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Abstract

This paper addresses stability of sampled-data piecewise-affine (PWA) systems consisting of a continuous-time plant and
a discrete-time emulation of a continuous-time state feedback controller. The paper presents conditions under which the
trajectories of the sampled-data closed-loop system will exponentially converge to a neighborhood of the origin. Moreover, the
size of this neighborhood will be related to bounds on perturbation parameters related to the sampling procedure, in particular,
related to the sampling period. Finally, it will be shown that when the sampling period converges to zero the performance of
the stabilizing continuous-time PWA state feedback controller can be recovered by the emulated controller.
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1 Introduction

PWA systems are multi-model systems that offer a
good modeling framework for complex dynamical sys-
tems involving nonlinear phenomena. State and output
feedback control of continuous-time PWA systems have
received increasing interest over the last years. The
research work has concentrated on Lyapunov-based
controller synthesis methods for continuous-time PWA
systems Hassibi & Boyd (1998); Johansson (2003); Jo-
hansson & Rantzer (2000); Rodrigues & How (2003);
Rodrigues & Boyd (2005). However, none of these ap-
proaches would be applicable directly to controller
synthesis for computer-controlled or sampled-data
PWA systems. This is the scenario mostly encountered
in applications given the flexibility of control imple-
mentation in a microprocessor. References Hassibi &
Boyd (1998); Johansson (2003); Johansson & Rantzer
(2000); Rodrigues & How (2003); Rodrigues & Boyd
(2005) consider continuous-time processes controlled by
continuous-time controllers while the implementation
in a microprocessor requires emulation of a continuous-
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time controller as a discrete-time controller. Although
linear sampled-data systems are a well-studied matter
Chen & Francis (1995), controller emulation for systems
with possible discontinuities at the switching, such as
sampled-data PWA systems, has not had many research
contributions. In fact, only recently these systems have
started to be addressed in the literature in references
such as Imura (2003a,b); Azuma & Imura (2004); Sun
& Ge (2002); Sun (2004); G. Zhai & Yasuda (2004).
The approach by Sun & Ge (2002) established that,
under certain conditions, the controllable subspaces
of a continuous-time switched linear system and its
discrete-time counterpart are the same. Canonical forms
of switched linear systems based on controllability are
presented in the more recent work of Sun (2004). The
approach by G. Zhai & Yasuda (2004) considers stabil-
ity analysis of switched systems that can switch between
a set of continuous-time plants and a set of discrete-
time plants but does not handle sampled-data systems
involving a cascade of a discrete-time system between
a sample-and-hold and a continuous-time system. Fur-
thermore, it does not address controller design. The ap-
proach by Imura (2003a,b); Azuma & Imura (2004) was
probably the first where the term ”sampled-data PWA
systems” is used, although the systems described in this
work do not posses the typical structure of a continuous-
time plant being controlled by a discrete-time controller.
The problem addressed in Imura (2003a,b); Azuma &
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Imura (2004) is one where the controller is continuous-
time and the switching events are the ones controlled
by the system logic inside a computer. In other words,
in these systems it is assumed that the designer has
command over the switching times of the system. The
preliminary study of Imura (2003a,b) is interesting as
it highlights important limitations of current discrete-
time PWA control methodologies when applied to the
control of a physical continuous-time system. As men-
tioned in Imura (2003a) unexpected phenomena such as
chattering can occur, depending on the switching times.
This increases the interest in studying computer imple-
mentations of controllers designed in continuous-time.

This paper addresses the classical structure of a sampled-
data system whereby the system is continuous-time
and the controller is being implemented (emulated) in
discrete-time inside a computer. Previous approaches
to this classical structure can be classified into two cat-
egories: i) discrete-time controller design to a discrete-
time approximation of the continuous-time plant and
ii) continuous-time controller design to a continuous-
time plant followed by discrete-time emulation of the
controller. To the best of the author’s knowledge the
only previous work in sampled-data PWA systems is the
work of Imura et. al. Imura (2003a,b); Azuma & Imura
(2004) which, as already stated, does not address the
classical structure of interest in this paper. For papers
in sampled-data control for nonlinear systems that fall
into category i) we refer the reader to Nesic & Laila
(2002) and references therein. For papers in sampled-
data control for nonlinear systems that fall under cat-
egory ii) we refer the reader to Khalil (2004) and ref-
erences therein. Note that these papers always assume
the plant dynamics to be locally Lipschitz. Therefore
they do not include the possibility of having PWA dy-
namics that are switched with possible discontinuities
in the plant dynamics at the switching. The interesting
paper by Nesic & Teel (2004) also falls under category
i) described above but offers the advantage of treating
the plant model as a differential inclusion, thus possi-
bly enabling discontinuous vector fields. In fact, one of
the examples described in Nesic & Teel (2004) deals
with a hysteresis switched controller. Although poten-
tially applicable to PWA systems, Nesic & Teel (2004)
does not address the problem of interest here, namely
stability and performance recovery by emulation of a
continuous-time PWA controller. Furthermore, in the
framework of Nesic & Teel (2004), the plant dynamics
must be embedded in a differential inclusion, which
can potentially lead to conservative results instead of
handling the PWA dynamics directly.

The paper starts by stating the problem assumptions.
Then, the stability of the sampled-data system when a
continuous-time controller is emulated in discrete-time
is analyzed. A numerical example is included to show
an application of the main stability result. Finally, the
paper closes by stating the conclusions.

2 Problem Assumptions

It is assumed that a PWA system and a corresponding
partition of the state space with polytopic cells Ri, i ∈
I = {1, . . . ,M} are given (see Rodrigues & How (2001)
for generating such a partition). Following Johansson
(2003); Hassibi & Boyd (1998), each cell is constructed
as the intersection of a finite number (pi) of half spaces

Ri = {z ∈ IRn |HT
i z − gi < 0}, (1)

where Hi = [hi1 . . . hipi ] ∈ IRn×pi , gi = [gi1 . . . gipi ]T ∈
IRpi . Moreover the sets Ri partition a subset of the state
space X ⊂ IRn such that ∪M

i=1Ri = X , Ri∩Rj = ∅, i �=
j, where Ri denotes the closure of Ri. Within each cell
the dynamics are affine of the form

ż(t) = Aiz(t) + bi +Biu(t), (2)

where z(t) ∈ IRn, u(t) ∈ IRm and bi ∈ IRn. For system
(2), we adopt the following definition of solutions.

Definition 1 Johansson (2003) Let z(t) ∈ X be an ab-
solutely continuous function. Then z(t) is a trajectory of
the system (2) on [t0, tf ] if, for almost all t ∈ [t0, tf ] and
Lebesgue measurable u(t), the equation ż(t) = Aiz(t) +
bi +Biu(t) holds for all i such that z(t) ∈ Ri. �

Any two cells sharing a common facet will be called
level-1 neighboring cells. Let Ni = {level-1 neighbor-
ing cells of Ri}. Vectors cij ∈ IRn and scalars dij will
then exist such that the facet boundary between cells
Ri and Rj is contained in the hyperplane described by
{z ∈ IRn | cTijz − dij = 0}, for i = 1, . . . ,M , j ∈ Ni. A
parametric description of the boundaries is

Ri ∩Rj ⊆ {z = lij + Fijs | s ∈ IRn−1} (3)

for i = 1, . . . ,M , j ∈ Ni, where Fij ∈ IRn×(n−1) (full
rank) is the matrix whose columns span the null space
of cTij and lij ∈ IRn is given by lij = cij

(
cTijcij

)−1
dij .

It is further assumed that matrices Ei and fi exist such
that Ri ⊆ εi,

εi = {z| ‖Eiz + fi‖ ≤ 1}. (4)

This ellipsoidal covering is especially useful in the case
where Ri is a slab because in this case the matrices Ei

and fi are guaranteed to exist and the covering (hav-
ing one degenerate ellipsoid εi) is exact, i.e., εi ⊆ Ri

and Ri ⊆ εi. More precisely, if Ri = {z | d1 < cTi z <
d2}, then the degenerate ellipsoid is described by Ei =
2cTi /(d2 − d1) and fi = −(d2 + d1)/(d2 − d1). Finally it
is assumed, without loss of generality, that the control
objective is to stabilize the system to the origin.
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3 Stability of Sampled-Data PWA Systems

In this section a stability result is presented for the
closed-loop sampled-data system that is obtained when
a continuous-time state feedback controller is imple-
mented on a digital computer. It is assumed that a
continuous-time state feedback controller parameterized
by Ki ∈ IRm×n and mi ∈ IRm in the form

u = Kiz +mi, z ∈ Ri (5)

has already been designed such that the continuous-time
closed-loop system is exponentially stable. 1 It is also
assumed that the state z of the system is measured at a
sampling rate fs = T−1, T > 0, and that the controller
in the feedback loop appears between a sampler and
a zero-order-hold. At the sampling instants, the plant
state and the sampled state overlap and therefore the
sampled-data system is described by

ż = Ajz + bj +BjKjz(kT ) +Bjmj , (6)

for z(t) ∈ Rj , z(kT ) ∈ Rj . However, for a given time t
that is not a sampling instant, the general situation that
should be considered is the one in which the state of the
plant is in regionRi and the most recently sampled state
is in region Rj with possibly i �= j. The system is then
described by the differential equation

ż = Aiz + bi +BiKjz(kT ) +Bimj , (7)

for z(t) ∈ Ri, z(kT ) ∈ Rj . This equation can be rewrit-
ten in the perturbed form

ż = Āiz + b̄i +Biδij , (8)

for z(t) ∈ Ri, z(kT ) ∈ Rj , where Āi = Ai +BiKi, b̄i =
bi + Bimi and

δij = Kj (z(kT )− z(t)) + (Kj −Ki) z(t) + (mj −mi) .
(9)

Note that the first term in (9) represents the perturba-
tion due to the error between the last available sample
of the state and its current value. The second and third
terms are associated with the perturbation due to the
state and its most recent sample being possibly in differ-
ent regions. The second term represents the perturba-
tion due to a difference in the gain matrices in regionsRi

and Rj and the third term represents the perturbation
due to a difference in the affine control terms. Given a
continuous-time controller of the form (5), the first step
in the procedure outlined in this paper is to search for a
quadratic Lyapunov function of the form

V (z) = zTPz (10)

1 For optimization programs whose solution (when it ex-
ists) yields exponentially stabilizing PWA controllers see Ro-
drigues & How (2003); Rodrigues & Boyd (2005).

that proves stability of the continuous-time closed-loop
system. This can be done by solving for fixed α ≥ 0 the
following set of LMIs (see for example Rodrigues & Boyd
(2005) for details on the derivation of these conditions):

P = PT > 0, λi < 0, i = 1, . . . ,M, (11)[
ĀT

i P + PĀi + αP + λiE
T
i Ei P b̄i + λiE

T
i fi

(P b̄i + λiE
T
i fi)T −λi

(
1 − fT

i fi

)
]
<0

The results that follow assume that such a Lyapunov
function can be found. Note however that not all
continuous-time PWA systems that are stable admit a
globally quadratic Lyapunov function (see Johansson
(2003) for counter-examples).

3.1 Conditions Independent of the Sampling Period

We now present the first result of this section. It gives
conditions under which the trajectories of the sampled-
data system (8) converge to a region around the closed-
loop equilibrium point. Furthermore, it relates the size
of this region to a measure of the perturbation term in
the closed-loop system. In what follows, unless otherwise
indicated, the time dependence of the indices i, j will
be omitted for simplicity.

Theorem 2 Assume a Lyapunov function of the form
(10) is found and is defined in X ⊆ IRn. Let the con-
dition number of P be χP = σmax(P )

σmin(P ) . Assume there
are finite constants Nij > 0, ΔKij ≥ 0, such that
‖δij‖ ≤ Nij + ΔKij‖z‖, i, j = 1, . . . ,M . Let N =
maxi,j=1,...,M (Nij) , ΔK = maxi,j=1,...,M

(
ΔKij

)
, B =

maxi=1,...,M ‖Bi‖. Define

μθ =
2χPB

αθ − 2χPBΔK
N

and the region

Sθ = {z ∈ X | ‖z‖ ≤ μθ}
for any positive constant θ < 1 that verifies

ΔK <
αθ

2χPB
(12)

Then, if (12) is verified, the trajectories of the closed-
loop sampled-data system (8) converge exponentially to
the set

Ω =
{
z ∈ X | V (z) ≤ σmax(P )μ2

θ

}

Proof: For z(t) ∈ Ri, z(kT ) ∈ Rj , using the dynamics
(8), the derivative of the candidate Lyapunov function
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(10) along the trajectories of the system is

V̇ (z) =

[
z

1

]T [
ĀT

i P + PĀi P b̄i

(P b̄i)T 0

] [
z

1

]
+ 2zTPBiδij

However, note that if a quadratic Lyapunov function is
found by solving (11), using the S-procedure (see Ro-
drigues & Boyd (2005) for details) it can be shown that
for z ∈ Ri

[
z

1

]T [
ĀT

i P + PĀi P b̄i

(P b̄i)T 0

][
z

1

]
< −αzTPz.

Therefore, for z ∈ Ri, z(kT ) ∈ Rj it follows that

V̇ (z) < −αzTPz + 2zTPBiδij

Taking norms and using the bounds

‖δij‖ ≤ Nij + ΔKij‖z‖ ≤ N + ΔK‖z‖

and −zTPz ≤ −σmin(P )‖z‖2 yields

V̇ (z) < −ασmin(P )‖z‖2 + 2‖z‖σmax(P )B (N + ΔK‖z‖)

or, for any positive constant θ < 1

V̇ (z) < −(1 − θ)ασmin(P )‖z‖2 −
θασmin(P )‖z‖2 + 2‖z‖σmax(P )B (N + ΔK‖z‖) .

Therefore, for 0 < θ < 1, we have

V̇ (z) < −(1 − θ)ασmin(P )‖z‖2 ≤ −(1 − θ)χ−1
P αV (z)

(13)
for

‖z‖ > 2χPB

αθ − 2χPBΔK
N

provided

ΔK <
αθ

2χPB
. (14)

Note that although condition (13) is only valid inside
each region of the partition of the state space, it also
guarantees that no unstable sliding modes can be gener-
ated at the boundaries because the Lyapunov function
is of class C1 (see Samadi & Rodrigues (2007) for more
details). As a result of (13), for z ∈ IRn \ Sθ,

V (z(t)) < V (z(t0))e−(1−θ)χ−1
P

α(t−t0)

Using the relation σmin(P )‖z‖2 ≤ V (z) ≤ σmax(P )‖z‖2

we can conclude that for z ∈ IRn \ Sθ,

‖z(t)‖ ≤ ‖z(t0)‖χ
1
2
P e

−0.5(1−θ)χ−1
P

α(t−t0)

Thus, there will be a positive and finite time tθ1 such
that z(tθ1) ∈ Sθ for any positive constant θ < 1 that
verifies (14). Note that Sθ ⊆ Ω. This can be proved
by contradiction. Assume that it is not true that Sθ ⊆
Ω. Then, there exists at least one z0 ∈ Sθ for which
zT
0 Pz0 > σmax(P )μ2

θ, a contradiction. Since V̇ ≤ 0 at
the boundary of Ω, Ω is an invariant set for system (8).
Consequently, since z(tθ1) ∈ Sθ ⊆ Ω, z(t) ∈ Ω for all
t ≥ tθ1 and for all 0 < θ < 1 that verifies (14). �

Remark 3 This result relates the size of the region to
which the trajectories converge to the size of the perturba-
tions. The size of the region decreases with the size of the
perturbations, as expected. Note that for the case where
Ki = Kj , ΔK = 0 and (14) is automatically verified.

Remark 4 Bounds on δij can be easily obtained in the
case where all polytopic regions are bounded, by notic-
ing that ‖z(kT )− z(t)‖ ≤ maxx∈Ri,y∈Rj ‖x− y‖. These
bounds are however potentially conservative and better
ways of obtaining them should be investigated. In partic-
ular, the bound should depend on the sampling period T .

The next section relates the bound on ‖z(kT ) − z(t)‖
to the sampling period T and offers a less conservative
result that enables us to prove that if the sampling pe-
riod converges to zero then the system is practically ex-
ponentially stable to the origin and the continuous-time
behavior is recovered.

3.2 Conditions Dependent of the Sampling Period

Integrating equation (7) for t ∈ [kT, (k + 1)T ] yields

z(t) − z(kT ) =
∫ t

kT

Ai(τ)z(τ)dτ +
∫ t

kT

bi(τ)dτ +∫ t

kT

Bi(τ)dτ (Kjz(kT ) +mj) (15)

Thus, lettingA = maxi=1,...,M ‖Ai‖, b = maxi=1,...,M ‖bi‖,
B = maxi=1,...,M ‖Bi‖ yields

‖z(t)− z(kT )‖ ≤ A

∫ t

kT

‖z(τ)‖dτ +

(t− kT ) (b+B‖Kjz(kT ) +mj‖) (16)

Since all possible dynamics in a PWA system with coef-
ficients independent of the partition are affine, finite es-
cape times cannot occur and therefore there will be a fi-
nite constant Z(k, T ) = supkT≤t≤kT+T ‖z(t)‖ such that

‖z(t)‖kT≤t≤kT+T ≤ Z(k, T ) (17)
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Using the bound (17) in expression (16) leads to

‖z(t) − z(kT )‖ ≤ (t− kT )(AZ(k, T ) + b+
B‖Kjz(kT ) +mj‖) (18)

Remark 5 Note that the bound Z(k, T ) gets smaller as
the sampling time decreases and when T → 0, Z(k, T ) →
‖z(kT )‖. Note further that the Euler approximation for
integration would lead to Z(k, T ) = ‖z(kT )‖ because∫ t

kT ‖z(τ)‖dτ 
 ‖z(kT )‖(t− kT ).

LettingK = maxi=1,...,M ‖Ki‖, m = maxi=1,...,M ‖mi‖,

‖z(t) − z(kT )‖ ≤ (t− kT )(AZ(k, T ) + b+
BK‖z(kT )‖+Bm) (19)

The worst possible (highest) bound is the one corre-
sponding to t = (k + 1)T , which leads to

‖z(t)−z(kT )‖ ≤ T (AZ(k, T ) + b +BK‖z(kT )‖+Bm)
(20)

Recall that the expression for the perturbations devel-
oped in (9) was

δij = Kj (z(kT )− z(t)) + (Kj −Ki) z(t) + (mj −mi) .
(21)

Let now ΔKij = ‖Kj −Ki‖ , Δmij = ‖mj −mi‖. Then
we can write

‖δij‖ ≤ K‖z(t) − z(kT )‖+ ΔKij‖z(t)‖ + Δmij (22)

and therefore using (17) and (20) this finally yields

‖δij‖ ≤ Nij(k, T ) + ΔKij‖z‖, i, j = 1, . . . ,M (23)

where

Nij(k, T ) = Δmij +KT
(
ĀZ(k, T ) + b̄

)
(24)

and Ā = A + BK, b̄ = b + Bm. Using this bound and
Theorem 2 the following result can now be stated.

Corollary 6 Assume a Lyapunov function of the form
(10) is found and is defined in X ⊆ IRn. Let the condition
number of P be χP = σmax(P )

σmin(P ) . LetNij(k, T ) be defined as
in (24) where Z(k, T ) = supkT≤t≤kT+T ‖z(t)‖. Define

N̄ij(T ) = Δmij +KT
(
ĀZ̄(T ) + b̄

)
(25)

where
Z̄(T ) = lim

L→∞
max

k∈{0,...,L}
Z(k, T ) (26)

and

A = max
i=1,...,M

‖Ai‖, b = max
i=1,...,M

‖bi‖,
B = max

i=1,...,M
‖Bi‖, ΔK = max

i,j=1,...,M
‖Kj −Ki‖ .

Furthermore, let N(T ) = maxi,j=1,...,M

(
N̄ij

)
. Define

μθ(T ) =
2χPB

αθ − 2χPBΔK
N(T )

and the region

Sθ(T ) = {z ∈ X | ‖z‖ ≤ μθ(T )}

for any positive constant θ < 1 that verifies

ΔK <
αθ

2χPB
(27)

Then, in the absence of sliding modes, if (27) is verified
it follows that:

(1) The trajectories of the closed-loop sampled-data sys-
tem (8) converge exponentially to the set

Ω(T ) =
{
z ∈ X | V (z) ≤ σmax(P )μ2

θ(T )
}
.

(2) When T → 0, the trajectories of the closed-loop
sampled-data system (8) are practically exponen-
tially stable to the origin. By this it is meant that
z(t) → 0 exponentially a.e when T → 0.

Proof: Result 1) follows directly from the proof of The-
orem 2. Result 2) follows from the facts that:

In the absence of sliding modes, chattering phenomena
is ruled out in closed-loop. Therefore, for any finite t�,
there will be a finite number N�(t�, T ) of switchings in
the time period [0, t�].

At t = kT the dynamics of the system will be governed
by (6) where j is the index of the region where the state
lies at or immediately after kT . Notice that (6) is an
affine differential equation with constant coefficients and
finite escape times are not possible, so z(t) is bounded.
Notice also that until a switch occurs, the solution of (6)
is continuous and given by the variation of constants

z(t) = Φj(t− kT )z(kT ) + Γj(t− kT )uj

uj = bj +Bj (Kjz(kT ) +mj)

where Φj(t − kT ) = eAj(t−kT ) and Γj(t − kT ) =∫ t−kT

0
eAjτdτ . Note also that

‖z(t)− z(kT )‖ ≤ ‖Φj + ΓjBjKj − I‖Z̄(T ) + ‖Γj‖‖b̄j‖,
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and thus ‖z(t)−z(kT )‖ is also bounded since Z̄(T ) must
stay bounded due to the impossibility of finite escape
times for PWA systems with constant coefficients not de-
pendent on the partition. Furthermore, the first switch-
ing outside of region j will only occur when wji(z) =
hT

jiz− gji = 0 for some i ∈ Nj . Since z(t) and wji(z) are
continuous and wji(z) �= 0 right after the update of the
state at t = kT , wji(z) �= 0 for at least a time interval
with some positive measure εij ≤ T until the occurence
of the next switch. Because of this fact, N�(t�, T ) can-
not grow unbounded as T → 0. Until the occurence of a
switch, Δmij = 0, ΔKij = 0.

From the previous point, we conclude that for any T >
0, k ≥ 0 the Lebesgue measure of the set

Si,j
kT = {t ∈ [kT, (k + 1)T ] | ΔKij (t), Δmij (t) > 0}

verifies
μ

(
Si,j

kT

)
≤ T − εij(T ) < T

Thus, for any finite t� the setS = ∪k: kT<t� Si,j
kT will have

bounded Lebesgue measure μ (S) ≤ N�T . As T → 0, the
Lebesgue measure of this set will also converge to zero
because N�(t�, T ) cannot grow unbounded as T → 0.

Therefore ΔKij → 0, Δmij → 0 as T → 0 except possi-
bly on a set of time instants that has Lebesgue measure
converging to zero. Thus, the set of times t for which
i(t), j(t) are different converges to zero almost every-
where as T → 0 so i = j a.e when T → 0.

Z(k, T ) → ‖z(kT )‖ when T → 0 and, as seen before,
Δmij → 0 a.e as T → 0. This together with the fact that
‖z(kT )‖ is bounded for any k ≥ 0 implies by (25) and
(26) that N̄ij(T ) → 0 a.e when T → 0. Thus μθ(T ) →
0 a.e when T → 0.

Following the rationale in the proof of Theorem 2, the
previous points show that the closed-loop system tra-
jectories converge exponentially to the set Ω(T ) whose
size converges to zero as μθ(T ) → 0 a.e when T → 0.
In fact, following the arguments of the proof of Theo-
rem 2, when T → 0 the Lyapunov function V (z) de-
creases exponentially except possibly for a set of times
whose Lebesgue measure converges to zero as T → 0.
However, for this set of times, as discussed, z(t) remains
bounded and, by expression (20), z(t) − z(kT ) remains
bounded and is small for small T . Since the Lyapunov
function is of class C2 on z, the Lyapunov function also
remains bounded. Given that the Lyapunov function re-
mains bounded for these sets of time and these time in-
stants form a set whose Lebesgue measure converges to
zero as T → 0, V (t) < V (t0)e−(1−θ)χ−1

P
α(t−t0), a.e. and

the result of the theorem is established by the fact that
σmin(P )‖z(t)‖2 ≤ V (z) ≤ σmax‖z(t)‖2. �

Remark 7 This result formally establishes the very im-
portant and desired property that a sampled-data PWA
system converges to a closed-loop continuous-time PWA
system when the sampling period converges to zero. As
desired, all the stability guarantees for the closed-loop
continuous-time system can be recovered.

Remark 8 The result assumes the absence of sliding
modes. Sliding modes can indeed be ruled out in feedback
for PWA systems with hyperplane boundaries if the com-
ponent of the vector fields perpendicular to the bound-
aries is continuous across the boundaries. This idea was
first suggested for PWA systems in Rodrigues & How
(2003) to avoid the generation of sliding modes in closed-
loop. If the feedback construction suggested in Rodrigues
& How (2003) is used, it can be shown following the rea-
soning explained in Rodrigues & How (2003) that slid-
ing modes are still ruled out in feedback for sampled-data
PWA systems if the additional constraints Bi = Bj =
B, cTijB (Kj −Ki +mj −mi) = 0, ∀i = 1, . . . ,M,∀j ∈
Ni are verified. Notice that these constraints are linear
in the controller parameters and can easily be included in
the optimization procedure suggested in Rodrigues & How
(2003) for systems with a constant input matrix B (such
as the one presented in the example of the next section).

Remark 9 Note that for the case of continuous PWA
systems, the continuous vector field from the state
equation (2) given by f(z, u) = Aiz + bi + Biu and
f(z(kT ), u(kT )) = Ajz(kT ) + bj + Bju(kT ) is lo-
cally Lipschitz in z with Lipschitz constant L =
maxi=1,...,M ‖Ai‖. In this case, following the ideas pre-
sented in Khalil (2004), the Gronwall-Bellman inequal-
ity applied to the integral of the dynamical equation (2)
between kT and t ≤ kT + T

z(t) = z(kT ) + (t− kT )f(z(kT ), u(kT )) +∫ t

kT

[f(z(τ), u(kT )) − f(z(kT ), u(kT )]dτ

enables us to show that

‖z(t) − z(kT )‖ ≤ 1
L

[
e(t−kT )L − 1

]
·

‖Ajz(kT ) + bj +Bju(kT )‖, kT ≤ t ≤ kT + T

When the control input is replaced by its value u(kT ) =
Kjz(kT ) +mj, it finally yields the bound

‖z(t) − z(kT )‖ ≤ 1
L

[
eTL − 1

] [‖Āj‖‖z(kT )‖+ ‖b̄j‖
]
.

(28)
where we have used the fact that t − kT ≤ T for kT ≤
t ≤ kT + T and Āj , b̄j are defined as before. Following
the reasoning leading to (24) a new value for Nij(k, T )
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Fig. 1. x − y trajectory with continuous-time controller,
ψ0 = π

2
, r0 = 0 rad/s, y0 = 1 m

can be found as

Nij(k, T ) = Δmij +
K

L

[
eTL − 1

] [‖Āj‖‖z(kT )‖+ ‖b̄j‖
]

(29)
Note that (24) and (29) become very similar (Ā, b̄ are
replaced by ‖Āj‖, ‖b̄j‖) for very small T if the Euler ap-
proximation is used in (24) to approximate Z(k, T ) by
‖z(kT )‖. Note however that (24) is more general and less
restrictive than (29) because it is valid even for discon-
tinuous PWA systems that are therefore not locally Lip-
schitz. The important point to make is that from expres-
sion (29) when T → 0, N̄ij(T ) → 0 a.e. since ‖z(kT )‖ is
bounded and z(kT ) → z(t) so that i, j become the same,
except on a set of measure zero. This leads to the same
result obtained in Corollary 6 when one replaces (24) by
(29) for the special case of continuous PWA systems.

4 Example

The objective of this example is to design a controller
that forces a cart on the x−y plane to follow the straight
line y = 0 with a constant velocity U0 = 1 m/s. It is
assumed that a controller has already been designed to
maintain a constant forward velocity. The cart’s path is
then controlled by the torque u about the z-axis accord-
ing to the following dynamics:

⎡
⎢⎢⎣
ψ̇

ṙ

ẏ

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

0 1 0

0 −k
I 0

0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
ψ

r

y

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0

0

U0 sin(ψ)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0
1
I

0

⎤
⎥⎥⎦u (30)

where ψ is the heading angle with time derivative r,
I = 1 Kgm2 is the moment of inertia of the cart with
respect to the center of mass and k = 0.01 Nms is the
damping coefficient. Note that for this example Bi =
Bj = B, cTij = [1 0 0], cTijB = 0. The state of the
system is (z1, z2, z3) = (ψ, r, y). Assume the trajectories
can start from any possible initial angle in the range
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Fig. 2. x− y trajectory for a sampling period of T = 0.05s

ψ0 ∈ [− 3π
5 ,

3π
5 ] and any initial distance from the line.

The function sin(ψ) is approximated by a PWA function
(see Rodrigues & How (2001)) yielding

R1 =
{
z ∈ IR3 | z1 ∈

(
−3π

5
,−π

5

)}
,

R2 =
{
z ∈ IR3 | z1 ∈

(
−π

5
,− π

15

)}
,

R3 =
{
z ∈ IR3 | z1 ∈

(
− π

15
,
π

15

)}
,

and R4 is symmetric to R2 and R5 is symmetric to R1,
all with respect to the origin. A controller was designed
to stabilize the origin (inside region R3) yielding

K1 = [−49.908 −9.467 −13.926 ], m1 = 2.70 × 10−6

K2 = [−48.316 −9.330 −13.812 ], m2 = 3.75 × 10−7

K3 = [−50.148 −9.468 −13.742 ] m3 = 0.00 × 100

K4 = [−48.316 −9.330 −13.812 ] m4 = −m2 × 100

K5 = [−49.908 −9.468 −13.926 ] m5 = −m1 × 100

The trajectory in the x − y plane using this controller
is shown in figure 1 where it is clear that the con-
troller makes the cart trajectory converge to the desired
straight line. For a sampling period of T = 0.05s the
same controller was emulated in discrete-time between
a sampler and a zero-order-hold and the results of the
corresponding x − y trajectory are shown in figure 2.
It can be seen that the trajectory still follows approxi-
mately the one obtained with the continuous-time con-
troller. When the sampling period is further increased
to T = 0.2s the simulation of the x− y trajectory close
to the line is zoomed in figure 3. It is clear that the tra-
jectory converges to a region around the desired straight
line, as predicted by the results of this paper.
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5 Conclusions

This paper has presented stability results for closed-loop
sampled-data PWA systems under state feedback. It was
shown that the emulation of a state feedback controller
designed in continuous-time to exponentially stabilize
the system to a target point would still exponentially
stabilize the system to a region around the target point.
The size of this region was related to the sampling period.
It was shown that when the sampling period converges
to zero the exponential stability results for the closed-
loop continuous-time system are recovered.
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