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ABSTRACT 
GPIS: Genetic Programming based Image Segmentation with 

Applications to Biomedical Object Detection 

Tarundeep Singh Dhot 

Image segmentation plays a critical role in many image analysis applications. 

However, it is ill-defined in nature and remains one of the most intractable 

problems in image processing. In this thesis, we propose a genetic programming 

based algorithm for image segmentation (GPIS). Typically, genetic programming is a 

Darwinian-evolution inspired program discovery method and in the past it has been 

successfully used as an automatic programming tool. We make use of this property 

of GP to evolve efficient and accurate image segmentation programs from a pool of 

basic image analysis operators. In addition, we provide no a priori information 

about that nature of the images to the GP. 

The algorithm was tested on two separate medical image databases and 

results show the proposed GP's ability to adapt and produce short and accurate 

segmentation algorithms, irrespective of the database in use. We compared our 

results with a popular GA based image segmentation/classification system, GENIE 

Pro. We found that our proposed algorithm produced accurate image segmentations 

performed consistently on both databases and could possibly be extended to other 

image databases as a general-purpose image segmentation tool. 
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CHAPTER 1: INTRODUCTION 

It is not the strongest of the species that survives, 

nor the most intelligent that survives. 

It is the one that is the most adaptable to change. 

~ Charles Darwin ~ 

Darwinian evolution is one of nature's most unique and significant phenomena. Yet 

as simple and random at times it might seem, it is an incredibly powerful and 

functional phenomenon. The level of adaptability, depth of detail and intricate 

complexity observed in nature is a mere reflection of the power of evolution. It is 

therefore no surprise that these principles have been applied to solve complex 

engineering problems. In computer science, evolution based problem solving 

approaches are collectively termed as Evolutionary Computation (EC) or Genetic and 

Evolutionary Computation (GEC). These EC approaches are typically used for 

combinatorial optimization problems such as the travelling salesman problem, the 

knapsack problem, etc. But the general applicability of these approaches makes it 

possible to use them in a wide range of real-world applications also. Of the many 

application domains that EC has been used in, recently keen interest has been seen 

in applying these techniques to the field of computer vision and image analysis. 
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One of the most challenging sub-fields of computer vision and image analysis is 

image segmentation. Image segmentation is a fundamental part of image analysis 

and is extensively used in a variety of image processing, video processing and 

computer vision applications. Its sole purpose is to reduce an image into useful 

information by identifying and isolating the objects of interest in the image. It is an 

essential first step in the imaging process, as the accuracy of any subsequent 

imaging task is dependent on the quality of the segmentation process [52]. It is thus 

an integral part of any expert imaging and automatic object detection system. 

However, image segmentation can be a deceptively difficult problem. 

Traditionally, the task of segmentation [and further classification) is assigned to 

trained human experts. While there is no substitute for trained experts, relying 

entirely on human expertise can be labor intensive, time consuming and simply not 

practical for a large scale deployment. In recent years, there has been a tremendous 

improvement in image acquisition techniques which has led to the availability of 

high quality images in greater numbers. With larger computational capacities at 

hand, it's highly desirable to develop automated segmentation methods which 

require minimal human supervision. 

This thesis proposes a new image segmentation algorithm; Genetic 

Programming based Image Segmentation or GPIS. It uses Darwinian evolution to 

evolve complete, efficient and accurate image segmentation algorithms for medical 

images. 
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1.1 MOTIVATION 

The tenets of present day medical imaging can be traced back to late 1895 and the 

discovery of X-rays by Wilhelm Conrad Rontgen. This unintended scientific 

discovery drastically changed the face of medicine as it gave doctors the chance to 

decisively diagnose internal medical conditions without having to surgically operate 

on their patients. Today, X-rays are one of the many medical imaging modalities 

available to the medical profession. The challenge now is to effectively analyze the 

vast quantities of data produced by these imaging modalities with minimal human 

intervention. 

One of the most important application domains of image segmentation is 

medical imaging. Medical imaging has been an invaluable tool to doctors and 

physicians. It not only simplifies the examination process but also assists in 

speeding up disease diagnosis and treatment planning. The role of medical image 

segmentation is crucial due to its inherent presence in the tools that aid the above. 

Medical image segmentation can be defined as the extraction of known 

anatomical or cellular structures from the acquired medical images. The amount of 

medical data requiring expert analysis is often too great for a physician to handle. In 

addition, a significant amount of variance is possible among manual segmentations 

from different sources. This further increase the risks related to intra and inter-

observer reliability. A quality medical imaging system requires segmentations to be 

accurate, robust, efficient and reproducible. The diagnostic data possible from non­

invasive techniques like Computed Tomography (CT), Magnetic Resonance Imaging 
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(MRI), digital mammography, ultrasound and pathological imaging modalities can 

offer deep understanding of normal and diseased anatomy of a subject [34] and is 

critical to medical research. Thus, there is a need to build automated segmentation 

systems for medical imaging. 

So far, various methods for automated image analysis have been developed to 

process the acquired images from the aforementioned imaging modalities. Though 

these approaches can be categorized in numerous ways [13, 32, 34], evolutionary 

based methods offer a lot of promise. One such evolutionary technique is genetic 

programming. 

Genetic programming (GP) comes from a class of biologically inspired artificial 

intelligence algorithms that mimic Darwinian-evolution principles of natural 

selection and recombination. GP uses these principles to evolve a population of 

programs that are themselves effective solutions to a specific problem. These 

computer programs are evaluated based on their effectiveness in solving a given 

problem. An extremely desirable feature of GP is the operational nature of the 

solutions, typically expressed as executable computer programs [1]. This readily 

executable format of evolved solutions makes GP quite suited for an automatic 

image segmentation system. 

Why use GP for segmentation? 

At this point, it is quite clear that medical image segmentation is a crucial process 

and the methods used to solve it can greatly affect the final outcome. In the past, 

evolutionary approaches, GP in particular, have proved to be good problem-solving 
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tools and could be applied to image segmentation also. The following reflect why we 

chose an EC based (in particular GP) approach for image segmentation. 

1. From a strictly image processing point of view, every image segmentation 

and feature extraction program can be broken down to a set of basic low-

level image processing operations, or primitive operations. Due to the high 

dimensionality and large cardinality of the search space of all possible 

solutions, it is simply not possible to cover every effective combination of 

primitive operators. A human expert is limited to exploring certain operator 

combinations which are often guided by conventional wisdom. GP on the 

other hand, is not biased or limited to exploring only certain operator 

combinations. It often evolves very effective solutions which can be rather 

unconventional in nature. This abstruse nature of GP can be extremely 

useful while searching a large space for possible solutions. This 

complements its usefulness for evolving image segmentation algorithms that 

use a primitive operator based approach. 

2. Evolutionary approaches like genetic programming are guided by the fitness 

of individuals in the population. Therefore, it is not a random search to find 

an optimal solution, rather a steady refinement towards the search space of 

more fit individuals [4, 5]. In addition, evolutionary approaches offer a 

certain black box character as compared to other optimization methods. 

They make fewer assumptions about the underlying objective functions 

reflecting optimality of individuals. These functions often don't require deep 
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insight into the structure of the problem space and are easier to build as 

compared to building an admissible heuristic for the given problem [48]. 

3. GP allows symbolic knowledge representation of its solution. This allows 

considerable ease in readability and visual inspection of the solutions as 

compared to other techniques like supported vector machines and artificial 

neural networks which use sub-symbolic knowledge representation. In 

addition, it also improves portability and reusability of evolved code [26]. 

4. Segmentation typically represents a class of problems having not necessarily 

one perfect solution. GP has been successful in dealing with such problems 

due to its ability to generate multiple equivalent solutions [10,11,46]. 

Finally, we were highly motivated by the promising works of Tackett [47] and 

Brumby etal. [6, 7, 8, 17, 18, 35]. The potential of their impressive approach and 

reported results were a driving factor during the course of this research. 

1.2 PROBLEM STATEMENT 

Image segmentation is typically used to extract a region or object of interest from a 

given image. It is a crucial first and also the most difficult step of any automated 

image analysis process and is widely used in many computer vision and image 

processing applications like medical imaging and remote sensing. Even though 

numerous approaches have been proposed in the past [13, 32, 33, 34], there is still 

no general segmentation framework that can perform adequately across a diverse 

set of images. In addition, most image segmentation techniques exhibit a strong 
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domain or application dependence [13, 32, 52]. Automated segmentation algorithms 

often include a priori information of its subjects [14]. This makes use of well-

designed, proven segmentation techniques restricted to a small set of imagery. Thus, 

image segmentation still remains an open and ill-defined problem and a general, 

automatic image segmentation tool is desirable. 

We propose a simple image segmentation algorithm, GPIS, which uses genetic 

programming to evolve segmentation algorithms from a pool of basic low-level 

image analysis operators. The evolved algorithms are MATLAB programs that 

readily executable to perform the image segmentation task. In addition, we provide 

no a priori information of images to the algorithm apart from a small set of training 

images. To check generality of the algorithm, we have tested it on two separate 

medical image databases and report the results in this thesis. 

1.3 OBJECTIVES 

The objectives of this thesis are manifold and can be described as a combination of 

factors as given below: 

1. Effectiveness: The first and foremost objective of this thesis is to develop a 

GP based algorithm that can produce accurate image segmentation programs 

for images of varying complexities, where accuracy is defined as the 

algorithm's ability to correctly classify a pixel as object or non-object (pixel-

level classiffication). 
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2. Simplicity and Transparency: The algorithm should produce segmentation 

programs that are simple in nature and easy to understand. Every image 

segmentation algorithm, however complex it may be, can be broken down to 

a set of primitives. Therefore, primitive operator representation should be 

simple, standardized and easy to read. 

3. Segmentation sans a priori information: The algorithm should require no 

prior information about the nature of images used or objects to be 

segmented. The only such requirement is availability of training images, like 

any other EC based approach. Presently, many image segmenting systems 

especially for medical imaging require moderate to excessive amounts of a 

priori information which make them application or user dependent. 

4. Generality: The algorithm should be fairly general i.e. it should able to 

produce accurate results on a wider application domain. A large number of 

image segmentation algorithms developed in the past are single-application 

segmenting tools. 

5. Minimum Human Intervention: The algorithm should require minimal to 

no human assistance to derive the required solution. 

6. Ease of Use: Users without any background in computer vision or image 

analysis should be able to use the image analysis tool with ease. No formal 

training should be needed for them to produce desired segmentations. On the 

other hand, it should allow an expert to "peek" in to the system if he so 

desires. 
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We realize that if these objectives are successfully satisfied, it is possible to build 

an automatic image segmentation engine. This thesis is our attempt to build one. 

1.4 THESIS CONTRIBUTIONS 

The contributions of this thesis are as follows: 

1. Simple approach and anyone with MATLAB can use it: The proposed 

algorithm GPIS follows a simple evolutionary approach to perform complex 

image segmentation tasks. The algorithm is implemented on MATLAB. This 

allows ease in usability to anyone with access to MATLAB. 

2. Open sourced code: All image operators used in GPIS are MATLAB 

functions. In addition, the GP implementation of GPIS is also done on 

MATLAB; therefore, all evolved programs are open sourced. 

3. Requires no a priori information other than training images: GPIS 

performs the required segmentation task without any prior spatial or 

textural information of objects to be segmented from the given images. It 

only requires a set of training images like any other EC based approach. 

4. Relatively general approach based on results on the two databases: 

GPIS has been tested on two medical image databases for image 

segmentation tasks. The nature of the images in the two databases was 

considerably different. The results show that GPIS was able to perform the 
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given tasks on both databases effectively. This shows that the algorithm is 

relatively general in nature. 

5. Produces better results as compared to GENIE Pro: Results obtained for 

GP1S were compared to another GA based image segmentation algorithm, 

GENIE Pro. In both cases, the same sets of images were used for training and 

validation and the same segmentation task was given to both the algorithms. 

The accuracy of each algorithm was also calculated using the same formula 

and GPIS performed better than GENIE Pro for both databases. 

1.5 A READER'S GUIDE TO THE THESIS 

This thesis is organized in three parts: Background, Genetic Programming based 

Image Segmentation (GPIS), and Results and Findings. 

The purpose of the first part, Background, is two-fold; provide the reader with the 

background theory and a grasp of related work undertaken in order to achieve a 

deeper understanding of the core themes discussed in the thesis and contributions 

of our work. This section consists of Chapters 2 and 3. 

Chapter 2 discusses the terms and concepts of image segmentation, genetic 

programming and evolutionary computation. It serves as a quick memory refresher 

for these topics. The chapter ends with a section on GENIE Pro, the comparative tool 

used for comparing results obtained by GPIS. 
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Chapter 3 provides a review of related work done in the field of evolution 

based image segmentation (and image analysis). It also briefly discusses relevant 

work done in the field of medical image segmentation using evolutionary 

approaches. 

The second part, Genetic Programming based Image Segmentation, GP1S, consists of 

Chapter 4. Chapter 4 is divided into two parts, Part A {The Proposed Algorithm) and 

Part B {Experimental Settings). Part A explains the proposed segmentation 

algorithm, GPIS. It provides a detailed overview of the approach and the design. Part 

B provides details of the Experimental Setup while testing of the algorithm. 

The third section, Results and Analysis, is crucial as it details the results obtained 

during experiments using the proposed algorithm GPIS and an analysis based on the 

results. It consists of Chapter 5 and 6. 

Chapter 5 provides detailed results obtained on application of algorithm on 

two separate cell databases. It also details the comparative results with respect to 

GENIE Pro. 

Finally, Chapter 6 provides conclusions deduced from the work. It also 

discusses possible future works in the field. The algorithm has also been applied on 

some other images also. The results obtained are reported in this section as a 

plausible option for future work. 

A list of references used during the course of the thesis is included at the end. 
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CHAPTER 2: OVERVIEW OF RELEVANT 

CONCEPTS 

The purpose of this chapter is to provide the reader with the necessary background 

knowledge of the relevant topics discussed in this thesis. The two underlying 

concepts in this thesis are image segmentation and genetic programming. They are 

discussed in Sections 2.1 and 2.3. However, in order to have a better understanding 

of genetic programming, basic knowledge of evolutionary computation is desirable. 

Therefore, Section 2.2 is written to provide the reader with a broader foundation to 

the field and appears before the section on genetic programming. Other common 

variants of evolutionary computation like genetic algorithms, etc are also briefly 

discussed in this section. The chapter is concluded by Section 2.4 on GENIE Pro [6, 7, 

8, 17, 18, 35]. It is a general purpose GA based image segmentation tool at the Los 

Alamos National Laboratory, New Mexico. It has been used in this thesis for 

comparison purposes with the proposed algorithm, GPIS, and as such duly 

explained. 
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2.1 IMAGE SEGMENTATION 

Image segmentation falls under the category of image analysis, which forms the 

middle layer in the image engineering framework along with image processing 

[lower layer) and image understanding (higher layer). The role of image analysis in 

the framework is fundamentally image in, measurements out, i.e. the required 

information is extracted from the given image and returned as data. As shown in 

Figure 1, object representation and feature measurement typically complete the 

middle layer along with image segmentation. Image segmentation is the first step in 

image analysis and is therefore, a critical one. Depending upon the application, the 

entire process can be done in a supervised or unsupervised manner. 

Image 
Segmentation 

Object 
Representation 

Feature 
Extraction/ 

Measurement 

IMAGE ANALYSIS 

Image In Measurement Out 

FIGURE 1. TYPICAL LAYOUT FOR IMAGE ANALYSIS 

Image segmentation is also one of the most widely used steps in the process 

of reducing images into information. The main theme is to subdivide the image into 

its constituent parts and to then extract the objects of interest from it. Based on the 
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objects of interest, the image is intuitively divided into two parts: foreground and 

background. The foreground consists of the objects of interest while the background 

is comprised of the remaining image. Segmentation can thus be considered a 

foreground/background separation process where the selection procedure focuses 

on one kind of object and ignores the rest [43]. 

However, it must be remembered that image segmentation is still an ill-

defined problem and there is no general solution or defined framework for the 

segmentation problem. Due to this, techniques developed are often combined with 

domain knowledge to overcome this problem, thus most segmentation algorithms 

developed are domain and application dependent. 

In order to reflect effectiveness, predictability and reliability of a 

segmentation scheme, the following criteria [33] can be used as useful pointers. This 

is relevant especially in our case. 

a. Correctness: ability to produce segmentation results comparable to human 

intuition. 

b. Stability with respect to image choice: ability of the algorithm to produce 

consistently correct results over a range of images using the same parameter 

choices 

These aforementioned criteria therefore serve as useful indicators when 

considering reliability of a segmentation technique to serve in a larger system. Over 

the years, several schemes have been proposed to categorize segmentation algorithms 
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[13, 32]. But due to the nature of the problem, it is difficult to come up with an 

exhaustive categorization that covers the entire spectrum of segmentation algorithms. 

2.2 EVOLUTIONARY COMPUTATION 

Evolutionary computation is an umbrella term used to define population-based 

meta-heuristic optimization algorithms that are inspired by Darwinian evolution. 

Candidate solutions called chromosomes are refined iteratively based on principles 

of Darwinian evolution, such as natural selection, reproduction (diversification), 

recombination, crossover, mutation and survival of the fittest [48]. These candidate 

solutions play the role of individuals in a population and their survival is dependent 

on a cost function or fitness function, which is an objective function that quantifies 

the optimality of the solutions. Individuals are allowed to breed by applying genetic 

operators like crossover and mutation hoping to produce a generation of better 

(more fit) individuals. The entire process is iterated till the time some terminating 

condition is met. 

The evolutionary cycle is both stochastic (for example, choosing evolutionary 

operators) and deterministic (for example, selection) in parts. This ensures all 

individuals have a chance of becoming a parent or surviving a generation, even 

individuals having low fitness values. 

Evolutionary computation employs three key ingredients from Darwinian-

evolution: inheritance, which allows features to be passed on from parents to 

offspring, variation, which avoids duplication of parents and in turn ensures 
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diversity, and natural selection, which can simply be described as survival of the 

fittest [9]. These features are common in all types of evolutionary algorithms and 

function in accordance to a basic scheme for evolutionary algorithms [48] illustrated 

in Figure 2. As seen in the figure, the evolutionary cycle consists of four main steps: 

Initialize, Evaluate, Select and Diversify. The cycle repeats iteratively till the time a 

physical termination condition hasn't been satisfied. 

INITIALIZE Population 
Randomly create an initial 
population of individuals 

\y-
Fitness EVALUATION 

Compute objective values of 
candidate solutions 

DIVERSIFICATION 
Create new individuals 

[offspring) from mating pool by 
using genetic operator 

(crossover and mutation) 

< 

SELECTION 

Select individuals for 
diversification based on fitness 

(create mating pool) 

FIGURE 2. BASIC CYCLE OF EVOLUTIONARY ALGORITHMS 
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The basis of division amongst evolutionary algorithms is largely due to 

difference in representation of individuals (chromosomal representation), 

diversification strategies and genetic operators adopted. Based on these, 

evolutionary algorithms are divided into four different paradigms. They are as 

follows: 

1. Genetic Algorithms: GAs are a subclass of evolutionary algorithms. The 

representation of candidate solutions is in the form of binary strings or 

arrays of other elementary type. Diversification is achieved by crossover and 

mutation. GAs are typically used to solve scheduling and timetabling 

problems as well as global optimization problems. 

2. Genetic Programming: GP is a variant of GA. Here representation of 

candidate solutions is in the form of computer programs; therefore, it evolves 

computer programs. Traditionally representation is in the form of a tree 

structure but non-tree representations like linear genetic programming have 

also been successfully implemented. GP is particularly useful as an automatic 

programming tool or as an automatic problem-solving engine [38]. 

3. Evolutionary Strategies: ES are parameter optimization techniques and 

candidate solutions are vectors of real valued parameters. Therefore the 

search and the problem space both are comprised of fixed-length strings of 

floating point numbers. ES are primarily mutation based as use of 

recombination is less common. The most common forms of ESs are: (1 + 1), 

Cn + l ) ,0 i + A)and(n,A)[39]. 
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4. Evolutionary Programming: EP is typically a mutation driven evolutionary 

algorithm i.e. it only uses mutation as its genetic variation operator. In 

addition, mutation is performed according to Gaussian distribution and the 

mutation operator is in turn controlled by parameters that are also 

optimized [39]. EP is similar to a (u + u) ES arrangement without 

recombination. It must be remembered that there is no exchange of material 

between individuals in the population. 

2.3 GENETIC PROGRAMMING 

Genetic programming is a subclass of evolutionary algorithms using computer 

programs to represent candidate solutions. It is typically an extension of the genetic 

model of learning into the space of programs. The population is comprised of 

computer programs rather than fixed length character strings and the effectiveness 

of the computer program to solve the problem at hand determines its fitness. Thus, 

they are regularly referred to as the set of evolutionary algorithms that breed 

program algorithms and similar constructs. 

In order to find an optimal solution for the problem at hand, GP proceeds 

based on the basic evolutionary cycle of initialize, evaluate, select and diversify, as 

shown in Figure 2. Various schemes for selection, diversification, recombination 

along with representation are possible for GP. They are discussed briefly as follows. 

Representation: There are two main representation schemes popular for GP, tree-

based and non-tree based. Traditionally, programs in GP are represented as tree 
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structures. Every node in the tree is assigned an operator function and every 

terminal node has an operand. This makes mathematical expressions easy to evolve 

and evaluate. Non-tree based approaches used a linear format to represent 

programs, much like the linear string representation in GAs. The only difference 

here is that instead of binary or real numbered values assigned on each bit location 

as in GAs, each bit location represents a program. 

Selection: Selection strategies for GP are similar to GAs. These are generally 

deterministic in nature. Selection typically occurs twice in every generation of the 

evolutionary cycle in the form of parent selection (creating mating pool for 

diversification) and survivor selection (selecting individuals to form population for 

next generation). There are three widely used parent selection mechanisms: Fitness 

proportionate, ranking and tournament selection. Similarly, there are two survivor 

selection mechanism widely used: generational (entire population is replaced each 

generation) and steady state (a few members replaced in each generation). 

Diversification: Diversification in evolutionary algorithms is done using two main 

genetic operators: crossover and mutation. Both are used for GP. 

a. Crossover (Recombination): Crossover occurs between two parents. It 

recombines the selected parents to produce one, two or more offspring. It 

is analogous to biological crossover (sexual reproduction). Many types of 

crossover exist, like one-point, two-point, n-point, uniform, cut and splice, 

etc. 
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b. Mutation: Mutation is one parent genetic operator. It is used to maintain 

genetic diversity in the population and helps the GP avoid local minima. It 

is also useful in fine-tuning evolved parameter values. It is analogous to 

biological mutation. Common forms of mutation are swap, insert, delete, 

alter, point, uniform, non-uniform, etc. 

Elitism: Elitism ensures the best individual(s) in a population are copied to the next 

generation. It can help increase performance of the GP as it prevents the risk of 

losing the best found solution(s) in the process so far. 

2.4 GENIE PRO 

GENIE Pro is a general purpose, interactive and adaptive GA-based image 

segmentation and classification tool. It was originally developed for analyzing 

multispectral satellite data but has been upgraded for medical imagery also. 

GENIE Pro uses a hybrid GA to assemble image-processing algorithms or 

pipelines from a collection of low-level image processing operators (example: edge 

detectors, textures measures, spectral orientations and morphological filters). These 

pipelines sequentially extract multiple features from the same image. Thus, there 

are multiple pipelines for each image. Each pipeline combines some spatial and 

spectral processing elements. The evolved programs are constructed by combining 

the fittest pipelines using a linear classifier (Fisher Discriminant) 

Training mechanism for GENIE Pro is different than the conventional method 

of supplying ground truths. It employs a Java-based tool called ALADDIN which 
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allows user to create training data by manually labeling pixels on training images as 

feature (True), non-feature (False) and unknown pixels. GENIE Pro thus builds its 

own ground truth based on this True/False labeling. 

There is no in-built termination criteria i.e. the classifier inside GENIE Pro 

continuously tries to improve the evolved solutions. This can be a drawback as the 

termination point has to be decided by the user. The usual method for termination is 

by manually observing the displayed estimated accuracy and stopping the training 

phase when there is no improvement in displayed accuracy over a period of time. 

In addition, the output of GENIE Pro is in the form of a segmented image. It 

does not provide structural details of the evolved programs. Thus, the only form of 

comparison possible is the respective segmentation accuracy of the evolved 

solution. 

GENIE Pro has been used as a comparative tool for GPIS. The comparison is 

based on providing the same training and validation data to both the systems and 

observing the accuracy of the evolved solution using the same accuracy formula 

(accuracy formula of GPIS). Details of operating procedure for obtaining results for 

GENIE Pro are provided in Section 4.6.2. 
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CHAPTER 3: RELATED WORK 

This chapter is written to offer deeper understanding of relevant and representative 

work accomplished in the field of evolution based image analysis. Our main focus is 

on GP based approaches for image segmentation. Since GP is a variant of GA, some 

GA based approaches are also discussed. Image segmentation has an inherent 

presence in mostly all image analysis applications. Thus relevant GP based feature 

detection/extraction/classification and object detection approaches are also 

discussed. This chapter is divided into four sections. 

Section 3.1 re-introduces GP and image segmentation. 

Section 3.2 discusses previously reported relevant work on GP based 

approaches for image segmentation related applications. Exception is given to 

Brumby et al. [6, 7, 8, 17, 18, 35] who have developed a hybrid evolutionary 

approach for feature extraction/classification. But the work is a better fit under this 

category. 

Section 3.3 discusses relevant evolutionary based approaches for medical 

image segmentation. 
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Section 3.4 briefly discusses non-EC based approaches for cell segmentation. 

This is done to provide a better understanding of the problem and methods used to 

solve it. 

3.1 INTRODUCTION 

Genetic programming is a variant of genetic algorithms that evolves the entities that 

process the data, programs, rather than fixed-length character strings, to solve the 

given problem. It was first proposed by Koza [27] in 1992 and has since been 

successfully used in numerous applications as an automatic programming tool, a 

machine learning tool or an automatic problem solving engine [2, 27, 38,47]. 

On the other hand, image segmentation is vital to many image processing and 

computer vision applications. Due to its inherent presence in image analysis related 

tasks, it has been of tremendous importance in fields like medical image analysis 

[14, 24, 40], remote sensing [6, 7, 8, 10, 11, 17, 18, 35, 46], face recognition [49], 

natural scene recognition [30], handwritten character recognition [29], texture 

classification [45], military applications [20, 21, 41, 47], target/vehicle detection 

[20, 21, 47], agricultural product classification [50], etc. Understandably, a fair 

amount of evolutionary techniques like GAs and GP have been applied to solve 

segmentation-related tasks. 
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3.2 GP BASED APPROACHES FOR IMAGE SEGMENTATION 

This section presents a representative study of relevant work done in the field of GP 

based image segmentation (image analysis included). It also includes relevant 

hybrid GP approaches. The section is concluded with a tabular representation of key 

features of the methods discussed. 

Tackett, 1993 

Tackett [47] published one of the initial works in the field of GP based image 

analysis. He applied GP to develop a processing tree capable of classifying features 

extracted from images. The work focused on using image features to locate target 

vehicles (tanks) in a cluttered terrain and the task of the GP was to evolve these 

features in order to construct a classifier. The GP was successful in creating a better 

strategy for target detection using primitive features directly rather than deriving 

statistical features from these primitive features. The evolved solutions were not 

only better but also faster as compared to artificial neural networks and binary 

classification trees, as the GP used limited number of features rather than the entire 

gray-scale image. This was also the first time that GP was applied to a set of non-

binary images in a cluttered environment. 

Johnson et ah, 1994 

Johnson eta]. [25] applied a variant of GP (typed GP) to a fiducial-point-localization 

problem (localizing a structure known to be present in the image). They described a 

method of automatically evolving visual routines for simple tasks using GP. The task 
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was to create visual routines for locating the left and right hands in a silhouette 

images of people which were obtained from real images via segmentation. A distinct 

feature of their work was the way they applied crossover. Crossover was performed 

between two parents by exchanging sub-trees of the same root type. To avoid bloat, 

they simply discarded offspring which had depth greater than an admissible limit. 

The GP evolved programs that were correctly able to locate the left arm in 93% of 

the images and the right arm in 70% of the images, which was much better than the 

best algorithm the authors were able to write by hand. 

Harris and Buxton, 1996 

Harris and Buxton [16] applied GP to evolve optimal linear filters for edge detection 

in signals and images. This was a relatively different objective as compared to the 

usual image analysis applications. But the GP was able to evolve edge detectors that 

outperformed Canny's edge detector which is one of the most popular edge 

detectors in literature. Since the approach required convolving masks, the authors 

preferred working with 1-D signals rather than 2-D (images), even though the 

approach is extendable to image analysis. 

Poli, 1996 

Poli [37] proposed an approach to image analysis based on evolving optimal filters. 

He was successful in evolving effective filters for image enhancement, feature 

detection and image segmentation and was able to present the above as a purely 

filtering problem. Although GP was applied in a naive way, he was able to outline 
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certain criteria for terminal sets, function sets and fitness function to make the 

search feasible for producing efficient filters. The GP was applied to the segment 

Magnetic Resonance images of the brain and the results produced were far better 

than the ones produced using a neural network. Not only was the segmentation 

better but the rate of misclassifications was also found to be much lower. 

Daida eta/., 1995-96 

Daida et al. [10, 11] were the first to use the GP paradigm for IP applications in 

geosciences and remote sensing by deriving spatial classifiers for SAR imagery. 

Their GP was able to extract pressure-ridge (curvilinear) features in SAR images, a 

problem for which there has been no known satisfactory solution. Instead of 

specifying the performance metrics to the GP in advance, they proposed an 

interactive approach where the user tested the robustness and validity of the GP-

derived solution on an out-of-sample subset. This approach was called scaffolding. 

Stanhope and Daida [46] furthered this approach using GP to generate rules for 

identification of objects in automatic target classification of SAR images. 

Winkeler and Manjunath, 1997 

Winkeler and Manjunath [49] used GP for face recognition purposes (typically small 

target classification problem). The experiments used GP as a learning strategy for 

detecting faces in a cluttered environment. Their approach was slightly different 

from the conventional approaches. They combined two programs, evolved 

separately in different experiments that used different features to increase the 
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detection rate. The feature detector obtained after combining the programs 

produced better results when compared to a single feature detector. 

Brumby et ah, 1999-2002 

Brumby etal. [6, 7, 8,17,18, 35] applied a hybrid evolutionary approach to develop 

an automated feature detection/classification system called GENIE [Genetic Imagery 

Exploitation). GENIE was initially designed to generate image feature extraction 

algorithms for remote sensing applications [6, 35]. It was applied to evolve image 

processing pipelines (sequence of primitive image processing functions) to segment 

and extract features from data sets of multi-spectral aerial-photography. After [6], it 

was concluded that an EC approach for accelerated image analysis tool-making was 

not only possible but also a viable option to develop extraction algorithms for novel 

features and data sets. Thus, in their subsequent work [7, 8, 17, 18], GENIE was 

successfully applied to a variety of multispectral imagery and remote-sensing data 

including extracting land cover features from multiple data sources (Multispectral 

Thermal Imager spacecraft images) [8, 18], post-wildfire land-cover mapping 

(LANDSAT Enhanced Thematic Mapper images) [7, 8], automatic feature extraction 

for panchromatic Mars Global Survey Mars Orbiter Camera Imagery (evolving 

algorithms for finding mesas and craters) [35] and detecting for golf courses in 

remotely-sensed data [17]. In 2005, an upgraded version, Genie Pro was released 

and has since been used for remote sensing purposes as well as biomedical imagery 

applications. 
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Belpaeme, 1999 

The approach of using GP to evolve feature detectors from primitive image 

processing functions (primitives) was also investigated by Belpaeme [3]. He showed 

how sets of visual feature detectors could be evolved starting from simple 

primitives. These primitives were combined using GP in a feed-forward feature-

extraction hierarchy. The experimental results showed that the GP was able to 

successfully construct visual functionality based on the primitives under selective 

(selectionistic) pressure. The inputs for the feature detectors were a series of real-

world images containing objects or faces. 

Howard etal, 1999 

Howard et al. [20, 21, 41] presented a series of works using a GP strategy for 

automatic object detection purposes in real world and military image analysis 

problems. They proposed a staged evolutionary approach for evolution of target 

detectors or discriminators. Feature detection for the given target was broken down 

to a pixel-by-pixel level. Since such an operation is CPU intensive, they broke down 

the evolutionary cycle into stages. The first stage required the GP to discriminate 

every feature or object pixel from a random selection of unclassified non-object 

pixels. Upon completion of the first stage, the fittest detector was applied to the 

entire image which predictably resulted in a number of misclassifications (False 

Positives). In the second stage, a new GP was applied to classify object pixels from 

the previously discovered False Positives. Finally, the fittest detector from the first 

stage was fused with the fittest detector from the second stage. This division of the 

28 



evolutionary cycle greatly reduced the CPU time as well as limited unwanted 

program growth. The two stage GP was later generalized into a multi-stage process 

and applied to a variety of real world images (two stage GP - automatic ship 

detectors for low-resolution SAR imagery, multi stage GP - automatic vehicle 

detectors for infrared linescan or IRLS imagery). In [41], they extended this 

approach to detect hundreds of vehicles in 25 miles of reconnaissance imagery. 

Bhanu etal, 2002-04 

Bhanu etal [4, 5] used GP to evolve composite operators for object detection. These 

operators were synthesized from combinations of primitive image processing 

operations used in object detection, thus called composite. In order to control the 

code-bloat problem, they proposed a size limits for the composite operators. In [5], 

they used a hard size limit for the composite operators but this provided severe 

restrictions on the GP search. They thus changed it to a soft size limit in [4]. The 

efficacy of the GP was tested to extract regions-of-interest from SAR images, 

infrared images and RGB color images and the results showed that GP provided a 

viable way of synthesizing composite operators for object detection problems. 

Zhang etal, 2006 

Zhang etal. [51] proposed a different configuration of GP for object detection. They 

wanted to investigate ways of improving efficiency and effectiveness of GP 

techniques rather than investigating applications of GP on object detection. They 

proposed a two-phased approach to construct object detection programs. First, they 
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applied GP to create trained GP classification programs on smaller sized images 

from the training set. These trained GP programs were then used to initialize the 

second phase of the GP process which used larger images from the same training 

set. The purpose of the second phase was to refine the trained programs evolved in 

the first phase for object detection. Fitness functions were different for each phase. 

GP in phase 1 learned classification rules while these rules were refined for object 

detection in phase 2. The system was tested on a dataset of coins for Heads/Tails 

classification. Even though the results were more effective and efficient than the 

basic GP approach, programs evolved still contained some redundancy. 

If observed closely, the methods proposed by Tackett [47], Bhanu et al. [4, 5], 

Belpaeme [3] and Brumby et al [6, 7, 8, 17, 18, 35] have one thing in common, the 

underlying use of primitive image operators for a variety of image analysis tasks. 

The GP in each case uses evolution to discover these image operators that are 

capable of efficiently segmenting the regions/features of interest. Their terminology 

might differ among literature: composite operators [4, 5], primitives [3], image 

processing pipelines [6, 7, 8, 17, 18, 35] but each suggested the concept was 

extendible, provided the operators are domain-independent. 

Geosciences and remote sensing is a major application domain of evolution-

driven image processing and segmentation techniques [4, 5, 6, 7, 8, 10, 11, 17, 18, 

20, 21 35, 41, 46, 47]. Due to the plethora of satellite imagery available, in volume, 

type (for example SAR, LANDSAT, AVIRIS, MTI, MODIS, SPOT, DOQJ and application, 

there has been substantial development of data processing models for automatic 

feature 
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TABLE 1. GP BASED APPROACHES FOR IMAGE SEGMENTATION 

AUTHOR/ 
YEAR 

Tackett 
[47]/ 
1993 

Johnson 
etal. 
[25]/ 
1994 

Harris 
and 

Buxton 
[16]/ 
1996 

Poli [37]/ 
1996 

Daida et 
ah 

[10,11,46] 
/ 1995, 

1996 

IMAGE 
ANALYSIS 

TASK 

Feature 
extraction/ 

classification 

Feature 
extraction, 

Topographic 
correctness 

Edge 
Detection 

Image 
enhancement, 

Feature 
detection, 

Image 
Segmentation 

Feature 
extraction/ 

classification 

REPRESENTATION 
SCHEME 

WHAT GP 
EVOLVES 

Tree 

Feature classifiers 

Tree 

Visual routines 

Tree 

1-D & 2-D Edge 
detectors 

Tree 

Filters 

Tree 

Spatial classifier 
(ROI spatial 

filters) 

IMAGE TYPE 

APPLICATION 

IR 

Military 

Bitmap 
Silhouette 

Fiducial-point-
localisation/ 
Other simple 

tasks 

Not Applicable 

Signal/ Image 
Processing 

MR Images of 
brain 

Medical 

SAR 

Remote Sensing, 
Geosciences 

SALIENT 
FEATURES 

1) Evolution of 
processing tree 
for feature 
classification 

2) Primitive 
operators 

2) Cluttered 
environment 

1) Automatic 
evolution of 
visual routines 

2) High level 
function and 
terminal sets 

2) Typed GP 
1) Production of 

linear filters for 
edge detection 

2) Outperformed 
Canny's edge 
detector 

Learning of 
composite filters 

for image analysis 

1) Generate rules 
for target 
identification 
& classification 

2) Interactive 
scaffolding 
approach 

(CONTINUED) 
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TABLE 1. GP BASED APPROACHES FOR IMAGE SEGMENTATION (CONTINUED) 

AUTHOR/ 
YEAR 

Winkeler 
and 

Manju-
-nath 
[49]/ 
1997 

Brumby 
etal. 

[6,7,8,17, 
18,35], 
1999, 

2000-02 

Howard 
etal. 

[20,21,41] 
/ 1999 

Belpaeme 
[3]/ 1999 

IMAGE 
ANALYSIS 

TASK 

Object 
detection/ 

Small target 
classification 

Feature 
Extraction/ 

Classification 

Object 
detection 

Feature 
Extraction 

(Visual 
feature 

detection) 

REPRESENTATION 
SCHEME 

WHAT GP 
EVOLVES 

Tree 

Facial features 

Linear 

Feature detection 
algorithms (using 

primitive 
operators) 

Tree 

Feature detectors 
for: 
1) Object pixels 

from random 
non object 
pixels 

2) Object pixels 
from False 
Positives 

Tree 

Feature detection 

IMAGE TYPE 

APPLICATION 

Human faces 

Face recognition 

SAR, AVIRIS, 
MTI, LANDSAT 

Remote Sensing, 
Geosciences, 

Medical 

SAR, IRLS 

Military/Real 
world 

Real world 
images (faces, 

objects) 

Visual feature 
detection, Facial 
discrimination 

SALIENT 
FEATURES 

Combining two 
separately evolved 
programs to build 
an improved 
resultant detector 

1) Hybrid EC 
2) Primitive 

operators 
3) Pixel-by-pixel 

classification 

1) Staged 
evolutionary 
cycle 

2) Drastic 
reduction in 
CPU time for 
the 
evolutionary 
process 

1) Evolving 
feature 
detectors under 
selective 
pressure 

2) Primitive 
operators 

3) Feed-forward 
feature-
extraction 
hierarchy 

(CONTINUED) 
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TABLE 1. GP BASED APPROACHES FOR IMAGE SEGMENTATION (CONTINUED) 

AUTHOR/ 
YEAR 

Bhanu et 
al 

[4,5]/200 
2, 2004 

Zhang et 
al [51]/ 

2006 

IMAGE 
ANALYSIS 

TASK 

Object 
detection 

Object 
detection 

REPRESENTATION 
SCHEME 

WHAT GP 
EVOLVES 

Tree 

Composite 
operators 

Tree 

1) Feature 
classification 
rules 

2) Refined object 
detection 

IMAGE TYPE 

APPLICATION 

SAR, IR and RGB 

Road, lake, river, 
field, tank, 

people, car, SUV 
extraction 

Coins 

Improving 
conventional GP 

techniques 

SALIENT 
FEATURES 

1) Composite 
primitive 
operators 

2) Soft composite 
size limit (bloat 
control) 

1) Two phased GP: 
learning 
(classification) 
and testing 
(detection) 

2) Two fitness 
functions 

extraction and classification using EC techniques. Most of the initial evolution-

driven image analysis approaches were hence designed for these imageries. This is 

important as these models can be extended to various other domains including 

medical imaging. 

A tabulated version of the methods discussed in Section 3.2 is presented in 

Table 1. It breaks down these approaches based on modality of the use of GP, 

chromosomal representation scheme, type of test images and applications. 

Knowledge based on these fields can help determine the extendibility of the 

approach to other problem domains. Finally, selling points of the approaches are 

mentioned under Salient Features. 
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3.3 EC BASED APPROACHES FOR MEDICAL IMAGE 

SEGMENTATION 

This section reviews relevant EC based approaches for medical image segmentation. 

The section is concluded with a tabular representation of key features of the 

methods discussed. 

Jiang eta/. 2001 

Jiang et al. [24] proposed a novel approach for cell image segmentation using 

kernel-based dynamic clustering and a parallel GA. Tempted by benefits of including 

a priori information, they used not only prior edge information of the cells but also 

shape information of cell contours. They transformed this cell segmentation 

problem into an optimization problem based on three steps: (i) find possible edges 

of the cell using Canny's edge detector, (ii) localize cells positions and find possible 

image points in cell boundary, and (iii) construct a parameterized cell contour 

model to detect cell contours. Use of a priori information made the approach better 

resistant to image noise and allowed parameterization of the problem for the 

application of the GA. But it also made it heavily application dependent. The parallel 

GA was able to produce accurate solutions and improved the algorithm's speed of 

convergence. 
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Roberts and Claridge, 2003 

Roberts and Claridge [40] proposed a GP based image segmentation technique for 

segmenting skin lesion images. The GP was implemented in a cost based sub-tree 

caching fashion. The function set contained imaging functions like thresholding, 

quantization, region intensity functions, etc while the terminal set contained input 

images, and numerical and coordinate values. The fitness function used was based 

on sensitivity and specificity, similar to the one used by Poli [37]. They used a pool 

of 100 images, from which 8 were used for training and the remaining as test images 

and found favorable results on the database. Their GP was affected by code-bloat to 

some extent which increased execution time of both the GP, and the evolved 

solution. However, pruning of the best evolved programs helped reduce execution 

times. 

Ghosh and Mitchell, 2006 

Ghosh and Mitchell [14] proposed a GA for automating segmentation of computed 

tomography images of the pelvis. The approach was primarily based on active shape 

modeling for texture-based segmentation. In their two-staged approach, a GA was 

used to evolve a segmenting curve represented by a level-set function. Training 

images contained a hand-drawn contour around the object of interest. When a new 

test image was presented, the goal of the GA was to evolve a contour that segmented 

the desired object in the new image such that the contour obeyed shape constraints 

learned during training and enclosed a region whose texture was a good match for 

textures learned on the training images. The method combined high-level textural 
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and shape information for segmentation and allowed use of any kind of high level 

textural features for doing segmentations. A priori information about shape and 

texture was able to constrain the evolution of the segmenting curve over successive 

generations. 

TABLE 2. EC BASED APPROACHES FOR MEDICAL IMAGE SEGMENTATION 

AUTHOR/ 
YEAR 

Jiang eta/. 
[24]/ 
2001 

Roberts 
and 

Claridge 
[40]/ 
2003 

Ghosh 
and 

Mitchell 
[14]/ 
2003 

TYPE 
OFEA 

Parallel 
GA 

GP 

GA 

TASK OF EA 

Cell 
segmentation 

by building 
contour around 
cell boundary 

Evolve 
segmentation 

programs 

Evolving 
contours (level-

set function) 
that enclose the 

object of 
interest 

SEGMENTING 
FEATURE/ 

IMAGE 
MODALITY 

Cell images of 
hypothyroid 

and small 
intestine 

Skin lesion 
images 

2-D Slices of 
Pelvis CT 
images 

SALIENT FEATURES 

1) Kernel-based dynamic 
clustering 

2) Contour modeling of cell 
3) A priori information 

extensively used 
4) Faster convergence due to 

use of parallel GA 
1) Cost based sub-tree 

caching mechanism 
2) Pruning required in 

evolved solutions. 

1) Fitness function based on 
a priori information 
(textural & shape) 

2) Two-staged approach: 
a) Training (deriving 

shape/textural priors) 
b) Priors-based 

Segmentation 

As seen in the methods of Jiang et al. [24] and Ghosh and Mitchell [14], many 

medical image segmentation approaches are heavily dependent on a priori 

information provided to the algorithm. It makes these novel approaches heavily 
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application dependent which greatly reduces their scope outside their image 

domain without significant changes to their models. 

3.4 A WORD ABOUT CELL SEGMENTATION 

Little work has been done in the field of EC based approaches for cell segmentation. 

Other non EC based approaches specific to cell segmentation fall under two main 

categories: region-finding and contour detection algorithms. Region-finding 

approaches are basically thresholding based while contour-detection algorithms 

rely on discontinuity in texture or intensity at the object boundary. While region-

finding approaches are computationally expensive, contour-detection algorithms 

are prone to noisy images. Another popular technique for cell segmentation is use 

mathematical morphological operations [12,42]. Many approaches combine use of 

morphological operations in conjunction with traditional segmentation techniques 

[12, 28]. Some of the other popular cell segmentation approaches include watershed 

transform [23], shape analysis [31], scale-space filtering and HSV histogram 

clustering [23]. Understanding of these non-EC based approaches acts as a useful 

pointer while designing a primitive operator based segmentation approach for cell 

images. 
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CHAPTER 4: THE PROPOSED ALGORITHM 
GENETIC PROGRAMMING BASED IMAGE SEGMENTATION 

[GPIS) 

GPIS is a genetic programming based image segmentation algorithm. It employs a 

classic evolutionary paradigm: a population of candidate solutions known as 

chromosomes is maintained, each composed of interchangeable parts called genes, 

and each chromosome is evaluated and assigned a scalable fitness value based on 

how well it performs the required task. Once fitness is assigned, evolutionary 

operators for selection, recombination (crossover) and mutation are applied to the 

entire population. The population is evaluated again and followed by selection, 

crossover and mutation. The cycle is iterated till the time some termination 

condition is satisfied. 

This chapter details every element of the evolutionary cycle (Part A) as well 

as the experimental settings (Part B) for GPIS. 
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PART A: THE APPROACH 
4.1 OVERVIEW OF THE APPROACH 

An overview of the approach is provided in Figure 3. As seen in the figure, the GP 

follows a classical training-validation paradigm of EC. The GP is given access to an 

image library which provides the necessary images for training and validation along 

with their corresponding ground truths (GT). A ground truth is a perfect 

representation of the ideal solution that the GP strives to attain. We use manually 

hand segmented ground truths for both databases in the Image Library. 

In the beginning, a population of individuals is randomly initialized and is 

trained on a set of training data, typically ground truths of the corresponding set of 

training images. Individuals are nothing but image segmentation programs 

composed of a set of primitive image analysis operators chosen from the given 

operator pool. The effectiveness of these programs is checked using a fitness 

function. Thus, every program in the population is assigned a fitness measure. 

Fitness determines the optimality of a program and greatly affects its chances for 

selection to produce an offspring or survive a generation. Every generation, a set of 

programs are selected to undergo crossover and mutation operations, thus 

producing new offspring programs. Selection of these programs is fitness-based. As 

in natural evolution, chances here of fitter parent programs producing fitter 

offspring programs are high. The cycle is repeated iteratively till the time an 

optimal program is evolved. Once an optimal program is discovered, training ends 

and validation begins. 
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This is essential in order to appraise the quality of the evolved program. During 

validation, this evolved program is tested on a set of validation images, separate 

from the set of training images and are generally much higher in number than the 

training images. If training is accurate, the evolved program should produce 

segmentations similar to those on the training set. In order to achieve this, it is 

essential that firstly, diversity of the population is maintained so that the search 

does not get trapped in local optima. Secondly, the pool of primitive image operators 

should be sufficient, both in validity and consistency. 

4.2 SOFTWARE ARCHITECTURAL OVERVIEW 

An alternative view of the approach is provided in Figure 4. Here the 

approach is described from the Software Architecture point of view. As mentioned 

earlier, individuals in a population are in effect image segmentation programs 

[chromosome). Each image segmentation program is composed of a number of 

image analysis primitives (genes). Each primitive works on the input image 

provided to it and produces an output image. In reality, this is determined by its 

relative position in the sequence of primitives comprising the segmentation 

program. There is a possibility that an intermediate output produced in the 

sequence might greatly improve the fitness when combined with another such 

output or the final output. Hence, it is wasteful if these intermediary outputs are 

discarded. Thus, every intermediate output is stored on a separate plane known as 

InterOut Plane. These planes are of the same dimensions as the output image they 

store. In addition to this, the original input image from the training set is stored on 
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what are known as Data Planes. Data planes are also of the exact same dimensions 

as the input image it stores. Storing the images in this format greatly helps in 

maneuverability of images during the operation of the GP. 

4.2.1 TRAINING WINDOW OPERATION 

GPIS uses a smart training mechanism to increase speed of the evolutionary cycle 

and assist in refinement of primitive operator features. Before a training image is 

copied onto the data planes, the GP gets an option to choose the size of the training 

image in question which is known as the training window of the image. Thus, 

instead of using the entire image for training, a portion of it can be selected and 

copied onto the data plane. Seeding as well as size of the training window is 

determined randomly. We found this method especially helpful as it increased the 

possible modalities of training images manifold. In addition, a successful 

implementation of a similar approach was reported in [51] as part of their two-

phased GP. We kept the minimum size of the training window at 80 x 80 pixels2. 

The maximum size is the entire image. Correspondingly, the ground truth of the 

training image is also chosen of the same size and spatiality as the training image. 

The training window operation is shown in Figure 5. 
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4.3 DESIGN OVERVIEW 

GPIS uses an evolutionary based approach to discover image segmentation 

algorithms from a given pool of primitive image analysis operators. A population of 

such algorithms is created and evaluated every generation by measuring their 

fitness to the given environment. Natural selection takes place and survivors are 

allowed to diversify giving rise to newer algorithms. This process continues till the 

time the GP evolves an optimal algorithm. This section provides details the building 

blocks of the evolutionary process of GPIS. 

The flowchart for the GP is presented in figure 6. Individual blocks of the 

flowchart are explained later in the chapter. 

4.3.1 FLOWCHART - OPERATIONAL WORKING OF GPIS 

The GP begins with a randomly generated population of programs having a 

maximum length of 15 primitive operators (Initialization). This population is 

evaluated for fitness and is ready to undergo diversification (Evolutionary 

Operators). But in order to do so, a selection mechanism is applied to create a pool of 

parent programs (Parent Selection). This is done using tournament selection with 

the size of the tournament window being 10% of the size of the population. 50% of 

the population is selected to be parents. Evolutionary operators in the form of 

Crossover and Mutation are applied probabilistically to create new programs 

(offspring). In number, this new population that consists of offspring programs is 

49% of the total population size. This is because the top 1% of the original 
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population is copied directly to the next generation [Elitism) in order to avoid them 

from getting destroyed or not selected for the next generation. However, these elite 

programs are not removed from the original population; therefore, they are still 

available to undergo crossover and mutation. The selected parents that undergo 

diversification survive the generation and are sent to the next generation. The 

remaining population of the subsequent generation is completed by the offspring 

programs created in the present generation. In addition, to maintain diversity of the 

population, we use an Injection mechanism to inject a new randomly initialized 

population of programs (20%) every 5 generations. This avoids creation of too many 

similar individuals which might cause the search to get trapped in local optima. 

Whenever injection takes place, a survivor selection mechanism is implemented. 

From the 99% new population created from the present generation, the top 79% is 

selected based on fitness and added to the injected population. The elite programs 

are now added to this population and concluding the formation of the new 

population for the next generation. Once the new population is created, it undergoes 

fitness evaluation and the cycle repeats till the time the stipulated termination 

condition is satisfied. 
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4.3.2 REPRESENTATION 

Representation in essence is a way to define what a possible solution to the problem 

must look like. In actuality, it defines the space of candidate solutions the GP can 

find to the given problem [2]. The representative scheme for GPIS is as follows: 

4.3.2.1 GENES: PRIMITIVE IMAGE ANALYSIS OPERATORS 

Genes are the building blocks of a chromosome. In GPIS, these genes are basic low-

level image analysis operators, also known as image primitives. We use a simple 

notation to encode genes. The general layout of a gene can be seen as below: 

[OPERATOR, INPUT 1, INPUT 2, WEIGHT, STRUCTURING ELEMENT] 

The first field represents operator name, typically an image analysis function. The 

second and third fields represent the input planes to the operator. A gene can 

operate on one or two inputs, depending on the type of the operator. The fourth 

field indicates a weight or parameter value (if needed) for the operator. Finally, the 

last field refers to the type of morphological structuring element used by the 

operator (if used). Morphological operations are an essential component of the 

imaging process and typically work by using structuring elements. The first two bits 

always have a value (operator name, input plane 1). The rest may or may not have a 

value at all times. This is dependent on the nature of the operator. If these fields 

don't have a value, they will be typically represented as 0 (zero). Therefore, a 

possible gene might look like: [HIST, dl , 0, 0, 0], [OPEN, iol, io4, 0, 4] or [ADDP, iol, 

io2, .2, 0]. 
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4.3.2.2 CHROMOSOMES (ENCODING) 

We use a linear representation scheme for chromosomes. Chromosomes in effect 

are text strings of genes. Therefore, a possible chromosome of length 4 might look 

like: 

[HIST, dl , 0, 0, 0] [SUBP, iol, dl , .2, 0] [DIL, io2, 0, 0, 4] [LAPL, io3, 0, -4, 0] 

where dl denotes Data Plane 1 and io denote the corresponding InterOut Planes. 

HIST, SUBP, DIL and LAPL are the primitive operators. 

There have been two checks included in the algorithm for avoiding run-time 

errors and limiting unnecessary computation to reduce redundancy of operators in 

a chromosome. These are namely, an image compatibility check and a parsimony 

operator. The image compatibility check ensures that the format of the image (RGB, 

grayscale, binary) is compatible with the operator in use. This is essential as some 

operators typically function on only a particular image format. If such a check is not 

included, it can lead to run-time errors. A parsimony operator is implemented to 

remove portions of the chromosome which do not contribute to the final outcome 

the segmentation produced by the chromosome. This happens primarily due to the 

crossover operation. These unwanted portions typically make the resultant 

program bulky and increase execution time of the program. 
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4.3.2.3 OPERATOR POOL 

We use 20 primitive operators in all. Table 3 provides the complete list of these. In 

addition, table 4 provides a list of the structuring elements used. A total of 8 

structuring elements have been used. 

The generality of each operator has been maintained. This allows for the 

algorithm's availability for future use on databases other than the ones it was 

originally built on. Another important factor is to maintain the sufficiency of the 

operator pool without over-flooding it with operators. In order to achieve this, the 

pool was built using a progressive process of elimination. Initially, maximum 

numbers of operators were included in the pool. Based on the performance and 

utility of each operator, its significance was observed and only those operators that 

were necessary for the pool were finally included. 

4.3.3 INITIALIZATION 

The initial population to the GP is randomly generated i.e. programs (chromosomes) 

are formed by a random sequence of operators. The parameter values of operators 

are also assigned randomly. It is a blind random parallel search of the search space 

that is made up of the primitive image analysis operators. For practical reasons, the 

size of each program is limited to a maximum depth. In our case, we define the 

maximum depth of 15. The fitness of this population is expected to be low. 

In addition, respective values of crossover rates and mutation rates are also 

set at initialization. These values are provided by the user. 
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TABLE 3. LIST OF PRIMITIVE IMAGE ANALYSIS OPERATORS 

No. 

1. 
2. 

3. 

4. 

5. 

6. 
7. 

8. 
9. 

10. 

11. 
12. 

13. 
14. 
15. 
16. 

17. 

18. 

19. 

20. 

OPERATOR 

ADDP 

SUBP 
MULTP 

DIFF 

AVER 

DISK 
GAUSSIAN 

LAPL 

UNSHARP 
LP 

HP 
DIL 

ERODE 
OPEN 
CLOSE 
OPCL 

CLOP 

HISTEQ 

ADJUST 

THRESH 

DESCRIPTION 

Add Planes 

Subtract Planes 

Multiply Planes 
Absolute 

Difference 
Averaging Filter 

Disk Filter 

Gaussian Filter 

Laplacian Filter 

Unsharp Filter 
Lowpass Filter 

Highpass Filter 
Image Dilate 

Image Erode 
Image Open 
Image Close 

Image Open-Close 

Image Close-Open 
Histogram 

Equalization 
Image Adjust 

Thresholding 

INPUTS 

2 
2 
2 

2 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 

1 

1 

TYPE 

Arithmetic 

Arithmetic 
Arithmetic 

Arithmetic 

Filter 

Filter 
Filter 

Filter 

Filter 
Filter 
Filter 

Morphological 
Morphological 

Morphological 
Morphological 
Morphological 

Morphological 

Enhancement 

Enhancement 
Post­

processing 

STRUCTURING 
ELEMENT 

No 
No 
No 

No 

No 

No 
No 

No 
No 

No 
No 

Yes 
Yes 

Yes 
Yes 

Yes 

Yes 

No 

No 

No 

TABLE 4. LIST OF MORPHOLOGICAL STRUCTURING ELEMENTS 

No 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 

Name 
SE1 
SE2 
SE3 
SE4 
SE5 

SE6, SE7 
SE8, SE9 

SE10 

SHAPE 
Disk 

Octagon 
Diamond 
Square 

Rectangle 
Pair 
Line 

Periodicline 
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4.3.4 FITNESS EVALUATION 

Fitness is the measure of the optimality of a program present in the population. It 

reflects the accuracy of the segmentation algorithm. The sum of the absolute errors 

made by a program for all the pixels of all the images of a training set can be 

transformed into a fitness function using some scaling techniques [37]. 

In our case, a segmented image consists of positive (object) and negative 

(non-object) pixels. Ideally the segmentation of an image would result in an output 

image where positive pixels cover object pixels perfectly and nothing else while 

negative pixels cover non-object pixels perfectly and nothing else. Based on this 

ideal, we can view segmentation as a pixel-classification problem. Thus, the task of 

the segmentation program becomes assignment of the right class to every pixel in 

the image. As such, we can apply measure of classification accuracy to the problem 

of image segmentation. 

Every segmentation program can be expected to identify not only pixels 

belonging to the objects of interest (True Positives, TPs), but also some non-object 

pixels identified as objects (False Negatives, FNs). Further, in addition to identifying 

non-object pixels (True Negatives, TNs), some pixels belonging to non-objects can 

be identified as object pixels (False Positives, FPs). Therefore for an ideal 

segmentation, the number of FPs and FNs should be zero while the number of TPs 

and TNs should be exactly equal to number of object and non-object pixels. If we 

normalize the value of TPs and TNs by the total number of object and non-object 

pixels respectively, their individual values in the best case scenario would be 1 and 
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0 in the worst case scenario. However, for the segmentation problem, achieving this 

is a challenging task, thus we define two more measures based on TPs, TNs, FPs and 

FNs called the False Positive Rate (FPR) and False Negative rate (FNR). FPR is the 

proportion of negative instances that were erroneously reported as being positive 

while FNR is the proportion of positive instances that were erroneously reported as 

negative. 

Number of False Positives (FP) 
False Positive Rate (FPR) — 

False Negative Rate (FNR) = 

Total number of Negative instances (FP + TN) 

Number of False Negatives (FN) 

Total number of Positive instances (FN + TP) 

Therefore, for an ideal segmentation, the values of FPR and FNR should be 

zero. For finding accuracy of a segmentation program, we use a pixel-based accuracy 

formula based on FPR and FNR. This formula reflects the training and validation 

accuracy for GPIS. It is as follows: 

Accuracy = k* (1 - FPR) * (1 - FNR) 

where FPR- False Positive Rate, 

FNR- False Negative Rate, and 

k is a constant. 

The value of k is calculated as follows: 

k - 4 * Wp * ( 1 - Wn) 
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where Wp - Weight for False Positives, Wp e [0, 0.5] 

Wn - Weight for False Negatives, W„—\- Wp 

The weights Wp and W„ are used as a measure to balance the FPR/FNR trade­

off. 

The above formula for accuracy extends image segmentation problem to a 

pixel-classification problem. Therefore, ideally value of accuracy should be 1 (or 

100%) for a perfectly segmented image. We also see that the formula is mono-modal 

i.e. if image A is better segmented than image B => Accuracy (A) > Accuracy (B) 

However, we further extend this formula by introducing a term that 

penalizes longer programs. Therefore, the fitness function for GPIS is as follows: 

Fitness = Accuracy * ( „^gn J 

where: 

len = Length of the program 

(3 - Scaling factor for the length of a program, p e [0.004, 0.008] 

As seen above, the length of the evolved program is fused into the fitness 

function and is represented by the last term in the equation. It acts as a means to 

keep a check on the length of the programs. We have observed that by doing so, 

natural evolution promotes shorter and fitter programs, p is a scaling factor for the 

length and its value lies between 0.004 and 0.008. Optimally, a value of 0.005 is 

sufficient. 
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The above approach of representing the image segmentation problem as a 

pixel-classification problem can be summarized as shown below in Figure 7. 

ACTUAL CONDITION 

OBJECT PIXELS NON-OBJECT PIXELS 

EVOLVED 

SEGMENTATION 

RESULTS 

POSITIVE 
(OBJECT 
PIXELS) 

True Positive 

False Positive 
(Non-object pixels 
segmented as cell 

pixels] 
TYPE I ERROR 

Specificity = 1-FPR 

NEGATIVE 
(NON-OBJECT 

PIXELS) 

False Negative 
(Cell pixels segmented 

as non-cell pixels) 
TYPE II ERROR 

Sensitivity = 1-FNR 

True Negative 

FIGURE 7. SEGMENTATION AS A PIXEL CLASSIFICATION PROBLEM 

4.3.5 SELECTION AND ELITISM 

The selection operation involves selecting chromosomes from the population to 

undergo some form of diversification or surviving a generation. In either case, there 

are more chances of a fitter chromosome getting selected. In addition to the 
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selection methods, elitism is a measure to retain a certain percentage of the best 

available programs in the population pool. 

In our case, we use elitism as a means of saving the top 1% chromosomes of a 

population. Copies of the best 1% of the chromosomes in the population are copied 

without change to the next generation. Since there is always a possibility that the 

best chromosomes available might be lost or get destroyed by crossover or 

mutation, elitism ensures that the best 1% of chromosomes always survive a 

generation. 

In order to select chromosome for diversification [parent chromosomes), we 

use a tournament selection scheme. It is chosen instead of rank selection as it is 

computationally more efficient. The size of the tournament window A is kept as 10% 

of the size of the population. The quantity of parents selected is 50% of the size of 

the population. The 50% that undergo some form of diversification (crossover or 

mutation) survive the generation and are sent to the population of the next 

generation. The remaining 49% come in the form of offspring chromosomes 

produced by diversification. 

In case, an injection is used at the end of the particular generation, a survivor 

selection mechanism is applied to build the new population. Injection inserts 20% 

new randomly generated chromosomes to the population. In order to balance this, 

the top 79% of the parent and offspring chromosomes are selected based on fitness 

and added to the injected pool. 
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In either case, 99% of the population is produced via selection and 

diversification and the remaining 1% comes from the elite set. 

4.3.6 DIVERSIFICATION: GENETIC OPERATORS 

Genetic operators define what type of jumps a system can make through a search 

space. We employ one crossover and four mutation operators. These are selected 

probabilistically based on their respective rate of crossover and mutation. 

When a parent chromosome is selected for diversification, it can undergo 

either crossover or mutation. If crossover is chosen, it waits till the time another 

chromosome is chosen for crossover. If mutation is chosen, it undergoes one of the 

four mutations. 

4.3.6.1 CROSSOVER 

Crossover is typically a two parent genetic operator. It works by exchanging the 

"genetic material" between two parent chromosomes. 

We have used a 1-point crossover for our GP. Two parents are chosen 

randomly from the parent pool. A random location is chosen in each of the parent 

chromosomes. The subsequences before and after this location in the parents are 

exchanged creating two offspring chromosomes, as shown in Figure 6. 
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PARENT CHROMOSOMES + OFFSPRING CHROMOSOMES 

r 
[Al] [A2] [A3] [A4] [A5] [A6] [A7] [Al] [A2] [A3] [B6] [B7] 

X X 
[Bl] [B2] [B3] [B4] rB5] [B6] [Bl] [B2] [B3] [B4] [A4] [A5] [A6] [A7] 

. GENE 
[mi., in,o,o.'Z] 

[A], [B] = IMAGE OPERATOR 

FIGURE 8. CROSSOVER SCHEME: ONE-POINT CROSSOVER 

4.3.6.2 MUTATION 

Mutation is a one parent genetic operator. It is applied to a single chromosome at a 

time and makes (small) changes in the genetic code of an individual. 

We have used four mutations operators. They can be divided into two 

categories, Type A (inter-genomic - swap, insert and delete) and Type B (intra-

genomic - alter). 
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TYPE A MUTATION: 

Type A mutation is typically inter-genomic. There are three inter-genomic 

mutations used - swap, insert and delete. The three inter-genomic mutations are as 

follows: 

a) Swap: Two random locations inside a chromosome are chosen and the 

respective genes are swapped. 

b) Insert: A new gene is inserted in a randomly chosen position inside a parent 

chromosome. 

c) Delete: A gene at a randomly chosen location gets removed from the 

chromosome. The remaining chromosome joins back together at the point of 

the deletion. 

TYPE B MUTATION: 

Alter: Type B mutation is intra-genomic. Alter is a fitness based mutation. It is only 

performed if the fitness of the parent chromosome is above a minimum threshold 

value. If so, one of the genes inside the chromosome is chosen randomly and it 

undergoes this mutation. Typically, the weight bit of the gene is altered based on the 

type of image operator. If however, the chromosome's fitness is below the minimum 

threshold fitness, the parent is discarded back to the parent pool and no mutation 

takes place. This operation essentially performs parameter tuning for the primitive 

image operators. The threshold was set at 70% accuracy, based on results of trial 

runs. 
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(B) INSERT MUTATION (TYPE A: INTER-GENOMIC) 
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(C) DELETE MUTATION (TYPE A: INTER-GENOMIC) 
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(D)ALTER MUTATION (TYPE B: INTRA-GENOMIC) 

FIGURE 9. MUTATION SCHEMES 
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4.3.7 INJECTION 

Traditional EAs often suffer from loss of diversity through premature convergence 

of its population. This causes the search to get trapped in local optima and creation 

of too many similar individuals in a population. Thus, the maintenance of diversity in 

the population is one of the most fundamental issues for any EA. We use an injection 

mechanism to overcome this problem and provide an option of introducing a fixed 

percentage of new randomly initialized programs to the population after every n 

generation. In the current configuration, we inject 20% new programs after every 5 

generations. However, GPIS provides the user with an option to vary values of 

either. 

4.3.8 TERMINATION 

Termination of the GP is purely fitness based and the evolutionary cycle continues 

till the time there is no major change in fitness over a couple of generations. In order 

to do this, first we calculated an acceptable fitness value based on our trial runs. 

This value was found to be 95% for database 1 (HeLa Cells) and 90% for database 2 

(Liver Cells). Till the time, these values of fitness were not achieved, the GP kept 

running. Once, these values were reached, a method of calculating cumulative means 

of the fitness of successive generations was used. If the absolute difference between 

the means of 10 successive generations was less than 5% of the highest fitness 

achieved, the GP stops. If however, the GP is used on any other database, a default 

value of 90% is set. 
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4.4 SUMMARY 

We propose an evolutionary algorithm based approach to image segmentation. We 

have developed an algorithm; Genetic Programming based Image Segmentation 

(GPIS) in this regard. This chapter details the approach, the software architecture, 

explanation of the inherent elements and working of the proposed algorithm. 

GPIS is an image segmentation tool. It uses a GP based framework for its 

working. It follows the typical training-validation model of EAs. Training includes 

evolution of a population of image segmentation programs. These programs are 

represented as a chromosome with a linear structure. Each chromosome contains a 

sequence of genes which are typically image analysis operators or primitive image 

operators. Using principles of natural selection and reproduction (diversification), 

fitter and more accurate programs are evolved. Selection mechanism consists of 

parent selection by means of Tournament Selection as well as a combination of 

fitness based (injection) and steady state survivor selection (no injection - all 

parents and offspring survive). In order to perform diversification, crossover (one-

point) and mutation (swap, insert, delete and alter) operations are done. Fitness of a 

program is based on its accuracy to segment a set of training images. It is typically 

based on the False Positive Rate and the False Negative Rate of the segmentation 

produced. Once optimum programs have been discovered, they are applied on new 

images known as validation images. If the segmentation accuracy is similar to the 

training accuracy, the program is saved as a solution segmentation program. It order 

to achieve a collection of such programs, the above model is repeated multiple times 
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to verify the authenticity of the approach. The following table summarizes 

elements of the approach. 

TABLE 5. SUMMARY OF GP1S APPROACH 

Genetic Programming based Image Segmentation (GPIS) 

Problem/Goal 

Type of EA used 

Representation 

Terminal Set 

Function Set 

Parent Selection 

Survivor Selection 

Elitism 

Injection 

Genetic Operators 

Crossover 

Mutation 

Fitness 

Termination 

Evolution of accurate Image 
Segmentation algorithms 

GP 

Linear 

Pool of primitive image analysis 
operators (20 in number) 

Data/InterOut Planes 

Tournament Selection 
(A = 10% of population size) 
Steady-state (No injection) 
Fitness-based (Injection) 

1% 

20% every 5 generations 

Crossover and Mutation 

One-point 

Swap, Insert, Delete (Inter-genomic) 
Alter (Intra-genomic) 

FPR, FN R based 

Fitness based 

This section is followed by Part B of the chapter which provides the 

experimental set up for the algorithm. 
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PART B: EXPERIMENTAL SETUP 
This section provides details of the practical setup for GPIS. 

4.5 IMAGE DATABASES 

Various experiments (runs) were performed to test the efficacy of our GP in 

segmenting regions of interest from the given cell databases. We tested our GP on 

two medical databases. These were typically cell databases but significantly 

different in nature as seen below in figure 8. Corresponding ground truth has been 

manually hand-segmented. 

The first database consisted of 1026 images of HeLa cell images (in culture). 

They were available in three magnifications, 10x, 20x and 40x, of dimensions 512 x 

384 pixels2. The task of the GP for this database was to find effective cell 

segmentation algorithms to extract the cells present in the image. 

The second database consisted of images from liver tissue specimen of 

mouse. There were 120 images in total of dimensions 340 x 780 pixels2. The task of 

the GP for this database was to segment the nuclei seen in the images. 

(a) DATABASE 1 - HeLa CELLS (b) DATABASE 2 - LIVER CELLS 

FIGURE 10. SAMPLES FROM IMAGE DATABASES 
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4.6 PROCEDURE FOR TRAINING AND VALIDATION 

The first task in order to plan a GP run is to decide on the training and validation set. 

In order to do so, we define the following terms: 

G - Global total number of images in a database 

T - Training set (number of images used for training) 

V - Validation set (number of images used for validation) 

R - Number of times optimal individuals are evolved for the same database. 

The values for G, T, V and R for both databases are shown in Table 6. 

TABLE 6. FINAL VALUES OF G, T, V, R FOR BOTH DATABASES 

PARAMETER 
G 
T 
V 
R 

DATABASE 1 (HeLa CELLS) 
1026 

30 
100 
28 

DATABASE 2 (LIVER CELLS) 
120 
25 
75 
26 

4.6.1 PROCEDURE FOR OBTAINING RESULTS FOR GPIS 

1. Randomly select T images and other V images from the G images in the 

database. 

2. Train on T images by providing corresponding ground truth. 

3. Validate on V images to produce one optimal individual. 
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4. Repeat Steps 1 to 3, R times producing a set of optimal individuals [result 

set). 

5. Calculate values of average training and validation accuracy of the result set. 

6. Conduct the required statistical analysis (central tendency, divergence and 

upper-lower bounds). 

.2 PROCEDURE FOR OBTAINING RESULTS FOR GENIE PRO 

1. Select the same T and V images from the G images in the database, used for 

corresponding GPIS run. 

2. Load each of the T images as a base image and create a training overlay for 

each image by marking Foreground (object) and Background (non-object) 

pixels manually. 

3. Train on these manually marked training overlays using the in-built Ifrit 

Pixel Classifier till there is no change in displayed estimated accuracy. 

4. Apply learned solution on V images to produce corresponding segmented 

images. 

5. Calculate validation accuracy for these V images using GPIS accuracy formula 

(Section 4.3.4) 

6. Repeat Steps 1 to 5, R times like GPIS. 
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4.7 PARAMETER SETTINGS FOR GPIS 

It is hard to quantify an optimal set of parameter values for any EA. We found the 

best way to find optimal parameter setting is to conduct trial runs focusing on one 

parameter at a time. Primary parameter values were determined using this strategy. 

Once, primary values were determined for all parameters, some fine tuning was 

performed and final parameter values were set. The parameter values that 

consistently gave the best results were used for the final runs. The parameter values 

used for both databases are shown in Table 7 and 8 respectively. In addition, an 

optimum set of parameter values is shown in Table 9. These values can be used as a 

starting point while using GPIS for other databases. 

TABLE 7. SYSTEM PARAMETERS SETTINGS FOR DATABASE 1 

Total number of images in database: G 

Training set: T 

Validation set: V 

Number of runs: R 

Population size: \i 

Crossover Rate: Pc 

Swap Mutation Rate:Pms 

Insert Mutation Rate: Pmi 

Delete Mutation Rate: Pmd 

Alter Mutation Rate: Pma 

Weight constant: k 

Scalability factor for length: B (Fitness Function) 

1026 

30 

100 

28 

200 

0.45 

0.25 

0.25 

0.2 

0.7 

0.9216 

0.005 
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TABLE 8. SYSTEM PARAMETERS SETTINGS FOR DATABASE 2 

Total number of images in database: G 

Training set: T 

Validation set: V 

Number of runs: R 

Population size: [i 

Crossover Rate: Pc 

Swap Mutation R a t e : / ^ 

Insert Mutation Rate: Pmi 

Delete Mutation Rate: Pmd 

Alter Mutation Rate: Pma 

Weight constant: k (Fitness Function) 

Scalability factor for length: p (Fitness Function) 

120 

25 

75 

26 

200 

0.5 

0.3 

0.3 

0.25 

0.7 

0.9216 

0.005 

TABLE 9. RECOMMENDED PARAMETER VALUES FOR GPIS 

Population size: [i 

Crossover Rate: Pc 

Swap Mutation Rate:Pms 

Insert Mutation Rate: Pmi 

Delete Mutation Rate: Pmd 

Alter Mutation Rate: Pma 

Weight Constant: k (Fitness Function) 

Scalability factor for length: p (Fitness Function) 

200 

0.45 

0.25 

0.25 

0.2 

0.7 

0.9216 

0.005 
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CHAPTER 5: RESULTS AND ANALYSIS 

We have proposed a GP based algorithm for Image Segmentation, GPIS. This chapter 

provides experimental results for GPIS as well as a comparison with GENIE Pro. We 

have tested our algorithm on 2 image databases, HeLa Cells and Liver Tissue Cells 

(C57BL/6 mouse). The task of the GP for Database 1 (HeLa Cells) was to extract 

complete cell structures present in the images while for Database 2 (Liver Tissue), it 

was required to extract the nuclei present in the images. 

We have based our results on two criteria, effectiveness of the algorithm to 

correctly and accurately segment the given images, and efficiency of the algorithm in 

doing so. Effectiveness is based on two measures, pixel accuracy of the evolved 

solution and the percentage of structures (cell count) correctly identified. In order 

to calculate the cell density measure, we have categorized cells into two types: 

Typel and 2. Type 1 cells are those which can be identified by eye with relative ease. 

Type 2 cells are those which are relatively difficult to be identified by eye. Their 

number can vary based on the database in question. Efficiency is also based on two 

measures, number of fitness evaluations (generations) taken to converge to an 

acceptable solution, and the relationship between length of an evolved program and 
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its execution time. Efficiency based on number of fitness evaluations is provided for 

each database in Section 5.1.2 and 5.2.2 while efficiency measured by length of 

program is presented in Section 5.3 as it is not dependent on nature of the database. 

For comparison of performance, we have used a well accepted GA based 

automatic image segmentation/classification tool GENIE Pro [details of GENIE Pro 

are provided in Chapter 2, section 2.4). For comparing accuracy of the evolved 

solutions in either algorithm, we provide fitness values recorded over the respective 

runs. We also compare the output image from GENIE Pro based on our fitness 

function. This provides a common ground for comparing pixel-level accuracy. We 

use a stricter fitness function as compared to GENIE Pro. 

The result tables reflect the substantive performance of our algorithm and 

are supported by evolved solutions and image results obtained. 

The chapter is concluded with a reflective analysis of the algorithm's 

performance on both databases. 
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5.1 RESULTS FOR DATABASE 1 -HELA CELLS 

The task of the algorithm for Database 1 was to extract cell structures from the 

given cell images. 

5.1.1 EFFECTIVENESS 

A. PIXEL-BASED PERFORMANCE: 

Table 10 provides a comparison of the training and validation accuracies achieved 

by GP1S and Genie Pro for Database 1. These reflect the capability of an evolved 

program to correctly segment each pixel in an image as cell and non-cell. Thus, they 

are the pixel-based accuracy values of the segmentations produced by the fittest 

evolved programs for each algorithm, over 28 runs of each (average of segmentation 

accuracy of the fittest program of every run). It can be seen here that the 

segmentation accuracy achieved by GPIS was higher than GENIE Pro. 

TABLE 10. SEGMENTATION ACCURACY: GPIS Vs GENIE PRO (DATABASE 1) 

ALGORITHM 

GPIS 

GENIE PRO 

TRAINING DATA 

98.76% 

94.12% 

VALIDATION DATA 

97.01% 

93.12% 

Table 11 provides the statistical results for GPIS based on validation accuracy of 

segmentations produced by the evolved solutions. These are averaged values based 

71 



on results from 28 runs. 

TABLE 11. STATISTICAL RESULTS FOR GPIS: SEGMENTATION ACCURACY 

(DATABASE 1) 

STATISTICAL MEASURE 

CENTRAL 
TENDENCY 

DISPERSION/ 
BOUNDS 

MEAN 

MEDIAN 

STANDARD DEVIATION 

UPPER BOUND 

LOWER BOUND 

ACCURACY 

97.01% 

97.02% 

1.84 

99.31% 

93.69% 

B. CELL COUNT BASED PERFORMANCE: 

Table 12 reflects each algorithm's ability to detect the cell structures. It was seen 

that GPIS had a higher rate of detection as compared to GENIE Pro. In order to 

calculate the above, cells were counted by hand in the evolved solutions. 

TABLE 12. CELL COUNT: GPIS Vs GENIE PRO (DATABASE 1) 

CELL COUNT MEASURE 

Detected Cells 

(i) Type 1 Cells 

(ii) Type 2 Cells 

Undetected Cells 

GPIS 

TRAINING 
DATA 

98.24% 

100% 

98.78% 

1.32% 

VALIDATION 
DATA 

97.98% 

100% 

98.22% 

1.55% 

GENIE PRO 

TRAINING 
DATA 

97.02% 

100% 

97.49% 

2.12% 

VALIDATION 
DATA 

96.56% 

100% 

96.89% 

2.25% 
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5.1.2 EFFICIENCY (NUMBER OF FITNESS EVALUATIONS) 

This section provides details of the efficacy of GPIS for Database 1 over 28 runs 

conducted. Table 13 provides details of the number of generations and fitness 

evaluations needed for an optimal solution to be produced. Table 14 provides 

statistical results for GPIS based on efficiency (number of generations/fitness 

evaluations). 

TABLE 13. NUMBER OF GENERATIONS AND FITNESS EVALUATIONS FOR GPIS 

(DATABASE 1) 

BEST (HIGHEST 
FITNESS) 

AVERAGE 

NUMBER OF 
GENERATIONS 

114 

122.07 

NO OF FITNESS 
EVALUATIONS 

10,532 

11,257.67 

TABLE 14. STATISTICAL RESULTS FOR GPIS: NUMBER OF GENERATIONS AND 

FITNESS EVALUATIONS (DATABASE 1) 

STATISTICAL MEASURE 

CENTRAL 
TENDENCY 

DISPERSION/ 
BOUNDS 

MEAN 

MEDIAN 

STANDARD DEVIATION 

UPPER BOUND 
LOWER BOUND 

NUMBEROF 
GENERATIONS 

122.07 

122 

6.85 

138 
112 

NUMBER OF FITNESS 
EVALUATIONS 

11,257.67 

11,107 

639.88 

12,658 
10,510 
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5.1.3 INTUITIVE REFLECTION: EVOLVED PROGRAMS 

This section details two evolved programs for Database 1. The chromosomal and 

genealogical structure is provided below 

EVOLVED PROGRAM 1: 

GAUSSIAN 
FILTER 

AVERAGING 
FILTER 

IMAGE 
ERODE 

AVERAGING 
FILTER 

IMAGE 
CLOP 

THRESHOLDING 

[GAUSS, dl , 0, 6, 0.8435] [AVER, iol , 0,4, 0] [EROD, io2, 0, 0,1] 

[AVER, io3, 0, 6, 0] [CLOP, io4, 0, 0,1] [THRESH, io5, 0,0.09022, 0] 

FIGURE 11. CHROMOSOMAL AND GENE STRUCTURE OF PROGRAM 1 

Number of operators used = 6 

Fitness on validation set = 99.04% 

Execution time for program = 1.252 seconds 

The program evolved above is a combination of filters and morphological operators. 

The first gene is a 6 x 6 Gaussian low pass filter with a sigma value of 0.8435 

followed by a 4 x4 Averaging filter. The output plane from gene 2 is eroded with a 

flat, disk-shaped structuring element of radius 2 (note: 1 denotes type of structuring 

element and not the radius here, refer Table 4 for details). A 6 x 6 averaging filter is 

again applied to the output plane of the eroded image. Its output plane undergoes a 

composite morphological operation of closing and opening with the same 

structuring element as above. Finally this plane is thresholded at 0.09022 to provide 

the final output image. As seen here, the GP was able to evolve a valid program and 
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also optimize crucial parameter values. A validation implementation of the program 

is shown in Figure 13. The superimposed input-evolved image is shown below 

[Figure 12). 

FIGURE 12. SUPERIMPOSED INPUT-EVOLVED IMAGE (EVOLVED PROGRAM 1] 

ACCURACY = 99.02% 
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VALIDATION IMAGE 1: ACCURACY = 99.02% 

FIGURE 13. STEP-BY-STEP IMAGE EVOLUTION OF EVOLVED PROGRAM 1 
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EVOLVED PROGRAM 2: 

DISK 
FILTER 

AVERAGING 
FILTER 

IMAGE 
CLOSE 

ADD 
PLANES 

IMAGE 
ERODE 

IMAGE 
ERODE 

THRESHOLDING 

[DISK, dl , 0, 3, 0] [AVER, iol , 0, 6, 0] [CLOSE, io2, 0, 0, 2] [ADDP, iol , io2, 0, 0] 

[EROD, io3,0 ,1] [EROD, io4, 0,1] [THRESH, io5, 0, 0.1264, 0] 

FIGURE 14. CHROMOSOMAL AND GENE STRUCTURE OF PROGRAM 2 

Number of operators used= 7 

Accuracy on validation set = 99.31% 

Execution time of program = 1.382 seconds 

This program initializes itself with a 3 x 3 circular Averaging filter (pillbox - disk) 

followed by another 6 x 6 Averaging filter. The output plane undergoes image 

Closing with a flat, octagonal structuring element of radius 3. Then output planes 

from gene 1 and 2 are added and eroded using a flat, disk shaped structuring element 

of radius 2. Finally this output plane is thresholded using a threshold of 0.1264. The 

validation implementation of the program is shown below in Figure 16. The 

superimposed input-evolved image is shown below (Figure 15). 
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FIGURE 15. SUPERIMPOSED INPUT-EVOLVED IMAGE (EVOLVED PROGRAM 2J 

ACCURACY = 99.31% 



VALIDATION IMAGE 2: ACCURACY = 99.31% 

FIGURE 16. STEP-BY-STEP IMAGE EVOLUTION OF EVOLVED PROGRAM 2 
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5.2 RESULTS FOR DATABASE 2 - LIVER TISSUE SPECIMEN 

The task of the algorithm for Database 2 was to extract nuclei structures from the 

given images. This database is relatively much tougher and complex as compared to 

Database 1. In some areas of the image, the inter- and outer-object regions don't 

have much in difference. These results are compiled based on 26 runs of the GP on 

Database 2. 

5.2.1 EFFECTIVENESS 

A. PIXEL-BASED PERFORMANCE: 

Table 15 provides a comparison of the training and validation accuracies achieved 

by GPIS and Genie Pro for Database 2. These reflect the capability of an evolved 

program to correctly segment each pixel in an image as nuclei and non-nuclei. Thus, 

they are the pixel-based accuracy values of the segmentations produced by the 

fittest evolved programs for each algorithm, over 26 runs of each (average of 

segmentation accuracy of the fittest program of every run). It can be seen here that 

the segmentation accuracy achieved by GPIS was higher than GENIE Pro. 

TABLE 15. SEGMENTATION ACCURACY: GPIS Vs GENIE PRO [DATABASE 2) 

ALGORITHM 

GPIS 

GENIE PRO 

TRAINING DATA 

94.38% 

86.22% 

VALIDATION DATA 

91.12% 

84.04% 
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Table 16 provides the statistical results for GPIS based on validation accuracy of 

segmentations produced by the evolved solutions. These are averaged values based 

on results from 26 runs. 

TABLE 16. STATISTICAL RESULTS FOR GPIS: SEGMENTATION ACCURACY 

(DATABASE 2) 

STATISTICAL MEASURE 

CENTRAL 
TENDENCY 

DISPERSION/ 
BOUNDS 

MEAN 

MEDIAN 

STANDARD DEVIATION 

UPPER BOUND 

LOWER BOUND 

FITNESS 

91.12% 

91.42% 

2.08 

94.82% 

88.25% 

B. CELL COUNT BASED PERFORMANCE: 

Table 17 reflects each algorithm's ability to detect the nuclei structures. It was seen 

that GPIS had a higher rate of detection as compared to GENIE Pro. In order to 

calculate the above, segmented nuclei were counted by hand in the evolved 

solutions. 
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TABLE 17. CELL (NUCLEI) COUNT: GPIS Vs GENIE PRO (DATABASE 2) 

CELL COUNT MEASURE 
(NUCLEI) 

Detected Cells 

(i) Type 1 Cells 

(ii) Type 2 Cells 

Undetected Cells 

GPIS 

TRAINING 
DATA 

92.18% 

98.89% 

91.82% 

3.87% 

VALIDATION 
DATA 

89.98% 

97.12% 

90.23% 

4.65% 

GENIE PRO 

TRAINING 
DATA 

89.36% 

96.23% 

90.02% 

4.78% 

VALIDATION 
DATA 

87.42% 

95.01% 

86.78% 

5.39% 

5.2.2 EFFICIENCY (NUMBER OF FITNESS EVALUATIONS) 

This section provides details of the efficiency of GPIS for Database 2 over 26 runs 

conducted. Table 18 provides details of the number of generations and fitness 

evaluations needed for an optimal solution to be produced. Table 19 provides 

statistical results for GPIS based on efficiency (number of generations/fitness 

evaluations). 

TABLE 18. NUMBER OF GENERATIONS AND FITNESS EVALUATIONS FOR GPIS 

(DATABASE 2) 

BEST (HIGHEST 
FITNESS) 

AVERAGE 

NUMBER OF 
GENERATIONS 

206 

214.15 

NO OF FITNESS 
EVALUATIONS 

18,732 

19,563.87 
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TABLE 19. STATISTICAL RESULTS FOR GPIS: NUMBER OF GENERATIONS AND 

FITNESS EVALUATIONS (DATABASE 2) 

STATISTICAL MEASURE 

CENTRAL 
TENDENCY 

DISPERSION/ 
BOUNDS 

MEAN 

MEDIAN 

STANDARD DEVIATION 

UPPER BOUND 
LOWER BOUND 

NUMBER OF 
GENERATIONS 

214.15 

216 

7.19 

224 
202 

NUMBER OF FITNESS 
EVALUATIONS 

19,397.31 

19,636 

674.95 

20,452 
18,280 

5.2.3 INTUITIVE REFLECTION: EVOLVED PROGRAMS 

EVOLVED PROGRAM 1: 

LOWPASS 
FILTER 

AVERAGING 
FILTER 

AVERAGING 
FILTER 

IMAGE 
ADJUST 

IMAGE 
CLOSE 

THRESHOLD 

[LOWPASS, d l , 0,32, 0.793] [AVER, iol , 0,4, 0] [AVER, io2, 0, 3, 0] 

[ADJUST, io3, 0, .205, 0.517] [CLOSE, io4, 0, 0,1] [THRESH, io5, 0, 0.9852, 0] 

FIGURE 17. CHROMOSOMAL AND GENE STRUCTURE OF PROGRAM 1 

Number of operators used = 6 

Accuracy on validation set = 94.68% 

Execution time of evolved program = 0.8410 seconds 
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The program evolved above displays the capacity of the GP to optimize parameter 

values once a stable structure has been evolved. The input image undergoes a low-

pass filtering action with a filter of the order N = 32 and a cut-off frequency of 0.793. 

The output plane undergoes two successive averaging operations by a 4 x4 and 3 x 

3 Averaging filter. The resultant output plane undergoes an image enhancement 

operation where the intensity of the pixel planes is mapped to new values such that 

the intensity values between 0 and 1 are now mapped to 0.205 and 0.517 (intensity 

transformation of grayscale). From an image processing point of view, this 

operation increases the contrast of the image. This mapped plane now undergoes an 

image closing action with a flat, disk shaped structuring element of radius 2. Finally 

the resulting image undergoes thresholding (0.9852). The most impressive part of 

the GP here is maintaining a short program size with losing accuracy. A step-by-step 

processing of a validation image is shown below in Figure 18 as well as the 

superimposed input-evolved result (Figure 19). 
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VALIDATION IMAGE 1: ACCURACY = 94.68% 

FIGURE 18a. STEP-BY-STEP IMAGE EVOLUTION - VALIDATION IMAGE 1 

(EVOLVED PROGRAM 1) * denotes operation done 

CONT: NEXT PAGE 
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CONT: 
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FIGURE 18b. STEP-BY-STEP IMAGE EVOLUTION - VALIDATION IMAGE 1 

[EVOLVED PROGRAM 1] 

FIGURE 19. SUPERIMPOSED INPUT-

EVOLVED IMAGE [EVOLVED PROGRAM 1) 

ACCURACY = 94.68% 
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EVOLVED PROGRAM 2: 

UNSHARP 
FILTER 

HIST. 
EQ. 

LAP. 
FILTER 

DISK 
FILTER 

AVERAG. 
FILTER 

HIST. 
EQ. 

ADJUST OPEN ERODE THRESH 

[UNSHARP, dl , 0, 0.82, 0] [HISTEQ, io4, 0, 0, 0] [LAPL, iol , 0, -8, 0] 

[DISK, io2, 0, 6, 0] [AVER, io3, 0, 6, 0] [HISTEQ, io4,0, 0, 0] 

[ADJUST, io5, 0, 0, 0.202] [OPEN, io6, 0, 0,1] [ERODE, io7, 0, 0,1] 

[THRESH, io8, 0, 0.752, 0] 

FIGURE 20. CHROMOSOMAL AND GENE STRUCTURE OF PROGRAM 2 

Number of operators used = 10 

Accuracy on validation set = 94.98% 

Execution Time of evolved program = 1.2153 seconds 

The evolved program shown above has 10 operators. The first operator is a 3 x 3 

unsharp contrast enhancement filter with an alpha value of 0.82. Its output plane 

undergoes histogram equalization. It is followed by a 3 x 3 Laplacian filter 

fJLaplacian of a Gaussian filter - [1,1,1; 1,-8,1; 1,1,1]). This is followed by a 6 x 6 

circular disk and averaging filtering operation. Their output plane undergoes 

histogram equalization followed by a grayscale intensity transformation between 0 

and 0.202. The resulting plane undergoes image opening and erosion operation with 

a flat, disk shape structuring element of radius 2. Finally the plane is thresholded at 

a threshold of 0.752 to produce the final image. 
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VALIDATION IMAGE 2: ACCURACY = 94.98% 

FIGURE 21a. STEP-BY-STEP IMAGE EVOLUTION - VALIDATION IMAGE 2 

CONT: NEXT (EVOLVED PROGRAM 2) * denotes operation done 
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CONT: 

FIGURE 21b. STEP-BY-STEP IMAGE EVOLUTION - VALIDATION IMAGE 2 

(EVOLVED PROGRAM 2) 
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FIGURE 22. SUPERIMPOSED INPUT-EVOLVED IMAGE [EVOLVED PROGRAM 2] 

ACCURACY = 94.98% 
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5.3 EFFICIENCY: EXECUTION TIME Vs LENGTH OF PROGRAM 

The efficacy of GPIS is also measured by comparing length of an evolved program 

with the time it takes to execute the program. Figure 23 and 24 provide graphs for 

this comparison. These graphs are built using the evolved programs from combined 

runs of GPIS on both the databases i.e. 54 runs. 

The graph in Figure 23 is a plot between execution time and length of the 

evolved program for the fittest programs produced in the runs. There were in total 

54 runs of GPIS on both the databases, therefore, this graph compares execution 

speed of the 54 fittest programs evolved. The size of these programs was between 6 

to 12 operators and their execution time was between 0.8312 seconds to 2.6104 

seconds. 

The graph in Figure 24 is a plot between execution time and length of 

evolved program other than the fittest programs produced during the runs. 4 

programs with average fitness (above 70%) were chosen from the final population 

of each run; therefore, this graph compares execution speed of the 216 evolved 

programs. The size of these programs was between 5 to 20 operators and their 

execution time was between 0.5322 seconds to 4.2352 seconds. 

It can be seen from both the graphs that the execution speed of the evolved 

programs is linearly correlated with their lengths, therefore, shorter the program, 

faster the execution. 
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Efficiency: Execution Time Vs Length of Evolved Program 

7 8 9 10 11 
Length of Evolved Program (# Operators) 

12 

FIGURE 23. GRAPH 1 - EXECUTION TIME Vs LENGTH OF PROGRAM (FITTEST 

PROGRAMS) 

Efficiency: Execution Time Vs Length of Program 
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FIGURE 24. GRAPH 2 - EXECUTION TIME Vs LENGTH OF PROGRAM (PROGRAMS 

WITH FITNESS > 70%) 
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5.4 REFLECTIVE ANALYSIS OF RESULTS 

We have proposed an algorithm for image segmentation based on genetic 

programming, GPIS and presented the experimental results obtained in this chapter. 

We also provided a comparison with a well accepted GA-based image 

segmentation/classification tool, GENIE Pro and observed that GPIS performed 

much better, both in comparison with pixel-accuracy as well as cell detection rate. 

We present a reflective analysis of the results to conclude this chapter. 

GPIS works on a training-validation model; therefore, it requires a set of 

ground truths while training. Similar to [4] and [51], we implemented a training 

window which allowed the GP to choose the relative size of the training image. 

Reflected by the distinct parameter optimization seen in the values of operator 

thresholds and weights, we believe a training window approach allowed refinement 

of operators and that lead to further sharpening of parameter values. In addition, 

the training window approach is less computationally intensive and aids to increase 

the speed of the evolutionary cycle. 

Secondly, it is evident that including a factor for length of the evolved 

program in the fitness function encourages the GP to produce shorter and more 

optimal programs. As seen from the evolved programs presented earlier in the 

chapter, the average length of an optimal solution was between 6 to 11 operators. 

Although it's hard to compare algorithms based on operator length, thus far this has 
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been the lowest operator-length evolved for an efficient image segmentation 

algorithm. 

A significantly important observation can be made based on the structure of 

the evolved programs seen for the two databases. While mostly all evolved solutions 

for Database 1 worked on color images, it was seen in the evolved programs for 

Database 2 that the GP was able to adapt based on the images at hand and most of 

the processing took place in a grayscaled mode. This shows the GP's capacity to 

adapt to two different modes of image processing. 

5.4.1 ANALYSIS OF RESULTS FOR DATABASE 1 (HELA CELLS) 

The task required from the GP for Database 1 was to extract cell structures from the 

given images. This could be considered as a small object extraction problem. The 

nature of the problem in this database was relatively simpler as compared to 

Database 2 and it was evident in results also. The GP had an overall segmentation 

value of 97.01% over 28 runs and the best evolved individual produced a fitness of 

99.31% over a validation set of 100 images. It took the GP 114 generations and 

10,532 fitness evaluations to produce the best individual. At an average, the GP took 

around 122 generations and approximately 11,257 fitness evaluations to produce 

optimal individuals. In comparison to GENIE Pro, GPIS performed better, both in 

regards to fitness achieved as well as cell detection rate. The corresponding fitness 

achieved by GENIE Pro was 95.5%. As far as cell detection rate was concerned, GPIS 

was able to detect 98.98% of the cell structures present in the image as compared to 
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96.56% detected by GENIE Pro. It was observed that the evolved programs for this 

database used 6-9 operators in order to perform the segmentation. Most of the 

processing of images through the evolved programs took place in color mode. These 

results are based on 28 runs of the GP on Database 1. 

5.4.2 ANALYSIS OF RESULTS FOR DATABASE 2 (LIVER CELL SPECIMEN) 

The task of the GP for Database 2 was to extract the nuclei seen in the images. This 

was a high complexity task based on the nature of the images in question. 

Understandably, the GP took longer and more fitness evaluations to evolve optimal 

individuals. The overall segmentation accuracy achieved by the GP for this database 

was 91.12% and the best individual produced a fitness of 94.82% over 75 validation 

images. It took the GP 206 generations and 18,732 fitness evaluations to produce 

the best individual. At an average, it took the GP around 214 generations and 

approximately 19,562 fitness evaluations to produce optimal results. As compared 

to GENIE Pro, GPIS performed better on this database also. GENIE Pro produced an 

overall fitness of 85.80%. As far as the cell detection rate is concerned, due to the 

nature of images, the detection rate was slightly lower as compared to Database 1. 

The overall cell detection rate for GPIS was 89.98% as compared to 87.42% for 

GENIE Pro. The general length of the evolved programs for Database 2 was between 

6 and 11. Most of the processing of images through the evolved programs took place 

in grayscaled format. These results are based on 26 runs of the GP on Database 2. 
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CONCLUSION AND FUTURE WORK 

An automated image segmentation system, GPIS, has been described. In the 

experiments conducted, results were compared to a well accepted GA based image 

segmentation/classification tool, GENIE Pro and GPIS consistently delivered better 

results. 

At the outset, we set out to investigate the role of genetic programming as a 

viable automatic programming tool for image segmentation. Image segmentation is 

a deceptively difficult problem but of great practical importance. Thus, a possible 

automatic segmentation tool is always desirable. In the process, we used a 

primitive-operator based approach to image segmentation as every segmentation 

algorithm could be broken down into a series of basic image analysis functions or 

primitive-operators. We use GP to synthesize these primitive operators to segment 

potential objects in images. 

Our experimental results indicate the effectiveness of our approach as well as 

the sufficiency of our primitive operator pool. Further conclusions made are as 

follows: 
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1 CONCLUSIONS 

1. The GP was able to distinguish the complexity of the images provided to it. It 

evolved shorter programs for easier images as compared to difficult images. 

2. Extendibility of a primitive operator based approach is dependent on the 

validity and sufficiency of the operators. If it is desired to build a general 

purpose image segmentation tool using primitive operators, it is best to use 

basic, low-level image analysis operators. However, if such an approach 

needs to be implemented for a particular type of images, certain specialized 

operators can be added to the pool of primitives. Based on the variety of 

images we tested our GP on, we found our operator pool was sufficient and 

effective. 

3. We encouraged evolution of shorter and fitter programs. Based on a 

scalability factor included in our fitness function, we found the GP was able 

to recognize the reward based on length and effectiveness and evolved 

shorter, accurate programs. 

4. Although it is hard to compare effectiveness based on length of program with 

respect to past works [37, 47], we found the relative length of our programs 

to be the shortest amongst similar works done in the past. Since we 

implemented the algorithm on MATLAB, it is easy for an interested observer 

to base a comparison on length with our work. The evolved solutions are in a 

what you see is what you get format, thus, readily implementable. 
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5. We also found injection as a reliable means of maintaining population 

diversity. We felt adding a 20% new randomly initialized population every 5 

generations helped the search from slipping into a local optima. None of the 

runs revealed the search getting trapped into local optima. 

6. A training window approach during training phase proved to be very effective 

for operator refinement. Since training in this mode allows for using sections 

of an image instead of the entire image, sharp parameter tuning is possible. 

This can be observed especially in thresholding operations. In addition, this 

approach greatly improves computational time required for training. 

7. We also found that if a small but accurate set of ground truths is provided, 

the GP can produce accurate segmentation algorithms without inclusion of 

any a priori spatial or textural information of the images. 

6.2 FUTURE WORK 

Many observations were made during the course of this thesis. In our future work, 

we hope to investigate performance of the GPIS algorithm on other image databases, 

medical and non-medical. Most of the segmentation techniques available are 

application dependent. We have tried to make GPIS as application independent as 

possible. The nature of images in the two databases used was considerably different. 

Based on the performance of GPIS on these databases, we feel that it should be able 

to perform well on other databases also. As a prelude to this observation, we 

conducted preliminary testing on some such images. The results were promising 
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and indicate further generalization of GPIS. Some of the results are enclosed at the 

end of this chapter. 

Secondly, we hope to include automatically defined functions into the GP 

architecture. If portions of the chromosome for fitter individuals contain certain 

repeated operators, those portions can be extracted and can qualify as ADFs. This 

would lead to an accumulation of ADFs during the progression of the evolutionary 

cycle. These ADFs can be then added to fit and relatively fit individuals in the 

population as a means of improving their fitness. Based on their acceptance, ADFs 

could then be ranked and can later be used as operator sub-routines. 

Thirdly, use of competitive co-evolution can offer a different perspective to 

assigning fitness to individuals. In this case, individual fitness of programs would be 

evaluated through competition with other programs in the population, rather than 

through an absolute fitness measure. Fitness in this scenario would signify the 

relative strengths of programs; an increased fitness for one program would lead to a 

decreased fitness for another. 

Finally, we hope to add conditional jumps (IF, THEN, ELSE, CASE, SWITCH 

statements) into the function set. This would further improve its sufficiency. 

We hope that the above would allow further generalization of GPIS. 
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6.3 PRELIMINARY TESTING OF GPIS ON OTHER 

IMAGES 

We tested performance of GPIS on other images apart from the two databases used. 

The following are some preliminary results. The first two images are from the Vision 

and Autonomous Systems Center's Image Database at Carnegie Mellon University 

and the other two are from the internet. In the first set of images, we performed two 

different tasks on the same image. The first task was lane detection and the second 

task was tree detection. This can be seen in Figure 24 (a) and (b). The second task 

was to extract intra-cellular content from Wright Stained White Blood Cells. These 

preliminary results can be seen in Figure 25, (a] and (b). Ground truth for all four 

images was prepared by hand. 

(a) (b) 

FIGURE 24. PRELIMINARY RESULTS FOR: (a) LANE DETECTION (b] TREE 

DETECTION 
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(a) 00 

FIGURE 25. PRELIMINARY RESULTS FOR EXTRACTING INTRA-CELLULAR 

CONTENT OF WRIGHT STAINED WHITE BLOOD CELL IMAGES 

101 



LIST OF REFERENCES 

[ 1] D. Agnelli, A. Bollini, and L., Lombardi, "Image Classification: An Evolutionary 
Approach", Pattern Recognition Letters, 23 (1-3), 2002, pp. 303-309. 

[ 2] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic Programming: 
An Introduction on the Automatic Evolution of computer programs and its 
Applications. San Francisco, CA. Morgan Kaufmann Publishers; Heidelburg: 
Dpunkt-verlag, 1998 

[ 3] T. Belpaeme, "Evolution of Visual Feature Detectors", Proceedings of 1st 
Conference on Evolutionary Computation in Image Analysis and Signal 
Processing, 1999, pp. 1-10. 

[ 4] B. Bhanu and Y. Lin, "Object Detection in Multi-modal Images using Genetic 
Programming", Applied Soft Computing, 4 (2), 2004, pp. 175-201. 

[ 5] B. Bhanu, Y. Lin, "Learning Composite Operators for Object Detection", 
Proceedings of the Conference on Genetic and Evolutionary Computation, 
July 2002, pp. 1003-1010. 

[ 6] S. P. Brumby, J. P. Theiler, S. J. Perkins, N. R. Harvey, J. J. Szymanski, and J. J. 
Bloch, "Investigation of Image Feature Extraction by a Genetic Algorithm", 
Proceedings of SPIE, Vol. 3812,1999, pp. 24-31. 

[ 7] S. P. Brumby, S. Koch, and L. A. Hansen, "Evolutionary Computation and Post-
wildfire Land-cover Mapping with Multispectral Imagery", Proceedings of 
SPIE, Vol. 4545, 2002, pp. 174-183. 

[ 8] S. P. Brumby, N. R. Harvey, J. J. Bloch, J. P. Theiler, S. J. Perkins, A. C. Young, 
and J. J. Szymanski, "Evolving Forest Fire Burn Severity Classification 
Algorithms for Multispectral Imagery", Proceedings of SPIE, Vol. 4381, 2001, 
pp. 236-245. 

102 



[ 9] S. Cagnoni, and R. Poli, Editorial, Special issue of the EURASIP Journal of 
Applied Signal Processing on Genetic and Evolutionary Computation for 
Signal Processing and Image Analysis, April 2003. 

[ 10] J. M. Daida, J. D. Hommes, T. F. Bersano-Begey,S. J. Ross, and J. F. Vesecky, 
"Algorithm Discovery using the Genetic Programming Paradigm: Extracting 
Low-contrast Curvilinear Features from SAR Images of Arctic Ice", Advances in 
Genetic Programming II, P. J. Angeline, K. E. Kinnear, (Eds.), Chapter 21, The 
MIT Press, 1996, pp. 417-442. 

[11] J. M. Daida, J. D. Hommes, S. J. Ross, A. D. Marshall, and J. F. Vesecky, 
"Extracting Curvilinear Features from SAR Images of Arctic Ice: Algorithm 
Discovery Using the Genetic Programming Paradigm," Proceedings of the IEEE 
International Geoscience and Remote Sensing Symposium, Italy, IEEE Press, 
1995, pp. 673-75. 

[ 12] L. B. Dorini, R. Minetto, and N. J. Leite, "White Blood Cell Segmentation using 
Morphological Operators and Scale-space Analysis", Proceedings of the 
Twentieth Brazilian Symposium on Computer Graphics and Image 
Processing, 2007, pp. 294-304. 

[ 13] K. S. Fu, and J. K. Mui, "A Survey on Image Segmentation", Pattern Recognition, 
13,1981, pp. 3-16. 

[ 14] P. Ghosh and M. Mitchell, "Segmentation of Medical Images using a Genetic 
Algorithm", Proceedings of the 8th Annual Conference on Genetic and 
Evolutionary Computation, 2006, pp. 1171—1178. 

[ 15] R. C. Gonzalez, and R. E. Woods. Digital Image Processing, NJ: Prentice Hall, 
2002. 

[ 16] C. Harris and B. Buxton, "Evolving Edge Detectors using Genetic 
Programming", Proceedings of the First Annual Conference on Genetic 
Programming, MIT Press, 1996, pp. 309-314. 

[17] N. R. Harvey, S. Perkins, S. P. Brumby, J. Theiler, R. B. Porter, A. C. Young, A. K. 
Varghese, J. J. Szymanski, J. ]. Bloch, "Finding Golf Courses: The Ultra High Tech 
Approach", EvoWorkshops, 2000, pp. 54-64. 

[ 18] N. R. Harvey, S. P. Brumby, S. Perkins, J. Theiler, J. J. Szymanski, J. Bloch, R. B. 
Porter, M. Galassi, A. C. Young "Image Feature Extraction: GENIE Vs 
Conventional Supervised Classification Techniques", IEEE Transactions on 
Geoscience and Remote Sensing, Vol. 40, 2001, pp. 393-404. 

103 



[ 19] F. Herrera, M. Lozano, and A. M. Sanchez, "A Taxonomy for Crossover Operator 
for Real-Coded Genetic Algorithms: An Experimental Study", International 
Journal of Intelligent Systems, Vol. 18, 2003, pp. 309-338. 

[ 20] D. Howard and S. C. Roberts, "A Staged Genetic Programming Strategy for 
Image Analysis", Proceedings of the Genetic and Evolutionary Computation 
Conference, 1999, pp. 1047—1052. 

[21] D. Howard, S. C. Roberts, and R. Brankin, "Evolution of Ship Detectors for 
SatelliteSAR Imagery", Proceedings of EuroGP'99, Vol. 1598,1999, pp. 135-
148. 

[ 22] Image Processing Toolbox User's Guide, Version 5, The MathWorks, Inc, 2006 

[ 23] K. Jiang, Q. Liao, and S. Dai, "A Novel White Blood Cell Segmentation Scheme 
using Scale-space Filtering and Watershed Clustering", Second International 
Conference on Machine Learning and Cybernetics, 2003, pp. 2820-2825. 

[ 24] T. Jiang, F. Yang, Y. Fan, and D. J. Evans, "A Parallel Genetic Algorithm for Cell 
Image Segmentation", Electronic Notes in Theoretical Computer Science, Vol. 
46, 2001. 

[ 25] M. Johnson, P. Maes, and T. Darrell, "Evolving Visual Routines", Proceedings of 
the Fourth International Workshop on the Synthesis and Simulation of Living 
Systems (Artificial Life IV), 1994, pp. 198—209. 

[ 26] K. Krawiec, D. Howard, and M. Zhang, "Overview of Object Detection and 
Image Analysis by Means of Genetic Programming Techniques", Frontiers in 
the Convergence of Bioscience and Information Technologies, 2007, pp. 779 -
784. 

[ 27] J. R. Koza. Genetic Programming: On the Programming of Computers by Means 
of Natural Selection, MIT Press, Cambridge MA, 1992 

[ 28] B. Kumar and T. Sreenivas, "Teager Energy based Blood Cell Segmentation", 
International Conference on Digital Signal Processing, Vol. 2, 2002, pp. 619-
622. 

[ 29] S. Lazebnik, C. Schmid, and J. Ponce, "Beyond Bags of Features: Spatial 
Pyramid Matching for Recognizing Natural Scene Categories", Proceedings of 
2006 IEEE Computer Society Conference on Computer Vision and Pattern 
Recognition (CVPR), Vol. 2, 2006, pp. 2169- 2178. 

[ 30] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based Learning 
applied to Document Recognition", Intelligent Signal Processing, 2001, pp. 

104 



306-351. 

[31] Q. Liao and D. Yingyang, "An Accurate Segmentation Method for White Blood 
Cell Images", IEEE Symposium on Biomedical Imaging, 2002, pp. 245-248. 

[32] N. R. Pal, and S. K. Pal, "A Review on Image Segmentation Techniques", Pattern 
Recognition, 26,1993, pp. 1277-1294. 

[ 33] C. Pantofaru and M. Hebert, "A Comparison of Image Segmentation 
Algorithms", Technical report CMU-RI-TR-05-40, Carnegie Mellon University, 
September, 2005. 

[ 34] D. L. Pham, C. Xu, J. L. Prince, "Survey of Current Methods in Medical Image 
Segmentation", Annual Review of Biomedical Eng, 2, 2000, pp. 315—337. 

[ 35] S. J. Perkins, J. Theiler, S. P. Brumby, N. R. Harvey, R. B. Porter, J. J. Szymanski, 
J. J. Bloch, "GENIE: A Hybrid Genetic Algorithm for Feature Classification in 
Multispectral Images", Proceedings of SPIE 4120, 2000, pp. 52-62. 

[ 36] C. S. Plesko, S. P. Brumby, and C. B. Leovy, "Automatic Feature Extraction for 
Panchromatic Mars Global Surveyor Mars Orbiter Camera Imagery", 
Proceedings of SPIE, Vol. 4480, 2002, pp. 139-146. 

[37] R. Poli, "Genetic Programming for Feature Detection and Image 
Segmentation", T.C. Forgarty (Ed.), Evolutionary Computation, Springer-
Verlag, Berlin, Germany, 1996, pp. 110-125. 

[ 38] R. Poli, W. B. Langdon, and N. F. McPhee (with contributions by J. R. Koza). A 
Field Guide to Genetic Programming. Published via http://lulu.com and freely 
available at http://www.gp-field-guide.org.uk. 2008, pp. 111. 

[ 39] R. Poli, "The Evolutionary Computation Cookbook: Recipes for Designing New 
Algorithms", Proceedings of the Second Online Workshop on Evolutionary 
Computation, 1996. 

[ 40] M. E. Roberts and E. Claridge, "An Artificially Evolved Vision System for 
Segmenting Skin Lesion Images", Proceedings of the 6th International 
Conference on Medical Image Computing and Computer-Assisted 
Intervention, Vol. 2878, 2003, pp. 655-
662. 

[ 41] S. C. Roberts and D. Howard, "Evolution of Vehicle Detectors for Infrared 
Linescan Imagery", EvoIASP'99 and EuroEcTel'99, Vol. 1596,1999, pp. 110-
125. 

105 

http://lulu.com
http://www.gp-field-guide.org.uk


[ 42] C Ruberto, A. Dempster, S. Khan, and B. Jarra, "Segmentation of Blood Images 
using Morphological Operators", International Conference on Pattern 
Recognition, 2000, pp. 3401-3405. 

[ 43] J. C. Russ. The Image Processing Handbook, Third Edition, Chapter 6, CRC 
Press LLC, 1998. 

[ 44] J. L. Semmlow, Biosignal and Biomedical Image Processing, MATLAB-Based 
Applications, Marcel Dekker, Inc, Chapter 12, 2004, pp. 343-374. 

[ 45] A. Song, T. Loveard, and V. Ciesielski, "Towards Genetic Programming for 
Texture Classification", Proceedings of the 14th Australian Joint Conference 
on Artificial Intelligence, 2001, pp. 461-472. 

[ 46] S.A. Stanhope and J.M. Daida, "Genetic Programming for Automatic Target 
Classification and Recognition in Synthetic Aperture Radar Imagery", 
Proceeding of the Seventh Conference on Evolutionary Programming, 
Springer-Verlag, Berlin, Germany, 1998, pp. 735-744. 

[ 47] W. Tackett, "Genetic Programming for Feature Discovery and Image 
Discrimination", In S. Forrest, editor, Proceedings of 5th International 
Conference on Genetic Algorithm, 1993, pp. 303-311. 

[ 48] T. Weise, Global Optimization Algorithms - Theory and Application. Published 
via http://www.it-weise.de, 2008, pp. 75. 

[ 49] J. F. Winkeler and B. S. Manjunath, "Genetic Programming for Object 
Detection", Genetic Programming 1997: Proceedings of the Second Annual 
Conference, 1997, pp. 330-335. 

[50] P. Winter, W. Yang, S. Sokhansanj, and H.Wood, "Discrimination of Hard-to-
pop Popcorn Kernels by Machine Vision and Neural Network", ASAE/CSAE 
Meeting, Saskatoon, Canada, Sept. 1996, Paper No. MANSASK 96-107. 

[51] M. Zhang, U. Bhowan, and B. Ny, "Genetic Programming for Object Detection: A 
Two-Phase Approach with an Improved Fitness Function", Electronic Letters 

on Computer Vision and Image Analysis 6(1), 2007, pp. 27-43. 

[ 52] Y. J. Zhang, "Influence of Segmentation over Feature Measurement", Pattern 
Recognition Letters, 16(2), 1992, 201-206. 

106 

http://www.it-weise.de

