OntoVQL: Ontology Visual Query Language

Amineh Fadhil

A Thesis
in
The Department
of

Computer Science and Software Engineering

Presented in Partial Fullfilment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

September, 2008

© Amineh Fadhil, 2008

i+l

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4
Canada

NOTICE:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliothéque et
Archives Canada

Direction du
Patrimoine de I'édition

395, rue Wellington
Ottawa ON K1A ON4
Canada

Your file Votre référence
ISBN: 978-0-494-45461-9
Our file Notre référence
ISBN: 978-0-494-45461-9

AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, €lectronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT
OntoVQL: Ontology Visual Query Language
Amineh Fadhil

Applying visual techniques to access data has been a successful way of abstracting
and simplifying the complexity of the operation to a user not versed in the technical
domain. Visual querying systems have been developed to represent a database schema
and to visually query its content. Similar effort has been done for visually representing
the knowledge in an ontology. Since ontologies are gaining ground into playing an
important role in representing knowledge of multidisciplinary domains, there grows
the need for a simple way to query ontologies.

This thesis presents OntoVQL, a formal visual query language that allows to
query OWL ontologies. OntoVQL hides the complexity of an OWL query language by
abstracting the query as a graph that can be broken and reassembled and is designed
to formulate more than simple queries with the and/or constructors. OntoVQI, a
visual querying interface is introduced as the prototype that has been implemented
to effectively forinulate queries in OntoVQL and to view their results. This prototype

facilitates query formulation by providing features such as query preview.

i

Table of Contents

List of Tables vii
List of Figures viii
1 Introduction 1
1.1 General motivation for database visual querying 1
1.2 What is a visual query system? 1

1.3 What is a visual query language? 2
1.4 Research goal and outline 2

2 Overview of visual query systems 4
2.1 Related work in database visual querying 4
2.1.1 Hyperflow R 4

2.1.2 GLASS 5

2.1.3 Klaeidoquery 8

214 Gal. ... e 9

215 GraphLog 11

216 GOQL e 13

2.1.7 DOODLE 20

2.2 Related work in ontology visual querying 20
221 SEWASIE 22

222 GrOWL-Query i 22

223 GRQL 23

224 OZONE 24

v

2.3 SUMMMATY . .« v v v e e e e e e e 26
3 Graphical query language for OWL ontologies 28
3.1 Background 28
3.1.1 Brief overview of Description Logies 28
TBox/ABox description 29

3.1.2 Brief overview of OWL ontologies 30
3.1.3 Briefoverviewof nRQL Lo 31
Concept qUEry v e 32

Rolequery 32

The AND constructor 33

The OR constructor 34
Variabletypes oo 36

3.2 Contribution of Literature review to OntoVQL 39
3.3 Visualmnotations 42
34 Visual Syntax 45
3.5 Mapping of OntoVQL to the nRQL language 62
3.6 OntoVQI’s characteristics 67
36.1 Maintoolbar 68
Loadontology L 68

Save/Load Query 69
Variableoption 72

3.6.2 Informationtabs 73
Concepttab 75

Roletab 75
Individualtab 76
Draganddrop 77

The “Add edge” option 78

363 Querytabs 78
Querytab 79

Delete e 79

Undo/Redo 80

Querypreview. 80

Projection 80

Intersection and union constructors 85

3.7 System Design and Architecture 85
3.7.1 Presentation Layer 86

372 Domain Layer oo 89

3.7.3 Data Source Layer 91

4 Conclusion 92
Bibliography 94
A People-pets ontology 98
Al Source e 98
A2 TBoxand ABOX o it 122

vi

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18

Example of a concept query. o oL 32
Example of role queries. 33
Example of queries with the AND constructor. 35
Example of queries with the OR constructor. 37
Query examples with different variable types. 38
Translation of query in Figure 3.10tonRQL. 50
Result from Racer for query in Figure 3.16 51

Translation of query in Figure 3.11 to nRQL (URLs are omitted for

CATItY) © o o o e e 52
Result from Racer for query in Figure 3.11 52
Translation of query in Figure 3.12tonRQL 53
Result from Racer for query in Figure 3.12 53
Translation of query in Figure 3.13tonRQL 54
Result from Racer for query in Figure 3.13 54
Translation of query in Figure 3.14tonRQL 54
Translation of query in Figure 3.16 tonRQL. 55
Result from Racer for query in Figure 3.16 contains 7 tuples 55
Translation of query in Figure 3.25tonRQL 67
Domain and range specification of arole in OWL. 76

vii

List of Figures

2.1 Hyperflow flow of execution. (Figure taken from [14]) 6
2.2 An ORA-SS schema diagram. Object classes are represented as squares.

Attributes under the corresponding object classes are represented as

circles. Arrows indicate the nested structure of the schema and the

labels on the edges are for relationship types. (Figure taken from [31]) 7
2.3 Selection query. This query selects all courses whose codes begin with

”27. The main drawback of GLASS is that it combines graphs with

text. Therefore, on top of requiring the user to learn the basic concepts

and how to use them to build a query, the user must know how to write

logical expressions. (Figure taken from (31]) 8
2.4 Example Schema for Klaeidoquery. Class icon and the class name

along with the extent name and the icon associated with the clase of

the extent. (Figure taken from [29]) 9
2.5 (a) Selecting attributes. Certain attributes of the class Person are

selected for output. (b) Visualizing "and”, "or” and "not”. Constraints

on the same line are AND-ed. Constraints on separate branches are

OR-ed. Constraints that are selected are negated. {(c) Universal quantification.

This query uses the "for all” operator of OQL. The ”exists” operator

can be used instead for existential quantification. (Figures taken from

[29]) . . 10
2.6 Entities are represented as nodes; circles are real world entities whereas

ovals are lexical entities. The functions between entities are represented

as labelled directed arcs between nodes. (Figure taken from [33]) . . . 12

viii

2.7 A sample query over the schema of Figure 2.6. (Figure taken from [33]) 13

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

(a) Union is represented with the union collection box (UCB) constructs
that must contain two or more union compatible collection boxes for
representing the union of these collections. (b) Negation is represented
with the truth value box (TVB) constructs. The first query shows a
positive TVB corresponding to an existential quantifier whereas the
second query shows the negative TVB corresponding to the negated
existential quantifier. (c) Universal quantification is represented with
collection comparison operators (CCO) which are a new labelled edge
connecting two union compatible collection boxes. The depicted query
corresponds to the following textual meaning: ”get every supplier who
has an order for every blue part”. (Figures taken from [33]).
A graph representation of a flights schedule database. (Figure taken
from [12])
(a) The descendants of P1 which are not descendants of P2. (b) The
descendants of P1 which are not descendants of P2 in Datalog. (Figures
taken from [12]) Lo
Example of graphical database schema in GOQL. (Figure taken from
[22]) . . e
Example queries of GOQL (Figures taken from [22])
Other example queries of GOQL (Figures taken from [22])
Visualizations of a binary relation. (Figure taken from [13])
a) Visual program that defines softGraph. (b) F-logic program for
softGraph. (Figure taken from [13])
(a) GrOWL-Query diagram. (b) The equivalent translation in DL.
(Figure taken from [25])
RDFS Descriptions of Web Resources in a Cultural Portal. (Figure
taken from [2])
Choice of class Artist as entry point to the schema navigation (Figure

taken from [2])

14

15

16

2.19 OZONE overview (Figure taken from [21})

3.1 Architecture of a knowledge representation system based on Description
Logics [3].
3.2 Breaking down a query by deletinganode.
3.3 Visualization of the basic elements of OntoVQL.
3.4 Representation of concept intersection.
3.5 The same query represented in two different graphs.
3.6 The same query in two different layouts: (a) (OR (AND C6 C7) (AND
C4 C5)(AND (OR C1 C2) (OR C2 C3))) (b) (AND (OR C6 C7) (OR
C4C5)(OR (AND C1C2) (ANDC2C3)))
3.7 Shapes in a graph query: (a) Example of a cyclic graph query. (b)
Example of an acyclic graph query. (¢) Example of a tree graph query.
(d) Example of a graph Query with tree and cyclic graph shapes.
3.8 Simplification of a graph query by applying the first visual constraint.
3.9 AND group queries (a) The result from Racer for this query is: ((7X1
[Minnie|)) (b) The result from Racer for this query is: ((?X1 |Tibbs|)
(X1 |Tom|))
3.10 A query composed of two AND groups linked with arole.
3.11 Query composed of an OR node linking two and groups.
3.12 Example of an illegal query.
3.13 Correct representation of the query in Figure 3.12.
3.14 Correct representation of the query in Table 3.10.
3.15 (a) Two role queries in OntoVQL. (b) Results of the queries.
3.16 Example of an illegal graph query where an entity (person concept) is
under more than one “branch”.

3.17 Correct representation of the query in Figure 3.16..

29
41
43
44
46

47

48
49

57

3.18 (a) <concept> (b) <unknown concept> (c¢) <individual> (d) <ROLE>

(e) <AND NODE> (f) <OR NODE> (g) <AND GROUP> (h) <OR GROUP>
3.19 Visual description of the grammar rules.

3.20 An example query generated by the 7th rule of the grammar.

59
61

3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
3.41
3.42
3.43

3.44
3.45
3.46

Al
A2

Concept query mapping.« v v v v v v e 64

Role query mapping. 64
(a)AND group mapping. (b) OR group mapping. 65
(a) AND node mapping. (b) OR node mapping. 66
Example of a graphical query and its equivalence in nRQL Table 3.17. 67
OntoVQI’'s Main window. 68
File selector for choosing an OWL ontology. 69
Sequence diagram of loading an OWL ontology. 70
Save query window. 71
Load query window. 71
Variable option window. o oL L 73
Variable type effect on query result. 74
Result for Query 5 in Figure 3.32. 74
Domain/range of a selected role. 76
Direct type/all types of a selected individual. 77
A dragged and dropped concept/role/individual. 78
Deleting a query component inconsistently. 79
Asimplerolequery.. o 81
Removing a node from the projection. 82
The intersection and union constructors in the query toolbar. 83
The use of the concept intersection constructor. 83
Using the OR constructor. 84
Distribution of packages into the three layers: presentation, domain

anddatasource.. L. .. 87
Class diagram of the presentation.graph package. 88
Class diagram of the domain.graph package. 89
Class diagram of the domain.racer package. 90
TBox graph of the People-pets.owl ontology 123

ABox graphs of the People-pets.ow! ontology 124

xi

Chapter 1

Introduction

1.1 General motivation for database visual query-
ing

It has been shown that applying visual techniques for accessing data is particularly

successful {10]. This is because of the increase of non-expert and casual users who are

not familiar with database querying languages such as SQL. Moreover, in comparison

to the use of natural language, visual querying overcomes the problems of depending

on the user’s language and the limitation imposed by the application area [10].

1.2 What is a visual query system?

Visual query systems (VQSs) are defined as systems for querying databases that use
a visual representation to depict the domain of interest and express related requests
[9]. These systems are based on the advantage in the ease of grasping knowledge
visually; allowing the recognition and handling of large quantities of information
[9]. Moreover, the human-computer dialogue is improved by the possibility of using
visual feedback [9]. A visual query system provides a user-friendly visual interface
for accessing a database [10]. It is composed of a visual query language (VQL) for
pictorially expressing queries and of some functionality for facilitating the human-
computer interaction [10]. Target users of a VQS lack technical skills and usually

ignore the inner structure of the database they are accessing. Many VQSs employing

various visual representations and interaction strategies have been proposed in the

literature. A survey on visual query systems for databases can be found in [9].

1.3 What is a visual query language?

Visual query languages are issued from visual programming languages that were first
introduced in [10]. In fact, visual programming languages express abstract and non-
abstract objects in a visual representation in order to enhance man-machine inter-
action. This class of visual programming languages subclasses the visual query lan-
guages that deals with data in databases. There exist iconic and graphical VQLs.
The former is based on icons and the latter based on diagrams. ” Graphical languages
are more suited to be formalized, given the precise mathematical structure (i.e., the
graph) the diagrams are based on” [10]. The formalization of the language permits

one to evaluate its expressive power.

1.4 Research goal and outline

As it will be seen in the literature review of Chapter 2, a number of Visual Query
Systems have been developed in the context of databases. However, even though some
work has been done for querying OWL ontologies, it is not comparable to the database
domain given mostly that the use of ontologies is recent. Most of the attempts of
visually querying an ontology was done in context of offering an integrated view of
multiple databases. Very little has been done for effectively visually querying an
OWL ontology. In that context, the main objective of this research is to develop a
Visual Query Language for querying ontologies. The goal is to design a VQL that is
formal, simple to understand and allows to formulate more than simple basic queries.
The idea is to design a VQL that abstracts the complexity of the underlying logical
querying language. It should be possible to map the visual constructs in the VQL to

the semantics of any querying language for ontologies.

In our case, we present OntoVQL, the designed Visual Query Language that is
mapped to a subset of the semantics of nRQL. In the next chapter, an overview of
Description Logics, OWL ontologies and nRQL is given to lay the background of this
research. The major work for visually querying databases and ontologies is covered in
Chapter 2 to explain how they helped in the design decisions of our VQL. The Visual
Query Language is then presented in the following Sections (3.3, 3.4, 3.5) that cover
its visual notations, syntax and mapping to nRQL. Finally, OntoVQI is presented in
Section 3.6 as the prototype that has been implemented for querying ontologies with

OntoVQL.

Chapter 2

Overview of visual query systems

In this chapter, we will make a brief overview of existing visual query systems for
databases as well as some visual querying interfaces for ontologies. These will be

covered as a background to the visual system we will be introducing in Chapter 3.

2.1 Related work in database visual querying
2.1.1 Hyperflow

Hyperflow [14] is a visual language that merges visual query languages (VQLs) and
visual dataflow languages features. It is designed for the purpose of facilitating in-
formation retrieval from databases. In fact, it allows to vicially construct and ex-
ecute information analysis processes in a single diagram. Hyperflow has a twofold
motivation. First, up to now many databases and analysis services offer only ba-
sic, under-expressive user interfaces that do not allow to perform operations such
as arbitrary joins, grouping or aggregate functions which are usually performed on
databases. Therefore, Hyperflow supports almost all constructs from the SQL, OQL
and RDF query languages. Thus, it gives the user a unified language to most com-
mon databases. Second, the issue of data integration: databases and analysis services
are highly distributed and different formats for the same data are used in different
databases. On that account, in order to ease the process of transforming complex

database queries into information handling processes, Hyperflow offers the possibility

of combining queries into workflows and provides an expressive and simple way in
making a query and specifying a workflow. Two modes of operation exist in the Hy-
perflow language. The first one consists of allowing the user to design and execute the
query and the second one is for interactively exploring information. As an example
to illustrate how Hyperflow can be employed, consider the following simple bioinfor-
matics analysis where a researcher wishes to analyse a DNA molecule by comparing
its sequence to sequences in public databanks depicted in Figure 2.1. The Hyper-
flow language introduces a mix of declarative graph-based constructs and functional
dataflow constructs. The graph-based constructs permit to determine the subgraph
of the ontology the user is interested in, whereas the dataflow constructs are meant to
represent the remaining parts of the query such as Group-By or Order-by. An easy-
to-use user interface is provided for the user. Queries usually start by simply dragging
a class icon from the ontology browser into the query box. Then, context-sensitive
popup-menus guide the user into building up the query. Another useful ability is that
sections of the workflow can be reused for constructing other queries.

In Figure 2.1, (a) shows the execution of a BLAST service that finds alignments
to similar sequences in the databank. Then, in (b) a follow-up query is posed by
using the obtained alignments from (a) to get mammalian sequences whose similarity
of alignment is more than 98%. In (c), a global alignment algorithm, one for each
pair of the original and retrieved sequences is conducted. In (d), the figure shows
a service that gives a multiple alignment of the retrieved sequences. Finally, in (e)
a workflow is prepared that finds which transcription factors are common to all the

sequences in the group. [14]

2.1.2 GLASS

Glass [31] (Graphical Query Language for Semi-Structured Data) is a graphical query

language for users to extract information from semi-structured data. It was developed

— o — —

N\

search for
3;1@31*‘5;,,,;;” sequences

.,
o)
Nt

% identity—LF—»-E5

Nucleotidd
Sequence
?—i‘o'rganism-y

Sequence
-Alignment

maiching

—
ot

=
e N i e e —
cwsrfLw il e
- ' Transcription
Multiple Alignment (3) @ﬁagtmﬁp
Y acts

g [g m:“_l

' Alignment

Figure 2.1: Hyperflow flow of execution. (Figure taken from [14])

department

‘/ + 2.0m 1
course
name ‘/ é

code title

cs. 2. 1in. I'n

student

number naie 2ra de

Figure 2.2: An ORA-SS schema diagram. Object classes are represented as squares.
Attributes under the corresponding object classes are represented as circles. Arrows
indicate the nested structure of the schema and the labels on the edges are for rela-
tionship types. (Figure taken from [31])

in order to exploit the full power of XML documents as well for providing an easy-
to-use interface since XQuery, the current standard for querying XML data, is too
difficult for common users to use. Most visual querying languages are based on the
visualization of the data model. The data model used in GLASS is ORA-SS {Object-
Relationship-Attribute model for Semi-Structured data). Figure 2.2 gives an idea of
what an ORA-SS schema diagram looks like.

The basic query operators (Selection, Projection, Join, Aggregation, etc.) that
are visually represented are related to the basic ones usually found in database query
languages. Figure 2.3 depicts an example of a simple selection query based on the
above schema diagram. The query is separated in two parts; the LHS is used for
specifying the conditions whereas the RHS is used to define the output. Moreover,
existential and universal quantification as well as negation are expressed textually

within a logical condition window.

course course

code

—tD.
=420

Figure 2.3: Selection query. This query selects all courses whose codes begin with
72”. The main drawback of GLASS is that it combines graphs with text. Therefore,
on top of requiring the user to learn the basic concepts and how to use them to build
a query, the user must know how to write logical expressions. (Figure taken from

31))
2.1.3 Klaeidoquery

Klaeidoquery [29] is a visual query language with the same expressive power as OQL
(Object Query Language). The motivation behind this work relies on the problems en-
countered with textual queries. In fact, the database user needs to know the database
classes, attributes and relationships structure before writing a query. Also, there are
the problems related to the syntactic and semantic errors. The query is depicted
as a filter-flow since the objective is to show the refinement of information through
the query. Therefore, the query follows the filter-flow model. Thus, the input to the
query consists of instances (extent of the database) that flow through the query and
get filtered according to specified constraints. The output can then be further refined
by being an input for another query. As it is the case with most graph-based visual
languages, a query formulation relies upon the selection of parts of the view of the
database schema, hence, the importance of the visualization of the database schema.
For this purpose, Klaeidoquery adopted icons with a textual description (Figure 2.4)
under the claim that this representation gives a better comprehension than icons
alone or text alone [6, 20].

A query is composed of three main parts: the extent of the database as the

NS
N s’ e — e

People ’*v f Companies %

WA

| U — Mo e s e

Company

Person
Figure 2.4: Example Schema for Klaeidoquery. Class icon and the class name along
with the extent name and the icon associated with the class of the extent. (Figure
taken from [29})
initial input to the query, classes from the database schema and query constructs for
specifying constraints. A simple select query is visualized along with its corresponding
SQL equivalence in Figure 2.5(a). Constraints to restrict the query result can be
added so that the instances get filtered through each constraint that could be and-
ed or or-ed with other constraints, or even negated (Figure 2.5(b)). Furthermore,

universal and existential quantifications can also be visually depicted (Figure 2.5(c)).

2.1.4 Gql

Gaql [33] is a declarative graphical query language based on the functional data model
(i.e. the functional view of the binary relational model). It is a declarative language
since the query describes what is the desired result rather than the procedure of how
to obtain the result. The authors of Ggl have designed the language for users working
with databases but without necessarily being versed in programming. They claim that
it should facilitate and hasten the database programmer job. Gql's expressivity is a
superset of that of SQL. Also, even though the following might be debatable in the
sense that it sounds more like a subjective opinion, but according to the authors, the
design principles on which Gql was based on are: ease-of-use, expressivity and ease-of-
use must scale up, the query should be fully expressed in a single diagram, it should
be formal and finally it should be separate from the user interaction procedures.

The reason why diagrams were adopted for representing queries is for their superior

10

——
N
N
L
age > 16
|f \j’ name, aﬁzei ! name = "Smuth"
Y
..*_J______ﬁ__‘ athsanennnn o (
(People O | [PEOple V7
S m{', ¢ N
(a) (b)
% name]
AV

age > 60 salary »= 25000

LJ

employees

L

- Companies %

Ea

(c)

Figure 2.5: (a) Selecting attributes. Certain attributes of the class Person are selected
for output. (b) Visualizing "and”, "or” and "not”. Constraints on the same line are
AND-ed. Constraints on separate branches are OR-ed. Constraints that are selected
are negated. (c) Universal quantification. This query uses the "for all” operator

of OQL. The "exists” operator can be used instead for existential quantification.
(Figures taken from [29])

11

expressivity over textual representations [26]. Moreover, the functional data model
has a diagrammatic representation (Figure 2.6).

A query over a schema would consists of parts of that schema put together with
some query constructs to allow query specification (Figure 2.7). The box construct
turns out to be the most important query construct in Gqgl. In fact, every query is
enclosed by a box (the outer or top-level box) and nesting of boxes allows nesting
of results, aggregates, negation, disjunction, universal and existential quantification.
Figure 2.8 shows how negation, disjunction and universal quantification are visualized
with different types of box constructs. However, different conditions are AND-ed by

default as it is shown in Figure 2.7.

2.1.5 GraphLog

GraphLog [12] is a visual query language that evolved from G+ and is based on
the graph representation of the data model. In addition, it has the same expressive
power as first order logic with transitive closure or stratified linear Datalog. In fact,
GraphLog is formally defined by graphical set theory. Thus, the database schema
is represented within a directed labelled multigraph G (Figure 2.9) that is formally
defined.

Like it is the case with other visual query languages, GraphLog profits from the
graph representation of databases to express queries. As a matter of fact, queries are
graph patterns that are searched in the database graph. Each pattern defines a set of
new edges (i.e. new relations) by mean of distinguished edges that are added to the
graph whenever the pattern is found. That is, whenever the edges of the graph pattern
are present, then the relation defined by the distinguished edge holds. A query pattern
is formally defined as a directed labelled multigraph with a distinguished edge. An
example of a GraphLog query is given in Figure 2.10(a) that intuitively expresses the
predicate no-desc-of(P1,P2,P3) with the descendants P3 of person P1 who are not

descendants of person P2. The graph pattern is translated into a logic program as

12

(srum
S >
b2}
SC

Cay——C

om

@ SN -{3”&"\&}
F

or

Conung
Pno , AR ‘
@ PN s prn

co pl

Gio Goloy Qocd

Figure 2.6: Entities are represented as nodes; circles are real world entities whereas
ovals are lexical entities. The functions between entities are represented as labelled
directed arcs between nodes. (Figure taken from [33])

13

Y

g
= étatu?)io
st
2
sC

:“Par‘is”

Figure 2.7: A sample query over the schema of Figure 2.6. (Figure taken from [33])
stated in Figure 2.10(b).

2.1.6 GOQL

GOQL [22] is a visual query language that provides a user-friendly graphical interface
to support ad-hoc queries for object-oriented database applications. This work was
motivated by the fact that most graphical query languages are easier to use and learn
than textual languages [33]. This is because users need not to be aware of a particular
syntax or remember built-in words and constructs. Thus, rather than writing obscure
code, users can visualize and represent their queries diagrammatically or graphically.
GOQL can express any query that can be expressed in OQL which is the standard
SQL-like object-oriented query language of the O2 object-oriented database system.
In order to hide from the user the underlying object-oriented features of that database,
the formulation of a query is based on a graphical query model that is proposed for
the database schema. An example of such a graphical schema is shown in Figure 2.11.

There is no formal definition for the graphical representation of the queries. Some
query constructs such as selection, conjunction, disjunction and universal quantifi-
cation are illustrated in Figure 2.12 and Figure 2.13 along with their corresponding

OQL query.

14

Figure 2.8: (a) Union is represented with the union collection box (UCB) constructs
that must contain two or more union compatible collection boxes for representing
the union of these collections. (b) Negation is represented with the truth value box
(TVB) constructs. The first query shows a positive TVB corresponding to an exis-
tential quantifier whereas the second query shows the negative TVB corresponding
to the negated existential quantifier. (¢) Universal quantification is represented with
collection comparison operators (CCO) which are a new labelled edge connecting two
union compatible collection boxes. The depicted query corresponds to the following
textual meaning: "get every supplier who has an order for every blue part”. (Figures
taken from [33])

15

arrival
g Darture

to
from

departure

arrvival a

e arrival
departure

from

L s
to
capital) from
arrival

- ;
e departdre il !
capit al
\J

Figure 2.9: A graph representation of a flights schedule database. (Figure taken from

[12))

16

person

L+
\ descendant /

X

/ dcscencla.nt-+

not-desc-of(P2)

(a)

not-desc-of(P1,P3,P2) — descendant-tc(P1,P3),
- descendant-tc(P2,P3),
person(P2).

descendant-tc(X,Y) — descendant(X,Y).
descendant-tc(X,Y) — descendant(X,Z), descendant-tc(Z,Y)

(b)

Figure 2.10: (a) The descendants of P1 which are not descendants of P2. (b) The
descendants of P1 which are not descendants of P2 in Datalog. (Figures taken from

(12])

17

Person Staff Person Nurse Operation Patient
Name Name Name Op date Name
Address Address Address Type — Address
Tel_no Tel_po Tel_no Performed_on - Tel no
DoB DoB DoB Performed_by Sufgeon| | DoB
Sex Sex Sex Assisted_by it Sex
Age Staff_po Staff_no Located_in Blood_gp
; Salary W
Consultant Salary 4 ard — Ward
= Age Crade Undergoes
ame Tax Ward_assign -—-rward]
Address Theatre_assign
Tel_no yY Private_Patient
DoB Tax Name
Sex Address
Staff_no Tel_no
Salary Surgeon b
Supervised_by —LCmsultmt] Name Sox
Performs_op Operation | Address Blood_gp
Assist_at Tel_no Ward '—"_“'afd
Supervises DoB Undergoes -
Treats Sex Room no Operanon
Age Private"Pu-.\eml S;taﬁ_no Treated by ___{ Conealian
Tax Salary Age
Supervised_by -
Theatre Performs op Operation |
Theatre_no Assist_at -
Nurses Nurse —l =
Age
HOIdS -rax

Figure 2.11: Example of graphical database schema in GOQL. (Figure taken from

[22))

select t
from t in Theatre
where t.Theatre_no =3

Name

select t

Address

from t in Nurse

Tel_no

where (t.Grade = "Student” or

DoB

t.Grade = Supervisor")
and t.Sex = "Female"

Sex = "Female”

| Staff_no

Salary
Grade=*Supervisor"
Grade="Student”

{"Ward_assign

Theatre_assign

Age

_/

(b)

Figure 2.12: Example queries of GOQL (Figures taken from [22])

18

(select p.Name

from p in Patient

where p.Tel_no like "0181*")
union

(select p.Name

from p in Patient

where p.Sex = "Male")

select w.Ward_no

from w in Ward

where for all wn in w.Nur_on_ward:
wn.Grade = "Supervisor”

Figure 2.13: Other example queries of GOQL (Figures taken from [22])

Patient

Address
Tel_no like "0181%" pi

DoB

Name
Address

1,

P
g
4
-

eigiglEd
ﬁiﬁiiillla
!
]

£

ii

@

(b)

19

20

70

40

30

=15

100 20
80

80 25
40
20

70 40 30 15 20 25

Figure 2.14: Visualizations of a binary relation. (Figure taken from [13])

2.1.7 DOODLE

DOODLE [13] is a visual and declarative language for object-oriented databases and
its semantics is given by F-logic [23]. The main feature behind DOODLE is that
it allows to display and query databases with arbitrary pictures. In fact the user
must specify how the data is to be visualized. However, it is possible to transform
the display from one visualization to another (Figure 2.14). Likewise, the user can
specify the display for querying as well. Nevertheless, the visual query language
should ideally be close to the visualization of the database. This allows to perceive
the queries as patterns to be matched against the database.

Data and query visualization are defined by a set of conventions for obtaining
pictures from data. In fact, the specification for the visualization has to be done
through a visual program. The semantics to the visual program is given by showing

how they can be translated to F-logic programs (Figure 2.15).

2.2 Related work in ontology visual querying

The work done in the ontology visual querying field is mostly about providing an
integrated logical view of heterogeneous databases by offering the data sources view
and querying to be done at the ontology level [24]. This effort was conducted in the

context of Large Data Integration projects like TAMBIS [36], KIND [27], SEEK [28],

21

§ softGraph] f f-language i

Fo--- - g

i I

: : M:module

[!

| i

. X

F=---=- 1

1 i

‘[! P:procedure
! {

i {

Loe e e e 4

FoTIIIITTTTLTnIIIz E : conlains

) i n Ty

IR s i1 || [outer — X : block,
erooa t Y il Nnner — Y block)
; bemmnd L..,_....,J_; K]

R:agg

e [members — {E}]

M[display@softGraph — vis(M) : diemond, defbox@softGraph — vis{M); — M : module.
P{display@softGraph — vis{P) : square; defbox@softGraph — vis{P)] — P : procedure.
E{display@softGraph — vis(E} : arrow/from — U, to — V}; defbox@softéraph — vis(E)]
~ E : contarns[outer — X, inner — Y],
X[delbox®softGraph — U : waualO(}jcct},
Y{d&ﬂ;ox!@soft(}raph — V. vreualObject
R{display@softGraph -~ vis(R}) : visAgg[visMembers — {X}]}
— R :agglmembers — {E}], E : contains{defbox@sottGraph — X : wisualObject

(b)

Figure 2.15: a) Visual program that defines softGraph. (b) F-logic program for
softGraph. (Figure taken from [13])

22

and SEWASIE [8].

2.2.1 SEWASIE

SEWASIE is presented as an intelligent user interface whose goal is to provide the
user with support in formulating a precise query even when completely ignoring the
vocabulary of the underlying information system holding the data. The visual query is
then translated to a Select-Project-Join SQL query thaﬁ is executed by an evaluation
engine associated to the information system. Users start a query by choosing one
of the pre-prepared domain-specific patterns presented to them. Afterwards, they
can refine the query by extending and customizing it. The refinement to the query
consists of additional property constraints to the classes or a replacement of a class

by another compatible class such as a subclass or superclass.

2.2.2 GrOWL-Query

GrOWL [25] is a tool that offers a graph based interface with graphical icons to
depict different types of nodes (class, property, or individual) as well as language
constructs (negation, union, etc.). The GrOWL visualization model is an accurate
mapping of the underlying Descriptions Logics (DL) semantics of OWL ontologies. A
conjunctive query consists of the conjunction of query atoms x:C and (x,y):R, where
x and y are variables or individuals, C is a concept expression and R is a role. By
introducing two types of variables: “select” variables prefixed by “?”, and “ignore”
variables prefixed by “-”, it is possible to formulate a graphical query since the set of
select variables would be defined by the query condition. Therefore, a GrOWL-Query
is GrOWL with variables. In other words, a query is a GrOWL ABox diagram where
the variables are allowed in place of individuals. For example, the GrOWL-Query

diagram in Figure 2.16 (a) is the visual counterpart of the query in (b).

23

answer(7r. 2value, Teurrency-unit) + —
22t valuation-record, |
Az 1 Becosystemn-seérvice. food-production,
A2z 2 3biome.(forest L aretic-tundra),
A?x Teurrency-unit) : priginal-unit
AYx, toalue) © originel-vatue,

(b)

Figure 2.16: (a) GrOWL-Query diagram. (b) The equivalent translation in DL.
(Figure taken from [25])

2.2.3 GRQL

In the context of Semantic Web Portals, there have been several browsing interfaces
that were proposed, such as OntoWeb (7], and OntoPortal [21], for the purpose of
accessing ontologies and their related information sources. These visual browsing
interfaces offer a graphical view of the entire ontology as a tree or a graph of related
classes and properties where users can either access directly the classified resources
or formulate filtering queries. GRQL [2] relies on the full power of the RDFS [7]
data model for constructing queries expressed in a declarative language such as RQL
[21]. The user starts constructing his query by choosing an entry point and discovers
the RDFS class and its property definitions. Then, he can continue browsing by
generating at each step the RQL path expressions required to access the resources
of interest. These path expressions represent the precise meaning of its navigation
steps through the class (or property) subsumption and/or associations. Furthermore,

at each navigation step, the user can extend the generated queries with filtering

24

conditions on the attributes of the currently visited classes and at the same time can
easily specify which class of resources should be finally included in the query result.
In short, it is an application-independent graphical interface able to generate a unique
RQL query which captures the cumulative effect of an entire user navigation session.
As an example of a user session with GRQL, consider Figure 2.17 depicting a tree-
shaped graphical representation of the class (or property) subsumption relationships
defined in an RDFS schema. The user begins his navigation session by choosing
one of the available classes (or properties). The selected class (or property) is then
displayed in order to allow the user to browse further the directed acyclic graph of
class associations. This browsing action is translated into an appropriate RQL query
which consists of the specification of the dynamic view over the underlying resource
descriptions according to the performed schema navigation. Figure 2.18 shows that
class Artist was chosen as entry point along with the generated RQL query. The
selection of class Artist returns all the resources classified under Artist and recursively
its subclasses (i.e. resources r5 and r6). By providing the definition of the class Artist,
the user can now access the resources of other associated classes, as for instance class

Artifact (through the created relationship).

2.2.4 OZONE

OZONE [21] stands for a Zoomable Ontology Navigator and it is a tool for search-
ing and browsing ontological information that is defined in DAML (DARPA Agent
Markup Language). It reads ontology information and rearranges it visually with
context information so that ontology information can be queried and browsed easily
and effectively. A visual model is defined for representing the classes, properties and
relationships in DAML. The nodes and links as represented in Figure 2.19 are what
visually depict the query conditions. Queries can be formulated interactively and
incrementally by manipulating objects on the screen. During query formulation, a

user can check the intermediate results, which are displayed at the bottom of the

25

T2 VW TLSEUTTLeS] | T L v, sOdin e/ r':}"wwwnms&umesj T PR, RIS, €5

Figure 2.17: RDFS Descriptions of Web Resources in a Cultural Portal. (Figure taken

from [2])

Navigation

ROL gquery

Path

select X1 from Artistixl}

Artist

Figure 2.18: Choice of class Artist as entry point to the schema navigation (Figure

taken from [2])

26

Figure 2.19: OZONE overview (Figure taken from [21])

screen. When a result row is selected, each entry in the table is remapped into a

corresponding visual node and sLown under its title as a blue label [21].

2.3 Summmary

Most of the visual query systems described above visualize a query based on how the
data to be queried, whether in a database or an ontology, is visually depicted. As
for the database domain, the general trend was to formulate a query on top of the
visualization of the database schema. As for the ontology domain, except for GrOWL
that permits to query a loaded OWL ontology, most of the designed systems allow
to query an ontology that offers an integrated view of multiple database schemas. A
description of how the overview of these systems, whether in the database domain or

the ontology domain affected and contributed to the design of OntoVQL is presented

in Chapter 3, Section 3.2.

27

Chapter 3

Graphical query language for OWL
ontologies

3.1 Background

3.1.1 Brief overview of Description Logics

Description Logics (DLs) is a family of knowledge representation (KR) formalism that
describes the knowledge of an application domain (the world) by first defining the
concepts (its terminology) of the domain and then using these concepts to specify
properties of objects and individuals occurring in the domain (the world description)
[3]. The most important features of Description Logic based languages are that
they are based on formal, logic-based semantics which can usually be translated
into first-order predicate logic and that they offer reasoning services which refer to
the knowledge that can be implicitly inferred from the knowledge that is explicitly
contained in the knowledge base (KB).

Description Logic supports inferences that are based on the classification of con-
cepts and individuals. The classification of concepts of a given terminology is done by
linking these concepts with the subconcept/superconcept relationships (subsumption
relationships in DL). This type of relationship allows to structure the terminology
in the form of a subsumption hierarchy and thus allows to obtain useful information
about the connection of these different concepts. The classification of individuals

is done through determining whether a given individual is an instance of a certain

28

29

e 47 TBOX \\\/,“__m_\
'l EIJ-eSCription i Reasoning)
anguage - /\\
~ ABox
KB
Application
Programs l { Rules

Figure 3.1: Architecture of a knowledge representation system based on Description
Logics [3].
concept, that is whether this instance relationship is implied by the description of the
individual and the definition of the concept.

The semantics of description logics is defined by interpreting concepts as sets of
individuals and roles as sets of pairs of individuals. The semantics of non-atomic

concepts and roles is then defined in terms of atomic concepts and roles.
TBox/ABox description

A KR system based on Description Logics provides facilities to set up knowledge
bases, to reason about their content, and to manipulate them. Figure 3.1 shows the
architecture of such a system.

A knowledge base is composed of two main parts, the TBox and the ABox. The
TBox introduces the terminology of the knowledge domain while the ABox contains
assertions about named individuals in terms of the terminology described in the TBox.

The terminology in the TBox consists of a set of unary predicate symbols that are
used to denote concept names and a set of binary relations that are used to denote
role names. Concept names are regarded as atomic concepts, and role names are
regarded as atomic roles. In general, a concept denotes the set of individuals that

belongs to it, and a role denotes a relationship between instances of concepts. For

30

more complex descriptions, a concept term can be defined recursively from concept
names and role names using constructors. Some common constructors include logical
constructors in first-order logic such as intersection or conjunction of concepts, union
or disjunction of concepts.

A Description Logic system not only stores terminologies and assertions, but also
offers services that reason about them. Typical reasoning tasks for a terminology are
to determine whether a description is satisfiable (i.e., non-contradictory), or whether
one description is more general than another one, that is, whether the first subsumes
the second. Important problems for an ABox are to find out whether its set of
assertions is consistent, that is, whether it has a model, and whether the assertions
in the ABox entail that a particular individual is an instance of a given concept
description. Satisfiability checks of descriptions and consistency checks of sets of
assertions are useful to determine whether a knowledge base is meaningful at all. With
subsumption tests, one can organize the concepts of a terminology into a hierarchy
according to their generality. A concept description can also be conceived as a query,
describing a set of objects one is interested in. Thus, with instance tests, one can

retrieve the individuals that satisfy the query. [4]

3.1.2 Brief overview of OWL ontologies

In both computer science and information science, an ontology is a formal represen-
tation of a set of concepts within a domain and the relationships between instances
of those concepts. It is used to reason about the properties of that domain, and may
be used to define the domain.

Ontologies are used in artificial intelligence, the semantic web, software engineer-
ing, biomedical informatics, library science, and information architecture as a form of
knowledge representation about the world or some part of it. Common components

of ontologies include:

31

Individuals: instances or objects (the basic or ”ground level” objects).

Classes: sets, collections, concepts, types of objects or kinds of things.

Attributes: aspects, properties, features, characteristics, or parameters that are

objects (and classes).

Relations: ways that classes and individuals can be related to one another.

OWL is a Web Ontology language. It is designed for use by applications that need
to process the content of information instead of just presenting information to humans
[32]. The Web Ontology Language (OWL) is intended to provide a language that can
be used to describe classes and relations between individuals that are inherent in Web
documents and applications.

An OWL ontology may include descriptions of classes, properties and their in-
stances. In fact, the OWL language is used to formalize a domain by defining classes
and properties of those classes, to define individuals and assert properties about
them, and to reason about these classes and individuals to the degree permitted by

the formal semantics of the OWL language [32].

3.1.3 Brief overview of nRQL

nRQL is an acronym for the new Racer Query Language and has been implemented
by an optimized OWL-DL query processor known to be highly effective and efficient
[38]. A nRQL query is composed of a query head and of a query body. The query
body consists of the query expression. The query head corresponds to the projected
variables, that is, variables that are mentioned in the body and will be bound to
the Abox individuals that satisfy the query expression. There are many features of
nRQL, however only those features that are relevant in the context of this thesis will
be covered. An important feature of nRQL is that complex queries are composed from

query atoms: concept query atoms, role query atoms, and SAME-AS query atoms.

32

Query: | (retrieve (7x) (7x |cat]))
Result: | (((7x |Tibbs|))
((x [Tom|)))

Table 3.1: Example of a concept query.

These basic expressions that can simply be called atoms are then combined with
query constructors, from which only the AND and OR constructors will be covered,
to form complex queries. Note that not all nRQL components and constructs are
covered. For instance, the SAME-AS query atoms and the negation construct will
not be explained since they are not required in the OntoVQL translation to nRQL.
Query atoms are either unary or binary in the sense that a unary atom references
one object whereas a binary atom references two objects; an object being either a
variable or an individual. Also, it is essential to mention that nRQL make use of
active domain semantics. This means that variables can only be bound to named

individuals occuring in the current ABox.
Concept query

A concept query atom is a unary atom and is used to retrieve the instances that
belong to a concept or an OWL class. The query in Table 3.1 is asking to retrieve the
individuals that are member of the cat concept in the people-pets.owl! (see appendix)
ontology. The answer to the query is a list of variable-value pairs where the variable
7x is bound to Tibbs and Tom. Thus, the set-up of the result is specified by the head
of the query which is (7x). The query body or query expression is enclosed by the

second pair of brackets and consists of a single query atom.
Role query

A role query atom is a binary atom and is “used to retrieve pairs of role fillers from
an Abox, or pairs of OWL (RDF) individuals” [38]. The body of the first query in
Table 3.2 is a role query atom whose meaning is to find pet owners and their pets.

Again, the result is a list of instances bound to the variables determined by the query

33

Query 1: | (retrieve (7x1 7x2)

(7x1 ?x2 |has-pet|))
Result 1: | (((?x1 |[Minnie|)

7x2 |Toml))

((?x1 |Walt])

7x2 |Louiel))

((7x1 |[Walt])

(

(

(

(
(((?x? | Deweyl))
E?x? |Hueyl))
(

(

(

(

?x1 |[Walt|)
((7x1 |Mick|)
7x2 |Rezx|))
((?x1 |Fred|)
7x2 |Tibbsl))
((7x1 |Joe|)
(7x2 |Fidol)))
Query 2: | (retrieve (7pets)
(|Minnie| 7pets |has-pet|)))
Result 2: | (((TPETS |Tom|)))

Table 3.2: Example of role queries.

head. A more specific query can be formulated by setting the domain or range with
an instance. Suppose the objective was to find pets of Minnie. Then, the domain
variable 7x1 is replaced with the individual Minnie as shown in the second query
of Table 3.2, and thc result is therefore reduced to only one tuple. Note that since
nRQL employs active domain semantics, then only those role fillers that are named
individuals in the ABox are retrieved. For example, if a pet owner is defined in the
TBox as a person who has a pet and the ABox contains an individual Peter defined
as a pet owner but not modeled as a role filler for the has-pet role, then Peter will

not be returned in the result for the role query atom (?x ?y has-pet).
The AND constructor

The AND constructor is used in order to express a conjunction. A classic example
would be to conjunct concepts query atoms with role query atom as shown in the first

query of Table 3.3. In this case, the role fillers are constrained to belong to the female

34

class for the domain and to the cat class for the range of the role ‘has-pet’. A variable
is used in more than one atom for the purpose of identifying the set of individuals
that satisfy the same constraints. Thus, an instance bound to ?x1 must fulfill the
conjunction of the constraints of being a female and petting a cat which is found
to be Minnie. Another example that demonstrates the importance of the variable
assignment while using the AND constructor is shown by comparing the second and
third query. Both queries are identical except that in the second query the same
variable is assigned to all concepts whereas in the third query, distinct variables are
assigned. Because of the difference in the variable assignment, the query semantics
are different as well. The meaning of the second query is to find individuals that
satisfy all the constraints in the query body, that is “adults who like dogs and own a
dog”. On the other hand, the meaning of the third query is to identify the instances
that are modeled as adults, those that like dogs and those that own a dog. As a
consequence, the dissimilarity in the semantics yields different results. Therefore,
in order to achieve the true semantics of query conjunction, that is set intersection

semantics, it is required to assign the same variable to constraints.

The OR constructor

The OR constructor allows to have disjunction. Its semantics consist of unifying the
answer set of the OR constructor arguments. The issue of variable assignment men-
tioned earlier for the AND constructor needs to be examined for the OR constructor
as well because variable naming directly impacts the query results in this case. In
fact, when different variables are used in the arguments of a disjunction, nRQL en-
sures that each of these arguments references the same variables. To illustrate this
by an example, consider the first query in Table 3.4. This query is actually rewritten
by nRQL into

[(retrieve (7x ?7y) (or (and (7x cat) (?y top)) (and (7x top) (?7y dog)))) l

In the first argument, instances that belong to the cat concept. Tibbs and Tom,

Query 1:

(retrieve (7x1 7x2)
(and (7x: |femalel)
(72 |cat])
(?x1 7x2 |has-pet|)))

Result 1:

(((?X1 |Minnie|)
(7X2 |Toml|)))

Query 2:

(retrieve (7x)
(and (7x |adult])
(?x |dog-liker|)
(?x |dog-ownerl)))

Result 2:

("X [Mack|)))

Query 3:

(retrieve (7x1 7x2 7x3)
(and (?x1 |adult|)
(7x2 |dog-liker|)
(7x3 |dog-owner|)))

Result 3:

(((?X1 |Minnie|)
(7X2 | Joel)
(?X3 |Mickl))
((7X1 |Minnie|)
(7X2 | Mick|)
(?X3 |Joe])))

Table 3.3: Example of queries with the AND constructor.

35

36

are bound to ?x while any other instance is bound to ?y. This is because ‘top’ is
the super concept for all concepts and thus all instances belong to the ‘top’ concept.
On the other hand, in the second argument, instances that are members of the dog
concept, Rex and Fido, are bound to 7y while any other instance is bound to ?x.
Therefore, the result of the first query is the union of the answer set of (retrieve
(7x 7y) (and (?x cat) (?y top))) and of (retrieve (?x ?y) (and (?x top) (?y dog))).
However, when the same variable is assigned to both arguments in the disjunction,
the result reflects the semantics of set union. Hence again, to obtain a meaningful
result with the OR constructor, arguments must reference the same variable. Note
that in order to respect this condition; these arguments must also be of the same
arity. For instance, if a role atom referring to 7x and ?y and a concept atom referring
to 7x are unified, then the query will be rewritten so that each argument refers to

both 7x and 7y.
Variable types

There exist two types of variables in nRQL: injective and ordinary (non-injective). An
injective variable is prefixed by “?”, as it is the case in all the above queries, and is an
indication for injective mapping from variables to ABox individuals. In an injective
mapping, an injective variable can only be bound to an ABox individual if no other
injective variable is bound to it. For example, if 7x is bound to Tom, then ?y cannot
be bound to Tom as well. On the other hand, an ordinary variable is prefixed by
“$7” and is an indication that the mapping is not necessarily injective, i.e. it can be
an arbitrary mapping where $7x and $?7y are both bound to Tom. The choice of the
variable type in a query may have an impact on the result. The example in Table 3.5
is an illustration where this in effect takes place. Both queries are identical except for
their variable types, the first having injective variables and the second ordinary ones.
By analyzing the outcomes, the first thing to notice is that the cardinality of the result

for the second query surpasses that of the first. Furthermore, the additional elements

Query 1 and Query 2
are rewritten as

(retrieve (7x ?y)
(or (and (7x cat) (?y top))
(and (?x top) (%y dog))))

Query 1:

(retrieve (7X 7Y)
(or (7X |cat])
(?Y |dogl)))

Result 1:

(((7X |T'ibbs|)
(7Y [Minniel))
((7X |Tibbs|)
(7Y [Toml))

((?X [Tom])
(7Y |Minniel))
((?X [Tom|)
(7Y [Walt]))

((7X |Minniel)
(7Y |Rez|))
((7X |Walt|)
(7Y |Rezl))

(('7X | Minniel)
(7Y |Fidol))
((?X |Walt))
(?Y |Fidol))

Query 2:

(retrieve (7X)
(or (7X |cat])
(?X |dog|)))

Result 2:

(((?X [Tibbs|))
((?X |Tom]))
((?X | Rez))

((?X |Fido])))

Table 3.4: Example of queries with the OR constructor.

37

Query:

(retrieve (7x 7y 7z)
(and (7x 7y |has~pet|)
(7x 7z |likes|)))

Result:

(((?X Walt)(?Y Louie)(?Z Dewey))

(?X Walt)(?Y Louie)(?Z Huey))

(7X Walt)(?7Y Dewey)(?Z Huey))

(?X Walt)(?Y Dewey)(?Z Louie))

(?X Walt)(?Y Huey)(?Z Dewey))

(7X Walt)(?Y Huey)(?Z Louie)))
6 elements

(
(
(
(
(
(

Query:

(retrieve ($7x $7y $7z)
(and ($7x $?y |has-pet|)
($7x 87z |likes|)))

Result:

((($7X Walt) ($?Y Huey) ($?Z Dewey))
(($7X Walt) ($7Y Huey) ($?Z Louie))
(87X Walt) (87Y Dewey) ($?Z Huey))
(($7X Walt) (87Y Dewey) ($?Z Louie))
((87X Walt) (37Y Louie) ($7Z Huey))
(37X Walt) (37Y Louie) ($7Z Dewey))
(($7X Walt) (37Y Louie) ($7Z Louie))
((37X Walt) (37Y Dewey) (37Z Dewey))
(($7X Walt) (37Y Huey) (37Z Huey))
(($?X Minnie)($7Y Tom) ($?Z Tom))
(($7X Mick) ($7Y Rex) ($7Z Rex))
(($7X Fred) ($7Y Tibbs) ($?Z Tibbs))
(($7X Joe) (37Y Fido) (37Z Fido)))

13 elements

Table 3.5: Query examples with different variable types.

38

in the second outcome are partly due to the different combinations where the second

and third variables of the result elements are bound to the same individual, and due

to new result elements that were not part of the first query’s answer. There were four

instances (Minnie, Mick, Fred and Joe) that liked and pet a single ABox individual

and this caused these instances to be omitted from the first result because 7y and

7z cannot be bound to the same individual. Therefore, although that the answer to

the first query is semantically complete, from the users point of view it would seem

‘incomplete’ because they would have expected to find ‘Minnie, Mick, Fred and Joe’

in the result as they are present in the answer to the second query.

39

3.2 Contribution of Literature review to OntoVQL

Performing an overview of what has been achieved on query visualization and re-
viewing the different approaches that were adopted for query representation played
a major role in tracking down and coming up with the essential characteristics that

should be part of OntoVQL. In summary, the guidelines behind OntoVQL are the

following:
¢ should provide an alternative to textual languages

e should be simple to explain to users, the query should be expressed in a single

diagram that can be broken into parts of distinct queries and recombined later

e should be formal
e should express the basic querying operators of conjunction and union.

It is important to highlight the reasons behind these guidelines. First, let us
examine why a VQL should provide an alternative rather than replace a textual
language. From all the visual query languages that were reviewed, none of them
had the full expressive power of a textual query language. It is not possible to
visually depict the totality of language constructors in a simple straightforward way.
In fact, expressiveness is inversely proportional to clearness. Therefore, a VQL can
obviously not replace a textual query language. On the other hand, it can become
a valuable alternative providing that it is easy to grasp. More specifically, for a
subset of the textual query language, the VQL must provide visualizations that mask
the complexity of the syntax and thus for the same degree of expressivity offer a
simpler way of querying. It goes without saying that a VQL that effectively hides
the complexity of a subset of a textual query language but at the same time is not
easily comprehended by a user is not desirable since this would contradict the very

reason of why we are introducing this new VQL. Therefore, it is important that the

40

VQL employs common symbols or notations that are widely used and thus easily
understood by most people.

In that sense, one would think that the use of icons would be a great way of
incorporating this idea in the VQL as it was the case for Klaeidoquery reviewed in
Section 2.1.3. Nonetheless, the use of icons was omitted in designing OntoVQL be-
cause although icons have their set of advantages, they do not come without some
drawbacks. In fact, icons cannot be generic and have to be domain specific. Actually,
for icons to be meaningful, it is ideal that domain specific experts design them since
this would help to recreate the environment that they are familiar with [25]. There-
fore, if we were to adopt icons in OntoVQL, we will be facing the problem of getting
restricted to choose one specific domain and the user will loose the liberty of loading
any OWL ontology into the system for querying it.

Since VQLs are mainly based on the idea of directly manipulating a database
visualization as a graph by selecting the parts that are to be included in the query,
then by analogy, given that the TBox of an ontology can also be visually represented
by a graph, it is logical to consider that in order to formulate a query for ABox
retrieval, one has to select “parts” of the TBox, i.e. concepts and roles, as components
of the query. The query is thus composed of graph components and therefore can
be formulated as a graph on its own. This would be one way of understanding the
logistics behind viewing an ABox query as a graph. The other way is based on the
nature of ABox querying itself. For instance, the starting point for ABox retrieval is
the extraction of all instances belonging to a concept. Then, one step further from
getting a set of individuals based on a concept name is to learn how these individuals
are related with other individuals by the means of a role represented as an edge. In
that sense, it is natural to construct query constraints in the form of a graph.

Another major argument to adopt diagrammatic and graph-based languages is

that they are easier to formalize than other approaches such as the form-based or

41

N1 N3} =3 N1 © N3
O*%—'Q O O

Figure 3.2: Breaking down a query by deleting a node.

N4 N4
N2

iconic-based ones [1]. In fact, graphical languages are more suited to be formalized,
given the precise mathematical structure (i.e. graph) the diagrams are based on [10].
Configuring a query as a graph is not only convenient for the sake of its representation
but also for its manipulation. Actually, since each graph stands for a single query,
combining two graphs with an edge would stand for combining two queries and thus
creating a new one. Also, deleting a component from the graph such as a node would
cause the graph to break down into several different queries. In Figure 3.2, deleting
node N2 had as a repercussion the deletion of all its edges resulting in the creation
of three new queries N1, N3 and N4. The ability of combining queries to form a new
complex one and of breaking down a complex query into several simpler ones was
thought to be a powerful way of allowing the user to fully appreciate the advantage
of using a VQL instead of a textual query language. In fact, when » querying session
permits the user to view multiple queries simultaneously and manipulate them to
form a new query, this clearly gives much more flexibility in the query formulation
process in comparison to a typical textual query language for which each submitted
query cannot be related to the other submitted ones.

Finally, the last guideline point stated above mentions that OntoVQL should
include the querying operators of conjunction and union. The ideal situation would
have been to incorporate all or most of nRQL (the New RacerPro Query Language)
[18] operators within OntoVQL. However, because of time constraints and difficulty
encountered in visualizing them, the decision was made to only design conjunction

and union because these two operators can be considered to be the basic ones in

42

nRQL that allow expressing large complex queries.

3.3 Visual notations

The ontology Abox primarily contains concept and role assertions. In order to retrieve
instances that have been asserted to a concept or a role, a query would necessitate
either one or both of the two types of constraints. The first constraint is to specify a
concept. A Concept specification restricts the result to the instances that are bound
to the specified concept. The second constraint is to specify a role for which instances
are fillers. In that case, the result consists of pairs of individuals that are related by
the specified role. In a query visualized by a graph, that we will call a “graph query”,
a vertex would stand for a concept speciﬁca.tion and a directed edge for a role link-
ing two instances. In order to remain visually consistent with respect to previous
visualizations, concept and role constraints are represented following the conventions
described in [9]. Thus, a concept name inside a filled oval (see Figure 3.3(a)) seman-
tically maps to a concept constraint whereas a role name and an arrow pointing from
one “entity” to another one correspond to a role constraint (see Figure 3.3(b)). A
role is meant to connect different types of nodes in the ‘graph query’ other than the
concept constraint type. Actually, one of the cases requiring a different type of vertex
would be in the event we are looking for pairs of instances related by a certain role
without specifying any constraints for the domain and/or range nodes. These vertices
would then be considered as “unknown” indicating that the instance ‘identity’, that
is the concept(s) to which the instance belongs, is unknown. This type of vertex is
most conveniently represented by a ‘?" in a filled oval (see Figure 3.3(c)). Note that
what is at stake in this representation is only the shape whereas the color is of no
importance. Another type of vertex would be the “instance node”. In that case, ei-
ther the domain or the range is restricted to be bound to a specific instance. In other

words, the query is about finding all those instances related to instance ‘A’ by role

43

Figure 3.3: Visualization of the basic elements of OntoVQL.

‘B’. An instance vertex is represented by the instance name in a filled rectangle (see
Figure 3.3(d)). Note that an instance node cannot exist in a query by itself and must
be part of a role constraint. The same can be said for the unknown node. However,
this is not the case for the concept node since it represents a constraint on its own.
The operators used for assembling building blocks or connecting query constraints
into a query are intersection and union. At the most basic level, these operators are
applied to concepts. The intersection of concepts C1, C2, . . . Cn in a query means
that an instance must belong to all these concepts while their union means that an
instance must belong to at least one of them. Even though the semantics is different,
their representation is alike except for the identifying kevword ‘AND’ for intersection
and ‘OR’ for union. A node with the AND/OR keyword connected by edges to the
concepts that are to be intersected or unified represents concept intersection/union
(see Figure 3.4(a)). However, this representation can be simplified. In effect, it is more
suitable to represent these operations by a circle labeled with the AND/OR keyword
that encloses the intersected or unified concepts (see Figure 3.4(c)). As an example of
how this simplification takes effect, compare the two queries in Figure 3.4(b, d). Note
that although both graph queries have the same meaning, the second one is much
simpler in view of the fact that it got rid of four vertices and two edges with respect
to the first one. Consequently, the second representation was adopted for viewing the

intersection/union of concepts. This OntoVQL constructor is called the AND/OR

44

Figure 3.4: Representation of concept intersection.

group. An AND/OR group is considered to be another vertex type and thus when
a role constraint is added to the group, it is added to the group as a whole and not
specifically to one of the concepts inside the group.

Now that the representation of intersection/union of a group of concepts is set-
tled, we are left with the issue of how to represent the intersection/union of these
groups. The first idea would be to follow the same approach as before, that is enclos-
ing AND/OR groups inside a circle with the AND/OR keyword indicating whether
it is an intersection or a union. However, even though this seems logical, there exists
a major drawback to it. Actually, this visual simplification restrains the expressive

power of the VQL. This is best explained by taking a look at the following example.

45

In Figure 3.5, the first graph query is depicted according to the first approach where
the OR node is linked to the AND groups with directed edges, whereas the second
graph query is the “simplified” version of the first since the AND groups and OR
node were assembled into one entity. This simplification is traded with the impos-
sibility of linking the AND groups to other nodes since they are no longer a node
by themselves and were engulfed within another entity. Therefore, intersection and
union of AND/OR groups is best represented by the first approach and thus a new
type of node is added to OntoVQL: the AND/OR node. Notice that in Figure 3.5(a),
the edges that link the OR node to the AND groups are directed edges. The reason
for that is to avoid semantic confusion. In fact, when a query has several levels of
alternating union and intersection as shown in Figure 3.6, it may become confusing
as how to interpret it. At first view, both queries in Figure 3.6 seem to be dissim-
ilar but as a matter of fact, they are identical except that they are depicted in two
distinct “layouts”. The difference in layout resides in having the first one with root
node number 1 whereas the second one has root node number 2. These two layouts
semantically translate into two different logical sentences. As a result, the same graph
query would have more than one meaning. This ambiguity is removed by introduc-
ing the directed edge as a component that connects the AND/OR node to the node
taking part in the intersection/union. In this fashion, no matter how the OntoVQL
components are placed, there can be only one way to translate the graph query as it
is shown in Figure 3.6 where despite the two different layouts, both graph queries are

identical in terms of having the exact same visual constructs and semantics.

3.4 Visual Syntax

In the previous section, all the components of OntoVQL were introduced. In total,
they were eight from which concept, unknown concept, individual, AND/OR group,

AND/OR node were vertices and two of them, role and connection edge, were edges

46

(b)

Figure 3.5: The same query represented in two different graphs.

linking these vertices. How these components should be connected together constitute
the “connectivity syntax” of OntoVQL. The syntax was established based on the need
of producing a graph query that is unambiguous, in the sense that it can be interpreted
in only one way, and is easily comprehensible. In order to achieve that goal, there are
few constraints that were introduced and which we will informally cover at first. The
simplest way of constructing a visual query is to either have a single vertex on its own
as a concept query or to have a couple of vertices connected by roles which is a role
query. The shape of a role query produces a graph that is either cyclic or acyclic as
shown in the graph query examples of Figure 3.7(a,b). An imposed restriction on the
role query is that there can only be one role between any given pair of vertices for the
simple reason of prioritizing visual clarity. Furthermore, more complicated queries
would involve the alternation of union and conjunction operators. Such queries result
in a graph that has the form of a tree, i.e. a node with an arbitrary number of branches
connecting to other nodes, where the root is an AND/OR node and the leaves are
AND/OR groups (Figure 3.7(c)). Both of these shapes (acyclic/cyclic graph and tree)

can exist together in a graph query as it is shown in Figure 3.7(d). Note that query

47

(b)

Figure 3.6: The same query in two different layouts: (a) (OR (AND C6 C7) (AND
C4 C5)(AND (OR C1 C2) (OR C2 C3))) (b) (AND (OR C6 C7) (OR C4 C5)(OR
(AND C1 C2) (AND C2 C3)))

48

(d)

Figure 3.7: Shapes in a graph query: (a) Example of a cyclic graph query. (b)
Example of an acyclic graph query. (¢) Example of a tree graph query. (d) Example
of a graph Query with tree and cyclic graph shapes.

expressions are compositional and their logical structure is not flat but tree shaped
[11] and thus it was natural to adopt this structure in the graph representation of the
query.

There are two rules concerning the visual connectivity of OntoVQL that are re-
sponsible for enforcing the tree shape in a graph query. The first rule consists of
not allowing an AND/OR node or group to have more than one incoming connection
edge. In Figure 3.8, the graph query on the top has an AND group with two incoming
connection edges. The meaning can be understood as the union of the three AND

groups. Therefore, the second OR node is clearly superfluous. The graph query on

49

Figure 3.8: Simplification of a graph query by applying the first visual constraint.

the bottom is the result of applying the first rule that got rid of the extra OR node
and by the same occasion gave the graph its tree form. Thus, this rule was adopted in
order to avoid redundancy and to simplify the graph for more clearness of the query
semantics (Figure 3.8).

The second visual constraint enforcing the “tree shape” on a graph forbids the
existence of a role between two entities that are not under the same "branch” of a
tree in the graph query. The word “branch” is used to refer to the tree divisions in
the graph. For instance, in Figure 3.7(d), concepts C1, C2 and C3 are under the
first “branch”. In order to give a thorough explanation of what the second constraint
means and why it was established, we will go through a series of examples. Let us
perform some queries on the people-pets ontology for that purpose. First, we start
with two simple queries: two AND groups (Figure 3.9). We learn from the result
that only Minnie is a female adult and that there are only two cats: Tibbs and Tom.

Then, connecting the AND groups with the “has-pet” role, we get that Minnie has

50

Figure 3.9: AND group queries (a) The result from Racer for this query is: ((?X1
|Minnie|)) (b) The result from Racer for this query is: ((?X1 |T'ibbs|) (?X1 |Tom|))

Figure 3.10: A query composed of two AND groups linked with a role.

Tom as a pet (see Figure 3.10, Table 3.6 for translation, Table 3.7 for result).
Another possibility for connecting these two AND groups other than with a role
is with connection edges coming from an OR node (Figure 3.11) which means that we
are looking for the union of these AND groups. In that case, as expected, the answer
is Minnie, Tibbs, and Tom. What happens if we connect these two groups with a role
and with an OR node at the same time becomes rather confusing (Figure 3.12). The
trouble with this graph query is that an element from one “branch” is connected to
an element of another “branch”. There are several problems with such a graph query.
Let us mention beforehand that the explanation given here may be better understood
after reading Chapter 3.4 that covers the mapping of OntoVQL into nRQL. However,
what is at stake for the present argument is that each vertex must be bound to

a variable when the graph query is translated. As explained later in Chapter 3.4,

(retrieve (7x2 7x1)
(and (and (?x2 |animall)
(72 |cat]))
(and (7x1 |adult|)
(7x1 |femalel))
(7x1 7x2 |has-pet|)))

Table 3.6: Translation of query in Figure 3.10 to nRQL.

51

((7X1 |Minnel)
(?X2 [Tom|))

Table 3.7: Result from Racer for query in Figure 3.10

an appropriate mapping of the OR node requires that whatever is connected to the
node must be bound to the same variable. However, in that case the domain and
range of the role would be bound to the same variable as well. This is a problem
because the role component implies distinct variables for the domain and range while
the OR constructor implies a single variable. Which semantics should be applied?
Furthermore, the graph query meaning is ambiguous and leads to confusion. What
are we really implying to look for with this query? Are we looking for the union of
individuals that are either in the domain (‘adult’ M ‘female’) or the range (‘animal’
M ’cat’) of the “has-pet” role (let us label this as case 1)? Or, are we looking for
individuals that are instances of ((‘adult’ M ‘female’) LI (‘animal’ I ‘cat’)) and are
fillers for the “has-pet” role (let us label this as case 2)7 If the implied meaning was
as in case 1, then the nRQL translation in Table 3.10 does not correspond to the
implied semantics as it can be concluded from the obtained result “Minnie, Tibbs,
Tom”. In fact, the correct expected answer should be “Tom, Minnie”. However,
if roles were not permitted between elements of different branches and we were to
represent the semantics of case 1, then the visual query would look like in Figure 3.13.
This visualization is not ambiguous since it can have only one possible meaning and
its translation to nRQL corresponds to the visually implied semantics. On the other
hand, if the implied meaning is as in case 2, then the translation (Table 3.10) of
the graph query in Figure 3.12 does not correspond to this semantics either. This
is because by binding the role’s domain and range to the same variable implies to
find individuals related to themselves. In fact, the last line of the nRQL translation
of this query in Table 3.10 is looking for pairs of instances such as “instance A-has-

pet-instance A”. Obviously, the latter implication does not correspond to the graph

52

Figure 3.11: Query composed of an OR node linking two and groups.

(retrieve (7x2)
(and (or (and (7x2 |adult|)
(7x2 | femalel))
(and (7x2 |cat|)
(7x2 lanimal|)))))

Table 3.8: Translation of query in Figure 3.11 to nRQL (URLs are omitted for clarity)

query in Figure 3.12. However, it matches the one in Figure 3.14 whose visual meaning
conforms to the case 2 semantics. Thus, once again, by not connecting the two entities
belonging to different “branches” with the “has-pet” role, the graph query is cleared
from its ambiguity since the graph query in Figure 3.14 can have only one possible
interpretation.

Another essential rule that needs to be introduced consists of not allowing an
entity to belong to more than one “branch” in the tree shape query because that
would make the translation of the visually implied semantics impossible. In order to
thoroughly understand this rule, consider the examples in Figure 3.16. The graph
query contains a concept that is found to belong to two “branches” at the same time.
The visual semantics of this query implies that the range of the first and second “is-
pet-of” role is the same instance. Consequently, the rightful expectation would be
that the tuples (animal — person) and (duck — person) would be merged only when

((7X1 |Toml)

(7X1 |Minniel)
(7X1 |Tibbs|))

Table 3.9: Result from Racer for query in Figure 3.11

53

Figure 3.12: Example of an illegal query.

(retrieve (7x2)
(and (or (and (?x2 |adult|)
(7x2 | femalel))
(and (7x2 |cat|)
(7x2 |animall))
(7x2 7x2 |has-pet|))))

Table 3.10: Translation of query in Figure 3.12 to nRQL

(((7X2 |Minniel))
((?X2 |Tibbs|))
((?X2 [T'om}|)))

Table 3.11: Result from Racer for query in Figure 3.12

OR{1]

14’\1

Figure 3.13: Correct representation of the query in Figure 3.12.

54

(retrieve (7x5)
(and (or (and (7x5 |cat})

(7x5 |animall)

(and (7x6 |adult|)
(7x6 | femalel))

(?x6 7x5 |has-pet|))

(and (?x5 |female|)

(7x5 |adult])

(and (7x7 |cat])
(7x7 |animall))

(?7x5 7x7 |has-pet}))))))

Table 3.12: Translation of query in Figure 3.13 to nRQL

(7X1 |Minnie|))

l ((?X1 [Tom|) I

Table 3.13: Result from Racer for query in Figure 3.13

Figure 3.14: Correct representation of the query in Table 3.10.

(retrieve (7x3)
(and {7x3 7?x3 |has-pet|)
(or (and (7x3 |female])
(7x3 |adult]))
(and (7x3 |animall)
(?x3 |cat|)))))

Table 3.14: Translation of query in Figure 3.14 to nRQL

55

(retrieve ($7x2 $7x1)
(and (or (and ($7x2 |person|)
(and ($7x1 |animall))
($7x1 $7x2 |is-pet-of]))
(and ($7x2 |person|)
(and ($7x1 |duckl))
($7x1 $7x2 lis-pet-of])))))

Table 3.15: Translation of query in Figure 3.16 to nRQL.

l $7x1 | $?X2J
Huey | Walt
Dewey | Walt
Louie | Walt
Tibbs | Fred
Fido| Joe
Rex | Mick

Table 3.16: Result from Racer for query in Figure 3.16 contains 7 tuples

the person concept is bound to the same individual. Therefore, the expected answer
when taking a look at the results in queries 8 and 29 in Figure 3.15 would include
only the tuples for query 29. In order to get such a result, one would think that what
is needed is to assign the same variable to the person concept for both branches as is
shown in the nRQL translation. However, when submitting the query to Racer, the
actual result does not match the expected one. In fact, the result consists of the tuples
that were obtained for query 8 instead of those for query 29. This shows that assigning
the same variable to more than one concept under the AND or OR construct in the
nRQL translation does not indicate that in the underlying visual query this concept
is shared by more than one “branch”. In other words. even though the translation of
the query binds the concept person to the same variable, the result does not match
the visual query semantics. Then, this example also shows that it is impossible to
translate such visual semantics to nRQL. Therefore, a better approach is to represent
this query as in Figure 3.17. This query gets rid of the common concept between the
two branches. In this way, the visual ambiguity from the graph query in Figure 3.17

is cleared.

Query 8 (7 Query 29 (3)

is_pet_of is_pet_of

(b)

Figure 3.15: (a) Two role queries in OntoVQL. (b) Results of the queries.

37

Figure 3.16: Example of an illegal graph query where an entity (person concept) is
under more than one “branch”.

Figure 3.17: Correct representation of the query in Figure 3.16.

58

Now that we have looked in an informal way how OntoVQL components can
be combined to produce meaningful queries, we will encode these assumptions into
a formal grammar. In linguistics and computer science, a generative grammar is
a formal grammar that provides a precise description of a formal language. The
grammar is composed by a set of rules dictating the syntax of the language, ie.,
expressing how strings in a language are generated. We have adapted this principle in
the context of generating a visual language instead of a textual one in order to generate
OntoVQL by a formal grammar or more precisely by an adjusted version of a formal
grammar. As a result, since OntoVQL can be generated by a formal grammar and is
also semantically and syntactically unambiguous, it can be viewed as a formal visual
query language. As previously stated, what is of primary importance that has a direct
impact on the semantics of OntoVQL resides in its “connectivity syntax”. This visual
syntax can be expressed in terms of rules adopting the same form as a production rule
in a formal grammar. Thus, similar to what a typical formal grammar is composed
of, our grammar hasv a finite set of non-terminal symbols: <Query>, <ROLE>, <AND
GROUP>, <OR GROUP>, <AND NODE>, <OR NODE>, <entity>, a finite set of terminal
symbols:<concept>, <individual>, <unknown concept>, <role>, each of which
has its visual equivalence as shown in Figure 3.18, and a finite set of production rules
in XML like syntax that are listed below.

Grammar generating the visual language:

(1) <Query> = <concept> |

<ROLE> |

<AND GROUP> |
<AND NODE> |
<OR GROUP> |
<0OR NODE>

(2) <ROLE> = <entity> <role> <entity>

99

(8)

Figure 3.18: (a) <concept> (b) <unknown concept> (c) <individual> (4)
<ROLE> (e) <AND NODE> (f) <OR NODE> (g) <AND GROUP> (h) <OR GROUP>

60

(3) <entity> = <concept> |
<unknown concept> |
<individual> |
<AND GROUP> |
<OR GROUP> |
<AND NODE> |
<0OR NODE>

(4) <AND GROUP> = <and group> <concept>* </and group>

(5) <OR GROUP> = <or group> <concept>* </or group>

(6) <AND NODE> = <and node>(<OR GROUP>* |

<OR NODE>* |

(<unknown concept><role><entity>)x*)
(7) <OR NODE> = <or node>(<AND GROUP>* |

<AND NODE>* |

(<unknown concept><role><entity>)x*)

The rules control how the visual entities are allowed to be connected together by
directed connection edges and roles. The first rule in the grammar indicates that
a query can simply be a concept or consists of more complex components. Among
these components, the role is described in the second rule as a binary component
where the domain and range are entities that can be expanded to any of the elements
listed in the third rule. It is important to mention for the second rule that if a query
has the shape of a tree, no role can link any of the query elements under a distinct
“branch” of the tree. For example, none of the AND groups in Figure 1 can be linked
by a role. The fourth and fifth rules illustrate the AND/OR group containing one or
more concepts that are either intersected or unified. Note that an XML like syntax
is used for representing the notion of a group by having a start and end tag enclosing

one or more concept element. From rule 6, an AND node can be connected to an

61

RULE (1)

e |

RULE) RULE (4) RULE (5) RULE (6) RULE(7)

<ANDNODE>] | <ORNODE> |

I
[-<go;_g>] [<AND GROUP> l [<ORGROUP> [l

[2] e |

<ORGROUP> |... | <ORGROUP> | | <ORNODE» | ...| <ORNODE-

<ANDODE> |

<ANDGROUP>_I [<AND GROUP>

Figure 3.19: Visual description of the grammar rules.

OR group and/or to an OR node and/or to an unknown concept that is linked to a
role. A directed connection edge whose source is the AND/OR node and target is the
AND/OR group or the unknown concept links the domain and range entities together.
For more clarification of the above rules, Figure 3.19 gives a visual description of them
as to how the éraph query components are linked together in every rule.

As an illustrative example of how the above grammar describes the visual syntax
of OntoVQL, consider the query in Figure 3.20. The query is composed of an OR
node that links an AND group with an unknown concept related to another unknown

concept by a role R1. Note that the query’s visual syntax must follow the 7th rule

62

Figure 3.20: An example query generated by the 7th rule of the grammar.

from the grammar above because it contains the OR node.

3.5 Mapping of OntoVQL to the nRQL language

The expressive power of OntoVQL can be informally described as being able to for-
mulate queries on DL Abox elements (concepts and role assertions) and make use
of conventional operators (union, intersection) for building up more complex, refined
queries. Our proposed VQL is designed independently of any OWL query language
and offers basic functionalities for querying OWL-DL ontologies. This means that
there is not a one-to-one mapping between the visual components of OntoVQL and
the elements of an OWL query language. Note that a number of these elements have
no visual counterpart and therefore, OntoVQL does not match the full expressive
power of OWL query languages. It follows that OntoVQL is unquestionably less ex-
pressive than an OWL query language. However, we claim that for the simple queries
mostly asked by the naive user, and also for complex queries containing conjunction
and union, the OntoVQL version of the query exhibits a lower complexity by mainly
getting rid éf the textual syntax and hiding the query variables of the OWL query. In
that sense, we can rightfully claim that OntoVQL is less complex than an OWL query
language, or more precisely, a subset of it. Also, since there is no specific language
to which OntoVQL must be mapped to, there is the possibility of translating the
visually expressed query semantics into a written version using the query language of

your choice. In our case, the translation is done using nRQL. However, as has been

63

illustrated in previous sections, the design of OntoVQL was strongly guided by the
functionality of nRQL.

The visual mapping of OntoVQL into nRQL consists of translating the semantics
of the visual components and their combinations into nRQL expressions. Starting
with the concept node, the most basic visual component in OntoVQL, its equiva-
lence in nRQL corresponds to the concept query atom (Figure 3.21). The second
basic query construct in OntoVQL corresponds to the role linking two entities. Its
translation into nRQL matches the role query atom explained earlier in Section 3.1.3.
As depicted in Figure 3.22, each entity is mapped to a distinct variable standing for
the domain and range of the role. The domain and range entities can either be a
concept, unknown concept, AND/OR group, or AND/OR node. If the domain and
range are unknown concepts, then there is no need to include anything but the role
query atom in the query body. Otherwise, the body should comprise of the domain
and range declarations consisting of the appropriate nRQL translation. Note that
although no AND operator is present in the visual query, all the elements in the cor-
responding nRQL query are intersected. This is an implicit conjunction in contrast
to the explicit one that is visualized by an AND node/group. Therefore, outgoing
roles from an entity as well as domain and range specification for a role require the
use of conjunction in nRQL. Beside the concept and role constructs, there are the
union and conjunction operators. As seen earlier, the basic constructs of that type of
operations are the AND/OR groups. They are simply mapped to a query body con-
taining the ‘and’/‘or’ keyword followed by a list of concept queries that correspond
to the concepts inside the group (see Figure 3.23). Finally, the AND/OR node is
mapped similarly to the AND/OR groups with the exception that instead of a list of
only concept queries following the ‘and’/‘or’ keyword, there can be a list of all kinds
of queries (Figure 3.24). Note that when mapping to nRQL, each AND/OR operator

is mapped to a single variable.

64

(retrieve (7x) (?x concept))

Figure 3.21: Concept query mapping.

l_ —————— - ROle Ml "1|

(retrieve (?x1 ?7x2)
(and (?x1 ?%2 Role)
(...declaration for the domain entity
(...declaration for the range entity..

Figure 3.22: Role query mapping.

In order to get an idea of how the mapping is done with more than one construct
in the query, consider the example of a graph query with a role and an OR group
as shown in Figure 3.25. When mapping to nRQL, each entity must be mapped
to a unique variable. In the case of the OR group, the concepts inside it must be
mapped to the same variable 7x3. Therefore, in the nRQL translation, the concepts
inside the OR group are both mapped to x1 whereas the animal concepts are mapped
to different variables x2 and x3. The reason why concepts involved in an AND/OR
operation must be mapped to the same variable is because this has a direct impact on
the result. For example if concepts C3 and C2 were intersected, then the nRQL query
body will include (and (x1 C3) (x1 C2)) which results in binding the variable x1 to
those individuals which are instances of concepts C3 and C2. If distinct variables were
used instead, then the answer would be those individuals which are bound to C3, plus
those individuals which are bound to C2 but not already mentioned for C3. Hence,

the semantics changes into adding up C2 and C3 individuals instead of intersecting

65

(retrieve (?x)
(and (?x C1)
(?x C2)

(7x Cn)))

(retrieve (?x)
(or (?x C1)
(?x C2)

(x Cn))

(b)

Figure 3.23: (a)AND group mapping. (b) OR group mapping.

66

(retrieve (?x)

(and (?x ...)

(% ...))

(retrieve (?x)

(for (?x...)
(2x)

(b)

Figure 3.24: (a) AND node mapping. (b) OR node mapping.

67

Figure 3.25: Example of a graphical query and its equivalence in nRQL Table 3.17.

(retrieve ($7x2 $7x3 $7x1)
(and (87x2 |animall)
($7x1 |animal|)
(or ($7x3 |[woman|)
(37x3 |manl))
(37x3 $7x1 |has-pet|)
(837x3 $7x2 |likes])))

Table 3.17: Translation of query in Figure 3.25 to nRQL

them. This is why variable mapping is crucial when translating the visual query into

nRQL.

3.6 OntoVQI’s characteristics

In order for the visual query language to be utilized, it needs to be part of a visual
query system. A prototype has been implemented for this very purpose. This section
describes the system’s characteristics and properties in terms of what are the services
provided and how to use them. In Figure 3.26, the screen shot of the system’s main
window shows its most important components. The main toolbar provides the basic
operations of the system. The first operation to be performed before querying is to
load the ontology that is to be queried. The information tabs provide the list of

concepts, roles and individuals present in the loaded ontology. It is from those lists

68

Main Toolbar Tnformation Tabs Query Tabs Query Toolbar

v 1358

Figure 3.26: OntoVQI's Main window.

that the user will select the parts that will make up the queries to be built. The
query tabs consist of the tool’s main component since this is where the query pane
for query construction is found. Enclosed within the query tab is the query toolbar
that provides query constructors along with the basic operations needed for query
manipulation. These parts will be explained with greater detail in the subsequent

sections.

3.6.1 Main toolbar

The main toolbar provides the global main operations of the system, which are loading

an ontology, saving and loading a query and setting the variable option.

Load ontology

No queries can be built if no ontology is loaded into the system. Therefore, the first
task to perform after having the system running and functional is to press the “Load

ontology” button from the main toolbar. This will open the “Select Ontology” file

69

Select Ontology

¢ Documents g ﬂtam 3
: !

B pizza

Figure 3.27: File selector for choosing an OWL ontology.

selector (see Figure 3.27) which filters the OWL ontologies which are the files having
the .owl extension. Figure 3.28 shows how this operation takes place. First, the
user inputs the ontology file location to the OntoVQI tool by selecting an ontology
and pressing on the “open” button in the file selector. This information is addressed
to the system’s “Load ontology” module, which will in turn send the load ontology
command to Racer. The reasoner then executes the command by loading the OWL
file into its system and sends a success or failure message back to the VQS. Therefore,
the loading process is really done by Racer and into Racer while OntoVQI is just the

facade through which the operation is accomplished.
Save/Load Query

One of the most useful services provided by the tool is the ability to save and load
a query session. In fact, after having spent a certain amount of time on formulating
some meaningful queries, it will be a waste of time to lose all the work done once
the system is exited. It may also be that the user is still not finished with the query

formulation and needs to refine them some time later. In that case it would be very

70

o e] [
~User
1: select OWL ontology
|
|

3/ dend load ontology request

|
|
|
;{send Racer cnmminh

-~
5:lrbturn response meéﬁe

i i

D 2. cjdate a LoadOmoIogy object
I
l
|
|
|
|
|

Figure 3.28: Sequence diagram of loading an OWL ontology.

useful to save the current session and load it afterward for that purpose. Also, the
save/load utility may be seen as a way for users to share their queries between each
other. The way this service works is very simple. Once the user wants to save a query
session, the “Save query” button from the main toolbar must be pressed which will
open the “Save Query” window (see Figure 3.29). The file name must be filled in and
the “Save” button pressed for the operation to proceed. The query session is then
saved as an XML file to the specified location. Loading a query session is as simple
as saving it. The user needs to press the “Load Query” button from the main toolbar
and this will open the “Load Query” window (see Figure 3.30). Then, the user can
select from the list of XML filtered files the saved query session in question. How the
queries are transformed from their graph visualization and encoded into XML is done
through the XMLEncoder [40] class, which was exclusively designed for archiving
graphs as textual representations of their public properties. Similarly, when loading
the query session, which is in the form of an XML file, the transformation is done in
the other way around by the XMLDecoder [39] class, which reads the XML data and

creates objects according to the content.

71

Save Query

Flaces

Figure 3.29: Save query window.

Figure 3.30: Load query window.

72

Variable option

As stated previously in Section 3.1.3 there are two variable types available for writing
a query in nRQL: injective and non-injective variables. As it was explained, the
variable choice is important since it can affect the outcome of the queries. Therefore,
OntoVQI should provide the option of setting the variable type. This option is more
specifically intended to the user who is expert in nRQL since it is more likely for
this type of user to make the distinction between these two types of variables and to
make a practical use of it. On the other hand, the naive user, i.e. the one who is
not familiar with nRQL, can obviously use this option to explore OntoVQI services
but it should be mentioned that it is not particularly recommended for this type of
user to depend on it. The reason for that relies on the possibility for this option
to be a source of confusion to this user considering that a given query can have
different outcomes as shown in the example in Section 3.1.3. This option is accessible
by clicking on the “Variable Option” button of the main toolbar. This will open the
“Variable Option” window (Figure 3.31), which consists of two checkboxes that can be
exclusively checked for either the injective variable option or the non-injective variable
option. Note that by default, variables are set to be non-injective. This is the case
because the non-injective variable option permits to obtain all the tuples in the result
that are to be found because of its binding principle explained earlier in the same
Section of 3.1.3. On the other hand, even though the injective variable option allows
the elimination of the redundant results that would be otherwise obtained in the case
of having non-injective variables instead, it may be more desirable for the naive use
to have the complete result than to have a redundant-free one. If the user chooses
the non-default option, then all the subsequent queries will be translated to nRQL
with variables being injective. However, those queries that have been translated prior
to this change will remain the same. For example, the two queries in Figure 3.32 are

apparently the same; nonetheless, the result cardinality is not the same. The first

73

Figure 3.31: Variable option window.

query, Query 5, has been translated with non-injective variables, which was before
the variable setting got changed to injective variables. The second query, Query 10,
was added after that change and thus its translation into nRQL was with injective
variables. The outcome of the second query with no tuples in the result and the first
one with two can be explained by examining Figure 3.33. The latter shows that the
tuples in the resﬁl’c of Query 5 have the second and third argument filled with the
same cat instance, meaning that there was no person who had more than one cat.
Therefore, it is expected to have zero tuples with the injective variable option since
this would involve finding a distinct cat instance to bind for each cat variable. As a
result, two queries that are visually identical and are present conjointly in the query
pane are displaying different results. This situation can be seen as an example of why
it is desirable to offer the variable setting service but that it could become puzzling

at the same time especially for the naive user.

3.6.2 Information tabs

The information tabs consist of an essential component in OntoVQI. It is called as
such because it is the part of the tool that provides the list of concepts, roles, and
individuals as the information about the ontology that is needed to formulate queries.
In order to facilitate the procedure of finding the desired information from these lists,

a case sensitive search field is available in each tab to perform a search over the

Figure 3.32: Variable type effect on query result.

Figure 3.33: Result for Query 5 in Figure 3.32.

74

75

alphabetically ordered list of names. Note that the list of names refers to the con-
cept/role/individual names excluding the namespaces. Therefore, the search is done
over the names without namespaces even though the list is composed of namespace
plus name elements. By default, these lists include the namespace alongside the name
but they can be simplified into a list of names by unselecting the “show namespace”
checkbox situated at the top of each tab. The retrieval of the lists of concepts, roles
and individuals is conducted immediately after the ontology to be queried is loaded.
For the obtainment of each list, first, the appropriate command is sent to Racer,
second, the returned result is parsed and processed into a list of namespaces and a
list of names, third, the list of names is alphabetically ordered, and finally, the lists

are fetched into their corresponding table.
Concept tab

The concept tab mainly consists of the list of concepts present in the loaded ontology.
The service provided on this tab is to find the parent/child of a given concept. An
ontology can be described as a taxonomy of terms whose root is the Top concept that
encompasses all concepts and whose leaves is the Bottom concept that is encompassed
by all concepts. Therefore, each term in the taxonomy except for the Top one is
derived or more precisely subsumed by one or more of these terms and is itself deriving

or subsuming other terms.
Role tab

In the role tab, beside the search field, there is the possibility to find the domain
and/or range concept(s) of a given role or object property. In fact, an OWL ontology
may contain the specification of the domain and range of a role. Thus, the “has-pet”
property OWL definition below taken from the people-pet.owl shows that it has a
domain of “person” and a range of “animal”, meaning that it relates instances of

the class “person” to instances of the class “animal”. Therefore, this is a way of

76

<owl:ObjectProperty rdf:about “#has-pet” >

<rdfs:domain>

<owl:Class rdf:about “#person” />

</rdfs:domain>

<rdfs:range>

<owl:Class rdf:about “#animal” />

</rdfs:range>
</owl:ObjectProperty>

Table 3.18: Domain and range specification of a role in OWL.

Figure 3.34: Domain/range of a selected role.

finding out how the roles are connecting instances of concepts to each other and
hence permitting the user to get an idea of how the ontology describes the knowledge
domain and what are the concepts that most likely will return a non zero result when
queried.

In order to obtain the domain/range concept(s) of a role, the user must select
the role from the table in the Role tab. In Figure 3.34, it is the "has-pet” property
that has been selected. Then the domain/range buttons must be pressed before the
drop down lists of the domain and range concept(s) of the selected role appear. This

operation is carried out in the same manner depicted in Figure 3.31 in Section 3.6.
Individual tab

The individual tab contains the service of finding the direct type and/or all types
of a given individual. The direct type is simply the most specific atomic concept

of which an individual is an instance. On the other hand, the “all types” option

77

o 3
http:/{cohse.semanticweb.orgfontologies/people#doc

http://cohse. semanticweb. orgfontologies/people#do
htkp: ficohse. semanticweb, orgfontologies{people #dog

http:/fcohse,.semanticweb. orgfontolagies/people#animal
~{http:{fcohse. semanticweb.org/ontologies/people #pet

Figure 3.35: Direct type/all types of a selected individual.

serves to retrieve all atomic concepts of which the individual is an instance. This
service is useful in helping the user finding out which concepts are to be queried with
meaningful results. Also, it can be of use in determining the types of the individuals
returned in the result of a query. As shown in Figure 3.35, by selecting an individual
from the table in the individual tab and pressing on the “Direct types” or “All types”

button, a drop down list of the corresponding concepts appears.
Drag and drop

An important usability feature in the system that helps to provide a richer user
interface is the drag and drop feature. In the information tabs. the elements in the
tables can be dragged and dropped into the query pan~. In Figure 3.36, each query
represents a dragged and dropped element from every table. For the first query, the
dropped cat concept stands on its own as a query formed of a single concept whose
result cardinality reveals that there are two cat instances in the ontology. In the case
of the second query, the “has-pet” object property name was dropped into the query
pane and the query formed consists of a role whose domain and range are unknown
concepts because the intended meaning of this query should stand for finding the pairs
of individuals related by the “has-pet” role without any restriction on the individual’s
type. On the other hand, unlike the two previous dropped elements, the third dropped
element, which is an individual, does not stand for a query. This is because an

individual on its own does not represent any query semantics. Hence, there is no

78

Figure 3.36: A dragged and dropped concept/role/individual.

cardinality for the result as for the other queries. However, this dropped individual
can be linked to other queries with some role. These three queries characterize the
three basic building blocks that can be dragged and dropped from the information
tabs. The concept and the role queries are the ones to start with, as they are the

simplest queries that can be formulated with the tool.
The “Add edge” option

The “Add edge” option is provided in order to be able to connect an ‘AND’/‘OR’
node to an ‘AND’/‘OR’ group. By default, users can connect query components with
a role which is represented by a filled arrow. However, users wishing to link query
components for intersection or union (‘AND’/‘OR’ nodes to ‘AND’/‘OR’ groups),
they must use a different kind of arrow which is enabled by checking the “Add edge”

checkbox in the query toolbar (Figure 3.40).

3.6.3 Query tabs

The agglomeration of the query tabs is the main component in the OntoVQI tool. This
is where queries are constructed, their results can be consulted, and their translation

into nRQL can be examined.

79

Figure 3.37: Deleting a query component inconsistently.

Query tab

The query tab is composed of the query pane, in which the query construction takes
place, and of the query toolbar providing the services essential for assembling the
simplest queries into more complex ones. The query toolbar also provides access to

operations having a direct effect on the queries: delete, undo/redo and projection.
Delete

With every modification performed on a query, it is instantly reevaluated for retrieving
the new result cardinality. Therefore, no matter how a query is manipulated, it must
always be in a consistent state meaning that it should always follow OntoVQL syntax
rules described in section 3.4 to be in a state ready for evaluation. When deleting
the component of a query, the outcome may be inconsistent. In fact, the deletion
of the “has-pet” role in Figure 3.37 resulted in the creation of two queries, each
composed of the unknown concept alone, which is against the visual grammar rules,
which makes these two queries not consistent and it is not possible to evaluate them
for results. In order to solve this problem, the delete operation must remove as many
query components as necessary for insuring that all the new queries resulting from
this deletion are consistent. For example, in the case of Figure 3.37, the deletion of
the role would have as consequence the removal of the whole query. Note that the
user can delete a query in its entirety by selecting the query box before hitting the

delete button.

80

Undo/Redo

The undo/redo service is one of the most common usability features found in user
interfaces. Whether the user is a novice learning to use the tool or an expert who
just hit the wrong key, the application should provide the ability to quickly undo the
results of their actions. Therefore, undo/redo is an essential service for improving
OntoVQI’s usability. What would be expected from the undo feature is to undo the
list of actions performed on the graph query. However, in OntoVQI, only those actions
that have an impact on the query semantics can be undone as deleting or adding a
query component. This means that the displacement of queries or query components
is not registered in the list of actions to be undone since this action has no effect on

the query semantics.
Query preview

The query preview is provided as an instant feedback to the user in order to help him
constructing meaningful queries. It consists of the number of tuples that are found
in the result returned by Racer. With every addition, deletion, or modification made
to a query, its preview gets instantly evaluated by sending the preview command to
Racer. As an example demonstrating the usefulness of this feature, the user usually
starts a query construction with a simple concept or role query. If the preview for this
simple query is found to be zero, then there would be no point in going any further
with this query since there would be no meaning to construct a query for which we
know in advance it will have no result. Therefore, in that sense, the query preview

allows the user to save time by instantly providing the cardinality of the result.
Projection

The projection service refers to what was explained previously about the head of a
query in nRQL, i.e. the head consists of all or some of the variables appearing in the

query body and on which the result is projected. In OntoVQI, projection provides the

81

Query 3 (1)

has_pet > cat

Figure 3.38: A simple role query.

ability of selecting which parts of the graph query or equivalently which variables of
the nRQL query should be projected on in the result. The number between brackets
next to the node’s name is an indicator that the node in question has an underlying
variable in its nRQL translation as shown in the simple query of Figure 3.38. The
difference between a projected and a non-projected variable resides in the color of
this number: red when selected as part of the projection, black when it is removed
from the projection. By default, these tags are initially included in the projection.
Therefore, in order to take out a node from the projection, the user must first of all
select the node in question. Then, by clicking on the drop-down list of the projection
button, select the “Remove from rivjection” option, which will cause the tag to its
change color from red to black, as it is the case with the adult concept in Figure 3.39
(b). Note that the change in projection had a direct impact on the displayed result.
In fact, when both concepts are included in the projection in Figure 3.39 (a), then the
result comprises both tags, whereas when only the domain concept of the role query
is projected, then the result contains only the second tag. For the purpose of getting
the projection back in the node, the user must again select the node and choose the

“Add to projection” option from the projection’s drop down list.

82

e N G o s wn e W S W W W R AN KN M W NS wm SR AR e ew s wm g

Query 4 (1)

—— o —— — -
- - - e

(b)

Figure 3.39: Removing a node from the projection.

Concept intersection and union constructors AND and OR constructors

SIS S

Figure 3.40: The intersection and union constructors in the query toolbar.

Query 7 (2)
Query 5
| AND [1]
AND
I —_
Query 8 (1)
"AND[1]
_—

Figure 3.41: The

use of the concept intersection constructor.

83

- BB~

- o = e e -

Figure 3.42: Using the OR constructor.

Query 15 (1) |

e 9

=T ANDT T T~ ;

i’ \‘ i

3 Yoo

] #o

‘\ "l i

) E

-] o i

i

- —— i
T T T Query 8 (1) T TQuery 10(2) !

84

85

Intersection and union constructors

As it was previously mentioned, there are two types of intersection and union con-
structors. The first one, concept intersection and union constructors, serves to group
concepts whereas the second one, the AND and OR constructors, mainly serves to
group these groups of concepts. Icons in the query toolbar as shown in Figure 3.40
depict these constructors.

In order to use the concept intersection constructor, first the user needs to drag
and drop the icon that stands for it into the query pane. Figure 3.41 shows that this
results in the creation of a non-evaluated query containing an empty “AND group”.
Then, concepts can be added one by one into the group by being dragged either
from the concepts table or the query pane and dropped on top of it. Similarly, the
concepts union constructor is used in the same way. As stated previously in the
visual grammar rules, it is possible to perform the union operation on AND groups
and unknown concepts related to a role by the means of the OR constructor. First the
AND groups and unknown concepts to be unified must be selected (Figure 3.42 (a)).
Then, the icon representing the OR constructor must be dragged and dropped in an
empty space of the query panel. An OR node will appear at the same position where
the icon was dropped and directed edges would be drawn from the OR node towards
the selected items (Figure 3.42 (b)). The same applies for the AND constructor
except that instead of selecting AND groups, it should be OR groups that have to be

selected.

3.7 System Design and Architecture

The design approach followed in implementing OntoVQI is based on the architecture
of the three primary layers [17]: presentation, domain and data source. The following

explains in general the role of each layer and what it is about.

e The presentation layer is about how to handle the interaction between the user

86

and the software. This can be a command-line or text-based menu system,
but most likely it is a rich-client graphics User Interface or an HTML-based
browser User Interface. The primary responsibilities of the presentation layer
are to display the information to the user and to interpret commands from the

user into actions upon the domain and data source.

e The second layer is the domain logic which also refers to the business logic. This
is the work that the application needs to do for the domain we are working with.
It involves calculations based on input and stored data, validation of any data
that comes in from the presentation layer, and figuring out what data source

logic to dispatch, depending on commands from the presentation.

e The last layer is the data source which is about communicating with other sys-
tems that carry out tasks on behalf of the application. These can be transaction
monitors, other applications, and so forth. For most applications, the biggest
piece of data source logic is a database that is primarily responsible for storing

persistent data.

The architecture of our design consists of these three layers. Each layer is com-
posed of one or two packages whose functionality revolves around a specific role (see
Figure 3.43). The following subsections covers the Whereabouts of each of these layers

and their packages.

3.7.1 Presentation Layer

The presentation layer consists of a rich-client User Interface. Figure 3.43 shows
that the presentation layer contains two packages: the graph package and the User
Interface package. The User Interface package is responsible for generating a graphical
user interface in order to display information and to receive user commands whereas
the graph package is responsible for the query graphical visualization. Figure 3.44

shows that the class diagram of the presentation.graph package.

87

1 1 .
)) 1 resentation. ui resentation;graph
presentation layer | A
domain layer doman et g fac
Jacer

data source layer

Figure 3.43: Distribution of packages into the three layers: presentation, domain and
data source.

The SWT [37], which stands for Standard Widget Toolkit, consists of the third
party with which the user interface is implemented. The SWT is an open source wid-
get toolkit for java designed to provide efficient, portable access to the user-interface
facilities of the operating systems on which it is implemented. It is analogous to
AWT/Swing in Java with one difference - SWT uses a rich set of native widgets.

The graph package is responsible for the graphical display of the query. The
graphical components are based on JGraph [19] which is a mature, feature-rich open
source graph visualization library written in Java. All the classes in the graph pack-
age are extended from the jgraph classes in order to configure the graph according to
our needs. The GraphicalQuery class plays a key role as it encompasses the graph-
ical model for all queries and is responsible for getting User Interface requests, like
add/remove/modify query components, and forwarding them to the domain layer,
but more precisely as it will be seen next, to the domain.graph package.

Furthermore. another third party is used for rendering the graphical query: JGraph
Layout Pro. The latter takes graph structures defined using the JGraph library and

performs either or both of two specific functions on that graph structure:

MyDefaultGraphCell

88

MyOrGraphCeIi’ | MyAndGraphCell MyConceptGraphCel MyindividualGraphCall. Nods:
MyCannectionEdge MyAndNode 'My_OrNod'e
MyConnectionOrEdge | | MyConnectionAndEdge
{ GraphicaiQuery
=
7 \ ~_
& h '
MyCellViewF actory MyGraphModel MyJGraph
7 7N <
4 A N N
MyElipseCellview QueryGroup MyRoleEdge MyBasicGraphyl

Figure 3.44: Class diagram of the presentation.graph package.

89

GraphQuery
VAR
Y =
‘QueryFunctiuonalities ResultParser
7~
_ ¥ ~
Gra thuérﬁvé!uatoF ~

N\
/ ~ ™

Lo N N .

GraphQueryExtractor | | GraphQueryTranslator| | TreeFunctionalities’

Figure 3.45: Class diagram of the domain.graph package.

e Position the vertices of that graph using an algorithm(s) that attempts to fulfill

certain aesthetic requirements.

e Add and remove control points of edges in the graph using an algorithm(s) that

attempts to fulfill certain aesthetic requirements.

3.7.2 Domain Layer

As previously mentioned, the requests from the presentation layer are forwarded to
the domain layer. In fact, the domain.graph package takes care of these requests by
dispatching the appropriate services available through the domain.racer package for
query results. For example, if a role is added between two concepts within a query,
then, a request is sent to the domain.graph package for adding this new component.
The domain.graph package carries out the necessary modifications into the data struc-
tures to account for that change and then needs to call racer serviceé through the
domain.racer package to update the results of that query and finally, communicates
these changes to the presentation layer.

The most important package in the design and implementation of the tool is the

90

ProcessQuery

RetrieveCongahts || RutrieveDomain | [Retrievelndividuals |
/-/’/.r' \\ \\ |
‘Retrievelndividual [BﬁectTypes RéﬁigvelndividualAlﬂ’ ypes-
kY
-} X

i —
RetrieveOntologyName k 'RetrieveRange

LoadOntology

RetrieveRoles:

Figure 3.46: Class diagram of the domain.racer package.

domain.graph package since it contains the core of the application’s business logic.
Each class in the domain.graph (see Figure 3.45) package plays a key role. First,
the GraphQuery class corresponds to the data structure of the graphical query. Each
instantiated graphical query has its corresponding GraphQuery object associated with
it. It contains the API for setting/getting the nRQL translation, the query result and
the graph query components (ex.: concepts) and features (ex.: query preview). The
essential task of the GraphQueryExtractor class is to extract each indivual graph
query from the graph model components and then assign each of these graph queries
to the corresponding GraphQuery object. The GraphQueryTranslator class takes the
query data structure, that is the GraphQuery object, and performs the mapping of
the internal graph structure into nRQL. The ResultParser class is given the query
result from Racer to parse and save within a data structure for the presentation layer
to display. The whole process of extracting, translating, retrieving and processing
query results is orchestrated by the GraphQueryEvaluator class. The domain.racer

package is responsible for processing the nRQL query and sending it to Racer (see

91

Figure 3.46).

3.7.3 Data Source Layer

The essential and only objective of the data source layer in the application is to
communicate with RacerPro for submitting nRQL queries and obtaining their results.
The source package makes use of the JRacer library which consists of a Java-based
API for RacerPro to call its services. In fact, the source package contains only one
class, the racer class, whose functionality is to set/get Racer commands and Racer

results.

Chapter 4

Conclusion

Applying visual techniques for accessing data has been a subject of research in the
database domain that has been given attention and effort with the multiple visual
query systems and visual query languages proposed. The trend continued with the
effort of visually representing knowledge in an ontology. However, not much has been
done for visually querying it. In that perspective, the main goal of this research was
to propose a formal visual query language for querying an ontology. OntoVQL rep-
resents the realization of that goal. Even though OntoVQL was specifically mapped
to nRQL, it was initially designed to be independent of any particular querying lan-
guage for ontologies and thus has the basics to be easily adapted and mapped to
any of these languages independently. As for the expressivity of OntoVQL, its union
and intersection constructors allow to build more than simple queries. OntoVQI is
the prototype that has been implemented to effectively build queries in OntoVQL
and view their results. OntoVQI is a visual interface that has been developed with
features, such as query preview, that are meant to help the user towards building

meaningful queries.

There exists no proper or formal way to measure the performance or effectiveness
of a visual query language. Hence, the quality of the design of such a language
remains theoretical and is open to discussion. In our case, OntoVQI brings the

designed visual query language a step further by transposing it from mere theory to

93

an actual implementation that allows the user to have a practical experience with
querying an ontology using OntoVQL. Furthermore, given that OntoVQI is in effect
a User Interface, it would have been helpful to measure the effectiveness of OntoVQL
by conducting a user interface evaluation on OntoVQI. Given that conducting such an
evaluation represents by itself a subject of research and due to time restrictions, this
evaluation has not been conducted. Therefore, this evaluation can be considered as
one major future work contribution in order to get feedback and improve the language
and the user interface features of the system.

Before OntoVQL came to its actual form, it was known and previously presented
as “GLOO: A Graphical Query Language for OWL Ontologies” [15]. Later, after
some modifications were made to the visual query language in order to improve its
visual representation of queries and to allow a wider range of queries to be repre-
sented, it became known as OntoVQL [16]. OntoVQI has been an inspiration to
other people’s work as it can be verified with the prototype presented in [5] which
is greatly influenced by OntoVQI. Overall, OntoVQL has been cited in a number of
articles as in [34], [35] and [30}, and has been perceived as the most recent attempt to

support a graphical mode for query formulation in the context of the Semantic Web.

Bibliography

1]

2]

M. Andries. Graph rewrite systems and visual database languages, phd thesis,

leiden university, netherlands,. February 1996.

N. Athanasis, V. Christophides, and D. Kotzinos. Generating on the fly queries
for the semantic web: The ICS-forth graphical RQL interface (GRQL). In Pro-
ceedings of the 3rd International Semantic Web Conference, pages 486-501, 2004.

F. Baader, D. Calvanese, D.L.. McGuinness, D. Nardi, and P.F. Patel-Schneider,
editors. Description Logic Handbook. Cambridge University Press, 2002.

F. Baader, D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider. Description
logic handbook. In Cambridge University Press, 2002.

Christopher JO Baker, Rajaraman Kanagasabai, Wee Tiong Ang, Anitha Veera-
mani, Hong-Sang Low, and Markus R Wenk. Towards ontology-driven navigation
of the lipid bibliosphere. BMC Bioinformatics, 9, February 2008.

W.L. Bewley, T.L. Roberts, D. Schroit, and W.L. Verplank. Human factors
testing in the design of xerox’s 8010 ’'star’ office workstation. In Proceedings

ACM CHI’83 Conference, pages 72-77, December 1983.

D. Brickley, R.V. Guha, and B. Mcbride. RDF vocabulary description language
1.0: RDF schema. In W3C Recommendation, February 2004.

T. Catarci, M. F. Costabile, S. Levialdi, and G. Santucci. A graph-based frame-
work for multiparadigmatic visual access to databases. IEEE Transactions on

Knowledge and Data Engineering, 8(3):455-475, 1996.

T. Catarci, M.F. Costabile, S. Levialdi, and C. Batini. Visual query systems for
databases: A survey. Technical Report SI/RR-95/17, 1995.

94

[10]

[11]

[16]

[19]

[20]

95

T. Catarci, Santucci G., and M. Angelaccio. Fundamental graphical primitives

for visual query languages. Information Systems, 18(2):75-98, March 1993.

T. Catarci, T.D. Mascio, E. Franconi, G. Santucci, and S. Tessaris. An ontology
based visual tool for query formulation support. In Proceedings of the 16th

European Conference on Artificial Intelligence (ECAI-04), 2004.

M.P. Consens and A.O. Mendelzon. Graphlog: A visual formalism for real life
recursion. In Proceedings of 9th ACM SIGA CT-SIGMOD Symposium on Prin-
ciples of Database Systems, pages 404-416, 1990.

F. Cruz. Doodle: A visual language for object-oriented databases. ACM-
SIGMOD International Conference on Management of Data, pages 71-80, 1992.

D. Dotan and R.Y. Pinter. Hyperflow: an integrated visual query and dataflow
language for end-user information analysis. In Proceedings of the 2005 IEEE

Symposium on Visual Languages and Human-Centric Computing, 2005.

Amineh Fadhil and Volker Haarslev. GLOO: A Graphical Query Language for
OWL ontologies. Proceedings of the OWLED*06 Workshop on OWL: Ezxperiences
and Directions, 2006.

Amineh Fadhil and Volker Haarslev. OntoVql: A Graphi-al Query Language for
OWL Ontologies. Proceedings of the 2007 International Workshop on Description
Logics, 810:267-274, 2007.

M. Fowler, editor. Pattern of Enterprise Application Architecture. Pearson Ed-
ucation, 2003.

V. Haarslev, R. Moller, and M. Wessel. Querying the semantic web with Racer +
nRQL. In CEUR Workshop Proceedings of KI-2004 Workshop on Applications
of Description Logics (ADL 04), September 2004.

http://www.jgraph.com/jgraph.html. last visited in September 2008.

C.J. Kacmar and J.M. Carey. Assessing the usability of icons in user interfaces.

Behaviour and Information Technology. 10(6):443-457, 1991.

[21]

[22]

(26]

[27]

[28]

[29]

[30]

96

G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl.
Rql: A declarative query language for RDF. In The FEleventh International World
Wide Web Conference (WWW), May 2002.

E. Keramopoulos, P. Pouyioutas, and C. Sadler. GOQL, a graphical query lan-
guage for object-oriented database systems. In Basque International Workshop

on Information Technology, pages 35-45, 1997.

Michael Kifer and Georg Lausen. F-logic: a higher-order language for reasoning
about objects, inheritance, and scheme. Proceedings of the 1989 ACM SIGMOD

international conference on Management of data, pages 134-146, June 1989.

S. Krivov and F. Villa. Towards an ontology based visual query system. Data

Integration in the Life Sciences, pages 313-316, 2005.

S. Krivov, F. Villa, and R. Williams. GrOWL, visual browser and editor for
OWL ontologies. Journal of Web Semantics, 2006.

I. Larkin and H. Simon. Why a diagram is (sometimes) worth ten thousand

words. Cognitive Science, 1:65~-99, 1987.

B. Ludascher, A. Gupta, and M.E. Martone. Model-based mediation with domain
maps. [EEE Computer Society, 2001.

W .K. Michener, J.H. Beach, M.B. Jones B. Ludaescher, D.D. Pennington, R.S.

Pereira, A. Rajasekar, and M. Schildhauer. A knowledge environment for the
biodiversity and ecological sciences. Journal of Intelligent Information Systems,

pages 111-126, 2007.

N. Murray, N.-W. paton, C.A. Goble, and J. Bryce. Kaleidoquery: a flow-based
visual language and its evaluation. Journal of Visual Languages and Computing,

11:151-189, 2000.

Fernando Naufel and Carlos Bazilio Martins. Visualization of Description Logic
Models. Description Logics 2008, May 2008.

[31]

[32]

[33]

[34]

[35]

[40]

97

W. Ni and T.W. Ling. Glass: A graphical query language for semi-structured

data. In Proceedings of Eighth International Conference on Database Systems

for Advanced Applications (DASFAA 03), March 2003.

http://www.w3.org/ TR /owl-guide/ , last visited in September 2008.

A. Papantonakis and P.J.H. King. Gql, a declarative graphical query language
based on the functional data model. In Proc. of the Workshop on Advanced
Visual Interfaces, pages 113-122, 1994.

P. R. Smart, A. Russell, D. Braines, Y. Kalfoglou, J. Bao, and N. Shadbolt.
A Visual Approach to Semantic Query Design Using a Web-Based Graphical
Query Designer. 16th International Conference on Knowledge Engineering and

Knowledge Management, 2008.

P. R. Smart, A. Russell, D. Braines, and N. Shadbolt. NITELIGHT: A Graph-
ical Tool for Semantic Query Construction. Semantic Web User Interaction

Workshop, April 2008.

R. Stevens, P. Baker, S. Bechhofer, G. Ng, A. Jacoby, N. Paton, C. Goble, and
A. Brass. Tambis: Transparent access to multiple bioinformatics information

sources. Bioinformatics, 16:184-189, 2000.

http://www.eclipse.org/articles/Article-SWT-Design-1/SWT-Design-1.html,
last visited in September 2008.

M. Wessel and R. Moller. A high performance semantic web query answering
engine. In Proceedings of the 2005 International Workshop on Description Logics,
volume 147, pages 701-705, 2005.

http://www.docjar.com/docs/api/java/beans/XMLDecoder.html, last visited in
September 2008.

http://ecoinformatics.uvm.edu/dmaps/growl/ , last visited in September 2008.

Appendix A

People-pets ontology

A.1 Source

<7xml version="1.0" encoding="IS0-8859-1" 7>
<rdf:RDF xmlns:nsO="http://cohse.semanticweb.org/ontologies/people#"
xmlns:owl="http://www.w3.0rg/2002/07/owl#"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf -schema#"
xmlns:xsd="http://www.w3.0org/2001/XMLSchema#"
xml :base="http://cohse.semanticweb.org/ontologies/people”
xmlns="http://cohse.semanticweb.org/ontologies/people#">
<owl:Ontology rdf:about="" />
<owl:Class rdf:about="#white_van_man">
<rdfs:label>white van man</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#man" />
<owl:Restriction>
<owl:onProperty rdf:resource="#drives" />
<owl:someValuesFrom>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#white_thing" />
<owl:Class rdf:about="#van" />
</owl:intersectionQf>
</owl:Class>
</owl:someValuesFrom>
</owl:Restriction>
</owl:intersectionOf>

98

</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="#publication">
<rdfs:label>publication</rdfs:label>
<rdfs:comment>
</rdfs:comment>
</owl:Class>
<owl:Class rdf:about="#giraffe">
<rdfs:label>giraffe</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<rdfs:subClass0f>
<owl:Class rdf:about="#animal" />
</rdfs:subClass0f>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#eats" />
<owl:allValuesFrom>
<owl:Class rdf:about="#leaf" />
</owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#cat_liker">
<rdfs:label>cat liker</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#person" />
<owl:Restriction>
<owl:onProperty rdf:resource="#likes" />
<owl:someValuesFrom>
<owl:Class rdf:about="#cat" />
</owl:someValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:.about="#cat_owner">
<rdfs:label>cat owner</rdfs:label>
<rdfs:comment>

99

100

</rdfs:comment>
<owl:equivalentClass>
<owl:Class>
<owl:intersection0f rdf:parseType="Collection">
<owl:Class rdf:about="#person" />
<owl:Restriction>
<owl:onProperty rdf:resource="#has_pet" />
<owl:someValuesFrom>
<owl:Class rdf:about="#cat" />
</owl:someValuesFrom>
</owl:Restriction>
</owl:intersectionQf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="#grownup">
<rdfs:label>grownup</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#person" />
<owl:Class rdf:about="#adult" />
</owl:intersection0f>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="#quality_broadsheet">
<rdfs:label>quality broadsheet</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<rdfs:subClass0f>
<owl:Class rdf:about="#broadsheet" />
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#vehicle">
<rdfs:label>vehicle</rdfs:label>
<rdfs:comment>
</rdfs:comment>
</owl:Class>
<owl:Class rdf:about="#newspaper">
<rdfs:label>newspaper</rdfs:label>
<rdfs:comment>
</rdfs:comment>

<rdfs:subClass0f>
<owl:Class rdf:about="#publication" />
</rdfs:subClassOf>
<rdfs:subClass0f>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#broadsheet" />
<owl:Class rdf:about="#tabloid" />
</owl:unionOf>
</owl:Class>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#bus_company">
<rdfs:label>bus company</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<rdfs:subClassOf>
<owl:Class rdf:about="#company" />
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:about="#pet_owner">
<rdfs:label>pet owner</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<owl:equivalentClass>
<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#person" />
<owl:Restriction>

<owl:onProperty rdf:resource="#has_pet" />

<owl:someValuesFrom>
<owl:Class rdf:about="#animal" />
</owl:someValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>

<owl:Class rdf:about="#mad_cow">
<rdfs:label>mad cow</rdfs:label>

<rdfs:comment>
</rdfs:comment>

<owl:equivalentClass>

<owl:Class>

<owl:intersection0f rdf:parseType="Collection'">

101

<owl:Class rdf:about="#cow" />
<owl:Restriction>

<owl:onProperty rdf:resource="#eats" />

<owl:someValuesFrom>
<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#brain" />
<owl:Restriction>

<owl:onProperty rdf:resource="#part_of" />

<owl:someValuesFrom>
<owl:Class rdf:about="#sheep" />
</owl:someValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:someValuesFrom>
</owl:Restriction>
</owl:intersection0f>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="#bus">
<rdfs:label>bus</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<rdfs:subClassQf>
<owl:Class rdf:about="#vehicle" />
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#car">
<rdfs:label>car</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<rdfs:subClass0f>
<owl:Class rdf:about="#vehicle" />
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#cat">
<rdfs:label>cat</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<rdfs:subClass0f>
<owl:Class rdf:about="#animal" />
</rdfs:subClass0f>
</owl:Class>

102

<owl:Class rdf:about="#cow">
<rdfs:label>cow</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<rdfs:subClassOf>
<owl:Class rdf:about="#vegetarian" />
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#dog">
<rdfs:label>dog</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="#eats" />
<owl:someValuesFrom>
<owl:Class rdf:about="#bone" />
</owl:someValuesFrom>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:about="#kid">
<rdfs:label>kid</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#person" />
<owl:Class rdf:about="#young" />
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="#man">
<rdfs:label>man</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#person" />
<owl:Class rdf:about="#male" />
<owl:Class rdf:about="#adult" />
</owl:intersectionOf>

103

104

</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="#pet">
<rdfs:label>pet</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<owl:equivalentClass>
<owl:Restriction>
<owl:onProperty rdf:resource="#is_pet_of" />
<owl:someValuesFrom>
<owl:Class rdf:about="http://www.w3.0rg/2002/07/owl#Thing" />
</owl:someValuesFrom>
</owl:Restriction>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="#van">
<rdfs:label>van</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<rdfs:subClass0f>
<owl:Class rdf:about="#vehicle" />
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:about="#company">
<rdfs:label>company</rdfs:label>
<rdfs:comment>
</rdfs:comment>
</owl:Class>
<owl:Class rdf:about="#red_top">
<rdfs:label>red top</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<rdfs:subClass0f>
<owl:Class rdf:about="#tabloid" />
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#bone">
<rdfs:label>bone</rdfs:label>
<rdfs:comment>
</rdfs:comment>
</owl:Class>
<owl:Class rdf:about="#duck">
<rdfs:label>duck</rdfs:label>
<rdfs:comment>

105

</rdfs:comment>
<rdfs:subClass0f>
<owl:Class rdf:about="#animal" />
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:about="#leaf">
<rdfs:label>leaf</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="#part_of" />
<owl:someValuesFrom>
<owl:Class rdf:about="#tree" />
</owl:someValuesFrom>
</owl:Restriction>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#male">
<rdfs:label>male</rdfs:label>
<rdfs:comment>
</rdfs:comment>
</owl:Class>
<owl:Class rdf:about="#tree">
<rdfs:label>tree</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<rdfs:subClass0f>
<owl:Class rdf:about="#plant" />
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#broadsheet">
<rdfs:label>broadsheet</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<rdfs:subClass0f>
<owl:Class rdf:about="#newspaper" />
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:about="#haulage_worker">
<rdfs:label>haulage worker</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<owl:equivalentClass>
<owl:Restriction>

106

<owl:onProperty rdf:resource="#works_for" />
<owl:someValuesFrom>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#haulage_company" />
<owl:Restriction>
<owl:onProperty rdf:resource="#part_of" />
<owl:someValuesFrom>
<owl:Class rdf:about="#haulage_company" />
</owl:someValuesFrom>
</owl:Restriction>
</owl:union0f>
</owl:Class>
</owl:someValuesFrom>
</owl:Restriction>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="#haulage_truck_driver">
<rdfs:label>haulage truck driver</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#person" />
<owl:Restriction>
<owl:onProperty rdf:resource="#drives" />
<owl:someValuesFrom>
<owl:Class rdf:about="#truck" />
</owl:someValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#works_for" />
<owl:someValuesFrom>
<owl:Restriction>
<owl:onProperty rdf:resource="#part_of" />
<owl:someValuesFrom>
<owl:Class rdf:about="#haulage_company" />
</owl:someValuesFrom>
</owl:Restriction>
</owl:someValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>

107

</owl:Class>
<owl:Class rdf:about="#bus_driver">
<rdfs:label>bus driver</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#person" />
<owl:Restriction>
<owl:onProperty rdf:resource="#drives" />
<owl:someValuesFrom>
<owl:Class rdf:about="#busz" />
</owl:someValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="#vegetarian">
<rdfs:label>vegetarian</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#animal" />
<owl:Restriction>
<owl:onProperty rdf:resource="#eats" />
<owl:allValuesFrom>
<owl:Class>
<owl:complement(Of>
<owl:Class rdf:about="#animal" />
</owl:complement0f>
</owl:Class>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#eats" />
<owl:allValuesFrom>
<owl:Class>
<owl:complementOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#part_of" />
<owl:someValuesFrom>

108

<owl:Class rdf:about="#animal" />
</owl:someValuesFrom>
</owl:Restriction>
</owl:complementOf>
</owl:Class>
</owl:allValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="#animal_lover">
<rdfs:label>animal lover</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#person" />
<owl:Restriction>
<owl:onProperty rdf:resource="#has_pet" />
<owl:minCardinality
rdf :datatype="http://www.w3.0rg/2001/XMLSchema#nonNegativelnteger">3
</owl:minCardinality>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="#dog_liker">
<rdfs:label>dog liker</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#person" />
<owl:Restriction>
<owl:onProperty rdf:resource="#likes" />
<owl:someValuesFrom>
<owl:Class rdf:about="#dog" />
</owl:someValuesFrom>
</owl:Restriction>
</owl:intersection0f>
</owl:Class>

</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="#dog_owner">
<rdfs:label>dog owner</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#person" />
<owl:Restriction>
<owl:onProperty rdf:resource="#has_pet" />
<owl:someValuesFrom>
<owl:Class rdf:about="#dog" />
</owl:someValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="#elderly">
<rdfs:label>elderly</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<rdfs:subClassO0f>
<owl:Class rdf:about="#adult" />
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#tabloid">
<rdfs:label>tabloid</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<rdfs:subClassOf>
<owl:Class rdf:about="#newspaper" />
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#lorry_driver">
<rdfs:label>lorry driver</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#person" />
<owl:Restriction>

109

110

<owl:onProperty rdf:resource="#drives" />
<owl:someValuesFrom>
<owl:Class rdf:about="#lorry" />
</owl:someValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="#animal">
<rdfs:label>animal</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="#eats" />
<owl:someValuesFrom>
<owl:Class rdf:about="http://www.w3.0rg/2002/07/0owl#Thing" />
</owl:someValuesFrom>
</owl:Restriction>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#driver">
<rdfs:label>driver</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#person" />
<owl:Restriction>
<owl:onProperty rdf:resource="#drives" />
<owl:someValuesFrom>
<owl:Class rdf:about="#vehicle" />
</owl:someValuesFrom>
</owl:Restriction>
</owl:intersection0f>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="#female">
<rdfs:label>female</rdfs:label>
<rdfs:comment>
</rdfs:comment>
</owl:Class>

111

<owl:Class rdf:about="#adult">
<rdfs:label>adult</rdfs:label>
<rdfs:comment>
</rdfs:comment>
</owl:Class>
<owl:Class rdf:about="#brain">
<rdfs:label>brain</rdfs:label>
<rdfs:comment>
</rdfs:comment>
</owl:Class>
<owl:Class rdf:about="#grass">
<rdfs:label>grass</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<rdfs:subClass0f>
<owl:Class rdf:about="#plant" />
</rdfs:subClass0Of>
</owl:Class>
<owl:Class rdf:about="#lorry">
<rdfs:label>lorry</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<rdfs:subClass0f>
<owl:Class rdf:about="#vehicle" />
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#plant">
<rdfs:label>plant</rdfs:label>
<rdfs:comment>
</rdfs:comment>
</owl:Class>
<owl:Class rdf:about="#sheep">
<rdfs:label>sheep</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<rdfs:subClass0f>
<owl:Class rdf:about="#animal" />
</rdfs:subClass0f> '
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="#eats" />
<owl:allValuesFrom>
<owl:Class rdf:about="#grass" />
</owl:allValuesFrom>
</owl:Restriction>

112

</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#tiger">
<rdfs:label>tiger</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<rdfs:subClass0f>
<owl:Class rdf:about="#animal" />
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#truck">
<rdfs:label>truck</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<rdfs:subClassOf>
<owl:Class rdf:about="#vehicle" />
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#woman'>
<rdfs:label>woman</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#person" />
<owl:Class rdf:about="#female" />
<owl:Class rdf:about="#adult" />
</owl:intersection0f>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="#young">
<rdfs:label>young</rdfs:label>
<rdfs:comment>
</rdfs:comment>
</owl:Class>
<owl:Class rdf:about="#haulage_company">
<rdfs:label>haulage company</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<rdfs:subClassOf>
<owl:Class rdf:about="#company" />
</rdfs:subClass0f>
</owl:Class>

<owl:Class rdf:about="#white_thing">
<rdfs:label>white thing</rdfs:label>
<rdfs:comment>
</rdfs:comment>
</owl:Class>
<owl:Class rdf:about="#person">
<rdfs:label>person</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<rdfs:subClass0f>
<owl:Class rdf:about="#animal" />
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#magazine">
<rdfs:label>magazine</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<rdfs:subClass0f>
<owl:Class rdf:about="#publication" />
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#o0ld_lady">
<rdfs:label>old lady</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<owl:.equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#person" />
<owl:Class rdf:about="#female" />
<owl:Class rdf:about="#elderly" />
</owl:intersection0f>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="#van_driver">
<rdfs:label>van driver</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#person" />
<owl:Restriction>
<owl:onProperty rdf:resource="#drives" />

113

114

<owl:someValuesFrom>
<owl:Class rdf:about="#van" />
</owl:someValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="#bicycle">
<rdfs:label>bicycle</rdfs:label>
<rdfs:comment>
</rdfs:comment>
<rdfs:subClass0f>
<owl:Class rdf:about="#vehicle" />
</rdfs:subClass0f>
</owl:Class>
<owl:0ObjectProperty rdf:about="#has_child">
<rdfs:comment>
</rdfs:comment>
<rdfs:label>has_child</rdfs:label>
</owl:0ObjectProperty>
<owl:ObjectProperty rdf:about="#has_pet">
<rdfs:comment>
</rdfs:comment>
<rdfs:label>has_pet</rdfs:label>
<rdfs:subProperty0f rdf:resource="#likes" />
<rdfs:domain>
<owl:Class rdf:about="#person" />
</rdfs:domain>
<rdfs:range>
<owl:Class rdf:about="#animal" />
</rdfs:range>
</owl:0ObjectProperty>
<owl:0bjectProperty rdf:about="#eats">
<rdfs:comment>
</rdfs:comment>
<rdfs:label>eats</rdfs:label>
<owl:inverseOf rdf:resource="#eaten_by" />
<rdfs:domain>
<owl:Class rdf:about="#animal" />
</rdfs:domain>
</owl:0ObjectProperty>
<owl:0ObjectProperty rdf:about="#works_for">
<rdfs:comment>
</rdfs:comment>

115

<rdfs:label>works_for</rdfs:label>
</owl:0bjectProperty>
<owl:ObjectProperty rdf:about="#has_father">
<rdfs:comment>
</rdfs:comment>
<rdfs:label>has_father</rdfs:label>
<rdfs:subProperty0f rdf:resource="#has_parent" />
<rdfs:range>
<owl:Class rdf:about="#man" />
</rdfs:range>
</owl:0bjectProperty>
<owl:0ObjectProperty rdf:about="#has_mother">
<rdfs:comment>
</rdfs:comment>
<rdfs:label>has_mother</rdfs:label>
<rdfs:subProperty0f rdf:resource="#has_parent" />
<rdfs:range>
<owl:Class rdf:about="#woman" />
</rdfs:range>
</owl:0bjectProperty>
<owl:0ObjectProperty rdf:about="#has_parent">
<rdfs:comment>
</rdfs:comment>
<rdfs:label>has_parent</rdfs:label>
</owl:0ObjectProperty>
<owl:DatatypeProperty rdf:about="#service_number">
<rdfs:comment>
</rdfs:comment>
<rdfs:label>service_number</rdfs:label>
<rdfs:range rdf:resource="http://www.w3.0org/2001/XMLSchema#integer" />
</owl:DatatypeProperty>
<owl:0bjectProperty rdf:about="#eaten_by">
<rdfs:comment>
</rdfs:comment>
<rdfs:label>eaten_by</rdfs:label>
</owl:0bjectProperty>
<owl:ObjectProperty rdf:about="#drives">
<rdfs:comment>
</rdfs:comment>
<rdfs:label>drives</rdfs:label>
</owl:0bjectProperty>
<owl:0ObjectProperty rdf:about="#likes">
<rdfs:comment>
</rdfs:comment>
<rdfs:label>likes</rdfs:label>

116

</owl:0bjectProperty>
<owl:ObjectProperty rdf:about="#reads">
<rdfs:comment>
</rdfs:comment>
<rdfs:label>reads</rdfs:label>
<rdfs:range>
<owl:Class rdf:about="#publication" />
</rdfs:range>
</owl:0ObjectProperty>
<owl:0ObjectProperty rdf:about="#part_of'">
<rdfs:comment>
</rdfs:comment>
<rdfs:label>part_of</rdfs:label>
</owl:0bjectProperty>
<owl:0ObjectProperty rdf:about="#has_part">
<rdfs:comment>
</rdfs:comment>
<rdfs:label>has_part</rdfs:label>
<owl:inverse0f rdf:resource="#part_of" />
</owl:0bjectProperty>
<owl:0bjectProperty rdf:about="#is_pet_of">
<rdfs:comment>
</rdfs:comment>
<rdfs:label>is_pet_of</rdfs:label>
<owl:inverseOf rdf:resource="#has_pet" />
</owl:0bjectProperty>
<owl:Class rdf:about="#white_van_man">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="#reads" />
<owl:allValuesFrom>
<owl:Class rdf:about="#tabloid" />
</owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#driver">
<rdfs:subClass0f>
<owl:Class rdf:about="#adult" />
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#o0ld_lady">
<rdfs:subClass0f>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">

117

<owl:Restriction>
<owl:onProperty rdf:resource="#has._pet" />
<owl:allValuesFrom>
<owl:Class rdf:about="#cat" />
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#has_pet" />
<owl:someValuesFrom>
<owl:Class rdf:about="#animal" />
</owl:someValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#dog">
<owl:disjointWith>
<owl:Class rdf:about="#cat" />
</owl:disjointWith>
</owl:Class>
<owl:Class rdf:about="#broadsheet">
<owl:disjointWith>
<owl:Class rdf:about="#tabloid" />
</owl:disjointWith>
</owl:Class>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#animal" />
<owl:Restriction>
<owl:onProperty rdf:resource="#part_of" />
<owl:someValuesFrom>
<owl:Class rdf:about="#animal" />
</owl:someValuesFrom>
</owl:Restriction>
</owl:unionOf>
<owl:disjointWith>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#plant" />
<owl:Restriction>
<owl:onProperty rdf:resource="#part_of" />
<owl:someValuesFrom>
<owl:Class rdf:about="#plant" />
</owl:someValuesFrom>

118

</owl:Restriction>

</owl:unionOf>

</owl:Class>

</owl:disjointWith>

</owl:Class>
<owl:Class rdf:about="#adult">
<owl:disjointWith>

<owl:Class rdf:about="#young" />

</owl:disjointWith>

</owl:Class>
<rdf:Description rdf:about="#The_Times">
<rdfs:comment>

</rdfs:comment>

<rdfs:label>The Times</rdfs:label>
<rdf:type>

<owl:Class rdf:about="#broadsheet" />

</rdf:type>

</rdf :Description>
<rdf:Description rdf:about="#The_Sun">
<rdfs:comment>

</rdfs:comment>

<rdfs:label>The Sun</rdfs:label>
<rdf:type>

<owl:Class rdf:about="#tabloid" />

</rdf :type>

</rdf:Description>
<owl:Thing rdf:about="#Daily_Mirror">
<rdfs:comment>

</rdfs:comment>

<rdfs:label>Daily Mirror</rdfs:label>

<rdf:type rdf:resource="http://www.w3.0rg/2002/07/owl#Thing" />

</owl:Thing>
<rdf:Description rdf:about="#Q123_ABC">
<rdfs:comment>

</rdfs:comment>

<rdfs:label>Q123 ABC</rdfs:label>
<rdf:type>

<owl:Class rdf:about="#van" />

</rdf:type>
<rdf:type>

<owl:Class rdf:about="#white_thing" />

</rdf:type>

</rdf :Description>
<rdf:Description rdf:about="#Joe">
<rdfs:comment>

119

</rdfs:comment>
<rdfs:label>Joe</rdfs:label>
<rdf:type>
<owl:Class rdf:about="#person" />
</rdf:type>
<rdf:type>
<owl:Restriction>
<owl:onProperty rdf:resource="#has_pet" />
<owl:maxCardinality
rdf:datatype="http://www.w3.0rg/2001/XMLSchema#nonNegativeIlnteger">1
</owl:maxCardinality>
</owl:Restriction>
</rdf:type>
<ns0:has_pet rdf:resource="#Fido" />
</rdf:Description>
<rdf:Description rdf:about="#Rex">
<rdfs:comment>
</rdfs:comment>
<rdfs:label>Rex</rdfs:label>
<rdf:type>
<owl:Class rdf:about="#dog" />
</rdf:type>
<ns0:is_pet_of rdf:resource="#Mick" />
</rdf:Description>
<owl:Thing rdf:about="#Tom">
<rdfs:comment>
</rdfs:comment>
<rdfs:label>Tom</rdfs:label>
<rdf:type rdf:resource="http://www.w3.0rg/2002/07/owl#Thing" />
</owl:Thing>
<rdf:Description rdf:about="#Flossie">
<rdfs:comment>
</rdfs:comment>
<rdfs:label>Flossie</rdfs:label>
<rdf:type>
<owl:Class rdf:about="#cow" />
</rdf:type>
</rdf :Description>
<rdf:Description rdf:about="#Fido">
<rdfs:comment>
</rdfs:comment>
<rdfs:label>Fido</rdfs:label>
<rdf:type>
<owl:Class rdf:about="#dog" />
</rdf:type>

120

</rdf:Description>
<rdf:Description rdf:about="#Fred">
<rdfs:comment>
</rdfs:comment>
<rdfs:label>Fred</rdfs:label>
<rdf:type>
<owl:Class rdf:about="#person” />
</rdf:type>
<nsO:has_pet rdf:resource="#Tibbs" />
</rdf:Description>
<rdf:Description rdf:about="#Huey">
<rdfs:comment>
</rdfs:comment>
<rdfs:label>Huey</rdfs:label>
<rdf:type>
<owl:Class rdf:about="#duck" />
</rdf:type>
</rdf:Description>
<rdf:Description rdf:about="#Mick">
<rdfs:comment>
</rdfs:comment>
<rdfs:label>Mick</rdfs:label>
<rdf:type>
<owl:Class rdf:about="#male" />
</rdf :type>
<ns0:drives rdf:resource="#Q123_ABC" />
<nsO:reads rdf:resource="#Daily_Mirror" />
</rdf:Description>
<rdf:Description rdf:about="#Walt">
<rdfs:comment>
</rdfs:comment>
<rdfs:label>Walt</rdfs:label>
<rdf:type>
<owl:Class rdf:about="#person" />
</rdf :type>
<nsO:has_pet rdf:resource="#Huey" />
<nsO:has_pet rdf:resource="#Dewey" />
<nsO:has_pet rdf:resource="#Louie" />
</rdf:Description>
<rdf:Description rdf:about="#The_Guardian">
<rdfs:comment>
</rdfs:comment>
<rdfs:label>The Guardian</rdfs:label>
<rdf:type>
<owl:Class rdf:about="#broadsheet" />

</rdf:type>

</rdf :Description>
<rdf:Description rdf:about="#Fluffy">
<rdfs:comment>

</rdfs:comment>

<rdfs:label>Fluffy</rdfs:label>
<rdf:type>

<owl:Class rdf:about="#tiger" />

</rdf:type>

</rdf:Description>
<rdf:Description rdf:about="#Minnie">
<rdfs:comment>

</rdfs:comment>

<rdfs:label>Minnie</rdfs:label>
<rdf:type>

<owl:Class rdf:about="#elderly" />

</rdf:type>
<rdf:type>

<owl:Class rdf:about="#female" />

</rdf:type>

<ns0:has_pet rdf:resource="#Tom" />

</rdf :Description>
<rdf:Description rdf:about="#Dewey">
<rdfs:comment>

</rdfs:comment>

<rdfs:label>Dewey</rdfs:label>
<rdf:type>

<owl:Class rdf:about="#duck" />

</rdf:type>

</rdf:Description>
<rdf:Description rdf:about="#Kevin">
<rdfs:comment>

</rdfs:comment>

<rdfs:label>Kevin</rdfs:label>
<rdf:type>

<owl:Class rdf:about="#person" />

</rdf:type>

</rdf:Description>
<rdf:Description rdf:about="#Louie">
<rdfs:comment>

</rdfs:comment>

<rdfs:label>Louie</rdfs:label>
<rdf:type>

<owl:Class rdf:about="#duck" />

</rdf:type>

121

</rdf:Description>
<rdf:Description rdf:about="#Thed2">
<rdfs:comment>

</rdfs:comment>

<rdfs:label>The42</rdfs:label>
<rdf:type>

<owl:Class rdf:about="#bus" />

</rdf:type>

<ns0:service_number

rdf:datatype="http://www.w3.0rg/2001/XMLSchema#integer">42

</ns0:service_number>

</rdf :Description>
<rdf:Description rdf:about="#Tibbs">
<rdfs:comment>

</rdfs:comment>

<rdfs:1abel>Tibbs</rdfs:label>
<rdf:type>

<owl:Class rdf:about="#cat" />

</rdf:type>

</rdf:Description>

</rdf :RDF>

A.2 TBox and ABox

122

(3!:elderly)

(#1:adult)

(#1:0nimol)

A(#i0le lady)
(g! :pus_dr(ver)

(#1:pet)
(#iztiger)
(#icom)
(®!:vegetarion) (#i:giroffe)
(#1:sheen)

(#i:50re)

. is%
(*top* ton) {#!:vroin)

(&1 :compony)
(2!:female)
{#i:hauloge_worker)
(#1:1e0f) /
(8!:mole)

(#1:pulication)
(3]

(%1

(#1:vehicle)

(!
(21:white_thirg)
(t!:ynung)'

. (a!:;mss)
(#1:plant <(=2 itree)

(#t:mogozine)

(#% :rewspaper) <
:bicycle)

1bus)

tcor)

torry)

truck)

von)

(#) :brosésheet) ~——(2!:quolity_broocshaet)
(21 :tobloie) ——(#i:red_top)

Figure A.1: TBox graph of the People-pets.owl ontology

123

124

®t:Dotly Mirror
: " (:BACR-TO #1:Dewey)
(a1:likes 21:hos _pet)
=t Tikes #2:has_pet)™ #iiMuey _ (#1:ts_pet of)55 (:BACK-TO #1:Walt)
—— -
(3::likes #!:has_pet) (#1:is_pet_of)
2lovte

#iDewey _(#2:s_pet_of)™ #1:Wolt

“#1:Fico __(S!:is.pet.or)’!! tloe __(st:likes #1:ras_pet)™ (:BACK-TO #1:Fide)

#1:Flasste
1 Fluffy
#ieFreg _ (#1:likes 23 :hos_pet)™ #1:Tibbs (& {spet_of) (:BACK-TO #!:Fred)

(IBACK-TO ®L:ihuey)
(3t:1ikes #1:hos pet)
SCF T ikes #1:hos_pet)™ 1 :Dewey ‘(S!:is_pet;gf}’(:mx-TG #1:%0lt)

(#1:likes #!:hos.oet) (8115 pet of)
#!:Lovie

‘siittuey _(#1:is_pet_of)™ #1:¥alt

#1:30¢ (2ltkes #1:hos_pet)™ #1:Fico__(#2:1s pet_of)™ (:BACK-TD #i:oe)

2ikevie
¥ (:BALK-TO #1:louie)
/ (31:1ikes #1:has_pet)
#1iLoute _#1:is_pet_afy™ o1 Wate <CTL ikes #1thos_pet)™ 2! :Demey (8124 oet o3P (:BAK-TO 31:M01e)
: (#1:Tikes #1:kos_pet) (21215 _pet_of)

#1:Huey

P85 :Doily Mirror
H (#i:rengs)
#{1MLck (3::drivesy " #1:Q123_ABC
: (#::likes »iibas_pet)

T znimes __(#5:1s_pet of)™ (:BACK-TO #1:MLck)

(a)

#1:Mireie _(#1:likes #2 :ros_pet)’#!:\'om___(#é sis_pet_of)” C:BACK-TC 3!:Minnie)

#1:Q123_ABC

_ ¥ (BACK-TO 21 :Rex)
(#!:likes #1:has_pet)
#1:Rex __(#1:is_pet_of)™ #1:iMick {#1zreads)y— " #!:Daily Mirror
(#:drives)
#1:Q123.ABC

#1:Thed2

#1:The_Gusreion

#1:The_Sun

#1:The_Times

#1:Tibbs _(#1:1s_oet_of)" #1:fred_ (#1:likes #!:has_oet)™ (:BACK-TO #1:Tibbs)

#1:Tom__(ai:is_pet_of)” #L:Minnie (#i:likes #1 :hos_pet)™ C:BACK-TO #!:Tom)

#1:Dewey _(#1:1s_pet_of)P (:BACK-TO #1:Wolt)
. -
(#i:likes #i:hos_pet) (#1:1s_pet.of)
FLIMALETS(21Tikes #2iP0S_pet)e #1:Hue filspet.of)
CRiilikes #fihas_petd Y

o B shoute]

(b)

Figure A.2: ABox graphs of the People-pets.owl ontology

