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ABSTRACT

Geotechnical Performance of Group of Stone Columns

Mohammad Etezad Borojerdi, Ph.D.
Concordia University, 2007

Stone columns are known to be a cost effective and environmental friendly ground
improvement technique, which is widely used to enhance the performance of shallow
foundations built on soft ground. Stone columns increase bearing capacity, reduce
settlement, reduce signiﬁcaﬁtly the consolidation period and minimize the liquefaction
potential of the ground.

The current design of these columns is generally based on theories developed for
single columns, ignoring the group interaction and accordingly the group efficiency. In
the literature, reports can be found to confirm that the failure of single stone column is
mostly due to bulging, meantime for a group of stone columns, the failure mechanism
takes place by massive shear failure of the group and the surrounding soils.

The objective of this thesis is to develop a numerical model, based on a two
dimensional finite element technique. The model is capable to identify the different mode
of failures of single and group of stone columns for a given columns/soil/loading
condition. In these cases, group interactions were examined and evaluated. Parametric
study was conducted on the parameters believed to govern this behavior. The results
produced in this study showed that ground reinforced by group of stone columns may fail
by general, local or punching shear failure, depending on geometry of the group and

properties of the surrounding soils.

1ii



Analytical models were developed for the ultimate bearing capacity of single and
groups of stone columns. The models take into consideration the column interaction
among the group and the strength of the surrounding soils and accordingly depict the
appropriate mode of failure. Furthermore, analytical model was developed for the
prediction of settlement of foundations under single or widely spaced stone columns. The

design theories are provided with design procedures and charts for practical use.
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CHAPTER 1

INTRODUCTION

1.1 General

In recent years, increasing value of land and the limited availability of sites were greatly
encouraging geotechnical engineers to develop techniques to improve ground made of
soft and compressible soils. Stone columns, preloading, densification, chemical
treatments and vertical drains are to name a few.

Stone column teehnique is considered as an efficient, cost effective and
environmentally friendly for improving soft cohesive and cohesionless soils to sustain
foundations of light to moderately loaded buildings; such as low-rise buildings, storage
tanks, embankment dams, warehouses, highways and bridge approaches are to name a
few. Storie columns were used to provide higher bearing capacity, reduce settlements,
speed-up the settlement, and reduce liquefaction potential of cohessionless material under
seismic loading and to enhance the stability of natural and man-made slop.

In the literature, reports showed that stone columns were used to replace about 10
to 35 percent of the weak soil. These columns are usually made of granular compacted
material and approximately carry about 20 to 50 tons. Furthermore, evidences were
presented to support that the stone columns are superior as compared to other ground
improvement techniques, with respect to costs and durability, besides being known as

environmentally friendly and easy to install.



1.2 Research Objectives

Although stone columns have been widely used in practice, research in this field is
lagging behind due to the complexity of modeling the composite media of soils and
columns, and accordingly, the current design practice is based on experimental methods
or theories, which were developed for single isolated columns based on the concept of
unit cell; ignoring the columns interaction and further the group efficiency; therefore, the
ulti_mate capacity of a group of stone columns is taken as the total load of the individual
columns. Furthermore, for the unit cell theory, the column fails by bulging; nevertheless,
it has been observed that a column in a group fails by massive shear of the entire group
and the surrounding soils.

The objectives of the research are:

1. To develop a numerical model to simulate the cases of single and group of stone
columns below a raft foundation. The model is a two dimensional finite element,
which is capable to determine the mode of failure of a group under
geometry/soil/loading conditions, as general, local, punching or bulging form.

2. To perform a parametric study to establish the effect of the governing parameters
believed to affect the performance of a group of stone columns.

3. To develop analytical models, design procedures and design charts to be used in
practice for the case of bearing capacity of the reinforced ground under the modes
of failure mentioned above.

‘4. To develop an analytical model for the case of settlements of single stone column.

5. To validate these models with available experimental and numerical data in the

literature.



6. To develop a procedure to identify the mode of failure for a given condition and

accordingly, utilize the appropriate design theory to predict the capacity of the

group.

1.3 Organization of Thesis

The historical development of the subject is presented in chapter 2. In chapter 3,
numerical models for single and group of stone column are presented. In this chapter,
group interaction of columns and the associated modes of failure are presented.
Furthermore, parametric study on the parameters governing this behavior is also
presented. Chapter 4 presents analytical models for general, local, punching shear failure
and bulging failures. Conclusions drawn from the present study and recommendation for

future study are presented in chapter 5.



CHAPTER 2

Literature Review

2.1 General

Stone columns technique is considered as an effective ground improvement method for
foundation on soft ground. Stone columns were first used by Moreau et al in 1830
(Hughes and Withers, 1974). They used 0.2m diameter and two meters in length columns
to support the foundations of ironworks for the military purpose in Bayonne, France.
Moreau reported a significant reduction of settlement and large increase in the capacity of
soil/column system. In 1939, Steuermann proposed the vibro-compaction technique to
treat ground using water injection and vibration into the soil simultaneously. The
combination of jetting and vibration enables the device to sink by its own weight to the
réquired depth. In 1940s the development of vibroflot was continued in USA and
Germany. By the end of 1950’s the depth of treatment increased to about 20m. Stone
column technique has been used widely in Japan since 1955. Later this method has been
used in China, India and many other countries.

During last 40 years many researches were conducted to estimate the amount of
bearing capacity and settlement of the ground reinforced by stone columns. Due to the
analytical complexity of modeling the problem, simplified assumptions were used to
develop design theories. However, these assumptions have lead to an unrealistic

modeling of the composite system and accordingly misleading results.



2.2 Failure Mechanism

Prior to 1974 most of the research on stone columns was limited to field experimental
work. In 1974, Hughes and Withers reported that bulging took place at the upper part of
the column, roughly about four-diameter length from the top of the column (Figure 2.1). -
They also reported that stone columns in a group fail by bulging following the unit cell
concept (Figure 2.2). According to the unit cell concept, each column in the group of
stone columns will act independently from the neighboring columns and accordingly,
there will be no interaction effects between the columns in the group. (Figure 2.3)
Therefore, the capacity of the group can be determined as the total capacity of columns in
the group. Accordingly, the unit cell theory stipulates that:

1. Lateral deformation does not occur across the boundaries of the unit cell.

2. Shear stresses on the outside boundaries of the unit cell must be zero.

In 1984 Bachus and Barksdale conducted series of laboratory tests to investigate

the interaction effect between two adjacent columns. Based on the results obtained from a
group of 2x3 (Figure 2.4), it was noted that the presence of adjacent columns provides
some confinement for the column in question, furthermore, bulging was restrained in the
interior side of the columns. This characterization was later defined as group interaction.

This study shed some doubt on the assumptions of the unit cell technique.
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Terashi et al. (1991) was the first to report on the group interaction and
accordingly efficiency. Based on the results of the laboratory tests they conducted on a
centrifuge set-up, they reported different failure mechanism than those described by the
unit cell theory (Figures 2.5 and 2.6), where group interaction of columns can be noted.
Terashi et al (1991) also reported a full-scale test, which was carried out at Kyoto, Japan
(Figure 2.7). In this test stone columns were not equally distributed inside the ground.
The test was completed over three year period (1986 to 1988). Figure 2.8 shows the
failure of the structure and the surrounding soils.

In 1995 Hu performed laboratory tests on group of stone columns. He concluded
that group interaction plays a major rule in understating the behavior of group of stone
columns. He reported that columns deform by bulging, punching, shearing and bending;
furthermore, during loading, interaction between neighboring columns prevent bulging to
occur in the upper part of individual columns. Accordingly, to column interaction,
bulging will to take place in the lower portion of the interior column, while exterior
columns bulging remains in the upper part of the column (Figure 2.9). Figure 2.10
presents the deformed shape of a group of stone columns. He further suggested that
general shear failure is the mode of failure for a group of stone columns.

In 1997 Rao et al. conducted laboratory tests on single and group of stone
columns. They reported that spacing between columns significantly influences the
behavior of stone columns. They suggested that considering the group efficiency factor,
the spacing of 3 times of the column’s diameter can be used for practical purposes. They
declared that when the spacing of columns is close the bulging zones of adjacent columns

are overlapped, and accordingly, the group capacity increases due to confinements.
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Figure 2.6 Failure mode of a group of sand columns, after Terashi et al. (1991).
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after Hu (1995).
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Wehr (1999) investigated the group effect using finite element analysis on three-
dimensional model. He used the constitutive law of elasto-plastic to model the
soil/column system. He confirmed same conclusion of Hu (1995). Figure 2.11 shows the
deformed shape as produced by the numerical model, due to 10mm surface displacement.

Christoulas et al. (2000) performed laboratory model tests on stone columns in

“clay. They used pressure cells and electronic piezometers to monitor lateral stresses and
the pore water pressure in the soil mass. They observed the bulging failure and confirmed
the results of Hughes and Withers (1974). Furthermore, they reported that the length of
bulging was about 2.5 to 3 times the column diameter. However, in their study columns
were considered too close to the boundaries and accordingly, boundary effect was
expected.

In 2002 McKelvey examined experimentally the performance of small group of
stone columns, partially penetrating a rigid foundation. She preformed two series of tests.
In the first series transparent material was utilized to replace the clay layer. For the
second series of tests kaolin clay was used. Group interaction was observed in both tests,
as shown in Figure 2.12.

Bae et al (2002) preformed model test on a group of stone columns. They
compared their result with results produced by a numerical model utilizing finite element
technique, where agreement was noted and that the group will fail in general shear having

a conical shape.
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In 2007, Ambily and Gandhi conducted experimental and numerical analysis on
singles and groﬁps of stoné columns. They reported that bulging does not occur in
reinforced soil with stone columns. By comparing the load displacement curve of single
and group of coiumns for area replacement ratio of 10%, they observed close agreement
between the two models. Redﬁction of replacement area, leads to reducing the effect of
group interaction and hence for very low area replacement ratios, bulging failure may
take place. However, area replacement ratio of 10% and less are not normally used in

practice as there is no noticeable improvement on performance of the reinforced system.

2.3 Theoretical and Numerical Analysis

Based on field data, Glasgow, Thorburn and MacVicar (1968) suggested that the shearing
force resisted by the soil can be completely ignored; furthermore, the number of columns
can be determined by dividing the working load of a single column over the total load on
the foundation. Considering that the surrounding soil will support a large portion of the
total load, this approach gives approximate estimation of the capacity of the group.

Greenwood (1970) presented an empirical method to determine the settlement of
a ground reinforced by stone columns, based his experimental data. He reported that the
method is valid for the given rage of column spacing and the strength of the clay.
McKelvey and Sivakumar (2000) reported that Greenwood method comparers well with
many recent theoretical methods.

Vesic (1972) developed cylindrical cavity expansion theory, which is applicable
to both cohesive and frictional soils. Considering tﬁe unit cell concept, this method can be
used to predict the capacity for group of stone columns. Bachus and Barksdale, (1983)

suggested the ultimate lateral resistance of soil can be given by the following equation.

14



o, = cF! +4F! | - (2.1
where ¢ and g represent the cohesion and the stress at the failure depth respectively. F, -
and F, are thé cavity expansion factors as giveﬁ by Vesic. The ultimate bearing capacity
of the column is expressed as.

9 = (cF, +qF))K, | (22)
Based on the laboratory test results for single stone column, Hughes and Withers (1974),
considered bulging as the failure mode of group of stone colummns. Utilizing the elastic

plastic theory developed by Gibson and Anderson (1961), the maximum lateral pressure

on single stone column was estimated as follows.

E
o, =0, +(1+log, —— 2.3
rL ro ( ge 26(1_'_#)) ( )
whereo,,, E, ¢ and c are total in-situ lateral pressure, modulus of elasticity, Poisson’s

ratio and the undrained cohesion of the soil respectively. They stated that Equation 2.4
can be used as an approximation of Equation 2.3
o, =0, +4c+u (2.4)

Therefore the ultimate load which a stone column can support is given as.

o, = M(O’m +4c—u) (2.5)
(I-sing)

whereg' is the angle of friction of the material of the stone column and u is the pore

water pressure. For frictionless soil Vesic’s equation agreed well with the results of given
by Gibson and Anderson. It should be reported herein that this method compared well

with the data obtained for single columns, McKelvey and Sivakumar (2000).

15



Priebe (1976) assumed stone column as a cylindrical made within the”
compressible soil. The surrounding soil was idealized as an elastic media. Furthermore,
he assumed that the column ends on a rigid layer. He introduced an improvement factor

as the ratio of the settlement of the untreated ground to the improved ground.

S+2v l—is
g=1+As___11/st 2.6)
S K, 2v—= |
v+A4,

K, is the active earth pressure of the granular material and the value of 1/3 is assumed
forv. In this analysis, the effect of overburden pressure was neglected. In 1995 Priebe
incorporated the effect of compressibility of the column material and the overburden. He
developed design charts to calculate the settlement of single and strip footings reinforced
by a limit number of stone columns.

Dhouib (2004) declared that Priebe’s method is widely used for the design of
stone columns. Based on comparison of equilibrium method and limited field results,
Barksdale and Bachus (1983) reported that this method overestimate the effect of stone
columns in settlement reduction.

Balaam (1977) modeled a ground reinforced with stone columns supporting a
flexible raft foundation, using finite element method. Both soil and column material were
elasto-plastic and Mohr-Coulomb failing criterion was applied. Surprisingly, it was
6bserved that the calculated settlement using the elastic analysis has only 6% difference
comparing to the plastic analysis. Greenwood and Kirsch (1984) criticized this report,
stating that the result should be checked with an alternative approach. Balaam observed

significant reduction on settlement when the area replacement ratio was near 25%. He
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noted that the effect of increasing the column length and decreasing columns spacing on
the increasing the rate of settlement.

In 1981 Balaam and Booker proposed an analytical solution based on theory of
elasticity to estimate foundation settlement. Both soil and column were assumed to be in
elastic condition. Balaam and Booker (1985) stated that this method can grossly
overestimate the effect of stone columns in reducing settlement. Rigid raft was
considered and equal settlement of column and soil was assumed (Figures 2.13, 2.14 and
2.15). In these figures subscript 1 and 2 represents the properties and column material and
soft soil respectively. Furthermore, they reported that when load is initially applied to the
unit cell, soil carries larger portion than the column. This is due to the fact that clay
initially is in undrained condition and behaves as an incompressible material. However,
as the excessive pore water pressure dissipates column carries more vertical stress rather
than the surrounding soil.

In 1985 Balaam and Booker developed another method to analyze the load
settlement response of ground. The problem was idealized assuming that the stone
column is in triaxial state. Unlike previous method, they assumed that yielding takes
place in the column while soil remains elastic. They reported good agreement between
the methods and the experimental data.

Brauns (1978) developed a theory assuming that the upper portion of the stone

column yields like a cylindrical sample of cohesionless soil and fails by shear having an
angle of 45 +—¢—;‘— (Figure 2.16). Using Equation 2.7 and by calculating the cone angle,d ,

using a charts, which he developed the ultimate load for single column will be estimated

as follows.
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Madhav and Vitkar (1978) presented a method to calculate the bearing capacity of
a trench or single pile based on general shear failure (Figure 2.17). They developed a

formula similar to the general bearing capacity formula for shallow foundations.

q

B
g =C.N. +2'£2—N, +D,y N (2.8)

The factors N,, N, and N, are dependent on the ratio % and the properties of trench and

soil material.
Aboshi et al. (1979) introduced simple yet realistic method to calculate settlement
of the reinforced ground based on stress concentration factor and one dimensional

consolidation theory. Stress concentration in soil and column can be written as follows:

c=0,4 +o,(1-4) (2.9)

o
Ty u.o (2.10)

no
0, =———— =40 2.11
T Tr-DA, Hy 2.11)

where n is the stress concentration factor and z,and g, are the ratio of stresses in clay
and stone respectively. The settlement of the reinforced ground is then expressed as

St =m,o,H=m, (uoc)H (2.12)
where m, is the volume compressibility and H is the thickness of the clay layer.

1, 1s the settlement reduction ratio; where

H
s_mott 1 __, (2.13)
s, moH 1+(n-1)A,
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Abashi et al. indicated that Equation 2.13 should only be used when the ratio of
area replacement, A4, is less than 30%, otherwise the method will overestimate the
settlement. This is due to the fact that beyond this ratio, the replacement effect of stone
columns can no longer be neglected. Barksdale and Goughnour (1983) reported that
method is overestimating the measured settlements for all replacement ratios.

Goughnour and Bayuk (1979a) assumed that column material is incompressible,
both the column and soil will equally settle and neglect the shear stress between them.
Goughnour and Bayuk (1979b) concluded that the magnitude of this stress is always less
than 9.6 KPa. The analysis considers both elastic and plastic behavior of stone and clay.
The value of X starts from K, line for the initial condition and is bilinear with the increase
of stress. Furthermore, the value of K was found to be in between K, and 1/X,,

Barksdale and Bachus (1983) proposed an approximate approach, which can be
used for preliminary analysis of individual stone column within a group. They proposed
that the ultimate load of the stone column can be calculated as
qu =€, N, (2.14)
¢, 1s the undrain shear strength of the surrounding soil and N, is bearing capacity factor of
the material of the stone columns. N, is dependent on the compressibility of surrounding
soil and has the limit of 18 to 22 for low to high initial stiffness respectively. Mitchell
(1981) recommended the value of 25 for vibro-replacement stone column. Datye et al.
(1982) recommended the value of 25 to 30 for vibro- replacement stone columns, 45 to
50 for cased, rammed stone columns and 40 for uncased, rammed stone columns.

For the group of stone column, Barksdale and Bachus considered the failure shape

given in Figure 2.18 and assumed that the foundation is loaded quickly so that undrained
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shear strength is developed in the cohesive soil. A composite ground were assumed and

based on shear failure in soil and stone the following equations were obtained.

(tang),,, = u, A, tan @, (2.15)
Cog = (1= 4))c (2.16)
B =45+ f’% 2.17)
o, =70—B;a—n£+zc (2.18)

where tangy,,, and c,,, are the tangent of the composite angle of friction and the cohesion

respectively. u is the stress concentration factor of stone, 4. is the unit weight of the soil

and B is width of the foundation. The total bearing capacity of the reinforced ground is ——

’;hen defined as
Qu = Oy tan® B+2¢,, tan B (2.19)
However except in slopes, this mode of failure is rarely occur in reality.

For the case of settlement of stone columns, Barksdale and Bachus assumed the

following two conditions:

1. Low compressibility soils
For E,/E, <10curves developed base on linear elastic theory. (Figure 2.19)
2. Compressible cohesive soils
For E /E, >10 design chart are presented based on elasto-plastic condition. The

effect of slipping between the column and the soil was examined and was found that it
has a negligible influence on the calculated settlement. When the lateral bulging is taking

place and the interaction effect between the neighboring columns is created, they
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concluded that a rigid unit cell method could not be representative for this condition.
Accordingly, flexible boundaries were assumed (Figure 2.20). Nevertheless, as it will be
presented in this thesis, none of these models can represent a true deformed shape of a
group of stone columns for the majority of ground conditions and soil properties.

Gerrard et al. (1984) were one of the first to employ homogenization
approximation method for group of stone columns. Homogenization technique is based
on the assumption that column granular materials are scattered homogenously throughout
the soil. They then utilized Tresca yield criterion for clay soil and adopted Mohr- Column
yield criteria for stone material. Furthermore, they assumed that the total vertical strain in
the clay and the stone are equal. The analysis of settlement was conducted for the cases
Qf linear elastic and elasto-plastic conditions for both materials. They reported that the
maximum stress occurs at depth of 0.25 to 1 times of the width of the foundation.

Mitchell and Huber (1985) presented an approximate solution to consider a three-
dirﬁensional stone columns model as axisymmetric cylindrical rings. The surface
dimensions of the stone column rings were calculated in a way that the relationship
between columns’ surface area to the total surface area remained constant. (Figure 2.21)
Utilizing axisymmetric finite element model developed by Duncan, they were able to
compare the results of field load test conducted in Santa Barbara, California with their
homogenization technique. While, the predicted values were greater all the time, a

reasonable agreement was noted.
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The homogenization technique was further advanced by Schweiger and Pande
(1986). In 1988 Schweiger and Pande utilized their method to model a road embankment
constructed on soft clay reinforced by stone column. They declared that homogenization
technique was used to illustrate a realistic behavior of stone columns.

Priebe (1991) assumed that general shear failure occurs in the reinforced ground
with stone columns. He developed two methods based on equivalent soil assumption. In
the first model, the average cohesion and angle of shearing resistance of the equivalent
and surrounding soft soil were considered and the ultimate load on the foundation was
calculated using the theoretical methods for unreinforced soil. In the second model the
average width of the foundation was assumed and the capacity was then calculated using
the material characteristics of the untreated ground (Figure 2.22).

Lee and Pande (1994) developed another homogenization model using Mohr-
Coulomb yield criterion for stone and the modified critical state model for in-situ soil,
and further the non-associate flow rule was employed for the stone material. The model
was incorporated on an axisymmetric finite element code. Figure 2.23 shows the
comparison of the test results of Stewart & Wu (1993) with the theoretical method.

Hu (1995) compared the results of physical modeling of stone columns based on
laboratory work with the results of Lee and Pande’s homogenization technique and
declared that the homogenization method over predicts the total bearing capacity by
about 20%. The stiffness of the reinforced ground was also overestimated by a large
proportion. Furthermore the non-liner stress dependent hardening behavior observed in

all the physical model tests was not shown in the numerical solution.
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Lee and Pande investigated the effect of reduction length of the central column.
Figure 2.24 shows that this reduction in length does not make any significant changes on
the behavior of a group of stone columns. This reduce of length may lead to an
economical design. However, Hu (1995) criticized this concept in reducing cost of the
construction and questioned the applicability of this change of length in terms of
construction practice.

Lee and Pande (1998) have refined their model developed in 1994. Figure 2.25
presents a comparison of their results and those of Hu, where good agreement was noted.
Nevertheless, the results were only validated for single experimental test.

Based on thick cylindrical problem, elastic properties for soil and plastic
condition for column material Poorooshasb and Meyerhof (1997) have developed a
method to calculate the settlement of ground reinforced with stone columns. It was
assumed that both soil and column materials undergo the same displacement. This
assumption is proven by Vautrain (1977). Furthermore, Poorooshasb et al. (1997)
employed the Canasand model proposed by Poorooshasb et al. (1966, 1967). In this
method the unit cell was divided into a number of equal sections and settlements were
developed for each section. The settlement of the whole system was the sum of the
settlement of all sections.

Shahu et al. (2000) developed a theoretical model which analyzes soft soil with
stiff crust overlain by granular mat and treated with granular piles. Equal strain condition
and the distribution of shear stresses between column and the crust-soil system were

considered.
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Ayadat and Hanna (2005) conducted experimental study on encapsulated stone
columns in geofabric installed in collapsible soil. Bearing capacity and settlement of the
columns were investigated. Columns made of sand were tested with different lengths and
strengths of geofabric. They reported that un-reinforced stone columns did not improve
significantly the characteristics of the soft soil. Nevertheless, bearing capacity of

reinforced stone columns was increased considerably.

2.4 Discussion and Scope of Present Research

Vibroflotation Group Co., one of the world’s leading ground improvement companies,
have reported large scatter between the results of different stone column theoretical
methods to calculate the settlement of reinforced ground (Figure 2.26), which may lead to
the conclusion that in the literature, there is no viable theory to predict settlement of stone
columns. This was explained due lack of well-documented full-scale load tests for stone
columns or the varieties in installation techniques and vibratory equipments.

In 2004 during the International Symposium on Ground Improvement (ASEP-GI
2004) settlement prediction exercise had been organized where 17 participants calculated
settlement of an embankment constructed on soft soil improved with stone column using
different available methods (Mestat et al, 2006). The estimated results were compared
with the available field measurements where poor agreement between the measured and
predicted results was observed, with a large scattering of the calculated results.

Furthermore, Ambily and Gandhi (2007) reported that: “In spite of the wide use
of stone columns and development in construction methods/equipments, present design
methods remained empirical and only limited information is available on the design of

stone columns in codes/textbooks.”
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All these statements and recent researches imply that there is lack of proper
understanding of actual behavior of stone columns and accordingly lack of reliable
theoretical for this ground reinforcement technique. In the next chapter a through study

related to behavior of single and a group of stone columns will be conducted.
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CHAPTER 3

Numerical Model

3.1 General

Several reports can be found in the literature dealing with the prediction of bearing
capacity and settlement of group of stone column based on the performance of single
column. This assumption led researchers to ignore the possibility of group interaction;
consequently, bulging was considered as the only mode of failure. Accordingly, the
theories develdped have produced wide discrepancies. In this chapter a numerical model
will be developed to investigate single and group of stone columns. The objective is to
predict the capacity and settlement of these columns under given soil/load/geometry
conditions. Parametric study will be then performed on the parameters believed to govern
this performance. Furthermore, the model is capable to identify the mode of failure under

given loading/soil/columns conditions.

3.2 Numerical Model

The numerical model developed in the present investigation utilizing the nonlinear elasto-
plastic finite element technique. Two-dimensional finite element model was developed to
simulate the case of strip foundation on stone columns. 15 triangular node elements were
used to develop the mesh. The mesh was medium generation, utilized as the global
coarseness of the model; whereas, it was refined in the area of reinforced ground, where

higher stresses and displacements are expected. In this investigation, it was assumed that
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the raft is rigid, and accordingly, both the stone columns and the surrounding soil
undergo the same amount of settlement. Fixed support was considered at the bottom of
fhe mesh and roller supports were on the vertical boundaries. This arrangement
represented a realistic case in the field. Figures 3.1 and 3.2 present the general layout of
the numerical model.

In this investigation, the constitutive laws of Mohr Coulomb, Cam Clay and Soil
Hardening to model the soil were examined. After several trials, it was concluded to
implement Mohr Coulomb constitutive law for both the stone columns and the soft soil.
Axisymmetrical condition was assumed for the case of single columns; whereas, plane-
strain condition was considered for groups in a continious pattern. Boundaries of the
ﬁumerical model were set after several trials in order to avoid horizontal and vertical
stress confinements at the boundaries. No slip elements were installed at the interface
between the column and the surrounding soil. This can be explained by the fact that the
vertical displacement of both the rigid raft and the soil will take place together under the
applied load, and accordingly, no differential settlement will be allowed (Goughnour and
Bayuk (1979b)). Mitchell and Huber (1985), Saha et al (2000) and Ambily and Gandhi
(2007) have implemented similar procedure in developing their numerical models.

Numerical model was developed using PLAXIS V8 program. PLAXIS is
developed in 1986 at Delf University of Technology in cooperation with Dutch Ministry
of Public Works and is widely used in soil mechanic analysis. Number of soil models is
in the program available in order to model the non-linear analysis and the software is also

capable to perform elastic and dynamic analysis.
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Figure 3.2 Mesh generation of the model.
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3.2.1 Material Properties and Geometry Condition

Appropriate choices of material properties are necessary in order to have an accurate
simulation of the reinforcement system in the numerical modeling. The properties of
stone column, soft soil material and the geometry condition can be found in the literature.
These characteristics are presented in tables 3.1 and 3.2 and were used in the numerical
modeling.

The area replacement ratio, total area of stone columns over the area of unreinforced soil,
which is normally used for a group of stone columns, is considered to be between 10% to
35%. For the amount of less than 10% no significant improvement in the ground
properties would be achieved (Hu et al, 1997); whereas, there would be installation
difficulties for 4; more than 35%. The columns diameter varies between 0.6 to 1.2 meter.
One of the factors which are believed to have significant effect on the performance of
reinforcement ground is the ratio of modulus of elasticity of stone over soft soil. Datye et
al. (1982) indicated the lower limit of 100 for this ratio; however, Barksdale and Bachus
(1983) suggested the upper limit of 100. Costet and Sanglerate (1983) recommended
usage of modulus elasticity of column material about 10 times of the soil when
E cotumn< 100 KN/m?. This ratio is considered to have the lower limit of 10 and upper limit
of 40 by Balaam et al (1981, 1985). Mestat and Riou (2004) stated the ratio has the range

of 10 to 300 with the average of 40.
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Table 3.1 Typical values for stone columns granular material.

Soil Range of values Source
property
¢’ 38 to 42 recommended Barksdale and Bachus
(1983)
v 0.2 to 0.4 (dense sand) Bowles (1982)
0.3 Balaam (1985)
0.2 10 0.25 Kolar and Nemec (1989)
0.3 Lee and Pande (1998)
0.25 to 0.35 (dense sand) Budhu (2000)
0.3 to 0.45 (dense sand) Das (2000)
0.35 Wright and Touquet
(2004)
v(&N/m”) | Dry 14.4 to 17.1 (16.5 recommended) Barksdale and Bachus
_ (1983)
19 to 21 Kolar and Nemec (1989)
15 to17 (gravel) Budhu (2000)
13 to16 (sand) Budhu (2000)
18 (dense sand) Das (2000)
18 (sand) Wright and Touquet
(2004)
Sat. 20.2 (for v = 16.5) Barksdale and Bachus
(1983)
20 to 22 (gravel) Budhu (2000)
18 to 20 (sand) Budhu (2000)
E (KN/m?) 587000 Englehart and Kirsh
(Balaam, 1978)
48000 Datye et al (1982)
96°000 to 192°000 Bowles (1982)
487000 to 817000 (dense sand) Bowles (1982)
807000 to 5007000 Kolar and Nemec (1989)
407000 to 80'000 (dense sand) Budhu (2000)
Y’ 30-¢ Bolton (1986)
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Table 3.2 Typical values for unreinforced soft soil (clay).

Soil Range of values Source
property
¢ 15t0 30 Budhu (2000)
v 0.1t100.3 Bowles (1982)
0.35 to 0.45 (very soft to soft) Barksdale and Bachus
(1983)
0.3 andalso 0.4 Balaam (1985)
0.3 Lee and Pande (1998)
0.35 to 0.4 (soft) Budhu (2000)
0.3 to 0.35 (medium) Budhu (2000)
0.15 to 0.25 (soft) Das(2000)
_ 0.2 to 0.5 (medium) Das(2000)
0 Dry 14 to 21 Budhu (2000)
~ (KN/m’) 11.5 to 14.5 (soft) Das (2000)
16 Wright and Touquet
(2004)
Sat. 16 to 22 Budhu (2000)
E 27000 to 157000 (very soft) Bowles (1982)
(KN/m?) 17500 to 37000 (soft) Kolar and Nemec (1989)
17000 to 157000 (soft) Budhu (2000)
157000 to 307000 (medium) Budhu (2000)
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3.2.2 Model Validation

The proposed model was validated using the laboratory test results of single stone
column and a group of columns reported by Hu (1995). In this analysis, the geometry,
boundary conditions and soil properties were duplicated in the present numerical model.
Table 3.3 presents comparison between the results produced by the present numerical
model and the data of Hu, where good agreement can be noted.

Figures 3.3 and 3.4 present the deform columns of the test number TS-17 of Hu’s
experimental work together with the one deduced from the present investigation, where

interaction between columns within the group can be noted.

3.2.3 Deformed Shape of Single Stone Column

Based on field and laboratory experiments, it is well-known that single stone column
deforms and fails as the result of bulging which forms in the upper portion of the column
(Hughes and Withers (1974)). Numerical modeling was conducted in order to investigate
the deformed shape of an isolated column. Table 3.4 presents material properties
corresponding to a typical model developed for this purpose. Figures 3.5 to 3.8 show
deformed mesh of the model for 0.05, 0.1, 0.2 meter uniform vertical displacement and at
the failure respectively. These figures illustrate development of bulging with respect to
the increasing load. Bulging gradually develops with load increments and failure
eventually occurs. Figure 3.9 presents soil total displacement as the result of the
foundation load. Large amount of soil movement in the bulging area is clearly seen.
Horizontal soil displacement in the bulging areé is observed in Figures 3.10 and 3.11.
These figures show expansion of the stone columns in that area. Figure 3.12 presents

relative shear shading which the area of red color represents failure of the reinforced area.
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Table 3.3 Comparison between experimental test results of Hu’s and the present

numerical model.
Test A Cu Spacing Column | Testresults | Present
Number (%) (kPa) (mm) Length (Hu et al) study
(mm) (kPa) (kPa)
Tsll 0 14 54 60
TSO05 30 10.5 17.6 100 79 72
TS17 24 14 19.8 160 71 64
TS04 24 16.5 19.8 150 77 72
TS10 30 11.5 28 100 75 69
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Table 3.4 Properties of soft soil and granular material for single stone column.

E , v [0) c ' Length | Diameter
(KN/m’) O @M | O (m) (m)
Sand 100000 0.3 40 0 10 14 1
Clay 2000 0.3 10 5
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Figure 3.8 Deformed shape of single stone column at failure.
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Figure 3.10 Direction of horizontal displacement of single stone column at failure.
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Figure 3.11 Shading illustration of horizontal displacement of single stone column at
failure.

Figure 3.12 Relative shear shading illustration for single stone column at failure.
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All these observations clearly confirm that single stone column bulges as the
result of applying load and it fails consequently as bulging develops. The developed finite
element approach results similar deformed shape as was reported in the previous
experiments. Hughes and Withers (1974) indicated that bulging happens within a depth
équivalent to 4 times of the column diameter in the upper part of the column. Using the

numerical model same depth was observed.

3.2.4 Deformed Shape of Group of Stone Columns

In order to extrapolate the limit experimental finding of group of stone columns to the
other soil conditions large number of numerical modeling tests for different soil
properties and reinforced ground geometries was conducted. Results of these tests would
give a clear knowledge about the deform shape and mode of failure for group of columns.

All of the parameters which were believed to have influence on the performance
of the system were considered in the development of the numerical model. The
parameters considered in the model were chosen in order to cover all the possible cases
for the reinforcement of stone columns. These parameters are listed in Table 3.5. Both
cases of floating and rigid base stone columns were studied in this research and tests were
conducted for long stone columns. In all the tests group interaction was observed. It
should be mentioned that in these tests the lower limit of 4; was considered as 10%. By
reduction of 4, and increment of the spacing among the columns, effect of column
interaction reduces which may imply that for A less that 10% bulging failure might be
possible for group of stone columns. This suggestion might be true which further
investigations should verify it. However, area replacement ratio less that 10% is not

normally used in the real case as there will be no significant improvement for the
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reinforcement system (Hu at al. (1997)). Therefore, the lower limit of 4, is considered as
10% in this research.

Deformed shape for group of columns is presented here with a representative test.
Table 3.6 illustrates the material properties and ground geometry of the test. Figures 3.13
to 3.15 show deform shape of stone columns as the result of vertical displacement of 0.1
m, half time of the failure and at failure.

Figure 3.13 demonstrates that even for low foundation load, bulging does not take
place for the group of columns. Figures 3.16 and 3.17 represent the total and horizontal
soil incremental displacement as the result of applying load respectively. Due to the
group interaction and accordingly the soil movement which is seen in Figures 3.16 and
3.17 middle and outside columns deform laterally and are pushed outward. The direction
of soil displacement and concentration of stresses does not allow bulging, which takes
place for single stone column, to occur in the group of stone columns reinforcement
system. This happens as the result of horizontal pressure of the neighboring columns on
each other. Due to the direction of the soil movement, depending to the length of the
columns, short or long, they move or partially bend to the outer direction of the
reinforcement area. Only the center column, which is in the center of symmetry of the
system, bulges. However, this bugling happens at much deeper depth comparing to single
column. This is due to the column interaction effect which the horizontal pressure of the
neighboring columns pushes bulging to occur in the lower depth where the effect of the

horizontal stress becomes lower.
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Table 3.5 Range of parameters used in the numerical model.

| No. Site conditions Range of values
1 Clay module of elasticity 1500 to 14000 kN/m”
2 Sand module of elasticity 35000 to 175000 kN/m”
3 Clay Poisson’s ratio 0.15t0 0.45
4 Sand Poisson’s ratio 0.2 t0 0.45
5 Sand friction angle 38° to 45°
6 Area ratio 10%, 20%, 30% and 40%
7 Stone column diameter 0.6;0.8;1and 1.2 m
8 Stone column length 14t020m
9 Type of loading Uniform rigid loading

Table 3.6 Properties of soil and stone columns used in the numerical model.

E v o) C v Length | Diamet
(kN/m’?) O | &Nm) | O (m) er
(m)
Sand 80000 0.3 38 0 8 20 1
Clay 3000 0.3 15 5 0
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Figure 3.15 Deformed shape of group of stone columns at failure.
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Considering Hu’s (1995) experimental result, he reported shear failure and group
interaction. However, he suggested that though failure happens due the shear, bulging
shifts down for all the columns in the group as is presented in Figure 3.18. This
éuggestion is not observed in the numerical modeling where bulging occurs only in the
center column as the foundation load is applied. By closely examining the results
deduced from Hu’s experimental work and also the laboratory experimental results of
McKelvey (2002) no indication of Hu’s suggestion can be accomplished.
| Figure 3.3 illustrates test results of Hu’s. It can be noted from this figure that the
effect of pressure of neighboring columns on each other shows group interactions
between columns. The neighboring column horizontal pressure and movement of the soil
outside of the reinforcement area only let bulging to happen in the outer part of the
éolumn but not in the inner part (Figures 3.13 to 3.15).

The findings of this research show that group interaction takes place for all the
model tests. These finding creates doubts of using unit cell concept and the theories
which are developed based on this approach that may use unrealistic failure shape for

group of columns (Figure 3.19).
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Figure 3.17 Horizontal increamental displacement of group stone column at failure.
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3.2.5 Parametric Study

The influence of various material properties can affect the behavior of reinforced ground.
Understanding the degree of influence of each property can be important in designing and
enhancing knowledge about this reinforcement technique mechanism. Investigation on
the effect of these parameters when the group of columns is considered has not been
studied yet. Considering results from previous section, which confirms the difference
between performance of single and group of columns, utilizing the results of single
column for group may lead to unrealistic judgments. The effect of Poisson’s ratio on the
system is presented herein to demonistrate the negative effects of using unit cell to model

group of stone column.

Numerical model was used to study the effect of each of these factors on group of
columns and finite element technique was utilized. Large number of tests was carried out
and the effect of properties, which mostly influence the bearing capacity and settlement
of reinforced ground were investigated. The range of parameters used for these tests is
illustrated in Table 3.5.

Both cases of floating and rigid base stone columns were modeled which are
represented herein as test series 1 and 2 respectively. Different test were preformed with
changing properties of the materials. In order to apply rigid foundation condition to the
model, relative vertical axial displacements (&,) of 2% and 7% for test series 1, and 1.5%
and 5% for test series 2 were applied. Uniform load corresponding to the relative
displacement was calculated and eventually the ratio of the load applied in case of

reinforced soil over the load in the case of unreinforced soil at a given displacement was
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estimated. This ratio is introduced as load ratio and is presented as;z. The horizontal
1

axis 1s presented as the sum of the stone column diameters in the vertical plane over the
width of the foundation. This represents the area replacement ratio for group of stone
columns in plain-strain condition.

In Figure 3.20 (a) and (b) the effect of Poisson’s ratio of natural soil (clay) and
stone (or sand) with changing of the area replacement ratio for €,=2% and €,~7% are
illustrated for floating stone columns. The Poisson’s ratio is changes from 0.15 to 0.45
for clay and from 0.2 to 0.45 for stone. Stone Poisson’s ratio is presented by dash lines in
figures; whereas, full lines are used for clay illustration. It can be seen that with
increasing the Poisson’s ratio of clay the load ratio decreases. In higher Poisson’s ratios,
clay becomes more incompressible so when stone columns deform clay shifts the all the
horizontal displacement by column to the neighboring column; i.e. magnifies the
horizontal stress, helps columns deformation and therefore reduces the load ratio.
Opposite result is seen for stone where with increasing of v load ratio increases. This is
due to incompressibility of stone columns. When a stone column becomes
ihcompressible, while they wants to bulge the incompressibility and bulging effect of the
neighboring column resists against the free deformation of the first column. This
phenomenon eventually reduces the deform shape of the stone columns and increases the
load ratio. Comparison between Figures 3.20 (a) and (b) reveals that for floating stone
éolumns, load ratio reduces with increasing the vertical relative displacement. When
foundation load is low increment of stresses due to the load is only occurred in the upper
part of the stone columns. By increasing the vertical relative displacement, foundation

load increases and the stresses inside the soil shifts to the lower part of the stone columns.
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Figure 3.20 Load ratio versus % for different sand and clay Poisson’s ratio for floating

stone columns (a) €,=2% (b) €,~7%.
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This shifting of stress increases so that it reaches the end of the floating stone column
where there is not much resistance to the load. In this condition the stone columns settle
more in the soil and therefore load ratio decreases for higher vertical relative
displacements. This trend can be better seen in Figure 3.21.

Figures 3.22 (a) and (b) represents the effect of Poisson’s ratio for €¢,=1.5% and
€,=5% where rigid base stone columns is considered. Same trend is observed as the case
of floating columns. The only difference with the previous case is that now there is no
more reduction in load ratio with increment of relative displacement. This is expected as
in this case stone columns are placed on the rigid substratum for both conditions.

Figure 3.23 shows the setup of parametric study which is conducted by Balaam
and Booker (1981). They did their study based on unit cell assumption and used finite
elements technique. Figure 3.24 presents changes of the Poisson’s ratio of soft soil versus
the ratio of settlement of the raft on the stabilized site to that on unstabilized site of their
study. It can be seen that with increment of Poisson’s ratio the settlement ratio decreases
which means that stone columns reinforcement system is more efficient when the factor v
is increased. This is opposite of what is observed in Figures 3.20 and 3.22. The reason of
this observation is due to the nature of unit cell assumption. When the boundaries are
rigid and stone column is placed under the rigid foundation (Figure 3.23) soft soil
material is trapped inside the system. Therefore when soft soil is becoming
incompressible it resists against occurrence of bulging of stone column and reduces the
settlement. It may be concluded that unit cell assumption and theories based on it can not

be a good representation for the problems dealing with group of stone columns.
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Figure 3.22 Load ratio versus % for different sand and clay Poisson’s ratio for rigid

base stone columns (a) €,~1.5% (b) €,=5%.
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Figures 3.25 and 3.26 show the column diameter changes with respect to load
ratio for floating and rigid base stone columns respectively. The column diameter varies
from 0.6 to 1.2 meters, which corresponds to the minimum and maximum values that are
normally used in construction of stone columns. As before it is seen that for floating
stone columns increment of vertical relative displacement results in the reduction of load
ratio.

The increase of shearing resistance angle of sand, ¢ is expected to have a great
influence in load ratio values. In practice the friction angle of stone columns changes
normally between 38 to 45 degrees. Figures 3.27 and 3.28 show the results for shearing
resistance angle for floating and rigid base stone columns respectively. As expected the
great influence of this parameter is observed.

The influence of ratio of modulus of elasticity of sand over clay is also
investigated. With increment of this ratio, stone columns carry more of the foundation
load and less load would be carried out by clay therefore the effectiveness of the
reinforcement system is improved. Figure 3.29 (a) and (b) illustrates load ratio versus
module of elasticity ratio of stone over clay for floating stone columns with €,=2% and
rigid base stone columns with €,~1.5% respectively. Increment of this parameter results

settlement reduction of the ground reinforcement system.
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Figure 3.25 Load ratio versus —% for different column diameter for floating stone

columns (a) €,2% (b) €,=7%.
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Figure 3.26 Load ratio versus % for different column diameter for rigid base stone

columns (a) €,=1.5% (b) €,=5%.
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Figure 3.27 Load factor versus % for different shearing resistance angle for floating
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Figure 3.28 Load factor versus % for different shearing resistance angle diameter for

rigid base stone columns (a) €,=1.5% (b) €,=5%.
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Figure 3.29 Load ratio versus % for different module of elasticity ratio of stone/clay (a)

floating stone columns €,~2% (b) rigid base stone columns €,=1.5%.
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3.2.6 Modes of Failure of Group of Stone Columns

As described in chapter 2, failure shape for group of stone columns reinforced soil is
assumed as either bulging (Hughes and Withers (1974), Barksdale and Bachus (1983)) or
general shear failure (Madhav and Vitkar, (1978), Priebe (1995)). Large observed scatter
in different available theoretical methods as described in previous chapter might be due
to the inappropriate selection of failure mechanism related to the theoretical models. The
research was extended to examine the mode of failure of a group of stone columns for a
given soil/loading/geometry conditions. Knowing the possible failure mechanism which
might take place (general, local or punching), designers will be able to estimate the
bearing capacity of the system realistically and accordingly accurately.

Table 3.7 presents the range of parameters, which were examined in this
investigation. The range of these parameters was considered to cover all the possible
cases encountered in practice for stone column reinforcement system.

All the parameters which were believed to have effect on the failure mechanism
namely; soft soil and granular material properties (angle of friction, unit weight, modulus
of elasticity and cohesion), foundation width and depth, stone column diameter and area
replacement ratio were considered in the model. Cohesion of column material (granular)
was taken to be zero. In the numerical tests, uniform load was applied to the foundation
till ultimate bearing capacity of the system was achieved. Bearing capacity of foundations
was determined from the load-displacement curves obtained from the present analysis at
the point of maximum curvature on the curve. Failure mechanism of the model was

evaluated by observing the failure shape of the system at that point.
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Table 3.7 Range of the input data used in this investigation.

Site conditions Range of values
Clay Angle of shearing resistance 5°-25°
Cohesion 2-15 kKN/m*
Modulus of elasticity 1000 — 15°000 kN/m”
Granular material | Angle of shearing resistance 35°to 45°
Modulus of elasticity 60’000 — 300’000 kN/m?
Angle of dilatancy vy = ¢-30°
Geometry condition | Area replacement ratio (A;) | 10%, 20% , 30% and 35%
Diameter of stone columns 06-12m
Depth of the foundation 0-5m
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The ftrials were repeated to cover all the different soil/loading/geometry
conditions. The description of the tests is presented in Appendix 1. The observed failure
shapes were categorized as general, local and punching shear failures depending on the
observed forms. In this study, the general and punching failure mechanisms were defined
similar to Vesic (1973). Local shear failure is defined herein when the log-spiral curve of
the failure plane ends at outsider edges of columns’ system. This assumption is based on
the fact that due to the high level of compaction at the boundary columns, the failure plan
ends at that area. Figure 3.30 illustrates different forms of shear failure due to soil
displacement which were observed in the present investigation. The case that failure was
between general and local conditions was considered as local failure and between local
and punching as punching failure condition. This assumption was considered however to
be on the safe side.

Siveral trials were carried out in order to obtain the best presentation covering all
. . . . d
possible governing parameters. For a given ratio 2 and A, all the deduced values of the

different parameters for an observed failure shape were plotted in a representative graph.
The different points obtained were grouped in different zones depending on failure form.
Furthermore, best fitting curves were drawn between the boundaries of theses zones
(Figure 3.31). Some tests which showed error were eliminated in the final plots. The
c;harts were developed for area replacement ratio, 4, of 10, 20, 30 and 35%. The
parameters used in the charts were ¢, ¢, J%, ¢, d, B and Dy representing respectively the
angle of shearing resistance of soft soil, angle of shearing resistance of granular column
material, unit weight of soft soil, cohesion of soft soil, column diameter, width and depth

of the foundation.
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(a) General failure (namely G) (b) Local failure (namely L)

(c) Punching shear (namely P)
Figure 3.30 Failure mechanisms of group of stone columns.
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Figure 3.32 represents the final plots developed for practical purpose. It should be
mentioned that these charts should be used only for the ranges of parameters presented in
Table 3.7. However these ranges were selected to cover all possible cases encountered in
the field for stone columns reinforced system.

In this investigation, shear failure (general, local and punching failure) was
observed during loading of a group of stone columns in soft soil. Bulging faililre was not
observed which confirm the indication that bulging failure may not take place for A; more
than 10%. By reducing 4; for less than 10% the effect of column interaction reduces, and
accordingly individual failure may took place. However, as described before area
replacement ratio less than 10% has no significant improvement on reinforced ground
reinforcement subjected to uniform loading (Hu et al., 1997).

General shear failure was observed for higher area replacement ratios, stiffer soil

and stone columns, and for low foundation width and depth. Furthermore, with the
increase of A and% , the failure mechanism gradually change from general to local shear

failure and from local to punching shear failure. For example, for 4,=20% and 10% only
local and punching failure was observed. The effect of the foundation width and stiffness
of the ground on the failure mechanism reported by Vesic (1973) and Clark (1997)

agreed well with the results of this investigation. Interpolation is required for
. . d
intermediate values of IR

Using the result of the present numerical model will reveal the actual mode of failure of
the composit reinforced ground. In the next chapter, design theoreties will be developed

and presented for practical use.

74



v.*Df/c

v.*Dfle

18

16 -
14 -
12 -

10 -

8 General
& Local

L

* e o

0.10 0.20 0.30 0.40
tan(g,)*tan(e.)

(a) A7=35%, d/B=0.4

0.50

18
16 -
14
12
10

® Local
& Punching

‘P

0.10 0.20 0.30 0.40
tan(gy)*tan(o.)

(b) 4,=35%, d/B=0.25

75

0.50



v Df/c

1.*Dffe

18

16

14 -

12 -

10

B Local
¢ Punching

P

0.20 0.30
tan(gs)*tan(¢c)

(c) As=35%, d/B=0.18

0.50

18
16
14
12 -

10 A

® General
¢ lLocal

L

0.10

0.20 0.30
tan(,)*tan(e.)

(d) 4,=30%, d/B=0.38

76

0.50



v.*Dffe

v.*Df/c

m Local .
¢ Punching

P ]

18

0.10 0.20 0.30
tan(g,)*tan(e,)

(€) 4,=30%, d/B=0.24

0.40

0.50

16

14

12 -

10

m Local
¢ Punching

0.10 0.20 0.30
tan(g@s)*tan(¢c)

(f) 4=30%, d/B=0.17

77

0.50



v.*Df/c

v.*Df/c

18

16

14 -

12 +

10

® Local [ ]
¢ Punching

0.10 0.20 0.30 0.40 0.50
tan(gy)*tan(e.)

(g) 45720%, d/B=0.34

18
16 -
14 +
12

10

= Local
¢ Punching

P

0.10 0.20 0.30 0.40 0.50
tan(g,)*tan(o,)

(h) 4,=20%, d/B=0.2

78



18

16 - m Local

¢ Punching

12 4 P

10

'Yc*Df/c

0.00 0.10 0.20 0.30 0.40 0.50
tan(g,)*tan(g,)

(i) 4,=10%, d/B=0.26

18

16 | m Local
¢ Punching

14

12 4 P

10

y*Dffc

0.00 0.10 0.20 0.30 0.40 0.50
tan(gs)*tan(pc)
() A=10%, d/B=0.15

Figure 3.31 Test results and failure mode of reinforced ground for different % and A;.

79



1*Df/c

Y. *Df/¢c

T T T

0.10 0.20 0.30
tan(g,)*tan(¢.)

(a) 4=35%, d/B=0.4

0.40

0.50

T T T

0.10 0.20 0.30
tan(¢,)*tan(¢.)
(b) 4,=35%, d/B=0.25

0.40

0.50



1. *Df/c

1. *Df/c

T T T T

0.10 0.20 0.30 0.40 0.50
tan(o,)*tan(g,)
(c) A;5=35%, d/B=0.18

0.10 0.20 0.30 0.40 0.50
tan(g,)*tan(d,)
(d) 4,=30%, d/B=0.38

81



Y. *Df/c

Y. *Df/c

T T T T

0.10 0.20 0.30 0.40
tan(¢;)*tan(¢,)
(€) 45=30%, d/B=0.24

0.50

T T T T

0.10 0.20 0.30 0.40
tan(g,)*tan(¢,)
(f) A=30%, d/B=0.17

82

0.50



v*Dffe

v.*Df/c

O T ¥ T
0.00 0.10 0.20 0.30

tan(g,)*tan(¢,)
(8) 4=20%, d/B=0.34

0.40

0.50

O T T T
0.00 0.10 0.20 0.30

tan(¢;)*tan(¢.)
(h) 4,=20%, d/B=0.2

83

0.40

0.50



YesDf/e

0 T T T I
0.00 0.10 0.20 0.30 0.40 0.50

tan(¢,)*tan(¢.)
(i) 4=10%, d/B=0.26

v.*Df/c

2 -1 //___——
0 T T T T L
0.00 0.10 0.20 0.30 0.40 0.50
tan(¢,)*tan(g,)

() A=10%, d/B=0.15

Figure 3.32 Mode of failure of reinforced ground for different % and 4.

84



CHAPTER 4
ANALYTICAL MODELS

4.1 General

Based on the results of the numerical model presented in chapter 3 of this thesis, and the
reports published by (Vesic, 1973, Clark, 1997 and Hu, 1995), analytical models and
design theories are developed and presented in this chapter for group of stone columns
subjected to general, local or punching shear failure modes. Furthermore, for the case of
single stone column analytical model will be developed for estimating the settlement and

the ultimate bearing capacity based on bulging mode of failure.

4.2 Analytical Model for Bulging Failure

Many previous studies assumed this mode of failure for group of stone columns.
However, utilizing results from this research, it has been observed that for ground
improvement cases that are normally used in practice, group of columns usually fails by
shear and not by bulging failure. This study covers the area replacement ratio between
10% to 35% which is normally used in field. Considering that this ratio represents
Spacing between the neighboring columns, as discussed before for 4, less that 10% or for
ground supported by single stone column bulging failure might take place. For the case of
single stone column results of this study agrees with previous researches that bulging
failure happens. The failure pattern of 4, less than 10% was not studied in this research as
i‘t is known that this low area ratio does not have sufficient improvement on the

reinforced ground. Despite of this statement there might be cases in the field that large
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spacing of columns may be used. A theory is presented herein for single stone column
and for these minority cases. The model is capable to calculate settlement and bearing

capacity of stone columns based on bulging mode of failure.

4.2.1 Governing Equations

In the model it is assumed that the tributary soil surrounding a stone column in the
reinforced ground can be approximated by a cylinder which is restricted from movement
at its bottom and exterior surroundings. (Figure 4.1) By applying load on the reinforced
area the interior column expands laterally till failure occurs. The stress and displacement
equations were written for both the stone column and soft soil. The solution of problem
was obtained when both stress and displacement of soft soil and column materials
became equal to each other. In the following equations the subscript 1 and 3 represents
the major (vertical direction) and minor (horizontal direction) of stress or strain
respectively.

For the granular material, having the yield function

n=21 4.1)
O,

Poorooshasb and Meyerhof (1997) showed that

n=nz,) 42)

Using curve fitting technique for axial strain ¢; and yield function 7 Poorooshasb et al.
(1997) developed equations for the compact standard gravel. In the following equations €r
is the axial strain at failure point.

for 6, <¢, 1n=A+Bg+Cel (4.3)

where
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B= —2Cgf

and
for g, 26, n=A+Beg " +Ce (4.4)

where

nrand 7. are determined as

1+sin
Ny = tL (4.5)
l-sing,
_l+sing, (4.6)
° l-sing, '

¢rand ¢ are frictional angle at failure and critical state.

T he results of Equations 4.3 and 4.4 were validated by the authors with tests conducted
by Lee (1965) where good agreement between the two was observed. The axial strain ¢;
in these two equations is the sum of initial strain due to the self weight of soil and strain

related to foundation load.
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Figure 4.1 Scheme and pressure distribution of the theoretical model.
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& =¢,tAg 4.7)
The amount of Je; was determined using relationship between volumetric and axial strain
developed by Poorooshasb et al. (1997).

Ag, =mAg, (4.8)
The value of m was determined using Table 4.1.

So

él =g, +mAs, (4.9)
The axial stress on the column is sum of weight of soil and the load intensity carried by

column so

o +oy, (4.10)

1

The all round pressure of column consist of initial stress and pressure developed due to

the foundation load

=0, +0,, (4.11)

3

010 and a3, represent the initial vertical and horizontal stress respectively where

o =yl (4.12)
and
o5, =k, 7l (4.13)

Therefore the value of 5 equals to

o, o +yl
n:zz—

(4.14)
o; O, +k,yl

The relationship between lateral stress and strain is determined by (Poorooshasb et al.

(1997))
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Table 4.1 Determination of the factor m.

Stone type o¢ (8 €x M
Very dense 44° 30° .04 .61
Dense 41° 30° .05 44
Medium dense 38° 30° .07 32
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0, =¢,p-c,As, (4.15)

¢ =E (1+v)a® +(1-v)b*
1-v?*)b* -a?)

Combining Equations 4.3, 4.9, 4.14 and 4.15 gives

fore, <6, o, =(k,yl+c,p-c,A8,)[Ad+B(e, + mAe,) + C(s, + mAe,)*]— 71

(4.16)

Similarly combining Equations 4.4, 4.9, 4.14 and 4.15 gives

for e, 2¢, o =(k,yl+c,p-c,Ag)[4, +B, (g, +mAg;)” +Cr (g, +mAey) 2]~ yl

4.17)
The value of €, should be determined in above equations. Substituting Equations 4.12 and

4.13 into Equation 4.1 yields

7]=_0-1_0=i (4.18)

30 o

By substituting Equation 4.18 into Equation 4.3 ¢, was calculated.

Vertical strain of soil section due to foundation load is given as (Poorooshasb and

Meyerhof (1997))
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_ (1—2v2—v)p+ 2va?

A, (4.19)
(1-v)E' (1-v)(B* —a?)

Ag,

where

g1V
1-v-2v

Considering that improved ground is under a raft foundation, settlement of soft soil and

column should be equal to each other. Combining Equations 4.8 and 4.19 gives

Ae, = a-2v" _"z)p . (4.20)
(1 —v) — Y
E(m1-)- 3 )

If g represents the uniform pressure of foundation, load pressure of soil section can be

determined as (Figure 4.1)

_b’q-ad’o,

p= PO (4.21)

4.2.2 Calculation Methodology and Computer Program

In order to calculate the settlement of reinforced soil an arbitrary value for o; was be
assumed. The amount of vertical pressure in soil was estimated using Equation 4.21.
Next, the initial strain €, was calculated. The lateral strain was calculated using Equation
4.20 following by calculation of vertical strain €;. (Equation 4.19) Using estimated values
of €, €; and ¢; vertical pressure of stone column was determined by Equations 4.16 or
4.17. Eventually, the calculated o; was compared with the initial assumed value. If the
difference between the two is less than 0.001 then o7 is the exact value and the settlement
was calculated using S= €;./ otherwise procedure started again till this condition was

satisfied. The value of ground improvement was calculated as
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n= 2 (4.22)

where S, and S; and settlement of untreated and treated ground.

Computer program B-STColumn was written Utilizing Visual Basic V8 in order
to perform the above procedure. B-STColumn stands for Bulging Failure of Stone
Column. The parameters should be used as input of the program are foundation load,
height of the reinforced ground, radius of column and soft soil (Figure 4.1), angle of
shearing resistance of granular material and soft soil, Poisson’s ratio, failure strain of
stone, modulus of elasticity of soft soil and unit weight of stone material. The code
calculates and presents the vertical pressure of soft soil and stone column, lateral strain of
column and settlement of treated ground.

In order to develop design chart, effect of mentioned input values was
investigated for settlement radio of the system. For the representative tables below area
replacement ratio of 10%, ¢ =38° and foundation uniform load of 200 kPa were used.
Table 4.2 illustrates the effect of Poisson’s ratio on settlement ratio. This influence was
observed to be small; therefore, the » value of 0.1 was used in the tests which give the
conservative value.

Table 4.3 represents effect of column length. Again small influence of this
parameter was detected. Tables 4.4, 4.5 and 4.6 show the influence of modulus of
elasticity of soft soil, failure strain and unit weight of stone. As before small effect of
these factors were observed. Therefore the values that gave the most conservative results
were used in the design charts. The values of parameters illustrated in the tables are those

that are in use for practical purposes.
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Influence of the ultimate angle of shearing resistance of stone was investigated in
Figures 4.2, 4.3 and 4.4 for different A, and different stone compactions. No significant
effect of ¢ was seen.

Design chart is presented in Figure 4.5 where having the area ratio and angle of
shearing resistance of stone column, settlement ratio of treated ground is estimated. By
cietermination of settlement of unimproved soil, settlement of reinforced system can be
evaluated using Equation 4.22.

Bearing capacity of reinforced ground can be estimated as the load corresponding
to settlement equal to 10% of stone column diameter. (Rao et al. (1997)) Settlement of

unreinforced soft soil equals to

CH o +Ac’
= == jog(%2

I+e, o,

S ) ' (4.23)

u

where 0,, e, and H are the initial average overburden pressure of the soil layer, initial
void ratio and thickness of soil layer respectively.

Combining Equations 4.22 and 4.23 yields

Syn(l+e,)
Ac'=c, (10 GH  _1 (4.24)

Therefore assuming S; 10% of column diameter, using Figure 4.5 and Equation 4.24

ultimate load of the reinforced soil can be evaluated.
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Table 4.2 Influence of Poisson’s ratio on settlement ratio.

v 0.1 0.2 0.3
n 1.23 1.27 1.31
Table 4.3 Settlement ratio for various column lengths.

1 (m) 5 10 15

n 1.32 1.35 1.39
Table 4.4 Effect of modulus of elasticity on settlement ratio.

E 1000 3000 5000
n 1.39 1.44 143
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Table 4.5 Influence of failure strain of stone on settlement ratio.

€t (%) 3 5 8

n 1.36 1.39 1.41

Table 4.6 Settlement ratio for various column unit weights.

kN
Ys(—
5(-3)

14 18 22

n 1.37 1.38 1.39
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Figure 4.2 Settlement ratio vs. 4, for medium dense stones ¢y=38".
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Figure 4.3 Settlement ratio vs. 4 for dense stones ¢y=41".
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4.2.3 Model Validation

Results obtained from the theoretical model were compared with other methods reported
in the literature. Figures 4.6 to 4.8 show the comparison of the model with Priebe (1976),
Aboshi et al. (1979), Poorooshasb and Meyerhof (1997) and Poorooshasb et al. (1997).
The theory of Aboshi is also known as Equilibrium method. Value of » was assumed 5
for this method which gives closer values to the other theories. Results of Equilibrium
method is far from the other ones. The present theory gives values in the middle of other
theories for all medium dense, dense and very dense stones.

The present model was validated using the experimental tests conducted by
Ambily and Gandhi (2007). (Table 4.7) The experiments were done for single column.
Good agreement between the two models was observed. The experimental study was also
compared with the other available theoretical models where the present theory resulted in

better agreement with the laboratory tests comparing to the others.
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Table 4.7 Validation of the theoretical model.

No. | e |05 As| q S: S¢(m) | error | S;(m) | error S; (m) error
kPa| ° | % | kPa M present % Priebe % | Poorooshasb %
theory (1976) & Meyerhof
, (1997)

1 7 43 25 100 7.71E-03 791E-03 7.7 8.67E-03 125 7.23E-03 6.3
2 14 43 25 100 5.36E-03 5.48E-03 2.1 6.01E-03 122 5.01E-03 6.4
3 30 43 25 100 3.10E-03 3.09E-03 4.1 339E-03 9.3 2.82E-03 8.9
4 30 43 11 100 543E-03 5.59E-03 52 536E-03 1.2 4.76E-03 12.2
5 30 43 6 100 643E-03 6.71E-03 3.5 6.44E-03 0.1 6.05E-03 6.0
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4.3 Analytical Model for General Shear Failure

In developing this model, the concept of the equivalent of soil/columns system was used.
This concept was used by researches such as Priebe (1995), Lee and Pande (1998) to
introduce soil properties to replace the soil/columns system. Limit equilibrium technique
was used to perform the analysis. The objective of the proposed model is to determine the
bearing capacity coefficients (NV,, N, and N,) of the composite ground and consequently to
estimate the ultimate bearing capacity of the reinforced ground.

In order to comply with the basic of mechanism of soils, the system should be
both kinematically (upper bond) and statically (lower bond) admissible. A system is
considered kinemaﬁcally admissible when displacement of soil elements along the failure
surface is feasible whereas for statically admissible condition, the 3 equilibrium equations
(forces and moment) must be satisfied. In the real cases, it is difficult rather impossible to
satisfy both conditions, however limit equilibrium technique, though exact solution can
not be obtained, is widely acceptable in the geotechnical engineering in solving bearing
capacity problems.

In this analysis, A, is defined as ratio of the area of stone columns over total area
of ground under the foundation. The composite cohesion and unit weight of the

reinforced soil is taken as
Yeomp = 4575 + A=Ay, (4.25)

ccomp = Asc.v + (1 - As )Cc (426)

where ¢;, ¢, % and 7 are cohesion and unit weight of the column material and soil

respectively. The cohesion ¢; is assumed to be zero for the sand material. Christoulas et
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al. (1997), Cooper and Rose (1999) and Mestat and Riou (2004) consider the composite
angle of friction as

Poormp = 4,0, + (1= 4,)0, (4.27)
However by replacement of comp and ¢omp in Mohr-Coulomb failure criterion it can be
observed that this criterion is not satisfied in their model. In order that this criterion

becomes valid instead of Equation 4.27 the following equation was derived and used in

this study.

T oomp = 4,7, +(1— 47, (4.28)
and

%=atanq0+c (4.29)

Where T.omp,,Ts and 7, are the shear stress of the composite soil, stone column and soft soil.
¢, and ¢, represent the angle of friction of the stone column material and the soft soil
respectively.

Substituting Equation 4.26 and 4.29 into Equation 4.28 results

tang,,,, = A s tang, +(1—-4,) o tan @, (4.30)

5

o) o)

The distribution of vertical stress in the reinforced area can be expressed by the stress

ratio » as

n=2s (4.31)

where
0= stress in stone column

0~ stress in surrounding soil
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Ih order that equilibrium condition is satisfied at the vertical direction, the following
equation should be valid.

O eomp = 4,0, +(1— 4))o, (4.32)

Combining equations 4.31 and 4.32 yields

(e n

S W 433
S Y] (433)

o 1

U S 4.34
A e 1 (i-n4, (@.34)

Substituting equations 4.33 and 4.34 into Equation 4.32, friction angle of equivalent soil
calculates as |

Peomp = tan” [A,p1, tang, + (1~ 4,)p, tang, ] (4.35)
Yeomps Ceomp A0 Peomp in Equations 4.25, 4.26 and 4.35 were used as the composite unit
Weight, cohesion and friction angle of the reinforced ground in the theoretical model. The
stress ratio in Equations 4.33 and 4.34 is suggested between 2.5 to 5 by Barksdale and
Bachus (1983). Mckelvey et al. (2004) declared that this ratio takes place at the beginning
of loading. However, at failure, the value of n approaches approximately the value of 3.
The stress ratio of 3 was used in this study.

Figures 4.9 and 4.10 show the observed failure shape deduced from the present
numerical model together with the proposed failure pattern. It can be noted From Figure
4.10 that the observed failure pattern consists of 3 zones:

i. Zone 1, represents the elastic cone shape which is immediately under the foundation
and has an angle ¥ with the horizontal axis. This wedge (block 4BC) moves together

with the footing during loading.
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2. Zone 2, is logspiral section (curve CD and CF) which is originated from the
intersection of the foundation axis of symmetry and the wedge. Discontinuity of the
material in the boundary of reinforced area and soft soil (Figure 4.10) results
divergence of the logspiral failure extension in the soft area. In other words, failure
pattern changes its shape at this point due to the change of the soil properties.
Consequently collapse shape consists of two logspiral surfaces; one is within the
equivalent soil part and the other is in the surrounding soil section.

3. Zone 3, is known as passive Rankine section where the failure surface has from of the

straight line (DE and FG). This zone connects the logspiral part to the ground surface.

4.3.1 Equilibrium Analysis

To carry out the equilibrium analysis, due to symmetry it is sufficient to consider only the
half side of the proposed model. Figure 4.11 presents the forces acting on the logspiral
sections. These sections were divided into two separate parts; composite soil and soft
soil. Equilibrium equations were written separately for each part. The passive force due
to the unit weight, cohesion and surcharge was considered separately.
For the case that passive force due to unit weight is concerned, the free body of
the composite section (Figure 4.12) is subjected of the following forces:
1. Weight ; which is equal to the weight of a sector of the logspiral block O;CH

given as

2_ 2
h =%

= —_— 4.36
}/CO'”P 4tan ¢comp ( )

4
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Figure 4.9 Rupture surface deduced from numerical model.
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Figure 4.10 Proposed failure Mechanism.
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Figure 4.12 Equilibrium of forces for composite soil section (¢, v, g=0, c=0).
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The lines O;C and O,H are arcs of the logspiral defined as 7, and r; respectively and are

determined by the following equation

7, =1, o
Let
B
AC=—2
cosy

From A4CO, using the sine rules

sin(90—y) sin(180-6,)

o.C AC
So
B
r, = —
2sin 6,

Combining Equations 4.37 and 4.40 results

B g
r] = ._e 1 ¢camp
2sin 6,

Substituting Equations 4.40 and 4.41 into Equation 4.36 gives

BZ (ezalfml%omp _ 1)

1 eom L6 sin? 6, tang,,,,

2. Weight of the triangle 4CO; equals to

1 B
VVZ =5ycomp Eyl

From AACO, using sine rules

sin(180—6,) sin(180-90+y —180+86,)
AC A0,
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(4.41)

(4.42)

(4.43)
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Utilizing Equation 4.38 gives

_ B(tany —cot6,)

A0, =y, 5 (4.45)
Substituting Equations 4.45 into Equation 4.43 gives

' 2

W, =y B”(tany —cot6,) (4.46)

7/ comp 8

3. The frictional resisting force R; along the arc CH. The line of action of this force
passes through the center of the logspiral.

4. Pyacting on line AC.

5. The reaction of the force, F, applied on the soft soil section.
Taking moment about point O; gives
EM gy =0 Wi, + W1y + B[00S0 = Py ) 3 + S = 0,y ) tanyr — )]
=Fcosd(a-AH - y,) (4.47)
The lever arm /; is defined by Hijab (1956) as

4tang,,,, rn’ —r}(3tang,,,, sinf, +cosf,)
' 3%tan’ g, +1) (2 —r2)

(4.48)

Combining 4.40 and 4.41 into 4.48 yields

/= 2Btang,,,,
' 3sing,(9tan’ g, +1)( % ~1)

[*% P _ (3 tan Peomp SING, +C0s6,)]  (4.49)

Moreover, lever arm /, is determined as

1 B B
L=——=— 4.50
2535 % (4.50)
The height AH equals to
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AH=y +r = (tany sin @, — cos@, +e* %) 4.51)

1

Substituting Equations 4.42, 4.45, 4.46, 4.49, 4.50 and 4.51 into Equation 4.47 gives

B’ 36, tang, . B’(tany —cot6,)
e P (3tan sin @, +cosd,)]+ L
}/comp 24 Sin3 61 (9 tanz ¢comp + 1)[ ( Qcomp 1 1)] 7comp 48
B . B B(tany —cot 8,
+ PO ~ ) 3+ SN 9, )5 tamy - ZEE OOy
B egl mﬂ¢(:omp
=Fcosd—[(a-1)-(tany —cotf,) + a———)] (4.52)
‘ 2 sin 8,
or
B® 381 tanggomp . B®(tany —cotd,)
e - (3tane,,,, Sind, + cosd, )] +
. Ycomp 2dsin® 6,0 tan? P 1)[ ( Peomp 1 D) Y comp 48
B B S tangcomp
coso —[(a—1)-(tany ~cotf,)+ a——)]
2 sind,
B . B B(tany —cot 6,
+ P, [cos(Y = @,y ) +5IN(Y =@, )(-tany — (tany 1))]
3 3 2 (4.53)

In order to minimize the ultimate bearing capacity, the force F should be at its minimum

value. This condition can be described as Z—F = O where v is related to logspiral geometry
1%

such as its center coordinates or §;. (Kumbhojkar (1993)) Differentiating the above
equation with respect to 8; and equating the result to zero, the values of the critical 8; and
F will be then estimated. Differentiating the above equation is presented in Appendix 2
which is determined utilizing Maple software.

Derivation of equilibrium equations were continued for the soft soil section. This section

is subject to the following forces (Figure 4.13):
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Figure 4.13 Equilibrium of forces for soft soil section (¢ 9, v, ¢=0, c=0).
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1. Weight W; which is equal to the weight of a sector of the logspiral block O,HD

given as

2 2
B —n

W, =
} yc4tanqocz

The lines O,H and O,D are arcs r; and 3 of a logspiral respectively defined by the

equation

— 6, tan g,
= r,e

Using the sine rule for triangle 4AHO, gives

sin(180-6,) _sin(90-6")
AH O,H

or

" ) Bcos@”
r,=0+y) C?S = (&X' %o 4 tany sin @, —cosf,)—————— cos _
siné@, 2sinf, sin G,

Hence combining Equations 4.55 and 4.57 gives

*
Bcosf RIS

[ .
r, =("™"%™ 1 tany sin 6, - cos ) —————
2sin @, sin G,

Substituting Equations 4.57 and 4.58 into Equation 4.54 results

7.B? cos® 0

6, tang,, . 26, tangp,,
=16tango ERCy (€% +tany sin G, — cos 6,)? ("> "> —~1)
c2 2 1

3

2. Weight of the triangle AHO,, W, which is defined as

W, = V. AH - x,
2
Considering triangle AHO,

x, =-r,co8(8” +6,)
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(4.57)
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(4.59)
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Substituting Equation 4.57 into Equation 4.61 yields

. = B
? 2sind,

("™ % 4 tany sin6, — cos @) - (—cos’ " cotf, +sinH* cos@*)  (4.62)

So

B? . n x . x
= g}ic 29 (tany sin6; —cos 6, +e* ™% )? . (—cos” 8" cot§, +sin6" cosd”)  (4.63)
sin” 6,

4

3. The frictional resisting force R, along the arc HD. The line of action of this force
passes through the center of the logspiral.

4. Force due to the resultant of the stress in the passive Rankine zone ADE on plans
AD which can be written as (Figure 4.13)

q; =y,ADsin@" tan(90—6") (Silvestri, 2003) (4.64)

5. The reaction of the force, F.

Taking moment around point O, gives
q,cos@, 2 .
IM, =0—> —2—AD(E’-AD—AOZ)+W3[3 =W, +Fsind-x,+Fcosd(a-AH - y,)

(4.65)
In order to drive the lever arm /3, the distance between the center of gravity of logspiral
and its center O, should be determined first as follows:

If the point C and A4 are the centroid and logspiral center respectively and AM and AN

represent the arcs of the logspiral (Figure 4.14), considering the triangle FCD results.

CF = b ; : (4.66)
cosd
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Figure 4.14 Centroid of the sector of the logspiral.
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Considering the triangle BCG gives
BG =asin(6 +0")

and

CG =-acos(0+6")

Given

FG=CF-CG

Substituting Equations 4.66 and 4.68 into Equation 4.69 gives

FG = b —+acos(8+6")
cos@

From triangle EBK using Equation 4.70

—( b ~+acos(8+8"))
s

BK =—%°
tan(@ + ")

From Figure 4.14
KG=BG~-BK

Combining Equations 4.67, 4.71 and 4.72 yields

+acos(+0")

*

KG = EF = asin(@ + 0") + 2088 i
tan(@+6°)

From the triangle AEF

sin@ _sin(180-6-6")
EF AF

Substituting Equation 4.73 into 4.74 results
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(4.67)
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+acos(@+8")

*

[asin(d +8") + 088 T Jsin(@ +6")
F - tan6+6 ) (4.75)
sin @

Again from the triangle AHF

HF = AF cos @’ (4.76)
Combining Equations 4.75 and 4.76, HF can be determined as

HF=acosH +.bcos(0+6’ ) @77

sin 8
a and b are define by Hijab (1956) as
i3 :
(—) @Btangsinf — cosH) +1
a_4 tamp 7, (4.78)
v, 3 9tan2g0+1 (i)z_l
rO
and
1y ~3tan@sin @ —cos @
b_4 tamp 7, (4.79)
v, 3 9tan2¢7+1 (1)2_1
Substituting a and b in the Equation 4.77, after simplification yields
3 * * 3 . * _ *
HF < 4tanp{r, (3tanpcosf™ —sind ) +r, [sin(6 +8) —3tanpcos(d” + 6)]} (4.80)

3(9tan” @ + 1)(r> —77)
Applying Equation 4.80 to the model the lever arm /3 is determined as

; 4tang, {r; (3tang, cosd’ —sin@") +r;[sin(@" +6,)—3tang, cos(d” +6,)1}
> 39tan® @, +1)(r7 —r?)

(4.81)

Substituting Equations 4.57 and 4.58 into Equation 4.81 results
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2Bcosf tang,
*309tan’ g, +1)(e**™% ~1)sind, sind,

l {(e"™*™ +tany sin @, —cosh,)

[€%™% (3tan @, cos0" —sin@")+sin(0” +6,) —3tan 9., cos(0” +6,)]} (4.82)
and the lever arm /, is given as

=25 (4.83)

B 6, tan
4= T (e
3sin6,

P +tany sin @, —cos ;) - (~cos® " cot B, +sin " cos@*) (4.84)
In order to solve the Equation 4.65 the values of AD, 40, and AH must be known.

From Figure 4.13

Y, =x,tan0" (4.85)
Combing Equations 4.62 and 4.85 yields

B

Y, =——— (™" % 4+ tany sin@, —cosd,)-(—sinf" cosf” cotd, +sin’ ") (4.86)
2sin 6,

Also

A0, =22 (4.87)

~ cosd

By substituting Equation 4.62 into 4.87 40, s determined as

B

A0, = m (B Pom 4 tany sind, —cosf,) - (—cosf” cot, +sing*) (4.88)
Given

AD = A0, +r, (4.89)
Thus
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B . . * . * - kg ¢)
AD=—-——(@9lta #ow + tany siné, - cosd,)- (~cosd" cosd, +sind siné, +cosé e’ oy

2sing, sind,
(4.90)

Substituting Equations 4.51, 4.59, 4.62, 4.63, 4.64, 4.82, 4.84, 4.86, 4.88 and 4.90 into

Equation 4.65 gives

- B’ sin@" tan(90- 6" e
7B sing tan( )COSP, (P +tany sin, —cosd,)’ - (—cosd” cos, +sind” sind,
24sin’ g, sin’ 6,

« 6,tmg, 1 « G tangp,
+cosf@’e” “)( cos 8" cos G, —EsmB sin @* +cos e ™)

y,B* cos’® 6"
24sm 0, sin’ §,(9tan’ g, +1)

(ta-n W Sin 01 — COS 91 + eal an@,,, )3

[€%%% 3tan g, cos@" —sin ") +sin(@" +6,) —3tang, cos(@" + 0,)]

B3 . * *
247 5 (tany sin @, —cos @, + "™ % )> . (—cos® §" cot§, +sin " cos ")
sm

Y F—— ("o tany sin @, — cos @, )[sin 5(—cos” 8" cot§, +sinO* cos6*)

4sin 6,
+cosd(a+sin@" cos§” cotd, —sin? 6*)] (4.91)
or

7, - B’ sin@” tan@0- ") cosp,

—— (™% + tany sind, —cosh,)’ - (~cos” cosf, +sinf" siné,
24sin” g, sin” 6,

F=
B

——— (™™™ 4 tany sin@, —cos),)
2sin6,

. 6 1 . 1. o )
+cosfe™ ™% )? (—2—cos9 cos @, —5s1n6’2 sin@" +cos@*e” %)

[sind(—cos® 8” cot, +sinh” cosO*) + cosS(a +sinH” cos@* cot B, —sin? 6°
2 2
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7.B’ cos® 0°
24s1n 0, sin’ 6,(9tan” p, +1)

. [
(tany sin @, — cos @, + e P )3

[¢** ™" (3tan g, cos@* —sin@") +sin(” +6,) ~3tan @, cos(9” +6,)]

3

v.B

m(tanl//smé —cos @, +e" %)} . (—cos? 6" cot 6, +sinb* cos9")?
sin

(4.92)

Similar to the composite soil part the force F should be optimized with respect to 4.
Differentiation of the above equation is presented in Appendix 2.

From Figure 4.15
. 7
w, = T}/comp tany (4.93)

Considering equilibrium of the soil wedge ABC results
q,B =2F, cos(y —¢,,,,)—W, (4.94)
Combining Equations 4.93 and 4.94 gives
2P, B
q, = 70080// = Pomp) ~ 7 oo DY (4.95)

Rearranging of Equation 4.52 results

g?1tanecomp B3 364 tangcomp
Fcosé‘— a—1)-(tan coté, +a——— - e o
. [(@a~1)-(tany —cotd;) sin N=7come 24 sin® 6,(9 tan® gy + 1) [
) = ] B B(tany —cot @,
COS(Y = Peomp )§ +SIN(Y — Peomp )(E tany — (+1_))

B’ (tany —cot8,)
48

- (3 tan qpcomp sin 91 +cos 01 )] - 7comp

(4.96)
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Figure 4.15 Free body diagram of the cone section.
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Substituting Equation 4.96 into 4.95 gives

01 tan ¢cnmp

S cosd[(a—1)-(tany —cotd,) + ae—.T)]
1 Sin ¢,
-2 . 2 _ comp
q7 2 7comp B[ COS(l// ¢comp) 1 . 1 tan W —cot 91
3 3 2
1 361 tan peomp . (tany —cot 6;)
- e —(3tan sing; + cos @, )] - —F— -~
~ 12sin® 9,(9tan” g oy, + 1)[ (3180 Pcamp Sin o 24 tan vy
(4.97)

F . .
where — is calculated by rearrangement to Equation 4.92
B

sin§" tan(90-6" )cosq;c
F 24sin’ @, sin® 8,
R [
2sin 6,

("™ +tany sin6, —cos 6,)* -(— cos §° cos @, +sin 9" sin b,

(%™ ttany sin 6, —cos 6,)

+cosf e % )2 ( cos @ cos b, —%sm@ sin@” +cosf’e 92”’”’“)

[smé’(—cos 6" cot 6, +sm49 c0s ") +cos(a +sinf” cosf” cotd, —sin* 6*)]

cos’ 9"
+ . .
24sin’ 8, sin’ 6,(9tan? g +1)

1 [
(tany sin 6, —cos @, +e” % )3

[*%™* (3tan @, cosO" ~sin ") +sin(@" +6,) - 3tan @, cos(0” +6,)]

(tany sin O, —cos @, +e* "% )* . (—cos? " cot 0, +sinf* cos@*)?

~ 24sin’ @
2 1 (4.98)
If Equation 4.97 is written as
1
9y =5 7eomp BN, (4.99)
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Then

91 tan ¢camp

cosdf(a~1)-(tany —cotd,) + aif—)]
sin 4,

2
comp

N, =2c0s(y ~9.,,,) tany —cot 6,

> )

| S 1
COS(!// - ¢comp ) 5 + Slll(l// ~ P eomp )(§ tany —

] t —coté.
- L . [¢*% " Feme ~(3tang,,,, sing, +cos€1)]—w
12sin” 6,(9tan” ¢, +1) 24 _tany
2
(4.100)

Equilibrium equations were written to determine the bearing capacity due to surcharge
and cohesion, ¢, for the composite soil and soft soil sections separately. The two
equations will be combined at the end of calculation.
For the composite soil section, free body diagram in Figure 4.16 is subject to the

following forces:

1. Passive force P’

2. Cohesive force per unit area along AC.

3. Passive force F'

4. Cohesive force per unit area along arc CH.

5. The frictional resisting force along the arc CH.

6. Cohesive force per unit area along 4H.

Taking moment of all the forces around point O; results

: : B . B
IM, =0— P[cos(y — cowm,,)z +sin(y - @, )(Z tany — y, )]

c
+ CoompACy, cOSY = F'cos6(m - AH —yl)+rc"”‘1’_(rl2 —r?) (4.101)
an

comp
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Figure 4.16 External forces acting on the composite soil section (¢4, ¥=0, g ), ¢ ).
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Substituting Equations 4.38, 4.40, 4.41, 4.45 and 4.51 into 4.101 results

. 1 1. —tan B(tany —coté F'cosé
P [cos(y — Pcomp )Z + ES'H(W ~ Pcomp )(—2—1// +cot )] + Ccomp ( W4 1) = 2
c B
-[m——(tany sind, — cos; + 6™ "™ _(tany — cot 4, )] + P (e veomp _ 4
sing, 8sin” 0 tangom,
(4.102)
or
, 1 1. —tany B(tany —cot 8,)
. P [cos(y - 9,,,,,) 1 + Esm(y/ ~ Deom )(T +c0t6,)] + C o 2 !
- Bcosd 1 . n
25 [m “nd (tany sin 6, —cos @, + ™™ %) —(tany — cot 6,)]
1
c_ B
conmp ezgl tan(ocnmp _ 1)

~ 8sin’ @, tan
190 Peon (4.103)

This equation was minimized in order to obtain the minimum value of g- (see Appendix
2).
Considering the soft soil section, the free body of this section (Figure 4.17) is
subject to the following forces:
1. Stress g2 due to the surcharge ¢ and cohesion effect on Rankine zone.
Soil located above the bottom of foundation as shown in Figure 4.18 is considered
as surcharge in the model g=y.D. (Terzaghi 1943) So ¢,, the resultant of stress on

AD due to the surcharge g acting on the Rankine zone wedge, is determined as

g, =qtan(@5+ Py S (4.104)
sin(45 - %)

2. Cobhesive force per unit area along AH.

3. Force F!
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Figure 4.17 External forces acting on soft soil section (¢, v=0, g 4, c #).

Figure 4.18 Assumed surcharge above the bottom of the foundation.
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4. Cohestve force per unit area along arc DH.
5. The frictional resisting force R; along the arc DH.
6. Cohesive force per unit area along 4D.

Taking moment of all the forces around point O, results
XM, =0—>F'cosé(m-AH—y,)+ AH -F'sind-x, +c AH -x, = _‘]2%@_(?32 - 40,%)

c

+——— (' -1") (4.105)
2tang,

Combining Equations 4.51, 4.57, 4.58, 4.62, 4.86, 4.88, 4.104 and 4.105 gives

B’ cosp,[q - tan@5+ &) + —cc———]

. @,
sin@5—"=
¢ 2)

—— (€™ + tany sind), —cosf, ) [cog G2 ™% _(—cost"
8sin” @, sin” 6,

e c : B’cos’ 0"
:c0s6, +sind" sind,)* ]+ —=2—- (1" 4+ tany sin6, —cosd,)* LA (L )
ang, 4sm” @, sin” 6,
_BF tany sing, —cosd; + e "™ coss(m + sind”* cosd® cotd, —sin? 6*) + siné - (—cos? 0* cotd.
2sind 1 ! 2 2
1

. * , B2 . an . * * *
+siné" cosé )]+cxrz—0(tam//sm61 —cosB, +et ™% )2(sin@” cos@* —cos® @ cotd,)
. sin® 6,

(4.106)

or

L]
sin@S—&) .
2 ("o  tanysing, —cost; lcos’ 6°6*2 _(_cosg"

B? cosp,[q- tan@5+ 22 ) +

e 8sirf 6, sir? 6,

: & tangcomp
tany sing, —cosd, +e
2sing, ( ! ! )

s C . BZ 0 2 n*
€086, +5iN0" 5ind, )1+ ——°— - (™"  tany sing; —cos o, )? ———ZC ® 92 - (%%21anee
2tang, 4sin” g, sin® 9,

[cos5(m +sing” cos8” cotd, —sin® §*)+sins - (—cos? 6* cotd, +sind* cosd* )]

~1)
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2
b 0,10 Promp \2 ¢ * * 2 px
—¢,———(tany sinf, —cosf, +e ) (sin@" cos " —cos” 8" cotb,)

4sin” 6, (4.107)
Differentiation of above equation is presented in Appendix 2.
From Figure 4.19, the following Equation can be driven
. 2P
q = "?COS(I// - ¢camp) + ccomp tan(// (4 108)
Rearranging of Equation 4.102 results
£ "2°S S tm— 19 (tany sin 0, —cos, +e” ™% ) — (tany ~ cotd),)]
. sin
P = !
1 1. — tan
[0S = Py )+ SIY ~ G+ c016))]
: zccompB (e26’1 tan @, _ l) _ Ccamp B(tan l/j —cot 01 )
8sin” 0, tang,,,,,, 4
(4.109)
From Equation 4.107 let
F'=4-q+D-c, (4.110)

where

Bcosg, tan(45 + %)

[ . * *

(e™™ % +tany sin 6, — cosf,)*[cos® @"e*% ™% _ (—cos @
8sin’ @, sin’ ! '

A= 18I G,

. 6,
(tany sin @, —cos @, + "™ %)

2sin 6,

-c0s @, +sin @ sin9,)’]
[cosS(m +5sin@” cos " cotB, —sin® 8" )+sin 5+ (—cos® ” cotd, +sinB* cos*)]

and
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Figure 4.19 Forces acting on the triangular zone.
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B.cosp,

b [
sin(45——=
( > )

8, N * * . x .
— % ("™ L tany sinG, —cos,)*[cos® B2 ™" _(—cosO® -cosH, +sind” sind.)?
) -2 14 1 1 2 2
8sin” 4, sin” 4,

D

6, tan g, )

tany siné, —cosf, +e
2sin61( vsme '

1 an . Bcos® 9*
("™ 4 tany sin 6, — cos6,)® — ZOS ——— (2" - )
2tan g, 4sin” @, sin” 6,

[cosS(m +sin 6" cosf” cot, —sin® 8") +sin S - (—cos’ 8" cot B, +sin6” cosd")]

+

C 'B . . * * *
—— %" (tanwsin®, —cos O, +e? ™% )2 (sin * cos —cos? 0" cotd
) "4 1 1 2
4c,sin” 6,

Combining Equations 4.108, 4.109 and 4.110 yields

449 cosd[m
B

(tany sin@, — cosd, +e” ™% ) — (tany — cot 6,)]

1

1 1.
[COS(W - ¢comp ) Z + 5 Sm(l// - ¢comp )(

q‘ =COS(‘/I—¢c0mP) —tanl//

+cotd,)]

.Cc

-cosdm <ind (tany siné, —cosg, + g1 Pcomp )—(tany —cotd,)]
noy

+ Ccomp tam// + COS(W - (Dcomp)

1 1. ~tan
[COS(V/ - (Dcomp)z + 5 Sln(W - (ocomp)(—zﬂ + COt91 )]

c

(A0 ) 1Y GO,
a2 comp
4sin” 6, tang,,,_ 2

(4.111)

The ultimate load per unit area is given as

q = qu + ccomch (4.112)

g-cos S[m (tany sin 8, —cos @, +e* ™) _ (tany — cot 6,)]

sin 6,

Nq = COS(‘// - q)comp) ~tany

+cot )]
4.113)

1 1.
[COS(W - wcomp ) Z + 5 Sm(V/ - ¢comp )(
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and

D-Co . o8 [lm s'n19 (tany sin g, — cos 6, + e "™} _ (tany — cot o,)]
-c i
N, =tany + cos(y - Peomp) = ! 1T 1. —tany
[COS(‘/I - ¢comp)z + E Sln(l// - (ocomp)("z— + cot 61 )]
+ 1 ( 26, tan 9,0, 1) tany —cotd,
4sin® 6, 1 ¢ Coomp ™
sin” 6, tang,,,,,

(4.114)

In this investigation, the relationship between the cone angle, ¥, and angle of logspiral is

developed; from Figure 4.20

ZACO, =180°—(180° — 2y) — (90° + @) = 2y — @ — 90° (4.115)
From triangle ACO;
w=0+p (4.116)

The angle 8" is taken as 45° —%as it represents the Rankine passive pressure zone. The

value of 6 was considered equal to ¢ as it is located on the slip line of first logspiral and
¢x €qual to ceomp. This consideration was future examined by finite element modeling of
group of stone columns and the same observation was seen. In order to find the location
of the line of action of the force F for the cases of gyand g the location was change from
172 to 2/3 of the height AH. The difference of changing this length was observed to be
less than 5%. Utilizing the results of the numerical model, it was noted that the length of
action of F was 2/34H for the case gyand 1/24H for q’. These values were used in the

theoretical model.

134



Figure 4.20 Determination of cone angle.
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4.3.2 Ultimate Bearing Capacity

In order to calculate ultimate load for ¢, and ¢” components, the passive force F should
be optimized to get the lowest value of bearing capacity according to value of the angle 8
of the logspiral curve. The procedure was applied first for g and then was continued to

calculate ¢”. First, an arbitrary value of the ultimate load per unit area, gy Was assumed.

The angle of the logspiral of the composite soil part was then determined by % =0 and

1
by applying the Newton Raphson numerical technique. The angle of cone was calculated

using the Equation 4.116. The logspiral angle for the soft soil part was also achieved

F = 0. Finally, if the passive forces F from the first and
2

using similar procedure and by

second optimizations were equal then the value of ¢, was considered the desired amount
otherwise the process continued by trial and error, by assuming a value of ¢, then
calculate the value of F. Agreement can be reached when, two consecutive values of F
becomes equal or having a difference of less than 0.01.

Same procedure was applied for the evaluation of ¢” and consequently, N, Ny and
N,. The ultimate bearing capacity is given by

g, =49, +q (4.117)

In order to facilitate this procedure, the mathematical formulations were coded in a
computer program which was written utilizing Visual Basic Version 6. The program G-
STColumn was developed for easy application of the extensive numerical calculations of
the theory. The complete list of the code is given in Appendix 3. The program predicts

not only the bearing capacity g,and ¢~ and the ultimate bearing capacity ¢, but also the
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angles of the cone and the logspirals. The program displays the final results at the end of
the calculation. The wide range of input data, foundation weight and depth, friction angle,

cohesion and unit weight of composite and soft soil were incorporated in the program.

4.3.3 Design Charts

Based on the results of the analytical model developed in this section, design theory is
presented and design charts are introduced for the values of N,, N, and N,. These charts
are presented in Figures 4.21 to 4.31. In order to use these charts, the composite values of

% ¢ and c should be first obtained from Equations 4.25, 4.26 and 4.35. These figures are

c
developed for —%-=0.2, 0.4, 0.6 and 0.8 and for Yeomp _ 1,1.2,1.4, 1.6, 1.8 and 2. The
cc },C

parameters used in the charts cover a wide range of practical cases. Interpolation should

be used for intermediate value. The ultimate bearing capacity is then calculated as

q, =l;/wmpBN, +gN, + ¢, N, (4.118)

2 comp™ " ¢

4.3.4 Extension of the Model for Uniform Soil

The theory developed herein for soil reinforced by stone columns, can be used for
unreinforced homogenous soil. In this case, it is sufficient to use the cohesion and friction
angle of homogenous soil for both composite and soft soil sections. Extension of the
model for uniform soil case can be used as model validation and for the determination of
the cone angle based of the logspiral minimization. The values of N,, N, and N, were
calculated for ¢ between 15° and 40°. The results obtained from this study were

compared with the values available in the literature.
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Figure 4.21 N, vs. ¢omp - P for —=7%-=0.2.

c

138

i
7
/ ¢comp=45
/
// /%mpﬂo
/ / — Acomp'=35
_—————""'/5-—-"’(@ omp=25
— —— ¢cOmp=20
¢oomp=15L‘T

0 5 10 15 20 25 30 35 40



200
180
160
140
120

= 100
80

60

40

20 -

/
/ ¢comp=45°

139

c
Figure 4.22 N, vs. ¢comp - P for—2=0.4.
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Tables 4.8 and 4.9 present the predicted values for N, and N, respectively. From

this Table, it can be noted that close agreements were achieved. Furthermore, the
proposed value of the cone angle was in good agreement with the angle 45" + %which
was assumed for homogeneous soils by other researchers. This conclusion may imply

‘ghat usage of 45° +§ for the cone angle is reasonable for both N, and N,. For the case of

Ny(Table 4.10) the values calculated by the present study is higher than Vesic (1973) and

Soubra (1999) and lower than Chen (1975). The value of the cone angle was determined

to be slightly lower than the assumed value of45° +—(26 .

4.3.5 Model Validation

The analytical model developed herein was validated using the available experimental
data and the results of numerical model for the cases of general shear failure (Table 4.11).
The numerical model was developed using the “PLAXIS” V8 program. Good agreement
between the theoretical model and the two others was observed. The model was further
compared with the theoretical method developed by Madhav and Vitkar (1978). Close
examination of the method of Madhav and Vitkar (1978) shows that it gives higher
ultimate bearing capacity comparing the proposed model and experimental and numerical
results. This observation might be due to the nature of Madhav and Vitkar (1978) model

which used limit analysis and is an upper bound technique.
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Table 4.8 Bearing capacity factor N..

0] This study | Vesic Terzaghi Soubra Chen ¥ ¥
(1973) (1943) (1999) (1975) (this study) | (45+¢/2)

15 10.96 10.98 12.86 10.99 10.98 52.5 52.5
16 11.62 11.63 13.68 11.65 11.63 53.0 53.0
17 12.34 12.34 14.60 12.36 12.34 535 53.5
18 13.08 13.10 15.12 13.13 13.11 54.0 54.0
19 13.92 13.93 16.57 13.96 13.94 54.5 54.5
20 14.82 14.83 17.69 14.86 14.84 55.0 55.0
21 15.79 15.82 18.92 15.85 15.82 55.5 55.5
22 16.88 16.88 20.27 16.92 16.89 56.0 56.0
23 18.02 18.05 21.75 18.09 18.05 56.5 56.5
24 19.30 19.32 23.36 19.37 19.33 57.0 57.0
25 20.71 20.72 25.13 20.77 20.73 57.5 57.5
26 22.24 22.25 27.09 2232 22.26 58.0 58.0
27 2393 23.94 29.24 24.01 23.95 58.5 58.5
28 25.80 25.80 31.61 25.88 25.81 59.0 59.0
29 27.86 27.86 34.24 27.95 27.87 59.5 59.5
30 30.11 30.14 37.16 30.24 30.15 60.0 60.0
31 32.67 32.67 40.41 32.79 32.68 60.5 60.5
32 35.46 3549 44.04 35.62 35.50 61.0 61.0
33 38.60 38.64 48.09 38.79 38.65 61.4 61.5
34 46.13 42.16 52.64 42.34 42.18 62.0 62.0
35 46.12 46.12 57.75 46.33 46.14 62.5 62.5
36 50.55 50.59 63.53 50.82 50.50 63.0 63.0
37 55.69 55.63 70.01 55.91 55.65 63.5 63.5
38 61.36 61.35 77.50 61.68 61.37 64.0 64.0
39 67.87 67.87 85.97 68.25 67.89 64.5 64.5
40 75.31 75.31 95.66 75.77 75.34 65.0 65.0
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Table 4.9 Bearing capacity factor N,.

¢ | Thisstudy | Vesic Terzaghi Silvestri Soubra Chen 1 ¥
(1973) (1943) (2003) (1999) (1975) | (this study) | (45+¢/2)
15 3.96 3.94 4.45 3.95 3.94 52.5 52.5
16 433 4.34 4.92 434 434 53.0 53.0
17 4.79 4.77 545 4.78 4.77 535 53.5
18 5.27 5.26 6.04 5.27 5.26 54.0 54.0
19 5.79 5.80 6.70 5.81 5.80 54.5 54.5
20 6.39 6.40 7.44 6.41 6.40 55.0 55.0
21 7.06 7.07 8.26 7.08 7.07 55.5 55.5
22 7.82 7.82 9.19 7.84 7.82 56.0 56.0
23 8.65 8.66 10.23 8.68 8.66 56.5 56.5
24 9.59 9.60 11.40 9.62 9.61 57.0 57.0
25 10.64 10.66 12.72 10.91 10.69 10.66 57.5 57.5
26 11.87 11.85 14.21 12.14 11.88 11.86 58.0 58.0
27 13.19 13.20 15.90 13.36 13.23 13.20 58.5 58.5
28 14.72 14.72 17.81 15.10 14.76 14.72 59.0 59.0
29 16.44 16.44 19.98 16.87 16.49 16.45 59.5 59.5
30 18.40 18.40 22.46 18.89 18.46 18.41 60.0 60.0
31 20.63 20.63 25.28 21.20 20.70 20.64 60.5 60.5
| 32 23.18 23.18 28.52 23.83 23.26 23.18 61.0 61.0
33 26.06 26.09 32.23 26.84 26.19 26.10 61.4 61.5
34 29.44 29.44 36.50 30.30 29.56 2945 62.0 62.0
35 33.27 33.30 4144 34.29 33.44 33.31 62.5 62.5
36 37.75 37.75 47.16 3891 37.93 37.76 63.0 63.0
| 37 42.95 42.92 53.80 44.25 43.13 42.93 63.5 63.5
38 48.93 48.93 61.55 50.49 49.19 48.95 64.0 64.0
39 55.95 55.96 70.61 57.77 56.28 55.97 64.5 64.5
40 64.19 64.20 81.27 66.31 64.58 64.21 65.0 65.0
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Table 4.10 Bearing capacity factor N,

40

¢ | Thisstudy | Vesic Chen | Soubra | Frydman & Burd (1997) 1/ v
(1973) | (1975) | (1999) (this study) | (45+¢/2)

15 2.90 2.65 2.94 1.95 51.6 52.5
16 3.39 3.06 342 232 51.7 53.0
17 3.94 3.53 3.98 2.75 51.8 53.5
18 4.51 4.07 4.61 3.25 52.0 54.0
19 5.17 4.68 535 3.82 523 54.5
20 5.95 5.39 6.20 4.49 52.6 55.0
21 6.82 6.20 7.18 5.26 52.9 55.5
22 7.83 7.13 8.32 6.15 533 56.0
23 9.00 8.20 9.64 7.19 53.7 56.5
24 10.37 944 11.18 8.40 54.1 57.0
25 11.95 10.88 12.97 9.81 54.6 57.5
26 13.78 12.54 15.05 11.46 55.0 58.0
27 15.92 14.47 17.50 13.39 55.5 58.5
28 18.43 16.72 20.36 15.67 56.0 59.0
29 21.37 19.34 23.72 18.35 56.5 59.5
. 30 24.85 22.40 27.67 21.51 21.70 57.0 60.0
31 28.91 25.99 32.34 25.26 57.5 60.5
32 33.76 30.22 37.86 29.71 58.0 61.0
33 39.47 35.19 44.41 35.02 58.6 61.5
34 36.33 41.06 5220 41.37 59.1 62.0
35 54.49 48.03 61.49 49.00 54.20 59.6 62.5
36 64.33 56.31 72.62 58.21 60.7 63.0
37 76.22 66.19 85.98 69.35 60.7 63.5
38 90.61 78.03 102.10 82.91 61.3 64.0
39 108.15 92.25 121.60 99.48 61.8 64.5
129.63 10941 14530 119.34 147.00 62.1 65.0
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Table 4.11 Validation of the model with (a) Experimental work (b) Finite elements

modeling.
@ |
No. | Reference Cu o Ye % A B Qu Qu Qu
(kPa) | (°) (%) | (m) | (kPa) | Meas | Theory | (Madhav
ured | (kPa) | & Vitkar
(kPa) (1978))
(kPa)
1 Mckelvey 32 34 14 173 24 0.09 272 265 280
et al.
(2004)
2 Mckelvey 205 34 99 203 40 005 160 176 193.12
etal.
(2004)
3 Hu 105 30 131 1547 30 0.1 79 84.83 86.86
(1995)
4 Hu 1.5 30 131 1547 30 0.1 75 92.8 95.07
(1995)
(b)
No. Reference C. o O Y % A B q Qu Qu
&Pa) (°) (°) % (m) (kPa) (measured) (theory)
(kPa) (kPa)
1 PLAXIS 5 25 45 160 21 35 25 3.2 800 870
2 PLAXIS 5 12 45 130 21 35 25 2.6 352 334
3 PLAXIS 5 13 40 13.0 19 35 25 2.6 280 293
4 PLAXIS 5 15 45 140 21 35 25 2.8 420 392
5 PLAXIS 15 15 45 140 21 35 25 2.8 660 618
6 PLAXIS 5 13 40 13.0 19 30 262 26 275 261
7 PLAXIS 10 13 40 13.0 19 30 262 26 366 347
8 PLAXIS 15 13 40 13.0 19 30 262 26 458 433
9 PLAXIS 5 12 45 120 21 35 3 2.6 365 350
10 PLAXIS 12 12 45 12.0 21 35 3 2.6 508 491
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4.4 Analytical Model for Local Shear Failure

Similar to the case of general shear failure theory, equivalent soil concept was used to
model the reinforced ground and limit equilibrium technique was utilized. The composite

cohesion and unit weight of the reinforced soil was considered as
Veomp = A7y + (1= 4,)7, 4.119)

= dc, +(1-4,)c, (4.120)

ccomp
where c;, ¢., %, . and A4, are cohesion and unit weight of the column material and soft soil
and area ratio respectively. ¢, was considered zero for granular material.

Friction angle of composite soil calculates as

Poomp = tan " [A,p, tang, +(1— 4,y tang,] (4.121)
where
: n
=— 4.122
Hs 1+(n—1)4, (4.122)
-— 1 (4.123)
He 1+(n—1)4, :

¢s and ¢, represent the angle of friction of stone column material and soft soil
fespectively. Derivation of this equation is presented in Section 4.3. The stress ratio, n, of
3 was used in this study. (Mckelvey et al. (2004)) Yeomp, Ceomp aNd Peomp in Equations
4.119, 4.120 and 4.121 were used as the composite unit weight, cohesion and friction
angle of the reinforced area in the proposed theoretical model.

| Figures 4.32 and 4.33 illustrate the failure shape observed in the numerical model
and the proposed failure pattern. Due to symmetry only half part of the problem is

presented.
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Figure 4.32 Rupture surface observed in the numerical model.

o

Figure 4.33 Assumed failure Mechanism.
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Square arrangement of stone columns was considered in the model which can be
simplified as the plane strain form.
The observed failure pattern consists of 2 zones:

3. Zone 1 represents the triangle wedge section 4BC which is located beneath the
foundation and has an angle ¥ from the horizontal axis.

4. Zone 2 is a shear zone ACD bounded by the surface CD which has the logspiral
shape. The curve starts at the tip of the triangle wedge and ends at point D located
at the boundary of the reinforced area. The location of logspiral center is
undetermined and will be estimated. In developing the theoretical model, due to
low relative density of the soft soil, large width of the foundation and due to the
large resistance of the boundary columns, failure surface does not extend to the
surrounding soft soil as it ends at those columns. This observation was noted in

the results of numerical model presented in Chapter 3.

4.4.1 Equilibrium Analysis

In the proposed model the ultimate bearing capacity was considered as the sum of bearing
capacities due to the unit weight, cohesion and surcharge. Due to symmetry only half of
the failure mechanism is considered.

Considering the bearing capacity due to unit weight, the free body of the logspiral
section (Figure 4.34) is subject of the following forces:

1. Weight of the soil mass of the logspiral block OCD, W;, which is calculated as

2 2
h—n

= —_— 4.124
1 }/ comp 4 tan ¢comp ( )
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Figure 4.34 Equilibrium of forces on the logspiral section (¢59, v59, qg=0, c=0).
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However

r=—5 (4.125)
2sinf
and
7 =r,e’ 0o (4.126)
So
pom B e, (4.127)
~ 2siné
Therefore
Bz eZGtan(I’camp -1
1= 7comp ( 2 ) (4128)
16sin” ftang,,,,
1. Weight of the triangle ACO given as
1 B
-2 d 4.129

2 2 ycomp 2 y ( )
Considering Equation 4.45, the distance 40 could be determined
A0 =y = B(tanylz—coté?) (4.130)
Therefore

2

Wy =7 com 5 (tam’; cot6) (4.131)

2. The resultant of frictional force, R, along the arc CD. The line of action of this
force passes through the center of the logspiral.
3. Load Py due to weight of the elastic cone section and load applied to the

foundation and is acting on line AC.
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4. Passive force due to the resultant of the stress acting on the plan AD which can be

given by the following equation.

9, =y KpAD (4.132)
However
B : Gtang,

AD =y +r = ——(tany sin@ — cos§ + ¢’ ") (4.133)
: 2sinf
So

K,B }
9= e —£— (tany sin @ — cos @ + ¢’ ") (4.134)

2sin@

Kp is determined using the tables of Caquot et al. (1972) for passive earth pressure
coefficient. Table 4.12 presents the values of Kpwith respect to ¢.

Taking moment about point O; gives

B . B

_q,c08¢,  , y 2 2
_ erp? 4 72 4.135
3 [n 2(y+r1)(1 ¥l ( )

The lever arm /; is given as (Hijab (1956))

; 4tang,, n’ -7, (3tang,,, sind+cosd)
' 30tn’e,, +1) (" =)

(4.136)

Substituting Equations 4.125 and 4.126 into 4.136 results

/ 2Btan P eomp

' 3sin0©9tan’ g, +1)(" % _1)

[¢20 " Feme _ (3tang,,,, sin @+ cos )] (4.137)

The lever arm / ,1s determined as

--125 (4.138)

1 B
I == =
23 6
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Table 4.12 Kp factor.

¢ K, ¢ K,
10 1.66 26 4.82

11 1.77 27 5.24

12 1.88 28 5.66

13 1.98 29 6.08

14 2.09 30 6.50

15 2.20 31 7.30

16 2.38 32 8.10

17 2.56 33 8.90

18 2.74 34 9.70

19 2.92 35 10.50
20 3.10 36 12.00
21 3.36 37 13.50
22 3.62 38 15.00
23 3.88 39 16.50
24 4.14 40 18.00
25 4.40

160




Combining Equations 4.127, 4.128, 4.130, 4.131, 4.134, 4.135, 4.137 and 4.138 yields

B’(tany —cot )
48

3
B [e39 tan @eomp

: ~(3tan sin @ + cos @)+
Teom 24sin’ 00 tan g, +1) (tang,, 17 eomp

‘ B B B(tany —cot @
B [COSY = Py ) 5+ S — 0,0, ) tanyy 2V~ COLE)

3 5 ]

3 28tan
_VB'K, cosp, 0" Peomp +tanw—cot0 1 0 0comp

—tany +cotf)] - (tany sin @

24sin @ sin’ @ 2 sin @
—cos@ + ") (4.139)
or
261
7B, 0039 o O tany —cotg 1 e’ "Pcomp _tan v +cotd)] - (tany sin@
p —__ 24sinf sin? 9 2 sing
- COS(Y — Pcomp) . tany tany —cotd
— F SIN(Y — Pcomp X 3 2 )
B [eagtan #comp (3tan sin@ + cos 6)]
e - @ in@ + cos
—cosg+e’ reom ) "™ 245in® 9(9tan? pegyp +1) comp
COS(¥ ~ Peomp) . tany tany —coté
— 5t SiN(Y - Peomp N 3 3 )
B*(tany — cot6)
comp
48 (4.140)

~cos(y —@,,,,)
3

tany  tany —cotd
3 2

+siy - @,,, ) )

In order to obtain the minimum ultimate bearing capacity, the force P, should be

oP,
minimal. This condition can be described as —6——7 =0 were v is related to logspiral
\ 1%

geometry such as its center coordinates or §. Differentiating the above equation with
respect to § and equating the result to zero, the critical value of # will be estimated
(Appendix 4). The critical value of 8 represents the logspiral that rupture surface actually

happens. By determining the angle 8, the value of P, will be then calculated.
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Writing the equilibrium equation for the cone section results (Figure 4.35)

q,8=2P, cos(y - ¢,,,,)—W, (4.141)
However

BZ
W, = —4— Y comp tADY (4.142)
So
. 5 Py 3
=73 COS(Y — @, ) — 7 eom tany (4.143)

Substituting Equation 4.140 into 4.143 gives

BK, cos 20taNpcomp a0 —
VeZlp 0%c € Jany—cotd 1 senscomp —tany +cot9)] - (tany sin

q, = 12sing sin? 9 2 sing
7 1 tany tany —cot@
3 +tan(y - Pcomp 3 2 )
y B [e30tan¢comp _ (3 tan P sin@ + cos 0)]
—cosd + e6rtan ?comp ) ) comp 12 gin® (9 tan2 Poomp * 1) comp

tany tany —cotd

1
3+ tan(y — o, X 3 > )
B(tany —cot9)
_ comp T _E
1 t tany tany -cotd 4 ycomp tany (4 144)
3* aN(Y — @ o, X 3 " > )
g1s written in the form
1
O =57 BNY (4.145)

where N, is bearing capacity factor and
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Figure 4.35 Acting forces on the cone section.

163



K cos 205%%m  tany — cot
r.K, Q. e any —cotd , 1 eeumwmp_tany/+cot9)].(tany/sin9

67 oomp SINE ~ sin® O 2 sin @
N, =—= 1 t t t0
any tany —co
~ + tan(y — -
3 -0, X 3 5 )
1 30tan¢mmp

[e —~(3tan e, sin 8 + cos )]

—cos@+e’ 0 B 6sin’ 0(9tan’ @__ +1)

tany tany —cotd

3 2 )

1
3t tan(y —¢_ )

tany —cot &
12 1
- ——tany (4.146)
1 tan tany —cotd, 2
3y - ) F -

For the ultimate load due to surcharge and cohesion, the free body of the composite
section (Figure 4.36) is subject to the following forces:

1. Stress g; which is due to the surcharge ¢ and cohesion on plan AD.

g, =K,g+K.c (4.147)
However
K
K =—- _ (4.148)
' cos(A-p)

In Equation 4.148, Aand @ are the angle of wall with the vertical and the slope of the free

surface with the horizontal surface respectively. Thus

A=4=0

So

K,=K, (4.149)
and
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1
cos g,
tang,

K, -
K =

c

)

Combining Equations 4.147, 4.149 and 4.150 gives

1
K, - )
cos@,

9, =Kpq+
tang,

2. Passive force P’

3. Cohesive force per unit area along AC.

4. Cohesive force per unit area along arc CD.

5. The frictional resisting force along the arc CD.
6. Cohesive force per unit area along 4D.

Taking moment about point O results

. B . B
EM = 0> P[0OSW = 0py)  + Y ~ 0,0, ) tany = )]

c
+ccompACycosx//+M( 2_,,12)___ w0 (r2 —p)
2tang,,,,
and
ac=—5
2cosy

Substituting Equations 4.125, 4.127, 4.130, 4.151 and 4.153 into 4.152 yields

B(tany — cot 9)

. I 1. - tan
P [COS(VI - ¢comp )Z + 5 sm(y/ - ¢comp )( .4 + cot 0)] + ccomp
1
(Kp - )
CO:
B(Kpg +——2%c;)cosg, 20000y
+ g’° [(tany —cot6)? —
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] =
sin? 9 8sin? 6 tan gy,

(4.150)

(4.151)

(4.152)

(4.153)

26tan
e Pcomp __ 1)

(4.154)
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=ty

Figure 4.36 External forces acting on the logspiral section (¢4, ¥=0, g 9, ¢ :9).
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or

1

&, " cos )
B(K.q+ % C.)COSP,  pung 2tap,,
: [ —(tany—cot@f]+ S (€Tl o)
P 8 sin’ & 4 2sin26’tanqowmp
COSY ~ By~ +— 510 — P ).+ cot)
42 P2
(4.155)

Minimizing Equation 4.155 with respect to 8 gives the minimum value of bearing

capacity corresponding surcharge and cohesion. Appendix 4 represents the optimization

of above equation.

From Figure 4.37
. 2P
q = —B—cos(w - qommp) + Cpmp taN Y (4.156)

Substituting Equation 4.155 into 4.156 gives

e20 tampmmp
K, cosp [——5— —(tany —cot§)*]
g = sin” @ q
—tany
1+ 2tan(y — @, ( +cotd)

26 tan @ comp

1 —tany
—tany + cot@ + tan w[— + tan(y — +cotd
2sin’ Otang,, % wl 5 ¥ = Peomp ) 5 )]

C
I ~tan conp
S+ =0, (= + cot )
1
Kp - os ) 629ta.n¢2mp
t Pe cos @, [~ » — (tany —cotd)*]
TR il S c. (4.157)

1+ 2 tan(y —@,,,,, X +cotd)
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Figure 4.37 Free body diagram of the triangle wedge.
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The value of ¢ can be expressed in the form

q =4N, +c,,, N (4.158)

comp” ' ¢

Therefore, the bearing capacity factors can be given as

20tan¢camp
tan(45 + 2”—) cos® @, [e—_z— — (tany —cot §)*]
N, = 2 sin_0 (4.159)
—tany
5 +cot 6)