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ABSTRACT

Failure Analysis in Multi-Agent Networks: A Graph-Theoretic Approach

Mohammad Amin Rahimian

A multi-agent network system consists of a group of dynamic control agents which interact

according to a given information flow structure. Such cooperative dynamics over a network

may be strongly affected by the removal of network nodes and communication links, thus

potentially compromising the functionality of the overall system. The chief purpose of this

thesis is to explore and address the challenges of multi-agent cooperative control under var-

ious fault and failure scenarios by analyzing the network graph-topology. In the first part,

the agents are assumed to evolve according to the linear agreement protocol. Link failures in

the network are characterized based on the ability to distinguish the agent dynamics before

and after failures. Sufficient topological conditions are provided, under which dynamics of a

given agent is distinguishable for distinct digraphs. The second part of this thesis is concerned

with the preservation of structural controllability for a multi-agent network under simultane-

ous link and agent failures. To this end, the previously studied concepts of link and agent

controllability degrees are first exploited to provide quantitative measures for the contribution

of a particular link or agent to the controllability of the overall network. Next, the case when

both communication links and agents in the network can fail simultaneously is considered,

and graphical conditions for preservation of controllability are investigated.
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4.2 Digraph Ḡ2 of Example 2 is 2−link and 1−agent controllable and has six crit-

ical links (solid edges), three uncritical links with σ = 4 (fully-dotted edges)

and 12 uncritical links with σ = 2 (single-dotted edges). . . . . . . . . . . . 51
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Chapter 1

Introduction

The past decade has seen a growing interest in the control of multi-agent networks [1, 2].

Multi-agent network systems consist of a group of dynamic agents, which interact according

to a given information flow structure. The dynamic control law for each agent is a function of

its state and the states of a few of its local neighboring agents, with which it can communicate

[3, 4]. Distributed and cooperative control for these networked dynamic systems employs

various concepts from different fields including parallel processing, distributed algorithms,

control, and estimation [2].

Multi-agent systems have found many promising applications in diverse areas such as

sensor networks, motion coordination of robots, automated highway systems, air traffic con-

trol, formation control of satellite clusters [5–11]. An important class of multi-agent systems
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is the one with leader-follower architecture [12]. Popular research problems related to multi-

agent network control and leader-follower systems include connectivity, containment, con-

sensus, rendezvous, formation, and flocking [13–18]. Preservation of network connectivity

throughout the system’s evolution is a major area of research that has attracted much atten-

tion [5, 19–28]. In the consensus problem, it is desired that the states of all of the agents in

the network converge to a common value [29–32]. In the containment problem, on the other

hand, a group of agents are designated as followers and their states are required to converge

to the convex hull of the states of the leader agents [33–36]. Specification of the required con-

figurations in terms of the relative position of the agents leads to a different class of problems

known as formation control [37, 38]. Particular areas of application that have attracted much

focus amongst the research community include the formation flight of unmanned aerial vehi-

cles [39–43] and mobile robotic networks [44–47], and they in turn have lead to the emergence

of interesting analytical problems such as collision and obstacle avoidance [48, 49].

1.1 Motivation and Related Work

The cooperative multi-agent dynamics over a network may be strongly affected by the removal

of agents and communication links, thus potentially compromising the functionality of the

overall system. On the other hand, it is known that some faults in the multi-agent systems

can affect part of the network, containing a number of links and agents. This type of faults in

multi-agent systems, where terrain properties or hardware faults affect a number of agents and
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limit their ability to communicate, provides motivation for the analysis of failures in multi-

agent networks. The chief purpose of this thesis is to explore and address the challenges

of multi-agent cooperative control under various fault and failure scenarios by analyzing the

graph-topology of the information flow networks.

The effects of the removal of links or agents on a multi-agent system are investigated

in terms of its information flow graph in [50–52], where graph-theoretic conditions are pro-

vided for the preservation of structural controllability. Moreover, the concepts of link and

agent controllability degrees are proposed to provide quantitative measures for the reliability

of networks subject to failures, and various ideas from the network flow problem [53] are

exploited to design polynomial-time algorithms for the computation of these reliability mea-

sures.These concepts are then extended to the case of simultaneous link and agent failures

in [54]. Two conceptually related issues are the fault tolerance of networks and connectivity

of their interconnection digraphs, as discussed in Section 1.5 of [55].

In a very recent work, Liu, Slotine and Barabási [56] investigate complex real-world net-

works in terms of their structural controllability and exploit the graph-theoretic technique of

maximum matching to determine the minimum number of inputs for maintaining full control

over the network. The resulting unmatched nodes are subsequently proposed as the choice of

input nodes for injecting the control signals and making the whole network controllable. The

issue of robustness of control against link failures is then considered by introducing critical,
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redundant and ordinary links, depending on the minimum number of necessary inputs for con-

trollability in the face of link loss, and the participation of the link in the maximally matched

sets. Section 5.2 of [1] offers a probabilistic treatment of the link failures in multi-agent net-

works. A probability for any link failure is first assumed, and using the stochastic version of

LaSalle’s invariance principle the convergence of the agreement protocol over the resultant

random graph is shown. Then in Subsections 5.2.2 and 5.2.3, some important concepts from

the spectral theory of random matrices and stochastic Lyapunov theory are exploited to ana-

lyze the rate of convergence for the agreement protocol over random networks. In particular,

it is demonstrated that with a fixed probability for link failures, larger networks have better

convergence rates.

1.2 Thesis Objectives and Outline

After introducing some preliminaries on sets and graph theory as well as multi-agent dynamics

in Chapter 2, the main contributions of the thesis are provided in Chapters 3 and 4.

In Chapter 3, the focus is on the cooperative control of a multi-agent system under the

linear agreement protocol and subject to multiple communication link failures. The question of

detectability of link failures is addressed and topological conditions are provided under which

distinct digraphs result in distinguishable dynamics in the state of an agent. The mathematical

characterization of simultaneous link failures in this chapter leads to useful design guidelines

for realization of reliable and fault-tolerant multi-agent networks. Detection and isolation of
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faults are crucial to the cooperative and reliable control of multi-agent networks, and the chief

aim of this chapter is to address these two important concepts. The results are therefore of both

theoretical and practical interest. Geographical barriers, spatial requirements and scarcity of

observation equipment may limit the designers’ access to multiple observing agents; therefore,

the study of distinguishable dynamics in this chapter is restricted to the viewpoint of a single

agent.

Next, in Chapter 4 the problem of controllability preservation in the face of simultaneous

link and agent failures is considered. Previous studies consider the case of failures in links or

agents only and the chief aim of Chapter 4 is to extend the available results to the case where

both links and agents can fail. Moreover, the existing controllability measures are used to

quantify and compare the importance of different links and agents to the controllability of the

overall network.

Finally, the contributions of the thesis are summarized in Chapter 5 and suggestions for

further research directions are provided.

5



Chapter 2

Preliminaries

This chapter gives some preliminaries on sets and graph theory, and introduces the notation

that is used throughout the thesis. In the sequel, N denotes the set of all natural numbers,

W = {0}∪N, R denotes the set of all real numbers, and C denotes the set of all complex

numbers. Also, the set of integers {1,2, . . . ,k} is denoted by Nk, and any other set is rep-

resented by a curved capital letter. The cardinality of a set X , which is the number of

its elements, is denoted by |X |. The difference of two sets X and Y is characterized as

X KY = {x;x ∈X ∧ x /∈ Y }. Matrices are represented by capital letters, vectors are ex-

pressed by boldface lower-case letters, and the superscript T denotes the matrix transpose.

Moreover, I denotes the identity matrix with proper dimension, and the determinant of a ma-

trix M is denoted by det(M), while [M]i j indicates the element of M which is located at its

i−th row and j−th column.

6



The remainder of this chapter is organized as follows. A brief introduction to the theory

of directed graphs is provided in Section 2.1, followed by the presentation of the system model

and dynamical evolution for the multi-agent systems under the linear agreement protocol in

Section 2.2. Finally, Section 2.3 introduces the concept of structurally of controllability for

multi-agent systems and reviews some results from [50] and [52].

2.1 Directed Graphs and the Associated Algebraic Entities

A directed graph or digraph is defined as an ordered pair of sets: G = (V ,E ), where V =

{ν1, . . . ,νn} is a set of n = |V | vertices and E ⊆ V ×V is a set of directed edges. The

digraph G1 = (V1,E1) is a subgraph of G if V1 ⊆V ∧E1 ⊆ E . In the graphical representations,

each edge ε := (τ,ν) ∈ E is denoted by a directed arc from vertex τ ∈ V to vertex ν ∈ V .

Vertices ν and τ are referred to as the head and tail of the edge ε , respectively. Given a set

of vertices X ⊂ V , the set of all edges for which the tails belong to X but the heads do not,

is termed the out-cut of X , and is denoted by ∂+
G

X ⊂ E . Similarly, the set of all edges for

which the heads belong to X but the tails do not, is referred to as the in-cut of X , and is

denoted by ∂−
G

X ⊂ E . The in-degree and out-degree of X are given by d−
G

X = |∂−
G

X | and

d+
G

X = |∂+
G

X |, respectively. Notice that the definition of E does not allow for the existence

of parallel arcs in the graphical representation. In other words, if two edges share the same

pair of head and tail, then they are identical.

Given an integer k ∈ Nn−2, a set {α1,α2, . . . ,αk} = Nk and two vertices τ,ν ∈ V , a
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sequence of distinct edges of the form P := (τ,να1
),(να1

,να2
), . . . ,(ναk−1

,ναk
)(ναk

,ν) is

called a τν path with length k + 1 if for any two edges (τ̄, ν̄),(τ̂, ν̂) of this sequence, ν̄ 6=

ν̂ ←→ τ̄ 6= τ̂ . For any R ⊂ V , a τν path is called R−rooted if τ ∈R. The set R associated

with an R−rooted τν path is referred to as the root-set, and a vertex ν ∈ V KR is called

reachable from the root-set R if there exists an R−rooted τν path, for some τ ∈ R. Two

distinct τν paths are called edge-disjoint if they do not share any edges. Two edge-disjoint

τν paths are called disjoint if τ and ν are the only vertices that are common to both of them.

Furthermore, the number of τν paths with length k, denoted by ck(τ,ν), is called the k−th

order topological connectivity of τ to ν . Likewise, the shortest length for all τν paths is

referred to as the distance from τ to ν and is denoted by d(τ,ν). Notably, ck(τ,ν) = 0 for

k < d(τ,ν), and by convention d(ν,ν) = 0, c0(ν,ν) = 1, and if ∀k ∈ N,ck(τ,ν) = 0, then

d(τ,ν) = ∞. For a given vertex ν ∈ V , a νν path is called a directed circle, and a self-loop on

vertex ν signifies a directed circle of length 1, whose only edge is (ν,ν).

Similarly, for an integer k ∈ N, a set of (possibly repeated) indices {α1,α2, . . . ,αk} ⊆

N|V | and two vertices τ,ν ∈ V , a τν walk with length k+1 signifies an ordered sequence of

edges of the form W := (τ,να1
),(να1

,να2
), . . . ,(ναk−1

,ναk
)(ναk

,ν). Moreover, the number of

τν walks with length k, denoted by wk(τ,ν), is called the k−th connectivity of τ to ν , and by

convention, w0(τ,ν) = 0 if τ 6= ν , while w0(ν,ν) = 1. The following lemma follows from the

fact that a given τν walk can be reduced to a τν path upon the removal of its directed circles.

In particular every shortest walk from τ to ν is also a shortest path from τ to ν and vice versa.
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Lemma 1. For a digraph G = (V ,E ) and vertices {νi,ν j} ⊂ V ,{i, j} ⊂ N|V |, the following

relations hold:

d(ν j,νi) = min
k∈W,wk(ν j,νi) 6=0

{k}, (2.1)

and

wd(ν j,νi)
(ν j,νi) = cd(ν j,νi)

(ν j,νi). (2.2)

If ∀{τ,ν} ⊂ V there exists a τν walk in G , then digraph G is strongly connected. A

subgraph G1 = (V1,E1) of G is a strongly connected component of G if ∀ν ∈ V KV1, the

digraph G2 = ({ν}∪V1,(∂
+
G
{ν}∩∂−

G
V1)∪ (∂

−
G
{ν}∩∂+

G
V1)∪E1) is not strongly connected.

Two distinct vertices τ,ν ∈ V are siblings if they belong to the same strongly connected

component of G . Also, if τ and ν are not siblings and there exists a τν walk in G , then τ is

an ancestors of ν and ν is a descendant of τ .

For a given digraph G = (V ,E ) and a particular edge ε := (νi,ν j) ∈ E ∪{ε}, where

νi,ν j ∈ V , the edge-index of ε is defined as a |V |× |V | matrix whose only non-zero element

is 1, which is located at its j−th row and i−th column. This matrix is represented by Γ(ε) =

Γ((νi,ν j)). Similarly, the vertex-index of any νi ∈ V is defined as a |V |×1 column vector

whose only non-zero element is 1, which is located at its i-th row. This vector is denoted

by σ(νi). The adjacency matrix of G is given by A(G ) = ∑ε∈E Γ(ε), its degree matrix is
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defined as ∆(G ) = ∑ν∈V d−
G
{ν}Γ((ν,ν)), and the corresponding in-degree graph Laplacian

is given by L (G )=∆(G )−A(G ). The following lemma is a standard result in algebraic graph

theory [57, 58], and it relates the powers of the adjacency matrix to the length and number of

walks in the digraph.

Lemma 2. Consider a digraph G = (V ,E ), an integer k ∈N and vertices {νi,ν j} ⊂ V , {i, j}

⊂ N|V |, the k−th connectivity of ν j to νi is given by:

wk(ν j,νi) =
[

A(G )k
]

i j
. (2.3)

Given an integer k ∈ N|V | and two vertices {νi,ν j} ⊂ V , |{νi,ν j}|= 2, the k−th order

topological connectivity of ν j to νi can be expressed in terms of [L (G )]mn = Lmn,{m,n} ⊂

N|V |, as follows:

ck(ν j,νi) = (−1)k× (2.4)

∑
Θ∈Πk−1

(

∑
ψ∈Ξk−1

Liθψ(1)

(

k−2

∏
l=1

Lθψ(l)θψ(l+1)

)

Lθψ(k−1) j

)

,

where Ξk−1 is the finite group formed by the (k− 1)! permutations on the set Nk−1, Θ =

{θ1,θ2, . . . ,θk−1} ⊂ N|V |K{i, j}, and Πk−1 = {Θ;Θ⊂ N|V |K{i, j}∧ |Θ|= k−1}, so that:

|Πk−1|=
(|V |−2)!

(k−1)!(|V |− k−1)!
. (2.5)
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For a given digraph G = (V ,E ), a vertex τ ∈ V is called an out-branching root if there

exists a τν path for every ν ∈ V K{τ}. Furthermore, a digraph G̃ = (V , Ẽ ), Ẽ ⊆ E with an

out-branching root τ̃ ∈ V is a τ̃-rooted spanning out-branching of G if G̃ does not contain

any directed circle and τ̄ 6= τ̂ −→ ν̄ 6= ν̂ for any {(τ̄, ν̄),(τ̂, ν̂)} ⊂ Ẽ .

Remark 1. For a given digraph G = (V ,E ) and two vertices {νo,νk} ⊂ V , if νo is an out-

branching root and there exists a νkνo path in G , then νk is also an out-branching root of

G .

The next lemma is used in the proof of one of the main results in Subsection 3.1.1.

Lemma 3. For a given digraph G = (V ,E ) and a vertex νo ∈ V , if νo is an out-branching

root, then the number of νo-rooted spanning out-branchings of Ḡ = (V ,E ∪{ε}),ε :=(τ,ν) 6∈

E ,ν 6= νo, is more than the number of νo-rooted spanning out-branchings of G .

Proof: Since every νo-rooted spanning out-branching of G is also that of Ḡ , it suffices

to show that there exists a νo-rooted spanning out-branching of Ḡ that includes the edge ε .

Let G̃ = (V , Ẽ ⊆ E ) be a νo-rooted spanning out-branching of G . The digraph G̃ contains

a unique νoτ path denoted by P1, and a unique νoν path denoted by P2. Let ε̂ be the last

edge in the sequence of edges representing P2, and note that ν is the head of ε̂ . For all

ν̃ ∈ V K{νo}, G̃ contains a unique νoν̃ path denoted by P̃ . Next, let Ĝ = (V , Ẽ ∪{ε}K{ε̂})

and note that if ν does not belong to P̃ , then P̃ is a unique νoν̃ path in Ĝ . On the other

hand, if ν belongs to P̃ , then one can write P̃ = P2Q, where Q is a unique νν̃ path in G̃ .
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The proof follows upon noting that P̂ = P1εQ is a unique νoν̃ path in Ĝ , and hence Ĝ is a

νo-rooted spanning out-branchings of Ḡ that includes the edge ε . �

The following lemma is a well-known generalization of the Matrix Tree Theorem for

the case of directed graph and it is due to Tutte [59].

Lemma 4. For a given digraph G = (V ,E ) and a vertex νi ∈ V , the number of νi-rooted

spanning out-branchings of G is equal to any cofactor in the i−th row of L (G ).

2.2 Multi-Agent Systems under the Agreement Protocol

Consider a multi-agent system comprised of a set S = {x1,x2, . . . ,xn} of n single integrator

agents, where xi, i ∈ Nn is the state of agent i, which is assumed to be scalar. Here, xi(t) is set

to be its absolute position w.r.t. an inertial reference frame, and the agent dynamics is assumed

to be decoupled along each axis of the frame. Further, assume that the control input of each

agent is constructed according to the following nearest neighbor law:

ẋi(t) = ∑
j,(ν j,νi)∈∂−

G
{νi}

(x j(t)− xi(t)), t > 0, i ∈ Nn. (2.6)

The interaction structure between the agents in (2.6) can be described by a directed

information flow graph G = (V ,E ), where each vertex ν ∈ V corresponds to an agent x ∈S

and |V | = n. A directed edge from vertex νk to vertex νi implies that the term xk(t)− xi(t)

appears in the control law of the agent xi given by (2.6). As discussed in Section 3.2 of [1],
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the existence of an out-branching root τ ∈ V is a necessary and sufficient condition for the

states in (2.6) to converge to a common value. This correspondence is often referred to as

the agreement protocol. Agreement protocol has been extensively investigated in the recent

literature as a fundamental evolution law for multi-agent networks in both continuous and

discrete-time, using probabilistic and deterministic models [12, 60–64], while some earlier

results on adjacency-based agreement rules can be traced back to Vicsek’s model [65].

For a multi-agent system S and its associated digraph G = (V ,E ), the in-degree graph

Laplacian can be used to represent the dynamic equations in (2.6) in a matrix form as follows:

ẋ(t) =−L (G )x(t), t > 0, (2.7)

where x(t) = (x1(t),x2(t), . . . ,xn(t))
T

. The matrix exponential solution to (2.7) is then ex-

pressed as:

x(t) = e−L (G )tx(0), t > 0, (2.8)

and for a particular agent xi ∈S represented by the vertex νi ∈ V , the temporal evolution of

its state is given by:

xi(t) = σ(νi)
T e−L (G )tx(0), t > 0. (2.9)

2.3 Structural Controllability of Multi-Agent Systems

Consider a team of n single integrator agents given by:
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ẋi(t) = ui(t), i ∈ Nn, (2.10)

where the first n−m agents are followers, and the last m agents are leaders, with the following

control inputs:

ui(t) =















ui
ext(t), i ∈ NnKNn−m

∑
j∈Nn

αi jx j(t), i ∈ Nn−m

(2.11a)

(2.11b)

where αi j ∈ R and αii 6= 0 in (2.11b). Note that the leaders are influenced by external control

inputs, whereas the followers are governed by a control law which is the linear combination

of the states of neighboring agents as given by (2.11b). The interaction structure between the

agents in (2.10) can be described by a directed information flow graph G = (V ,E ), where

each vertex represents an agent, and a directed edge from vertex ν j to vertex νi indicates that

x j(t) is transmitted to agent i and αi j 6= 0 in (2.11b). Moreover, the condition αii 6= 0 in (2.11b)

implies the existence of a self-loop on each follower vertex of G ; however, the self-loops are

omitted to simplify the graphical representations. In a digraph representing a leader-follower

multi-agent system, the root-set R consists of all leaders, with |R| = m. The state of each

agent xi(t) is its absolute position w.r.t. an inertial reference frame, and the agent dynamics is

assumed to be decoupled along each axis of the frame.

Remark 2. Consider a leader-follower multi-agent system represented by the information
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flow digraph G = (V ,E ) with the root-set R. The control laws in (2.11) imply that no edges

enter the root-set, i.e. ∂−
G

R =∅.

Definition 1. The information flow digraph G corresponding to the leader-follower multi-

agent system (2.10) is called controllable if the non-zero coefficients αi j in (2.11b) can be

chosen such that by properly moving the leaders, the followers would assume any desired

configuration in an arbitrary time T > 0.

The above definition of controllability, where the choices of non-zero parameters are

left free is closely related to the study of controllability for linear structured systems [66–

70]. The following theorem from [52] provides a necessary and sufficient condition for the

controllability of an information flow digraph as defined above.

Theorem 1. The information flow digraph G = (V ,E ) with the root-set R ⊂V is controllable

if and only if every vertex ν ∈ V KR is reachable from the root-set R.

The next subsection summarizes the main results of [50] and [52], upon which Chapter 4

expands.

2.3.1 Link and Agent Controllability Degrees

Link and agent controllability degrees provide quantitative insight into the reliability of a

leader-follower multi-agent system in the face of agent and link failure, as investigated in [50]

and [52] for a single leader and multiple leaders, respectively. A conceptually related issue
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is the fault tolerance of networks and the connectivity of their interconnection digraphs, as

discussed in Section 1.5 of [55].

In Section 1.7 of [53], the results obtained by using the max-flow min-cut theorem for

a single source and a single sink are extended to the flow networks with multiple sources and

sinks by adding two new nodes [53]. The work [52] exploits a similar technique to extend the

results of [50] to a digraph G with multiple leaders designated as the root-set R, by using the

expansion of G w.r.t. R, defined bellow.

Definition 2. Given an information flow digraph G = (V ,E ) with the root-set R ⊂ V , the

expansion of G w.r.t. R is denoted by G ′, and is defined as G ′ = (V ′,E ′), where for a given

vertex r /∈ V , V ′ = {r}∪V and E ′ = {(r,ν);ν ∈R}∪E .

The link controllability degree of an information flow digraph is defined as follows [52].

Definition 3. An information flow digraph G = (V ,E ) with the root-set R ⊂ V is said to

be p−link controllable if p is the largest number such that the controllability of the digraph

is preserved after removing any group of at most p− 1 edges. Moreover, a minimal set of

p edges, whose removal makes G uncontrollable is referred to as a critical link-set and is

denoted by Cp ⊂ E and a link is said to be critical if it belongs to a critical link-set and

uncritical otherwise. The number p is referred to as the link controllability degree of the

digraph G w.r.t. the root-set R, and is denoted by lc(G ;R). Moreover, for any ν ∈ V KR, the

minimum number of edges of G whose removal makes the vertex ν unreachable from the set

R is denoted by lc(G ,ν;R).
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The following theorem from [52] provides a necessary and sufficient condition for the

p−link controllability of an information flow digraph.

Theorem 2. The information flow digraph G = (V ,E ) with the root-set R ⊂ V is p−link

controllable if and only if

min
R⊆X ⊂V

d+
G

X = p. (2.12)

The agent controllability degree of an information flow digraph is defined as follows

[52].

Definition 4. An information flow digraph G = (V ,E ) with the root-set R ⊂ V is said to be

q−agent controllable if q is the largest number such that the controllability of the digraph is

preserved after removing any group of at most q−1 non-root vertices. Moreover, a minimal set

of q non-root vertices whose removal makes G uncontrollable is referred to as a critical agent-

set, and is denoted by Cq ⊆ V KR and an agent is said to be critical if it belongs to a critical

agent-set and uncritical otherwise. The number q is referred to as the agent controllability

degree of the digraph G w.r.t. the root-set R and is denoted by ac(G ;R). Furthermore, for

any ν ∈ V KR, the minimum number of non-root vertices of G whose removal makes the vertex

ν unreachable from the root-set R is denoted by ac(G ,ν;R).

Remark 3. An information flow digraph G = (V ,E ) with the root-set R ⊂ V is not control-

lable if and only if ac(G ;R) = lc(G ;R) = 0.

In Section 1.11 of [53], a technique involving duplication of nodes in a digraph is used
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to extend the results of the problem of finding a maximal flow from one set of nodes to an-

other, to the information flow digraphs subject to both arc and node capacity bounds. The

corresponding technique employs the max-flow min-cut theorem with some constraints on

the maximum arc flow. The work [50] exploits a similar technique termed node-duplication

to relate the link and agent controllability degrees of a given information flow digraph. The

node-duplicated version of an information flow digraph G is defined as follows.

Definition 5. Given an information flow digraph G = (V ,E ) with the root-set R ⊂V , replace

every non-root vertex ν ∈ V KR with two vertices ν̃1 and ν̃2, which are connected together by

an intermediate edge ε̃ν = (ν̃1, ν̃2). The resulting digraph G̃ = (Ṽ , Ẽ ) is called the node-

duplicate of G . All edges in G , whose heads are ν , have ν̃1 as their heads in the resultant

digraph G̃ , and all edges of G , whose tails are ν , have ν̃2 as their tails in G̃ .

Remark 4. Given an information flow digraph G = (V ,E ), its node-duplicate G̃ = (Ṽ , Ẽ )

does not possess any anti-parallel edges, i.e. for any τ̃, ν̃ ∈ Ṽ , if (τ̃, ν̃) ∈ Ẽ , then (ν̃, τ̃) /∈ Ẽ .

The following lemma from [50] describes the relationship between the agent controlla-

bility degree of a digraph G and the link controllability degree of its node-duplicate G̃ .

Lemma 5. Given an information flow digraph G = (V ,E ) with the root-set R ⊂ V , let its

node-duplicate be denoted by G̃ . For all ν ∈ V KR, if ∂+
G

R∩∂−
G
{ν}=∅, then ac(G ,ν;R) =

lc(G̃ , ν̃1;R).

Remark 5. Let G , V and R be given as in Lemma 5. For all ν ∈ V KR, if ∂+
G

R∩∂−
G
{ν} 6=∅,

then the follower agent ν remains reachable from the root-set R after the removal of any set
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of follower agents that does not include ν . For such an agent ν , the relation ac(G ,ν;R) =

|V |− |R| holds.

The following theorem from [50] provides lower bounds on the number of edges in a

p−link or q−agent controllable digraph.

Theorem 3. For an information flow digraph G = (V ,E ), the following statements are true:

(a) If G is p−link controllable, then |E |> (|V |−1)p. (b) If G is q−agent controllable, then

|E |> |V |+q−2.
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Chapter 3

Digraphs with Distinguishable Dynamics

In this chapter, the ability to distinguish digraphs from the output response of a single observ-

ing agent in a multi-agent network under the agreement protocol has been studied. Given a

fixed observation point, it is desired to find sufficient graphical conditions under which the

failure of a set of edges in the network information flow digraph is distinguishable from an-

other set. When the latter is empty, this corresponds to the detectability of the former link

set with respect to the response of the observing agent. In developing the results, a powerful

extension of the all-minors matrix tree theorem in algebraic graph theory is proved which re-

lates the minors of the transformed Laplacian of a directed graph to the number and length of

the shortest paths between its vertices. The results reveal an intricate relationship between the

ability to distinguish between the responses of a healthy and a faulty multi-agent network and

the inter-nodal paths in their information flow digraphs. Simulation studies at the end of the
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chapter reveal that the obtained analytical results hold for randomly initialized network con-

figurations. The results have direct implications for the operation and design of multi-agent

systems subject to multiple link losses.

The remainder of this chapter is organized as follows. The background provided in

Chapter 2 is used in Section 3.1 to develop the main results. Multiple link failures are charac-

terized through the concept of distinguishable digraphs and sufficient conditions are provided.

The detectability of link failures is then considered as a special case. In Section 3.2, the results

are illustrated and discussed using sample graphs, and finally concluding remarks are provided

in Section 3.3.

3.1 Distinguishable Dynamics with the Agreement Protocol

Throughout this chapter, the temporal evolution of the state of the agents is assumed to be

given by (2.6). The notions of failed response and distinguishable digraphs are formally de-

fined next, and they provide a mathematical characterization of link failures according to the

state of an agent after the failure of a certain set of links in the information flow structure [71].

Definition 6. Given a multi-agent system S and its associated digraph G = (V ,E ), the failed

response of an agent x ∈S w.r.t. a given edge ε ∈ E is denoted by xε(t), and it is defined

as the state of the agent x calculated in the digraph Ḡ = (V ,E K{ε}) for some set of initial

values x(0) ∈ R|V |.
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The notion of failed response will be used later to represent the state of an agent after

the failure of a certain link in the information flow structure.

Definition 7. Consider a multi-agent system S and two distinct digraphs G1 = (V ,E1) and

G2 = (V ,E2) associated with it. G1 and G2 are said to be distinguishable from an agent x∈S

if there exists x(0) ∈ R|V | such that xG1(t)− xG2(t) 6≡ 0, where xG1(t) and xG2(t) denote the

state of the agent x calculated in the digraphs G1 and G2, respectively, with the same initial

condition x(0).

Remark 6. Definition 7 is motivated by the fact that different link failures in the original

digraph G = (V ,E1∪E2) can lead to distinct digraphs G1 = (V ,E1) and G2 = (V ,E2) which

share the same set of vertices V but have different sets of edges E1 and E2.

Next, an extension of the all-minors matrix tree theorem that considers the Laplace-

transformed Laplacian of a digraph is proved and is subsequently used to provide sufficient

conditions for designating two link sets as distinguishable from a given agent.

Lemma 6. Given a digraph G = (V ,E ), let H = sI +L (G ), s ∈ C. For any i, j ∈ N|V | and

i 6= j, define Ci j as the matrix that results from removing the i−th row and j−th column of H.

Then for all k ∈ Nd(νi,ν j)
, the following limit holds:

lim
s→+∞

|
det(Ci j)

s|V |−1−k
|= ck(νi,ν j). (3.1)
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Proof: det(Ci j) can be written as a summation over the product of all possible permuta-

tions on the choice of |V |−1 matrix elements [72], as given below:

det(Ci j) = ∑
ψ∈Ξ|V |−1

(−1)ι(ψ)
|V |−1

∏
k=1

[

Ci j

]

kψ(k)
, (3.2)

where Ξ|V |−1 is the finite group formed by the (|V |−1)! permutations on the set N|V |−1.

Moreover, for a permutation ψ(.) on the set N|V |−1, ι(ψ) denotes its length and is defined

as the number of pairs i, j ∈ N|V |−1, i < j, such that ψ(i) > ψ( j). Consider the case where

d(νi,ν j) = 1, which implies that there exists an edge (νi,ν j) ∈ E . Hence, [L (G )] ji = −1

and det(Ci j) is a polynomial of degree |V | − 2 in s. Moreover, the only term in det(Ci j)

which includes s|V |−2 in the right-hand side of (3.2) is the one corresponding to the elements

[H]rr ,r ∈ N|V |K{i, j} and [H] ji = [L (G )] ji. Accordingly, (3.2) can be rewritten as:

det(Ci j) = (−1)κ [L (G )] ji



 ∏
ν∈V K{νi,ν j}

(s+d−
G
{ν})



+w1(s) . . .

=−(−1)κ s|V |−2 +w2(s), (3.3)

for some {w1(s),w2(s)} ⊂ W|V |−3(s), where W|V |−3(s) denotes the set of all polynomials in

s with degrees less than or equal to |V |−3 and a permutation length κ ∈ N that depends on i,

j and |V |. This corroborates (3.2) for d(νi,ν j) = 1. Next, let [L (G )]mn = Lmn, for {m,n} ⊂

N|V |, and consider the expression for det(Ci j) in the general case of d(νi,ν j) ∈ N|V |−1K{1}.
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It follows from the inequality d(νi,ν j)> 1 that [L (G )] ji = 0 and (3.2) can be expanded as:

det(Ci j) =(−1)κ2

|V |

∑
r=1,r 6=i, j

(

L jrLri

|V |

∏
k=1,k 6=i, j,r

(s+d−
G
{νk})

)

+

(−1)κ3

|V |

∑
r=1,r 6=i, j

|V |

∑
u=1,u6=i, j,r

(

L jrLruLui

|V |

∏
k=1,k 6=i, j,r,u

(s+d−
G
{νk})

)

+ . . . (3.4)

for some κl , l ∈ N|V |−2K{1}, which depend on the indices i and j and vary with the length

of the permutations. To express (3.3) in a more compact form, let Θ = {θ1,θ2, . . . ,θ|Θ|} and

Π = {Θ;Θ⊆ N|V |K{i, j}∧Θ 6=∅}, so that |Π|= 2|V |−2−1. Let also ΞΘ be the finite group

formed by the (|Θ|)! permutations on the set Θ. Furthermore, for Θ ∈Π and ψ ∈ ΞΘ define:

S(Θ) = ∏
k∈N|V |K({i, j}∪Θ)

(s+d−
G
{νk}), (3.5a)

P(Θ,ψ) = L jθψ(1)

(

|Θ|−1

∏
l=1

Lθψ(l)θψ(l+1)

)

Lθψ(|Θ|)i
. (3.5b)

Using (3.5), for d(νi,ν j)> 1, (3.4) can be rewritten as:

det(Ci j) = ∑
Θ∈Π

(−1)κ|Θ|

(

∑
ψ∈ΞΘ

P(Θ,ψ)

)

S(Θ), (3.6)

for some κ|Θ| ∈ N that depend on i and j. Breaking the first summation over |Θ| = k for
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k = 1, . . . , |V |−2 and using the notation Πk = {Θ;Θ⊂ N|V |K{i, j}∧|Θ|= k} in (3.6) yields:

det(Ci j) =
|V |−2

∑
k=1

(−1)κk ∑
Θ∈Πk

(

∑
ψ∈Ξk

P(Θ,ψ)

)

S(Θ), (3.7)

where κk ∈ N depend on i and j. Next, it follows from (2.4) and (3.5b) that:

ck(νi,ν j) = (−1)k ∑
Θ∈Πk−1

(

∑
ψ∈Ξk−1

P(Θ,ψ)

)

. (3.8)

The fact that S(Θ) is a polynomial of degree |V | − |Θ| − 2 in s with leading coefficient 1,

together with (3.3), (3.7) and (3.8), leads to:

det(Ci j) = K+
|V |−2

∑
k=1

(−1)κkck(νi,ν j)w|V |−k−1(s), (3.9)

where wl(s), l ∈ N|V |−2, are degree-l polynomials in s whose leading coefficients are unity,

K ∈ N is a constant, and κk ∈ N depend on i and j. The proof follows immediately from (3.9)

and upon noting that ck(νi,ν j) = 0 for k < d(νi,ν j). �

Remark 7. Lemma 6 is a significant extension to the all-minors matrix tree theorem in alge-

braic graph theory [73]. This lemma, together with (3.9), relates the minors of the Laplace-

transformed graph Laplacian to the inter-nodal paths and distances in the digraph. According

to Lemma 6, for d(νi,ν j) ∈ N|V |−2, det(Ci j) is a polynomial of degree |V |−d(νi,ν j)−1 in s

whose leading coefficient has an absolute value equal to cd(νi,ν j)
(νi,ν j).
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Theorem 4. Given a multi-agent system S and two distinct digraphs G1 = (V ,E1) and G2 =

(V ,E2) associated with it, consider a vertex νi ∈ V corresponding to agent xi ∈ S . If G1

and G2 are not distinguishable from xi, then d1(ν,νi) = d2(ν,νi) for all ν ∈ V K{νi}, and

c1
k(ν,νi) = c2

k(ν,νi) for k = d1(ν,νi) = d2(ν,νi), where cl
k(ν,νi) and dl(ν,νi) denote ck(ν,νi)

and d(ν,νi), respectively, for digraph Gl, l = 1,2.

Proof: If G1 and G2 are not distinguishable from xi, then xG1(t)− xG2(t) ≡ 0 for any

x(0) ∈ R|V |, and it follows from (2.9) that:

σ(νi)
T e−L (G1)t = σ(νi)

T e−L (G2)t , t > 0. (3.10)

Let Hl = sI +L (Gl), l = 1,2, where s ∈ C is the Laplace variable. Taking the Laplace trans-

form of (3.10):

σ(νi)
T H1

−1 = σ(νi)
T H2

−1, (3.11)

or equivalently:

[

H1
−1
]

ip
=
[

H2
−1
]

ip
, p ∈ N|V |. (3.12)

The adjoint of Hl , l = 1,2, can now be used to compute the inverse matrices as follows:

[

Hl
−1
]

nm
=

(−1)m+n det
(

Cl
mn

)

det(Hl)
, m,n ∈ N|V |, l = 1,2, (3.13)

where Cl
mn, l = 1,2, is the matrix obtained by removing the m−th row and n−th column of
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Hl, l = 1,2. It follows from (3.12) and (3.13) that:

det
(

C1
ji

)

det(H1)
=

det
(

C2
ji

)

det(H2)
, j ∈ N|V |, (3.14)

or:

det
(

C1
ji

)

det(H2) = det
(

C2
ji

)

det(H1), j ∈ N|V |. (3.15)

Next, det(Hl), l = 1,2, in (3.15) can be written as a summation over the product of all possible

permutations on |V | matrix elements [72], as given below:

det(H2) = ∑
ψ∈Ξ|V |

(−1)ι(ψ)
|V |

∏
j=1

[H2] jψ( j), (3.16a)

det(H1) = ∑
ψ∈Ξ|V |

(−1)ι(ψ)
|V |

∏
j=1

[H1] jψ( j), (3.16b)

where Ξ|V | is the finite group formed by the (|V |)! permutations on the set N|V |. Moreover,

for a permutation ψ(.) on the set N|V |, ι(ψ) denotes its length. Note that the only term in

det(Hl), l = 1,2, which includes s|V| (and s|V|−1) in the right-hand sides of (3.16) is the one

corresponding to the diagonal elements of Hl, and is given by:

|V |

∏
k=1

[Hl]kk = ∏
ν∈V

(s+d−
Gl
{ν}) = s|V |+

(

∑
ν∈V

d−
Gl
{ν}

)

s|V |−1 + . . .+ ∏
ν∈V

d−
Gl
{ν}. (3.17)

The power of s in any other term in the right-hand sides of (3.16) is less than |V|−1. The proof
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follows now from Lemma 6 and upon equating the leading coefficients and the polynomial

degrees in the left-hand side and right-hand side of (3.15) for j ∈ N|V |K{i}. �

The following proposition demonstrates that having different in-degrees for the vertex

corresponding to the observing agent is a sufficient condition for two digraphs to be distin-

guishable.

Proposition 1. Given a multi-agent system S , an agent x ∈ S , and two distinct digraphs

G1 = (V ,E1) and G2 = (V ,E2) that are both associated with S , let νi ∈ V be the vertex

that corresponds to x, for some i ∈ N|V |. If G1 and G2 are not distinguishable from x, then

d−
G1
{νi}= d−

G2
{νi}.

Proof: Let Hl and Cl
mn, l = 1,2, {m,n}⊂N|V |, be defined as in the proof of Theorem 4.

Rewriting (3.15) with j = i yields:

det
(

C1
ii

)

det(H2) = det
(

C2
ii

)

det(H1). (3.18)

Similarly to (3.16), det
(

Cl
ii

)

, l = 1,2 can be written as a summation over the product of all

possible permutations on |V |−1 matrix elements [72], as given below:

det
(

C1
ii

)

= ∑
ψ∈Ξ|V |−1

(−1)ι(ψ)
|V |−1

∏
j=1

[

C1
ii

]

jψ( j)
, (3.19a)

det
(

C2
ii

)

= ∑
ψ∈Ξ|V |−1

(−1)ι(ψ)
|V |−1

∏
j=1

[

C2
ii

]

jψ( j)
, (3.19b)
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where Ξ|V |−1 is the finite group formed by the (|V |−1)! permutations ψ(.) on the set N|V |−1

and for a permutation ψ ∈ Ξ|V |−1, ι(ψ) denotes its length. Note that the only term in det
(

C1
ii

)

which includes s|V|−1 or s|V|−2 in the right-hand side of (3.19a) is the one corresponding to

the diagonal elements of C1
ii, and is given by:

|V |−1

∏
j=1

[

C1
ii

]

j j
= ∏

ν∈V K{νi}

(s+d−
G1
{ν}) . . .

= s|V |−1 +

(

∑
ν∈V K{νi}

d−
G1
{ν}

)

s|V |−2 + . . .+ ∏
ν∈V K{νi}

d−
G1
{ν}. (3.20)

The power of s in any other term in the right-hand side of (3.19a) is less than |V|−2. A similar

argument applies to the other three determinants in (3.16) and (3.19). Denote by Wn(s) the set

of all polynomials in s with degrees less than or equal to n, for any n ∈N. One can then write:

det
(

C1
ii

)

= s|V |−1 +

(

∑
ν∈V K{νi}

d−
G1
{ν}

)

s|V |−2 +w1(s), (3.21a)

det(H2) = s|V |+

(

∑
ν∈V

d−
G2
{ν}

)

s|V |−1 +w2(s), (3.21b)

and

det
(

C2
ii

)

= s|V |−1 +

(

∑
ν∈V K{νi}

d−
G2
{ν}

)

s|V |−2 +w3(s), (3.22a)

det(H1) = s|V |+

(

∑
ν∈V

d−
G1
{ν}

)

s|V |−1 +w4(s), (3.22b)
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for some w1(s),w3(s) ∈ W|V |−3(s) and w2(s),w4(s) ∈ W|V |−2(s). Multiplication of the ex-

pressions in (3.21) and (3.22) leads to:

det
(

C1
ii

)

det(H2) = s2|V |−1 +

(

∑
ν∈V

d−
G2
{ν}+ ∑

ν∈V K{νi}

d−
G1
{ν}

)

s2|V |−2 +w5(s), (3.23)

and

det
(

C2
ii

)

det(H1) = s2|V |−1 +

(

∑
ν∈V

d−
G1
{ν}+ ∑

ν∈V K{νi}

d−
G2
{ν}

)

s2|V |−2 +w6(s), (3.24)

respectively, for some w5(s),w6(s) ∈W2|V |−3(s).

The proof follows by substituting (3.23) and (3.24) in (3.15), and upon equating the

coefficients of s2|V |−2 in the right-hand sides of (3.23) and (3.24). �

Remark 8. The condition in Theorem 4 are derived by equating the degrees and coefficients

of s at either side of (3.15) for any j ∈ N|V |K{i}, while the same procedure for j = i leads to

the in-degree condition in Proposition 1.

3.1.1 Jointly Detectable Link Failures

In this section, the notion of distinguishable digraphs from Definition 7 is used to define and

characterize the concept of joint detectability for a multi-agent system subject to simultaneous

link failures. The following definition is motivated by the need to detect the failure of multiple

links in the network based on the observed response of an agent [74].
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Definition 8. Given a multi-agent system S and its associated digraph G = (V ,E ), a subset

of edges E1 ⊂ E is said to be jointly detectable from the agent x∈S if G and G1 = (V ,E KE1)

are distinguishable from x.

The next corollary follows directly from (2.6) and Definition 8.

Corollary 1. Consider a multi-agent system S and its associated digraph G = (V ,E ), as

well as an agent x ∈S with its corresponding vertex ν ∈ V . For all ε ∈ ∂−
G
{ν}, the set {ε}

is jointly detectable from the agent x.

The next proposition exploits Theorem 4 to provide sufficient graphical conditions for

joint detectability of a link-set from an observing agent.

Proposition 2. Given a multi-agent system S and its associated digraph G1 = (V ,E ), con-

sider a vertex νi ∈ V corresponding to agent xi ∈S , and a subset of edges E1 ⊂ E . If there

exists an edge ε := (ν j,νk) ∈ E1 such that d(ν j,νi) > d(νk,νi), then E1 is jointly detectable

from xi.

Proof: To prove the proposition by contradiction, suppose that E1 is not jointly de-

tectable from xi and define G2 = (V ,E KE1), such that G1 and G2 are not distinguishable from

xi.
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It follows from Theorem 4 that for some {d̂1, d̂2} ⊂ N|V |−2:

d̂1 = d1(νk,νi) = d2(νk,νi), (3.25a)

d̂2 = d1(ν j,νi) = d2(ν j,νi), (3.25b)

and

c1
d̂1
(νk,νi) = c2

d̂1
(νk,νi), (3.26a)

c1
d̂2
(ν j,νi) = c2

d̂2
(ν j,νi), (3.26b)

where for l = 1,2 and any {τ,ν} ⊂ V , the numbers cl
k(τ,ν) and dl(τ,ν) denote ck(τ,ν) and

d(τ,ν), respectively, for digraph Gl.

Let P be a νkνi path of length d̂1 = d2(νk,νi) in G2. Since the sequence εP is a ν jνi

path of length 1+ d̂1 in G1, one has that:

d1(ν j,νi)6 1+d2(νk,νi), (3.27)

On the other hand, the assumption d1(νk,νi)< d1(ν j,νi), together with (3.25a), leads to:

d2(νk,νi)< d1(ν j,νi). (3.28)
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The relations (3.27) and (3.28) imply that:

d1(ν j,νi) = 1+d2(νk,νi), (3.29)

Next, it follows from (3.25) and (3.29) that d̂2 = 1+ d̂1. Also, note that since E KE1⊂ E ,

every ν jνi path of length d̂2 in G2 is a ν jνi path of length d̂2 in G1 as well, while the sequence

εP is a ν jνi path of length d̂1 + 1 = d̂2 = d1(ν j,νi) in G1 that does not exist in G2. Hence,

c1
d̂2
(ν j,νi)> 1+ c2

d̂2
(ν j,νi), which is in contradiction with (3.26b). �

Remark 9. Under the conditions specified in Proposition 2, the vertex ν j is located at a

greater distance from the observing vertex νi as compared to the vertex νk. Hence, the “in-

formation" concerning the state of ν j will “reach" the observing agent “faster" when passed

through the failed edge (ν j,νk).

The following proposition offers a different set of sufficient conditions under which any

combination of links sharing the common head vertex νk is jointly detectable from the agent

xi.

Proposition 3. Consider a multi-agent system S , its associated digraph G1 = (V ,E ), an

agent xi ∈ S with its corresponding vertex νi ∈ V , a vertex νk ∈ V , and a subset of edges

E2 ⊂ ∂−
G1
{νk}. If there exists an out-branching root νo ∈ V K{νk} as well as a νkνo path in

G2 = (V ,E KE2), then E2 is jointly detectable from xi.
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Proof: The result for k = i follows from Corollary 1. For k 6= i, suppose that Propo-

sition 3 does not hold, i.e., νo is an out-branching root of G2 and there exists a νkνo path in

G2, but xG1(t)− xG2(t)≡ 0 for all x(0) ∈ R|V |, where xG1(t) and xG2(t) denote the state of the

agent x calculated in the digraphs G1 and G2, respectively, with the same initial condition x(0).

Let Hl = sI+L (Gl), l = 1,2, where s ∈ C is the Laplace variable. Moreover, denote by Cl
mn,

l = 1,2, the (|V | − 1)× (|V | − 1) sub-matrix that results from removing the m−th row and

n−th column of Hl. Since xG1(t)− xG2(t) ≡ 0 for all x(0) ∈ R|V |, (3.10) to (3.13) still hold,

and it follows from the equality:

L (G2) = L (G1)−|E2|Γ((νk,νk))+ ∑
ε∈E2

Γ(ε), (3.30)

that the matrices Hl, l = 1,2, will only differ at [Hl]kk and [Hl]k j for all j ∈{n∈N|V |;(νn,νk)∈

E2}. Therefore, after removing the k−th row from Hl, l = 1,2, one has that C1
ki =C2

ki,s ∈ C,

and consequently det(C1
ki)≡ det(C2

ki) 6≡ 0, where the inequality follows from Lemma 4, since

det(C2
ki) at s = 0 is equal to the number of νk-rooted spanning out-branchings of G2. On the

other hand, it follows from (3.12) that
[

H1
−1
]

ik
≡
[

H2
−1
]

ik
. Now, substituting from (3.13) and

using det(C1
ki)≡ det(C2

ki) 6≡ 0, one arrives at the relation det(sI+L (G1))≡ det(sI +L (G2)).

Similarly, the equality
[

H1
−1
]

io
≡
[

H2
−1
]

io
along with the preceding result yields det

(

C1
oi

)

=

det
(

C2
oi

)

,s ∈ C. According to Lemma 4, for s = 0 this means that G1 and G2 have the same

number of νo-rooted spanning out-branchings. This, however, is in contradiction with the

result of Lemma 3 and the fact that νo( 6= νk) is an out-branching root of G2. �
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Remark 10. If all of the links in the set ∂−
G1
{νk} in Proposition 3 are simultaneously removed

to form the digraph G2, then the vertex νo 6= νk is not an out-branching root of G2. Therefore,

the set ∂−
G1
{νk} does not satisfy the sufficient conditions offered by Proposition 3 for joint

detectability from agent xi.

The following are direct consequences of Proposition 3 and Remark 1.

Corollary 2. Consider a multi-agent system S , its associated digraph G1 = (V ,E ), a vertex

νk ∈ V , and a subset of edges E2 ⊂ ∂−
G1
{νk}. If νk is an out-branching root of G2 = (V ,E KE2)

and there exists a second out-branching root νo ∈ V K{νk} in G2, then the edge-set E2 is jointly

detectable from agent x, ∀x ∈S .

Corollary 3. Consider a multi-agent system S and its associated digraph G1 = (V ,E ). If

G2 = (V ,E K{ε}) is strongly connected for all ε ∈ E , then the set {ε} is jointly detectable

from agent x, ∀ε ∈ E and ∀x ∈S .

Remark 11. It follows from Remark 1 that under the conditions of Proposition 3, νk is also

an out-branching root of G . Hence, there exists a νkνi path, from the head vertex of the failed

links to the vertex corresponding to the observing agent xi. Consequently, the “information"

concerning the link failures can be assumed to “reach" the observing agent.

Remark 12. The proof for the sufficient conditions in Proposition 2 relies on the highest power

of s and the leading coefficients in the minors of the transformed graph Laplacian. According

to Lemma 6, these parameters depend on the number of the shortest paths between the graph
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vertices, as well as their lengths. On the other hand, the proof for Proposition 3 revolves

around the minors of the transformed graph Laplacian at s = 0, which according to Lemma 4,

are related to the number of rooted spanning out-branchings in the digraph. The two sets of

results can therefore be interpreted as the two extremes corresponding to s→ ∞ and s = 0 in

the minors of the transformed graph Laplacian.

The next subsection offers a complete graphical representation for the class of jointly

detectable links that satisfy the condition of Theorem 4.

3.1.2 Shortest Paths Subgraph

The next definition and the corollaries which follow provide a complete characterization of

the class of detectable links that are introduced by the sufficient condition given in Theorem 4.

Definition 9. Given a digraph G = (V ,E ) and a vertex ν ∈ V , suppose that ∀µ ∈ V K{ν},

there exists a µν path in G . The shortest paths subgraph of G w.r.t. ν is identified by

K ν
G

= (V ,EK ), where EK ⊂ E K∂+
G
{ν} and ∀ε := (τ,ϑ) ∈ E K∂+

G
{ν}, ε ∈ EK ←→ ∃k ∈

N|V |K{1}, d(τ,ν) = d(ϑ ,ν)+1 = k.

Remark 13. Given a digraph G = (V ,E ) and a vertex ν ∈ V , suppose that ∀µ ∈ V K{ν},

there exists a µν path in G . Let K
ν

G
be the shortest paths subgraph of G w.r.t. ν . For all

µ ∈ V K{ν}, the following equality holds: cd(µ,ν)(µ,ν) = ∂+
K ν

G

{µ}.

The following corollary is a restatement of Proposition 2 in terms of Definition 9.
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Corollary 4. Given a multi-agent system S and its associated digraph G = (V ,E ), consider

a vertex ν ∈ V corresponding to agent x∈S , and a subset of edges E f ⊂ E . Assume also that

for any µ ∈ V K{ν}, there exists a µν path in G , and let K
ν

G
= (V ,EK ) denote the shortest

paths subgraph of G w.r.t. ν . If E f ∩EK 6=∅, then E f is jointly detectable from x.

The following corollary exploits Remark 13 to translate the sufficient condition of The-

orem 4 into a set of sufficient conditions in terms of the shortest paths subgraphs, which in

turn help determine if the removal of two distinct link-sets leads to two distinct digraphs with

distinguishable dynamics for the multi-agent system.

Corollary 5. Given a multi-agent system S and its associated digraph G = (V ,E ), consider

a vertex ν ∈ V corresponding to agent x ∈S , and two distinct subsets of edges E
f

1 ⊂ E and

E
f

2 ⊂E . Suppose that for any µ ∈V K{ν}, there exists a µν path in G , and let K ν
G
=(V ,EK )

denote the shortest paths subgraph of G w.r.t. ν . If ∃µ ∈ V K{ν}, |(E f
1 KE

f
2 )∩ ∂+

K ν
G

{µ}| 6=

|(E
f

2 KE
f

1 )∩ ∂+
K ν

G

{µ}|, then G1 = (V ,E KE
f

1 ) and G2 = (V ,E KE
f

2 ) are distinguishable from

agent x.

Remark 14. Setting E
f

2 = ∅ in the condition of Corollary 5 leads to ∃µ ∈ V K{ν}, |E
f

1 ∩

∂+
K ν

G

{µ}| 6= 0 which is equivalent to the condition stated in Corollary 4. Hence, Corollary 4

can be regarded as a special case of Corollary 5.
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3.2 Examples and Discussion

Consider a multi-agent system S = {x1,x2,x3,x4} with the digraph G = (V ,E ), where V =

{ν1,ν2,ν3,ν4} and E = {(ν1,ν2),(ν1,ν3),(ν2,ν3),(ν2,ν4),(ν3,ν1),(ν3,ν2),(ν3,ν4)}, as de-

picted in Fig. 3.1(a).

The digraphs resulting from the failure of each of the links ε1 := (ν1,ν2), ε2 := (ν2,ν3),

ε3 := (ν3,ν2), ε4 := (ν2,ν4) are Gl = (V ,E K{εl}), l ∈ N4, and are depicted in Figs. 3.1(b)-

3.1(e). The failed responses of x1 with respect to each of the edges εl, l ∈ N4 are depicted in

Figs. 3.2(a)-3.2(d), with the initial states set randomly. It is straightforward to verify that only

ε4 is not detectable from x1, and that is because ν4 is not an out-branching root of G4 and there

does not exists a ν4ν1 path in G4.

As a second example, consider a multi-agent system Ŝ = {x̂1, x̂2, x̂3, x̂4} and suppose

that its associated digraph is given by G2 in Fig. 3.1(c), with νl, l ∈ N4, corresponding to

x̂l, l ∈ N4.

The failure of the edge ε3 = (ν3,ν2) in G2 leads to the digraph Ĝ , which is depicted in

Fig. 3.1(f). Since there does not exist a ν2ν1 path in G2, the conditions of Propositions 2 or 3

are not satisfied for ε3 and x̂1. Fig. 3.2(e) shows the failed response of x̂1 w.r.t. ε3. Accordingly,

it is the case that x̂1(t)− x̂
ε3

1 (t) ≡ 0 and ε3 is not detectable from x̂1. On the other hand, the

failed response of x̂2 w.r.t. ε3 in Fig.3.2(f) indicates that ε3 is detectable from x̂2, as predicted

by Corollary 1.

38



(a) G (b) G1 (c) G2

(d) G3 (e) G4 (f) Ĝ

Figure 3.1: The digraphs for examples of Section 3.2.

3.3 Conclusions

The analytical developments in this chapter include a powerful extension to the all-minors

matrix tree theorem that relates the polynomial degree and leading coefficient of the minors of

the transformed Laplacian of a digraph to the length and number of shortest paths connecting

its vertices. Moreover, the analytical results reveal an intricate relationship between the ability

to distinguish between the dynamic response of two multi-agent systems and the inter-nodal
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distances and number of shortest paths in their digraphs. Detectability of link failures is stud-

ied as a special case, and sufficient conditions indicate that, in order for a group of links to be

jointly detectable from a given agent, it suffices to design the information flow digraph in such

a way that for one of the links in the group, the head vertex is at a shorter topological distance

from the observing agent, as compared to the tail vertex. Alternatively, a group of links with

a common head are jointly detectable from any agent in the network, provided the common

head vertex is an out-branching root and there exists another out-branching root in the network

information flow digraph. Illustrative examples in the chapter demonstrate the applicability of

the proposed concepts.
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Figure 3.2: The failed responses for different agents and links with random initial conditions.
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Chapter 4

Preservation of Network Controllability

In this chapter, structural controllability of a leader-follower multi-agent system with mul-

tiple leaders is studied from a graph-theoretic point of view. The problem of preservation

of structural controllability under simultaneous failures in both the communication links and

the agents is investigated. The effects of the loss of agents and communication links on the

controllability of an information flow graph are previously studied. In this work, the corre-

sponding results are exploited to introduce some useful indices and importance measures that

help characterize and quantify the role of individual links and agents in the controllability of

the overall network. Existing results are then expanded by considering the effects of losses in

both links and agents at the same time. To this end, the concepts of joint (r,s)−controllability
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and joint t−controllability are introduced as quantitative measures of reliability for a multi-

agent system, and their important properties are investigated. Lastly, the class of jointly crit-

ical digraphs are introduced and it is stated that if a digraph is jointly critical, then joint

t−controllability is a necessary and sufficient condition for remaining controllable follow-

ing the failure of any set of links and agents, with cardinality less than t. Various examples

throughout the chapter are exploited to elaborate on the analytical findings.

The remainder of this chapter is organized as follows. The background and motivation

of the study are explained in Section 4.1. The tools and concepts introduced in Chapter 2

are then used in Sections 4.2 and 4.3 to characterize and quantify the importance of every

link and agent in the controllability of the overall digraph. In Section 4.4, first the notion of

joint controllability is offered for the characterization of simultaneous failures in the network,

and then the class of jointly critical digraphs are introduced and their favorable properties are

pointed out. The analytical results of Sections 4.2 to 4.4 are illustrated and discussed using

several examples throughout the text, and concluding remarks are provided in Section 4.5.

4.1 Background and Motivation

The problem of controllability in a Laplacian-based leader-follower multi-agent system with

consensus-like interaction rules is first formulated by Tanner [75], where necessary and suf-

ficient conditions for controllability are presented in terms of eigenvectors and eigenvalues

of a sub-matrix of graph Laplacian corresponding to the follower nodes. The importance of
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a graph theoretic characterization for controllability is also pointed out in [75]. The authors

in [76] propose a sufficient condition for controllability of the network that is based on the null-

spaces of the leader and follower incidence matrices. The condition is then restated in terms

of the first homology of the network graph and its quotient over follower nodes. In a different

attempt, Rahmani and Mesbahi [77] use Tanner’s results to establish a relation between the

notion of graph symmetry and the system theoretic concept of controllability by stating that

symmetry with respect to follower nodes results in the uncontrollability of the network. The

work [78] applies the concept of controllability to a network represented by a weighted di-

rected graph and provides an interpretation for the controllability matrix in terms of the gains

of fixed-length paths originated from the input node. Further results by Ji and Egerstedt [79]

show that the existence of a common eigenvalue between the Laplacians of the original graph

and the graph corresponding to the follower nodes is a necessary and sufficient condition for

uncontrollability. This result is subsequently used to develop a sufficient condition based on

the graph-theoretic concept of equitable partitions [80], which is then used to obtain a nec-

essary and sufficient condition using relaxed equitable partitions [81]. Moreover, while the

results relating graph symmetry to uncontrollability in [80] are shown to be explicable using

equitable partitions, the relaxed equitable partitions in [81] provide a graph-theoretic char-

acterization of the controllable and uncontrollable subspaces in the network. Another recent

result shows that a multi-agent system is controllable if and only if no eigenvector of graph
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Laplacian takes a zero value on the elements corresponding to the leaders [82]. Other chal-

lenging scenarios involving dynamic topologies and time-delay have also been investigated in

the literature. For example, it is shown in [83] that switching between fixed uncontrollable

topologies can lead to a controllable system. In a recent work, the structural controllability of

complex real-world networks is investigated by [56] and network links are categorized based

on the robustness of control against link failures.

4.1.1 Controllability in the Face of Time-Delay

The question of investigating the effect of time-delay on network controllability is intrigu-

ing indeed. The earliest results on the extension of the concept of controllability to time-

delay systems can be traced back to 1960s and 1970s, where system properties such as Rn-

controllability, point-wise completeness, and spectral controllability are studied and their sat-

isfiability under various algebraic conditions is investigated [84–87]. It is pointed out in [88]

that the concept of controllability for delay differential equations is fundamentally different

from that for ordinary differential equations, since the issue of state-reachability for the former

would involve functions over time-intervals as opposed to points in the state-space. Moreover,

the delay introduces additional requirements on the minimum reaching time, and the design

efforts are no longer restricted to the memoryless feedback control laws [88]. Historically,

relying on Gramian rank conditions that make use of the symbolic solutions for delay dif-

ferential equations as in [89], has proven less useful due to the difficulties in calculating the
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fundamental matrix of the delay differential equations [90]. Therefore, alternative conditions

that involve the equation coefficients have been sought after as in [84, 91]. Another category

of results make use of a commensurate delay model along with a delay operator to exploit the

available tools from polynomial rings algebra as in [86]. The only available result on struc-

tural controllability subject to time-delay is of the same nature [92]. Most recently, the use

of matrix Lambert W function has lead to an analytical solution for LTI systems with single

time-delay [93]. This solution, which is expressed as an infinite sum, has facilitated the cal-

culation of the Gramians and the corresponding controllability rank conditions of time-delay

systems in both time and Laplace domains [94].

4.1.2 Controllability in the Face of Failures

The papers [50–52] approach the problem of link and agent failures by deriving graphical

conditions for the preservation of structural controllability in the face of such failures. While

existing results on the controllability of multi-agent systems provide an important measure

of reliability of network to faults, they cannot handle the important problem of simultaneous

failure of communication links and agents.

The chief aim of this chapter is to expand on the results of [50–52] by considering the

case when communication links and agents in the network are both prone to failure. More-

over, the concepts of link and agent controllability degrees introduced in [50] and [52] are

exploited to provide quantitative measures for the importance of individual links and agents in
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preserving the controllability of the overall digraph. To this end, the problem of preservation

of structural controllability under link and agent failures is considered as a gateway for evalu-

ation and comparison of the contributions made by various links in the network. In this venue,

to evaluate the role of a link in the network the controllability of the multi-agent system with

and without that link is investigated and conclusions are drawn accordingly. It is further stated

that the importance of agents are reflected in their outgoing links and quantitative measures are

subsequently offered to characterize the importance of individual agents in the network. So as

to quantify the resilience of a network against multiple simultaneous failures, the notions of

joint (r,s)−controllability and joint t−controllability are proposed and the latter is shown to

be computable in polynomial-time. Next, a class of digraphs are investigated, for which joint

t−controllability is a necessary and sufficient condition for remaining controllable after the

failure of any set of links and agents with size less than t.

Identification and characterization of key link-points are important requirements in the

cooperative and reliable control of multi-agent networks. Furthermore, the comparative study

of the importance of individual agents in the network is key to the design of reliable fault-

tolerant multi-agent systems, by providing guide-lines on where to focus the recovery oper-

ations and which agents to prioritize in the case of a network-wide failure. The results are

therefore of both theoretical and practical interest. On the other hand, the study of simulta-

neous failures is important in light of the fact that in real-world multi-agent systems, some

faults can affect part of the network, containing a number of links and agents. This type of
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failure in multi-agent systems, where terrain properties or hardware faults disable a number

of agents and limit the ability of others to communicate, motivates the study of controllability

under simultaneous failure of links and agents.

4.2 Importance of Links to Network Controllability

In Subsection 4.2.1, which succeeds this paragraph, the concept of link controllability degree

(Definition 3) is employed to quantify the “contribution" of an uncritical link to the con-

trollability of the overall network. Next, in Subsection 4.2.2 the agent controllability degree

(Definition 4) is used to introduce a second measure of importance, namely the agent control-

lability index, that would apply to both critical and uncritical links. A relevant discussion on

the robustness of control law against link failure and the subsequent classification of links can

be found in [56].

4.2.1 Link Controllability Index

The next definition provides a means to determine which uncritical links take precedence in

terms of their importance in the network.

Definition 10. Consider an information flow digraph G = (V ,E ) with the root-set R, and let

ε ∈ E be an uncritical link in G . Let also G1 = (V ,E K{ε}) be the digraph that results from

the removal of the edge ε in G . Denote the number of critical links in G and G1 by n and
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n1, respectively. The link controllability index of the edge ε is characterized as σ(G ,ε;R) =

n1−n.

Remark 15. Given an information flow digraph G = (V ,E ) with the root-set R, for all

uncritical edges ε ∈ E , the inequalities 0 6 σ(G ,ε;R) 6 |E |− p′−1 hold, where p′ ∈ N is

the cardinality of the union of all critical link-sets in G .

Remark 16. Using Definitions 3 and 10, all links in a multi-agent network can be categorized

based on their importance. Accordingly, the role of the critical links is superior to the uncriti-

cal ones. Moreover, amongst the uncritical links, those with higher link controllability indices

are more important.

The examples that follow, shed light upon the characteristics of link controllability index

and how it reflects the “importance" of each uncritical link in the overall network. In all of the

examples herein, nodes belonging to the root-set (leaders) are represented by colored vertices.

Example 1. Uncritical links and link controllability indices.

Digraph Ḡ1 of Fig. 4.1 is 2−link and 2−agent controllable. The set of edges in this

digraph can be partitioned into two disjoint sets comprised of critical and uncritical links. It

has seven critical links which are represented by solid edges. These seven critical links join

each other in five different critical link-sets, each of which has a cardinality of two. The link

controllability indices of the uncritical links in this digraph take the values zero (single-dotted

edges) and one (fully-dotted edges). The two links which connect the root-set to vertex ν4
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have σ = 1. This is because the cardinality of the out-cut of the root-set is three, and as

any of the two uncritical links are removed from the out-cut of the root-set, the remaining

one forms a new critical link-set with the critical link which has ν5 as its tail. A similar

argument applies to the in-cut of the vertex ν3, which again has three links: one critical and

two uncritical with σ = 1. The two links shown by single-dotted edges have σ = 0, and they

are the least significant links in terms of the preservation of controllability in face of link

failures. The next example demonstrates a case where the link controllability indices exceed

the link controllability degree of the digraph.

Figure 4.1: The digraph Ḡ1 of Example 1 is 2−link and 2−agent controllable and has seven

critical links (solid edges), two uncritical links with σ = 0 (single-dotted edges), and four

uncritical links with σ = 1 (fully-dotted edges).

Example 2. A digraph with link controllability indices greater than link controllability degree.

Digraph Ḡ2 of Fig. 4.2 is 2−link and 1−agent controllable. It has six critical links which

are depicted by solid edges. These six critical links join each other in three mutually disjoint

critical link-sets, each of which has a cardinality of two. The uncritical links in this digraph

can be divided into two groups. The first group is comprised of the three links represented
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by fully-dotted edges. The link controllability indices of these three links are equal to four

and they play a more important role in the preservation of controllability as compared to the

remaining 12 uncritical links, which are denoted by single-dotted edges and have σ = 2. It is

worth highlighting that as the removal of uncritical links causes new disjoint critical link-sets

to be formed from the previously uncritical links, the value of the link controllability index for

any uncritical link equals an integer multiple of the link controllability degree of the digraph.

This property, however, does not always hold as indicated in Example 1.

Figure 4.2: Digraph Ḡ2 of Example 2 is 2−link and 1−agent controllable and has six critical

links (solid edges), three uncritical links with σ = 4 (fully-dotted edges) and 12 uncritical

links with σ = 2 (single-dotted edges).

In the next subsection, the effect of a link loss on the agent controllability degree of a

digraph is utilized to quantify the importance of each link in the network, through the notion

of agent controllability index.
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4.2.2 Agent Controllability Index

Definition 11. Consider an information flow digraph G = (V ,E ) with the root-set R and let

ε ∈ E be a given edge in G , and G1 = (V ,E K{ε}). The agent controllability index of the edge

ε is denoted by ρ(G ,ε;R) and is given by ρ(G ,ε;R) = ac(G ;R)−ac(G1;R).

Remark 17. Unlike the link controllability index that is restricted to the case of uncritical

links, agent controllability index provides a measure of importance that can be applied to

every link in the network. Similarly to the link controllability index, the higher the agent con-

trollability index of a link, the more superior is the role that it plays in the preservation of

controllability throughout the network. However, as the uncritical links are already charac-

terized through their link controllability indices, agent controllability index can be principally

used to determine the relative importance of critical links.

Remark 18. Given an information flow digraph G = (V ,E ) with the root-set R, for any edge

ε ∈ E , it is straightforward to show that 0 6 ρ(G ,ε;R)6 ac(G ;R)6 |V |− |R|.

Lemma 7. Consider an information flow digraph G = (V ,E ) with the root-set R and let

ε ∈ E K∂+
G

R be a given edge in G , whose head is the vertex ν ∈ V KR. If G1 = (V ,E K{ε}),

then ρ(G ,ε;R) = ac(G ,ν;R)−ac(G1,ν;R).

Proof: The proof follows from the fact that the removal of the edge ε ∈ E K∂+
G

R can

affect the agent controllability degree of digraph G only by altering the available paths that

connect the root-set R to the head vertex ν , through other agents in the network. On the other
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hand, if ε ∈ ∂+
G

R, then ε provides a direct path from R to ν without involving any other

agents in the network, and according to Remark 5, ac(G ,ν;R) = |V |− |R|, regardless of the

available paths. �

Theorem 5. Consider an information flow digraph G = (V ,E ) with the root-set R. If

there exist a vertex ν ∈ V and an edge ε such that {ε} ⊆ ∂+
G

R ∩ ∂−
G
{ν} 6= ∅, then ∀ε̂ ∈

∂−
G
{ν}K{ε}, ρ(G , ε̂;R) = 0.

Proof: Let Ĝ = (V ,E K{ε̂}). For the case where ε̂ /∈ ∂+
G

R ∩ ∂−
G
{ν}, the proof fol-

lows from Remark 5 and Lemma 7 upon noting that since the edge ε connects the vertex

ν directly to the root-set, ac(G ,ν;R) = ac(Ĝ ,ν;R) = |V | − |R|, and hence ac(G ,ν;R)−

ac(Ĝ ,ν;R) = 0. On the other hand, if ε̂ ∈ ∂+
G

R ∩ ∂−
G
{ν}, then the proof follows from the

fact that both ε and ε̂ are providing a direct connection from the root-set R to their common

head vertex ν that does not rely on any other follower agents in the network. Therefore, as

long as this direct connection from the root-set R to the head vertex ν exists, removing either

one of the edges ε or ε̂ has no effects on the agent controllability degree of digraph G . Hence,

if {ε, ε̂} ⊆ ∂+
G

R∩∂−
G
{ν}, then ρ(G ,ε;R) = ρ(G , ε̂;R) = 0. �

Theorem 5 facilitates the characterization of the agent controllability index for those

edges, whose heads are directly connected to the root-set. In the special case that there ex-

ist multiple edges connecting the root-set to a vertex, Theorem 5 reduces to the following

corollary.
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Corollary 6. Given an information flow digraph G = (V ,E ) with the root-set R and a vertex

ν ∈ V KR, if |∂+
G

R∩∂−
G
{ν}|> 1, then ∀ε ∈ ∂+

G
R ∩∂−

G
{ν},ρ(G ,ε;R) = 0.

Remark 19. Let G , V and R be given as in Corollary 6. It is notable that increasing the

cardinality of ∂+
G

R ∩∂−
G
{ν} can improve the link controllability degree of digraph G , while

according to Corollary 6, |∂+
G

R ∩∂−
G
{ν}| has no impact on the agent controllability degree

of G as long as |∂+
G

R∩∂−
G
{ν}|> 1.

Example 3. The range of values for agent controllability index.

The digraph Ḡ3 in Fig. 4.3(a) is 2−agent and 3−link controllable, and all of its links are

critical. However, only those links that belong to the out-cut of the root-set have ρ = 1, and the

rest have ρ = 0. Next, consider the digraph Ḡ4 = (V̄4, Ē4) depicted in Fig. 4.3(b), and assume

that the colored vertex r ∈ V̄4 at the top is designated as the root. It can be easily verified

that ac(Ḡ4;{r}) = 4 and lc(Ḡ4;{r}) = 1. Moreover, since all non-root vertices are connected

directly to the root-set {r}, it follows from Theorem 5 that ∀ε ∈ Ē4K∂+
Ḡ4
{r}, ρ(Ḡ4,ε;{r}) = 0.

On the other hand, for any i ∈ N4, if εi = (r,νi), then ρ(Ḡ4,εi;{r}) = i. Therefore, the agent

controllability indices of the edges in this digraph take all possible values between 0 and

ac(Ḡ4;{r}) = |V̄4| − |{r}| = 4. It is also notable that ε4 is the only critical link in Ḡ4 and

its agent controllability index is the highest of all links in Ḡ4. The next example, however,

indicates that the criticality of a link does not necessarily imply a higher agent controllability

index.

Example 4. Criticality of the links and their agent controllability indices.
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(a) Ḡ3 (b) Ḡ4

Figure 4.3: (a)The digraph Ḡ3, which is 2−agent and 3−link controllable. (b) The 1−link and

4−agent controllable digraph Ḡ4 of Example 3, in which the agent controllability indices take

all possible values from 0 to 4.

Consider the digraph Ḡ5 of Fig. 4.4(a). Every dotted link in this digraph is critical (and

vice versa) and it follows from Theorem 5 that those critical links which do not belong to the

out-cut of the root-set have zero agent controllability index, while all other critical links have

ρ = 2. On the other hand, the solid links are all uncritical with unity agent controllability

index. Moreover, the link controllability index of every uncritical link in Ḡ5 is equal to two as

the removal of any of the solid links in Ḡ5 causes two of the remaining solid links to form a

new critical link-set together.

As a second example, consider the digraph Ḡ6 of Fig. 4.4(b). This digraph is 2−link

and 4−agent controllable, and although every link in Ḡ6 is critical, according to Theorem 5

the links depicted by solid edges have zero agent controllability index. On the other hand,

the agent controllability index of the dotted edges in Ḡ6 is equal to three, pointing to their

relatively superior role in the preservation of the flow of information from the root-set, and the

controllability of the network. The digraph Ḡ7 in Fig. 4.4(c) offers a third example, for which

Corollary 6 indicates that all critical links have ρ = 0, while the uncritical ones have ρ = 1.
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Overall, these examples indicate that, in general, the criticality of a link is not necessar-

ily correlated with its agent controllability index. In particular, it is possible to have critical

links with zero agent controllability indices and uncritical links with non-zero agent control-

lability indices. The first two examples further demonstrate that, as suggested in Remark 17,

agent controllability index can be employed as an effective tool for the characterization of the

relative importance of critical links in the network.

(a) Ḡ5 (b) Ḡ6 (c) Ḡ7

Figure 4.4: (a)The digraph Ḡ5 of Example 4, for which critical and uncritical links are de-

noted by dotted and solid links, respectively. (b) The 2-link and 4-agent controllable digraph

Ḡ6 of Example 4, in which every link is critical. (c)The digraph Ḡ7 is 3−agent and 2−link

controllable. It has eight critical links with ρ = 0, and three uncritical links with ρ = 1.

The next lemma and the theorem which follows provide a full characterization of the

agent controllability index for those edges, whose heads are not directly connected to the

root-set.

Lemma 8. Consider an information flow digraph G = (V ,E ) with the root-set R, and let

τ,ν ∈ V be two vertices in G such that ε := (τ,ν) ∈ E . Denote G1 = (V ,E K{ε}). If there

exists a critical agent-set C
1
q ⊂ V KR of G1 such that τ ∈ C

1
q or ν ∈ C

1
q , then ρ(G ,ε;R) = 0.
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Proof: The proof follows upon noting that C 1
q is a critical agent-set of G as well. �

Theorem 6. Consider an information flow digraph G = (V ,E ) with the root-set R, and let

τ,ν ∈ V KR be two vertices in G such that ε := (τ,ν) ∈ E K∂+
G

R and ∂−
G
{ν}∩ ∂+

G
R = ∅.

If ρ(G ,ε;R) 6= 0, then ρ(G ,ε;R) = 1 and there exists a critical agent-set Cq ⊂ V KR of G

such that τ ∈ Cq.

Proof: Let G1 = (V ,E K{ε}) and consider a critical agent-set C 1
q ⊂ V KR of G1. Since

ρ(G ,ε;R) 6= 0, it follows from Lemma 8 that τ /∈ C 1
q . The proof follows upon noting that

Cq = C
1
q ∪{τ} is a critical agent-set of G and τ ∈ Cq. �

Remark 20. Theorems 5 and 6 address two mutually exclusive cases: the former applies to

the incoming edges of the vertices that are directly connected to the root-set, while any other

edge in the network is addressed by the latter.

In Section 4.3, which succeeds this paragraph, the notions of agent and link controllabil-

ity degrees are exploited to judge the importance of an agent as reflected through its outgoing

links. The agent and link criticality indices are defined in Subsections 4.3.1 and 4.3.2, re-

spectively, and the former is shown to distinguish between critical and uncritical agents based

solely on their outgoing links. Next, the critical link index is defined in Subsection 4.3.3 as

the number of the outgoing critical links for an agent. Finally, in Subsection 4.3.4, the effect

of an agent on the uncritical links of the network is captured through the so-called uncritical

link index, and this, together with the three aforementioned indices, is offered as a design tool

for ordering and prioritizing agents of a network.
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4.3 Importance of Agents to Network Controllability

To evaluate the role of an agent in the network, one may remove that agent from the network

and compare the controllability of the resultant network with the original one. By the same

token, it is notable that the effect of the removal of an agent on the remaining agents is equiv-

alent to the effect of the removal of all incoming and outgoing links of the agent in question.

Hence from this viewpoint, the importance of an agent in the network is reflected in its incom-

ing and outgoing links. However, the simple counterexample of a pathological branch out of

the network indicates that they are indeed the outgoing links upon which the importance of

an agent is primarily reflected. The link and agent controllability degrees of the digraph Ḡ8 in

Fig. 4.5 are both equal to 1, and (ν2,ν1) is the only critical link in this digraph. Nonetheless,

despite being the head to the only critical link of Ḡ8, vertex ν1 contributes the least to the flow

of information and the preservation of network controllability.

Figure 4.5: The digraph Ḡ8 with a pathological branch out of the network.
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4.3.1 Agent Criticality Index

The following measure can be used to relate the criticality of an agent, as given in Definition 4,

to its outgoing links.

Definition 12. Consider an information flow digraph G = (V ,E ) with the root-set R, and

let ν ∈ V KR be an arbitrary non-root vertex in G . Let also G1 = (V ,E K∂+
G
{ν}). The

agent criticality index of vertex ν is denoted by δ (G ,ν;R), and is given by δ (G ,ν;R) =

ac(G ;R)−ac(G1;R).

Lemma 9. Given an information flow digraph G = (V ,E ) with the root-set R, if ac(G ;R) =

|V | − |R|, then ∀ν ∈ V KR, ∂−
G
{ν}∩ ∂−

G
R 6= ∅ and δ (G ,ν;R) = 0. Conversely, if for all

ν ∈ V KR, ∂−
G
{ν}∩∂−

G
R 6=∅, then ac(G ;R) = |V |− |R| and ∀ν ∈ V KR, δ (G ,ν;R) = 0.

Proof: The proof for the first part follows by contradiction, since if ac(G ;R) = |V |−

|R|, then all follower agents are critical and Cq = V KR is the only critical agent-set. Now, if

there exists a vertex ν̂ that is not the head of a link belonging to the out-cut of the root-set R,

then the removal of the agent-set CqK{ν̂} will make ν̂ unreachable from the root-set R, which

is in contradiction with Cq being a critical agent-set. By the same token, to prove the converse

suppose that ac(G ;R) < |V |− |R|. Then there exist a critical agent-set C 1
q $ V KR and an

agent ν̃ ∈V K
(

R ∪C
1
q

)

such that the removal of C
1
q will make ν̃ unreachable from the root-set

R. This, however, is also a contradiction since ν̃ is the head of a link belonging to the out-cut

of the root-set R. In both cases, the equality δ (G ,ν;R) = 0 for all ν ∈ V KR follows from

the fact that ∀ν ∈ V KR,ac(G ;R) = ac(G1;R) = |V |− |R|, where G1 = (V ,E K∂+
G
{ν}). �
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Remark 21. Digraph G = (V ,E ) with root-set R, for which ac(G ;R) = |V |− |R|, corre-

sponds to a pathological case where all agents are critical and they receive their “informa-

tion” from the root-set “directly”. In such a case, measures other than the agent criticality

index are used to distinguish between the follower agents in terms of their significance in the

network. Figs. 4.3(b) and 4.4(b) of Section 4.2 offer instances of such digraphs.

Theorem 7. Given an information flow digraph G = (V ,E ) with the root-set R, suppose that

ac(G ;R) < |V | − |R|. For all ν ∈ V KR, δ (G ,ν;R) = 1 if and only if ν is critical, and

δ (G ,ν;R) = 0 otherwise.

Proof: Since ac(G ;R) < |V | − |R|, the pathological case set forth in Lemma 9 does

not apply. Let G1 = (V ,E K∂+
G
{ν}), and suppose that Cq is an arbitrary critical agent-set of

G . The removal of Cq will make G1 uncontrollable, and if ν ∈ Cq, then C 1
q = CqK{ν} is a

critical agent-set of G1. Hence, δ (G ,ν;R) = |Cq|− |C
1
q |= 1. This proves that if ν is critical,

then δ (G ,ν;R) = 1. On the other hand, if ν is uncritical, then every critical agent-set of G

is a critical agent-set of G1 and vice-versa. Hence, δ (G ,ν;R) = ac(G ;R)−ac(G1;R) = 0,

which completes the proof. �

Remark 22. Theorem 7 indicates that the criticality of an agent in any digraph (except for

the pathological case described in Lemma 9 and Remark 21) is completely characterized by

its outgoing links and through its agent criticality index given in Definition 12.

60



4.3.2 Link Criticality Index

The agent criticality index offers the most conclusive importance measure for agents in a net-

work, and role of agents with δ = 1 is always superior to that of agents with δ = 0. Similarly

to the agent criticality index, which considers the effect of the removal of the outgoing links

on the agent controllability degree of the digraph, link criticality index is offered in the sequel

to capture how the link controllability degree of the digraph is affected by the removal of the

outgoing links. This index can be used as a measure to compare the importance of agents with

the same agent criticality index.

Definition 13. Consider an information flow digraph G = (V ,E ) with the root-set R, and

let ν ∈ V KR be an arbitrary non-root vertex in G . Let also G1 = (V ,E K∂+
G
{ν}). The link

criticality index of vertex ν is denoted by θ(G ,ν;R), and is given by θ(G ,ν;R)= lc(G ;R)−

lc(G1;R).

4.3.3 Critical Link Index

As a third measure of importance, the designer is advised to compare the number of critical

links amongst the outgoing links of each agent as captured by the following index.

Definition 14. Consider an information flow digraph G = (V ,E ) with the root-set R, and let

ν ∈ V KR be an arbitrary non-root vertex in G . The critical link index of vertex ν is denoted

by γ(G ,ν;R), and is given by γ(G ,ν;R) = |{ε ∈ ∂+
G
{ν}; lc(G ;R)− lc(G1;R) 6= 0}|, where

G1 = (V ,E K{ε}).
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Remark 23. The expression for γ(G ,ν;R) in Definition 14 indicates the number of critical

outgoing links of agent ν because for any edge ε ∈E and digraph G1 = (V ,E K{ε}) associated

with it, lc(G ;R)− lc(G1;R) is equal to one if and only if ε is critical, and is zero otherwise.

The next corollary is a direct consequence of Definitions 13 and 14.

Corollary 7. Given an information flow digraph G = (V ,E ) with the root-set R and a vertex

ν ∈ V KR, if γ(G ,ν;R)> 0, then θ(G ,ν;R)> 0.

4.3.4 Uncritical Link Index

For the cases, where the comparison of the three indices introduced in Subsections 4.3.1 to

4.3.3 are inconclusive in evaluating the importance of an agent, one can consider the effect of

the agent on the number of critical links in the network to characterize its role in maintaining

the “flow of information” in the network. To this end, only the uncritical links are removed

from the outgoing links of the agent and the resultant effect on the number of critical links in

the network is considered. The procedure is discussed in the sequel.

Definition 15. Consider an information flow digraph G = (V ,E ) with the root-set R, and

let ν ∈ V KR be an arbitrary non-root vertex in G . Let also E1 = {ε ∈ ∂+
G
{ν}; lc(G ;R)−

lc((V ,E K{ε});R) = 0} and G1 = (V ,E KE1). Denote the number of critical links in G and

G1 by n and n1, respectively. The uncritical link index of the agent ν is characterized as

ψ(G ,ν;R) = n1−n.
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The following proposition and the remark which follows justifies the removal of just the

uncritical outgoing links when calculating the uncritical link index according to Definition 15.

Proposition 4. Given an information flow digraph G = (V ,E ) with the root-set R, let C1 be

a set of critical links such that for some critical link-set Cp of G , one has C1 $ Cp. Every

uncritical link of G is an uncritical link of G1 = (V ,E KC1).

Proof: The proof follows by contradiction. Suppose that ε1 ∈ E KC1 is an uncritical link

of G that is critical in G1. Since lc(G1;R)= lc(G ;R)−|C1|, there exist a set C 1
p of lc(G ;R)−

|C1| − 1 links in G1 such that the removal of {ε1}∪C 1
p from G1 leads to an uncontrollable

digraph G2. Therefore, {ε1}∪C 1
p ∪C1 is a set of lc(G ;R) links whose removal reduces G to

the uncontrollable digraph G2. This in turn implies that {ε1}∪C 1
p ∪C1 is a critical link-set of

G which is a contradiction since ε1 is an uncritical link of G . �

Remark 24. In Proposition 4, the converse does not hold. In particular, the removal of a

critical link can make some critical links uncritical in the resultant network. As an example,

consider the digraph in Fig. 4.2. Following the removal of the critical link (ν4,ν5), every

other critical link in the network will become uncritical except for the critical link that is the

symmetric image of (ν4,ν5).

Remark 25. The four indices offered in this section can be used in their order of appearance

to compare and prioritize the follower agents in the network. The primary influence on the

information flow structure is captured by the agent and link criticality indices δ and θ . Of the
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two agents with the same criticality indices δ and θ , the one with the higher critical link index

γ has a more prominent role, due to its effect in maintaining the critical links in the network.

Finally, for the agents that cannot be distinguished based on the three indices δ , θ and γ , one

can use the uncritical link index ψ to compare the agents based on their contributions to the

flow of information across the uncritical links of the network.

To demonstrate the applicability of the proposed indices for characterizing the impor-

tance of various agents in a network, the values of the indices are calculated for some of the

digraphs introduced so far, and the results are listed in Table I. The following digraphs are

considered: digraph Ḡ1 of Fig. 4.1, digraph Ḡ2 of Fig. 4.2, digraphs Ḡ3 and Ḡ4 of Fig. 4.3, and

digraph Ḡ5 of Fig. 4.4(a). Each row corresponds to one agent of a given digraph, and the rows

corresponding to each digraph are in the order of the importance of the agents. In the cases,

where due to the network symmetry two or more agents take identical roles, only one of them

is represented in the table.

The results show that the proposed indices can be effectively combined to order the

vertices of the digraph Ḡ1 based on their priority. Accordingly, the critical agents are ν5 and

ν4, which are distinguished through their non-zero agent criticality indices. Amongst the

uncritical agents, ν3 has a higher γ and hence a more prominent role, followed by ν2 and then

ν1. On the other hand, amongst the critical agents, ν5 with the higher γ takes priority. This

example indicates that once the critical and uncritical agents of the network are determined,

then the critical link index can be effectively employed to distinguish between the agents in
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Table 4.1: Summary of the Results

Vertex − Digraph δ θ γ ψ

ν5− Ḡ1 1 1 2 1

ν4− Ḡ1 1 1 1 0

ν3− Ḡ1 0 1 2 0

ν2− Ḡ1 0 1 1 0

ν1− Ḡ1 0 0 0 1

ν5− Ḡ2 1 2 0 12

ν4− Ḡ2 0 1 1 0

ν3− Ḡ2 0 0 0 4

ν2− Ḡ2 0 0 0 4

ν1− Ḡ2 0 0 0 4

ν7− Ḡ3 1 2 6 0

ν6− Ḡ3 1 1 2 0

ν5− Ḡ3 1 1 2 0

ν4− Ḡ3 0 1 3 0

ν3− Ḡ3 0 1 2 0

ν2− Ḡ3 0 1 2 0

ν1− Ḡ3 0 1 1 0

ν4− Ḡ4 0 0 0 1

ν3− Ḡ4 0 0 0 0

ν2− Ḡ4 0 0 0 0

ν1− Ḡ4 0 0 0 0

ν2− Ḡ5 1 1 1 4

ν1− Ḡ5 1 0 0 2
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each subcategory.

In the digraph Ḡ2, the existence of a network bottleneck is effectively reflected in the

agent and link criticality indices of ν5, whereas the superiority of ν4 is portrayed by its link

criticality index. For the digraph Ḡ3, all of the links are critical. Therefore, the uncritical

link index ψ is zero for all agents in this digraph. However, the agent and link criticality

indices indicate that agent ν7 plays the most prominent role in this network, as it maintains

“the flow of information" to the two network sections formed by the agent subsets {ν1,ν3,ν5}

and {ν2,ν4,ν6}.

From Table I, it is clear that the proposed indices do not distinguish between the vertices

ν1 to ν3 in the digraph Ḡ4, while vertex ν4 of that digraph is prioritized. The importance of ν4

in Ḡ4 does not come from the fact that it is the head of the only critical link in the network.

Rather, its importance is due to the uncritical link (ν4,ν3) and the role of ν4 in maintaining

the flow of information from the root vertex to vertex ν3. The digraph Ḡ4 is an example of the

pathological case described by Lemma 9, in which case the agent controllability degree of the

links belonging to the out-cut of the root-set may provide the designer with some clues as to

the importance of the head vertices involved. Finally, in the case of the digraph Ḡ5, the fact

that all follower agents are critical means that the agent criticality index δ cannot distinguish

between the vertices. The link criticality index θ , however, points to the superior role of ν2 in

this digraph.
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This section is concluded by two remarks, which point out the polynomial-time com-

putability of the proposed importance measures in Sections 4.2 and 4.3, and the possibility of

considering higher order indices for a refined characterization of the uncritical links.

Remark 26. The authors in [50, 52] provide polynomial-time algorithms for computation of

agent and link controllability degrees in a given digraph. On the other hand, Remarks 21 to 23

together with Theorem 7 indicate that the criticality of a link/agent is related to the differ-

ence of two link/agent controllability degrees, and is therefore decidable in polynomial-time.

This in turn implies that the critical link index introduced in Definition 14 is computable in

polynomial-time. By the same token, the notions of agent controllability index and agent/link

criticality index are all given by differences between controllability degrees in Definitions 11-

13, and thus they are all computable in polynomial-time. Lastly, if for a particular uncritical

link or set of links the criticality of other links with and without those links is determined, then

Definitions 10 and 15 can be used to compute the link controllability index and uncritical link

index of various links and agents in polynomial-time. In conclusion, all of the notions intro-

duced in this chapter for the characterization and quantification of the relative importance of

agents/links, are computable and/or decidable in polynomial-time using the previously devel-

oped algorithms.

Remark 27. From the examples provided thus far, it is clear that the uncritical link index

fails as a measure to distinguish between the agents ν1 to ν3 in the digraph Ḡ2. Similarly,

the link controllability index for all but one of the uncritical links in the digraph Ḡ4 is zero,
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which means that the link controllability index does not provide an effective measure for the

prioritization of the uncritical links in this network. This and other similar cases suggest that

higher-order importance measures for the uncritical links can offer a refined characterization

of the information flow across the network. Accordingly, one may investigate the impact of the

removal of a certain uncritical link or the outgoing uncritical links of a given agent together

with any set of m other uncritical links in the network, and calculate the maximum possible

increment in the number of critical links of the network after such removals. This provides an

m−th order link controllability index or uncritical link index that can facilitate the ordering

and prioritization of the uncritical links and follower agents in the network. In particular, the

polynomial-time calculation of such indices is an interesting direction for future research.

The following section and the subsequent definitions, lemmas, and theorems provide

useful tools for investigating the effects of simultaneous link and agent failures on the control-

lability of an information flow digraph.

4.4 Joint Controllability

The concept of joint controllability degree parallels the notions of agent and link controllability

degrees in Subsection 2.3.1, and facilitates the extension of the previous results to the cases

where multiple simultaneous failures occur, affecting both links and agents in the network.
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4.4.1 Joint Controllability Degree

Definition 16. An information flow digraph G = (V ,E ) with the root-set R ⊂ V is said to be

joint (r,s)−controllable if it remains controllable in the case of simultaneous failure of any set

of links of size u 6 r and any set of non-root vertices of size v 6 s, where u+ v < r+ s (note

the strict inequality in the last expression).

The next lemma follows immediately from Definitions 3, 4 and 16.

Lemma 10. The following statements hold:

a) If G is joint (r,s)−controllable, then ∀u 6 r and ∀v 6 s, G is joint (u,v)−controllable.

b) If G is joint (r,s)−controllable, then r 6 lc(G ;R) and s 6 ac(G ;R).

c) If G is joint (r,s)−controllable and lc(G ;R) = r, then s = 0.

d) If G is joint (r,s)−controllable and ac(G ;R) = s, then r = 0.

Definition 17. An information flow digraph G = (V ,E ) with the root-set R ⊂ V is said to be

joint t−controllable if t is the largest number such that G is joint (u,v)−controllable for all

u+ v 6 t. Moreover, a minimal set of r vertices and s = t− r edges whose removal makes G

uncontrollable is referred to as a critical agent-link set, and is denoted by Crs ⊂ (V ∪E KR).

The number t is called the joint controllability degree of the digraph G w.r.t. the root-set R,

and is denoted by jc(G ;R).
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From Definitions 16 and 17, it follows that a sufficient condition for the preservation of

controllability in the face of simultaneous failure in links and agents is that the total number of

failed links and agents is less than the joint controllability degree of the underlying information

flow digraph.

Theorem 8. Given an information flow digraph G = (V ,E ) with the root-set R, jc(G ;R) =

min{lc(G ;R),ac(G ;R)}.

Proof: The proof follows by contradiction. Let lc(G ;R) = p, ac(G ;R) = q and

jc(G ;R) = t, and suppose that t < min(p,q). From Definition 17, for some {r,s} ⊂ Nt and

r+ s = t, there exists a critical agent-link set Crs which can be partitioned as Crs = A ∪L ,

where A ⊂ V , L ⊂ E , |A |= s, and |L |= r. Moreover, the removal of Crs from G leads to

an uncontrollable digraph G1 = (V1,E1), where V1 = V KA . Let B denote the set of agents

corresponding to the heads of the links in L . It follows that |B| 6 r and B∩A = ∅, be-

cause otherwise the links whose heads belong to B∩A can be deleted from Crs leading to a

smaller agent-link set whose removal makes G uncontrollable, which contradicts with Defini-

tion 17 and Crs being a critical agent-link set. Next, it follows from B∩A = ∅ and |B|6 r

that |A ∪B| 6 r+ s = t < q. Thus, the deletion of the agent-set A ∪B from G leads to a

controllable digraph G2 = (V2,E2), where V2 = V1KB. This in turn implies that every agent

belonging to V1KB in the digraph G1 is reachable from R and vice versa. The latter (the

converse statement) follows from the fact that if there exists a vertex ν ∈B that is reachable

from the root-set in G1, then the corresponding link in L whose head is ν can be deleted from
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Crs, leading to a contradictorily smaller critical agent-link set. Next for digraph G1, note that

since every vertex in B is unreachable from R while every vertex in V1KB is reachable from

R, one should have ∂+
G1

V1∩∂−
G1

B =∅ or equivalently ∂+
G

V1∩∂−
G

B =L , because otherwise

those vertices in B which are the heads of some links in ∂+
G1

V1∩∂−
G1

B will be reachable from

the root-set in G1. Now, consider an arbitrary vertex ν̂ belonging to the agent-set B in the di-

graph G . Such a vertex is the head of some l links in L , where l 6 |L |. In addition to these l

links, ν̂ can only be the head of some links whose tails are either any of the m6 |L |− l = r− l

agents in B or any of the s agents in A . Hence, |∂−
G
{ν̂}| 6 l +m+ s 6 r+ s. On the other

hand, the removal of ∂−
G
{ν̂} will make ν̂ unreachable from any vertex in G , and therefore

renders the digraph uncontrollable. This, however, is in contradiction with Definition 3 and

the fact that |∂−
G
{ν̂}|6 r+ s = t < p. �

The next corollary is a direct consequence of Theorems 3 and 8, and provides a neces-

sary condition on the number of edges of a joint t−controllable digraph.

Corollary 8. If an information flow digraph G = (V ,E ) is joint t−controllable, then |E | >

max{(|V |−1)t, |V |+ t−2}.

The next definition, and the theorem which follows, provide a mechanism to transform

the problem of joint t−controllability of a given digraph into q−agent controllability of an-

other digraph. This will, in turn, enable the multi-agent control system designer to take advan-

tage of the polynomial-time algorithms developed in [50] and [52] for specifying the critical

agent-link sets of a given digraph.
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Definition 18. Given a digraph G = (V ,E ), replace every edge ε ∈ E with two edges ε̂1 and

ε̂2 in the same direction as ε , and connect them through an intermediate vertex ν̂ε , termed

a black vertex. The resulting digraph Ĝ = (V̂ , Ê ) is called the edge-duplicate of G . Every

vertex of Ĝ that is not a black vertex is referred to as a white vertex.

Remark 28. Given a digraph G = (V ,E ) and its edge-duplicate Ĝ = (V̂ , Ê ), the follow-

ing equalities hold for the number of vertices and edges: |V̂ | = |V |+ |E | and |Ê | = 2|E |.

Moreover, every white vertex ν̂ν ∈ V̂ corresponds to one vertex ν ∈ V and every black vertex

ν̂ε ∈ V̂ corresponds to one edge ε ∈ E . There exists a one-to-one correspondence between

the sets V ∪E and V̂ .

Theorem 9. Consider a digraph G = (V ,E ) with the root-set R ⊂ V and its edge-duplicate

Ĝ = (V̂ , Ê ). The digraph G is joint t−controllable if and only if Ĝ is t−agent controllable.

Proof: The proof follows by construction, from the fact that Definition 18 specifies a

bijection between the sets V ∪E and V̂ . Using this bijection, any critical agent-link set of G

can be transformed into a critical agent-set of Ĝ and vice versa. �

A digraph G and its node-duplicate G̃ and edge-duplicate Ĝ (constructed according

to Definitions 5 and 18) are depicted in Figs. 4.6(a)−(c). The digraph in 4.6(a), with the

upper-most vertex as the root, is 2−link and 2−agent controllable. The digraph is also joint

(1,1)−controllable. It is jointly critical as well as joint 2−controllable. According to Theo-

rem 9, the latter is tantamount to 2−agent controllability of the digraph in Fig. 4.6(c). If the

node-duplication process of Definition 5 is applied to every white vertex in an edge-duplicated
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digraph Ĝ , a new digraph is generated, which can be used to investigate the agent controllabil-

ity of Ĝ efficiently. The new digraph is termed the node-edge-duplicate of G , and is denoted

by Ğ . The node-edge-duplicate of the digraph in Fig. 4.6(a) is depicted in Fig. 4.6(d). Lemma

5 provides a method for converting the problem of agent controllability in Ĝ to link con-

trollability in Ğ . Polynomial-time algorithms presented in [50, 52] for investigating the link

controllability of a given digraph can now be applied to Ğ , which, in fact, gives the joint

controllability degree of the original digraph G .

In the next subsection, the important class of jointly critical digraphs is introduced and

their role in characterizing robustness against simultaneous failures in both links and agents is

highlighted.

4.4.2 Jointly Critical Digraphs

The notion of agent controllability index from Subsection 4.2.2 can be exploited to charac-

terize and compare the relative susceptibility of digraphs with regard to agent or link failures.

Accordingly, in Lemmas 11 and 12, as well as Theorem 11 which follow, three classes of

digraphs, termed as agent-critical, link-critical and jointly critical, are introduced and some

of their important characteristics are pointed out.

Lemma 11. For an information flow digraph G = (V ,E ) with root-set R ⊂ V , if ∀ε ∈

∂+
G

R, ρ(G ,ε;R) = 1, then jc(G ;R) = ac(G ;R). Such a digraph for which the aforemen-

tioned assumption holds will be referred to as agent-critical.
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(a) (b) (c)

(d)

Figure 4.6: A digraph G , its node-duplicate G̃ , its edge-duplicate Ĝ , and its node-edge-

duplicate Ğ are depicted in (a), (b), (c) and (d), respectively. The uppermost vertex in all

four digraphs is assumed to be the root.

Proof: Using Theorem 8, it suffices to introduce a set A ⊂ V KR with the property

|A |6 lc(G ;R), whose removal makes G uncontrollable. To this end, consider a solution R ⊆

X ⊂ V to the minimization problem in (2.12), which means that |∂+
G

X | = lc(G ;R). The

following routine utilizes ∂+
G

X to generate one such set A with the desired characteristics.

�

Remark 29. When applying Routine 1 to an agent-critical digraph, it is notable that the
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Routine 1
1: A =∅
2: for all (τ,ν) ∈ ∂+

G
X do

3: if τ /∈R then

4: A = A ∪{τ}
5: else

6: A = A ∪{ν}
7: end if

8: end for

9: return A

assumption in Lemma 11 together with Corollary 6 ensures that step 6 will not be executed

more than once for a given vertex ν .

Fig. 4.3(a) shows the case of an agent-critical digraph, for which the agent and link

controllability degrees are given by q = 2 and p = 3, respectively, and they satisfy the relation

q 6 p, as suggested by Lemma 11.

Lemma 12. Consider an information flow digraph G = (V ,E ) with the root-set R ⊂ V . If

there exists a critical agent-set Cq ⊂ V KR of G such that ∀ν ∈ Cq, ∃ε ∈ ∂+
G
{ν}, for which

ρ(G ,ε;R) 6= 0, then jc(G ;R) = lc(G ;R). Such a digraph for which the aforementioned

assumption holds will be referred to as link-critical.

Proof: The proof follows upon application of Theorem 8 and introducing a set B ⊂ E

with the property |B| 6 ac(G ;R), whose removal makes G uncontrollable. Let Cq be a

critical agent-set satisfying the condition of Lemma 12. The following routine utilizes Cq to

generate one such set B with the property that B ⊂ E K∂+
G

R and |B|= |Cq|= ac(G ;R). �

75



Routine 2
1: B =∅
2: for all ν ∈ Cq do

3: for all ε ∈ ∂+
G
{ν} do

4: if B∩∂+
G
{ν}=∅ and ρ(G ,ε;R) = 1 then

5: B = B∪{ε}
6: end if

7: end for

8: end for

9: return B

Remark 30. When applying Routine 2 to a link-critical digraph, it is notable that with Cq

satisfying the conditions of Lemma 12, step 5 will be executed exactly once for every vertex

ν ∈ Cq.

Remark 31. Using Theorem 6, it can be stated that digraph G in Lemma 12 is link-critical

if there exists a critical agent-set Cq ⊂ V KR of G such that ∀ν ∈ Cq, ∃ε ∈ ∂+
G
{ν}, for which

ρ(G ,ε;R) = 1.

The digraphs Ḡ5 and Ḡ7 in Fig. 4.4 are both 3-agent and 2-link controllable. These

digraphs are link-critical and they satisfy the condition of Lemma 12.

Theorem 10. Consider a joint (r,s)−controllable digraph G = (V ,E ) with root-set R ⊂ V .

If G is agent-critical or link-critical, then r+ s 6 max{lc(G ;R),ac(G ;R)}.

Proof: According to the results of Lemmas 11 and 12, it suffices to prove that if G

is agent-critical, then r+ s 6 lc(G ;R), and if G is link-critical, then r+ s 6 ac(G ;R). For

an agent-critical digraph G , consider a solution R ⊆X ⊂ V to the minimization problem
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in (2.12). According to Theorem 2, the link controllability degree of G is equal to the out-

degree of X , i.e. |∂+
G

X | = lc(G ;R), and it follows from Lemma 10(b) that r 6 lc(G ;R).

If r = lc(G ;R), then Lemma 10(c) requires that s = 0, and hence the statement of the above

theorem holds. If on the other hand r < lc(G ;R), then choose a set of edges Zr ⊂ E such that

Zr ⊂ ∂+
G

X and |Zr| = r. Use Routine 1 after replacing ∂+
G

X with ∂+
G

X KZr to generate

a set A ⊂ V . Now, A ∪Zr is a set of |A | vertices and |Zr| = r edges, for which GA ,Zr
=

(V KA ,E KZr) is uncontrollable. However, G is joint (r,s)−controllable, which implies that

s 6 |A |. On the other hand, it follows from Routine 1 that |A | 6 |∂+
G

X KZr|. Hence s 6

|∂+
G

X KZr| or s 6 lc(G ;R)− r, which completes the proof for an agent-critical digraph. A

similar argument can be utilized to prove the statement for the case where G is link-critical.

From Lemma 10(b), it is clear that s 6 ac(G ;R). Now, starting from a critical agent-set Cq

that satisfies the condition of Lemma 12, select an arbitrary subset Zs⊂Cq of s = |Zs| agents.

If s = ac(G ;R), then Lemma 10(d) requires that r = 0 and the statement for the link-critical

case holds. If s < ac(G ;R), then applying Routine 2 to CqKZs yields a set B of |CqKZs| =

ac(G ;R)− s = |B| links, whose deletion together with the s agents in Zs will render G

uncontrollable. The proof for a link-critical digraph G follows now upon the realization that

since G is joint (r,s)−controllable, one should have |B|= ac(G ;R)− s > r. �

Remark 32. Using the pathological class of digraphs described in Lemma 9 and Remark 21,

it is straightforward to construct a joint (r,s)−controllable digraph G with the root-set R,

such that r + s > max{ac(G ;R), lc(G ;R)}. Non-trivial counterexamples are also possible
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and important. The joint (3,2)−controllable digraph in Fig. 4.7 is 4−link and 3−agent con-

trollable.

Figure 4.7: An example of a joint (r,s)−controllable digraph G which does not satisfy the

relation r+ s 6 max{ac(G ;R), lc(G ;R)}.

The next corollary is a direct consequence of Theorems 3 and 10, and it presents a

necessary condition on the number of edges in the agent-critical or link-critical digraphs for

joint (r,s)−controllability. The result can be used in the design of reliable multi-agent control

systems.

Corollary 9. Consider a joint (r,s)−controllable information flow digraph G = (V ,E ). The

following statements hold: if G is agent-critical, then |E | > (|V |−1)(r+ s). Moreover, if G

is link-critical, then |E |> |V |+ r+ s−2.

The next theorem and the remark that follows capture the significance of joint control-

lability degree for the so-called jointly critical digraphs.

Theorem 11. If an information flow digraph G = (V ,E ) with the root-set R ⊂ V is both

agent-critical and link-critical, then jc(G ;R) = ac(G ;R) = lc(G ;R). Moreover, for every

(r,s)∈W×W, the digraph G is joint (r,s)−controllable if and only if r+s 6 jc(G ;R). Such

a digraph, which is both agent-critical and link-critical will be referred to as jointly critical.
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Proof: From Lemmas 11 and 12, it is immediate that jc(G ;R) = ac(G ;R) = lc(G ;R).

The rest of the proof, also, can be sketched as a combination of the proofs of Lemmas 11 and

12. Starting from a critical link-set Cp ⊆ E , one can use Routine 1 to transform any set of

links L ⊆ Cp into a set of agents A , where |A | 6 |L |, such that the removal of A along

with the links in CpKL renders the digraph uncontrollable. Moreover, |A | = |L | because

the inequality |A | < |L | contradicts the fact that ac(G ;R) = lc(G ;R) = |Cp|. On the other

hand, starting from a critical agent-set Cq ⊆ V KR that satisfies the condition of Lemma 12,

one can use Routine 2 to transform any set of agents B ⊆ Cq into a set of |B| links, which if

removed together with the agents in CqKA , then the digraph becomes uncontrollable. �

Remark 33. If a digraph G with the joint controllability degree t is jointly critical, then for

all (r,s) ∈W×W satisfying the inequality r+s > t, G is not joint (r,s)−controllable. Hence,

the joint controllability degree alone completely characterizes the controllability preservation

properties of the digraph G . In other words, if the values of (r,s) ∈W×W for which G

is joint (r,s)−controllable are depicted as discrete points in the plane, then a pair of non-

negative integers belongs to the jointly controllable set if and only if the corresponding point

in the (r,s)-plane lies in the region r+ s 6 t.

Three special cases of interest are addressed in the sequel.
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Complete Digraphs

As a special case, a digraph Gcn = (Vcn,Ecn) is called complete if Ecn = Vcn×Vcn. Select a

vertex r in a complete digraph as the root, and remove the |Vcn|−1 edges headed by the vertex

r. Then the resultant information flow digraph is (|Vcn|−1)−link controllable [50]. This is the

maximum value for link controllability degree in an information flow digraph with n = |Vcn|

vertices, because a complete digraph possesses the maximum possible number of edges per

a given number of vertices. The following proposition suggests that the joint controllability

degree of a complete information flow digraph Gcn is also n−1.

Proposition 5. Given a complete digraph Gcn = (Vcn,Ecn) with |Vcn| = n, choose a vertex r

as the root and remove the n−1 edges which are headed by r. The resulting information flow

digraph is jointly critical and joint (n−1)−controllable.

Proof: The proof follows from the fact that Gcn has exactly n−1 disjoint rν paths for

every ν ∈ VcnK{r}. �

Remark 34. It is to be noted that jc(Gcn;{r}) = n− 1 is the highest attainable joint con-

trollability degree for a digraph with n vertices. This explains the desirable controllability

preservation properties of the complete digraphs in the face of simultaneous link and agent

failures.
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Kautz Digraphs

Kautz digraphs are introduced and discussed in Section 3.3 of [55]. Accordingly, a Kautz

digraph Gk = (Vk,Ek) with |Vk|= n is given by:

Vk = {ν1, . . . ,νn} , (4.1)

Ek =
{

(νi,ν j)|i, j ∈ Nn∧ j ≡ (−id− τ) mod n, τ ∈ Nd

}

,

for some d ∈ NK{1} and κ ∈N, such that dκ +dκ−1 = n. The following proposition gives the

joint link controllability degree of an information flow digraph derived from a Kautz digraph.

Proposition 6. Consider a Kautz digraph Gk = (Vk,Ek) where Vk and Ek are given by (4.1).

Choose a vertex r as the root and remove all edges which are headed by r. The resulting

information flow digraph is jointly critical and joint d−controllable.

Proof: The proof follows upon noting that Gk has exactly d disjoint rν paths for every

ν ∈ VkK{r}. �
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Circulant Digraphs

Circulant digraphs are introduced and discussed in Section 3.4.5 of [55]. Accordingly, a

circulant digraph Gc = (Vc,Ec) with |Vc|= n is given by:

Vc = {ν1, . . . ,νn} , (4.2)

Ec =
{

(νi,ν j)|i, j ∈ Nn∧ j− i ≡ b mod n, b ∈B
}

,

for some B ⊆ Nn−1. Choose a vertex r ∈ Vc as the root, and remove every edge whose head

is r. Then in the resulting information flow digraph Gc, lc(Gc;{r}) = |B|. This is due to the

fact that Gc has exactly |B| edge-disjoint rν paths for every ν ∈ VcK{r}. For |Vi|= 5, i ∈N3,

the choices of B1 = {1}, B2 = {1,n−1}, and B3 = {1,n−2} correspond to a simple loop

G1 = (V1,E1), a distributed double-loop G2 = (V2,E2), and a daisy chain loop G3 = (V3,E3),

respectively. These digraphs are introduced in Section 3.4.1 of [55], and they are depicted in

Figs. 4.8(a)−(c). For a simple loop lc(G1;{r}) = ac(G1;{r}) = jc(G1;{r}) = 1, while for the

other two cases lc(Gi;{r}) = ac(Gi;{r}) = jc(Gi;{r}) = 2, i= 2,3. These three digraphs have

the additional property that for any r, s satisfying the inequality r+ s > jc(Gi;{r}), i ∈N3, Gi

is not joint (r,s)−controllable. Accordingly, the joint controllability degree alone completely

characterizes the controllability preservation properties for Gi, i ∈ N3. This is due to the fact

that Gi, i ∈ N3 are jointly critical.

On the other hand, for the circulant digraph G4 with |V4| = 6, B4 = {2,3,5} and the
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uppermost vertex selected as the root r, the resulting information flow digraph, shown in

Fig. 4.8(d), is 3−link and 2−agent controllable [50]. This digraph is neither agent-critical

nor link-critical, and hence is not jointly critical. The joint controllability degree for G4 is 2,

and unlike Gi, i ∈ N3, jc(G4;{r}) = 2 does not proffer a full characterization of the con-

trollability preservation properties for G4. Accordingly, G4 is joint (r,s)−controllable for

(r,s) ∈ {(2,1),(3,0)}, although r + s > jc(G4;{r}). To clarify this point, let the values of

(r,s) ∈W×W for which Gi is joint (r,s)−controllable, i ∈ N4, be shown as discrete points in

the plane. For i ∈ N3, the line r+ s = jc(Gi;{r}) divides the first quadrant of the (r,s)-plane

into two regions, where for r+ s 6 jc(Gi;{r}), Gi is joint (r,s)−controllable and otherwise it

is not. This is depicted in Fig. 4.9(a) for G2 and G3, where the closed shaded region contains

all pairs of integers belonging to the joint controllability set (the points associated with these

pairs are shown by black circles). This property, however, does not hold for G4; it is evident

from Fig. 4.9(b) that there exist two points above the line r+ s = jc(G4;{r}) representing the

pairs for which G4 is still joint (r,s)−controllable.

4.5 Conclusions

Structural controllability of a network of single-integrator agents with leader-follower archi-

tecture was investigated. The notions of agent and link controllability index were defined to

characterize and quantify the importance of individual links to the controllability of the overall

network. Similarly, the notions of agent and link criticality index as well as the critical and
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(d) G4

Figure 4.8: Circulant Digraphs

uncritical link index were offered as quantitative measures for the relative importance of indi-

vidual agents to the controllability of the overall network. It was stated that the the proposed

indices should be applied in their order of precedence, starting with the agent criticality index

and ending with the uncritical link index. The results provide the designer of a multi-agent

system with useful tools to evaluate (and enhance) the reliability of the network by deciding

on which links and agents to prioritize for fault management and recovery operations.

In the next step, the concepts of joint (r,s)−controllability and joint t−controllability

were proposed as quantitative measures of reliability in a multi-agent system subject to simul-

taneous failure of communication links and agents. It was noted that joint t−controllability
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is a conservative requirement which provides a sufficient condition for remaining controllable

following the removal of any set of links and agents with size less than t. Nonetheless, for

the important class of jointly critical digraphs, the joint controllability degree t proffers a

necessary and sufficient condition, which fully characterizes the controllability preservation

properties of the digraph. By and large, a digraph remains controllable after the removal of

any u links and v agents if and only if there exists a pair (r,s) ∈W×W such that the digraph

is joint (r,s)−controllable and u 6 r∧ v 6 s∧ u+ v < r+ s. However, the authors’ ongoing

research indicates that for some digraphs, which are neither agent nor link critical, determin-

ing all (r,s) pairs for which the digraph is joint (r,s)−controllable may not be tractable in

polynomial-time, and future research on this topic is of much interest. The presented results

provide design guidelines for improving the network robustness against simultaneous failure

of multiple links and agents. Several examples were offered to elucidate the results.
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Figure 4.9: (a) The joint controllability of the circulant digraphs G2 and G3, given in

Figs. 4.8(b), 4.8(c). (b) The joint controllability of the circulant digraph G4. The filled cir-

cles, which represent the pairs of integers belonging to the jointly controllable set are all in

the shaded area in the case of (a), but not in the case of (b).
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Chapter 5

Summary and Extensions

This chapter consists of a summary of the thesis contributions in Section 5.1, followed by

some suggestions for future research in Section 5.2.

5.1 Summary of Contributions

The effect of link and agent failures on the dynamics and control of multi-agent networks

was investigated in this thesis. In the first part, the focus was on whether the response that

is observed from the state of a single agent will change by the removal of a set of links in

the network. To this end, the linear agreement protocol was adopted as the dynamic inter-

action law, according to which the network evolves, and topological conditions were offered

for detectability of a subset of links from the response of a given agent. The mathemati-

cal characterization of link failures is important in light of the crucial role that is played by

87



the detection and isolation of faults in the management and recovery operations. Accord-

ingly, the results provide useful design guidelines for realization of reliable and fault-tolerant

multi-agent networks, and they have effectually opened a new horizon, where implications

of network structure on the systems response under various fault and failure scenarios can be

further explored and investigated. The contributed results are therefore of both theoretical and

practical interest.

In the second part, the preservation of network controllability in the face of simultaneous

link and agent failures was investigated and sufficient conditions were proffered that would

ensure that the controllability of a network is preserved following the removal of any set of

links and agents, whose size is smaller than a given number t. The study of simultaneous

failures is important because in real-world multi-agent networks, various terrain properties

or hardware faults may disable a number of control agents and limit the ability of others to

communicate. The idea of considering the agent and link controllability degrees in a two

dimensional plane is of particular significance in the study of multi-agent control systems and

its study has lead to the provision of importance measures for comparing the role of different

links and agents in the network.

5.2 Suggestions for Future Work

For Chapter 3, an analytical treatment of the effect of initial conditions is of theoretical interest.

Based on the simulation results, it is conjectured that the derived results hold for almost all
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initial conditions. The extension of the available results to a control law that is less restrictive

than (2.6) provides another window for future research. Also, one may consider the case

when the designer has access to more than a single observation points and extend the results

accordingly.

In Chapter 4, the coefficients in (2.10) are effectually required to satisfy various restric-

tions. These include the restrictions on their signs or their sums as considered in [95]. A

question of interest for future research is if and how the derived results will continue to hold

under such restrictions. Furthermore, it will be of practical significance to propose fixed αi j

coefficients for which the system remains controllable after the failures, without the need to

update the system coefficients. It is also important to investigate the probability of remaining

(structurally) controllable given a probability for link or agent failures. In general, it is not

true that a (p+ 1)−link controllable digraph has a higher probability of remaining control-

lable than a p−link controllable digraph. Because such a probability depends on the number

of critical links in the network and how they join each other to form the critical link-sets. As

a closing remark, it should be highlighted that structural controllability is a systems property

that yields itself to topological analysis much too easily, and it is therefore well-suited for a

network-wise study. Despite this inherent convenience, the study of structural controllability

in networks has received some criticisms as well. The authors in [96], for example, point out

the issues of nodal and self-dynamics, as well as the lack of Gramian-link measures that are

crucial in practical settings.
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