
Supervisory Control of Discrete-Event Systems with 
Output: Application to Hybrid Systems 

Pedram Mahdavinezhad 

A Thesis 

in 

The Department 

of 

Electrical and Computer Engineering 

Presented in Partial Fulfillment of the Requirements 

for the Degree of Master of Applied Science at 

Concordia University 

Montreal, Quebec, Canada 

April 2007 

© Pedram Mahdavinezhad, 2007 



1*1 Library and 
Archives Canada 

Published Heritage 
Branch 

395 Wellington Street 
Ottawa ON K1A0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
Ottawa ON K1A0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-40889-6 
Our file Notre reference 
ISBN: 978-0-494-40889-6 

NOTICE: 
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

AVIS: 
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par Plntemet, prefer, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. 
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

Canada 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



ABSTRACT 

Supervisory Control of Discrete-Event Systems with Output: Application 

to Hybrid Systems 

Pedram Mahdavinezhad 

In this thesis, the problem of supervisory control of Discrete-Event Systems (DES) with output 

is presented and discussed at length. In such systems, causal output functions are employed to 

assign each sequence of inputs with a corresponding sequence of outputs. When the specifica­

tion of the desired behavior is given by a formal language over the output alphabet, necessary 

and sufficient conditions are derived for the existence of nonblocking input as well as nonblock-

ing output supervisory controls. An algorithm is presented to extend the results of nonblocking 

input/output supervisory control from language-based framework into finite automata frame­

work, making the proposed results applicable to large scale discrete-event systems. The idea 

of siblings is introduced to solve the problem of nondeterminism in discrete-event abstractions 

of hybrid systems, giving rise to the development of a theory for nonblocking supervisory con­

trol of hybrid systems. Our results enable one to apply classical supervisory control theory to 

design supervisors for DES approximations of hybrid systems, and to import many interesting 

concepts from classical theory such as modular and hierarchical control. 
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Chapter 1 

Introduction 

A discrete-event system (DES) can be considered as a dynamical system whose dynamics de­

pend on any occurrence of physical events. These physical events are considered as transitions 

in the DES framework. The DES paradigm is a research area which has a wide range of ap­

plications in different industries such as information systems, manufacturing systems, traffic 

management, communication protocols, and logistic systems. The study of such systems has 

captured a lot of attention over the past few decades because of fast-increasing advances in 

computer-controlled systems. Such systems which are governed by computer typically own 

some sort of "discrete" dynamics. For example, the process of counting the number of active 

telephone calls, or the number of parts in the buffer, which are simple examples of real applica­

tion of DES, includes some sort of discrete dynamics which should be controlled via appropriate 

control configurations. Broadly stated, different examples of DES applications exist whenever 
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digital computers are employed or any kind of execution of a computer program is involved in 

the dynamics of the system. 

A supervisor is the controlling agent of a DES plant which can observe all the transitions 

or simply any occurrence of events of the DES plant. Whenever an event is observed, the 

supervisor will enable or disable a set of different DES events in order to keep the plant away 

from a set of 'forbidden' states, and also to prevent the occurrence of any undesirable event 

sequences. Generally, the supervisor's duty is to restrict the system behavior such that it satisfies 

some desired specifications such as safety specifications. Examples of desired specifications 

could be avoidance of a set of forbidden states, or observation of different service priorities in a 

manufacturing process. 

Broadly speaking, DES are modeled by finite state machines or generators or finite au­

tomata, where formal languages are employed to describe the dynamics of such systems. In 

addition, a supervisor, which is also modeled by a finite automaton, as an external agent en­

ables or disables certain transitions such that the objective of the system will be satisfied. As 

a common objective of DES, a supervisor should be designed such that the performance of the 

controlled system satisfies the specified 'legal' behavior. 

In this paradigm, a control theoretic framework has been proposed by Peter J. Ramadge 

and W. Murray Wonham [1]. In their modeling, DES are defined by finite state machines, in 

which different sequences of transitions (or strings) can happen. The set of all such strings 

forms a language that contains every possible event sequence that can occur in the DES. When 

a supervisor is to disable a set of different events in the plant, the resulting behavior of the 
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DES will change, resulting in the generation of a new closed-loop language. This closed-loop 

language can describe the dynamics of the controlled system. To ensure that the controlled 

performance of the plant satisfies a specified 'legal' behavior, one can specify the legal behavior 

as a legal language that contains all desirable event sequences. The objective of the supervisor 

is to ensure that every possible sequence of events in the controlled system is a member of 

the legal language. A brief review of the Ramadge-Wonham supervisory control framework is 

presented in the next chapter. 

From a general point of view, constructing abstract models of any complex dynamical sys­

tem is essential in many areas of engineering for analysis and verification purposes. In control 

systems engineering paradigm, a good abstract model is one that is complex enough to contain 

all the important system characteristics, but simple enough to allow application of existing anal­

ysis and design methods. Broadly speaking, traditional control has just considered continuous 

dynamical systems, where both plant and controller are modeled by differential equations. De­

spite the great effect which this approach has had on control design and analysis, it has several 

limitations mainly because of the fact that not all real control systems can be well modeled by 

differential equations. Therefore, traditional control is unable to provide a suitable framework 

for analysis of complex dynamical systems. Networked and embedded control systems are ex­

amples of emerging areas that need a new modeling paradigm. In modern control framework, 

most practical systems include both analogue and discrete components. Complex systems typ­

ically possess a hierarchical structure, characterized by continuous variable dynamics at the 

lowest level and logical decision-making at the highest. 

The interaction between continuous and discrete dynamics in such systems results in the 

3 



complexity of their analysis. Therefore, a large amount of research is dedicated to the modeling 

of combinations of discrete and continuous (hybrid) systems in order to facilitate their veri­

fication and design methods. The main contribution of most of these modeling frameworks is 

to somehow separate the continuous and discrete dynamics of a hybrid system while the hybrid 

nature of the system which includes the mixture of both dynamics is preserved. The major role 

of discrete-event systems theory in the development of hybrid technology is to model the logical 

decision-making process of the hybrid structure, and to supervise the continuous dynamics of 

the system from the highest level of abstraction. The idea of this thesis is to redevelop the main 

contribution of Koutsoukos et al [2] in which they tried to develop a theory for supervisory 

control of hybrid systems based on supervisory control of discrete-event systems. While we 

believe that Koutsoukos's contribution [2] had impressive impact on the development of super­

visory control of hybrid systems framework, there are major issues in their proposed method 

of designing DES supervisors which motivated us to develop a modified framework to fix all 

the shortcomings of Koutsoukos et al [2]. The result is the developed framework of supervisory 

control of DES with outputs and its application to hybrid systems. A summary of this work is 

presented in [3] 

1.1 Thesis Motivations and Contributions 

In this thesis, we follow [2] and approximate the behavior of hybrid systems with DES plants. 

Further, the desired behavior is specified by a formal language over the alphabet of plant sym­

bols, and the objective is to design a discrete-event supervisor such that the controlled system 
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satisfies the specification. 

Although [2] proposes to apply supervisory control of DES to hybrid systems, the theory 

of supervisory control of hybrid systems is not clearly connected to that of supervisory control 

of DES. The most notable problem in [2] is that a specification language therein that forces the 

supervisor to disable all controllable events at its disposal is called uncontrollable. We believe 

the unacceptability of a supervisor implementing such a specification has little to do with its 

controllability—after all, since each event is a command generated by the supervisor, all events 

can be considered to be controllable. In classical supervisory control of DES, a system in which 

all events out of a non-marker state are disabled is said to be blocking. Thus, a unified theory 

for supervisory control of DES and hybrid systems is achievable only if the notion of blocking 

is properly introduced in supervisory control of hybrid systems which is not the case in [2]. 

Motivated by the above observations, in this thesis we address the problem of nonblocking 

supervisory control of hybrid systems, where hybrid systems are approximated by nondetermin-

istic finite automata, proposed in [2]. We first extend classical supervisory control of DES to 

develop a theory for nonblocking supervisory control of DES with output. Then, a theory for 

output supervisory control is introduced and necessary and sufficient conditions for the exis­

tence of nonblocking output supervisors as well as nonblocking input supervisors are presented 

when the desired behavior is specified by a language over output events. 

The other contribution is an algorithm which is proposed to solve the problem of non-

blocking supervisory control of DES with outputs when the desired specification is specified 
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by finite automata. The proposed procedure enables one to simply examine the output consis­

tency property of a language by inspecting its generating automaton, and facilitates the design 

of nonblocking output supervisory control for large scale discrete-event systems. 

Eventually, we adjust the theory to make it applicable to DES models of hybrid systems by 

requiring that a supervisor treat all transitions carrying the same label out of a state consistently; 

that is, either to enable or to disable all. In order to do this, event siblings are introduced to 

convert the nondeterministic DES plant of a hybrid system to a deterministic model such that 

our proposed theory of output nonblocking supervisory control can be applied. 

1.2 Thesis Outline 

The thesis is organized as follows: Chapter 2 presents the fundamental concepts of supervisory 

control of DES. In this chapter, the definitions and results which are used throughout the thesis 

are covered. This chapter also briefly discusses some commands of the software package TTCT 

which can be used in designing DES supervisors. An overview of hybrid systems, different 

methodologies to hybrid systems and their applications are presented in Chapter 3. Chapter 4 

presents supervisory control of hybrid systems introduced in [2], and reviews basic concepts 

of DES with output. After defining input and output supervisory control, in Chapter 4 we 

develop a theory for nonblocking supervisory control of DES with output, and find necessary 

and sufficient conditions for the existence of a supervisor. In Chapter 5 we first present an 

algorithm to determine whether the language generated by an automaton is output-consistent, 
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and then minor adjustments are made to the theory of supervisory control of DES with output 

to make it applicable to nondeterministic DES models of hybrid systems, and an example is 

worked out to illustrate the approach. Finally, we conclude the thesis in Chapter 6 and point out 

directions for future research. 
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Chapter 2 

Overview of Discrete-Event System (DES) 

2.1 Languages 

In order to model a discrete-event system in a formal language framework, first a finite set 

of distinct symbols £, called the alphabet of events, is defined such as E : a,j8, A, S. In this 

paradigm, e denotes an empty sequence, (i.e. a sequence with no symbols), where e is not a 

member of E. If £ represents an alphabet, then L C £* can be considered as a language where 

£* is the set of all finite sequences of symbols in E, including the empty sequence. The usual set 

operations such as union, intersection, difference, and complement are applicable to languages. 

Suppose that ^ = tu, where s , f ,«6l* . Then the two strings t and u are called prefix and 
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suffix of the string s, respectively. The prefix-closure of a language L is denoted by L. The 

prefix-closure of L is the set of prefixes of all strings of L; in other words, 

L = {se-L*\3t£Z*,st€L} 

One can easily verify that L C L always holds. The language L is called prefix-closed or simply 

closed if L = L. Similarly, for two languages L, M C E*, L is called M-closed if L = LCW [4]. 

Two languages Lj and Lq, are nonconflicting [4] if 

LinL2 = I7nZ^ 

The following example is presented to illustrate the above definitions. 

Example 1 Consider E = {a, b, c, d, e} as an alphabet. The sets of finite sequences L\, hi and 

L3 C Z* defined as 

L\ = {adece} 

L2 = {e,a,ad,ade,adec,adece} 

L3 = {adece, e} 

are languages over alphabet E. L2 is the prefix-closure of L\, i.e. Li = L\. In addition, Li 

is closed, since hi = Li- Also, 'a' and 'e', for instance, are a prefix and a suffix of 'adece', 

respectively. L\ is not a closed language since L\ ^L\. However, L\ is L^-closed since L\ = 

L\ nZ/3. L\ andhi are nonconflicting, since L\C\hi= L\ and 

L\ Dhi = {e,a,ad,ade,adec,adece} =L\ (ILj. 
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2.2 Generators 

In Ramadge-Wonham framework [4] a deterministic generator is the fundamental tool to model 

a discrete-event system. A generator (finite state machine) can be represented by a five-tuple: 

G = (Q,I.,5,qo, Qm) 

where Q represents the finite set of states, £ represents the finite set of events, 8 represents the 

partial transition function 8 : Q x E —> Q, Qm C Q is the set of marked states, and qo is the initial 

state. 

2.3 Languages Represented by Generators 

The closed behavior of G, denoted by L(G), represents all possible event sequences taking G 

from the initial state to some reachable states: 

L(G):={s\seI.*,8(qo,s)\} 

Here 8(qo,s)\ means that 8(qo,s) is defined. Also, the marked behavior o/G defined as 

Lm(G) := {s\s E L(G),8(q0,s) 6 Qm} 

represents the set of all possible event sequences taking G from the initial state to some marked 

states. One can easily verify that L(G) is always a closed language (L(G) = L(G)) while Lm(G) 

may not be closed. In general, the following relation always holds: Lm(G) C Lm(G) C L(G) = 

KG)-
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2.4 Non-deterministic Generators 

A generator G is called deterministic if for a given current state and event symbol, the transition 

function 8 uniquely determines the next state, when defined, while it is called non-deterministic 

otherwise, or when there are two or more initial states. Usually, the transition function in a non-

deterministic generator can be defined as: 8 : Q x £ —> Pwr(Q) which illustrates the possibility 

of different states as destinations of a transition from a state q € Q in response to the occurrence 

of an event ( J 6 l . Although one can follow the appropriate procedures(e.g., the ones proposed 

in [4]) to convert the non-deterministic generator into a deterministic one, where 

LDet(G) =LNdet{G) 

and 

^Det,m{G) = ^Ndet,m(G) 

. A non-deterministic model can be preferred to a deterministic one in many cases due to its 

general form and capabilities of modeling complicated systems. 

2.5 Operations on Generators 

This section introduces three different operations on generators which will be used directly or 

indirectly in this thesis. 
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Reachable Generator Consider a generator G = (<2,£, S,qo, Qm). A state q € Q is reachable 

if there exists a n i € l * such that 8(qo,s) = <?. The set of reachable states is denoted by Qr. The 

reachable generator Gr is defined as Gr — (<2r,£, 8r,qo,Qr,m), where 

Qr = {qeQ\3ser.5(q0,S)=q} 

Qr,m = Qmf]Qr 

$r = 5\QrxL-*Qr 

The function 8\QrXz-^Qr denotes the restriction of 8 to the smaller domain of accessible states 

Qr. One can notice that the reachability has no effect on L(G) and Lm(G). Thus, the following 

equalities always hold 

L(G)=L(Gr) 

Lm(G) = Lm(Gr) 

Meet and Synchronous Product In order to be able to construct large scale models of DES 

using individual small components, one can exploit the DES operation of synchronous product. 

The meet of two DES models G\ and G2, represented by meet(G\,G2), includes the 

synchronized occurrence of the common events in the two models. Let 

Gi = (Q2,^2,82,qo2,Qm2) 

Then meet(G\,G2) is the reachable subgenerator of ((Qi x Q2,^-i Ci'Lz, 8, (qol,q^), Qmi x Qm2). 

The transition function of 5 : (<2i x Q2) x £ —• Q\ x Q2 is defined as: for (x\,X2) € Q\ x Q2 
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and a € E, 

(8\{x\,o),&2,{x2,o)) if 8\(x\,o)\ andS2(x2,c)\ 

not defined otherwise. 

Therefore, it can be easily verified that 

S((xi,x2),a) = < 

L(meet(GhG2)) =L(Gi)nL(G2) 

Lm(meet(GhG2)) = Lm{G\)C\Lm(G2) 

On the other hand, the synchronous product of two DES models G\ and G2, denoted by 

sync(G\, G2), is the reachable subgenerator of 

(Gi xQ2,'LiU'L2,8,(qo1,qo2),Qm] * Qm2) 

where 

8 : «2i x 02) x I -> 01 x 02 

is defined as: for (xi,x2) € £h x Q2 and cr € Z, 

5((XI ,X 2 ) ,CT) = •( 

(5i (xi, a), <52(x2, <T)) if 5i(xi, CT)! and 52(x2, a ) ! 

(5I(XI,CT),X2) if 5i(xi,a)! and a e Ei — Hq, 

(xi,52(x2,(7)) if 52(x2,a)! a n d a € E 2 - Z i 

not defined otherwise. 

In general, synchronous product is used to model the joint operation of two generators; in 

other words, it combines the models of individual components to form a large scale model for 

the entire system. The following example illustrates the outlined definitions. 
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Example 2 Consider two generators G\ and G2 shown in Figures 2.1 and 2.2. 

Figure 2.1: G\. 

Figure 2.2: G2. 

The generator meet{G\, Gj) represents the parallel product ofG\ and G% and is shown in 

Figure 2.3. One can notice that only eligible events in both machines can occur in meet(G\, G2). 

Figure 2.3: Meet of G\ and Gj. 

The generator sync(G\,G2) represents the synchronous product ofG\ and G2. It should 

be noted that the occurrence of 'h' is determined by the transition function ofG% only since G\ 

does not include 'h' in its alphabet. This case happens for 'i' too, since its occurrence is just 

determined by G\. 
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Figure 2.4: sync of G\ and G2. 

2.6 Non-blocking and Safety Properties 

A system is called blocking if there is a deadlock or livelock in the system, defined below. Dead­

lock happens whenever the system can reach an unmarked state from which there is no transi­

tion going out. Livelock happens whenever the system can reach a set of strongly connected 

unmarked states with no transition going out. Therefore, a deterministic DES is called non-

blocking if there is not any deadlock or livelock, i.e. mathematically speaking: Lm(G) = L(G). 

In other words, G is nonblocking if from every state reachable from the initial state of G there 

is a path to a marked state. 

Example 3 Consider the generator G = (Q,L,5,qQ,Qm) which is shown in Figure 2.5. The 

marked state {6} can be identified by the outgoing arrow. The initial state is numbered 0. The 

corresponding alphabet for this generator is Z = {a, b, c, d, e, / } . 

G blocks since there is a deadlock in state {8}. The marked behavior of the generator 

can be represented by Lm{G) = [afdece] whose only string leads the generator to the marked 

state {6}. 
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^H^&H^-^-Gr^Qx 
0 

/ 

Figure 2.5: G. 

An important property of discrete-event systems is called safety property. A system is 

safe if all strings in the closed behavior of the system belong to a legal or admissible language. 

In other words, whatever happens in the system should be a part of some desirable behavior if 

the system is to satisfy a safety property. 

In the DES framework, if Lspec represents the specification of some desired behavior, 

one can investigate the safety property of the system just by checking the subset inclusion 

L{G) C LSpec, or equivalent^ L(G) ni$™p = 0. 

2.7 Supervisory Control of Discrete-Event Systems 

Usually in DES framework it is desired that the system behavior satisfies a given specification 

defined either in the form of a formal language or a finite state machine. Performance specifica­

tions can be viewed as requiring that certain undesirable sequences of events are not permitted 

to occur, while at the same time certain other sequences are allowed to happen. Therefore, if 
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the system behavior does not satisfy the desired specification, in order to modify the system's 

behavior, some kind of control seems to be essential. This can be carried out by restricting the 

system behavior to a subset of L(G) or Lm(G) that satisfies the desired specification. Assume 

that the plant is modeled by a generator G = (Q,Z,S,qo,Qm). Two types of input events are 

identified. First the set of controllable events, denoted by Ec, which consists of events that can 

be prevented from happening by a supervisor or an external agent. Second, the set of uncon­

trollable events, denoted by Zuc, consists of events which cannot be disabled by any means of 

control. Examples of uncontrollable events are changes in sensor reading or clock ticks. The 

set of controllable and uncontrollable events are disjoint, i.e., the relation Zc n EMC = 0 always 

holds. 

Suppose the desired behavior of the DES is represented in the form of a finite state ma­

chine Spec. Then LB — Lm(G) DLm(Spec) is called the legal behavior and is a subset of the 

DES language that satisfies the specification, that is LB C Lm(Spec). 

Supervisor is an agent which can enable or disable the controllable events such that it 

prevents G from generating undesirable sequences of events. The supervisor can be represented 

by a map 

V:L(G)—>r:={7€2E:IMCCr} 

where at string s E L(G) the event o~ e Z is enabled iff a € V(s). 

It can be inferred from the above definition that the supervisor is not allowed to disable 
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an uncontrollable event; therefore, the set of enabled events should always include the set of 

uncontrollable events. For our purpose in this thesis, we consider that a supervisor can be 

modeled as a finite state machine 

S = (X,-L,7i,x0,Xm) 

where X, XQ, Xm C X, and 77 : X x £ —• X are the set of states, initial state, set of marked states, 

and transition function, respectively. An event O" € Zc is enabled at state x G X if 77 (x, a) is 

defined. 

System Under Supervision V/G In the Ramadge-Wonham framework [4], there is an inter­

action between the supervisor and the DES generator, which indicates that they are coupled, 

and form a closed-loop system. In this paradigm V(s) represents the set of events permitted by 

the supervisor to happen after s € L(G), and T : Q —* 2Z is the active event function defined as 

a e T(q) <£> 8(q, a)!. Thus, for each s e L{G) generated by G, V(s) f|Y(5($0,s)) is the set of 

enabled events that G can execute at its current state q = 8(qo,s). The supervisor cannot disable 

uncontrollable events, particularly those that are active at 8(qo,s); therefore, we must have 

(I.ucf]T(8(q0,s))QV(S), 

in this case, the supervisor is said to be "admissible". 

When the supervisor is represented by a finite state machine S, the system under super­

vision is denoted by S/G. The closed behavior of S/G, denoted by L(S/G) = L(G) f)L{S), 

contains the sequences of uncontrolled events that survive under the supervision of S. In ad­

dition, Lm(S/G) := Lm(G) DL(S/G) represents the marked behavior of S/G and includes the 
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sequences of events marked by the uncontrolled process that can be generated by the system 

under supervision. It should be noted that if all states of the supervisor are marked, i.e. X = Xm, 

then 

Lm{S/G) = Lm(G)nL{S/G) = Lm{G) n L{G) n L{S) = Lm{G)f\Lm{S) 

thus S/G can be represented as meet(S, G). 

Thus, the supervisor's duty is to observe the events generated by the plant, and to disable 

or enable the controllable events in G such that the system under supervision is nonblocking, 

i.e. Lm(S/G) = L(S/G), and also satisfies the desired specification Lm(S/G) C Lm(Spec). 

The supervisor S is said to be nonblocking if the closed-loop system S/G is nonblocking, 

or equivalently, 

Lm{S/G) = Lm(G)DL(S/G) = L{S/G). 

Definition 1 ([4]) A language K C Z* is controllable with respect to G if'KLucr\L{G) C Z. 

A supervisor S is admissible if and only if L(S/G) is controllable. When a language K is 

not controllable, it is not possible to design a nonblocking supervisor such that the system under 

supervision satisfies the specification; therefore, one seeks the largest element of the class of 

controllable sublanguages of K, denoted by 

%n(K) = {MCK\ MLm f\L(G) C M}. 

The largest element of %n{K) is denoted by m\>%n(K). Then, designing a nonblocking super­

visor for sx\\>%n(K) such that the modified specification is satisfied would be feasible. 
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Theorem 1 ([5]) Given a generator G, K ^ 0 and K C Lm(G), there exists a non-blocking 

supervisor Sfor G such that Lm(S/G) = K if and only if 

• K is controllable with respect to G and £MC, 

• K is Lm{G)-closed. 

Example 4 Consider the DES plant G and specification Spec defined over Z = {a, b, c, e, / } . 

The set of controllable events is Zc = {b,c}. 

-G^GHOMi e 
4 

3 

4 

Figure 2.6: Plant G. 

a,b,c 

Figure 2.7: Spec in the form of a finite automaton. 

In order to find the appropriate supervisor one should use the outlined Theorem 1. The 

optimal supervisor which makes the system under supervision satisfy the desired specification 

is displayed in Figure 2.8. 
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a a a a 

Figure 2.8: Nonblocking supervisor S. 

Thus, the plant under supervision is nonblocking and satisfies the desired specification. 

The closed-loop system S/G is shown in Figure 2.9. 

Figure 2.9: System under supervision S/G. 

2.8 TTCT 

TTCT software is used for verification and synthesis of supervisory control of discrete-event 

systems. A brief review of some useful commands and procedures which are used in some 

computations in this thesis is provided in the following. 

Meet: Parallel product of two DES generators is calculated by meet command. This com­

mand produces G3 with event set Z3 = Zi n l ^ : 

G3 = meet(Gi,G2) 
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Sync: In TTCT software, one can compute the synchronous product of two DES models by 

sync command. The generator G3 is the synchronous product of two DES models G\ and G2 

with event set £3 = £1 UZ2: 

G3 = sync(Gi,G2) 

Condat: In order to check the admissibility of a designed supervisor, one can use the com­

mand condat in TTCT. This command provides a list of all plant events disabled at each super­

visor state. Therefore, if this list does not include any uncontrollable events, the supervisor is 

admissible. 

Nonconflicting: The nonconflicting property of two DES models can be verified using the 

nonconflict command in TTCT. 

nonconflict(Gi, G2) = truel (2.4) 

The response "true" indicates that 

Lm(G1)nLm(G2)=L(Gi)nL(G2) 

meaning that there is no blocking in any reachable state of the product automaton meet(Gi, G2). 

Therefore, using nonconflict(Gi, G2) command, one can investigate whether Lm(G\) andLm(G2) 

are nonconflicting. 
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Chapter 3 

Overview of Hybrid Systems 

3.1 Introduction 

In Broad terms, almost all control systems today have computer control structure and issue log­

ical as well as continuous control commands. We refer to these as hybrid systems. Generally, 

the term hybrid refers to a mixture of two fundamentally different types of objects or methods. 

Hybrid control systems form a class of systems that are richer than ordinary control systems 

from the modeling, analysis, and verification points of view. In every system which includes 

continuous and discrete dynamics, the continuous dynamics are affected not only by the con­

tinuous control, but also by the discrete mode. Similarly, the discrete dynamics are affected 

by both discrete control actions and, indirectly, by the continuous dynamics. Thus, a strong 
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interaction between analogue and logical dynamics exists. In addition to control inputs in the 

original system, disturbances can be considered as a mixture of discrete and continuous sig­

nals which add to the complexity of modeling of the original system. Therefore, hybrid control 

systems can be more complicated in comparison with purely discrete or continuous systems. 

A common example of supervisory hybrid systems is found whenever a computer is used 

to supervise the behavior of a continuous-valued process. The continuous process may be a 

closed loop control system whose mathematical representation has the form of an ordinary 

differential equation. The computer program may be seen as a supervisor which controls the 

control loop by selecting various reference inputs. One can notice that the state of the program 

can evolve over a discrete set and the dynamics of the discrete-event process can be modeled 

using language theoretic framework. Therefore one can observe that a computer supervised 

system is a hybrid system since continuous and discrete dynamics interact. 

In traditional approaches to the analysis of hybrid systems, their hybrid nature is often 

neglected, and the system is considered either as purely discrete dynamics or as purely contin­

uous ones. The current hybrid framework, a combination of differential equations and finite 

automata, study continuous and discrete behavior simultaneously. There are numerous reasons 

to use hybrid control framework for analysis, verification, and design of different control sys­

tems. The primary motivation is the interaction between the continuous and discrete parts of a 

system, like the discrete planning of continuous processes. The other reason for using hybrid 

modeling is the fast increasing need for hierarchical organization of control in many complex 

applications, such as manufacturing processes or air traffic management systems. 
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Many complex engineering systems can be modeled using hybrid control framework. 

This kind of modeling can even be applied to systems with multiple time scales, where fast 

dynamics can be considered as discrete changes which has effect on slower dynamics; thus, 

a system with multiple time scales can be considered a hybrid system in which well-known 

methods of design and analysis can be employed for synthesis and verification purposes. For 

example, in a manufacturing process, one can model the processing of individual machines by 

their service times. Therefore, the composed discrete-event system for the whole production 

line can be represented by a Petri net and analyzed using queuing theory. In this paradigm, the 

control performance of each machine is modeled using continuous dynamics. The continuous 

feedback control depends on the service time specifications. If they are satisfied, the higher-

level discrete-event system is a suitable model for the overall dynamics of the manufacturing 

system. The separation of asynchronous and synchronous controls will, in many cases, lead to 

a very conservative design. In the manufacturing example, this could result in large buffer sizes 

and inefficient use of machines. On the other hand, if all the dynamics and the interactions in the 

manufacturing process are captured within the hybrid model, it is possible to simply optimize 

the overall behavior and achieve a high-performance design. Tools in hybrid control systems 

address this type of problems. 

There has been a large amount of research regarding the modeling of complex control 

systems encompassing continuous as well as discrete dynamics. The general motivation is to 

develop an equational framework which can be used to model all possible system behaviors 

such as chattering, switching, and autonomous jumping. In this paradigm, one challenge is to 

consider the switching nature of discrete-event processes present in such systems as well as their 

continuous behavior. From the modeling point of view, equational representations familiar to 
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most system scientists cannot provide a framework which captures both continuous and discrete 

dynamics of such systems at the same time. In other words, developing a modeling paradigm 

which provides greater perspective toward the discrete-event dynamics of hybrid systems seems 

to be necessary in order to advance the hybrid control framework. 

In general, the study of hybrid control systems is useful in designing intelligent control 

systems with a high degree of autonomy. Problems related to hybrid control systems (such as 

design of switching controllers for continuous processes) have been studied for many years. 

However, from different points of view, analysis of hybrid systems per se has evolved into a 

new research discipline over the years due to advances in the field of discrete-event systems and 

the availability of softwares for modeling and simulation of complex systems with mixed con­

tinuous and discrete dynamics. This has captured the attention of many researchers in control 

engineering and computer science. 

One of the primary motivations for the interest in hybrid systems is rapid advances in 

computer and networking technology which have accelerated the development of large scale 

supervisory systems. Examples of such large scale systems include traffic control systems, 

communication networks, and power distribution systems. For example, in the case of traffic 

control systems, the hybrid nature of the overall system can be verified by considering the fact 

that the supervision process, which can be thought of as a discrete process, is combined with 

dynamics of vehicles which are continuous processes. 

Current methods for the design, modeling, and verification of hybrid systems depend 

heavily on simulation testing which is a costly and time-consuming process. Moreover, this 
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procedure of analysis cannot provide provable guarantees for safe operation of the system. The 

hope is that hybrid systems theory will provide a systematic framework for system engineers 

which reduces the cost of large scale system design while also improving the system reliability. 

3.2 Review of Works in Hybrid Systems 

Considerable research has been dedicated to modeling, analysis and synthesis of hybrid systems 

based on different mathematical paradigms which can be characterized along several directions. 

In broad terms, approaches differ with respect to the emphasis on, or the complexity of, the 

continuous and discrete dynamics; see for example [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. From 

a continuous-time perspective, there are several equational models which deal with traditional 

control problems related to hybrid systems such as stability and optimal control [16, 1, 17]. 

On the other hand, from a discrete-event perspective, there are different methodologies for 

describing real-time embedded systems [18, 19, 20, 21, 6, 22]. For example, Antsaklis et 

al. [13, 2, 23, 24, 12] used a discrete-event dynamical systems approach to model systems 

composed of interaction between Ordinary Differential Equations (ODEs) and finite automata. 

Nerode and Kohn [25] used an automata theoretic approach to model complex hybrid dynam­

ical systems while taking timing considerations into account. Alur et al. [18, 19, 26, 10] used 

hybrid automata, an extension of timed automata [27], to find appropriate models for hybrid 

dynamical systems. Several researchers [28, 24] have used Petri nets to model the discrete as­

pects of hybrid systems. Several attempts have been made to apply supervisory control ideas to 

hybrid control systems, such as Stiver approach [12, 29, 30], Franke approach [31], and Raisch 
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approach [32, 33]. In Koutsoukos et al. [2] continuous state space is partitioned by hypersur-

faces in order to represent the approximated continuous plant by a DES abstract model via a 

nondeterministic finite automaton. In addition, a plant symbol may be generated each time the 

continuous system trajectory crosses a hypersurface. 

From a discrete point of view toward hybrid systems, there has been two major research 

directions. On one side, primary use of formal graph theoretic models for computer processes 

led to the development of a framework with very high potential for practical purposes by the 

computer science community. Finite state machines and Petri nets represent two well known 

examples of such models. While powerful computational tools are developed for the simulations 

of such formal models, it can be noticed that in dealing with real-time applications, an extension 

of these traditional methodologies seems to be essential. This need has led to an attempt to 

apply traditional and highly successful model checking frameworks for finite state machines to 

real-time systems. The result is timed and hybrid automaton [14]. 

On the other side, a hybrid system model dealing with discrete and continuous dynam­

ics, proposed by the control community, can be found in [2]. In this case, the hybrid system 

is viewed as a logical discrete-event supervisor connected to a continuous subsystem. This 

work suggested a logical discrete-event system approach to hybrid controller synthesis which 

is similar to traditional approaches to sampled-data control. The approach suggested to extract 

an equivalent discrete-event model of the continuous subsystem which can then be supervised 

using extensions of the Ramadge-Wonham supervisory control theory [34]. 

The hybrid systems studied in this thesis are based on the outlined modeling that hybrid 
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systems consist of mixture of continuous-time and discrete-event dynamics, which typically 

possess a hierarchical structure, characterized by continuous dynamics at the lowest level of ab­

straction and discrete supervisor at the highest level of abstraction. The discrete and continuous 

systems are connected through an interface that transforms continuous-valued measurements 

into discrete event signals and vice versa. The interface dynamic is somehow similar to A/D 

and D/A in sampled-data systems paradigm. Generally, the continuous process is described by 

a set of nonlinear differential equations while logical decision-making part is a DES supervisor 

modeled by a finite automaton. Hybrid systems also arise naturally whenever logical decision­

making is mixed with the generation of continuous control laws. 

3.3 Applications 

There are numerous applications for hybrid control systems ranging from embedded real-time 

systems to large-scale manufacturing facilities, from aerospace control to traffic control man­

agement, from chemical process control to communication networks and finally from engine 

control to robotics. Hybrid system methodologies are also applicable to any kind of switched 

systems where the system switches between various set points or operational modes in order 

to extend its effective operating range. Such applications are found in aerospace and power 

systems. 

It is important to capture the hybrid behavior of a control system when the continuous 
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and the discrete components of the system interact such that their behavior influences the over­

all system performance. This is the case in many applications, particularly when performance 

measures should be improved under safety constraints. The hybrid nature of some of the out­

lined complex applications are illustrated below: 

• Communication networks: In order to reduce the model complexity, large data flows are 

modeled using continuous variables, while traffic control mechanisms such as routing are 

considered as discrete dynamics. 

• Embedded control: A micro-computer embedded in a physical device has discrete be­

havior because of its finite-precision computations and the process of quantization of the 

signals, but it interacts with a continuous-time environment through actuators and sensors. 

• Robotics: A manipulator is accurately governed by continuous dynamics, but impacts 

and load shifting causes discrete and asynchronous changes. 
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Chapter 4 

Supervisory Control of DES and Hybrid 

Systems 

This chapter tries to make a bridge between concepts of supervisory control of DES and hybrid 

systems so that supervisory control framework can be used to design discrete-event supervisors 

for hybrid systems. In this chapter, we first present an extensive overview of supervisory control 

of hybrid systems, proposed by [2], where continuous dynamics of a system can be modeled as 

a discrete-event system using the proposed procedure of extraction of DES plant model. Sec­

ond, we present the details of discrete-event systems with output, followed by presenting the 

main results of supervisory control of DES with output. Necessary and sufficient conditions for 

the existence of nonblocking input supervisory control as well as nonblocking output supervi­

sory control are described at length. Applicability of the results is illustrated through several 
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examples. 

4.1 Supervisory Control of Hybrid Systems 

In supervisory control of hybrid systems, proposed by [2], the control loop consists of three 

components: continuous process, discrete-event controller and interface. The dynamics of the 

continuous process (plant), which could include continuous controllers, is governed by differ­

ential equations. The controller (supervisor) is an event-driven, asynchronous discrete-event 

system modeled by a finite automaton. The interface enables continuous plant and discrete-

event controller to communicate with each other, connecting them via a feedback loop. This 

control architecture is shown in Figure 4.1. 

In general, this modeling framework is useful in control analysis of hybrid systems in 

which separation of continuous and discrete parts is feasible. However, for certain hybrid sys­

tems in which the dynamics of continuous and discrete parts cannot be separated, this represen­

tation can still be used as a mathematical tool to study the system's behavior and to identify its 

properties rather than to implement control strategies for the system. 
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Figure 4.1: Hybrid control system. 

In hybrid systems, the plant is considered as a nonlinear, time-invariant system repre­

sented by the differential equation 

i(0 = /(x(0,r(0) 

where x(t) e l c M " and r(t) € R C Rw are the state and input vectors, respectively, and 

/ : X x R -> R" is a controlled vector field. It is assumed that the function /(-,r(f)) : X -»• R" 

is continuous in X and all conditions for existence and uniqueness of its solutions are satisfied. 

This representation is general and can describe a large class of continuous systems. The super­

visor is a finite automaton which can be represented by a five tuple S — (S,X,R, 8,0), where S 

is the set of states, X is the set of plant symbols, R is the set of controller symbols, 8 :SxX —*S 

is the transition function which determines the next state of the controller based on its current 

state and plant symbol received from the interface, and (f>: S —> R is the output function which 

assigns a controller command to each state of the controller. 
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Since the plant and the controller utilize different types of signals, they do not have the 

ability to communicate with each other directly. Therefore, an interface is essential to convert 

continuous-time signals to sequences of symbols and vice versa. The interface consists of two 

subsystems, the actuator and the generator. Generator and actuator play roles somewhat similar 

to, but more general than, A/D and D/A in digital control systems. The actuator feeds the 

appropriate control signals to the plant by converting the sequence of controller symbols to 

continuous-time staircase signals. The generator, on the other hand, converts the continuous-

time output of the plant to the symbolic sequence of inputs for the controller. In this paradigm, 

generator's function includes two procedures: first, a triggering process which will determine 

when a plant symbol must be generated, and second, a selection process in which it will be 

determined which particular plant symbol is to be generated. 

The outlined triggering mechanism is based on the idea of plant events in the system. In 

the hybrid control framework, a plant event is generated when a hypersurface is crossed in a pre­

defined direction. Hypersurfaces are used to partition the plant's state space into disjoint sets. 

Crossing these hypersurfaces by the state trajectory results in the occurrence of plant events. 

The fact behind this idea is that an event can be considered as the realization of a specified 

condition. In case of hybrid systems, this condition is assumed to be an open region of the state 

space, separated from the remainder of the state space by a group of hypersurfaces. Now, if the 

state trajectory crosses one of these hypersurfaces and enters into a new open region, then the 

relevant plant event will be generated by the system. 

Mathematically, a set of smooth functionals {hi: R" —> R, i e /} are defined on the state 
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space of the plant. It is required that 

VA(S) + 0,V£ e ^(A,-) = U e R" : MS) = 0} 

in which case the null space of the functional will form a hypersurface that separates the state 

space. Considering the outlined definitions, a sufficient condition for the generation of a plant 

event is: 

hi(x(t)) = 0, d/dt(hi(x(t))) ^ 0. 

From the discrete supervisor's point of view, the behavior of plant and interface combined 

can be modeled by a discrete-event system. As shown in Figure 4.1, this combination generates 

the sequence of discrete outputs by the generator and accepts the sequence of discrete inputs 

from the controller. The discrete-event system which represents continuous plant together with 

generator and actuator can be modeled by a nondeterministic finite automaton called the DES 

plant model. The DES plant is represented by a five-tuple (P,X,R, y,X) where P is the discrete 

set of states, X represents the set of plant symbols and R is the set of control commands. For a 

given pair of control command and DES plant state, the state transition function y.PxR—>2p 

determines the set of possible next DES plant states. Moreover, the current and next states are 

mapped to a set of plant symbols via the output function X : P x P —> 2X. Note that the output 

function can be equivalently written as a function t i ) :PxS-»2 x : ( | l , f ) i -> Up'ey(p,?) ̂  (P-> P')-

Every state of the DES plant is associated with an open region in the state space of the plant, 

which is bounded by a number of hypersurfaces. Assume that the DES plant is in state p, the 

discrete controller is in state s, and the input symbol f=(j)(s) is supplied by the controller. Then 

as the continuous state variable crosses a hypersurface, the system enters a new open region, 

or equivalently, a new state p' € y(p,r) of the DES plant. A plant symbol x G X(p,p') will 
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be generated if the hypersurface is crossed in the prespecified direction. In this case the new 

plant symbol x is observed by the discrete controller, which will cause it to move to a new state 

s' — S(s,x). A new control command ? = 0(j') is then issued by the controller which is fed 

back to the plant via the actuator, and the whole process repeats. 

4.2 Extraction of DES Plant Model 

In order to put it in a mathematical framework, an equivalence relation =p is denned on the set 

{£€R» :&,-(£) ^ 0 , i 6 7} as: 

§i=p&ifffc/(5i)A,-(&)>0,Vie/ 

Each equivalence class of =/> corresponds to a unique state of the DES plant. Binary 

vectors are used to index the set of states P. For a binary vector b, the state pt, & P is associated 

with the open region {£, E R" : b[ = 1 44> hj(^) < 0}. The DES plant model changes state when 

a hypersurface is crossed by the state trajectory. 

Thus, the set of DES plant states P is defined as: 

P={^eRn:hi^)^0,iel}/=p 

pb^{^eRn:bi = 0^/.,•(§) > 0,bt = 1 =• hi(l;) < 0} 
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As an example, p\oo\ is a DES plant state associated with the open region satisfying the follow­

ing inequalities: 

hi(x)<0 

h2(x) > 0 

h3(x)>0 

fn(x) < 0 

Definition 2 ([2]) Two DES plant states, pa and pb, are adjacent at (i € /, % € jV{hi)) if for 

all j El 

J'(hj) = JS(hi)^ai^bi 

jr{hj)^jr{hi)^ai = bi 

where a and b are the binary vectors associated with pa and pb, respectively, while px is the 

closure of px. 

Proposition 1 ([2]) Given a hybrid control system, with f and hi continuously differentiable, 

then pa € w(pb,h) if and only if there exist i G / and % € ^Y{hi) such that the following 

pa and pb are adjacent at (i, t;) 

conditions are satisfied: bt = 0 => Vxhi(%).f(%,y(rk)) < 0 

bi = i=>vMZ)-M,rm>o 

The procedure of extraction of DES plant model with respect to definitions of hyper-

surfaces, adjacent plant states and the outlined proposition can be illustrated via the following 
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example. 

Example 5 Consider a thermostat/furnace system in which thermostat is set at 70 degrees 

Fahrenheit. The dynamics of the system can be described as follows: if the temperature is 

below 70, then the furnace will be turned ON until the room temperature reaches 75 degrees. 

At this temperature, the furnace will be turned OFF automatically. The model for the thermo­

stat/furnace hybrid control system can be represented by: 

x = 0.0042(r0-x) + .lr 

where r stands for the voltage across the furnace circuit which can be 12 when the furnace is 

ON and 0 when the furnace is OFF; x stands for the room temperature; and TQ stands for the 

outside temperature which is assumed to be 60 degrees Fahrenheit. Note that this model is a 

simplified representation of a real hybrid control system. 

This hybrid control system consists of two functionals: 

h\ (x) = x — 75 

/t2(x) = 10 —x 

which partitions the state space into three open regions: (—°°,70), (70,75) and (75,°°). When­

ever the room temperature exceeds 75 degrees, h\ ix) > 0, thus the hypersurface is crossed and 

the corresponding plant symbol x\ will be generated; on the other hand, when the temperature 

falls below 70 degrees, then /?2 (x) > 0, indicating that the hypersurface is crossed by the state 

trajectory in the specified direction, thus the corresponding plant symbol X2 is generated. 
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T0 = 60 

h\ (x) — x — 75 

h2(x) = 7 0 — x 

5(n) = o 

5(r2) = 12 

pn and p\o are adjacent 

i = 2,h2{x) = 7 0 - x =* N(A2) = 70 = £ 

/ ( £ , r2) = 0.0042(T0 - x) + 0.1 r > 0 

fe2 = 0=>—1*/<0=£- conditions hold 

pioe v(/>n.n) 

pn and pio are adjacent 

i = 2,h2(x) = 7 0 - x => N(/z2) = 70 = B, 

/ ( ^ ,n )=0 .0042(7b-x ) + 0 .1 r<0 

Z?2 = l = ^ — 1 * / > 0 => conditions hold 
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P0\ e W(Pu,r2) 

pu and PQ\ are adjacent 

i = l,hi(x) = x-75 ^N(hi) = 15 = £, 

/ ( ^ r 2 ) = 0 . 0 0 4 2 ( r 0 - x ) + 0 .1 r>0 

b\ = 1 =$> —1 * / > 0 =4> conditions hold 

pu e w(poi,n) 

pi i and po\ are adjacent 

i=l,hi(x)=x-75=>N(hi) = 75 = £ 

/ (§ , r i )=0.0042(r 0 - jc) + 0 .1 r<0 

b\ = 0=>—1*/<0=> conditions hold 

The DESplant model corresponding to the hybrid control system is shown in Figure 4.2. 

Qn/e — On/hot 

Pio j [ Pu ) I poi 

Off/Cold Off/E 

Figure 4.2: DES plant model for the thermostat/furnace system. 

It should be noted that the DES plant is an overapproximation of the continuous system: 

a behavior is accepted by the continuous system only if it is accepted by the DES plant. Given 

a region p and a discrete input r, the image y(p, f) should include all regions the continuous 

state might enter from some initial state xo € p and by applying some input r(-) supplied by the 

actuator. Thus, the DES plant is in general nondeterministic. Several researchers have studied 

the problem of supervisory control of non-deterministic DES [35, 36]; the theory developed in 
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this work can be used to control such systems when the specification is defined on the language 

of output events. 

In this thesis we assume that the extraction of the DES plant model for a hybrid control 

system is complete, and an input/output automaton representing the DES plant is available for 

the problem of supervisory control. 

4.3 DES with Output 

When a DES plant is deterministic it can be modeled by a Mealy automaton, which is a finite 

automaton in which each transition is labeled with a pair of input and output events. When a 

transition from q to q' is labeled i/o, the input symbol i received at state q makes the automa­

ton move to state q1 while the output symbol o is generated. The sequences of outputs will 

be controlled via controlling the corresponding sequences of inputs. Given the alphabets of 

input and output events E,- and E0, respectively, the behavior of a Mealy automaton G can be 

represented by a triple (Lm(G),L(G),9), where Lm(G) C L(G) C £*, L(G) is prefix-closed and 

9 : L(G) —> E„ is an output map modeling the interaction between sequences of outputs and 

inputs of the system. The output map 9 is recursively denned as follows: for all s € L(G) and 

aeZ,-

0(e) = e; 9{sa) = { J « T "• f o r someTeEo • 

The output map 9 is prefix-preserving, that is, if s < s then 6(s) < 9(s). In fact, 9 is a 
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causal map that assigns a sequence of outputs to every sequence of inputs, based on the DES 

behavior. 

The problem of supervisory control of hybrid systems, which is a special class of supervi­

sory control of DES with output, is to control the system by enabling or disabling an appropriate 

set of controllable input events based on the observation of its output sequences, such that the 

output of the supervised system satisfies a desired specification on outputs. 

4.4 Supervisory Control of Discrete-Event Systems with Out­

put 

In supervisory control problem, the controller's objective is to restrict the operation of the un­

controlled system in such a way that some undesirable behavior is excluded from the plant's 

closed-loop behavior. For discrete-event systems, when the desirable behavior is specified by a 

formal language over the alphabet of input events, classical Supervisory Control Theory (SCT) 

of DES [34, 5, 4] can be employed to design a supervisor so that the behavior of the supervised 

system satisfies the specification. 

When a DES generates outputs, which can be modeled by a Mealy automaton, the desired 

behavior of the system may be specified by a language over the alphabet of output events. Then 

the objective of supervisory control is to restrict the behavior of the plant by appropriately 

disabling a subset of controllable input events in such a way that sequences of output events 
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generated by the supervised system satisfy the output specification. As usual, denote the disjoint 

sets of controllable and uncontrollable input events by Z!C and Z,?M, respectively, where Z, = 

£j,c U£;,«. Controllable input events can be disabled by a supervisor. As a result, an output event 

can be prevented from occurring if the input event that leads to its generation is controllable 

and can therefore be disabled. We call a supervisor an input supervisor if it decides which 

controllable input events to disable by observing sequences of input events. Similarly, we call 

a supervisor an output supervisor if it decides which controllable input events to disable by 

observing sequences of output events. 

Non-blocking input supervisory control 

Suppose the plant is given by a triple G = (Lm(G),L(G),9), where Lm(G) and L(G) 

are the marked and closed languages of G, respectively. The languages Lm(G) and L(G) are 

defined over Z,- with the property that Lm(G) C L(G) and L(G) = Lm{G). The output function 

Q : L(G) —> E* is a causal map which represents the internal relation between output and input 

sequences in the discrete-event system. As shown in the previous section, G can be modeled by 

a Mealy automaton. Denote the set of control patterns with T, where: 

r = { y c z , | y 3 E i , „ } 

A control pattern contains all uncontrollable input events, indicating that a supervisor does not 

have the ability to disable uncontrollable input events. 

An input supervisory control map for DES G is any map V{: L(G) —> T. The pair (G, V̂ ) 
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will be written as V}/G to suggest 'G under the supervision of V{\ An input supervisor has ac­

cess to all system inputs while at the same time it can observe the corresponding sequences 

of outputs through the system's output map. The system under supervision is denoted by 

(Lm(Vi/G),L(Vi/G),d\L(y./G)). The language generated by the closed-loop system (VJ/G) is 

defined recursively as follows: 

1. eeL(Vi/G) 

2. \fseL*,<J€I,-.saeL(v{/G)&soeL{G)AJGV}(J). 

The language Lm(Vt/G) is the collection of plant marked strings that survive the supervision of 

Lm(Vi/G)=Lm(G)nL(Vi/G). 

Finally, 0\L(y./G) denotes the restriction of 0 to L(Vj/G). We call an input supervisory control 

map nonblocking if Lm(Vi/G) = L(Vj/G). In input supervisory control, the decision-making 

process by a supervisor is based on observing the entire sequences of inputs generated by the 

system, and comparing the corresponding output sequences with the desired output specifica­

tion. In fact, the supervisor enables an input event if its corresponding output does not violate 

the output specification language. 

The input supervisory control problem is formulated as follows: given a specification K C 

9(Lm(G)) on the outputs of the system, design a supervisor V}: L{G) —•> T such that the system 

under supervision implements the specification on outputs, in other words, 6(Lm(Vi/G) = K. 

44 



Non-blocking output supervisory control 

In output supervisory control, a supervisor does not have access to input sequences gen­

erated by the system; rather, it can only observe sequences of the system outputs. Compared to 

an input supervisor, an output supervisor has to be more conservative because the decision as 

to whether to enable or disable an input event can only be based on the observation of output 

sequences: an output supervisor has to make the same control decision after observing all input 

sequences that generate the same output sequence. As a result, the class of specifications that 

can be satisfied by output supervisory control is more restricted. 

Formally, an output supervisory control map for a DES G is any map V0 : 9{L(G)) —> T. 

The supervised system, denoted by V0/G, is defined as before. In particular, for 5 € L(V0/G) 

we have s<r e L(V0/G) if and only if sc € L(G) and a E V0(9(s)). The output supervisory 

control problem is formulated as follows: given a specification K C 9(Lm(G)) on the outputs 

of the system, design a supervisor V0 : 9(L(G)) —* T such that the system under supervision 

implements the specification on outputs; in other words, 9(Lm(V0/G) = K. 

It should be noted that an output supervisor is 'memoryless', in the sense that it does not 

have any recollection of the history of events enabled by the supervisor in the past. In closing, 

we would like to point out that the notions of input and output supervisory control of DES are 

somewhat similar to the notions of state- and output-feedback control in classical control theory, 

respectively. In input supervisory control and its classical counterpart state-feedback control, 

the designer has access to the system's internal behavior (states in state feedback or inputs in 

input supervisory control). This makes the design of a controller more flexible and accurate 
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in comparison to the output supervisory control or its classical counterpart output-feedback 

control, where controller must be designed based only on observing system outputs regardless 

of the system's internal behavior. While output supervisory control/output-feedback control is 

simple, input supervisory control/state-feedback control is more powerful. In what follows, we 

characterize the class of languages that can be implemented by input and output supervisory 

control maps. 

Definition 3 A language H C Lm(G) is said to be output-consistent if 

Vsi,s2€H,o EL;: Q(s\) = 6(s2) A s2o e L(G) As^a e H ==> s2aeH. 

In plain words, a language H is output-consistent if every pair of strings in H with iden­

tical outputs have consistent one-step continuations with respect to H. 

Theorem 2 Given a specification on outputs K C 9{Lm{G)): 

1. There exists a nonblocking input supervisory control map Vj-: L(G) —> T such thatO(Lm(Vi/G)) = 

K if and only if there exists a language H C d~x (K) C\Lm(G) such that 9(H) = K, H is 

controllable with respect to G and it is Lm(G)-closed. 

2. There exists a nonblocking output supervisory control map V0 : 9{L(G)) —* F such that 

9(Lm(V0/G)) = K if and only if in addition to the conditions of part 1, H is output-

consistent. 
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Proof. Part 1 follows directly from the main result in Ramadge-Wonham supervisory control 

theory. Let controllable and Lm(G)-closed H C 0"1 (K) DLm(G) be such that 9(H) = K. Since 

H C Lm(G), it follows that there exists a nonblocking input supervisory control map V;: L(G) —» 

T such that Lm{Vi/G) = H, and hence 0(Lw(Vi/G)) = d(H) = K. Conversely, let nonblocking 

input supervisory control map V{ : L{G) —> F be such that 6(Lm(Vj/G)) = K. Define H :— 

Lm(Vi/G). It follows that H is controllable and Lm(G)-closed, and 6(H) = 9(Lm(Vi/G)) = K. 

Next, we show that if the condition in part 2 is satisfied and Vj is a nonblocking input 

supervisory control map such that Lm(Vi/G) = H, then as shown in Figure 4.3 Vt factors through 

6: that is, there exists an output supervisory control map V0 such that V; = V0 o 6. 

e(L(G)) 

^ - ^ 3V0 

L(G) 
Vi 

Figure 4.3: Supervisory control can be based on the observation of outputs if and only if the 

input supervisory control map Vj factors through 0. 

Define an output supervisory control map V0 : 6(L(G)) —> T according to: 

VseL(G).V0(e(s)):=Vi(s). 

We show that the map V0 is well-defined, that is, for s\,S2 € L(G) if 6(s\) = 6(^2) then 

V0(d(s\)) = Vo(0(s2)). We prove this by contradiction: assume in the nontrivial case where 
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shs2 E L(Vi/G) that 6{si) = e(s2) but Vi(si) = Vo(0(si)) ± Vo(0(s2)) = Vj(52). Then there 

must exist a E £, such that, for example, a € Vi(s\) but a £ Vj(s2). Assume without loss of 

generality that s\ a and s2cr are both in L(G) (otherwise for SEL(G) if we have scr ^ L(G) then 

<7 can be safely added to or removed from Vi(s) without changing the closed-loop behavior). 

It follows from the definition that s\0 E L(Vj/G) but s2a £ L(Vi/G), which contradicts the 

condition in part 2 since L(Vi/G) = H. 

We conclude that V0 is well-defined. It follows from the definition that L{V0/G) = 

L(Vi/G) = H and Lm(V0/G) = Lm(V,-/G) = H, and thus d(Lm(V0/G)) = 6(H) = K. 

• 

Let 

J%(K) = {HC d~l(K)nLm(G)\ 6(H) = K, H is controllable andLm(G)-closed} 

and 

J^o(K) = {HC e~l(K)C[Lm(G)\ B(H)=K, H is controllable, Lm(G)-closed and output-consistent} 

When the type of supervisory control is not specified (input vs. output), we simply write Jf?(K). 

According to Theorem 2, for a nonblocking supervisory control map V such that 6 (Lm(V/G)) = 

K to exist, it is necessary and sufficient that Jf(K) ^ 0. It is straightforward to verify that 

J%(K) is closed under arbitrary union and therefore one can always find a minimally restric­

tive input supervisor when one exists (i.e. 3%{(j£) ^ 0). However, as Example 7 at the end of 

this section suggests, J%,(K) is not closed even under finite union, and therefore a minimally 

restrictive output supervisor does not in general exist. 
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A natural candidate for H in Theorem 2 is 9~X(K) C\Lm(G). As the following result 

suggests, since 9(9~l (K) DLm(G)) = K one only needs to check 0 _ 1 (K) C\Lm(G) for control­

lability and Lm(G)-closeness (and output-consistency in case of output supervisory control). 

Proposition 2 For K C 9(Lm(G)) we have 

6{d-\K)f]Lm{G))=K. 

Proof. (C) We have: 

d(d-\K)nLm(G)) c e(e-l(K))ne(Lm(G)) 

c Kne(Lm(G)) 

= K 

(3) Let r G /T. Since AT C d(Lm(G)), it follows that f e Q{Lm(Gj), i.e. there exists s e Lm{G) 

such that 6(s) = f. Since 0(j) = f € ^ , it follows that s € 0_,(/s:) flLm(G) and therefore 

e(s) = t£e(e-1(K)nLm(G)). m 

Example 6 Consider the system shown in Figure 4.5, together with a specification language 

K of the desired output behavior. We represent a language M by an automaton M generating 

marked and closed languages M and M, respectively. Note that K C 6(Lm(G)). 

The language H\ = d~l(K) DLm(G) shown in Figure 4.5(a), despite being controllable 

and Lm[G)-closed, does not satisfy the condition in part 2 of Theorem 2: a,ab € H\, 9(a) = 

9{ab), abc € L(G), ac G Hi but abc <fi H\. 
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K 

i 
-o 

? 
(a) (b) 

Figure 4.4: (a) DES G with output, (b) Specification K on the desired output behavior. 

i 
H2 

(a) (b) 

Figure 4.5: (a) The language H\ = 0"1 (K) fUm(G). (b) The language H2 C #1 where 0(#i) 

0 ( # 2 ) = * . 
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However, it is not difficult to see that the language H2 shown in Figure 4.5(b) belongs to 

J^o(K), and by Theorem 2 there exists an output supervisory control map V0 : 6(L(G)) —> T 

such that 0(Lm(Vo/G)) = K. The supervisor simply disables the input event b after observing 

the output event a. O 

Example 7 Consider the system shown in Figure 4.6, together with a specification language 

K over the output alphabet and the language H\ — d~l(K) C\Lm(G). Although controllable 

and Lm[G)-closed, H\ does not satisfy the condition in part 2 of Theorem 2. Intuitively, after 

observing a the output supervisor does not know for sure whether or not to disable c. 

(a) (b) (c) 

Figure 4.6: (a) DES G with output, (b) Specification K of the desired output behavior, (c) 

//1 = e-1(^)nLm(G). 

Languages H2 and Hj, shown in Figure 4.7 satisfy all conditions of Theorem 2 for the 

existence of output supervisory control. To implement Hi, a supervisor must disable d in its 

initial state and disable c after observing a. To implement H-}, a supervisor must just disable 
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a in its initial state. Note, however, that Hi = H2 U Hj, cannot be implemented by an output 

supervisory control map. 

H3 

(a) 

O 

(b) 

Figure 4.7: (a) Hi and (b) #3 satisfy all conditions of Theorem 2 for the existence of output 

supervisory control, but H\ = Hi U//3 does not. 

For E C 6(Lm(G)), if Jf?(E) = 0 then by Theorem 2 no nonblocking supervisory control 

map V can be found such that 0(Lm(V/G)) = E. In this case, a natural question to ask is 

whether a largest subset K^ C E can be found such that Jff(K^) ^ 0. To this end we define 

%(E) = {KCE\J%(K)^<d} 

%(E) = {KCE\J?0(K)^<d} 

Once again, it can be readily verified that %(E) is closed under arbitrary union, while as il­

lustrated by the next example ^(E) is not. Thus, in general, minimally restrictive supervisory 

control based on the observation of outputs is not possible unless conditions that are yet to be 

determined are imposed on the class of plants and/or specifications. 

52 



Example 8 Consider the system shown in Figure 4.8(a), where all states are marked and all 

events are controllable. Both specifications K\ andKi shown in Figures 4.9(b) and 4.9(c) can be 

implemented by output supervisory control maps V0\ and V02, resulting in closed-loop languages 

shown in Figures 4.8(b) and 4.8(c), respectively. Supervisory control map V0\ disables e in its 

initial state, while V02 disables b after observing the output event a. 

L(V0\/G) L(Vo2/G) 

/ , 

A 
0 

0 
(c) (a) (b) 

Figure 4.8: (a) DES G with output, (b) The system under supervision of V0\. (c) The system 

under supervision of V02. 

On the other hand, no output supervisory control map V0 can implement K = K\ U Ki; 

if such a supervisor existed, then aj3, aA € K = 9(L(V0/G)). Since ab 6 0 _ 1 (ccj8) and ec € 

0 _ 1 (ccX), we would have ab,ec £ L(V0/G). On the other hand, since a,e € L(V0/G), 6(a) = 

6(e) = a, ab € L(V0/G) and eb € L(G), by the condition in part 2 of Theorem (2) we would 

have eb 6 L(V0/G), or 9(eb) = ay £ K, which is a contradiction. Intuitively, it is not clear 

whether any such V0 should disable b after observing a: if it does, the output event j3 cannot 

be generated, while if it does not, the output event ymay be generated. 
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K2 

a 
A 
6 

6 
(a) (b) (c) 

Figure 4.9: Specifications (a) K = K\ UK2, (b) K\ and (c) Kz. 

It is worth to notice that if the causal output map 6 can be considered as projection, 

then the output consistency property is somewhat similar to the classical supervisory control 

definition of observability. Therefore, comparing our result regarding supervisory control of 

discrete-event systems with output with the method for partial observation proposed by Cieslak 

et al in [37], one can notice that the causal output map which we used to assign sequences 

of outputs to any sequences of inputs in discrete-event systems is the general form of mask 

function which Cieslak et al used in supervisory control with partial observation. In their work, 

observation of the supervisor is specified by a mask function 

M : I - > A U { e } 

in which 8 = M{a) is the symbol observed by the supervisor when the plant transition a hap­

pens. Similar to our case, the supervisor does not have the ability to distinguish between sym­

bols a and a' if their mask function M{a) and M(a') are equal. The advantage of proposed 

causal output map over mask function is the generalization of sequences of outputs which can be 

assigned to sequences of inputs, while partial observation using mask function can only affect 

individual input symbols. 
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Chapter 5 

Computation of Output-Consistent 

Languages and Application to Hybrid 

Systems 

This chapter is divided into two parts. The first part presents a computational algorithm to 

determine whether the language of a closed-loop system is output-consistent. The algorithm 

makes it feasible to translate the language-based concept of output-consistency into automata 

framework, thus enabling one to check the output-consistency of the language of a closed-loop 

system using familiar operations in automata theory. In the second part, the supervisory control 

theory of DES with output is applied to DES abstractions of hybrid systems. The aim is to 

design discrete-event supervisors such that the overall hybrid system's behavior satisfies the 
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desired specification. 

5.1 Algorithm For Computation of Output-Consistency 

Suppose the original system is modeled by a Mealy automaton G, and the system under super­

vision is modeled by S, where Lm(S) C Lm(G). Our objective is to design an algorithm that 

outputs 'yes' if the language marked by S is output-consistent with respect to G. 

Since checking output-consistency in the language-based framework requires consistency 

of control actions for strings generating identical output sequences, construction of output state 

machines for tracking outputs of the plant and the controlled system seems to be necessary. To 

obtain a deterministic output automaton G0 corresponding to the Mealy automaton G, first a 

nondeterministic e-automaton G£j0 is obtained by labeling every transition in G with its gen­

erated output symbol (e when no output symbol is generated), and converting the resulting 

nondeterministic e-automaton to a deterministic one by following the procedure outlined below 

(adopted from [38]). 

An e-automaton is represented by a five-tuple A = (Q,Qm,qo,'L,8), where Q is a finite 

set of states, Qm C Q is a set of marker states, qo is an initial state, L is an alphabet of events, 

and 8 : Q x (Z U {e}) —> pwr(Q) is a transition function. To convert the e-automaton into 

a Deterministic Finite Automaton (DFA), the notion of e-closure of a state is introduced. In­

formally, £-closure of a state q consists of all states that can be reached from q along a path 
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whose every transition is labeled with e. Formally, the e-closure of a state q, denoted by qe, is 

the smallest set with the property that q e qe, and 8(p,e) C q£ for all p € qe. For any set of 

states P C g define Pe = \Jpeppe- The equivalent DFA of the nondeterministic e-automaton A 

is denoted by D = (R,Rm,ro,Z,t;), where R = pwr(Q), Rm = {r eR\ rC\Qm^ 0}, r0 = q~oe, 

and 

Z(r,0) = \j8(q,0)e 
qer 

Following the outlined procedure, denote by G0 and S0 the output automata of plant G and the 

controlled system S, respectively. In order to determine whether Lm(S) is output-consistent with 

respect to G, we form the product of G, G0, S and S0 to keep track of the system output when 

a controllable input event is disabled. Let G = (Q,Qm,qo,Zi,Z0, £, (0) be a Mealy automaton 

where Q is a set of states, Qm is a set of marked states, qo is an initial state, £,• is an alphabet 

of input events, E0 is an alphabet of output events, £ : (2 x £,- —> Q is a transition function 

and co : Q x £,- —• Z0 is an output function. Denote the corresponding output automaton by 

G0 = (R,Rm,ro,L0,8). The product of G and G0 is a Mealy automaton G x G0 = (Q*R,Qm x 

#m, (?o, ro), i;,-, E0,7], 0), where for all (q,r) eQxR and a € E/ 

r]((q,r),<j)={ 
(£(q, a ) , 5(r, co(^, o"))) ; if all partial functions are defined, 

undefined ; otherwise 

and 

M(<l>r),o) = a>(q,o). 
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Each state of G x S x G0 x S0 can be represented by a four-tuple, in which each compo­

nent represents the state of the corresponding machine. Observe that the property of output-

consistency is violated if conflicting control decisions are made at two strings where out­

put sequences are identical. More precisely, the algorithm looks for two states of the form 

(qG,qs,qG0,qs0) and (<?G,<7S,<7G0,<?S0) of the product Mealy automaton where an event a e £,• 

is eligible at qa, enabled at qs, but disabled at q's. Since the last two components (namely, qG0 

and qs0) are identical, the output sequences corresponding to any two strings s,s' e E* reaching 

(qG,qs,qG0,qs0) and {qG,q's,qG0iqSo)> respectively, could potentially be equal, and thus the al­

gorithm returns 'no'. The language of the closed-loop system Lm(S) is output-consistent if no 

such pair of states could be found. 

Output Consistent(G,S) 

input: Mealy automata of plant G & control led system S; 

compute G£)0 and S£i0; 

compute G0 and S0; 

H:=GxSxG0xS0 

for a l l s t a t e s (qG,qs,qG0>qs0)
 a n d (qc»«ls»«lc0.qSoJ o f H > a 1 1 a<EY-i'> 

if <T i s e l i g i b l e in qG and qG, enabled in q s , disabled in qg 

re turn ' n o ' ; 

endif; 

endfor; 

re turn ' y e s ' ; 

The following example illustrates the steps of the algorithm. 
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Example 9 Consider the system G shown in Figure 5.1, where all states are marked and all 

input events are controllable; therefore, the conditions of controllability and Lm{G)-closeness 

are automatically satisfied for any automaton S with Lm(S) = L(S) C Lm(G). We would like 

to find out if an output supervisor can be found such that the system under supervision can be 

represented by the Mealy automaton S in Figure 5.2. Since Lm{S) is controllable and Lm(G)-

closed, it follows from the theory developed in the previous section that this would be the case if 

Lm{S) is output-consistent with respect to G, which we would like to verify using the algorithm 

presented in this section. 

a/P d/a 

0 1 

e/a 

d/a 

Figure 5.1: Plant G. 
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S d/a d/a 

^~~^ a/P /"~"\ ela 

0 ] 1 1 

e/a a/P 

a/p e/a 

d/a d/a 

Figure 5.2: The system under supervision S. 

In order to examine the output-consistency ofLm(S), we first construct deterministic out­

put machines for G and S. The corresponding output machines, denoted respectively by G0 and 

S0, are shown in Figures 5.3 and 5.4, respectively. The Mealy automaton G x 5 x G0 x S0 is 

shown in Figure 5.5. 

Go 

Figure 5.3: Deterministic output machine G0. 
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So 

Figure 5.4: Deterministic output machine S0. 

Figure 5.5: The product Mealy automaton GxS xGoxS0 
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In the product automaton, each state is labeled with four components corresponding 

to states in G, S, G0 and S0, respectively. The algorithm presented in this section isolates 

three pairs of states of the product automaton in which outputs are potentially identical but 

conflicting control decisions are made: ((1,1,R,0), (0,2,R,O)), ((0,4,R,T),(\,3,R,T)), and 

((1,5,/?,V), (0,0,R,V)). For instance, in state (1, l,R,0), the event d is enabled while in the 

other state of the pair, namely, (0,2,R, O), this event is disabled. We conclude that Lm(S) is 

not output-consistent with respect to G, hence no output supervisory control can be found to 

implement S. One can see that the definition of output-consistency is violated since ad,ae € H, 

0(ad) = 9(ae) — j3a, aed G L(G) and add G H, but aed $H. O 
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5.2 Application of Supervisory Control of DES with Output 

in Hybrid Systems 

In this section, we use supervisory control theory of DES with output developed in Section 4.4 to 

design discrete-event supervisors for continuous dynamics approximated by DES with output. 

As mentioned in Section 4.4, continuous process along with its interface can be approximated 

by a DES plant model, a nondeterministic finite automaton which can be represented by a 6-

tuple (P,Pm,X,R, y/, X), where in addition to the model in [2], we now allow the user to specify 

a subset Pm C P of marker states. We assume that X includes a silent symbol e corresponding 

to the case where crossing a hypersurface does not generate an output. In addition, as in [2] we 

assume that crossing a hypersurface generates at most one output symbol, and thus A can be 

reduced to a partial function X:PxP—>X. Due to the nondeterminism of the DES plant model 

and specification of the desired behavior on output sequences in hybrid systems, the procedure 

to design discrete-event supervisors for hybrid systems is more involved. In the first step, to 

make the plant model deterministic, we rename identical transition labels originating from every 

state. The nondeterministic nature of the plant is preserved, as we require that a supervisor 

treat all transitions with identical labels (in the nondeterministic model) consistently, that is, to 

enable or disable all events which have identical corresponding symbols in the nondeterministic 

automaton. Using the above procedure for every event of the nondeterministic finite automaton, 

the result would be an automaton with the property of pseudo-determinism from the analytical 

point of view while the system is still nondeterministic in the eyes of the supervisor. 

For an event r £ R, define the degree of nondeterminism of r, denoted by n?, to be the 
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maximum number of transitions, out of any state labeled with r. 

nf := max | !//•(/?, f) |. 
peP 

Define the set of siblings corresponding to f according to: 

Sbl(r) = {ri\i=l,2,...,n~r}. 

It is assumed that all siblings of a controllable or uncontrollable event are controllable or 

uncontrollable, respectively. In hybrid systems, input events are controller commands which are 

all controllable; therefore, all of their siblings are controllable, too. In other words, the property 

of controllability is always held in DES plant model which results in having a controllable 

automaton. We assume that controllability of f is inherited by all siblings in Sbl(r). Let the 

nondeterministic DES plant be given by Gndet = (P,Pm,X,R, y, A). Define its corresponding 

deterministic Mealy automaton as G^et — (P,Pm,X, U, C, fi>), where: 

- For p e P and f e R, if y(p, f) ^ 0 let yf(p, f) = {p1,.. .,pk}, where k < n? is a natural 

number. Define the partial function £ : PxU —> P according to: 

Vi€ {1,2,...,*}.£(/>,?'):=/?'. 

- ca:PxU^>X:(p,u)h^h(p,£(p,u)). 

We say u,u' G U are siblings, denoted by u =st,i u', if there exists an r e R such that 

u,u' 6 Sbl{r). An output supervisory control map V0 for G^et is also an output supervisory 
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control map for Gn(tet if for all t e X* and u, u! e U, we have 

uev0(t)Au=sbiu' =$• u! ev0(t). (5.1) 

Intuitively, to a supervisor all siblings look identical, and if one is enabled (disabled), all other 

siblings should be enabled (respectively, disabled) by the supervisor as well. 

Given a language H C Lm(Gdet) and a nonblocking output supervisory control V0 with 

LmiVo/Gjet) = H, the language H satisfies the condition given by (5.1) if 

VseU, a,a'eu.sueffAffl'eL(Gdet)Aa =sMa' = > su'eH. (5.2) 

Thus, when designing supervisory control for nondeterministic DES models of hybrid 

systems, the condition given by (5.2) must be checked along with all other conditions of The­

orem 2. In the following example, we use the ideas developed in this section to illustrate the 

conversion of a nondeterministic automaton modeling a hybrid system's DES plant to a de­

terministic Mealy automaton with the same behavior, and examine whether a discrete-event 

supervisor for a specification on outputs can be designed. 

Example 10 Consider the system shown in Figure 5.6 as a DES plant model, where the initial 

state is marked and all input events are controllable. A common problem in supervisory control 

of hybrid systems is to supervise the system such that it never enters some undesirable states. 

Suppose in this example that we want to design a supervisor such that it prevents the state of the 

system from entering the unsafe region p$. The specification K can be defined on the outputs of 
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the system, represented by a finite automaton shown in Figure 5.7. This example is similar to 

Example 2 in [2], with the major difference being that in our DES plant model the initial state 

is marked. 

h,n/x2 

Pi 

n,h/x4 

Figure 5.6: DES plant model G„de 

X2 

P\ 

X\ 

Pi 

>H 

Pi 

Figure 5.7: The desired sequence of outputs 

In order to design a nonblocking output supervisory control for the DES plant to imple­

ment the desired specification, we first convert the nondeterministic model of the DES plant into 

a deterministic Mealy automaton. The deterministic model of the DES plant is shown in Figure 

5.8. 

66 



f\,f\/x2 

ff,rl
2/x4 

Figure 5.8: Equivalent deterministic DES plant model Gdet-

As illustrated in the previous examples, a natural candidate for the solution of output 

supervisory control problem is H = 9~l (K) r\Lm(Gdet), which is represented by the automaton 

of Figure 5.9. Observe thatH is controllable (since all events are controllable), Lm(Gdet) -closed 

and output-consistent. Therefore, by Theorem 2, there exists an output supervisory control V0 

such that Lm(V0/Gdet) = H. However, H does not satisfy the condition given by (5.2), because 

f\ € H, f\ € L(Gdet) and f\ =^/ f\ but f\ ^ H. In state p\, the output supervisory control 

map V0 requires disabling f\ while enabling f\, which is not possible because in the actual 

nondeterministic system f\ and r\ are indistinguishable. 

We construct the output supervisory control map V0 from V0 by disabling, in addition, f\ 

in state p\ and f\ in state p^. The supervised system V0/G,iet is shown in Figure 5.10. There are 

two major problems with supervisor V0: the output generated by the supervised system is strictly 

smaller than K, and more important, the supervisor is blocking, as the supervised system blocks 

in state pj,. We conclude that the supervisor V0 does not satisfy the output specification K due 
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r l ' r 2 

P2 

'V'2 

-2 ~\ Pi 

Figure 5.9: The language H — 0 J (K) C\Lm{Gdet) is controllable, Lm(G<^r)-closed and output-

consistent. 

to blocking in state p^, and inability to produce the output event x~2 after observing the output 

event xj,. 
~2 ~1 /~ 

P2 

f\jx\ 

Figure 5.10: The supervised system V0/Gdet-

Next, consider the output specification K' C K shown in Figure 5.11, which in addition to 

the unsafe region pa,, prevents the system from entering the blocking region p-$. The language 

H' = 6 (K') C\Lm{Gdet) shown in Figure 5.12 satisfies all conditions of Theorem 2, and there­

fore there exists a nonblocking output supervisory control map W'0 such that LmWdGdet) = H'. 
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The supervisor V„ simply disables f\ m state P\ and r\ in state p2- Again, H' does not sat­

isfy the condition given by (5.2), while its subset H' C H', shown in Figure 5.13, satisfies 

all conditions for the existence of a nonblocking output supervisory control map V'0 such that 

Lmfto/Gdet) — H' and 6(Lm(y„/Giiet)) = K'. The supervisor V'0 is obtained from V„ by dis­

abling all siblings when some are disabled; thus, V'0 disables both f\ and f\ {i.e. disables ?2) m 

state p\, and f\ and f\ (i.e. disables f\) in state p2. 

~Q _0 
Figure 5.11: Specification K' c K on outputs. 

f\,fi/x\ 

Figure 5.12: The supervised system Vg/G^, where Lm(Vg/Gdet) = H'. 

r1 
2 

Figure 5.13: H'= Lm(%/Gdet). 

The supervisor V'0 ndet is represented by the automaton of Figure 5.14. The automaton has 

two states. A transition from the initial state is triggered when x\ is observed, while a transition 

back to the initial state is triggered when X2 is observed. Each state outputs the list of events 

that are enabled at that state. The supervised nondeterministic plant is shown in Figure 5.15. 
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X2 

hlh) 

x\ 

Figure 5.14: The nonblocking output supervisor V'onder 

h/x2 

P\ I [ P2 

h/x\ 

Figure 5.15: The nondeterministic system under supervision. 

O 

It is worthwhile to note that in [2] a specification such as K of Figure 5.7 is called 'un­

controllable' . We believe this to be inconsistent with the standard definition of controllability in 

supervisory control theory: as all events are controller commands and thus controllable, every 

specification is trivially controllable according to the classical definition of controllability in 

[34]. As illustrated in the above example, the problem is that a supervisor designed to imple­

ment K causes the DES plant of Figure 5.6 to block in state p$ by disabling both f\ and f%. The 

issue of blocking was not addressed in [2]. 
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Chapter 6 

Conclusion 

In this thesis, the problem of supervisory control of discrete-event systems with output and its 

application to hybrid systems have been extensively studied. In order to introduce the discrete-

event systems with outputs, a causal output map is used to correspond sequences of inputs with 

sequences of outputs. Then necessary and sufficient conditions are proposed for the existence 

of nonblocking input/output supervisory control such that the controlled system generates some 

desired specification language on outputs. An algorithm is proposed to extend the results of 

nonblocking input/output supervisory control theory when the prescribed specifications on out­

puts of the system are modeled in finite automaton framework. The result is applied to hybrid 

systems approximated by nondeterministic Mealy automata by requiring that in its every state 

a supervisor enables or disables all transitions carrying the same label. The idea of siblings is 

introduced to modify the nondeterministic DES plant model into a deterministic one such that 
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the proposed theory and algorithm for discrete-event systems with outputs can be applicable to 

hybrid systems as well. The major contribution of this work has been the development of a the­

ory for supervisory control of hybrid systems that is fully compatible with supervisory control 

theory of DES. 

6.1 Future Research 

In this section, we discuss the directions for future research. 

• In this thesis, the problem of supervisory control of discrete-event systems with output is 

studied when such systems are represented as Mealy automata. It would be interesting to 

develop a similar algorithm for hybrid control systems modeled by petri nets which can 

be computationally more efficient for large concurrent systems. 

• In this thesis, we focused on the problem of supervisory control of hybrid systems, con­

sidering the fact that the DES plant approximation is available. Although this DES plant 

model can be used to approximate the overall behavior of the continuous and interface 

parts of a hybrid control system, the simplification of the proposed hypersurfaces, mainly 

employed in the construction of the DES plant model, can result in imprecise model­

ing of complex hybrid systems. Thus, adapting our results with other approximations of 

continuous dynamics of hybrid systems seems to be useful. 

• In section 5, we employed the idea of siblings in order to modify the nondeterministic 
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DES plant model of hybrid systems into the equivalent deterministic representations such 

that our proposed theory can be applicable to hybrid systems. It would be useful to en­

hance the proposed algorithm such that it deals with nondeterministic DES plant models 

of hybrid systems without any modifications. 

• In addition, now that a link between supervisory control of hybrid systems and supervi­

sory control of DES is established, further research is needed to import such concepts 

from supervisory control of DES as decentralized or hierarchal control, and to study the 

computational complexity of synthesizing supervisors for hybrid systems [39]. 

• Furthermore, in order to practice our results in the real world, it would be very interesting 

to apply our proposed nonblocking supervisory theorem for DES with output to a real-

life application such that the applicability, efficiency, and usefulness of our results can be 

illustrated at length. 
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