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ABSTRACT

Connectivity Preservation in Distributed Control of Multi-Agent Systems

Amir Ajorlou,

Concordia Unviersity, 2012

The problem of designing bounded distributed connectivity preserving control

strategies for multi-agent systems is studied in this work. In distributed control

of multi-agent systems, each agent is required to measure some variables of other

agents, or a subset of them. Such variables include, for example, relative positions,

relative velocities, and headings of the neighboring agents. One of the main assump-

tions in this type of systems is the connectivity of the corresponding network. There-

fore, regardless of the overall objective, the designed control laws should preserve the

network connectivity, which is usually a distance-dependent condition. The designed

controllers should also be bounded because in practice the actuators of the agents

can only handle finite forces or torques. This problem is investigated for two cases

of single-integrator agents and unicycles, using a novel class of distributed potential

functions. The proposed controllers maintain the connectivity of the agents that are

initially in the connectivity range. Therefore, if the network is initially connected,

it will remain connected at all times. The results are first developed for a static

information flow graph, and then extended to the case of dynamic edge addition.

Connectivity preservation for problems involving static leaders is covered as well.

The potential functions are chosen to be smooth, resulting in bounded control inputs.

These functions are subsequently used to develop connectivity preserving controllers

for the consensus and containment problems. Collision avoidance is investigated as

another relevant problem, where a bounded distributed swarm aggregation strategy

with both connectivity preservation and collision avoidance properties is presented.

Simulations are provided throughout the work to support the theoretical findings.
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Chapter 1

Introduction

Cooperative control of a group of autonomous agents has been extensively studied

in the past few years. This relatively new line of research has been motivated by

the increasing application of multi-agent systems such as mobile robots, formation

flying of UAVs, deep-space missions and spacecraft formation, automated highway

systems, air traffic control, and mobile sensor networks [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12]. The main goal in such applications is to find distributed control paradigms

satisfying a global objective defined over the entire network. Examples of such

an objective include flocking, consensus, rendezvous, containment, and formation

[13, 14, 15, 16, 17, 18, 19, 20]. For instance, in the flocking problem it is aimed to

achieve the convergence of the velocity and orientation of every agent to a common

value [13, 14], whereas in the consensus and rendezvous problems it is desired that

all the agents in the group reach a single point in the state space [15, 16, 17, 18].

In the formation control problem, on the other hand, the agents attain a desirable

configuration specified by their relative positions [19]. In the containment problem,

it is desired that a subset of the agents, called followers, converge to the convex hull

formed by the rest of the agents, called leaders, which could be stationary or moving

[20].
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Early work on the consensus problem can be traced back to the field of com-

puter science and distributed computations [21, 22, 23, 24]. In the classical con-

sensus problem, it is desired to find a state update rule for the agents such that

some quantity of interest in every agent converges to a common value in the steady

state. Further results on this subject are presented in the literature in the past few

years; e.g., see [15, 16, 25]. The work [15] shows that the alignment of all agents

in the presence of time-varying communication topology can be achieved using the

nearest-neighbor rule. In [16], linear time-invariant consensus protocols are pro-

posed for multi-agent systems subject to switching communication topologies and

time-delay. The work [25] proposes both discrete and continuous time consensus

protocols for a group of agents which exchange information over limited and unre-

liable communication links with time-varying topology. Recently, some algorithms

have been proposed in the literature which guarantee the connectivity of the under-

lying network of agents [26, 27, 28, 29, 30, 31, 32]. Collision avoidance is another

important problem concerning the consensus algorithms, and has been addressed in

a number of papers [33, 34, 35, 13, 14, 29].

In many of the above-mentioned algorithms, the stability of the system un-

der some control strategy is to be determined, typically by finding an appropriate

Lyapunov function. However, constructing a proper Lyapunov function is known

to be cumbersome, in general. Motivated by this shortcoming, some recent papers

consider the stability of general distributed consensus algorithms [36, 37, 38, 39, 40].

Graphical conditions are presented in [36] for the exponential stability of a class of

continuous linear time-varying (LTV) systems whose state-space matrix is Metzler

with zero row sums. In [37], the convergence of discrete-time nonlinear consensus

algorithms with time-dependent communication links is shown under a convexity

assumption and some conditions on the communication graph. [38] generalizes the

results of [37] to the case where the agents move towards the relative interior of
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a set that is a function of the present and past states of the neighboring agents

(not necessarily the convex hull of them). As the continuous-time counterpart of

[37], the work [39] studies the state agreement for coupled nonlinear differential

equations with switching vector fields and topology. It is shown that under a strict

sub-tangentiality condition and uniformly quasi-strongly connectivity of the interac-

tion digraph, the system has the property of asymptotic state agreement. Somewhat

relaxed conditions for the case of a static interaction digraph are presented in [40].

Nonlinear consensus algorithms arise in applications where other design criteria such

as connectivity preservation and collision avoidance are to be satisfied during the

convergence to consensus [28, 29, 41].

Chapter 2 studies the convergence of a class of continuous-time nonlinear con-

sensus algorithms for single-integrator agents. The information flow graph of the

agents is assumed to be static and directed. The control input of each agent is con-

sidered as a state-dependent combination of the relative positions of its neighbors in

the information flow graph. Sufficient conditions are provided which guarantee the

convergence of the agents to a common point for this class of consensus algorithms.

It is shown that under some mild conditions, the convex hull of the agents has a

contracting property. This property is used later to prove the convergence of the

agents to a common point. The proposed convergence conditions are more general

than the ones reported in [40, 39] under the additional assumption that the weights

are analytic for a static interaction graph. The results are later used in Chapters 3

and 4 to carry out stability analysis for the consensus application of the proposed

connectivity preserving control strategies.

In cooperative control of multi-agent systems, each agent is required to mea-

sure some variables of other agents, or a subset of them. Such variables include,

for example, relative positions, relative velocities, and headings of the neighboring
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agents. One of the main assumptions in the distributed control of multi-agent sys-

tems is the connectivity of the corresponding network. Therefore, regardless of the

overall objective, the designed control laws should preserve the network connectivity,

which is usually a distance-dependent condition. The problem of maintaining net-

work connectivity has been extensively studied in the literature for different agent

dynamics and various applications such as consensus, flocking, containment and

formation control.

For the agents with single-integrator dynamics, this issue has been investigated

in several recent papers. A localized notion of connectedness is introduced in [42],

and it is shown that under certain conditions the global connectedness of the network

is also guaranteed. Connectivity of the graph of a network is also related to the

second smallest eigenvalue of the corresponding Laplacian matrix [43, 44, 45, 46].

Centralized and decentralized approaches are proposed in [47, 48, 49] to maximize

the second smallest eigenvalue of the state-dependent Laplacian of the graph of

the network in order to maintain connectivity. [50, 30] use a decentralized power

iteration algorithm to estimate the eigenvector corresponding to the second smallest

eigenvalue of the Laplacian matrix of the graph. They subsequently obtain an

estimate of the algebraic connectivity of the network, and a control input to keep the

algebraic connectivity positive over time. [51, 31] present a leader to follower ratio

that ensures connectivity preservation in a leader-follower multi-agent network. In

order to maintain the existing links in the network, the papers [52, 26, 27, 29, 53, 54]

use some potential fields that “blow up” whenever a link in the network is losing

connectivity. In [28, 55, 56], appropriate nonlinear weights are designed for the edges

of the interaction graph to ensure network connectivity. However, these weights

tend to infinity when a pair of agents forming an edge approach a critical distance

at which they lose connectivity. These techniques may not be effective in practice

since the actuators of the agents can only handle finite forces or torques. To the best
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of the author’ knowledge, the only bounded control law reported in the literature

for single-integrator agents so far is the one proposed in [57, 58], where connectivity

is claimed to maintain for a distributed navigation function which was used earlier

in [59, 60, 61] for collision avoidance concerning robot navigation, and in [62] for

formation stabilization.

As for double-integrator agents, [63] uses the same ideas as [27] for connec-

tivity preservation of single-integrator agents, to develop a hybrid control strategy

which yields velocity alignment while maintaining connectivity and ensuring colli-

sion avoidance. The above paper utilizes local estimates of the network topology in

order to preserve connectivity, and allows edge deletions using a distributed market-

based control strategy. More recently, a cohesive overview of the main results of

[48, 49, 26, 27, 28, 63] is presented in a unified framework in [32]. For unicycles, [53]

proposes a discontinuous and time-invariant feedback control strategy to reach con-

sensus in both positions and headings, while maintaining the connectivity of those

neighbors which are initially in the connectivity range. However, the translational

velocity of an agent may tend to infinity when it is about to lose connectivity from

a neighbor. Thus, this technique may not be effective in practice since the actuators

of the agents can only handle finite forces or torques.

As for the containment problem, a hybrid Stop-Go policy is presented in [20]

for single-integrator agents. It is shown that under this policy the convergence

of agents is guaranteed if the leaders are stationary and the interaction graph is

connected. The containment problem has also been studied in [64] for a team of

single-integrator agents. Three cases of multiple static leaders, multiple dynamic

leaders, and containment control with swarming behavior are considered in the above

work. For the latter case, it proposes a distributed algorithm to move the followers

toward the convex hull of the leaders with bounded containment control error, while

preserving the connectivity of the agents and avoiding collision. The containment
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problem for double-integrator agents for both cases of static and dynamic leaders

is investigated in [65]. A distributed attitude containment control problem for a

team of rotating rigid bodies is provided in [66]. Each leader is to converge to

a prescribed relative orientation with respect to the rest of the leaders, and the

followers’ orientations are to be contained within the convex hull of the leaders’

orientations. The work [67] proposes a containment control strategy for unicycle

agents where the leaders are desired to converge to a predefined formation. However,

to the best of the author’s knowledge, connectivity preservation has not been studied

for the containment problem of unicycles or double-integrators.

One of the unprecedented contributions of this dissertation is to address this

shortcoming by providing bounded distributed control strategies for connectivity

preservation of multi-agent systems for two cases of single-integrator and unicycle

agents. In Chapter 3, a general class of distributed potential functions is introduced

with the connectivity preserving property for single-integrator agents. The main idea

of the proposed approach is to design the potential functions in such a way that when

an edge belonging to the information flow graph is about to lose connectivity, the

gradient of the potential function lies in the direction of that edge, aiming to shrink

it. The results are presented for a static information flow graph first, and are then

extended to the case of dynamic edge addition. The topology of the agents that

may stay fixed under the proposed control strategy is properly characterized with

the purpose of extending the strategy to problems involving static leaders in which

the agents assigned as leaders are to stay fixed. This is another advantage of the

control scheme presented here over existing connectivity preserving approaches. The

potential functions are chosen to be smooth, resulting in bounded control inputs.

Additional constraints may be imposed on the potential functions to meet other

design specifications such as consensus, containment, and formation convergence.

It is to be noted that although the connectivity preserving control law proposed
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in [57, 58] are also bounded, the corresponding framework can be regarded as a

subcase of the one in this chapter. Furthermore, [57, 58] do not consider the case

where some of the edges of the information flow graph start exactly at the critical

distance. Consequently, [57, 58] cannot be used in the case of static leaders. The

proposed connectivity preserving controllers are then used to design connectivity

preserving control strategies for the consensus and containment applications, where

the results developed in Chapter 2 along with some novel lyapunov functions are

used to carry out the stability analysis.

Designing bounded connectivity preserving controllers for the case of unicycle

agents is discussed in Chapter 4. In this chapter, a class of bounded distributed con-

trollers is proposed that maintains the connectivity of those agents that are initially

in the connectivity range. Therefore, if the network is initially connected, it will

remain connected at all times under the controller provided in this work. Connec-

tivity preservation is guaranteed even if some of the agents, namely static leaders,

are to remain fixed. The main idea here is to design the local controllers in such a

way that when an agent is about to lose connectivity with a neighbor, it is forced

to move with an acute angle with respect to the corresponding edge. If the heading

of the agent is perpendicular to this edge, then under the proposed control law the

velocity of the agent is zero, the acceleration of the agent is perpendicular to this

edge, and the derivative of the acceleration makes an acute angle with this edge,

aiming to shrink it. The results are primarily developed for a static information flow

graph, but are shown to also hold for the case of dynamic edge addition. Smooth

potential functions are used in order to obtain bounded control inputs. The results

are then used to design bounded connectivity preserving control strategies for con-

tainment and consensus, both being novel and unprecedented contributions of the

present work with respect to the existing literature.

Collision avoidance is another important specification in distributed control

7



of multi-agent systems, which is known to be closely related to the connectivity

preservation property from the design point of view. This problem is thoroughly

investigated for both cases of single-integrator agents (e.g., see [33, 34, 35, 13, 14, 29])

and unicycles (e.g., see [68, 69, 70, 29, 71]). The connectivity preservation and

collision avoidance problems are also studied simultaneously in several works in the

literature. The papers [26, 27, 29] use the idea of unbounded potential functions to

avoid collision between agents besides the connectivity preservation. A containment

control strategy for a team of single-integrator agents, while preserving connectivity

and avoiding collision between them, is proposed in [64]. However, when two agents

approach each other or reach the boundary of connectivity range, their control inputs

become unbounded. Connectivity preserving control strategies for double-integrator

agents are proposed in [54, 63]. In [54], using unbounded potential functions for

double-integrator agents, a connectivity preserving controller is designed for flocking

of the agents while avoiding collision among them. In [63] a hybrid control strategy

is developed which yields velocity alignment while maintaining connectivity and

ensuring collision avoidance. The potential functions used in the controller design

tend to infinity when two agents are about to collide or to lose connectivity. For

unicycles, A connectivity preserving collision-free aggregation control strategy is

designed in [29] using potential functions that tend to infinity when two agents are

about to collide or to lose connectivity.

Bounded distributed connectivity preserving control strategies for aggregation

of a swarm of agents for two cases of single-integrator and unicycle dynamics with

collision avoidance property is presented in Chapter 5. The main contribution of this

chapter is to add collision avoidance feature to the results presented in Chapters 3

and 4 on bounded connectivity preservation of multi-agent systems. The proposed

control strategy preserves the connectivity in the sense that if two agents enter the

connectivity range at some point in time, they will stay in the connectivity range
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thereafter. The agents are shown to finally aggregate, while avoiding collision among

themselves, in such a way that the average distance between the neighboring agents

eventually falls below a pre-specified threshold. The control inputs of the agents stay

bounded even if two agents are about to collide, or to leave or enter the connectivity

range.

The results of this dissertation are published (or submitted for publication) in

a number of journals and conference proceedings ([72, 73, 74, 41, 75, 76, 77, 78, 79,

80, 81, 82]). These publications are listed below for different chapters.

• Chapter 2
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2. A. Ajorlou, A. Momeni, and A. G. Aghdam, ”Relaxed convergence con-

ditions for multi-agent systems under a class of consensus algorithms,”

in Proceedings of American Control Conference, 2011, pp. 2795-2800.

3. A. Ajorlou, A. Momeni, and A. G. Aghdam, ”Convergence analysis for

a class of nonlinear consensus algorithms,” in Proceedings of American

Control Conference, 2010, pp. 6318-6323.

• Chapter 3

1. A. Ajorlou, A. Momeni, and A. G. Aghdam, ”A class of bounded dis-

tributed control strategies for connectivity preservation in multi-agent

systems,” IEEE Transactions on Automatic Control, vol. 55, no. 12, pp.

2828-2833, 2010.

2. A. Ajorlou, A. Momeni, and A. G. Aghdam, ”A connectivity preserving

containment control strategy for a network of single integrator agents,”

in Proceedings of American Control Conference, 2011, pp. 499-501.
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3. A. Ajorlou, A. Momeni, and A. G. Aghdam, ”Connectivity preservation

in a network of single integrator agents,” in Proceedings of the 48th IEEE

Conference on Decision and Control, 2009, pp. 7061-7067.

• Chapter 4
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3. A. Ajorlou and A. G. Aghdam, ”Convergence analysis for a class of
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1585-1590.

4. A. Ajorlou and A. G. Aghdam, ”A class of bounded distributed controllers
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IEEE Conference on Decision and Control, 2010, pp. 3072-3077.

• Chapter 5
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serving aggregation strategy with collision avoidance property,” Systems

& Control Letters, 2013 (conditionally accepted).
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gregation strategy with collision avoidance property for single-integrator
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Control, 2012, pp. 4003-4008.
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Chapter 2

Sufficient Conditions for the

Convergence of a Class of

Nonlinear Distributed Consensus

Algorithms

This chapter studies the convergence of a class of continuous-time nonlinear con-

sensus algorithms for single-integrator agents. In the consensus algorithms studied

here, the control input of each agent is assumed to be a state-dependent combina-

tion of the relative positions of its neighbors in the information flow graph. Using

a novel approach based on the smallest order of the nonzero derivative, it is shown

that under some mild conditions the convex hull of the agents has a contracting

property. A set-valued LaSalle-like approach is subsequently employed to show the

convergence of the agents to a common point. The results are shown to be more

general than the ones reported in the literature in some cases.

The remainder of this chapter is organized as follows. The problem is formu-

lated in Section 2.1, where some useful notations and definitions are also introduced.
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Sufficient conditions for the convergence of the consensus algorithms introduced in

Section 2.1 are presented in Section 2.2. Finally, the verification of the proposed

convergence conditions is illustrated in Section 2.3.

2.1 Problem Formulation

Definition 2.1. The function f : R → R
m is said to be of class Ck if the derivatives

f (1), . . . , f (k) exist and are continuous (f (k) is the kth derivative of f). The function

f is said to be of class C∞ (or smooth) if it has derivatives of all orders.

Definition 2.2. For a smooth function f : R → R
m, the index of f at time t,

denoted by ρ(f(t)), is defined as the smallest natural number n for which f (n)(t) �= 0.

Definition 2.3. For a smooth function f : R → R
m, the extended index of f at

time t, denoted by ρ̃(f(t)), is defined as the smallest nonnegative integer n for which

f (n)(t) �= 0, where f (0)(t) is defined to be f(t).

Definition 2.4. A function f : Rm → R, is called analytic on R
m, written f ∈

Cω(Rm), if for any α ∈ R
m the function f may be expressed as a convergent power

series in some neighborhood of α (see [99]).

Definition 2.5. For a set of points Q = {q1, . . . , qn}, qi ∈ R
m, i ∈ Nn := {1, . . . , n},

the convex hull of Q is defined as

Conv(Q) = {p|∃λ1, . . . , λn ≥ 0 :
n∑

i=1

λi = 1, p =
n∑

i=1

λiqi}

Definition 2.6. A set-valued function S(·) is said to be nested if for every t1, t2 ∈ R,

where 0 ≤ t1 ≤ t2, the relation S(t2) ⊆ S(t1) holds.

Definition 2.7. In a digraph G, a vertex v is said to be reachable from a vertex

u, if there is a directed path from u to v. The set of all reachable vertices from the

vertex u in G is denoted by Ru(G).
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Definition 2.8. A digraph G is said to be quasi-strongly connected if for every two

distinct vertices u and v of G, there is a vertex from which both u and v are reachable

(see [100]).

Definition 2.9. A group of agents 1, ..., n is said to converge to consensus if qi(t) →

q̄ as t → ∞ for any i ∈ Nn, where qi(t) ∈ R
m denotes the state of agent i at time t,

and q̄ is a constant.

Definition 2.10. For a function q : R → R
m, the point p̄ ∈ R

m is said to be a

positive limit point of q(·) if there exists a sequence {tn} with tn → ∞ as n → ∞,

such that q(tn) → p̄ as n → ∞. The set of all positive limit points of q(·) is called

the positive limit set of q(·).

Definition 2.11. A family A = {Aα}α∈I of subsets of a set X is said to have the

finite intersection property if every finite sub-family {A1, A2, . . . , An} of A satisfies
⋂n

i=1 Ai �= ∅ (see [101]).

Consider a set of n agents in the 2D plane with single-integrator dynamics,

i.e.

q̇i(t) = ui(t), i ∈ Nn (2.1)

where qi(t) ∈ R
2 represents the position of agent i at time t, and ui is the correspond-

ing control signal. The present work is concerned with those control signals under

which the agents converge to consensus. Note that for brevity, the time argument

is omitted hereafter in all time-dependent functions, wherever it is not necessary.

Denote by G = (V,E) the information flow graph, with V = {1, . . . , n} representing

the set of n vertices (associated with the n agents), and E ⊆ V × V representing

the corresponding edges. The information flow graph G is assumed to be static

and directed. There is a directed edge from vertex j to vertex i in G if and only if

(j, i) ∈ E. The set of neighbors of vertex i in G is defined as Ni = {j|(j, i) ∈ E},

and its indegree is denoted by di = |Ni|. Each agent is only allowed to incorporate
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its own position and the position of its neighbors in its control law. In this chapter,

the distributed control laws of the following form are considered

ui = −
∑
j∈Ni

βij(qi − qj) , i ∈ Nn (2.2)

where the coefficients βij : R
2(di+1) → R, i ∈ Nn, j ∈ Ni, are state-dependent.

More specifically, each coefficient βij is a function of the position of agent i and the

positions of the neighbors of agent i in G. The main contribution of this chapter is

to present sufficient conditions on the coefficients βij in (2.2), which guarantee the

convergence of the agents to consensus.

2.2 Sufficient Conditions for Convergence

Consider again a set of n agents in the 2D plane with the dynamics of the form

(2.1), and let them evolve according to the control laws given by (2.2). The aim of

this section is to show that under the following assumptions on the coefficients βij

in (2.2), the agents converge to consensus.

Assumption 2.1. The state-dependent coefficients βij in (2.2) are analytic, real

and nonnegative for any i ∈ Nn and j ∈ Ni.

Assumption 2.2. The system (2.1) with the control law of the form (2.2) has no

solution in which the convex hull of the agents is not a singleton and is fixed, with

at least one agent being fixed at each vertex.

Denote by S(t) the convex hull of the agents at time t, i.e.

S(t) = Conv ({qi(t)|i ∈ Nn}) (2.3)

In what follows, a few lemmas are presented first in order to prove the nestedness

property for S(t). Using this property, a LaSalle-like approach is subsequently taken

to prove the convergence of the agents to consensus.
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Lemma 2.1. Consider a function f : R → R, f ∈ Ck+1, with the property that

f (1)(t) = . . . = f (k)(t) = 0 and f (k+1)(t) > 0, for some t, where k is some positive

integer. Then, there exists δ > 0 such that

f(t) < f(t+ τ) , ∀τ ∈ (0, δ] (2.4)

Proof. Since f (k+1)(t) > 0, thus f (k)(t + τ) is monotonically increasing for

τ ∈ [0, δ], for some δ > 0. On the other hand f (k)(t) = 0, which implies (along

with the above result) that f (k)(t + τ) > 0 for any τ ∈ (0, δ]. Hence, f (k−1)(t + τ)

is monotonically increasing for τ ∈ [0, δ]. Using a similar argument iteratively, one

arrives at the conclusion that f (0)(t+ τ) (which is by definition equal to f(t+ τ)) is

monotonically increasing in the closed interval given above. Therefore, f(t + τ) >

f(t) for any τ ∈ [0, δ] and this completes the proof. �

Remark 2.1. if f (k+1)(t) < 0, one can similarly show that there exists δ > 0 for

which

f(t) > f(t+ τ) , ∀τ ∈ (0, δ] (2.5)

In order to show the nestedness property for the set S(t), it is required to

investigate the behavior of the agents on the boundary of the set. Consider a line l

which intersects S(t) at some time t ≥ 0, but does not pass through it. Note that

this intersection will be on the boundary of S(t), i.e., either an edge or a vertex of

S(t) (see Fig. 2.1 for the case when the intersection is an edge). Denote by el the

unit vector perpendicular to l, in the direction of the half-plane containing S(t).

Define fl : R
2 → R as fl(x) =< x, el >, i.e., the projection of x on el. Let agent i

be on l at time t. Denote by N l
i (t) the set of those neighbors of i lying on l, and

with N̄ l
i (t) the set of those neighbors not lying on l. Now, define ηli1(t) and ηli2(t) as

follows:

ηli1(t) =

⎧⎨
⎩

minj∈N l
i (t)

{ρ̃(βij) + ρ(fl(qj))}, N l
i (t) �= ∅

∞, N l
i (t) = ∅

(2.6)
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Figure 2.1: S(t) is the convex hull of the agents at time t, qi is the position of
an agent on l, and el is the unit vector perpendicular to l in the direction of the
half-plane containing S(t).

and

ηli2(t) =

⎧⎨
⎩

minj∈N̄ l
i (t)

{ρ̃(βij)}, N̄ l
i (t) �= ∅

∞, N̄ l
i (t) = ∅

(2.7)

where in calculating ρ̃(βij), βij is regarded as an implicit function of time. It is

straightforward to verify that ηli1(t) ≥ 1 and ηli2(t) ≥ 0. Define also

ηli(t) = min{ηli1(t), ηli2(t)} (2.8)

Lemmas 2.2-2.4 will enable us in the sequel to fully describe the behavior of the

agents on the boundary of S(t).

Lemma 2.2. Consider a line l which intersects S(t) at some time t ≥ 0, but does

not pass through it. Assume that qi(t) ∈ l, for some i ∈ Nn. Then, the following

statements are true:

i) If ηli = 0, then fl(q̇i) > 0.

ii) If ηli ≥ 1, then fl(q
(k)
i ) = 0, for k = 1, . . . , ηli.

Proof.

Part (i): First, note that fl(qj − qi) is equal to zero for any j ∈ N l
i , and is strictly

positive for any j ∈ N̄ l
i . Also, βij ≥ 0 for any j ∈ Ni, according to Assumption 2.1.

The relation ηli = 0 yields ηli2 = 0, which implies that N̄ l
i �= ∅, and that there exists
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an agent v ∈ N̄ l
i for which βiv > 0. Therefore, using (2.1) and (2.2) one can write

fl(q̇i) =
∑
j∈N̄ l

i

βijfl(qj − qi)

≥ βivfl(qv − qi)

> 0 (2.9)

Part (ii): It is straightforward to show that

fl(q
(k+1)
i ) =

∑
j∈Ni

k∑
r=0

β
(k−r)
ij (fl(q

(r)
j )− fl(q

(r)
i ))

(
k

r

)
(2.10)

where β
(k−r)
ij is the (k − r)th derivative of βij with respect to time (note that βij is

an implicit function of time). Assume now k < ηli; this means that k− r < ηli ≤ ηli2,

and hence β
(k−r)
ij = 0 for j ∈ N̄ l

i . On the other hand, since k < ηli ≤ ηli1, one can

easily show that β
(k−r)
ij fl(q

(r)
j ) = 0, for j ∈ N l

i and 1 ≤ r ≤ k. Using these results

along with the fact that fl(qj − qi) = 0 for j ∈ N l
i , equation (2.10) reduces to

fl(q
(k+1)
i ) = −

∑
j∈N l

i

k∑
r=1

β
(k−r)
ij fl(q

(r)
i )

(
k

r

)
(2.11)

The rest of the proof follows by a simple induction. �

Lemma 2.3. Consider a line l which intersects S(t) at some time t ≥ 0, but does

not pass through it. Assume that qi(t) ∈ l, for some i ∈ Nn. If ρ(fl(qi)) < ∞, then

fl(q
(ρ(fl(qi)))
i ) > 0.

Proof. Since ρ(fl(qi)) < ∞, thus it is implied from Lemma 2.2 that ηli <

∞. Before getting to the proof, first some important properties of fl(q
(ηli+1)
i ) are

characterized assuming 1 ≤ ηli < ∞. Using Lemma 2.2 and taking an approach

similar to the one used to derive (2.11) from (2.10), one can show that

fl(q
(ηli+1)
i ) =

∑
j∈N l

i

ηli∑
r=1

β
(ηli−r)
ij fl(q

(r)
j )

(
ηli

r

)

+
∑
j∈N̄ l

i

β
(ηli)
ij fl(qj − qi) (2.12)
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There are three possible cases for ηli, η
l
i1, and ηli2:

Case (i): ηli = ηli2 < ηli1. In this case, (2.12) reduces to

fl(q
(ηli+1)
i ) =

∑
j∈N̄l

i
ρ̃(βij)=ηl

i

β
(ηli)
ij fl(qj − qi) (2.13)

On the other hand, the relation ρ̃(βij) = ηli ≥ 1 implies that βij = 0. If β
(ρ̃(βij))
ij < 0,

then it results from Remark 2.1 that βij is negative in a right-sided vicinity of t (βij

is regarded here as an implicit function of time, as noted earlier). However, this is in

contradiction with Assumption 2.1; therefore β
(ρ̃(βij))
ij > 0, and it results from (2.13)

that fl(q
(ηli+1)
i ) > 0.

Case (ii): ηli = ηli1 < ηli2. In this case, (2.12) reduces to

fl(q
(ηli+1)
i ) =

∑
j∈Ni(l)

ρ̃(βij)+ρ(fl(qj))=ηl
i

β
(ρ̃(βij))
ij fl(q

(ρ(fl(qj)))
j )

(
ηli

ρ̃(βij)

)
(2.14)

If βij �= 0, then ρ̃(βij) = 0 and β
(ρ̃(βij))
ij = βij > 0. If on the other hand βij = 0, the

inequality β
(ρ̃(βij))
ij > 0 still holds as shown in case (i).

Case (iii): ηli = ηli1 = ηli2. It results from (2.12) in this case that

fl(q
(ηli+1)
i ) =

∑
j∈Ni(l)

ρ̃(βij)+ρ(fl(qj))=ηl
i

β
(ρ̃(βij))
ij fl(q

(ρ(fl(qj)))
j )

(
ηli

ρ̃(βij)

)

+
∑

j∈N̄l
i

ρ̃(βij)=ηl
i

β
(ηli)
ij fl(qj − qi)

>
∑

j∈Ni(l)

ρ̃(βij)+ρ(fl(qj))=ηl
i

β
(ρ̃(βij))
ij fl(q

(ρ(fl(qj)))
j )

(
ηli

ρ̃(βij)

)
(2.15)

(note that the inequalities β
(ρ̃(βij))
ij > 0 and fl(qj − qi) > 0, ∀j ∈ N̄ l

i , are used in

deriving (2.15)).

From the results presented in cases (ii) and (iii), one can easily conclude that

if ηli = ηli1, then

fl(q
(ηli+1)
i ) ≥

∑
j∈Ni(l)

ρ̃(βij)+ρ(fl(qj))=ηl
i

αijfl(q
(ρ(fl(qj)))
j ) (2.16)

where αij’s are positive coefficients.
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It is desired now to use induction on ρ(fl(qi)) together with the results devel-

oped thus far to prove the lemma. For ρ(fl(qi)) = 1, if ηli ≥ 1 then it results from

Lemma 2.2 that fl(q̇i) = 0, which is a contradiction; therefore, ηli = 0, and hence

according to Lemma 2.2 fl(q̇i) > 0. Assume now that the statement of the lemma

holds for ρ(fl(qi)) ≤ k, for some k ≥ 1; The objective is to prove that it holds

for ρ(fl(qi)) = k + 1 as well. Note first that Lemma 2.2 implies 1 ≤ ηli < k + 1. If

ηli2 < ηli1, then it results from case (i) as well as Lemma 2.2 that ρ(fl(qi)) = ηli+1 and

fl(q
(ηli+1)
i ) > 0. If on the other hand ηli2 ≥ ηli1 (i.e. η

l
i = ηli1), then (2.16) holds. More-

over, for any j in the summation domain of (2.16), the relation ρ(fl(qj)) ≤ ηli < k+1

holds, and hence the assumption of induction yields fl(q
(ρ(fl(qj)))
j ) > 0. It is concluded

from this along with (2.16) that fl(q
(ηli+1)
i ) > 0, from which it is also implied (using

Lemma 2.2) that ρ(fl(qi)) = ηli + 1. This completes the proof. �

Corollary 2.1. Consider a line l which intersects S(t) at some time t ≥ 0, but

does not pass through it. Assume that qi(t) ∈ l, for some i ∈ Nn. Then, ρ(fl(qi)) =

ηli + 1 = min{ηli1, ηli2}+ 1, where ηli1 and ηli2 are defined in (2.6) and (2.7).

Proof. This follows directly from Lemma 2.3 (as its by-product). �

Lemma 2.4. Consider a line l which intersects S(t) at some time t ≥ 0, but does

not pass through it. Given qi(t) ∈ l, if fl(qi(t)) has a finite index, then there exists

δi > 0 such that for any τ ∈ (0, δi] the inequality fl(qi(t)) < fl(qi(t + τ)) holds;

otherwise, fl(q̇i) ≡ 0.

Proof. If ρ(fl(qi)) < ∞, then according to Lemma 2.3, fl(q
(ρ(fl(qi)))
i ) > 0.

Therefore, it results from Lemma 2.1 that there exists δi > 0 such that for any

τ ∈ (0, δi] the inequality fl(qi(t)) < fl(qi(t+ τ)) holds. This means that agent i will

move towards the interior of the half plane (defined by l) containing S(t).

Now, consider the case where ρ(fl(qi)) = ∞. Since βij’s are analytic, according

to Theorem 39.12 in [102], qi is also analytic, implying that fl(qi) is analytic as well.

22



Therefore, ρ(fl(qi)) = ∞ implies that fl(qi) ≡ fl(qi(t)), meaning that qi has been on

l from the beginning and will stay on it at all times. �

Theorem 2.1. Under Assumption 2.1, the convex hull of the agents is nested.

Proof. Consider the agents at any arbitrary time t ≥ 0. By applying Lemma

2.4 to all edges on the boundary of S(t), one can easily show that there exists

δ(t) > 0 such that

qi(t+ τ) ∈ S(t), ∀i ∈ Nn, ∀τ ∈ [0, δ(t)] (2.17)

implying that S(t + τ) ⊆ S(t), for any τ ∈ [0, δ(t)]. For an arbitrary t ≥ 0, define

T = sup{Δ|∀τ ∈ [0,Δ] : S(t+τ) ⊆ S(t)}. It is desired now to show by contradiction

that T = ∞. To this end, assume T is finite and note that S(t + T ) ⊆ S(t). Note

also that the relation S(t + T + τ) ⊆ S(t + T ) holds for any τ ∈ [0, δ(t + T )],

and hence S(t + T + τ) ⊆ S(t). Thus, the relation S(t + τ) ⊆ S(t) holds for any

τ ∈ [0, T + δ(t+T )], which is in contradiction with the definition of T . This implies

that T = ∞, and as a result, S(t) is nested; i.e. S(t2) ⊆ S(t1), for any t1 ≥ 0 and

t2 ≥ t1. �

The following lemma is borrowed from [103].

Lemma 2.5. If a solution q(t) of q̇ = f(q) belongs to a bounded domain D for t ≥ 0,

then its positive limit set L+ is nonempty, compact, and invariant. Moreover, q(t)

approaches L+ as t → ∞.

The following result from [101] will also be used in the proof of main theorem.

Theorem 2.2. A topological space is compact if and only if each family of closed

sets which has the finite intersection property has a non-void intersection.

In the sequel, sufficient conditions are provided for convergence to consensus,

as the most important contribution of this chapter.
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Theorem 2.3. Consider a set of n agents in the 2D plane with the dynamics of the

form (2.1), evolved under the local control laws given by (2.2). Under Assumptions

2.1-2.2, the agents converge to consensus.

Proof. Since S(t) is nested, the agents remain in S(0) at all times. De-

fine μ1(q(t)) and μ2(q(t)) as the area and the diameter of S(t), respectively, where

q(t) = (q1(t), . . . , qn(t)). Clearly, μ1 and μ2 are bounded and decreasing (note that

S(t) is nested) but not necessarily differentiable. Let limt→∞ μ1(q(t)) = a1 and

limt→∞ μ2(q(t)) = a2. Let also L+ denote the positive limit set of q(t). For any

p ∈ L+, there is a sequence {tn} with tn → ∞ such that q(tn) → p as n → ∞. It fol-

lows immediately from the continuity of μ1 and μ2, that μ1(p) = a1 and μ2(p) = a2.

It is desired now to show that a1 = 0. If a1 > 0, the invariance property

of L+ (see Lemma 2.5) along with the fact that μ1(p) = a1 for any p ∈ L+ and

the nestedness property of the convex hull of the agents, yields that starting from

any p(0) = (p1(0), . . . , pn(0)) ∈ L+, the convex hull S(t) will remain fixed, i.e.

S(t) ≡ S(0). Consider an agent, say agent i, at a vertex of S(0), and let l1 and l2

be the two lines obtained by extending the two edges connected to this vertex on

the boundary of S(0). Now, it results from Lemma 2.4 (once with l = l1 and then

with l = l2) that either agent i moves away from this vertex, or fl1(ṗi) ≡ fl2(ṗi) ≡ 0;

the latter case implies that agent i remains fixed at that vertex. Thus, in order

for S(t) to remain fixed, there should be at least one fixed agent at each vertex of

S(0), which contradicts Assumption 2.2. This contradiction yields a1 = 0, i.e. if

p = (p1, . . . , pn) is a positive limit point, then pi’s are collinear. Using this property

and following an argument similar to the one given above, it is concluded that

a2 = 0, i.e. p1 = . . . = pn for any p = (p1, . . . , pn) ∈ L+. To complete the proof,

note that since S(t) is nested, it satisfies the finite intersection property, and hence

according to Theorem2.2,
⋂

t≥0 S(t) = Q �= ∅. On the other hand, a2 = 0 implies

that the diameter of S(t) approaches 0 as t → ∞, which means that Q is a single
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point. Furthermore, Q ∈ S(t) yields ‖qi(t)−Q‖ ≤ μ2(q(t)) and this, in turn, implies

that qi(t) → Q as t → ∞ because μ2(q(t)) → 0 as t → ∞. This completes the proof

of the convergence of the agents to a fixed single point. �

Assumption 2.2 is essential in the above theorem, but it is not straightforward

to verify it, in general. The following proposition will prove useful in verifying the

conditions of this assumption.

Proposition 2.1. Let the conditions of Assumption 2.1 hold, and assume the convex

hull of the agents is fixed. Then for a fixed agent, say agent i, at a vertex of this

convex hull, and for every j ∈ Ni, either qj ≡ qi or βij ≡ 0.

Proof. First note that under Assumption 2.1, Lemmas 2.2-2.4 and Theorem 2.1

still hold. Consider the agents at some t ≥ 0, and let l1 and l2 be the two lines passing

through the two edges on the boundary of the convex hull connected to the vertex

at which qi is fixed. Using Corollary 2.1 for both l1 and l2 leads to ρ̃(βij) = ∞

for j ∈ N̄i(l1) ∪ N̄i(l2), implying that βij is identically zero because it is analytic.

The only remaining neighbors that are not in N̄i(l1) ∪ N̄i(l2) are those for which

qj(t) = qi(t). For such a neighbor, if ρ̃(βij) = ∞ then βij ≡ 0 similarly; if on the

other hand ρ̃(βij) is finite, then ρ(fl1(qj(t))) = ρ(fl2(qj(t))) = ∞, and consequently

fl1(q̇j) ≡ fl2(q̇j) ≡ 0. This implies that q̇j ≡ 0, which means that qj ≡ qi. �

The main advantage of this work over [40, 39] is described in the next propo-

sition.

Proposition 2.2. Consider a set of n agents in the 2D plane with the dynamics

of the form (2.1), with a quasi-strongly connected information flow graph. Let the

control law be of the form (2.2), where the corresponding coefficients are assumed to

meet the conditions of Assumption 2.1. Define Qi = {qj|j ∈ Ni ∪ {i}}, and assume

that if agent i is at a vertex of Conv(Qi) and Qi is not a singleton, then q̇i �≡ 0.

Then the agents converge to consensus.
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Figure 2.2: The information flow graph G for the case of n = 6, in Example 2.1.

Proof. It suffices to show that the conditions of the proposition imply that

Assumption 2.2 holds. Suppose that there is a solution for which Assumption 2.2

does not hold, and let agent i be a fixed agent at a vertex of the convex hull for such

a solution. Clearly, qi is also a vertex of Conv(Qi) at all times. This, along with the

fact that q̇i ≡ 0, implies that Qi should be a singleton at all times, and hence qj ≡ qi

for all j ∈ Ni. Repeating the same argument, one can conclude that qj ≡ qi for

any agent j from which i is reachable in G. Now, consider two fixed agents i1 and

i2 at two distinct vertices of the convex hull. Since G is quasi-strongly connected,

there exists an agent from which both i1 and i2 are reachable in G, implying that

qi1 ≡ qi2 . This contradicts the assumption that agents i1 and i2 are located at two

distinct vertices of the convex hull, and hence completes the proof. �

Remark 2.2. The results in [40, 39] do not guarantee the convergence to consensus

under the setting of Proposition 2.2. More precisely, [40, 39] require q̇i �= 0 instead of

q̇i �≡ 0 (in the statement of the proposition) to deduce the convergence to consensus,

while the above proposition allows agent i at a vertex of Conv(Qi) to attain zero

velocity (even if Qi is not a singleton) as long as it is not fixed. The only limitation

here, however, is that βij’s need to be analytic, while there is not such constraint in

[40, 39] (it is only required there that the ui’s are continuous functions of the states).
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2.3 Simulation Results

Example 2.1. Consider a swarm of n agents in a 2D plane with the dynamics of

the form (2.1) and the control inputs given by

ui = −‖qi − qi+1‖2(qi − qi+1)

−(1− ‖qi − qi+2‖2)2(qi − qi+2) (2.18)

where i ∈ Nn, qn+1 = q1, and qn+2 = q2. Clearly, Assumption 2.1 holds for the

above control law. Therefore, to show the convergence of the agents to consensus, it

suffices to show that Assumption 2.2 holds. Suppose that there is a solution with the

control inputs given by (2.18), for which Assumption 2.2 does not hold. Assume also

that agent i is fixed at a vertex of the fixed convex hull corresponding to this solution,

for some i ∈ Nn. Proposition 2.1 implies that either ‖qi − qi+1‖2 ≡ 0 or qi+1 ≡ qi,

either case yielding that qi+1 ≡ qi. Similarly, one can conclude that qi+2 ≡ qi+1.

Repeating the same argument, it can be shown that all the agents should coincide

with agent i, which is a contradiction because a solution which does not satisfy

Assumption 2.2 should not be a singleton. Therefore, both Assumptions 2.1-2.2 hold

and the convergence to consensus is deduced from Theorem 2.3. It is straightforward

to verify that the convergence to consensus for this example cannot be deduced from

[40, 39].

The information flow graph G and the trajectories of the agents under the

given control law for the case of n = 6 are depicted in Figs. 2.2 and 2.3, respectively.

The convex hull of the agents at three time instants t0 = 0 sec, t1 = 0.3 sec, and

t2 = 1.25 sec are also drawn in Fig. 2.3. It can be observed from this figure that

S(t2) ⊆ S(t1) ⊆ S(t0). This is in accordance with the nestedness property of S(t) as

shown in Theorem 2.1. The norms of the control inputs ui, i ∈ N6 are also plotted

in Fig. 2.4.
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Figure 2.3: The agents’ planar motion for the case of n = 6, in Example 2.1.
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Figure 2.5: The information flow graph G for the case of n = 5, in Example 2.2.
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Example 2.2. Consider n agents with the dynamics of the form (2.1) moving in a

2D plane with local control laws given by

ui = −(‖qi − q1‖2 − ci
2)2(qi − q1)

−(‖qi − qi+1‖2 − c1
2)2(qi − qi+1), 2 ≤ i ≤ n (2.19)

where qn+1 = q2, and ci’s, i ∈ Nn, are distinct nonnegative constants satisfying

0 ≤ ci < c1
2
, for i = 2, . . . , n. Assume also that agent 1 is a static leader, i.e.

u1 ≡ 0. Assumption 2.1 is clearly satisfied for the coefficients corresponding to the

given control law. Hence, to prove the convergence of the agents to consensus, it

suffices to show that Assumption 2.2 holds.

Suppose that there exists a solution with the given control law for which As-

sumption 2.2 does not hold. In other words, consider a solution where the corre-

sponding convex hull of the agents is not a singleton and is fixed, with at least one

agent being fixed at each vertex. Denote by I the set of fixed agents at the vertices

of the convex hull. Proposition 2.1 implies that for any i ∈ I, if qi is not at q1 then

‖qi − q1‖ ≡ ci. Let d denote the diameter of the convex hull. Then,

d = max
r,s∈I

{‖qr − qs‖}

≤ max
r,s∈I

{‖qr − q1‖+ ‖qs − q1‖}

<
c1
2
+

c1
2

= c1 (2.20)

Now, consider an agent i ∈ I for which qi �≡ q1. The relation ‖qi − qi+1‖ ≤ d < c1

along with Proposition 2.1 yields qi+1 ≡ qi. This means that qi+1 is also fixed and

qi+1 �≡ q1; hence as shown earlier ‖qi+1 − q1‖ ≡ ci+1. This is a contradiction since

‖qi+1− q1‖ ≡ ‖qi− q1‖ ≡ ci and ci �= ci+1. Therefore, both Assumptions 2.1-2.2 hold

and the convergence to consensus is deduced from Theorem 2.3. It is easy to verify

that the convergence to consensus for this example cannot be deduced from [40, 39].
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Figure 2.6: The agents’ planar motion for the case of n = 5, in Example 2.2.
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The information flow graph G and the trajectories of the agents under the

given control law for the case of n = 5 are depicted in Figs. 2.5 and 2.6. The

corresponding values of c1, . . . , c5 are chosen to be 1, 1
3
, 1

4
, 2

5
, and 1

5
, respectively.

The convex hull of the agents at three time instants t0 = 0 sec, t1 = 0.03 sec, and

t2 = 0.43 sec are also drawn in Fig. 2.5. It can be observed from this figure that

S(t2) ⊆ S(t1) ⊆ S(t0). This confirms the nestedness property of S(t) as shown in

Theorem 2.1. The norms of the control inputs ui, i ∈ N5, are also plotted in Fig. 2.7.
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Chapter 3

A Class of Bounded Distributed

Control Strategies for

Connectivity Preservation of

Single-Integrator Agents

In this chapter, a general class of distributed potential-based control laws with the

connectivity preserving property for single-integrator agents is proposed. The po-

tential functions are designed in such a way that when an edge in the information

flow graph is about to lose connectivity, the gradient of the potential function lies in

the direction of that edge, aiming to shrink it. The results are developed for a static

information flow graph first, and then are extended to the case of dynamic edge

addition. Connectivity preservation for problems involving static leaders is covered

as well. The potential functions are chosen to be smooth, resulting in bounded con-

trol inputs. Other constraints may also be imposed on the potential functions to

satisfy various design criteria such as consensus, containment, and formation conver-

gence. The proposed control schemes are subsequently used to develop connectivity
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preserving controllers for the consensus and containment applications, where the

stability analysis is also provided.

The remainder of this chapter is organized as follows. In Section 3.1, some

notations and definitions are introduced which will prove convenient in presenting

the main results, and also the problem statement is provided. The connectivity

preserving control design is elaborated in Section 3.2. The extension of the results

to the case of dynamic information flow graph and problems involving static leaders

is presented in Sections 3.3 and 3.4. Stability analysis and simulation results for the

examples of consensus and containment are presented in Section 3.5 to illustrate the

effectiveness of the proposed control strategy.

3.1 Problem Formulation

Definition 3.1. Multinomial coefficients are defined by

(
k

r1, r2, . . . , rμ

)
:=

k!

r1!r2! . . . rμ!

where r1, r2, . . . , rμ are nonnegative integers, and k = r1+r2+ . . .+rμ. In the special

case of μ = 2, the corresponding coefficients are called the binomial coefficients, and

are shown by

(
k

r1, r2

)
=

(
k

r1

)
=

(
k

r2

)
.

Notation 3.1. For any given function h(x, y), by ∂h
∂y
(x, 0) we mean ∂h

∂y
(x, y)|y=0

(and similarly, ∂h
∂x
(0, y) = ∂h

∂x
(x, y)|x=0). Notice that while this may be considered

standard notation, it is emphasized here for the sake of clarity, and to avoid possible

confusion.

Consider a set of n single-integrator agents in a plane with a control law of

the form

q̇i(t) = ui = −∂hi

∂qi
(3.1)
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where qi(t) denotes the position of agent i in the plane at time t, and hi’s are

distributed potential functions. Denote by G = (V,E) the information flow graph,

with V = {1, . . . , n} its vertices, and with E ⊂ V × V its edges. It is assumed that

the information flow graph G is connected and undirected, and that each agent can

only use the relative position of its neighbors in its control law. Denote the set of

the neighbors of agent i in G by Ni(G), and the degree of agent i in G with di(G).

Two agents i and j are said to be in the connectivity range if ‖qi − qj‖ ≤ d, for

a pre-specified positive real number d, where ‖ · ‖ denotes the Euclidean norm. It

is assumed that all agents in Ni(G) are initially located in the connectivity range

of agent i. The goal is to design a class of distributed potential functions that

preserve connectivity. More precisely, it is desired to find a control scheme such

that if ‖qi(0)−qj(0)‖ ≤ d for all (i, j) ∈ E, then ‖qi(t)−qj(t)‖ ≤ d, for all (i, j) ∈ E

and all t ≥ 0.

3.2 Connectivity Preserving Controller Design

For every agent i, define

σi(t) :=
1

2

∑
j∈Ni(G)

‖qi(t)− qj(t)‖2 (3.2)

πi(t) :=
1

2

∏
j∈Ni(G)

(d2 − ‖qi(t)− qj(t)‖2) (3.3)

πij(t) :=
∏

k∈Ni(G)
k �=j

(d2 − ‖qi(t)− qk(t)‖2) (3.4)

Consider a set of distributed smooth potential functions of the form hi(σi, πi) with

the following properties

∂hi

∂σi

(σi, 0) = 0,
∂hi

∂πi

(σi, 0) < 0, ∀σi ∈ R
+ (3.5)

Intuitively, under these conditions when agent i is about to lose connectivity (πi =

0), changes in hi is only affected by changes in πi and if the agents move in a
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direction such that hi decreases, then the connectivity will improve (i.e., π will

increase). On the other hand, when πi becomes zero, changes in it is only affected

by changes in qi and qj, where j is the agent which is exactly at distance d from

agent i; therefore, only qi and qj can influence hi. Agent i is clearly moving in a

direction which tends to decrease hi, according to (3.1). It can be shown that agent

j also moves in a direction which tends to decrease hi (although its corresponding

potential function is different from hi). This argument is valid only for the case

when agent i is at distance d from only one neighbor. For the general case, one

should look at higher-order derivatives (not just the gradient).

It is desired now to show that using this type of potential functions, the control

law (3.1) is connectivity preserving. Using the equality ∂hi

∂qi
= ∂hi

∂σi

∂σi

∂qi
+ ∂hi

∂πi

∂πi

∂qi
, one

can rewrite the control law (3.1) as

q̇i = −
∑

j∈Ni(G)

(qi − qj)(
∂hi

∂σi

− ∂hi

∂πi

πij) (3.6)

Define T to be the set of those time instants t ≥ 0 at which ‖qi(t)− qj(t)‖ ≤ d, for

all (i, j) ∈ E. For any t ∈ T , construct a graph Gd(t) = (Vd(t), Ed(t)) as the union

of those edges (i, j) ∈ E for which ‖qi(t)−qj(t)‖ = d. Define sij(t) = ‖qi(t)−qj(t)‖2,

for (i, j) ∈ Ed. The following lemmas are key to the proof of the main results.

Lemma 3.1. Consider a real-valued function f for which fρ(f(t))(t) < 0, for some

t, where ρ(f(t)) denotes the index of f at time t as defined in Definition 2.2; then

f is monotonically decreasing in the interval [t, t+ ε], for some ε > 0.

Proof . Let k = ρ(f(t)); since f (k)(t) < 0, the function f (k−1) is monotonically

decreasing in the interval [t, t+ ε], for some ε > 0. On the other hand f (k−1)(t) = 0,

which implies (along with the above result) that f (k−1) < 0 in (t, t + ε], and hence

f (k−2) is monotonically decreasing in [t, t+ ε]. Using a similar argument iteratively,

one arrives at the conclusion that f (0) (which by definition is equal to f) is mono-

tonically decreasing in the above closed interval, and this completes the proof. �
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Lemma 3.2. Suppose that q
(r)
i (t) = q

(r)
j (t) = 0, for all r ∈ {1, . . . , k − 1} and some

t; then

s
(k)
ij (t) = 2(qi(t)− qj(t))

T (q
(k)
i (t)− q

(k)
j (t)) (3.7)

Proof . The proof follows directly from the fact that

dk

dtk
(xTx) =

k∑
r=0

x(r)Tx(k−r)

(
k

r

)
(3.8)

�

Lemma 3.3. Consider an agent i in Gd(t) for some t ∈ T , and assume that η =

minj∈Ni(G){ρ(πij)}. Assume also that di(Gd) ≥ 2; then the following statements

hold:

i) π
(r)
ij = 0, for 0 ≤ r ≤ η − 1, and j ∈ Ni(G).

ii) π
(r)
i = 0, for 0 ≤ r ≤ η − 1.

iii) (∂hi

∂σi
)(r) = 0, for 0 ≤ r ≤ η − 1.

iv) ρ(qi) ≥ η + 1.

Proof .

Part (i): Since di(Gd) ≥ 2, one can easily verify that πij = 0. The rest of the proof

follows immediately from the definition of the index of a function.

Part (ii): Since πi =
1
2
πij × (d2 − ‖qi − qj‖2) for any j in Ni(G), therefore

π
(r)
i =

1

2

r∑
m=0

π
(m)
ij (d2 − ‖qi − qj‖2)(r−m)

(
r

m

)
(3.9)

The proof follows directly by applying the result of part (i) to the above equation.

Part (iii): From (3.5), ∂hi

∂σi
(σi, 0) = 0. Now, using the fact that

∂(r+1)hi

∂σ
(r+1)
i

(σi, 0) = lim
Δσi→0

∂rhi

∂σr
i
(σi +Δσi, 0)− ∂rhi

∂σr
i
(σi, 0)

Δσi

(3.10)
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it can be shown recursively that

∂rhi

∂σr
i

= 0, ∀r ∈ N

Using induction on r, one can express (∂hi

∂σi
)(r) in the form of

(
∂hi

∂σi

)(r) =
∑

m≤r+1

∂mhi

∂σm
i

am(σi) +
∑
m≤r

bm(σi, πi)π
(m)
i (3.11)

The first term in the right side of (3.11) is zero as noted above. Hence, the proof is

completed by noting that π
(m)
i = 0 for m ≤ r (from the result of part (ii)).

Part (iv): By differentiating k times both sides of (3.6), one arrives at

q
(k+1)
i = −

∑
j∈Ni(G)

k∑
r=0

(qi − qj)
(r)(

∂hi

∂σi

− ∂hi

∂πi

πij)
(k−r)

(
k

r

)
(3.12)

The right side of the above equation is equal to zero for all k ∈ {0, . . . , η − 1}, as a

consequence of parts (i)-(iii). This implies that ρ(qi) ≥ η + 1. �

Remark 3.1. In the case when di(Gd) = 1, it is straightforward to show that q̇i =

∂hi

∂πi
πij(qi − qj), where j is the neighbor for which ‖qi − qj‖ = d.

Remark 3.2. If ρ(πij) is not the same for all j ∈ Ni(Gd), then part (ii) of

Lemma 3.3 also holds for r = η. Consequently, part (iii) also holds for r = η.

Lemma 3.4. Consider agent i in Gd(t), t ∈ T , and let ν be one of the (possibly

multiple) neighbors of i in Gd(t) for which ρ(qν) = maxj∈Ni(Gd){ρ(qj)}. Then

ρ(qi) ≥ 1 +
∑

j∈Ni(Gd)
j �=ν

ρ(qj) (3.13)

Proof . The proof is trivial for the case when di(Gd) = 1. Hence, consider the

case di(Gd) ≥ 2; for any j ∈ Ni(G), by differentiating (3.4) k times, one can show

that

π
(k)
ij =

∑
r1+...+rμ=k
r1,...,rμ≥0

(
k

r1, . . . , rμ

) μ∏
s=1

(d2 − ‖qi − qis‖2)(rs) (3.14)
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where {i1, . . . , iμ} = Ni(G)− {j}. Let k ≤ η; then, on using Lemma 3.2 and noting

(from Lemma 3.3) that ρ(qi) > k, one can easily verify that the term corresponding

to (r1, ..., rμ) in the above summation is nonzero only if rs ≥ ρ(qis) for every is ∈

Ni(Gd)− {j}. On the other hand

k =

μ∑
s=1

rs ≥
∑

is∈Ni(Gd)
is �=j

rs (3.15)

Therefore, a necessary condition for π
(k)
ij to be nonzero can be obtained as

k ≥
∑

is∈Ni(Gd)
is �=j

ρ(qis) (3.16)

Now, choose k = η; since η = minj∈Ni(G){ρ(πij)}, thus π
(η)
ij �= 0 for at least one

j ∈ Ni(G). Hence, (3.16) should hold for k = η and at least one j ∈ Ni(G). Clearly,

the right side of this inequality is minimized when ρ(qj) is maximized (i.e., when

j = ν). This fact along with part (iv) of Lemma 3.3 results in (3.13). �

Lemma 3.5. Let ρl(qi) be the lower bound for ρ(qi) given in Lemma 3.4, i.e.

ρl(qi) = 1 +
∑

j∈Ni(Gd)
j �=ν

ρ(qj) (3.17)

where ν = argmaxj∈Ni(Gd)
{ρ(qj)}. If ν is unique, then

i) π
(ρl(qi)−1)
iν = π̃iν

∏
j∈Ni(Gd)

j �=ν

(qi − qj)
T q

(ρ(qj))
j , where π̃iν > 0.

ii) q
(ρl(qi))
i = ∂hi

∂πi
π̃iν(qi − qν)

∏
j∈Ni(Gd)

j �=ν

(qi − qj)
T q

(ρ(qj))
j .

Proof .

Part (i): Let (3.14) be revisited for k = ρl(qi)− 1. It results from the uniqueness of

ν that (3.16) holds only for j = ν; hence, π
(k)
ij = 0 for j �= ν. Also, π

(k)
iν has only one
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possibly nonzero term as follows

π
(k)
iν =

(
k

r1, . . . , rμ

) ∏
j∈Ni(Gd)

j �=ν

−2(qi − qj)
T (q

(ρ(qj))
i − q

(ρ(qj))
j )

×
∏

j∈Ni(G)
j /∈Ni(Gd)

(d2 − ‖qi − qj‖2)

= π̃iν

∏
j∈Ni(Gd)

j �=ν

(qi − qj)
T q

(ρ(qj))
j (3.18)

Note that in obtaining the above relation the result of Lemma 3.2 and the fact that

q
(ρ(qj))
i = 0 (because ρ(qj) ≤ k < ρ(qi)) are used. Note also that

π̃iν = 2di(Gd)−1

(
k

r1, . . . , rμ

) ∏
j∈Ni(G)
j /∈Ni(Gd)

(d2 − ‖qi − qj‖2) > 0 (3.19)

The corresponding values of (r1, . . . , rμ) are

rs =

⎧⎨
⎩

ρ(qis) is ∈ Ni(Gd)− {ν}

0 is /∈ Ni(Gd)− {ν}
(3.20)

Part (ii): Consider (3.12) for k = ρl(qi)− 1. Using the fact that π
(k)
ij = 0 (for j �= ν)

along with Lemma 3.3 and Remark 3.2, one can conclude that q
(ρl(qi))
i has only one

possibly nonzero term as

q
(ρl(qi))
i =

∂hi

∂πi

π̃iν(qi − qν)
∏

j∈Ni(Gd)
j �=ν

(qi − qj)
T q

(ρ(qj))
j (3.21)

This completes the proof. �

Lemma 3.6. Define the subgraph G<∞
d (t) of Gd(t) as the union of those edges

e = (i, j) ∈ Ed(t) for which min(ρ(qi), ρ(qj)) < ∞; denote its set of edges by E<∞
d (t),

and its set of vertices by V <∞
d (t). Then, for any (i, j) ∈ E<∞

d (t), the relations

ρ(sij) = min{ρ(qi), ρ(qj)} and s
(ρ(sij))
ij < 0 hold.

Proof . One can prove this lemma by induction on min(ρ(qi), ρ(qj)). Start

with min(ρ(qi), ρ(qj)) = 1, and without loss of generality assume that ρ(qi) = 1. If
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ρ(qj) > 1, then q̇j = 0, and hence from Remark 3.1

ṡij = 2(qi − qj)
T (q̇i − q̇j)

= 2(qi − qj)
T ∂hi

∂πi

πij(qi − qj)

= 2d2πij
∂hi

∂πi

< 0 (3.22)

Similarly, if ρ(qj) = ρ(qi) = 1

ṡij = 2(qi − qj)
T (

∂hi

∂πi

πij +
∂hj

∂πj

πji)(qi − qj)

= 2d2(
∂hi

∂πi

πij +
∂hj

∂πj

πji) < 0 (3.23)

Now, suppose that the lemma holds for min(ρ(qi), ρ(qj)) < k. To prove the lemma

for min(ρ(qi), ρ(qj)) = k, assume without loss of generality that ρ(qi) = k. Since

ρ(qi) ≤ ρ(qj), using Lemma 3.4 one can easily show that argmaxω∈Ni(Gd)
{ρ(qω)} is

unique, and is, in fact, equal to j. As another consequence of Lemma 3.4, ρ(qω) <

ρ(qi) for ω ∈ Ni(Gd), ω �= j. Therefore, min(ρ(qi), ρ(qω)) = ρ(qω) < k and hence

ρ(siω) = ρ(qω) and s
(ρ(siω))
iω < 0. This along with Lemma 3.2 and Lemma 3.5 yields

that

q
(ρl(qi))
i =

∂hi

∂πi

π̃ij(qi − qj)
∏

ω∈Ni(Gd)
ω �=j

(qi − qω)
T q(ρ(qω))ω

=
∂hi

∂πi

π̃ij(qi − qj)
∏

ω∈Ni(Gd)
ω �=j

−1

2
s
(ρ(siω))
iω (3.24)

Thus,

(qi − qj)
T q

(ρl(qi))
i =

∂hi

∂πi

π̃ijd
2

∏
ω∈Ni(Gd)

ω �=j

−1

2
s
(ρ(siω))
iω < 0 (3.25)

from which one can conclude that ρ(qi) = ρl(qi). On the other hand,

s
(ρ(qi))
ij = 2(qi − qj)

T (q
(ρ(qi))
i − q

(ρ(qi))
j )

= 2(qi − qj)
T q

(ρ(qi))
i + 2(qj − qi)

T q
(ρ(qi))
j (3.26)
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If ρ(qj) > ρ(qi), the second term in the last equation vanishes and it follows from

(3.25) that s
(ρ(qi))
ij < 0. If ρ(qj) = ρ(qi), the same inequality as (3.25) holds for ρ(qj).

Therefore, both terms in (3.26) are less than zero, and hence s
(ρ(qi))
ij < 0. �

Remark 3.3. From the proof of Lemma 3.6, it can be easily seen that for every edge

in E<∞
d (t) the movement of the agent with lower (or equal) index is in the direction

of the other agent, which results in shrinking of the edge.

Lemma 3.7. Consider a system of differential equations of the form

⎧⎨
⎩

ẋ = f(x, y)

ẏ = g(x, y)
(3.27)

where x ∈ R
m, y ∈ R

n, and f and g are C1 functions. Assume that for some

y0 ∈ R
n, g(x, y0) is equal to zero for every x ∈ R

m. Now, suppose that y(t0) = y0

for some t0 ∈ R. Then, y(t) = y0 for all t ∈ R.

Proof . In order to prove this lemma, we first show that there exists ε > 0

so that y(t) = y0, for all t ∈ (t0 − ε, t0 + ε). Denote the initial condition x(t0) by

x0, and let x̃(t) be a solution of the differential equation ˙̃x = f(x̃, y0) satisfying the

initial condition x̃(t0) = x0. Define also ỹ(t) = y0; it is straightforward to show that

[x̃ ỹ] is a solution of (3.27) satisfying the initial condition [x̃(t0) ỹ(t0)] = [x0 y0].

According to Theorem 1 in [104] (pages 162-163), there exists ε > 0 so that the

solution for (3.27) under the initial condition [x(t0) y(t0)] = [x0 y0] is unique over

the time interval (t0−ε, t0+ε). Particularly, y(t) = ỹ(t) = y0 for all t ∈ (t0−ε, t0+ε).

Now, define E = {ε > 0|∀t ∈ (t0 − ε, t0 + ε) : y(t) = y0}. Let ε+ be the supremum

of E , and assume that ε+ < ∞. It yields from the continuity of the solution that

y(t0 + ε+) = y(t0 − ε+) = y0. Now, applying the result obtained above with t0 + ε+

and t0−ε+ instead of t0 leads to a contradiction. Therefore ε
+ = ∞, which completes

the proof. �
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Lemma 3.8. Consider the partition Ed(t) = E∞
d (t) ∪ E<∞

d (t). Define the graph

G∞
d (t) as the union of the edges in E∞

d (t), and denote its set of vertices by V ∞
d (t).

Then, for every t ∈ T and every i ∈ V ∞
d (t),

i) di(G
∞
d ) ≥ 2.

ii) qi(τ) = qi(t), for τ ≥ 0.

Proof .

Part (i): If di(G
∞
d ) = 1, then there exists a unique j ∈ V ∞

d for which ρ(qi) = ρ(qj) =

∞. This implies that argmaxω∈Ni(Gd)
{ρ(qω)} is unique and is equal to j. Hence, one

can use Lemma 3.5 to obtain

q
(ρl(qi))
i =

∂hi

∂πi

π̃ij(qi − qj)
∏

ω∈Ni(Gd)
ω �=j

(qi − qω)
T q(ρ(qω))ω (3.28)

which according to Lemma 3.6 is nonzero for any pair (i, ω), ω ∈ Ni(Gd), ω �= j.

This yields that

ρ(qi) = ρl(qi) = 1 +
∑

ω∈Ni(Gd)
ω �=j

ρ(qω) < ∞ (3.29)

, which is a contradiction; hence, di(G
∞
d ) ≥ 2.

Part (ii): Choose an arbitrary t ∈ T . Let y(τ) represent the positions of the agents

belonging to V ∞
d (t), and x(τ) represent the positions of all other agents. Since

di(G
∞
d ) ≥ 2, one can conclude that if y(τ) = y(t) for some τ ≥ 0, then πij(τ) = 0,

for any i ∈ V ∞
d (t) and j ∈ Ni(G). Using this argument, it is easy to show that x

and y satisfy the conditions of Lemma 3.7, and as a result qi(τ) = qi(t) for τ ≥ 0

and i ∈ V ∞
d (t). �

Lemma 3.9. Under the conditions given in (3.5), the control law (3.1) is connec-

tivity preserving.

Proof . Assume that ‖qi(0) − qj(0)‖ ≤ d for all (i, j) ∈ E (i.e. 0 ∈ T ), and

let t0 = inf{t| ∃(i, j) ∈ E : ‖qi(t) − qj(t)‖ > d}. Clearly, any t ≤ t0 belongs to
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T . Therefore, to prove the lemma it suffices to show that there is a neighborhood

of t0 in which for every (i, j) ∈ Ed(t0), sij is either decreasing or fixed. It follows

from Lemmas 3.6 and 3.1 that sij is decreasing in a neighborhood of t0 for any

(i, j) ∈ E<∞
d (t0). Also, from Lemma 3.8, sij is fixed for any (i, j) ∈ E∞

d (t0). The

proof is completed on noting that Ed(t0) = E∞
d (t0) ∪ E<∞

d (t0). �

Lemma 3.10. Suppose that ‖qi(0) − qj(0)‖ ≤ d for all (i, j) ∈ E (i.e. 0 ∈ T ).

Then,

i) G<∞
d (t) = ∅ for t > 0.

ii) G∞
d (t) = G∞

d (0) for t ≥ 0.

iii) G∞
d (0) is the maximal induced subgraph of Gd(0) with the property that the

degree of each vertex in it is at least 2.

Proof .

Part (i): Note that since 0 ∈ T , it results from Lemma 3.9 that T = R
+ ∪ {0}.

Hence Gd(t) is well-defined for t ≥ 0, and so are G<∞
d (t) and G∞

d (t). Now, assume

that G<∞
d (t) �= ∅ for some t > 0, and let u = argmini∈V <∞

d (t){ρ(qi(t))}. Lemma

3.4 implies that du(Gd) = 1, and consequently from Remark 3.1, ρ(qu(t)) = 1. Let

v ∈ Gd(t) be the neighbor of u. According to Lemma 3.6, ṡuv(t) < 0, implying that

‖qu − qv‖ > d in the interval (t− ε, t) for some ε > 0, which contradicts Lemma 3.9.

Part (ii): This part is a straightforward consequence of part (ii) of Lemma 3.8.

Part (iii): Let GM = (VM , EM) be the maximal induced subgraph of Gd(0) such

that di(GM) ≥ 2 for i ∈ VM . From part (i) of Lemma 3.8, G∞
d (0) ⊂ GM . Therefore,

it suffices to show that GM ⊂ G∞
d (0). Every i ∈ VM has at least two neighbors

located at a distance d from it, yielding that πij = 0 for any i ∈ VM and j ∈ Ni(G).

Similar to the approach used in the proof of Lemma 3.8, one can use Lemma 3.7 to

deduce that qi(t) = qi(0) for any t ≥ 0 and i ∈ VM . Therefore, ρ(qi(0)) = ∞ for

i ∈ VM , which implies that GM ⊂ G∞
d (0). This completes the proof. �
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As the main contribution of this chapter, the following theorem states that

under certain boundary conditions, the control law (3.1) is connectivity preserving.

In fact, connectivity preservation is strict for all pairs of agents forming an edge in

the information flow graph, except those edges whose ends stay fixed over time under

the control law (3.1). Moreover, the theorem precisely characterizes the topology of

such fixed edges.

Theorem 3.1. Consider a set of n agents in the plane with the dynamics of the

form (3.1), and assume the conditions given in (3.5) hold. Assume also that ‖qi(0)−

qj(0)‖ ≤ d for all (i, j) ∈ E. Then, the control law (3.1) is connectivity preserving.

Moreover, Let GM = (VM , EM) be the maximal induced subgraph of Gd(0) such that

di(GM) ≥ 2 for every i ∈ VM . Then, at any time t ≥ 0, qi(t) = qi(0) for i ∈ VM ,

and ‖qi(t)− qj(t)‖ < d for (i, j) ∈ E − EM .

Proof . The proof follows directly from Lemmas 3.9 and 3.10. �

Remark 3.4. It results from Theorem 3.1 (as a special case of practical interest)

that if ‖qi(0) − qj(0)‖ < d for all (i, j) ∈ E, then the connectivity preservation is

strict, meaning that ‖qi(t) − qj(t)‖ < d, at all times t > 0, and for all (i, j) ∈ E.

In other words, if two agents connected by an edge in the information flow graph

are initially located at a distance less than the connectivity threshold distance, their

distance stays below this threshold at all times.

3.3 Dynamic Information Flow Graph

The results presented so far can be easily extended to the case of dynamic edge

addition, where new edges may be added to the information flow graph once two

agents enter the connectivity range. Suppose that new edges are added to the infor-

mation flow graph at time instants tk, k = 1, 2, . . ., and denote by G(k) the resultant

information flow graph at time tk. Note that the two agents associated with a newly
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added edge to the information flow graph at time tk should be in the connectiv-

ity range at the time of addition. Clearly, according to Theorem 3.1 the proposed

control law preserves the connectivity of the agents connected in G(k) during the

time interval [tk, tk+1]. This implies that for any edge added to the information flow

graph, the connectivity of the corresponding agents will be preserved at all times,

provided they are in the connectivity range at the time of addition.

Adding new edges to the information flow graph may result in more fixed

agents since it may change the structure of GM defined in Theorem 3.1. To avoid

this problem, an additional constraint is imposed that at the time of adding a new

edge, the corresponding agents should be in the strict connectivity range. Under

this condition, the addition of new edges will not affect GM , and hence the structure

of the fixed agents can be determined from GM .

3.4 Connectivity Preservation for Problems In-

volving Static Leaders

Consider the case in which some of the agents, called static leaders, are required

to stay fixed. In this case, even if conditions given in (3.5) hold for the rest of the

agents, called followers, one cannot directly deduce connectivity preservation from

Theorem 3.1. In this section, it is shown how by using a simple trick connectivity

preservation can be guaranteed assuming conditions (3.5) hold for the followers.

Denote the set of static leaders by L ⊂ V (G); thus, q̇i(t) = 0 for every i ∈ L and

t ≥ 0. Assume that control laws of the form (3.1) are applied to the followers, where

hi’s satisfy conditions given in (3.5). Construct a new graph Ḡ from G as follows.

For any i ∈ L, consider two virtual agents i1 and i2, initially located at distance d

from each other and from i. Add the two new vertices i1 and i2 to V (G), and all the

possible edges between i, i1, and i2 to E(G). Choose any hi, hi1 , and hi2 satisfying
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conditions (3.5); then connectivity preservation is guaranteed for Ḡ according to

Theorem 3.1. Clearly i, i1, i2 ∈ ḠM , and hence the corresponding agents remain

fixed as desired. Therefore, connectivity preservation for the case of static leaders

is deduced.

3.5 Simulation Results

3.5.1 Consensus Example

Consider 4 single-integrator agents moving in a two-dimensional space with the

information flow graph G depicted in Fig. 3.1. The agents are to aggregate while

preserving connectivity. This can be achieved by using the control law (3.1) with an

appropriate choice of hi’s. Assume that in addition to the conditions in (3.5), hi’s

also satisfy the following constraints

∂hi

∂σi

(σi, πi) > 0,
∂hi

∂πi

(σi, πi) ≤ 0, ∀σi ≥ 0, ∀πi > 0 (3.30)

Let d be equal to 1, and the initial position of each agent be marked by its index

as shown in Fig. 3.2. As depicted in Fig. 3.1, Gd(0) is a tree and hence GM = ∅.

Therefore, it results from Theorem 3.1 that ‖qi(t)− qj(t)‖ < d for all (i, j) ∈ E(G)

and t > 0. Now, (3.30) yields that for any i ∈ V (G) and j ∈ Ni(G)

βij :=
∂hi

∂σi

− ∂hi

∂πi

πij > 0, ∀t > 0 (3.31)

The above inequality along with (3.6) implies that the velocity of each agent points

toward the convex hull of its neighbors. Define Qi = {qj|j ∈ Ni ∪ {i}}, and assume

that qi is a vertex of Conv(Qi). If Qi is not a singleton, then the above inequality

along with (3.6) implies that q̇i �= 0. Using this property and Proposition 2.2, it is

straightforward to show the convergence of the agents to a single point.

The above discussion shows that if hi’s satisfy conditions given by (3.5) and

(3.30), then the agents reach consensus while preserving connectivity. There are a
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Figure 3.1: The information flow graph G and the graph Gd(0) for the consensus
example.

variety of functions satisfying these conditions, including the one used in [57]. The

following function will be used in the simulation

hi(σi, πi) =
σi

σi + πi + πi
2

(3.32)

It is desired now to verify the results obtained in this work by simulation. To

this end, the planar motion of the agents is shown in Fig. 3.2. Denote the relative

distance between agent i and its neighbor j by dij (i.e., dij := ‖qi − qj‖). The

relative distances d12, d13, and d34 are depicted in Fig. 3.3. Although d12, d13 and

d14 are initially equal to d (d12 = d13 = d14 = 1 at t = 0), the proposed controller

ensures that dij < d for all (i, j) ∈ E(G), while the agents converge to consensus.

Furthermore, the norms of the control inputs u1, u2 and u3 are bounded, as depicted

in Fig. 3.4. It is to be noted that in this example d13 and d14 are almost the same,

and so are u3 and u4.

3.5.2 Containment Example

For this example, a team of 3 static leaders and 3 followers is considered, where

the followers are desired to converge to the triangle of the leaders while preserving

the connectivity of the information flow graph G given in Fig. 3.5. Consider the

following potential function

hi(σi, πi) = −πi (3.33)
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Figure 3.2: The agents’ planar motion in the consensus example.
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Figure 3.3: The relative distances d12, d13 and d34 in the consensus example.
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Figure 3.4: The norms of the control inputs u1, u2 and u3 in the consensus example.

It can be easily verified that the function given above satisfies the conditions in

(3.5), which means that the corresponding control law is connectivity preserving.

Let d in this example also be equal to 1, and the initial position of each agent be

marked by its index, as shown in Fig. 3.6. The graphs Ḡ (obtained by adding the

virtual agents to G), Ḡd(0), and ḠM are depicted in Fig. 3.5. According to Theorem

3.1, for all (i, j) ∈ E(Ḡ)− E(ḠM) = E(G), the inequality ‖qi(t)− qj(t)‖ < d holds

for any t > 0. To prove the convergence of the followers to the convex hull of the

leaders, consider the function π(t) defined by

π(t) =
∏

(i,j)∈E(G)
i<j

(1− ‖qi(t)− qj(t)‖2)

Note that π̇ =
∑6

i=4 q̇i
T ∂π
∂qi

=
∑6

i=4 q̇i
T ∂πi

∂qi
π̄i =

∑6
i=4 π̄i‖q̇i‖2, where π̄i is the

product of those terms in π which do not appear in πi (i.e. π = πiπ̄i). It results

from strict connectivity preservation that π̄i > 0 for t > 0, and hence π̇ ≥ 0 for

t > 0. On the other hand, 0 < π < 1 for t > 0; therefore, using LaSalle’s invariance

principle [103] one can conclude the convergence of the agents to the largest invariant

set in π̇ = 0, which is q̇i = 0 for i = 4, 5, 6, i.e. the equilibrium set of (3.1).
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Figure 3.5: The information flow graph G along with the graphs Ḡ, Ḡd(0), and ḠM

for the containment example.

Moreover, it yields from (3.6) that in the equilibrium set
∑

j∈Ni(G) πij(qi − qj) = 0

for each follower i. Therefore, qi =
∑

j∈Ni(G) αijqj, where αij =
πij∑

j∈Ni(G) πij
. Clearly,

0 < αij < 1 and
∑

j∈Ni(G) αij = 1. This means that at equilibrium each follower i is

in the convex hull of its neighbors. Thus, for qi to be at a vertex of the convex hull

of the agents, it should coincide with all of its neighbors in Ni(G). Repeating the

same argument, one can conclude that qi should coincide with the agents reachable

from i in G. This is a contradiction as every leader is reachable from i since G

is connected. This completes the proof of the convergence of the followers to the

convex hull of the leaders.

The motion of the agents is depicted in Fig. 3.6, and the relative distances are

sketched in Fig. 3.7. The control input norms ‖u4‖, ‖u5‖ and ‖u6‖ are plotted in

Fig. 3.8. This figure shows the boundedness of the control inputs, although some of

the agents are initially about to lose connectivity.
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Figure 3.6: The agents’ planar motion in the containment example.
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Figure 3.7: The relative distances in the containment example.
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Figure 3.8: The norms of the control inputs in the containment example.
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Chapter 4

A Class of Bounded Distributed

Connectivity Preserving Control

Strategies for Unicycles

This chapter is concerned with the connectivity preservation of a group of unicycles

using a novel distributed control scheme. The proposed controllers are bounded,

and are capable of maintaining the connectivity of those pairs of agents which are

initially within the connectivity range. This means that if the network of agents

is initially connected, it will remain connected at all times under this control law.

Each local controller is designed in such a way that when an agent is about to lose

connectivity with a neighbor, the lowest-order derivative of the agents position that

is neither zero nor perpendicular to the edge connecting the agent to the corre-

sponding neighbor makes an acute angle with this edge, which is shown to result

in shrinking the edge. The results are first developed for a static information flow

graph and are then shown to remain valid for the case of dynamic edge addition.

The proposed methodology is then used to develop bounded connectivity preserving

control strategies for the consensus and containment control problems as the novel
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and unprecedented contributions of this work.

The remainder of this chapter is organized as follows. The problem statement

is presented in Section 4.1. The connectivity preserving control law is developed

in Section 4.2, which is used later in Section 4.3 to derive connectivity preserving

controllers for consensus and containment applications. Finally, simulation results

are presented in Section 4.4.

4.1 Problem Formulation

Consider a set of n nonholonomic agents in a plane. Let qi = [xi yi]
T and θi denote

the position and heading of agent i, respectively (i ∈ Nn). The dynamics of each

agent is of the form

ẋi = vi cos θi (4.1a)

ẏi = vi sin θi (4.1b)

θ̇i = ωi (4.1c)

where vi and ωi are the translational and angular velocities of agent i, respectively.

Each agent is assumed to be capable of measuring the relative positions and relative

velocities of its neighbors (as defined later). Denote by G = (V,E) the information

flow graph, where V = {1, . . . , n} is the set of vertices, and E ⊂ V × V is the set

of edges. The information flow graph G is assumed to be connected, undirected,

and static (the case of dynamic information flow graph is addressed later in Remark

4.1). Denote the set of neighbors of agent i in G by Ni(G), and the degree of agent

i in G with di(G). Two agents i and j are said to be in the connectivity range if

‖qi − qj‖ < d, for a pre-specified positive real number d, where ‖ · ‖ denotes the

Euclidean norm. It is assumed that all the agents in Ni(G) are initially located in

the connectivity range of agent i, for all i ∈ Nn. It is also assumed that each agent

belongs to either the set of leaders L or the set of followers F , and that the leaders
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are static, i.e. vi ≡ 0, ωi ≡ 0 for all i ∈ L. The main objective is to design a class

of distributed controllers for the followers to preserve connectivity. More precisely,

it is desired to find a control scheme for the followers such that if the inequality

‖qi(t)− qj(t)‖ < d holds for all (i, j) ∈ E at t = 0, then it holds at any t > 0 as well.

The proposed controllers are then used to develop connectivity preserving control

strategies for the well-known applications of consensus and containment.

Notation 4.1. For every agent i, the following functions are introduced, similar to

those defined for single-integrator agents in Chapter 3:

σi(t) :=
1

2

∑
j∈Ni(G)

‖qi(t)− qj(t)‖2

πi(t) :=
1

2

∏
j∈Ni(G)

(d2 − ‖qi(t)− qj(t)‖2)

πij(t) :=
∏

k∈Ni(G)
k �=j

(d2 − ‖qi(t)− qk(t)‖2)

4.2 Connectivity Preserving Controller Design

Analogous to Chapter 3, consider a set of distributed smooth potential functions of

the form hi(σi, πi), i ∈ F , with the following properties for all σi ∈ R
+:

∂hi

∂σi

(σi, 0) = 0 (4.2a)

∂hi

∂πi

(σi, 0) < 0 (4.2b)

Define ri = −∂hi

∂qi
, and denote by θ∗i the angle of ri, i.e. θ∗i = atan2(riy, rix), where

ri = [rix riy]
T . For every agent i ∈ F , consider a controller of the form

vi = ‖ri‖ cos(θi − θ∗i ) (4.3a)

ωi = θ̇∗i − (θi − θ∗i ) (4.3b)

Calculating ri and θ∗i requires only the relative positions of the neighbors of agent i.

It is straightforward to show that calculating θ̇∗i also requires the relative velocities
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of the neighbors of agent i. The aim here is to show that the distributed controller

given by (4.3) preserves connectivity (as defined in Section 4.1).

Define T = {t| ∃(i, j) ∈ E : ‖qi(t) − qj(t)‖ ≥ d}, i.e. the set of those time

instants at which the connectivity preservation is violated. In order to prove that the

controller given by (4.3) is connectivity preserving, it suffices to show that T = ∅.

Assume that T �= ∅, and let t0 = inft∈T t. This implies that ‖qi(t)− qj(t)‖ ≤ d, for

all (i, j) ∈ E and t ≤ t0, where the equality holds for at least one edge at t = t0.

Construct a graph Gd = (Vd, Ed) as the union of those edges (i, j) ∈ E for which

‖qi(t0) − qj(t0)‖ = d, i.e. those edges that are at the critical distance at t = t0.

Define

sij(t) = ‖qi(t)− qj(t)‖2, ∀(i, j) ∈ Ed (4.4)

Now, assume that sij is decreasing for some (i, j) ∈ Ed, in an open interval (ta, tb),

where ta < t0 < tb. For such an edge and for every ta ≤ t < t0, the inequality

‖qi(t) − qj(t)‖ > ‖qi(t0) − qj(t0)‖ = d holds which is in contradiction with the fact

that ‖qi(t)− qj(t)‖ ≤ d, for all (i, j) ∈ E and t ≤ t0. This rejects the assumption of

T �= ∅, and hence the control law given by (4.3) is connectivity preserving. Thus, in

order to prove the connectivity preservation for the proposed controller, it suffices to

show that the edge described above exists. In the sequel, some important properties

of the graph Gd are presented, which will be used later in Theorem 4.1 for finding

an edge with this property.

Define the rotation matrix

Rot(α) =

⎡
⎣cosα − sinα

sinα cosα

⎤
⎦ (4.5)

where α is the rotation angle in radians. It is straightforward to verify that d
dt
Rot(α) =

α̇Rot(α + π
2
). Consider an agent i ∈ F ; from (4.1a), (4.1b), (4.3a), and on noting
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that ri = ‖ri‖[cos θ∗i sin θ∗i ]
T , one can obtain

q̇i = vi

[
cos θi
sin θi

]

= Rot(θi − θ∗i )ri cos(θi − θ∗i )

=
1

2

⎡
⎣1 + cos 2(θi − θ∗i ) − sin 2(θi − θ∗i )

sin 2(θi − θ∗i ) 1 + cos 2(θi − θ∗i )

⎤
⎦ ri

=
1

2
(Rot(2αi) + I2)ri (4.6)

where αi = θi − θ∗i , and I2 is the 2 × 2 identity matrix. It results from (4.3b) that

α̇i = −αi. Furthermore, since ∂hi

∂qi
= ∂hi

∂σi

∂σi

∂qi
+ ∂hi

∂πi

∂πi

∂qi
, one can rewrite ri as

ri = −
∑

j∈Ni(G)

(
∂hi

∂σi

− ∂hi

∂πi

πij)(qi − qj) (4.7)

The following lemma shows that Gd is a union of trees, with at least one

follower as a leaf. This is used later in this section to prove connectivity preservation

by showing that for at least one of these leafs, sij as defined in (4.4) is decreasing

for the edge connected to this leaf in an open interval around t0.

Lemma 4.1. The graph Gd is acyclic, and there exists at least one leaf in Gd which

is a follower.

Proof. Suppose that Gd contains a cycle C. Let y(t) represent the positions

of the agents belonging to this cycle, and x(t) represent the positions of the rest of

the agents along with the headings of all agents. If y(t) = y(t0) for some t ≥ 0,

one can easily show that πij(t) = 0 for any i ∈ F on C and j ∈ Ni(G). This is due

to the fact that every agent on C is at distance d from its two neighbors on this

cycle. As a result, ri(t) = 0 and hence vi(t) = 0 for any i ∈ F on C. Using this

argument, it is easy to show that x and y satisfy the conditions of Lemma 3.7, and

hence y(t) = y(t0) for all t ≥ 0. In particular y(0) = y(t0), implying that some of

the agents are initially located at distance d, which contradicts the assumption that

‖qi(0)− qj(0)‖ < d, for all (i, j) ∈ E. This proves that Gd is acyclic.
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Now, let P be the longest path in Gd and denote by u and v the vertices at the

two ends of this path. Clearly du(Gd) = dv(Gd) = 1, i.e. u and v are two leafs of Gd.

Assume that both u and v are static leaders. Then, every agent i ∈ F on P has two

neighbors on this path located at distance d from it. Therefore, an argument similar

to the one given above results that the agents on this path have been fixed from the

beginning, which again contradicts the assumption that ‖qi(0)− qj(0)‖ < d, for all

(i, j) ∈ E. This implies that at least one of the two leafs u and v is a follower, which

completes the proof. �

The next 3 lemmas concern the follower leafs of Gd. They will be used later

in Theorem 4.1 to find the derivative of sij for an edge connected to a follower leaf.

Lemma 4.2. Consider an agent i ∈ F in Gd with di(Gd) = 1, and let agent j be

the one for which ‖qi − qj‖ = d. If αi �= ±π
2
, then (qi − qj)

T q̇i < 0.

Proof. It is straightforward to show that for such an agent ri =
∂hi

∂πi
πij(qi− qj).

Therefore,

(qi − qj)
T q̇i =

rTi
2∂hi

∂πi
πij

(Rot(2αi) + I2)ri

=
(1 + cos 2αi)

2∂hi

∂πi
πij

‖ri‖2 (4.8)

The proof follows on noting that 1 + cos 2αi > 0 for αi �= ±π
2
, and that ∂hi

∂πi
< 0

(from (4.2b)). �

Lemma 4.3. Consider an agent i ∈ F in Gd with di(Gd) = 1, and let agent j be

the one for which ‖qi − qj‖ = d. If q̇i = q̇j = 0, then ṙi =
d
dt
(∂hi

∂πi
πij)(qi − qj).

Proof. Since d2 − ‖qi − qj‖2 = 0, for any l ∈ Ni − {j}:

π̇il =
d

dt
(d2 − ‖qi − qj‖2)

∏
k∈Ni(G)
k �=l,j

(d2 − ‖qi(t)− qk(t)‖2)

= −2(qi − qj)
T (q̇i − q̇j)

∏
k∈Ni(G)
k �=l,j

(d2 − ‖qi(t)− qk(t)‖2)

= 0 (4.9)
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This also implies that π̇i = 0 since πi =
1
2
πil(d

2 − ‖qi − ql‖2). It is now desired to

show that d
dt
(∂hi

∂σi
) = 0. One can write:

d

dt
(
∂hi

∂σi

) =
∂2hi

∂σ2
i

σ̇i +
∂2hi

∂πi∂σi

π̇i (4.10)

From (4.2a), it is straightforward to show that ∂2hi

∂σ2
i
= 0. On the other hand, π̇i = 0

as substantiated above. These two results imply that d
dt
(∂hi

∂σi
) = 0. The proof follows

now on noting that

ṙi = −
∑

l∈Ni(G)

(
∂hi

∂σi

− ∂hi

∂πi

πil)(q̇i − q̇l)

−
∑

l∈Ni(G)

d

dt
(
∂hi

∂σi

− ∂hi

∂πi

πil)(qi − ql) (4.11)

�

Lemma 4.4. Consider an agent i ∈ F in Gd with di(Gd) = 1, and let agent j be

the one for which ‖qi − qj‖ = d. Also, assume that αi = ±π
2
. Then,

a) (qi − qj)
T q̈i = 0

b) If q̇j = 0, then (qi − qj)
T q

(3)
i < 0

Proof.

Part (a). Note that Rot(2αi) = Rot(±π) = −I2. Thus,

q̈i =
1

2
(Rot(2αi) + I2)ṙi + α̇iRot(2αi +

π

2
)ri

= −αiRot(−
π

2
)ri (4.12)

Hence,

(qi − qj)
T q̈i = − αi

∂hi

∂πi
πij

rTi Rot(−
π

2
)ri

= 0 (4.13)

Part (b). If q̇j = 0, then Lemma 4.3 yields
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(qi − qj)
TRot(−π

2
)ṙi =

d

dt
(
∂hi

∂πi

πij)(qi − qj)
TRot(−π

2
)(qi − qj)

= 0 (4.14)

On the other hand, one can easily find the third derivative of qi as

q
(3)
i = (αiRot(−

π

2
) + 2α2

i I2)ri − 2αiRot(−
π

2
)ṙi (4.15)

Therefore,

(qi − qj)
T q

(3)
i =

rTi
∂hi

∂πi
πij

(αiRot(−
π

2
) + 2α2

i I2)ri

=
2α2

i
∂hi

∂πi
πij

‖ri‖2

< 0 (4.16)

�

It follows from the above lemmas that for a follower leaf i in Gd, if the heading

of the agent is perpendicular to ri, then ρ(qi) = 2; otherwise, ρ(qi) = 1 (see Defi-

nition 2.2 for the definition of ρ(·)). Also, note that since the leaders are assumed

to be static, for every i ∈ L, the index ρ(qi) is ∞. The following three lemmas

provide a lower bound for the index of a non-leaf follower in Gd, which will be used

in Theorem 4.1 to find the derivatives of sij for an edge connected to a leaf whose

other end is a non-leaf follower.

Lemma 4.5. Consider an agent i ∈ F in Gd. Assume that η = minj∈Ni(G){ρ(πij)},

and that di(Gd) ≥ 2. Then, ρ(qi) ≥ η + 1.

Proof. The proof is similar to that of Lemma 3.3, using the relation ρ(qi) ≥

ρ(ri) + 1. �

Lemma 4.6. Consider an agent i ∈ F in Gd, and let ν be one of the (possibly

multiple) neighbors of this agent in Gd for which ρ(qν) = maxj∈Ni(Gd){ρ(qj)}. Then

ρ(qi) ≥ 1 +
∑

j∈Ni(Gd)
j �=ν

ρ(qj) (4.17)
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Proof. The proof is similar to that of Lemma 3.4. �

Lemma 4.7. Consider an agent i ∈ F in Gd with di(Gd) ≥ 2. If ρ(qj) = 2 for any

agent j ∈ Vd ∩ F with dj(Gd) = 1, then ρ(qi) ≥ 4.

Proof. If di(Gd) ≥ 3, then Lemma 4.6 yields ρ(qi) ≥ 1 + 2 + 2 = 5, and

hence the statement of the present lemma holds in this case. Now, for the case

when di(Gd) = 2, Lemma 4.6 implies that ρ(qi) ≥ 1 + 2 = 3. Let Ni(Gd) = {j, k}.

Using the equality πij = d2 − ‖qi − qk‖2, it can be easily shown that π̇ij = 0 and

π̈ij = (qi − qk)
T q̈k. It is now aimed to prove that π̈ij = 0. If k ∈ L, then ρ(qk) = ∞.

Also, if k ∈ F and dk(Gd) ≥ 2, then ρ(qk) ≥ 3. Hence, in these two cases q̈k = 0 and

subsequently π̈ij = 0. On the other hand, if k ∈ F and dk(Gd) = 1, then from the

assumption of the lemma ρ(qk) equals 2, implying that αk = ±π
2
. Thus, Lemma 4.4

yields (qi − qk)
T q̈k = 0. It follows from this argument that π̇ij = π̈ij = 0. Similarly,

π̇ik = π̈ik = 0. Therefore, η = min{ρ(πij), ρ(πik)} ≥ 3, and hence it is concluded

from Lemma 4.5 that ρ(qi) ≥ 4. �

The above lemmas will now be used to prove one of the main results of this

chapter, which is given below.

Theorem 4.1. Consider a set of n nonholonomic agents in a plane with dynamics

of the form (4.1), and assume that the leaders are static. Assume also that hi’s

satisfy the conditions given by (4.2). Then, the distributed controller (4.3) for the

followers is connectivity preserving.

Proof. As stated earlier, to prove this theorem it suffices to show that for some

(i, j) ∈ Ed, the function sij defined by (4.4) is decreasing in an open interval around

t0. It is shown in the sequel that any edge connected to a follower leaf of index one

is an appropriate candidate. In case that all the follower leafs are of index 2, any

edge connected to any follower leaf can be selected here. The proof is carried out

considering two cases:
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i) Gd has at least one follower leaf of index 1. Denote one of such vertices by i, and

let j be the vertex for which ‖qi − qj‖ = d. Then,

ṡij = 2(qi − qj)
T q̇i + 2(qj − qi)

T q̇j (4.18)

Since ρ(qi) = 1, thus αi �= ±π
2
, and Lemma 4.2 implies that (qi − qj)

T q̇i < 0. If

ρ(qj) ≥ 2, then q̇j = 0, and hence ṡij < 0. If ρ(qj) = 1, then j is also a follower leaf

of Gd, and similarly (qj − qi)
T q̇j < 0, which results that ṡij < 0. It follows from this

inequality that sij is decreasing in an open interval around t0, which completes the

proof for this case.

ii) The index of every follower leaf in Gd is 2. Consider a leaf i ∈ F of Gd, and let

j be the vertex for which ‖qi − qj‖ = d. Clearly, ṡij = 0. Moreover,

s̈ij = 2(qi − qj)
T q̈i + 2(qj − qi)

T q̈j (4.19)

Lemma 4.4 implies that (qi − qj)
T q̈i = 0. Similarly, if j belongs to F and is a leaf,

then (qj − qi)
T q̈j = 0. If, however, j is a static leader or is a follower but not a leaf,

then q̈j = 0. Therefore, regardless of j being a leaf or not, the equality s̈ij = 0 holds.

To find the third derivative of sij, note that since the index of every follower in Gd

is assumed to be 2,

s
(3)
ij = 2(qi − qj)

T q
(3)
i + 2(qj − qi)

T q
(3)
j (4.20)

From Lemma 4.4, (qi − qj)
T q

(3)
i < 0. If j belongs to F and is a leaf, then it can

be concluded in a similar way that (qj − qi)
T q

(3)
j < 0, which along with the above

inequality yields s
(3)
ij < 0. If j ∈ F and dj(Gd) ≥ 2, then Lemma 4.7 implies that

ρ(qj) ≥ 4 and hence q
(3)
j = 0, resulting in s

(3)
ij < 0. The same result holds also if

j is a static leader. Now, it is deduced from ṡij = s̈ij = 0 and s
(3)
ij < 0 that sij is

decreasing in an open interval around t0, which completes the proof. �

Remark 4.1. The connectivity preservation results presented so far can be easily

extended to the case of dynamic edge addition, where new edges may be added to the
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information flow graph once two agents enter the connectivity range. Suppose that

new edges are added to the information flow graph at the time instants t1, t2, . . ., and

denote by G(tk) the resultant information flow graph at t = tk, k = 1, 2, . . .. For any

edge e ∈ E(tk), the corresponding agents remain in the connectivity range during

the time interval [tk, tk+1] according to Theorem 4.1. This, along with the fact that

E ⊆ E(t1) ⊆ E(t2) ⊆ . . ., implies that for any edge of the information flow graph,

the corresponding agents remain in the connectivity range at all times after the edge

creation.

4.3 Applications

The controllers proposed in the previous section will now be used to develop connec-

tivity preserving control strategies for the consensus and containment applications.

4.3.1 A Bounded Connectivity Preserving Consensus Algo-

rithm for Unicycles

Consider a team of n unicycles with the dynamics of the form (4.1) in the plane and

assume that the information flow graph G is static and is a tree. The objective of this

subsection is to use the connectivity preserving controllers developed in the previous

section to design a control strategy such that all agents converge to consensus while

preserving connectivity.

Assume that hi’s are analytic functions and, in addition to (4.2), they satisfy

the following constraints

∂hi

∂σi

(σi, πi) > 0,
∂hi

∂πi

(σi, πi) ≤ 0, for σi ≥ 0 and πi > 0 (4.21)

Then, it is claimed here that using the controller given by (4.3), the agents con-

verge to consensus while preserving connectivity. Connectivity preservation follows
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directly from condition (4.2) and the results of the previous section. To prove the

convergence to consensus, a few lemmas and theorems are presented in the sequel.

It follows from connectivity preservation that σi and πi in (4.7) are bounded,

and so are ∂hi

∂σi
and ∂hi

∂πi
as analytic functions of σi and πi. Thus, there exists a positive

real number rM such that ‖ri(t)‖ ≤ rM , for all t ≥ 0 and all i ∈ Nn. For a fixed

point P ∈ R
2, define RP (t) = maxi∈Nn ‖P − qi(t)‖. Denote by d+

dt
RP (t) the right

derivative of RP (t) with respect to t. The next lemma will be used to find an upper

bound for d+

dt
RP (t).

Lemma 4.8. Let i be an agent for which ‖P − qi(t)‖ = RP (t) (i.e., the farthest

agent from P at time t). Also, assume that |αi(t)| ≤ π
2
. Then

d

dt
‖P − qi(t)‖ ≤ rM |αi(t)| (4.22)

Proof. Denote by γi the angle between P − qi and ri, i.e. γi = �(ri, P − qi).

Also, let βij =
∂hi

∂σi
− ∂hi

∂πi
πij. Then, (4.7) can be written as

ri = −
∑

j∈Ni(G)

βij(qi − qj) (4.23)

It follows from (4.21) and connectivity preservation that βij > 0. Moreover, since

qi is the farthest point from P , the circle centered at P with the radius ‖P − qi‖

contains all agents, and hence (P − qi)
T (qj − qi) ≥ 0, for all j ∈ Nn. Therefore,

(P − qi)
T ri =

∑
j∈Ni(G)

βij(P − qi)
T (qj − qi)

≥ 0 (4.24)

which in turn implies that |γi| ≤ π
2
. On the other hand,

d

dt
‖P − qi(t)‖ = −(P − qi)

T

‖P − qi‖
q̇i

= −(P − qi)
T

‖P − qi‖
Rot(αi)ri cosαi

= −‖ri‖ cos(αi + γi) cosαi

= ‖ri‖ sin(|αi + γi| −
π

2
) cosαi (4.25)
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Figure 4.1: Configuration described in Lemma 4.8 for the case when |αi + γi| > π
2
.

This is illustrated in Fig. 4.1 for the case where |αi + γi| > π
2
. It follows from

|αi| ≤ π
2
and |γi| ≤ π

2
that −π

2
≤ |αi + γi| − π

2
≤ π

2
. If −π

2
≤ |αi + γi| − π

2
≤ 0,

then it is concluded from (4.25) that d
dt
‖P − qi(t)‖ ≤ 0 and the proof is complete. If

0 < |αi + γi| − π
2
≤ π

2
, then on noting that sinx < x for any x ∈ (0, π

2
], (4.25) yields

d

dt
‖P − qi(t)‖ ≤ ‖ri‖(|αi + γi| −

π

2
) cosαi

≤ rM(|αi + γi| −
π

2
)

≤ rM(|αi|+ |γi| −
π

2
)

≤ rM |αi| (4.26)

which completes the proof. �

Lemma 4.9. Let αM = maxi∈Nn |αi(0)|, and TM = max{ln 2αM

π
, 0}. Then, for any

t1 ≥ TM and any t2 > t1, R
P (t2) ≤ RP (t1) + rMαMe−t1.

Proof. Let I denote the set of all agents at distance RP (t) from P at time t

(i.e., the set of farthest agents from P at time t, which can, in general, have more

than one element). Then, it can be easily shown that

d+

dt
RP (t) = max

i∈I

d

dt
‖P − qi(t)‖ (4.27)

To find an upper bound for d+

dt
RP (t), first note that αi(t) = αi(0)e

−t (since α̇i =

−αi), and hence |αi(t)| ≤ π
2
for t ≥ TM . Now, using Lemma 4.8 along with (4.27)
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yields

d+

dt
RP (t) ≤ rMαMe−t (4.28)

for any t ≥ TM . By integrating (4.28) from t1 to t2, one can obtain

RP (t2)−RP (t1) ≤ rMαM(e−t1 − e−t2)

≤ rMαMe−t1 (4.29)

which completes the proof. �

The immediate result of the above lemma is that under the proposed control

law the agents evolve in a bounded region of the plane. Note, however, that unlike

the case of single-integrator agents (e.g., see Chapter 2), the convex hull of the agents

in the case of unicycles is not necessarily contracting. This is clearly due to the fact

that when the heading of agent i is not exactly in the same direction as ri (i.e., the

angle αi is nonzero), then the agent may not move toward the convex hull of its

neighbors. Therefore, the methods used in [72, 39, 36], as well as Chapter 2, which

are mainly based on the contracting property of the convex hull of the agents, cannot

be directly employed here to deduce the convergence of the agents to consensus.

However, it is shown in the sequel that by applying these results to the positive

limit set of the closed-loop system (see Definition 2.10 for the definition of positive

limit point and positive limit set), it is possible to deduce convergence to consensus.

The dynamics of the agents under the proposed control strategy can be written

as

q̇i =
1

2
(Rot(2αi) + I2)ri

α̇i = −αi (4.30)

Denote by L+ the positive limit set for a solution [qT (t) αT (t)]T of (4.30), where

q(t) = [qT1 (t) . . . q
T
n (t)]

T and α(t) = [α1(t) . . . αn(t)]
T . Note that, according to

Lemma 2.5, L+ is nonempty, compact, and invariant, since the solution of (4.30)
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evolves in a bounded region of the plane (as shown earlier). Moreover, [qT (t) αT (t)]T

approaches L+ as t → ∞. For any [pT βT ]T ∈ L+, there is a sequence {tn} with

tn → ∞ such that q(tn) → p and α(tn) → β. This implies that β = 0 because

α(tn) = e−tnα(0) → 0 as tn → ∞. Therefore, for a solution p(t) = [pT1 (t) . . . p
T
n (t)]

T

starting in L+ (and hence staying in L+ as this set is invariant), (4.30) reduces to

ṗi = ri = −∂hi

∂pi
(4.31)

This is the same connectivity preserving control law developed for single-integrator

agents in Chapter 3.

Lemma 4.10. For any [pT 0T ]T ∈ L+ and any (i, j) ∈ E, the inequality ‖pi−pj‖ < d

holds.

Proof. By definition, for any [pT 0T ]T ∈ L+, there is a sequence {tn} with

tn → ∞ as n → ∞, such that q(tn) → p. Since ‖qi(tn) − qj(tn)‖ < d (because of

connectivity preservation), hence ‖pi−pj‖ ≤ d. Now, choose an arbitrary τ > 0 and

let pτ (t) be a solution of (4.31) which passes through p at time τ , i.e. pτ (τ) = p. It

follows from the invariance property of L+ that [(pτ (t))T 0T ]T ∈ L+ for all t ≥ 0. In

particular, [(pτ (0))T 0T ]T ∈ L+ implies that ‖pτi (0)− pτj (0)‖ ≤ d. Let Gd(0) be the

union of those edges of G for which ‖pτi (0)− pτj (0)‖ = d. Let also GM = (VM , EM)

be the maximal induced subgraph of Gd(0) such that di(GM) ≥ 2 for every i ∈ VM .

However, since G is a tree, Gd(0) is acyclic and thus GM is empty. Therefore,

Theorem 3.1 yields ‖pτi (t)−pτj (t)‖ < d for all (i, j) ∈ E and t > 0. The proof follows

now on noting that ‖pi − pj‖ = ‖pτi (τ)− pτj (τ)‖. �

Theorem 4.2. Consider a team of n unicycle agents in a plane with the dynamics

of the form (4.1), and the control law (4.3). Consider also a set of analytic functions

hi, i ∈ Nn, satisfying the conditions given by (4.2) and (4.21), which are used to

obtain the control parameters in (4.3) as discussed in the previous section. Moreover,
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assume that the information flow graph is a static tree. Then, the agents converge

to consensus while preserving connectivity.

Proof. The first step is to show that there exists a constant vector p̄, for which

p̄1 = p̄2 = . . . = p̄n, and [p̄T 0T ]T ∈ L+. To this end, let p(t) be a solution to (4.31)

starting from a point p(0), where [pT (0) 0T ]T ∈ L+. Since L+ is invariant, hence

[pT (t) 0T ]T ∈ L+ for all t ≥ 0. On the other hand, (4.31) can be written as

ṗi = −
∑

j∈Ni(G)

βij(pi − pj) (4.32)

where βij =
∂hi

∂σi
− ∂hi

∂πi
πij. Now, note that according to Lemma 4.10, ‖pi(t)−pj(t)‖ < d

for all (i, j) ∈ E and t ≥ 0, which in turn implies that πi, πij > 0. This along with

(4.21) yields βij > 0 for all (i, j) ∈ E.

The stability of the system governed by (4.32) is extensively studied in the

literature (see Chapter 2 and the references therein). Define Pi = {pj|j ∈ Ni∪{i}},

and assume that pi is a vertex of Conv(Pi). If Pi is not a singleton, then the

above discussion implies that ṗi �= 0. Using this property and Proposition 2.2, it is

straightforward to show the convergence of p(t) to a point p̄ for which p̄1 = p̄2 =

. . . = p̄n := p. Now, one can conclude [p̄T 0T ]T ∈ L+ on noting that L+ is a closed

set according to Lemma 2.5.

To complete the proof, it suffices to show that for the solution [qT (t) αT (t)]T

of (4.30), q(t) converges to p̄, or equivalently Rp(t) = maxi∈Nn ‖p − qi(t)‖ → 0 as

t → ∞. Since [p̄T 0T ]T ∈ L+, there is a sequence {tn} with tn → ∞ such that

q(tn) → p̄, implying that Rp(tn) → 0 as n → ∞. For an arbitrary ε > 0, choose a

sufficiently large number n so that tn > TM , rMαMe−tn < ε
2
, and Rp(tn) <

ε
2
. Then,

it results from Lemma 4.9 that for every t > tn, R
p(t) ≤ Rp(tn) + rMαMe−tn < ε,

which completes the proof of convergence of qi’s to p. �
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4.3.2 A Bounded Connectivity Preserving Containment Al-

gorithm for Unicycles with Static Leaders

The objective of this section is to design a control strategy for the team of agents de-

scribed in Section 4.1, such that while preserving connectivity, the followers converge

to the convex hull of the leaders, i.e.

lim
t→∞

qi(t) ∈ Conv({qj|j ∈ L}), ∀i ∈ F (4.33)

Consider a potential function of the form

hi(σi, πi) = −πi (4.34)

and the controller given by (4.3), where ri = −∂hi

∂qi
= ∂πi

∂qi
. It is straightforward

to verify that the above function satisfies the conditions given by (4.2). Thus, the

connectivity preservation for the resultant control strategy is deduced from Theo-

rem 4.1.

Using the connectivity preservation property, it is desired now to show the

convergence of the followers to the convex hull of the leaders under the proposed

control strategy. The dynamics of the agents with this control law can be written

as

q̇i =

⎧⎨
⎩

1
2
(Rot(2αi) + I2)ri, i ∈ F

0, i ∈ L
(4.35a)

α̇i =

⎧⎨
⎩

−αi, i ∈ F

0, i ∈ L
(4.35b)

where ri =
∂πi

∂qi
, and αi is defined identically zero for all i ∈ L. Also, define q(t) =

[qT1 (t) . . . q
T
n (t)]

T and α(t) = [α1(t) . . . αn(t)]
T . It follows from the connectedness

of the graph G and the connectivity preservation property of the team that for

any static leader i ∈ L and any j ∈ F ∪ L, the inequality ‖qi − qj‖ < (n − 1)d

holds. This result along with (4.35b) guarantees the boundedness of the solutions
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of (4.35). Denote by L+ the positive limit set for a solution [qT (t) αT (t)]T of the

nonlinear system described by (4.35). For any [pT βT ]T ∈ L+, it can be easily shown

that β = 0, and ‖pi − pj‖ ≤ d for all (i, j) ∈ E(G) (similar results are proved in

Subsection 4.3.1). Next lemma shows that in the above relation equality cannot

hold and it is, in fact, strict inequality.

Lemma 4.11. For any [pT 0T ]T ∈ L+ and any (i, j) ∈ E, the inequality ‖pi−pj‖ < d

holds.

Proof. Consider the function π(q(t)) defined by

π(q(t)) =
∏

(i,j)∈E(G)
i<j

(d2 − ‖qi(t)− qj(t)‖2) (4.36)

Note that

π̇ =
∑
i∈F

(
∂π

∂qi
)T q̇i

=
∑
i∈F

π̄i(
∂πi

∂qi
)T q̇i

=
1

2

∑
i∈F

π̄ir
T
i (Rot(2αi) + I2)ri

=
1

2

∑
i∈F

π̄i(1 + cos 2αi)‖ri‖2 (4.37)

where π̄i =
π
πi

(i.e., π̄i contains those product terms in π which do not appear in

πi, and hence is independent from qi). It results from the connectivity preservation

property that π̄i > 0 for t ≥ 0, and hence (4.37) yields π̇ ≥ 0, implying that π is

a non-decreasing function of time. On the other hand, 0 < π < d|E(G)|. Therefore,

π(q(t)) has a limit, say a, as t → ∞. Note that a > 0 because π(q(t)) ≥ π(q(0)) > 0.

For any [pT 0T ]T ∈ L+, there is a sequence {tn} such that as n → ∞, tn → ∞ and

q(tn) → p. As a result, π(p) = a since π(q(tn)) → a as tn → ∞. This, along with

the relations a > 0 and ‖pi − pj‖ ≤ d for all (i, j) ∈ E(G), implies that ‖pi − pj‖ is,

in fact, strictly less than d for all (i, j) ∈ E(G). �
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Theorem 4.3. Consider a team of n nonholonomic agents in the plane with the

dynamics of the form (4.1). Assume that each agent either belongs to the set of

followers F or the set of static leaders L as described in Section 4.1, and that the

information flow graph G is static and connected. Then, the controller given by

(4.3), with hi’s of the form (4.34), results in convergence of the followers to the

convex hull of the leaders while preserving connectivity.

Proof. Consider the solution [pT (t) 0T ]T of (4.35) starting from a point [pT0 0T ]T ∈

L+. The invariance property of L+ (see Lemma 2.5) yields [pT (t) 0T ]T ∈ L+ for all

t ≥ 0. This yields π(p(t)) ≡ a and hence π̇(p(t)) ≡ 0. Using (4.37), one arrives at

π̇(p(t)) =
∑
i∈F

π̄i‖ri‖2 (4.38)

Note that π̄i > 0 because according to Lemma 4.11, ‖pi(t)−pj(t)‖ < d for all (i, j) ∈

E(G). Therefore, the relation π̇(p(t)) ≡ 0 results that starting from [pT0 0T ]T ∈ L+,

ri ≡ 0 for all i ∈ F . On the other hand, ri can be written as

ri =
∂πi

∂pi

= −
∑

j∈Ni(G)

πij(pi − pj) (4.39)

Setting ri to zero in the above equation and solving for pi yields

pi =
∑

j∈Ni(G)

αijpj, i ∈ F (4.40)

where αij :=
πij∑

j∈Ni(G) πij
. Clearly, 0 < αij < 1 and

∑
j∈Ni(G) αij = 1. This means

that for any [pT 0T ]T ∈ L+, every follower is in the convex hull of its neighbors. It

is claimed now that for any [pT 0T ]T ∈ L+, no follower can be at a vertex of the

convex hull of the team unless all agents coincide. Assume that one of the followers,

say follower i ∈ F , is at a vertex of the convex hull. Then, it results from (4.40)

that pi should coincide with all of its neighbors in Ni(G). Repeating the same

argument, one concludes that pi should coincide with all the agents reachable from
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vertex i in G, which in turn means that all the agents should coincide since G is

connected. This proves the above claim, and implies that for any [pT 0T ]T ∈ L+ and

any i ∈ F , pi belongs to CL, where CL denotes the convex hull of the static leaders.

The convergence of the qi’s to CL for any i ∈ F is implied from the above result

because q(t) approaches L+ as t → ∞, according to Lemma 2.5. �

Remark 4.2. Note that due to the connectivity preservation property, one can write

E(t1) ⊆ E(t2) for any t2 > t1 ≥ 0, where E(t) denotes the set of edges of the

information flow graph at time t. This, together with the fact that the number of

the edges that can be added to the information flow graph is finite, implies that there

exists a time T after which no more edge is added to the information flow graph.

Hence, the stability analysis in this case becomes equivalent to that in the case of

static information flow graph.

4.4 Simulation Results

4.4.1 A Connectivity Preserving Consensus Example

To verify the controller proposed in Subsection 4.3.1, consider 6 unicycle agents with

dynamics of the form (4.1) moving in a 2D plane, with the information flow graph

G1 depicted in Fig. 4.2, and assume d = 1. Let also the initial position and heading

of each agent be as shown in Fig. 4.2. Suppose that agent i is using a controller of

the form (4.3), and that

hi(σi, πi) = − πi

1 + σi

, i ∈ N6 (4.41)

It can be easily shown that this function satisfies the conditions given in (4.2) and

(4.21), and hence the resultant controller is connectivity preserving and leads to

consensus, according to Theorem 4.2.
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Figure 4.2: The information flow graph G1 along with the initial positions and
headings of the agents for the consensus example.
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Figure 4.3: The agents’ planar motion in the consensus example.
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Figure 4.4: The distances between the neighboring agents in the consensus example
(dij represents the distance between neighboring agents i and j).

The planar motion of the agents under the proposed controller is shown in

Fig. 4.3. Denote the distance between agent i and its neighbor j by dij (i.e., dij :=

‖qi − qj‖). This distance is depicted in Fig. 4.4 for different agents as a function

of time. While all initial distances are relatively close to d, the proposed controller

keeps them less than d for every (i, j) ∈ E(G1) at all times, as the agents converge

to consensus. The translational and angular velocities of the agents are depicted in

Figs. 4.5 and 4.6, respectively.

4.4.2 A Connectivity Preserving Containment Example

It is desired now to validate the controller designed in Subsection 4.3.2 by simulation.

Consider a team of 3 static leaders and 3 followers with unicycle dynamics given by

(4.1), and let the connectivity range be d = 1. The information flow graph G2 and

initial positions and headings of agents are depicted in Fig. 4.7, where the static

leaders are marked by an asterisk.
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Figure 4.5: The translational velocities of the agents in the consensus example.

0 1 2 3 4 5 6 7

−4

−2

0

2

4

6

 t (sec)

an
gu

la
r v

el
oc

ity

ω
1

ω
2

ω
3

ω
4

ω
5

ω
6

Figure 4.6: The angular velocities of the agents in the consensus example.
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Figure 4.7: The information flow graph G2 along with the initial positions and
headings of the agents for the containment example.
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Figure 4.8: The followers’ planar motion in the containment example.
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Figure 4.9: The distances between the neighboring agents in the containment ex-
ample.

The planar motion of the agents under the controller proposed in Subsec-

tion 4.3.2 is shown in Fig. 4.8. Similar to the previous example, let the distance

between agent i and its neighbor j be denoted by dij. The distances for different

agents are depicted in Fig. 4.9. Although some of the distances are initially close

to d, under the proposed controller dij remains less than d for every (i, j) ∈ E(G2)

at all times, while the agents are converging to the convex hull of the static lead-

ers. Figs. 4.10 and 4.11, respectively, demonstrate the translational and angular

velocities of the followers.
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Figure 4.10: The translational velocities of the followers in the containment example.
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Figure 4.11: The angular velocities of the followers in the containment example.
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Chapter 5

A Bounded Distributed

Connectivity Preserving

Aggregation Strategy with

Collision Avoidance Property

This chapter presents a potential-based bounded distributed connectivity preserv-

ing control strategy for the aggregation of multi-agent systems. The problem is

investigated for two cases of single-integrator agents and unicycles. Under the pro-

posed control strategy, if two agents are in the connectivity range at some point in

time, they will stay connected thereafter. The agents finally aggregate while avoid-

ing collision in such a way that the average of the distances between every pair of

neighboring agents is bounded by a pre-specified positive real number, which can

be chosen arbitrarily small. The results are developed based on some important

characteristics of the positive limit set of the closed-loop system under the proposed

control strategy and a fundamental property of convex real functions.

The remainder of this chapter is organized as follows. The problem statement
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is presented in Section 5.1. Section 5.2 includes the details of the controller design

and the proofs of the connectivity preservation and collision avoidance properties

and the aggregation of the agents for the case of single-integrator agents. The case

of unicycle agents is studied in Section 5.3. Finally, simulation results are presented

in Section 5.4.

5.1 Problem Statement

Consider a set of n single-integrator agents in a 2D plane, and let the dynamics of

each agent be described by

q̇i(t) = ui(t) (5.1)

where qi(t) ∈ R
2 and ui(t) represent the position and control input of agent i at

time t. Each agent is assumed to be capable of measuring the relative positions

of a subset of agents which are in its connectivity range, i.e. any agent within a

pre-described distance d from it. More precisely, agent i is capable of measuring the

relative position of agent j at time t if and only if ‖qi(t) − qj(t)‖ < d, where ‖ · ‖

denotes the Euclidean norm. This information flow structure is represented by an

information flow graph G(t) = (V,E(t)), where V = {1, . . . , n} is the set of vertices,

and E(t) = {(i, j)|i, j ∈ V, i �= j, ‖qi(t)− qj(t)‖ < d} is the set of edges. Denote the

set of neighbors of agent i in G(t) by Ni(G(t)), and the degree of agent i in G(t)

with di(G(t)). It is assumed that the initial positions of the agents are such that the

initial information flow graph G(0) is connected. The main objective of this chapter

is to design a bounded distributed controller is such a way that

1. connectivity is preserved; in other words, if (i, j) ∈ E(t0) for some t0 ≥ 0, then

under the proposed control strategy (i, j) ∈ E(t) for all t ≥ t0.

2. collision among the agents is avoided in the sense that qi(t) �= qj(t) for every

t > 0 and all i �= j, assuming qi(0) �= qj(0).
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3. the agents finally aggregate so that the average of the distances among neigh-

boring agents is bounded by a pre-specified positive real number r. More

precisely, there exists T > 0 such that for every t ≥ T ,

1

|E(t)|
∑

(i,j)∈E(t)

‖qi(t)− qj(t)‖ ≤ r (5.2)

5.2 Control Design for Single-Integrator Agents

For every agent i, define

πi(t) :=
1

2

∏
j∈Ni(G(t))

(d2 − ‖qi(t)− qj(t)‖2)m‖qi(t)− qj(t)‖2 (5.3)

where m is a natural number which satisfies m ≥ d2−r2

r2
, and consider a control law

of the form

ui =
∂πi

∂qi
(5.4)

The aim of this section is to show that this control law satisfies the design specifica-

tions as described in Section 5.1. In order to express (5.4) in a more explicit form,

define:

πij(t) :=
∏

k∈Ni(G(t))
k �=j

(d2 − ‖qi(t)− qk(t)‖2)m‖qi(t)− qk(t)‖2 (5.5)

Then,

ui =
∑

j∈Ni(G(t))

πij(qi(t)− qj(t))(d
2 −‖qi(t)− qj(t)‖2)m−1(d2 − (m+1)‖qi(t)− qj(t)‖2)

(5.6)

The next lemma proves the collision avoidance property of the proposed con-

troller.

Lemma 5.1. Under any controller of the form (5.4) the agents will not collide.

More precisely, if qi(0) �= qj(0) for all i, j ∈ V (i �= j), then qi(t) �= qj(t) for every

t > 0.
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Proof. Consider the function π(t) defined by

π(t) =
∏

(i,j)∈E(t)
i<j

(d2 − ‖qi(t)− qj(t)‖2)m‖qi(t)− qj(t)‖2 (5.7)

Note that

π̇ =
∑
i∈V

(
∂π

∂qi
)T q̇i

=
∑
i∈V

π̄i(
∂πi

∂qi
)T q̇i

=
∑
i∈V

π̄i‖q̇i‖2

≥ 0 (5.8)

where π̄i =
π
πi

(i.e., π̄i contains those product terms in π which do not appear in πi,

and hence is independent from qi). Note that π, πi, π̄i ≥ 0, and if no collision has

happened at time t, then these three functions will all be strictly positive.

Now, assume that a collision can happen under a controller of the form (5.4).

Let t0 be the first time instant at which two agents, say i and j, collide. It follows

from the assumption of the lemma that t0 > 0. Since G(t) is piece-wise constant,

one can choose t−0 < t0 in such a way that the topology of the network of the agents

represented by G(t) stays fixed for any t ∈ [t−0 , t0). Also, since qi(t0) = qj(t0), t
−
0 can

be chosen sufficiently close to t0 such that ‖qi(t)−qj(t)‖ < d for every t ∈ [t−0 , t0), and

hence one may assume (i, j) ∈ E(t) for every t ∈ [t−0 , t0). The equality qi(t0) = qj(t0)

implies that limt↗t0 ‖qi(t)− qj(t)‖2 = 0. This along with the fact that all product

terms in (5.7) are bounded by either d2m or d2 yields

lim
t↗t0

π(t) = 0 (5.9)

On the other hand, since G(t) is fixed for t ∈ [t−0 , t0), one can conclude from (5.8)

that π(t) ≥ π(t−0 ) for all t ∈ [t−0 , t0). This is clearly a contradiction with (5.9) on

noting that π(t−0 ) > 0 (since no collision has happened before t0), which completes

the proof. �
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The connectivity preservation property of the controller (5.4) is justified in the

next lemma.

Lemma 5.2. The controller given by (5.4) is connectivity preserving. In other

words, if (i, j) ∈ E(t0) for some t0 ≥ 0, then (i, j) ∈ E(t) for all t ≥ t0

Proof. The proof is similar to that of Lemma 5.1. First, note that according

to collision avoidance property, for every i ∈ V , all the three functions π, πi, and

π̄i are positive. Assume that connectivity is not preserved for an edge (i, j) ∈ E(t0)

for some t0 ≥ 0, and let t1 > t0 be the time instant at which the corresponding

agents i and j lose connectivity, i.e. ‖qi(t1) − qj(t1)‖ = d. Since G(t) is piece-wise

constant, there exists t−1 < t1 such that G(t) stays fixed for any t ∈ [t−1 , t1). The

equality ‖qi(t1)− qj(t1)‖ = d implies that limt↗t1 d
2 − ‖qi(t)− qj(t)‖2 = 0, which in

turn yields

lim
t↗t1

π(t) = 0 (5.10)

On the other hand, since G(t) is fixed for t ∈ [t−1 , t1), one can conclude from (5.8)

that π(t) ≥ π(t−1 ) for all t ∈ [t−1 , t1) which clearly contradicts (5.10) on noting that

π(t−1 ) > 0. This completes the proof. �

It follows from the connectivity preservation property that for every t1 < t2,

E(t1) ⊆ E(t2). This along with the fact that the number of the edges that can be

added to a graph with n vertices is finite, implies that there exists Tf > 0 such that

G(t) is fixed for t ≥ Tf . Therefore, to prove the third property for the proposed

controller, it is assumed in the reminder of the chapter that the agents have reached

their fixed topology Gf = (V,Ef ).

Denote by L+ the positive limit set for a solution q(t) = [qT1 (t) . . . q
T
n (t)]

T of

the closed-loop system under the controller given by (5.4) (see Definition 2.10 for the

definition of positive limit point and positive limit set). It is important to note that

every positive limit set is invariant. Note also that q(t) approaches L+ as t → ∞

83



(see [103]). An important property of L+ for the proposed controller is stated in the

next lemma.

Lemma 5.3. For any p = [pT1 (t) . . . p
T
n (t)]

T ∈ L+ the following relation holds:

1

|Ef |
∑

(i,j)∈Ef

‖pi − pj‖2
d2 − ‖pi − pj‖2

=
1

m
(5.11)

Proof. Since the graph G(t) is fixed for all t ≥ Tf , hence there is no discon-

tinuity in the function π(t) for any t ≥ Tf . Thus, it follows from (5.8) that π(t)

is non-decreasing over the time interval t ≥ Tf , resulting in π(Tf ) ≤ π(t). On the

other hand, π(t) < d(m+1)|Ef |. This means that π(t) is a non-decreasing bounded

function of time, and hence it has a limit, say a, as t → ∞. One can conclude from

the relation a ≥ π(Tf ) that a > 0 because π(Tf ) > 0. Now, since for any p ∈ L+

there is a sequence {tn} such that as n → ∞, tn → ∞ and q(tn) → p, it results that

π ≡ a for any solution belonging to L+. Therefore, for any solution p(t) starting

in L+ (and hence staying in L+) the relation π̇ ≡ 0 holds, which implies ṗi ≡ 0 for

every i ∈ V because analogous to (5.8), π̇ =
∑

i∈V π̄i‖ṗi‖2. Now, it results from

(5.6) that

∑
j∈Ni(Gf )

πij(pi − pj)(d
2 − ‖pi − pj‖2)m−1(d2 − (m+ 1)‖pi − pj‖2) = 0 (5.12)

for every i ∈ V . Dividing both sides by 2πi leads to

∑
j∈Ni(Gf )

(pi − pj)
d2 − (m+ 1)‖pi − pj‖2

‖pi − pj‖2(d2 − ‖pi − pj‖2)
= 0 (5.13)

Multiplying (5.13) by pTi from the left and taking the summation over all i ∈ V , one

arrives at ∑
(i,j)∈Ef

d2 − (m+ 1)‖pi − pj‖2
d2 − ‖pi − pj‖2

= 0 (5.14)

from which (5.11) can be easily obtained. �
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Now, it is desired to show that a controller of the form (5.4) results in aggre-

gation of the agents as defined in Section 5.1.

Lemma 5.4. Consider a controller of the form (5.4), and assume that m ≥ d2−r2

r2
.

Then the agents aggregate as t increases, such that the average of the distances

between the neighboring agents is bounded by r. In other words, there exists T > 0

such that for every t ≥ T ,

1

|E(t)|
∑

(i,j)∈E(t)

‖qi(t)− qj(t)‖ ≤ r (5.15)

Proof. Define f(x) = x2

d2−x2 . It is straightforward to show that f is convex over

the interval x ∈ (0, d). This along with Lemma 5.3 implies that for every p ∈ L+

1

m
=

1

|Ef |
∑

(i,j)∈Ef

f(‖pi − pj‖)

≥ f(
1

|Ef |
∑

(i,j)∈Ef

‖pi − pj‖) (5.16)

It can be easily verified that if f(x) ≤ 1
m
, then x ≤ d√

m+1
. Therefore, it follows from

(5.16) that

1

|Ef |
∑

(i,j)∈Ef

‖pi − pj‖ ≤ d√
m+ 1

≤ d√
d2−r2

r2
+ 1

≤ r (5.17)

on noting that m ≥ d2−r2

r2
. The proof follows now from the fact that G(t) = Gf for

t ≥ Tf , and that q(t) approaches L+ as t → ∞. �

The main results of this section are summarized in the next Theorem.

Theorem 5.1. Consider a team of agents in a 2D plane with the dynamics of the

form (5.1). Assume that the control input of each agent is given by (5.4), where

πi is defined in (5.3) and m is a natural number satisfying m ≥ d2−r2

r2
. Then,
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under the proposed control strategy, the agents will finally aggregate while preserving

connectivity and avoiding collision such that the average of the distances among the

neighboring agents is bounded by r.

Proof. The proof follows directly from Lemmas 5.1-5.4. �

Note that in the above theorem the average is taken over the edges of the

information flow graph and not necessarily all pairs of agents. However, by choosing

a sufficiently small value for r, the distances among the neighboring agents can be

made arbitrarily small. The next proposition presents a sufficient condition on m

which guarantees the convergence of all pairs of agents to the connectivity range.

Therefore, for any m satisfying that condition, the above-mentioned average is taken

over all pairs of agents.

Proposition 5.1. If m ≥ n2(n−1)2

4
−1, then Gf is a complete graph, i.e., (i, j) ∈ E(t)

for all i, j ∈ V and t ≥ Tf .

Proof. It follows from (5.17) that for every p ∈ L+,

∑
(i,j)∈Ef

‖pi − pj‖ ≤ d|Ef |√
m+ 1

(5.18)

From the connectivity preservation property and the assumption that G(0) is con-

nected, it results that Gf is also connected. Assume that Gf is not complete. Then

there exist u, v ∈ V , for which (u, v) /∈ Ef . Since Gf is connected, there is a path

in Gf from u to v. Denote this path by P and the set of its edges with EP . Then,

it is straightforward to show that

‖pu − pv‖ ≤
∑

(i,j)∈EP

‖pi − pj‖ (5.19)

Clearly, EP ⊆ Ef , and hence (5.18) and (5.19) yield ‖pu − pv‖ ≤ d|Ef |√
m+1

. Now, since

Gf is assumed not to be complete, |Ef | < n(n−1)
2

≤
√
m+ 1. This implies that

‖pu − pv‖ < d which is in contradiction with the initial assumption of (u, v) /∈ Ef ,

and this completes the proof. �
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It is to be noted that the above proposition provides a sufficient condition in

terms of m (i.e., it grows with the quadruple of the swarm size) to ensure that all

pairs of agents will eventually enter the connectivity range. The above result is very

conservative in practice, and usually a much smaller m can also fulfill this.

5.3 Control Design for Unicycle Agents

This section uses an approach analogous to the one presented in the previous section

to design a controller for the case of unicycles. The dynamics of each unicycle agent

is given by

ẋi = vi cos θi (5.20a)

ẏi = vi sin θi (5.20b)

θ̇i = ωi (5.20c)

where qi = [xi yi]
T and θi denote the position and heading of agent i, and vi and

ωi are its translational and angular velocities, respectively. For every agent i ∈ V ,

consider a controller of the form

vi = ‖ui‖ cos(θi − θ∗i ) (5.21a)

ωi = θ̇∗i − κi(θi − θ∗i ) (5.21b)

where ui = [uix uiy]
T is the same control input designed for single-integrator agents,

θ∗i denotes the angle of ui (i.e. θ∗i = atan2(uiy, uix)), and κi > 0 is a constant

gain. The objective of this section is to show that this controller satisfies the design

specifications described in Section 5.1.
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From (5.20) and (5.21), one can obtain

q̇i = ‖ui‖ cos(θi − θ∗i )

[
cos θi
sin θi

]

=
1

2
‖ui‖

[
cos(2θi − θ∗i ) + cos θ∗i
sin(2θi − θ∗i ) + sin θ∗i

]

=
1

2
(Rot(2(θi − θ∗i )) + I2)ui (5.22)

where I2 is the 2× 2 identity matrix, and Rot(·) is the rotation matrix defined as

Rot(ϕ) =

⎡
⎣cosϕ − sinϕ

sinϕ cosϕ

⎤
⎦ (5.23)

Let αi denote the deviation of the heading of agent i from ui, i.e. αi = θi − θ∗i . It

follows from (5.20) and (5.21) that α̇i = −κiαi. Therefore, the dynamics of qi and

αi under the controller given by (5.21) can be written as

q̇i =
1

2
(Rot(2αi) + I2)ui

α̇i = −κiαi (5.24)

The main result of this section is presented in the next theorem.

Theorem 5.2. Consider a team of unicycles with the dynamics of the form (5.20)

moving in a 2D plane. Assume that the translational and angular velocities of each

agent are as in (5.21), where ui is given in (5.4) and m is a natural number satis-

fying m ≥ d2−r2

r2
. Then, under the proposed control strategy, the agents will finally

aggregate while preserving connectivity and avoiding collision such that the average

of the distances among the neighboring agents is bounded by r.

Proof. For the function π(t) defined by (5.7), it is straightforward to show

88



that

π̇ =
∑
i∈V

(
∂π

∂qi
)T q̇i

=
∑
i∈V

π̄i(
∂πi

∂qi
)T q̇i

=
1

2

∑
i∈V

π̄iu
T
i (Rot(2αi) + I2)ui

=
1

2

∑
i∈V

π̄i(1 + cos 2αi)‖ui‖2

≥ 0 (5.25)

The collision avoidance and connectivity preserving properties for the proposed con-

troller can now be proved using the above relation and following an approach similar

to the ones used in the proofs of Lemmas 5.1 and 5.2.

Denote by L+ the positive limit set for a solution [qT (t) αT (t)]T of the closed-

loop system given in (5.24), where q(t) = [qT1 (t) . . . q
T
n (t)]

T and α(t) = [α1(t) . . . αn(t)]
T .

For any [pT βT ]T ∈ L+, there is a sequence {tn} with tn → ∞ such that q(tn) → p

and α(tn) → β. This yields β = 0 because αi(tn) = e−κitnαi(0) → 0 as tn → ∞,

for all i ∈ V . Using (5.25) and an approach similar to the one used in the proof of

Lemma 5.3, it can be shown that for any solution [pT (t) βT (t)]T starting in L+ (and

hence staying in L+) the relation π̇ ≡ 0 holds. This, along with (5.25) and the fact

that βi ≡ 0, implies that for any such solution and all i ∈ V , the relation ui ≡ 0

holds. Using this, it is straightforward to verify that the proofs of Lemmas 5.3 and

5.4, and hence the result on the aggregation of the agents, are still valid for the case

of unicycle agents. This completes the proof. �

5.4 Simulation Results

Example 5.1. To verify the theoretical results obtained for the single-integrator

agents, consider a team of 5 agents with the dynamics of the form (5.1), and let the
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Figure 5.1: The initial and final information flow graphs for both Examples 5.1 and
5.2.
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Figure 5.2: The planar motion of the agents in Example 5.1.

connectivity range be specified by d = 1. The initial information flow graph G(0) is

shown in Fig. 5.1. Assume r = 0.5 and choose m = 3, which satisfies the condition

of Theorem 5.1. Therefore, using a controller of the form (5.4), the agents are

expected to aggregate while preserving connectivity and avoiding collision, in such

a way that the average of the distances among the neighboring agents finally falls

below r = 0.5. The trajectories of the agents are depicted in Fig. 5.2, where the

initial position of agent i is marked by i, for i = 1, 2, . . . , 5.

Denote by dij the relative distance between two agents i and j (i.e. dij = ‖qi−
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Figure 5.3: The relative distances between the agents in Example 5.1 (dij represents
the distance between agents i and j).

0 1000 2000 3000 4000 5000 6000
0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

 t (sec)

av
er

ag
e 

di
st

an
ce

Figure 5.4: The average of the distances between every pair of neighboring agents in
Example 5.1. The dotted line represents the reference distance r = 0.5.
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Figure 5.5: The norms of the control inputs in Example 5.1.

qj‖). A new edge is added to the information flow graph as soon as dij < d. However,

considering the fact that this inequality provides an open set, in the simulation an

edge is added to the information flow graph when dij ≤ d − ε, where ε is chosen

to be 0.1d = 0.1. The relative distance between every pair of neighboring agents is

shown in Fig. 5.3, confirming the connectivity preservation and collision avoidance

properties of the proposed controller. As can be seen from this figure, when two

agents enter the connectivity range, their relative distance stays less than d at all

times thereafter. Also, all relative distances are nonzero, which confirms that no

collision occurs. The average of the distances between every pair of neighboring

agents is depicted in Fig. 5.4, which eventually falls below r = 0.5 as expected. It

is worth mentioning that even though m does not satisfy the sufficient condition

of Proposition 5.1, the final topology of the network under the proposed controller

represented by Gf is a complete graph as can also be inferred from Fig. 5.2. The

boundedness of the control inputs of the agents is also demonstrated in Fig. 5.5.

Example 5.2. To verify the results of Section 5.3, consider 5 unicycles described
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by (5.20), moving in a 2D plane. The connectivity range d and the initial positions

of the agents are chosen to be the same as Example 5.1, resulting in the same initial

information flow graph G(0) shown in Fig. 5.1. Also, assume r = 0.5 and choose

m = 3 and κi = 0.05 for i = 1, 2, . . . , 5. This choice of m clearly satisfies the

condition of Theorem 5.2, and hence a controller of the form (5.21) is expected to

fulfill the three design specifications described in Section 5.1. The trajectories of the

agents are depicted in Fig. 5.6, where the initial position of agent i is marked by i,

for i = 1, 2, . . . , 5. The relative distance between every pair of neighboring agents is

shown in Fig. 5.7, from which the connectivity preservation and collision avoidance

properties of the proposed controller can be easily verified similar to Example 5.1. As

can be seen from this figure, when two agents enter the connectivity range, their rela-

tive distance stays less than d at all times thereafter. Also, all the relative distances

are nonzero, which means that no collision occurs. The average of the distances

between every pair of neighboring agents is depicted in Fig. 5.8, which eventually

falls below r = 0.5 as expected. Headings of the agents and their translational and

angular velocities are also demonstrated in Figs. 5.9-11 respectively.
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Figure 5.6: The planar motion of the agents in Example 5.2.
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Figure 5.7: The relative distances between the agents in Example 5.2.
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Figure 5.8: The average of the distances between every pair of neighboring agents in
Example 5.2. The dotted line represents the reference distance r = 0.5.
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Figure 5.9: The headings of the agents in Example 5.2.
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Figure 5.10: The translational velocities of the agents in Example 5.2.
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Figure 5.11: The angular velocities of the agents in Example 5.2.
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Chapter 6

Conclusions

6.1 Summary

The results developed in this dissertation can be summarized as follows.

Chapter 2 deals with a class of continuous-time nonlinear consensus algorithms

for single-integrator agents. It is assumed that the information flow graph is static

and directed. It is also assumed that the control input of each agent is a state-

dependent combination of the relative positions of its neighbors in the information

flow graph. Sufficient conditions are then derived for the convergence of the agents

to a common point. Under these conditions, it is shown that the convex hull of the

agents has a contracting property. The convergence is subsequently proved using a

LaSalle-like approach as well as the finite intersection property of the convex hull.

The criteria obtained are shown to be more general than the existing results in the

literature.

In Chapter 3, a class of distributed potential functions is proposed which

guarantee the connectivity preservation of the resultant control laws for the single-

integrator agents. The main idea behind the proposed technique is that when two

agents are about to lose connectivity, the gradients of their corresponding potential
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fields lie in the direction of the edge connecting the two agents, aiming to shrink

it. When an agent is at a critical distance from more than one agent, this gradient

vanishes. To handle the problem in this case, the lowest order nonzero derivative

of the agent’s position at any given time (referred to as index of the function)

is used in the analysis. Shrinking of the edge is performed by moving the agent

with lower index towards the agent with higher index. The results are valid for

both static and dynamic information flow graphs, and are also extended to cover

the problems involving static leaders. Unlike many existing connectivity preserving

control strategies proposed in the literature, the potential functions here are designed

in such a way that the corresponding control inputs are bounded, making them

more practical (as far as the actuators are concerned). The proposed controllers are

applied to consensus and containment examples.

Chapter 4 extends the results of Chapter 3 to the case of unicycle agents. If

two agents are initially located in the connectivity range, under the proposed control

strategy they will remain connected at all times. This implies that the connectivity

of an initially connected network is guaranteed. The controller is designed in such

a way that when an agent is about to lose connectivity with a neighbor, the lowest

order derivative of the agents position which is neither zero nor perpendicular to

the corresponding edge makes an acute angle with this edge, aiming to shrink it.

The results are shown to be valid for both cases of static and dynamic information

flow graphs, and also in the presence of static leaders. Designing bounded connec-

tivity preserving controllers for consensus and containment applications using the

proposed method is the novel and unprecedented contribution of this chapter. De-

tailed stability analysis using some important properties of the positive limit sets of

nonlinear systems is carried out for both consensus and containment problems.

A bounded distributed control strategy for aggregation of a swarm of agents for

two cases of single-integrator and unicycle dynamics is presented in Chapter 5. The
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proposed controller is connectivity preserving in the sense that if two agents enter

the connectivity range at some point in time, they will stay in the connectivity

range thereafter. It is shown that under this controller the agents will aggregate

while avoiding collision such that the average distance among the neighboring agents

eventually falls below a pre-specified threshold. The control inputs of the agents stay

bounded at all times, even if two agents are about to collide or lose connectivity.

This is, in fact, one of the important advantages of the work presented in this chapter

over existing results in the literature.

6.2 Suggestions for Future Work

In what follows, some of the possible extensions of the results obtained in this

dissertation as well as some relevant problems for future study are presented.

• In the class of consensus algorithms studied in Chapter 2, communication

and computational delays are not considered. The proof of convergence to

consensus is based on the contracting property of the convex hull of the agents;

a property that does not necessarily hold in the presence of delay. Therefore,

deriving convergence conditions in the presence of delay is a relevant problem.

Also, the results of Chapter 2 are developed for a static information flow graph.

Considering networks with switching topology is another possible extension.

• The results of Chapters 3 and 4 are developed for an undirected information

flow graph. It would be interesting to design a connectivity preserving control

law for the case where the information flow graph is directed. It would also be

of special interest to solve the problem for the case where connectivity is not

distant-based. This is important for example when the sensors of the agents

have limited field of view (e.g., camera-based sensors). Moreover, only static

leaders are considered in this work. Thus, as a possible future extension one
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can develop bounded distributed connectivity preserving control strategies for

the case where the leaders are moving (e.g., with fixed but unknown velocities).

• This work studies the bounded distributed connectivity preserving controller

design only for agents with single-integrator and unicycle dynamics. As a

natural extension of this work, it would be interesting to study the problem

for agents with other types of dynamics (e.g., double-integrator agents).

• Another interesting extension of the problem investigated in this work is the

case where the agents move in a 3D space instead of a flat plane. One can

study the problem of designing a bounded connectivity preserving controller,

and also find sufficient conditions for the convergence to consensus for the class

of controllers studied in Chapter 2.

• Calculating the control inputs for the angular velocities for the unicycle agents

in both Chapters 4 and 5 requires the relative velocities of the neighbors. One

possible future work is to refine the controllers such that only the relative

positions and headings of the neighbors are used in calculating the angular

velocities.

• In the connectivity preserving swarm aggregation strategy developed in Chap-

ter 5, the collision avoidance property only holds for point agents. Developing

a similar scheme for a more general case where each agent has a known shape

would be of more practical interest.
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