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Abstract 
Position-Based Routing Algorithms for Three-Dimensional Ad Hoc 

Networks 

Alaa Eddien Awad Abdallah, Ph.D. 

Concordia University, 2009 

In position-based routing algorithms, the nodes use the geographical information to 

make routing decisions. Recent research in this field addresses such routing algorithms 

in two-dimensional (2D) space. However, in real applications, the nodes may be 

distributed in three-dimensional (3D) space. Transition from 2D to 3D is not always 

easy, since many problems in 3D are significantly harder than their 2D counterparts. 

This dissertation focuses on providing a reliable and efficient position-based rout­

ing algorithms with the associated pre-processing algorithms for various 3D ad hoc 

networks. 

In the first part of this thesis, we propose a generalization of the Yao graph where 

the cones used are adaptively centered on the nearest set of neighbors for each node, 

thus creating a directed or undirected spanning subgraph of a given unit disk graph 

(UDG). We show that these locally constructed spanning subgraphs are strongly 

connected, have bounded out-degree, are ^-spanners with bounded stretch factor, 

contain the Euclidean minimum spanning tree as a subgraph, and are orientation-

invariant. Then we propose the first local, constant time algorithm that constructs 

an independent dominating set and connected dominating set of a Unit Disk Graph 

in a 3D environment. We present a truncated octahedral tiling system of the space 

to assign to each node a class number depending on the position of the node within 

the tiling system. Then, based on the tiling system, we present our local algorithms 

for constructing the dominating sets. The new algorithms have a constant time 

complexity and have approximation bounds that are completely independent of the 

size of the network. 
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In the second part of this thesis, we implement 3D versions of many current 2D 

position-based routing algorithms in addition to creating many new algorithms that 

are specially designed for a 3D environment. We show experimentally that these new 

routing algorithms can achieve nearly guaranteed delivery while discovering routes 

significantly closer in length to a shortest path. Because many existing position-based 

routing algorithms for ad hoc and sensor networks use the maximum transmission 

power of the nodes to discover neighbors, which is a very power-consuming process. 

We propose several localized power-aware 3D position-based routing algorithms that 

increase the lifetime of a network by maximizing the average lifetime of its nodes. 

These new algorithms use the idea of replacing the constant transmission power of a 

node with an adjusted transmission power during two stages. The simulation results 

show a significant improvement in the overall network lifetime over the current power-

aware routing algorithms. 
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Chapter 1 

Introduction 

Wireless networks have become increasingly popular in the computer industry. This 

is particularly true within the past decade, which has seen wireless networks being 

adapted to enable mobility. There are currently two variations of wireless networks. 

The first are known as infrastructure networks, e.g., those networks with fixed trans­

mitters, known as base stations. A mobile unit within these networks connects to, 

and communicates with, the nearest base station that is within its communication 

radius. As the mobile unit travels out of range of one base station and into the range 

of another, a "handoff" occurs from the old base station to the new, and the mobile 

unit is able to continue communication throughout the network. The second type of 

wireless network are Mobile Ad Hoc Networks (MANETs). A MANET consists of a 

collection of wireless mobile hosts that can communicate with each other without a 

fixed infrastructure. The term ad hoc networks can be applied to any network where 

there is no communication infrastructure or the existing infrastructure is expensive 

or inconvenient to use. Ad hoc networking allows the devices to maintain connections 

to the network as well as add and remove devices to and from the network with ease. 

MANETs have the following unique properties: 

• There is no centralized authority for network control, routing or administration. 

The control and management of the network must be distributed among the 
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mobile nodes. 

• Network devices, including routers, are free to move rapidly and arbitrarily in 

time and space. 

• All communication, such as user data and control information, is carried out 

over the wireless medium. There are no wired communication links. This 

wireless medium is subject to noise, fading and interference. 

• Resources, including energy, bandwidth, processing capacity and memory, that 

are relatively abundant in wired environments, are typically strictly limited and 

must be preserved. 

• Each mobile may function as both a host and a router. In other words, besides 

the basic processing ability to originate and receive data transmissions as a 

host, the mobile nodes must also perform routing functions. Usually the mobile 

nodes and routers are indistinguishable in a MANET. 

The set of applications for MANETs include military tactical networks, battle­

fields, radar networks, conferences and other similar cases. MANETs can also be used 

to provide crisis management service applications, such as in disaster recovery, where 

the communication infrastructure is damaged and restoring communication quickly 

is crucial. In addition to the set of emergency applications, there is a group of pos­

sible everyday implementations. For example, Bluetooth, an industrial specification 

for wireless personal area networks (PANs), is designed to support a personal area 

network by eliminating the need of wires between various devices, such as printers 

and personal digital assistants. 

Wireless Sensor Networks are a special class of ad hoc networks. Their particu­

larities are that the topology is usually fixed, but the size and power of the nodes 

are restrictive. Sensor networks are composed of a large number of sensor nodes that 

are positioned within a limited and defined geographical area [10]. Their applications 
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may include 

• wireless military sensor networks (to detect and gain information about enemy 

movements, explosions and other phenomena of interest) 

• wireless sensor networks to monitor environmental changes in plains, forests, 

oceans, etc. 

• sensor networks to detect and characterize chemical, biological, radiological, 

nuclear, and Explosive (CBRNE) attacks and material 

• wireless traffic sensor networks to monitor vehicle traffic on highways or in 

congested parts of a city 

• wireless surveillance sensor networks for providing security in shopping malls, 

parking garages and other facilities. 

Akyildiz et al. [10] present the following differences between sensor networks and 

ad hoc networks. First, the number of sensor nodes in a sensor network can be several 

orders of magnitude higher than the nodes in an ad hoc network. Second, sensor nodes 

mainly use a broadcast communication paradigm, whereas most ad hoc networks are 

based on point-to-point communications. Third, sensor nodes are limited in power, 

computational capacities and memory, while ad hoc network nodes may have bigger 

batteries that can be recharged at any time. Also, some ad hoc network nodes have 

more powerful processors than sensor network nodes. 

1.1 The Problem of Routing in Ad Hoc Networks 

Two nodes can communicate in a bidirectional manner if and only if the distance 

between them is at most the minimum of their transmission ranges. If one node 

wishes to communicate with another node outside its transmission range, multi-hop 

routing is used utilizing intermediate communicating nodes. Since mobile ad hoc 



networks may change their topology frequently and without notice, routing in such 

networks is a challenging problem. 

The routing algorithms are required to route data packets effectively and effi­

ciently to the mobile destination in order to support different types of multimedia 

applications. Therefore, the design of routing algorithms for MANETs should con­

sider the following factors, which add more difficulties and complexities to routing 

protocol design [101]: 

• Localization: The routing algorithm is called local if each node of the network 

makes decisions based on the information obtained uniquely from the nodes 

located no more than a constant number of hops (usually 1) from it. The 

algorithm is considered global if the node makes its decisions potentially based 

on the information of every other node in the network. Local routing algorithms 

are certainly preferable if they can approximately match the performance of 

global routing algorithms. 

• Delivery Rate: The delivery rate is the ratio of the number of messages 

received by the destinations to the number sent by senders. The primary goal 

of every routing scheme is to deliver a message, so a practical objective while 

designing routing algorithms is to guarantee message delivery. 

• Shortest Path: One of the objectives of routing algorithms is to deliver a 

message with a path length close to minimum. If all nodes have the same fixed 

transmission power, then routing schemes may use hop count as a metric for the 

path length, where hop count is the number of transmissions on a route from a 

source to a destination. However, if nodes can adjust their transmission power 

(knowing the location of their neighbors), the constant per hop metric can be 

replaced by a power metric that depends on distance between nodes. 

• Power Awareness: Since the wireless hosts that we are modeling are com­

monly powered by a limited power supply like a battery, energy efficiency needs 
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to be an important design consideration in any routing algorithm. 

• Memorization: Routing algorithms that require nodes to memorize the path 

routes are sensitive to node memory size. If the network size increases, the 

average path length increases. This results in the need to expand the size of 

the memory for mobile nodes. Thus it is better to avoid memorizing the past 

routes at any node during the routing process. 

• Scalability: Because of the multi-hop nature of ad hoc networks, the scalability 

is directly related to the routing protocol. Thus the performance of the well-

designed routing algorithm should adapt well to large-scale ad hoc networks 

[77]. In general, if the algorithms are local, memoryless and energy efficient, 

they are usually scalable. 

• Preprocessing: Many routing algorithms require the nodes to do some pre­

processing algorithms (e.g. compute a sub graph of UDG) before they actually 

route the packets. Thus it is important to minimize the preprocessing require­

ments at any node during the routing process. 

1.2 Motivation and Research Focus 

Position-based routing algorithms use the position information of nodes to forward 

the packet in the geographical direction of the destination. In this type of routing, 

the node forwards the message based on the position of the node itself, the position of 

the destination and the position of the nodes with which it can communicate directly. 

The main motivation behind investigating position-based routing is to make wireless 

ad hoc networks more efficient. Recent research in position-based routing usually 

addresses such routing algorithms in two-dimensional (2D) networks [76, 85, 102, 104], 

However, in real applications, nodes may be distributed in three-dimensional (3D) 

space. For example, underwater networks that perform ocean column monitoring 
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would require nodes to be positioned at different depths in the water, creating a 3D 

network [9, 38]. 

Recently, Durocher et al. [38] show that there can be no local position-based 

routing algorithm that guarantees delivery in 3D space if the thickness of one of 

three dimensions is more than r/\/2, where r is the transmission range. 

To solve the routing problem, nodes in the network execute distributed rout­

ing protocols. A routing protocol may be defined as being comprised of two parts 

[15, 43]: (i) a pre-processing algorithm. Given the initial connection graph G, the 

pre-processing algorithm is in charge of creating whatever information is necessary to 

improve the performance of the routing algorithm (e.g., the dominating set or sub­

graph of G). And (ii) the routing algorithm, e.g., a distributed algorithm running at 

each node, which is mainly responsible for determining, for every packet entering the 

node, the neighbor node to which the message has to be forwarded. In this thesis, we 

focus on the two parts of routing protocols. 

1.3 Thesis Contributions 

Our goals in this thesis are to utilize 3D position information (of any thickness) to 

provide more efficient and reliable position-based routing algorithms for various 3D 

scenarios such as urban rescue, city landscape, hilly terrain, airborne and ocean sensor 

networks. Our contributions below are mentioned in the order of their appearance in 

the body of the thesis. 

1.3.1 Pre-processing Algorithms 

First, since many routing strategies use a subgraph of the unit disk graph such that 

only the edges in the subgraph are used for routing, we introduce a generalization of 

the Yao graph [39] where the cones used are adaptively centered on the nearest set of 

neighbors for each node, thus creating a directed or undirected spanning subgraph of 
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a given unit disk graph (UDG). We show that these locally constructed spanning sub­

graphs are strongly connected, have bounded out-degree, are t-spanners with bounded 

stretch factor, contain the Euclidean minimum spanning tree as a subgraph, and are 

orientation-invariant. 

Second, there is currently a growing interest in the research and development of the 

dominating set or connected dominating set in MANET or wireless sensor network, 

where several routing algorithms use a dominating set of the nodes for routing. We use 

the node position information to propose the first local, constant time algorithm that 

constructs an independent dominating set and connected dominating set of a Unit 

Disk Graph in a 3D environment [5] (also called unit ball graph [38]). We present a 

truncated octahedral tiling system of the space to assign to each node a class number 

depending on the position of the node within the tiling system. Then, based on the 

tiling system, we present our local algorithms for constructing the dominating sets. 

The new algorithms have a constant time complexity and have approximation bounds 

that are completely independent of the size of the network. 

1.3.2 Routing Algorithms 

First, we created several new 3D position-based routing algorithms, [1, 2, 3, 84]. 

The coordinate face routing, CFace, is a heuristic that is based on 2D Face routing 

[27, 67] by adapting the algorithm to 3D environment. AB3D is an extension of 

some randomized routing algorithms from 2D to 3D space. ABLAR is a restricted 

directional flooding-based algorithm that chooses rn neighbors in the direction of the 

destination according to a space-partition heuristic and forwards the message to all 

these nodes. T-ABLAR-T is a group of routing algorithms that combine some 3D 

deterministic progress-based routing algorithms with restricted directional flooding-

based algorithms. AB3D-ABLAR is a group of algorithms that combine the random­

ized routing algorithms (AB3D) with restricted directional flooding-based algorithms. 

AB3D-CFace(l)-AB3D and AB3D-CFace(3) are groups of algorithms that combine 
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the randomized AB3D routing algorithms with a deterministic CFace algorithm. All 

the new algorithms are evaluated and compared with current routing algorithms. 

The simulation results on unit disk graphs (UDG) show a significant improvement in 

delivery rates (up to 99%) and a large reduction of the traffic or path dilation. 

Second, most of the existing position-based routing algorithms for ad hoc and 

sensor networks use the maximum transmission power of the nodes to discover neigh­

bors, which is a very power-consuming process. We propose several local power-aware 

3D position-based routing algorithms [4, 6] that increase the lifetime of a network by 

maximizing the average lifetime of its nodes. These new algorithms use the idea of 

replacing the constant transmission power of a node with an adjusted transmission 

power during two stages: first, a lower power while discovering the neighboring nodes 

and second, if needed, a higher transmission power during the routing process. We 

evaluate our algorithms and compare their power savings with the current power-

aware routing algorithms. The simulation results show a significant improvement in 

the overall network lifetime. 

The rest of the thesis is organized as follows. Chapter 2 contains a brief review of 

essential concepts and definitions which we will refer to throughout the thesis. It also 

contains a survey of the current routing algorithms with an emphasis on the related 

position-based routing algorithms. Chapter 3 introduces our new geometric subgraph, 

which is called Displaced Apex Adaptive Yao Graphs, to model a MANET. Chapter 4 

presents our new algorithm for constructing dominating sets in the 3D environment. 

Chapters 5 and 6 present several new position-based routing algorithms that are 

specially designed for 3D environment. Chapter 7 presents three groups of power-

aware position-based routing algorithms for the 3D MANETs. Finally, we conclude 

the thesis in Chapter 8. 
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Chapter 2 

Definitions and Background 

2.1 MANETs Model and Notation 

A graph G = (V, E) consist of a finite set V = v\,V2,...,vn whose elements are called 

vertices and a subset E of the Cartesian product V x V, the elements of which are 

called edges. We will use the following conventions for notation: For node u, the set 

of its neighbors is denoted by N(u). Let N2(u) and N3(u) to be the set of nodes that 

are 2 and 3 hops away from u respectively. A path from the node s to the node d is 

a sequence of nodes s = vi,V2,...,Vk = d, such that i>j and vl+i are neighbors, where 

1 < i < k- 1. 

A subset V of V is called dominating if every vertex from V — V is adjacent 

to some node in V. A minimal dominating set of V, denoted by MINL-DS, is a 

dominating set of V such that no subset has this property. A dominating set is called 

a connected dominating set (CDS) if the subgraph P(G) induced by V is connected. 

The smallest subset of vertices that is both connected and dominating is called a 

minimum connected dominating set (MIN-CDS). A subset of vertices in a graph G is 

an independent set if no two vertices are connected by an edge. An independent set 

is maximal (MIS) if it cannot be extended by the addition of any other vertex from 

the graph without violating the independence property [59]. 
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A geometric graph is a graph G = (V, E) such that the vertices are geometric ob­

jects in Rd, where d is the dimension, and the edges are geometric objects connecting 

pairs of vertices. 

Let dist(u,v), which will be denoted occasionally by \uv\, be the Euclidean dis­

tance between the nodes u and v. dist(u,v) is defined as follows: 

dist{u,v) = \J(ux - vx)
2 + (uy - vy)

2 + (uz - vz)
2. (1) 

A Unit Disk Graph (UDG) is a specific type of geometric graph usually used to 

model MANETs, an edge exists between two vertices (nodes) u and v if and only 

if the Euclidean distance between between u and v is at most 1. In the context of 

ad hoc networks, the vertices in the UDG represent network nodes. An edge exists 

between two nodes if the Euclidean distance between the two nodes is less than or 

equal to a node's transmission range r [75]. Here it is assumed that all nodes have 

transmission range equal to r, which is represented as a circle of radius r in 2D and 

a sphere volume of radius r in 3D. 

Clearly, this is a simplification of reality, since, even if all network nodes are 

homogeneous, this model does not account for the presence of obstacles, such as walls, 

buildings, mountains or weather conditions, which might obstruct signal propagation. 

Barriere et at. [19] have studied a graph model that is considerably closer to reality, 

proposing a generalization of the unit disk graph by considering the transmission 

range of the mobile host, which varies between (1 — e)r and r, where e > 0. 

2.2 Geometric Subgraphs 

Although creating economical routing schemes is very important, ensuring good per­

formance is not less important. Many routing strategies [27, 40, 67] use a subgraph 

of the UDG such that only the edges in the subgraph are used for routing. Therefore, 

much research effort has gone into the development of algorithms for subgraphs of 
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UDG in ad hoc networks (see [116, 82, 92] for surveys). An example of an UDG and 

related subgraphs is given in Figure 20. 

Since the wireless hosts that we are modeling are commonly powered by a limited 

power supply like a battery and contain a limited amount of memory, may be mobile 

and the topology of the whole network is usually not available and may be variable, 

local algorithms are typically preferred. These algorithms are designed to achieve 

various objectives such as: 

• Locality [36, 5]: A distributed algorithm is called local if each node of the 

network only uses information obtained uniquely from the nodes located no 

more than a constant (independent of the size of the network) number of hops 

from it. Thus, during the algorithm, no node is ever aware of the existence of 

the nodes of the network further away than this constant number of hops. 

• Low stretch factor [79, 80]: A subgraph of G, P(G), is called a t-spanner of 

G if the length of the shortest path between any two nodes in P(G) is not more 

than t times longer than the shortest path connecting them in G. The length 

of the path is the sum of the lengths of the edges along the path, t is known 

as the stretch factor. Typically the aim is to find a spanner with as small t as 

possible, because shorter paths will be available in the subgraph, t-spanners is 

known to be a power-efficient strategy [79, 80]. 

• Geometric Planarity [23, 107]: A graph is called planar if the straight edges 

between the neighboring nodes do not intersect. 

• Low weight [81]: A subgraph is called low weight if its total edge length is 

within a constant factor of the total edge length of the Euclidean minimum span­

ning tree (EMST). For a geometric graph G, a Euclidean minimum spanning 

tree EMST(G) is a minimum weight spanning tree of G. 

• Bounded degree [92, 108]: We define a degree m bounded subgraph to be a 
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subgraph having no vertices of degree larger than m. 

• Or ien ta t ion- invar ian t [39]: If UDG is rotated by an angle, and the calculated 

subgraph is the same all the time, then the subgraph is orientation-invariant. 

In the following we present some of the best-known geometric spanning subgraphs 

of UDGs that are commonly used in position-based routing algorithms. 

2.2.1 Gabriel Graph 

Let Disk(u,v) be defined as the circle centered at the midpoint between the points 

u and v with a diameter \uv\. Then the Gabriel graph [45], denoted as GG(G), is 

defined as follows: Given any two adjacent nodes u,v in G, the edge uv belongs to 

GG(G) if, and only if, no other node w G G is located in Disk(u, v). See Figure 1(a). 

Bose et al. [24] prove that GG(G) is connected, planar and a (47T\/2n — 4/3)-spanner 

of G. A 3D definition of GG is straightforward and given in [64]. 

2.2.2 Relative Neighborhood Graph 

Consider the lune(u, v) as the interior and the boundary of the region formed by the 

intersection of two disks of radius r, one of the disks being centered at u and the other 

at v. Figure 1(b) shows the lune of the two points u,v. The Relative Neighborhood 

Graph of G [60], denoted RNG(G), is defined as follows: Given any two adjacent 

nodes u, v in G, the edge uv belongs to GG(G) if, and only if, no other node w G G 

is located in lune(u,v). In other words, an edge uv G RNG(G) if, and only if, there 

is no node w such that (u,w) < (u,v) and(v,w) < (u,v). It is proved that RNG(G) 

is connected, planar, and a (n — l)-spanner of G. A 3D definition for this graph is 

given in [2, 64, 105]. 

12 



2.2.3 Yao Graph 

For a geometric graph G, a Yao Graph (also called a Theta Graph [25]) YGk(G) with 

an integer parameter k > 6 is defined as follows [113]. First, we will define a directed 

Yao graph, YGk(G), for G. At each node u in G, k equally-separated rays originating 

at u define k cones, as seen in Figure 1(c). In each cone, only the directed edge uv 

to the nearest neighbor v, if any, is part of YGk{G). Ties are broken arbitrarily. 

Let YGk{G) be the undirected graph obtained if the direction of each edge in 

YGk(G) is ignored, yielding a subgraph that may have crossing edges if G is a UDG. 

The graph YGk{G) is a 1/(1 — 2sm(7r//c))-spanner of G [69, 80], has an out-degree 

of at most k, and contains the EMST(G) as a subgraph [113]. One drawback of the 

YGk{G) graph is that it is not orientation-invariant. That is, if G is rotated by an 

angle to give G' then the resulting YGk{G') subgraph is not necessarily a rotation of 

YGk(G). 

i 

Figure 1: (a) the edge uv e GG(G) if there are no nodes in the shaded area; (b) the 
edge uv E RNG(G) if there are no nodes in the shaded area; (c) the sectors around 
a node u that are used by the Yao graph 

2.2.4 Half Space Proximal Graph 

For a geometric graph G, a Half Space Proximal Graph HSP(G) is defined as follows 

[31]. As with the Yao Graph, first a directed HSP(G) is defined. At each node u 
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in G, the following iterative procedure is performed until all the neighbors of u are 

either discarded or are connected with an edge. A directed edge uv is formed with 

the nearest neighbor v. An open half plane is denned by a line perpendicular to 

[u,v], intersecting [u,v] at its midway point and containing v. All the nodes in this 

half plane are then discarded. The procedure then continues with the next nearest 

non-discarded neighbor until all the nodes have been discarded. The selected directed 

edges determine the HSP(G). An illustration of the HSP(G) test applied to a node 

in a UDG is given in Figure 2, which is taken from [31]. 

The undirected HSP(G) is obtained by ignoring the direction of the edges, yielding 

a subgraph that may still have crossing edges. Among the properties shown in [31] 

for the HSP subgraph, it is strongly connected, has an out-degree of at most six, 

has a stretch factor of at most 2n + 1, contains the EMST(G) as its subgraph and is 

orientation-invariant. 

/'. A- ' .••''. A- ' ••* U 

1st neighbor 2nd neighbor 3rd neighbor 4th neighbor 

Figure 2: HSP(G) step-by-step for a node 

2.3 Dominating Sets 

One of the basic problems in a MANET is to broadcast messages in the network, 

where a message is sent from one node to all nodes in the network [98]. Broad­

casting has an unacceptable communication overhead, which leads to a waste of the 
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rare resources of wireless nodes. One effective way to decrease the communication 

overhead in broadcasting is to use a CDS as a virtual backbone of the nodes in the 

routing algorithms [13, 37, 110, 111]. In these routing algorithms, only nodes of the 

connected dominating set (dominators) act as routers; all other nodes communicate 

via a neighbor in the dominating set. Clearly, the efficiency of this approach depends 

largely on the process of finding the dominating sets and the size of the corresponding 

sub-networks [111]. Finding a MIN-CDS is NP-complete in general [35, 48, 55, 68]. 

Several algorithms have been previously proposed to construct an independent 

dominating set and a CDS for UDG, but none of these algorithms has the following 

3 characteristics: 

1. construction in a constant time (local according to the definition above) 

2. a constant approximation bound 

3. capable of working in a 3D environment 

2.3.1 Current Research for Determining Connected Domi­

nating Sets 

The problem of finding a dominating set is an area in graph theory with extensive 

research activity. In 1998, a book was published that listed 1200 papers in the area 

of domination [52]. As mentioned before, given a complete network topology, the 

problem of finding the minimum dominating sets and MIN-CDSs is known to be NP-

hard. In addition, due to the nature of MANETs, practical IDS and CDS construction 

protocols for MANETs need to be fully distributed in constant time. In the following, 

we will survey some of the related algorithms. 

The distributed protocols in [12, 13] by Alzoubi et al. construct the CDS in a 

linear time by expanding the maximal independent set. These protocols consist of two 

phases. In the first phase, an independent dominating set is constructed as follows: 
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n, n2 n3 n4 n5 nn 

O—•—O O—~~0~ O—~ ~~~0 
Figure 3: Worst-case example for [11, 12, 13] and many other algorithms 

If the node unique ID is minimum among its neighbors, it adds itself to the dominating 

set and removes all its neighbors from the consideration of the set members. This 

process is repeated at each node such that the resulting set is a maximal independent 

dominating set (MIS), which is also a (non-connected) dominating set. In the second 

phase, the nodes in the set use local topology information for a node, up to 3 hops 

away, to add gateway nodes to the set until the set becomes a CDS. The main 

disadvantage of this algorithm is construction time of the independent set, which can 

be proportional to the number of nodes; thus it is a non-local algorithm. Consider 

the example in Figure 3: let n\ < n^ < n^ < .... < nn , ri\ takes its decision at 

time 0, which will dominate n2', n^ has to wait until 712 to send a messages saying 

that it has been dominated (I am Dominated), and then it will make its decision; 

n4 has to wait for the results coming from n^, and so on. Thus nn has to wait until 

all the nodes in the network make their decisions, which makes the time complexity 

for this algorithm 0(n) in the worst-case scenario. This is not efficient in an ad hoc 

network environment. A similar algorithm was proposed by Baker et al. [17, 18]. In 

the example above and all our analysis in Chapter 4 we ignore the local computation 

time in the time complexity calculations. 

In [11], Alzoubi et al. propose an integration between the connected dominating 

set CDS and the local Delaunay graph to construct a geometric planar and spanner 

backbone of the wireless network. The distributed algorithm starts by constructing a 

CDS using a technique similar to those used by Alzoubi et al. [12, 13] or by Baker et 

al. [17, 18] as described above. The next step is to build the local Delaunay graph [79] 

on top of the constructed CDS. Alzoubi et al. [11] prove that the constructed graph 

is planar and has bounded degree. Because this algorithm uses the same idea as in 
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[12, 13] for implementing the IDS, which leads to the CDS, the worst-case example 

in Figure 3 is applicable to this algorithm too. Thus the time complexity is 0(n). 

The Greedy algorithm [34, 62, 99] for constructing a dominating set is a global 

algorithm where the run-time depends on the number of nodes. The Greedy algorithm 

picks a node that covers the biggest number of uncovered nodes and puts it into the 

dominating set; it repeats the same algorithm as long as there are uncovered nodes. 

In [83], Liang et al. propose an implementation of the Greedy algorithm in a 

distributed manner; the algorithm is called a Distributed Database Coverage Heuristic 

(DDCH) and can be summarized as follows: Each node u calculates its span, which 

is the number of uncovered nodes that u covers, and sends its span and id to all 

nodes within 2 hop neighbors; next, the node u adds itself to the dominating set if its 

ordered pair of span and id is higher than that of any node within 2 hop neighbors. 

The distributed time complexity of this algorithm is also linear in the number of 

nodes. See a worst-case example in [61]. A randomized version of DDCH, called a 

Local Randomized Greedy algorithm (LRG), has been proposed in [61]. This algorithm 

has O(lognlogA) time complexity, with A being the maximum node degree, and 

0(A) approximation ratio. In [47], another distributed randomized algorithm was 

proposed by Gao et al. that maintains the dominating sets for mobile nodes. It is 

shown that it has a constant approximation ratio with a high probability, but the 

constant approximation ratio is quite large. As with the other algorithms discussed 

before, a drawback is the time complexity that is 0(nlogn). 

For a class of general graphs, Kuhn et al. [72, 73, 74] have given approximation 

lower bounds for covering problems as a function of the size of the neighborhood 

through which each message may be propagated. They show that with k commu­

nication rounds, a dominating set cannot be approximated better than by a factor 

Q(n-^—) for some constant c > 1/4. 

None of the algorithms mentioned above has both a constant approximation bound 

and a constant worst-case time bound. One approach to achieve these bounds is 
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to use the underlying geographic information. The first algorithm to determine a 

dominating set in 2D within a constant approximation of the optimal dominating set 

in a constant time (which depend on the degree if we consider the local computation 

time) was proposed by Czyzowicz et al. [36]. Assuming that each node knows its 

geometric location in a plane, the algorithm starts by associating each node with a 

class number that depends on the position of the nodes within a regular hexagonal 

tiling of the plane. After the nodes determine their class number, they acquire the 

class numbers of all their neighbors. In each hexagon, the dominators are determined 

on the basis of unassigned neighbors with the minimum class number closest to the 

center of the hexagon (or some similar local heuristic) under consideration. Since 

this algorithm assumes that the nodes have a geometric location in two-dimensional 

space, it is not directly applicable for all wireless applications where the nodes may 

be located in three-dimensional space. 

2.4 Routing Protocol Quality 

There are several quantitative, independent metrics for judging the performance of 

MANETs routing protocols. Desirable quantitative properties include: 

• Path dilation: The spanning-ratio of a subgraph is only a bound to the per­

formance of a routing scheme. We still need to develop routing schemes that 

select paths that are close to the shortest path. The path dilation is used as 

an accurate measure of the quality of the routing scheme and is defined as the 

average ratio of the length of the path returned by the routing algorithm, even 

when routing on a subgraph, to the length of the shortest path in the UDG. 

• Routing traffic: If the algorithm uses some sort of flooding, then it should try 

not to employ a lot of nodes during the routing process because the more nodes 

participate in the routing process, the more overhead and collision may happen 

in the network; also, there is more of a chance for nodes to fail from running 
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out of batteries. Traffic is used as a measure here and is defined as follows: 

the average ratio of the number of nodes the packet visits during the routing 

process to the number of nodes in the shortest path in the UDG. 

• Network Survivability: Network survivability may be defined as the remaining 

power in the maximally used node, assuming each node starts off with the same 

power, during a set of consecutive routing messages. 

2.5 Classification of Routing Protocols 

Finding improved routing algorithms is a challenging problem for MANETs. Several 

routing protocols for ad hoc networks have been proposed to solve the multi-hop 

routing problem. Each is based on different assumptions and concepts. In general, 

Mauve et al. [85] classify the routing algorithms in MANETs as being of two basic 

types: topology-based [20, 28, 94, 95, 100] and position-based [19, 49, 85]. Figure 4 

shows our view of the general classification of ad hoc routing algorithms. 
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Algorithms 

Topology-Based Routing 
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Figure 4: Classification of routing algorithms 
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2.5.1 Topology-based Routing Protocols 

Topology-based routing protocols define an explicit route among nodes using the 

information about the links that exist in the network. Those protocols can be further 

divided into three main categories: proactive, reactive and hybrid protocols. 

Proactive Routing Protocols 

Proactive routing protocols use a periodic information exchange to maintain an un­

derstanding of the network topology. The whole network should, in theory, be known 

to all nodes. The advantage of a proactive protocol is that routes are readily available 

when one node wishes to send a message to another node. The destination sequence 

distance vector (DSDV) [90] routing protocol, the wireless routing protocol (WRP) 

[86] and the cluster-head gateway switch routing protocol (CGSR) [32] are all types 

of proactive routing protocols. R-DSDV [33] is an example of a randomized version 

of a proactive protocol. 

These protocols can suffer from a high volume of control packets overhead because 

of the need to distribute network topology and route path maintenance information 

even if a network path is unused. 

Reactive Routing Protocols 

Reactive protocols seek to set up routes on-demand. If a node wants to initiate 

communication with a node to which it has no route, the routing protocol will try to 

establish such a route. This means that it maintains only the routes that are currently 

in use. Reactive protocols typically use less bandwidth in terms of control packets 

to discover topology information, but even so, packets to discover new routes must 

sometimes be flooded through the network, which consumes immense bandwidth. The 

dynamic source routing protocol (DSR) [20, 63], and the ad hoc on demand distance 

vector routing protocol (AODV) [91] are some examples of reactive routing protocols. 
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Hybrid Routing Protocols 

Hybrid routing algorithms, such as the Zone Routing Protocol (ZRP) [50], integrate 

local proactive routing and global reactive routing to achieve a higher level of efficiency 

and scalability. However, route maintenance is still required. The border between 

local region and global region limits the distribution efficiency of information about 

network topology changes. 

Topology-based routing can usually find the shortest path, in terms of the number 

of hops, between a pair of nodes. However, it can be difficult for these routing 

methods to handle large ad hoc networks with many nodes or with frequently changing 

connectivity among nodes [57]. 

2.5.2 Position-based Routing 

Position-based routing [49, 85], or online routing [26], algorithms eliminate some of 

the limitations of topology-based routing by using geographical information about the 

mobile nodes to make decisions about routing packets. In general, a position-based 

routing algorithm has the following characteristics: 

• Each node in the network has the means to determine its coordinates. This can 

be obtained through a GPS receiver or another such mechanism [29, 66]. 

• Each node can find the position of a node with which it wishes to communi­

cate by making use of a location service [54, 78], receiving the position from a 

previous packet from that node or some other mechanism. 

• There is no need for nodes to store routing tables. Nodes maintain only the 

information about their neighbors at most a fixed number of hops (usually one 

hop) away. 

• A node in the network knows the positions of the nodes with which it can 

communicate directly, simply by using a periodical broadcast beacon containing 
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information such as node identifier and geographic coordinates. 

• The routing decision at each hop in the route can be made based on the locations 

of the current node, its neighbors and the destination node. 

Position-based routing scales to a large number of network nodes and is efficient 

when nodes move frequently. There are two main types of packet-forwarding strategies 

for position-based routing [85]: one-neighbor forwarding and restricted directional 

flooding. 

One-neighbor Forwarding 

With one-neighbor forwarding, the algorithm forwards the packet in every step 

to exactly one of its neighbors. We can consider three types of these algorithms: 

Deterministic progress-based, Randomized progress-based and Face-based routing al­

gorithms. 

Deterministic Progress-based Algorithms: 

With deterministic progress-based routing algorithms [42, 56, 71, 104, 106], the cur­

rent node (the node holding the packet) forwards the packet at every step to one of 

its neighbors that makes progress to the destination. These algorithms are known to 

fail in delivering the packet in certain situations that are called the local minimum 

phenomena, in which a packet may get stuck at a node that does not have a neighbor 

that makes a progress to the destination, even though the source and destination 

are connected in the network. The following algorithms belong to the progress-based 

strategy: 

• Greedy [42]: For this algorithm, the current node c forwards the packet to 

the neighbor node u that minimizes the remaining distance to the destination 

node d. See Figure 5(a). Formally, Gdy(c, N(c),d) = u € N(c) : dist{u,d) < 

dist(w,d) for all w € N(c). The same procedure is repeated until the destina­

tion node is reached. If the packet reaches a local minimum, then the algorithm 
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fails. Greedy routing is a loop-free algorithm. 

• Compass [71]: In this algorithm, the current node c forwards the packet to the 

neighbor node u that minimizes the angle Zucd, where d is the destination. See 

Figure 5(b). Formally, Cmp(c, N(c), d) = u E N(c) : Zucd < Zwcd for all w E 

N(c). If the packet reaches a local minimum, then the algorithm fails. It was 

proved in [103] that Compass routing is not a loop-free algorithm. 

• Ellipsoid algorithm[112]: In this algorithm, the current node c forwards the 

message to its neighbor node u that minimizes the summation of the distance 

from c node to u and the distance from u to the destination node d. See 

Figure 5(c). Formally, Elp(c,N(c),d) = u E N(c) : (dist(c,u) + dist(u,d)) < 

(dist(c, w) + dist(w, d)) for all w € N(c). The same procedure is repeated until 

the destination node is reached. If the packet reaches a local minimum, then 

the algorithm fails. 

• Most Forward Routing (M.FR) [106]: This algorithm maximizes the 

progress towards the destination by forwarding the packet to the neighboring 

nodes whose projection onto the line between the current node and the destina­

tion is closest to the destination. See Figure 5(d). Formally, MFR(c, N(c), d) = 

u € N(c) : dist(proj(u,cd),d) < dist(proj(w,cd),d) for all w E N(c), where 

proj(u,cd) is the projection of the node u on the line cd. Since MFR is a 

progress-based algorithm, it fails if the packet reaches a local minimum node. 

In most cases, MFR selects the same path as the Greedy algorithm. 

3D extensions for the previous deterministic progress-based algorithms: 

Purely deterministic progress-based algorithms can be considered in 3D with little 

modification. Kao et al. [64] and Nanda [87] propose the 3D extensions for the 

Greedy and Compass algorithms. Extensions for the Ellipsoid and Most Forwarding 

algorithms are provided in [64], 
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Figure 5: Various routing algorithms taken from [64] 

For further illustration of the operation of each of the above mentioned algorithms, 

consider the example given in Figure 6 where the source and the destination are s 

and d\, respectively. In this example, Greedy chooses a as the next node and the 

whole path is s,a,r,o,d\\ MFR chooses e as the next node and the whole path is 

s,e,o,d\\ and with Compass protocol s chooses b as the next node and the whole 

path is s,b,r,o,di. In the example in Figure 6, if the destination is changed to e^, 

all the above algorithms will fail to deliver the message. Greedy, MFR and Compass 

will reach the node w, which is a local minimum because there is no neighbor for w 

that makes a progress to d^. 

Many algorithms attempt to deal with the local minimum problem. Fin [42] 

proposes to flood all <?-hop neighbors (nodes at distance at most £ hops from current 

node, where £ is a network-dependent parameter) until a node closer to the destination 

than c is found. Takagi and Kleinrock [106] propose countering the local minimum 

problem by forwarding the packet to the node with the least backward (negative) 

progress. However, this raises the problem of looping packets. Stojmenovic and Lin 

[103] alternately suggest dropping the packet if the best choice for the current node 

is to return the message to the node that packet came from. 
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Figure 6: A sample network topology to illustrate the operation of the algorithms 

Randomization-based Algorithms 

Randomization-based routing algorithms [26, 41, 88] try to solve the local minimum 

problem described above by choosing the next node randomly from a subset of the 

current node's neighbors. These strategies minimize the accuracy of information 

needed about the position of the neighbors. In general, they have higher delivery 

rate than the deterministic algorithms at the price of a higher stretch factor. The 

following are some examples of randomization-based algorithms: 

• Random progress method [88]: In this algorithm the current node c for­

wards the packet to a randomly selected neighbor closer to the destination. 

• A B algorithms [41]: The AB (above/below) algorithm can be described as 

follows: Each algorithm has two attributes: AB(R,S) where R is one of C M 

(as in Compass), G R (Greedy) or ELP (Ellipsoid-Based), and S is one of U, 

A or D. Each routing algorithm is based on initially determining two candidate 

neighbors, one neighbor of c from above the cd line, nj , and, similarly, one 

neighbor of c below the cd line, n^- Out of all the possible neighbors from 

above (below) the cd line, n\ (n2) is the one that would be chosen by the R 

protocol. Which of these two candidate neighbors is actually chosen depends on 

the symbol for S. If the symbol is U, then the next node is chosen uniformly at 

25 



random from ni and n2. If the symbol is A, then the next node is chosen from 

rii and n2 with probability 92j{9\ + 92) and 0i/(#i + 02) respectively, where 

9\ = Znicd and 92 — Zn2cd. Finally, if the symbol is D, then the next node is 

chosen from n\ and n2 with probability dis2/'(dis\+ dis2) and disi/{dis\ + dis2), 

respectively, where dis\ = dist{ri\,d) and dis2 = dist(n2,d). If either n\ or n2 

is not defined, then the other neighbor is chosen by default. 

In the example given in Figure 6, if the source node s wants to send a packet to 

d\, the AB algorithm at s will choose a or b randomly as the next node for its 

packet. If the destination is changed to d2, the AB algorithm will fail to deliver 

the message. 

3D extension for randomized algorithms: We provide a 3D extension for the 

randomized algorithm in [2]. This algorithm will be explained in detail in Chapter 5. 

Face-based Algorithms 

To guarantee the delivery of the packets, position information can be used to extract 

a planar subgraph so that routing can be performed on the faces of this subgraph, 

known as Face routing or perimeter routing [27, 67]. The advantage of this approach 

is that the delivery of packets can always be guaranteed. The original Face routing 

algorithm was called Compass Routing II in [71]. An optimization of this algorithm is 

given in [27] and called Face2. In [14], Face routing is adapted to guarantee delivery 

on restricted classes of non-planar graphs. In the following we will explain in detail 

how Face routing works and how a combination of Face and the above progress-based 

algorithms helps to decrease the path dilation. 

• Face2 algorithm [27]: This algorithm starts by extracting the GG from the 

UDG. Then the packets are routed over the faces of GG, which are intersected 

by the line between the source and the destination, sd, using the right-hand rule. 

That is, the boundary of / is traversed in the counterclockwise direction, unless 
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the current edge crosses sd at an intersection point closer to the destination 

than any previously discovered intersection point. In this case, the algorithm 

switches to the next face sharing the edge and continues with the right-hand 

rule. This algorithm is repeated until the node arrives to the destination. The 

Face routing algorithm guarantees the delivery only over a 2D planar geometric 

graph [44]. Figure 7 shows an example how the algorithm works. 

Figure 7: Face routing algorithm 

• Greedy Perimeter Stateless Routing (GPSR): Greedy Perimeter State­

less Routing (GPSR) [67] is another position-based routing algorithm. This 

algorithm combines Greedy routing and Face routing. GPSR makes Greedy 

forwarding decisions using the local information. Packets are forwarded to the 

next-hop node, which moves the packet the most "toward" the position of the 

destination. If the packet reaches a region where Greedy forwarding is impos­

sible, the algorithm enters into recovery mode by routing around the perimeter 

of the region. GPSR traverses the perimeter (Face in [27]) of the region on the 

planar graph to the destination in the recovery mode. Once the packet reaches 

a node closer than the previous local minimum, the packet switches back to 

Greedy forwarding again. GPSR guarantees the packet delivery. This algo­

rithm is also termed GFG {Greedy-Face-Greedy) [27]. A combination of Face2 

and the AB algorithm has been provided by Abdallah et al. [40]. 
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3D extension of Face routing algorithm: Face routing, GFG and GPSR 

algorithms guarantee delivery only over a 2D planar geometric graph. In a three-

dimensional network, extracting a straight-line planar graph is not an option since the 

notions of planarity and routing about the perimeters of faces do not exist. Therefore, 

we cannot directly perform the Face routing protocol on a 3D network. 

• Projective Face Routing Algorithm: To enable routing on a 3D MANET 

based on the Face routing protocol, Kao et al. [64] propose mapping the 3D 

network to a projection plane where the 2D Face routing algorithm can then be 

applied. Specifically, their Projective Face algorithm uses two orthogonal planes 

that intersect along the line between the source and the destination, changing 

to the second projection plane if the first plane leads to failure. This algorithm 

gives significantly better delivery rate than the other deterministic 3D routing 

algorithms such as the Greedy, Compass, Ellipsoid and Most Forward routing 

algorithms, although the algorithm also leads to a very large hop path dilation. 

To enhance the performance of the projective Face routing algorithm, Kao et al. 

[65] propose three heuristics to modify the projective Face routing algorithm. 

The resulting 3D routing algorithm, called Adaptive Least-Squares Projective 

(ALSP) Face routing, gives nearly certain delivery rate (e.g., nearly always 100% 

by simulation), while the hop stretch factor is relatively high. The heuristics 

are described as follows: 

1) Least-Squares Projection (LSP) Plane: To determine the initial projection 

plane, the least-squares mathematical optimization technique is used to find 

the best-fitting plane [97]. To maintain the local characteristic of the routing 

algorithm, only the source node s, destination d and the N2(s) neighbors are se­

lected as the set of data points for computing the least-squares projection plane. 

The heuristic is aimed at having a projected graph with minimal distortion so 

that the number of crossing edges can potentially be reduced. 
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2) Multi-Projection-Plane Strategy: A significant increase in the delivery rate 

is possible by utilizing more than one projection plane, all the planes arranged 

at certain angles from the original LSP plane. All projection planes have a 

common line of intersection. If we make a cross-section that is perpendicular to 

all the planes and look along their intersection, the dihedral angles between each 

pair of neighboring planes are identical. Let Ns be the number of planes. The 

dihedral angle between each pair of neighboring planes is thus ir/Ns degrees. 

When switching from one order LSP plane to the next order LSP plane, this 

ordering is strictly followed. 

3) Adaptive Behavior Scale (ABS): During the routing process, the current 

node can be viewed as an alternate source node during the routing process. 

Kao et al. define a fixed parameter called Adaptive Behavior Scale (ABS). The 

ABS is used to determine when to recalculate the LSP plane. After an ABS 

number of hops have been preformed on the current order LSP plane, the LSP 

plane is recalculated with the current node c, N2(c) and the destination d. 

This heuristic makes the Projective Face routing algorithm more dynamic and 

robust by having the LSP plane better reflect the local graph structure about 

the current node and potentially lead to fewer crossing edges. 

These approaches do not guarantee delivery, as a connected planar graph cannot 

be extracted from the projected graph (see Figure 8). Experiments show that 

the delivery rate is significantly higher than the other 3D progress-based routing 

algorithms. Li et al. [84] study the performance of the combination of Projective 

Face Routing and progress-based routing in 3D mobility environment. 

• Coordinate Face Routing Algorithm, CFace(3) [2] This algorithm may 

be summarized as follows. The 3D nodes are first projected onto the xy plane. 

Then Face routing is performed on this projected graph. If the routing fails, e.g. 

a loop is detected, the nodes are then reprojected onto the second plane, the 
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Figure 8: Projective Face routing algorithm. The neighboring nodes are preserved 
after projection. This figure is taken from [64] 

yz plane. Then Face routing is performed again. If the routing fails again, the 

nodes are projected onto the third plane, the xz plane. Face routing is again 

performed. See Figure 9. A simplified version of CFace(3), called CFace(l), 

attempts Face routing with the nodes projected once only onto one of the xy, 

yz or xz planes, randomly chosen. Abdallah et al. [2] propose a combination 

between CFace and Randomization-based routing algorithms. 

Restricted Directional Flooding 

In restricted directional flooding, the current node forwards the packet to more 

than one neighbor that is located closer to the destination than the forwarding node 

itself. This partial flooding can be used only for path discovery [70] or for packet 

forwarding [21]. The following algorithms are examples of position-based routing 

algorithms using restricted directional flooding. 

• Distance routing effect algorithm for mobility (DREAM) [70]: For 

this algorithm, the current node c forwards the packet to all neighbors in the 

direction of the destination d. A node is considered to be in the direction of d 

if it is located in the cone shown in Figure 10. In order to determine that cone, 

c calculates the region around d, called the expected region. It is the circle 

around d of radius equal to vmax * (ti — to) where t\ is the current time, to is 
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Figure 9: CFace(3) routing algorithm. The algorithm attempts 2D Face routing, 
cyclically until success, with the nodes projected onto the xy plane, the yz plane, and 
then the xz plane 

the time stamp of the position information that c has about d, and vmax is the 

maximum speed of the node in the network. The neighbor nodes repeat the 

same procedure. 

• The geocasting based Location-Aided Routing (LAR) [21]: LAR limits 

flooding of the route discovery packets to a small group of nodes that belong 

to the request zone. The request zone is denned as the rectangle with the 

source s in one corner and the expected zone in the opposite see Figure 10. 

The expected zone is defined exactly as for DREAM. The procedure for route 

discovery in LAR is as follows: First, the source puts the location information 

of itself and the destination in the routing request packet; second, the routing 

request packet is broadcasted within the request zone. In other words, the nodes 

within the request zone forward the message, while others discard the message; 

third, after receiving the route request, the destination sends back a route reply 
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Figure 10: To route from s to d, with DREAM a current node will forward the packet 
to all the neighbors' nodes inside the cone, while with LAR it will forward the packet 
to all neighbors' nodes inside the rectangle 

packet that contains its current location. 

• GEcho:[75] This algorithm uses a combination of greedy routing and flooding-

based algorithms. In this algorithm the message is forwarded in Greedy mode 

as long as possible. If the message arrives to a local minimum, the algorithm 

switches to Echo mode (flooding mode). 

The flooding phase is initiated by the local minimum node c by sending a 

flooding message containing a Time To Live (TTL) counter to all its neighbors. 

Each node receiving the flooding message for the first time decrements the 

TTL counter by one and retransmits the message to all its neighbors (with the 

exception of the neighbor it received the message from). In the synchronous 

model, this flooding phase constructs a Breadth First Search (BFS) tree. From 

the leaves of this tree, the nodes where the TTL counter reaches 0, echo messages 

are sent back to c along the BFS tree constructed during the flooding phase. 

An inner node in the BFS tree can decide locally when to send an echo message 

to its parent in the tree by awaiting the receipt of an echo message from all of 
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its children. 

The algorithm returns back to Greedy mode when the message arrives at a node 

closer to the destination than the previous local minimum. The main drawback 

of this algorithm is the high message complexity, 0(8) where 8 is the number 

of edges in the network. 

3D versions of the above restricted directional flooding algorithms: 

LAR3D [1] This algorithm is a straightforward 3-D extension of LAR. With the 

available information of the destination node d, the source node s computes the 

expected zone for d, which is a sphere around d of radius equal to vmax * (t\ — to) 

where t\ is the current time, to is the time stamp of the position information that s 

has about d. the node uses this zone to define the flooding area, which is defined as a 

rectangular box with the two opposite corners s and s + (l + yfZ\r\/\d — s\)*(d — s) (the 

minimum-size rectangular box enclosing node s and the sphere of radius r around d). 

See Figure 11. 

GEcho can be used in 3-D environment without any modification. A 3-D extension 

of DREAM is straightforward, where the flooding area would be the 3D cone shown 

in Figure 11. 

2.5.3 Power and Cost Awareness Routing 

A crucial problem in multi-hop routing is to find an efficient and correct route between 

a source and a destination; however, for many networks, an important problem in 

multi-hop routing is providing an energy-efficient routing protocol because of the 

limited battery life of the wireless nodes. Transmission power management, which 

selects the optimized power level of nodes, is one of the primary means of increasing 

the lifetime of the nodes. The power consumption at each node in an ad hoc network 

can be divided into three phases, according to functionality [16]: 

1. The power consumed for transmitting the message 
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Figure 11: To route from s to a!: with 3DDREAM, a current node will forward the 
packet to all the neighbors' nodes inside the 3D cone, while with LAR3D, it will 
forward the packet to all neighbors' nodes inside the rectangular box 

2. The power consumed during message reception 

3. The power consumed while the node is idle. 

In ad hoc networks, for each ordered pair of nodes (u,v), there is an associated 

transmission power threshold, denoted by P(u,v), which indicates the transmission 

power needed by u so that its signal can be received by v. The transmission power 

threshold for a pair of nodes depends on a number of factors including the distance 

between the transceivers, interference, noise, environment, etc. [93]. 

In previous work [7, 94, 104, 114, 115], two main metrics have been used to opti­

mize power routing for a sequence of messages. 

The first metric, called the power metric, tries to minimize the energy consumed 

for each message. If the transmission range is fixed for all the nodes, then the number 

of nodes in the route path is used as the energy required for the routing task. This 

metric can be optimized if the nodes can adjust their transmission range. Then the 

constant metric can be replaced by a power metric that depends on the distances 

between nodes. In formal terms [51], let ej be the energy required by the packet 
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j to traverse a sequence of nodes ni,n,2, • • • ,rik, where n\ is the source and n^ is 

the destination. If p(rii,ni+i) is the power needed to forward j over one hop from 

rii to nl+i, then the aim of the power metric is to minimize ê  over all j , where 

ej = J2i=i p{ni-,ni+\)- A drawback of the power metric is that some nodes may be 

repeatedly chosen over many routes, which quickly leads to their failure. In many 

cases this may result in the loss of network connectivity. 

The second metric, called network survivability [30, 96] or cost metric [104], tries 

to maximize the lifetime of the nodes. Given alternative routing paths, select the one 

that will result in the longest network operation time. One way of optimizing this 

metric is by choosing the nodes with plenty of energy as relaying nodes. Formally, 

let the current node be c and N(c) be the set of its neighbors' nodes. Let g(x) 

be the remaining energy at the node x. Then the next node a is chosen such that 

a = x 6 N(c) : g(x) < G(y) for all y € N(c). We will focus on the second metric for 

our routing algorithms in Chapter 7. 

Power Consumption Wireless Model 

A wireless model has been proposed in [93] in which the power consumption between 

two nodes at distance UJ is expressed as u(u>) = u>a + 0, where a is the path loss 

exponent in the power consumption model and 0 is a constant that represents the 

energy consumed in computer-processing and encoding-decoding at both transmitter 

and receiver. It has been proven in [104] that u(u>) is optimal if UJ < (/3/(l — 2)1 _ a)1 / / Q . 

If UJ is greater than that, then the greatest power savings are obtained when UJ is 

divided into n > 1 equal length subintervals of size (/3/(a — 1))1/,Q. 

Existing Power-aware Routing Algorithms 

Several power-aware routing algorithms that try to minimize the total energy con­

sumed by the packet and also increase the average network lifetime have been pro­

posed [76, 102, 104]. Let the current node be c, a be a neighbor of c, and the 
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destination be d. Let h = dist(c,a), p = dist(c,d) and q = dist(a,d), where q < p. 

Let the cost of transmitting a packet between two nodes at distance u be £uja + 0, 

where £, a, 3 are constants that depend on the wireless model. Let h be the average 

length of all edges out from the source s. Let f(a) = -K, where g(a) is the remaining 

lifetime for the node a. Also, / (a ) is the average value of f(x) for a and all neigh­

bors x of a, g(a) is the average value of g(x) for a and all neighbors x of a; r is the 

transmission radius. The algorithms are summarized as follows [104]: 

• Power Algorithm: This algorithm tries to minimize the total energy con­

sumed by the packet in the routing process, regardless of the available energy at 

the nodes. With the Power algorithm, the current node c chooses as a next node 

a, which minimizes the expression: P(c,a) + P(a,d), where P(c,a) = £ha + 3 

is the cost to reach a and P(a, d) = qP(£{a - l)/(3)l,a + q£(£(a - I)/3){l-a)/a, 

which is an assumption that the cost for the rest of the routing process are 

optimal. 

• Cost- i Algorithm: This algorithm uses the cost metric. It tries to maximize 

the network lifetime by carefully choosing the next node from the set of neigh­

bors with plenty of energy. In this algorithm the current node chooses a next 

node a, which minimizes the equation: cost(a) = / (a ) * t/r, where t = f{a). 

• Cost-M Algorithm: Since the factor t is network dependent, there are different 

versions of the previous algorithm. One of those algorithms is called Cost-ii. 

In this algorithm, the current node chooses one of its neighbors, say a, which 

minimizes the equation: cost(a) = f(a) * t/r, where t = l/g(a). 

There are two ways to combine power and cost metrics into a single metric, based 

on the product or sum of the two metrics. 

• Power*Cost: In this algorithm, the current node chooses one of its neigh­

bors, say a, which minimizes the following equation: Power*Cost(a)= Power * 
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Cost(c, a) + Power * Cost(a, d), where Power * Cost(c, a) = f(a) * (£ha + 0) 

and Power * Cost(a, d) = {q0{£{a - l)/0)l/a + q£(£{a - l)/0Y1~a)/a) * / ( a ) . 

• Power+Cost: In this algorithm the current node chooses one of its neighbors 

a, which minimizes the equation: Power+Cost(a) = (Power + Cost(c,a)) + 

[Power+Cost(a, d)), where Power+Cost(c, a) = [f(s)*(£ha+0)} + [f(a)*(£ha+ 

0)] and Power + Cost{a,d) = {q0(£(a- l)/0)l/a+ q£(£(a- l ) / /3 ) ( 1 _ a ) / a )* / (o ) . 

Kuruvila et at. [76] propose another set of power and cost-awareness routing 

algorithms that choose the next node so to guarantee progress to the destination, 

assuming such a node exists. In the Power Progress algorithm; the current node 

forwards the packet to one of its neighboring nodes that is closer to the destination 

than itself and minimizes (ha + 0)/(p — q). Similarly, in the Cost Progress algorithm, 

the next node is the one that is closer to the destination than the forwarding node 

and minimizes f(a)/(p — q). 

Since all the above algorithms are deterministic algorithms that suffer from the 

local minimum problem, they do not guarantee the delivery of the message in a 

connected graph. Stojmenovic et al. [102] propose guaranteed delivery algorithms in 

2D space, which combine Power (P), Cost (C) and Power*Cost (PC) algorithms with 

Face routing algorithm, similar to the way the Greedy algorithm is combined with 

Face to define the GFG algorithm. Those algorithms start with P, C or PC forwarding 

decisions. Once a packet reaches a local minimum, the Face routing starts. If the 

message arrives to a node closer to the destination than the local minimum node, the 

algorithm switches back to P, C or PC forwarding again. These algorithms have been 

called PFP, CFC and PCFPC respectively; because these combined algorithms use 

face routing, they are not applicable in 3D environment. 
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Chapter 3 

Displaced Apex Adaptive Yao 

Graphs 

In this chapter, we introduce a new class of orientation-invariant Yao-type subgraphs 

of a UDG, that is a generalization of the Yao graph where the cones used are adap-

tively centered on a set of nearest neighbors for each node, thus creating a directed 

or undirected spanning subgraph of a given unit disk graph (UDG). We also permit 

the apex of the cones to be positioned anywhere along the line segment between the 

node and its nearest neighbor. 

3.1 Displaced Apex Adaptive Yao Graphs 

Let K b e a set of n points in the Euclidean two-dimensional plane, each point pos­

sessing a geometric location. For the following, define the cone angle 9 to be the 

half-angle of the cone's apex. 

Let the parameter p be the closed line segment between u and v. (1 — p)u + pz, 

0 < p < 1. Any particular choice of p represents the position of the apex of the cone. 

We will use as a second parameter a, 0 < a < 1, to determine 6 as a fraction of a 

maximum cone angle, 8m(p, \uz\), which we define shortly, which is a function of p 
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and the distance from the current node u to the nearest neighbor z for which the cone 

is determined. 

Algorithm 3.1 Displaced Apex Adaptive Yao(G, a,p) graph algorithm 

Input: A graph G with the node set V, an angle parameter a, and a parameter p. 
Output: A list of directed edges L for each node u € V which represent the Dis­
placed Apex Adaptive Yao subgraph of G, DAAY(G,a,p). 
for all u G V do 

Create a list of neighbors of u: LN(u) = N(u). 
repeat 

(a) Remove the nearest neighbor z node from LN{u) and add the directed 
edge uz to L. 
(b) Determine 9m(p, \uz\). 
(c) Let r = (1 — p)u + pz be a point on the line segment uz. 
(d) Consider the cone C with its apex at r with a cone angle 6 = a • 9m(p, \uz\) 
and z in its interior, such that the line uz bisects the cone C into two equal 
halves. 
(e) Scan the list LN(u) and remove each node in the interior of C. 

until LN{u) is empty 
end for 

Definition 3.1. Let G be a UDG with node set V. The directed Displaced Apex 
> 

Adaptive Yao subgraph, DAAY(G,a,p), is defined to be the graph with node set V 

whose edges are obtained by applying the Displaced Apex Adaptive Yao(G,a,p) al­

gorithm, Algorithm 3.1, on the graph G using cone angle 9 = a • 9m(p,\uz\) and 

apex displacement parameter p. The undirected graph DAAY(G,a,p) is obtained by 

ignoring the direction of the edges in DAAY(G,a,p). 

When p = 0, we simply refer to the resultant graph as the Adaptive Yao graph. 

Note that the directions of the cones used in the Displaced Apex Adaptive Yao(G, a, p) 

algorithm only depend on the relative directions of the selected nearest neighbors. 

Therefore, the resultant subgraph is the same regardless of the orientation of the 

point set V. Hence the DAAY(G, a,p) is orientation-invariant. See Figure 12. 
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Figure 12: Applying the Displaced Apex Adaptive Yao(UDG, 1,0) graph algorithm 
on the node u of a UDG: (a) the nearest neighbor is first chosen; (b) the second 
nearest node out of the rest of the nodes is then chosen. Note that its associated cone 
overlaps with the first cone; and (c) the third nearest neighbor is chosen from the list 
LN(u). 

3.2 Displaced Apex Adaptive Yao Propert ies 

Lemma 3.1. Consider a node u and neighbor z of u. Consider an arbitrary point 

k = (1 — p)u + pz where the parameter p has a value in the range [0,1]. Define L to 

be the line perpendicular to the line segment uz that intersects uz at its midpoint m 

(corresponding to p = 0.5 in the above line equation). Define a cone with cone angle 

9 with its apex at k oriented such that z is in its interior. Consider the boundary of 

this cone intersecting the line L at a point c. Then the cone angle 0 is defined by 

s i n ( 0 - 0 o ) P\uz\ w / i e r e c o s ( £ o ) l . M 
sin(0) \uc\ 2 \uc\ 

Proof. Consider the triangle Auck. Let 8Q be the interior angle at u. Then the 

interior angle at c is 9 — 6Q. The interior angle can be determined from the right 

triangle Armzc, cos (#o) = | H - Also, the interior angle at k is IT — 9. By the sine 

law, 
sin(# — 9Q) p\uz\ 

sin(0) \uc\ 

• 
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Corollary 3.1. Consider a node u and neighbor z of u. Consider an arbitrary point 

k — (1 — p)u + pz where the parameter p has a value in the range [0,1]. Define L to 

be the line perpendicular to the line segment uz that intersects uz at its midpoint m 

(corresponding to p — 0.5 in the above line equation). Define a cone with cone angle 

6 with its apex at k oriented such that z is in its interior. Consider the boundary of 

this cone intersecting the line L at a point c. If \uc\ = \uz\ then 90 = n/3 and 

sin(9 — 7r/3) p\uz\ 

sin(t/) \uz\ 

Definition 3.2. Consider a node u and neighbor z of u. Consider an arbitrary point 

k = (1 — p)u + pz where the parameter p has a value in the range [0,1]. Define L to 

be the line perpendicular to the line segment uz that intersects uz at its midpoint m 

(corresponding to p = 0.5 in the above line equation). Define a cone with cone angle 8 

with its apex at k oriented such that z is in its interior. Consider the boundary of this 

cone intersecting the line L at a point c. Define the maximum cone angle 9m(p, \uz\) 

as a function of the parameter p and the distance \uz\ as follows: 

sin (9m(p, \uz\) — | ) 

sin(0m(p, \uz\)) 

sin ( 6 U p , M ) - c o s " 1 ( i ^ ) ) 

sm(9m(p,\uz\)) 
p\uz\ i/0.5 <p< 1 

Note that when 0 < p < 0.5, then 9m(p, \uz\) is only a function of p such that 8 

is a fixed angle for fixed values of p and a. When p = 0.5, 0m(O.5, \uz\) = ir/2 and, if 

a = 1 so that 9 = 9m(p, \uz\), we obtain the Half Space Proximal graph [31]. 
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3.2.1 Connectivity 

T h e o r e m 3 .1 . Consider a node set V and UDG(V) defined on V. If UDG{V) is 
> 

connected and the cone angle 6 is less than or equal to 9m(p, \uz\) then DAAY(UDG-

(V),a,p) is strongly connected. 

Proof. Consider an edge uv e UDG{V). To show that DAAY(UDG(V),a,p) is 
> 

strongly connected we will show that there is a directed path from u to v in DA A Y(UDG-

(V), a, p). Proof is done by contradiction. Assume that there is at least one edge uv G 

UDG(V) such that there is no directed path from u to v in DAAY(UDG(V), a,p). 

Let uv be the shortest such edge in UDG(V). This implies that there is an edge 

uz 6 DAAY(UDG(V), a,p) such that \uz\ < \uv\, because the edge uv should be 

in the cone of uz selected by the Displaced Apex Adaptive Y&o(UDG(V), a,p) algo­

rithm. 

Now consider the triangle /\uzv in Figure 13. The choice of maximum cone angles 

in Definition 3.2 is based on the idea that v could be placed anywhere in the open 

half-plane H containing z defined by the line perpendicular to the line segment uz 

in the middle of uz (the point corresponding to p = 0.5 in our parametrization of 

the uv; labeled as m in Figure 13). Consider the two cases defined by the value of p. 

First, assume 0 < p < 0.5 (for example, the apex of the cone would be at the point 

labeled as k in the figure). Then to keep v in the interior of H, the maximum cone 

angle 6 would define a cone that intersects the boundary of H at a point at distance 

\uz\ from u (such a point is labeled as c in the figure). By Corollary 3.1, 9m(p, \uz\) 

is as defined in Definition 3.2. 

Now, assume 0.5 < p < 1. To keep v in the interior of H, the maximum cone 

angle 6 would define a cone that intersects the boundary of H at a point at distance 

r from u (such a point is labeled as c in the Figure 13). By Lemma 3.1 and noting 

that \uc\ = r, 8m(p, \uz\) is as defined in Definition 3.2. 

In either case, since the cone angle is less than or equal to 6m(p, \uz\), then any 

position of the node v inside the cone for z such that \uz\ < \uv\ would give \zv\ strictly 
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Figure 13: The left diagram is for 0 < p < 0.5. The bottom diagram is for 0.5 < p < 1. 
In both diagrams, the dark shaded area is the forbidden region where any other 
neighboring nodes are excluded 

less than \uv\. Since uv is an edge in UDG(V), then zv is also an edge in UDG(V). 

Therefore, there exists a directed path from z to v in DAAY(UDG(V),a,p), and so 

there is a directed path from u to v in DAAY(UDG(V), a,p). D 

Note that when p > 0.5, the further away the nearest neighbor z, the larger the 

cone angle limit 9m(p, \uz\). If a fixed cone angle 8 was used, since as \uz\ —> 0 the cone 

angle approaches n/2, it would have to be 8 < ir/2 to ensure connectedness. Using 

9 — IT/2 would then give a variation of the Half Space Proximal subgraph with the 

forbidden zone half-plane intersecting the line segment uz at the point corresponding 

to p > 0.5 rather than at the midway point. 
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3.2.2 Bounding the Node Out-degree 

Theorem 3.2. The out-degree of any node in DAAY(UDG(V),a,p), 0 < 6 < 

0m(p, \uz\), is at most — where <f) is defined by 

Proof. From the definition of Displaced Apex Adaptive Ya,o(G,a,p), the smallest 

angle between any two edges is 6 because any nearest neighbor selected forms an 

edge that will be outside, or on the boundary of, the cone for any other neighbor. 

Consider a node u. Let z be the nearest neighbor that defines a cone. For 0 < p < 0.5, 

the smallest angle between z and another nearest neighbor w is (f> if w is placed at 

the intersection c of the cone boundary and the circle of radius uz centered on u (the 

point labeled as c in Figure 13). By Corollary 3.1, the angle between c and z about 

u is defined by Eq. 2. If 9 — 9m(p, \uz\), 4> — TT/3. Similarly, for 0.5 < p < 1, the 

smallest angle between z and another nearest neighbor w is <fi if w is placed at the 

intersection e of the cone boundary and the circle of radius uz centered on u (the 

point labeled as e in Figure 13). It is straightforward to show, using a proof similar 

to that for Lemma 3.1 and noting that \ue\ — \uz\, that the angle <\> between e and 

z about u is also defined by Eq. 2. Therefore, the angle between any two selected 

edges will be greater than or equal to 4>, which is a function of p. So, the maximum 

27T 

out-degree for any node will be —-. Any fraction of a cone overlapping in the worst-
<P 

case will not add to the out-degree of the node, so the maximum integer out-degree 
2TT of any node is be 

• 
Consider the worst-case example in Figure 14, in (a) the nearest neighbor z is first 

chosen, and the forbidden area is defined as a cone of 2(f) angle; (b) the next node 

w{ in the worst-case will be exactly on the border of the cone, which will define its' 
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cone that overlap the first cone; (c) third point w2 will be on the border of the second 

cone; (d) after doing all the points we can see that the circle around the node u is 
2vr 

divided in the worst-case into — cones. 

Figure 14: Worst-case example of the node degree in DAAY(UDG(V), a,p) 

3.2.3 Stretch Factor 

Theorem 3.3. Let V C R2 be a set of n points and let 9 < 7r/3 be the cone angle. 

Then DAAY(UDG(V), a,p) is a spanner with stretch factor -7- . 

1 - 2sin( | ) 

Proof. Let uv be an edge in UDG that is not selected by Displaced Apex Adaptive 

Y&o(G,a,p) algorithm. Since, by Theorem 3.1, DAAY(UDG(V),a,p) is connected, 

then there is a shortest path from u to v. Let a "worst" such path from u to v in 

DAAY(UDG(V),a,p) be u0 — u,u-[,u2,... ,un = v. See Figure 15. By the Displaced 

Apex Adaptive Yao(G, a,p) algorithm, the angle ZUJ+IUJV < r\ (which we will deter­

mine) and |ujiij+i| < \uiv\ since otherwise UiV would be part of DAAY(UDG(V), a,p) 
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and part of the path. Also, by Theorem 3.1, |UJ+1TJ| < \uzv\ since we can always de­

crease the distance to v from each Uj along the path. 

Now consider the triangle A UiUi+\v (see Figure 15). Let a be the point on UiV 

such that |u,a| = |itjtij+i|. By the triangular inequality |uj+ii>| < |iij+ja| + \av\. Note 

that |u i + 1a| = (2sin-)\uiUi+i\, and |ati| = \uiv\ — \uiUi+i\. Applying these two latter 

equations to the triangular inequality, we obtain 

77 

\ui+1v\ < \uzv\ - \uiUi+i\(l - 2sin-) 

Applying the previous analysis iteratively on the entire path, we have 

^2 \ui+iv\^ Yl yUiV\ ~ (\uiui+i\(l -2sin-) 
0<i<m 0<i<m 

Therefore, 

0<i<m N 2 / 0<Km X 2 ' 

7i07J 

Note that for the stretch factor to be bounded by this inequality, then 77 must be 

restricted by r\ < n/3, other wise 1 — 2sin% = 0 if 77 = 7r/3 

To determine the value of 77, first consider the largest angle possible between Ui, 

v, and ui+\. The larger the angle, the larger the stretch factor along the path. If 

ul+\ is a nearest neighbor of Uj defining a cone during the execution of the Displaced 

Apex Adaptive Yao(G,a,p) algorithm, then placing a node / at the intersection of 

the cone boundary and the boundary of the circle of radius r centered at Ui would 

give the largest angle. Defining a triangle Auifui+i and using a similar analysis as 

used in the proof for Lemma 3.1, the internal angle 77 at Ui is 

sin(6> - 77) _ p\ujUi+1\ 

sin(0) \uif\ 
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Figure 15: Left: A scenario for the worst shortest path that could be selected in Dis­
placed Apex Adaptive Yao(G, 0,p). The edge (u0,v) is not selected by the Displaced 
Apex Adaptive Yao(G, 6,p) algorithm since (u0, u\) is shorter than (uo, v), and (no, v) 
is inside the cone of (uQ, U\). The same occurs for (ui, v),..., (un, v); Right: One step 
of the iterative sequence of the path 

Note that as |UJUJ+1 | approaches 0, the angle 77 is maximized. For 0 < p < 0.5, this 

maximum angle is 9, and for 0.5 < p < 1, this maximum angle is TT/2. TO ensure that 

7] < 7r/3, in both cases, we must restrict 6 < n/3 to bound the stretch factor. • 

3.2.4 Containing Euclidean Minimum Spanning Tree 

Theorem 3.4. Consider a node set V and UDG(V) defined on V. Assume that 

UDG{V) is connected. Then DAAY(UDG{V),a,p), 6 = a • 9m(p, \uz\), 0 < a < 1, 

contains the Euclidean Minimum Spanning Tree EMST(UDG(V)) as a subgraph. 
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Proof. Let EMST(UDG{V)) be an Euclidean Minimum Spanning Tree of (UDG{V)) 

that contains the maximum number of edges of DAAY(UDG(V),a,p). 

We do a proof by contradiction. Assume there is an edge uv in EMST(UDG(V)) 

that is not in DAAY(UDG(V),a,p). This implies that there is an edge uz G 

DAAY(UDG(V), a,p) such that \uz\ < \uv\, because the edge uv should be in the 

cone of another shorter edge selected by the Displaced Apex Adaptive Ya,o(UDG(V), a, 

algorithm, and \vz\ < \uv\ (otherwise, by Theorem 3.1, 

the DAAY(UDG(V), a,p) would not be strongly connected). 

Since EMST(UDG(V)) is a spanning tree, there is a path from v (or u) to z. If 

the path is from v to z, then removing uv from the graph and adding the edge uz 

we obtain a spanning tree with equal or less weight with an additional edge from 

DAAY(UDG(V), a,p), a contradiction. If the path is from u to z, then removing uv 

from the graph and adding the edge vz we obtain a spanning tree with less weight, 

again a contradiction. • 

In [39] experimental results is given to explore the new subgraphs properties in 

comparison with the existing subgraphs. 

3.3 Empirical Results 

In our experiments we used randomly chosen connected unit disk graphs on an area 

of 100 x 100. We varied the number of nodes, N, between 65, 75,85, 95 and 105 nodes. 

For all the results reported here, the results have been averaged over 23 graphs for 

each value of N. For all the graphs tested, the transmission radius r used was 15 

units. 

For each UDG, an Adaptive Yao subgraph (equivalent to a Displaced Apex Adap­

tive Yao subgraph with p = 0), Displaced Apex Adaptive Yao subgraphs with 

p — 0.125 and p = 0.25, Half Space Proximal subgraph (equivalent to a Displaced 
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Figure 16: Average hop number stretch factor for each graph with various number of 
nodes 

Apex Adaptive Yao subgraph with p = 0.5), and Displaced Apex Adaptive Yao sub­

graphs with p = 0.75 and p = 1.0 are generated. For each Displaced Apex Adaptive 

Yao subgraph we used a = 1 such that 8 = 9m(s, \uz\) (recall, for p > 0.5, 9 is a 

function of the distance to the chosen neighbors). For comparison, we also generate 

the original YAO subgraphs with K = 6 for each UDG. An example of an UDG and 

related subgraphs is given in Figure 20. 

In Figure 16 and Figure 17, we show the average stretch factor in terms of both 

hop number and Euclidean distance. It is clear that the Adaptive Yao graph (p = 0) 

has consistently the lowest average (hop number or Euclidean length) stretch factor. 

For our simulations, the average stretch factor for the Adaptive Yao graph was about 

halfway between that of the HSP and the Yao graph with k = 6. As p increases to 

0.5, the average stretch factor increase to a maximum for p = 0.5. The stretch factor 

again decreases as p approaches 1. 

In Figure 18 and Figure 19, we show the average node degree and the average in-

degree (out-degree). As p approaches 0.5, from Figure 18, the average node degrees 
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Figure 17: Average Euclidean stretch factor for each graph with various number of 
nodes 

monotonically decrease until p = 0.5 when we have the HSP graph. Then as p 

continues to increase to 1, the node degrees begin to increase again. This holds true 

across all values of N. We can see this trend reflected on the in-degree (out-degree) 

in Figure 19. 
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(e) (0 

Figure 20: Original UDG and related subgraphs: (a) UDG; (b) Yao Graph with k = 
6; (c) Adaptive Yao Graph; (d) Displaced Apex Adaptive Yao Graph with p = 0.25; 
(e) HSP Graph; (f) Displaced Apex Adaptive Yao Graph with p = 1.0 

52 



Chapter 4 

A Virtual Backbone Technique to 

Improve Routing Algorithms 

In this chapter we present a truncated octahedron tiling system of the 3D space to 

assign to each node a class number depending on the position of the node within the 

tiling system. Then, based on this tiling classification system, we present generaliza­

tions of the algorithms from [36] for constructing dominating sets and CDSs in 3D. 

Theoretical lower bounds on the size of these sets are given and an empirical study 

of the algorithms is done. 

4.1 Tiling System for 3D Space 

Consider a truncated octahedron of unit diameter as shown in Figure 21 which consists 

of 14 faces, 6 squares of edge length equal to a, and 8 hexagons of edge length equal 

to a. Since the truncated octahedron has a diameter equal to 1, then a = -h=. 

The tiling system is based on a two level subdivision of the three-dimensional 

space. At the highest level, the space is tiled with identically shaped tiles that fill the 

entire space, with no gaps or overlaps. Each tile used in our tiling system consists 

of 65 truncated octahedra which occupy the entire volume of the tile with no gaps 
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Figure 21: Unit diameter truncated octahedron, the faces labeled 1,2,..6 belong to 
the class represented by this truncated octahedron 

or overlaps. Each truncated octahedron in the tile represents one class which has a 

unique integer. For any truncated octahedron only faces 1, 2, 3,4, 5, 6 and 7 belong to 

it, see Figure 21. In other words, if a node located exactly on the shared face between 

two truncated octahedra 7\ and T2, the node is considered of class 1 if according to T\ 

this face is 1, 2, 3,4,5, 6 or 7 otherwise it will be considered to be of class 2. Assume 

that the first truncated octahedron, class 1, is centered at the coordinates {x\,y\,z\) 

(ie. the z-axis passes through the center of face 1, the x-axis passes through the center 

of the edge between face 5 and the face opposite to face 2, and y-axis passes through 

the center of the edge between face 4 and the face opposite to face 3. We will call 

this orientation as the centering orientation), then the coordinates of the centers of 

the classes from 2 to 65 are shown on Table 1. They all have the same orientation as 

class 1. See Figure 22 for an example of the tile used, showing the placement of the 

truncated octahedra in the tile with the associated classes labels. 

Assume that the tiling starts by placing the center of one tile, 1\, at the coordinate 

{x\,y\,z\), with orientation equal to the centering orientation. To cover all the faces 

of T\ we need 14 other adjacent tiles that are in contact with 7\ in the positions 
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Table 1: Coordinates of the 65 truncated octahedra for a tile T\ centered at (xi, 2/1, Zi), 
where a = ^ - . 

Class 1 
Class 2 
Class 3 
Class 4 
Class 5 
Class 6 
Class 7 
Class 8 
Class 9 

Class 10 
Class 11 
Class 12 
Class 13 
Class 14 
Class 15 
Class 16 
Class 17 
Class 18 
Class 19 
Class 20 
Class 21 
Class 22 
Class 23 
Class 24 
Class 25 
Class 26 
Class 27 
Class 28 
Class 29 
Class 30 
Class 31 
Class 32 
Class 33 

{x\,y\,z\) 
(xi,yi,zi + 2ay/2) 
(xi,yi,zi - 2ay/2) 

(xi + 2a, 2/1, Zi + ay/2) 
(xi + 2a,y\,z\ — ay/2) 
(xi - 2a,y1,z1 + ay/2) 
(x\ — 2a, y\,z\ — ay/2) 
(xi,yi + 2a, z\ + ay/2) 
{x\, yi + 2a, z\ — ay/2) 
{x\, y\ — 2a, z\ + ay/2) 
(x\,y\ — 2a, z\ — ay/2) 
[x\ + 2a, yx + 2a, Zi) 
{x\ + 2a, ?/i — 2a, z\) 
(xi - 2a, yi + 2a,Zi) 
(xi - 2a, yi - 2a, zi) 

{xi,yx,zi + 4 a V 2 ) 
{xi,yi,zx - 4ay/2) 

(xi + 2a, yi,z\ + 3ay/2) 
(xi - 2a,yx,zi + 3ay/2) 
(xi,2/i +2a, zx +3a\/2) 

{x\, 2/i — 2a, z\ + 3av2) 
(xi + 2a, 2/i + 2a, zx + 2ay/2) 
(xi + 2a, 2/1 — 2a, Z\ + 2ay/2) 
(xi — 2a, yi + 2a, z\ + 2ay/2) 
[x\ — 2a, 2/1 — 2a, z\ + 2ay/2) 

(x1+4a,yi,zl + 2ay/'2) 
(xi -4a, yi, zx + 2ay/2) 
(xi, 2/i + 4a, z\ + 2ay/2) 
[xx,y\ - 4a, zx +2a\/2) 

(xi + 4a, yx + 2a, zx + ay/2) 
(xi + 4a, yx — 2a, zx + ay/2) 
(xi — 4a, yx + 2a, zx + ay/2) 
(xi — 4a, yx — 2a, zx + ay/2) 

Class 34 
Class 35 
Class 36 
Class 37 
Class 38 
Class 39 
Class 40 
Class 41 
Class 42 
Class 43 
Class 44 
Class 45 
Class 46 
Class 47 
Class 48 
Class 49 
Class 50 
Class 51 
Class 52 
Class 53 
Class 54 
Class 55 
Class 56 
Class 57 
Class 58 
Class 59 
Class 60 
Class 61 
Class 62 
Class 63 
Class 64 
Class 65 

(xi + 2a, yx + 4a, zx + ay/2) 
(xx - 2a, yx + 4a, zx + ay/2) 
{xx + 2a, yx — 4a, zx + ay/2) 
(xi — 2a, yx — 4a, Zx + ay/2) 

(xj + 2a,yx,zx - 2>ay/2) 
(xx - 2a,yx,zx - 3ay/2) 
(xx,2/i + 2a,zx - 3ay/2) 
(xx,yx - 2a, zx - 3ay/2) 

(xi + 2a, yx + 2a, zx - 2ay/2) 
(xx + 2a, yx — 2a, Zx — 2ay/2) 
[xx — 2a, 2/i + 2a, Zx — 2a\/2) 
(xi — 2a, yi — 2a, z\ — 2ay/2) 

(xi + 4a, 2/1, Zi - 2ay/2) 

(xx - 4a,yx,zx - 2ay/2) 
(xx,yx+4a,zx -2ay/2) 
(xx,yx -4a,zx - 2a\/2) 

(xi + 4a, 2/1 + 2a, Zx — ay/2) 
(xx + 4a, 2/1 — 2a, Zx — ay/2) 
(xx — 4a, 2/i + 2a, z\ — ay/2) 
(xi — 4a, 2/1 — 2a, Zx — ay/2) 
(xi + 2a, yi + 4a, zx — ay/2) 
(xi — 2a, 2/i + 4a, zx — ay/2) 
(xi + 2a, yi — 4a, zx — ay/2) 
(xi — 2a, yi — 4a, z\ — ay/2) 

(xi + 4a, 2/1 +4a,zx) 
(xi + 4a, 2/1 - 4 a , zx) 
(xi - 4 a , yi + 4 a , 2 i ) 

(xi -4a ,2/1 -4a,zx) 
(xi + 4a,2/i,2i) 

(xi -4a,yx,zx) 
(xi,yi +4a,zx) 

(xi,2/i -4a,zx) 
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Table 2: Coordinates of the 14 tiles around 7\, with a = -4=. 

Ti 
Tn 

T* 
Tiz 
Tj4 

Tj5 

TjQ 

2> 

T» 
Tj9 

Tj 10 

Tjn 
Tj 12 

Tj 13 

TJU 

(XiiVuZi) 

(X1,y1,z1-10aV2) 
{X1,y1,zl-10aV2) 

(Xj + 6a, yi + 4a, Zj + 5a\/2) 
(Xx + 6a, 2/1 + 4a, zj - Say^) 
(Xx - 4a, yi + 6a, zx + 5av/2) 
(A": - 4a, yi + 6a, zj - 5a\/2) 
(Xi - 6a, yx - 4a, zx + 5a\/2) 
(Xi - 6a, yi - 4a, zx - 5a\/2) 
(Xi + 4a, yi - 6a, zx + 5a\/2) 
(Xi + 4a, yi — 6a, z\ — 5a\ /2) 

(Xj + 10a,yi + 2a,z1) 
(Xi + 1 0 a , y i - 2 a , z i ) 
( X 1 - 1 0 a , y i + 2a,zi) 
( X i - 1 0 a , y 1 - 2 a , z 1 ) 

summarized on Table 2. Each tile has the same orientation as T\. Figure 23 shows 

the space tiling process used in our algorithm. It is clear that any node can calculate 

locally its class number by determining to which tile and corresponding truncated 

octahedron it belongs. In the following we prove some properties of our space tiling 

system. 

Lemma 4.1. In the 3D space tiling system above, any two nodes that are of the 

same class number, but belong to two different truncated octahedra, are at Euclidean 

distance greater than 2. 

Proof. Consider the center of the truncated octahedron of class i at the coordinate 

(xj, y\,z\) then there are 14 truncated octahedron of the same class i from adjacent 

tiles centered on the coordinates shown in Table 2. To prove this lemma, we need to 

prove that any node of class i is at a distance of more than 2 to any other node in 

the 14 truncated octahedra of the same class in the adjacent tiles. The distances are 

as follows: 
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Figure 22: The tile used in the tiling system divided into 65 truncated octahedra of 
diameter 1 and the class numbering associated with the truncated octahedra (a) is 
the side view (looking along the y-axis) of the tile; (b) is the top-side view of the tile 
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1. The smallest distance between the two truncated octahedra of class i from Tj 

and Tji is equal to the distance between the two centers minus two times the 

distance from the center to the border of the truncated octahedron, 

y/{xi - xxf + (Vl - yx)
2 + {zx + 10aV2 - zx)

2 - 2ay/2 « 3.577 

2. The smallest distance between the two truncated octahedra of class i from Tj 

and Tj2 equals 

y/(Xl - xx)
2 + {yx - yx)

2 + (zx - 10aV2 - Zl)
2 - 2 a ^ 2 « 3.577 

3. The smallest distance between the two truncated octahedra of class i from Tj 

and from one of Tj3, Tj4,Tj7 or Tjg equals 

yj(xi ±6a- xx)
2 + (yx ±4a- yxf + (21 ± boty/2 - zxf - 2ay/2 « 2.299 

4. The smallest distance between the two truncated octahedra of class i from Tj 

and from one of Tj5,Tje,Tj^ or TJIQ equals 

y/(xi ± 4a - xxf + (j/x ±6a- yx)
2 + {zY ± 5a\ /2 - zx)

2 - 2aV^ ~ 2.299 

5. The smallest distance between the two truncated octahedra of class i from T3 

and from one of TjXX,TjX2,TjX3 or TjX4 equals 

y/(x! ± 10a - xx)
2 + {yx ±2a- yx)

2 + (zx - zx)
2 - 2a^[2 ss 2.330. 

D 

In our initial study of tiling the 3D space, we used a cube of unit diameter as a cell 

(class) instead of a truncated octahedron. We found that each tile would need at least 

125 cubes to guarantee that the nodes with the same class number in different tiles are 

separated by a distance greater than 2. Compared to using a truncated octahedron, 

this number of cubes would increase the constant number of rounds required for the 

algorithms in Sections 4.2 and 4.4. 
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GO 

(f) 

Figure 23: The tiling system used, (a) T2 and T3 on top and bottom of 7\; (b) T4 

and T5 added to the upper and lower side of Ti; (c) 7\, T u , r 1 2 and T13 side view; 
(d)7\, T n , T i 2 and 7\3 top view; (e) and (f) the final view of the space tiling 
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4.2 A Local Algorithm For 3D Independent 

Dominating Sets (3D-LIDS) 

Using the space partition described in the previous section, each node can determine 

its class number locally (using a constant number of arithmetic operations). Because 

the nodes are aware of the locations of all their neighbors, they can also calculate the 

class number of each neighbor. It is clear that the nodes that are in same truncated 

octahedron are neighbors because the diameter of the truncated octahedron is 1. 

Our local construction of the dominating sets is based on a similar algorithm 

proposed by Czyzowicz et al. [36] for 2D. In this algorithm the dominator node 

m can be chosen according to different heuristics; e.g. the node with the highest 

degree; the node with the maximum power-level, if the power saving is an important 

issue for the algorithm; or the node closest to the center of the truncated octahedron. 

(This latter heuristic is used in our algorithm description and the simulation results 

in Section 4.5). 

Let Tx be the truncated octahedron that contains the node x. Each node x 

independently does one of the following depending on its class number and two hop 

information: 

• If x is of class 1, then a node m closest to the center of Tx in the same truncated 

octahedron (Tx) will be designated as a dominator. 

• If x is of class other than 1, using the information about its' neighbors, x defines 

a set 5i (x) of all nodes in the same truncated octahedron that have no neighbor 

of lower class, and then chooses from Si(x) a node m closest to center of Tx to 

be a dominator. 

• If x is of class other than 1, and the set S\(x) is empty, then x requests from 

every neighbor i of lower class number to run the algorithm if not already 

running. When all nodes in Tx finish their calculations, node m from Tx that is 
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not dominated and closest to the center of Tx becomes a dominator. 

When the node finishes its calculation, it informs all the neighbors that the dom­

inator selection is completed in its truncated octahedron. The algorithm 3D-LIDS in 

detail is shown in Algorithm 4.1. 

Algorithm 4.1 3D-LIDSQ, N(x), N2(x)) 

1: Input node x, N(x), N2(x). 
2: Output: Return a set of nodes added to the dominator set Dom after executing 

the algorithm for the node x. 
3: Let cls(x) represent the class number of x 
4: Cn <— geometric center of Tx 

5: x calculates S\(x) 
6: if (cls(x) = 1) then 
7: m <— u E N(x) U x : cls(u) = 1 and dist(u, Cn) < dist(w, Cn) for all w G 

N(x) U x and cls(w) = 1. 
8: Dom <— Dom U m 
9: else if (cls(x) ^ 1 and Si(x) is not empty ) then 

10: m <— u € S\{x) : dist(u, Cn) < dist(w, Cn) for all w E S\(x). 
11: Dom <— Dom Um 
12: else 
13: for i <— 1 to the number of nodes in N(x) do 
14: if ( cls(i) < cls(x)) then 
15: the node x will wait the node i to finish 
16: end if 
17: end for 
18: m <— u E N(x) U x : u is not dominated and cls(u) = cls(x) and dist(u, Cn) < 

dist(w, Cn) for all w E N(x) U x and cls(w) = cls(x) and not dominated. 
19: Dom <— Dom U m 
20: end if 
21: x informs all its neighbors that a dominator selection in its truncated octahedron 

is completed and give them the results. 

4.3 Propert ies of 3D-LIDS 

Before we bound the size of the independent dominating set resulted from 3D-LIDS, 

we will describe some of its properties. Let Dom be the set of dominator nodes that 

results from applying 3D-LIDS on each node V. 
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4.3.1 Locality 

Lemma 4.2. The selection of a dominator in a truncated octahedron of Class i by 

Algorithm 4-1 depends only on the nodes that are at most i — 1 hops away from the 

nodes in the given truncated octahedron. 

Proof. We consider here two cases. Case 1: the selection of a dominator of a node in 

truncated octahedron (Tj) of class 1. This is done by checking only the nodes inside 

that Tj, which is not more than 1 hop away. Case 2: the selection of a dominator 

of a node in a truncated octahedron (Tj) of class i ^ 1. Here the algorithm waits the 

results that comes from neighbors nodes of lower classes, so eventually it will reaches 

nodes of class 1 after at most i — 1 steps. 

• 

Lemma 4.2 proves that the 3D-LIDS is a local algorithm because it terminates in 

a constant number of steps. 

4.3.2 Domination and Independence 

The 2D version of the following two lemmas are proved in [36], and the 3-D version 

of these lemmas are included here for completeness. 

Lemma 4.3. Let G be a connected UDG. Dom is a dominating set of G. 

Proof. Select a vertex v in G. We show that v is either in Dom or adjacent to a 

vertex in Dom. Assume that v is not in Dom. We consider the following two cases: 

1. If v is of class 1, then one of the nodes in the truncated octahedron containing 

v is designated as a dominator in line 7. 

2. If v is of class i > \ and at least one node of its truncated octahedron is 

not dominated by a node of an adjacent lower class, one of the nodes in the 

truncated octahedron is designated as a dominator in line 18. 
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In both cases, since the diameter of the truncated octahedron is 1, node v is 

dominated by the designated node. 

• 

Lemma 4.4. The Euclidean distance between any two nodes of Dora is more than 

one. Thus Dom is an independent set ofG. 

Proof. Any truncated octahedron contains at most one element of Dom. According 

to Lemma 4.1, the distance between any two vertices of different truncated octahedra 

of the same class is greater than 2. Thus, the dominators selected in the truncated 

octahedron of class i for any fixed i are independent. In a truncated octahedron 

of class i > 1, a dominator is designated in line 18 only as a vertex that is not 

dominated by an adjacent element in Dom of lower class. Thus the distance of a 

dominator belonging to class i to dominators of class j < i is more than 1. • 

4.3.3 Other Related Properties 

Lemma 4.5. For any dominator node u G Dom, there is at least another dominator 

v G Dom such that the hop distance between them is at most 3. 

Proof. For contradiction, assume there is no path in UDG between a node u G Dom 

and any other node v G Dom of length less than 3 hops. So the shortest path has 

at least 4 hops, u,xi,X2,Xs,v. By Lemma 4.2, It is clear that x\ and x$ are not 

dominators because they are neighbors to other dominators. This gives us two cases. 

1. X2 is a dominator which makes the hop distance between u and x<i equal to 2, 

a contradiction. 

2. X2 is a neighbor to a dominator node w which makes the hop distance between 

u and w equal to 3, a contradiction. 

• 
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(a) 

Figure 24: (a) Spherical triangle of equal length sides; (b) The worst-case of having 
m equal size spherical triangles on the surface of SQ 

Lemrirmia 4.6. For any node u, the number of dominators inside the sphere centered 

at u with a radius of k units is bounded by a constant rjk 

Proof. The proof is similar to that given in [11] for 2D. It is known that the distance 

between any two dominators is greater than one unit. Then the half-unit radius 

spheres centered at the dominators are disjoint. So to find how many dominators 

can lie inside a sphere of a radius K units centered at some node u, we have to find 

the ratio of the volume of the sphere of radius k + 0.5 to the volume of the disjoint 

spheres of radius 0.5. Thus 

Vk = 
U(k + 0.5)3 

]TT(0.5)3 

When k — 2 or 3, we have r/k = 125 or 343, respectively. 

(3) 

• 

T h e o r e m 4 .1 . Let G = UDG(V,E) be a unit disk graph and Dom be a set of 

dominators for G calculated by Algorithm 1. For any optimal dominating set Dom* 

of G, we have \Dom\/\Dom*\ < 24. Thus the competitive ratio of Algorithm 4-1 is 
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24. 

Proof. According to Lemmas 4.3 and 4.4, Dom is a dominating and independent set 

of G. Let Dom* be the minimum dominating set of G and TV be a vertex of Dom*. 

Consider the elements of Dom that are dominated by N, e.g. the nodes of Dom that 

lie in the sphere of radius r around N. We will call this sphere So- Consider the 

following two cases: 

• Case 1: If one of the elements in Dom is equal to N, then by Lemma 4.4, no 

other element of Dom can be in So-

• Case 2: If no element of Dom is equal to N, then by Lemma 4.4, the nodes 

from Dom are at a distance greater than r. So to maximize the number of nodes 

from Dom that are covered by N, they should be on the surface of 5o- Let xi 

be an element from Dom which lies on the surface of SQ] the second node, x2) 

should be, in the worst-case, exactly r units far from N and xi; the third node 

£3 should be exactly r units distance from N, x\ and x2. The shape that results 

from those 3 nodes is a spherical triangle ST. See Figure 24(a). The sides of 

this spherical triangle have equal angular lengths. 

In the worst-case there will be m equal size spherical triangles next to each 

other on the surface of 5o- See Figure 24(b). Thus the number of the spherical 

triangles m is equal to 

m = 
surface area of the sphere So 

(4) 
area of the spherical triangle ST 

The area of 5o = 47ir2. Let ST have the angles A, B and C (measured in 

radians at the vertices along the surface of the sphere), and the angular lengths 

of the sides of the triangle (in radians) be a = Zx\Nx2, b = Zx\Nxz and 

c = Zx2Nx3. Then the area of ST = r2[(A + B + C) - TT] (see [8, 22] for the 

proof). Since the distances between the 4 nodes x\, x2, £3 and N are equal, then 

65 



the angles A, B and C are equal, and the sides lengths are a = b = c = | [22]. 

Let s = | ( a + b + c) = | . It is known that 

.1 „. /sin(s - 6) sinfs - c) / sin2(f) 

2 y s i n s s i n ( s - o ) y sin | sin g 

Therefore, A = 2*tan-1(^(0.5)) w 1.231 and the area of ST = r2[(3.693)-TT] = 

0.551r2. By substituting this value in Equation (4), we obtain 

m = 
A-KT2 

0.551r2 22. (6) 

Thus, in the worst-case, around one node from Dom* there are 24 nodes from 

Dom: The first triangle adds 3 nodes and the rest of the triangles add one node 

each. This makes the competitive ratio of Algorithm 4.1 at most 24. 

• 

4.4 Connected Dominating Set Locally 

Our local algorithm to construct a CDS consists of two phases. In the first phase, 

an IDS is found using Algorithm 4.1. In the second phase, each dominator creates 

paths connecting dominators that are at most three hops apart. There are many 

algorithms proposed to connect a set of dominators [11, 12, 13, 46], most of them 

depend on using three hops node information. 

In our algorithm the connector node can be chosen between different candidates 

according to different heuristics; e.g. the node with the maximum power level, if the 

power saving is an important issue for the algorithm; the node closest to a dominator; 

or the node with the highest degree; (This latter heuristic is used in our algorithm 

description and the simulation results in Section 4.5). 
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Our algorithm for finding the connectors can be described as follows: each node 

x independently does the following: 

1. For every dominator node y in N2(x) with a lower class number than x. Node x 

chooses from N{x) a node u with the highest degree that creates a path (x, u, y). 

2. For every dominator node y in iV3(x), with a lower class number than x, or 

has the same class number as x but x is closer to the central class than y. 

Node x chooses two nodes u from N(x) and v from N2(x) that creates the path 

(x, u, v, y). u,v can be chosen according to the same heuristic above. 

Algorithm 4.2 shows our version of constructing a connected dominating set using 

three hop information. 

Algorithm 4.2 3D-LCDS 

1: Input Dominating set Dom resulting from Algorithm 4-1 
2: Output: Return a set of connectors nodes (Conn) that connect every dominator 

node x G Dom with some dominator located in N2(x) or N3(x). 
3: for every dominator node x E Dom do 
4: let N(x) is the set of one hop neighbors of x, N2(x) is the set of neighbors that 

are 2 hops away from x and NZ(x) is the set of neighbors that are 3 hops a 
way from x. Let Deg(x) is the number of nodes in N(x). 
for every dominator node y E N2(x) do 

if cls(x) < cls(y) then 
« t - i 6 N(x) : i E N(y) and Deg(i) < Deg(w) for all w G N{x) and 
w G N(y) 

8: Conn <— Conn U u 
9: end if 

10: end for 
11: for every dominator node y G N3(x) do 
12: if (cls(x) < cls(y)) or ( cls(x) = cls(y) and dist(x, Central Class) < 

dist(y, Central Class)) then 
13: (u,v) <— (i,j) : i G N(x) and j G N2(x) and j G N(i) and j E N(y) and 

Deg(i) < Deg(w) for all w G N(x) and w G N(j) and Deg(j) < Deg(k) 
for all k G N(y) and k E N(i) 

14 

15 

16 

17 

Conn <— Conn Ut iUi ; 
end if 

end for 
end for 
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Lemma 4.7. / / UDG is connected, then the set of dominators and connectors con­

structed by Algorithm 4-1 and Algorithm J^.2 is a connected dominating set. 

Proof. (By contradiction). Assume the set CDS = Dom U Conn has at least two 

distinct components, C\ and C2. let C2 is the closest component to C l , Since these 

two components are connected in the original UDG, then there is a path connects 

C l and C2. Consider the shortest path m,Xi,x2,X3, ...,n, such that m € Cl and 

n e C2. By Lemma 4.3, we have the following four cases: 

1. If the path length is equal to 4, e.g. the path is m, x\,x2, x%, n, see Figure 25(a), 

then Xi,X2 and x% are not dominators, other wise we will have a closer compo­

nent to C l than C2. But by Lemma 4.3, every node should be a dominator or 

a neighbor to a dominator, which makes x2 dominated by a node from another 

component, C3. Contradiction, C3 is closer to C l than C2. This case is the 

same for any path of length greater than 4. 

2. If the path length is equal to 3, e.g. the path is m,X\,x2,n, see Figure 25(b), 

then x\, x2 are not dominators and they are not dominated by other nodes from 

outside C l or C2, other wise we will have a closer component to Cl than C2. 

By Lemma 4.3, we have m and n are both dominators. By Algorithm 4.2, 

because the hop distance between m and n is 3. Node m or node n will select 

connectors between them according to their class number. Contradiction. 

3. If the path length is equal to 2, e.g. the path is m, Xi,n, see Figure 25(c), then 

Xi is not a dominator, other wise we will have a closer component to C l than 

C2. Then by Lemma 4.3, we have the following 4 subcases 

• If m is a dominated node (not dominator) and n is a dominated node, then 

X\ should be dominated by another node A; from from a third component 

C3 this makes C3 closer to C l than C2. Contradiction. 
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• If m is a dominator node and n is a dominated node (not dominator), then 

n should be dominated by another dominator node k from from C2 this 

makes the distance between node m and k equal to 3. By Algorithm 4.2, 

node m or node k will select connectors between them according to their 

class number. Contradiction. 

• If n is a dominator node and m is a dominated node (not dominator), then 

m should be dominated by another dominator node k from from C\ this 

makes the distance between node m and k equal to 3. By Algorithm 4.2, 

node n or node k will select connectors between them according to their 

class number. Contradiction. 

• If m is a dominator node and n is a dominator node, this makes the 

distance between node m and n equal to 2. By Algorithm 4.2, node m 

or node n will select a connector between them according to their class 

number. Contradiction. 

• 

Lemma 4.8. In the worst-case, the number of connectors added by Algorithm 4-2 is 

280 for every dominator. 

Proof. Let Dom be the set of the dominators calculated from Algorithm 4.1. Then 

from Lemma 4.6, in the worst-case, for any dominator node x the number of domi­

nators that are within 2 units radius sphere centered at x is 125, and the number of 

dominators within 3 units is 343. This means the number of dominator in N2(x) is 

at most 125, and the number of dominators in N3(x) = 343 — 125 = 218. 

If a dominator node x adds one node to connect x with every dominator in N2(x) 

and 2 nodes to connect x with every dominator in N3(x). Thus, in the worst-case 

the number of connectors added for each dominator is 125 + (2 * 218) = 561. 

But according to Algorithm 4.2, a dominator node x adds one node to connect x 

with the dominators in N2(x) that has a lower class numbers and 2 nodes to connect 
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Figure 25: Proof for Lemma 4.7 

x with every dominator in N2>{x) that has lower class number or with the same class 

number but with higher distance from the central node. Thus, Half of the connectors 

that are counted before is added to each dominator, which means the number of 

connectors are [561/2J = 280 

• 

It has been proved in [11] that the stretch factor of their connected dominating 

set is 3. This proof is applicable to our 3D-LCDS that results from Algorithm 4.2. 

4.5 Simulations and Results 

In order to evaluate the performance of our proposed algorithms, we conducted a 

simulation study for computing the IDS and CDS. We measured the size of the 

independent dominating set (IDS) generated by applying Algorithm 4.1 on each node 

in the network and the average number of connectors generated from Algorithm 4.2. 

Then we compared them with the global Greedy algorithm [34], and the Alzoubi 

algorithm in [11, 12, 13]. 
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In the simulation experiments, we run the algorithms on a randomized network 

environment, where a UDGs with 500 random nodes generated in a box of side length 

100. The transmission range r of the nodes is set to 5,10,15, or 20. In this way, we can 

control the density of the generated graphs, since the density of the generated graphs 

increases as r increases. To compute the average number of dominators and the aver­

age number of connectors, we run the algorithms on 25 graphs for each transmission 

range. 

In Figure 26, we show the number of nodes in the IDS compared with the dom­

inating set resulted from global Greedy and Alzoubi algorithm [12] in a randomized 

network environment. As expected, the global algorithm has the lowest average num­

ber of nodes in IDS. But surprisingly, our algorithm gave almost the same results 

as the Alzoubi algorithm [12] keeping in mind that our algorithm runs in a constant 

time compared with the linear time Alzoubi algorithm. Figure 27 shows the number 

of connectors required to connect the dominating sets from Figure 26. Our algorithm 

has a lower number of connectors than the Alzoubi algorithm [12]. 

71 



500 

450-

a 400 [ 

£ 350 
o 
-o 

•x 300 

T3 
O 
C 

250 

200 

| 150 

100 

50 

[ 1 1 

» Global Algorithm 

- • -The new local Algorithm 

—**—Alzoubi Algorithm [4] 
. 

-

10 15 
Transmission Range 

20 

Figure 26: The average number of nodes in the Dominating Set in random environ­
ment 

250 

o 
r̂  
a 
o 
O 

200 

150 

£>100h 

50 

-Global Algorithm 

- The new local Algorithm 

- Alzoubi Algorithm [4] 

10 15 
Transmission Range 

20 

Figure 27: The average number of connectors in random environment 

72 



Chapter 5 

Hybrid One-neighbor Forwarding 

Position Based Routing with 

Partial Flooding 

5.1 Introduction 

Deterministic progress-based routing algorithms like Greedy, Compass and MFR, in 

2D or 3D UDGs, have very low delivery rates if the network is sparse (the average 

node degree is small). In this chapter four groups of algorithms are proposed. AB 

algorithms increase the delivery rate for 2D but if we extend them to 3D, it is 

not obvious what is the best way to choose the candidate neighbors because there 

is no way to determine if a node is above or below the line passing through the 

source and destination nodes in 3D. Therefore, the first group is an extension of AB 

algorithm from 2D to 3D called AB3D. The second, third and the fourth groups are 

combinations of AB3D and other progress-based routing algorithms from one side 

and LAR3D algorithms from the other side. In the routing process we assume that 

the current node is c, the source node is s and the destination node is d. 

The 3D extension of the forwarding zone of LAR is defined as a rectangular box 
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Q with the two opposite corners s and s + (1 + \/3|r|/|rf — s\) * (d — s) (the minimum 

size rectangular box enclosing node s and the sphere of radius r around d). In the 

following descriptions of the new routing algorithms, any progress-based algorithm 

mentioned, such as Greedy, Compass and MFR, will refer to the 3D version of the 

algorithm. 

To help motivate the development of these new routing algorithms in the next 

sections, we will mention for initial comparison purposes the delivery rates (and in 

some cases the routing traffic) determined by representative simulations for unit disk 

graphs of 75 nodes, with transmission ranges of 25 units, randomly distributed in a 

cube with sides of length 100 units. 

5.2 Group 1: AB3D(m,R,S) 

In the following definitions, as in the 2D AB algorithm definition the symbol R will 

be used to represent one choice of several possible progress-based routing algorithms, 

that is, R is one of CM (as in Compass), GR (Greedy) or MFR. Similarly, the 

symbol S in the naming of the routing algorithms will be used to represent the 

probability weighting when randomly choosing between more than one candidate 

neighbors, where S is one of U, A, or D. Suppose that there are m possible candidate 

neighbors (a subset of all neighbors) to choose from, n\,... ,nm. If the symbol S is 

U, then the next node x is chosen uniformly at random from n*. If the symbol S is 

A or D, then the next node x is chosen from rij with probability (1 —Pi)/Y^k=\Pki 

where p% = 0j = Zriicd if S = A, or Pi = dist(rii, d) if S = D. If any of the nodes n* 

is not defined, then the algorithm uses the remaining available nodes. 

Assume that n\ is the closest point to d from N(c) (ni could be chosen according 

to a Compass-based measure, but in the simulations this does not lead to better 

results). Define the plane Pln\ that passes through c, d, and n\. Define the second 

plane Plri2 that is perpendicular to Pln\ such that the intersection line between the 
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Figure 28: Plane Pln\ passes through c,d and ri\, plane Pln2 perpendicular to Plri\ 
and both planes contain the line cd 

two planes is the line cd. See Figure 28. Each algorithm has three attributes, which is 

reflected in our naming convention: AB3D(m,R,S) where m is 3 or 5 which represents 

the number of candidate neighbors, R and S are defined as above. When m = 3, the 

two candidate neighbors in addition to n\ are chosen as follows. One neighbor n2 of 

c is chosen from the half-space above the plane Pln\ according to the R protocol. 

Similarly, one neighbor n^ of c is chosen from the half-space below the plane Plnx 

according to the R protocol. If m is 5, in addition to nj c uses the protocol R to 

choose from N(c) four neighbors n2, n^, 724, 715 each one in one side of the four regions 

that result for the intersection between Plni and Pln2. Once the set of candidate 

neighbors are determined, c forwards the packet to one of those candidates as chosen 

by the probability weighting determined by the symbol for 5 . Algorithm 5.1 gives 

pseudocode for this procedure for choosing the next node in AB3D(3,R,S). Using the 

representative simulation results for 75 nodes mentioned near the end of Section 5.1, 

we find that this set of algorithms increases the delivery rate to around 80% compared 

to about 63% for the 3D versions of the regular progress-based routing algorithms. 

See Section 5.6 for detailed simulation comparison results. 
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Algorithm 5.1 One step of AB3D(3,R,S) 

Input position of the current node c, the destination node d and N(c) 
Output: a node from N(c) called Next, which represents the next step of the packet. 
(1) nj <- gdy(c,N{c),d); 
(2) c computes the plane Pln\\ 
(3) c computes the list above which contains all the nodes above Pln\ from N(c), 
and the list below which contains all the nodes from N(c) below Plw,\. 
if (R=GR) then 

ri2 <— gdy(c, above, d) 
7i3 <— gdy(c, below, d) 

else if (R=CM) then 
ri2 *— cmp(c, above, d) 
nj, <— cmp(c, below, d) 

else 
?T,2 *— MFR(c, above, d) 
n3 <- MFR(c, below, d) 

end if 
if (S=U) then 

Next<— Choose uniformly at random one of ni,n2, n3 

else if (S=D) then 
sunup <— 0; 
for i <— 1 to 3 do 

Pi <— dist(rii, d) 
sumjp <— stmip + Pi 

end for 
Next<—Choose one of ni with probability equal (1 — Pi)/sunup; 

else if (S=A) then 
sumjp <— 0; 
for i <— 1 to 3 do 

Pi <- 0i ^- ^riicd 
sunup <— sump + p* 

end for 
Next*—Choose one of n* with probability equal (1 — p^ /'sum.p; 

end if 
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5.3 Group 2: ABLAR(m,R) 

All the algorithms in ABLAR use the same space partition at the current node c as 

in the AB3D algorithms. See Figure 28. Similar to AB3D, each algorithm has two 

attributes, which is reflected in our naming convention: ABLAR(m,R) where m is 

3 or 5 which represents the number of candidate neighbors, R is one of CM (as in 

Compass), GR (Greedy), or MFR, as before. Also each algorithm defines n1 ; Pln\ 

and Plri2 as for the AB3D algorithms, if needed. We show two examples of this class 

of algorithms as follows: 

ABLAR(3 ,CM): the current node c uses the Compass algorithm to choose from 

N(c) one node 77.2 above the plane Pln\ and another node 77,3 below Plri\. Then 

c forwards the packet to all the n* that lie inside the box Q. If any of the those 

candidate nodes get the message for the second time, the node just ignores it and 

does not forward it. Figure 29 shows an example of the forwarding process. 

ABLAR(5 ,GR): c uses the Greedy algorithm to choose four neighbors 77-2, 713, 77,4 

and 715 from N(c), each one in each of the four regions that result for the intersection 

between Plrii, Pln^. And then c forwards the packet to all those selected neighbors 

rii that are inside the box Q. Using the example simulation results for 75 nodes, 

ABLAR(5,GR) has a delivery rate of more than 99% but with traffic of around 11. 

5.4 Group 3: T-ABLAR(m,R)~T 

Although the delivery rate has been increased in the previously mentioned algorithms, 

the traffic that is caused by these algorithms is relatively high, see Section 5.6. In 

the following set of algorithms we try to decrease this traffic by utilizing a progress-

based routing algorithm such as Greedy, Compass or MFR (the type is determined 

according to T), for as long as the packet can make progress towards the destination. 

When it reaches a local minimum, it changes to ABLAR(m,R) for one step and 

then progress-based routing is resumed. Note that during the ABLAR(m,R) step, 
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Figure 29: With ABLAR(3,R), the current node chooses up to 3 neighbors and for­
wards the packet to all of those inside the flooding area Q (the shaded box) 

if a receiving neighboring node has seen the packet before, it will just drop it. See 

Figure 30 for an example of the execution of an algorithm of this group. Algorithm 5.2 

gives pseudocode outlining how MFR-ABLAR(3,GR)-MFR works. Using the example 

simulation results for 75 nodes, the delivery rate for MFR-ABLAR(5,GR)-MFR is 

around 88% and the traffic is around 4.3. 

5.5 Group 4: AB3D-ABLAR(m,R) 

The previous group of algorithms decreased the traffic of ABLAR, but unfortunately 

it does not achieve a similar delivery rate, see Section 5.6. The fourth group AB3D-

ABLAR has both the advantages of all the algorithms above: very high delivery rate 

while at the same time low traffic. An algorithm in this group starts with any one 

of the nine distinct AB3D algorithms. Once a threshold is passed in terms of the 

number of hops, the algorithm permanently switches to ABLAR and it does not go 

back again to AB3D. How the threshold value is chosen will be discussed in Section 

5.6 where the experimental results are presented. Figure 31 gives an example of the 

path followed by the algorithm. When the packet starts at the node s, AB3D used 
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Algorithm 5.2 MFR-ABLAR(3,GR)-MFR algorithm 

Input Source node s, the destination node d. 
Output: Return success if the destination is reached, 
c <— s 
while (true) do 

while (!(reach d) or !(Local Minimum)) do 
c<- MFR(c,N{c),d) 

end while 
if (the packet arrives at d) then 

return success 
end if 
if (Local Minimum) then 

Use ABLAR(3,GR) to choose 3 nodes n\,n2, and n$. 
for i <— 1 to 3 do 

MFR-ABLAR(3,GR)-MFR(nz,d) 
end for 

end if 
end while 

Figure 30: The packet started at s using progress-based routing like Compass until it 
reaches the local minimum y. ABLAR is used for one step and then progress-based 
routing is resumed 
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Figure 31: AB3D-ABLAR algorithm example. 

until the packet reaches y, the local minimum node. The randomized character of 

AB3D allows the algorithm to pass y. AB3D continues until the threshold is reached 

at the node z, at which point the algorithm switches to ABLAR. 

There are three differences between this group of algorithms and T-ABLAR-T: (i) 

T-ABLAR-T is a deterministic algorithm while AB3D-ABLAR is a randomized algo­

rithm, (ii) In T-ABLAR-T the algorithm switches to ABLAR if the local minimum 

is reached, while in AB3D-ABLAR it switches if a threshold is reached. The reason 

for using a threshold is based on the algorithm proposed in [106], where although the 

packet reaches a local minimum it can still be forwarded to the node with the least 

backward (negative) progress to the destination, (iii) In T-ABLAR-T, the algorithm 

uses ABLAR for just one step, then it goes back to T, while AB3D-ABLAR algorithm 

just keeps using ABLAR. 

5.6 Simulations and Results 

In this section we describe the simulation environment, demonstrate and interpret the 

results, and compare the new algorithms with other deterministic and randomized 

routing algorithms. 
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5.6.1 Simulation Environment 

In the simulation experiments, a set V of n points (where n € {65,75,85,95}) is 

randomly generated in a cube with sides of length 100 units. The maximum trans­

mission radius of each host is set to 25 units. We first calculate the UDG for V. If the 

graph is connected, it is used in the simulation, otherwise it is discarded. We set the 

threshold to n (this threshold is used for the randomized AB3D(m,R,S) and AB3D-

ABLAR(m,R) algorithms). The source and the destination nodes are then randomly 

picked from the generated graph. It is suggested in [75] to consider simulations with 

node density per unit disk of around 5 in 2D environment, which would correspond to 

the graph with an average node degree of around 4. Figure 32 illustrates a histogram 

of the node degrees for the graphs with the chosen simulation values n. Graphs with 

n = 65 are closest to the node density of interest while graphs with fewer nodes typi­

cally have very tree-like structure. When n is larger than 95, a substantial percentage 

of nodes have degrees larger than 6 which indicates highly connected graphs. 

An algorithm succeeds if a path to the destination is found. To compute the 

packet delivery rate, this process is repeated with 100 random connected graphs and 

the percentage of successful deliveries determined. To compute the average packet 

delivery rate, the packet delivery rate is determined 100 times and an average taken. 

Additionally, out of the 10,000 runs used to compute the average packet delivery 

rate an average of overall traffic is computed. Since there are more than 50 different 

combinations of the algorithms, it's difficult to show all of these combinations, thus 

we select some of the algorithms which gave the most interesting results. We provide 

several different analyzes: a comparison of the algorithms on UDGs with 75 nodes, a 

comparison of the effect of the number of nodes on algorithm performance, a study 

of the effect of the threshold on the randomized algorithms, and a comparison of the 

effect of the number of candidate neighbors in associated algorithms across UDGs 

with different number of nodes. In each analysis we study the delivery rate and 

traffic versus the node density, and the threshold. 
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Figure 32: Histogram of the average node degrees of the 10, 000 generated unit disk 
graphs 

5.6.2 Results 

We present a comparison between the different groups of algorithms in terms of 

packet delivery rate and overall traffic in Table 3. For comparison purposes, just 

two algorithms from each group with n = 75 are presented. It is immediately evident 

from the result given in Table 3 that deterministic progress-based algorithms (Greedy, 

Compass and MFR) have the lowest delivery rates (less than 65%) which yields the 

low traffic because the packets that fail to arrive to the destination are not counted in 

the traffic. The first group of randomized algorithms AB3D comes after that with a 

delivery rate over 79% and average traffic around 3.5. The delivery rate of the second 

group of ABLAR algorithms, with m = 5, reaches to 99% but these algorithms have 

the second worst average traffic (around 11.5 for n = 75) after LAR3D with traffic 

around 13. The third group T-ABLAR-T reaches a 88% delivery rate with traffic 

around 4. The fourth group AB3D-ABLAR decreases the average traffic compared 

to LAR3D by more than 55% while still reaching a 99% delivery rate. All our results 

have a 95% confidence intervals. 
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Table 3: Average packet delivery rate and average traffic for selected algorithms in 
UDG with n = 75. 

Group 1 

Group 2 

Group 3 

Group 4 

Algorithms 

COMPASS 

GREEDY 

MFR 
AB3D(3,MF,D) 
AB3D(3,CM,A) 
ABLAR(5,CM) 
ABLAR(5,MP) 

MF-ABLAR(5,GR)-MF 
GR-ABLAR(5,GR)-GR 

AB3D(3,CM,A)-ABLAR(5,GR) 
AB3D(3,GR,D)-ABLAR(5,GR) 

LAR3D 

Delivery rate Average traffic 

63.43 1.04 
62.60 1.02 
62.78 1.03 
81.88 3.04 
79.16 3.40 
99.37 11.43 
99.36 II.48 
88.61 4.30 
87.49 3.20 
99.18 6.97 
99.15 6.24 
99.62 13.84 

Effect of the network density. Figure 33 and Figure 34 illustrate the effect of 

the number of nodes (network density) on the performance of the algorithms. In all 

the algorithms, as the number of nodes increases, the delivery rate also increases. For 

groups 1 and 4, this can be explained by the randomization process for the algorithms. 

Increasing the number of nodes means there is a greater chance for a good route to 

the destination. For groups 2, 3, and 4 increasing the number of nodes gives a better 

chance of the current node to find a candidate neighbor for the partial flooding process 

to succeed, which gives a better chance to reach the destination. Figure 34 shows 

how the traffic is affected by the network density. Because increasing the number 

of nodes implies increasing the possibility of long detours being discovered during 

randomized routing, the traffic is increased in AB3D. For groups 2, 3 and 4 there 

is an increase in the number of flooded nodes, which increases the traffic. All the 

conclusions from Table 3 apply for any node density. Therefore, the fourth group of 

algorithms continues to have 55% of the traffic as used by LAR3D while at the same 

time obtaining a nearly the perfect delivery rate. 
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Figure 35: The packet delivery rate at different thresholds (box side = 100 units, 
maximum transmission range = 25 units) 

Effect of the threshold. Figure 35 and Figure 36 show the effect of varying the 

threshold value on the average delivery rate and average traffic of some randomized 

algorithms from groups 1 and 4. We find that when the threshold is set to n the rel­

ative behavior of the algorithms is established and the difference between algorithms 

is clear. The delivery rate of all algorithms increases when increasing the threshold, 

and this is very clear with the AB3D algorithms, with 5 candidate neighbors. Since 

the increase of the delivery rate means more successfully delivered packets added to 

the average traffic, then the average traffic would be expected to increase. The simu­

lation results in Figure 36 confirm this expectation, with an increase in average traffic 

corresponding to the increase in threshold. 

Effect of the number of candidate neighbors, m. Figure 37 and Figure 38 

depict the effect of the candidate neighbors m in the new algorithms with different 

graphs densities. We find AB3D(3,R,S) algorithms have a higher delivery rate than 

AB3D(5,R,S). This is because, with a larger selection of candidate neighbors from 
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Figure 36: The average traffic at different thresholds (box side = 100 units, maximum 
transmission range = 25 units) 

which only one is chosen randomly, there is a greater chance of the path being de-

toured and not delivering the packet before the threshold of n is passed. For ABLAR 

algorithms (and those hybrid algorithms using the ABLAR algorithms), m — 5 is 

found to give higher delivery rates with the trade-off of higher traffic. By flooding 

with more neighbors, there is a greater chance of discovering a successful path with 

the price of more traffic. The values of m for all the algorithms that give the higher 

delivery rates have been used for the other comparisons of the algorithms. 
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Chapter 6 

Randomized Position-based 

Routing Algorithms 

In the previous chapter we showed a combination between some deterministic progress-

based routing algorithms with partial flooding algorithms LAR3D. To avoid the flood­

ing, in this chapter we show two new groups of 3D-position-based routing algorithms 

which combine randomized AB3D(3, R, S) routing algorithms with CFace routing [2], 

6.1 AB3D(3,R,S)-CFace(l)-AB3D(3,R,S) 

This group of hybrid algorithms starts with any one of the nine distinct AB3D(3,R,S) 

algorithms. Once a local threshold is passed in terms of the number of hops and we 

arrive at a local minimum, the algorithm switches to CFace(l) starting from the local 

minimum c as the new source node. If the destination is not reached during CFace(l) 

and looping occurs, the algorithm goes back to AB3D(3,R,S) and the count for the 

local threshold restarts at 0. In this algorithm, the reason for using a local threshold 

is based on the algorithm in [106], where although the packet reaches a local minimum 

it can still be forwarded to the node with the least backward (negative) progress. 

In addition to the local threshold, the algorithm uses a global threshold to drop 
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the packet if the total number of hops exceeds the global threshold. AB3D(3,R,S)-

CFace(l)-AB3D(3,R,S) is given in Algorithm 6.1. 

Algorithm 6.1 AB3D(3,R,S)-CFace(l)-AB3D(3,R,S) 

1: Input source node s, the destination node d local threshold LTH and global thresh­
old GTE. 

2: Output: return True if the destination is reached or False other wise. 
3: repeat 
4: LPath.Length <— 1 
5: Call AB3D(3, R, S) routing 
6: if the packet arrive then 
7: return (True) 
8: end if 
9: if (local min) and (LPath.Length >LTH) then 

10: Randomly choose one of the planes xy, yz or xz 
11: Project all nodes on the selected plane 
12: Call Face routing starting from current node c 
13: During face routing 
14: if the packet reach the destination then 
15: return (True) 
16: else if loop happens then 
17: go to 3 with the current node c as new source 
18: else 
19: Face routing continues. 
20: end if 
21: end if 
22: until GTH is reached 
23: return (False) 

6.2 AB3D(3,R,S)-CFace(3) 

The main difference between this set of algorithms and the AB3D(3,R,S)-CFace(l)-

AB3D(3,R,S) algorithms is that instead of going back to AB3D(3,R,S) if the first 

projective plane fails, these try other projective planes. The algorithms also start 

with AB3D(3,R,S). If a threshold is reached together with a local minimum, the 

algorithm switches to CFace(l) using the xy plane. Again if a loop happens the 

algorithm goes to yz plane. Finally, if yz plane fails, the algorithm switches to xz 
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plane. AB3D(3,R,S)-CFace(3) is summarized in Algorithm 6.2. 

The key advantage of these hybrid algorithms is the improvement in performance 

over randomized AB3D(3,R,S) algorithms and CFace(3) algorithm, with a decrease 

of the large path dilation caused by CFace(3) routing algorithm. In the next section, 

we show the simulation results which illustrate the advantages of our algorithms. 

Algorithm 6.2 AB3D(3,R,S)-CFace(3) 

Input source node s, the destination node d and local threshold LTH. 
Output: return True if the destination is reached or False other wise. 
Call AB3D{3, R, S) routing 
if the packet arrive then 

return (True) 
end if 
if (local min) and (path length>LTH) then 

w <— c 
Counter <— 1 
while (counter < 4) do 

switch(counter) 
case 1: CurrentPlane <— xy plane 
case 2: CurrentPlane <— yz plane 
case 3: CurrentPlane <— xz plane 

endswitch 
Project all nodes on the selected plane 
Call Face routing starting from current node c 
During face routing 
if the packet reach the destination then 

return (True) 
else if loop happens then 

Counter <— counter + 1 
go to 10 with the current node c as new source 

else 
Face routing continues. 

end if 
end while 

end if 
return (False) 
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6.3 Simulations and Results 

In this section we describe our simulation environment, and then we show and in­

terpret our results, comparing our algorithms with deterministic routing algorithms 

Greedy, Compass, Ellipsoid and CFace(3). 

6.3.1 Simulation Environment 

In the simulation experiments, a set V of n points (where n G {65,75,95,105}) is 

randomly generated in a cube of side length 100. The maximum transmission radius 

of each host is set to 25. We set the global-threshold to 2n and the local-threshold 

to n. We first calculate all components in the graph. Then we select the largest 

component (LC) among all the components to perform the routing algorithms. The 

source and destination nodes are then randomly picked from LC. 

Average packet delivery rate and path dilation are computed as in Section 5.6.1. 

Since we have more than eighteen different combinations of the algorithms, it is 

difficult to show all of these combinations, thus we show the some algorithms which 

gave the most interesting results. We provide three separate analyzes. In these 

analyzes we study the delivery rate and path dilation versus the node density, the 

threshold and the subgraph type. In all graphs we just show the best algorithm in 

each proposed class. 

6.3.2 Results 

We present the comparison between different groups of algorithms in terms of packet 

delivery rate and path dilation in Tables 4, 5 and 6. For comparison purposes, we 

will focus on n = 75, and n — 95. It is immediately evident form the result given 

in Table 4 that the delivery rate of CFace(3) jumps to 94%, but this algorithm 

has by far the worst path dilation (around 10 for n — 75). Our new algorithm 

AB3D(3,R,S)-CFace(l)-AB3D(3,R,S) almost reaches the delivery rate of CFace(3), 
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Table 4: Average packet delivery rate, DR, and average path dilation, PD, in UDG. 

Algorithms 
COMPASS 

GREEDY 

CFACE(3) 

AB3D(3,CM,D) 
AB3D(3,CM,A) 
AB3D(3,GR,D) 
AB3D(3,GR,A) 

A B 3 D ( 3 , C M , D ) : C F A C E ( 3 ) 

A B 3 D ( 3 , C M , A ) : C F A C E ( 3 ) 

A B 3 D ( 3 , G R , D ) : C F A C E ( 3 ) 

A B 3 D ( 3 , G R , A ) : C F A C E ( 3 ) 

AB3D(3,CM,D) 
AB3D(3,CM,A) 
AB3D(3,GR,D) 
AB3D(3,GR,A) 

C F A C E ( I ) 

C F A C E ( I ) 

C F A C E ( I ) 

C F A C E ( I ) 

AB3D(3,CM,D) 
AB3D(3,CM,A) 
AB3D(3,GR,D) 
AB3D(3,GR,A) 

n = 75 
DR PD 
63.60 1.03 
62.56 1.02 
94.53 9.87 
80.37 3.02 
76.91 3.41 
79.90 2.99 
76.91 3.35 
97.76 6.25 
97.49 7.33 
97.54 6.37 
97.28 7.27 
92.90 4.97 
92.61 5.84 
92.71 5.04 
92.13 5.89 

n = 95 
DR PD 
65.74 1.05 
64.22 1.03 
95.56 14.59 
85.68 3.22 
84.25 3.70 
84.94 3.20 
83.68 3.55 
98.04 6.91 
97.85 7.58 
97.92 6.98 
98.04 7.82 
94.53 5.35 
94.59 6.01 
94.15 5.46 
94.03 6.09 

but it decreases the path dilation by 50%. The best delivery rate with over 97% is 

found in AB3D(3,R,S)-CFace(3) and also has a lower path dilation than CFace(3) 

algorithm. We find, from Tables 4 to 6, that the algorithms based on AB3D(3,C,D) 

and AB3D(3,G,D) have the best performance in terms of delivery rate and path di­

lation. 

Effect of using a subgraph of U D G for routing. In Figure 39 we can see the 

influence of the subgraph on the delivery rate. In Figure 40 we show the influence 

of the subgraph over the path dilation. First, in terms of delivery rate, as expected, 

the deterministic and randomized AB3D(3,R,S) algorithms delivery rate decreased 

over both GG and RNG graphs, due to potentially fewer neighbors available in the 

progress direction. 

Our new hybrid algorithms have roughly the same best performance on all three 

graphs. CFace(3) has the best delivery rate on Gabriel subgraphs, followed by RNG 

and then on UDG. This can be explained also by considering the number of edges; 
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Table 5: Average packet delivery rate, DR, and average path dilation, PD, in GG. 

Algorithms 
COMPASS 

GREEDY 

CFACE(3) 

AB3D(3,CM,D) 
AB3D(3,CM,A) 
AB3D(3,GR,D) 
AB3D(3,GR,A) 

A B 3 D ( 3 , C M , D ) : C F A C E ( 3 ) 

A B 3 D ( 3 , C M , A ) : C F A C E ( 3 ) 

A B 3 D ( 3 , G R , D ) : C F A C E ( 3 ) 

A B 3 D ( 3 , G R , A ) : C F A C E ( 3 ) 

A B 3 D ( 3 , C M , D ) : C F A C E ( 1 ) 

A B 3 D ( 3 , C M , A ) : C F A C E ( 1 ) 

A B 3 D ( 3 , G R , D ) : C F A C E ( 1 ) 

A B 3 D ( 3 , G R , A ) : C F A C E ( 1 ) 

AB3D(3,CM,D) 
AB3D(3,CM,A) 
AB3D(3,GR,D) 
AB3D(3,GR,A) 

n = 75 
DR PD 
60.95 1.02 
60.43 1.02 
95.03 8.73 
79.96 3.60 
75.39 4.20 
79.60 3.59 
75.44 4.18 
97.80 6.51 
97.47 7.93 
97.67 6.51 
97.46 7.84 
93.70 5.56 
92.77 6.90 
93.12 5.53 
92.39 6.85 

n = 95 
DR PD 
62.53 1.03 
62.47 1.03 
94.83 11.58 
84.27 3.86 
81.93 4.56 
84.38 3.86 
81.10 4.48 
98.05 6.83 
97.64 8.11 
97.90 6.80 
97.69 8.27 
94.55 5.74 
94.52 6.99 
94.52 5.93 
94.16 6.90 

fewer edges implies fewer crossing edges in the projected face which means less chance 

for the packet to enter a loop. In terms of the path dilation, the algorithms depend 

on AB3D have the best path dilation over UDG graph, but in both Gabriel subgraph 

and relative neighborhood graph the path dilation is increased for the same reason 

mentioned above. On these subgraphs, CFace(3) algorithm the path dilation has been 

decreased because there is less chance for the packet to enter a loop, which means no 

new projective planes. 

Effect of the network density. In Figure 41 we illustrate the effect of the 

number of nodes (network density) on the performance of the algorithms. In all the 

algorithms, as the number of nodes increased the delivery rate also increased. This 

is because most of the proposed algorithms depend on the randomized AB3D which 

means there is a better chance for a good route to the destination. When n is equal 

to 65 the delivery rate does not follow the above trend, because the LC is very small, 

which implies that the path between any pair of nodes is relatively short. Figure 42 

94 



50-
.4 

" t 

• 

% 

* 

* 

i — 

-

UDG GG 
Geometric Graphs 

RNG 

Figure 39: The packet delivery rate for different geometric graphs; see Figure 40 
legend 

12 

11 

10 

9 

.2 8 

J 7 
Q 

•5 B 

0- 5 

4 

3 

2 

1 

-
-

IJ&&1 Compass 
^SAB3D(3,CM,D) 
EZDABSDtS.CM.DllCFaceflJiABSDfS.CM.D) 
f a ? 1 AB3D(3,CM,D):CFace(3) 
V~-~1CFace(3) 

r—i 

n 

,—| 
i — | 

7 ~ 

n 

— -

. 

. 

FT 
GG 

Geometric Graphs 

Figure 40: The average path dilation for different geometric graphs 

95 



Table 6: Average packet delivery rate, DR, and average path dilation, PD, in RNG. 

Algorithms 
COMPASS 

GREEDY 

CFACE(3 ) 

AB3D(3,CM,D) 
AB3D(3,CM,A) 
AB3D(3,GR,D) 
AB3D(3,GR,A) 

AB3D(3,CM,D):CFACE(3) 
A B 3 D ( 3 , C M , A ) : C F A C E ( 3 ) 

A B 3 D ( 3 , G R , D ) : C F A C E ( 3 ) 

A B 3 D ( 3 , G R , A ) : C F A C E ( 3 ) 

AB3D(3,CM,D) 
AB3D(3,CM,A) 
AB3D(3,GR,D) 
AB3D(3,GR,A) 

C F A C E ( I ) 

C F A C E ( I ) 

C F A C E ( I ) 

C F A C E ( I ) 

AB3D(3,CM,D) 
AB3D(3,CM,A) 
AB3D(3,GR,D) 
AB3D(3,GR,A) 

n = 75 
DR PD 
52.58 1.02 
52.81 1.01 
94.57 8.30 
71.48 4.14 
61.12 4.93 
71.68 4.13 
61.75 4.96 
97.41 7.96 
97.21 10.26 
97.71 7.89 
97.18 10.29 
91.71 6.85 
90.40 9.01 
91.94 6.89 
90.43 8.90 

n = 95 
DR PD 
51.76 1.02' 
51.94 1.02 
95.40 10.85 
75.52 4.87 
65.07 5.67 
75.25 4.84 
65.82 5.75 
98.02 9.07 
97.32 12.01 
97.71 8.88 
97.47 11.82 
93.24 7.70 
92.24 10.30 
93.67 7.74 
91.86 10.48 

shows how the path dilation is effected by the network density. Because increasing the 

number of nodes implies increasing the possibility for long detours being discovered 

during randomized routing, the path dilation is increased. For CFace(3) there is an 

increase in the number of crossing edges, which means greater chance for entering 

into loops, therefore increasing the probability of having to project to the second and 

third plane. 

Effect of the threshold. Figure 43 and Figure 44 show the effect of varying the 

threshold value on the average delivery rate and average path dilation of all studied 

algorithms. We find that when the threshold is set to n the relative behavior of 

the algorithms is established and the difference between algorithms is clear. The 

delivery rate of all algorithms can been increased by increasing the threshold, and 

this is very clear with the AB3D(3,R,S) algorithm. Since the increasing of the delivery 

rate means more successfully delivered packets added to the average path dilation, 

then the average path dilation is expected to increase. The simulation results also 
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confirm this expectation, with an increase in average path dilation corresponding to 

an increase in threshold. 
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Chapter 7 

Power-aware Position-based 

Routing Algorithms using 

Adjustable Transmission Ranges 

for 3D Ad Hoc and Sensor 

Networks 

In this chapter, we propose several new 3D position-based, local power-aware routing 

algorithms for ad hoc wireless network. These algorithms attempt to maximize the 

average network survivability. In the next Section we give a detailed description of 

the new routing algorithms. Experimental results to demonstrate the much improved 

performance of the proposed methods in comparison with existing techniques are 

presented in Section 7.3. 
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7.1 New Power-aware Position-based Routing Al­

gorithms 

7.1.1 Power-aware Greedy (PAG) 

Most of the routing algorithms without power-awareness use a fixed transmission 

range for all the nodes, so the nodes may waste power by transmitting more than 

is needed for correct reception. The power-aware algorithms described in Chapter 2 

use an adaptive transmission range to transmit the data messages during the routing 

process, but they still use a fixed (maximum) transmission range for the control 

messages (periodic hellos) to tell neighboring nodes about their location. Our new 

power-aware routing protocols are based on adjustments of the node transmission 

power at two stages: (i) while discovering the neighboring nodes, and (ii) during the 

routing process. 

In PAG, the nodes use the optimal transmission range (((3/(a — l))1 /"), if possible, 

every 7 seconds for periodic discovery control messages. Whenever the degree of 

the node drops below g, it instead uses the maximum transmission range for the 

periodic discovery control messages 77 times, and then it goes back to use the optimal 

transmission range, where 77, g and 7 are network dependent. 

Table 7 gives an example of how the node changes its transmission range of the 

periodic discovery control messages depending on the node degree. In this example 

let 7 = 3, 77 = 4 and g — 4. Since the degree at time 0 is greater than 4, the node uses 

the optimal transmission range at time 3, which is the next time interval. At time 

6 the node finds that the degree is dropped to less than 4 so it uses the maximum 

transmission range in the next 4 times intervals 9,12,15 and 18, then at time 21 it 

tests the optimal transmission range again. 

Greedy routing is used for routing between the source and destination. If the 

packet reaches a local minimum at the low transmission level, then the current node 

101 



Table 7: example of how the node changes the transmission range of the periodic 
discovery control messages depending on the node degree, 7 = 3, 77 = 4 and g = 4 

Time 

Transmission range 
Node degree 

Time 

Transmission range 
Node degree 

0 

0 
5 

13 

6 

1 

5 

14 

6 

2 

5 

15 

M 
8 

3 

0 
6 

16 

8 

4 

6 

17 

8 

5 

6 

18 

M 
7 

6 

0 
3 

19 

7 

7 

3 

20 

7 

8 

3 

21 

0 
5 

9 

M 
7 

22 

5 

10 

7 

23 

5 

11 

7 

24 

0 
4 

12 

M 
6 

25 

4 

increases its transmission range to its maximum and runs the neighbor nodes dis­

covery step again. Figure 45 gives an example of this process. If a node does not 

discover a new neighbor that makes progress to the destination, then the algorithm 

fails, otherwise Greedy routing continues. The details of the algorithm are given in 

Algorithm 7.1. 

There are two main differences between PAG and the non-power-aware Greedy 

algorithm. First, during the neighbor discovery phase, in PAG all the nodes exchange 

periodic hello messages with the optimal transmission range. In Greedy, all the nodes 

exchange information by transmitting and receiving using the maximum transmission 

range. Also, during the routing phase (data packet routing process), in PAG the 

current node c forwards the message with a power cost equal to lha + (3, where h is 

the distance between c and the next node, while Greedy forwards the message with 

power cost equal to £ra + /3, where r is the maximum transmission range. 

7.1.2 Power-aware Greedy-Cost (PAGC) 

This algorithm is similar to PAG algorithm, but the main difference is in the Greedy 

part, it uses the Cost Progress idea from [76] as follows. When the packet arrives at 

some node c, instead of choosing the closest neighbor to the destination as a second 

node, PAGC chooses the neighbor that makes progress to the destination and has the 

maximum remaining energy. 
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Algorithm 7.1 PAG 

1: Input source node s, the destination node d, The time between two consecutive 
neighbors' discovery 7, the number of times of using the maximum transmission 
range rj, and degree threshold g. 

2: Output: True if the packet arrives to d, and False otherwise. 
3: for each node do 
4: if {Maximum-transmission range < {13/{a — l))1/") then 
5: Optimal-transmission *— Maximum-transmission range. 
6: else 
7: Optimal-transmission <— {(3/{a — l))1 / / a 

8: end if 
9: end for 

10: if (the node w with the Optimal-transmission range has enough neighbors, greater 
than Q at time t) then 

11: w uses the Optimal-transmission range for discovering neighbors in the next 
time interval after 7 seconds (at time t + 7). 

12: else 
13: w uses the Maximum-transmission range for discovering neighbors in the next 

r\ time intervals ( at times t + 7, t + 27,.., t + 777). 
14: end if 
15: while (the packet does not arrive to d) do 
16: if (the current node does not have a neighbor that makes a progress to d) then 
17: if (the current node does not use the Maximum-transmission range) then 
18: The node uses the Maximum-transmission range to send a control message 

asking for neighbors. 
19: The nodes that make a progress to d inside the new sphere (Radius) send 

back a control message telling about their positions. 
20: if (there is a new neighbor that makes a progress to d) then 
21: The current node sends the packet to the node that makes the greatest 

progress to d 
22: else 
23: return (False) 
24: end if 
25: else 
26: return (False) 
27: end if 
28: else 
29: The current node sends the packet to the neighbor node that makes greatest 

progress to d. 
30: end if 
31: end while 
32: return (True). 
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Figure 45: PAG algorithm, The packet arrives to the node B which is local minimum, 
so it increases the transmission range to the maximum 

7.1.3 PAG:CFace(3) 

The previous algorithms PAG, PAGC and their associated fixed power Greedy algo­

rithm have a great advantage in terms of power saving. In our simulations, though, 

they suffer from low delivery rates if the network is very sparse. Our solution is similar 

to the solution used in Chapter 6 which is CFace routing if the PAG algorithm fails 

to deliver the message. The combination is called PAG:CFace(3) and is summarized 

in Algorithm 7.2. 

7.1.4 PAG:CFace(l) :PAG 

Our second hybrid algorithm starts with PAG algorithm. Once a local minimum 

is reached at low transmission range, the current node holding the packet adjusts 

its transmission range. If it stays in the local minimum situation the algorithm 

extracts locally the 3D-GG graph from the UDG and projects it on one plane, which 

is randomly one of the yx, yz or xz planes, and then it switches to CFace(l). CFace(l) 

traverses that projective plane starting from the local minimum node as the new 

source node. When the packet reaches a node closer to the destination than the 
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Algorithm 7.2 PAG:CFACE(3) 

Input source node s, the destination node d, and a threshold TH 
Output: True if the packet arrives to d, and False otherwise. 
Let c be the current node holding the packet during the routing algorithm 
Call PAG routing algorithm. 
if (c adjusts its transmission range, and after that, it stays in the local minimum 
situation) then 

w <— c 
Extract 3D-GG from the UDG 
Counter <— 1 
while (counter < 4) do 

switch(counter) 
case 1: CurrentPlane <— xy plane 
case 2: CurrentPlane <— yz plane 
case 3: CurrentPlane <— xz plane 

endswitch 
Project the 3D-GG on the CurrentPlane 
Call Face routing on the projected graph starting from w 
During face routing in 16: 
if The packet arrives to d then 

return (True) 
else if (the length of the path on the CurrentPlane is greater than TH) 
then 

Counter <— counter + 1 
else 

Face routing continues. 
end if 

end while 
return (False) 

end if 
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local minimum, the algorithm switches back to the PAG routing algorithm on the 

UDG, and so on. The algorithm drops the packet if the path length exceeds a specific 

threshold. 

Algorithm 7.3 PAG:CFace(l):PAG 

1: Input source node s, the destination node d and the threshold TH 
2: Output: True if the packet arrives to d, and False otherwise. 
3: Let c be the current node holding the packet during the routing algorithm 
4: if (c is a neighbor to d) then 
5: return (True) 
6: end if 
7: if (the path length > TH) then 
8; return (False) 
9: end if 

10: call PAG algorithm. 
11: if (c adjusts its transmission range, and after that, it stays in the local minimum 

situation) then 
12 

13 

14 

15 

16 

17 

18 

19 

20 

w <— c 
Extract 3D-GG from the UDG 
Project the 3D-GG on xy,yz or xz plane, which is chosen randomly, 
Call Face routing on the projected graph starting from w 
During Face routing in 14: 
if (dist(c,d) < dist(w,d)) then 

call(PAG:CFace(l):PAG) starting from the current node c 
end if 

end if 

PAG:CFace(l):PAG is summarized in Algorithm 7.3. Figure 46 shows an example 

of this algorithm: when the increasing of the transmission range at the local minimum 

node B did not give it any new neighbor that makes progress, the algorithm extracts 

the 3D-GG and projects it on the xz plane and switches to CFace(l). If face routing 

passes the local minimum, reaching a node closer to the destination than the local 

minimum, it switches back to PAG. 
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Figure 46: PAG:CFace(l):PAG algorithm steps 
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7.2 Power-aware Position-based Routing Algorithms 

using Half of the Maximum Transmission Range 

In our initial study of the power-aware routing [4], we have proposed a set of algo­

rithms that use the power adjustment of the periodic control messages. There are 3 

main differences between that set of algorithms and our new algorithms: 

1. In [4] the algorithms use half of the maximum transmission range, for the pe­

riodic control messages, while the new algorithms use the optimal transmission 

range. Both go to maximum transmission range if needed. 

2. The algorithms in [4] uses the low transmission range for the periodic con­

trol messages all the time without checking the density of the node, while the 

new algorithms check the node density to decide whether to use the optimal 

transmission range or the maximum transmission range for the periodic control 

messages. 

3. The algorithms in [4] do not recover from face routing if the local minimum is 

passed, while the new algorithms do. 

7.3 Simulations and Results 

7.3.1 Simulation Environment 

We use in our simulation the wireless model that has been proposed by Heinzelman 

et al. [53] which assumes the radio dissipates Eeiec = 100 nJ/bit power to run the 

transmitter or receiver circuitry. Both transmitter and receiver nodes consume Eeiec 

to transmit one bit. The radio dissipates Eamp = 100 pJ/bit/m to run the transmit 

amplifier, assuming u2 energy loss due to channel transmission, where u> is the distance 

between nodes. This implies the sender consumes (Eamp *u>2) power to transmit one 
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bit. According to the above wireless model, transmitting a k — bit message at distance 

to the transmitter expends Erx(k, d) — Eeiec * k + Eamp * k * J2. To receive it, the 

receiver node expends Enx{k) = Eeiec * k. From the model above, it is clear that the 

final expression to transmit one bit message equal to u2 + 2000, hence, /3=2000 and 

a = 2 which means the optimal transmission range (/3/(a — 1)) 1 / / Q is equal to 44.7. 

In the simulation experiments, we run the algorithms in two different simulation 

environments. The first one is called the sensor network environment and the sec­

ond one is called the ad hoc environment. For the sensor network, a UDG with 

205,600,1300,2450,4200,6450 or 9500 random nodes is generated in different boxes 

of side length 200, 300,400, 500,600, 700 or 800, respectively. The average degree of 

nodes is around 20, the degree proposed previously in [10]. The fixed maximum trans­

mission range is set to 66 units, and the values of 7 = 3, 77 = 5, g = 4 are used, a 

threshold equal to the number of nodes is used in the hybrid algorithms PAG:CFace(3) 

and PAG:CFace(l):PAG. All our results have a 95% confidence intervals. 

In the ad hoc network environment a UDG with random 200 nodes is generated 

in a box of side length 250 units. With different maximum transmission ranges and 

a fixed starting transmission range equal to 44.7. 

Initially, for the algorithms with an adjusted transmission power, the transmission 

range for all nodes is set to 44.7 with the possibility that the node will increase its 

transmission range to its maximum. For the algorithms with a constant transmission 

power, their transmission range is set to the maximum. A fixed size data packet of 

length 16 bytes is used in addition to a 6 bytes control packet that contains the ID, 

position, and current battery level of the node. Initially, all the nodes have an equal 

energy level. 

First we randomly generate a UDG. If the graph is connected, we use it in the 

simulation, otherwise another UDG is randomly generated. Then a set of 2000 source-

destination pairs is randomly chosen for the sensor network, or a set of 1000 source-

destination pairs for the ad hoc environment. All the routing algorithms are then 
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Figure 47: Example of how we simulate some empty regions in the network environ­
ment 

applied in turn on the chosen source-destination pairs. Over all the source-destination 

pairs, we compute the average power consumed by the maximally used node after 

applying the algorithms. 

To compute the packet delivery rate, this process is repeated with 5 random graphs 

for the sensor environment and 10 random graphs for the ad hoc environment, and 

the percentage of successful deliveries determined. Also, we simulated some holes 

(empty regions) in the network by placing empty spheres of volume 50 units, that do 

not contain any nodes inside, the summation of the all the volumes of all spheres is 

equal to 13% of the simulation boxes volumes. See Figure 47 for an example. 

7.3.2 Observed Results - Sensor Network Environment 

Because the sensor network is a very dense network, the node degree is around 

20 [10, 104], the success rate for all the algorithms discussed in Section 7.1 is al­

ways around 100%, therefore the success rate will not be a variable in the measure­

ments. Also, there is no need to test the combined algorithms PAG:CFace(3) and 
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Figure 48: The average power consumption from the maximum used node after 2000 
source destination pairs routing process of PAG and other power-aware algorithms 

PAG:CFace(l):PAG in this environment, since the graphs are so dense, switching to 

face routing rarely occurs. 

Figure 48 shows the average power consumed from the maximum used node in 

PAG, PAGC and its associated Greedy and Cost algorithms. It is clear from this figure 

that the average power consumed from maximum used node of the new algorithms 

PAG and PAGC is decreased by around 45%, which in turn increases the network 

lifetime to around twice that of a fixed transmission radius algorithm. Figure 49 

shows the effect of holes in the network. The result is close to the result found in 

Figure 48. The main difference is in the algorithms PAG and PAGC, where the 

average power consumption of the maximum used node has been slightly decreased. 

This can be explained by the nodes degree. Because of the holes the nodes are closer 

to each other which means there are more neighbors for the low transmission range 

and a greater chance to use different neighbors for the different routed packets. 
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Figure 49: The average power consumption from the maximum used node after 2000 
source destination pairs routing process of PAG and other power-aware algorithms 
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Figure 50: The average delivery rate of PAG, Greedy and other different power-aware 
routing algorithms 
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Figure 51: The average power consumption from the maximum used node after 1000 
source destination pairs routing process of PAG and different power-aware routing 
algorithms 

7.3.3 Observed Results - Ad Hoc Network Environment 

Since the network is less dense in the ad hoc network environment, the delivery rate 

of Greedy, PAG and PAGC will be effected by the local minimum phenomena which 

implies that the delivery rate is a very important measurement here. Figure 50 shows 

the delivery rate of PAG and the other power-aware routing algorithms, the delivery 

rate of Greedy algorithm is shown in the same figure. It is immediately evident from 

this figure that the delivery rate of PAG and PAGC is slightly less than regular Greedy 

for the low transmission range but has almost the same delivery rate as Greedy when 

the transmission range increases above 70. 

From Figure 51, which shows the average power consumed from the maximum 

used node, the new algorithms PAG and PAGC decrease the average power used by 

the maximum used node by around 30%, compared to those algorithms with a fixed 

transmission radius. The other power-aware routing algorithms do not gain more 

than a 4% increase in the network lifetime. From Figure 50, it can be seen that PAG, 
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Figure 52: The average delivery rate of PAG:CFace(3), Greedy:CFace(3) and other 
different power-aware routing algorithms 

Greedy and all other studied algorithms have a low delivery rate if the network is 

sparse and a 100% delivery rate in dense networks. This can be explained by the 

number of neighbors. Fewer neighbors implies less chance to choose a good route 

that makes progress to the destination. 

Figures 52 and 53 show the expected results that our algorithms Greedy:CFace(3) 

and PAG:CFace(3) increase the delivery rate to around 90% for sparse networks and 

to about 100% for dense networks. The drawback is an increase of the average power 

from the maximum used node over Greedy and PAG. Still PAG:CFace(3) has a longer 

network lifetime up to 25% more than Greedy:CFace(3) if the average node degree is 

above 6, which means the transmission range is above 75. 

The results of the PAG:CFace(l):PAG and Greedy:CFace(l):Greedy algorithms 

are shown in Figures 54 and 55. This algorithm tries to compromise between the 

two groups of algorithms Greedy and PAG on one side, and PAG:CFace(3) and 

Greedy:CFace(3) on the other side. First, in terms of delivery rate, as expected, 

PAG:CFace(l):PAG has nearly a 100% delivery rate for an average network with a 
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Figure 53: The average power consumption from the maximum used node after 1000 
source destination pairs routing process of PAG:CFace(3), Greedy:CFace(3) and other 
power-aware routing algorithms 

transmission range between 70 and 80 which has an average nodes degree around 

6. The delivery rate for the sparse network is greater than Greedy:CFace(3) and 

PAG:CFace(3). This algorithm still increases the network lifetime by decreasing the 

power consumption of the nodes. 

The most important advantage of all our new algorithms is the substantial in­

crease of the network lifetime while preserving the delivery rates. The same sim­

ulations have been done using the Compass routing algorithm [71] in place of the 

Greedy algorithm, generating new routing algorithms, called PAC, PAC:CFace(3), 

and PAC:CFace(l):PAC. The results are nearly the same as for the Greedy-based 

algorithms. 
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Figure 54: The delivery rate for PAG:CFace(l):PAG, Greedy:CFace(l):Greedy and 
the other power-aware routing algorithms 
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Chapter 8 

Conclusion and Future Research 

This chapter briefly concludes the thesis by highlighting the major contributions of 

this research and pointing out several future research directions. 

This thesis has presented several adaptive and efficient 3D protocols that use the 

geographical position of ad hoc nodes for providing network-layer services in ad hoc 

networks. In particular, we have presented a UDG subgraph algorithm, dominating 

set algorithms and several position-based routing algorithms. The effectiveness of the 

proposed method is demonstrated through numerical simulations. We believe that 

the 3D results provided in this thesis will be useful in many ways for the research 

and implementation of future 3-D networks. 

In the next section, the contributions made in each of the previous chapters and 

the concluding results drawn from the associated research are presented. Suggestions 

for future research directions related to this thesis are provided in Section 8.2. 

8.1 Contributions of the thesis 

• In Chapter 3, we presented a class of Yao-type graphs that combine the advan­

tages of both the HSP subgraph and the Yao subgraph by permitting control 

over the degree of the subgraph while being orientation-invariant. Indeed, the 
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degree control is continuous since any cone angle less than 9m(p, \uz\) can be 

used as differs from the Yao graph where only a discrete set of cone angles (n/k) 

are possible. In addition, unlike the Yao subgraph, the class of DAAY subgraphs 

easily extends to three-dimensional UDGs. The class of graphs presented also 

preserves the common properties of the Yao and HSP graphs such as bounded 

out-degree, having the EMST as a subgraph, and being spanner graphs with 

bounded stretch factors. 

• In Chapter 4, we proposed the first fully local algorithms that construct a 

dominating set and a connected dominating set of UDG in 3D environment in 

a constant time. The algorithm does not rely on the spanning tree construction, 

which makes it practical for situations where the topology changes are frequent 

and unpredictable. We proved that the size of the constructed dominating set is 

at most 24 times the optimal. We also showed the importance of the constructed 

independent dominating set on maintaining a low approximation ratio for the 

construction of the CDS. A simulation study has been conducted to compare 

our proposed algorithm with the Greedy global algorithm [34, 62, 99] and the 

linear time algorithms by Alzoubi et al. [12, 13] in terms of the size of the 

dominating set and the number of connectors. Our algorithms have similar 

results as Alzoubi algorithms, though our algorithms run in a constant time 

compared to a linear time of the Alzoubi algorithms. 

• We improved a new version of Projective Face routing algorithms (CFace) in 

Chapter 2. Unlike ALSP routing algorithms, [65], in which the current node 

holding the packet has to know the location of the nodes that are 2 hops away to 

calculate the projection plane, CFace does not need any information to calculate 

the projection plane since it projects the nodes on the coordinate planes. The 

simulation results show that CFace has a comparable delivery rate to ALSP, 

but with less path dilation. 
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• We proposed a new class of randomized 3D position-based algorithms for rout­

ing in mobile ad hoc networks, called the AB3D algorithms in Chapter 5. In this 

class, the current node uses a space-partition heuristic to divide the space into 

m regions and choose one neighbor from each region using Greedy or Compass 

then forwards the message randomly to one of these m nodes. Our simulation 

results demonstrate that these randomized algorithms, on non-planar graphs 

like the UDG, yield a definite improvement over all the other deterministic 

algorithms studied, when considering the delivery rate. 

• In order to build a position-based routing algorithm that could route pack­

ets in a scalable and effective manner in 3D environment, we developed the 

ABLAR routing algorithms in Chapter 5. This class of algorithms uses the 

partial flooding strategy, where the current node chooses m neighbors accord­

ing to a space-partition heuristic and forwards the message to all these nodes. 

According to the simulation results in Section 5.6; this algorithm gives a nearly 

certain delivery rate, but the associated traffic was high. 

• In Chapter 6, we created two new hybrid routing algorithms, AB3D-CFace(l)-

AB3D and AB3D-CFace(3), that combine the efficiency of randomized progress-

based algorithms with the high delivery rate of Face routing. Our experiments 

on unit disk graphs, and their associated Yao subgraphs and Gabriel subgraphs 

show that these hybrid algorithms increased the delivery rate to over 97% while 

keeping the average dilation of the route much smaller than that of Face routing. 

• To combine the efficiency of progress-based and randomized progress-based al­

gorithms with a high delivery rate of ABLAR routing; we proposed two new 

groups of hybrid routing algorithms. First, T-ABLAR-T, where progress-based 

routing is used until a local minimum is reached. The algorithm then switches 

to ABLAR for one step after which the algorithm switches back to the progress-

based algorithm again. Second, AB3D-ABLAR, in which AB3D is used until a 
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threshold is passed in terms of number of hops. The algorithm then switches to 

an ABLAR algorithm. Our experiments showed that the best performing algo­

rithms in the AB3D-ABLAR group indeed increased the delivery rate to over 

99% while managing to save more than 55% of the average traffic consumed by 

LAR3D. 

• In Chapter 7, we proposed several local power-aware routing algorithms for 

3D ad hoc and sensor networks under two concurrent constraints: maximizing 

the delivery rate while maximizing the lifetime of the network by minimizing 

the energy consumption by the nodes. Our new algorithms are based on the 

idea of replacing the constant transmission power of a node with an adjusted 

transmission power during two stages: first, a lower power while discovering the 

neighboring nodes and second, if needed a higher transmission power during 

the routing process. The simulation results demonstrated that the new routing 

algorithm PAG has a delivery rate near 100% with dense networks and increases 

the network lifetime to around twice that of the Greedy algorithm. Our second 

and third algorithms, PAG:CFace(3) and PAG:CFace(l):PAG, significantly in­

crease the delivery rate for sparse networks while also increasing the average 

lifetime of a network. 

8.2 Future research directions 

Several interesting research directions motivated by this thesis are discussed next. In 

addition to designing scalable routing algorithms for ad hoc and sensor networks, we 

intend to accomplish the following projects in the near future: 

• In all our simulations, we assumed that the UDG was static. Node mobility 

is not considered in this thesis. In real situations, nodes may change their 

position with time. Nodes may also become inactive after a certain time and 

vice versa. It would be interesting to develop and test all our routing algorithms 
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in mobile environments. However, we expect most of our proposed algorithms 

that depend on AB3D to perform well on dynamic 3D unit disk graphs since 

the randomization component of these algorithms can adjust to reasonably large 

changes in node positions. 

• In this research, we assume the location service is available. It is desired to 

integrate the location service into our routing algorithms. Thus, the proposed 

algorithms can be implemented in a real mobile node more easily. 

• The simulations were designed and implemented using C + + . Although great 

care was taken in designing and implementing a series of network simulations 

that could easily be modified to test different scenarios, it became increasingly 

difficult to make changes to the network as ideas surfaced. The next step would 

be to port the simulation to the ns-2 network simulation environment. 

• DAAY can be extended easily to the 3D space. Since DAAY distributes lo­

cation information and performs calculations in a one-hop transmission range, 

it is possible to implement DAAY in 3D space. The hard part is to prove 

similar properties for the subgraph as in 2D. Further experimentation, includ­

ing routing algorithms, would show the impact of our subgraph on the routing 

algorithms. 

• For the dominating set proposed in Chapter 4, it would be interesting to show 

a tighter bound on the size of the connected dominating set. The message 

complexity analysis is not included: trying to create our algorithms with an 

optimal number of control messages remains a part of future work. 

• Due to some specific applications and newly developed techniques, the concept 

of a connected dominating set can be modified or further extended for more 

efficient usage. That is, constructing an energy-efficient virtual backbone in 
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MANETs for broadcasting applications using directional antennas may be con­

sidered [109]. As a part of future work it would be interesting to see if our 

algorithms can be extended to adapt such applications. 

• Other observations about the connected dominating sets are as follows: Al-

zoubi et al. [11] integrate the connected dominating set and the local Delaunay 

graph to form a backbone of the wireless network that is planar and a spanner. 

However, we proved in Chapter 2 that their algorithm is not completely local: 

its time complexity is 0(n), which makes it a bad choice for ad hoc wireless 

networks. Moreover, the construction of a Delaunay graph assumes that the 

nodes are static or can be viewed as static during a reasonable period of time. 

This is acceptable in sensor networks, but not in a situation where nodes move 

frequently and unpredictably. Based on these observations, we are interested 

in combining our local algorithm for constructing the connected dominating set 

with the 3D version of some other spanner subgraphs, e.g. DAAY or Yao, such 

that node mobility is allowed. 

• As in most of the research papers in the area of MANETs, in this thesis we 

assumed that all nodes are homogeneous. We did not consider the presence of 

obstacles, such as walls, buildings or weather conditions, which might obstruct 

signal propagation. Barriere et al. [19] consider irregular transmission range 

of the mobile nodes. This work is unique in MANET literature, and further 

investigation of the behavior of our routing algorithms under such a varying 

radio range model would be an interesting area for a future research. 

• One obvious part of our future work is to test our 3D algorithms with the 

connected dominating set constructed in Chapter 4 as a backbone. 

• The widely-accepted existing routing protocols designed to accommodate the 

needs of such self-organized networks do not address possible threats aiming at 

the disruption of the protocol itself. The assumption of a trusted environment 
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is not one that can be realistically expected; hence, several efforts have been 

made towards the design of a secure and robust routing protocol for ad hoc 

networks. It would be desirable to integrate some of the security heuristics [58] 

into our routing algorithms. 
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