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Abstract

Efficient Rendering of Scenes with Dynamic Lighting Using a Photons

Queue and Incremental Update Algorithm

Guangfu Shi

Photon mapping is a popular extension to the classic ray tracing algorithm in the
field of realistic image synthesis. Moreover, it benefits from the massive parallelism
computational power brought by recent developments in graphics processor hardware
and programming models. However rendering the scenes with dynamic lights still
greatly limits the performance due to the re-construction at each rendered frame of
a kd-tree for the photons. We developed a novel approach based on the idea that
storing the photons data along with the kd-tree leaf nodes data and implemented
new incremental update scheme to improve the performance for dynamic lighting.
The implementation is GPU-based and fully parallelized. A series of benchmarks
with the prevalent existing GPU photon mapping technique is carried out to evaluate
our approach. Our new technique is shown to be faster when handling scenes with
dynamic lights than the existing technique while having the same image quality.

iii



Acknowledgments

First of all, I would like to thank my supervisor, Dr. Thomas Fevens for his advice,
encouragement and support throughout my research. I would also like to thank my
parents and my girlfriend Chunxiao Ma who are supportive as always.

iv



Contents

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background and Related Work 4

2.1 Radiometry Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1 Important Quantities . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Fundamentals of Global Illumination . . . . . . . . . . . . . . . . . . 7
2.2.1 Light Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Reflectance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.4 Light Transport Equation . . . . . . . . . . . . . . . . . . . . 11

2.3 Global Illumination Techniques . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Radiosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Ray Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Photon Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 GPU-based Implementations . . . . . . . . . . . . . . . . . . . 19

2.5 Photon Mapping On GPU using CUDA . . . . . . . . . . . . . . . . 20
2.5.1 KD-Tree Construction . . . . . . . . . . . . . . . . . . . . . . 21
2.5.2 Photon Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.3 Advantages and Limitations . . . . . . . . . . . . . . . . . . . 26

v



3 A New Approach 28

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Data Structure and Algorithm . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.3 Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.4 Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.1 Data Organization . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.2 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . 37

4 Simulation Result 46

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1.1 System Specification . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.2 Application Specification . . . . . . . . . . . . . . . . . . . . . 47

4.2 Data Structure Construction . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Memory Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 Photons Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.1 Number of Photons . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4.2 Query Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5 Image Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Conclusions 68

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

vi



List of Figures

2.1 Radiant flux of point light source . . . . . . . . . . . . . . . . . . . . 5
2.2 Geometric setup of radiance and solid angle . . . . . . . . . . . . . . 6
2.3 Geometric setup of BRDF . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Form factor geometry for two patches . . . . . . . . . . . . . . . . . . 13
2.5 Ray Tracing System Configuration . . . . . . . . . . . . . . . . . . . 14
2.6 Test Scenes Rendered Using Monte-Carlo Ray Tracing . . . . . . . . 15
2.7 Photon Density Estimation Model . . . . . . . . . . . . . . . . . . . . 19
2.8 The Small Nodes splitting stage within kd-tree construction . . . . . 24
2.9 Compacting kd-tree nodes in the active node list for next iteration. . 25
3.1 Association of kd-tree and photons data . . . . . . . . . . . . . . . . 30
3.2 Detailed view on organization of photons data for a single leaf node . 31
3.3 Compacted memory layout of constructed kd-tree data . . . . . . . . 35
3.4 Compacted memory layout of kd-tree leaf nodes . . . . . . . . . . . . 36
3.5 Parallel Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6 Parallel Compact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.7 Find number of leaf nodes in parallel . . . . . . . . . . . . . . . . . . 41
3.8 Find indices of leaf nodes in parallel . . . . . . . . . . . . . . . . . . . 42
3.9 Photons-box intersection in parallel . . . . . . . . . . . . . . . . . . . 42
3.10 Pixels and CUDA threads . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1 Data construction time performance . . . . . . . . . . . . . . . . . . . 50
4.2 Memory consumption in rendering phase . . . . . . . . . . . . . . . . 52
4.3 Memory consumption in construction phase . . . . . . . . . . . . . . 53
4.4 Photon search performance with different number of photons . . . . . 56
4.5 Photon search performance with different query radius . . . . . . . . 57
4.6 Rendered images and photons visualization with standard photon map-

ping technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

vii



4.7 Rendered images and photons visualization from frame 0 to frame 3 . 59
4.8 Rendered images and photons visualization from frame 4 to frame 7. . 60
4.9 Rendered images and photons visualization from frame 8 to frame 9 . 61
4.10 Comparison of images rendered by the standard implementation and

new approach with full amount of photons . . . . . . . . . . . . . . . 62
4.11 Comparison of image quality from frame 0 to 3 with moving light . . 64
4.12 Comparison of image quality from frame 4 to 6 with moving light . . 65
4.13 Comparison of image quality from frame 7 to 10 with moving light . . 66

viii



List of Tables

1 Important Radiometry Quantities . . . . . . . . . . . . . . . . . . . . 4
2 System Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3 Experiments Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 67

ix



Chapter 1

Introduction

Due to the recent development of Graphics Process Units (GPUs) hardware archi-

tecture and the massive parallel programming model that enables developers to fully

exploit the computation power of GPUs, parallel computing using GPU has become

more and more popular for developing high performance applications. Realistic im-

age synthesis, especially global illumination which is one of the most computationally

complex algorithm, has drawn much research interest focusing on developing new

parallelized approaches to unleash the computational power of the GPU.

Photon mapping is one of the most popular global illumination approaches these

days. Many of the acceleration techniques developed for photon mapping can achieve

very good performance for static scenes. However, dynamic scenes such as a scene in

which there are moving lights sources or moving elements in the scene may have a big

impact on the performance of renderer. One of the biggest causes of this overhead

is that the the dynamic scene requires the reconstruction of the acceleration data
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structure every frame. The data structure for photon mapping is usually a balanced

kd-tree [1] used to speed up the photon search. A parallelized kd-tree construction

algorithm will greatly increase the peak memory consumption though it is a pretty

fast algorithm, Zhou et al. reported that their GPU-based implementation can achieve

above 30 frames per second [30].

In this thesis we would like to present a novel approach based on the traditional

photon mapping technique on GPU to be able to handle dynamic light sources. Using

this approach we rearrange the photons data to avoid the reconstruction of kd-tree

for dynamic scenes with moving light sources. An incremental update algorithm is

also employed so that we can achieve the same image quality while requiring less

rendering time once an initial number of start-up frames are rendered.

In order to give some proof that our proposed technique is an improvement in terms

of speed, memory consumption and image quality, we will implement the prototype

of the existing technique from the literature and compare it with the new approach.

1.1 Structure of the thesis

Following this introduction, we will firstly introduce the most important theoretical

concepts and frameworks to establish a foundation for the subsequent discussion of

global illumination approaches. Then we will present a short survey on various ap-

proaches to implement photon mapping and their strengthes and weaknesses when
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dealing with different phenomena. Afterwards we will highlight GPU-based tech-

niques applied on Monte Carlo ray tracing and photon mapping and discuss some

open issues of the current approach for the introduction of our new approach in the

following chapter. In chapter three, we presented the new GPU photon mapping

approach with detailed information on our current implementation. The results of

our experiment and the analysis of the results are presented in chapter four. Finally,

in chapter five we come to the conclusions, and discuss directions for future work.
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Chapter 2

Background and Related Work

2.1 Radiometry Introduction

Radiometry is the basic terminology to describe light which is crucial to its simulation.

First of all, some basic quantities have to be introduced, the related symbols are going

to be defined here as well for further use.

2.1.1 Important Quantities

Symbol Quantity Unit
Q Radiant Energy j

Φ Radiant flux W

I Radiant intensity Wsr−1

E Irradiance (incident) Wm−2

L Radiance Wm−2sr−1

Table 1: Important Radiometry Quantities
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Radiant energy, Q, is the energy of a collection of photons which is the basic

quantity in lighting.

Radiant flux , Φ, is the time rate of the flow of radiant energy passing through a

surface or region of space. Total emission from a light source is generally described in

terms of flux. Figure 2.1 shows the flux emitted from a point light source measured

by the total amount of energy passing through an virtual sphere around the light.

Figure 2.1: Radiant flux from a point light source is passing through the spheres around
the light.

Irradiance, E, is the incident (arriving at a surface location) radiant flux area

density, which is defined as the differential flux per differential area. While Radiant

exitance denoted by M is area density of flux leaving a surface.

E(x) =
dΦ

dA
(1)
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Radiance, L, is the radiant flux per unit solid angle per unit projected area:

L(x,−→ω ) =
d2Φ

cos θ · dA · d−→ω
(2)

where x is the position and −→ω is the direction.

Radiance is the most important quantity in rendering simulation since it closely

represents the color. Also radiance can be considered as the number of photons

arriving per time at a small area from a given direction. Radiant energy can be

computed by integrating the radiance field over all directions Ω and area A. The

geometric setup for the radiance definition is illustrated in figure 2.2.

Φ =

∫
A

∫
Ω

L(x,−→ω )(−→ω · −→n )d−→ω dx (3)

Figure 2.2: Radiance, L, is defined as the radiant flux per unit solid angle, −→ω , per unit
projected area, dA
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2.2 Fundamentals of Global Illumination

With the basic knowledge of radiometry, we will introduced a theoretical framework

as the basis of global illumination. There are several components are included in this

framework, light source, reflectance and visibility. We will look at these components

firstly and then move on to the rendering equation describing the interaction between

light and an surface with no participating media.

2.2.1 Light Source

As the light in the form of photons is emitted from light sources initially, the lighting

becomes an essential input of the model. There are several types of light sources

widely used in Computer Graphics such as point, directional and area lights. The

radiance of lighting emitted from light sources is denoted as Le.

We can measure the intensity of light source in wattage. Take a point light source

for example, the power this light can emit is denoted by Φ, the emitted light dis-

tributes uniformly in all directions, and the irradiance, E, can be computed at a

surface as:

E(x) =
Φ cos θ

4πr2
(4)

where r is the distance from x to the light source and θ is the angle between the surface

normal and the direction to the light source. From the equation we can intuitively

tell a surface facing the source will receive more photons per area than a surface that

is oriented differently.
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2.2.2 Reflectance

Figure 2.3: The geometric setup of BRDF.

The Bidirectional Reflectance Distribution Function, BRDF, is the mathematic

tool describing the reflection of light encounters an surface. To define the BRDF, the

geometric configuration is shown in figure 2.3. ωi is the incident lighting direction,

ωo is the direction in which the reflected light leaving from the surface, and n is the

normal vector at the location p on the surface. Given the incident radiance Li(p, ωi),

we can find the outgoing radiance to the viewer, Lo(p, ωo).

The BRDF, fr, defines the relationship between differential reflected radiance and

differential irradiance:

fr =
dLo(p, ωo)

dE(p, ωi)
=

dLo(p, ωo)

Li(p, ωi)(ωi · n)dωi
(5)

There are two important properties of BRDF used in rendering. The first one

is the Helmholtz’s law of reciprocity, that is given any pair of directions (ωi, ωo), we
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have:

fr(p, ωi, ωo) = fr(p, ωo, ωi) (6)

Another important physical property of BRDF is energy conservation, stating that

the total reflected energy is less than or equal to the incident energy. For all direction

ωo, ∫
Ω

fr(p, ωi, ωo)Li(p, ωi)(ωi · n)dωi ≤ 1,∀ωi (7)

Note that there are special cases exists in the BRDF model, one is the Lambertian

BRDF in which the outgoing direction is independent from the incident direction.

Another extreme case is the perfect mirror reflection BRDF which is a Dirac delta

function making the incident direction ωi mirrored at the surface normal at the p

on the surface. BRDF including these two special cases is often broadly classified as

directional diffuse, and glossy and specular.

Given the definition of BRDF, we can introduce the basic rendering equation, also

known as local illumination model by integrating the equation 5 over the sphere of

incident directions around location p, the left side of the equation will be the outgoing

radiance in direction ωo.

Lo(p, ωo) =

∫
Ω

fr(p, ωi, ωo)Li(p, ωi)(ωi · n)dωi (8)

where Ω is the hemisphere of incoming directions at p.
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2.2.3 Visibility

Another important component is the visibility computation. It is often modeled as a

binary function denoted by V (x, x′) as shown in the following equation, where x and

x′ are two distinct points.

V (x, x′) =


1 if x and x′ are mutually visible

0 otherwise
(9)

The most important usage of the visibility test function is to determine whether a

surface point is directly “visible” to a light source for correct lighting simulation. In a

finite element algorithm like radiosity, the visibility between two surface locations is

a essential factor in the rendering equation to compute the radiance leaving x in the

direction towards x′. Further discussion on the rendering equation and radiosity will

be presented in the following sections.

Ray casting is the most widely used operator to determine the closest surface in a

direction by shooting a ray into the scene trying to find the closest intersection point

with the surface. We will discuss ray casting and ray tracing technique further in

section 2.3.2.

Another more complicated model of visibility is the non-binary function occurs

between a surface point and an area light source, this model is used to simulate the

soft shadows. [5] is a full survey of existing shadow methods dedicated to real-time

rendering of soft shadows.
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2.2.4 Light Transport Equation

The local rendering equation used to describe the direct lighting effect is too simple

for simulating real-world lighting effect, so indirect lighting has to be introduced to

this model as well. We introduce the Light Transport Equation (LTE) in this section

to form the mathematical basis for all global illumination algorithms. The LTE is

also known as the Rendering Equation (RE) which is introduced in the first time

in [10]. We use the LTE term here to be distinguished from the local rendering

equation, also it is more suitable with context of global illumination. The LTE states

that the outgoing radiance Lo at location p on the surface in the direction ωo is the

sum of emitted radiance Le and reflected radiance Lr. The reflected radiance can

be computed using the local rendering equation 8 so we have final LTE as shown in

equation 10.

Lo(p, ωo) = Le(p, ωo) +

∫
Ω

fr(p, ωi, ωo)Li(p, ωi)(ωi · n)dωi (10)

2.3 Global Illumination Techniques

In this section, we will review the several the most popular approaches to compute the

global illuminations including radiosity, Monte Carlo ray tracing and photon mapping,

and the previous work related to these approaches.
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2.3.1 Radiosity

Radiosity, also known as finite element approach, is a classic solution to solving the

LTE. It was introduced by Goral et al. in [3] and has became an active field that

was drawn quite a bit of research interest. The underlying idea is to tessellate the

surfaces into finite small sub-surfaces called patches as geometric primitives and solve

the LTE with them. Solving the LTE using radiosity requires several input. First of

all the radiosity value for diffuse surfaces or the BRDF for the non-diffuse surfaces

need to be stored for all the patches in the scene. Then it requires a known linear

system of equations called form factors which denote the amount of light transported

between two patches. See figure 2.4 for a figure showing the geometric aspect of the

form factor. Before presenting the definition of form factor, a geometry term G is

introduced with the following equation:

G(x, x′) =
(ω′ · n′)(ω · n)

‖x′ − x‖2
(11)

where x′ is another surface location. We introduce the geometry term since for finite

element algorithm the rendering equation is normally expressed as an integral over

surface locations rather than ray directions used in ray tracing algorithm.

Thus the form factor Fij representing the fraction of power leaving patch i that

arrives at patch j is computed as

Fij =
1

Ai

∫
Ai

∫
Aj

V (x, x′)G(x, x′)

π
dAjdAi (12)
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where V (x, x′) is the visibility test operator introduced in the equation 9.

Figure 2.4: Geometry factor for two patches

Computing the form factors is the most time consuming part because of the initial

time complexity of O(n2) of linking n patches, however when this pre-computation

is done the entire scene can be rendered very efficiently. Therefore a lot researchers

have focused on minimizing this performance hit. Hanrahan et al. [4] introduced

a technique that constructs a hierarchical representation of the form factor matrix

to reduce the computation. Holzschuch et al. [8] followed a hierarchical structure

and introduced a progressive refinement strategy resulting the form factor only being

computed when needed to evaluate the energy transfers from a given surface.

13



Figure 2.5: A basic configuration of ray tracing rendering system.

2.3.2 Ray Tracing

The classic ray tracing technique became popular in Computer Graphics since 1980

with an introduction of the recursive ray-tracing algorithm by Whitted [29]. It is an

elegant and simple algorithm for easily rendering shadows and specular surfaces.

The ray tracing algorithm can be broke down into two stages: intersection query

and shading. In the first stage, as shown in figure 2.5, for each pixel on our viewing

plane, one or more rays (if the multi-sampling is enabled, this allows for better image

quality) are shot into the scene. Those rays directly from the observer are primary

rays. Then we try to find intersection point along each of the rays with the closest

object to the observer. In the shading stage, at each intersection point the direct

illumination is computed based on the BRDF determined by the surface material.

The computed radiance is converted to the color of the corresponding pixel. The

visibility of the light sources can be evaluated by casting rays from surface locations

14



to the light sources trying to find any intersections with other objects other than

lights, these rays are also known as shadow rays.

If the surface material is specular then a specular ray is traced in the reflected or

transmitted direction. The indirect illumination can be computed by spawning and

tracing reflected or refracted rays (called secondary rays) from the intersection points

and repeating the ray tracing recursively.

Ray tracing is not a full global illumination algorithm since it cannot handle the

computation of the indirect illumination on diffuse surfaces; it can only compute the

illumination for perfect specular material by tracing a ray in the refracted or mirror

direction. To simulate the phenomena such as soft shadows, it is necessary to employ

Monte Carlo sampling techniques [10]. Figure 2.6 shows two images rendered by our

rendering program – the scene on the right side contains an area light to produce soft

shadows casted by objects rather than hard shadow produced with a point light in

the left scene.

Figure 2.6: The scenes rendered by our test program using Monte Carlo ray tracing.
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The idea of the Monte Carlo technique is to generate a large amount of samples of

the rays and evaluate the LTE for every sample using the classic ray tracing technique

and average all the results with the Monte Carlo integration to converge to the final

solution.

Monte Carlo integration is a method of using random sampling to estimate the

values of integrals. In order to estimate the value of integral
∫
f(x)dx one needs only

to be able to evaluate the integrand at arbitrary points in the domain.

The Monte Carlo estimator approximates the value of an arbitrary integral. Sup-

pose
∫ b

a
f(x)dx is an one-dimensional integral we want to evaluate, given a supply of

uniform random variables Xi ∈ [a, b], we can define the Monte Carlo estimator:

FN =
b− a
N

∑
0<i<N

f(Xi) (13)

and the expected value of FN , E[FN ], is in fact equal to the integral. This fact just

takes a few steps to be demonstrated (see pp. 541-542 in [19]).

Monte Carlo ray tracing has several advantage over classic ray tracing:

• All global illumination effects can be simulated.

• Low memory consumption.

• Result is correct exception for variance (visible as noise).

The main disadvantage of Monte Carlo method is that it requires a huge amount

of samples to minimize the errors. In order to reduce the errors in half, it requires

16



evaluation of four times as many samples. Fortunately there are many techniques we

can use to reduce the numbers of samples to compute while maintaining an acceptable

image quality. A commonly employed method is importance sampling. Instead of

generating samples rays blindly, we only send rays where the LTE’s integrand has

high values. This is easy for direct lighting but difficult for indirect lighting as the

it is impossible to know where the largest illumination contribution comes from.

Combining the other components like the BRDF fr and incident lighting Li into one

importance sampling approach is more challenging for global illumination. Solutions

to this issue includes multiple-importance sampling technique and bi-directional path

tracing [11].

Accelerating ray tracing by exploiting the hardware have been an active research

field as well. Optimizations for modern multi-cores CPUs for ray tracing renderer are

presented [27].

2.4 Photon Mapping

2.4.1 Concept

Photon mapping was developed by Jensen [7] as an efficient alternative to the Monte

Carlo ray tracing techniques especially for simulating the focused light effects, such

as caustics. Photon mapping is a two-pass algorithm, photon tracing and radiance

estimation.
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Photon Tracing Photon tracing is the process of shooting photons from the light

source(s) and tracing them into the scene similar to standard ray tracing. A global

data structure is constructed to store the photons called the photon map. When a

photon hits a diffuse surface, its position, incident direction and power will be stored

in the photon map. Jensen suggests that using balanced kd-tree [1] to organize the

photons data, since the kd-tree is beneficial to the next pass, radiance estimate.

Whether the photon is absorbed or reflected is determined by the surface’s BRDF.

Multi-Sampling techniques such as Russian-Roulette [17] can be used to terminate

this process earlier without damage the image quality. Photons that hit a specular

surface will not be stored because the probability of have a incoming photons from

specular direction is zero. Instead, these surfaces are rendered using standard ray

tracing.

Radiance Estimate Given the photon map, we can perform a density estimate

on certain surface points to calculate reflected radiance. The direct illumination and

specular surfaces can be rendered using Monte Carlo ray tracing. As shown in figure

2.7, we collect n photons samples within a sphere make an estimate of the reflected

radiance at any surface location x, as shown in equation 14.

Lr(x, ωo) ≈
1

πr2

∑
0<p<N

fr(x, ωp,o, ωi)∆Φp(x, ωp,o) (14)
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Figure 2.7: The geometrical setup of photons density estimation.

2.4.2 GPU-based Implementations

There have already been a couple of successful attempts made to implement global

illumination techniques on GPUs. Purcell et al. [23] presented the first ray tracer

entirely running on GPU using a uniform grid for acceleration. [9] and [21] presented

the GPU implementations that achieved better performance than a CPU-based ray

tracer. With the introduction of general purpose computing on GPU especially with

CUDA technology, Luebke and Parker [14] presented a technology combining ray

tracing and traditional rasterization methods to achieve real-time performance on

dynamic scenes. Since the hardware-accelerated rendering pipeline is employed, their

implementation could handle the scenes with moving light sources and dynamic scene

objects by only tracing the rays directly cast from the camera (primary rays) and

shadow rays, the full global illumination is still too slow for interactive application.

Photon mapping has been mapped for multi-core CPUs in [2] and for the older
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GPU architecture using programmable vertex/pixel shaders in [24]. In the following

sections, we will take a look at the techniques that can be used for performing photon

mapping on current GPU hardware with CUDA programming model.

2.5 Photon Mapping On GPU using CUDA

In order to move the photon mapping technique onto graphics hardware, we need to

do the creation of traversal of kd-tree on the GPU. The first attempt to achieve this

was presented in [24]. However their work was limited by the GPU programming

model and hardware architecture.

More general work on parallel kd-tree construction was presented in [20] and [25].

Both approaches are designed for multi-core CPUs thus are not suitable for GPU.

The first problem is that kd-tree construction can easily become bandwidth limited

on large input data sets due to its random memory access pattern. Therefore the

construction switches from breadth first search (BFS) to depth first search (DFS)

manner manner at deeper nodes. This means that these approaches keep the num-

ber of concurrently running threads pretty low. GPU hardware, however, is good at

having a massive number of threads (at least 103 − 104 running for optimal perfor-

mance [18]. Another aspect is finding the split position for a node. Both papers use

the Surface Area Heuristic (SAH) [15] to evaluate the costs for a splitting candidate.

Even though the SAH improves kd-tree significantly [26], it is very time consuming.

Finally, parallelizing the photon search or tree traversing is relatively easy, as the
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tree is accessed read-only. However, for performance reasons it is important that the

tree is well balanced and stored efficiently. Storing the tree efficiently means to keep

scattered memory accesses as low as possible, by placing child nodes close to their

parents. The traversal algorithm itself is not a good candidate for parallelization.

Instead, performing multiple traversals simultaneously is a much better way, in order

to obtain good performance.

Zhou et al. presented a new approach to kd-tree construction and traversal on

GPUs using CUDA [30]. They also provide information on adapting the technique

for photon mapping which we will focus on.

2.5.1 KD-Tree Construction

A kd-tree, standing for k-dimensional tree, is a space-partitioning data structure used

for organizing geometry in a k-dimensional space by encoding the spatial information

of geometric objects into a special case of binary tree to provide optimal search

performance. The kd-tree used in Computer Graphics is usually 3-dimensional tree

since the spatial information is modeled in 3D space. Construction of kd-tree involves

recursively splitting the space with a chosen axis-aligned splitting plane. This process

is usually done in a depth-first fashion with call the split routine recursively to create

new nodes. However in the GPU implementation this depth-first approach is not

ideal. Firstly the recursion is not supported currently by the GPU programming

model, this issue can be avoided by transforming the recursion into iteration, but it is

still not optimal since it does not take the advantage of the massive parallelism of the

21



graphics processor. Therefore Zhou et al. build the kd-tree completely in breadth-first

manner to avoid these issues.

During the initialization stage, CUDA’s global memory is allocated for the tree

construction and the root node is created. For the photon mapping implementa-

tion we also have to create three sorted order lists for each dimension for all point

coordinates. The points can be grouped into chunks and we need to compute the

tight bounding box of the current list of nodes, each node in this list contains certain

numbers of chunks that are stored in a list as well. The first step to achieve this is

to compute the tight bounding box of each chunk, this is a straight-forward process

that only requires us to iterate over all the points in a chunk and find the minimum

and maximum coordinates. The second step is to combine the bounding boxes of the

chunks that belong to one same node to determine the bounding box of the node.

This can be done by segmented reduction – the chunks that belong to the same node

become a segment and we combine the bounding boxes on these segments respectively

rather than combining over the entire list of chunks. Additionally we maintain three

associated point ID lists (one for each coordinate axis).

The first stage of construction is called large node stage. In this stage splits

nodes using a combination of spatial median splitting and "cutting off empty space"

[6]. Since in this stage the number of nodes is small, it is better to perform the

computation parallelized over all points rather than over nodes. First we need to

find the splitting plane (the plane that splits the longest axis in the middle), after

repeatedly applying empty space splitting before. Then each photon is classified as
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being either left (1) or right (0) of the splitting plane. Finally, we perform the scan

operation [16]. After the split we check if the amount of photons in our child nodes is

below the threshold T = 32. If the number is smaller, the node is added to the small

node list. Otherwise it is added to the active list and scheduled for the next iteration

of the large node stage. The large node stage finishes as soon as there are no more

nodes in the active list.

The next phase is the small node stage. It begins with a preprocessing step for

all nodes in the small node list. In this step we collect all splitting plane candidates

and calculate the resulting split sets, which define photon distribution after a split.

It should be noted that splitting planes are restricted to initial photon positions in

this stage.

After the preprocessing has finished, we process all small nodes in parallel and

split them, until each node contains one photon. Since we need to build a kd-tree for

points (photons), rather than triangles, we are now using the Voxel Volume Heuristic

(VVH) [28] for split cost evaluation, instead of the SAH [6].

After we found the best split candidate (the one with the lowest VVH cost) we can

split the small node into two sub nodes. To do so we need the current node’s photon

set, which is a bit mask representation of the photons inside the node. In order to

complete our split, we simply perform a logical AND between the current photon

set and the pre-calculated result split sets of the root small node. As illustrated in

figure 2.8, node A is split into two sub nodes(B and C) and the symbols represent

the photons in node A.
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Figure 2.8: Small node splitting stage following the large nodes splitting stage in the
kd-tree construction process.

Besides easing node splitting, the binary photon representation also helps us cal-

culating the number of photons in a node, which we need for VVH computation and

to stop node splitting. All we have to do is to count the bits in the current photon

set, using the parallel bit counting routine.

After splitting is done, the new nodes are added to the active node list, in order

to be processed during the next iteration step. Of course it can and will happen that

some nodes will not create any new child nodes. Therefore, we have to add another

step to compact our active node list and remove empty space, as is illustrated in

figure 2.9 [12]. If there are no more nodes left in the active list, we can finish the

small node stage and proceed to the final construction stage.

The final stage is the kd-tree output stage, the tree is reorganized to change its
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Figure 2.9: Following the execution of the kernel that splits the kd-tree nodes, a compaction
process will be applied on the result nodes in the active node list for the next iteration over
the list to build another level of kd-tree.

layout to a preorder traversal of nodes to improve memory access performance. Firstly

we perform a bottom-top traversal to determine the size of the array for preorder tree

structure. Then we use another top-down traversal to calculate each node’s address

and generate tree from sizes. The final output includes the node’s bounding box, split

plane and the references to its children and the photon’s position and power.

2.5.2 Photon Search

To estimate the radiance at a surface point, the K-nearest photons around the sam-

ple point need to be located and filtered. In [7], Jensen presented a photon searching

technique using the priority queue with kd-tree. Unfortunately it is not possible to
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implement a priority queue with CUDA efficiently since the memory access is incoher-

ent and almost all arithmetic is independent, thus it makes difficult for hardware to

hide latency. Therefore Zhou et al. propose an iterative K-Nearest Neighbor (KNN)

range search algorithm based on [22], which is performed using a standard stack-based

depth-first search kd-tree traversal algorithm. This algorithm can be efficient thanks

to the fast CUDA’s local memory for the stack. Instead of denoting the number of

dimensions in kd-tree, K used here represents the target number of photons that are

most nearest to surface point.

The algorithm starts from an initial conservative search radius r0 and tries to find

the query radius rK through a couple of iterations. For each iteration, a histogram of

photon numbers over different radius ranges is created and the final radius is reduced

from it. The final radius rK is then used for range search which returns all photons

within that radius.

2.5.3 Advantages and Limitations

The GPU approach from Zhou et al. has a couple of advantages. One is that the

KNN search is fast with the worst time complexity of O(k · n1− 1
k ) [13], where k = 3

for a three dimensional kd-tree. Another advantage is the compact data arrangement

of the tree giving a space complexity of O(n).

However this approach also suffers from a couple of limitations. First of all, the

dynamic lists are extensively used for storing active nodes, small nodes, final tree

nodes and so on and only static arrays are used for optimal performance, therefore
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additional work has to be done to grow the lists by reallocating the memory and data

copying which is expensive operation. To avoid the memory management overhead

Zhou et al. double list sizes when the array need to grow. This leads to increased

memory consumption during construction and a big performance hit as we need re-

build the kd-tree for photons every frame. Another limitation is the complexity of

implementation, there are too much temporary data to maintain during construction

and the requirements of many other data primitive algorithms such as scan, split and

sort also increase the complexity of this approach.
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Chapter 3

A New Approach

In this chapter, we will present a novel approach for rendering a scene with dynamic

light source efficiently. This method is based on the standard GPU-based photon

mapping rendering system, using an augmented kd-tree data structure and localized

updating algorithm for rendering.

In the first 2 sections of this chapter, we will present an overview on our ap-

proach and a comprehensive description of the data structure that we use and related

algorithms. Then we will look at some of the GPU implementation details.

3.1 Motivation

As described in chapter 2, we build a global kd-tree as the photon map for radiance

estimation. In comparison, the standard approach suffers from a main limitation

that the global kd-tree for photons must be rebuilt from scratch for every frame.
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This process is time consuming due to the complexity of kd-tree building algorithm

on GPUs. Our approach avoids this costly overhead.

3.2 Overview

Instead of building a global kd-tree for photons, we re-use the same kd-tree for the ge-

ometric objects (triangles) for efficient radiance estimation using KNN search having

one kd-tree organizes the spatial information of both geometric objects and photons

distribution in the scene. Similar to the way how triangle data is associated with a

kd-tree leaf node, we create a new structure to store both photons and kd-tree leaf

nodes data to enable us quickly performing the photons search with kd-tree traversal

algorithm and update the photon data in this structure without rebuilding a separate

kd-tree for photons.

For each frame, the photons are shot from the light source and stored in an array,

then we build the kd-tree for the geometry objects if it is required, for the scenes

that don’t include animated objects we will skip this process. Given the photons

data in the scene and the built kd-tree for geometry, we build our data structure,

compress the memory to bind it to the texture memory for a better memory accessing

performance. In rendering phase, instead of using another kd-tree for a global photon

map for radiance estimation, we use the kd-tree and our photon queue to perform

the KNN search. Updating of the kd-tree for scene is not required since it is static,

therefore we only need to perform a traversal, when the leaf nodes are reached, we
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Figure 3.1: The photons data will be stored with a connection to the kd-tree for the scene.

will have the access to the photons associated with this node, utilizing two indices on

the array to indicate the range of current frame’s photons, we can directly perform a

photons search.

The update process of photons queue is straightforward. It depends on the photon

data from the previous frames. Here we keep track of all the photons data of a range

of frames with a pair of indices, the indices can be updated and maintained efficiently.

Further details of the data structure and the update process will be presented in

the following section.

3.3 Data Structure and Algorithm

3.3.1 Data Structure

As shown in figure 3.1, in addition to the triangle data, the photons data in the scene

is also logically associated with the leaf nodes of the kd-tree. As the kd-tree for the
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Figure 3.2: More detailed view on how photons data is organized for a single kd-tree leaf
node. There will multiple frames of photons stored in a continuous block of memory.

scene actually encodes the spatial relationship among the geometry, and the photons

will be stored when they hit the objects with diffuse objects, we attach the photons

fall into the spatial region occupied by the bounding box of a kd-tree leaf node.

In figure 3.2 we have a more detailed view on how the photons data organized.

The photons shot into the scene in one frame of rendering are stored followed by the

photons of next frame. When implementing this organization on GPU, all actual

photons data (positions, incident directions and power) is stored in a separate array,

the indices of the photons associated with kd-tree leaf nodes are stored instead of the

actual photon data.

In figure 3.2 we show a more detailed view on how the photons data organized.

The photons shot to the scene in one frame of rendering are stored followed by the

photons of next frame. When implementing this organization on GPU, all actual

photons data (positions, incident directions and power) is stored in a separate array,

the indices of the photons associated with kd-tree leaf nodes are stored instead of the

actual photon data.
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3.3.2 Construction

Building the logical connection between photons and leaf nodes is simpler than build

a global kd-tree for the photon map. Firstly, we found out the the leaf nodes from

the built kd-tree in parallel. This can be done checking a flag set when building the

kd-tree. Given the indices of leaf nodes, we can retrieve the bounding box from the

small node list generated in kd-tree construction phase(see 2.5.1). Then we check

which leaf node certain group of photons should fall into in parallel by performing

fast point-box intersection testing. For each leaf node, the number of photons can be

calculated with a parallel reduction operation. Further details on physical memory

arrangement and implementation of the data structure will be presented in section

3.4.

3.3.3 Update

When a frame of image is rendered, new photons will be shot into the scene and

be stored in the same global array with previous frames and for each leaf node, we

need to keep track of the range of the photons that are active for rendering the next

frame. For each leaf node, we maintain two pointers (indices), start and end index (in

the sense of a circular array), indicating the range of the photons used for rendering.

We move the end pointer forward when there are new photons arriving, move the

start pointer forward when there are some old photons we need to discard. We use a

pre-defined threshold from count to determine how many frames of photons data we

want to make active, we keep accumulating the photons every frame until we reach
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that threshold value. When the threshold frame count is reached, we move forward

the start pointer to avoid there more photons than the threshold. Since the number

of photons per frame is known, the stride of moving start pointer can be calculated.

However, in GPU implementation, the step in bytes used to increment the pointer

is usually larger than the exact size of photons data we want to discard, since the

memory will be padded when it is allocated for better memory accessing performance.

Further details on the implementation and coding will be presented in section 3.4.

3.3.4 Rendering

Rendering with our data structure does not differ much from the standard photon

mapping rendering algorithm. In rendering phase, we cast the rays from the camera

into the scene in parallel and perform KNN search using the kd-tree already built

for the geometry, when we reach the leaf nodes we use our data structure to find

the photons data for particular leaf node and gather the photons for the radiance

estimation.

3.4 Implementation Details

3.4.1 Data Organization

KD-Tree Data The kd-tree data should be carefully organized when implemented

with CUDA to improve traversal performance. In 2.5.1, we have already described

the kd-tree building algorithm introduced in [30], but some of the details that are
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critical to the program’s overall performance still need to be discussed here.

The final node list generated when the kd-tree is built is not sufficient for fast

traversal algorithm, since it contains too much useless information. This is not

friendly to cache pre-fetch. Every time when we are trying to access the memory

of next kd-tree node’s data, the memory next to the location we access to will be

pre-fetched to the high speed on-chip cache for better performance. If the kd-tree

nodes data is not compact, the instruction being executed will fail to read the data

in the cache.

Therefore we compress and re-organize the traversal related data of the kd-tree

nodes to reduce the memory access. The entire kd-tree is stored in a structure of

several contiguous arrays. The structure is defined as following:

struct kdtree_data

{

// Number of nodes

uint num_nodes;

// Size of d_preorder_tree in bytes

uint size_tree;

// Number of elements for each node

uint* d_num_elems;

// Addresses for each node in d_preorder_tree

uint* d_node_addresses;

// Traversal Information
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uint* d_preorder_tree;

// Extent for each node.

float4* d_node_extent;

};

The traversal data is compressed into an unsigned integer array, as shown in the

following figure:

root_idx root_info left_idx left_info left_subtree right_idx right_info right_subtree

Figure 3.3: Compacted kd-tree data memory layout which is friendly to kd-tree traversal.

In the array, root_info, left_info and right_info are the parent infor-

mation for the root, left and right child node (if left and right node are inner nodes).

This is a compressed form of what is needed during kd-tree traversal. Parent informa-

tion stores two unsigned integers, hence two elements in the d_preorder_tree array.

The first unsigned integer contains several information of the inner node: the split

axis takes 2 most significant bits and address of right node in the d_preorder_tree

array, which is 0 if it is a leaf node, take the rest bits. The second unsigned integer

stores the split position (a float value stored as unsigned integer). The address of

left child node is not stored explicitly as it can be computed by skipping the parent

info(2 unsigned integers) from current node’s address. The 2 bits for split axis can

represent x axis if it is 0, y axis if it is 1 and z axis if it is 2.

Also, in the above array, root_idx, left_idx and right_idx are the indices

of the root, left and right nodes. The indices can be used to access the other arrays
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such as the node extents array. The type information of the nodes is also encoded

in the indices, if it is a leaf node, the most significant bit (MSB) is set, else the

MSB is not set, this improves leaf detection performance because it avoids reading

child information. The above format applies only for inner nodes, for leafs, instead

of parent information, element count and element indices are stored. The element

indices are relative to the underlying triangle data. Hence we have the following

format shown in figure 3.4:

leaf_idx leaf_count leaf_elemIdx

Figure 3.4: The compacted memory layout of kd-tree leaf nodes.

Photons Data

Connection Between KD-Tree and Photons Data The connection between

kd-tree leaf nodes and photons data is stored similarly to the memory layout shown

in figure 3.4. Instead of triangle data, the indices of photons traced into the scene of

the current frame is stored as the elements.
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3.4.2 Algorithm Description

Construction

Algorithm 1: Classify photons to kd-tree leafs.
input : KD-Tree Data
input : Photons Data
output: KD Leaf Nodes Photons List
leafNodesMarks ← new array;
leafNodesIndices ← new array;
identityIndices ← (0, 1, 2 ... n);
for All nodes of KD-Tree in parallel do

leafNodesMarks ← mark leaf nodes;
end

leafNodesIndices ← new array;
tempArray ← Multiply identityIndices and leafNodesMarks;
leafNodesIndices ← Compact tempArray;
for All KD-Tree leaf nodes in parallel do

for All photons of current frame in serial do
Perform point-box intersection detection.
Store indices of photons

end

end

for All leaf nodes of KD-Tree in parallel do
if frame counter < max frames then

Store photons indices of current frame with current end pointer.
end

Update start and end pointer for current leaf node.
end

In algorithm 1, two major pieces of input data are required, the kd-tree data

constructed for the scene and the photons data shot in the scene. The photons data

is updated every frame by inserting new photons into a large chunk of buffer resides

in GPU memory. Similar to the organization of underlying triangle data for kd-tree
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nodes, the memory for each frame of photons is aligned to a fixed size to enable

coalesced memory access which may improve the performance considerably. This is

one of the most important good practices for CUDA programming, because if the

threads in a block are accessing consecutive memory locations, then all the accesses

are combined into a single request by the hardware. However, organizing data in this

way will bring extra complexity for implementation because we have to keep track of

the locations of beginning of next valid chunk of data for data accessing and there

will be holes contained in the whole data array. Therefore move the pointer from ith

frame to i + 1 frame requires increasing the pointer by maximum size of memory of

ith frame which is aligned to a fixed size.

Before going into the description of the algorithm 1, we will give an overview

on the fundamental parallel algorithm which are serving as the building blocks of

parallel application, then we will see the application of these parallel algorithms with

the description of our algorithm.

Parallel Reduction

Parallel reduction is a common data parallel algorithm that generates a single result

value from many parallel threads. It can be illustrated with the figure 3.5:

Parallel Compact

Another common algorithm is parallel compact, the results are output per thread. It

is often used to remove the null elements. It can be illustrated with the figure 3.6:
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Figure 3.5: Parallel reduction using "+" operator.
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Figure 3.6: Parallel compact to remove null elements.
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We firstly mark the leaf nodes from the input kd-tree data, given the data defi-

nition described in the section 3.4.1, we only need to look at all the nodes and test

if the MSB of the node’s index is set. The indices of nodes can be retrieved from

the kd-tree data. We store the result of marks in an array with the same number

of elements as number of kd-tree nodes, the result will be 1 for a leaf node and 0

otherwise. The number of leaf nodes can be calculated by performing a data parallel

reduction on this array. In order to store the indices of leaf nodes into an array of

our data structure, we use another temporary local array and fill it with identity

values (0, 1, 2...n − 1), where n equals to the total count of kd-tree nodes, then we

use the marks of leaf nodes as a filter to select the leaf nodes by performing an array

multiplication for each elements on these two arrays, lastly we need a data parallel

algorithm, compact, to remove all the invalid values (0s) from the result of previous

step and store the result. The entire process is illustrated is the figures 3.7 and 3.8.

Our goal is to connect photons with kd-tree leaf nodes so that we can easily find

the photons according to the indices of leaf nodes. Therefore we need to classify the

photons into an array with the same order of the indices of leaf nodes. For example,

the ath leaf node associates with a range of photons [i, ..., i+ n]. Firstly, we launch a

kernel program on all leaf nodes performing the intersection detections between the

bounding box and point on all of photons, if the photon is contained in a certain leaf

node, then we store the indices of photons, figure 3.9 illustrates the process.

The data structure used to store photons for kd-tree leaf nodes works in the similar

way to a circular buffer. We store number of frames of photons in a contiguous buffer.
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Figure 3.7: Find number of leaf nodes using parallel reduction.

The start and end pointer (indices) indicate a range of frames of photons that is valid

for rendering this frame. The start pointer points to the first photons of first active

frame and the end pointer points to the first photon of the last active frame. We have

a frame counter indicating the number of frames we have in the range, therefore we

can detect if the buffer is full by compare the frame counter and max frames capacity.

Render

Algorithm 2 shows the main framework of estimating the radiance at a query point in

parallel. Each CUDA thread works on one query point, see figure ??. The key part

of this computation is performing KNN range search around the query point with the

kd-tree and the photons queue as input. The KNN range search function sums up
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Figure 3.8: Find indices of leaf nodes in parallel.
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Figure 3.9: Photons-box intersection tests in parallel.
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Algorithm 2: Radiance estimation with kd-tree and photons queue.
input : Query Point
input : Camera Rays
input : Query Radius
input : Diffuse Colors
output: Radiance
for All intersection points in parallel do

Retrieve diffuse color at intersection point;
Retrieve the normal vector at intersection point;
Flip the normal vector if it is needed;
irradiance ← rangeSearch(intersectPoint);
radiance ← colorDiffuse ·π−1· irradiance;

end

all the power (flux) of photons and output the irradiance by dividing the flux by the

area of circle centered at the query with a predefined radiance.

In algorithm 3, we present the KNN range search using our data structure. The ba-

sic layout of the algorithm follows the standard while-while iterative traversal scheme.

We first allocate an array as the stack for the kd-tree traversal. Note that this array

resides on the local memory of the CUDA thread running this algorithm, therefore

the access to local array is always coalesced. Then we visit the kd-tree nodes in

pre-order style using the compressed kd-tree data. If the current node is an internal,

then we determine which subtree we will go deeper by compare the position of query

point and split plane with respect to the split axis. If the other child node is in the

range of search radius, it is going to be pushed to the stack. When a leaf node is

reached, we look up the photons queue in which the range of photons for searching

is marked by the start and end pointer and iterate over the photons finding the ones

in the searching radius and calculate the irradiance.
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Figure 3.10: Each CUDA thread works on one query point.
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Algorithm 3: Range search with kd-tree and photons queue.
input : Query point position and radius
input : KD-Tree Data
input : Leaf nodes photons queue
output: Number of photons found
totalFlux ← 0;
todoStack ← new Array[KD_MAX_HEIGHT];
nodeAddr ← 0;
while nodeAddr >= 0 do

idxNode ← kdTreeData.preorderTree[nodeAddr];
isLeaf ← idxNode & 0x80000000;
idxNode ← idxNode & 0x7fffffff;
while NOT isLeaf do

leftNodeAddr ← nodeAddr+1+2;
parentInfo ← GetParentInfo(kdTreeData);
splitAxis ← GetSplitAxis(parentInfo);
splitPos ← GetSplitPos(parentInfo);
rightNodeAddr ← GetRightNodeAddr(parentInfo);
distSqr ← Sqr(queryPoint[splitAxis] − splitPos);
nodeAddr ← leftNodeAddr;
otherNodeAddr ← rightNodeAddr;
if queryPoint[splitAxis] > splitPos then

nodeAddr ← rightNodeAddr;
otherNodeAddr ← leftNodeAddr;

end
if distSqr < queryDistSqr then

todoStack[todoPos++] ← otherNodeAddr;
end
Read node index + leaf info (MSB) for new node.

end
/* Now we have a leaf node */
photonIdx ← photonsQueue.start;
numPhotons ← photonsQueue.numPhotons;
while has more photons do

photonPos ← GetPhotonPos(photonIdx);
pointDistSqr ← ComputeDistantSqr(queryPoint, photonPos);
if pointDistSqr < queryDistSqr then

totalFlux ← Add the flux of photons;
end

end
nodeAddr ← Pop next node from next stack;

end
return irradiance ← totalFlux maxRadiusSqr * π;
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Chapter 4

Simulation Result

In the first section, we will have an overview on our simulation program and our testing

environment. Then in the following section, the simulation results and analysis will

be presented as concept proof of our new approach.

4.1 Overview

Our simulation program is implemented with CUDA, the host part of the code is

fully written in C++ and the code running by GPU is written in CUDA C which is

an extension of standard C programming language. All of the code for GPU kernels

is encapsulated in separated files (*.cu).

Several 3rd party frameworks are employed for a variety of features. Open Asset

Import Library (Assimp) is an open source library to import various well-known 3D

models formats. It is written in C++ and very easy to integrate with our code.

46



Another important framework we used is wxWidget. wxWidget is C++ based cross-

platform light-weight Graphics User Interface (GUI) toolkits. We use it for the user

interface (UI) and displaying the final render result.

4.1.1 System Specification

The testing system’s specification is listed in the table 2:

CPU Intel Core i7 2620M 2.7GHz
System Memory 8GB DDR3
GPU nVidia Quadro 2000M
GPU Memory 2GB DDR3
CUDA Cores 192
CUDA Version 4.0
Driver Version 296.88

Table 2: System Specification

4.1.2 Application Specification

In our test program, the following key features are implemented:

• GPU-based(CUDA) Monte-Carlo ray tracing and kd-tree implementation.

• GPU-based(CUDA) photon mapping technique.

• GPU-based(CUDA) photon mapping with kd-tree leaf nodes photon queue.

• Use CUDA-OpenGL interop for the final render result display.
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We use the CUDA Toolkit 4.2 and Microsoft Visual Studio 2012 as the base CUDA

development environment, the build target is release and all default optimizations

are turned on.

The approach that we make comparison with is standard GPU-based photon map-

ping. Two kd-trees are built for both ray-tracing acceleration structure and global

photon mapping. The implementation of the kd-tree construction and photon search-

ing is based on the algorithms in [30]. For each frame, all the photons of the light

source are shot into the scene and the kd-tree for the photon map is re-constructed.

In the following we will use the the term "standard approach" approach to refer to

this implementation.

4.2 Data Structure Construction

Firstly, we will look at the performance of the data structure construction. Given

a total number of photons shot into the scene, we compare the construction time

among a range of frames. As shown in figure 4.1, the construction time of the stan-

dard approach (red curve), the red curve indicates the construction time with the

standard approach , that is we rebuild the kd-tree for photon map every frame from

scratch with all the photons shot from the light source in the scene. The green curve

represents the construction time using our incremental update approach. For each

frame, we trace fewer photons (500 photons instead of 5000 in this test case) and
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keep accumulating the photons for rendering the following frames. Also the compli-

cated kd-tree construction process is avoided. Therefore we can see the data structure

construction time is shorter than the standard approach.

4.3 Memory Consumption

The memory consumption is another important aspect we need to investigate. The

memory capacity of the PC’s video cards nowadays has been greatly extended, it is

fairly easy to find an affordable video cards featured with 1024MB DDR5 on-board

memory. However video memory is still a type of valuable resource. When analyzing

the memory consumption of our technique compared to the standard approach, we

are looking at the data from two different running phases of our test program, the

pre-rendering phase and rendering phase.

As shown in figure 4.2, given the parameter of max frames as 10, the memory

consumption of our technique is considerably larger than the standard approach, in

fact, it requires more than 10 times more memory. The reason for this behavior is

that we maintain a large buffer that works like a circular buffer to keep track of all

the photons data of the previous frames, and the capacity of the buffer is determined

by maximum number of frames we check back. In addition to the extra photon data,

we also need to store another buffer on GPU memory that stores the photons that

belongs to a kd-tree leaf node using photon indices which point to the photon data,

buffer. Though the index is just represented with an 32-bit unsigned integer value
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Figure 4.1: Data structure construction time measured in seconds.
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which is much smaller than the detailed representation of a photon in the global

buffer.

Although our new technique demands much more memory than the standard ap-

proach does during the rendering phase, the memory requirement of our method

overall is much lower than the standard approach. This behavior is due to the large

memory overhead introduced in kd-tree construction phase. Large amount of memory

is allocated for the miscellaneous data structure such as the node list, the indices of

triangles (triangles and points) and split list, and then will be released when con-

struction is done. Conversely our new technique does not require much temporary

data.

As shown in figure 4.3, building a kd-tree for the photons demands much more

memory than building the photons queue, even though the memory allocated here will

released later, the peak memory consumption could bottleneck the performance of the

whole program or even prevent the program from running for some video cards with

smaller memory capacity. Since memory allocation is an expensive routine and kd-

tree construction requires lots of temporary memory allocation/release, it becomes

another important factor that brings negative impact on performance of the data

structure construction for the standard approach as we can see in the section 4.2.
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Figure 4.2: Memory consumption in rendering phase.

52



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

20

40

60

80

100

120

140

160

180

200

Total number of photons

M
em

or
y 

in
 M

B

Peak Memory Consumption (in MB). Max Frames: 10

 

 
Standard Approach
Our Approach
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4.4 Photons Search

In this section, we will show how the different techniques perform during the photon

search. There are couple of parameters that have influence on the performance:

• The number of photons to search.

• The search radius(maximum allowed distance between the query point and a

photon).

We will present how these parameters effect the photon search result and analyze

the possible cause.

4.4.1 Number of Photons

As shown in the figure 4.4, the photon gathering of our technique is slightly faster than

the standard photon mapping when number of photons is less than 150000, as the

range of photons to search grows, it slows down and is eventually out-performed. As

introduced earlier, our technique creates a buffer holding the photons that spatially

belong to the leaf nodes of kd-tree for the scene objects, when performing the photon

search, we traverse this built kd-tree with k-nearest neighbor algorithm to quickly

reach the leaf nodes that is connecting with the photons that potentially fall into a

pre-defined search range from the query point using the bounding box information

of the kd-tree leaf nodes, then perform a linear search at this level. Compared to a

kd-tree built for the hundreds of thousands of photons in the scene, the kd-tree for

geometry is usually far more coarse, especially for a relative simple scene. Therefore
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the kd-tree for a simple scene will have a small depth and a leaf node could have an

large extent and holds a large number of photons. Thus the advantages of the binary

search is out-weighted by the linear search. This is a possible reason why we have

the result shown in figure 4.4. In an extreme case, when there is no split in the scene,

thus the kd-tree only has one node, the root node which contains everything, and the

photon search will degenerate into a linear search.

4.4.2 Query Radius

Figure 4.5 shows that how the query radius effect the photon search performance.

The standard photons search algorithm and our technique both have an almost steady

increase in search time with an increasing query radius. For standard photon mapping

method, since more kd-tree node will be enqueued to the stack waiting to be visited

as the query radius increases, this brings larger kd-tree traversal overhead. When

using photons queue for range search, the lost of performance becomes less than the

standard photon mapping. As explained earlier, more photons are associated with

one kd-tree leaf nodes, thus there are less nodes pushed to the local stack and the

overhead of traversing the kd-tree is avoided.

4.5 Image Quality

In this section we take a look at the quality of our approach. As described in chapter

3, our new approach uses an incremental scheme to update the kd-tree and photons
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Figure 4.4: Photon search performance with different number of photons.
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Figure 4.5: Photon search performance with different query radius.
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queue for the rendering to be beneficial for the dynamic scene with moving light

source. Therefore it makes more sense to look at the result images of a range of

frames to see the image quality, the light source will also be moving in the frame

sequence so that we can see the change of equilibrium distribution of radiance in the

scene. To obtain a better knowledge on how the photons are distributed in the scene

each frame, we will present the photons visualization result images as well along with

the result image.

Several key parameters defined in our experiments for both the standard photon

mapping method and our new approach are presented in the table 3.

In figure 4.6, we firstly present the result image rendered with default values of the

parameters listed in table 3 using standard photon mapping algorithm and photons

visualization image.

Figure 4.6: Result images rendered using standard photon mapping technique (left) and
photons visualization image (right).

The following series of image groups rendered with our new approach is a frame

sequence rendering a scene with moving point light source.

As shown in figure 4.7, figure 4.8 and figure 4.9, the quality of resulting images
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(a) (b)

Figure 4.7: Rendered images and photons visualization from frame 0 to frame 3.
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(a) (b)

Figure 4.8: Rendered images and photons visualization from frame 4 to frame 7.
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(a) (b)

Figure 4.9: Rendered images and photons visualization from frame 8 to frame 9.
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become better and finally stable after a certain number of frames. It is not difficult

to understand why we have this result according to our algorithm, as we trace fewer

photons for each frame, the beginning few images apparently are less illuminated by

the light source, in the following frames, we keep shooting more and more photons

into the scene and accumulating the photons to the photons queue. Therefore we can

visualize more and more photons and the scene becomes brighter. The number of

photons in the scene will become stable when the maximum frames, since there are

same amount of photons traced as they are supposed to be compares to the standard

approach. Eventually we will achieve same image quality as that of the standard

photon mapping.

Figure 4.10 shows that the images rendered by our approach produces the same

quality as of the standard approach.

Figure 4.10: Rendered images and photons visualization using standard approach (left)
and the our new method with full amount of photons (right).

In the following group of tests, we present how the image quality changes with

the moving light source using our approach. We move the light source from the world

coordinates (-6, 10, 6) to (6, 10, -6) using 4 frames and move it back to (-6, 10, 6), it

62



takes 7 frames in total. While the light source moving, our new renderer updates the

kd-tree to store more photons, it will have the maximum number of photons which

is 200000 at 4th frame and continue updating photons queue by moving forward the

start index to maintain the proper range of photons. We will make a side-by-side

image comparison with the standard approach for each frame.

In figure 4.11, we can see that from frame 0 to frame 3, the scene on the left is less

illuminated since there are less photons shot into the scene than there is supposed be

emitted from the light source. We use these 3 frames to prepare the photons queue

by update it incrementally. In the last frame, the image quality is similar to that

of the standard approach since there are full amount of photons stored. Figure 4.12

shows that our new technique can achieve as good image quality with the dynamic

light source as the standard approach after finished preparation of the photon queue

and started using the start and end pointer for the radiance estimation. There are

more frames shown in figure 4.13 to illustrate the images quality using our approach

to incrementally update the photons queue for rendering.
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(a) (b)

Figure 4.11: Comparison of image quality from frame 0 to 3 with moving light for the new
approach (left) and standard method (right). Corresponding to each frame the positions of
the light source are (-6, 10, 6), (-2, 10, 2), (2, 10, -2), (6, 10, -6). The number of photons
maintained by our photons queue are 50000, 100000, 150000 and 200000 for each frame.
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(a) (b)

Figure 4.12: Comparison of image quality from frame 4 to 6 with moving light for the new
approach (left) and standard method (right). Corresponding to each frame the positions of
the light source are (2, 10, -2), (-2, 10, 2), (-6, 10, 6).
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(a) (b)

Figure 4.13: Comparison of image quality from frame 7 to 10 with moving light for the new
approach (left) and standard method (right). Corresponding to each frame the positions of
the light source are (-2, 10, 2), (2, 10, -2), (6, 10, -6), (2, 10, -2).
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Table 3: Experiments Parameters

Parameter Default Value Description
Max. Photons Bounces 3 The maximum photons re-

flection will be traced.
Total Number of Photons 200000 The total number of pho-

tons emitted from the light
source.

Light Source Type Point Light The type of light source,
point light and area light
are supported. However in
this experiments only point
light is used.

Light Source Position (0.0, 10.0, 0.0) Default light source position
in the scene.

Light Emission Intensity (1.0, 1.0, 1.0) The RGB representation of
light emitted radiance.

Maximum Frames Counter 10 The maximum number of
frames we keep track of.
Given the total number of
photons as 200000, the pho-
tons emitted for each frame
is 20000

Image Resolution 512 x 512 The resolution of result im-
age.

Samples per Pixel 1 Multi-sampling is not used
in the experiments thus
there is only 1 ray being
traced per pixel.

Trace Shadow Rays Off Toggle tracing the shadow
rays.

Specular Reflection Off Toggle of specular reflection
when tracing photons.
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Chapter 5

Conclusions

In this research, we mainly focus on developing an improved photon mapping tech-

nique specifically for current generation GPU taking the advantage of the massive

parallelized computation power. We started with introducing the theoretic basis of

global illumination, then we reviewed the existing approaches published on the solv-

ing the problem, especially the photon mapping techniques exploited the parallelism

with GPU. In our opinion, the existing method suffers from deficiencies in terms of

how it handles the dynamic scene. After analyzing the weakness, we present a new

approach trying to avoid the secondary kd-tree construction exclusively for photon

data and instead support an incremental updating scheme by associating the pho-

tons data with the kd-tree of the geometric objects and accumulating the photons

from previous frames for K Nearest Neighbor photon searching. To proof our concept

we implemented the test programs for both the existing and our new approach and

carried out a series of benchmarks.
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The major contribution of this thesis can be summarized as follows:

• Proposed a new data structure that maintains the kd-tree leaf nodes data and

photons data for GPU-based photon mapping renderer and implemented the

parallel construction and incremental updating algorithm on this data structure

allowing us to efficiently perform radiance estimation using photons.

• Improved the rendering performance for the scenes with dynamic light source by

using the new data structure to avoid the overhead brought by re-constructing

another kd-tree for photons every frame.

• Add fewer photons to scene per frame with the same image quality compared

to the standard photon mapping technique to achieve efficient rendering.

In our tests we observed that our approach was faster during construction and

almost all the photon search tests among certain range of frames for a dynamic scene.

Especially the construction time was greatly reduced compared to the old approach.

Along with speed measurements, we also examined the memory consumption of both

approaches. Our approach consumes more memory in rendering phase since the

photon data from previous frames. But the memory consumption in the construction

phase is much less than the existing method. Because we only require the construction

of kd-tree for the scene. The memory consumption also strongly depends on the

number of frames we want to store for the photons. Finally, we validate the quality

of the rendered by directly visualizing the photons in the scene.
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5.1 Future Work

We believe that there are a couple of interesting topics the future work can work on to

improve our new approach. The first one is improve the algorithm of the classifying

the photons to the kd-tree’s leaf nodes to achieve more efficient parallelization. The

current solution is that each thread works on one leaf node iterating over all the

photons, this could lead considerable deficiency of parallelization on GPU especially

when the height of the tree is relative low (there are less leaf nodes) due to the low

occupancy of CUDA threads. One possible solution is to map the photons to CUDA

threads instead, marking the photons that belong to certain kd-tree leaf node and

applying a parallel primitive algorithm such as compact to calculate the indices of

photons for each kd-tree leaf node in parallel.

Another interesting application we can explore further is to test and observe that

how participating media such as smoke, dust or clouds effect the performance us-

ing our approach. The participating media will affect light when it travels through

them, the light beam is either absorbed or scattered. Since our approach spatially

encodes the distribution of the photons based on the volume boundary of the kd-tree

nodes, we think our approach is suitable for storing photon information of volumetric

participating media and good performance could be expected.

In addition to keep evolving the approach algorithmically, we certainly cannot

ignore the impact brought by the developments in graphics hardware on the photon
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mapping techniques. With the latest generation of GPUs and development frame-

work, the applications will benefit from better GPU performance and more flexibility,

such as better performance for non-coalesced memory access implicit hardware opti-

mizations which is almost free for developers.
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