
POSITION-BASED ROUTING ALGORITHMS FOR

THREE-DIMENSIONAL AD HOC NETWORKS

ALAA EDDIEN AWAD ABDALLAH

A THESIS

IN

T H E DEPARTMENT

OF

C O M P U T E R SCIENCE

P R E S E N T E D IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

F O R THE D E G R E E O F D O C T O R O F PHILOSOPHY

CONCORDIA UNIVERSITY

M O N T R E A L , Q U E B E C , CANADA

JANUARY 2009

© ALAA EDDIEN AWAD ABDALLAH, 2009

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-63398-4
Our file Notre reference
ISBN: 978-0-494-63398-4

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

• + •

Canada

Abstract
Position-Based Routing Algorithms for Three-Dimensional Ad Hoc

Networks

Alaa Eddien Awad Abdallah, Ph.D.

Concordia University, 2009

In position-based routing algorithms, the nodes use the geographical information to

make routing decisions. Recent research in this field addresses such routing algorithms

in two-dimensional (2D) space. However, in real applications, the nodes may be

distributed in three-dimensional (3D) space. Transition from 2D to 3D is not always

easy, since many problems in 3D are significantly harder than their 2D counterparts.

This dissertation focuses on providing a reliable and efficient position-based rout­

ing algorithms with the associated pre-processing algorithms for various 3D ad hoc

networks.

In the first part of this thesis, we propose a generalization of the Yao graph where

the cones used are adaptively centered on the nearest set of neighbors for each node,

thus creating a directed or undirected spanning subgraph of a given unit disk graph

(UDG). We show that these locally constructed spanning subgraphs are strongly

connected, have bounded out-degree, are ^-spanners with bounded stretch factor,

contain the Euclidean minimum spanning tree as a subgraph, and are orientation-

invariant. Then we propose the first local, constant time algorithm that constructs

an independent dominating set and connected dominating set of a Unit Disk Graph

in a 3D environment. We present a truncated octahedral tiling system of the space

to assign to each node a class number depending on the position of the node within

the tiling system. Then, based on the tiling system, we present our local algorithms

for constructing the dominating sets. The new algorithms have a constant time

complexity and have approximation bounds that are completely independent of the

size of the network.

in

In the second part of this thesis, we implement 3D versions of many current 2D

position-based routing algorithms in addition to creating many new algorithms that

are specially designed for a 3D environment. We show experimentally that these new

routing algorithms can achieve nearly guaranteed delivery while discovering routes

significantly closer in length to a shortest path. Because many existing position-based

routing algorithms for ad hoc and sensor networks use the maximum transmission

power of the nodes to discover neighbors, which is a very power-consuming process.

We propose several localized power-aware 3D position-based routing algorithms that

increase the lifetime of a network by maximizing the average lifetime of its nodes.

These new algorithms use the idea of replacing the constant transmission power of a

node with an adjusted transmission power during two stages. The simulation results

show a significant improvement in the overall network lifetime over the current power-

aware routing algorithms.

IV

Acknowledgments

I could not have reached the end of this long, challenging path without the support

and help of many people. I would like to express my sincere gratitude to my advisers,

Professor Thomas Fevens and Professor Jaroslav Opatrny, for their help, support,

guidance and for allowing me the freedom to pursue my own interests. Despite dif­

ficult times, they were always there when I needed them. I would also like to thank

Professor Lata Narayanan and Professor Ivan Stojmenovic for their direct and indirect

contributions throughout this investigation.

I owe everything to my family: To my father, Awad Abdallah, for his constant

support. Without him, I would not have applied to the Ph.D. program in the first

place, my mother, Rabiha, my brothers Emad and Mohammad, and my sister Hana'a.

Without their endless love and support, I would not have been here. I would also

like to thank my aunts and uncles: Ndawah, Aminah, Hiam, Ahmad, Kaleb, Taleb,

Tyseer, Hassan, Husain, Husni, Tahsin and Naser for their support.

I would like to thank my friends back in Jordan, Majdi, Shamsi, Amjad, Masri,

Samer and Yousef who constantly tried to make me feel not so away from home.

Special thanks to my friend Samer Atawneh. I would also like to thank my friend

Jonah Flanagan for being my English proofreader. Finally, I would like to thank my

friends here in Montreal who gave me very beautiful memories: Edi, Tarek, George,

Islam, Adnan, Malek, Talin, Faraz and Shahab.

v

Contents

List of Figures x

List of Tables xv

1 Introduction 1

1.1 The Problem of Routing in Ad Hoc Networks 3

1.2 Motivation and Research Focus 5

1.3 Thesis Contributions 6

1.3.1 Pre-processing Algorithms 6

1.3.2 Routing Algorithms 7

2 Definitions and Background 9

2.1 MANETs Model and Notation 9

2.2 Geometric Subgraphs 10

2.2.1 Gabriel Graph 12

2.2.2 Relative Neighborhood Graph 12

2.2.3 Yao Graph 13

2.2.4 Half Space Proximal Graph 13

2.3 Dominating Sets 14

2.3.1 Current Research for Determining Connected Dominating Sets 15

2.4 Routing Protocol Quality 18

2.5 Classification of Routing Protocols 19

vi

2.5.1 Topology-based Routing Protocols 20

2.5.2 Position-based Routing 21

2.5.3 Power and Cost Awareness Routing 33

3 Displaced Apex Adaptive Yao Graphs 38

3.1 Displaced Apex Adaptive Yao Graphs 38

3.2 Displaced Apex Adaptive Yao Properties 40

3.2.1 Connectivity 42

3.2.2 Bounding the Node Out-degree 44

3.2.3 Stretch Factor 45

3.2.4 Containing Euclidean Minimum Spanning Tree 47

3.3 Empirical Results 48

4 A Virtual Backbone Technique to Improve Routing Algorithms 53

4.1 Tiling System for 3D Space 53

4.2 A Local Algorithm For 3D Independent

Dominating Sets (3D-LIDS) 60

4.3 Properties of 3D-LIDS 61

4.3.1 Locality 62

4.3.2 Domination and Independence 62

4.3.3 Other Related Properties 63

4.4 Connected Dominating Set Locally 66

4.5 Simulations and Results 70

5 Hybrid One-neighbor Forwarding Position Based Routing with Par­

tial Flooding 73

5.1 Introduction 73

5.2 Group 1: ABSD{m,R,S) 74

5.3 Group 2: ABLAR(m,R) 77

vii

5.4 Group 3: T-ABLAR{m,R)-T 77

5.5 Group 4: AB3D-ABLAR(m,R) 78

5.6 Simulations and Results 80

5.6.1 Simulation Environment 81

5.6.2 Results 82

6 Randomized Position-based Routing Algorithms 89

6.1 AB3D(3,R,S)-CFace(l)-AB3D(3,R,S) 89

6.2 AB3D(3,R,S)-CFace(3) 90

6.3 Simulations and Results 92

6.3.1 Simulation Environment 92

6.3.2 Results 92

7 Power-aware Position-based Routing Algorithms using Adjustable

Transmission Ranges for 3D Ad Hoc and Sensor Networks 100

7.1 New Power-aware Position-based Routing Algorithms 101

7.1.1 Power-aware Greedy (PAG) 101

7.1.2 Power-aware Greedy-Cost (PAGC) 102

7.1.3 PAG:CFace(3) 104

7.1.4 PAG:CFace(l):PAG 104

7.2 Power-aware Position-based Routing Algorithms using Half of the Max­

imum Transmission Range 108

7.3 Simulations and Results 108

7.3.1 Simulation Environment 108

7.3.2 Observed Results - Sensor Network Environment 110

7.3.3 Observed Results - Ad Hoc Network Environment 113

8 Conclusion and Future Research 117

8.1 Contributions of the thesis 117

viii

8.2 Future research directions 120

IX

List of Figures

1 (a) the edge uv G GG(G) if there are no nodes in the shaded area; (b)

the edge uv G RNG(G) if there are no nodes in the shaded area; (c)

the sectors around a node u that are used by the Yao graph 13

2 HSP(G) step-by-step for a node 14

3 Worst-case example for [11, 12, 13] and many other algorithms 16

4 Classification of routing algorithms 19

5 various routing algorithms 24

6 A sample network topology to illustrate the operation of the algorithms 25

7 Face routing algorithm 27

8 Projective Face routing algorithm 30

9 CFace(3) routing algorithm. The algorithm attempts 2D Face routing,

cyclically until success, with the nodes projected onto the xy plane,

the yz plane, and then the xz plane 31

10 To route from s to d, with DREAM a current node will forward the

packet to all the neighbors' nodes inside the cone, while with LAR it

will forward the packet to all neighbors' nodes inside the rectangle . . 32

11 To route from s to d: with 3DDREAM, a current node will forward

the packet to all the neighbors' nodes inside the 3D cone, while with

LAR3D, it will forward the packet to all neighbors' nodes inside the

rectangular box 34

x

12 Applying the Displaced Apex Adaptive Yao(UDG,l,Q) graph algo­

rithm on the node u of a UDG: (a) the nearest neighbor is first chosen;

(b) the second nearest node out of the rest of the nodes is then chosen.

Note that its associated cone overlaps with the first cone; and (c) the

third nearest neighbor is chosen from the list LN(u) 40

13 The left diagram is for 0 < p < 0.5. The bottom diagram is for

0-5 < p < 1. In both diagrams, the dark shaded area is the forbidden

region where any other neighboring nodes are excluded 43

14 Worst-case example of the node degree in DAAY(UDG(V), a,p) . . 45

15 Left: A scenario for the worst shortest path that could be selected in

Displaced Apex Adaptive Yao(G, 8,p). The edge (uo, v) is not selected

by the Displaced Apex Adaptive Y&o(G,9,p) algorithm since (UQ,U\)

is shorter than (UQ,V), and (UQ,V) is inside the cone of (UQ,UI). The

same occurs for (ui,v),..., (un, v); Right: One step of the iterative

sequence of the path 47

16 Average hop number stretch factor for each graph with various number

of nodes 49

17 Average Euclidean stretch factor for each graph with various number

of nodes 50

18 Average node degrees 51

19 Average in-degree (out-degree) 51

20 Original UDG and related subgraphs: (a) UDG; (b) Yao Graph with

k = 6; (c) Adaptive Yao Graph; (d) Displaced Apex Adaptive Yao

Graph with p = 0.25; (e) HSP Graph; (f) Displaced Apex Adaptive

Yao Graph with p = 1.0 52

21 Unit diameter truncated octahedron, the faces labeled 1,2, ..6 belong

to the class represented by this truncated octahedron 54

xi

22 The tile used in the tiling system divided into 65 truncated octahedra

of diameter 1 and the class numbering associated with the truncated

octahedra (a) is the side view (looking along the y-axis) of the tile; (b)

is the top-side view of the tile 57

23 The tiling system used, (a) Ti, and T3 on top and bottom of T\\ (b) T4

and T5 added to the upper and lower side of T\\ (c) 7\, Tn, T12 and T13

side view; (d)Ti, Tn,T\2 and T13 top view; (e) and (f) the final view

of the space tiling 59

24 (a) Spherical triangle of equal length sides; (b) The worst-case of having

m equal size spherical triangles on the surface of So 64

25 Proof for Lemma 4.7 70

26 The average number of nodes in the Dominating Set in random envi­

ronment 72

27 The average number of connectors in random environment 72

28 Plane Pln\ passes through c,d and ni, plane Pln2 perpendicular to

Pln\ and both planes contain the line cd 75

29 With ABLAR(3,R), the current node chooses up to 3 neighbors and

forwards the packet to all of those inside the flooding area Q (the

shaded box) 78

30 The packet started at s using progress-based routing like Compass until

it reaches the local minimum y. ABLAR is used for one step and then

progress-based routing is resumed 79

31 AB3D-ABLAR algorithm example 80

32 Histogram of the average node degrees of the 10, 000 generated unit

disk graphs 82

33 The packet delivery rate at different node densities (box side = 100

units, maximum transmission range = 25 units, threshold = n) 84

xn

34 The average traffic at different node densities (box side = 100 units,

maximum transmission range = 25 units, threshold = n) 84

35 The packet delivery rate at different thresholds (box side = 100 units,

maximum transmission range = 25 units) 85

36 The average traffic at different thresholds (box side = 100 units, max­

imum transmission range = 25 units) 86

37 The average packet delivery rate with m = 3 and m = 5 for selected

algorithms (box side = 100 units, maximum transmission range = 25

units) 87

38 The average traffic with m = 3 and m = 5 for selected algorithms (box

side = 100 units, maximum transmission range = 25 units, threshold

= n) 88

39 The packet delivery rate for different geometric graphs; see Figure 40

for legend 95

40 The average path dilation for different geometric graphs 95

41 The packet delivery rate at different node densities 97

42 The average path dilation at different node densities 97

43 The packet delivery rate at different thresholds 98

44 The average path dilation at different thresholds 99

45 PAG algorithm, The packet arrives to the node B which is local mini­

mum, so it increases the transmission range to the maximum 104

46 PAG:CFace(l):PAG algorithm steps 107

47 Example of how we simulate some empty regions in the network envi­

ronment 110

48 The average power consumption from the maximum used node after

2000 source destination pairs routing process of PAG and other power-

aware algorithms I l l

xiii

49 The average power consumption from the maximum used node after

2000 source destination pairs routing process of PAG and other power-

aware algorithms 112

50 The average delivery rate of PAG, Greedy and other different power-

aware routing algorithms 112

51 The average power consumption from the maximum used node after

1000 source destination pairs routing process of PAG and different

power-aware routing algorithms 113

52 The average delivery rate of PAG:CFace(3). Greedy:CFace(3) and other

different power-aware routing algorithms 114

53 The average power consumption from the maximum used node af­

ter 1000 source destination pairs routing process of PAG:CFace(3),

Greedy:CFace(3) and other power-aware routing algorithms 115

54 The delivery rate for PAG:CFace(l):PAG, Greedy:CFace(l):Greedy

and the other power-aware routing algorithms 116

55 The average power consumption from the maximum used node after

1000 source destination pairs routing process of PAG:CFace(l):PAG,

Greedy:CFace(l):Greedy and other power-aware routing algorithms . 116

xiv

List of Tables

1 Coordinates of the 65 truncated octahedra for a tile T\ centered at

0 i , y i , z i) , where a = ^ = 55

2 Coordinates of the 14 tiles around T\, with a = -̂ == 56

3 Average packet delivery rate and average traffic for selected algorithms

in UDG with n = 75 83

4 Average packet delivery rate, DR, and average path dilation, PD, in

UDG 93

5 Average packet delivery rate, DR, and average path dilation, PD, in

GG 94

6 Average packet delivery rate, DR, and average path dilation, PD, in

RNG 96

7 example of how the node changes the transmission range of the periodic

discovery control messages depending on the node degree, 7 = 3, r) — 4

and Q = 4 102

xv

Chapter 1

Introduction

Wireless networks have become increasingly popular in the computer industry. This

is particularly true within the past decade, which has seen wireless networks being

adapted to enable mobility. There are currently two variations of wireless networks.

The first are known as infrastructure networks, e.g., those networks with fixed trans­

mitters, known as base stations. A mobile unit within these networks connects to,

and communicates with, the nearest base station that is within its communication

radius. As the mobile unit travels out of range of one base station and into the range

of another, a "handoff" occurs from the old base station to the new, and the mobile

unit is able to continue communication throughout the network. The second type of

wireless network are Mobile Ad Hoc Networks (MANETs). A MANET consists of a

collection of wireless mobile hosts that can communicate with each other without a

fixed infrastructure. The term ad hoc networks can be applied to any network where

there is no communication infrastructure or the existing infrastructure is expensive

or inconvenient to use. Ad hoc networking allows the devices to maintain connections

to the network as well as add and remove devices to and from the network with ease.

MANETs have the following unique properties:

• There is no centralized authority for network control, routing or administration.

The control and management of the network must be distributed among the

1

mobile nodes.

• Network devices, including routers, are free to move rapidly and arbitrarily in

time and space.

• All communication, such as user data and control information, is carried out

over the wireless medium. There are no wired communication links. This

wireless medium is subject to noise, fading and interference.

• Resources, including energy, bandwidth, processing capacity and memory, that

are relatively abundant in wired environments, are typically strictly limited and

must be preserved.

• Each mobile may function as both a host and a router. In other words, besides

the basic processing ability to originate and receive data transmissions as a

host, the mobile nodes must also perform routing functions. Usually the mobile

nodes and routers are indistinguishable in a MANET.

The set of applications for MANETs include military tactical networks, battle­

fields, radar networks, conferences and other similar cases. MANETs can also be used

to provide crisis management service applications, such as in disaster recovery, where

the communication infrastructure is damaged and restoring communication quickly

is crucial. In addition to the set of emergency applications, there is a group of pos­

sible everyday implementations. For example, Bluetooth, an industrial specification

for wireless personal area networks (PANs), is designed to support a personal area

network by eliminating the need of wires between various devices, such as printers

and personal digital assistants.

Wireless Sensor Networks are a special class of ad hoc networks. Their particu­

larities are that the topology is usually fixed, but the size and power of the nodes

are restrictive. Sensor networks are composed of a large number of sensor nodes that

are positioned within a limited and defined geographical area [10]. Their applications

2

may include

• wireless military sensor networks (to detect and gain information about enemy

movements, explosions and other phenomena of interest)

• wireless sensor networks to monitor environmental changes in plains, forests,

oceans, etc.

• sensor networks to detect and characterize chemical, biological, radiological,

nuclear, and Explosive (CBRNE) attacks and material

• wireless traffic sensor networks to monitor vehicle traffic on highways or in

congested parts of a city

• wireless surveillance sensor networks for providing security in shopping malls,

parking garages and other facilities.

Akyildiz et al. [10] present the following differences between sensor networks and

ad hoc networks. First, the number of sensor nodes in a sensor network can be several

orders of magnitude higher than the nodes in an ad hoc network. Second, sensor nodes

mainly use a broadcast communication paradigm, whereas most ad hoc networks are

based on point-to-point communications. Third, sensor nodes are limited in power,

computational capacities and memory, while ad hoc network nodes may have bigger

batteries that can be recharged at any time. Also, some ad hoc network nodes have

more powerful processors than sensor network nodes.

1.1 The Problem of Routing in Ad Hoc Networks

Two nodes can communicate in a bidirectional manner if and only if the distance

between them is at most the minimum of their transmission ranges. If one node

wishes to communicate with another node outside its transmission range, multi-hop

routing is used utilizing intermediate communicating nodes. Since mobile ad hoc

networks may change their topology frequently and without notice, routing in such

networks is a challenging problem.

The routing algorithms are required to route data packets effectively and effi­

ciently to the mobile destination in order to support different types of multimedia

applications. Therefore, the design of routing algorithms for MANETs should con­

sider the following factors, which add more difficulties and complexities to routing

protocol design [101]:

• Localization: The routing algorithm is called local if each node of the network

makes decisions based on the information obtained uniquely from the nodes

located no more than a constant number of hops (usually 1) from it. The

algorithm is considered global if the node makes its decisions potentially based

on the information of every other node in the network. Local routing algorithms

are certainly preferable if they can approximately match the performance of

global routing algorithms.

• Delivery Rate: The delivery rate is the ratio of the number of messages

received by the destinations to the number sent by senders. The primary goal

of every routing scheme is to deliver a message, so a practical objective while

designing routing algorithms is to guarantee message delivery.

• Shortest Path: One of the objectives of routing algorithms is to deliver a

message with a path length close to minimum. If all nodes have the same fixed

transmission power, then routing schemes may use hop count as a metric for the

path length, where hop count is the number of transmissions on a route from a

source to a destination. However, if nodes can adjust their transmission power

(knowing the location of their neighbors), the constant per hop metric can be

replaced by a power metric that depends on distance between nodes.

• Power Awareness: Since the wireless hosts that we are modeling are com­

monly powered by a limited power supply like a battery, energy efficiency needs

4

to be an important design consideration in any routing algorithm.

• Memorization: Routing algorithms that require nodes to memorize the path

routes are sensitive to node memory size. If the network size increases, the

average path length increases. This results in the need to expand the size of

the memory for mobile nodes. Thus it is better to avoid memorizing the past

routes at any node during the routing process.

• Scalability: Because of the multi-hop nature of ad hoc networks, the scalability

is directly related to the routing protocol. Thus the performance of the well-

designed routing algorithm should adapt well to large-scale ad hoc networks

[77]. In general, if the algorithms are local, memoryless and energy efficient,

they are usually scalable.

• Preprocessing: Many routing algorithms require the nodes to do some pre­

processing algorithms (e.g. compute a sub graph of UDG) before they actually

route the packets. Thus it is important to minimize the preprocessing require­

ments at any node during the routing process.

1.2 Motivation and Research Focus

Position-based routing algorithms use the position information of nodes to forward

the packet in the geographical direction of the destination. In this type of routing,

the node forwards the message based on the position of the node itself, the position of

the destination and the position of the nodes with which it can communicate directly.

The main motivation behind investigating position-based routing is to make wireless

ad hoc networks more efficient. Recent research in position-based routing usually

addresses such routing algorithms in two-dimensional (2D) networks [76, 85, 102, 104],

However, in real applications, nodes may be distributed in three-dimensional (3D)

space. For example, underwater networks that perform ocean column monitoring

5

would require nodes to be positioned at different depths in the water, creating a 3D

network [9, 38].

Recently, Durocher et al. [38] show that there can be no local position-based

routing algorithm that guarantees delivery in 3D space if the thickness of one of

three dimensions is more than r/\/2, where r is the transmission range.

To solve the routing problem, nodes in the network execute distributed rout­

ing protocols. A routing protocol may be defined as being comprised of two parts

[15, 43]: (i) a pre-processing algorithm. Given the initial connection graph G, the

pre-processing algorithm is in charge of creating whatever information is necessary to

improve the performance of the routing algorithm (e.g., the dominating set or sub­

graph of G). And (ii) the routing algorithm, e.g., a distributed algorithm running at

each node, which is mainly responsible for determining, for every packet entering the

node, the neighbor node to which the message has to be forwarded. In this thesis, we

focus on the two parts of routing protocols.

1.3 Thesis Contributions

Our goals in this thesis are to utilize 3D position information (of any thickness) to

provide more efficient and reliable position-based routing algorithms for various 3D

scenarios such as urban rescue, city landscape, hilly terrain, airborne and ocean sensor

networks. Our contributions below are mentioned in the order of their appearance in

the body of the thesis.

1.3.1 Pre-processing Algorithms

First, since many routing strategies use a subgraph of the unit disk graph such that

only the edges in the subgraph are used for routing, we introduce a generalization of

the Yao graph [39] where the cones used are adaptively centered on the nearest set of

neighbors for each node, thus creating a directed or undirected spanning subgraph of

6

a given unit disk graph (UDG). We show that these locally constructed spanning sub­

graphs are strongly connected, have bounded out-degree, are t-spanners with bounded

stretch factor, contain the Euclidean minimum spanning tree as a subgraph, and are

orientation-invariant.

Second, there is currently a growing interest in the research and development of the

dominating set or connected dominating set in MANET or wireless sensor network,

where several routing algorithms use a dominating set of the nodes for routing. We use

the node position information to propose the first local, constant time algorithm that

constructs an independent dominating set and connected dominating set of a Unit

Disk Graph in a 3D environment [5] (also called unit ball graph [38]). We present a

truncated octahedral tiling system of the space to assign to each node a class number

depending on the position of the node within the tiling system. Then, based on the

tiling system, we present our local algorithms for constructing the dominating sets.

The new algorithms have a constant time complexity and have approximation bounds

that are completely independent of the size of the network.

1.3.2 Routing Algorithms

First, we created several new 3D position-based routing algorithms, [1, 2, 3, 84].

The coordinate face routing, CFace, is a heuristic that is based on 2D Face routing

[27, 67] by adapting the algorithm to 3D environment. AB3D is an extension of

some randomized routing algorithms from 2D to 3D space. ABLAR is a restricted

directional flooding-based algorithm that chooses rn neighbors in the direction of the

destination according to a space-partition heuristic and forwards the message to all

these nodes. T-ABLAR-T is a group of routing algorithms that combine some 3D

deterministic progress-based routing algorithms with restricted directional flooding-

based algorithms. AB3D-ABLAR is a group of algorithms that combine the random­

ized routing algorithms (AB3D) with restricted directional flooding-based algorithms.

AB3D-CFace(l)-AB3D and AB3D-CFace(3) are groups of algorithms that combine

7

the randomized AB3D routing algorithms with a deterministic CFace algorithm. All

the new algorithms are evaluated and compared with current routing algorithms.

The simulation results on unit disk graphs (UDG) show a significant improvement in

delivery rates (up to 99%) and a large reduction of the traffic or path dilation.

Second, most of the existing position-based routing algorithms for ad hoc and

sensor networks use the maximum transmission power of the nodes to discover neigh­

bors, which is a very power-consuming process. We propose several local power-aware

3D position-based routing algorithms [4, 6] that increase the lifetime of a network by

maximizing the average lifetime of its nodes. These new algorithms use the idea of

replacing the constant transmission power of a node with an adjusted transmission

power during two stages: first, a lower power while discovering the neighboring nodes

and second, if needed, a higher transmission power during the routing process. We

evaluate our algorithms and compare their power savings with the current power-

aware routing algorithms. The simulation results show a significant improvement in

the overall network lifetime.

The rest of the thesis is organized as follows. Chapter 2 contains a brief review of

essential concepts and definitions which we will refer to throughout the thesis. It also

contains a survey of the current routing algorithms with an emphasis on the related

position-based routing algorithms. Chapter 3 introduces our new geometric subgraph,

which is called Displaced Apex Adaptive Yao Graphs, to model a MANET. Chapter 4

presents our new algorithm for constructing dominating sets in the 3D environment.

Chapters 5 and 6 present several new position-based routing algorithms that are

specially designed for 3D environment. Chapter 7 presents three groups of power-

aware position-based routing algorithms for the 3D MANETs. Finally, we conclude

the thesis in Chapter 8.

8

Chapter 2

Definitions and Background

2.1 MANETs Model and Notation

A graph G = (V, E) consist of a finite set V = v\,V2,...,vn whose elements are called

vertices and a subset E of the Cartesian product V x V, the elements of which are

called edges. We will use the following conventions for notation: For node u, the set

of its neighbors is denoted by N(u). Let N2(u) and N3(u) to be the set of nodes that

are 2 and 3 hops away from u respectively. A path from the node s to the node d is

a sequence of nodes s = vi,V2,...,Vk = d, such that i>j and vl+i are neighbors, where

1 < i < k- 1.

A subset V of V is called dominating if every vertex from V — V is adjacent

to some node in V. A minimal dominating set of V, denoted by MINL-DS, is a

dominating set of V such that no subset has this property. A dominating set is called

a connected dominating set (CDS) if the subgraph P(G) induced by V is connected.

The smallest subset of vertices that is both connected and dominating is called a

minimum connected dominating set (MIN-CDS). A subset of vertices in a graph G is

an independent set if no two vertices are connected by an edge. An independent set

is maximal (MIS) if it cannot be extended by the addition of any other vertex from

the graph without violating the independence property [59].

9

A geometric graph is a graph G = (V, E) such that the vertices are geometric ob­

jects in Rd, where d is the dimension, and the edges are geometric objects connecting

pairs of vertices.

Let dist(u,v), which will be denoted occasionally by \uv\, be the Euclidean dis­

tance between the nodes u and v. dist(u,v) is defined as follows:

dist{u,v) = \J(ux - vx)
2 + (uy - vy)

2 + (uz - vz)
2. (1)

A Unit Disk Graph (UDG) is a specific type of geometric graph usually used to

model MANETs, an edge exists between two vertices (nodes) u and v if and only

if the Euclidean distance between between u and v is at most 1. In the context of

ad hoc networks, the vertices in the UDG represent network nodes. An edge exists

between two nodes if the Euclidean distance between the two nodes is less than or

equal to a node's transmission range r [75]. Here it is assumed that all nodes have

transmission range equal to r, which is represented as a circle of radius r in 2D and

a sphere volume of radius r in 3D.

Clearly, this is a simplification of reality, since, even if all network nodes are

homogeneous, this model does not account for the presence of obstacles, such as walls,

buildings, mountains or weather conditions, which might obstruct signal propagation.

Barriere et at. [19] have studied a graph model that is considerably closer to reality,

proposing a generalization of the unit disk graph by considering the transmission

range of the mobile host, which varies between (1 — e)r and r, where e > 0.

2.2 Geometric Subgraphs

Although creating economical routing schemes is very important, ensuring good per­

formance is not less important. Many routing strategies [27, 40, 67] use a subgraph

of the UDG such that only the edges in the subgraph are used for routing. Therefore,

much research effort has gone into the development of algorithms for subgraphs of

10

UDG in ad hoc networks (see [116, 82, 92] for surveys). An example of an UDG and

related subgraphs is given in Figure 20.

Since the wireless hosts that we are modeling are commonly powered by a limited

power supply like a battery and contain a limited amount of memory, may be mobile

and the topology of the whole network is usually not available and may be variable,

local algorithms are typically preferred. These algorithms are designed to achieve

various objectives such as:

• Locality [36, 5]: A distributed algorithm is called local if each node of the

network only uses information obtained uniquely from the nodes located no

more than a constant (independent of the size of the network) number of hops

from it. Thus, during the algorithm, no node is ever aware of the existence of

the nodes of the network further away than this constant number of hops.

• Low stretch factor [79, 80]: A subgraph of G, P(G), is called a t-spanner of

G if the length of the shortest path between any two nodes in P(G) is not more

than t times longer than the shortest path connecting them in G. The length

of the path is the sum of the lengths of the edges along the path, t is known

as the stretch factor. Typically the aim is to find a spanner with as small t as

possible, because shorter paths will be available in the subgraph, t-spanners is

known to be a power-efficient strategy [79, 80].

• Geometric Planarity [23, 107]: A graph is called planar if the straight edges

between the neighboring nodes do not intersect.

• Low weight [81]: A subgraph is called low weight if its total edge length is

within a constant factor of the total edge length of the Euclidean minimum span­

ning tree (EMST). For a geometric graph G, a Euclidean minimum spanning

tree EMST(G) is a minimum weight spanning tree of G.

• Bounded degree [92, 108]: We define a degree m bounded subgraph to be a

11

subgraph having no vertices of degree larger than m.

• Or ien ta t ion- invar ian t [39]: If UDG is rotated by an angle, and the calculated

subgraph is the same all the time, then the subgraph is orientation-invariant.

In the following we present some of the best-known geometric spanning subgraphs

of UDGs that are commonly used in position-based routing algorithms.

2.2.1 Gabriel Graph

Let Disk(u,v) be defined as the circle centered at the midpoint between the points

u and v with a diameter \uv\. Then the Gabriel graph [45], denoted as GG(G), is

defined as follows: Given any two adjacent nodes u,v in G, the edge uv belongs to

GG(G) if, and only if, no other node w G G is located in Disk(u, v). See Figure 1(a).

Bose et al. [24] prove that GG(G) is connected, planar and a (47T\/2n — 4/3)-spanner

of G. A 3D definition of GG is straightforward and given in [64].

2.2.2 Relative Neighborhood Graph

Consider the lune(u, v) as the interior and the boundary of the region formed by the

intersection of two disks of radius r, one of the disks being centered at u and the other

at v. Figure 1(b) shows the lune of the two points u,v. The Relative Neighborhood

Graph of G [60], denoted RNG(G), is defined as follows: Given any two adjacent

nodes u, v in G, the edge uv belongs to GG(G) if, and only if, no other node w G G

is located in lune(u,v). In other words, an edge uv G RNG(G) if, and only if, there

is no node w such that (u,w) < (u,v) and(v,w) < (u,v). It is proved that RNG(G)

is connected, planar, and a (n — l)-spanner of G. A 3D definition for this graph is

given in [2, 64, 105].

12

2.2.3 Yao Graph

For a geometric graph G, a Yao Graph (also called a Theta Graph [25]) YGk(G) with

an integer parameter k > 6 is defined as follows [113]. First, we will define a directed

Yao graph, YGk(G), for G. At each node u in G, k equally-separated rays originating

at u define k cones, as seen in Figure 1(c). In each cone, only the directed edge uv

to the nearest neighbor v, if any, is part of YGk{G). Ties are broken arbitrarily.

Let YGk{G) be the undirected graph obtained if the direction of each edge in

YGk(G) is ignored, yielding a subgraph that may have crossing edges if G is a UDG.

The graph YGk{G) is a 1/(1 — 2sm(7r//c))-spanner of G [69, 80], has an out-degree

of at most k, and contains the EMST(G) as a subgraph [113]. One drawback of the

YGk{G) graph is that it is not orientation-invariant. That is, if G is rotated by an

angle to give G' then the resulting YGk{G') subgraph is not necessarily a rotation of

YGk(G).

i

Figure 1: (a) the edge uv e GG(G) if there are no nodes in the shaded area; (b) the
edge uv E RNG(G) if there are no nodes in the shaded area; (c) the sectors around
a node u that are used by the Yao graph

2.2.4 Half Space Proximal Graph

For a geometric graph G, a Half Space Proximal Graph HSP(G) is defined as follows

[31]. As with the Yao Graph, first a directed HSP(G) is defined. At each node u

13

in G, the following iterative procedure is performed until all the neighbors of u are

either discarded or are connected with an edge. A directed edge uv is formed with

the nearest neighbor v. An open half plane is denned by a line perpendicular to

[u,v], intersecting [u,v] at its midway point and containing v. All the nodes in this

half plane are then discarded. The procedure then continues with the next nearest

non-discarded neighbor until all the nodes have been discarded. The selected directed

edges determine the HSP(G). An illustration of the HSP(G) test applied to a node

in a UDG is given in Figure 2, which is taken from [31].

The undirected HSP(G) is obtained by ignoring the direction of the edges, yielding

a subgraph that may still have crossing edges. Among the properties shown in [31]

for the HSP subgraph, it is strongly connected, has an out-degree of at most six,

has a stretch factor of at most 2n + 1, contains the EMST(G) as its subgraph and is

orientation-invariant.

/'. A- ' .••''. A- ' ••* U

1st neighbor 2nd neighbor 3rd neighbor 4th neighbor

Figure 2: HSP(G) step-by-step for a node

2.3 Dominating Sets

One of the basic problems in a MANET is to broadcast messages in the network,

where a message is sent from one node to all nodes in the network [98]. Broad­

casting has an unacceptable communication overhead, which leads to a waste of the

14

rare resources of wireless nodes. One effective way to decrease the communication

overhead in broadcasting is to use a CDS as a virtual backbone of the nodes in the

routing algorithms [13, 37, 110, 111]. In these routing algorithms, only nodes of the

connected dominating set (dominators) act as routers; all other nodes communicate

via a neighbor in the dominating set. Clearly, the efficiency of this approach depends

largely on the process of finding the dominating sets and the size of the corresponding

sub-networks [111]. Finding a MIN-CDS is NP-complete in general [35, 48, 55, 68].

Several algorithms have been previously proposed to construct an independent

dominating set and a CDS for UDG, but none of these algorithms has the following

3 characteristics:

1. construction in a constant time (local according to the definition above)

2. a constant approximation bound

3. capable of working in a 3D environment

2.3.1 Current Research for Determining Connected Domi­

nating Sets

The problem of finding a dominating set is an area in graph theory with extensive

research activity. In 1998, a book was published that listed 1200 papers in the area

of domination [52]. As mentioned before, given a complete network topology, the

problem of finding the minimum dominating sets and MIN-CDSs is known to be NP-

hard. In addition, due to the nature of MANETs, practical IDS and CDS construction

protocols for MANETs need to be fully distributed in constant time. In the following,

we will survey some of the related algorithms.

The distributed protocols in [12, 13] by Alzoubi et al. construct the CDS in a

linear time by expanding the maximal independent set. These protocols consist of two

phases. In the first phase, an independent dominating set is constructed as follows:

15

n, n2 n3 n4 n5 nn

O—•—O O—~~0~ O—~ ~~~0
Figure 3: Worst-case example for [11, 12, 13] and many other algorithms

If the node unique ID is minimum among its neighbors, it adds itself to the dominating

set and removes all its neighbors from the consideration of the set members. This

process is repeated at each node such that the resulting set is a maximal independent

dominating set (MIS), which is also a (non-connected) dominating set. In the second

phase, the nodes in the set use local topology information for a node, up to 3 hops

away, to add gateway nodes to the set until the set becomes a CDS. The main

disadvantage of this algorithm is construction time of the independent set, which can

be proportional to the number of nodes; thus it is a non-local algorithm. Consider

the example in Figure 3: let n\ < n^ < n^ < < nn , ri\ takes its decision at

time 0, which will dominate n2', n^ has to wait until 712 to send a messages saying

that it has been dominated (I am Dominated), and then it will make its decision;

n4 has to wait for the results coming from n^, and so on. Thus nn has to wait until

all the nodes in the network make their decisions, which makes the time complexity

for this algorithm 0(n) in the worst-case scenario. This is not efficient in an ad hoc

network environment. A similar algorithm was proposed by Baker et al. [17, 18]. In

the example above and all our analysis in Chapter 4 we ignore the local computation

time in the time complexity calculations.

In [11], Alzoubi et al. propose an integration between the connected dominating

set CDS and the local Delaunay graph to construct a geometric planar and spanner

backbone of the wireless network. The distributed algorithm starts by constructing a

CDS using a technique similar to those used by Alzoubi et al. [12, 13] or by Baker et

al. [17, 18] as described above. The next step is to build the local Delaunay graph [79]

on top of the constructed CDS. Alzoubi et al. [11] prove that the constructed graph

is planar and has bounded degree. Because this algorithm uses the same idea as in

16

[12, 13] for implementing the IDS, which leads to the CDS, the worst-case example

in Figure 3 is applicable to this algorithm too. Thus the time complexity is 0(n).

The Greedy algorithm [34, 62, 99] for constructing a dominating set is a global

algorithm where the run-time depends on the number of nodes. The Greedy algorithm

picks a node that covers the biggest number of uncovered nodes and puts it into the

dominating set; it repeats the same algorithm as long as there are uncovered nodes.

In [83], Liang et al. propose an implementation of the Greedy algorithm in a

distributed manner; the algorithm is called a Distributed Database Coverage Heuristic

(DDCH) and can be summarized as follows: Each node u calculates its span, which

is the number of uncovered nodes that u covers, and sends its span and id to all

nodes within 2 hop neighbors; next, the node u adds itself to the dominating set if its

ordered pair of span and id is higher than that of any node within 2 hop neighbors.

The distributed time complexity of this algorithm is also linear in the number of

nodes. See a worst-case example in [61]. A randomized version of DDCH, called a

Local Randomized Greedy algorithm (LRG), has been proposed in [61]. This algorithm

has O(lognlogA) time complexity, with A being the maximum node degree, and

0(A) approximation ratio. In [47], another distributed randomized algorithm was

proposed by Gao et al. that maintains the dominating sets for mobile nodes. It is

shown that it has a constant approximation ratio with a high probability, but the

constant approximation ratio is quite large. As with the other algorithms discussed

before, a drawback is the time complexity that is 0(nlogn).

For a class of general graphs, Kuhn et al. [72, 73, 74] have given approximation

lower bounds for covering problems as a function of the size of the neighborhood

through which each message may be propagated. They show that with k commu­

nication rounds, a dominating set cannot be approximated better than by a factor

Q(n-^—) for some constant c > 1/4.

None of the algorithms mentioned above has both a constant approximation bound

and a constant worst-case time bound. One approach to achieve these bounds is

17

to use the underlying geographic information. The first algorithm to determine a

dominating set in 2D within a constant approximation of the optimal dominating set

in a constant time (which depend on the degree if we consider the local computation

time) was proposed by Czyzowicz et al. [36]. Assuming that each node knows its

geometric location in a plane, the algorithm starts by associating each node with a

class number that depends on the position of the nodes within a regular hexagonal

tiling of the plane. After the nodes determine their class number, they acquire the

class numbers of all their neighbors. In each hexagon, the dominators are determined

on the basis of unassigned neighbors with the minimum class number closest to the

center of the hexagon (or some similar local heuristic) under consideration. Since

this algorithm assumes that the nodes have a geometric location in two-dimensional

space, it is not directly applicable for all wireless applications where the nodes may

be located in three-dimensional space.

2.4 Routing Protocol Quality

There are several quantitative, independent metrics for judging the performance of

MANETs routing protocols. Desirable quantitative properties include:

• Path dilation: The spanning-ratio of a subgraph is only a bound to the per­

formance of a routing scheme. We still need to develop routing schemes that

select paths that are close to the shortest path. The path dilation is used as

an accurate measure of the quality of the routing scheme and is defined as the

average ratio of the length of the path returned by the routing algorithm, even

when routing on a subgraph, to the length of the shortest path in the UDG.

• Routing traffic: If the algorithm uses some sort of flooding, then it should try

not to employ a lot of nodes during the routing process because the more nodes

participate in the routing process, the more overhead and collision may happen

in the network; also, there is more of a chance for nodes to fail from running

18

out of batteries. Traffic is used as a measure here and is defined as follows:

the average ratio of the number of nodes the packet visits during the routing

process to the number of nodes in the shortest path in the UDG.

• Network Survivability: Network survivability may be defined as the remaining

power in the maximally used node, assuming each node starts off with the same

power, during a set of consecutive routing messages.

2.5 Classification of Routing Protocols

Finding improved routing algorithms is a challenging problem for MANETs. Several

routing protocols for ad hoc networks have been proposed to solve the multi-hop

routing problem. Each is based on different assumptions and concepts. In general,

Mauve et al. [85] classify the routing algorithms in MANETs as being of two basic

types: topology-based [20, 28, 94, 95, 100] and position-based [19, 49, 85]. Figure 4

shows our view of the general classification of ad hoc routing algorithms.

Routing
Algorithms

Topology-Based Routing

Proactive
Routing

Position-Based Routing

\
1 f *

Hybrid
Routing

Reactive
Routing

- J

•i

Power
Aware
Routing

One-Neighbor I
Forwarding

Restricted
Directional
Flooding

Deterministic
Progress-based

algorithms

Face-based
algorithms

Randomized
Progress-based

algorithms

Figure 4: Classification of routing algorithms

19

2.5.1 Topology-based Routing Protocols

Topology-based routing protocols define an explicit route among nodes using the

information about the links that exist in the network. Those protocols can be further

divided into three main categories: proactive, reactive and hybrid protocols.

Proactive Routing Protocols

Proactive routing protocols use a periodic information exchange to maintain an un­

derstanding of the network topology. The whole network should, in theory, be known

to all nodes. The advantage of a proactive protocol is that routes are readily available

when one node wishes to send a message to another node. The destination sequence

distance vector (DSDV) [90] routing protocol, the wireless routing protocol (WRP)

[86] and the cluster-head gateway switch routing protocol (CGSR) [32] are all types

of proactive routing protocols. R-DSDV [33] is an example of a randomized version

of a proactive protocol.

These protocols can suffer from a high volume of control packets overhead because

of the need to distribute network topology and route path maintenance information

even if a network path is unused.

Reactive Routing Protocols

Reactive protocols seek to set up routes on-demand. If a node wants to initiate

communication with a node to which it has no route, the routing protocol will try to

establish such a route. This means that it maintains only the routes that are currently

in use. Reactive protocols typically use less bandwidth in terms of control packets

to discover topology information, but even so, packets to discover new routes must

sometimes be flooded through the network, which consumes immense bandwidth. The

dynamic source routing protocol (DSR) [20, 63], and the ad hoc on demand distance

vector routing protocol (AODV) [91] are some examples of reactive routing protocols.

20

Hybrid Routing Protocols

Hybrid routing algorithms, such as the Zone Routing Protocol (ZRP) [50], integrate

local proactive routing and global reactive routing to achieve a higher level of efficiency

and scalability. However, route maintenance is still required. The border between

local region and global region limits the distribution efficiency of information about

network topology changes.

Topology-based routing can usually find the shortest path, in terms of the number

of hops, between a pair of nodes. However, it can be difficult for these routing

methods to handle large ad hoc networks with many nodes or with frequently changing

connectivity among nodes [57].

2.5.2 Position-based Routing

Position-based routing [49, 85], or online routing [26], algorithms eliminate some of

the limitations of topology-based routing by using geographical information about the

mobile nodes to make decisions about routing packets. In general, a position-based

routing algorithm has the following characteristics:

• Each node in the network has the means to determine its coordinates. This can

be obtained through a GPS receiver or another such mechanism [29, 66].

• Each node can find the position of a node with which it wishes to communi­

cate by making use of a location service [54, 78], receiving the position from a

previous packet from that node or some other mechanism.

• There is no need for nodes to store routing tables. Nodes maintain only the

information about their neighbors at most a fixed number of hops (usually one

hop) away.

• A node in the network knows the positions of the nodes with which it can

communicate directly, simply by using a periodical broadcast beacon containing

21

information such as node identifier and geographic coordinates.

• The routing decision at each hop in the route can be made based on the locations

of the current node, its neighbors and the destination node.

Position-based routing scales to a large number of network nodes and is efficient

when nodes move frequently. There are two main types of packet-forwarding strategies

for position-based routing [85]: one-neighbor forwarding and restricted directional

flooding.

One-neighbor Forwarding

With one-neighbor forwarding, the algorithm forwards the packet in every step

to exactly one of its neighbors. We can consider three types of these algorithms:

Deterministic progress-based, Randomized progress-based and Face-based routing al­

gorithms.

Deterministic Progress-based Algorithms:

With deterministic progress-based routing algorithms [42, 56, 71, 104, 106], the cur­

rent node (the node holding the packet) forwards the packet at every step to one of

its neighbors that makes progress to the destination. These algorithms are known to

fail in delivering the packet in certain situations that are called the local minimum

phenomena, in which a packet may get stuck at a node that does not have a neighbor

that makes a progress to the destination, even though the source and destination

are connected in the network. The following algorithms belong to the progress-based

strategy:

• Greedy [42]: For this algorithm, the current node c forwards the packet to

the neighbor node u that minimizes the remaining distance to the destination

node d. See Figure 5(a). Formally, Gdy(c, N(c),d) = u € N(c) : dist{u,d) <

dist(w,d) for all w € N(c). The same procedure is repeated until the destina­

tion node is reached. If the packet reaches a local minimum, then the algorithm

22

fails. Greedy routing is a loop-free algorithm.

• Compass [71]: In this algorithm, the current node c forwards the packet to the

neighbor node u that minimizes the angle Zucd, where d is the destination. See

Figure 5(b). Formally, Cmp(c, N(c), d) = u E N(c) : Zucd < Zwcd for all w E

N(c). If the packet reaches a local minimum, then the algorithm fails. It was

proved in [103] that Compass routing is not a loop-free algorithm.

• Ellipsoid algorithm[112]: In this algorithm, the current node c forwards the

message to its neighbor node u that minimizes the summation of the distance

from c node to u and the distance from u to the destination node d. See

Figure 5(c). Formally, Elp(c,N(c),d) = u E N(c) : (dist(c,u) + dist(u,d)) <

(dist(c, w) + dist(w, d)) for all w € N(c). The same procedure is repeated until

the destination node is reached. If the packet reaches a local minimum, then

the algorithm fails.

• Most Forward Routing (M.FR) [106]: This algorithm maximizes the

progress towards the destination by forwarding the packet to the neighboring

nodes whose projection onto the line between the current node and the destina­

tion is closest to the destination. See Figure 5(d). Formally, MFR(c, N(c), d) =

u € N(c) : dist(proj(u,cd),d) < dist(proj(w,cd),d) for all w E N(c), where

proj(u,cd) is the projection of the node u on the line cd. Since MFR is a

progress-based algorithm, it fails if the packet reaches a local minimum node.

In most cases, MFR selects the same path as the Greedy algorithm.

3D extensions for the previous deterministic progress-based algorithms:

Purely deterministic progress-based algorithms can be considered in 3D with little

modification. Kao et al. [64] and Nanda [87] propose the 3D extensions for the

Greedy and Compass algorithms. Extensions for the Ellipsoid and Most Forwarding

algorithms are provided in [64],

23

\ ft. • • '*. f.P ' '
c • a c -• • a

k k . •

a) Greedy routing b) Compass routing

°...f.P ' ' ' . a. $
*-c . of c « d

k k
c) Ellipsoid routing * d) Most forwarding routing

Figure 5: Various routing algorithms taken from [64]

For further illustration of the operation of each of the above mentioned algorithms,

consider the example given in Figure 6 where the source and the destination are s

and d\, respectively. In this example, Greedy chooses a as the next node and the

whole path is s,a,r,o,d\\ MFR chooses e as the next node and the whole path is

s,e,o,d\\ and with Compass protocol s chooses b as the next node and the whole

path is s,b,r,o,di. In the example in Figure 6, if the destination is changed to e^,

all the above algorithms will fail to deliver the message. Greedy, MFR and Compass

will reach the node w, which is a local minimum because there is no neighbor for w

that makes a progress to d^.

Many algorithms attempt to deal with the local minimum problem. Fin [42]

proposes to flood all <?-hop neighbors (nodes at distance at most £ hops from current

node, where £ is a network-dependent parameter) until a node closer to the destination

than c is found. Takagi and Kleinrock [106] propose countering the local minimum

problem by forwarding the packet to the node with the least backward (negative)

progress. However, this raises the problem of looping packets. Stojmenovic and Lin

[103] alternately suggest dropping the packet if the best choice for the current node

is to return the message to the node that packet came from.

24

Figure 6: A sample network topology to illustrate the operation of the algorithms

Randomization-based Algorithms

Randomization-based routing algorithms [26, 41, 88] try to solve the local minimum

problem described above by choosing the next node randomly from a subset of the

current node's neighbors. These strategies minimize the accuracy of information

needed about the position of the neighbors. In general, they have higher delivery

rate than the deterministic algorithms at the price of a higher stretch factor. The

following are some examples of randomization-based algorithms:

• Random progress method [88]: In this algorithm the current node c for­

wards the packet to a randomly selected neighbor closer to the destination.

• A B algorithms [41]: The AB (above/below) algorithm can be described as

follows: Each algorithm has two attributes: AB(R,S) where R is one of C M

(as in Compass), G R (Greedy) or ELP (Ellipsoid-Based), and S is one of U,

A or D. Each routing algorithm is based on initially determining two candidate

neighbors, one neighbor of c from above the cd line, nj , and, similarly, one

neighbor of c below the cd line, n^- Out of all the possible neighbors from

above (below) the cd line, n\ (n2) is the one that would be chosen by the R

protocol. Which of these two candidate neighbors is actually chosen depends on

the symbol for S. If the symbol is U, then the next node is chosen uniformly at

25

random from ni and n2. If the symbol is A, then the next node is chosen from

rii and n2 with probability 92j{9\ + 92) and 0i/(#i + 02) respectively, where

9\ = Znicd and 92 — Zn2cd. Finally, if the symbol is D, then the next node is

chosen from n\ and n2 with probability dis2/'(dis\+ dis2) and disi/{dis\ + dis2),

respectively, where dis\ = dist{ri\,d) and dis2 = dist(n2,d). If either n\ or n2

is not defined, then the other neighbor is chosen by default.

In the example given in Figure 6, if the source node s wants to send a packet to

d\, the AB algorithm at s will choose a or b randomly as the next node for its

packet. If the destination is changed to d2, the AB algorithm will fail to deliver

the message.

3D extension for randomized algorithms: We provide a 3D extension for the

randomized algorithm in [2]. This algorithm will be explained in detail in Chapter 5.

Face-based Algorithms

To guarantee the delivery of the packets, position information can be used to extract

a planar subgraph so that routing can be performed on the faces of this subgraph,

known as Face routing or perimeter routing [27, 67]. The advantage of this approach

is that the delivery of packets can always be guaranteed. The original Face routing

algorithm was called Compass Routing II in [71]. An optimization of this algorithm is

given in [27] and called Face2. In [14], Face routing is adapted to guarantee delivery

on restricted classes of non-planar graphs. In the following we will explain in detail

how Face routing works and how a combination of Face and the above progress-based

algorithms helps to decrease the path dilation.

• Face2 algorithm [27]: This algorithm starts by extracting the GG from the

UDG. Then the packets are routed over the faces of GG, which are intersected

by the line between the source and the destination, sd, using the right-hand rule.

That is, the boundary of / is traversed in the counterclockwise direction, unless

26

the current edge crosses sd at an intersection point closer to the destination

than any previously discovered intersection point. In this case, the algorithm

switches to the next face sharing the edge and continues with the right-hand

rule. This algorithm is repeated until the node arrives to the destination. The

Face routing algorithm guarantees the delivery only over a 2D planar geometric

graph [44]. Figure 7 shows an example how the algorithm works.

Figure 7: Face routing algorithm

• Greedy Perimeter Stateless Routing (GPSR): Greedy Perimeter State­

less Routing (GPSR) [67] is another position-based routing algorithm. This

algorithm combines Greedy routing and Face routing. GPSR makes Greedy

forwarding decisions using the local information. Packets are forwarded to the

next-hop node, which moves the packet the most "toward" the position of the

destination. If the packet reaches a region where Greedy forwarding is impos­

sible, the algorithm enters into recovery mode by routing around the perimeter

of the region. GPSR traverses the perimeter (Face in [27]) of the region on the

planar graph to the destination in the recovery mode. Once the packet reaches

a node closer than the previous local minimum, the packet switches back to

Greedy forwarding again. GPSR guarantees the packet delivery. This algo­

rithm is also termed GFG {Greedy-Face-Greedy) [27]. A combination of Face2

and the AB algorithm has been provided by Abdallah et al. [40].

27

3D extension of Face routing algorithm: Face routing, GFG and GPSR

algorithms guarantee delivery only over a 2D planar geometric graph. In a three-

dimensional network, extracting a straight-line planar graph is not an option since the

notions of planarity and routing about the perimeters of faces do not exist. Therefore,

we cannot directly perform the Face routing protocol on a 3D network.

• Projective Face Routing Algorithm: To enable routing on a 3D MANET

based on the Face routing protocol, Kao et al. [64] propose mapping the 3D

network to a projection plane where the 2D Face routing algorithm can then be

applied. Specifically, their Projective Face algorithm uses two orthogonal planes

that intersect along the line between the source and the destination, changing

to the second projection plane if the first plane leads to failure. This algorithm

gives significantly better delivery rate than the other deterministic 3D routing

algorithms such as the Greedy, Compass, Ellipsoid and Most Forward routing

algorithms, although the algorithm also leads to a very large hop path dilation.

To enhance the performance of the projective Face routing algorithm, Kao et al.

[65] propose three heuristics to modify the projective Face routing algorithm.

The resulting 3D routing algorithm, called Adaptive Least-Squares Projective

(ALSP) Face routing, gives nearly certain delivery rate (e.g., nearly always 100%

by simulation), while the hop stretch factor is relatively high. The heuristics

are described as follows:

1) Least-Squares Projection (LSP) Plane: To determine the initial projection

plane, the least-squares mathematical optimization technique is used to find

the best-fitting plane [97]. To maintain the local characteristic of the routing

algorithm, only the source node s, destination d and the N2(s) neighbors are se­

lected as the set of data points for computing the least-squares projection plane.

The heuristic is aimed at having a projected graph with minimal distortion so

that the number of crossing edges can potentially be reduced.

28

2) Multi-Projection-Plane Strategy: A significant increase in the delivery rate

is possible by utilizing more than one projection plane, all the planes arranged

at certain angles from the original LSP plane. All projection planes have a

common line of intersection. If we make a cross-section that is perpendicular to

all the planes and look along their intersection, the dihedral angles between each

pair of neighboring planes are identical. Let Ns be the number of planes. The

dihedral angle between each pair of neighboring planes is thus ir/Ns degrees.

When switching from one order LSP plane to the next order LSP plane, this

ordering is strictly followed.

3) Adaptive Behavior Scale (ABS): During the routing process, the current

node can be viewed as an alternate source node during the routing process.

Kao et al. define a fixed parameter called Adaptive Behavior Scale (ABS). The

ABS is used to determine when to recalculate the LSP plane. After an ABS

number of hops have been preformed on the current order LSP plane, the LSP

plane is recalculated with the current node c, N2(c) and the destination d.

This heuristic makes the Projective Face routing algorithm more dynamic and

robust by having the LSP plane better reflect the local graph structure about

the current node and potentially lead to fewer crossing edges.

These approaches do not guarantee delivery, as a connected planar graph cannot

be extracted from the projected graph (see Figure 8). Experiments show that

the delivery rate is significantly higher than the other 3D progress-based routing

algorithms. Li et al. [84] study the performance of the combination of Projective

Face Routing and progress-based routing in 3D mobility environment.

• Coordinate Face Routing Algorithm, CFace(3) [2] This algorithm may

be summarized as follows. The 3D nodes are first projected onto the xy plane.

Then Face routing is performed on this projected graph. If the routing fails, e.g.

a loop is detected, the nodes are then reprojected onto the second plane, the

29

Figure 8: Projective Face routing algorithm. The neighboring nodes are preserved
after projection. This figure is taken from [64]

yz plane. Then Face routing is performed again. If the routing fails again, the

nodes are projected onto the third plane, the xz plane. Face routing is again

performed. See Figure 9. A simplified version of CFace(3), called CFace(l),

attempts Face routing with the nodes projected once only onto one of the xy,

yz or xz planes, randomly chosen. Abdallah et al. [2] propose a combination

between CFace and Randomization-based routing algorithms.

Restricted Directional Flooding

In restricted directional flooding, the current node forwards the packet to more

than one neighbor that is located closer to the destination than the forwarding node

itself. This partial flooding can be used only for path discovery [70] or for packet

forwarding [21]. The following algorithms are examples of position-based routing

algorithms using restricted directional flooding.

• Distance routing effect algorithm for mobility (DREAM) [70]: For

this algorithm, the current node c forwards the packet to all neighbors in the

direction of the destination d. A node is considered to be in the direction of d

if it is located in the cone shown in Figure 10. In order to determine that cone,

c calculates the region around d, called the expected region. It is the circle

around d of radius equal to vmax * (ti — to) where t\ is the current time, to is

30

Figure 9: CFace(3) routing algorithm. The algorithm attempts 2D Face routing,
cyclically until success, with the nodes projected onto the xy plane, the yz plane, and
then the xz plane

the time stamp of the position information that c has about d, and vmax is the

maximum speed of the node in the network. The neighbor nodes repeat the

same procedure.

• The geocasting based Location-Aided Routing (LAR) [21]: LAR limits

flooding of the route discovery packets to a small group of nodes that belong

to the request zone. The request zone is denned as the rectangle with the

source s in one corner and the expected zone in the opposite see Figure 10.

The expected zone is defined exactly as for DREAM. The procedure for route

discovery in LAR is as follows: First, the source puts the location information

of itself and the destination in the routing request packet; second, the routing

request packet is broadcasted within the request zone. In other words, the nodes

within the request zone forward the message, while others discard the message;

third, after receiving the route request, the destination sends back a route reply

31

•

•

Flooding area of LAR ' ' \
'i *

/•: ».
/ ' * \ expected zone ,

, ' " ' Flooding area of DREAM

* * *
,-' 5 " '

•

Figure 10: To route from s to d, with DREAM a current node will forward the packet
to all the neighbors' nodes inside the cone, while with LAR it will forward the packet
to all neighbors' nodes inside the rectangle

packet that contains its current location.

• GEcho:[75] This algorithm uses a combination of greedy routing and flooding-

based algorithms. In this algorithm the message is forwarded in Greedy mode

as long as possible. If the message arrives to a local minimum, the algorithm

switches to Echo mode (flooding mode).

The flooding phase is initiated by the local minimum node c by sending a

flooding message containing a Time To Live (TTL) counter to all its neighbors.

Each node receiving the flooding message for the first time decrements the

TTL counter by one and retransmits the message to all its neighbors (with the

exception of the neighbor it received the message from). In the synchronous

model, this flooding phase constructs a Breadth First Search (BFS) tree. From

the leaves of this tree, the nodes where the TTL counter reaches 0, echo messages

are sent back to c along the BFS tree constructed during the flooding phase.

An inner node in the BFS tree can decide locally when to send an echo message

to its parent in the tree by awaiting the receipt of an echo message from all of

32

its children.

The algorithm returns back to Greedy mode when the message arrives at a node

closer to the destination than the previous local minimum. The main drawback

of this algorithm is the high message complexity, 0(8) where 8 is the number

of edges in the network.

3D versions of the above restricted directional flooding algorithms:

LAR3D [1] This algorithm is a straightforward 3-D extension of LAR. With the

available information of the destination node d, the source node s computes the

expected zone for d, which is a sphere around d of radius equal to vmax * (t\ — to)

where t\ is the current time, to is the time stamp of the position information that s

has about d. the node uses this zone to define the flooding area, which is defined as a

rectangular box with the two opposite corners s and s + (l + yfZ\r\/\d — s\)*(d — s) (the

minimum-size rectangular box enclosing node s and the sphere of radius r around d).

See Figure 11.

GEcho can be used in 3-D environment without any modification. A 3-D extension

of DREAM is straightforward, where the flooding area would be the 3D cone shown

in Figure 11.

2.5.3 Power and Cost Awareness Routing

A crucial problem in multi-hop routing is to find an efficient and correct route between

a source and a destination; however, for many networks, an important problem in

multi-hop routing is providing an energy-efficient routing protocol because of the

limited battery life of the wireless nodes. Transmission power management, which

selects the optimized power level of nodes, is one of the primary means of increasing

the lifetime of the nodes. The power consumption at each node in an ad hoc network

can be divided into three phases, according to functionality [16]:

1. The power consumed for transmitting the message

33

s *•

0

= °

• V /

• \ o /

© - • - © • - .

/' o
/ o

Figure 11: To route from s to a!: with 3DDREAM, a current node will forward the
packet to all the neighbors' nodes inside the 3D cone, while with LAR3D, it will
forward the packet to all neighbors' nodes inside the rectangular box

2. The power consumed during message reception

3. The power consumed while the node is idle.

In ad hoc networks, for each ordered pair of nodes (u,v), there is an associated

transmission power threshold, denoted by P(u,v), which indicates the transmission

power needed by u so that its signal can be received by v. The transmission power

threshold for a pair of nodes depends on a number of factors including the distance

between the transceivers, interference, noise, environment, etc. [93].

In previous work [7, 94, 104, 114, 115], two main metrics have been used to opti­

mize power routing for a sequence of messages.

The first metric, called the power metric, tries to minimize the energy consumed

for each message. If the transmission range is fixed for all the nodes, then the number

of nodes in the route path is used as the energy required for the routing task. This

metric can be optimized if the nodes can adjust their transmission range. Then the

constant metric can be replaced by a power metric that depends on the distances

between nodes. In formal terms [51], let ej be the energy required by the packet

34

j to traverse a sequence of nodes ni,n,2, • • • ,rik, where n\ is the source and n^ is

the destination. If p(rii,ni+i) is the power needed to forward j over one hop from

rii to nl+i, then the aim of the power metric is to minimize ê over all j , where

ej = J2i=i p{ni-,ni+\)- A drawback of the power metric is that some nodes may be

repeatedly chosen over many routes, which quickly leads to their failure. In many

cases this may result in the loss of network connectivity.

The second metric, called network survivability [30, 96] or cost metric [104], tries

to maximize the lifetime of the nodes. Given alternative routing paths, select the one

that will result in the longest network operation time. One way of optimizing this

metric is by choosing the nodes with plenty of energy as relaying nodes. Formally,

let the current node be c and N(c) be the set of its neighbors' nodes. Let g(x)

be the remaining energy at the node x. Then the next node a is chosen such that

a = x 6 N(c) : g(x) < G(y) for all y € N(c). We will focus on the second metric for

our routing algorithms in Chapter 7.

Power Consumption Wireless Model

A wireless model has been proposed in [93] in which the power consumption between

two nodes at distance UJ is expressed as u(u>) = u>a + 0, where a is the path loss

exponent in the power consumption model and 0 is a constant that represents the

energy consumed in computer-processing and encoding-decoding at both transmitter

and receiver. It has been proven in [104] that u(u>) is optimal if UJ < (/3/(l — 2)1 _ a)1 / / Q .

If UJ is greater than that, then the greatest power savings are obtained when UJ is

divided into n > 1 equal length subintervals of size (/3/(a — 1))1/,Q.

Existing Power-aware Routing Algorithms

Several power-aware routing algorithms that try to minimize the total energy con­

sumed by the packet and also increase the average network lifetime have been pro­

posed [76, 102, 104]. Let the current node be c, a be a neighbor of c, and the

35

destination be d. Let h = dist(c,a), p = dist(c,d) and q = dist(a,d), where q < p.

Let the cost of transmitting a packet between two nodes at distance u be £uja + 0,

where £, a, 3 are constants that depend on the wireless model. Let h be the average

length of all edges out from the source s. Let f(a) = -K, where g(a) is the remaining

lifetime for the node a. Also, / (a) is the average value of f(x) for a and all neigh­

bors x of a, g(a) is the average value of g(x) for a and all neighbors x of a; r is the

transmission radius. The algorithms are summarized as follows [104]:

• Power Algorithm: This algorithm tries to minimize the total energy con­

sumed by the packet in the routing process, regardless of the available energy at

the nodes. With the Power algorithm, the current node c chooses as a next node

a, which minimizes the expression: P(c,a) + P(a,d), where P(c,a) = £ha + 3

is the cost to reach a and P(a, d) = qP(£{a - l)/(3)l,a + q£(£(a - I)/3){l-a)/a,

which is an assumption that the cost for the rest of the routing process are

optimal.

• Cost- i Algorithm: This algorithm uses the cost metric. It tries to maximize

the network lifetime by carefully choosing the next node from the set of neigh­

bors with plenty of energy. In this algorithm the current node chooses a next

node a, which minimizes the equation: cost(a) = / (a) * t/r, where t = f{a).

• Cost-M Algorithm: Since the factor t is network dependent, there are different

versions of the previous algorithm. One of those algorithms is called Cost-ii.

In this algorithm, the current node chooses one of its neighbors, say a, which

minimizes the equation: cost(a) = f(a) * t/r, where t = l/g(a).

There are two ways to combine power and cost metrics into a single metric, based

on the product or sum of the two metrics.

• Power*Cost: In this algorithm, the current node chooses one of its neigh­

bors, say a, which minimizes the following equation: Power*Cost(a)= Power *

36

Cost(c, a) + Power * Cost(a, d), where Power * Cost(c, a) = f(a) * (£ha + 0)

and Power * Cost(a, d) = {q0{£{a - l)/0)l/a + q£(£{a - l)/0Y1~a)/a) * / (a) .

• Power+Cost: In this algorithm the current node chooses one of its neighbors

a, which minimizes the equation: Power+Cost(a) = (Power + Cost(c,a)) +

[Power+Cost(a, d)), where Power+Cost(c, a) = [f(s)*(£ha+0)} + [f(a)*(£ha+

0)] and Power + Cost{a,d) = {q0(£(a- l)/0)l/a+ q£(£(a- l) / /3) (1 _ a) / a)* / (o) .

Kuruvila et at. [76] propose another set of power and cost-awareness routing

algorithms that choose the next node so to guarantee progress to the destination,

assuming such a node exists. In the Power Progress algorithm; the current node

forwards the packet to one of its neighboring nodes that is closer to the destination

than itself and minimizes (ha + 0)/(p — q). Similarly, in the Cost Progress algorithm,

the next node is the one that is closer to the destination than the forwarding node

and minimizes f(a)/(p — q).

Since all the above algorithms are deterministic algorithms that suffer from the

local minimum problem, they do not guarantee the delivery of the message in a

connected graph. Stojmenovic et al. [102] propose guaranteed delivery algorithms in

2D space, which combine Power (P), Cost (C) and Power*Cost (PC) algorithms with

Face routing algorithm, similar to the way the Greedy algorithm is combined with

Face to define the GFG algorithm. Those algorithms start with P, C or PC forwarding

decisions. Once a packet reaches a local minimum, the Face routing starts. If the

message arrives to a node closer to the destination than the local minimum node, the

algorithm switches back to P, C or PC forwarding again. These algorithms have been

called PFP, CFC and PCFPC respectively; because these combined algorithms use

face routing, they are not applicable in 3D environment.

37

Chapter 3

Displaced Apex Adaptive Yao

Graphs

In this chapter, we introduce a new class of orientation-invariant Yao-type subgraphs

of a UDG, that is a generalization of the Yao graph where the cones used are adap-

tively centered on a set of nearest neighbors for each node, thus creating a directed

or undirected spanning subgraph of a given unit disk graph (UDG). We also permit

the apex of the cones to be positioned anywhere along the line segment between the

node and its nearest neighbor.

3.1 Displaced Apex Adaptive Yao Graphs

Let K b e a set of n points in the Euclidean two-dimensional plane, each point pos­

sessing a geometric location. For the following, define the cone angle 9 to be the

half-angle of the cone's apex.

Let the parameter p be the closed line segment between u and v. (1 — p)u + pz,

0 < p < 1. Any particular choice of p represents the position of the apex of the cone.

We will use as a second parameter a, 0 < a < 1, to determine 6 as a fraction of a

maximum cone angle, 8m(p, \uz\), which we define shortly, which is a function of p

38

and the distance from the current node u to the nearest neighbor z for which the cone

is determined.

Algorithm 3.1 Displaced Apex Adaptive Yao(G, a,p) graph algorithm

Input: A graph G with the node set V, an angle parameter a, and a parameter p.
Output: A list of directed edges L for each node u € V which represent the Dis­
placed Apex Adaptive Yao subgraph of G, DAAY(G,a,p).
for all u G V do

Create a list of neighbors of u: LN(u) = N(u).
repeat

(a) Remove the nearest neighbor z node from LN{u) and add the directed
edge uz to L.
(b) Determine 9m(p, \uz\).
(c) Let r = (1 — p)u + pz be a point on the line segment uz.
(d) Consider the cone C with its apex at r with a cone angle 6 = a • 9m(p, \uz\)
and z in its interior, such that the line uz bisects the cone C into two equal
halves.
(e) Scan the list LN(u) and remove each node in the interior of C.

until LN{u) is empty
end for

Definition 3.1. Let G be a UDG with node set V. The directed Displaced Apex
>

Adaptive Yao subgraph, DAAY(G,a,p), is defined to be the graph with node set V

whose edges are obtained by applying the Displaced Apex Adaptive Yao(G,a,p) al­

gorithm, Algorithm 3.1, on the graph G using cone angle 9 = a • 9m(p,\uz\) and

apex displacement parameter p. The undirected graph DAAY(G,a,p) is obtained by

ignoring the direction of the edges in DAAY(G,a,p).

When p = 0, we simply refer to the resultant graph as the Adaptive Yao graph.

Note that the directions of the cones used in the Displaced Apex Adaptive Yao(G, a, p)

algorithm only depend on the relative directions of the selected nearest neighbors.

Therefore, the resultant subgraph is the same regardless of the orientation of the

point set V. Hence the DAAY(G, a,p) is orientation-invariant. See Figure 12.

39

/ •

/ . ' • - ' • • -
" - " - * - •

%X

\
• • • \

\

1
i
i

*""--•-.
\

*~~
\

\ \
\
\

(a) (b) (c)

Figure 12: Applying the Displaced Apex Adaptive Yao(UDG, 1,0) graph algorithm
on the node u of a UDG: (a) the nearest neighbor is first chosen; (b) the second
nearest node out of the rest of the nodes is then chosen. Note that its associated cone
overlaps with the first cone; and (c) the third nearest neighbor is chosen from the list
LN(u).

3.2 Displaced Apex Adaptive Yao Propert ies

Lemma 3.1. Consider a node u and neighbor z of u. Consider an arbitrary point

k = (1 — p)u + pz where the parameter p has a value in the range [0,1]. Define L to

be the line perpendicular to the line segment uz that intersects uz at its midpoint m

(corresponding to p = 0.5 in the above line equation). Define a cone with cone angle

9 with its apex at k oriented such that z is in its interior. Consider the boundary of

this cone intersecting the line L at a point c. Then the cone angle 0 is defined by

s i n (0 - 0 o) P\uz\ w / i e r e c o s (£ o) l . M
sin(0) \uc\ 2 \uc\

Proof. Consider the triangle Auck. Let 8Q be the interior angle at u. Then the

interior angle at c is 9 — 6Q. The interior angle can be determined from the right

triangle Armzc, cos (#o) = | H - Also, the interior angle at k is IT — 9. By the sine

law,
sin(# — 9Q) p\uz\

sin(0) \uc\

•

40

Corollary 3.1. Consider a node u and neighbor z of u. Consider an arbitrary point

k — (1 — p)u + pz where the parameter p has a value in the range [0,1]. Define L to

be the line perpendicular to the line segment uz that intersects uz at its midpoint m

(corresponding to p — 0.5 in the above line equation). Define a cone with cone angle

6 with its apex at k oriented such that z is in its interior. Consider the boundary of

this cone intersecting the line L at a point c. If \uc\ = \uz\ then 90 = n/3 and

sin(9 — 7r/3) p\uz\

sin(t/) \uz\

Definition 3.2. Consider a node u and neighbor z of u. Consider an arbitrary point

k = (1 — p)u + pz where the parameter p has a value in the range [0,1]. Define L to

be the line perpendicular to the line segment uz that intersects uz at its midpoint m

(corresponding to p = 0.5 in the above line equation). Define a cone with cone angle 8

with its apex at k oriented such that z is in its interior. Consider the boundary of this

cone intersecting the line L at a point c. Define the maximum cone angle 9m(p, \uz\)

as a function of the parameter p and the distance \uz\ as follows:

sin (9m(p, \uz\) — |)

sin(0m(p, \uz\))

sin (6 U p , M) - c o s " 1 (i ^))

sm(9m(p,\uz\))
p\uz\ i/0.5 <p< 1

Note that when 0 < p < 0.5, then 9m(p, \uz\) is only a function of p such that 8

is a fixed angle for fixed values of p and a. When p = 0.5, 0m(O.5, \uz\) = ir/2 and, if

a = 1 so that 9 = 9m(p, \uz\), we obtain the Half Space Proximal graph [31].

41

3.2.1 Connectivity

T h e o r e m 3 .1 . Consider a node set V and UDG(V) defined on V. If UDG{V) is
>

connected and the cone angle 6 is less than or equal to 9m(p, \uz\) then DAAY(UDG-

(V),a,p) is strongly connected.

Proof. Consider an edge uv e UDG{V). To show that DAAY(UDG(V),a,p) is
>

strongly connected we will show that there is a directed path from u to v in DA A Y(UDG-

(V), a, p). Proof is done by contradiction. Assume that there is at least one edge uv G

UDG(V) such that there is no directed path from u to v in DAAY(UDG(V), a,p).

Let uv be the shortest such edge in UDG(V). This implies that there is an edge

uz 6 DAAY(UDG(V), a,p) such that \uz\ < \uv\, because the edge uv should be

in the cone of uz selected by the Displaced Apex Adaptive Y&o(UDG(V), a,p) algo­

rithm.

Now consider the triangle /\uzv in Figure 13. The choice of maximum cone angles

in Definition 3.2 is based on the idea that v could be placed anywhere in the open

half-plane H containing z defined by the line perpendicular to the line segment uz

in the middle of uz (the point corresponding to p = 0.5 in our parametrization of

the uv; labeled as m in Figure 13). Consider the two cases defined by the value of p.

First, assume 0 < p < 0.5 (for example, the apex of the cone would be at the point

labeled as k in the figure). Then to keep v in the interior of H, the maximum cone

angle 6 would define a cone that intersects the boundary of H at a point at distance

\uz\ from u (such a point is labeled as c in the figure). By Corollary 3.1, 9m(p, \uz\)

is as defined in Definition 3.2.

Now, assume 0.5 < p < 1. To keep v in the interior of H, the maximum cone

angle 6 would define a cone that intersects the boundary of H at a point at distance

r from u (such a point is labeled as c in the Figure 13). By Lemma 3.1 and noting

that \uc\ = r, 8m(p, \uz\) is as defined in Definition 3.2.

In either case, since the cone angle is less than or equal to 6m(p, \uz\), then any

position of the node v inside the cone for z such that \uz\ < \uv\ would give \zv\ strictly

42

Figure 13: The left diagram is for 0 < p < 0.5. The bottom diagram is for 0.5 < p < 1.
In both diagrams, the dark shaded area is the forbidden region where any other
neighboring nodes are excluded

less than \uv\. Since uv is an edge in UDG(V), then zv is also an edge in UDG(V).

Therefore, there exists a directed path from z to v in DAAY(UDG(V),a,p), and so

there is a directed path from u to v in DAAY(UDG(V), a,p). D

Note that when p > 0.5, the further away the nearest neighbor z, the larger the

cone angle limit 9m(p, \uz\). If a fixed cone angle 8 was used, since as \uz\ —> 0 the cone

angle approaches n/2, it would have to be 8 < ir/2 to ensure connectedness. Using

9 — IT/2 would then give a variation of the Half Space Proximal subgraph with the

forbidden zone half-plane intersecting the line segment uz at the point corresponding

to p > 0.5 rather than at the midway point.

43

3.2.2 Bounding the Node Out-degree

Theorem 3.2. The out-degree of any node in DAAY(UDG(V),a,p), 0 < 6 <

0m(p, \uz\), is at most — where <f) is defined by

Proof. From the definition of Displaced Apex Adaptive Ya,o(G,a,p), the smallest

angle between any two edges is 6 because any nearest neighbor selected forms an

edge that will be outside, or on the boundary of, the cone for any other neighbor.

Consider a node u. Let z be the nearest neighbor that defines a cone. For 0 < p < 0.5,

the smallest angle between z and another nearest neighbor w is (f> if w is placed at

the intersection c of the cone boundary and the circle of radius uz centered on u (the

point labeled as c in Figure 13). By Corollary 3.1, the angle between c and z about

u is defined by Eq. 2. If 9 — 9m(p, \uz\), 4> — TT/3. Similarly, for 0.5 < p < 1, the

smallest angle between z and another nearest neighbor w is <fi if w is placed at the

intersection e of the cone boundary and the circle of radius uz centered on u (the

point labeled as e in Figure 13). It is straightforward to show, using a proof similar

to that for Lemma 3.1 and noting that \ue\ — \uz\, that the angle <\> between e and

z about u is also defined by Eq. 2. Therefore, the angle between any two selected

edges will be greater than or equal to 4>, which is a function of p. So, the maximum

27T

out-degree for any node will be —-. Any fraction of a cone overlapping in the worst-
<P

case will not add to the out-degree of the node, so the maximum integer out-degree
2TT of any node is be

•
Consider the worst-case example in Figure 14, in (a) the nearest neighbor z is first

chosen, and the forbidden area is defined as a cone of 2(f) angle; (b) the next node

w{ in the worst-case will be exactly on the border of the cone, which will define its'

44

cone that overlap the first cone; (c) third point w2 will be on the border of the second

cone; (d) after doing all the points we can see that the circle around the node u is
2vr

divided in the worst-case into — cones.

Figure 14: Worst-case example of the node degree in DAAY(UDG(V), a,p)

3.2.3 Stretch Factor

Theorem 3.3. Let V C R2 be a set of n points and let 9 < 7r/3 be the cone angle.

Then DAAY(UDG(V), a,p) is a spanner with stretch factor -7- .

1 - 2sin(|)

Proof. Let uv be an edge in UDG that is not selected by Displaced Apex Adaptive

Y&o(G,a,p) algorithm. Since, by Theorem 3.1, DAAY(UDG(V),a,p) is connected,

then there is a shortest path from u to v. Let a "worst" such path from u to v in

DAAY(UDG(V),a,p) be u0 — u,u-[,u2,... ,un = v. See Figure 15. By the Displaced

Apex Adaptive Yao(G, a,p) algorithm, the angle ZUJ+IUJV < r\ (which we will deter­

mine) and |ujiij+i| < \uiv\ since otherwise UiV would be part of DAAY(UDG(V), a,p)

45

and part of the path. Also, by Theorem 3.1, |UJ+1TJ| < \uzv\ since we can always de­

crease the distance to v from each Uj along the path.

Now consider the triangle A UiUi+\v (see Figure 15). Let a be the point on UiV

such that |u,a| = |itjtij+i|. By the triangular inequality |uj+ii>| < |iij+ja| + \av\. Note

that |u i + 1a| = (2sin-)\uiUi+i\, and |ati| = \uiv\ — \uiUi+i\. Applying these two latter

equations to the triangular inequality, we obtain

77

\ui+1v\ < \uzv\ - \uiUi+i\(l - 2sin-)

Applying the previous analysis iteratively on the entire path, we have

^2 \ui+iv\^ Yl yUiV\ ~ (\uiui+i\(l -2sin-)
0<i<m 0<i<m

Therefore,

0<i<m N 2 / 0<Km X 2 '

7i07J

Note that for the stretch factor to be bounded by this inequality, then 77 must be

restricted by r\ < n/3, other wise 1 — 2sin% = 0 if 77 = 7r/3

To determine the value of 77, first consider the largest angle possible between Ui,

v, and ui+\. The larger the angle, the larger the stretch factor along the path. If

ul+\ is a nearest neighbor of Uj defining a cone during the execution of the Displaced

Apex Adaptive Yao(G,a,p) algorithm, then placing a node / at the intersection of

the cone boundary and the boundary of the circle of radius r centered at Ui would

give the largest angle. Defining a triangle Auifui+i and using a similar analysis as

used in the proof for Lemma 3.1, the internal angle 77 at Ui is

sin(6> - 77) _ p\ujUi+1\

sin(0) \uif\

46

v # V

\

•u*

Tl _ > Ml

\ -) » Z/2

V I ^ wi

V

wft

Figure 15: Left: A scenario for the worst shortest path that could be selected in Dis­
placed Apex Adaptive Yao(G, 0,p). The edge (u0,v) is not selected by the Displaced
Apex Adaptive Yao(G, 6,p) algorithm since (u0, u\) is shorter than (uo, v), and (no, v)
is inside the cone of (uQ, U\). The same occurs for (ui, v),..., (un, v); Right: One step
of the iterative sequence of the path

Note that as |UJUJ+1 | approaches 0, the angle 77 is maximized. For 0 < p < 0.5, this

maximum angle is 9, and for 0.5 < p < 1, this maximum angle is TT/2. TO ensure that

7] < 7r/3, in both cases, we must restrict 6 < n/3 to bound the stretch factor. •

3.2.4 Containing Euclidean Minimum Spanning Tree

Theorem 3.4. Consider a node set V and UDG(V) defined on V. Assume that

UDG{V) is connected. Then DAAY(UDG{V),a,p), 6 = a • 9m(p, \uz\), 0 < a < 1,

contains the Euclidean Minimum Spanning Tree EMST(UDG(V)) as a subgraph.

47

Proof. Let EMST(UDG{V)) be an Euclidean Minimum Spanning Tree of (UDG{V))

that contains the maximum number of edges of DAAY(UDG(V),a,p).

We do a proof by contradiction. Assume there is an edge uv in EMST(UDG(V))

that is not in DAAY(UDG(V),a,p). This implies that there is an edge uz G

DAAY(UDG(V), a,p) such that \uz\ < \uv\, because the edge uv should be in the

cone of another shorter edge selected by the Displaced Apex Adaptive Ya,o(UDG(V), a,

algorithm, and \vz\ < \uv\ (otherwise, by Theorem 3.1,

the DAAY(UDG(V), a,p) would not be strongly connected).

Since EMST(UDG(V)) is a spanning tree, there is a path from v (or u) to z. If

the path is from v to z, then removing uv from the graph and adding the edge uz

we obtain a spanning tree with equal or less weight with an additional edge from

DAAY(UDG(V), a,p), a contradiction. If the path is from u to z, then removing uv

from the graph and adding the edge vz we obtain a spanning tree with less weight,

again a contradiction. •

In [39] experimental results is given to explore the new subgraphs properties in

comparison with the existing subgraphs.

3.3 Empirical Results

In our experiments we used randomly chosen connected unit disk graphs on an area

of 100 x 100. We varied the number of nodes, N, between 65, 75,85, 95 and 105 nodes.

For all the results reported here, the results have been averaged over 23 graphs for

each value of N. For all the graphs tested, the transmission radius r used was 15

units.

For each UDG, an Adaptive Yao subgraph (equivalent to a Displaced Apex Adap­

tive Yao subgraph with p = 0), Displaced Apex Adaptive Yao subgraphs with

p — 0.125 and p = 0.25, Half Space Proximal subgraph (equivalent to a Displaced

48

5.5

u
£ 4.5
_c
- 4
+->
CO
CL 3.5
o

3 -a;

Yao (k=6)

DAAY(p=0)

DAAY(p-0.125)
DAAY(p=0.25|

HSP

DAAY(p=0.75)
DAAY(p=1.0)

-

& • ' - • • " ' • -

ft- —

+-'•""" """

A

~̂'; '
A - "

..;•. . J*f

• ; • ' * " • • " • '

. . * ' • • ' " "

X " ' " "

-\— ~~"

'

,^ .-.-•-

bp

_ _ . . . - " / • : - " '

• • • + • - • ' "

... . . 7 V #

a
• •• M

_.-•••"""

-

60 70 80 90

Number of nodes

100 110

Figure 16: Average hop number stretch factor for each graph with various number of
nodes

Apex Adaptive Yao subgraph with p = 0.5), and Displaced Apex Adaptive Yao sub­

graphs with p = 0.75 and p = 1.0 are generated. For each Displaced Apex Adaptive

Yao subgraph we used a = 1 such that 8 = 9m(s, \uz\) (recall, for p > 0.5, 9 is a

function of the distance to the chosen neighbors). For comparison, we also generate

the original YAO subgraphs with K = 6 for each UDG. An example of an UDG and

related subgraphs is given in Figure 20.

In Figure 16 and Figure 17, we show the average stretch factor in terms of both

hop number and Euclidean distance. It is clear that the Adaptive Yao graph (p = 0)

has consistently the lowest average (hop number or Euclidean length) stretch factor.

For our simulations, the average stretch factor for the Adaptive Yao graph was about

halfway between that of the HSP and the Yao graph with k = 6. As p increases to

0.5, the average stretch factor increase to a maximum for p = 0.5. The stretch factor

again decreases as p approaches 1.

In Figure 18 and Figure 19, we show the average node degree and the average in-

degree (out-degree). As p approaches 0.5, from Figure 18, the average node degrees

49

u
03

u
+-»
a»
i_

• M

c
03
CU

TO
"u
D

LU

(D

03

a»
3

1.18

1.16

1.14

1.12

1.1

1.08

1.06

1.04

1.02

1

Yao(k.6)
OAAY(p-O)

DAAY(p=0.125)
DAAY(p=0.25)

HSB
DAAY(p=0.75)

DAAY(p=1.0)

•
/2 i ' "

« • - ' " • '

s - • • • • _ • _ •

V"'' '

-

+--•""'""

-..
A .

..'. A-

A ' "

. D •
...;..^.:. .•--..-

...-H

/\
. . . - o - • • •

•

D
. . • • *

x •••

I-

' • • • —

^

• • G - •" ' '

• •

D
* • ;

X " " ""

4-

r

-A

D
. *

..... -X

I-

~

-

-

-

-

60 70 80 90
Number of nodes

100 110

Figure 17: Average Euclidean stretch factor for each graph with various number of
nodes

monotonically decrease until p = 0.5 when we have the HSP graph. Then as p

continues to increase to 1, the node degrees begin to increase again. This holds true

across all values of N. We can see this trend reflected on the in-degree (out-degree)

in Figure 19.

50

5 h

6.5

6

a) 5.5
ai

CD

a
a; 4.5

~o
O
z 4
<u
ro 3.5
_̂

ai

3

UD6
Yao(k=6|
DAAY (p=0)

DAAY(p=0.125)
DAAY(p=0.25)

HSB
DAAY(p=0.75)

DAAY(p-I .O|

•

*

A

"•" "~ "-"T

3

2.5

60 70 80 90
Number of nodes

100

_
•

+ '"""

- g,,. .

„ - - '+" ' "

x

_ • • + - • - • - • "

• • " • ' • . A . : - :

• + • ""

- ---'X' • ' " " "
• :1c •

-

_

-

v • "M

110

Figure 18: Average node degrees

at

^ 3 . 5

=3

o

a>
O

&2.5

Yso|k=6]

DAAY(p»0)
DAAY|p=0.125)

DAAY(p-0.25)

HSB

DAAY(p»0.75)

DAAY(p*1.0) A.

w - : : ' . ' • •

..... - J

. , . . . + • • " "

r „ ,

. --4"" "'

.- i<"' " "

- - _ • _ • ^ . : •

. - . — — i

- • • • • - — i

. . . - (-•

. .- -x--' -".
... *

: . . - . • ? ; ' ' • ' • • '

..-••'+

--I
... - s

. : : . •> ! -

60 70 80 90

Number of nodes

100 110

Figure 19: Average in-degree (out-degree)

51

(e) (0

Figure 20: Original UDG and related subgraphs: (a) UDG; (b) Yao Graph with k =
6; (c) Adaptive Yao Graph; (d) Displaced Apex Adaptive Yao Graph with p = 0.25;
(e) HSP Graph; (f) Displaced Apex Adaptive Yao Graph with p = 1.0

52

Chapter 4

A Virtual Backbone Technique to

Improve Routing Algorithms

In this chapter we present a truncated octahedron tiling system of the 3D space to

assign to each node a class number depending on the position of the node within the

tiling system. Then, based on this tiling classification system, we present generaliza­

tions of the algorithms from [36] for constructing dominating sets and CDSs in 3D.

Theoretical lower bounds on the size of these sets are given and an empirical study

of the algorithms is done.

4.1 Tiling System for 3D Space

Consider a truncated octahedron of unit diameter as shown in Figure 21 which consists

of 14 faces, 6 squares of edge length equal to a, and 8 hexagons of edge length equal

to a. Since the truncated octahedron has a diameter equal to 1, then a = -h=.

The tiling system is based on a two level subdivision of the three-dimensional

space. At the highest level, the space is tiled with identically shaped tiles that fill the

entire space, with no gaps or overlaps. Each tile used in our tiling system consists

of 65 truncated octahedra which occupy the entire volume of the tile with no gaps

53

Figure 21: Unit diameter truncated octahedron, the faces labeled 1,2,..6 belong to
the class represented by this truncated octahedron

or overlaps. Each truncated octahedron in the tile represents one class which has a

unique integer. For any truncated octahedron only faces 1, 2, 3,4, 5, 6 and 7 belong to

it, see Figure 21. In other words, if a node located exactly on the shared face between

two truncated octahedra 7\ and T2, the node is considered of class 1 if according to T\

this face is 1, 2, 3,4,5, 6 or 7 otherwise it will be considered to be of class 2. Assume

that the first truncated octahedron, class 1, is centered at the coordinates {x\,y\,z\)

(ie. the z-axis passes through the center of face 1, the x-axis passes through the center

of the edge between face 5 and the face opposite to face 2, and y-axis passes through

the center of the edge between face 4 and the face opposite to face 3. We will call

this orientation as the centering orientation), then the coordinates of the centers of

the classes from 2 to 65 are shown on Table 1. They all have the same orientation as

class 1. See Figure 22 for an example of the tile used, showing the placement of the

truncated octahedra in the tile with the associated classes labels.

Assume that the tiling starts by placing the center of one tile, 1\, at the coordinate

{x\,y\,z\), with orientation equal to the centering orientation. To cover all the faces

of T\ we need 14 other adjacent tiles that are in contact with 7\ in the positions

54

Table 1: Coordinates of the 65 truncated octahedra for a tile T\ centered at (xi, 2/1, Zi),
where a = ^ - .

Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8
Class 9

Class 10
Class 11
Class 12
Class 13
Class 14
Class 15
Class 16
Class 17
Class 18
Class 19
Class 20
Class 21
Class 22
Class 23
Class 24
Class 25
Class 26
Class 27
Class 28
Class 29
Class 30
Class 31
Class 32
Class 33

{x\,y\,z\)
(xi,yi,zi + 2ay/2)
(xi,yi,zi - 2ay/2)

(xi + 2a, 2/1, Zi + ay/2)
(xi + 2a,y\,z\ — ay/2)
(xi - 2a,y1,z1 + ay/2)
(x\ — 2a, y\,z\ — ay/2)
(xi,yi + 2a, z\ + ay/2)
{x\, yi + 2a, z\ — ay/2)
{x\, y\ — 2a, z\ + ay/2)
(x\,y\ — 2a, z\ — ay/2)
[x\ + 2a, yx + 2a, Zi)
{x\ + 2a, ?/i — 2a, z\)
(xi - 2a, yi + 2a,Zi)
(xi - 2a, yi - 2a, zi)

{xi,yx,zi + 4 a V 2)
{xi,yi,zx - 4ay/2)

(xi + 2a, yi,z\ + 3ay/2)
(xi - 2a,yx,zi + 3ay/2)
(xi,2/i +2a, zx +3a\/2)

{x\, 2/i — 2a, z\ + 3av2)
(xi + 2a, 2/i + 2a, zx + 2ay/2)
(xi + 2a, 2/1 — 2a, Z\ + 2ay/2)
(xi — 2a, yi + 2a, z\ + 2ay/2)
[x\ — 2a, 2/1 — 2a, z\ + 2ay/2)

(x1+4a,yi,zl + 2ay/'2)
(xi -4a, yi, zx + 2ay/2)
(xi, 2/i + 4a, z\ + 2ay/2)
[xx,y\ - 4a, zx +2a\/2)

(xi + 4a, yx + 2a, zx + ay/2)
(xi + 4a, yx — 2a, zx + ay/2)
(xi — 4a, yx + 2a, zx + ay/2)
(xi — 4a, yx — 2a, zx + ay/2)

Class 34
Class 35
Class 36
Class 37
Class 38
Class 39
Class 40
Class 41
Class 42
Class 43
Class 44
Class 45
Class 46
Class 47
Class 48
Class 49
Class 50
Class 51
Class 52
Class 53
Class 54
Class 55
Class 56
Class 57
Class 58
Class 59
Class 60
Class 61
Class 62
Class 63
Class 64
Class 65

(xi + 2a, yx + 4a, zx + ay/2)
(xx - 2a, yx + 4a, zx + ay/2)
{xx + 2a, yx — 4a, zx + ay/2)
(xi — 2a, yx — 4a, Zx + ay/2)

(xj + 2a,yx,zx - 2>ay/2)
(xx - 2a,yx,zx - 3ay/2)
(xx,2/i + 2a,zx - 3ay/2)
(xx,yx - 2a, zx - 3ay/2)

(xi + 2a, yx + 2a, zx - 2ay/2)
(xx + 2a, yx — 2a, Zx — 2ay/2)
[xx — 2a, 2/i + 2a, Zx — 2a\/2)
(xi — 2a, yi — 2a, z\ — 2ay/2)

(xi + 4a, 2/1, Zi - 2ay/2)

(xx - 4a,yx,zx - 2ay/2)
(xx,yx+4a,zx -2ay/2)
(xx,yx -4a,zx - 2a\/2)

(xi + 4a, 2/1 + 2a, Zx — ay/2)
(xx + 4a, 2/1 — 2a, Zx — ay/2)
(xx — 4a, 2/i + 2a, z\ — ay/2)
(xi — 4a, 2/1 — 2a, Zx — ay/2)
(xi + 2a, yi + 4a, zx — ay/2)
(xi — 2a, 2/i + 4a, zx — ay/2)
(xi + 2a, yi — 4a, zx — ay/2)
(xi — 2a, yi — 4a, z\ — ay/2)

(xi + 4a, 2/1 +4a,zx)
(xi + 4a, 2/1 - 4 a , zx)
(xi - 4 a , yi + 4 a , 2 i)

(xi -4a ,2/1 -4a,zx)
(xi + 4a,2/i,2i)

(xi -4a,yx,zx)
(xi,yi +4a,zx)

(xi,2/i -4a,zx)

55

Table 2: Coordinates of the 14 tiles around 7\, with a = -4=.

Ti
Tn

T*
Tiz
Tj4

Tj5

TjQ

2>

T»
Tj9

Tj 10

Tjn
Tj 12

Tj 13

TJU

(XiiVuZi)

(X1,y1,z1-10aV2)
{X1,y1,zl-10aV2)

(Xj + 6a, yi + 4a, Zj + 5a\/2)
(Xx + 6a, 2/1 + 4a, zj - Say^)
(Xx - 4a, yi + 6a, zx + 5av/2)
(A": - 4a, yi + 6a, zj - 5a\/2)
(Xi - 6a, yx - 4a, zx + 5a\/2)
(Xi - 6a, yi - 4a, zx - 5a\/2)
(Xi + 4a, yi - 6a, zx + 5a\/2)
(Xi + 4a, yi — 6a, z\ — 5a\ /2)

(Xj + 10a,yi + 2a,z1)
(Xi + 1 0 a , y i - 2 a , z i)
(X 1 - 1 0 a , y i + 2a,zi)
(X i - 1 0 a , y 1 - 2 a , z 1)

summarized on Table 2. Each tile has the same orientation as T\. Figure 23 shows

the space tiling process used in our algorithm. It is clear that any node can calculate

locally its class number by determining to which tile and corresponding truncated

octahedron it belongs. In the following we prove some properties of our space tiling

system.

Lemma 4.1. In the 3D space tiling system above, any two nodes that are of the

same class number, but belong to two different truncated octahedra, are at Euclidean

distance greater than 2.

Proof. Consider the center of the truncated octahedron of class i at the coordinate

(xj, y\,z\) then there are 14 truncated octahedron of the same class i from adjacent

tiles centered on the coordinates shown in Table 2. To prove this lemma, we need to

prove that any node of class i is at a distance of more than 2 to any other node in

the 14 truncated octahedra of the same class in the adjacent tiles. The distances are

as follows:

56

(a)

11 frK-
. ±d? 20 r ' y _ „-**< J 58 ' . \

I 22] -•h4?^3fr''T-""fe^
H8 I \ v 1 7 *•* . rS*?

30 ' '

57 ':

(b)

Figure 22: The tile used in the tiling system divided into 65 truncated octahedra of
diameter 1 and the class numbering associated with the truncated octahedra (a) is
the side view (looking along the y-axis) of the tile; (b) is the top-side view of the tile

57

1. The smallest distance between the two truncated octahedra of class i from Tj

and Tji is equal to the distance between the two centers minus two times the

distance from the center to the border of the truncated octahedron,

y/{xi - xxf + (Vl - yx)
2 + {zx + 10aV2 - zx)

2 - 2ay/2 « 3.577

2. The smallest distance between the two truncated octahedra of class i from Tj

and Tj2 equals

y/(Xl - xx)
2 + {yx - yx)

2 + (zx - 10aV2 - Zl)
2 - 2 a ^ 2 « 3.577

3. The smallest distance between the two truncated octahedra of class i from Tj

and from one of Tj3, Tj4,Tj7 or Tjg equals

yj(xi ±6a- xx)
2 + (yx ±4a- yxf + (21 ± boty/2 - zxf - 2ay/2 « 2.299

4. The smallest distance between the two truncated octahedra of class i from Tj

and from one of Tj5,Tje,Tj^ or TJIQ equals

y/(xi ± 4a - xxf + (j/x ±6a- yx)
2 + {zY ± 5a\ /2 - zx)

2 - 2aV^ ~ 2.299

5. The smallest distance between the two truncated octahedra of class i from T3

and from one of TjXX,TjX2,TjX3 or TjX4 equals

y/(x! ± 10a - xx)
2 + {yx ±2a- yx)

2 + (zx - zx)
2 - 2a^[2 ss 2.330.

D

In our initial study of tiling the 3D space, we used a cube of unit diameter as a cell

(class) instead of a truncated octahedron. We found that each tile would need at least

125 cubes to guarantee that the nodes with the same class number in different tiles are

separated by a distance greater than 2. Compared to using a truncated octahedron,

this number of cubes would increase the constant number of rounds required for the

algorithms in Sections 4.2 and 4.4.

58

GO

(f)

Figure 23: The tiling system used, (a) T2 and T3 on top and bottom of 7\; (b) T4

and T5 added to the upper and lower side of Ti; (c) 7\, T u , r 1 2 and T13 side view;
(d)7\, T n , T i 2 and 7\3 top view; (e) and (f) the final view of the space tiling

59

4.2 A Local Algorithm For 3D Independent

Dominating Sets (3D-LIDS)

Using the space partition described in the previous section, each node can determine

its class number locally (using a constant number of arithmetic operations). Because

the nodes are aware of the locations of all their neighbors, they can also calculate the

class number of each neighbor. It is clear that the nodes that are in same truncated

octahedron are neighbors because the diameter of the truncated octahedron is 1.

Our local construction of the dominating sets is based on a similar algorithm

proposed by Czyzowicz et al. [36] for 2D. In this algorithm the dominator node

m can be chosen according to different heuristics; e.g. the node with the highest

degree; the node with the maximum power-level, if the power saving is an important

issue for the algorithm; or the node closest to the center of the truncated octahedron.

(This latter heuristic is used in our algorithm description and the simulation results

in Section 4.5).

Let Tx be the truncated octahedron that contains the node x. Each node x

independently does one of the following depending on its class number and two hop

information:

• If x is of class 1, then a node m closest to the center of Tx in the same truncated

octahedron (Tx) will be designated as a dominator.

• If x is of class other than 1, using the information about its' neighbors, x defines

a set 5i (x) of all nodes in the same truncated octahedron that have no neighbor

of lower class, and then chooses from Si(x) a node m closest to center of Tx to

be a dominator.

• If x is of class other than 1, and the set S\(x) is empty, then x requests from

every neighbor i of lower class number to run the algorithm if not already

running. When all nodes in Tx finish their calculations, node m from Tx that is

60

not dominated and closest to the center of Tx becomes a dominator.

When the node finishes its calculation, it informs all the neighbors that the dom­

inator selection is completed in its truncated octahedron. The algorithm 3D-LIDS in

detail is shown in Algorithm 4.1.

Algorithm 4.1 3D-LIDSQ, N(x), N2(x))

1: Input node x, N(x), N2(x).
2: Output: Return a set of nodes added to the dominator set Dom after executing

the algorithm for the node x.
3: Let cls(x) represent the class number of x
4: Cn <— geometric center of Tx

5: x calculates S\(x)
6: if (cls(x) = 1) then
7: m <— u E N(x) U x : cls(u) = 1 and dist(u, Cn) < dist(w, Cn) for all w G

N(x) U x and cls(w) = 1.
8: Dom <— Dom U m
9: else if (cls(x) ^ 1 and Si(x) is not empty) then

10: m <— u € S\{x) : dist(u, Cn) < dist(w, Cn) for all w E S\(x).
11: Dom <— Dom Um
12: else
13: for i <— 1 to the number of nodes in N(x) do
14: if (cls(i) < cls(x)) then
15: the node x will wait the node i to finish
16: end if
17: end for
18: m <— u E N(x) U x : u is not dominated and cls(u) = cls(x) and dist(u, Cn) <

dist(w, Cn) for all w E N(x) U x and cls(w) = cls(x) and not dominated.
19: Dom <— Dom U m
20: end if
21: x informs all its neighbors that a dominator selection in its truncated octahedron

is completed and give them the results.

4.3 Propert ies of 3D-LIDS

Before we bound the size of the independent dominating set resulted from 3D-LIDS,

we will describe some of its properties. Let Dom be the set of dominator nodes that

results from applying 3D-LIDS on each node V.

61

4.3.1 Locality

Lemma 4.2. The selection of a dominator in a truncated octahedron of Class i by

Algorithm 4-1 depends only on the nodes that are at most i — 1 hops away from the

nodes in the given truncated octahedron.

Proof. We consider here two cases. Case 1: the selection of a dominator of a node in

truncated octahedron (Tj) of class 1. This is done by checking only the nodes inside

that Tj, which is not more than 1 hop away. Case 2: the selection of a dominator

of a node in a truncated octahedron (Tj) of class i ^ 1. Here the algorithm waits the

results that comes from neighbors nodes of lower classes, so eventually it will reaches

nodes of class 1 after at most i — 1 steps.

•

Lemma 4.2 proves that the 3D-LIDS is a local algorithm because it terminates in

a constant number of steps.

4.3.2 Domination and Independence

The 2D version of the following two lemmas are proved in [36], and the 3-D version

of these lemmas are included here for completeness.

Lemma 4.3. Let G be a connected UDG. Dom is a dominating set of G.

Proof. Select a vertex v in G. We show that v is either in Dom or adjacent to a

vertex in Dom. Assume that v is not in Dom. We consider the following two cases:

1. If v is of class 1, then one of the nodes in the truncated octahedron containing

v is designated as a dominator in line 7.

2. If v is of class i > \ and at least one node of its truncated octahedron is

not dominated by a node of an adjacent lower class, one of the nodes in the

truncated octahedron is designated as a dominator in line 18.

62

In both cases, since the diameter of the truncated octahedron is 1, node v is

dominated by the designated node.

•

Lemma 4.4. The Euclidean distance between any two nodes of Dora is more than

one. Thus Dom is an independent set ofG.

Proof. Any truncated octahedron contains at most one element of Dom. According

to Lemma 4.1, the distance between any two vertices of different truncated octahedra

of the same class is greater than 2. Thus, the dominators selected in the truncated

octahedron of class i for any fixed i are independent. In a truncated octahedron

of class i > 1, a dominator is designated in line 18 only as a vertex that is not

dominated by an adjacent element in Dom of lower class. Thus the distance of a

dominator belonging to class i to dominators of class j < i is more than 1. •

4.3.3 Other Related Properties

Lemma 4.5. For any dominator node u G Dom, there is at least another dominator

v G Dom such that the hop distance between them is at most 3.

Proof. For contradiction, assume there is no path in UDG between a node u G Dom

and any other node v G Dom of length less than 3 hops. So the shortest path has

at least 4 hops, u,xi,X2,Xs,v. By Lemma 4.2, It is clear that x\ and x$ are not

dominators because they are neighbors to other dominators. This gives us two cases.

1. X2 is a dominator which makes the hop distance between u and x<i equal to 2,

a contradiction.

2. X2 is a neighbor to a dominator node w which makes the hop distance between

u and w equal to 3, a contradiction.

•

63

(a)

Figure 24: (a) Spherical triangle of equal length sides; (b) The worst-case of having
m equal size spherical triangles on the surface of SQ

Lemrirmia 4.6. For any node u, the number of dominators inside the sphere centered

at u with a radius of k units is bounded by a constant rjk

Proof. The proof is similar to that given in [11] for 2D. It is known that the distance

between any two dominators is greater than one unit. Then the half-unit radius

spheres centered at the dominators are disjoint. So to find how many dominators

can lie inside a sphere of a radius K units centered at some node u, we have to find

the ratio of the volume of the sphere of radius k + 0.5 to the volume of the disjoint

spheres of radius 0.5. Thus

Vk =
U(k + 0.5)3

]TT(0.5)3

When k — 2 or 3, we have r/k = 125 or 343, respectively.

(3)

•

T h e o r e m 4 .1 . Let G = UDG(V,E) be a unit disk graph and Dom be a set of

dominators for G calculated by Algorithm 1. For any optimal dominating set Dom*

of G, we have \Dom\/\Dom*\ < 24. Thus the competitive ratio of Algorithm 4-1 is

64

24.

Proof. According to Lemmas 4.3 and 4.4, Dom is a dominating and independent set

of G. Let Dom* be the minimum dominating set of G and TV be a vertex of Dom*.

Consider the elements of Dom that are dominated by N, e.g. the nodes of Dom that

lie in the sphere of radius r around N. We will call this sphere So- Consider the

following two cases:

• Case 1: If one of the elements in Dom is equal to N, then by Lemma 4.4, no

other element of Dom can be in So-

• Case 2: If no element of Dom is equal to N, then by Lemma 4.4, the nodes

from Dom are at a distance greater than r. So to maximize the number of nodes

from Dom that are covered by N, they should be on the surface of 5o- Let xi

be an element from Dom which lies on the surface of SQ] the second node, x2)

should be, in the worst-case, exactly r units far from N and xi; the third node

£3 should be exactly r units distance from N, x\ and x2. The shape that results

from those 3 nodes is a spherical triangle ST. See Figure 24(a). The sides of

this spherical triangle have equal angular lengths.

In the worst-case there will be m equal size spherical triangles next to each

other on the surface of 5o- See Figure 24(b). Thus the number of the spherical

triangles m is equal to

m =
surface area of the sphere So

(4)
area of the spherical triangle ST

The area of 5o = 47ir2. Let ST have the angles A, B and C (measured in

radians at the vertices along the surface of the sphere), and the angular lengths

of the sides of the triangle (in radians) be a = Zx\Nx2, b = Zx\Nxz and

c = Zx2Nx3. Then the area of ST = r2[(A + B + C) - TT] (see [8, 22] for the

proof). Since the distances between the 4 nodes x\, x2, £3 and N are equal, then

65

the angles A, B and C are equal, and the sides lengths are a = b = c = | [22].

Let s = | (a + b + c) = | . It is known that

.1 „. /sin(s - 6) sinfs - c) / sin2(f)

2 y s i n s s i n (s - o) y sin | sin g

Therefore, A = 2*tan-1(^(0.5)) w 1.231 and the area of ST = r2[(3.693)-TT] =

0.551r2. By substituting this value in Equation (4), we obtain

m =
A-KT2

0.551r2 22. (6)

Thus, in the worst-case, around one node from Dom* there are 24 nodes from

Dom: The first triangle adds 3 nodes and the rest of the triangles add one node

each. This makes the competitive ratio of Algorithm 4.1 at most 24.

•

4.4 Connected Dominating Set Locally

Our local algorithm to construct a CDS consists of two phases. In the first phase,

an IDS is found using Algorithm 4.1. In the second phase, each dominator creates

paths connecting dominators that are at most three hops apart. There are many

algorithms proposed to connect a set of dominators [11, 12, 13, 46], most of them

depend on using three hops node information.

In our algorithm the connector node can be chosen between different candidates

according to different heuristics; e.g. the node with the maximum power level, if the

power saving is an important issue for the algorithm; the node closest to a dominator;

or the node with the highest degree; (This latter heuristic is used in our algorithm

description and the simulation results in Section 4.5).

66

Our algorithm for finding the connectors can be described as follows: each node

x independently does the following:

1. For every dominator node y in N2(x) with a lower class number than x. Node x

chooses from N{x) a node u with the highest degree that creates a path (x, u, y).

2. For every dominator node y in iV3(x), with a lower class number than x, or

has the same class number as x but x is closer to the central class than y.

Node x chooses two nodes u from N(x) and v from N2(x) that creates the path

(x, u, v, y). u,v can be chosen according to the same heuristic above.

Algorithm 4.2 shows our version of constructing a connected dominating set using

three hop information.

Algorithm 4.2 3D-LCDS

1: Input Dominating set Dom resulting from Algorithm 4-1
2: Output: Return a set of connectors nodes (Conn) that connect every dominator

node x G Dom with some dominator located in N2(x) or N3(x).
3: for every dominator node x E Dom do
4: let N(x) is the set of one hop neighbors of x, N2(x) is the set of neighbors that

are 2 hops away from x and NZ(x) is the set of neighbors that are 3 hops a
way from x. Let Deg(x) is the number of nodes in N(x).
for every dominator node y E N2(x) do

if cls(x) < cls(y) then
« t - i 6 N(x) : i E N(y) and Deg(i) < Deg(w) for all w G N{x) and
w G N(y)

8: Conn <— Conn U u
9: end if

10: end for
11: for every dominator node y G N3(x) do
12: if (cls(x) < cls(y)) or (cls(x) = cls(y) and dist(x, Central Class) <

dist(y, Central Class)) then
13: (u,v) <— (i,j) : i G N(x) and j G N2(x) and j G N(i) and j E N(y) and

Deg(i) < Deg(w) for all w G N(x) and w G N(j) and Deg(j) < Deg(k)
for all k G N(y) and k E N(i)

14

15

16

17

Conn <— Conn Ut iUi ;
end if

end for
end for

67

Lemma 4.7. / / UDG is connected, then the set of dominators and connectors con­

structed by Algorithm 4-1 and Algorithm J^.2 is a connected dominating set.

Proof. (By contradiction). Assume the set CDS = Dom U Conn has at least two

distinct components, C\ and C2. let C2 is the closest component to C l , Since these

two components are connected in the original UDG, then there is a path connects

C l and C2. Consider the shortest path m,Xi,x2,X3, ...,n, such that m € Cl and

n e C2. By Lemma 4.3, we have the following four cases:

1. If the path length is equal to 4, e.g. the path is m, x\,x2, x%, n, see Figure 25(a),

then Xi,X2 and x% are not dominators, other wise we will have a closer compo­

nent to C l than C2. But by Lemma 4.3, every node should be a dominator or

a neighbor to a dominator, which makes x2 dominated by a node from another

component, C3. Contradiction, C3 is closer to C l than C2. This case is the

same for any path of length greater than 4.

2. If the path length is equal to 3, e.g. the path is m,X\,x2,n, see Figure 25(b),

then x\, x2 are not dominators and they are not dominated by other nodes from

outside C l or C2, other wise we will have a closer component to Cl than C2.

By Lemma 4.3, we have m and n are both dominators. By Algorithm 4.2,

because the hop distance between m and n is 3. Node m or node n will select

connectors between them according to their class number. Contradiction.

3. If the path length is equal to 2, e.g. the path is m, Xi,n, see Figure 25(c), then

Xi is not a dominator, other wise we will have a closer component to C l than

C2. Then by Lemma 4.3, we have the following 4 subcases

• If m is a dominated node (not dominator) and n is a dominated node, then

X\ should be dominated by another node A; from from a third component

C3 this makes C3 closer to C l than C2. Contradiction.

68

• If m is a dominator node and n is a dominated node (not dominator), then

n should be dominated by another dominator node k from from C2 this

makes the distance between node m and k equal to 3. By Algorithm 4.2,

node m or node k will select connectors between them according to their

class number. Contradiction.

• If n is a dominator node and m is a dominated node (not dominator), then

m should be dominated by another dominator node k from from C\ this

makes the distance between node m and k equal to 3. By Algorithm 4.2,

node n or node k will select connectors between them according to their

class number. Contradiction.

• If m is a dominator node and n is a dominator node, this makes the

distance between node m and n equal to 2. By Algorithm 4.2, node m

or node n will select a connector between them according to their class

number. Contradiction.

•

Lemma 4.8. In the worst-case, the number of connectors added by Algorithm 4-2 is

280 for every dominator.

Proof. Let Dom be the set of the dominators calculated from Algorithm 4.1. Then

from Lemma 4.6, in the worst-case, for any dominator node x the number of domi­

nators that are within 2 units radius sphere centered at x is 125, and the number of

dominators within 3 units is 343. This means the number of dominator in N2(x) is

at most 125, and the number of dominators in N3(x) = 343 — 125 = 218.

If a dominator node x adds one node to connect x with every dominator in N2(x)

and 2 nodes to connect x with every dominator in N3(x). Thus, in the worst-case

the number of connectors added for each dominator is 125 + (2 * 218) = 561.

But according to Algorithm 4.2, a dominator node x adds one node to connect x

with the dominators in N2(x) that has a lower class numbers and 2 nodes to connect

69

Figure 25: Proof for Lemma 4.7

x with every dominator in N2>{x) that has lower class number or with the same class

number but with higher distance from the central node. Thus, Half of the connectors

that are counted before is added to each dominator, which means the number of

connectors are [561/2J = 280

•

It has been proved in [11] that the stretch factor of their connected dominating

set is 3. This proof is applicable to our 3D-LCDS that results from Algorithm 4.2.

4.5 Simulations and Results

In order to evaluate the performance of our proposed algorithms, we conducted a

simulation study for computing the IDS and CDS. We measured the size of the

independent dominating set (IDS) generated by applying Algorithm 4.1 on each node

in the network and the average number of connectors generated from Algorithm 4.2.

Then we compared them with the global Greedy algorithm [34], and the Alzoubi

algorithm in [11, 12, 13].

70

In the simulation experiments, we run the algorithms on a randomized network

environment, where a UDGs with 500 random nodes generated in a box of side length

100. The transmission range r of the nodes is set to 5,10,15, or 20. In this way, we can

control the density of the generated graphs, since the density of the generated graphs

increases as r increases. To compute the average number of dominators and the aver­

age number of connectors, we run the algorithms on 25 graphs for each transmission

range.

In Figure 26, we show the number of nodes in the IDS compared with the dom­

inating set resulted from global Greedy and Alzoubi algorithm [12] in a randomized

network environment. As expected, the global algorithm has the lowest average num­

ber of nodes in IDS. But surprisingly, our algorithm gave almost the same results

as the Alzoubi algorithm [12] keeping in mind that our algorithm runs in a constant

time compared with the linear time Alzoubi algorithm. Figure 27 shows the number

of connectors required to connect the dominating sets from Figure 26. Our algorithm

has a lower number of connectors than the Alzoubi algorithm [12].

71

500

450-

a 400 [

£ 350
o
-o

•x 300

T3
O
C

250

200

| 150

100

50

[1 1

» Global Algorithm

- • -The new local Algorithm

—**—Alzoubi Algorithm [4]
.

-

10 15
Transmission Range

20

Figure 26: The average number of nodes in the Dominating Set in random environ­
ment

250

o
r̂
a
o
O

200

150

£>100h

50

-Global Algorithm

- The new local Algorithm

- Alzoubi Algorithm [4]

10 15
Transmission Range

20

Figure 27: The average number of connectors in random environment

72

Chapter 5

Hybrid One-neighbor Forwarding

Position Based Routing with

Partial Flooding

5.1 Introduction

Deterministic progress-based routing algorithms like Greedy, Compass and MFR, in

2D or 3D UDGs, have very low delivery rates if the network is sparse (the average

node degree is small). In this chapter four groups of algorithms are proposed. AB

algorithms increase the delivery rate for 2D but if we extend them to 3D, it is

not obvious what is the best way to choose the candidate neighbors because there

is no way to determine if a node is above or below the line passing through the

source and destination nodes in 3D. Therefore, the first group is an extension of AB

algorithm from 2D to 3D called AB3D. The second, third and the fourth groups are

combinations of AB3D and other progress-based routing algorithms from one side

and LAR3D algorithms from the other side. In the routing process we assume that

the current node is c, the source node is s and the destination node is d.

The 3D extension of the forwarding zone of LAR is defined as a rectangular box

73

Q with the two opposite corners s and s + (1 + \/3|r|/|rf — s\) * (d — s) (the minimum

size rectangular box enclosing node s and the sphere of radius r around d). In the

following descriptions of the new routing algorithms, any progress-based algorithm

mentioned, such as Greedy, Compass and MFR, will refer to the 3D version of the

algorithm.

To help motivate the development of these new routing algorithms in the next

sections, we will mention for initial comparison purposes the delivery rates (and in

some cases the routing traffic) determined by representative simulations for unit disk

graphs of 75 nodes, with transmission ranges of 25 units, randomly distributed in a

cube with sides of length 100 units.

5.2 Group 1: AB3D(m,R,S)

In the following definitions, as in the 2D AB algorithm definition the symbol R will

be used to represent one choice of several possible progress-based routing algorithms,

that is, R is one of CM (as in Compass), GR (Greedy) or MFR. Similarly, the

symbol S in the naming of the routing algorithms will be used to represent the

probability weighting when randomly choosing between more than one candidate

neighbors, where S is one of U, A, or D. Suppose that there are m possible candidate

neighbors (a subset of all neighbors) to choose from, n\,... ,nm. If the symbol S is

U, then the next node x is chosen uniformly at random from n*. If the symbol S is

A or D, then the next node x is chosen from rij with probability (1 —Pi)/Y^k=\Pki

where p% = 0j = Zriicd if S = A, or Pi = dist(rii, d) if S = D. If any of the nodes n*

is not defined, then the algorithm uses the remaining available nodes.

Assume that n\ is the closest point to d from N(c) (ni could be chosen according

to a Compass-based measure, but in the simulations this does not lead to better

results). Define the plane Pln\ that passes through c, d, and n\. Define the second

plane Plri2 that is perpendicular to Pln\ such that the intersection line between the

74

Figure 28: Plane Pln\ passes through c,d and ri\, plane Pln2 perpendicular to Plri\
and both planes contain the line cd

two planes is the line cd. See Figure 28. Each algorithm has three attributes, which is

reflected in our naming convention: AB3D(m,R,S) where m is 3 or 5 which represents

the number of candidate neighbors, R and S are defined as above. When m = 3, the

two candidate neighbors in addition to n\ are chosen as follows. One neighbor n2 of

c is chosen from the half-space above the plane Pln\ according to the R protocol.

Similarly, one neighbor n^ of c is chosen from the half-space below the plane Plnx

according to the R protocol. If m is 5, in addition to nj c uses the protocol R to

choose from N(c) four neighbors n2, n^, 724, 715 each one in one side of the four regions

that result for the intersection between Plni and Pln2. Once the set of candidate

neighbors are determined, c forwards the packet to one of those candidates as chosen

by the probability weighting determined by the symbol for 5 . Algorithm 5.1 gives

pseudocode for this procedure for choosing the next node in AB3D(3,R,S). Using the

representative simulation results for 75 nodes mentioned near the end of Section 5.1,

we find that this set of algorithms increases the delivery rate to around 80% compared

to about 63% for the 3D versions of the regular progress-based routing algorithms.

See Section 5.6 for detailed simulation comparison results.

75

Algorithm 5.1 One step of AB3D(3,R,S)

Input position of the current node c, the destination node d and N(c)
Output: a node from N(c) called Next, which represents the next step of the packet.
(1) nj <- gdy(c,N{c),d);
(2) c computes the plane Pln\\
(3) c computes the list above which contains all the nodes above Pln\ from N(c),
and the list below which contains all the nodes from N(c) below Plw,\.
if (R=GR) then

ri2 <— gdy(c, above, d)
7i3 <— gdy(c, below, d)

else if (R=CM) then
ri2 *— cmp(c, above, d)
nj, <— cmp(c, below, d)

else
?T,2 *— MFR(c, above, d)
n3 <- MFR(c, below, d)

end if
if (S=U) then

Next<— Choose uniformly at random one of ni,n2, n3

else if (S=D) then
sunup <— 0;
for i <— 1 to 3 do

Pi <— dist(rii, d)
sumjp <— stmip + Pi

end for
Next<—Choose one of ni with probability equal (1 — Pi)/sunup;

else if (S=A) then
sumjp <— 0;
for i <— 1 to 3 do

Pi <- 0i ^- ^riicd
sunup <— sump + p*

end for
Next*—Choose one of n* with probability equal (1 — p^ /'sum.p;

end if

76

5.3 Group 2: ABLAR(m,R)

All the algorithms in ABLAR use the same space partition at the current node c as

in the AB3D algorithms. See Figure 28. Similar to AB3D, each algorithm has two

attributes, which is reflected in our naming convention: ABLAR(m,R) where m is

3 or 5 which represents the number of candidate neighbors, R is one of CM (as in

Compass), GR (Greedy), or MFR, as before. Also each algorithm defines n1 ; Pln\

and Plri2 as for the AB3D algorithms, if needed. We show two examples of this class

of algorithms as follows:

ABLAR(3 ,CM): the current node c uses the Compass algorithm to choose from

N(c) one node 77.2 above the plane Pln\ and another node 77,3 below Plri\. Then

c forwards the packet to all the n* that lie inside the box Q. If any of the those

candidate nodes get the message for the second time, the node just ignores it and

does not forward it. Figure 29 shows an example of the forwarding process.

ABLAR(5 ,GR): c uses the Greedy algorithm to choose four neighbors 77-2, 713, 77,4

and 715 from N(c), each one in each of the four regions that result for the intersection

between Plrii, Pln^. And then c forwards the packet to all those selected neighbors

rii that are inside the box Q. Using the example simulation results for 75 nodes,

ABLAR(5,GR) has a delivery rate of more than 99% but with traffic of around 11.

5.4 Group 3: T-ABLAR(m,R)~T

Although the delivery rate has been increased in the previously mentioned algorithms,

the traffic that is caused by these algorithms is relatively high, see Section 5.6. In

the following set of algorithms we try to decrease this traffic by utilizing a progress-

based routing algorithm such as Greedy, Compass or MFR (the type is determined

according to T), for as long as the packet can make progress towards the destination.

When it reaches a local minimum, it changes to ABLAR(m,R) for one step and

then progress-based routing is resumed. Note that during the ABLAR(m,R) step,

77

Figure 29: With ABLAR(3,R), the current node chooses up to 3 neighbors and for­
wards the packet to all of those inside the flooding area Q (the shaded box)

if a receiving neighboring node has seen the packet before, it will just drop it. See

Figure 30 for an example of the execution of an algorithm of this group. Algorithm 5.2

gives pseudocode outlining how MFR-ABLAR(3,GR)-MFR works. Using the example

simulation results for 75 nodes, the delivery rate for MFR-ABLAR(5,GR)-MFR is

around 88% and the traffic is around 4.3.

5.5 Group 4: AB3D-ABLAR(m,R)

The previous group of algorithms decreased the traffic of ABLAR, but unfortunately

it does not achieve a similar delivery rate, see Section 5.6. The fourth group AB3D-

ABLAR has both the advantages of all the algorithms above: very high delivery rate

while at the same time low traffic. An algorithm in this group starts with any one

of the nine distinct AB3D algorithms. Once a threshold is passed in terms of the

number of hops, the algorithm permanently switches to ABLAR and it does not go

back again to AB3D. How the threshold value is chosen will be discussed in Section

5.6 where the experimental results are presented. Figure 31 gives an example of the

path followed by the algorithm. When the packet starts at the node s, AB3D used

78

Algorithm 5.2 MFR-ABLAR(3,GR)-MFR algorithm

Input Source node s, the destination node d.
Output: Return success if the destination is reached,
c <— s
while (true) do

while (!(reach d) or !(Local Minimum)) do
c<- MFR(c,N{c),d)

end while
if (the packet arrives at d) then

return success
end if
if (Local Minimum) then

Use ABLAR(3,GR) to choose 3 nodes n\,n2, and n$.
for i <— 1 to 3 do

MFR-ABLAR(3,GR)-MFR(nz,d)
end for

end if
end while

Figure 30: The packet started at s using progress-based routing like Compass until it
reaches the local minimum y. ABLAR is used for one step and then progress-based
routing is resumed

79

Figure 31: AB3D-ABLAR algorithm example.

until the packet reaches y, the local minimum node. The randomized character of

AB3D allows the algorithm to pass y. AB3D continues until the threshold is reached

at the node z, at which point the algorithm switches to ABLAR.

There are three differences between this group of algorithms and T-ABLAR-T: (i)

T-ABLAR-T is a deterministic algorithm while AB3D-ABLAR is a randomized algo­

rithm, (ii) In T-ABLAR-T the algorithm switches to ABLAR if the local minimum

is reached, while in AB3D-ABLAR it switches if a threshold is reached. The reason

for using a threshold is based on the algorithm proposed in [106], where although the

packet reaches a local minimum it can still be forwarded to the node with the least

backward (negative) progress to the destination, (iii) In T-ABLAR-T, the algorithm

uses ABLAR for just one step, then it goes back to T, while AB3D-ABLAR algorithm

just keeps using ABLAR.

5.6 Simulations and Results

In this section we describe the simulation environment, demonstrate and interpret the

results, and compare the new algorithms with other deterministic and randomized

routing algorithms.

80

5.6.1 Simulation Environment

In the simulation experiments, a set V of n points (where n € {65,75,85,95}) is

randomly generated in a cube with sides of length 100 units. The maximum trans­

mission radius of each host is set to 25 units. We first calculate the UDG for V. If the

graph is connected, it is used in the simulation, otherwise it is discarded. We set the

threshold to n (this threshold is used for the randomized AB3D(m,R,S) and AB3D-

ABLAR(m,R) algorithms). The source and the destination nodes are then randomly

picked from the generated graph. It is suggested in [75] to consider simulations with

node density per unit disk of around 5 in 2D environment, which would correspond to

the graph with an average node degree of around 4. Figure 32 illustrates a histogram

of the node degrees for the graphs with the chosen simulation values n. Graphs with

n = 65 are closest to the node density of interest while graphs with fewer nodes typi­

cally have very tree-like structure. When n is larger than 95, a substantial percentage

of nodes have degrees larger than 6 which indicates highly connected graphs.

An algorithm succeeds if a path to the destination is found. To compute the

packet delivery rate, this process is repeated with 100 random connected graphs and

the percentage of successful deliveries determined. To compute the average packet

delivery rate, the packet delivery rate is determined 100 times and an average taken.

Additionally, out of the 10,000 runs used to compute the average packet delivery

rate an average of overall traffic is computed. Since there are more than 50 different

combinations of the algorithms, it's difficult to show all of these combinations, thus

we select some of the algorithms which gave the most interesting results. We provide

several different analyzes: a comparison of the algorithms on UDGs with 75 nodes, a

comparison of the effect of the number of nodes on algorithm performance, a study

of the effect of the threshold on the randomized algorithms, and a comparison of the

effect of the number of candidate neighbors in associated algorithms across UDGs

with different number of nodes. In each analysis we study the delivery rate and

traffic versus the node density, and the threshold.

81

Figure 32: Histogram of the average node degrees of the 10, 000 generated unit disk
graphs

5.6.2 Results

We present a comparison between the different groups of algorithms in terms of

packet delivery rate and overall traffic in Table 3. For comparison purposes, just

two algorithms from each group with n = 75 are presented. It is immediately evident

from the result given in Table 3 that deterministic progress-based algorithms (Greedy,

Compass and MFR) have the lowest delivery rates (less than 65%) which yields the

low traffic because the packets that fail to arrive to the destination are not counted in

the traffic. The first group of randomized algorithms AB3D comes after that with a

delivery rate over 79% and average traffic around 3.5. The delivery rate of the second

group of ABLAR algorithms, with m = 5, reaches to 99% but these algorithms have

the second worst average traffic (around 11.5 for n = 75) after LAR3D with traffic

around 13. The third group T-ABLAR-T reaches a 88% delivery rate with traffic

around 4. The fourth group AB3D-ABLAR decreases the average traffic compared

to LAR3D by more than 55% while still reaching a 99% delivery rate. All our results

have a 95% confidence intervals.

82

Table 3: Average packet delivery rate and average traffic for selected algorithms in
UDG with n = 75.

Group 1

Group 2

Group 3

Group 4

Algorithms

COMPASS

GREEDY

MFR
AB3D(3,MF,D)
AB3D(3,CM,A)
ABLAR(5,CM)
ABLAR(5,MP)

MF-ABLAR(5,GR)-MF
GR-ABLAR(5,GR)-GR

AB3D(3,CM,A)-ABLAR(5,GR)
AB3D(3,GR,D)-ABLAR(5,GR)

LAR3D

Delivery rate Average traffic

63.43 1.04
62.60 1.02
62.78 1.03
81.88 3.04
79.16 3.40
99.37 11.43
99.36 II.48
88.61 4.30
87.49 3.20
99.18 6.97
99.15 6.24
99.62 13.84

Effect of the network density. Figure 33 and Figure 34 illustrate the effect of

the number of nodes (network density) on the performance of the algorithms. In all

the algorithms, as the number of nodes increases, the delivery rate also increases. For

groups 1 and 4, this can be explained by the randomization process for the algorithms.

Increasing the number of nodes means there is a greater chance for a good route to

the destination. For groups 2, 3, and 4 increasing the number of nodes gives a better

chance of the current node to find a candidate neighbor for the partial flooding process

to succeed, which gives a better chance to reach the destination. Figure 34 shows

how the traffic is affected by the network density. Because increasing the number

of nodes implies increasing the possibility of long detours being discovered during

randomized routing, the traffic is increased in AB3D. For groups 2, 3 and 4 there

is an increase in the number of flooded nodes, which increases the traffic. All the

conclusions from Table 3 apply for any node density. Therefore, the fourth group of

algorithms continues to have 55% of the traffic as used by LAR3D while at the same

time obtaining a nearly the perfect delivery rate.

83

100

90

-1-=

=3 BO

£ 70

<u
-J

60

50

40

T——

9

-

- - - - - - " • " " " "

^ ^ _ _

• — "

— • ' '
—•—Compass
- •- AB3D(3,MF,D)
—1—ABLAR(5,CM)
—*— MF-ABLAR(5,GR)-MF
->-AB3D(3,CM,A)-ABLAR(5,GR)
- V LAR

65 75 85

Number of Nodes
95

Figure 33: The packet delivery rate at different node densities (box side = 100 units,
maximum transmission range = 25 units, threshold = n)

16

u
13 io

w Compass
-•-AB3D(3,MF,D)
—I—ABLAR(5,CM)
-W— MF-ABLAR(5,GR)-MF
->- AB3D (3 , CM, A) -ABLAR (5 , GR)
-V- LAR

65 75 85

Number of Nodes

Figure 34: The average traffic at different node densities (box side = 100 units,
maximum transmission range = 25 units, threshold = n)

84

- * - A B 3 D (3 , G R , U)

< • A B 3 D (5 , G R , U)

• - A B 3 D (3 , G R , U) - A B L A R (5 , G R) "

0 . 5 1 1 .5 2 2 . 5
Threshold (multiple of n=75)

Figure 35: The packet delivery rate at different thresholds (box side = 100 units,
maximum transmission range = 25 units)

Effect of the threshold. Figure 35 and Figure 36 show the effect of varying the

threshold value on the average delivery rate and average traffic of some randomized

algorithms from groups 1 and 4. We find that when the threshold is set to n the rel­

ative behavior of the algorithms is established and the difference between algorithms

is clear. The delivery rate of all algorithms increases when increasing the threshold,

and this is very clear with the AB3D algorithms, with 5 candidate neighbors. Since

the increase of the delivery rate means more successfully delivered packets added to

the average traffic, then the average traffic would be expected to increase. The simu­

lation results in Figure 36 confirm this expectation, with an increase in average traffic

corresponding to the increase in threshold.

Effect of the number of candidate neighbors, m. Figure 37 and Figure 38

depict the effect of the candidate neighbors m in the new algorithms with different

graphs densities. We find AB3D(3,R,S) algorithms have a higher delivery rate than

AB3D(5,R,S). This is because, with a larger selection of candidate neighbors from

ioo

90

03

Q 60

50

40

85

a6

-»<-AB3D(3,GR,U)
•<•• AB3D(5,GR,U)
- • -AB3D(3 ,GR,U) -ABLAR(5 ,GR)

0 . 5 1 1.5 2 2 . 5
Threshold (multiple of n=75)

Figure 36: The average traffic at different thresholds (box side = 100 units, maximum
transmission range = 25 units)

which only one is chosen randomly, there is a greater chance of the path being de-

toured and not delivering the packet before the threshold of n is passed. For ABLAR

algorithms (and those hybrid algorithms using the ABLAR algorithms), m — 5 is

found to give higher delivery rates with the trade-off of higher traffic. By flooding

with more neighbors, there is a greater chance of discovering a successful path with

the price of more traffic. The values of m for all the algorithms that give the higher

delivery rates have been used for the other comparisons of the algorithms.

86

G—

65

-e-AB3D(5,CM,A)

-x-AB3D(3,CM,A)

85 95 105

Number of Nodes

(a)

_ _ _ _ - — * - — — *

-e-G-ABLAR(5,GR)-G
-x-G-ABLAR(3,GR)-G

85 95 105

Number of Nodes

100

90

80

u
f 50

§ 4 0

30

20

10

100

90

80

3 70
ed

2 4 °
30

20

10

65

65

-e-ABLAR(5,CM)
-x-ABLAR(3,CM)

85 95 105

Number of Nodes

(b)

-e-AB3D(3,CM,A)-ABLAR(5,GR)
-x-AB3D(3,CM,A)-ABLAR(3,GR)

85 95 105

Number of Nodes
(c) (d)

Figure 37: The average packet delivery rate with m = 3 and m = 5 for selected
algorithms (box side = 100 units, maximum transmission range = 25 units)

87

65

65

-e-AB3D(5,CM,A)

-x-AB3D(3,CM,A)

85 95
Number of Nodes

105

(e)

-G-ABLAR(5,GR)-G

G-ABLAR(5,GR)-G

85 95
Number of Nodes

10

o
56 8

-e-ABLAR(5,CM)

-x-ABLAR(3,CM)

65 85 95

Number of Nodes

(0

-©-AB3D(3,CM,A)-ABLAR(5,GR)

-x- AB3D(3,CM,A)-ABLAR(3,GR)

K
*

65 85 95

Number of Nodes

(h)

105

Figure 38: The average traffic with m = 3 and m — 5 for selected algorithms (box

side = 100 units, maximum transmission range = 25 units, threshold = n)

88

Chapter 6

Randomized Position-based

Routing Algorithms

In the previous chapter we showed a combination between some deterministic progress-

based routing algorithms with partial flooding algorithms LAR3D. To avoid the flood­

ing, in this chapter we show two new groups of 3D-position-based routing algorithms

which combine randomized AB3D(3, R, S) routing algorithms with CFace routing [2],

6.1 AB3D(3,R,S)-CFace(l)-AB3D(3,R,S)

This group of hybrid algorithms starts with any one of the nine distinct AB3D(3,R,S)

algorithms. Once a local threshold is passed in terms of the number of hops and we

arrive at a local minimum, the algorithm switches to CFace(l) starting from the local

minimum c as the new source node. If the destination is not reached during CFace(l)

and looping occurs, the algorithm goes back to AB3D(3,R,S) and the count for the

local threshold restarts at 0. In this algorithm, the reason for using a local threshold

is based on the algorithm in [106], where although the packet reaches a local minimum

it can still be forwarded to the node with the least backward (negative) progress.

In addition to the local threshold, the algorithm uses a global threshold to drop

89

the packet if the total number of hops exceeds the global threshold. AB3D(3,R,S)-

CFace(l)-AB3D(3,R,S) is given in Algorithm 6.1.

Algorithm 6.1 AB3D(3,R,S)-CFace(l)-AB3D(3,R,S)

1: Input source node s, the destination node d local threshold LTH and global thresh­
old GTE.

2: Output: return True if the destination is reached or False other wise.
3: repeat
4: LPath.Length <— 1
5: Call AB3D(3, R, S) routing
6: if the packet arrive then
7: return (True)
8: end if
9: if (local min) and (LPath.Length >LTH) then

10: Randomly choose one of the planes xy, yz or xz
11: Project all nodes on the selected plane
12: Call Face routing starting from current node c
13: During face routing
14: if the packet reach the destination then
15: return (True)
16: else if loop happens then
17: go to 3 with the current node c as new source
18: else
19: Face routing continues.
20: end if
21: end if
22: until GTH is reached
23: return (False)

6.2 AB3D(3,R,S)-CFace(3)

The main difference between this set of algorithms and the AB3D(3,R,S)-CFace(l)-

AB3D(3,R,S) algorithms is that instead of going back to AB3D(3,R,S) if the first

projective plane fails, these try other projective planes. The algorithms also start

with AB3D(3,R,S). If a threshold is reached together with a local minimum, the

algorithm switches to CFace(l) using the xy plane. Again if a loop happens the

algorithm goes to yz plane. Finally, if yz plane fails, the algorithm switches to xz

90

plane. AB3D(3,R,S)-CFace(3) is summarized in Algorithm 6.2.

The key advantage of these hybrid algorithms is the improvement in performance

over randomized AB3D(3,R,S) algorithms and CFace(3) algorithm, with a decrease

of the large path dilation caused by CFace(3) routing algorithm. In the next section,

we show the simulation results which illustrate the advantages of our algorithms.

Algorithm 6.2 AB3D(3,R,S)-CFace(3)

Input source node s, the destination node d and local threshold LTH.
Output: return True if the destination is reached or False other wise.
Call AB3D{3, R, S) routing
if the packet arrive then

return (True)
end if
if (local min) and (path length>LTH) then

w <— c
Counter <— 1
while (counter < 4) do

switch(counter)
case 1: CurrentPlane <— xy plane
case 2: CurrentPlane <— yz plane
case 3: CurrentPlane <— xz plane

endswitch
Project all nodes on the selected plane
Call Face routing starting from current node c
During face routing
if the packet reach the destination then

return (True)
else if loop happens then

Counter <— counter + 1
go to 10 with the current node c as new source

else
Face routing continues.

end if
end while

end if
return (False)

91

6.3 Simulations and Results

In this section we describe our simulation environment, and then we show and in­

terpret our results, comparing our algorithms with deterministic routing algorithms

Greedy, Compass, Ellipsoid and CFace(3).

6.3.1 Simulation Environment

In the simulation experiments, a set V of n points (where n G {65,75,95,105}) is

randomly generated in a cube of side length 100. The maximum transmission radius

of each host is set to 25. We set the global-threshold to 2n and the local-threshold

to n. We first calculate all components in the graph. Then we select the largest

component (LC) among all the components to perform the routing algorithms. The

source and destination nodes are then randomly picked from LC.

Average packet delivery rate and path dilation are computed as in Section 5.6.1.

Since we have more than eighteen different combinations of the algorithms, it is

difficult to show all of these combinations, thus we show the some algorithms which

gave the most interesting results. We provide three separate analyzes. In these

analyzes we study the delivery rate and path dilation versus the node density, the

threshold and the subgraph type. In all graphs we just show the best algorithm in

each proposed class.

6.3.2 Results

We present the comparison between different groups of algorithms in terms of packet

delivery rate and path dilation in Tables 4, 5 and 6. For comparison purposes, we

will focus on n = 75, and n — 95. It is immediately evident form the result given

in Table 4 that the delivery rate of CFace(3) jumps to 94%, but this algorithm

has by far the worst path dilation (around 10 for n — 75). Our new algorithm

AB3D(3,R,S)-CFace(l)-AB3D(3,R,S) almost reaches the delivery rate of CFace(3),

92

Table 4: Average packet delivery rate, DR, and average path dilation, PD, in UDG.

Algorithms
COMPASS

GREEDY

CFACE(3)

AB3D(3,CM,D)
AB3D(3,CM,A)
AB3D(3,GR,D)
AB3D(3,GR,A)

A B 3 D (3 , C M , D) : C F A C E (3)

A B 3 D (3 , C M , A) : C F A C E (3)

A B 3 D (3 , G R , D) : C F A C E (3)

A B 3 D (3 , G R , A) : C F A C E (3)

AB3D(3,CM,D)
AB3D(3,CM,A)
AB3D(3,GR,D)
AB3D(3,GR,A)

C F A C E (I)

C F A C E (I)

C F A C E (I)

C F A C E (I)

AB3D(3,CM,D)
AB3D(3,CM,A)
AB3D(3,GR,D)
AB3D(3,GR,A)

n = 75
DR PD
63.60 1.03
62.56 1.02
94.53 9.87
80.37 3.02
76.91 3.41
79.90 2.99
76.91 3.35
97.76 6.25
97.49 7.33
97.54 6.37
97.28 7.27
92.90 4.97
92.61 5.84
92.71 5.04
92.13 5.89

n = 95
DR PD
65.74 1.05
64.22 1.03
95.56 14.59
85.68 3.22
84.25 3.70
84.94 3.20
83.68 3.55
98.04 6.91
97.85 7.58
97.92 6.98
98.04 7.82
94.53 5.35
94.59 6.01
94.15 5.46
94.03 6.09

but it decreases the path dilation by 50%. The best delivery rate with over 97% is

found in AB3D(3,R,S)-CFace(3) and also has a lower path dilation than CFace(3)

algorithm. We find, from Tables 4 to 6, that the algorithms based on AB3D(3,C,D)

and AB3D(3,G,D) have the best performance in terms of delivery rate and path di­

lation.

Effect of using a subgraph of U D G for routing. In Figure 39 we can see the

influence of the subgraph on the delivery rate. In Figure 40 we show the influence

of the subgraph over the path dilation. First, in terms of delivery rate, as expected,

the deterministic and randomized AB3D(3,R,S) algorithms delivery rate decreased

over both GG and RNG graphs, due to potentially fewer neighbors available in the

progress direction.

Our new hybrid algorithms have roughly the same best performance on all three

graphs. CFace(3) has the best delivery rate on Gabriel subgraphs, followed by RNG

and then on UDG. This can be explained also by considering the number of edges;

93

Table 5: Average packet delivery rate, DR, and average path dilation, PD, in GG.

Algorithms
COMPASS

GREEDY

CFACE(3)

AB3D(3,CM,D)
AB3D(3,CM,A)
AB3D(3,GR,D)
AB3D(3,GR,A)

A B 3 D (3 , C M , D) : C F A C E (3)

A B 3 D (3 , C M , A) : C F A C E (3)

A B 3 D (3 , G R , D) : C F A C E (3)

A B 3 D (3 , G R , A) : C F A C E (3)

A B 3 D (3 , C M , D) : C F A C E (1)

A B 3 D (3 , C M , A) : C F A C E (1)

A B 3 D (3 , G R , D) : C F A C E (1)

A B 3 D (3 , G R , A) : C F A C E (1)

AB3D(3,CM,D)
AB3D(3,CM,A)
AB3D(3,GR,D)
AB3D(3,GR,A)

n = 75
DR PD
60.95 1.02
60.43 1.02
95.03 8.73
79.96 3.60
75.39 4.20
79.60 3.59
75.44 4.18
97.80 6.51
97.47 7.93
97.67 6.51
97.46 7.84
93.70 5.56
92.77 6.90
93.12 5.53
92.39 6.85

n = 95
DR PD
62.53 1.03
62.47 1.03
94.83 11.58
84.27 3.86
81.93 4.56
84.38 3.86
81.10 4.48
98.05 6.83
97.64 8.11
97.90 6.80
97.69 8.27
94.55 5.74
94.52 6.99
94.52 5.93
94.16 6.90

fewer edges implies fewer crossing edges in the projected face which means less chance

for the packet to enter a loop. In terms of the path dilation, the algorithms depend

on AB3D have the best path dilation over UDG graph, but in both Gabriel subgraph

and relative neighborhood graph the path dilation is increased for the same reason

mentioned above. On these subgraphs, CFace(3) algorithm the path dilation has been

decreased because there is less chance for the packet to enter a loop, which means no

new projective planes.

Effect of the network density. In Figure 41 we illustrate the effect of the

number of nodes (network density) on the performance of the algorithms. In all the

algorithms, as the number of nodes increased the delivery rate also increased. This

is because most of the proposed algorithms depend on the randomized AB3D which

means there is a better chance for a good route to the destination. When n is equal

to 65 the delivery rate does not follow the above trend, because the LC is very small,

which implies that the path between any pair of nodes is relatively short. Figure 42

94

50-
.4

" t

•

%

*

*

i —

-

UDG GG
Geometric Graphs

RNG

Figure 39: The packet delivery rate for different geometric graphs; see Figure 40
legend

12

11

10

9

.2 8

J 7
Q

•5 B

0- 5

4

3

2

1

-
-

IJ&&1 Compass
^SAB3D(3,CM,D)
EZDABSDtS.CM.DllCFaceflJiABSDfS.CM.D)
f a ? 1 AB3D(3,CM,D):CFace(3)
V~-~1CFace(3)

r—i

n

,—|
i — |

7 ~

n

— -

.

.

FT
GG

Geometric Graphs

Figure 40: The average path dilation for different geometric graphs

95

Table 6: Average packet delivery rate, DR, and average path dilation, PD, in RNG.

Algorithms
COMPASS

GREEDY

CFACE(3)

AB3D(3,CM,D)
AB3D(3,CM,A)
AB3D(3,GR,D)
AB3D(3,GR,A)

AB3D(3,CM,D):CFACE(3)
A B 3 D (3 , C M , A) : C F A C E (3)

A B 3 D (3 , G R , D) : C F A C E (3)

A B 3 D (3 , G R , A) : C F A C E (3)

AB3D(3,CM,D)
AB3D(3,CM,A)
AB3D(3,GR,D)
AB3D(3,GR,A)

C F A C E (I)

C F A C E (I)

C F A C E (I)

C F A C E (I)

AB3D(3,CM,D)
AB3D(3,CM,A)
AB3D(3,GR,D)
AB3D(3,GR,A)

n = 75
DR PD
52.58 1.02
52.81 1.01
94.57 8.30
71.48 4.14
61.12 4.93
71.68 4.13
61.75 4.96
97.41 7.96
97.21 10.26
97.71 7.89
97.18 10.29
91.71 6.85
90.40 9.01
91.94 6.89
90.43 8.90

n = 95
DR PD
51.76 1.02'
51.94 1.02
95.40 10.85
75.52 4.87
65.07 5.67
75.25 4.84
65.82 5.75
98.02 9.07
97.32 12.01
97.71 8.88
97.47 11.82
93.24 7.70
92.24 10.30
93.67 7.74
91.86 10.48

shows how the path dilation is effected by the network density. Because increasing the

number of nodes implies increasing the possibility for long detours being discovered

during randomized routing, the path dilation is increased. For CFace(3) there is an

increase in the number of crossing edges, which means greater chance for entering

into loops, therefore increasing the probability of having to project to the second and

third plane.

Effect of the threshold. Figure 43 and Figure 44 show the effect of varying the

threshold value on the average delivery rate and average path dilation of all studied

algorithms. We find that when the threshold is set to n the relative behavior of

the algorithms is established and the difference between algorithms is clear. The

delivery rate of all algorithms can been increased by increasing the threshold, and

this is very clear with the AB3D(3,R,S) algorithm. Since the increasing of the delivery

rate means more successfully delivered packets added to the average path dilation,

then the average path dilation is expected to increase. The simulation results also

96

100

95

90

85

£ 80

Q

65

Compass
- *— CFace(3)
-O- AB3D(3,CM,D):CFace(3)
- e - AB3D(3,CM,D):CFace(1):AB3D(3,CM.D)
+ AB3D(3,CM,D)

75 95
Number of Nodes

105

igure 41: The packet delivery rate at different node densities

75 95
Number of Nodes

j;ure 42: The average path dilation at different node densities

97

100

90

80

j i 60
0)

Q

50-

40

30

• ' • ' " "

-

B - B

..,,.*

A ft
V • -$•••

D

•6

. . . -6
M

*

•

— - o

—$— Compass
—*—CFace(3)

• • AB3D(3,CM,D)
-O- AB3D(3,CM,D):CFace(3)

- B - AB3D(3,CM,D):CFace(1):AB3D(3,CM,D)

0.5 1 1.5 2
Threshold (multiple of n=75)

2.5

Figure 43: The packet delivery rate at different thresholds

confirm this expectation, with an increase in average path dilation corresponding to

an increase in threshold.

0 Compass
—*— CFace(3)

" * • AB3D(3,CM,D)
• - O • AB3D(3,CM,D):Cface(3)
— B - AB3D(3,CM,D):Cface(1):AB3D(3,CM.D)

o- e " _ ^ _ _ _ _ * — — — e — '

rt rt rt rt
V V V V

1 I I I

-

©

A
V

0.5 1 1.5 2
Threshold (multiple of n=75)

2.5

Figure 44: The average path dilation at different thresholds

99

Chapter 7

Power-aware Position-based

Routing Algorithms using

Adjustable Transmission Ranges

for 3D Ad Hoc and Sensor

Networks

In this chapter, we propose several new 3D position-based, local power-aware routing

algorithms for ad hoc wireless network. These algorithms attempt to maximize the

average network survivability. In the next Section we give a detailed description of

the new routing algorithms. Experimental results to demonstrate the much improved

performance of the proposed methods in comparison with existing techniques are

presented in Section 7.3.

100

7.1 New Power-aware Position-based Routing Al­

gorithms

7.1.1 Power-aware Greedy (PAG)

Most of the routing algorithms without power-awareness use a fixed transmission

range for all the nodes, so the nodes may waste power by transmitting more than

is needed for correct reception. The power-aware algorithms described in Chapter 2

use an adaptive transmission range to transmit the data messages during the routing

process, but they still use a fixed (maximum) transmission range for the control

messages (periodic hellos) to tell neighboring nodes about their location. Our new

power-aware routing protocols are based on adjustments of the node transmission

power at two stages: (i) while discovering the neighboring nodes, and (ii) during the

routing process.

In PAG, the nodes use the optimal transmission range (((3/(a — l))1 /"), if possible,

every 7 seconds for periodic discovery control messages. Whenever the degree of

the node drops below g, it instead uses the maximum transmission range for the

periodic discovery control messages 77 times, and then it goes back to use the optimal

transmission range, where 77, g and 7 are network dependent.

Table 7 gives an example of how the node changes its transmission range of the

periodic discovery control messages depending on the node degree. In this example

let 7 = 3, 77 = 4 and g — 4. Since the degree at time 0 is greater than 4, the node uses

the optimal transmission range at time 3, which is the next time interval. At time

6 the node finds that the degree is dropped to less than 4 so it uses the maximum

transmission range in the next 4 times intervals 9,12,15 and 18, then at time 21 it

tests the optimal transmission range again.

Greedy routing is used for routing between the source and destination. If the

packet reaches a local minimum at the low transmission level, then the current node

101

Table 7: example of how the node changes the transmission range of the periodic
discovery control messages depending on the node degree, 7 = 3, 77 = 4 and g = 4

Time

Transmission range
Node degree

Time

Transmission range
Node degree

0

0
5

13

6

1

5

14

6

2

5

15

M
8

3

0
6

16

8

4

6

17

8

5

6

18

M
7

6

0
3

19

7

7

3

20

7

8

3

21

0
5

9

M
7

22

5

10

7

23

5

11

7

24

0
4

12

M
6

25

4

increases its transmission range to its maximum and runs the neighbor nodes dis­

covery step again. Figure 45 gives an example of this process. If a node does not

discover a new neighbor that makes progress to the destination, then the algorithm

fails, otherwise Greedy routing continues. The details of the algorithm are given in

Algorithm 7.1.

There are two main differences between PAG and the non-power-aware Greedy

algorithm. First, during the neighbor discovery phase, in PAG all the nodes exchange

periodic hello messages with the optimal transmission range. In Greedy, all the nodes

exchange information by transmitting and receiving using the maximum transmission

range. Also, during the routing phase (data packet routing process), in PAG the

current node c forwards the message with a power cost equal to lha + (3, where h is

the distance between c and the next node, while Greedy forwards the message with

power cost equal to £ra + /3, where r is the maximum transmission range.

7.1.2 Power-aware Greedy-Cost (PAGC)

This algorithm is similar to PAG algorithm, but the main difference is in the Greedy

part, it uses the Cost Progress idea from [76] as follows. When the packet arrives at

some node c, instead of choosing the closest neighbor to the destination as a second

node, PAGC chooses the neighbor that makes progress to the destination and has the

maximum remaining energy.

102

Algorithm 7.1 PAG

1: Input source node s, the destination node d, The time between two consecutive
neighbors' discovery 7, the number of times of using the maximum transmission
range rj, and degree threshold g.

2: Output: True if the packet arrives to d, and False otherwise.
3: for each node do
4: if {Maximum-transmission range < {13/{a — l))1/") then
5: Optimal-transmission *— Maximum-transmission range.
6: else
7: Optimal-transmission <— {(3/{a — l))1 / / a

8: end if
9: end for

10: if (the node w with the Optimal-transmission range has enough neighbors, greater
than Q at time t) then

11: w uses the Optimal-transmission range for discovering neighbors in the next
time interval after 7 seconds (at time t + 7).

12: else
13: w uses the Maximum-transmission range for discovering neighbors in the next

r\ time intervals (at times t + 7, t + 27,.., t + 777).
14: end if
15: while (the packet does not arrive to d) do
16: if (the current node does not have a neighbor that makes a progress to d) then
17: if (the current node does not use the Maximum-transmission range) then
18: The node uses the Maximum-transmission range to send a control message

asking for neighbors.
19: The nodes that make a progress to d inside the new sphere (Radius) send

back a control message telling about their positions.
20: if (there is a new neighbor that makes a progress to d) then
21: The current node sends the packet to the node that makes the greatest

progress to d
22: else
23: return (False)
24: end if
25: else
26: return (False)
27: end if
28: else
29: The current node sends the packet to the neighbor node that makes greatest

progress to d.
30: end if
31: end while
32: return (True).

103

Figure 45: PAG algorithm, The packet arrives to the node B which is local minimum,
so it increases the transmission range to the maximum

7.1.3 PAG:CFace(3)

The previous algorithms PAG, PAGC and their associated fixed power Greedy algo­

rithm have a great advantage in terms of power saving. In our simulations, though,

they suffer from low delivery rates if the network is very sparse. Our solution is similar

to the solution used in Chapter 6 which is CFace routing if the PAG algorithm fails

to deliver the message. The combination is called PAG:CFace(3) and is summarized

in Algorithm 7.2.

7.1.4 PAG:CFace(l) :PAG

Our second hybrid algorithm starts with PAG algorithm. Once a local minimum

is reached at low transmission range, the current node holding the packet adjusts

its transmission range. If it stays in the local minimum situation the algorithm

extracts locally the 3D-GG graph from the UDG and projects it on one plane, which

is randomly one of the yx, yz or xz planes, and then it switches to CFace(l). CFace(l)

traverses that projective plane starting from the local minimum node as the new

source node. When the packet reaches a node closer to the destination than the

104

Algorithm 7.2 PAG:CFACE(3)

Input source node s, the destination node d, and a threshold TH
Output: True if the packet arrives to d, and False otherwise.
Let c be the current node holding the packet during the routing algorithm
Call PAG routing algorithm.
if (c adjusts its transmission range, and after that, it stays in the local minimum
situation) then

w <— c
Extract 3D-GG from the UDG
Counter <— 1
while (counter < 4) do

switch(counter)
case 1: CurrentPlane <— xy plane
case 2: CurrentPlane <— yz plane
case 3: CurrentPlane <— xz plane

endswitch
Project the 3D-GG on the CurrentPlane
Call Face routing on the projected graph starting from w
During face routing in 16:
if The packet arrives to d then

return (True)
else if (the length of the path on the CurrentPlane is greater than TH)
then

Counter <— counter + 1
else

Face routing continues.
end if

end while
return (False)

end if

105

local minimum, the algorithm switches back to the PAG routing algorithm on the

UDG, and so on. The algorithm drops the packet if the path length exceeds a specific

threshold.

Algorithm 7.3 PAG:CFace(l):PAG

1: Input source node s, the destination node d and the threshold TH
2: Output: True if the packet arrives to d, and False otherwise.
3: Let c be the current node holding the packet during the routing algorithm
4: if (c is a neighbor to d) then
5: return (True)
6: end if
7: if (the path length > TH) then
8; return (False)
9: end if

10: call PAG algorithm.
11: if (c adjusts its transmission range, and after that, it stays in the local minimum

situation) then
12

13

14

15

16

17

18

19

20

w <— c
Extract 3D-GG from the UDG
Project the 3D-GG on xy,yz or xz plane, which is chosen randomly,
Call Face routing on the projected graph starting from w
During Face routing in 14:
if (dist(c,d) < dist(w,d)) then

call(PAG:CFace(l):PAG) starting from the current node c
end if

end if

PAG:CFace(l):PAG is summarized in Algorithm 7.3. Figure 46 shows an example

of this algorithm: when the increasing of the transmission range at the local minimum

node B did not give it any new neighbor that makes progress, the algorithm extracts

the 3D-GG and projects it on the xz plane and switches to CFace(l). If face routing

passes the local minimum, reaching a node closer to the destination than the local

minimum, it switches back to PAG.

106

n
*

/vi

* 5 - . ^ 7B

- \ "A
/ ,.

1-

r
,•

< ^

&

X
SI*

^4 . \r
~ - * — /is

4

y

•.. i

'** ;

/ J

/ D

/

s*':

i
i-

/'

P
"*""-#

W

/
.

i?B
''/""" "
/ *

,,

Figure 46: PAG:CFace(l):PAG algorithm steps

107

7.2 Power-aware Position-based Routing Algorithms

using Half of the Maximum Transmission Range

In our initial study of the power-aware routing [4], we have proposed a set of algo­

rithms that use the power adjustment of the periodic control messages. There are 3

main differences between that set of algorithms and our new algorithms:

1. In [4] the algorithms use half of the maximum transmission range, for the pe­

riodic control messages, while the new algorithms use the optimal transmission

range. Both go to maximum transmission range if needed.

2. The algorithms in [4] uses the low transmission range for the periodic con­

trol messages all the time without checking the density of the node, while the

new algorithms check the node density to decide whether to use the optimal

transmission range or the maximum transmission range for the periodic control

messages.

3. The algorithms in [4] do not recover from face routing if the local minimum is

passed, while the new algorithms do.

7.3 Simulations and Results

7.3.1 Simulation Environment

We use in our simulation the wireless model that has been proposed by Heinzelman

et al. [53] which assumes the radio dissipates Eeiec = 100 nJ/bit power to run the

transmitter or receiver circuitry. Both transmitter and receiver nodes consume Eeiec

to transmit one bit. The radio dissipates Eamp = 100 pJ/bit/m to run the transmit

amplifier, assuming u2 energy loss due to channel transmission, where u> is the distance

between nodes. This implies the sender consumes (Eamp *u>2) power to transmit one

108

bit. According to the above wireless model, transmitting a k — bit message at distance

to the transmitter expends Erx(k, d) — Eeiec * k + Eamp * k * J2. To receive it, the

receiver node expends Enx{k) = Eeiec * k. From the model above, it is clear that the

final expression to transmit one bit message equal to u2 + 2000, hence, /3=2000 and

a = 2 which means the optimal transmission range (/3/(a — 1)) 1 / / Q is equal to 44.7.

In the simulation experiments, we run the algorithms in two different simulation

environments. The first one is called the sensor network environment and the sec­

ond one is called the ad hoc environment. For the sensor network, a UDG with

205,600,1300,2450,4200,6450 or 9500 random nodes is generated in different boxes

of side length 200, 300,400, 500,600, 700 or 800, respectively. The average degree of

nodes is around 20, the degree proposed previously in [10]. The fixed maximum trans­

mission range is set to 66 units, and the values of 7 = 3, 77 = 5, g = 4 are used, a

threshold equal to the number of nodes is used in the hybrid algorithms PAG:CFace(3)

and PAG:CFace(l):PAG. All our results have a 95% confidence intervals.

In the ad hoc network environment a UDG with random 200 nodes is generated

in a box of side length 250 units. With different maximum transmission ranges and

a fixed starting transmission range equal to 44.7.

Initially, for the algorithms with an adjusted transmission power, the transmission

range for all nodes is set to 44.7 with the possibility that the node will increase its

transmission range to its maximum. For the algorithms with a constant transmission

power, their transmission range is set to the maximum. A fixed size data packet of

length 16 bytes is used in addition to a 6 bytes control packet that contains the ID,

position, and current battery level of the node. Initially, all the nodes have an equal

energy level.

First we randomly generate a UDG. If the graph is connected, we use it in the

simulation, otherwise another UDG is randomly generated. Then a set of 2000 source-

destination pairs is randomly chosen for the sensor network, or a set of 1000 source-

destination pairs for the ad hoc environment. All the routing algorithms are then

109

/ l 0 ©

y ^ O]
/ 1 O

9 o Q !o 0 o 8 o
0 | ©

9 l
o o! G @

: ° 9
1 ©

•
e • . © • .

,' •
,' • © © •

o y

«. y ©
o y

0 / © °
y^ o

>

i /

Figure 47: Example of how we simulate some empty regions in the network environ­
ment

applied in turn on the chosen source-destination pairs. Over all the source-destination

pairs, we compute the average power consumed by the maximally used node after

applying the algorithms.

To compute the packet delivery rate, this process is repeated with 5 random graphs

for the sensor environment and 10 random graphs for the ad hoc environment, and

the percentage of successful deliveries determined. Also, we simulated some holes

(empty regions) in the network by placing empty spheres of volume 50 units, that do

not contain any nodes inside, the summation of the all the volumes of all spheres is

equal to 13% of the simulation boxes volumes. See Figure 47 for an example.

7.3.2 Observed Results - Sensor Network Environment

Because the sensor network is a very dense network, the node degree is around

20 [10, 104], the success rate for all the algorithms discussed in Section 7.1 is al­

ways around 100%, therefore the success rate will not be a variable in the measure­

ments. Also, there is no need to test the combined algorithms PAG:CFace(3) and

110

X)
O
a

T3

3

i
a
8

-4-3

a
o

T)
<D

H

a 0
o
u
CD

* h
a
bn

>
<:

1 0 0

9 0

80

70

6 0

bO

4 0

J O

2 0

—#— Greedy

- A - Greedy-Cost

- • - P A G
- • - P A G C

t = = = ^ * ^

-I" - • > . « . - .

-

-

-

,—g

-

200 300 400 500 600
Box size

700 800

Figure 48: The average power consumption from the maximum used node after 2000
source destination pairs routing process of PAG and other power-aware algorithms

PAG:CFace(l):PAG in this environment, since the graphs are so dense, switching to

face routing rarely occurs.

Figure 48 shows the average power consumed from the maximum used node in

PAG, PAGC and its associated Greedy and Cost algorithms. It is clear from this figure

that the average power consumed from maximum used node of the new algorithms

PAG and PAGC is decreased by around 45%, which in turn increases the network

lifetime to around twice that of a fixed transmission radius algorithm. Figure 49

shows the effect of holes in the network. The result is close to the result found in

Figure 48. The main difference is in the algorithms PAG and PAGC, where the

average power consumption of the maximum used node has been slightly decreased.

This can be explained by the nodes degree. Because of the holes the nodes are closer

to each other which means there are more neighbors for the low transmission range

and a greater chance to use different neighbors for the different routed packets.

I l l

200 300 400 500 600

Box size
700 800

Figure 49: The average power consumption from the maximum used node after 2000
source destination pairs routing process of PAG and other power-aware algorithms

55 60 65 70 75 80 90
Tranmission Range

100

Figure 50: The average delivery rate of PAG, Greedy and other different power-aware
routing algorithms

112

- • - P A G C
- • - PAG
—I— power-i

—M— power*cost

55 60 65 70 75 80 90 100
Tranmission Range

Figure 51: The average power consumption from the maximum used node after 1000
source destination pairs routing process of PAG and different power-aware routing
algorithms

7.3.3 Observed Results - Ad Hoc Network Environment

Since the network is less dense in the ad hoc network environment, the delivery rate

of Greedy, PAG and PAGC will be effected by the local minimum phenomena which

implies that the delivery rate is a very important measurement here. Figure 50 shows

the delivery rate of PAG and the other power-aware routing algorithms, the delivery

rate of Greedy algorithm is shown in the same figure. It is immediately evident from

this figure that the delivery rate of PAG and PAGC is slightly less than regular Greedy

for the low transmission range but has almost the same delivery rate as Greedy when

the transmission range increases above 70.

From Figure 51, which shows the average power consumed from the maximum

used node, the new algorithms PAG and PAGC decrease the average power used by

the maximum used node by around 30%, compared to those algorithms with a fixed

transmission radius. The other power-aware routing algorithms do not gain more

than a 4% increase in the network lifetime. From Figure 50, it can be seen that PAG,

V

O
a
-a

B

a

* 2

a
fr

o
•n
IV

Ej
a 0 u
t -
w
o
o.
bfl

>
<:

100

90

80

70

60

bO

40

30

20

113

100

90

80
v
as

>

§ 60

50

40

55 60 65 70 75 80 90 100
Tranmission Range

Figure 52: The average delivery rate of PAG:CFace(3), Greedy:CFace(3) and other
different power-aware routing algorithms

Greedy and all other studied algorithms have a low delivery rate if the network is

sparse and a 100% delivery rate in dense networks. This can be explained by the

number of neighbors. Fewer neighbors implies less chance to choose a good route

that makes progress to the destination.

Figures 52 and 53 show the expected results that our algorithms Greedy:CFace(3)

and PAG:CFace(3) increase the delivery rate to around 90% for sparse networks and

to about 100% for dense networks. The drawback is an increase of the average power

from the maximum used node over Greedy and PAG. Still PAG:CFace(3) has a longer

network lifetime up to 25% more than Greedy:CFace(3) if the average node degree is

above 6, which means the transmission range is above 75.

The results of the PAG:CFace(l):PAG and Greedy:CFace(l):Greedy algorithms

are shown in Figures 54 and 55. This algorithm tries to compromise between the

two groups of algorithms Greedy and PAG on one side, and PAG:CFace(3) and

Greedy:CFace(3) on the other side. First, in terms of delivery rate, as expected,

PAG:CFace(l):PAG has nearly a 100% delivery rate for an average network with a

114

- • - PAG:CFace(3)
• ••- • Greedy:CFace(3)
—(— power-i
—«— power*cost

> cost-i
• y- • Greedy

-3 ioo
o
a

"g 90

i 8°
£
-i-2

B
o

-o
<a
g 3
t/D
13
O
U
i-i
QJ

o
a
60

>
<

70

60

50

40

30

20

-•-PAG:CFace(3)

-•-Greedy:CFace(3)

—(— power-i

—H—power*cost

t> cost-i
- v - Greedy

55 60 65 70 75 80 90
Tranmission Range

100

Figure 53: The average power consumption from the maximum used node after 1000
source destination pairs routing process of PAG:CFace(3), Greedy:CFace(3) and other
power-aware routing algorithms

transmission range between 70 and 80 which has an average nodes degree around

6. The delivery rate for the sparse network is greater than Greedy:CFace(3) and

PAG:CFace(3). This algorithm still increases the network lifetime by decreasing the

power consumption of the nodes.

The most important advantage of all our new algorithms is the substantial in­

crease of the network lifetime while preserving the delivery rates. The same sim­

ulations have been done using the Compass routing algorithm [71] in place of the

Greedy algorithm, generating new routing algorithms, called PAC, PAC:CFace(3),

and PAC:CFace(l):PAC. The results are nearly the same as for the Greedy-based

algorithms.

115

100

90

80

i
& 7 0

>

3 60

50

40

l^Z^Xrf&L

t f/r
1///

.

-

-

- • -PAG:CFace(l) :PAG

- • - Greedy:CFace(l):Greedy

-H— power-i

• M " power* cost

—&— cost-i
- y - G r e e d y

55 60 65 70 75 80 90
Tranmission Range

100

Figure 54: The delivery rate for PAG:CFace(l):PAG, Greedy:CFace(l):Greedy and
the other power-aware routing algorithms

-S 100
o
a
"S 90

S 80

S

-a
0)

S
3
IS
O
u

70

60

50

40

30 S o o.

< 20

-PAG:CFace(l):PAG

G reedy :CFace(l):Greedy

55 60 65 70 75 80 90
Tranmission Range

100

Figure 55: The average power consumption from the maximum used node
after 1000 source destination pairs routing process of PAG:CFace(l):PAG,
Greedy:CFace(l):Greedy and other power-aware routing algorithms

116

Chapter 8

Conclusion and Future Research

This chapter briefly concludes the thesis by highlighting the major contributions of

this research and pointing out several future research directions.

This thesis has presented several adaptive and efficient 3D protocols that use the

geographical position of ad hoc nodes for providing network-layer services in ad hoc

networks. In particular, we have presented a UDG subgraph algorithm, dominating

set algorithms and several position-based routing algorithms. The effectiveness of the

proposed method is demonstrated through numerical simulations. We believe that

the 3D results provided in this thesis will be useful in many ways for the research

and implementation of future 3-D networks.

In the next section, the contributions made in each of the previous chapters and

the concluding results drawn from the associated research are presented. Suggestions

for future research directions related to this thesis are provided in Section 8.2.

8.1 Contributions of the thesis

• In Chapter 3, we presented a class of Yao-type graphs that combine the advan­

tages of both the HSP subgraph and the Yao subgraph by permitting control

over the degree of the subgraph while being orientation-invariant. Indeed, the

117

degree control is continuous since any cone angle less than 9m(p, \uz\) can be

used as differs from the Yao graph where only a discrete set of cone angles (n/k)

are possible. In addition, unlike the Yao subgraph, the class of DAAY subgraphs

easily extends to three-dimensional UDGs. The class of graphs presented also

preserves the common properties of the Yao and HSP graphs such as bounded

out-degree, having the EMST as a subgraph, and being spanner graphs with

bounded stretch factors.

• In Chapter 4, we proposed the first fully local algorithms that construct a

dominating set and a connected dominating set of UDG in 3D environment in

a constant time. The algorithm does not rely on the spanning tree construction,

which makes it practical for situations where the topology changes are frequent

and unpredictable. We proved that the size of the constructed dominating set is

at most 24 times the optimal. We also showed the importance of the constructed

independent dominating set on maintaining a low approximation ratio for the

construction of the CDS. A simulation study has been conducted to compare

our proposed algorithm with the Greedy global algorithm [34, 62, 99] and the

linear time algorithms by Alzoubi et al. [12, 13] in terms of the size of the

dominating set and the number of connectors. Our algorithms have similar

results as Alzoubi algorithms, though our algorithms run in a constant time

compared to a linear time of the Alzoubi algorithms.

• We improved a new version of Projective Face routing algorithms (CFace) in

Chapter 2. Unlike ALSP routing algorithms, [65], in which the current node

holding the packet has to know the location of the nodes that are 2 hops away to

calculate the projection plane, CFace does not need any information to calculate

the projection plane since it projects the nodes on the coordinate planes. The

simulation results show that CFace has a comparable delivery rate to ALSP,

but with less path dilation.

118

• We proposed a new class of randomized 3D position-based algorithms for rout­

ing in mobile ad hoc networks, called the AB3D algorithms in Chapter 5. In this

class, the current node uses a space-partition heuristic to divide the space into

m regions and choose one neighbor from each region using Greedy or Compass

then forwards the message randomly to one of these m nodes. Our simulation

results demonstrate that these randomized algorithms, on non-planar graphs

like the UDG, yield a definite improvement over all the other deterministic

algorithms studied, when considering the delivery rate.

• In order to build a position-based routing algorithm that could route pack­

ets in a scalable and effective manner in 3D environment, we developed the

ABLAR routing algorithms in Chapter 5. This class of algorithms uses the

partial flooding strategy, where the current node chooses m neighbors accord­

ing to a space-partition heuristic and forwards the message to all these nodes.

According to the simulation results in Section 5.6; this algorithm gives a nearly

certain delivery rate, but the associated traffic was high.

• In Chapter 6, we created two new hybrid routing algorithms, AB3D-CFace(l)-

AB3D and AB3D-CFace(3), that combine the efficiency of randomized progress-

based algorithms with the high delivery rate of Face routing. Our experiments

on unit disk graphs, and their associated Yao subgraphs and Gabriel subgraphs

show that these hybrid algorithms increased the delivery rate to over 97% while

keeping the average dilation of the route much smaller than that of Face routing.

• To combine the efficiency of progress-based and randomized progress-based al­

gorithms with a high delivery rate of ABLAR routing; we proposed two new

groups of hybrid routing algorithms. First, T-ABLAR-T, where progress-based

routing is used until a local minimum is reached. The algorithm then switches

to ABLAR for one step after which the algorithm switches back to the progress-

based algorithm again. Second, AB3D-ABLAR, in which AB3D is used until a

119

threshold is passed in terms of number of hops. The algorithm then switches to

an ABLAR algorithm. Our experiments showed that the best performing algo­

rithms in the AB3D-ABLAR group indeed increased the delivery rate to over

99% while managing to save more than 55% of the average traffic consumed by

LAR3D.

• In Chapter 7, we proposed several local power-aware routing algorithms for

3D ad hoc and sensor networks under two concurrent constraints: maximizing

the delivery rate while maximizing the lifetime of the network by minimizing

the energy consumption by the nodes. Our new algorithms are based on the

idea of replacing the constant transmission power of a node with an adjusted

transmission power during two stages: first, a lower power while discovering the

neighboring nodes and second, if needed a higher transmission power during

the routing process. The simulation results demonstrated that the new routing

algorithm PAG has a delivery rate near 100% with dense networks and increases

the network lifetime to around twice that of the Greedy algorithm. Our second

and third algorithms, PAG:CFace(3) and PAG:CFace(l):PAG, significantly in­

crease the delivery rate for sparse networks while also increasing the average

lifetime of a network.

8.2 Future research directions

Several interesting research directions motivated by this thesis are discussed next. In

addition to designing scalable routing algorithms for ad hoc and sensor networks, we

intend to accomplish the following projects in the near future:

• In all our simulations, we assumed that the UDG was static. Node mobility

is not considered in this thesis. In real situations, nodes may change their

position with time. Nodes may also become inactive after a certain time and

vice versa. It would be interesting to develop and test all our routing algorithms

120

in mobile environments. However, we expect most of our proposed algorithms

that depend on AB3D to perform well on dynamic 3D unit disk graphs since

the randomization component of these algorithms can adjust to reasonably large

changes in node positions.

• In this research, we assume the location service is available. It is desired to

integrate the location service into our routing algorithms. Thus, the proposed

algorithms can be implemented in a real mobile node more easily.

• The simulations were designed and implemented using C + + . Although great

care was taken in designing and implementing a series of network simulations

that could easily be modified to test different scenarios, it became increasingly

difficult to make changes to the network as ideas surfaced. The next step would

be to port the simulation to the ns-2 network simulation environment.

• DAAY can be extended easily to the 3D space. Since DAAY distributes lo­

cation information and performs calculations in a one-hop transmission range,

it is possible to implement DAAY in 3D space. The hard part is to prove

similar properties for the subgraph as in 2D. Further experimentation, includ­

ing routing algorithms, would show the impact of our subgraph on the routing

algorithms.

• For the dominating set proposed in Chapter 4, it would be interesting to show

a tighter bound on the size of the connected dominating set. The message

complexity analysis is not included: trying to create our algorithms with an

optimal number of control messages remains a part of future work.

• Due to some specific applications and newly developed techniques, the concept

of a connected dominating set can be modified or further extended for more

efficient usage. That is, constructing an energy-efficient virtual backbone in

121

MANETs for broadcasting applications using directional antennas may be con­

sidered [109]. As a part of future work it would be interesting to see if our

algorithms can be extended to adapt such applications.

• Other observations about the connected dominating sets are as follows: Al-

zoubi et al. [11] integrate the connected dominating set and the local Delaunay

graph to form a backbone of the wireless network that is planar and a spanner.

However, we proved in Chapter 2 that their algorithm is not completely local:

its time complexity is 0(n), which makes it a bad choice for ad hoc wireless

networks. Moreover, the construction of a Delaunay graph assumes that the

nodes are static or can be viewed as static during a reasonable period of time.

This is acceptable in sensor networks, but not in a situation where nodes move

frequently and unpredictably. Based on these observations, we are interested

in combining our local algorithm for constructing the connected dominating set

with the 3D version of some other spanner subgraphs, e.g. DAAY or Yao, such

that node mobility is allowed.

• As in most of the research papers in the area of MANETs, in this thesis we

assumed that all nodes are homogeneous. We did not consider the presence of

obstacles, such as walls, buildings or weather conditions, which might obstruct

signal propagation. Barriere et al. [19] consider irregular transmission range

of the mobile nodes. This work is unique in MANET literature, and further

investigation of the behavior of our routing algorithms under such a varying

radio range model would be an interesting area for a future research.

• One obvious part of our future work is to test our 3D algorithms with the

connected dominating set constructed in Chapter 4 as a backbone.

• The widely-accepted existing routing protocols designed to accommodate the

needs of such self-organized networks do not address possible threats aiming at

the disruption of the protocol itself. The assumption of a trusted environment

122

is not one that can be realistically expected; hence, several efforts have been

made towards the design of a secure and robust routing protocol for ad hoc

networks. It would be desirable to integrate some of the security heuristics [58]

into our routing algorithms.

123

Bibliography

[1] A.E. Abdallah, T. Fevens, and J. Opatrny. Hybrid position-based 3d rout­

ing algorithms with partial flooding. In Proc. of the Canadian Conference on

Electrical and Computer Engineering, pages 1135-1138, Ottawa, May 2006.

[2] A.E. Abdallah, T. Fevens, and J. Opatrny. Randomized 3-d position-based

routing algorithm for ad-hoc networks. In Proc. of the 3rd Annual Interna­

tional Conference on Mobile and Ubiquitous Systems: Networks and Services

(MOBIQUITOUS), pages 1-8, San Jose, July 2006.

[3] A.E. Abdallah, T. Fevens, and J. Opatrny. High delivery rate routing algorithms

for 3d ad hoc network. To appear in Computer Communications journal on

Algorithmic and Theoretical Aspects of Wireless Ad Hoc and Sensor Networks,

2007.

[4] A.E. Abdallah, T. Fevens, and J. Opatrny. Power-aware 3d position-based

routing algorithms for ad hoc networks. In Proc. of the IEEE International

Conference on Communications ICC-2007, pages 1-6, Glasgow, June 2007.

[5] A.E. Abdallah, T. Fevens, and J. Opatrny. 3d local algorithm for dominating

sets of unit disk graphs. In submission pending, 2008.

[6] A.E. Abdallah, T. Fevens, J. Opatrny, and I. Stojmenovic. Power-aware 3d

position-based routing algorithms using adjustable transmission ranges for ad

hoc and sensor networks. Submitted for publication, Ad Hoc Networks Journal.

124

[7] A.E. Abdallah, M.Hassan, G. Kao, and C. Morosan. Topology control for

balanced energy consumption in emergency wireless deployments. In Proc. of

the 2nd ACM international workshop on Performance evaluation of wireless ad

hoc, sensor, and ubiquitous networks, pages 41-48, Montreal, September 2005.

[8] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions: with

Formulas, Graphs, and Mathematical Tables. 9th printing. New York: Dover,

p. 79, 1972.

[9] I. Akyildiz, D. Pompili, and T. Melodia. Underwater acoustic sensor networks:

research challenges. Ad Hoc Networks, 3(3):257-279, 2005.

[10] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor

networks. IEEE Communications Magazine, 40(8): 102-114, 2002.

[11] K. Alzoubi, X. Li, Y. Wang, P. Wan, and O. Frieder. Geometric spanners

for wireless ad hoc networks. IEEE Transactions on Parallel and Distributed

Systems, 14(4):408-421, 2003.

[12] K. Alzoubi, P. Wan, and O. Frieder. Distributed heuristics for connected domi­

nating sets in wireless ad hoc networks. Journal of Communications Networks,

4(1):141-149, 2002.

[13] K. Alzoubi, P. Wan, and O. Frieder. Message-optimal connected-dominating-set

construction for routing in mobile ad hoc networks. In Proc. of the Third ACM

international Symp. Mobile Ad Hoc Networking and Computing (MobiHoc 02),

pages 157-164, Lausanne, June 2002.

[14] S. Ansari, L. Narayanan, and J. Opatrny. A generalization of the face routing

algorithm to a class of non-planar networkss. In Proc. of the Annual Interna­

tional Conference on Mobile and Ubiquitous: Networks and Services (MOBIQ-

UITOUS), pages 213-225, California, July 2005.

125

[15] F. Araujo and L. Rodrigues. Survey on position-based routing. In Technical

Report TR-01, University of Lisbon, 2006.

[16] J. Aslam, Q. Li, and D. Rus. Three power-aware routing algorithms for sen­

sor networks. Wireless Communications and Mobile Computing, 2(3): 187-208,

2003.

[17] D. Baker and A. Ephremides. The architectural organization of a mobile radio

network via a distributed algorithm. IEEE Transactions on Communications,

29(11):1694-1701, 1981.

[18] D. Baker, A. Ephremides, and J. Flynn. The design and simulation of a mobile

radio network with distributed control. IEEE Journal on Selected Areas in

Communications, 2(l):226-237, 1984.

[19] L. Barriere, P. Fraigniaud, L. Narayanan, and J. Opatrny. Robust position-

based routing in wireless ad hoc networks with irregular transmission ranges.

Wireless Communications and Mobile Computing Journal, 3(2): 141-153, 2003.

[20] S. Basagni, I. Chlamtac, and V. Syrotiuk. Dynamic source routing for ad hoc

networks using the global positioning system. In Proc. of the IEEE Wireless

Communications and Networking Conference(WCNC99), pages 21-24, New

Orleans LA, September 1999.

[21] S. Basagni, I. Chlamtac, V. Syrotiuk, and B. Woodward. A distance routing

effect algorithm for mobility (DREAM). In Proc. of the 4th annual ACM/IEEE

international conference on Mobile computing and networking (MOBICOM),

pages 76-84, Dallas, 1998.

[22] W. Beyer. CRC Standard Mathematical Tables. 28th ed. Boca Raton, FL: CRC

Press, pp. 131 and 147-150, 1987.

126

[23] P. Boone, E. Chavez, L. Gleitzky, E. Kranakis, J. Opatrny, G. Salazar, and

J. Urrutia. Morelia test: Improving the efficiency of the gabriel test and face

routing in ad-hoc networks. In Proc. of the 11th Colloquiua on Structural In­

formation and Communication Complexity (SIROCCO), pages 23-34, Slovakia,

June 2004.

[24] P. Bose, L. Devroye, W. Evans, and D. Kirkpatrick. On the spanning ratio of

gabriel graphs and beta-skeletons. In Proc. of the Latin American Theoretical

Infocomatics (LATIN), pages 479-493, Mexico, April 2002.

[25] P. Bose, J. Gudmundsson, and P. Morin. Ordered theta graphs. Computational

Geometry: Theory and Applications, 28(1):11—18, 2004.

[26] P. Bose and P. Morin. Online routing in triangulations. In 10th Annual In­

ternational Symposium on Algorithms and Computation (ISAAC '99), volume

1741 of LNCS, pages 113-122, India, December 1999.

[27] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaranteed

delivery in ad hoc wireless networks. Wireless Networks journal, 7(6):609-616,

2001.

[28] J. Broch, D. Maltz, D. Johnson, Y. Hu, and J. Jetcheva. A performance com­

parison of multi-hop wireless ad hoc network routing protocols. In Proc. of

the Fourth Annual ACM/IEEE International Conference on Mobile Computing

and Networking, pages 85-97, Dallas TX, October 1998.

[29] S. Capkun, M. Hamdi, and J.-P. Hubaux. Gps-free positioning in mobile ad-hoc

networks. Cluster Computing Journal, 5(2): 118-124, 2002.

[30] C. Chang and L. Tassiulas. Maximum lifetime routing in wireless sensor net­

works. IEEE/ACM Transactions on Networking, 12(4):609-619, 2004.

127

[31] E. Chaves, S. Dobrev, E. Kranakis, J. Opatrny, L. Stacho, H. Tejeda, and J. Ur-

rutia. Half-space proximal: A new local test for extractinga bounded dialation

spanner of a unit disk graph. In Proc. of the 9th International Conference on

Principles of Distributed Systems (OPIDIS2005), pages 235-245, Italy, Decem­

ber 2006.

[32] C. Chiang, H. Wu, W. Liu, and M. Gerla. Routing in clustered multihop, mobile

wireless networks with fading channel. In Proc. of the IEEE Singapore Inter­

national Conference on Networks (SICON), pages 197-211, Singapore, April

1997.

[33] W. Choi and S. Das. Performance of randomized destination-sequence distance

vector (R-DSDV) protocol for congestion control in ad hoc wireless network

routing. In Proc. of the applied Telecommunications symposium wireless Track

(ATS), San Diego, April 2002.

[34] V. Chvatal. A greedy heuristic for the set covering problem. Math. Oper. Res.

4, pages 233-235, 1979.

[35] B. Clark, C. Colbourn, and D. Johnson. Unit disk graphs. Discrete Math,

86:165-177, 1990.

[36] J. Czyzowicz, S. Dobrev, T. Fevens, H. Gonzalez-Aguilar, E. Kranakis,

J.Opatrny, and J. Urrutia. Local algorithms for dominating and connected

dominating sets of unit disk graphs. In Proc. of the the 8th Latin American

Theoretical Informatics Symposium LATIN08, April 2008.

[37] B. Das and V. Bharghavan. Routing in ad-hoc networks using minimum con­

nected dominating sets. In Proc. of the IEEE International Conference on

Communications (ICC 97), Vol. 1, pages 376-380, Monral, June 1997.

[38] S. Durocher, D. Kirkpatrick, and L. Narayanan. On Routing with Guaranteed

Delivery in Three-Dimensional Ad Hoc Wireless Networks. In To apper in

128

the proc. of the Ninth International Conference on Distributed Computing and

Networking (ICDCN 2008), India, January 2008.

[39] T. Fevens, A. Abdallah, T. Elsalti, and L. Harutyunyan. Class of orientation-

invariant yaotype subgraphs of a unit disk graph. In Proc. of the 4th ACM

SIGACT-SIGOPS International Workshop on Foundations of Mobile Comput­

ing (DialM-POMC 2007), pages 1-8, Portland, August 2007.

[40] T. Fevens, A.E. Abdallah, and B. Bennani. Randomized ab-face-ab routing

algorithms in mobile ad hoc network. In J^th International Conference on AD-

HOC Networks and Wireless, volume 3738 of LNCS, pages 43-56, Mexico, Oc­

tober 2005.

[41] T. Fevens, I. Haque, and L. Narayanan. A class of randomized routing algo­

rithms in mobile ad hoc networks. In Proc. of the 1st Algorithms for Wireless

and Ad-hoc Networks (ASWAN), pages 347-358, Boston, August 2004.

[42] G. Fin. Routing and addressing problems in large metropolitan-scale internet­

works. In Technical Report ISU/RR-87-180, USC ISI, Marina del Ray, Cali­

fornia, 1987.

[43] P. Fraigniaud and C. Gavoille. A space lower bound for routing in trees. In In

19 th Annual Symposium on Theoretical Aspects of Computer Science (STACS)

volume 2285 of LNCS, pages 65-75, March 2002.

[44] H. Frey and I. Stojmenovic. On delivery guarantees of face and combined

greedy-face routing in ad hoc and sensor networks. In Proc. of the 12th annual

international conference on Mobile computing and networking, pages 390-401,

Los Angeles, September 2006.

[45] K. Gabriel and R. Sokal. A new statistical approach to geographic variation

analysis. Systematic Zoology, 18(3):259-278, 1969.

129

[46] B. Gao, Y. Yang, and H. Ma. An efficient approximation scheme for minimum

connected dominating set in wireless ad hoc networks. In Proc. of the IEEE

Vehicular Technology Conference, pages 2744-2748, Los Angeles, September

2004.

[47] J. Gao, L. Guibas, J. Hershberger, L. Zhang, and A. Zhu. Discrete mobile

centers. In Proc. of the 17th annual Symposium on Computational Geometry,

pages 188-196, Medford, June 2001.

[48] M. Garey and D. Johnson. Computers and Intractability-A Guide to the Theory

of NP-Completeness. CA:Freeman, San Francisco, 1979.

[49] S. Giordano, I. Stojmenovic, and L. Blazevic. Postion based routing algorithms

for ad hoc networks for ad hoc networks: A taxonomy. In Ad hoc wireless

Networking (ed. X. Cheng, X. Huang, and D.Z. Du), Kluwer, pages 103-136,

July 2003.

[50] Z. Haas and M. Pearlman. The performance of query control schemes for the

zone routing protocol. ACM/IEEE Trans. Net, 9(4):427-438, 2001.

[51] I. Haque, C. Assi, and J. Atwood. Randomized energy aware routing algorithms

in mobile ad hoc networks. In Proc. of the 8th ACM International Symposium

on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM

2005), pages 71-78, Montreal, October 2005.

[52] T. Haynes, S. Hedetniemi, and P. Slater. Fundamentals of Domination in

Graphs. Fast Computers. Marcel Dekker, Inc., 1998.

[53] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient com­

munication protocols for wireless microsensor networks. In Proc. of the In­

ternational conference on System Sciences, pages 3005-3014, Hawaii, January

2000.

130

[54] J. Hightower and Borriello G. Location systems for ubiquitous computing.

Computer, 34(8):57-66, 2001.

[55] D. Hochbaum. Approximation Algorithms for NP-Hard Problems. PWA Pub­

lishing Company, Boston, MA, 1995.

[56] T. Hou and V. Li. Transmission range control in multihop packet radio net­

works. IEEE Trans, on Communications, 34(l):38-44, 1986.

[57] P. Hsiao and H. Kung. Gravity routing in ad hoc networks: Integrating geo­

graphical and topology-based routing. In Proc. of the International Symposium

on Parallel Architectures, Algorithms and Networks, pages 397-403, china, May

2004.

[58] Y. Hu and A. Perrig. A survey of secure wireless ad hoc routing. IEEE Security

& Privacy, 2(3):28-39, 2004.

[59] J. Hurink and T. Nieberg. Approximating minimum independent dominating

sets in wireless networks. Technical Report, Department of Applied Mathemat­

ics, University of Twente, Enschede. ISSN 1874-4850, 2007.

[60] J. Jaromczyk and G. Toussaint. Relative neighborhood graphs and their rela­

tives. Proc. IEEE, 80(9): 1502-1517, 1992.

[61] L. Jia, R. Rajaraman, and T. Suel. An efficient distributed algorithm for con­

structing small dominating sets. In Proc. of the 20th ACM Symposium on

Principles of Distributed Computing (PODC'01), pages 33-42, Rhode Island,

August 2001.

[62] D. Johnson. Approximation algorithms for combinatorial problems. Journal of

Computer and System Sciences, pages 256-278, 1974.

131

[63] D. Johnson and D. Malts. Dynamic source routing in ad hoc wireless networks.

In Mobile Computing (ed. T. Imielinski and H. Korth), chapter 5, pages 153—

181. Kluwer Academic Publishers, 1996.

[64] G. Kao, T. Fevens, and J. Opatrny. Position-based routing on 3D geometric

graphs in mobile ad hoc networks. In Proc. of the 17th Canadian Conference

on Computational Geometry (CCCG'05), pages 88-91, Windsor, August 2005.

[65] G. Kao, T. Fevens, and J. Opatrny. 3-d localized position-based routing with

nearly certain delivery in mobile ad hoc networks. In Proc. of the Wireless

Pervasive Computing, ISWPC '07, pages 344-349, San Juan, Febuary 2007.

[66] E. Kaplan. Understanding GPS. Artech house, 1996.

[67] B. Karp and H. Kung. GPSR: Greedy perimeter stateless routing for wireless

net-works. In Proc. of the 6th ACM/IEEE Conference on Mobile Computing

and Networking (Mobicom 2000), pages 243-254, Boston, August 2000.

[68] R. Karp. Reducibility among combinatorial problems. In Proceedings of the

Symposium on Complexity of Computer Computations, pages 85-103, 1972.

[69] J. Keil and C. Gutwin. Classes of graphs which approximate the complete

euclidean graph. Discrete Computational Geometry, 7(l):13-28, 1992.

[70] Y. Ko and N. Vaidya. Location-aided routing (LAR) in mobile ad hoc networks.

ACM/Baltzer Wireless Networks (WINET), 6(4):307-321, 2000.

[71] E. Kranakis, H. Singh, and J. Urrutia. Compass routing on geometric networks.

In Proc. of the 11th Canadian Conference on Computational Geometry (CCCG

'99), pages 51-54, Vancouver, August 1999.

[72] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What cannot be computed

locally. In Proc. of the the 23rd annual symposium on Principles of distributed

computing, pages 300-309, Newfoundland, July 2004.

132

[73] F. Kuhn, T. Moscibroda, and R. Wattenhofer. On the locality of bounded

growth. In Proc. of the 24th annual symposium on Principles of distributed

computing, pages 60-68, Las Vegas, July 2005.

[74] F. Kuhn and R. Wattenhofer. Constant-time distributed dominating set approx­

imation. In Proc. of the the 22nd annual symposium on Principles of distributed

computing, pages 25-32, Boston, July 2003.

[75] F. Kuhn, R. Wattenhofer, and A. Zollinger. Ad-hoc networks beyond unit

disk graphs. In Proc. of the 2003 joint workshop on the foundation of mobile

computing (DIALM-POMC), pages 69-78, San Diego, September 2003.

[76] J. Kuruvila, A. Nayak, and I. Stojmenovic. Progress and location based local­

ized power aware routing for ad hoc and sensor wireless networks. In Proc. of

the 3rd International Conference on AD-HOC Networks and Wireless ADHOC-

NOW, pages 294-299, Vancouver, July 2004.

[77] B. Kwak, N. Song, and L. Miller. On the scalability of ad hoc networks: a

traffic analysis at the center of a network. In Proceedings of the IEEE Wireless

Communications and Networking Conference, Atlanta, March 2004.

[78] J. Li, J. Jannotti, D. De Couto, D. Karger, and R. Morris. A scalable location

service for geographic ad-hoc routing. In Proc. of the 6th ACM International

Conference on Mobile Computing and Networking (MobiCom), pages 120-130,

Boston, August 2000.

[79] X. Li, G. Calinescu, and P. Wan. Distributed construction of planar spanner

and routing for ad hoc wireless networks. In Proc. of the IEEE INFOCOM (3),

New York, June 2002.

[80] X. Li, P. Wan, and Y. Wang. Power efficient and sparse spanner for wireless

ad hoc networks. In Proc. of the IEEE International Conference on Computer

133

Communications and Networks (ICCCN01), pages 564-567, Arizona, October

2001.

[81] X. Li, Y. Wang, P. Wan, W. Song, and O. Frieder. Localized low-weight graph

and its applications in wireless ad hoc networks. In Proc. of the Twenty-Third

IEEE INFOCOM, pages 431-441, Hong Kong, March 2004.

[82] Xiang-Yang Li. Topology control in wireless ad hoc networks. Book Chapter

of Ad Hoc Networking, IEEE Press, edited by Stefano Basagni, Marco Conti,

Silvia Giordano, and Ivan Stojmenovic, pages 175-203, 2003.

[83] B. Liang and Z. Haas. Virtual backbone generation and maintenance in ad hoc

network mobility management. In Proc. of the IEEE INFOCOM (3), pages

1293-1302, March 2000.

[84] S. Liu, T. Fevens, and A.E. Abdallah. Hybrid position-based routing algorithms

for 3-d mobile ad hoc networks. In submitted for publication to the The 15th

International Conference on Telecommunications, 2008.

[85] M. Mauve, J. Widmer, and H. Hartenstein. A survey of position-based routing

in mobile ad-hoc networks. IEEE Network Magazine, 15(6):30-39, 2001.

[86] S. Murthy and J. Garcia-Luna-Aceves. A routing protocol for packet radio

networks. In Proc. of the ACM International Conference on Mobile Computing

and Networking, pages 86-95, France, November 1995.

[87] Soumendra Nanda. Spatial multipath location aided routing. In Master's thesis,

University Hanover, New Hampshire, June 2004.

[88] R. Nelson and L. Kleinrock. The spatial capacity of a slotted aloha multihop

packet radio network with capture. IEEE Transactions on Communications,

32(6):684-694, 1984.

134

[89] The National Institute of Standards and Technology. Wireless ad hoc sensor

networks, URL: http://w3.antd.nist.gov/wahn_ssn.shtml. 2001.

[90] C. Perkins and P. Bhagwat. Highly dynamic destination sequenced distance-

vector routing (DSDV) for mobile computers. In Proc. of the SIGCOMM, Con­

ference on Communications Architectures, Protocols and Applications, pages

234-244, London, September 1994.

[91] C. Perkins and E. Royer. Ad hoc on-demand distance vector routing. In

Proc. of the 2nd IEEE Workshop on Mobile Computing System and Applica-

hon(WMCSA), pages 90-100, San Juan, February 1999.

[92] R. Rajaraman. Topology control and routing in ad hoc networks: a survey.

ACM SIGACT News, 33(2):60-73, 2002.

[93] R. Ramanathan and R. Rosales-Hain. Topology control of multihop wireless

networks using transmit power djustment. In Proc. of the IEEE INFOCOM,

pages 404-413, March 2000.

[94] V. Rodoplu and T. Meng. Minimum energy mobile wireless networks. IEEE

Journal Selected Areas in Communications, 17(8): 1333-1344, 1999.

[95] E. Royer and C. Toh. A review of current routing protocols for ad hoc mobile

wireless networks. IEEE Personal Communications, 6(4):46-55, 1999.

[96] R. Shah and J.M. Rabaey. Energy-aware routing for low-energy ad-hoc sensor

networks. In Proc. of the Wireless Communications and Networking Conference,

pages 812-817, Orlando, March 2002.

[97] C. Shakarji. Least-squares fitting algorithms of the nist algorithm testing

system. Research of the National Institute of Standards and Technology,

103(6):633-641, 1998.

135

http://w3.antd.nist.gov/wahn_ssn.shtml

[98] D. Simplot-Ryl, I. Stojmenovic, and J. Wu. Energy efficient backbone construc­

tion, broadcasting, and area coverage in sensor networks. In in: Handbook of

Sensor Networks: Algorithms and Architectures (I. Stojmenovic, ed.), Wiley,

pages 343-379, 2005.

[99] P. Slavik. A tight analysis of the greedy algorithm for set cover. In Proc. of the

28th ACM Symposium on Theory of Computing (STOC), pages 435-441, 1996.

[100] I. Stojmenovic. Location updates for efficient routing in ad hoc networks. In

Handbook on Wireless Networks and Mobile Computing, pages 451-471, 2002.

[101] I. Stojmenovic. Position-based routing in ad hoc networks. IEEE Commmuni-

cations Magazine, 40(7): 128-134, 2002.

[102] I. Stojmenovic and S. Datta. Power and cost aware localized routing with guar­

anteed delivery in unit graph based ad hoc networks. Wireless Communications

and Mobile Computing, 4(2):175-188, 2004.

[103] I. Stojmenovic and X. Lin. Loop-free hybrid single-path flooding routing algo­

rithms with guaranteed delivery for wireless networks. IEEE Trans, on Parallel

and Distributed Systems, 12(10):1023-1032, 2001.

[104] I. Stojmenovic and X. Lin. Power aware localized routing in ad hoc networks.

IEEE Trans, on Parallel and Distributed Systems, 12(11):1122-1133, 2001.

[105] K. Supowit. The relative neighborhood graph, with an application to minimum

spanning trees. Journal of the Association of Computer Machinery, 30(3):428-

448, 1983.

[106] H. Takagi and L. Kleinrock. Optimal transmission ranges for randomly dis­

tributed packet radio terminals. IEEE Trans, on Communications, 32(3):246-

257, 1984.

136

[107] G. Toussaint. The relative neighbourhood graph of a finite planar set. Pattern

Recognition, 12(4):261-268, 1980.

[108] Y. Wang and X. Li. Distributed spanner with bounded degree for wireless

ad hoc networks. International Journal on Foundations of Computer Science,

14(2):183~200, 2000.

[109] J. Wu, M. Cardei, F. Dai, and S. Yang. Extended dominating set and its appli­

cation in ad hoc networks using cooperative communication. IEEE Transactions

on Parallel and Distributed System, 17(8):851-864, 2006.

[110] J. Wu, F. Dai, M. Gao, and I. Stojmenovic. On calculating power-aware

connected dominating sets for efficient routing in ad hoc wireless networks.

IEEE/KICS Journal of Communications and Networks, 4(l):59-70, 2002.

[Ill] J. Wu and H. Li. A dominating-set-based routing scheme in ad hoc wireless

networks. Telecommunication Systems, 18(3):13-36, 2001.

[112] K. Yamazaki and K. Sezaki. The proposal of geographical routing protocols for

location-aware services. Electronics and Communications in Japan, 87(4) :26-

34, 2004.

[113] A.C. Yao. On constructing minimum spanning trees in k-dimensional spaces

and related problems. SI AM Journal on Computing, 11(4):721—736, 1982.

[114] C. Yu, B. Lee, and H. Youn. Energy efficient routing protocols for mobile

ad hoc networks. Wireless Communications and Mobile Computing Journal,

3(ll):959-973, 2003.

[115] B. Zhang and H. Mouftah. Energy-aware on-demand routing protocols for

wireless ad hoc networks. Wireless Networks, 12(4):481-494, 2006.

137

[116] Yun Zhao. Motion vector routing protocol: A position based routing protocol

for mobile ad hoc networks. In PhD. thesis, University Of Arizona, USA, April

2005.

138

List of Acronyms

Mobile Ad Hoc Network

Three-Dimensional

Two-Dimensional

Global Position System

Unit Disk Graph

Gabriel Graph

Relative Neighborhood Graph

Yao Graph

Directed Yao Graph

Euclidean Minimum Spanning Tree

Half Space Proximal Graph

Directed Half Space Proximal Graph

Displaced Apex Adaptive Yao Graphs

Directed Displaced Apex Adaptive Yao Graphs

Connected Dominating Set

MANET

3D

2D

GPS

UDG

GG

RNG

YG

YG

EMST

HSB

HSB

DAAY

DAAY

CDS

139

Independent Dominating Set

Maximum Independent Dominating Set

Distributed Database Coverage Heuristic

Local Randomize Greedy algorithm

Local Independent Dominating Sets

Greedy Routing

Compass Routing

Ellipsoid Routing

Most Forwarding Routing

Distance Sequence Distance Vector

Wireless Routing Protocol

Cluster-head Gateway Switch Routing protocol

Dynamic Source Routing

Ad hoc On Demand Distance Vector Routing

Zone Routing Protocol

Greedy Perimeter Stateless Routing

Above/Below Routing

Coordinate Face Routing

Distance routing effect algorithm for mobility

geocasting based Location-Aided Routing

Power-Aware Greedy

Power-Aware Greedy-Cost

IDS

MIDS

DDCH

LRG

LIDS

GR

CM

ELP

MFR

DSDV

WRP

CGSR

DSR

AODV

ZRP

GPSR

AB

Cface

DREAM

LAR

PAG

PAGC

140

