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Abstract

3D Character Animation Using Geometric Constraints

Khaled Abdelhay

3D character animation is a very challenging field as it requires understanding of two
different paradigms: fine arts and computer science. Currently there are many techniques
used for animation authoring such as key framing, motion capture, non-linear editing, and

forward and inverse kinematics.

A limiting factor shared between current animation techniques is that they represent
animation as a series of translation and rotation without considering other important
aspects such as the rational of the motion, geometrical constraints between characters
acting in the scene, or even between a character and his environment. For example,

“standing” on floor indicates that both feet touch and parallel to floor.

In this thesis I studied the foundations of classical and computer character animation, and
then proposed using 3D geometric constraints as another method to represent animation.
The method aims at capturing character’s posture by a set of geometrical constraints and
satisfing them using numerical methods. Maya plug-in has been implemented to build
and solve symbolic gedmetric constraints for simple skeleton. The thesis includes a

discussion on the results, usability and limitations of the proposed solution.
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Chapter One - Introduction

Computer animation is a multi-disciplinary topic where fine arts, computer science,
management, and movie technologies form a homogenous environment to create the
magic of animated movies. A scholar of 3D computer graphics and animation needs to
have a good understanding of different artistic and technical aspects required to create 3D
animation.

For example lots of production elements change dramatically with the realism level of the
characters in a story, i.e. realistic or cartoony. The sophistication and modeling
techniques of cartoony characters are usually easier than realistic ones, which means less
time and money. Shading models change with the realism level of characters, and they
might dictate which software to use for rendering. Finding the balance between time and
image quality requires cooperation between artists, software engineers, and managers to
find the level where artistic and cinematic specifics are satisfactory while meeting time
and money constraints. Animation is also affected by the level of realism. For example
motion-capture better suites human-like characters, whereas cartoony characters might
have new expressions or movements and hence requires animation by hand. In both
cases, different set of skills and software are required to meet the requirements of
animation. From this example, it is very apparent that one artistic element can change lots

of software and technologies used for the movie, as well as the budget and time needed.

This chapter represents a thorough overview of 3D animation production pipeline, as well

as introducing thesis objective and reviewing related work.



1.1 3D Animated Films Production Pipeline

3D animated films production is broken up into four areas: development, pre-production,

shot-production and post-production. Each one is dealing with a different phase of a

typical production cycle.

1.1.1 Development

Development covers the initial planning stages, including story development, character

design, art direction, and storyboarding.

Story

A good story is the foundation of every successful animated film. In the early 1980s,
when computer graphics was in its infancy, audience was captivated because the new
imagery was previously unimagined. However, in those days even the strongest

presentation cannot save a poorly formed story idea.

Character design

It can be easily argued that all memorable films contain memorable characters. It’s
very important to create a resume or biography for each character that indicates

physical, historical, social, and psychological specifics.

Art direction
The purpose of art direction is to create a unique visual experience, indicate setting

specifics, and generate a particular tone and mood for the story. Realism level, color



palettes, and lighting specifics are some examples of the factors that determine art
direction of a movie.

Storyboarding

The first step in realizing the ideas of the story is to set them down on paper as
storyboards panels. It’s a very important step because it provides a first opportunity to
begin working out the cinematic specifics of the film, camera angles, composition,

point of view, and many others.

1.1.2 Pre-Production

In pre-production the digital elements of the film are planned, created, and assembled.

These elements include: vocal tracks, 2D and 3D animatics, CG modeling, texturing and

character setup.

Planning

A production plan is like a roadmap. It constructs the methodical pathway toward a
destination. Financial analysis, time estimates, scheduling, and digital assets are

some key elements that a production plan should cover.

Vocal tracks
Vocal tracks producﬁon includes recording, erasing background noise, changing
speed, adjusting volume, adding effects and many other steps. Having vocal tracks

are very important for animation timing.



2D Animatic

2D animatic is defined as storyboards plus timing and necessary audio. This stage is
mainly focused on story elements and aims to experiment with the structure and
pacing of the story. To create a 2D animatic we need a piece of video editing

software, and a method of digitizing the boards as well as the vocal tracks.

3D Animatic

3D animatic represents a stage where rough 3D layouts and characters versions
replace the held storyboard images that were assembled during the 2D animatic. The
focus of a 3D animatic is basic positioning and movement of scene objects, characters

and cameras.

CG modeling

Three main types of geometry are used in the modeling process: polygons, NURBS
and subdivision surfaces. Some factors like organic or hard-surface objects, modeler’s
proficiency, and rendering time determine which geometry type to choose. For

example, a polygonal mesh would render faster than similar NURBS mesh.

Texture and materials

A material is defined by attributes like ambient color, diffuse color, specularity,
transparency, and reflectivity. Materials, as well as other factors, affect the final look
and quality of CG models. Textures are often used to improve the visual quality and

believability of the materials.



e Character setup

Character setup consists of rigging and binding. Rigging means building an internal
skeleton hierarchy to animate characters. Binding, also known as skinning or
enveloping, refers to the process of connecting a character’s outer geometry to its
skeleton structure so it bends and twists nicely when the internal hierarchy is posed

and animated.

1.1.3 Shot Production

Shot production covers animation, lighting, rendering, FX and compositing.

e Animation
Animation involves the creation of convincing and believable movement for living
and non-living objects, such as humans and rocks. Some defines animation as the art

of movement.

o Lighting and Rendering

The process of lighting a scene requires virtually the same principles used in
traditional media such as painting, theater, photography and film. Examples of light
sources include: point light, spot light, directional and area light. Rendering is
considaered to be one of the most expensive stages in production, and a good balance
between quality and speed is needed to satisfy the aesthetic sensibilities and

deadlines.



e Visual Effects

Natural movement of complex geometry pieces or large groups of objects can be
especially difficult and time consuming to animate by hand. Procedural animation and
physical simulation can generate an illusion of these complex animations. For

example, explosions could be generated easily by physical simulation.

e Compositing

Compositing is the last step of CG shot production. Compositing reassembles what
was previously separated, allowing a great deal control over the visual specifies of the
final imaginary. For example, combining real actors with computer generated shots is

done at this stage. Another example is adding 2D rain to a 3D shot.

1.1.4 Post-Production

Post-Production covers sound effects, titles and credits, and marketing.

¢ Sound Effects and Music

They clarify and enhance the visual actions, realism level, and mood of the film.
Obtaining or creating sound effects is a very challenging task as it requires a lot of

creativity and patient.



e Titles and credits

Although it might sound less important, titles often represents the initial connection to
the audience, and they are the first impression of the film than can help indicate the
mood, attitude and style of what is to come. Credits represent an opportunity to

recognize the persons who contributed to the creation of a 3D movie.

1.2 Research Objective

It is apparent that there are many research topics in 3D computer graphics and animation,
for example, considering geometry only, we can propose some research ideas like: 3D
morphing, clothes simulation, new modeling techniques, etc. As a matter of fact, each
stage in the production could be optimized or done completely in a new and different
way. A research topic in 3D graphics and animation may focus on improving an existing

functionality, or finding new solutions to existing problems.

This thesis aims at reducing animation time needed in 3D film production. Physical
simulation was initially used to achieve this goal; however due to a defect in the physics
engine of Matlab the project was halted. The defect is reproducible on Matlab version
7.0.1 R14 and is summarized as having incorrect simulation results when motion-
actuating a joint containing three prismatic primitives. The defect is reported and
assigned defect ID 298984. Matlab website suggests a workaround to this issue, however

I tried and it did not work (http://www.mathworks.com/support/bugreports/details.html

rp=298984).



Due to the previous defect, another approach was proposed and used in this thesis. The
approach is based on using geometric constraints to capture the main spatial features of a
character posture and then satisfying them numerically to reconstruct the same posture on

different characters and/or environments.

1.3 Related Work

Jianhui Zhao, Ling Li and Kwoh Chee Keong [4] proposed a method to reconstruct 3D
human posture from monocular images which is a cheap alternative to motion capture.
This method allows the creation of 3D human animation from the video sequences,
scanned photographs, and historical shots and hence it could be used to produce large

number of motion banks that could be used in animated films production.

Petros Faloutsos, Michiel van de Panne and Demetri Terzopoulos [6] proposed a
framework for composing dynamics controllers in order to enhance the motor abilities of
virtual actors such as walking and running. The general idea is to design a super
controller that controls specialized controllers. Each specialized controller defines pre-
conditions in which it can be invoked, and fhe super controller chooses the best

controller to achieve the current goal.

Radek Grzeszczuk, Demetri Terzopoulos, and Geoffrey Hinton [7] used neural networks
to create realistic animation. They replaced physics-based models by fast neurai networks

which automatically learn to produce similar motions by observing the models in action.



Depending on the model, the neural network emulator can yield physically realistic
animation one or two orders of magnitude faster than conventional numerical simulation

Mira Dontcheva, Gary Yngve, Zoran Popovi¢ [8] introduced a system that allows users to
create and edit character animation by acting. The key contributions of their work lie in
how the animator's motions are mapped to those of the character, and how animation can

be built upon layer by layer.

C. Karen Liu, and Zoran Popovi¢ [9] presented a general method for rapid prototyping of
realistic character motion by applying simpler dynamic constraints. The method is
summarized by analyzing an animation sketch provided by an artist, and inferring
environmental constraints on the character motion. Afterwards, theses constraints are

used to synthesis other animation sequences or modify existing ones.

Chen Mao, Sheng Feng Qin, David K. Wright [10]} presented a fast storyboarding
interface, which enables users to sketch-out 3D virtual humans and 2D/3D animations.
This technique allowed beginner to create virtual humans and animate them quickly.
Their system is based on using 2D stick figures to describe main character poses, which
are used to reconstruct 3D continuous motion. Their system also uses skeleton

proportions and shape to create corresponding 3D models

C. M. Hoffmann and P. J. [11], proposed an analytical and numerical method to solve 3D
spatial constraints. The analysis phase uses a graph to represent geometries as nodes and
constraints as links, then tries to find a generic solution for the given problem. The

numerical phase converts the given solution into equations and solves them. The



drawback of this technique is that it uses only points and planes to represent geometries

which cannot be used in character animation.

Glenn A. Kramer [12], proposed an elegant way to solve geometric constraints problem.
His method is summarized by creating a database that describes different kinds of
geometric constraints and how they could be satisfied analytically. The database is also
categorized by the Degree of Freedom (DOF) available for each geometry in the system.
For example, to satisfy a geometric constraint between geometry A and B, the database
includes different algorithms for different Degree of Freedom for A and B:

e A and B have 6 DOF

e A has 6 DOF and B has 5 DOF
and so on. The drawback of this technique is that it requires a considerable versatile
database and it does not scale well for generic characters animation. Also, for complex
geometries and constraints system, e.g. character animation, the solution obtained by this
technique becomes numerical rather analytical, which defeats the purpose of building

constraints database in the first place.

Hiroshi Hosobe [13], wrote Chorus3D library which uses numerical optimization and
genetic algorithms to solve 3D geometric constraints problem. A positive error function
is associated with each constraint, and the quasi-Newton method is used to minimize the
summation of the error functions. He also used weights to‘classify constraints as required,

strong, medium, or weak. Genetic algorithms are used to search for global solutions.

10



Chapter Two - Background on Character

Animation

2.1 A Brief History of Animation

People have used static images to suggest motion for a very long time. Over 35,000 years
ago, humans were painting animals on cave walls, sometimes drawing four pair of legs to
show motion. In 1600 BC the Egyptian Pharaoh Rameses II built a temple to the goddess
Isis which had 110 columns. Ingeniously, each column had a painted figure of the

goddess in a progressively changed position.

As far as we know [2, page 13}, the first attempt to project drawings onto a wall was
made in 1640 by Athonasius Kricher With his ‘Magic Lantern’. Kricher drew each figure
on»separate pieces of glass which he placed in his apparatus and projected on a wall.
Then he moved the glass with strings, from above. One of these showed a sleeping man’s
head and a mouse. The man opened and closed his mouth and when his mouth was open

the mouse ran in.
Since then, there have been lots of experiments and work on animation. In 1928, Mickey

Mouse  took off with his appearance in Steamboat Willie— the first cartoon with

synchronized sound. In 1932 Walt Disney produced the first full color cartoon Flowers

11



and Trees. Then he followed it one year later with Three Little Pigs, and four years after

that, Disney released Snow White and the Seven Dwarfs.

The tremendous financial and critical success of Snow White and the Seven Dwarfs
became the foundation of Disney’s output and gave birth to the “Golden Age” of
Animation: Pinocchio 1940, Dumbo 1941, Bambi 1942, and Fantasia 1942 as well as

Donald Duck and Mickey Mouse.

As more films were produced, knowledge was accumulated and animation started to be a
science by its own. This knowledge applies to any style or medium, no matter what the
advances in technology are. If drawn ‘classical’ animation is an extension of drawing,

then computer animation can be seen as an extension of ‘classical’ animation.

2.2 Classical Animation Principles

This section discusses the most common principles of classical animation.

2.2.1 Squash and Stretch

Objects tend to have some degree of elasticity. When forces act upon them, they will
deform appropriately depending on the nature, direction, and degree of those forces
mixed with the physical properties of the objects themselves. For example, if we step on

a tennis ball, it will squash vertically and stretch horizontally.

12



2.2.2 Anticipation

Anticipation is the setup before a main action, and it is often a physical movement in the
opposite direction of the intended motion. They can also take on other forms like a growl
before an attack or a deep breath before a bold statement. The rational behind anticipation
is that a viewer’s eye tends to lag behind by a few frames, so it is often necessary to
announce that something is about to happen so the audience does not miss it. It is worth
pointing out, although it is obvious, that anticipation and similar tricks are not what
actually happens, however animators introduced these tricks to enhance animation and

viewers accepted them.

2.2.3 Follow-Through

Follow-Through is the extension of the performed movement. For instance, if the
character has any appendages, such as long ears or a tail, these parts continue to move

after the rest of the figure has stopped.

2.2.4 Overlapping Action

Overlapping action is the concept that not all moving parts of a body will start and end at
exactly the same time. For example, if you turn your head and point, your arm movement

might begin before head finishes turning. Without overlapping, motions tend to look

robotic.

13



2.2.5 Slow-In and Slow-Out

Organic motion tends to accelerate and decelerate into and out of actions except when
met with a force that causes an abrupt stop or direction change, such as a wall or a floor.

The movement of an object will look mechanical if we don’t apply this principle.

2.2.6 Arcs

When a wrist travels from point A to point B, it typically does so as the result of elbow
and shoulder rotations. Therefore, the motion of the wrist will tend to describe an arc.
Although this role seems to be very logical to scientists, it is surprising to learn that

inexperienced animators make this mistake.

2.2.7 Secondary Action

There is usually a secondary motion to the main action— for instance, drumming your

fingers on you knee while talking. Secondary actions often reveal emotional subtleties or

hidden thoughts.

2.2.8 Timing

Varying the speed of a particular motion can indicate different weight, forces, and
attitudes. A slow head turn might indicate a careful or casual search, while a quick head
turn can indicate surprise. Fast walks can imply determination; slow walks can imply

depression.
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2.2.9 Exaggeration

Exaggeration is used to increase the readability of emotions and actions. For example, if a

character was to be sad, make him sadder; bright, make him brighter.

2.2.10 Appeal

Appeal is the most subjective of all the principles. It simply means that a character or its

performance is visually interesting.

2.3 Classical Animation Approaches

Before computer animation, animators depended mainly on two animation techniques [3,

page 53}:

2.3.1 Pose to Pose

In the “Pose to Pose” approach, the animator plans his action, figures out just which
drawings will be needed to animate the scene, makes the drawings, relating them to each
other in size and action, and gives the scene to his assistant to draw the in-betweens. Such
a scene is easy to follow and works well because the relationships have been carefully
considered before the animator gets too far into the drawings.

One of the main benefits of this approach is the strength of poses an animator can
display. If done correctly, the important beats of a scéne are clearly defined.

Also this approach definitely lends itself to adjusting the timing of a shot as the

character’s poses are neatly contained at intervals along the shot.
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2.3.2 Straight Ahead

In the “Straight Ahead” approach, the animator literally works straight ahead from his
first drawing in the scene. He simply takes off, doing one drawing after the other, getting
new ideas as he goes along, until he reaches the end of the scene.

This method has significant advantages. The spontaneity it generates can create some
extremely successful results. The animator can feel his way through a scene and alter the
conclusion if he desires. In addition, complex motions can be pared down to mini-actions

that are easier to resolve.

2.4 Computer Animation Approaches

All classical animation principles are also applied to computer animation. This section

introduces some common computer animation approaches.

2.4.1 Key Frame Animation

Key-frame animation is one of the oldest computer animation techniques. It resembles
pose to pose technique in classical animation where each pose represents a key frame.
Key frames specify time, location and pose of a character. The in-betweens are created by
mathematical interpolation rather than human intervention.

Modern animation packages usually have graphical editors where animators can change
the location and time of keys, as well as the interpolation method used. For example,

figures 1 and 2 show the key frames of a falling ball before and after editing

16



Figure 1-Key frames of a falling ball

Figure 2-Enhanced falling ball key frames
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2.4.2 Physical Simulation

Animating natural movement such as cloth, hair, smoke, water, snowflakes or a
collection of falling rocks can be too complex to be done by key framing.

Even in cartoon-style animation, audiences except the movement of such elements to be
believable; it is therefore necessary to simulate the effects of gravity and physics

convincingly.

Most computer animation packages offer physical simulation solutions that animators can
use to simulate natural movement of complex geometry or large groups of individual

objects. Figure 3 and 4 show two examples where physical simulation is required.

Figure 3- Physical simulation animation example 1

(Source: Maya documentation)
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Figure 4-Physical simulation animation example 2

(Source: Maya documentation)

2.4.3 Motion Capture

In Motion Capture, a human performer wears markers near each joint to identify the
motion by the positions or angles between the markers. Markers are used by a tracking
system to reconstruct the performed motion; for example, an optical tracking system
typically uses small markers attached to the body—either flashing LEDs or small
reflecting dots—and a series of two or more cameras focused on the performance space.
The motion capture and software picks out the markers in each camera's visual field and,
by comparing the images, calculates the three-dimensional position of each marker

through time.

Motion Capture provides an accurate digital representation of the motion. Figure 5 shows

Tom Hanks using a motion capture system for his movie Polar Express
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BH:0o5.29

Figure S-Motion capture example

A cheap alternative to motion capture is rotomatting, which means posing and animating
a character on top of a filmed background plate. For example, a human performer will be
filmed playing out a scene, and then a cartoon character will be drawn manually on the
top of the human performer to imitate his motion.

Motion Capture could be used to create motion cycle, which is a movement that loops
when played back multiple times. Animation cycles could be used as shortcuts for
movements that répeat over time, for instance, walking could be represented as one

animation cycle.
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2.4.4 Non-Linear Animation

After animating a character with key frames or motion capture, we can collect its
animation data into a single, editable sequence. This animation sequence is called an
animation clip. Moving, manipulating, and blending regular clips to produce a smooth
series of motions for a character is the basis of nonlinear animation.

Most animation packages provide high-level non-linear animation editors. Most editors
provide many functions like selecting characters and their animation clips, layering and

blending animation sequences, and synchronizing animation and audio clips.

2.4.5 Forward and Inverse Kinematics

Although it might be possible to animate simple character models by merely translating,
rotating, scaling or reshaping their overall forms or individual parts, we generally need to
turn these character models into digital “puppets” by adding internal skeleton to them. A
digital skeleton is typically made up of a hierarchy of joints; each joint is represented by a
transformation matrix. Each joint in a skeleton hierarchy may be both a child joint and a
parent joint. A parent joint is any joint higher in é skeleton’s hierarchy than any of the
other joints that are influenced by that joint’s actions. Joints below a parent joint in the
skeleton hierarchy are called child joints. The joint that is the highest joint in a skeleton’s

hierarchy is called the root joint.

Most animation packages call the virtual line between any two consecutive joints a bone.
Bones are only visual cues that illustrate the relationships between joints. Figures 6, 7,

and 8 demonstrate these ideas.
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Figure 6-Animation skeleton and the root joint

(Source: Maya documentation)

Figure 7-Joints and bones

(Source: Maya documentation)
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Figure 8-Parents and child joints

(Source: Maya documentation)

Characters with skeletons are typically posed simply by rotating some or most of their
joints — for instance, turning character’s head involves only his nick joints, while
running or kicking a ball will require most of the joints to rotate. Top level root joints are
generally translated and rotated for global positioning and orientation, but the actual pose
of the body is reached by rotating each of the remaining joints.

Posing skeleton chains and hierarchies by rotating joints is known as forward kinematics
or simply FK. For instance, bending an arm with forward kinematics typically involves

rotating the shoulder and elbow joints independently to reach the desired pose.

An alternative method of posing joint structures is by using inverse kinematics or IK, in
which the end joint of a skeleton chain is translated to a desired location and the
individual joints in the hierarchy are computed to bend accordingly to compensate. The

end joint that gets translated is sometimes known as an end effector.
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Choosing between forward and inverse kinematics is a matter of preferences, however,

some animators prefer IK for legs, and FK for arms.
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Chapter Three — Design and
Implementation

3.1 Problem Definition

From our review on classical and computer character animation, we can argue that a pose
of a character is one of the corner stones in authoring animation. Pose description is an
art form and a strong pose can tell volumes about a character. Adding the time element to
subsequent poses creates the magic of animated characters, or as artists say: breath life
into them. From this perspective, we can look at character animation as poses plus

timing.

Currently poses are created by animation artists, or by motion capture which creates an
entire animation sequence. Unfortunately, the way poses are represented is very limited
in terms of reusability as they depend merely on storing rotation and translation of the
joints that make up the character skeleton. Applying prerecorded rotations and
translations on different characters or even the same character but in a different
environment will fail, or at best will require human intervention to adjust the animation to

the new character or environment.
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3.2 Proposed Solution

To address the pose representation problem, this thesis proposes encoding geometric
constraints into the pose description such that they capture main visual characteristics of
the pose. Visual characteristics include: ratios between angles, ratios between distances,
parallelism, orthogonality, etc.
A simple example would be describing a pose in a walk cycle. A walk cycle can be seen
- as pivoting one foot on the floor and swinging the other to the next step. For a character
walking uphill, the pose shown on figure 9 and figure 10 can be described many
geometric constraints, among them:

o The step size should be one fifth of the character height,

e The leg that is swinging should land on the floor,

o The feet that is pivoting should be touching and parallel to the floor

Figure 9 Charactering walking pose — Perspective projection
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Figure 10 Character walking pose — Side projection

The most important aspect of these constraints is that they do not specify actual or
absolute values; otherwise they will defeat the purpose of using geometric constraints.
Instead, these constraints focus more on generic relations that will be always true in all

characters regardless their dimensions or environments.

Geometric constraints are identified by pose creator and it is his job to provide a proper
set of constraints that describe each pose. Augmenting each pose of an animation
sequence with a corresponding set of constraints makes the animation generic and
applicable on different characters and environments. The same idea is applicable also on

animation clips created by motion capture.
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However, we must state that, in this thesis, geometric constraints should not be used to
synthesis an entire pose by itself. Instead, they should be used to adjust a given pose to its
new environment or character because:
e Not all features have apparent geometric constraints
o The number of constraints required to describe a pose entirely is linear to the
number of joints in a character which means an unaffordable number of
constraints will be required. For example, for the character used in this thesis, 30

“independent geometric constraints are required to fully describe the pose.

3.3 Design Overview

The goal of this thesis is to determine the feasibility of using geometric constraints as a

method to reconstruct animation poses from constraints equations and an initial solution.

3.3.1 Geometric Constraints Satisfaction Problem

Geometric constraints could be satisfied either analytically or numerically:

¢ Analvtical methods

An example of analytical method is Degree of Freedom Analysis by Glenn A.
Krammer [12]. In his analysis, he created a database that stores information about
different kinds of constraints, algorithms to satisfy them, and affected Degree of
Freedom. For example, there is an algorithm to describe how to rotate an object to

be aligned a line passing through one of its vertices.
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¢ Numerical methods

Geometrical constraints are encoded as algebraic non-linear simultaneous
equations and solved numerically using algorithms such as Newton-Raphson. It is
also possible to convert geometric constraints problem into an optimization

problem and solve it numerically [13].

This thesis uses numerical methods due their ability to solve a versatile range of
geometric constraints without prior need to geometrical reasoning functionality or
algorithms to solve individual constraints. On the other hands, numerical methods suffer
from other problems like convergence speed, floating point rounding errors, local

minimum, etc.

3.3.2 System Components

The solution proposed in this thesis contains four main components; the following is the

summary of each component:

e Autodesk Maya

Maya is used to do the following tasks:

o Design and build simple character skeleton and environment. The skeleton
has 16 joints with a total of 30 Degree of Freedom in 3D space. The
environment contains only a floor and a group of markers in 3D space. A
marker is a point in 3D space that could be easily queried to obtain its

coordinates in world coordinate system.
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o Pose the skeleton to provide an initial solution to the rest of the system.

o Display the results created by other components to the user.

Symbolic engine

The symbolic engine facilitates the process of building and evaluating
mathematical expressions. In this thesis, mathematical expressions represent the
geometric constraints to be satisfied. The design of the symbolic engine is
tailored toward the thesis and aims at providing users with a tool to build and
evaluate easily geometric constraint equations. The other alternative will be

building equations manually which is error-prone and time consuming.

Numerical solver

The numerical solver solves simultaneous non-linear equations for the geometric
constraints. The solver is based on a slightly modified version of Newton-
Raphson algorithm [1, 14]. The version developed for the thesis uses the
Generalized Inverse Matrix formulas for matrix inversion [1, 14]. This
mbdiﬁcation is required to cope with singular matrices created due the inequality

between number of constraints and number of unknown variables in the system.
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e A Mava plug-in

The plug-in uses the symbolic engine and the numerical solver to read skeleton
and environment description, build corresponding geometric constraints, invoke

the numerical solver and update Maya scene with the result.

The symbolic engine and the numerical solver were written entirely, in C++, due to the
lack of available free packages that can do the same job. The plug-in was written in C++
and uses Maya SDK to interface with Maya internal functions, such as reading skeleton

dimensions, creating key-frames, etc.

Figure 11 shows a conceptual design of the main components and their interaction with

each other.

Symbolic

Geometric

Constraints Symbolic
Read/Write Engine
Maya Scenes )

Autodesk Maya : : Maya Plug-in

Nume.r ical Numerical

Solutions

3 :: Solver

Figure 11 System Components
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3.4 Character Model

The character is represented as a 33 joint skeleton in which 16 are used in geometric
constraints formulation. Some joints are used for displaying purposes only, for example
fingers, toes, and head joints. The unused joints help give a skeleton a human look as

shown in figure 12, as well as help visualize the solution obtained.

Figure 12-Character Skeleton

32



In Maya, the skeleton is represented as hierarchical transformations chains. The root joint
represents the first transformation and the rest of the skeleton is built upon it. As in
standard mathematics, in Maya each joint is defined as a sequence of translation, rotation
and scaling. However, in this thesis, I used only translation and rotation to simplify the

equations created. Figure 13 shows how the skeleton is represented internally in Maya.

Figure 13 Maya Skeleton Representation

In the figure above, “root” transformation matrix is defined with respect to world
coordinate system; “hipsL” transformation matri;( is defined with respect to the “root”
and so on.

Note that each joint is given a unique name which helps map them between Maya and the

symbolic engine. The locators shown at the bottom part of the graph are used for
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visualization purposes only, for example “locator6” and “locator5” measure the distance

between “anklel” and “ankleR” and print the result on screen.

3.5 Environment Model

Environment is modeled as a titled floor and a box. Instead of providing high-fidelity
description of the environment and the box, markers are used to describe important
features in the environment. A marker is a point in 3D space as shown in figure 14, and it

can be manipulated easily using Maya interface.

By using markers we can describe the floor as one marker that lies inside it, and two
markers to indicate the floor normal. Although Maya provides a rich set of API to
describe complex geometries, using markers helped implement a simple environment

quickly. The box is described as two markers to indicate its width.

Markers are also used as short-cut to more complex computation, for example two -
markers could be used to specify a vector that lies inside a plane instead of g'enerating
one mathematically. Another example is if a foot has to step on the floor, a marker will
be created on the floor to indicate the point where the foot should touch instead of

projecting the heel and calculate the location of this point.
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Figure 14 Environment markers

3.6 Symbolic Engine

The main building blocks of the symbolic engine are symbols, symbols table, and

expressions.
3.6.1 Symbols

A symbol is used to represent any physical entity in Maya scene. For example,

joint “root” in the skeleton is represented by the following six symbols:

“root.tx” for translation in X direction
“root.ty” for translation in Y direction
“root.tz” for translation in Z direction

“root.rx” for rotation around X axis
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“root.ry” for rotation around Y axis

“root.rz” for rotation around Z axis

Each symbol has a unique ID that identifies in internally.

3.6.2 Symbols Table

The symbolic engine maintains a symbols table that contains the definition of
each'symbol used in the system as shown in table 1. Each symbol has a unique ID
(or Symbol ID), type, value and representation string. The following shows a
segment of the symbol table. The symbols table is stored as hash-table where the

symbol ID is used as the table key, which ensures unique symbols ID.

Symbol ID | Symbol  Type | Representation String | Value
(unsigned int) (enumeration) | (string) (double)
1 - | Power A N/A
2 Add + N/A
3 multiply * | N/A
4 Cosine cos N/A
5 Variable X 0.0

6 Variable y 1.2

7 Constant Pl 3.14
8 Constant const 1 45
Table 1 Symbol Table

e Symbols IDs are allocated dynamically when the program starts and during the

course of its execution.
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Symbol Type is defined as enumeration and is used to determine how to evaluate
and display symbols. For example if the type is “cosine”, then the symbolic
engine evaluates the symbol by calculating the cosine value of its argument. For
displaying purposes, the symbolic engine uses the representation string associated
with type “cosine” to print on screen, in this case the engine prints “cos”. As a
general role, if the symbol type is not “constant”, the representation string will be
used to print the symbol.

On the other hand, if the type is “constant” then the symbolic engine uses the
associated value field to evaluate and print the symbol. Note that symbols of type
“constant” could be created by user or by the system when it optimizes
expressions.

Finally, Symbol type contains the following symbols: constant, variable, add, sub,

multiplication, division, power, sine, cosine, and tan.

Representation strings are used to print symbols on screen. Representation strings
are provided by the user when he creates symbols, or generated automatically for
system created symbols. The only exception for using representation strings for
printing is symbols of type “constant” as they are printed using their associated

values.
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3.6.3 Expressions

An expression is a C++ class that owns a binary tree. Binary trees are used to

represent mathematical expressions, such that each tree holds an entire

expression. A sample tree is show figure 15 below. For demonstration purposes,

a sample symbols table is shown on the right hand side of the tree to show the

association between symbol IDS and their definitions in the symbols table.

. Symbol

Symbol Representation | Value
left V(ght ID ’ Type pString
ID 1 add + N/A
ID 2 multiplication * N/A
ID 3 cosine cos N/A
left \f\:ght l right |ID_4 | variable Y 234
ID 5 constant N/A 33
variable X 1.4

Figure 15 Expression binary tree

The equivalent expression of the binary tree above is (Y*33)+(cos(X)).

Nodes are allocated and deallocated dynamically upon request. Each node stores

two pointers to its sons, as well as Symbol ID which is used to interpret the

meaning of the node using the Symbol Table.

Expression class defines a set of mathematical operators to manipulate its

associated binary tree. These operators corresponds the types defined in the

symbol table and they include: addition, subtraction, multiplication, cosine, sine,
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power, and equality. Complex expressions are built by aggregating smaller

expressions using the mathematical operators.

Expression class also defines a set of helper functions that are needed for

symbolic processing, such as:

o Expressions simplification: will be discussed in details in section. 4.3.2 on
page 66.

o Partial differential: uses standard mathematics roles to differentiate
expressions tress, for exampled(x* y + y)/éx = y +0.

o Expressions evaluation

o Expressions Printing

o Expression trees copying and deleting

3.7 Numerical Solver

The solver implements Newfown-Raphson algorithm and Moore-Penrose Generalized
Inversed Matrix to solve a system of non-linear simultaneous equations.
A full description of the Newtown-Raphson and the Moore-Penrose Generalized Inverse

Matrix can be found in [1], [14] and [18]. The following is the summary of the algorithm:
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e Input:
o System of symbolic constraint equations, or SCE
o Initial solution vector, or IS

o Maximum number of Iteration, or MaxItr

¢ Output: solution vector

e Algorithm:

1-Iteration € 1

2-CS < IS (CS stands for Current Solution)

3-IE € SCE ( IE stands for Input Equations)

4-SJM < calculate Symbolic Jacobian Matrix of [E

5-EJM < Evaluate SJM, i.e. substitute CS into SJM and evaluate
6-GIM € calculate the Generalized Inverse Matrix of EJM
7-DX € GIM * CS (DX stands for Delta X)

8-CS €« DX +CS

9-Iteration € Iteration + 1

10-if Iteration < MaxItr Jump to 5, else print CS and quit

The exit condition of the algorithm is not optimized. A right implementation will use a
heuristic function to measure the deviation of the consecutive solutions or/and
satisfiability of the constraint equations to determine when to stop. However, due to time

constraints I used the above implementation and visualized solution progression using
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Maya. Chapter 4, i.e. Testing and Results, elaborates more on the conversion speed of the

solution.

3.8 Usage Model

This section demonstrates how to use the system from user’s prospective. The following

scenario highlights the required steps to use the system:

1. Design character and environment using Maya

2. Pose the character and deduce a group of geometric constraints that collectively
capture the characteristics of the pose

3. Use thé symbolic engine to create corresponding constraints equations

4. Invoke the numerical solver

5. Apply the result on the character

6. If the result is not satisfactory, refine the geometric constraints and try again.

Chapter 4 demonstrates different testing cases and their results
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Chapter Four - Testing and Results

4.1 Introduction

The testing process includes 10 equations that represent 6 spatial geometrical constraints.
As mentioned earlier, the skeleton has 33 joints, in which 16 are used and create a total of

30 Degree of Freedom in 3D space. The testing aims at addressing the following points:

e Whether a solution could be found if environment description or character
dimensions or pose have been changed
e How fast could the solution be found

e What is the memory requirement for the system

The first point has been tested against individual constraints as well as all constraints
combined. The numerical solver succeeded in finding solution for each geometric
constraint individually, however 5 equations out of 6 can be satisfied simultaneously.

Section 4.2.6 discusses this problem in details.

The second and third points were tested against the 6 geometrical constraints combined
together as performance issues were handled at the end of the research. In general, the
symbolic engine performance needs to be optimized as it’s considered the bottle-neck of

the system. Section 4.3 discusses these points in details.
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4.1.1 Templates and Notation Used in Testing Process

In order to facilitate the description of the geometric constraints, the following notation is
used:
¢ (Joint) = Spatial position, i.e. xyz, of joint “Joint” in world coordinate system.
¢ (Joint2-Jointl)= Vector from Jointl to Joint2 defined in world coordinate system
¢ (dot)= Dot product between two vectors, e.g. vectorl (dot) vector2
o distance(Joint2, Joint1)=Square of the distance between vector (Joint2-Jointl)
e normalize(Joint2, Jointl)= Normalized vector (Joint2-Jointl)

o length(Joint2, joint2)= Length of vector (Joint2-Joint1)

A constraint is written such that when it is satisfied it equals to zero. For example, if we
want to say that position of Jointl and Joint2 are the same, we define the constraint as:

(Joint1-Joint2)

Also the following template is used to describe geometric constraint test cases:
Description: The purpose of the constraint or what it should achieve
Markers Used: Markers used to facilitate writing constraints equations

Helper Equations: Equations used to formulate geometrical constraints

Constraints: Equations passed to the numerical solver to be solved.
Notes: If required, notes are added here

Figure: Figure number associated with the geometric constraint
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4.1.2 Test Cases Summary

Test cases have been designed to address a pose in walk cycle as shown in the figure 16
below where a character is walking on a tilted floor and carrying a box. The box is not
shown; however the character hands have to maintain a certain distance apart simulating
the width of the box. In general, during a walk cycle, one leg is swinging and the other is
pivoting on the floor. In the .following discussion, “swinging” and “pivoting” will be used

to refer to these states respectively.

" Figure 16 Character walking pose

The test cases below handle each geometric constraint individually, i.e. each test case

addresses one geometric constraint. Note that a single geometric constraint might be
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realized by multiple equations, for example imposing parallelism between two vectors in

3D requires two equations to be satisfied.

Finally, all geometric constraints are tested as a group and section 4.3 discusses results in
details. In summary, the system requires 3 to 5 iterations to find a solution for the all
geometric constraints combinéd if the initial pose is close to the final solution. If the
initial pose is not close to the solution, the system takes around 20 iterations to find a
solution and although the solution is mathematically correct, the pose created might not

look a possible or not a human pose as seen in figure 17.

Figure 17 Faulty pose
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4.2 Test Cases

4.2.1 Test Case 1

Description: Foot(R) touches the floor
Markers used: “StepMarker” is used to indicate the exact point where Foot(R) should
touch the floor

Constraint(s): Foot(R)-StepMarker

Figure: 18

Figure 18 Test case 1
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4.2.2 Test Case 2

Description: Foot(R) bottom is parallel to a vector in floor simulating standing on it
Markers used: “FloorMaker1” and “FloorMarker2” represent a vector in floor
Constraint(s): (Middle Toe(R)-Foot(R)) (dot) normalize(FloorMarker2-FloorMarkerl) —
length((Middle Toe(R)-Foot(R))

Note : One way to calculate the location of “FloorMarkerl™ and “FloorMarker2” is by

projecting Foot(R) and Middle Toe(R) on the floor respectively.

Figure: 19

Figure 19 Test case 2
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4.2.3 Test Case 3

Description: Distance between Wrist(L) and Wrist(R) equals a numerical value. This
numerical value represents a width of a box that the character is holding
Markers used: “BoxMarker1” and “BoxMarker2” used to indicate the box width

Constraint(s): Distance(Wrist(L)-Wrist(R))- Distance(BoxMarker1-BoxMarker2)

Figure: 20

Figure 20 Test case 3
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4.2.4 Test Case 4

Description: Swinging leg lands on the floor and is a 40 unit apart from the pivoting feet
Markers used: The floor is defined as a point “StepMarker” and normal vector
“floorNormall” and “floorNormal2”
Constraint(s):

Distance(Foot(L)-Foot(R))- (402) [Note, Distance calculate square distance]

(Foot(L)-StepMarker) Dot (FloorNormal2-FloorNormall)

Figure: 21

Figure 21 Test case 4
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4.2.5 Test Case 5

Description: “Root™ joint projection on the line connecting two feet splits this line into
two equal halves
Markers used: None

Helper Equations:

AnklesMidPoint € (AnkleL-AnkleR) * 0.5 + AnkleR

RootToAnklesMidPoint € (Root-AnklesMidPoint)

Constraint(s): RootToAnklesMidPoint (Dot) (AnkleL-AnkleR)

Figure: 22 shows the problem, 23 shows the result

Note:

(1) It might be argued that constraint equation does translate the description section
correctly. In general, there are many ways to write constraint equations to satisfy the
description above, and all should give the same the result.

(ii) The constraint is intended to have “Root” joint between legs which should fix the
problem seen in figure 22. After satisfying the constraint the skeleton becomes as seen in

figure 23.
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Figure 22 Test case 5- A

Figure 23 Test case 5— B
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4.2.6 Test Case 6

Description: Backbone, defined as (Spine-Root), is parallel to the line from “Root” joint
to the middle point between two feet.

Helper Equations:

Backbone € Spine-Root
AnklesMidPoint € (AnkleL-AnkleR) * 0.5 + AnkleR
rootToAnklesMidPoint ¢~ AnklesMidPoint-Root
Constraint(s):
(Backbone[0] * rootToAnklesMidPoint [1])-(Backbone[1] * rootToAnklesMidPoint [0])

(Backbone[1] * rootToAnklesMidPoint [2])-(Backbone[2] * rootToAnklesMidPoint [1])

Notes:

(1) This test case is another way to address the problem described in test case 5, however
it produces mathematically satisfied yet incorrect pose as shown in figure 24.

(i1) Combining this constraint with the one described in test case 5 makes the numerical
system unstable, and no solution could be found. Further research is required to
determine the cause of this result; however my assumption is that the constraints

combined should be satisfied, however they might create many local minimums such that
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it becomes hard to find the solution

Figure 24 Test case 6
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4.3 Results

4.3.1 Numerical Solver Issues and Workarounds

In general, the numerical solver performance is satisfactory and it requires around 0.2
second to solve a system with 30 variables and 12 constraints equations. Memory
requirement is proportional to the size of matrices used. For example using 32 bit floating
point precision, 12 equations and 30 variables will need 12 * 30 * 4 = 1,440 byte for the

Jacobian matrix which is the largest matrix required in the solver.

The most challenging problem in the numerical solver is to find the right set of
constraints that describe what the user needs to realize. The following list summarizes the

issues encountered during designing and using the numerical solver.

¢ Running the numerical solver for many iterations does not always guarantee

better solutions. For example, the solver might find a solution vector that is close

to the optimum solution, however in order to find a better or closer solution, it

will keep running, deviates and then finds a more accurate solution that does not

look natural or human-like. To solve this problem, either:

o Create a metric that defines acceptable solutions, or human poses, and use

it to select a good solution. For example, the metric might include |
conditions like: angle between two feet should be between -45 to 45

degree.
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o Create multiple solutions and ask a human animator to choose the best one
o Impose more constraints to eliminate unacceptable solutions; however it is

a complex trial and error process.

o Initial solution influences the final result. The problem with that is any
irregularity or deformation in the skeleton will be magnified in the final solution.
This problem is inherited from the numerical nature of the system expressed as
using the initial guess to find the solution. There are two ways to solve this
problem:

o Impose more geometric constraint to eliminate any deformation in the
final solution

o Adjust the initial solution to eliminate any irregularity. However, it would
be hard to pinpoint these irregularities by the naked eye, and even worse it

would be hard to fix them without using precise geometric processing.

¢ Determining the Degree of Freedom for each joint might not be a straight
forward. The user of the system must be aware of how many Degrees of Freedom
he grants each joint; otherwise the result might be unpredictable. For example:

o My basic assumption was to give the root joint six degrees of freedom,
however testing this setup showé that since the root joint orients the whole
skeleton, the pose generated might be rotated in uncommon way. The case
is specific to my skeleton and might not a _problem on other skeletons.

Even worse, if the root joint has no degree of freedom, the solution will
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not be found although it is possible. After testing, I realized that the best
configuration for the root joint is to have three translation degree of
freedom

o Some joints are structural joints, meaning they are not intended to move or
rotate. For example hips joints have constant relationship between the root

joint and they should not move.

e Solving geometric constraint equations simultaneously means that all equations
have to be in the same transformation space, e.g. world space, which increases the
complexity of the equations. For example if a geometric constraint is required
between elbow and wrist joint, the constraint has be described with respect to root
joint space, although the same constraint will be easier written and solved if
written with respect elbow joint space. Possible solutions are:

o Write an algorithm to determine independent sets of constraints, for
example the algorithm will process the input constraint equations and
deduce that there are two independent sets A and B: A has 5 equations and
B has 6 equations. However, writing this algorithm will be tricky as
equations are non-linear, and for each initial pose there might be different
set of independent equations.

o Rely on the user to create the sets of independent equations

o Finding the right set of geometric constraints that capture what the user wants to
express is a very challenging process. The main reason is that number of

constraints is usually less than number of degree of freedom of the skeleton,
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which means that there is endless number of possible solutions. For example, test
case 5 which is used to keep the root joint between the two feet produced the

following pose as shown in figure 25:

Figure 25 Unexpected pose

In general, since the constraints need to be generic, solution domain is versatile

and the user might get an unexpected result. The best way to overcome this
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problem is to try different constraints and develop a sense of which group will get

the required result.

e False solutions. The numerical system might oscillate due to local minimum
before it finds the root of the equation as shown figure 26. The problem
manifested itself as one leg is swinging between two different locations; however
after around 24 iterations the system finds the real solution. To solve this
problem, we might:

o Monitor F(X) and if oscillation is detected we can reposition X away from
the oscillation area and try again. Also we should use a heuristic function

that records where X experiences oscillations and avoid these areas.

Figure 26 False solution and local minimum

e Floating point rounding errors. Initially the expressions created contained many
constant terms with order less 10~ which caused lots of unnecessary operations. The
existence of these numbers depends on how the hardware represents floating point

numbers internally. Further testing revealed that multiplying a simple expression like
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1.0 * 0.0 might create such results. To solve this problem, a check to eliminate any

constant values that have values less than 10~ is implemented.

4.3.2 Symbolic Engine Issues and Workarounds

After combining the six geometric constraints and limiting kinematics chains to only 4
consecutive joints, the application required around 2 minutes on Pentium dual core 2.0
GHz and 1.5 GB to finish building the symbolic Jacobian matrix corresponding to the
input equations. Even worse, if the kinematics chains have 5 joints, the system runs out

of memory.

The first step to solve this problem is to find its causes. In general, most of the issues are
related to simplifying and storing the mathematical expressions represented by binary
trees. More research is required to find a better way to simplify and store binary trees in
memory. The following summarizes the problems related to the way I implemented and

used binary trees:

e Excessive number of constants that can be aggregated as shown in figure 27. The

problem arises as transformation matrices contain many zeros and ones by nature.
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Figure 27 Expression binary tree simplification - A

To solve this problem, expressions operators are modified as the following:

Constant_1 + Constant_2 - Constant_3

Constant_1 * Constant_2 - Constant_3

Zero + Expression_1 = Expression_1
Zero * Expression_1 = Zero

One * Expression_1 - Expression_1

However, the above modification does not simplify a binary tree that has a
variable as one of its operand. For example the tree on the left hand side of figure
28 has symbol x of type variable and hence will not be reduced to the tree shown

on the right hand side.
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Figure 28 Expression binary tree simplification - B

e Excessive number of recursive calls due to using unbalanced binary trees. The
problem is related to operator precedence in C++ which affects how expressions
are being built. In C++ if all operators have the same precedence, then the
compiler will execute them from left to right. For example, assume A, B, C, D
and F are of type expression class. If we construct another expression G=A + B +

C + D +F, then G will have a binary tree similar to figure 29:
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Figure 29 Unbalanced binary tree
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In the unbalanced tree above, each level has two nodes, one operand and one
operator — the only exception is root and leaf levels. This means that for » nodes
we need n level. If the tree is balanced, then for » nodes we will need
approximately In(n)/In(2) level which should reduce the depth of the tree
significantly. More research is required to find an efficient way to balance the

trees used.

Excessive number of dynamic memory allocation and deallocation due to
allocating and deallocting nodes individually upon request. A better solution will
be allocating a chunk of memory, however then another algorithm to manage the

memory will be required.

To have a rough estimation on the cost of dynamic memory allocation and
deallocation, IBM quantify profiler has been used to measure the amount of time
spent on memory functions as shown in table 2 which is sorted by the percentage
of time used by a function and its descendants, and table 3 which is sorted by the
percentage of time used by the function only. From table 2, we can observe that

C++ new function consumes 50% of the program execution time
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In order to reduce the effect of the above problems, I enhanced the symbolic
engine in two different ways:

o Modified expression operators, e.g. + and *, to simplify the expression if it
contains zero or one as mentioned earlier in section 4.3.2 on page 59.

o Implemented simplify function which evaluates the tree and tries to
remove any expressions involving negligible numbers generated due to
rounding errors. Rounding errors problem has been discussed in the
numerical solver section, i.e. section 4.3.1, and it is summarized as having
many negligible numbers, order of 107, that impact the symbolic engine

performance. The threshold for these the negligible number is chosen as

10~ based on observing the numbers generated by the system.

The idea behind simplify is to parse the tree and propagate any constants

up the tree. The following algorithm explains how simplify works:

Simplify(node)

If node->left, simplify(node->left)

If node->right, simplify(node->right)

If node->operator equals cosine or sine, and

Node->left is constant, //note: unary operator operand store in left

Then evaluate cosine or sine and return the value
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If node->operator equals multiplication, and
Node->left or node->right equal zero

Then return zero

If node->operator equals multiplication, and
Node->left or node->right equal one

Then return none-one node

If node->operator equals addition, and
node->Left or node->right operand equals zero,

then return the non-zero node

After implementing the above two enhancement, the same system of equations takes
approximately 12 seconds and around 15 MB to build the Jacobian matrix as opposed to

120 seconds and 1.5 GB.
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Chapter Five - Conclusion and Future
Work

5.1 Summary and Conclusion

This research studies the foundations of character animation and suggests that current
animation techniques representation of animation is limiting. The limitation is due to
storing spatial translation and rotation and ignoring other important aspects such as
apparent geometric constraints dedicated by animated characters’ interaction with their

environment and with themselves.

To overcome this limitation, spatial geometric constraints are used to encode more
information and describe character poses. Augmenting this information helps reuse and

reconstruct poses for different characters and environments.

However, we must state that the purpose of this system is not to synthesis a pose from
scratch; instead it adjusts a close pose to meet new characters’ dimension or different

environment.

The system succeeds to achieve its purpose, however it comes with limitations. The
obvious limitation is that it requires an initial solution, i.e. initial pose, otherwise the
numerical solution might not converge or converge but produce a not human-like pose.
Performance still needs to be addressed in this system in order to build more complex

constraints and minimize the time and memory required.
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5.2 Future work

e Improve the performance of the symbolic engine. This includes:

o Reevaluating the current way binary trees are implemented to minimize
the number of dynamic memory allocation and deallocation and the depth
of the trees created.

o Simplify expressions built such that constaﬁts are evaluated and combined
together, instead of being spread over the tree.

o Implement a smart simplify function that takes into account mathematical

roles, for example x * x * x becomes x"3, or trigonometry identities.

o The numerical solve could be improved as the following:

o Integrate numerical optimization algorithms into the numerical solver.
Currently the solver finds the root of simultaneous non-linear equations
which help describe certain amount of geometric constraints. However, it
will be helpful if we can ask the solver to maximize or minimize a vector,
for example a standing pose could be described by pinning feet to floor
and maximizing the head height.

o Allow variables to be in a certain range, or define the domain of the
problem. For example, it will be helpful to state that x should be in [10,20]
range.

o Add weights to constraints; however this will be useful if we solve over-
constrainted problem which is hard to encounter in character animation.

For example, for the simple skeleton we have in this thesis, we have 30
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variables which means that the user needs to specify more 30 constraints

to make the system over-constrained which is not probable.

Create a graphical user interface that can be used to describe the geometric
constraints visually
Introduce constraints between consecutive poses, or even on the speed or

acceleration of the skeleton.
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