Schur complement, inequality (18) is equiva-
lent to (43) for ρ = τmax. Since (43) is affine in ρ,
inequalities (17) and (18) imply that (43) is satis-
fied for any ρ ∈ [0, τmax].

In conclusion, (24) is satisfied for tk < t < tk+1,
k = 0, 1, 2, . . . and any x ∈ Ri, i = 1, 2, . . . ,M .

(2) In the second part of the proof, it will be shown

that for 0 < θ < 1, Ω is an attracting invariant set.
For any xs /∈ Ω, one has

V (xs, ρ) > σaµ2
θ + σb (44)

It follows from (12) that ‖xs‖ > µθ and therefore
(20) and (22) lead to

√

θη‖xs‖ >
√

γ(∆K‖xs‖ + ∆k) (45)

It now follows from (19) and (45) that

θηxT
s xs > γwTw (46)

Since the inequality (24) can be written as

V̇ (xs, ρ) ≤ −(1−θ)ηxT
s xs−θηxT

s xs +γwTw (47)

for 0 < θ < 1, it follows from (46) that

V̇ (xs, ρ) < −(1 − θ)ηxT
s xs (48)

and from ‖xs‖ > µθ, one has

V̇ (xs, ρ) < −(1 − θ)ηµ2
θ, for tk < t < tk+1 (49)

Therefore V (xs, ρ) decreases between the sam-
pling times for ‖xs‖ > µθ. At the sampling times,
V (xs, ρ) does not increase because V1(xs), V2(xs)
are continuous and V3(xs, ρ) is non-negative right
before each sampling time and it becomes zero right
after the sampling time. Note that no fast switch-
ing can occur because for tk < t < tk+1, the control
input is constant and ẋ is continuous.

Thus, there is a finite time tθ such that xs(t
θ) ∈

Φθ and therefore from (20), (21) and (22), one has
V (xs(t

θ), ρ) ≤ σaµ2
θ + σb, which means xs(t

θ) ∈ Ω.
Therefore, Ω is an attracting invariant set.

Remark 1 The upper bound for ‖w‖ defined in (19) can
be obtained as

∆K = max
i,j=1,...,M

‖Ki − Kj‖

∆k = max
i,j=1,...,M

‖ki − kj‖ (50)

Note that for the case where Ki = Kj , ∆K = 0 and (22)
is automatically satisfied. If, furthermore, ki = kj, then
∆k = 0,which implies that w = 0 and µθ = 0.

Remark 2 For τmax → 0 and

P̄ =





P 0

0 0



 , Ni =





−PBKi + I

−I



 , X = (β − 2)I

(51)
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where β > max(η, 2) and

ηc = η +
ηβ

β − η
, (52)

the conditions (15), (16) are reduced to the inequality
(53) for all i ∈ I(0)





(Ai + BKi)
TP + P (Ai + BKi) + ηcI PB

BTP −γI



 < 0

(53)
and the conditions (17) and (18) are reduced to the in-
equality (54) for i /∈ I(0)

























(Āi + B̄K̄i)
TP̄ + P̄ (Āi + B̄K̄i)

+ĒT

i Λ̄iĒi + ηc





I 0

0 0















P̄ B̄

B̄TP̄ −γI















< 0

(54)
Inequalities (53) and (54) are sufficient conditions for
input to state stability of the continuous-time PWA sys-
tem (1). More specifically, for V (x) = xTPx one has

V̇ (x) < −ηcx
Tx + γwTw (55)

This result establishes that the continuous-time PWA
controller should satisfy a very important property: non-
fragility. In other words, if there exists an error w in the
implementation of the continuous-time PWA controller
(5) as shown in the following

u(t) = Kix(t) + ki + w(t) (56)

and the norm of w is bounded, the norm of the state vector
x(t) remains bounded.

3 Numerical Example

Example 1 A state space model was built for an exper-
imental setup of a two degrees of freedom helicopter in
Endreß (2008). In this example, a simplified version of
the pitch model of the helicopter (Fig. 1) is considered.
This model is described by the following equations

ẋ1 =x2

ẋ2 =
1

Iyy

(−mhelilcgxg cos(x1) − mhelilcgzg sin(x1)

− FkM sgn(x2) − FvMx2 + u) (57)

where x1 and x2 represent pitch angle and pitch rate,
respectively. The values of the parameters are shown in
Table 1.

Fig. 1. Pitch model of the helicopter from Endreß (2008)

Table 1
Parameters of the helicopter model

Parameter Value Unit

Iyy 0.0283 kgm2

mheli 0.9941 kg

lcgx 0.0134 m

lcgz 0.0289 m

FkM 0.0003 Nm

FvM 0.0041 Nm/rad/s

g 9.81 m/s2

First, the PWA approximation f̂(x1) of

f(x1) = −mhelilcgxg cos(x1) − mhelilcgzg sin(x1) (58)

is computed based on a uniform grid for x1. The result-
ing approximation is shown in Fig. 2. A PWA model is

obtained by replacing f(x1) by f̂(x1) in (57). The PWA
model is described by the following equations

ẋ =
[

0 1
5.3058 −0.1447

]

x + [ 0
22.2968 ] + [ 0

35.3012 ]u

for x ∈ R1

ẋ =
[

0 1
−8.1786 −0.1447

]

x +
[

0
−3.1208

]

+ [ 0
35.3012 ]u

for x ∈ R2

ẋ =
[

0 1
−10.5751 −0.1447

]

x +
[

0
−4.6265

]

+ [ 0
35.3012 ]u

for x ∈ R3

ẋ =
[

0 1
1.9210 −0.1447

]

x +
[

0
−12.4780

]

+ [ 0
35.3012 ]u

for x ∈ R4

ẋ =
[

0 1
10.7980 −0.1447

]

x +
[

0
−29.2108

]

+ [ 0
35.3012 ]u

for x ∈ R5

ẋ =
[

0 1
5.3058 +0.1447

]

x + [ 0
22.2968 ] + [ 0

35.3012 ]u

for x ∈ R6

ẋ =
[

0 1
−8.1786 +0.1447

]

x +
[

0
−3.1208

]

+ [ 0
35.3012 ]u

for x ∈ R7

ẋ =
[

0 1
−10.5751 +0.1447

]

x +
[

0
−4.6265

]

+ [ 0
35.3012 ]u

for x ∈ R8
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ẋ =
[

0 1
1.9210 +0.1447

]

x +
[

0
−12.4780

]

+ [ 0
35.3012 ]u

for x ∈ R9

ẋ =
[

0 1
10.7980 +0.1447

]

x +
[

0
−29.2108

]

+ [ 0
35.3012 ]u

for x ∈ R10

where x =





x1

x2



 and

R1 ={x| − π < x1 < −3π

5
, x2 > 0}

R2 ={x| − 3π

5
< x1 < −π

5
, x2 > 0}

R3 ={x| − π

5
< x1 <

π

5
, x2 > 0}

R4 ={x|π
5

< x1 <
3π

5
, x2 > 0}

R5 ={x|3π

5
< x1 < π, x2 > 0}

R6 ={x| − π < x1 < −3π

5
, x2 < 0}

R7 ={x| − 3π

5
< x1 < −π

5
, x2 < 0}

R8 ={x| − π

5
< x1 <

π

5
, x2 < 0}

R9 ={x|π
5

< x1 <
3π

5
, x2 < 0}

R10 ={x|3π

5
< x1 < π, x2 < 0} (59)

The following PWA controller is then designed to stabilize
the origin (x1 = x2 = 0) for the PWA system (59) using
the backstepping method in Samadi (2008).

u = − 0.2919x1 − 0.1092x2 − 0.6313, for x ∈ R1

u =0.0900x1 − 0.1092x2 + 0.0887, for x ∈ R2

u =0.1579x1 − 0.1092x2 + 0.1314, for x ∈ R3

u = − 0.1961x1 − 0.1092x2 + 0.3538, for x ∈ R4

u = − 0.4475x1 − 0.1092x2 + 0.8278, for x ∈ R5

u = − 0.2919x1 − 0.1092x2 − 0.6319, for x ∈ R6

u =0.0900x1 − 0.1092x2 + 0.0881, for x ∈ R7

u =0.1579x1 − 0.1092x2 + 0.1308, for x ∈ R8

u = − 0.1961x1 − 0.1092x2 + 0.3532, for x ∈ R9

u = − 0.4475x1 − 0.1092x2 + 0.8272, for x ∈ R10

Using Theorem 1, a sampling time for discrete-time im-
plementation of the proposed PWA controller can be com-
puted so that the closed-loop sampled-data system con-
verges to a bounded invariant set. In this example, we
consider η and γ as optimization parameters. However,
to provide a larger upper bound on ∆K , we require that
η > γ and γ > 1. Solving an optimization problem to
maximize τmax subject to the constraints of Theorem 1
and η > γ > 1 yields

τ⋆
max = 0.1465, η = 4.2403, γ = 4.2403 (60)

x1

f
(x

1
)

f(x1)

f̂(x1)

-3.1416 -1.885 -0.6283 0.6283 1.885 3.1416
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Fig. 2. PWA approximation for helicopter model

x1

x
2

-3 -2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Fig. 3. Trajectories of the nonlinear Helicopter model - con-
tinuous-time PWA controller

P =





30.4829 2.4706

2.4706 4.4771



 , R =





44.9622 9.0745

9.0745 3.1994



 ,

(61)

X =





499.9799 11.6429

11.6429 24.1825



 (62)

Fig. 3 shows the trajectories of the nonlinear model (57)
in feedback connection with the continuous-time PWA
controller. The trajectories of a sampled-data PWA con-
troller with a sampling time of 0.1465 s are shown in Fig.
4, where it is clear that the trajectories converge.

4 Conclusions

This paper presented stability results for closed-loop
sampled-data PWA systems under state feedback. PWA
sampled-data systems were considered as delay systems
with a variable time delay. It was also shown that the
stability result for PWA systems is equivalent to the non-
fragility of the continuous-time PWA controller when
the sampling time converges to zero.
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x1

x
2
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Fig. 4. Trajectories of the nonlinear helicopter model - sam-
pled-data PWA controller
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