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ABSTRACT 

Students' models of the knowledge to be learned about limits in college level 
Calculus courses. The influence of routine tasks and the role played by 
institutional norms 

Nadia Hardy, Ph.D. 
Concordia University, 2009 

This thesis presents a study of instructors' and students' perceptions of the knowledge to 

be learned about limits of functions in a college level Calculus course, taught in a North 

American college institution. 1 have modeled these perceptions using a theoretical 

framework, which combines elements of the Anthropological Theory of Didactics, 

developed in mathematics education, with a framework for the study of institutions - the 

Institutional Analysis and Development framework - developed in political science. 1 

describe the models and illustrate them with examples from the empirical data, on which 

they have been built: final examinations from the past six years (2001-2007), used in the 

studied College institution, and specially designed interviews with 28 students. While a 

model of the instructors' perceptions could be formulated mostly in mathematical terms, 

a model of the students' perceptions had to include an eclectic mixture of mathematical, 

social, cognitive and didactic norms. The analysis that I carry out shows that these 

students' perceptions have their source in the institutional emphasis on routine tasks and 

on the norms that regulate the institutional practices. Finally, 1 describe students' thinking 

about various tasks on limits from the perspective of Vygotsky's theory of concept 

development. Based on the 28 interviews that 1 have carried out, I will discuss the role of 

institutional practices on students' conceptual development. 
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INTRODUCTION 

For the overwhelming majority of students, the calculus is not a body of knowledge, 

but a repertoire of imitative behavior patterns. (Moise, 1984; cited in Tall, 1996) 

This thesis focuses on the teaching and learning of the notion of limit of a function in 

college level Calculus courses. Research in mathematics education has addressed the 

same topic at different levels of education1, based mainly on Piagetian perspectives, and 

the focus was on how a student constructs his or her own concepts and how instruction 

could help students to overcome cognitive and epistemological obstacles. With the 

incorporation of other psychological perspectives - in particular that of L. S. Vygotsky -

and of socio-cultural and anthropological frameworks to the field of mathematics 

education, there was a turn to consider teaching and learning practices as social and 

cultural practices embedded in societal, cultural and institutional contexts. Social 

interactions as constitutive factors of the learning process attracted more and more 

attention. In this shift of focus, from a constructivist or individualistic approach to a 

socio-cultural approach of the development of mathematics concepts, several authors 

pointed out the influence of institutions in the teaching and learning practices. For 

example, Chevallard's theory of didactic transposition (Chevallard, 1985) highlights the 

institutional relativity of knowledge. The framework which emerged from the theory of 

didactic transposition - the Anthropological Theory of Didactics or "ATD" (Chevallard, 

' A literature review is presented in Chapter I. 
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1999; 2002) - proposed that the object of research in mathematics education is 

institutionalized mathematical activity (Bosch et al., 2005). 

1. RESEARCH QUESTIONS 

My research questions originated in the hypothesis - born from personal experience as a 

teacher and discussions with colleagues - that "institutional" practices (where 

"institution" could mean school boards, mathematics departments, classroom, etc.), in the 

form of definitions, properties, examples and exercises appearing in textbooks and 

examinations, strongly influence what students learn about limits at college level. 

Recently, Barbe et al. (2005) have discussed the institutional restrictions imposed on the 

teacher's practices in the classroom in relation to the teaching of limits in Spanish high 

schools. My most general goal was to understand how these institutional restrictions 

reached the students - independently of the personal mediation of a teacher. 

While my research questions guided my choice of theoretical framework, they also 

mutated with the gradual incorporation of these frameworks and the posterior analysis of 

the gathered data. 

First, I considered the phenomenon through the lens of the ATD and I formulated 

my research question as "how institutional practices influence students' conceptions of 

limits of functions". My intention was to describe the practice of teaching limits of 

functions in a North American college2 institution in terms of "mathematical 

2 "College" refers here to an educational institution situated between high school and university. In the 

frame of this jurisdiction, students finish high school at the age of 16. The high school curriculum in 

mathematics does not include Calculus. A first one-variable calculus course is taught only at the college 
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praxeologies", that is, organizations of typical mathematical tasks, techniques for solving 

them and discourses used to produce and justify the techniques (Chevallard, 2002: 3). My 

typology of tasks was based on a classification of questions on limits of functions used in 

the studied institution over several years, in its final examinations for the calculus course. 

The classification was guided by a generalization of the mathematical features of these 

tasks. I was interested in identifying the influence of these mathematical praxeologies on 

students' conceptions of limits of functions. For this, I designed a "task-based interview" 

(Goldin, 1997) that consisted of three parts. Because the typical mathematical tasks that I 

have identified when characterizing the institutional praxeologies are all of the type "find 

the limit" of some given function, the focus of the interview was on limit finding tasks. 

In the first part, the students were asked to classify 20 limit expressions according to a 

rule of their choice. In the second part, the students were asked to find limits that 

resembled those appearing in final examinations - routine tasks - but differed from them 

on the conceptual level. In the third part, the students were asked to find limits that did 

not resemble the routine tasks. All along the interview, the students were asked to think 

aloud and I followed a flexible script containing different questions and interventions that 

aimed at better understanding what students' techniques and justifications were. While 

conducting these interviews with college level students, I realized that their implicit 

models were quite different from the institution's praxeologies that I have identified. 

They were not so "purely mathematical"; their structure was much more complex and 

eclectic. 

level, in academically oriented (as opposed to vocational) programs leading to studying science, 

engineering, mathematics or computer science at the university level. 
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In my research, I was expecting, assuming even, that there is difference between 

the scholarly knowledge related with limits of functions and the knowledge to be taught, 

and that the knowledge to be learned is usually only a subset of the knowledge to be 

taught, which is yet distinct from the knowledge actually learned by the students. These 

distinctions are predicted in the theory of didactic transposition (Chevallard, 1985) and its 

subsequent refinements (see for example Barbe et al., 2005, and Bosch et al., 2005). I 

intended to explore the interactions amongst these different types of knowledge. 

However, looking at these interactions through the lens of institutional praxeologies, 

brought out the difference between the mathematical perspective on what is to be learned 

and the learners' perspective on what is to be learned. Epistemologically, "knowledge to 

be learned" may be a well-defined object. From an anthropological point of view, 

however, its unity breaks down into distinct praxeologies, different for students and for 

teachers. These differences are not only structural: while it seemed possible to label the 

institutional praxeologies as "mathematical", the students' praxeologies were of much 

more heterogeneous nature, involving a mixture of mathematical, social, cognitive and 

didactic norms. 

After several transformations through the interactions with the theory and the 

observed data, the main research question took its final form: 

How institutional practices influence students' perceptions of the knowledge to be 

learned about limits of functions at college level? 
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In order to address this question, I had to consider other associated questions: 

• What is an institution and what does it mean that a practice is institutionalized? 

• What is the institutional model of the knowledge to be learned about limits of 

functions at college level? 

• What are the students' models of the knowledge to be learned? How are these 

models related with students' mathematical capabilities to deal with the task of 

finding limits? 

To address these questions, I incorporated a framework for institutional analysis 

developed in political science - the Institutional Analysis and Development framework 

("IAD"; Ostrom, 2005; Sierpinska, 2008) - and Vygotsky's theory of concept 

development. In the IAD framework it is clearly defined what an "institution" is, together 

with the notions of "participant", "position", "rules", "norms" and "strategies". From this 

perspective, I was able to distinguish institutionalized practices from practices in general. 

Based on this distinction, I was able to conceptualize the differences between instructors' 

and students' spontaneous models of the knowledge to be learned about limits at college 

level. My analysis shows that students' models are based on norms and habit rather than 

on mathematical rules and strategies and that this situation is not challenged by the 

instructors' models. Using Vygotsky's theory, I was able to characterize the modes of 

thinking that students were using when dealing with the task of finding limits. These 

modes of thinking were a way of measuring students' cognitive development in the 

context of limit finding tasks. The Vygotskyan perspective allowed me to present a 
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discussion of how social interactions - in this case, students' interactions with the 

institution, mediated by the institutional praxeologies - may interfere with students' 

acquisition and consolidation of the limit concept. 

Among the many questions and reflections that were triggered by the obtained 

results and the relation of these results with previous research, I would like to highlight 

two of them - 1 discuss them in detail in Chapter 6. 

• If students' spontaneous models of the knowledge to be learned about limits 

do not correspond purely to mathematical knowledge, to what other types of 

knowledge do they correspond? 

• Within the framework provided by Vygotsky's theory of concept 

development the interviewed students were using mostly a complexive 

mode of thinking, which is not scientific thinking, and thus, it is not 

mathematical thinking. What would be the types of tasks that could foster 

the conceptual mode of thinking in relation to the type of task "find the 

limit"? 

2. THE STRUCTURE OF THE THESIS 

This thesis is structured as follows. The next chapter (Chapter 1) contains a review of the 

literature related with the present research. In Chapter 2, I present the theoretical 

framework used in the research. In Chapter 3, I describe the methodology and research 

procedures. In Chapter 4, a model of instructors' spontaneous models of the knowledge 

to be learned about limits is described. Chapter 5 is divided into four sections. In the first 
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three sections, I analyze the three different parts of the interviews and build partial 

models of students' spontaneous models of the knowledge to be learned about limits. In 

section four, these partial models are combined to derive a general model of students' 

spontaneous models of the knowledge to be learned about limits at college level. The last 

chapter (Chapter 6) is divided into four sections. In the first one, I present the conclusions 

derived from the models that I have built of instructors and students' spontaneous 

models. In the second section, I discuss the results in the context of previous research. In 

the third section, the conclusions are summarized. Finally, I discuss some perspectives 

for future research. 
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CHAPTER 1 

LITERATURE REVIEW 

SI: Ok, well. Because if I put it in I get nothing, well, I get twenty one over zero. Then 

if I factor it out it doesn 't give me anything different, like you can't cross anything out. 

But then... I am trying to remember, back to Cal I, all the different steps you could do. 

[I am trying to remember] the methods. There was always first you try to factor and 

cross out anything that you can. Then... (Student SI thinking aloud while dealing with 

v2-4 the task of finding ]jm .) 
^ 5 * - 25 

Literature on teaching and learning of Calculus, often related to the notion of limit, is vast 

and it would not be possible to review all of it within the frame of this thesis. 

Comprehensive reviews of research concerning the teaching and learning of post-

secondary mathematics, with references to Calculus, have been regularly published in 

handbooks of research in mathematics education (e.g., Tall, 1992a; 1996; Harel et al., 

2006; Artigue et al., 2007). 

Therefore, this review will focus on situating my research within the evolution of 

the mathematics education research domain. In the second section, I discuss in more 

depth the theoretical perspectives that have been used in the past to study teaching and 

learning of limits. In the last section, recent research that is of particular relevance to this 

thesis is presented. 
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1 .1 THIS THESIS IN THE CONTEXT OF THE EVOLUTION OF 

THEORETICAL PERSPECTIVES IN THE MATHEMATICS 

EDUCATION DOMAIN 

In the Second Handbook of Research on Mathematics Teaching and Learning, Artigue et 

al. (2007) distinguish four perspectives in research on teaching and learning of post-

secondary mathematics: 

• cognitivist perspectives; 

• socio-historical or epistemological perspectives; 

• embodied cognition perspectives; and 

• institutional practices perspectives. 

Research on teaching and learning of post-secondary mathematics during the 1980s 

and early 1990s was influenced by psychology (especially Piaget's work and cognitive 

constructivism with its focus on cognitive conflicts) and epistemology (especially the 

notion of epistemological obstacle proposed by Bachelard (1938), and discovered for 

mathematics education by Brousseau (1997)). The book Advanced Mathematical 

Thinking, published in 1991, is a good reflection of the state of the domain at the time. 

The focus of research on teaching and learning mathematics at the post-secondary level 

was then on identifying cognitive conflicts and epistemological obstacles and 

characterizing the mental processes by which mathematical concepts are conceived and 

learned. Learning post-secondary mathematics was studied in those aspects that made it 

similar to (a) the spontaneous cognitive development of intelligence from childhood to 



adolescence, and (b) the work of research mathematicians. Therefore, learning a 

particular mathematical concept was described in terms of "developmental stages" and 

the various tentative conceptions that appeared in the history of mathematics. These 

notions of "development" and "tentative conception" suggest progress and overcoming 

the limitations of a previous conception to go further towards a better conception, perhaps 

more general, more applicable, without some unnecessary assumptions. Whence the 

importance of the concepts of "cognitive conflict" and "epistemological obstacle" in this 

perspective of learning. 

Different theoretical frameworks supported research in this direction, e.g., the 

notions of concept image and concept definition (Tall and Vinner, 1981), the process-

object duality (Dubinsky, 1991; Sfard, 1991), or the notion of epistemological obstacle 

(Brousseau, 1983; Comu, 1983; Sierpinska, 1985; 1990). 

The 1990s brought about the realization of the importance of the social, cultural 

and institutional aspects of learning mathematics at school. There was a shift from 

paradigms of constructivist cognition towards socio-cultural and anthropological ones 

(Lerman and Sierpinska, 1996). Cognitive and epistemological analyses could not always 

explain students' behavior in front of mathematical tasks. These perspectives were 

efficient to describe students' behavior in situations of discovery: students were taken out 

of the classroom and given problems that required mathematical concepts that they had -

not been taught at school yet. Cognitive and epistemological factors become insufficient 

to describe students' behavior in relation with mathematical tasks and mathematical 

knowledge that have already been presented to them in a social, cultural and institutional 

context. In the cognitivist perspectives, students are considered only as cognitive 
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subjects. Most of the time, however, even when learning mathematics, people respond to 

the world as subjects of various institutions, participating in practices they only partially 

understand, seeking to survive and make the best of their living. One could say that 

cognitive and epistemological obstacles afflict the theoretical mind, the scholar seeking 

the truth (in brief, the Homo Sapiens). But if we don't take into account the fact that the 

learner is not only Homo Sapiens, but also Homo Economicus and Homo Institutionalis, 

then his or her behavior may appear inconsistent to us. For example, students asked to 

compare 0.9999... and 1, and then to calculate the sum ^ 9 / 1 0 " , would answer that 

n 

0.9999... < 1, but these same students would correctly answer that the sum is 1 (Artigue 

et al., 2007: 1014). Different explanations have been proposed for this inconsistent 

behavior. These explanations often rely on the process/object duality: Students are bound 

to a process view of the symbolic notation 0.9999..., and this view prevents them from 

seeing beyond the infinite process whose terms are all less than 1. When asked the second 

question, they recognize the geometric series and apply the formula they know to 

calculate the sum, thus getting the right answer. These explanations are given, however, 

in abstraction from the socio-cultural or institutional context in which the questions were 

posed. A reasonable research question would be, for example, whether these students' 

recognition of the geometric series is determined only by the individual mental process 

put in motion when learning the associated mathematical concepts. 

Within this context, some authors presented theoretical constructs that combined 

cognitive psychology with socio-cultural frameworks (e.g., Cobb and Yackel, 1996). In 

describing the necessity of a synthesis of socio-cultural and cognitive perspectives, Wood 

et al. (1995) wrote: "It is useful to see mathematics as both cognitive activity constrained 
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by social and cultural processes, and as a social and cultural phenomenon that is 

constituted by a community of actively cognizing individuals" (p. 402). Other authors 

developed theoretical frameworks taking into account the socio-cultural context but 

distancing themselves from the cognitive and socio-constructivist perspectives. This is 

the case of Godino's onto-semiotic approach (Godino et al., 2005), or the work of 

Cantoral and Farfan (2003). These authors were most likely inspired by Chevallard's 

theoretical frameworks, starting from his theory of didactic transposition (Chevallard, 

1985) and developing into a broad framework for thinking about and studying 

institutionalized mathematics teaching and learning, now called Anthropological Theory 

of Didactics (Chevallard, 1999; 2002). 

Despite their differences, all these approaches share the common view that 

mathematical objects emerge from human practices, and that these practices are 

institutional and socio-cultural. Cognition is seen as emerging from these practices, and 

understanding learning processes cannot be achieved without analyzing these institutional 

practices and identifying the underlying norms and values (Artigue et al., 2007: 1016). 

In this shift of focus from cognitive constructivism to socio-cultural and 

anthropological perspectives, references to Vygotsky started to replace references to 

PiagetJ. The Vygotskyan approach assumes that mathematical concepts have already 

been historically and culturally constructed. Hence, the role of mathematical instruction 

does not consist in helping the student to construct his or her own concepts - as 

' ft was only in the late 1970s that Vygotsky's work become widely available to non-Russian speaking 

readers. It is undoubtedly the availability of his work in the West that has triggered in part the shift from the 

cognitivist perspective to a socio-cultural perspective in the domain of mathematics education. 



constructivist theory proposes - but in mediating the already culturally constructed 

concepts to the students. From this perspective, development cannot be separated from 

social contexts. Thus, Vygotsky's psychology provided a framework whereby the socio-

cultural roots of thought become internalized in the individual (Lerman, 2001: 89). 

At the turn of the present century, the embodied cognition perspective took 

relevance in the domain of mathematics education (e.g., Bazzini, 2001; Rassmussen et 

al., 2004; Brown and Reid, 2006; Edwards et al., 2009). The main references in cognitive 

science for mathematics educators working in this domain became the works of Lakoff & 

Johnson (1980); Johnson (1987), and Varela et al. (1993) on cognition in general, and 

those specific to mathematical cognition by Lakoff and Nunez (2000) and Nunez (2000). 

Attention shifted to the dependence of learning processes on the biological condition of 

human beings. From this perspective, cognition is considered as a physically embodied 

phenomenon realized via a process of codetermination between the organism and the 

medium in which it exists (Artigue et al., 2007: 1023). Although this perspective is not 

related to the work done in the present thesis, I mention it because it forms part of a 

larger movement in the mathematics education community to seek for or develop 

theoretical frameworks that could support research on teaching and learning mathematics 

in context. 

The beginning of the present century has also seen an increase of research in 

mathematics education based on approaches that take into account the institutional 

contexts (e.g., Praslon, 2000; Castela, 2004; Barbe et al., 2005; Bosch et al., 2005; 

Sensevy et al., 2005; Sierpinska et al., 2008). This is where my research is situated. 

Concern with institutional practices in the domain of mathematics education comes in the 



wake of the realization, that the evolution of post-secondary education obliges our 

research community to reconsider answers that have been traditionally given to 

fundamental epistemological issues about the nature of mathematics, and the nature of 

mathematical learning and thinking (Artigue et al., 2007: 1044). 

From the institutional perspective, mathematics learning is enabled and constrained 

not only by the human ability to develop complex mental structures and by what and how 

the human body allows us to perceive and communicate, but also by the social and 

cultural fact that this learning, today, takes place in educational institutions and within 

their special institutional practices. What I have learned from my research, however, is 

that not all institutional practices are institutionalized, and that the non-institutionalized 

aspects of these practices may have a very real, and not necessarily positive, impact on 

students' mathematics learning. This realization required a more precise 

conceptualization of "institution". In the existing literature in mathematics education, the 

term "institution" has been mostly used in a very wide sense, including any kind of 

formal or informal structure that organizes or conditions our social and cultural activities 

(ibid., p. 1025). Castela (2004) acknowledged this fact and discussed some issues related 

to the notions of institution, position, and regulation, without, however, providing a 

theoretical framework. It is in the work of Sieipinska et al. (2008) - reporting on the 

institutional constraints implicated in the sources of students' frustration in pre-requisite 

mathematics courses - that a theoretical framework for institutional analysis in 

mathematics education was proposed. The framework contains a definition of the notion 

of institution and a description of its regulatory mechanisms. I have used this framework 

in my research, showing, in particular, how an investigation of the mechanisms that 



regulate institutional practices may contribute to understanding the role played by these 

practices in students' learning of mathematics. 

In the next section, I briefly overview some of the past research on the teaching and 

learning of the mathematical topic with which this thesis is concerned, namely finding 

limits of functions. 

1.2 COGNITIVE AND EPISTEMOLOGICAL PERSPECTIVES ON 

LEARNING LIMITS 

Students' difficulties with limits have been the object of many studies in mathematics 

education. Some researchers have revealed students' spontaneous representations of 

limits (e.g., Hitt and Lara-Chavez, 1999; Fischbein, 2001; Mammona-Downs, 2001; 

Przenioslo, 2004; Hitt, 2006; Hah Roh, 2008); others couched their findings in terms of 

cognitive and epistemological obstacles (e.g., Sierpinska, 1985; Davis and Vinner, 1986; 

Sierpinska, 1987; Sierpinska, 1990; Cornu, 1991). Sources of students' difficulties with 

limits have been sought in the logical intricacies of the definitions of limits (e.g., 

Dubinsky and Yiparaki, 2000), as well as in language and semiotic representations (e.g., 

Monaghan, 1991; Richard, 2004; Hahkioniemi, 2006), etc. Some studies tried to 

capitalize on the accumulated knowledge about learning limits and experimented with 

developing teaching strategies to help students overcome some of the identified obstacles 

or common misconceptions (e.g., Tall and Schwarzenberger, 1978; Mammona-Downs, 

2001; Kidron and Zehavi, 2002; Przenioslo, 2005; Grugnetti et al., 2006). 

With a few exceptions (see Selden and Selden, 2005), a large amount of the 

research in the teaching and learning of limits has been conducted from cognitive and 
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epistemological perspectives (Harel et al., 2006). Different theoretical constructs 

supported research in this direction, e.g. procept theory (Gray and Tall, 1994), APOS 

theory (Asiala et al., 1996; 1997; Cottrill et al., 1996), or the notion of epistemological 

obstacle (e.g., Sierpinska, 1990; Cornu, 1991). 

Within the cognitive or epistemological perspectives, authors investigating the 

teaching and learning of limits were concerned with students' intuitions of limits, prior to 

formal teaching and learning, that is, with students' concept acquisition in abstraction 

from the institutional context. For example, Sierpinska (1990) proposes a method of 

performing an epistemological analysis of a given mathematical concept: 

1. Take one or more sentences that define the concept. 

2. Ask for their sense: WHAT DO THE SENTENCES SAY? 

3. Ask for their reference: WHAT DO THEY TALK ABOUT? 

4. This will give a map of things to understand. 

5. Then define acts of understanding / overcoming obstacles required to understand those 

things. 

The method itself exemplifies this idea of studying "concept acquisition in 

abstraction from the institutional context". Using this method on the example of the 

concept of convergent sequence, Sierpinska identifies 25 acts of understanding, which 

are, for the most part, also acts of overcoming relevant epistemological obstacles. For 

example, one of the acts of understanding is: _ 

Synthesis of discussion around the problem of reaching the limit in the light of the formal definition 

of limit; awareness that the formal definition of limit avoids raising this problem and is acceptable 

within many different conceptions of infinity, (ibid., p. 35) 
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This last condition of understanding limits shows the difference between 

Sierpinska's approach to epistemological obstacles and some other researchers'. For 

example, Comu (1991) mentions the conception "limit cannot be reached" as an obstacle, 

which can be overcome by realizing that "sometimes limit can be reached". In the 

analysis of Sierpinska, both of these conceptions are obstacles. Overcoming both consists 

in the realization that from the presently accepted definition of limit it doesn't even make 

sense to raise the question of "reaching" or "not reaching" because all the dynamics and 

motion have been evacuated from the concept of variable in its formulation. 

The perspective taken by Cornu (1991) places the source of epistemological 

obstacles concerning limits in the historic development of the limit concept and then he 

addresses the problem of tracing their transmission in the educative practices. Sierpinska 

(1990; 1994), on the other hand, investigates the cultural roots of epistemological 

obstacles. For this, she considers the three types of cultural consciousness introduced by 

Hall (1981): "formal", "informal", and "technical". 

The ' formal ' level is the level of traditions, conventions, unquestioned opinions, sanctioned customs 

and rites that do not call for justification. The transmission of this level of culture is based on direct 

admonition, explicit correction of errors without explanation (don't say "I goed", say "I went"). [ . . . ] 

The informal level is the level of the often unarticulated schemes of behavior and thinking. Our 

knowledge of typing or skiing [ . . . ] belongs to this culture if we do not happen to be instructors of 

these skills. This level of culture is acquired through imitation, practice and participation in a 

culture, and not by following a set of instructions. (Sierpinska, 1994: 161) 

In the context of mathematical culture, the "formal" level corresponds to beliefs, 

convictions and traditions about the nature and subject of mathematics, and the legitimate 

tools and methods for mathematical work. The "informal" level corresponds to schemes 
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of action and thought, unspoken ways of doing things or thinking that result from 

experience and practice: this is often called "tacit knowledge". 

At the 'technical' level, knowledge is explicitly formulated. This knowledge is analytical, aimed to 

be logically coherent and rationally justified. (Sierpinska, ibid., p. 162) 

Hence, this "technical" level corresponds, in the context of mathematical culture, to 

the explicit knowledge of techniques mathematically explained by theories widely 

accepted by the community of mathematicians. In a "formal" or "technical" way, we can 

acquire certain knowledge about mathematics, e.g., algorithms, methods of proof, solving 

some typical problems. It is only on the "informal" level, however, working with 

mathematicians, through imitation and practice, that we can become creative in 

mathematical thinking - learning to pose sensible questions, to propose generalizations, 

to synthesize concepts, to explain and to prove (ibid., p. 165). 

Epistemological obstacles are culturally rooted in the "formal" and the "informal" 

levels. At the "formal" level, our understanding is grounded in beliefs; at the "informal" 

level - in schemes of actions and thought; at the "technical" level - in rationally justified, 

explicit knowledge. 

In Chapter 6,1 discuss a relation between these three levels of consciousness in the 

context of mathematical culture and my findings concerning students' behavior in front 

of typical finding limit tasks. 

As an introductory remark for the next section, Jet me observe that research on the 

teaching and learning of limits based on cognitive perspectives has highlighted a 



conceptual-procedural dichotomy (Cottrill, 1996; Tall, 2006) in relation with the mental 

processes involved in the acquisition of the limit concept. In the section that follows, I 

overview research that shows a conceptual-procedural dichotomy in the institutional 

practices related to the teaching of limits. 

1 .3 A CONCEPTUAL-PROCEDURAL DICHOTOMY IN EDUCATIVE 

PRACTICES RELATED TO LIMITS 

At the college level, topics related to limits are not necessarily associated with the limit 

concept or its formal definition. On the one hand, there is dissociation among intuitive 

ideas, the formal definition and the techniques in the college level Calculus textbooks 

(Lithner, 2004; Raman, 2004). In many of these textbooks, the e-5 (s-N) definition is 

presented in a different section than that in which the intuitive ideas about limits are 

discussed, and that in which the algebraic calculations for finding limits are presented4. 

The sections of these textbooks that present algebraic techniques for finding limits are 

self-contained. This phenomenon extends to other areas of Calculus in which the limit 

concept is essential. For example, Raman (2004) observes the non-use of the s-5 

definition of limits in the treatment of continuity in college level Calculus textbooks. At 

college level, the components textbook - curricula - exams can be taken as a reflection of 

what students are studying and what educational institutions are expecting students to 

learn. In this sense, exercise sets in textbooks contain exercises that students are expected 

to solve. Lithner's research (2004) shows that at least 90% of those exercises can be done 

4 See for example: Larson, R., Hostetler, R. P. and Edwards, B. H. 'Calculus of a single variable', 8Ih 

Edition, Houghton Mifflin Company; and Stewart, J. 'Calculus. Early transcendentals. Single variable', 5 lh 

Edition, Thomson - Brooks/Cole. Lithner (2004) analyzed other three college level Calculus textbooks. 



by searching the text for methods. Therefore, students may develop strategies where the 

question "which method should be applied?" is immediately asked, instead of first trying 

to reach a qualitative representation of the task and base the solution attempt on the 

intrinsic mathematical properties of the components involved5 (ibid. p. 426). Lithner 

discusses the impact that these routine practices have on students' problem solving 

behavior. He argues that these practices may foment a narrow type of reasoning in which 

the only strategy to tackle a problem is to search for similarities with other problems 

already seen and the resources that may be developed are restricted to surface 

mathematical areas (ibid. 424). These assertions are based on a previous empirical study 

(Lithner, 2000) in which students were asked to solve two problems that were neither 

purely routine nor completely non-routine tasks. Lithner (2000; 2004) considers the four 

categories provided by Schoenfeld (1985) to analyze students' problem solving behavior: 

resources, heuristics, control, and beliefs. The study presented in this thesis has points of 

contact with Lithner's research in the sense that it studies the influence that routine 

practices on final examinations have on students' learning and understanding (of limits). 

In chapter 6,1 discuss the relations between Lithner's findings and mine. 

On the other hand, research indicates that (at high-school and pre-university level) 

the teaching of the formal definition and its uses is dissociated from the teaching of 

"finding" limits (Barbe et al., 2005). In their paper, Barbe et al. discuss the restrictions 

imposed by an atomized curriculum on the teacher's practice. That is, they investigate the 

restrictions imposed by the knowledge to be taught as defined in curricular documents on 

the knowledge actually taught by the teacher in the classroom. Using the Anthropological 

Lithner (2004) characterized 598 exercises taken from three different Calculus textbooks. 



Theory of Didactics as theoretical framework, they show that, on the one hand, the 

didactic organization of the teaching of the limit definition consists only of a theoretical 

block; a practical block consisting of tasks and techniques is missing. On the other hand, 

the didactic organization of the teaching of the algebra of limits consists only in a 

practical block - tasks and techniques - and the corresponding theoretical block is 

missing. In my research, I analyze a different type of knowledge, namely knowledge to be 

learnecf. One of my goals is to identify the theoretical blocks and the practical blocks 

pertaining to this type of knowledge. For this, I considered problems traditionally 

proposed in final examinations, and I characterize knowledge to be learned based on 

these problems and the solutions that instructors expect students to provide. In Chapter 6 

I discuss the relations between Barbe et al.'s results and mine. 

As pointed out above, at the college level, the components textbook - curricula -

exams can be taken as a reflection of what students are studying and what educational 

institutions are expecting students to learn. Lithner's work focuses on textbook 

presentation of the limit concept. Barbe et al.'s work addresses issues concerning the 

curricular presentation of limits. My research focuses on the tasks proposed in final 

examinations together with the types of solutions that students are expected to present. As 

it will be discussed in Chapter 6, the combined results present strong evidence of the 

negative influence of institutional practices - observed in three different countries - on 

students' and teachers' practices related to the limit concept. 

6 Definitions of these types of knowledge are given in the next Chapter; let me only briefly say here that 

know ledge to be learned refers to the knowledge that the institution expects students to know. 
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CHAPTER 2 

THEORETICAL FRAMEWORK 

S5: Well, when 1 was kind of in the Cal 1 type of thinking mode, I would see that minus 

one is like a barrier, like the limit is a barrier. But, now, that I haven't touched it for a 

couple of months, I see it as a very mechanical thing: find the answer, cancel out, plug 

in. I don'/ see it visually anymore because I am not in the Cal I mode. (Student S5 

(x - 3)(x -1) explaining what the expression ]im- — = — 1 means for him.) 

This chapter starts with an overview of theories that have been used to conceptualize the 

research described in this thesis, and interpret its results. 

From an epistemological point of view, according to the theory of didactic 

transposition (Chevallard, 1985), any didactic phenomenon involves the production, 

teaching, learning and practice of some mathematical activities. The form of these 

activities depends on the process of didactic transposition, that is, the changes that a body 

of knowledge has to go through to become knowledge that can be taught and learned at 

school. Considering Chevallard's original distinctions and subsequent refinements (e.g. 

Barbe et al., 2005, and Bosch et al., 2005), we can analyze school mathematics as 

composed of several kinds of knowledge: 

scholarly knowledge, understood as knowledge produced by professional 

mathematicians; 

knowledge to be taught, described in curricular documents; 
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knowledge actually taught which can be gleaned from the teachers' classroom 

discourse and the tasks he or she prepares for the students; 

knowledge to be learned, which can be a subset of the knowledge to be taught or 

of the knowledge actually taught and whose minimal core can be deduced from the 

assessment instruments; and 

knowledge actually learned, which can be derived, to a certain extent, from 

students' responses to tasks, clinical interviews, observations of students' behavior 

in and out of class in specially designed problem solving situations. 

This framework, called the Anthropological Theory of Didactics (ATD; Chevallard, 

1999; 2002) provides an epistemological model to describe mathematical knowledge as 

one human activity among others, as it is practiced in various institutions (research 

mathematics; applied mathematics; engineering; school mathematics at different 

educational levels; mathematics teacher training institutes, etc.). The model proposed by 

ATD states that any mathematical knowledge can be described in terms of a 

mathematical organization, or a praxeological organization of mathematical nature also 

called "mathematical praxeology". Mathematical praxeology is a special case of the 

praxeology of any activity, which is defined as a system made of four main components: 

a collection T of types of tasks which define (more or less directly) the nature and 

goals of the activity; 

a corresponding collection T of techniques available to accomplish each type of 

tasks; 

a technology 0 that justifies these techniques; and 
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a theory 0 that justifies the technology. 

The term "technology" is understood as the logos or the discourse about the 

techniques, which allows the practitioners to think of, about, and out the techniques. A 

technology can be a framework of concepts, procedures and rules for applying them. The 

theory 0 provides a coherent system in which these concepts are defined and rules and 

procedures are justified. The subsystem [T, x] corresponds to the know-how, and is called 

the practical block of the praxeology; the theoretical block [8, @] describes, explains and 

justifies the practical block. The theoretical block makes it possible to preserve the 

activity as a practice and to communicate it to others, so that they, too, can participate in 

it. This suggests that there is a didactic intention in any cultural practice (if there are no 

means to teach and therefore perpetuate an activity, it cannot become part of a practice), 

whence the word "didactic" in the name of the theory. 

From the perspective of ATD, the object of research in mathematics education is 

institutionalized mathematical activity (Bosch et al., 2005). This implies the need to 

define clearly the institutions taken into account in a study of a didactic phenomenon. For 

example, in studying the teaching of limits of functions in Spanish secondary schools, 

Barbe et al. (2005) consider the following institutions: the mathematical community, the 

educational system, and the classroom. To this list, "in their exposition of the ATD 

perspective, Bosch et al. (2005) add "the community of study" (e.g. students of all 

sections of a course) whose status as an institution is perhaps less obvious. Yet, my own 

research made me realize how very real this institution can be. 



My research questions, originally triggered by my experience of teaching college 

level Calculus courses, took their actual form based on the notions defined and discussed 

by the ATD framework (see the introduction, page 5). To answer these research 

questions, my first idea was to describe instructors' and students' mathematical 

praxeologies for finding limits of functions. An analysis of students' behavior in the task-

based interviews made me realize, however, that students' praxeologies do not qualify as 

mathematical praxeologies. They were made of heterogeneous elements, some 

mathematical and some not. The techniques, technologies and theories incorporated a 

mixture of social, cognitive, didactic and mathematical rules and norms. 

In ATD, the term "institution" is treated as a "primitive term" and is therefore not 

defined. This may not be a problem in research where the institutional status of the 

studied social practices is not questioned. Such is not necessarily the case in my research, 

and 1 felt the need to base my claims about this or that practice being institutionalized, 

and distinct from another institutionalized practice, on some theoretical foundations. In a 

tentative manner, 1 have tried to combine ATD with a framework for "institutional 

analysis and development" (known under its acronym IAD, Ostrom, 2005). IAD has 

already been used in combination with ATD in the study of students' frustration in 

prerequisite mathematics courses (Sierpinska et al., 2008). In that work, it was assumed 

that an institution is an organized action whose aim is to achieve certain outcomes (an 

IAD term) or fulfill certain tasks (an ATD term). The organization defines who are the 

participants, what positions they can occupy with respect to the tasks and outcomes, and 



what rules, norms and strategies7 (IAD terms) or techniques (ATD term) will regulate and 

make possible the accomplishment of the tasks. These means of regulation require a 

specific set of discourses to be conceived of and communicated to others. The discourses 

can be analyzed into "technologies" and "theories", as in ATD. 

ATD, with its lack of precision regarding the notion of institution, is unable to 

make an explicit distinction between institutionalized practices and practices in general. It 

does not distinguish between rules and norms. Both these regulatory mechanisms are 

covered under the term "technology". In my study, however, this particular distinction 

turned out to be very important. It became important because it allowed me to 

conceptualize the difference between the students' models of the knowledge to be learned 

and models of this knowledge constructed from other positions in the College Calculus 

institution (classroom instructors, members of the curriculum committee, members of the 

final examination committee, etc.). 

It is precisely the non-institutionalized or weakly institutionalized layer of norms 

that generates the variety of the spontaneous models8 co-existing within an institution. 

The distinction between rules and norms, afforded by the IAD framework, allowed 

me to explain, in the particular case of the institution I was studying, the difference 

' In section 2.1 I present the exact definition of rules, norms and strategies from the perspective of the IAD 

framework. 

s In this research, the terms 'spontaneous' or ' implicit ' models are used in the sense given to these terms in 

the Institutional Analysis and Development framework (Ostrom, 2005) and refers to the 'spontaneous ' 

model of behavior developed by a participant of an institution (see Section 2.1). 



between the mathematical praxeologies and the students' praxeologies representing the 

knowledge to be learned. 

Therefore, I felt compelled to use a combination of the ATD and IAD frameworks, 

in a complementary way, since the two do not contradict each other, but rather throw 

light on different aspects of the institution I was looking at. 

However, while analyzing students' behavior in the task-based interviews, from the 

perspective of the ATD and IAD frameworks, I arrived at the conjecture that institutional 

practices were, in some sense, inhibiting students' development of mathematical thinking. 

This idea is related to cognition and so I turned to theories of conceptual development, 

looking for analytical tools that could help in framing my conjecture. Vygotsky's theory 

of concept development (1987) seemed appropriate because it focuses on the 

development of scientific (and not everyday) concepts, which is certainly the case of 

limits, and (unlike the Piagetian theory) it attributes a primary role to the socio-cultural 

factors in the development of scientific concepts. According to Vygotsky, the 

development of scientific concepts does not happen naturally, but must be pulled by 

instruction. In the case I am studying, the notion of limit is introduced to students 

explicitly by name, definitions and properties, and not through spontaneous interactions 

with an environment. The level of cognitive sophistication at which students' learn this 

concept depends on the tasks they are challenged to engage with. 

Vygotsky's theory of concept development describes the genesis of concepts from 

early childhood to adolescence. It distinguishes several stages in the development of 

concepts, each characterized by a specific mode of thinking (Vygotsky, 1987: 134-166). 
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This theory functioned as a structuring framework in my analysis of students' cognitive 

behavior in the interviews: I would be describing a student's thinking about various tasks 

on limits in terms of the Vygotskyan modes of thinking. In discussing the role of 

institutional practices in students' conceptual development, another Vygotskyan concept 

became quite useful, namely the concept of "zone of proximal development" (ZPD; 

Vygotsky, 1987: 212). ZPD is the domain of potential development, or the range of tasks 

the learner can perform with some help of the teacher. The often-quoted related 

Vygotsky's words are the following: 

Instruction is only useful when it moves ahead of development. When it does, it impels or wakens a 

whole series of functions that are in a stage of maturation lying in the zone of proximal 

development. This is the major role of instruction in development. (Vygotsky, 1987: 212) 

In mathematics education, researchers taking the socio-cultural perspective on the 

processes of learning and teaching assume that the general pattern of learning a new 

mathematical concept or domain is similar to the Vygotskyan pattern of stages of 

conceptual development. They also assume that instruction, to be effective, must go 

ahead of this development, stretching, as it were, the boundaries of the learner's zone of 

proximal development (Sierpinska, 1994: 143). However, when Vygotsky's theory of 

stages of development is applied to studying a mathematical concept in secondary school 

students and older, the model will apply only to the stages of development of this 

particular concept, and not to the general cognitive abilities of the students. The students 

may be capable of conceptual thinking at the highest stage in one domain, but not in 

another domain that they only start to study. 



In the following two sections of this chapter, I outline the details of the IAD 

framework and Vygotsky's theory of concept development, as they have been applied in 

my research. 

2 . 1 A FRAMEWORK FOR INSTITUTIONAL ANALYSIS 

The IAD framework defines institutions as prescriptions humans used to organize all 

forms of repetitive and structured interactions. Individuals interacting within rule-

structured situations face choices regarding the actions and strategies they take, leading to 

consequences for themselves and for others (Ostrom, 2005: 3). In this sense, institutions 

are rw/e-structured organizations within which humans repeatedly interact to achieve 

certain goals. Thus, individuals are the basic component of an institution, but on top of 

these individuals are structures composed of multiple individuals, and these structures 

may be composed of many parts and, in turn, parts of still larger structures. We have 

institutions within institutions. What is a whole system at one level is part of a system at 

another level. For example, a Mathematics Department is an institution within a larger 

institution which can be the faculty of Arts and Sciences, itself a sub-institution in a 

university. Another example is a committee that prepares the final examinations of a 

Calculus course as an institution within the larger institution of a Mathematics 

Department within a College institution. 

The definition of institution proposed by the IAD framework highlights the 

importance of the notion of rule. IAD shaiply distinguishes between rules, norms and 

strategies. It is the existence of rules, which contain sanctions against those who break 

them, that distinguishes institutionalized practices from practices in general. Practice, in 



general, is based on norms and strategies. Norms do not have to be precise or even 

explicit, like rules. Newcomers into a practice get to know there is a norm, when they 

inadvertently transgress it and experienced practitioners tell them, "that's not how we 

normally do things here". 

Formally, I use the following criteria, extracted from Ostrom (2005: 16, 17), to 

distinguish among rules, norms and strategies. 

Strategy denotes an individual's plan of action for accomplishing a task or 

achieving a goal; an example of strategy can be: "when trying to find 

•Jx^-7 3 
lim start by multiplying and dividing by the conjugate of Vx + 7 - 3 ". 

x -4 

Norms are used as precepts for prudent or moral behavior; they are part of the 

generally accepted moral fabric of the community. As it will be discussed later, the 

Final-Examination institution 1 have been studying has not - not even once in the 

last six years - included a problem of finding a limit involving radicals in which the 

rationalization technique mentioned above would not apply. Thus, the sentence "to 

find the limit of a function involving radicals, start by multiplying and dividing by 

the conjugate" represents an implicitly accepted norm in this institution. 

Rules denote regulation and they are established by a recognized (legal) authority. 

Thus, mathematical theorems can be interpreted as 'rules' in the institutional sense. 

Techniques to find limits follow such mathematical rules; for example, the rule "the 
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limit of the product of a function tending to zero by a bounded function is zero" is a 

basis for certain techniques of finding limits. 

Rules can be put into effect, enforced, rescinded, broken, disobeyed, changed, etc. 

None of these actions makes sense in relation to norms or strategies; norms are followed 

or not, strategies may be used or not. 

Participants of an institution are assigned - or assign themselves - to different 

available positions. These positions are associated with different actions to be taken to 

achieve certain goals. Because an institution is, by definition, an organization of 

repetitive interactions, by observing these repetitive interactions and usual outcomes 

participants construct implicit or spontaneous models for acting in the institution. These 

models are different from those constructed by an external analyst whose intention is to 

have theoretical models that would allow him or her to predict interactions and outcomes 

(Ostrom, 2005: 33). 

A major challenge in institutional analysis is to choose the appropriate level of 

analysis relevant in addressing a particular phenomenon. That level of analysis is called 

the focal unit of analysis. Once this focal unit is chosen, the analyst can zoom out from it 

to have a better understanding of the phenomenon. Zooming out could mean, for 

example, looking at the exogenous factors that affect the structure of the considered 

institutions, but also looking at how the institutions in focus are linked together either 

sequentially or simultaneously. 
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In this research, I am looking at an educational system where there is an 

intermediate institution between high school and university, called "college". I am 

particularly interested in one of the subjects taught in college, namely Calculus. The 

teaching of this subject is an institution in itself, which I call "College-Calculus". The 

course is prepared and coordinated collectively by a group of instructors, who teach the 

individual sections of the courses in classes of 25-35 students, and then collectively write 

and administer the common final examination. J could have looked at what is going on in 

particular sections and then the "classroom" would have been one of the institutions 

involved in the study. Instead, as I explain below, 1 decided to focus my analysis on two 

sub-institutions of the College-Calculus institution, which I call, "Final-Examination" 

and "Community-of-study". 

The College-Calculus institution that I study is regulated by 

© an official outline of the course, which must be endorsed by the instructors of 

all sections of the course; 

® an official textbook that most students use to practice for tests and final 

examinations (following the recommendations in the outline of the course); 

® a common final examination for all students enrolled in these courses 

prepared by an ad-hoc committee which consists of all the instructors teaching 

the course in the given semester. 

Each of these regulation mechanisms functions in the frame of an organized action, 

which is an institution in itself: a sub-institution of the College-Calculus. The institution 



that decides about the contents and competencies to be taught is not to be confused with 

the institution that prepares the final examination, or with the classroom institution. 

Members of the mathematics department are participants in all these institutions, but they 

occupy different positions in each of them (Ostrom, 2005: 18, 40). They also abide by 

different rules in each of these institutions. Being a member of the curriculum committee 

imposes other loyalties relative to mathematical knowledge than being a member of the 

final examination committee or being a section instructor who has to cope, on a daily 

basis, with many students' lack of basic mathematical skills and who is interested in 

obtaining a good average grade for his or her students. 

Using IAD terminology, I might rephrase my main research question as, "How 

institutional practices influence students' spontaneous models of the knowledge to be 

learned". From the perspective of institutional analysis, however, the notion "knowledge 

to be learned" becomes relative to the institution defining it. Thus, the definition of 

"knowledge to be learned" could be different for the curriculum institution, the classroom 

institution, or the institution in charge of preparing the final examination. Assuming that 

a core of the knowledge to be learned, as defined by the College-Calculus institution, 

could be conjectured from final examinations, I focused on analyzing the institutions that 

are immediately linked to the situation "final examination". The institutions in the focal 

level of analysis are the "Final-Examination" institution, whose participants are 

instructors of the mathematics department and students, and the "Community-of-study" 

institution, whose participants are students enrolled in all sections of the Calculus course. 

These students indeed form a community: they exchange information about what is going 

on in their respective sections; they work on assignments in small groups of students 



from different sections; they study for the common final examination together. 1 chose to 

focus on the Final-Examination institution because the only control that the College-

Calculus institution has over the knowledge to be learned is through the common final 

examinations. Hence, I decided to characterize institutional tasks related to limits of 

functions according to the tasks proposed in final examinations. I chose to focus on the 

Community-of-study institution because I wanted to characterize students' interpretation 

of the knowledge to be learned, but not in relation to a particular situation such as passing 

the final examination, or passing the class tests (for this I would have to consider students 

as participants of the Final-Examination institution or the classroom institution, 

respectively). Students are the only participants of the Community-of-study institution 

and their choice of being in this or that position is independent of individuals that, in 

other institutions, are in a position of power with respect to them. 

Sierpinska et al. (2008) considered four positions that a student could occupy in the 

institution Pre-requisite Mathematics Courses: Student - subject of a school institution 

who has to abide by its rules and norms; Client of this institution who pays for services 

and has the right to evaluate their quality; Person - member of the society at large, and 

Learner - cognitive subject. Based on these ideas and students' behavior in the 

interviews, I identified three possible students' positions in the institution Community-of-

study. I decided to use the same names for the positions as Sierpinska et al. (2008), as I 

believe they reflect the same behavior. 



Student: the participant in this position abides by the rules and norms of the 

College-Calculus institution addressed to its students; in particular, he or she 

studies because there is a test coming, not out of disinterested curiosity or passion 

for the subject. 

Client: a student takes the position of Client when he or she considers the final 

examination as a price to pay to attain other goals - passing the course, graduating, 

having a high grade point average, etc. 

Learner: a student is in the position of a Learner when he or she behaves as a 

cognitive subject interested in knowing Calculus; his or her goal in the institution is 

to learn. 

My goal then is to build (a) a theoretical model of instructors' spontaneous models 

of the knowledge to be learned about limits - instructors as participants of the Final-

Examination institution, and not, for example, as participants of the curriculum or 

classroom institutions - and (b) a theoretical model of students' spontaneous models of 

the knowledge to be learned about limits - students as participants of the Community-of-

study institution and not, for example, as participants of the classroom institution. 

I surmise that, for the participants of the Final-Examination institution, knowledge 

to be learned is identified with the knowledge that students explicitly have to prove that 

they know, this is, knowledge that is tested in the final examination. This knowledge, 

however, is not regulated by the institution: the contents of the final examination are not 

fully institutionalized. There are some unwritten norms, some traditions, because the final 
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examinations do not change much over the years. Of course, some things change from 

one examination to the next, like the formulas of the functions whose limits are to be 

calculated. Some things, however, remain invariant, like the type of the function. These 

"invariants" point to the existence of norms. One can glean these norms from empirical 

data, such as, for example, the texts of the past final examinations, textbooks, or 

interviews with students. In my research, I tried to show that it is precisely the existence 

of these norms that is determinant in students' construction of spontaneous models of the 

knowledge to be learned. 

2 . 2 MODES OF THINKING 

In the development of conceptual thinking from early childhood to adolescence, 

Vygotsky distinguishes three stages: syncretic images, complexes and concepts (1987: 

134-166), each with several phases. The most mature phase of complexes is 

pseudoconcepts. Each stage is characterized by a mode of thinking, which "leads to the 

formation of connections, ... relationships among different concrete impressions, the 

unification and generalization of separate objects, and the ordering and systematization of 

the whole of child's experience" (Vygotsky, 1987: 135). At each stage, the basis, on 

which these connections are made, is of quite different nature. Here is a selection of 

excerpts from Vygotsky's explanations of the nature of these stages. 

Thinking in syncretic heaps or images: "Faced with a task that an adult would generally solve 

through the formation of a new concept, the child. . . isolates an unordered heap of objects. . . that are 

unified without sufficient internal foundation and without sufficient internal kinship or 

relationships.... [The objects] are externally connected in the [subjective] impression they have had 

on the child but not unified internally among themselves."' (Vygotsky. 1987: 134) 
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Thinking in complexes (or complexive thinking): "[In contrast with syncretic thinking] 

generalizations created on the basis of this mode of thinking are complexes of distinct, concrete 

objects or things that are united on the basis of objective connections, connections that actually exist 

among the objects involved.. . . Complexive thinking is thinking that is both connected and 

objective... . At this stage.. . , word meanings are best characterized as family names of objects that 

are united in complexes or groups. What distinguishes the construction of the complex is that it is 

based on connections among the individual elements that constitute it as opposed to abstract logical 

connections. It is not possible to decide whether a given individual belonging to the Smith family 

can properly be called by this name if our judgment must be based solely on logical relationships 

among individuals.... The foundation of the complex lies in empirical connections that emerge in 

the individual's immediate experience. A complex is first and foremost a concrete unification of a 

group of objects based on empirical similarity of separate objects to one another." (Vygotsky, 1987: 

136-7) "In accordance with some associative feature, the object is included in the complex as a 

particular, concrete object which retains all its features rather than as the carrier of a single feature 

which defines the object 's membership in the complex. No single feature abstracted from others 

plays a unique role. The significance of the feature that is selected is essentially functional in nature. 

It is an equal among equals, one feature among others that define the object." (ibid., p. 140) 

Thinking in pseudoconcepts: [T]he adult cannot transfer his own mode of thinking to the child. 

Children acquire word meanings from adults, but they are obliged to represent these meanings as 

concrete objects and complexes. . . . [They are] obtained through entirely different intellectual 

operations. This is what we call a pseudoconcept. In its external form, it appears to correspond for 

all practical purposes with adult word meanings. However, it is profoundly different from these 

word meanings in its internal nature [which is closer to a complex than to a concept]. ' (ibid., p. 143) 

Vygotsky strongly advocated the use of artificial, experimental situations, where 

children are given classification tasks, to study their cognitive development: "The 

experiment uncovers the real activity of the child in forming generalizations, activity that 

is generally masked from casual observation." (Vygotsky, 1987: 143) This encouraged 

me to use a classification task in my research as well. 

In this research, Sierpinska's (1994: 142-159) interpretation of Vygotsky's theory 

of concept development will be followed. Thus, it will be assumed that syncretic thinking 



is characterized by loose criteria; objects are placed together on the basis of subjective, 

often affective, impressions of contiguity or closeness. In the complexive mode of 

thinking, impressions of kinship are replaced by connections that actually exist between 

the objects. In a concept, these relations are, logically, of the same type. In a complex, 

these connections are factual. Any connection between the object and the model suffices 

to include the former into the complex. A symptom of complexive thinking is that, in 

classifying objects, there is a lack of a homogeneous set of criteria. Objects are put 

together in classes based on some resemblances that may differ from one class to another. 

Another strongly discriminating characteristic of complexive thinking is that no feature 

plays a unique role. While a concept is based on a hierarchy of connections and a 

hierarchy of relations between features that create a new object, which is more than the 

union of its elements, a complex is a conglomerate of its elements and relations with 

other conglomerates are not relevant. 

A particular form of complexization is that of forming "chains of complexes". The 

phenomenon refers to the event in which the subject, in classifying objects, focuses on 

the last object classified and is satisfied by any link between this last object and the new 

one, ignoring any contradictions with previously classified objects that might follow from 

this (Sierpinska, 1994: 147). 

The transition from complexes to concepts takes the form of pseudoconcepts. In an 

experimental situation of classification, pseudoconceptual thinking and conceptual 

thinking produce the same classes. The difference lies in the type of criteria used to 

decide whether an object belongs to a certain class. While conceptual thinking is guided 

by abstract and logically coherent criteria, pseudoconceptual thinking is guided by 
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concrete factual features and connections, as in complexive thinking. The referential 

meaning (the name of the class) is that of a concept, but the categorical meaning (the 

criterion to decide whether an object belongs to a class or not) is that of a complex. 

2 . 3 COMBINING THE INSTITUTIONAL AND THE 

PSYCHOLOGICAL FRAMEWORKS 

As mentioned before, the general pattern of the genesis of concepts in a child, from early 

childhood to adolescence, described by Vygotsky, seems to be recapitulated each time a 

person embarks on the project of understanding or building a mathematical concept 

(Sierpinska, 1994: 143). This application of a theory of cognitive development to the 

study of concept development in students learning particular mathematical concepts 

requires some explanation. 

A theory of cognitive development speaks about developmental stages of an 

individual from birth to maturity. A theory of concept development speaks about levels of 

thinking an individual (mature or not) goes through when learning a particular concept. 

Thus, in a theory of concept development based on Vygotsky's theory of cognitive 

development, it is assumed that, when learning a new mathematical concept, the learner 

would go from thinking about it in syncretic images, to complexive thinking, to thinking 

in pseudoconcepts, and finally - in concepts. 

This theory suggests some kind of linear progress in concept development: once an 

individual thinks of a concept at the level of, say, pseudoconcepts, he or she cannot go 

back to syncretic images, but must either stay at this level or go forward to conceptual 

thinking. The interviewed students' performance, however, appeared to contradict this 
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presupposition of linear progress. They seemed to be using different modes of thinking 

with respect to the same concept, showing one mode of thinking at one moment and 

another immediately after. 

How could this phenomenon be explained? An analysis of students' responses to 

various questions in the interview suggested an explanation taking into account the 

institutional context in which students were interpreting the mathematical tasks given to 

them. I realized that the mode of thinking that a student was using when approaching a 

task, or answering a particular question about a task, depended on what was required 

from him or her with respect to the concepts associated with that task. Thus, for example, 

in the language of ATD, when justifying the use of a particular technique, a student might 

use the complexive mode of thinking, and when supporting a technology, he or she might 

use the syncretic mode. A further explanation was needed at this point: why would 

students do this kind of switches between different modes of thinking in relation with 

moving between the different spheres of their praxeologies? A hypothesis will be given 

later on in the thesis. For now, let me only point to the fact that the possibility of such 

incongruence between modes of thinking in the different spheres of a praxeology has 

been predicted in the ADT theory. 

In explaining the difference between "technology" and "theory", Chevallard (1999: 

228), gives an example of different modes of thinking with respect to these two 

explanatory discourses: 

Soil ainsi le pnncipe de recurrence: ^ C A/ A 0 e P A W (/; e /> => n + 1 e />) => /> = TV p Q u r 

justifier cet ingredient technologique principal des demonstrations par recurrence, on peut, entre 

autres choses, soit se referer, comme le faisait Henri Poincare, a «la puissance de I'esprit qui se sait 
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capable de concevoir la repetition indefinie d 'un meme acte des que cet acte est une fois possible» 

(Poincare, 1902), soit admettre comme un axiome que toute partie non vide de N a un premier 

element, et montrer alors que le principe de recurrence en decoule.9 

Using Vygotsky's categories of modes of thinking, we can say that a student, who 

justifies the use of induction as a technique of proof by stating the Principle of 

Mathematical Induction, gives evidence of thinking at the conceptual level, at the 

technology level of explanatory discourse. The same student, however, might justify this 

element of the technology - the Principle of Mathematical Induction - by stating the 

axiom mentioned in the above citation or, as Henri Poincare did, by stating a belief in the 

capacity of the human mind to conceive of an infinite repetition of the same act, once this 

act can be realized at least once. In the first case, we would assess the student's thinking 

as conceptual at the Theory level of explanatory discourse; in the second case, we would 

say that, at the Theory level, he or she thinks in syncretic images. 

As Chevallard (1999: 227) pointed out, we can imagine an infinite regression of 

explanatory discourses that starts with technology and theory, and goes on and on: the 

theory of the theory of the theory...10 This means that what can be one level of 

9 "Consider the induction principle: PczN/\OePAVn(n&P^>n + \eP)^>P=N- To justify this 

technological component, essential in proofs by induction, we can, among other possibilities, refer, like 

Henri Poincare did, to «the power of the human mind, capable of conceiving the infinite repetition of the 

same act once this act can be realized at least once» (Poincare, 1902), or accept as an axiom that every non-

empty subset of N has a first element, and then prove that the induction principle follows." (My 

translation.) 

10 Chevallard (1999: 227) claims that technology and theory suffice as a theoretical block to describe a 

mathematical praxeology. I interpret this in the sense that the theory level of justification is at the axiomatic 

level; anything beyond that does not necessarily correspond to mathematical concepts anymore. 



justification for one individual, can be another level of justification for another 

individual. Each of these justifying discourses can reveal different modes of thinking in 

an individual. This seems to be the case of the college level Calculus students whose 

thinking I have studied. A question that arises from this analysis and that I address in the 

discussion (Chapter 6) is, what is the part played by institutions, and, in particular, by 

their norms, rules and preferred strategies, in the modes of thinking that a student uses at 

the different levels of explanatory discourses? 

2 . 4 OPERATIONALIZATION OF VYGOTSKY'S DESCRIPTIONS OF 

MODES OF THINKING FOR THE PURPOSES OF DATA ANALYSIS 

In order to be able to decide which mode of thinking a student is using at a particular 

moment of the interview, I had to operationalize the descriptions of the four modes of 

thinking in the form of sets of clear criteria, illustrated with examples of their application. 

The criteria and the examples had to be clear enough for another person to produce the 

same assessment, by applying them to analyze a transcript of the interviews. Here are the 

criteria, followed by examples illustrating their use. 

Syncretic images: The subject classifies objects according to an affective relation 

he or she has with these objects. 

Complexive thinking: The subject does not describe his or her classification in 

terms of a key feature or criterion that discriminates between the classes nor is he or 

she concerned about finding such key feature. Most importantly, the classes the 

subject forms are such that the classification rule cannot be, even theoretically, 

described using a unifying, key feature. One can say that the classes are "all over 
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the place". Each class has its own rule or rules and the "name" of a class or the 

criterion to decide about the membership applies perhaps to some of the objects in 

the class but not necessarily to all of them. The hierarchy of features of an object 

changes from one class to another. Therefore, based on the subject's description of 

the class, another person may have trouble deciding whether an object different 

from those the subject has him or herself put in a class belongs to this class or not. 

Conceptual thinking: The subject consciously searches for a classification key 

which, when found, is consistently applied in forming classes. The subject is not 

happy with the classification key unless it allows him or her unambiguously to 

decide whether a given object belongs to a class or not. There is a stable hierarchy 

in the features of classified objects. 

Pseudoconcepts: The subject produces classes that could be produced using 

conceptual level. The criteria, however, the subject gives for putting an object in a 

class do not qualify as based on conceptual thinking: the subject does not give a 

unified classification key in his or her explanations, and his or her criteria may 

sound like those given at the complexive thinking stage. Theoretically, however, a 

conceptual classification key can be construed for the classes. 

EXAMPLE 2 . 1 . A classification task and possible outcomes in relation to different modes 

of thinking 

Task: To classify 3 triangles, 3 squares and 3 discs. In each of these triplets, one object is 

yellow, one is red and the other is blue. 



Syncretic images: The subject puts the 3 discs together in one class because he or she 

likes round things. The yellow triangle and the yellow square form a class of their own, 

because one can make a nice little yellow house with them. The last class is made of the 

red and blue triangles and the red and blue squares because he or she doesn't like them as 

much, and the blue square reminds him or her of having hit her head last week against a 

kitchen table, which was covered with a blue cloth. 

Complexive thinking: the subject forms 4 classes which she describes as "round objects", 

"blue objects", "yellow objects" and "red objects". The first class contains the 3 discs, the 

second - the blue square and the blue triangle, the third - the yellow square and the 

yellow triangle, and the fourth - the red square and the red triangle. 

Pseudoconceptual thinking: the subject makes 2 classes which she describes as "round 

objects" and "objects with three or four vertices". In the first class, she puts the discs, and 

in the second - the remaining objects. 

Conceptual thinking, Case J: the subject puts the 3 discs in one class and the other 6 

objects in another class. The subject's classification key is whether objects have vertices 

or not. 

Conceptual thinking, Case 2: the subject puts the discs in one class, the triangles in 

another, and the squares in the third one. The general key is the shape of the object. 

Conceptual thinking, Case 3: the subject puts the three yellow objects together, the three 

red together, and the three blue together. The general key is the color of the object. 



2 . 5 PREVIEW OF THE OUTCOMES OF THE RESEARCH 
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Using the above criteria, the analysis of the interviews carried out with college students 

will show that, on tasks related to finding limits of functions, most of these students' 

thinking did not go beyond complexive thinking at the technology level of explanatory 

discourses. An explanation of this phenomenon will be sought by examining it through 

the lens of the combined ATD-1AD framework. This will lead to the hypothesis that 

institutional practices do not fulfill the role of pulling students' development of concepts 

beyond the limits of their zone of proximal development, but rather generate an 

institutional environment where, in particular, the complexive thinking mode is not 

challenged. 
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CHAPTER 3 

METHODOLOGY AND RESEARCH PROCEDURES 

"[With the graphic calculator] 1 can find the limit, no problem, but as far as knowing 

why... I am trying to understand why it converges. " (Student S2, hying to understand 

why in his graphic calculator it seemed that the limit of sin(lh) as x tends to zero vww 

convergent.) 

In this chapter, 1 present my research instruments and analysis procedures. In particular, I 

describe the reference documents that I considered to characterize the institutional 

praxeologies, and the protocol of the interviews I carried out with college students. Then 

I explain how 1 combined the theoretical frameworks presented in the previous chapter to 

analyze the results. Finally, I discuss the objectivity measure used in analyzing the 

interviews with students. 

3=1 RESEARCH INSTRUMENTS 

As mentioned before, knowledge to be learned is understood as the knowledge that 

students explicitly have to prove that they know. In the context of this research, it has 

been assumed that it is the knowledge that is tested by the College-Calculus institution. 

Considering that the only control that the College-Calculus institution has over this type 

of knowledge is through the common final examinations, I focused my attention on how 



the types of tasks related to limits of functions proposed in final examinations influence 

students' spontaneous models of the knowledge to be learned about limits. 

First, I identified the types of tasks that appeared in final examinations over the last 

six years. There appeared to be three types of tasks. I refer to these tasks as routine tasks 

and describe them below: 

T|: To find the limit of a rational function taken at a constant, such that it is a zero 

over zero type of indetermination and the polynomials in the rational expression 

can be factored by standard school Algebra techniques. 

T>: To find the limit of a rational expression involving square radicals taken at a 

constant, such that it is a zero over zero indetermination and the limit can be found 

by a rationalization technique. 

T3: To find the limit of a rational function taken at infinity, where the polynomials 

involved cannot be factored by standard school Algebra techniques. 

Next, I constructed models of the mathematical praxeologies of the College-

Calculus institution corresponding to these tasks. To do this, I used the following 

reference documents: the official textbook, the topics listed in the course outline, the final 

examinations from the last six years (2002-2008), and the solutions for these 

examinations, written by teachers and made available to students. The descriptions of the 

techniques corresponding to the types of tasks listed above were based on teachers' 

solutions and the solution methods presented in the textbooks. The description of the 



theoretical block [0, 0 ] was based on topics listed in the outline, properties and theorems 

used in textbooks to justify the techniques, and teachers' solutions. 

Based on these mathematical praxeologies, 1 have built a model of instructors' 

spontaneous models of the knowledge to be learned. In the previous sentence, 

"instructors" refers to individuals as participants of the Final-Examination institution, and 

not as participants of, for example, the curriculum or the classroom institution. It is 

important to understand this difference because the model I constructed is related more to 

the positions that the participants occupy in the institution Final-Examination than to the 

individuals filling these positions; an instructor can be a member of the final examination 

committee for Calculus in one semester but not in the next one. However, when he or she 

becomes a participant in this institution, the model becomes his or her model. 

Furthermore, when an individual is new to this institution, the model is presented to him 

or her by the institution as the normal model to follow. 

The mathematical praxeologies of the College-Calculus institution and the inferred 

model of instructors' spontaneous models of the knowledge to be learned are described in 

Chapter 4. 

To construct a model of the students' praxeological organizations representing their 

spontaneous models of the knowledge to be learned, I conducted twenty eight (28) "task-

based" interviews. A description of the methodology of task-based interviews can be 

found in Goldin (1997). 

In this paper, Goldin emphasizes the differences between structured clinical 

interviews and task-based interviews. Structured clinical interviews have been used in 



research to observe "the mathematical behavior of children and adults, usually in an 

exploratory problem-solving context" and to draw "inferences from the observations to 

allow something to be said about the problem solver's possible meanings, knowledge 

structures, cognitive processes, affect, or changes in these in the course of the interview" 

(ibid., p. 40). The method is geared to the needs of research that focuses on conceptual 

understanding and students' internal constructions of mathematical meanings in place of, 

or in addition to, procedural and algorithmic learning (ibid.). In contrast, task-based 

interviews offer the possibility of obtaining information that directly bears on the goals 

of teaching and learning in the classroom or in other institutions, -and can help 

understanding, for example, what cognitive representational structures students are 

developing and what beliefs about mathematics they are acquiring in these contexts 

(ibid., p. 41). 

In discussing research methods in mathematics education, many authors have 

addressed issues related to ethics, objectivity, reproducibility, and generalizability, 

among other concerns. Goldin (ibid.) refers to some of these issues; in particular, he 

discusses the replicability of results and the generalizability of findings when using task-

based interviews as research methodology. For replicability, he argues that it is essential 

to distinguish observations from inferences. Inferences must be based on explicit criteria, 

so that the inferencing process itself becomes open to discussion (ibid., p. 53). In 

addition, task-based interviews have to be explicitly characterizable as research 

instruments, subject to reuse, refinement and improvement by different researchers. 

In the context of my research, from obsening students' behavior 1 had to infer their 

positioning in the Community-of-study institution and their modes of thinking. Hence, to 



address the issue of replicability, I made explicit the criteria that I have followed to make 

these inferences (see Section 2.4 and Section 3.3.4). As I explain at the end of this 

chapter, a triangulation method was used to ensure the objectivity of this inference 

process as well as the clarity of the established criteria - so that the method of analysis 

could be reused by other researchers. 

In the sections that follow, I have made explicit the reasons I had and the goals I 

wanted to achieve when constructing each of the tasks used in the task-based interview. 

My intention here was not only to describe my research instruments but also to 

characterize these tasks as research instruments so that they could be eventually refined 

and improved by other researchers. 

Task-based interviews have been recently used in studies concerning issues related 

to the teaching and learning of limits (e.g. Lithner, 2000; Alcock and Simpson, 2004, 

2005; Hahkioniemi, 2006; Hah Roh, 2008). 

For the present research, subjects were recruited from among students enrolled in 

college level Calculus II courses in the winter semester of 2008. All subjects had 

successfully completed a Calculus I course in the previous semester, that is, in the fall of 

2007. The distribution of their grades is presented in Table 3.1. 
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Grade range (in 
percentages) 

71-75 76-80 81-85 86-90 91-95 96-100 

Frequency 
(N=27) 

11.1(3) 18.5 (5) H . l (3) 14.8(4) 18.5 (5) 2 6 ( 7 ) 

TABLE 3.1. Number of students per grade range. One student of the 28 interviewed did not disclose 

his grade information11. 

Subjects were selected to represent a vast spectrum of the sections of the Calculus I 

course, taught by different teachers in the fall of 2007. In that semester, there were 19 

sections taught by 14 different teachers; the sample of interviewed subjects covers at least 

12 of these 14 teachers. Table 3.2 shows the number of interviewed students 

corresponding to each teacher. Five students could not remember the name of their 

Calculus I teacher; those are taken into account in the last column of the table. 

Teacher 's code T1 T2 T3 T4 T5 T8 T9 T10 T i l T12 T13 T14 T? 

# of students 1 1 2 2 4 2 1 1 3 2 2 2 5 

T A B L E 3.2. Number of students per teacher. 

Interviews were aimed at characterizing the mathematical praxeologies of students 

and how the routine tasks proposed by the College-Calculus institution - those appearing 

in the final examinations - influence students' behavior when facing the task of finding 

" The student was still considered in my analyses because students' grades have not been a variable in the 

research. 
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the limit of a function. This is why my design of the tasks for the interview was based on 

an analysis of the routine tasks. 

3.1.1 Protocol of the interviews 

The limit finding tasks that students are asked to solve in final examinations are such that 

only algebraic techniques are required. Therefore, my expectation was that students 

would classify the analytic tasks'2 of finding limits from an algebraic point of view. What 

1 mean is that they would consider two such tasks as different if the algebraic 

manipulations necessary to solve them were different. In addition, I wanted to verify my 

conjecture that students' approaches to finding limits are strongly influenced by the 

algebraic techniques associated with tasks in the final examinations. Thus, since 

problems appearing on final examinations are mostly of the factoring or rationalization 

type (see Chapter 4), I expected students to factor and simplify common terms in a 

problem like "find lim * + ^ ", before trying direct substitution (of 2 for x in the 

y->2 X" — 1 

expression, in the example). I also expected them to get stuck trying different algebraic 

x + 1 techniques in a problem such as "find lim — ". The two examples visually resemble 

x - 1 

the typical final examination tasks but differ from them on the conceptual level. In this 

way, the interview was designed to reveal some of the reasons behind students' typical 

approaches to finding limits. 

1 i.e. tasks belonging to mathematical analysis. 



Interviews consisted in individual encounters with each student. For the purposes of 

the analysis to be done in this research, I divide the interview into three "parts". The first 

part was based on a classification task. In the second part, students were asked to find 

limits that visually resembled tasks proposed in final examinations but differed from 

them on the conceptual level. In the third part, students were asked to find three limits 

that were essentially different from those appearing in final examinations. In each of the 

three parts, students were asked to think aloud while performing the given tasks. Then, 

students were questioned in the aim of obtaining more information about their thinking. 

Some questions were prepared in advance (see below) and posed to all students, while 

others varied according to a student's performance. 

3.1.1.1 The first part of the interview: The classification task 

In the first part of the interview, students were presented with twenty cards. Each card 

contained a written expression of the type lim / ( x ) , where c was either a constant or oo, 

-V—H * 

and f(x) was a constant, a polynomial, a function involving a radical, a rational function, a 

quotient of functions involving radicals, or a function involving a trigonometric function. 

Students were asked to classify these twenty cards according to a rule of their choice. 

They were not asked to make the rule explicit before doing the classification. Once they 

had formed the classes, I asked them to "explain the rule" they had used for the 

classification. As 1 show in Chapter 5, most students could not state a unique rule 

applying to all the classes they had formed. Rather, students offered short phrases 

describing each of these classes. After this "naming process", I challenged the 

membership of some of the objects placed in this or that class. 
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Table 3.4 presents the twenty expressions appearing in the cards. Here, the 

expressions have been numbered for reference purposes. The cards and the expressions 

were not numbered when they were presented to the students. 

3 2 , „ x - x - 3.Y - 9 
I lim j 
' 2x -Ax-6 

2. lim 
x—>1 

/ - I 

( x - l ) ( x - 3 ) 
lim 

9x -x + 2 
4 lim 5 

' 3.V + 1 

x" -25 
5 lim —~ 

' x-*00 x -I 
lim 7 

X—>°0 

lim 3 
jr—>5 

lim Ax +7.V-9 
JC->1 

9 lim — j 
' x - 3 A - - 4 

10. lim -
x—>4 

Ix -2 

x + A 

x + 2x + 1 
1 1 . l i m ~ 2 

*-**> x + 7x - 1 

x 2 - l 
12. lim 

X->oo x _ j 

13. lim -
x—oo 

2x2 +1 

3 x - 5 
14. lim 

X—>00 
/ x 2 +1 - X 15. lim 

x—> 1 

x —x—2 

x-l 

x +6.V + 19 
16. 

x - 3x + 2 

X 2 - 4 
17. , i m

c ~ 2 
x - 2 5 

18. lim 
x ->5 

\ ' x + 2 0 - V 5 

5-x 

19. 
sin(x) 

lim 
-T—> 0 v 

f A 
20. lim sin 

x—>0 W 

T A B L E 3.3. Expressions given to students in the first part of the interview. The cards and the expressions 

were not numbered when presented to the students. 



Expressions 1 to 4 are routine expressions in the sense of being instances of types 

of tasks appearing in final examinations. Expressions 1 and 2 are examples of type of 

tasks T|. Expression 1 was chosen because exercises consisting in finding limits in which 

the factorization of a cubic expression is needed are common in final examinations (see 

Table 4.1). However, students might feel that factoring a quadratic polynomial is easier 

than factoring a cubic one, especially when the quadratic is a difference of squares that 

they usually recognize right away. To see how students react to these two versions of 

type of tasks T|, I chose also to have expression 2. My assumption was that students 

would not put them together in the same group when doing the classification; they would 

prioritize the algebraic particularities of the difference of squares over any other 

characteristic. 

Expression 3 is an example of a limit that can be found by rationalization - type of 

tasks T2. 

Expressions 4 and 5 are examples of limits of rational functions taken at infinity. 

Expression 4 is similar to those appearing in final examinations, but expression 5 

x
2 -25 • 

contains the rational function — , which is factorable using standard techniques 
x -1 

learned in school Algebra courses and thus it is not a routine expression. My expectation 

was that students would tend to classify expressions 2 and 5 together, because they both 

contain a difference of squares, ignoring the fact, relevant to Calculus, that the limit in 

expression 2 is taken at a constant and the limit in expression 5 is taken at infinity. 

Expressions 5 to 20 are non-routine in the sense that they do not belong to any of 

the three types of tasks T|, Tt or T3. Expressions 6 and 7 were chosen because, although 
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they look very simple, in both, finding the limit requires either some conceptual 

understanding or a good memory (remembering by heart that the limit of a constant is the 

constant itself). The main idea in choosing the expressions 8 to 18 was to have examples, 

of which some would look algebraically similar to routine expressions, and some would 

not, but for all the corresponding techniques would appear in the outline of the course. 

These techniques would be: 

- direct substitution (expressions 8, 9, and 10); 

- dividing every term in the numerator and the denominator by the highest power of 

x in the rational function, or factoring out the highest power in the numerator and the 

highest power in the denominator, then cancelling out, and using the fact that, if c is a 

c 
real number and r is a positive integer then lim —7 = 0 (expressions 5 and 11 to 13); 

x—> ±co X 

- rationalizing technique (expression 14); and 

- finding limits by inspection (expressions 15 to 18). 

As for expressions 19 and 20, they contain trigonometric expressions. Students 

might not be familiar with techniques to find limits of this kind as the topic is listed as 

optional in the course outline. They were chosen to see how students consider 

expressions that are very different from routine ones. 
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3.1.1.2 The second part of the interview: Four routine looking limits 

tasks 

In the second part of the interview, students were asked to find the four limits shown in 

Table 3.4. 

x — I 
2.1 J™, 2 

X~> 1 JT + X 

(x + 3 ) ( x - l ) 
2.2. h m

0 2 2 xZ - 9 

X2-4 
t i lim • ~ 

*+5x
2-2S 

3 2 x +4x +9 
2.4. h m

t 2 x ^ 1 ^ + 2 

TABLE 3.4. The four limits that students were asked to find in the second part of the interview. 

Taking into consideration the length of the interview I decided to ask students to 

solve limits involving only rational functions. Therefore, the focus was on task of types 

Ti and T3. The tasks corresponding to Ti that we can find in textbooks involve rational 

expressions that are easily factorable using algebraic techniques such as "difference of 

squares", "taking common factors", "factoring by grouping"13, or simple cases of 

"undoing the distribution property"'4. Hence, the polynomials in the rational expressions 

13 The "factoring by grouping" technique can be summarized as: 1. Collect the terms into two groups so 

that each group has a common factor. 2. Factor out the greatest common factor from each group. 3. Factor a 

common binomial factor from the result of step 2. If step 2 does not result in a common binomial factor, try 

a different grouping. (Source: Lial, M., Hornsby, J. and McGinnis, T., Beginning Algebra, 9th Ed.) 

14 From the distribution property we get that (ax + b) (cx + d) = acx'+ (ad + bc)x + bd. "Undoing the 

distribution property" refers to finding the constants a, b, c and d. For example, to factor 8x: + 6x - 9 we 

need to find constants a, b, c and d such that ac = 8. bd = - 9 and ad + be = 6. (Source: ibid.) 



are usually of degree 2 or 3, and, on rare occasions, of degree 4. On the other hand, tasks 

in T3 always involve polynomials that cannot be easily factored, or are not factorable at 

all. Problems 1, 2 and 4 above, can all be solved by direct substitution. Problem 3 cannot 

be solved algebraically, but by inspection or by making a table of values. 1 chose these 

four problems for the interview because the rational expressions in problems 1, 2 and 3 

are (in the case of problem 2), or seem to be (in the case of problems 1 and 3), instances 

of rational expressions in type of task T|, and the rational expression in problem 4 

belongs neither to T1 nor to T3, as the involved polynomials are not factorable (T3) and 

the limit is taken at a constant (Ti). The idea behind this choice was, in the case of 

problems 1, 2 and 3, to deceive students to engage into the factoring techniques typically 

used to solve a task of type Ti, and in the case of problem 4, to present students with a 

rational expression that is not factorable, to contrast their approach to problem 2. My 

expectation was that in problems 1 and 3 students would get frustrated and show 

difficulties in providing an answer, because of the lack of common factors, while in 

problem 2, they would be comfortable with cancelling the common factors and then using 

substitution to arrive at a correct answer, without noticing that the factoring was not 

necessary. My expectation for students' approach to problem 4 was that they would 

recognize right away that the technique to find the limit is direct substitution, because the 

involved polynomials are not (easily) factorable. 

3.1.1.3 The third part of the Interview: Non-routine limits tasks 

In the third part of the interview, students were asked to find the three limits shown in 

Table 3.5. These are non-routine tasks. I refer to them as essentially non-routine because 



they are non-routine and they do not resemble routine tasks. The functions involved are 

different from the standard functions that students are given when asked to find limits, 

i.e., rational functions and functions involving radicals (compare with tasks in the second 

section of the interview). However, the interviewed students were taught, at some point, 

the graphs of the sine, cosine, and exponential functions. In addition, techniques to 

conjecture the value of a limit by means of a calculator were listed in the outline of 

sin(.r) 
Calculus I. In the case of lim„ , either the students were told that this limit is 1, in o x 

the form of a theorem in Calculus I, or they had seen it as an example of L'Hopital's rule 

in Calculus II. The purpose of this part was to test students' ability to combine the 

different things they have learned, such as using the calculator to conjecture limits, or 

reading limits from graphs, in dealing with more challenging limits. My expectation was 

that students will not make use of resources other than algebraic to find limits and hence, 

that they will not be able to find or make conjectures about the limits presented in this 

third section of the interview. Whenever this was the case during an interview, I proposed 

the student, after some time, to use other techniques to conjecture the value of the limits; 

in particular, I proposed using the calculator and graphing. My intention in proposing 

these approaches was to verify the conjecture that the problem was not in students not 

knowing any other approaches, but only in the institutional emphasis on algebraic 

techniques, which may have obscured any other methods students had an opportunity to 

learn. My expectation was that, given a slight instructional prompt, students would be 

able to think in mathematical terms about these limits. 
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3.1 Find 3.2 Find 

lim eX cos(x) X lim e cos(x) 
X-> +00 A"—> -00 

3.3. Find 

sin(x) 
lim 

x->0 x 

T A B L E 3.5. The three limits that students were asked to find in the third part of the interview. 

3 . 2 DATA ANALYSIS PROCEDURES 

[T]hough this be method, yet there is madness in't. (Schoenfeld, 2002: 435, 

paraphrasing Polonius' comment in Hamlet) 

My conjectures for students' performance in the interviews were confirmed on a 

structural level. In most cases, students did distinguish two tasks if the algebraic 

manipulations necessary to solve them were different. Students did approach limits in the 

way I expected they will. The reasons, however, for this behavior, were not as 

mathematical as I first believed. The interviews revealed that students' understanding of 

limits of functions is strongly based on mathematical, social, cognitive and didactic 

norms (Hardy, 2009). Hence, although my a priori idea was to describe students' 

mathematical praxeologies for finding limits of functions, these praxeologies turned out 

to be of a more heterogeneous type. It was the necessity to analyze the interviews within 

this situation that motivated the incorporation of the IAD framework and Vygotsky's 

theory of concept development as part of my theoretical framework. The ATD, with its 

notion of praxeological organization, provided me with a structure in which I could place 



students' behavior, the IAD and the theory of concept development provided me with the 

means to interpret students' behavior and its relation with the institutional practices. 

1 consider each part of the interview as providing one snapshot of students' 

behavior in front of the task of finding limits of functions. From snapshot #1, I 

reconstruct the praxeology in relation of the task of finding limits of each of the 28 

interviewed students and 1 surmise each student's mode of thinking. From snapshots #2 

and #3 I make a general reconstruction of students' praxeologies in relation to the task of 

finding limits, and I try to derive the general - most frequent - positioning. These 

reconstructed praxeologies constitute three partial models of the students' models of the 

knowledge to be learned about limits. These models are about students' spontaneous 

models when dealing with the task of finding limits, but they are reconstructed from 

snapshots taken in very different situations and thus provide very different information 

about students' behavior. Then I combined these partial models to build a model of 

students' spontaneous models of the knowledge to be learned about limits in college level 

Calculus courses. 

3.2.1 Analysis procedures for snapshot #1 

The first snapshot, focused on the classification task, is analyzed from the perspective of 

ATD and Vygotsky's theory of concept development. This generates two levels of 

analysis that are brought together to build the first partial model of students behavior in 

front of the task of finding limits of functions. Using the notion of praxeology of ATD, I 

identified each student's technique to accomplish the classification task, and his or her 

corresponding technology and theory. Next, based on Vygotsky's theory of concept 



development, I characterized each student's mode of thinking in relation to the two levels 

of justification. 

Based on each student's techniques, technology and theory related to the 

classification task, I reconstructed the student's praxeology in relation to the task of 

finding limits. Hence, the first partial model consists of this reconstructed praxeology 

together with the student's mode(s) of thinking. 

3.2.1.1 Analysis procedures to reconstruct the students' praxeologies 

from snapshot #1 

Based on the student's classification and explanatory discourse, 1 tried to understand 

what features of the limit expressions he or she was looking at to guide his or her 

classification. For this, I considered a scheme (see Figure 3.1) in which I represent the 

expressions in the cards and some additional information. The scheme has four "boxes". 

The symbol "lim" and boxes 1 and 2 represent the expressions that students could see on 

the cards. The third box corresponds to the arithmetic outcome of direct substitution (in R 

u {+oo, -oo}). The fourth box corresponds to the value of the limit. 

In terms of a praxeological organization, the features a student is considering and 

how he or she is considering them correspond to his or her technique to accomplish the 

classification task. These features could be of four kinds: arithmetic, algebraic, belonging 

to Calculus, or analytic (i.e. belonging to Mathematical Analysis). For example, a student 

who focused only on box 3 and made a classification forming four classes, named them 



63 

"a number over zero", "infinity over infinity", "zero over a number", and "a number", 

would be characterized as using a technique that belongs to arithmetic in R u {+00, -00}. 

F I G U R E 3.1. A scheme of limit expression: 

A student who focused only on box 3 but made the classes: "infinity", 

"indetermination zero over zero", "indetermination infinity over infinity", and "a 

constant", would be described as using a technique that belongs to Calculus. A student 

who focused only on box 2 and made the classes: "rational functions", "expressions with 

radicals", "constants", and "trigonometric functions", would be characterized as using a 

technique that belongs to Algebra. I assumed that the features that are so relevant to the 

student that he or she chooses them as a basis to accomplish the classification task are 

also those that the student is likely to consider when he or she has to choose a technique 

to find the limit of a function. 

I characterized the student's supporting discourses, the technology and the theory, 

based on the phrases he or she used to describe the classification. In the analysis, I have 

been consistent in considering as technology that discourse, which is the immediate 



justification of the technique, the logos about the technique. Hence, this level of 

justification corresponds to the phrases that a student used to "name" or describe the 

classes. Whenever the student had provided enough information, I conjectured what his 

or her theory - the discourse supporting the technology - could be. From these 

explanatory discourses, I inferred students' technologies and theories in the praxeological 

organization corresponding to the task of finding limits. 

3.2.1.2 Analysis procedures to identify students' mode(s) of thinking 

from snapshot #1 

The use of classification tasks to figure out a child level of thinking has become common 

practice in cognitive psychology. Vygotsky's experiments related to concept 

development were based on them, as mentioned in Chapter 2. To identify a student's 

mode of thinking based on a classification, we not only have to observe the classes he or 

she has made and the elements that he or she has decided to place in each class, but also 

the criteria with which he or she has made these decisions. Hence, to figure out the mode 

of thinking at the technology level, 1 took into consideration the classes with its members 

and the phrases that the students used to describe each class. Whenever the information 

provided by the student about his or her own reasoning was sufficient, I made conjectures 

about his or her mode of thinking at the level of theory. 1 used the criteria described in 

Chapter 2, Section 2.4. 

An important observation to understand the analysis of Vygotskyan modes of 

thinking within the framework of the ATD is the following. If we accept that an infinite 

sequence of explanatory discourses is conceivable (Chevallard, 1999: 227), it might be 



the case that affect - characteristic of thinking in syncretic images - always plays a role 

at some level of the chain. For my research, it is essential to distinguish, whenever a 

student made a statement that seemed to reflect a syncretic mode of thinking, whether the 

student was thinking in syncretic images at the technology level, at the theoretical level, 

or at none of these. I considered that an individual is thinking syncretically at the 

technology level if, for classifying an object, he or she is considering features that are 

internal to him or her - but not intrinsic to the object being classified. In the other modes 

of thinking, the features considered relevant for the classification are external to the 

classifier. Thus, to decide whether the first level of justification, the technology level, is 

or is not syncretic, I analyzed how affect influenced the classification. Whenever affect 

influenced an individual's attention, but was not the classifying feature, I did not consider 

that he or she was thinking syncretically, although it might be the case that he or she was 

thinking in syncretic images at the theory level. 

3.2.2 Analysis procedures for snapshot #2 

Snapshot #2 corresponds to the second part of the interview. Here, students were asked to 

find four limits that resembled routine tasks. More precisely, they resembled instances of 

mathematical praxeologies associated with types of tasks T| and T3, but differed from 

them on the conceptual level. In the analysis, I considered students' solutions to each of 

the problems and the justifications they gave of their approaches. In particular, I checked 

how many students were approaching the tasks as if they were routine ones, what were 

the problems they encountered because of this, and whether or not they were able to deal 

with their misperceptions and misconceptions. 
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In this study, I distinguish "miscalculations", "misperceptions" and 

"misconceptions". "Misperception" refers to situations where the student fails to see one 

or more aspects of a limit expression. "Misconception" applies to cases where the student 

uses a technique or refers to an aspect of a limit expression or an explanatory discourse in 

a way that reflects a conceptual error. "Miscalculation" corresponds to making a non-

conceptual mistake in a calculation. For example, consider the task of finding 

x2 - 1 
l im-- . Suppose that a student given this task claims that he or she would need 

x +3x +2 

to factor the polynomials and cancel common factors, and justifies this claim by stating 

that the expression is an instance of the zero over zero indetermination. Then, 

• the student has a "misperception" if he or she does not calculate the 

substitution but infers - from other features in the expression - that the given 

expression is an instance of that type of indetermination; 

• the student does a "miscalculation" if he or she does calculate the result of 

the substitution but makes a mistake in the addition or multiplication of 

numbers so that both the denominator and the numerator result in zero. 

• the student has a "misconception" if he or she calculates the substitution 

correctly (obtaining 0/5) but still claims that to find the limit he or she would 

have to factor the expression and cancel common factors. 

The distinction between miscalculations, misperceptions and misconceptions is 

essential in this research. As it will be discussed later, some misperceptions and 
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misconceptions could be the result of the influence of routine tasks. Whether it is a 

misperception or a misconception throws light on the character of this influence: a 

student with a misperception is a student who knows but cannot see. 

Based on students' spontaneous approaches to the tasks proposed in the second 

part of the interview and their responses to my questioning, I tried to identify what 

students perceive as the different types of "find-the-limit" tasks, and what are their 

corresponding explanatory discourses. With this information, I reconstructed students' 

praxeologies with respect to the task of finding limits of functions. These reconstructed 

praxeologies constitute the second partial model of students' models of the knowledge to 

be learned about limits in college level Calculus courses. 

3.2.3 Analysis procedures for snapshot #3 

In the third section of the interview, the students were asked to find three limits that did 

not resemble the routine tasks - the essentially non-routine problems. 

First, I evaluated students' spontaneous performance on the three problems and 

then I evaluated their performance following my intervention. From students' 

spontaneous behavior, I built the third partial model of student's models of the 

knowledge to be learned in relation to the task of finding limits of functions. As in the 

case of the analysis of snapshot #2, I present this model in the form of a praxeology. 

Then, I contrast this model of spontaneous behavior with students' performances after my 

intervention. 
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3.2.4 Analysis procedures to infer the students' positioning in 

the Community-of-study institution from snapshots #2 and #3 

As it was pointed out in Chapter 2, I have identified three possible students' positionings 

in the Community-of-study institution. As a criterion to decide in which position a 

student was, 1 considered an extension of the descriptions given in Chapter 2. This 

extension had the sole purpose of simplifying the identification of the students' 

positioning from their behavior in the tasks. 

Student: A participant in this position abides by the rules and norms of the 

College-Calculus institution addressed to its students; in particular, he or she 

studies because there is a test coming, not out of disinterested curiosity or passion 

for the subject. A student in this position would take it for granted that he or she 

would be given routine tasks to solve. When presented with a non-routine task, he 

or she would tend to believe that the skills with which the institution provided him 

or her would suffice to deal with the task. Hence, a participant in this position 

would have spontaneous models to behave that would allow him or her to deal 

successfully with routine tasks. Someone in the position of a Student might 

complain about unfairness, but only on moral terms. 

Client: A student takes the position of Client when he or she considers the final 

examination as a price to pay to attain other goals - passing the course, graduating, 

having a high grade point average, etc. A student in this position would take it as 

"part of the deal (or contract)" to be given only routine tasks. When given a non-
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routine task, he or she would not attempt to deal with it, considering that it is not 

his or her obligation to do so. Someone in the position of a Client might complain 

about unfairness as a violation of norms, interpreted as legalized rules. 

Learner: A student is in the position of a Learner when he or she behaves as a 

cognitive subject interested in knowing Calculus; his or her goal in the institution is 

to learn. He or she would approach non-routine tasks as learning opportunities and 

would try to take advantage of them, being critical of his or her previous knowledge 

and of his or her actual thinking. His or her spontaneous models would not be 

strictly associated with routine tasks but with abstraction and generalization of 

concepts involved in those tasks. 

Thus, the spontaneous models of behavior built by a participant are themselves an 

indication of his or her position in the institution. A participant who has a model that 

allows him or her to deal only with routine tasks is in the position of Student or Client; 

the difference would be in the participant's attitude towards non-routine tasks. 

A participant in the position of Learner has a spontaneous model of behavior that 

transcends the routine tasks; his or her model is flexible enough to allow him or her to 

incorporate strategies as needed by the given task. 

At the level of justification, Students are confident that the truth and consistency of 

"theoretical explanations" are safeguarded by the authority represented by the instructors 

or the mathematical community. If any, their explanatory discourses would evoke the 

instructor's or the textbook's discourses. Clients do not have to provide any justification. 
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If questioned, for example, why a technique is valid they would answer that it is not their 

obligation to know the reasons. Learners would try to justify everything they do, because 

for them, theoretical justification is an essential component of doing mathematics; 

furthermore, they would question the institution's explanations and their own, because 

critical thinking is, for them, a learning strategy. 

It was by looking for the above-described patterns of behavior that 1 concluded 

what was each student's position in the Community-of-study institution. 

3 . 3 OBJECTIVITY MEASURE 

In an attempt to have a measure of the objectivity of the data analysis, a triangulation 

method was used. I was one vertex of this triangulation; another vertex was occupied by 

my supervisor; the third one - by a researcher in mathematics education completely 

external to this research. The chosen task was to read part one of the interviews and 

classify students' mode(s) of thinking according to the criteria described in Chapter 2, 

Section 2.4. 

My supervisor and I read the twenty eight (28) interviews independently, and 

classified the students' mode(s) of thinking. In most cases, her assessment matched mine; 

discrepancies were resolved through discussion. 

The other researcher was asked to analyze 5 students. He analyzed the data on his 

own, and provided me with a written report. Our communication was only in writing. 

I provided him with the following documents: 
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1. excerpts of transcripts of five interviews, the excerpts corresponded to the 

first part of the interviews - the classification task; 

2. the twenty expressions that students were asked to classify; 

3. a description of the Vygotskyan modes of thinking. 

Then, I gave the researcher the following instructions: 

1. Read the given descriptions of the Vygotskyan modes of thinking. 

2. Read each interview excerpt and analyze it to decide which Vygotskyan 

mode of thinking the student is using. 

3. Write a short justification of your decision in each case. 

The researcher's assessment matches exactly the modes of thinking that I inferred 

for the same students at the technology level, in addition, the particular behavior, from 

which the researcher and I inferred these modes, was similar in each case. I believe that 

the researcher focused on the modes of thinking used by the students to build the classes 

and decide membership (technology level) instead of considering the modes of thinking 

used by the students to justify the choice of this or that feature to build a class (theory 

level). Thus, our classification of students' mode(s) of thinking coincided at the level of 

technology. However, as it can be seen in Appendix B, in the only case - among those 

that were given to the researcher - in which I identified different modes of thinking at the 

technology and the theory level - the researcher noted that there could be a different 

mode of thinking involved in the student's motivation for building certain classes. This 



72 

mode of thinking, that he considered involved in the 'motivation', matched the mode of 

thinking that I identified for the theory level of explanatory discourse; it is the mode of 

thinking that the student would use to answer a question of the type "why did you 

consider this or that feature as a key to build a class?". 

Appendix B includes the exact documents provided to this researcher together with 

his complete assessment and a detailed discussion of how his assessment matched my 

analysis. 
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CHAPTER4 

MODEL OF INSTRUCTORS' SPONTANEOUS MODELS OF 

THE KNOWLEDGE TO BE LEARNED 

SIS: Basically I look at a problem and the first thing I see... and I always assume it is 

factorable, I mean, they never gave me a problem that wasn't factorable, so 1 

wouldn't even ask whether it's factorable. I'd say, ok, where can I factor it. And I'd 

say ok let's look at the different categories. If I see a trinomial or a difference of 

squares and the method to factor them, and so long and so forth, but if it wasn 't 

factorable... I never came across a problem that wasn 't factorable. 

In this chapter, based on the official textbook, topics listed in the course outline, past final 

examinations from the last six years (2001-2007), and solutions for these examinations 

written by teachers and made available to students, I build a model of instructors' 

spontaneous models of the knowledge to be learned15. This model corresponds to 

instructors as participants of the Final-Examination institution; as participants of other 

institutions, instructors may have other models. 

I start by characterizing the mathematical praxeologies related with the task of 

finding the limit of a function. I characterize them from the perspective of the Final-

13 Recall that in the context of this research, knowledge to be learned is as a subset of the knowledge to be 

taught or of the knowledge actually taught. Its minimal core can be deduced from the assessment 

instruments. From the perspective of the Final-Examination institution, knowledge to be learned is 

identified with knowledge that students have to prove that they have acquired; that is, it is the knowledge 

tested in the final examination (see Chapter 2). 
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Examination institution within the College-Calculus institution. Each praxeology 

corresponds to a type of tasks presented in final examinations. The types of tasks are 

characterized based on instances appearing in final examinations. Techniques are 

described following teachers' solutions and the techniques presented in the textbooks. 

The description of the theoretical block [9, 0 ] is based on topics listed in the outline, and 

properties and theorems used in textbooks to justify techniques. 

Then, based on those mathematical praxeologies, I build a model of instructors' 

spontaneous models of the knowledge to be learned. Here "instructors" refers to 

participants of the Final-Examination institution. 

4 . 1 MATHEMATICAL PRAXEOLOGIES RELATIVE TO TASKS 

APPEARING IN FINAL EXAMINATIONS IN THE COLLEGE-

CALCULUS INSTITUTION 

By analyzing the final examinations, I identified the following three types of tasks. 

p(x) 
TASK TYPE TI : Evaluate the following limit: lim ——. 

- Q(x) 

Description: c is a fixed constant; P(x) and Q(x) are polynomials such that the 

factor x-c occurs in both P(x) and Q(xj; x-c has degree one in Q(x). 

JP(x) - Q{x) 
TASK TYPE T2: Evaluate the following limit: lim^ — 

R(x) 

Description: P(x), Q(x) and R(x) are polynomials such that ^P(c) - Q(c) - 0 , 

R(c) = 0, and the factor P(x) - [ (?( .Y)] 2 has degree one in R(x). 
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p(x) 
TASK TYPE T3: Evaluate the following limit: l i m — — . 

— 0 0 0 

Description: P(x) and Q(x) are polynomials such that in, the degree of P(x), is 

less or equal to n, the degree of Q(x). 

This is a formalization of the tasks described in chapter 3, section 3.1; they 

correspond to routine tasks. 

Table 4.1 shows the occurrence of the types of tasks described above in the final 

examinations that I have analyzed. If an instance of a type of task occurred, that is the 

only instance of that type that appeared on the final examination; there were no examples 

of final examinations where two or more instances of the same type would be given. 
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Task of type T, occurred Task of type T2 occurred Task of type T j occurred 

2001 Fall 
& Winter 

Yes, m=3, n = 2 n Yes Yes, m = n 

2003 Fall Yes, m=3, n=2 Yes Yes, m = n 

2003 
Winter 

Yes, m=3, n=2 Yes Yes, m < n 

2004 Fall 
& Winter 

Yes, m=3, n=2 Yes Yes, m = n 

2005 
Winter 

Yes, m=3, n=2 Yes Yes, m = n 

2005 Fall Yes, m=3, n=3 No Yes, m = n 

2006 Fall 
& Winter 

Yes, m=3, n=2 Yes Yes, m = n 

2007 Fall Yes, m=4, n=2 Yes No 

Note: (*) m = deg P(x), n = deg Q(x) 

TABLE 4.1. Occurrence of routine tasks in final exams, and some characteristics of the expressions 

involved. 

To identify the techniques associated with these tasks I considered two sources: the 

sections of the textbook listed in the outline of the course and the solutions of past final 

examinations written by teachers and made available to the students. For tasks of type TI 

and T2, the considered sources are consistent in the sense that they provide the same 

techniques. These techniques are described below and are labeled xl and t2, respectively. 
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TECHNIQUE r l : Substitute c for x and recognize the indetermination 0/0 16. 

Factor P(x) and Q(x) and cancel common factors. Substitute c for x. The 

obtained value is the limit. 

EXAMPLE: 

Task: Evaluate the following limit: l im^—6x4-5 
•v->l x" - 6x + 5 

Expected solution: 

(Substitution of 1 for x in the expression to check whether the 

indetermination 0/0 is the case is not expected in students' written 

solutions. Students are not penalized if there are no traces on paper of 

this verification). 

x 3 - 6 x 4 - 5 ,. ( x - l ) ( x 2 + x - 5 ) .. X2+X-5 
lim— = lim- — = lim 

x" - 6x + 5 (x - l)(x - 5) x - 5 

_ l 2 + l - 5 _ - 3 _ 3 
1 - 5 

T2: Substitute c for x and recognize the indetermination 0/0. 

Multiply and divide by the conjugate of V W - Q(c). Factor out 

P(x) - [0(A)]2 from R(x). Simplify and substitute c for x. The obtained 

value is the limit. 

The first step in xl appears in the textbooks when strategies of calculating limits are described in general. 

However, this step is omitted in most worked out examples in the textbooks and in solutions written by 

teachers and made available to students. The same is true for T2. 
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EXAMPLE: 

Task: Evaluate the following limit: lim y f x - 2 
x2 - 1 6 

Expected solution: 

(Substitute 4 forx and recognize the indetermination 0/0.) 

r_>4 x2 - 1 6 x~>4 (x2 - 16 ) (Vx + 2) 
1 1 

(x - 4)(x + 4)(s[x + 2) 
1 

x - 4 

It is important to observe that in the textbook there is no formalization of the 

techniques using mathematical symbols expressing generality. The techniques are only 

shown on particular instances of the types of tasks. 

The presentation of the technique for type T3 - in the textbook and in the teachers' 

solutions of final examinations - requires special consideration. First, the textbook 

presents the solutions for several examples using the following approach17: 

1 ' This is not only the case in the particular textbook assigned to the Calculus course in the studied college. 

1 have verified that the same approach is given in other three recent editions of North American college 

level Calculus textbooks. 
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TECHNIQUE x3a: Divide both P(x) and Q(x) by x". Simplify each term and 

then use the algebraic properties of limits and the fact that the limit of a 

constant over a power of x, as x —»• oo , is 0. 

EXAMPLE 

Task: Evaluate the following limit: lim 
5x4 -2JC + 1 

-v->=° 6x - 2x4 

Expected solution: 

5x4 - 2 x + l 2 1 
.. 5x4 - 2 x +1 ^ 
lim — = lim — — = lim f — T->o° 6x - 2x 6x - 2x 6 

x4 
- 2 

l i m S - l i m ^ + l im^-
- V — . r — > c o X - ) ~ U + U J 

l i m — - l i m 2 0 2 2 
.Y—»eO Y*1 -V̂CO 

After several examples are solved this way, the textbook provides "guidelines" to 

find limits of rational functions at infinity. These "guidelines" state that it suffices to 

compare m and n, the degrees of the numerator and the denominator. If m = /?, the value 

of the limit is the quotient between the leading coefficients of P(x) and Q(x). If m < 77, the 

value of the limit is 0. The guidelines are a generalization of the examples shown before. 

The mathematical proof of the generalization is not given and it is not indicated that such 
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18 a proof is needed. Furthermore, no application of these "guidelines" is shown . This, as 

it will be discussed later on Chapter 6, disrupts the didactic flow of the textbook -

although the "guidelines" are stated, they are not used on examples in the way that other 

techniques are used. 

In the teachers' solutions of final examinations, made available to the students, I 

have found two different approaches. One is the same as the one found in the textbook: 

technique T3a (although the step in which the limit is distributed is skipped). The other 

approach is described below. 

TECHNIQUE T3b: Factor x'" from P(x) and x" from Q(x), and simplify -A-
x" 

to get J . Use the fact that the limit of a constant over a power of x, as 
x" 

x —• oo , is 0. 

EXAMPLE 

5x4 - 2x + 1 
Task: Evaluate the following lhnit: lim-

•v->OT 6x - 2x4 

Expected solution: 

lb Only one of the other three textbooks presents these "guidelines" in the exact same way as described 

here. The other two only show the approach described as technique t3a. 
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lim 
5x - 2x +1 

6x - 2x4 = lim-
.r—>co 

2 1 / 

\ = lim 

, 2 n 

V x x J 
f 

- 2 

5 
2 

From this, it is reasonable to infer that the "guidelines" provided by the textbook do 

not form part of the knowledge to be learned (from the perspective of the Final-

Examination institution). It is not expected that students will use these guidelines in 

solving the limit tasks proposed in the final examination. 

On the other hand, from the fact that those "guidelines" are in a section listed in the 

outline of the course, it is also reasonable to infer that they belong to the knowledge to be 

taught. In this research, I am not considering data that would allow me to say whether this 

knowledge is actually taught or not. It is, however, knowledge made available to the 

students by the College-Calculus institution (the section where these guidelines appear is 

listed in the outline of the course). Once the "guidelines" are known, the techniques x3a 

and x3b become proof techniques: they show in each particular case that the "guidelines" 

are valid. These techniques are a way of solving, for example, a task of the type prove 

, 5x4 - 2 x + l 5 
that lim :— = — . 

6x -2x 2 

At it will be explained in more detail in Chapter 6, from a mathematical point of 

view, there is an essential difference between the techniques T1/T2 and the techniques 

t3a/b. While the techniques rl and x2 are essential to find the limit in any given instance 
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of TI and T2, respectively, the techniques t3a/b are not necessary - once the guidelines 

are known. 

Considering the knowledge made available to the students in the textbook (as 

indicated in the outline of the course), 1 surmise that, from the perspective of the College-

Calculus institution, the technique to solve the type of tasks T3 corresponds to those 

"guidelines", while what was labeled above as t3a and t3b are part of the justification of 

the technique, i.e., part of the technology. To complete the explanatory discourses, 

technology and theory, I considered the justifications appearing in the textbook (there are 

no justifications provided in the teachers' solutions of final examinations). 

Hence, from the perspective of the College-Calculus institution, 1 have 

characterized the following mathematical praxeologies in relation to the tasks appearing 

in final examinations. 

Mathematical praxeology 1 (MP1) 

TASK TYPE TI - as described above. 

TECHNIQUE xl - as described above. 

TECHNOLOGY 61: If two functions / and g agree in all but one value c then 

lim f(x) = limg(jc). If r(x) is a rational function and c is a real number 
.V—>C ' V- >c 

such that r(c) exists, then limr(.r) = r(c). 
.v—> £ 

THEORY 01: A graph supports the fact that two functions agreeing in all but 

one point have the same limit behavior. The E-S definition of limits taken 
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at a constant; e-8 proofs of both statements in 01. Algebraic properties of 

limits; proofs of these properties. 

Mathematical praxeology 2 (MP2) 

TASK TYPE T2 - as described above. 

TECHNIQUE x2 - as described above. 

TECHNOLOGY 02: If two functions / and g agree in all but one value c then 

lim f(x) = l img(x). If n is a positive integer and c is a real number, then 
. r—>c x->c 

lim '4x='4c for all c if n is odd, and for all non-negative c if n is even. 

THEORY 02 : A graph supports the fact that two functions agreeing in all but 

one point have the same limit behavior. The s-5 definition of limits taken 

at a constant; e-5 proofs of both statements in 02. Algebraic properties of 

limits; proof of these properties. 

[Mathematical] praxeology 3 ([M]P3) 

TASK TYPE T3 - as described above. 

TECHNIQUE t3: (The "guidelines" appearing in the textbook.) Let P(x) be the 

numerator, with leading coefficient a„„ and Q(x) be the denominator, 

with leading coefficient bm. Compare m and n, the degrees of P(x) and 

Q(x), respectively. If m = n, the value of the limit is a„/b„. If m < n, the 

value of the limit is 0. 
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TECHNOLOGY 93: The limit of a constant over a positive power of x, as x—>00, 

is 0. Several examples, employing technique t3a. (This technique could 

be formalized into a mathematical proof of the "guidelines": Let 

m 
P(x) = ̂  atx be the numerator of the rational function, such that am ± 

;=o 
0, and let Q(x) = ^ f y x ' be the denominator, such that b„ ± 0. Assume 

that m < n. Then 

m ^ a,x' 
" v" 1=0 - lim '=° x 

;=0 

^ b:x' 
La n /=0 x 

l i m f W = l i m M = i i m to = l i m 

Q(x) 

0 if m <n 

— if m = n 
b.. 

Where e and S tend to 0 by virtue of the fact that the limit of a constant 

over a positive power of x, as x—>00, is 0.) 

THEORY 03: The s-N definition of limits at infinity; e-N proof of the fact that 

the limit of a constant over a positive power of x, as x—>00, is 0. 

Algebraic properties of limits; proofs of these properties. 

In the case of MP1 and MP2, the technologies are presented in the textbook in the 

same section where the techniques are discussed. Furthermore, a fragment of the theories 

also appears in this section: the graph showing the intuitive idea that two functions 

agreeing in all but one point must have the same limit behavior, and the algebraic 

properties of limits. All this belongs to the knowledge to be taught. The rest of the 



theories are in sections that are not listed in the course outline; this portion of the theories 

belongs to scholarly knowledge. 

In the case of [M]P3, the only fragments of the technology present in the textbook 

are: the statement that the limit of a constant over a positive power of x, as x—>00, is 0, 

and examples of applications of x3a. This belongs to the knowledge to be taught. It is not 

said that the examples support the validity of the technique x3, and it is not mentioned 

that this technique is a generalization of the examples. The formalization of x3a into a 

proof of x3 does not appear in the textbook. This constitutes a weak form of technology, 

from a mathematical point of view, because the explanatory discourse is not a 

mathematical explanatory discourse. This explains the brackets in the name of the 

praxeology. On the theory level, the formal definition of limits taken at infinity appears in 

the same section where the examples of instances of T3 are given with their solutions 

(using x3a). The algebraic properties of limits are shown in the chapter where limits taken 

at a constant are presented (the section where TI, T2 and their respective technologies are 

shown). The rest of the theory appears in a section that is not listed in the course outline 

(scholarly knowledge). 

4 . 2 A MODEL OF INSTRUCTORS' MODELS OF THE KNOWLEDGE 

TO BE LEARNED 

Now 1 consider the knowledge to be learned from the point of view of the Final-

Examination institution and derive a model of instructors' models of this knowledge. 

Instructors' solutions contain no explanatory discourses. It can be concluded, 

therefore, that instructors1 spontaneous models of the knowledge to be learned consist 



only of tasks and techniques, and the corresponding theoretical blocks are not included. 

They form part of the knowledge to be taught but not of the knowledge to be learned. 

From this, we can reconstruct a theoretical model of instructors' models of the knowledge 

to be learned (instructors as participants of the Final-Examination institution). This model 

consists of the types of tasks TI, T2 and T3 (routine tasks) and the corresponding 

techniques xl, T2, x3a and x3b (routine techniques). I refer to it as PBs - for "practical 

blocks" (fragments of praxeologies in which the theoretical blocks are missing) - and in 

particular, as PB1, PB2, PB3a and PB3b. In chapter 6,1 discuss the possible implications 

of 

(a) the differences between the mathematical praxeologies MP1, MP2 and 

[M]P3 and these practical blocks, and 

(b) the institutional use of t3a and x3b as techniques to accomplish tasks of 

type T3. 

As a preview of this discussion, I will make three key observations. Firstly, the 

model consisting of the types of tasks TI, T2 and T3 and the techniques t l , T2, x3a and 

x3b does not correspond to a complete praxeology anymore because the theoretical block 

is missing. Secondly, this model, in particular the block PB3a/b, hardly corresponds to a 

mathematical practice, as the techniques x3a and x3b are illustrations of mathematical 

explanatory discourses at the technology level, not mathematical techniques. Finally, the 

occurrence of tasks Tl , T2 and T3 in final examinations is not institutionalized in the 

sense discussed in chapter 2, section 2.1. On the one hand, the College-Calculus 

institution does not have explicit rules stating that these types of tasks have to appear in 



final examinations. Their occurrence is based on tradition and the shared idea that this is 

the minimum knowledge that students should learn. Teachers usually refer to these types 

of tasks as "the least common denominator of what is taught in our courses". Thus, the 

occurrence of these tasks is the result of a practice regulated by norms, not by rules. On 

the other hand, although the committee preparing the final examination also prepares a 

grading scheme, there are no sanctions for not following it to the letter. It is only a 

suggestion and the final decisions about the grades are left to the discretion of the 

instructors. This implies that the Final-Examination institution considers the techniques 

as norms, not as rules. Therefore, the practical blocks (PBs) defined above, are regulated 

by norms, not by rules. Hence, they do not define an institutionalized practice. In other 

words, the model of the models of the knowledge to be learned of the instructors as 

participants of the Final-Examination institution is not a model of an institutionalized 

practice, but of a normal practice. I will argue later that this difference is quite sharp for 

the participants, and could be at the basis of students' positioning in the Community-of-

study institution. 
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CHAPTER 5 

MODELS OF STUDENTS' SPONTANEOUS MODELS OF 

THE KNOWLEDGE TO BE LEARNED 

S7: Well... I do not know... for me... because most of the exercises that we were given, 

every time that you 'd replace it'd give you zero over zero, so it is kind of a reflex. 

(Student S7 explaining why she factored an expression although later on she 

recognized that this factoring was not needed.) 

In this chapter, 1 analyze students' behavior in the tasks proposed in the interviews. As I 

explained in Chapter 3,1 divided the interview into three parts corresponding to different 

tasks: a classification task, a set of typical looking limits tasks, and a set of non-routine 

limits task. Each part offered a snapshot of students' behavior in front of tasks related 

with limits. From the first snapshot, 1 infer partial, individual models for each student's 

spontaneous model of the knowledge to be learned in relation to the task of finding limits. 

From the second snapshot, I build a partial model of students' spontaneous models to 

deal with tasks that resembles routine tasks. From the third snapshot, I build a partial 

model of students' spontaneous models to deal with tasks that do not resemble routine 

tasks. Each of these models is presented in the form of a praxeology which I associate, in 

the case of snapshot 1, with the student's mode - or modes - of thinking and, in the cases 

of the second and third snapshot, with the general, most frequent, students' positioning in 

the institution Community-of-study. In section 5.4, I put the partial models together to 



build a general model of students' spontaneous models of the knowledge to be learned 

with respect to the task of finding limits of functions. 

5 . 1 SNAPSHOT # 1 : PARTIAL MODEL BASED ON A 

CLASSIFICATION TASK 

In this section, I present and analyze students' behavior in the classification task. From 

their techniques to accomplish this task and from their explanatory discourses, I inferred 

their praxeological organizations to deal with the task of finding limits of functions, their 

mode(s) of thinking about their techniques, and their positioning in the Community-of-

study institution. These praxeologies constitute the first partial model of students' 

spontaneous models of the knowledge to be learned. They provide the first hint that 

students' models are not purely mathematical, but a mixture of social, cognitive, didactic 

and mathematical norms. 

I briefly recapitulate what I explained in Chapter 3, Methodology and research 

procedures, to facilitate the reading and understanding of this section. The task that 1 

analyze here was the same for all students: Classify the 20 cards according to a rule of 

your choice. To better understand students' techniques to accomplish this task, I consider 

the general scheme of the expressions in the cards plus two boxes, one of which (Box # 

3) corresponds to the arithmetic outcome of direct substitution (in R u {+oo, -oo}) , and 

the other (Box # 4) - to the value of the limit (see Figure 5.1). The technique that a 

student uses to classify the expressions is based on where his or her focus of attention is 

placed with respect to this schema. 
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lim 
Box 4: the value 
of the limit. 

Box 1: at 
which value 
the limit is 
taken. 

Box 2: 
algebraic 
expression of 
the function. 

Box 3: outcome of 
direct substitution. 

FIGURE 5.1 (Copy of Figure 3.1 .). A scheme of limit expression. 

I characterized students' techniques as belonging to Arithmetic, to Algebra, to 

Calculus, or to Analysis. An Arithmetic technique would often be associated with the 

student's focusing only on boxes 2 and 3, while a Calculus technique - with focusing 

only on box 1. There were many subtleties, however, and these could be only grasped 

when analyzing students' own explanations of their techniques. Hence, for example, a 

student who focused on box 4 could have been using a Calculus technique or an Analysis 

technique, and only the student's discourse could give an indication of which was the 

case. Furthermore, a student who focused, for example, on boxes 1 and 2, could have 

combined them to build a class or consider them independently to build different classes, 

and this gives information on the student's mode of thinking. For example, if a student 

was focusing on one box to build one class and on a different box to build another class, 

he or she was clearly employing a complexive mode of thinking. 



In Chapter 2 (page 42) I described the criteria used in this research to decide which 

mode of thinking a student was using; these criteria have been derived from Sierpinska's 

(1994) interpretation of Vygotsky's theory of concept development. 

In the next section, I detail the classification that each student proposed, with a 

verbatim reproduction of the phrases he or she used to describe the classes. Then, based 

on each student's classification, his or her techniques to accomplish the classification task 

and his or her explanatory discourse, I reconstruct the student's praxeological 

organization to deal with limits. 

Of course, my analysis relied on the information that I could extract from the 

interviews. As it will be clear below, this information varied considerably from one 

student to another, and so did my level of analysis. In particular, for some students, I was 

able to conjecture on their theories, that is, the second level of justification, from the 

point of view of ATD. For many students, however, 1 did not have sufficient ground for 

conjecture, and then I could only discuss the first level of justification, the level of 

technology. A summary of the analysis of the students' performance in the classification 

task will follow in section 5.1.2. 

5.1.1 Analysis of individual student's performance in the 

classification task 

In this section, I present the reconstructed praxeologies of each of the 28 interviewed 

students with a discussion justifying each reconstruction. The presentation is divided into 

six categories, based on the mathematical domain to which the students' techniques 
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apparently belonged: Algebra, Calculus, Arithmetic, a mixture of Arithmetic and 

Calculus, a mixture of Algebra and Calculus, and Analysis. 

As it was defined in Chapter 4 (page 86) the notation PB1, PB2 and PB3a/b refers 

to the practical blocks that model the spontaneous models of the knowledge to be learned 

about limits of the instructors as participants of the Final-Examination institution. I use 

the notation "PBs" to refer to the model itself. To facilitate the reading of this section, I 

briefly recall each PB. 

PB1 

P(x) 
TASK TYPE TI: Evaluate the following limit: lim— 

Description: c is a fixed constant; P(x) and Q(x) are polynomials such that the 

factor x — c occurs in both P(x) and Q(x)\ x - c has degree one in Q(x). 

TECHNIQUE r l : Substitute c for x and recognize the indetermination 0/0 19. 

Factor P(x) and Q(x) and cancel common factors. Substitute c for x. The 

obtained value is the limit. 

19 The first step in t1 appears in the textbooks when strategies of calculating limits are described in general. 

However, this step is omitted in most worked out examples in the textbooks and in solutions written by 

teachers and made available to students. The same is true for T2. 
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PB2 

JP(x) - Q(x) 
TASK TYPE T2: Evaluate the following limit: lim^ ^ . 

R(x) 

Description: P(x), Q(x) and R(x) are polynomials such that -JP(c) - Q(c) = 0 , 

R(c) = 0, and the factor P(x)~[Q{x)]2 has degree one in R(x). 

TECHNIQUE T2: Substitute c in x and recognize the indetermination 0/0. 

Multiply and divide by the conjugate of JP(d) - Q(c) . Factor out 

P(x)-[Q(x)]2 from R(x). Simplify and substitute c for x. The obtained 

value is the limit. 

PB3a/b 

P(x) 
TASK TYPE T3: Evaluate the following limit: l im——. 

Q(x) 

Description: P(x) and Q(x) are polynomials such that m, the degree of P(x), is 

less or equal to n, the degree of Q(x). 

TECHNIQUE r3a: Divide both P(x) and Q(x) by .r". Simplify each term and 

then use the algebraic properties of limits and the fact that the limit of a 

constant over a power of x, as _v —> oo , is 0. 
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jn 
TECHNIQUE T3b: Factor x'" from P(x) and x" from Q(x), and simplify ~ 

to get . Use the fact that the limit of a constant over a power of x, as 

x •—> oc, is 0. 

5.1.1.1 Students whose technique belongs to the domain of Algebra 

In the analysis of student Si ' s performance in the classification task, I explain the way in 

which 1 have interpreted students' behavior and discourses to infer their praxeologies in 

front of the task of finding limits, their mode(s) of thinking and their positioning in the 

Community-of-study institution. In this sense, the reading of this first analysis is the key 

to understanding the other 27 analyses. 

Student SI20 

The student's classification of the limit expressions given in the first part of the interview 

is shown in Table 5.1a. 

20 Students were labelled SI to S28; the numbers 1 to 28 were given at random, they reflect neither the 

order in which students were interviewed nor the order in which the interviews were analyzed. 
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Class Members of class (labels 

refer to Table 3.3). 

Phrases used by the student in response to the question "what 

was the rule of your choice?" 

1 2 , 5 , 9 , 12, 17 Difference of squares. 

2 6 , 7 Constants. 

3 19, 20 With trigs. That confuses me. 

4 3 , 1 0 , 1 3 , 1 4 , 1 8 With square roots. 

5 1 , 4 , 8 , 1 1 , 1 5 , 1 6 Polynomials. 

TABLE 5.1a. Student S I ' s classification. 

In describing class 1, the student used the phrase "difference of squares" to refer to 

rational functions that contained a difference of squares. When she said "with trigs" to 

describe class 3, she was referring to expressions containing the sine function. When she 

said "with square roots" to describe class 4, she was referring to rational expressions 

containing square radicals. Finally, she used the phrase "polynomials" to refer to rational 

functions. 

Technique. The student focused on box 2 to make her classification. In particular, she 

considered some features of the algebraic form of the function to decide about the 

membership of an expression to one class or another. She was considering features that 

were purely algebraic and not related to the algebra of Calculus. Hence, 1 concluded that 

her technique belonged to the domain of Algebra. 



Technology. The justification of the technique, i.e., the phrases that the student used to 

describe each class, evoked typical topics of school Algebra textbooks: constants, 

difference of squares, trigonometric functions, rational functions, rational expressions 

with radicals. The phrases that she used to "name" the classes constitute themselves the 

immediate explanatory discourse about her technique, i.e., her technology. 1 interpret the 

discourse as, "I placed expression 19 in class 5 because it has a trigonometric function in 

it"; or "I placed expression 13 in class 3 because there's a square root in it". 1 do not 

interpret it as, for example, "class 5 corresponds to quotients of polynomials such that 

none of them is a difference of squares". Although one might believe that this is what she 

meant, one can only infer it from looking at the members of the classes, not from the 

phrases or "names" she used; one would be changing the "name" or description of the 

class. Moreover, one might want to go further in completing the ellipsis in her discourse, 

saying, for example, that she meant, "class 5 corresponds to quotients of polynomials 

such that the numerator is not a constant and none of the polynomials is a difference of 

squares". However, the "name" or description is an essential component in Vygotsky's 

definition of stages of concept development and modes of thinking. The mode of thinking 

depends not only on how an individual sorts a certain collection of objects, but also on 

his or her criteria of this classification, and these criteria can be only inferred from his or 

her justifications. Another person given the same objects and asked to classify them 

based only on student S i ' s descriptions would not necessarily be able to complete the 

elliptic discourse and might struggle to decide on the membership of some of the objects. 

In the particular case of the classification done by student SI, another person might start 

by trying to classify expression 8 and place it in class 5 because it is a polynomial. Then 



this person might take expression 17 and place it in class 1 because both the numerator 

and the denominator are differences of squares. However, when considering, for 

example, expression 9 he or she might hesitate in prioritizing the feature "numerator is a 

difference of squares" over the feature "both numerator and denominator are 

polynomials". These considerations led me to claim that student S i ' s technology is based 

on complexive thinking. 

Theory. While explaining what her classes were and why she had placed this or that 

object in a class, the student said, in reference to class 3: "Because that [trigonometric 

functions] confuses me, I put them together". I analyze the levels of her explanatory 

discourse as follows. The sentence "these are with trigs" is an answer to, "what is the 

description of the class containing objects 19 and 20?". This belongs to the level of 

technology. The sentence "because that confuses me, I put them together" is an answer to 

"why did you consider the feature 'trigonometric function' as a key to build a class?". 

This is an explanatory discourse at the next level of justification, the level of theory. Her 

statement is of syncretic nature, because it refers to an affective relation that she has with 

this particular feature. Her short statement about trigonometric functions could also point 

to a reason why she put the rational functions with a "difference of squares" apart from 

her "polynomials". First, the "difference of squares" is a topic given a specially emphasis 

in school Algebra textbooks and is treated separately from the chapter on polynomials in 

general and even separately from the chapter on quadratic functions. Moreover, if one 

considers these expressions as tasks to be performed, and the operation to be done is 

factoring, then this student could have taken into account the fact that a difference of 
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squares is easier to factor than an arbitrary trinomial or polynomial. All this points to an 

affective context of learning. At the level of theory, she justified her behavior based on 

her affective relation with the tasks to be performed. Hence, I claim that student SI was 

thinking in syncretic images at the theory level of justification. 

Based on this analysis, I construct a model of student S i ' s praxeology in front of 

the task of finding limits of functions. I propose that the student's technique belongs to 

Algebra. This implies, in particular, that she would decide which technique to apply in a 

problem upon, exclusively, the algebraic form of the function. Next, 1 propose that the 

student's technology, or her explanatory discourse about the technique, is based on her 

previous algebraic knowledge with a vocabulary and system of concepts typical of high 

school Algebra. As for her theory, it appears to be based on her affective rapport with the 

different problems she has had to do as a student. It is important to notice that this 

praxeology does not qualify as a mathematical praxeology because the theoretical block 

is not of mathematical nature. 

The above model is summarized in Table 5.1b. 
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Technique Technology Theory 

The technology evokes school 

Algebra textbook categories -

this might be reinforced by the 

PBs. 

Affective context of learning. 

«!L_ 1 1 II 1 

The technology evokes school 

Algebra textbook categories -

this might be reinforced by the 

PBs. 

Affective context of learning. 

r i 
, 2 3 4 

The technology evokes school 

Algebra textbook categories -

this might be reinforced by the 

PBs. 

Affective context of learning. 

The technique belongs to 

Algebra. 

The justification of the technique 

is based on complexive thinking. 

The justification of the 

technology is based on syncretic 

thinking. 

TABLE 5.1b. A model of student S i ' s praxeology related to tasks of finding limits of functions, inferred 

from her behavior in the classification task. 

Student S7 

Student S7's classification is very similar to that of student SI. Both students used the 

phrase "polynomials" to describe the class in which they had placed rational functions. In 

the class described by the phrase "by replacing", S7 put expressions with constant 

functions, 6 and 7, and the expression with a polynomial, 8. 

Class Members of class (labels 

refer to Table 3.3). 

Phrases used by the student in response to the question "what 

was the rule of your choice?". 

1 19, 20 With sine. 

2 3, 10, 13, 14, 18 Contain square roots. 

3 1 ,2 ,4 , 5 ,9 , 11, 12, 15, 16, 17 Polynomials. 

4 6, 7 , 8 By replacing. 

TABLE 5.7a. Student S7's classification. 
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Technique. The student focused on box 2 to make her classification. This could mean that 

in front of the task of finding limits, the algebraic form of the function would be a 

decisive feature for her approach. 

Technology. The first three classes evoke topics of a school Algebra textbook. The 

student chose to describe her fourth class using a phrase evoking the method of direct 

substitution. However, the name was not well chosen because the technique applies to 

only one of these items, namely 8. The expressions 6 and 7 correspond to limits of 

constant functions where the notion of "substitution" does not make sense; moreover, 

expression 6 is a limit taken at infinity. On the other hand, the technique applies to 

several other items, which she has not included in the "By replacing" class. The student 

may have failed to study the items deeply enough to notice these facts (misperception), 

but it may be also a result of some misconception in relation to the technique of 

substitution. Her classification is based on complexive thinking because the classifying 

features shifted from the algebraic form of the function (e.g. "contain square roots") to 

the technique to be used to find the limits (e.g. "by replacing"). 

As it was the case with student SI, we cannot ignore that S7 was aware that these 

were limit expressions. She used the phrase "by replacing" to describe class 4, showing 

that she recognized the expressions as tasks to be performed and giving some sense to the 

symbol x—>a. 1 believe that her misperceptions could have been based on her habits in 

dealing with routine problems, those in the PBs. 
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Technique Technology Theory 

lim . . - H I M The technology refers to school 

Algebra textbook categories and 

the technique of direct 

substitution, with misconceptions 

and, perhaps, misperceptions -

influenced by the PBs. 

[The theory cannot be inferred 

from the classification task.] 1 j-* 2 3 4 

The technology refers to school 

Algebra textbook categories and 

the technique of direct 

substitution, with misconceptions 

and, perhaps, misperceptions -

influenced by the PBs. 

[The theory cannot be inferred 

from the classification task.] 

The technique belongs to 

Algebra. 

The justification of the technique 

is based on complexive thinking. 

[The mode of thinking cannot be 

inferred from the classification 

task.] 

TABLE 5.7b. A model of student S7's praxeology related to tasks of finding limits of functions, inferred 

from her behavior in the classification task. 

Student S8 

Class Members of class (labels 

refer to Table 3.3). 

Phrases used by the student in response to the question "what 

was the rule of your choice?". 

1 3, 10, 13, 18 
Rationalization. That 's the first thing I think of. I have to do 

that first. 

2 1 ,2 ,4 , 5, 9, 11, 12, 15, 16, 17 These I have to factor first. Then see if something cancels out. 

3 19,20 These are trig ones. 

4 6, 7 , 8 These you can just plug in. 

5 14 And this I am not sure. 

TABLE 5.8a. Student S8's classification. 



The phrase "these are trig ones" refers to the expressions containing the sine 

function. In her description of class 5,1 believe she meant that she was not sure about the 

value of the limit and of how to find it. 

Technique. The. student focused her attention exclusively on box 2, the algebraic form of 

the functions, and, based on this form, classified the items according to the technique she 

believed was necessary to find the limit. Despite of this, her technique was purely 

algebraic: she failed to notice or to interpret the information in box 1. 

Technology. It appears that, in the student's mind, these expressions are tasks to be done. 

From her experience with limits of functions, it seems that she retained two approaches: 

factoring-cancelling-plugging in and rationalization (these correspond to PB1 and PB2, 

respectively). Quotients with radicals were placed in class 1, the class of the 

rationalization technique, although for expressions 10, 13 and 18 this technique is not 

helpful at all. Rational functions were placed in class 2, the class of the factoring 

technique, which is not useful in items 4, 5, 11, and 12, where limits are taken at infinity. 

Item 9 was also put in class 2 although the limit can be found by direct substitution. Also 

items 15, 16 and 17 are in class 2; here, the factoring technique is not helpful because 

direct substitution gives a non-zero number over zero. Expressions 6, 7 and 8, in which 

there are no radicals (class 1) and there is no need to factor because there are no visible 

denominators - and hence nothing would cancel out (class 2) - were placed in the class 

whose name ("plug in") evokes the direct substitution technique. Student S7 also had 
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class {6, 7, 8} and named it with a term evoking substitution. Class 3, which S7 named 

"polynomials", matches exactly student S8's class 2; S8 described it as "These I have to 

factor first...". It may be the case that when student S7 made her "polynomials" class she 

also had in mind, as S8, a common technique to find those limits. This would reinforce 

the conjecture that S7 misperceptions were based on her habits in dealing with routine 

problems, those in the PBs - see discussion above. 

Technique Technology Theory 

The technology refers to routine 

techniques to calculate routine 

limits, with misconceptions and 

misperceptions - influenced by 

the PBs. 

[The theory cannot -be inferred 

from the classification task.] 
I M I I 

The technology refers to routine 

techniques to calculate routine 

limits, with misconceptions and 

misperceptions - influenced by 

the PBs. 

[The theory cannot -be inferred 

from the classification task.] 

1 1 2 3 4 
1 

The technology refers to routine 

techniques to calculate routine 

limits, with misconceptions and 

misperceptions - influenced by 

the PBs. 

[The theory cannot -be inferred 

from the classification task.] 

The technique belongs to 

Algebra. 

The justification of the technique 

is based on complexive thinking. 

[The mode of thinking cannot be 

inferred from the classification 

task.] 

T A B L E 5.8b. A model of student S8 's praxeology related to tasks of finding limits of functions, inferred 

from her behavior in the classification task. 

Expression 14 contains radicals but no visible denominator. This, I believe, is the 

reason why she did not place it in class 1, for her the rationalization technique does not 

apply in that case. Finally, she placed together, in a class of their own, the trigonometric 

functions, as many other students did. 
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From this interpretation of the student's behavior, I conclude that she was thinking 

in complexes. Firstly, to decide which technique should be applied to find the limit, she 

was using a feature - the information in box 2 - that is not per se informative about this 

matter. Secondly, another person would not be able to reconstruct her classification based 

on the phrases she provided. For example, one would place expressions 9 and 10 in class 

4 because both limits can be found by "just plugging in", and would not know where to 

place expressions 4, 5, 11, and 12 as they correspond to limits of rational functions taken 

at infinity. 

Student S9 

Class Members of class (labels 

refer to Table 3.3). 

Phrases used by the student in response to the question "what 

was the rule of your choice?". 

] 2, 4, 9, 17 Numerator and denominator have the same degree. 

2 1, 11, 12, 15 Upper is more than lower. 

3 5, 16 Upper is less than lower. 

4 8, 14 Polynomial. 

5 3, 10, 13,18 Upper is less than lower and it 's not an integer. 

6 19, 20 Sines. 

7 6, 7 Constants. 

TABLE 5.9a. Student S9's classification. 
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The phrases "upper is more than lower" and "upper is less than lower" refer to the 

relation between the degrees of the polynomials in the numerator (upper) and the 

denominator (lower) of the rational expressions. 

Technique. The student focused exclusively on box 2 to build her classes. Hence, it could 

be inferred that, if she has a technique for solving limits, it is likely to belong to Algebra. 

Technology. The student first explanatory discourse refers to algebraic features. In this 

sense, she might be employing a conceptual mode of thinking - but only in relation to 

concepts of Algebra, not of Calculus. 

Technique Technology Theory 

hm | | | | | The technology refers to 

algebraic features. 

[The theory cannot be inferred 

from the classification task.] 1 1 2 3 4 
1 

The technology refers to 

algebraic features. 

[The theory cannot be inferred 

from the classification task.] 

The technique belongs to 

Algebra. 

The justification of the technique 

is based on conceptual thinking -

in relation to concepts of Algebra, 

not of Calculus. 

[The mode of thinking cannot be 

inferred from the classification 

task.] 

T A B L E 5.9b. A model of student S9 's praxeology related to tasks of finding limits of functions, inferred 

from her behavior in the classification task. 
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Student S10 

Class Members of class (labels 

refer to Table 3.3, p. xx). 

Phrases used by the student in response to the question "what 

was the rule of your choice?". 

1 3 ,6 , 7, 8, 10, 12, 13, 18, 19 . . .easy.. . 

2 1 ,2 ,4 , 11, 16 .. .factoring... 

3 5, 9, 14, 15, 17, 20 ...not sure. . . 

(*) The student spoke a lot while doing the classification task; the words mentioned in the table are those he 
used many times in describing the elements of the class. 

TABLE 5.10a. Student S10's classification. 

The student took all the cards together in his hands and went through them one by 

one. He was then placing them in one of three piles: the pile of those where the limit is 

"easy" to find; the pile of the ones you have to factor to find the limit; and the pile of 

those where he was not sure how to find the limit. The phrases "easy", "factoring" and 

"not sure" that I wrote in Table 5.10a are those which appeared most often in the flow of 

his verbose speech (see page 296-299). Here are some excerpts of the interview showing 

the type of phrases he was using: 

SIO: [Talking about expression 1.] The top is a little odd but you know.. . it 's a little odd because 

there's usually an x square right in front but I 'm pretty sure that yeah I think it would work if you 

have something that cancels out like a minus two .Y or something like that.. . 

S10: [Talking about expression 8.] [. . .] this one seems like a bit of a trick, as if it is too easy, like x 

goes to one you know and there's nothing even under it. It 's just . . . 

S10: [Talking about expression 2.] Now this one is easy, because this would be .v plus one times x 

minus one and you can already cancel something out... yeah, you would get something that would 

work tine. 
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S10: [Talking about expression 5.] I don't know, I haven't done enough problems of .r cube minus 

one. 

Technique. At first, the student considered the possibility of taking into account the 

information in box 1. He said: "But I don't know maybe I should take into account the 

limit, so x is going to infinity, x is going to three". But immediately he discarded this 

possibility: "[...] but like usually for something like that it's better just to try to... 

because everything here is kind of scattered so you know... It's probably best to simplify 

everything and then solve it, you know". Then he focused on the information given in 

box 2. Going through the different expressions, he was referring to the techniques he 

would use in each case to find the limits: factoring, substitution, partial fractions, long 

division, L'Hopital's rule. His choice of these techniques was guided by the algebraic 

form of the function and recognition of familiarity with other limits that he remembered 

having dealt with. Since he was explicitly referring to the techniques he would use, I 

assume that his technique to find limits belongs to the domain of Algebra. 

Technology. In the classification task, based on a recognition of familiarity with the 

content of box 2, student S10 made choices about the techniques he would use to find 

each limit. When he decided that the technique to be applied was factoring, he placed the 

cards in class 2, when the technique was not factoring, he mentioned some other 

techniques, such as partial fractions, long division, and L'Hopital's rule, but he placed 

those cards in class 1 or 3. Some misconceptions can be found in his reference to using 

partial fractions to find limits (probably influenced by the fact that he was taking 
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Calculus II and partial fractions is a routine technique to find antiderivatives), or in his 

idea of using factoring for limits taken at infinity (e.g., for expression 4). His technology 

is based on syncretic thinking because he used affective aspects such as easiness and lack 

of certainty as his classifying features; these aspects are not intrinsic to the classified 

objects but to his personal appreciation. 

From this student's classification, it is hard to understand what is "easy" and what 

is not for him. For example, he placed item 12 (an infinity over infinity indetermination) 

in class 1 (the "easy" class), but he put item 4 (another infinity over infinity 

indetermination) in class 2 (the "factoring" class), despite the fact that polynomials in 

expression 12 are a lot easier to factor (they are x" - 1 and x - 1) than those m expression 

4 (9x3 - x + 2 and 3x3 + 1). 

However, while classifying, he was most of the time referring to standard Calculus 

techniques (though not all of them related to finding limits of functions). In addition, 

from some excerpts of his interview, it seems that he was forming chains of complexes. 

In some cases, his observations about an expression were first influenced by the 

expression he had just seen. It is not that his technology in the classification task is based 

on complexive thinking, but I conjecture that his technology on the task of finding limits 

would be based on complexive thinking, shifting from one feature of an expression to 

another and being influenced by the immediately preceding task. 

Theory. The student's explanatory discourse would be reflecting thinking in syncretic 

images, as the shifting on his attention is based on affective impressions. 
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Technique Technology Theory 

Calculus standard and non-

standard techniques to find limits, 

with misconceptions. 

Affective impressions about 

expression in box 2. 
lim M i l l 

Calculus standard and non-

standard techniques to find limits, 

with misconceptions. 

Affective impressions about 

expression in box 2. 
V 2 3 4 

Calculus standard and non-

standard techniques to find limits, 

with misconceptions. 

Affective impressions about 

expression in box 2. 

The technique belongs to 

Algebra. 

The justification of the technique 

is based on syncretic images. 

The justification of the 

technology is based on syncretic 

thinking. 

TABLE 5.10b. A model of student SlO's praxeology related to tasks of finding limits of functions, inferred 

from his behavior in the classification task. 

Student S12 

Class Members of class (labels 

refer to Table 3.3, p. xx). 

Phrases used by the student in response to the question "what 

was the rule of your choice?". 

1 6 , 7 Constants. 

2 
1, 2, 4, 5, 8, 9, 11, 12, 15, 16, 

17 

Polynomials. Either divide by .Y or cancel out. [ . . . ] These are 

the ones you have to divide by x. [ . . . ] These either you divide 

by x or cancel out. 

3 3, 10, 13, 14, 18 Roots. 

4 19, 20 [No description was given.] 

TABLE 5.12a. Student S12's classification. 

As many other students, S12 used the word "polynomials" to refer to rational 

functions. Then she used the word "roots" to refer to rational expressions with radicals. 

Expressions with the sine function were put a class of their own, and not described at all. 
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Technology. Hence, her first explanatory discourse evokes topics of school Algebra 

textbooks: constants, rational functions, rational expressions with radicals, trigonometric 

functions. In this sense, she might be employing a pseudoconceptual mode of thinking -

but only in relation to concepts of Algebra, not of Calculus, as it was the case with 

student S9. 

Technique. The student's technique was purely algebraic as she was considering only the 

information in box 2 to build her classification. 

Technique Technology Theory 

lim , | | | | | The technology evokes topics on 

a school Algebra textbook. 

Techniques for finding limits of 

routine functions, with 

misconceptions - influenced by 

the PBs. 

1—j—1 2 3 4 

The technology evokes topics on 

a school Algebra textbook. 

Techniques for finding limits of 

routine functions, with 

misconceptions - influenced by 

the PBs. 

The technique belongs to 

Algebra. 

The justification of the technique 

is based on pseudoconceptual 

thinking - in relation to concepts 

of Algebra, not of Calculus. 

The justification of the 

technology is based on 

complexive thinking. 

T A B L E 5.12b. A model of student S12's praxeology related to tasks of finding limits of functions, inferred 

f rom her behavior in the classification task. 

Theory. I infer that, in her description of class 2, she was referring to techniques to find 

limits, such as those involved in the PBs. To "divide by x" would be a reference to the 

technique to find limits of rational functions at infinity, and "cancel out" would be a 
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reference to the factoring-cancelling-substituting technique to find limits of rational 

functions that are instances of the zero over zero type of indetermination. From this 

perspective, her theory would contain several misconceptions because it would fail to 

explain membership of most of the objects placed in classes 2 and 3. At this level of 

explanatory discourse, she was employing a complexive mode of thinking. Although she 

was aware that the techniques she mentioned did not apply to some of the objects in class 

2, and thus that her description applied only to some of the objects but not necessarily to 

all of them, she did not want to change her arrangement. This is a clear symptom of 

complexive thinking. 

Student S15 

Student S15's classification is almost the same as that made by S9 - the differences are 

that SI5 considered expressions 8 and 14 as rational expressions while it seems that S9 

did not, and that S15 did not distinguish between integer and fractional exponents as S9 

did. Nevertheless, it is also the case with SI5, as it was with S9, that the student's 

discourse does not allow me to infer what his technology or theory would be when 

dealing with the task of finding limits. I infer that if he has a technique for such task, it 

belongs to the domain of Algebra (see discussion for S9). 
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Class Members of class (labels 

refer to Table 3.3, p. xx). 

Phrases used by the student in response to the question "what 

was the rule of your choice?". 

1 1,8, 11, 12, 15 The power is higher on top. 

2 3 ,5 , 10, 14, 16, 18 The powers are higher at the bottom. 

3 2 ,4 , 9, 13, 17 The powers are the same. 

4 6 , 7 There's no variable. No x, just a number. 

5 19,20 With trigs and there's no powers. 

TABLE 5.15a. Student S15's classification. 

Technique. The student focused exclusively on box 2 to build his classes - as S9 did. If 

he has a technique for solving limits, it is likely to belong to Algebra. 

Technology. The student's first explanatory discourse refers to algebraic features. In this 

sense, he might be employing a conceptual mode of thinking - but only in relation to 

concepts of Algebra, not of Calculus. 



113 

Technique Technology Theory 

,im • i nn The technology refers to 

algebraic features. 

[The theory can't be inferred 

from the classification task.] 1 1 2 3 4 
1 

The technology refers to 

algebraic features. 

[The theory can't be inferred 

from the classification task.] 

The technique belongs to 

Algebra. 

The justification of the technique 

is based on conceptual thinking -

in relation to concepts of Algebra, 

not of Calculus. 

[The mode of thinking can't be 

inferred from the classification 

task.] 

TABLE 5.15b. A model of student SIS ' s praxeology related to tasks of finding limits of functions, inferred 

from her behavior in the classification task. 

Student S16 

The student focused exclusively on box 2 to construct his classes and decide membership. 

However, his use of the word "limit" in his description of class 4, suggests that he was 

aware that he was classifying limit expressions. 

Class Members of class (labels 

refer to Table 3.3). 

Phrases used by the student in response to the question "what 

was the rule of your choice?". 

1 2, 5, 9, 12, 17 These have difference of squares. 

2 19, 20 These are trig functions. 

3 3, 10, 13, 14, 18 These have square roots. 

4 6 , 7 These are limit of constants. 

5 1,4, 8, 11. 15, 16 These are either quadratic or third degree. 

TABLE 5.16a. Student S16's classification. 



.114 

From the student's classification, it is not possible to construct a general conceptual 

key for classification. Furthermore, membership of, for example, expression 5 would be 

conflictive as it is a rational function with a cubic polynomial in the denominator and a 

difference of squares in the numerator. He was prioritizing the feature "has a difference 

of squares" over the feature "has a third degree polynomial". From this, I conclude that 

his mode of thinking was complexive. 

Student S16's classes are the same as those of student SI, and they used almost the 

same phrases to describe their classes. My discussion of S i ' s behavior applies to SI6 -

except for the second level of justification, where I do not have sufficient information in 

the case of SI 6. 

Technique Technology Theory 

| | | | | 
1 j—1 2 3 4 

The technology evokes topics on 

school Algebra textbooks. 

[The theory cannot be inferred 

from the classification task.] 

The technique belongs to 

Algebra. 

The justification of the technique 

is based on complexive thinking. 

[The mode of thinking cannot be 

inferred from the classification 

task.] 

T A B L E 5.16b. A model of student SI 6 's praxeology related to tasks of finding limits of functions, inferred 

from his behavior in the classification task. 
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Student S17 

The student used the word "trinomial" to refer to expressions containing cubic 

polynomials. In his descriptions of classes 1, 4 and 5, he used the phrase "these are" 

referring to expressions that contain trigonometric functions, square roots, and the cubic 

power, respectively. The last two phrases in his description of class 6 were his answer to 

my question about what he meant by "regular". 

Class Members of class (labels 

refer to Table 3.3J. 

Phrases used by the student in response to the question "what 

was the rule of your choice?". 

1 19, 20 These are trig. 

2 6 , 7 These are regular limits, there's not much to do. 

3 8 There's no fraction. 

4 3, 10, 13, 14, 18 These are square roots. 

5 1,4 These are trinomials. 

6 2, 5, 9, 11, 12, 15, 16, 17 These are regular. Not that tricky. Factorable. 

TABLE 5.17a. Student S17's classification. 

Technique. Student S17 focused on box 2 to build his classification. His technique is 

purely algebraic. 
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Technology. However, he referred to the fact that the objects were limit expressions and 

not just algebraic expressions. His justification resembles topics in school Algebra 

textbooks (factorable polynomials, expressions with radicals, trigonometric functions). 

However, it is influenced by the fact that he was dealing with limit expressions: "regular 

limits" (for his description of class 2) and "regular [limits]" for his description of class 6. 

The link between the algebraic form of the function and the technique to be applied could 

be influenced by the routine tasks - those in the PBs. 

At this level of justification, he was thinking in complexes. For example, when he 

said, "These are regular limits, there's not much to do" to describe class 2, another person 

could have decided that this description also applied to expression 8. Also, when he said, 

"There's no fraction" to describe class 3, another person could have decided that this 

description also applied to expression 14. 

Technique Technology Theory 

The technology resembles topics 

in school Algebra textbooks, 

influenced by the fact that they 

were limit expressions and not 

just algebraic expressions. 

The theory is based on the 

easiness of the application of the 

technique needed to find each of 

the limits. 

1 I I 1 1 

The technology resembles topics 

in school Algebra textbooks, 

influenced by the fact that they 

were limit expressions and not 

just algebraic expressions. 

The theory is based on the 

easiness of the application of the 

technique needed to find each of 

the limits. 
1 1 1 2 3 4 

The technology resembles topics 

in school Algebra textbooks, 

influenced by the fact that they 

were limit expressions and not 

just algebraic expressions. 

The theory is based on the 

easiness of the application of the 

technique needed to find each of 

the limits. 

The technique belongs to 

Algebra. 

The justification of the technique " 

is based on complexive thinking. 

The justification of the 

technology is based on syncretic 

images. 

TABLE 5.1 lb. A model of student SI l's praxeology related to tasks of finding limits of functions, inferred 

from her behavior in the classification task. 
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Theory. However, at the next level of justification, he was a syncretic thinker. His use of 

the adjective "regular" refers to the easiness - from his point of view - of the application 

of the technique he believed should be used to find the limit in each case. Hence, for 

example, although expression 1 is factorable, he placed it in class 5 ("cubic 

polynomials"). It could be, for example, that he was not familiar with techniques to factor 

cubic polynomials. Furthermore, it seems that the only technique he had in mind when 

dealing with limits of rational functions was the factoring-cancelling-substituting 

technique, as he did not distinguish limits taken at infinity from limits taken at a constant. 

When I asked him, how expression 4 (member of class 5) was different from expression 5 

(member of class 6), he said, "This [expression 4] has two cubes". This is irrelevant from 

the point of view of the application of a technique to find the limit, as both were limits 

taken at infinity. He believed that he would have to factor these expressions to find the 

limit, and factoring expression 4 would be more difficult than factoring expression 5. 

Student S18 

It is quite difficult to understand what the student meant by "trinomials". Did she mean 

trinomials in the algebraic sense or polynomials of cubic degree, or perhaps both of 

them? When, in her description of class 3, she said "these have a trinomial in the 

denominator but difference of squares I kept them aside", she pointed to cards 5 and 9. In 

item 5 the numerator is a difference of squares and the denominator is a binomial of third 

degree. In item 9, again, the numerator is a difference of squares but the denominator is a 

trinomial of degree 2. 
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Class Members of class (labels 

refer to Table 3.3). 

Phrases used by the student in response to the question "what 

was the rule of your choice?". 

1 1,4, 8, 11, 15, 16 These are all trinomials. 

2 3, 10, 13, 14, 18 There's a square root. 

3 2 , 5 , 9 , 12, 17 

These have a difference of squares. I like those. These have a 

trinomial in the denominator but difference of squares I kept 

them aside. 

4 6 , 7 Limits three and seven. 

5 19, 20 Trigonometric. 

TABLE 5.18a. Student SI8 ' s classification. 

Technique Technology Theory 

The technology evokes topics of 

school Algebra textbooks. 

The technology seems to be 

supported by his like or dislike 

for the algebraic expressions. 

M i l l 
The technology evokes topics of 

school Algebra textbooks. 

The technology seems to be 

supported by his like or dislike 

for the algebraic expressions. t - f 2 3 4 

The technology evokes topics of 

school Algebra textbooks. 

The technology seems to be 

supported by his like or dislike 

for the algebraic expressions. 

The technique belongs to 

Algebra. 

The justification of the technique 

is based on complexive thinking. 

The justification of the 

technology is based on syncretic 

thinking. 

TABLE 5.18b. A model of student SI 8 's praxeology related to tasks of finding limits of functions, inferred 

from her behavior in the classification task. 

This student's classes are the same as those of student SI, and similar phrases were 

used to describe them. My discussion of student S1 's behavior applies to S18 as well. 
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Technique. The student considered only information in box 2 to build her classes. Thus, 

her technique was purely algebraic. 

Technology. From the student's reference to limits in her description of class 4, I infer 

that she was aware that these were limit expressions. With the statement "I kept them 

aside" she meant that although 5 and 9 were "trinomials" she prioritized the feature 

"difference of squares" to decide about the membership of these expressions in class 3. 

Hence, she was employing a complexive mode of thinking, and she was aware that she 

was not using consistent criteria to form disjoint classes. 

Student S24 

Class Members of class (labels 

refer to Table 3.3). 

Phrases used by the student in response to the question "what 

was the rule of your choice?". 

1 6, 7 Just a number in them. 

2 2, 5, 9, 12, 15, 16, 17 These are with squares. Squares at the top. 

3 3, 10, 13, 14, 18 These are roots. Roots at the top. 

4 1,4, 8, 11 Cubes. Cubes at the top. 

5 19, 20 Sines. 

TABLE 5.24a. Student S24 's classification. 
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The phrase "just a number in them" that the student used to describe class 1 refers 

to the fact that the functions in this class are constants. The student's use of the phrase 

"the top" in her description of classes 2, 3 and 4, refer to the numerator of the objects in 

those classes. 

Technique. The student's answer to the question "what was the rule for your 

classification" was: "I kind of went through a pattern". The pattern she followed was 

neither a characteristic of school Algebra textbooks nor of college level Calculus 

textbooks. She focused on algebraic features (box 2) in a way that she saw a pattern, 

which would not attract the attention of many Calculus students. None of the other 

interviewed students referred to the fact that the square roots in the rational expressions 

were in the numerator; they identified (usually incorrectly) these expressions with the 

technique of multiplying and dividing by the conjugate, but the fact that the radicals were 

in the numerator was not a relevant feature for them. Nevertheless, if she has a technique 

for finding limits, I surmise that this technique will belong to the domain of Algebra. 

It is difficult to explain why this student's attention was caught by those features. It 

is also impossible to predict her behavior in front of limit finding tasks because her 

classification and explanatory discourse were disconnected from limit concepts. 

Therefore, I can't make inferences about her explanatory discourses in relation to the task 

of finding limits. 
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Technique Technology Theory 

[The technology cannot be 

inferred from the classification 

task.] 

[The theory cannot be inferred 

from the classification task.] 
1 1 1 1 1 

[The technology cannot be 

inferred from the classification 

task.] 

[The theory cannot be inferred 

from the classification task.] 
V 2 3 4 

[The technology cannot be 

inferred from the classification 

task.] 

[The theory cannot be inferred 

from the classification task.] 

The technique belongs to 

Algebra. 

[The mode of thinking cannot be 

inferred from the classification 

task.] 

[The mode of thinking cannot be 

inferred from the classification 

task.] 

TABLE 5.24b. A model of student S24's praxeology related to tasks of finding limits of functions, inferred 

from her behavior in the classification task. 

Student S26 

The student's language of description could not be understood without his gestures. The 

phrase "the thing on the top and the bottom" appeared to refer to the relation between the 

degrees of the polynomials in numerator and denominator. In class 2 he placed rational 

functions with numerator and denominator of same degree; in class 3, those in which the 

degree was higher in the numerator than in the denominator, and in class 4, those in 

which the degree was higher in the denominator than in the numerator. 

Class Members of class (labels 

refer to Table 3.3). 

Phrases used by the student in response to the question "what 

was the rule of your choice?". 

1 6, 7 Constants. 

2 2, 4, 9, 17 The thing on the top and the bottom. 
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3 1, 11, 12, 15 
The thing on the top and the bottom. These the power is more 

in the top than the bottom. 

4 5, 16 The thing on the top and the bottom. These the opposite. 

5 3 , 1 0 , 1 3 , 1 4 , 1 8 Square roots. 

6 8 [No description was given.] 

7 19, 20 Sines. 

TABLE 5.26a. Student S26's classification. 

Technique. It follows from the observations above that the student obviously singled out 

all rational functions from the set and applied a consistent classification scheme to this 

subset, based on the relation between the degrees of the numerator and the denominator. 

In general, it seems that the student classified the items consistently according to the type 

of function in box 2: rational functions, functions with square roots, trigonometric 

functions and constants. In this sense, his classification resembles topics in a college level 

Calculus textbook. At a second level of classification, he analyzed the rational functions 

set into three subclasses according to the relation between the degrees of the numerator 

and the denominator; at this second level, his classification resembles topics in a school 

Algebra textbook. 

Technology!. As pointed above, his classification evokes topics in a college level Calculus 

textbook and topics in a school Algebra textbook. In the domain of Algebra, he was using 
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a conceptual mode of thinking; but, from his discourse, I cannot infer what his mode of 

thinking in Calculus was. 

Technique Technology Theory 

" | 1 II 1 The technology refers to 

algebraic features. 

[The theory cannot be inferred 

from the classification task.] i 1 2 3 4 
1 

The technology refers to 

algebraic features. 

[The theory cannot be inferred 

from the classification task.] 

The technique belongs to 

Algebra. 

The justification of the technique 

is based on conceptual thinking -

in relation to concepts of Algebra, 

not of Calculus. 

[The mode of thinking cannot be 

inferred from the classification 

task.] 

T A B L E 5.26b. A model of student S26's praxeology related to tasks of finding limits of functions, inferred 

f rom his behavior in the classification task. 
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5.1.1.2 Students whose technique belongs to the domain of Calculus 

Student S2 

Class Members of class (labels 

refer to Table3.3). 

Phrases used by the student in response to the question "what 

was the rule of your choice?" 

1 6 , 7 Limit of a constant. You can do it right away. 

2 3, 10, 18 Multiply top and bottom by the square root. 

3 1,2, 9, 15, 16, 17 Fractions. 

4 4, 5, 11, 12 Fractions to infinity. 

5 13, 14 These are square roots but to infinity. 

6 8 [No description was given.] 

7 19, 20 [No description was given.] 

TABLE 5.2a. Student S2's classification. 

When the student stated the phrase "multiply top and bottom by the square root" to 

describe class 2, he was referring to the rationalization method: multiplying and dividing 

by the conjugate of the expression with radicals. When he used the phrase "these are 

square roots but to infinity" to describe class 5, he was referring to expressions involving 

radicals where the limit was taken at infinity instead of at a constant as was the case of 

class 2. 1 surmise that he made a first classification distinguishing "fractions" - rational 

expressions - from "square roots" - expressions with radicals. Then he separated each of 

these general classes into two classes depending on whether the limit was taken at a 

constant or at infinity. This hypothesis is supported by the fact that when 1 asked him 
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why objects in class 4 were separated from those in class 3, he said: "those are to 

infinity". When I asked him what was in class 5, he said, "those are the same idea as the 

square root but to infinity, those [the ones in class 2] were to a number". The student 

ignored classes 6 and 7 when asked to describe each class. 

Technique. The student combined information in box 1 - whether the limit was taken at a 

constant or at infinity - with the algebraic form of the function (box 2). This is a standard 

approach to finding limits of functions in Calculus. 

Technology. His reference to the rationalization technique in the phrase that describes 

class 2 could be an indication that when he placed the "fractions" together [class 3], he 

was thinking of a common technique to find those limits. Within this inteipretation, his 

discourse to justify this technique for classifying evokes typical topics of college level 

Calculus textbooks. He is deceived, however, by the algebraic form of the functions. In 

particular, the objects he placed in class 3 are very heterogeneous from the point of view 

of Calculus. While expressions 1 and 2 are indeterminations of the zero over zero type, 

expression 9 corresponds to a continuous function at the value at which the limit is taken. 

Expressions 15, 16 and 17 correspond to functions with vertical asymptotes at the values 

at which the limits are taken. There are no common techniques to find these three 

different types of limits. This misconception could be the result of the student's habit to 

deal with routine problems - the PBs. 
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At the technology level of explanatory discourse, this student is thinking in 

complexes. Another person would have problems, for example, to decide the membership 

of the item 13. Although the algebraic form of the function contains a square root and the 

limit is taken at infinity (class 5), it could also be placed in class 4, as the algebraic form 

of the function is a fraction and the limit is taken at infinity. 

Theory. The student did not make any further statements, so 1 do not have any basis to 

make claims about his explanatory discourse at the level of theory. 

Technique Technology Theory 

The technology refers to typical 

topics of college level Calculus 

textbook, but the student might be 

deceived by the algebraic form of 

the functions - influenced by the 

PBs. 

[The theory cannot be inferred 

from the classification task.] 

•inL. 1 1 I I 1 

The technology refers to typical 

topics of college level Calculus 

textbook, but the student might be 

deceived by the algebraic form of 

the functions - influenced by the 

PBs. 

[The theory cannot be inferred 

from the classification task.] 

i i 
, 2 3 4 

The technology refers to typical 

topics of college level Calculus 

textbook, but the student might be 

deceived by the algebraic form of 

the functions - influenced by the 

PBs. 

[The theory cannot be inferred 

from the classification task.] 

The technique belongs to 

Calculus. The student combined 

the information in boxes 1 and 2. 

The justification of the technique 

is based on complexive thinking. 

[The mode of thinking cannot be 

inferred from the classification 

task.] 

T A B L E 5.2b. A model of student S2?s praxeology related to tasks of finding limits of functions, inferred 

from his behavior in the classification task. 
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Student S3 

Class Members of class (labels 

refer to Table 3.3). 

Phrases used by the student in response to the question "what 

was the rule of your choice?". 

1 

4, 5, 11, 12, 13 These ones 1 organized them for the same technique to solve 

the problem [.. .] the infinity thing [. . .] taking the highest 

power and that would help me to find the limit. 

2 

1 , 2 , 8 , 9, 10, 15, 16, 17, 18 This was basically how to solve the problem, like it 's gonna be 

zero over zero type and I have to separate them and then find a 

way of doing it. 

3 
6, 7 This one is basically like wherever you are going the limit is 

going to be the same, it 's constants. 

4 
3, 19, 20 Limit going to zero. With the sine and the trig thing. I put the 

zeros together. 

5 14 This one I don't know. 

TABLE 5.3a. Student S3's classification. 

When the student said, "the infinity thing" and "taking the highest power", to 

describe class 1, she was referring to the standard technique used to find limits of rational 

expressions when the limit is taken at infinity: taking as a common factor the highest 

power of the variable, in both the numerator and the denominator. 

When she said, "1 have to separate them and then find a way of doing it", to 

describe class 2,1 believe she was referring to the standard techniques used to find limits 

of rational expressions where the limit is taken at a constant and they are instances of 

zero over zero type of indetermination: factoring and rationalizing. 



In class 4, she placed together the limits taken at zero, both involving trigonometric 

functions, and one a rational function. 

Technique. The student focused on features that are fragments of an approach to finding 

limits typical in Calculus. However, the student failed in combining these pieces of 

information. 

Technology. The student made explicit references to her criteria for classifying. In 

response to my question "can you explain what was your rule?", she said, "these ones 

[referring to objects in class 1] I organize them like for the same technique to solve the 

problem". Then, she said, "and this [referring to class 2] was basically how to solve the 

problem". This last statement does not reflect what she actually classified together in 

class 2, as some of the items required a factoring technique, some other - a 

rationalization technique, and some - substitution. Let us try to interpret her process of 

thinking. If we look at the objects that she placed in classes 1, 2 and 4, it seems that her 

rule for classification was whether the limit was taken at infinity, at a non-zero constant, 

or at zero. She was focusing on box 1. However, for her, this feature triggered the thought 

of the techniques she believed were necessary to find the respective limits. This made her 

switch from considering the classifying key "at where the limit is taken" to "what is the 

technique necessary to find the limit". This switching could have been reinforced when 

she went through the expressions 6 and 7 (the constant functions) and 14 (which does not 

resemble the routine tasks). This would explain why she built classes 3 and 5, as well as 
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the phrases that she ended up using to describe the classes. This shifting of the focus of 

attention - between boxes 1 and 2 - is a symptom of complexive thinking. 

Technique Technology Theory 

The technology refers to standard 

techniques of finding limits of 

routine functions, but the student 

would be deceived by 

information in box 1 - influenced 

by the PBs. 

[The theory can't be inferred 

from the classification task.] 

1 1 1 I I 

The technology refers to standard 

techniques of finding limits of 

routine functions, but the student 

would be deceived by 

information in box 1 - influenced 

by the PBs. 

[The theory can't be inferred 

from the classification task.] 

V 2 3 4 

The technology refers to standard 

techniques of finding limits of 

routine functions, but the student 

would be deceived by 

information in box 1 - influenced 

by the PBs. 

[The theory can't be inferred 

from the classification task.] 

The technique belongs to 

Calculus. Information in the 

boxes is not combined by the 

student. 

The justification of the technique 

is based on complexive thinking. 

[The mode of thinking can' t be 

inferred from the classification 

task.] 

T A B L E 5.3b. A model of student S3's praxeology related to tasks of finding limits of functions, inferred 

from her behavior in the classification task. 

Furthermore, this change in the classification key did not make her to go back on 

what she had already classified. It is very unlikely that the student miscalculated the 

direct substitution in expressions 8, 9, 10, 15, 16, 17, and 18. None of these correspond to 

a zero over zero indetermination. Thus, all limits in which x tended to a non-zero constant 

fell into the category "zero over zero type". It seems that she was misguided by the 

information in box 1, and she quickly took the items to be instances of routine tasks of 

the types in PB1 and PB2. She took the items in class 1 to be examples of tasks that can 
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be solved using technique t3b (which they are). It was only when she encountered the 

constant functions, or expression 14, that her attention moved from box 1 to box 2. 

Student S13 

Class Members of class (labels 

refer to Table 3.3). 

Phrases used by the student in response to the question "what 

was the rule of your choice?". 

1 19, 20 [No description was given.] 

2 
1, 2, 3, 7, 8, 9, 10, 15, 16, 17, 

18 

x goes to a number. 

3 4, 5, 6, 11, 12, 13, 14 x goes to infinity. There's one solution for all of them. 

TABLE 5.13a. Student S13's classification. 

With the sentence "there's one solution for all of them" the student meant that there 

was one technique to find the limit that applied to all objects in class 3. I provide 

evidence to support this claim below. 

The student first tried a classification based on the algebraic fonn of the functions. 

However, he interrupted this process and switched to another approach whose result is 

presented in Table 5.13a. After he completed his final classification, the following 

exchange took place: 

I: And why do you prefer this order better than the other one? 

SI 3: Because in this there is one solution for all of them. 
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I: Do you mean one solution or one technique? 

S13: Yes, one way of solving it. 

Technique. The student was considering information that was meaningful from the point 

of view of Calculus. I surmise that, in tasks of finding limits of functions, he would take 

into consideration the same kind of information. 

Technology. At the first level of justification, the student was thinking in complexes: he 

focused his attention on box 1 to build classes 2 and 3 but he focused on box 2 to build 

class 1. His phrases evoke the main topics of college level Calculus textbooks: limits 

taken at a constant and limits taken at infinity. 

Technique Technology Theory 

The technology evokes main 

topics in college level Calculus 

textbook. 

Techniques for finding limits of 

functions, with misconceptions. l i m | | | | | 

The technology evokes main 

topics in college level Calculus 

textbook. 

Techniques for finding limits of 

functions, with misconceptions. 

V 2 3 4 

The technology evokes main 

topics in college level Calculus 

textbook. 

Techniques for finding limits of 

functions, with misconceptions. 

The technique belongs to 

Calculus; the information in 

boxes 1 and 2 are not combined 

by the student. 

The justification of the technique 

is based on complexive thinking. 

The justification of the 

technology is based on 

conceptual thinking. 

TABLE 5.1 lb. A model of student SI l's praxeology related to tasks of finding limits of functions, inferred 

from her behavior in the classification task. 
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Theory. However, the reason why he was doing this seems to be based on conceptual 

thinking, since he had a general key: what technique should be used to find the limit. This 

conceptual thinking was based on several misconceptions: the two limits involving 

trigonometric functions require radically different approaches to find their respective 

limits; the same is the case with many of the objects in class 2. 

Student S14 

Class Members of class (labels 

refer to Table 3.3). 

Phrases used by the student in response to the question "what 

was the rule of your choice?". 

1 2 ,3 , 10, 13,18, 19 L'Hopital 's rule. Zero over zero or infinity over infinity. 

2 14, 20 These ones I didn't know where to put them. 

3 6, 7, 8 Straightforward. You just replace the .v. 

4 1 ,4 ,5 , 9, 11, 12, 15, 16, 17 Divide by the highest degree. 

TABLE 5.14a. Student S14's classification. 

I believe that with the phrase "divide by the highest degree" that the student used to 

describe class 4, she was referring to the standard technique to find limits of rational 

expressions, at infinity, of dividing numerator and denominator by the highest power of 

the variable. 



Technique. The student considered information typically taken into account in Calculus. I 

infer that this same information would guide her approach in front of the task of finding 

limits. 

Technology. Student S14 focused on box 3 to build class 1, and on box 2 to build classes 

2, 3 and 4. This is a symptom of complexive thinking. Her explanatory discourse of this 

technique evokes standard techniques of finding limits: L'Hopital's rule, direct 

substitution, to divide every term in a rational expression by the highest degree of the 

variable. Nonetheless, her classification reveals misconceptions, or perhaps 

misperceptions, about the use of these techniques: 

• limits 10 and 18, put in class 1, are not instances of zero over zero or infinity 

over infinity indeterminations, and thus, L'Hopital's rule does not apply - a 

misperception if she took the expression to be instances of the zero over zero 

or infinity over infinity type, a misconception if she thought that L'Hopital's 

rule applied even in the case where the expressions don't correspond to those 

indeterminations; 

• in expression 13, L'Hopital's rule does not help to find the limit because of 

its algebraic form and the repetitive use of the chain rule - this could just be a 

misperception based on the inexperience of the student with L'Hopital's rule; 

• limits 1, 9, 15, 16 and 17, classified in class 4, are taken at a constant and 

thus, the technique of dividing every term in numerator and denominator 

does not help to find the limit - a misconception if she thought that by using 



that technique she would be able to find the limit, a misperception if she took 

them to be limits taken at infinity. 

From her own explanation, it seems that the student did know the conditions under 

which L'Hopital's rule can be applied. Therefore, it is possible that, in the case of items 

10 and 18, the student was mislead by the algebraic form of the functions and she took 

them for instances of zero over zero indetermination because they resemble the typical 

tasks in MP2. In the case of item 13, she may have identified the expression as an 

instance of the infinity over infinity type of indetermination. She was, however, not 

sufficiently familiar with L'Hopital's rule to anticipate that it would not help her to find 

the limit. However, it could also be the case that she repeated by heart the conditions for 

L'Hopital's rule "zero over zero or infinity over infinity" but was not really considering 

them in classifying the items. It is hard to understand why she failed to notice the zero 

over zero or infinity over infinity indeterminations in expressions 1, 4, 5, 11 and 12 

(which she classified in class 4). Another striking fact is that, except for item 2, all the 

other items in the "L'Hopital's rule" class are rational expressions with radicals, which 

are algebraic forms to which L'Hopital's rule is not typically applied (because of the 

chain rule). It could be that she was just learning L'Hopital's rule in her Calculus II 

course and was shown an example with radicals, and inferred that the rule applied 

whenever there is a square root. 

I believe that an explanation for this classification may be that the student was 

employing a complexive mode of thinking. I conjecture that while going through the 



cards, some feature of a rational expression containing a square root triggered in her the 

idea that L'Hopital's rule was a feasible technique for the case. It could be that she 

recalled an example, or that she noticed a "zero over zero" or "infinity over infinity" 

indetermination, or something else. Based on that, she built a complexive chain, placing 

all rational expressions with square roots in the same class. A similar behavior could have 

been at the root of her formation of class 4. She encountered an expression with a rational 

function (just division of polynomials) that reminded her of the technique "divide by the 

highest degree". It could be, for example, that she encountered expression 11 or 12 (for 

which the technique applies), or that some other feature in the other expressions reminded 

her of the technique, and then built a complexive chain, placing all the expressions with 

rational functions in class 4. If this is how she was thinking, then the reason for putting 

expression 2 in class 1 could be that it was the first expression she classified in that class, 

immediately after she encountered a rational expression with a square root and started her 

complexive chain. Then, when she encountered expressions with rational functions again, 

one or more features in them captured her attention over the feature "zero over zero" or 

"infinity over infinity". 
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Technique Technology Theory 

The technology evokes standard 

techniques of find limits, with 

misconceptions and 

misperceptions. 

[The theory can't be inferred 

from the classification task.] H I M 
The technology evokes standard 

techniques of find limits, with 

misconceptions and 

misperceptions. 

[The theory can't be inferred 

from the classification task.] 

1 1 2 3 4 
1 

The technology evokes standard 

techniques of find limits, with 

misconceptions and 

misperceptions. 

[The theory can't be inferred 

from the classification task.] 

The technique belongs to 

Calculus; the information in 

boxes 2 and 3 is not combined. 

The justification of the technique 

is based on complexive thinking. 

[The mode of thinking can't be 

inferred from the classification 

task.] 

TABLE 5.14b. A model of student S14's praxeology related to tasks of finding limits of functions, inferred 

from her behavior in the classification task. 

Student S20 

Class Members of class (labels 

refer to Table 3.3). 

Phrases used by the student in response to the question "what 

was the rule of your choice?". 

1 4 ,5 , 11, 12, 13, 14 With the infinity. I should take the biggest power up and down. 

2 6, 7, 8, 9, 10 
The answer is clear. These ones are solvable if you put in the 

number. 

3 1,2, 3, 15, 16, 17, 18 Indeterminate. If you substitute you get a number over zero. 

4 19, 20 Exceptions. 

TABLE 5.20a. Student S20's classification. 

The student's phrase, "with the infinity", in the description of class 1, refers to the 

information in box 1. In the description of the same class, when he said "take the biggest 

power up and down", he was referring to the technique, typically used to find limits of 



rational expressions at infinity, of factoring out the highest power of the variable from the 

numerator and from the denominator. 

Technique. This student was using and trying to combine the information in boxes 1, 2 

and 3. In this sense, his technique is characteristic of Calculus. 

Technology. The student focused on box 1 to build class 1 and on box 3 to build classes 2 

and 3. He focused on box 2 to build class 4. This lack of common feature to define the 

classes is already a symptom of complexive thinking. It is not possible to provide a single 

conceptual classification key that would generate the classes he has built. 

Furthermore, to describe class 1, the student said, "the first one [the first class] is 

with the infinity thing, because I know I should take the biggest power up and down". 

However, following my intervention, he proved to be aware that the technique of taking 

"the biggest power up and down" was of no use in the case of expression 14. Our 

exchange was: 

I: And what about this one [How the mentioned technique would be used in expression 14]? 

S20: This one is infinity minus infinity. I don't think it goes to infinity though.. . it is positive... so 

the answer is zero. 

I: But when you put them together in the same group [all the members of class 1], what were you 

thinking? 

S20: Just the infinity thing. 1 didn't look at one by one, 1 just thought 1 can take the biggest. . . like 

this one too [expression 11], over v should be infinity, and here too [expression 5], so this is one 
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over.r . [Even if he did realize that this technique does not work in all the cases in class 1, he didn' t 

change the class.] 

He was aware of the fact that that it was an indetermination of the type oo - co and 

that the limit was zero. But he decided about the membership based on the content of 

box 1, "x—•co" in this case. 

Theory. From the paragraph above, it follows that the student was justifying his choice of 

the feature to decide membership to class 1 with a phrase that applied only to some of the 

objects in the class, also a symptom of complexive thinking. 

For the four classes, it seems that the student's justification for choosing the 

features to decide membership is based on techniques to find limits of routine functions. 

However, whenever I asked him about the reasons why this or that expression was a 

member of a class, he was eager to discuss each limit and try to find their values, even if 

he decided not to use this information for the classification. In most cases, his reasoning 

was not only correct but also conceptual. For example, he said that the limit in expression 

20 was divergent and he linked this with what he was learning at the time about 

convergence of series in the Calculus II course, and tried to prove (although he was not 

successful) that the limit in 19 was 1. I believe this is a hint that, although in the 

classification task he behaved as a complexive thinker, in front of the task of finding 

limits he would use a conceptual mode of thinking. 

The student had the misconception of considering the form "a number over zero" as 

an indeterminate form, even in cases where the "number" was not zero. These 
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misconceptions were extended to the techniques he would use to find the limits: "either 

multiply by the conjugate or factor" (page 363). 

Technique Technology Theory 

The technology evokes topics on 

college level Calculus textbook, 

with misconceptions. 

The theory refers to techniques 

for finding limits of typical 

functions, with misconceptions. 

H I I I I 
The technology evokes topics on 

college level Calculus textbook, 

with misconceptions. 

The theory refers to techniques 

for finding limits of typical 

functions, with misconceptions. 
' — 1 2 3 4 

The technology evokes topics on 

college level Calculus textbook, 

with misconceptions. 

The theory refers to techniques 

for finding limits of typical 

functions, with misconceptions. 

The technique belongs to 

Calculus. 

The justification of the technique 

is based on complexive thinking. 

The justification of the 

technology is based on 

conceptual thinking. 

TABLE 5.20b. A model of student S20*s praxeology related to tasks of finding limits of functions, inferred 

from his behavior in the classification task. 

StudentS23 

The phrase "multiplying by the conjugate" refers to the technique of multiplying and 

dividing by the conjugate of the expression with radicals. When the student used the 

phrase "more complicated" in his description of classes 4 and 5, he was referring not to 

the algebraic expressions alone but to the technique that he thought must be used to find 

the limit. Later in the interview, he said that, because of the cube, the technique to find 

the limit was not the same as the one used for, for example, a quadratic expression. By 

"simple cancelling out" I infer that he meant factoring and cancelling. Hence, I interpret 

that his reference to "simple" and "complicated" refers to the factoring technique; for 

him, to factor a quadratic polynomial is easier than to factor a cubic one. 
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Class Members of class (labels 

refer to Table 3.3). 

Phrases used by the student in response to the question "what 

was the rule of your choice?". 

1 3, 10, 18 Multiplying by the conjugate. 

2 12 Simple cancelling out. 

.3 2 , 9 , 1 5 , 1 7 Simple cancelling out. 

4 4 , 5 , 1 1 More complicated, cubes, x—>*>. 

5 1, 16 
More complicated, cubes. They look very similar to me [...] 

you'd use the same technique to solve them. 

6 13, 14 No cubes and no multiplying by the conjugate. 

7 8 Definite answer. 

8 6 , 7 There are no .rs. 

9 19, 20 They are both sines. There are some similarities. 

TABLE 5.23a. Student S23's classification. 

Technique. The student first focused on box 2 to build his classification and then used the 

information in box 1 to distinguish limits taken at infinity from limits taken at a constant 

(class 2 vs. class 3, class 4 vs. class 5, class 1 vs. class 6). Only for class 7 did he appear 

to consider the information in box 4. His approach belongs to Calculus. 

Technology. The student's description of the classes is typical of complexive thinking, as 

he "named" them according to different features. For class 7 he chose the feature "there 

are no xs", while for class 8 he chose the feature "definite answer". For class 6 he used a 

phrase that explains why the objects are not members of other classes, in particular 
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classes 1, 4 and 5. With this description, however, any object that is not a member of 

classes 1, 4 and 5 could be placed in class 6. 

He had misconceptions of at least three very different kinds. Firstly, he had 

misconceptions related to the use of the typical techniques. He believed that the technique 

of multiplying and dividing by the conjugate applies only in the case of limits taken at a 

constant. Secondly, he believed that the fact that the sine function was in the expression 

was a unifying feature in terms of limits. Yet the two expressions, 19 and 20, have 

nothing in common from the point of view of the limits. Thirdly, he confused algebraic 

techniques to find limits with algebraic manipulations. He said that the technique to deal 

with cubic polynomials is "more complicated" than the technique to deal with quadratic 

polynomials. 

He also had a misperception, related to the fact that he failed to see that direct 

substitution was possible also for expressions 9 and 10. He was aware of this technique. 

He applied it in expression 8, and thus classified it as "definite answer". However, the 

algebraic forms of the functions in 9 and 10 probably misled him. It did not even occur to 

him to try the substitution technique. Both expressions 9 and 10 resemble instances of 

tasks in PB1 and PB2, respectively. 

Theory. The discourse supporting his technology seems to relate to how easy or how 

difficult it was for him to apply the techniques for finding limits. In this sense, he was 

thinking syncretically. 
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Technique Technology Theory 

The technology resembles routine 

techniques to find limits, with 

misconceptions and 

misperceptions - influenced by 

PBs. 

The theory refers to affective 

impression about how easy or 

difficult are the techniques to find 

the limits. 

1 M B 

The technology resembles routine 

techniques to find limits, with 

misconceptions and 

misperceptions - influenced by 

PBs. 

The theory refers to affective 

impression about how easy or 

difficult are the techniques to find 

the limits. 

The technology resembles routine 

techniques to find limits, with 

misconceptions and 

misperceptions - influenced by 

PBs. 

The theory refers to affective 

impression about how easy or 

difficult are the techniques to find 

the limits. 

The technique belongs to 

Calculus. 

The justification of the technique 

is based on complexive thinking. 

The justification of the 

technology is based on syncretic 

thinking. 

TABLE 5.23b. A model of student S23's praxeology related to tasks of finding limits of functions, inferred 

from his behavior in the classification task. 

Student S27 

Class Members of class (labels 

refer to Table 3.3). 

Phrases used by the student in response to the question "what 

was the rule of your choice?". 

1 6, 7 The limit is to a number. 

2 
1, 2, 3, 8, 9, 10, 15, 16, 17, 

18, 19, 20 
The x is going to a number. 

3 4, 5, 11, 12, 13, 14 Functions going to infinity. 

TABLE 5.27a. Student S27's classification. 

From the student's classification I infer that she used the phrase "the limit is to a 

number" to mean that the functions were constants or that the value of the limit was a 

constant, and she used the phrase "functions going to infinity" to mean that the limit was 

taken at infinity, i.e., referring to the symbol >oc. 
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Technique. Her technique belongs to Calculus as she was considering either the value of 

the limit or the values at which the limits were being taken. 

Technology. The student's answer to the question "what was the rule of your choice?" 

was: "what the limit was going to". Considering the classes she built, by that phrase she 

could have meant "at where the limit was being taken" or "what the value of the limit 

was". Thus, she stated a general key for classifying but she did not follow it for all her 

classes. It could be that the stage of her cognitive development in general corresponded to 

the stage of concepts. That is, in terms of scientific thinking she was a conceptual thinker. 

In particular, she knew that a general conceptual key is needed to accomplish a 

classification task. Her failure in providing a key that she could follow could be based on 

some misconceptions about limits. Nevertheless, her mode of thinking, to accomplish the 

classification tasks, was complexive, because for class 1 she focused on box 2 and for 

classes 2 and 3 she focused on box 1. The fact that in expressions 6 and 7 the functions 

where constants caught her attention over the fact that the limit in 6 is taken at infinity 

and in 7, it is taken at a constant. 

The classes she made evoke main topics on college level Calculus textbooks: limits 

taken at a constant and limits taken at infinity. There was no indication in her discourse 

of what her theory for choosing those features for classification was. 
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Technique Technology Theory 

The technology evokes main 

topics on college level Calculus 

textbooks. 

[The theory cannot be inferred 

from the classification task.] 
1 1 1 1 1 

The technology evokes main 

topics on college level Calculus 

textbooks. 

[The theory cannot be inferred 

from the classification task.] 
3 4 

The technology evokes main 

topics on college level Calculus 

textbooks. 

[The theory cannot be inferred 

from the classification task.] 

The technique belongs to 

Calculus. 

The justification of the technique 

is based on complexive thinking. 

[The mode of thinking cannot be 

inferred from the classification 

task.] 

TABLE 5.27b. A model of student S27's praxeology related to tasks of finding limits of functions, inferred 

from her behavior in the classification task. 

5.1.1.3 Students whose technique belongs to the domain of Arithmetic 

Student S6 

Class Members of class (labels 

refer to Table 3.3). 

Phrases used by the student in response to the question "what 

was the rule of your choice?". 

1 4, 6, 7, 8, 14, 19 These ones I spotted them very quickly. 

2 5, 11, 12, 13,20 These ones are infinity or infinity over infinity. 

3 1 , 2 , 3 , 9 , 10, 15, 16, 17, 18 They were going to zero or it was a zero over zero form . 

TABLE 5.6a. Student S6's classification. 

Technique. This student's technique for classifying was based mostly on the outcome of 

direct substitution in the set R u { - o o , + 0 0 } . At least, this is likely the case for classes 2 

and 3, and for expression 8 and perhaps 14 in class 1. 1 infer that this type of arithmetic 

would be at the core of his technique in front of the task of finding limits. This might lead 
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him into miscalculations such as the one I believe he made when he claimed that he 

spotted the limit for expression 14 "very quickly": oo - oo = 0. 

Technology. To justify why expression 20 was placed in class 2, he said: "I saw the one 

over X and I knew it was infinity right away" (page 278). It seems then that he ignored 

completely the symbol sin - referring to the sine function - or he saw the symbol but 

considered, for the classification, the feature he was most familiar with: "one over x tends 

to infinity as x tends to zero". 

Based on the assumption that the student's main technique was direct substitution 

and computation in the extended real domain, I presume that putting the expressions 15, 

16, 17 and 18 into the class described as "going to zero or a zero over zero form" was the 

result of the misconception that, as far as Calculus is concerned, "a constant over zero is 

zero". In the items 15, 16, 17 and 18 the results of direct substitution are —2/0, 26/0, 

21/0 and [5 - sqrt(5)]/0 respectively, and the limits are: undefined, infinity, undefined, 

and undefined, respectively. 

His mode of thinking is syncretic as he was motivated by familiarity and easiness in 

defining his classes. 
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Technique Technology Theory 

The technology refers to some 

recognition of familiarity, 

probably with misconceptions 

[The theory cannot be inferred 

from the classification task.] 
lim - - 1 1 1 1 1 

The technology refers to some 

recognition of familiarity, 

probably with misconceptions 

[The theory cannot be inferred 

from the classification task.] 
1 p-1 2 3 4 

The technology refers to some 

recognition of familiarity, 

probably with misconceptions 

[The theory cannot be inferred 

from the classification task.] 

The technique is based on an 

arithmetic in R u { - o c , + c o ) . 

The justification of the technique 

is based on syncretic thinking. 

[The mode of thinking cannot be 

inferred from the classification 

task.] 

TABLE 5.6b. A model of student S6's praxeology related to tasks of finding limits of functions, inferred 

from his behavior in the classification task. 

Student S19 

Class Members of class (labels 

refer to Table 3.3). 

Phrases used by the student in response to the question "what 

was the rule of your choice?". 

1 1 ,2 ,3 , 15, 18, 19,20 Zero over zero. 

2 9, 10, 16, 17 A number over zero. 

3 6, 7 , 8 A definite number. 

4 4, 5, 11, 12, 13, 14 Infinity over infinity. 

TABLE 5.19a. Student SI 9 's classification. 

Student's phrases to describe his classes refer to the outcome of a direct substitution 

with values in R w{-oc, +oo}.When asked why he put expression 16 in class 2, he said, "it 

is zero over a number". When 1 asked him about why expression 14 was in class 4, he 

said, "it went to infinity". 
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Technique. To build his classification and decide about the membership of each object, 

the student focused his attention on box 3. In particular - on the outcome of arithmetic 

operations on elements of R u { - o o , + 0 0 } . 

Technology. The student's descriptions evoke the typical indeterminations treated in 

college level Calculus textbooks: zero over zero and infinity over infinity, plus the 

indefinite form "non-zero constant over zero". He had the misconception of considering 

the form "zero over a non-zero constant" as being of the same type as "non-zero constant 

over zero". 

Expressions 15, 18 and 20, which he classified as "zero over zero", are instances of 

the form "non-zero constant over zero" (assuming that, for expression 20, he ignored the 

symbol of the sine function and considered only l/x, which happened for some other 

students as well). It may well be that, in his process of classification, he put the "zero 

over zero" forms together and then he encountered 15, 18 and 20 for which the 

denominator became zero and he decided to put them also in class 1. Then he found 

instances of the form "zero over a non-zero constant" (9 and 10) and made a new class. 

When, after this, he had to decide the membership of expressions 16 and J 7 ("non-zero 

constant over zero") they seemed to him better described by his idea of class 2 ("a 

number over zero") than by his idea of class 1 ("zero over zero"). This would be an 

example of an individual forming a chain of complexes. 
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With respect to his last class, "infinity over infinity" 1 asked him why expression 14 

was a member (as the value of the limit is zero and the outcome of this arithmetic in R 

u { - o o , + 0 0 } would be 0 0 - 0 0 ) . His answer was: "it went to infinity" (see page 356). It 

could be the case that he actually thought that the outcome of this arithmetic technique 

was infinity. He might have shifted his attention to box 1 and his sentence "it went to 

infinity" referred to the limit being taken at infinity. This response and shift of attention 

might have been a result of a second thought, when asked questions about the results of 

his classification after the fact. Whatever was actually the case, his behavior supports the 

conjecture that he was thinking in complexes. The phrase he used to describe class 4 was 

a description of some of the objects on the class, but not of all of them (the same 

observation applies to his description of class 2) - a very clear symptom of complexive 

thinking. 

Technique Technology Theory 

The technology refers to types of 

indeterminations typically 

analyzed in college level Calculus 

textbook, plus the non-zero 

constant over zero instances, with 

misconceptions. 

[The theory can't be inferred 

from the classification task.] 

1 1 1 1 

The technology refers to types of 

indeterminations typically 

analyzed in college level Calculus 

textbook, plus the non-zero 

constant over zero instances, with 

misconceptions. 

[The theory can't be inferred 

from the classification task.] 

' 2 3 4 

The technology refers to types of 

indeterminations typically 

analyzed in college level Calculus 

textbook, plus the non-zero 

constant over zero instances, with 

misconceptions. 

[The theory can't be inferred 

from the classification task.] 

The technique belongs to an 

arithmetic in R +00/. 

The justification of the technique 

is based on complexive thinking. 

[The mode of thinking can't be 

inferred from the classification 

task.] 

TABLE 5.1 lb. A model of student SI l's praxeology related to tasks of finding limits of functions, inferred 

from her behavior in the classification task. 
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5.1.1.4 Students whose technique belongs to the domain of 

Arithmetic/Calculus 

Student S4 

Class Members of class (labels 

refer to Table 3.3). 

Phrases used by the student in response to the question "what 

was the rule of your choice?". 

1 6, 7, 8, 9, 10 These ones I just have to plug in the numbers. 

2 4, 5, 11, 12, 13, 14 These ones are all limits where x goes to infinity. 

3 1 ,2 ,3 , 15, 16, 17, 18, 19,20 These ones give zero at the bottom. 

TABLE 5.4a. Student S4 's classification. 

The student's phrase to describe class 1 refers to limits that can be found by direct 

substitution. In class 3, he put together expressions in which direct substitution turns the 

denominator into zero. 

Technique. The student focused on box 1 to form class 2 and on box 3 to form classes 1 

and 3. Similarly as student S3, this student was considering fragments of features that 

belong to Calculus, but he was also considering a feature that belongs to Arithmetic: the 

outcome of direct substitution gives a number over zero. The Calculus approach to limits 

would distinguish between the case of a non-zero number over zero and an 

indetermination of the type zero over zero. 



Technology. The student's classes resemble the way in which college level Calculus 

textbooks typically approach limits of functions: those that can be found by direct 

substitution, those in which the denominator gives zero (most textbooks would 

distinguish, as different topics, the zero over zero indetermination from the limits in 

which direct substitution give a non-zero constant over zero), and limits taken at infinity. 

The switching from considering features corresponding to box 1 to features 

corresponding to box 2 is typical of complexive thinking. Furthermore, expressions 6 and 

7, members of class 1, involve constant functions and thus the phrase used by the student 

to describe the class, "these ones I just have to plug in the numbers", does not apply to 

them. This is also a symptom of complexive thinking. However, it seems that, in class 1, 

the student put together limits that can be easily found: there is no need for an algebraic 

technique and the denominators are not zero. It is also important to mention that 

immediately after stating his phrase to describe class 2, the student said, "Although in the 

first group there are limits where something goes to infinity, the variable is not in the 

function" (see page 265). With these considerations, the classes are mutually exclusive. 

Hence, the student was starting to be, if not concerned about a general classification key, 

then at least concerned about a non-contradictory classification. This could be a sign that, 

in terms of cognitive development, the student was at the most mature phase of the 

complexive stage, namely the phase of pseudoconcepts. Nevertheless, his mode of 

thinking about limits was complexive and not pseudoconceptual. 
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Technique Technology Theory 

The technology resembles college 

level Calculus textbook 

categories. 

[The theory cannot be inferred 

from the classification task.] 1 1 1 1 1 

The technology resembles college 

level Calculus textbook 

categories. 

[The theory cannot be inferred 

from the classification task.] 

1 2 3 4 
1 

The technology resembles college 

level Calculus textbook 

categories. 

[The theory cannot be inferred 

from the classification task.] 

The technique belongs to both 

Arithmetic and Calculus, but 

these two approaches are not 

combined. 

The justification of the technique 

is based on complexive thinking. 

[The mode of thinking cannot be 

inferred from the classification 

task.] 

TABLE 5.4b. A model of student S4's praxeology related to tasks of finding limits of functions, inferred 

from his behavior in the classification task. 

Student S25 

Class Members of class (labels 

refer to Table 3.3). 

Phrases used by the student in response to the question "what 

was the rule of your choice?". 

1 4, 5, 6, 7, 8, 10, 17 Real answer. 

2 2, 9, 11, 12, 14, 15, 16, 18,20 Answer is infinity. 

3 1, 3, 13, 19 Answer is zero over zero or infinity over infinity. 

TABLE 5.25a. Student S25's classification. 

Technique. The student considered features characteristic of Calculus, looking at whether 

the value of the limit was a constant ("real answer") or infinity ("answer is infinity") in 

the first two classes, and the outcome of substitution in R u { - o e , + c o } ("zero over zero or 

infinity over infinity") in the third class. The student's evaluations were all correct for 



class 3, all but one correct in class 1; however, the evaluation of limit in class 2 was 

correct only in one third of the cases. 

Technology. The student's verbal descriptions of the classes suggest that he based his 

classification on a single key, namely "the answer". A priori, a classification consistently 

following a single, objective feature of the items would qualify his mode of thinking as 

conceptual. However, looking at the context of his use of this word provides evidence of 

actual lack of consistency. The student's use of the word "answer" would imply that he 

focused solely on box 4, the value of the limit. However, while the descriptions of the 

first two classes indeed focused on the value of the limit, the description of the third class 

appeared to refer to box 3, the type of indeterminacy. It is not clear, from the student's 

discourse if he indeed referred to the type of indeterminacy in his description of class 3. 

Rather, it is quite likely, as conjectured in the above characterization of his technique, 

that the student focused on the outcome of direct substitution as the result of an 

arithmetic in R u{-oc, +00} (box 3) and on his recognition of normal functions (box 2). 

Because his calculations were correct in most cases (13 out of 20) and his assessments of 

the items in class 1 were correct in 6 out of the 7 cases, it is likely that he knew some 

normal techniques to find limits. He probably knew how to find limits at infinity of 

rational functions. It seems that he knew, at least, how to decide about the limit based on 

the relation between the degrees of numerator and denominator (items 4 and 5 in class 1, 

and 11 and 12 in class 2). He probably also knew that a non-zero constant over zero gives 

infinity and that if the outcome of direct substitution is a real number, this is the value of 

the limit. Hence, when he could find the value of the limit by any of these methods, he 
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placed the item in either the class 1 or class 2. If he could not do so, he placed the 

expression in class 3, mentioning only the result of direct substitution, as if referring to 

the type of indetermination. Hence, at the technology level he was a complexive thinker: 

for example, although expression 4 is an indetermination of the type infinity over infinity, 

he placed it in class 1 ("real answer"), the same would be the case for expressions 5 -

also in class 1 - and 11 and 12, members of class 2. However, if the expression was an 

indetermination, for which he did not know the answer, he placed it in class 3. 

Some of the student's mistakes could be attributed to miscalculation. The values of 

limits in expressions 2 and 9 are real numbers (-1 and 0, resp.); yet the student put them 

in class 2 ("answer is infinity"). The limit in expression 17 is infinity, yet it has been 

assigned to class 1 ("real answer"). I interpret these mistakes as miscalculations because 

the student succeeded in placing correctly (according to his classification) all the other 

expressions in class 1. 

There are clear misconceptions in the classification of items 14 and 20.1 conjecture 

that, in the case of item 20, the student disregarded the trigonometric function and 

considered only the expression 1/x, which, with oo,indeed diverges to infinity. It is 

difficult to understand what could be the source of his misconception in the case of 

expression 14, but the value of the limit is zero and not infinity. Maybe he inferred that 

the limit was infinity from the fact that x—»oo and there was no indetermination that he 

could recognize (the indetermination of type infinity minus infinity is not covered in the 

Calculus 1 course). 
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Technique Technology Theory 

i n n 
1 J""1 2 3 4 

The technology refers to the 

value of the limit or to types of 

indeterminations typically 

analyzed in college level Calculus 

textbook, with misconceptions 

and miscalculations. 

[The theory can' t be inferred 

from the classification task.] 

The technique belongs to an 

arithmetic in R U(-r<, +00/ and to 

Calculus. 

The justif ication of the technique 

is based on complexive thinking. 

[The mode of thinking can ' t be 

inferred from the classification 

task.] 

T A B L E 5.25b. A model of student S25 ' s praxeology related to tasks of f inding limits of functions, inferred 

f rom his behavior in the classification task. 

5.1.1.5 Students whose technique belongs to the domain of 

Algebra/Calculus 

Student S5 

The student's phrase to describe class 3 refers to expressions with trigonometric 

functions. When he said "with the conjugate that you have to put on the bottom" to 

describe class 5, he might have been referring to the rationalization technique. But this is 

not a common figure of speech. It could be that either the student was just being sloppy 

or that he did not know what the rationalization technique was, but the sight of a rational 

expression with radicals made him recall something about this technique. 
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Class Members of class (labels 

refer to Table 3.3). 

Phrases used by the student in response to the question "what 

was the rule of your choice?". 

1 2 ,4 , 5, 9, 11, 12, 15, 17 
Quadratics on top or whatever 1 saw, like this is a cube but 

since it is to infinity... The ones that are very mechanical. 

2 1, 16 These are the same idea [as class 1] but require more work. 

3 19, 20 Trig ones. 

4 6 , 7 The answer is already given. 

5 3 , 1 0 , 1 3 , 1 4 , 1 8 With the conjugate that you have to put on the bottom. 

6 8 [No description was given.] 

TABLE 5.5a. Student S5's classification. 

Technique. This student focused on boxes 1 and 2 to make his classification. In some 

cases, as when saying, "this is a cube but since it is to infinity" he was combining the 

information in these two boxes. In these cases, or, for example, when he described class 

5, he was making reference of approaches to finding limits that are characteristic of 

Calculus. However, his paying attention to the degree of the polynomials refers to a 

technique, which is purely algebraic and unrelated to Calculus. Hence, I infer that his 

techniques to find limits belong to both Algebra and Calculus. 

Technology. The student's phrase, "very mechanical", in the description of class 1, 

appears to refer to standard techniques, used in the PBs. in particular to the technique x3b 

(taking the highest power of the variable as a common factor in the numerator and 

denominator of rational expressions), and the technique xl (factoring and cancelling to 
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get rid of the indetermination of type zero over zero). The two objects that he placed in 

class 2 suggest that he was mislead by the algebraic form of the functions. In the case of 

expression 16, the factoring technique would not be helpful at all, as the polynomials 

have no common factors. I infer that this misleading is a consequence of the student's 

habit to deal with routine tasks such as those in PB1, PB2 and PB3b. 

I conjecture that the student's thinking in choosing the classifying features was of 

syncretic nature, because he classified as a separate class the rational functions involving 

cubic polynomials (class 2), with limits taken at a constant, likely because he usually had 

more trouble in factoring them. 

Theory. The description made above points to an affective context of learning. Therefore, 

student S5's thinking at the theory level of justification is classified as belonging to the 

syncretic mode. 

Technique Technology Theory 

The technology refers to 

techniques for finding limits of 

typical functions, but the student 

might be mislead by the algebraic 

form of the functions 

influenced by the PBs. 

Affective context of learning. 

. M i l l 

The technology refers to 

techniques for finding limits of 

typical functions, but the student 

might be mislead by the algebraic 

form of the functions 

influenced by the PBs. 

Affective context of learning. 

1 1 2 3 4 

1 

The technology refers to 

techniques for finding limits of 

typical functions, but the student 

might be mislead by the algebraic 

form of the functions 

influenced by the PBs. 

Affective context of learning. 

The technique belongs to Algebra 

and to Calculus. 

The justification of the technique 

is based on syncretic thinking. 

The justification of the 

technology is based on syncretic 

thinking. 

T A B L E 5.1 lb. A model of student SI l's praxeology related to tasks of finding limits of functions, inferred 

from her behavior in the classification task. 
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Similarly as many other students (18 out of the 28), student S5 formed a separate 

class with the expressions involving the sine function. On the one hand, limits of 

trigonometric functions are discussed in a separate chapter in most college level Calculus 

textbooks. On the other hand, these limits are non-routine as they do not resemble the 

limits tasks in the institution's mathematical praxeologies. These could be the main 

reasons why students placed them in a separate class. 

Student S l l 

Class Members of class (labels 

refer to Table 3.3). 

Phrases used by the student in response to the question "what 

was the rule of your choice?". 

1 1 ,2 ,4 , 9, 16, 17 These are fractions. 

2 3, 5, 11, 12, 13, 14 These are going to infinity or zero. 

3 6, 7 ,8 Easy ones. You can do them right away. 

4 15 Fraction that can't be divided. 

5 19,20 Sines. 

6 10, 18 [No description was given.] 

TABLE 5.11a. Student SI 1's classification. 

With the sentence, "these are going to infinity or zero", the student was making 

references to the content of box 1, not to box 4. 



During the classification process, the student questioned herself more than once 

whether she should put all the fractions together or not. Her final arrangement was as 

shown in the table 5.1 la. However, it is hard to interpret what she meant by, "fractions 

that can't be divided", when she described class 4. In the particular case of expression 15, 

I believe that she meant that the denominator is not a divisor of the numerator, but this is 

also the case in expressions 9, 16 and 17, that are members of class 1. 

I take it as the result of a misplacement (a careless mistake) the fact that, in the final 

arrangement, expression 4 ended up in class 1 rather than 2. In this part of the interview, 

the student appeared overwhelmed by the number of cards she had to consider. At some 

point, she sighed, saying, "There is a lot of them". I believe that the final classification is 

the result of an ongoing process that, at some point, she decided to interrupt. 

Technique. For class 2, student SI 1 considered box 1 (Calculus); for classes 1 and 3 to 5, 

she seems to have considered box 2 (Algebra). 

Technology. In her explanatory discourse, there is no indication of reasons why she chose 

to put fractions where x tended to zero or infinity in a different class than those in which x 

tended to a non-zero constant. She referred to some algebraic techniques but these did not 

evoke the standard techniques for finding limits. It is clear from her discourse that she 

was not confident in her ability to deal with the classification task, and she was not happy 

with the outcome of her work. In the beginning, she said, "I am not very good at this, 1 

have to think a lot". At the end of this part of the interview, she said, "Maybe it [her 
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classification] doesn't make any sense". I believe there is not enough ground to 

conjecture about her first level of justification, although, whatever it was, it seemed to be 

based on complexive thinking. 

It is important to observe that her reference to "easiness" in class 3 is not an 

affective statement on her part. When I asked her about expression 7 being a member of 

class 3, the class she described as "easy ones" and "you can do them right away", her 

answer was: 

SI 1: This is just the limit of three going to five so you get three... or five, I am not sure. I actually 

do not remember seeing those. 

"Easy" is for her a feature intrinsic to the object. It appears to be her way of saying 

that the limit, in principle, can be found "right away", even if she, herself, does not know 

how to find it. Her explanation for her own lack of knowledge makes reference to her 

unfamiliarity with the problem. 

Technique Technology Theory 

1 M I I Recognition of unfamiliarity. [The theory cannot be inferred 

from the classification task.] L - y - J 2 3 4 

Recognition of unfamiliarity. [The theory cannot be inferred 

from the classification task.] 

The technique draws partly on 

Algebra and partly on Calculus. 

The information in boxes 1 and 2 

is not combined by the student. 

The justification of the technique 

is based on complexive thinking. 

[The mode of thinking cannot be 

inferred from the classification 

task.] 

T A B L E 5.1 l b . A model of student SI l ' s praxeology related to tasks of finding limits of functions, inferred 

from her behavior in the classification task. 
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Student S21 

Technique. The student considered pieces of information, some related to Calculus - such 

as "limit as x approaches infinity" - and others related exclusively to Algebra - such as 

"with sine function" or "with division". 

Class Members of class (labels 

refer to Table 3.3). 

Phrases used by the student in response to the question "what 

was the rule of your choice?". 

1 4, 5, 11, 12, 13, 14 Limit as x approaches infinity. 

2 8 Simpler. There's no division or square roots. 

3 6 , 7 Also simpler. 

4 1 , 2 , 3 , 9 , 10, 15, 16, 17, 18 With division. 

5 19, 20 With sine function. 

TABLE 5.21a. Student S2 I ' s classification. 

Technology. The student considered the information in box 1 to build his first class, but 

then he focused exclusively on box 2 to build the other four classes. I surmise that he first 

distinguished limits taken at infinity from limits taken at a constant, and then, among the 

latter, he focused on box 2 to separate them into different classes. This lack of 

homogeneity in the classificatory criteria would be a symptom of complexive thinking. 

First, he used a Calculus feature and then - a purely algebraic one. His phrases evoke the 

way in which limits are presented in college level Calculus textbooks. 
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Technique Technology Theory 

The technology is a mixture of 

typical topics of college level 

Calculus textbooks. 

[The theory cannot be inferred 

from the classification task.] 
1 1 1 1 1 

The technology is a mixture of 

typical topics of college level 

Calculus textbooks. 

[The theory cannot be inferred 

from the classification task.] 
V 2 3 4 

The technology is a mixture of 

typical topics of college level 

Calculus textbooks. 

[The theory cannot be inferred 

from the classification task.] 

The technique belongs to Algebra 

and to Calculus; the student did 

not combine the information in 

boxes 1 and 2. 

The justification of the technique 

is based on complexive thinking. 

[The mode of thinking cannot be 

inferred from the classification 

task.] 

T A B L E 5.21b. A model of student S21 's praxeology related to tasks of finding limits of functions, inferred 

from his behavior in the classification task. 

Student S22 

The student's phrases "work out with rules" or "you have to rationalize" were all in 

reference to the techniques that she believed were needed to find the limits. When she 

said, "equal top and bottom" and "unequal top and bottom" in her descriptions of classes 

1 and 6, respectively, she was referring to the degrees of the polynomials in the 

numerator and the denominator. 

Technique. The student considered features related to Calculus, such as "substitution", 

and features related to Algebra, such as the relation between the degrees of the 

polynomials in a rational expression or "with square roots", that per se are not 

informative from the point of view of Calculus. 
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Class Members of class (labels 

refer to Table 3.3). 

Phrases used by the student in response to the question "what 

was the rule of your choice?". 

1 2, 9, 17 
Equal top and bottom, the powers equal to two. Can be 

factored and simplified. 

2 6 , 7 

Constants. ... well these are just constants, so the limit as x 

goes to infinity of seven so the answer is seven, 'cause these 

are just plain constants. 

3 3, 10, 13,14, 18 With square roots. You have to rationalize. Common methods. 

4 4 You can just simplify it and it will be nine over three. 

5 19,20 Trigonometric. 

6 1, 5, 11, 12,15, 16 Unequal top and bottom. Work out with rules. 

7 8 I just have to substitute the x. 

TABLE 5.22a. Student S22's classification. 

Technology. The student only considered the content of box 2 to build classes 1 to 4 and 

7. However, she must have noticed x—»oo in box 1 when building class 6. Although the 

item she placed in that class contains a rational function with polynomials of equal 

degree, such as those in class 1, she decided to place it in a class of its own. The fact that 

she took into account box 1 for the construction of class 4, but put, in class 6, the 

expressions 5 and 11 which also correspond to limits of rational functions taken at 

infinity, could be a symptom of complexive thinking: she failed to notice the x—>co in 5 

and 11. It is also possible, however, that she knew by heart that the limit at infinity of a 

rational function with polynomials of the same degree is the quotient of the leading 

coefficients, but did not know the equivalent rules for the case of polynomials with 
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different degrees, and thought that, in this case, she would have to factor the expressions. 

Nevertheless, her immediate level of justification was based on complexive thinking, 

since another person would have trouble deciding about the membership of some items. 

For example, expression 10 could be described, just as well, by the phrase "I just have to 

substitute the x". 

Theory. On the level of theory, when the student was justifying her "names" for the 

classes, she referred to standard techniques for finding limits of functions. However, 

these references reflected misconceptions, or misperceptions, as she seemed to believe 

that whenever there is a radical, the technique to be applied is rationalization, or that 

whenever there is a rational function and the limit is taken at a constant, the technique to 

be applied is factoring-cancelling-substituting. These could be mere misperceptions; she 

was being mislead by the algebraic forms and taking the expressions to be instances of 

tasks in PB1 and PB2. 

Technique Technology Theory 

The technology evokes a mixture 

of topics on school Algebra 

textbooks and on college level 

Calculus textbooks. 

The theory evokes techniques for 

finding limits of typical 

functions, with misconceptions 

and/or misperceptions -

influenced by the PBs. 

l,m - H i l l 

The technology evokes a mixture 

of topics on school Algebra 

textbooks and on college level 

Calculus textbooks. 

The theory evokes techniques for 

finding limits of typical 

functions, with misconceptions 

and/or misperceptions -

influenced by the PBs. 

1 ' 2 3 4 

The technology evokes a mixture 

of topics on school Algebra 

textbooks and on college level 

Calculus textbooks. 

The theory evokes techniques for 

finding limits of typical 

functions, with misconceptions 

and/or misperceptions -

influenced by the PBs. 

The technique belongs to Algebra 

and Calculus. 

The justification of the technique 

is based on complexive thinking. 

The justification of the 

technology is based on 

complexive thinking. 

T A B L E 5.1 lb. A model of student SI l's praxeology related to tasks of finding limits of functions, inferred 

from her behavior in the classification task. 
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5.1.1.6. Student whose technique belongs to the domain of Analysis 

Student S28 

Technique. Student S28 calculated each of the 20 limits, some mentally and others with 

pen and paper. Thus, he focused entirely on box 4. Furthermore, the techniques he used 

for some of the limits were characteristic more of Real Analysis than, Calculus. For 

example, he mentally calculated that the limit in item 14 (lim V r̂ " +1 - x ) was zero, 

.Y—»«> 

using the following reasoning: "when this [pointing to x] tends to plus infinity, this 

[pointing to the term with the square root] is going to tend to x, because this is going to be 

very big and once you do the square root of this, the one will just vanish and you'll have 

minus x (the other term) so it will be zero" (page 411). 

Class Members of class (labels 

refer to Table 3.3). 

Phrases used by the student in response to the question "what 

was the rule of your choice?". 

1 5 , 7 , 9 , 14 The limit goes to zero. 

2 11, 12, 15, 16, 17 The limit is plus/minus infinity. 

3 1,2, 3, 4, 6, 8, 10, 13, 18, 19 Finite numbers that are not zero. 

4 20 Divergent. 

TABLE 5.28a. Student S28's classification. 

Technology. The student miscalculated some of the limits (item 7 in class 1, item 15 in 

class 2, and items 10 and 18 in class 3). He even acknowledged this possibility. In fact, 
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he started his explanation by saying, "I may have made a mistake in the calculation...". 

He did not attach much importance to these mistakes; the only thing that seemed to 

matter for him was the classification key. The student considered also other criteria for 

the classification but discarded them as "not specific enough" (see page 411). He made 

his classification key explicit: "I decided to put them into something that already tells you 

if you are going to have an answer finite, zero, divergent or infinity". 

Theory. The way, in which the student calculated limit 14 (see the paragraph 

corresponding to Technique) suggests that he was dealing with the task of finding the 

limits in a way that corresponds to the domain of Real Analysis. 

Technique Technology Theory 

The technology refers to the 

value of the limit. 

The theory refers to analytic 

inferences about the behavior of 

functions. 

1 1 1 1 1 
The technology refers to the 

value of the limit. 

The theory refers to analytic 

inferences about the behavior of 

functions. 
1 ' 2 3 4 

The technology refers to the 

value of the limit. 

The theory refers to analytic 

inferences about the behavior of 

functions. 

The technique is analytical. The justification of the technique 

is conceptual. 

The justification of the 

technology is conceptual. 

T A B L E 5.28b. A model of student S28's praxeology related to tasks of finding limits of functions, inferred 

from his behavior in the classification task. 
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5.1.2 A summary of the individual students' performance on the 

classification task 

In assessing students' behavior in the interview, it is important to take into account the 

fact that students were told - when they were recruited - that the interview would take 

about one hour, but they were not told at any point, before or during the interview, how 

many tasks there would be. Each task was given to them as if it was the last one. Hence, 

there is no ground to believe that students felt time-pressured while doing the 

classification task. The students' decision to calculate or not the limits in the cards they 

were classifying was a choice based on their own criteria to carry out the classification. 

The only student who calculated each of the 20 limits - some mentally and some with 

pen and paper - was student S28. Other students made references to the fact that they 

were considering the value of the limit for some expressions (for example S20); other 

students referred to the techniques they would use to find the limits (for example S10); 

and there were students who did not seem to be concerned at all with finding the limits 

(for example S9). 

Of the twenty eight (28) interviewed students, twelve (12) focused exclusively on 

the algebraic features of the functions (box 2) to classify the twenty items. Seven (7) 

students considered only the Calculus features (in one way or another they considered 

information that is meaningful from the point of view of Calculus: the value at which the 

limit is being taken, the type of indetermination as a tool to decide which technique to 

apply, the actual value of the limit). Two (2) students based their classification on 

arithmetic computations in R u {^c. +oc). Only one (1) student's classification applied 

criteria characteristic of mathematical analysis. Six (6) students used a combination of 



two approaches: two (2) combined Arithmetic and Calculus, and four (4) of them -

Algebra and Calculus. 

Among the twelve students who based their classification exclusively on the 

algebraic features of the functions, for eight students (SI, S7, S8, S10, S12, S16, S17 and 

SI8) the expressions in the cards triggered a behavior that could be associated with a path 

of developing concepts about limits. These eight students either made an explicit 

reference to the fact that they were classifying limit expressions, or their classes seemed 

to be influenced by the institution's mathematical praxeologies related to limits tasks. 

This was not the case for the other four students (S9, SI5, S24 and S26), who made no 

reference to limits in their descriptions or explanations and their classification features 

cannot be associated with the mathematical praxeologies. 

The following tables summarize the analysis above. 
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Students' labels Technique in limits 
tasks belongs to the 
domain of: 

Mode of thinking 
about Technology 

Mode of thinking 
about Theory 

Number of students 
in category 

1, 10, 17, 18 Algebra Complexive Syncretic 4 

7, 8, 16 Algebra Complexive [unable to say] 3 

12 Algebra Pseudoconceptual Complexive 

5 Algebra/Calculus Syncretic Syncretic 1 

11,21 Algebra/Calculus Complexive Syncretic 

22 Algebra/Calculus Complexive Complexive 

6 Arithmetic Syncretic [unable to say] 1 

19 Arithmetic Complexive [unable to say] 1 

25 Arithmetic/Calculus Complexive Syncretic 1 

4 Arithmetic/Calculus Complexive [unable to say] 1 

23 Calculus Complexive Syncretic 

20 Calculus Complexive Complexive 1 

2, 3, 14,27 Calculus Complexive [unable to say] 

13 Calculus Complexive Conceptual 1 

28 Analysis Conceptual Conceptual 1 

9, 15,24,26 [unable to say] [unable to say] [unable to say] 4 

TOTAL 28 

T A B L E 5.29. Students classified according to the domain of their techniques and their modes of thinking. 



.169 

Domain 
of 
technique 

Number 
of 
students & 

frequency 

Mode of thinking about technique Mode of thinking about theory 

Syncr. Compl. Pseudo-
concept. 

Concept. Syncr. Compl. Pseudo-
concept. 

Concept. Un-
known 

Algebra 8 (33%) 0 7 1 0 3 I 0 0 3 

Calculus 7 (29%) 0 7 0 0 1 1 0 1 4 

Alg./Cal. 4(17%) 1 3 0 0 4 1 0 0 0 

Ar./Cal. 2 (8%) 0 2 0 0 1 0 0 0 1 

Arithm. 2 (8%) 1 1 0 0 0 0 0 0 2 

Analysis 1 (4%) 0 0 0 1 0 0 0 1 0 

TOTALS 24 2 20 1 1 9 3 0 2 10 

% 
(,/V=24) 

100% 8% 83% 4% 4% 38% 12% 0% 8% 42% 

T A B L E 5.30. Modes of thinking in the technology and theory levels vs. the domain of the techniques. 

Several observations can be made based on Table 5.30. Complexive thinking 

prevails in justifications of techniques embedded in all domains except Analysis. 

Conceptual thinking in justification of techniques occurs only if the techniques belong to 

Analysis. Syncretic thinking in justification of techniques (technology) is rare. It is more 

frequent in justification of technology (theory). However, offering a syncretic 

justification of technology could be seen as better performance than offering no 

justification at this level at all: 50% of all 28 students did not offer any justification at the 

theory level. 

The praxeologies of at least thirteen (13) students seemed to be influenced by the 

PBs (SI, S2, S3, S5, S7, S8, S12, S16, S17, S18, S21, S22 and S23). In addition, at least 

eight (8) students had a discourse that evoked topics or sections on college level Calculus 



textbooks (S2, S4, SI3, SI9, S20, S21, S25 and S27). The union of these two classes 

results in nineteen (19) students, out of the twenty eight, whose explanatory discourses 

were not related to concepts but to how these concepts are presented by the institution 

(either in the final exams or in the textbook). 

Finally, it is interesting to observe that eighteen (18) students (SI, S2, S3, S5, S8, 

S9, SI 1, S12, S13, S15, SI6, S17, S18, S21, S22, S23, S24, and S26) classified 

expressions 19 and 20 (involving the sine function) in a class of their own. 1 surmise that 

this behavior has two (related) sources. On the one hand, limits of trigonometric 

functions are treated in college level Calculus textbooks separately from limits of 

polynomials, rational functions and expressions with radicals (in a different chapter). On 

the other hand, limits of trigonometric functions do not belong to the institution's 

mathematical praxeologies. Thirteen students are in the intersection of the class of 

students who put the expressions 19 and 20 together, and the class of nineteen students 

mentioned in the previous paragraph. I surmise that, for these students, there are four 

types of tasks. Three types are defined by the techniques in PB1, PB2 and PB3a/b21. The 

fourth type consists of tasks that cannot be solved by any of these methods; the associated 

technology is based on the algebraic form of the function and evokes the typical 

examples in college level Calculus textbooks. These praxeologies are not of mathematical 

nature alone; they are a mixture of social and didactic norms. Norms are of social nature 

because students distinguish normal tasks from non-normal tasks. The distinction is not 

21 These are: tasks that can be solved by factoring, tasks that can be solved by rationalization, and tasks that 

can be solved by factoring out the highest power in the numerator and the highest power in the denominator 

or by dividing every term by the expression of the highest degree in the rational function. The last two 

techniques define only one type of task: a student who uses one, does not use the other. 
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based on mathematical rules but on institutional habit. The norms are of didactic nature 

because students base their approaches on those tasks and techniques that are the most 

emphasized by the institutions taking part in the teaching process. 

5 . 2 SNAPSHOT # 2 : PARTIAL MODEL BASED ON A TASK THAT 

RESEMBLES ROUTINE LIMIT FINDING TASKS 

In this section, I discuss students' behavior in front of the task of finding limits that 

resemble instances of tasks in MP1 and [M]P322 but differ from them on the conceptual 

level. 

First, I recall the tasks, already presented in Chapter 3 (Table 3.4), in Figure 5.2: 

x — 1 
2.1 h m 2 

X + X 

(x + 3)(x - 1) 
2.2. 2 2 _ 9 

x 2 - 4 
lim ~ 

5 x 2 - 25 

x 3 + 4x 2 + 9 
2.4. l™ 2 1 x + 2 

Figure 5.2 (Copy of Table 3.4). The four limits that students were asked to find in the second part of the 

interview. 

Limit tasks 2.1, 2.2, 2.3 and 2.4 resemble the types in TI and T3 in that the 

functions, whose limits are calculated, are rational functions. However, all limits are 

taken at a constant, and there are, therefore, no tasks of type T3. The denominators of the 

22 As it was observed in Chapter 3, Section 3.1.1.2, the second part of the interview focuses on limits of 

rational functions. 
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functions in tasks 2.1, 2.2 and 2.3 have value different from 0 at the point where the limit 

is calculated, and therefore, none of them belongs to TI, either. Task 2.3 resembles TI 

tasks the most, because the denominator has value 0 at the point where the limit is 

calculated; however, the numerator is not 0 at this point and this indetermination cannot 

be eliminated, as would be the case in TI tasks. In fact, the limit in task 2.3 does not 

exist: the function tends to -co for x approaching 5 on the left, and to +oo for x 

approaching 5 on the right. As could be anticipated, this task (2.3) produced the highest 

percentage of incorrect responses among the interviewees. 

Table 5.33 presents the frequencies of correct, incorrect and no answer responses 

among the interviewed 28 students, for the four problems. 

N=2& Correct answer Incorrect answer No answer 

Problem 2.1 82.1 (23) 10.8 (3) 7.1 (2) 

Problem 2.2 96.4 (27) 0 ( 0 ) 3 .6(1) 

Problem 2.3 42.9(12) 14.3 (4) 42.9(12) 

Problem 2.4 92.9 (26) 7.1 (2) 0 

Table 5.31. Frequency of correct, incorrect, and lack of answer in the four problems given to students in 

the second part of the interview. 

Both incorrect answers in problem 2.4 were due to miscalculations. 

Prior to any intervention on my part, only by observing students' notes and 

listening to students' spontaneous talk, I noticed that, in problems 2.1 to 2.3, most 
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students would factor the numerator and the denominator trying to find common factors, 

even in cases where they tried direct substitution first. When cancellation was not 

possible, as in problems 2.1 and 2.3, some students could not produce a final answer (two 

in problem 2.1, ten in problem 2.3; see Table 5.33). Students displayed similar behavior 

when approaching problems 2.1 and 2.3. Therefore, I discuss these two problems first. 

Then I discuss solutions to problems 2.2 and 2.4. 

5.2.1 Description of students'solutions in part 2 of the interview 

(tasks resembling routine tasks) 

.. x - l 
5.2.1.1 Students' solutions to problem 2.1: nm— 

Of the twenty-eight interviewed students, twenty factored the numerator and the 

denominator in problem 2.1. These students can be divided into two groups: those who 

tried direct substitution first (seven students) and those who factored first (thirteen 

students). From the spontaneous talk, my first interpretation was that students, who used 

direct substitution as a first approach in problem 2.1, and then proceeded with factoring, 

did so because they were not sure about the value of 0 divided by 2. I was thus 

interpreting their behavior as lack of algebraic knowledge. For example, student SI said: 

SI: Ok. The first thing I do when I see limits is to put in the number it goes to, to see what it gives. 

So in this case I do zero over two, right? [ . . . ] Then [. . .] what 1 would do is factor. Now I do not 

remember, if I factor a negative one, can I cross them out? [Student SI took common factor .Y in the 

denominator but then got stuck at the fact that the other factor in the denominator was ,Y + 1 and not 

.Y - / as he expected. He was then trying to factor out - 1 so as to have the same factors and cancel 

them out: something that cannot be done in this case.] 
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The analysis of students' explanations following my intervention, however, shows 

that what was triggering the factoring was a routine sequence of actions ("steps") of 

which, for these students, substitution was the first in line. Although SI said he did 

substitution "to see what it gives", he disregarded the result and tried to factor. In the next 

minutes of the interview, there was this exchange: 

I: The first thing you did was to put in the one... 

S I : Yeah. The next step is to factor. 

Thus, it seems that students were doing substitution not to find the limit, or to 

characterize an indetermination, but because that's "what you do first". They were not 

paying attention to the outcome of the substitution. Rather, they were engaging in a kind 

of normal behavior developed for the context of finding limits of rational functions: to 

find the limit of a rational function, some algebraic technique has to be applied (see 

discussion of problem 2.4). For example, realizing that there are no common factors in 

the expression in problem 2.1, student S2 tried another algebraic approach: 

S2: What I think might work is if I separate them into two different parts. If I have .T over x squared 

p l u s * minus one over.r squared plus x. Which follows the rules of how you are allowed.. . how you 

are allowed to solve for limits. Now I can easily put in the x values, so one over two minus one over 

two, so in this case the limit does equal to zero. 

I: Ok, and why do you think you have to go through this step? 

S2: Well, I guess I could just put in the one here, but I am used to have something divided by zero. 



The last sentence of S2 makes explicit his expectations about the types of tasks he 

can be given in the context of limits of rational functions. Such expectations could also be 

found in other students' talk. 

When questioned, many students realized that some of the "steps" were not 

necessary; they explained their behavior as the result of following perceived norms. For 

example, student S18 explained her behavior (she used the word "factorable" to mean 

that there are common factors in the numerator and the denominator): 

SI 8: Basically I look at a problem and the first thing I see... and I always assume it is factorable, I 

mean, they never gave me a problem that wasn' t factorable, so I wouldn't even ask whether it is 

factorable. I 'd say, ok, where can I factor it. And I 'd say ok let's look at the different categories. If I 

see a trinomial or a difference of squares and the method to factor them, and so long and so forth, 

but if it wasn' t factorable... I never came across a problem that wasn't factorable. 

I: And do you remember ever coming across something like this [2.1]? 

S18: Yes, it is one of the tricky ones. You have to think of a special... I do not know, I am not saying 

this would work, but you can multiply by negative one to inverse the signs of your equation and then 

you'd be able to simplify and it would work out. 

Even in the interview, which was an event outside of the institution, student S18 

thought she would not be given a problem that is not "factorable". For her, problem 2.1 is 

a problem to be solved by factoring. It is just that she does not know how to factor it: a 

"tricky" limit. 

Student S3 seemed to hold the same assumptions as SI8; he factored because he 

thought it was a zero over zero type of problem: 

I: But why did you factor here? 
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S3: Because I try the zero over zero thing not realizing... 

I: When did you realize the denominator was not zero? 

S3:1 was substituting one on the bottom. 

I: Did you do the substitution here or here [the initial form or the factored form]? 

S3: No, here [the factored form]. 

Student SI7 made a strong assertion to defend his factoring approach. When asked, 

"Was it necessary to factor?", he said: 

SI 7: Was it necessary? No. But I was taught, if you can factor, factor. 

In the same vein, student SI5 answered this question by saying: 

SI5 : Oh, no, no, I do that in every problem: I see if something would cancel. Even if nothing 

cancels I do it anyway, in case I miss something. 

X 2 - 4 
5.2.1.2 Students' solutions to problem 2.3: l i m — — — 

Students displayed a very similar behavior in their approaches to problem 2.3. Of the 

twenty eight interviewed students, sixteen factored before trying direct substitution, seven 

factored after trying direct substitution. Their reasons for factoring were very similar to 

those expressed for problem 2.1: either their strategy is always to factor first or they 

expected the problem to be an indetermination of the type zero over zero. Again, their 
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explanations refer to norms. For example, student S7 factored the numerator and the 

denominator right away, and when asked why, she said: 

S7: Well.. . I do not know... for me... because in most of the exercises that we were given, every time 

that you 'd replace it 'd give you zero over zero, so it is kind of a reflex. 

Student S l l was frustrated by the fact that factoring would not lead to 

simplification, but he was convinced that there was "something else" to be done: 

SI 1: If I open them, there's nothing I can cancel... there must be something else. I cannot bring them 

up either, then I can't divide. 1 cannot pull any .YS out. I 'll open them [he means to factor] and I see 

after, maybe, but I do not think here anything will work. 

The interview with student S7 also showed that she believed that some algebraic 

technique should be applied; factoring is the only technique she thought she remembered. 

I: What happens with that one? [She wrote that the limit equals 21/0.] Did you tiy anything in your 

mind? 

S7: No, nothing works out. 

I: Why do you say that nothing works out? 

S7: Ok, well. Because if I put it in I get nothing, well I get twenty one over zero. Then [ . . . ] if I 

factor it out it does not give me anything different, like you can't cross anything out. But then. . . I 

am trying to remember, back to Cal I, all the different steps you could do. [ . . . ] There was always 

first you try to factor and cross out anything that you can. Then. . . 
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x + 3 
5.2.1.3 Students' solutions to problem 2.2: I'm 2 ^ JC y 

In problem 2.2, seventeen students were able to produce a correct answer by substitution 

only after factoring and cancelling out common terms. Student S6 gave an insight into the 

state of his mind, which suggests a psychological explanation why students were 

factoring and cancelling common terms before checking if this was necessary to find the 

limit: 

S6: [S6 tried substitution first in every problem except 2.2.] I think because I saw the top factors 

out... I think every time I see x square minus nine I get mentally excited and I want to factor out 

and cancel. And I knew I would be able to cancel so I was confident. 

x3 + 4x2 + 9 
5.2.1.4 Students' solutions to problem 2.4: l im ; — - — 

j c ' + 2 

With respect to problem 2.4, two students "believed" the question was to find the limit as 

x—»oc, and three tried long division or factoring. Twenty students solved problem 2.4 

right away by direct substitution. Students who substituted right away observed that the 

problem was "too easy", but eight of these students did not do direct substitution in 

problem 2.2. I surmise that these eight students identified problem 2.2 as belonging to 

type of tasks TI, but they could immediately see that problem 2.4 did not belong to TI. 

The three students, who tried some algebraic technique to simplify the expression, 

focused on the fact that x—»1 and classified problem 2.4 as belonging to TI and then tried 

the techniques characteristic of 0/0 indeterminations. The two students, who "believed" 
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that x—>00, considered problem 2.4 as an instance of type of tasks T3. One of them was 

student SI2, whose self-analysis was particularly insightful with regard to students' 

thinking about the limit tasks. When given problem 2.4, she said: 

S12: [ . . . ] Isn' t this one [the limit] just infinity too? I do not really remember if we are allowed, 

when you can like. . . le t ' s say you divide [the numerator and the denominator] by x cube. . . Can I do 

it, even if I have just one x cube? Or is the rule l ike. . . because if I do it then I'll get one over zero 

which is infinity. . . Oh, it is one, right? [referring to the "1" in ".Y—>1 "] [ . . . ] Then it is just fourteen 

over three. 

I: Why did you think it was infinity? 

S12: Oh, because I like I saw. . . I did not look. . . I did not see it was one [in JC->1]. So if it would 

have been like as x goes to infinity and you divide everything by .Y cube then here it is zero and 

zero [for the two last terms in the numerator and the two terms in the denominator] and here is one 

[for the first term in the numerator], so one by zero is infinity. 

I: And why do you think that . . . because you did not look at this [.Y—>1]... you looked at this problem 

and you thought it was an infinity type of problem. . . did it remind you of problems y o u ' v e seen 

before? 

S12: Well it is just because it is like you can ' t factor this. Can you? No, I do not think you can. So 

the only th ing they cou ld ask us is [to] d iv ide by .v. 

Her explanation was key in the process of my understanding of what students 

believe to be the knowledge to be learned, and thus in the construction of a model of 

students' spontaneous models of the knowledge to be learned. 
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5,2.2 A model of students' praxeologies based on their 

performance in the second part of the interview (tasks 

resembling routine tasks) 

It appears that students distinguish two types of limits. I describe them below: 

Type 1. When x tends to a constant, expressions are normally indeterminations of 

the type zero over zero, and they involve binomials or trinomials. The polynomials 

in these expressions can be easily factored using the standard algebraic identities 

learned in high school, such as difference of squares or the square of the sum, and 

techniques such as "undoing" the distribution property, factoring by grouping23. 

Limits involving expressions that contain polynomials in the "high school factoring 

categories " cannot be found by a straightforward application of direct substitution; 

something else must be done. 

Type 2. If a rational expression involves polynomials that are not binomials or 

trinomials easily recognized as belonging to one of the "high school factoring 

categories "it must be a limit in infinity, or a limit that can be found by substituting 

a constant for x. 

2 j For an explanation of the factoring techniques such as "undoing the distribution property" and "by 

grouping" see footnotes 3 and 4 in Chapter 5. 
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In these types of tasks we see a mixture of mathematical, cognitive, social and 

didactic norms. For example, in Type 1, the sentence, "When x tends to a constant, 

expressions are normally indeterminations of the type zero over zero, and they involve 

binomials or trinomials", describes a social norm. The notion that these polynomials can 

be easily factored corresponds to a cognitive norm, while the techniques typically used 

for this factoring correspond to a didactic norm. These standard techniques (difference of 

squares, "undoing" the distribution property, factoring by grouping) follow mathematical 

norms. 

Students appear to classify limits of rational expressions into different types of 

tasks according to their algebraic appearance, instead of using some Calculus criteria 

such as types of indeterminations, type of technique to be applied, convergence or 

divergence, etc. The technique to be used to accomplish a task is chosen based on the 

algebraic form of the expression. In problem 2.4, students applied direct substitution 

without hesitation; they took it for granted that the denominator was not zero because it 

did not look like the trinomials or binomials they were used to be given. Many of these 

same students did not check that the expression in problem 2.2 was not an 

indetermination; they thought it was because those polynomials do fall into the "high 

school factoring categories". 

The technology, i.e. the discourse supporting the technique, seems to be that of 

norm: "we do this because that's what we usually do under the circumstances". This is an 

extrapolation of what the students actually said in the interviews: 
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S2: . . . I am used to having something divided by zero. 

SI8: ... they never gave me a problem that wasn' t factorable. 

S7: Most exercises that we were given... it 'd give you zero over zero. 

S I 2 : 1 do not think [you can factor this]. So the only thing they could ask us is to divide by x. 

I surmise that, in students' praxeology, the role of a theory justifying this 

technology is played by the students' trust in the authority of the teachers, the textbooks, 

and the solutions to past examinations. It is the institution, embodied in the persons 

responsible for the knowledge to be taught and learned, and in the official documents and 

texts, and not the students, who is responsible for the validity of this knowledge. Theory 

in the mathematical sense is not under the students' jurisdiction or responsibility 

(Chevallard, 1985: 75). This, combined with the observation that students took it for 

granted that the problems were routine tasks suggests that their positioning was that of 

Students or Clients. The difference is a subtle one. If the students' "trust in the authority" 

is rooted in their reliance on the integrity of the institution, then they position themselves 

as Students. On the other hand, if the students' trust is based on thinking that it is the 

institution's obligation to guarantee the validity of the theory - in the sense that society 

has entrusted the institution with mathematics theory whose duty is then to keep it safe -

then students' positioning is that of the Client. Moreover, if students were "taking for 

granted" the validity of the theory because they expected the institution to follow its own 

norms, then they were positioning themselves as Students. If, on the other hand, their 

reason for taking the theory for granted was the conviction that an institution has an 

obligation to respect its own regulations, then they positioned themselves as Clients (as it 
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was noted in Chapter 3, students in the position of Clients perceive some institutional 

norms as legalized rules, page 69). 

5 .3 SNAPSHOT # 3 : A PARTIAL MODEL BASED ON NON-

ROUTINE TASKS 

In this section, I analyze students' behavior in the third part of the interview. 

5.3.1 The tasks used in the third part of the interview 

The aim of this part of the interview was to reveal student's abilities to mobilize 

techniques and concepts - not exclusively related to limits - to find limits of functions or 

to make conjectures about them. 

Students were asked to find three essentially non-routine limits (see Figure 5.3 

below). As discussed in Chapter 3, Section 3.1.1.3, the purpose of asking the students to 

find these limits was to test the students' ability to combine the different things they have 

learned, such as using the calculator to conjecture limits, or reading limits from graphs, in 

dealing with more challenging limits. My expectation was that students would not make 

use of resources other than algebraic to find limits and hence, that they would not be able 

to find or make conjectures about the limits presented in this third section of the 

interview. I also wanted to verify, however, that it was not the case that students did not 

know any other approaches, but, rather, that the institutional emphasis on algebraic 

techniques had obscured any other methods that students might have learned. My 

expectation was that, given some instructional prompt, students would be able to think in 

mathematical terms about these limits. 
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3.1 Find 3.2 Find 

lim eX cos(x) lim eX cos(x) 
.Y—> +oo x—> -00 

3.3. Find 

sin(x) 
lim 

x - » 0 r 

Figure 5.3 (Copy of Table 3.4). The three limits that students were asked to find in the third part of 

the interview. 

The three limits are non-routine as they are not instances of types of tasks TI, T2 or 

T3. Furthermore, they are essentially non-routine because the algebraic forms of the 

functions do not resemble the algebraic forms of the functions in routine tasks. 

The outline of the Calculus course includes the topic "to find limits numerically" 

and graphing exponential and trigonometric functions and compositions of functions 

involving them. However, the course does not cover limits of trigonometric functions; the 

limits 3.1 and 3.2 are essentially non-routine. Limit 3.3 is sometimes covered in the 

Calculus course to justify that the derivative of the sine function is the cosine function, 

but it is not a topic in the outline. However, it is a typical example of the application of 

L'Hopital's rule, a topic covered in Calculus II, which the interviewed students had not 

completed at the time of the interview. 

Limit 3.1 does not exist as one can find two sequences, an and b,„ such that 

lim e"" cos(an) ̂  lim eb" cos(bn) . To assess this limit, a mathematician may observe that 

the exponential function e tends to positive infinity and the cosine function oscillates 

between -1 and 1, hence, for the x values for which cosf.x) = 1, ecosfx) would tend to 



positive infinity, while for the x values for which cos(x) = -1 , ecos(x) would tend to 

negative infinity (or for the x values for which cos(x) = 0, ecos(x) would equal 0), and 

from this they conclude that the limit does not exist. From the mathematical point of 

view, this argument is the "informal" version of the proof that the limit does not exist -

the proof would consist in exhibiting two sequences a„ and b„ with the property 

mentioned above. This informal argumentation involves properties of functions and 

multiplication of functions that are known to college level Calculus students. 

Furthermore, as mentioned above, these students have studied (according to the outline of 

the course) techniques to find limits numerically (using tables of values). A problem such 

as 3.1, however, requires the construction of a sophisticated table of values, choosing 

"special" x values that can reflect the behavior of the function (this type of construction is 

not specially emphasized in the textbook). 

Limit 3.2 has value 0. To find this limit, a mathematician may state that since ex 

tends to 0 as x—> —x, and the cosine function is bounded between -1 and 1, the product 

of these two functions tends to zero as x—> —x. The argument is an "informal" version of 

a mathematical proof (using the squeeze theorem) that the limit is 0: - 1 < cos(x) < 1, then 

-e < ecos(x) < e and, using the property of monotonicity of limits, we obtain the 

inequalities l im-e* < lim ex cos(x) < lim e*. Since the rightmost and the leftmost limits 
.V—>—00 .X—=O .V—00 

are both 0, the limit in the middle must also be 0. Although college level students may 

not be familiar with the formalization, the "informal" argument combines features that 

they are supposed to know (the behavior of an exponential function, that of the cosine 

function, the product of functions). 
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The value of limit 3.3 is 1. To find this limit, a mathematician would may use of 

L'Hopital's rule or of the squeeze theorem. At the time the interview took place, some 

students may have covered L'Hopital's rule in their Calculus II courses and hence this 

technique was available to them. The squeeze theorem and its application to this 

particular limit are listed as optional in the outline of Calculus I. Even if some students 

had been exposed to this example, its reproduction requires them to handle properties of 

trigonometric functions in the unit circle; this knowledge cannot be assumed without 

caution about college level students24. A college level student could approach limit 3.3 by 

doing a table of values; plugging in a few values on the right side of 0 and a few on the 

left side of 0 would suggest that the limit must be 1. 

5.3.2 The interview procedures: instructions and interventions 

To facilitate the reading of this section I briefly recall the research procedures 

corresponding to this part of the interview (for a more detailed explanation see Chapter 3, 

page 67). I gave the students one page with the three problems and empty space below 

each of them. As in the other parts of the interviews, I asked the students to think aloud. 

If the student remained silent for more than 2 minutes, I would intervene, asking 

questions or suggesting different approaches to find the limits or to verify their 

affirmations/guesses/conjectures. If the student offered an answer that was correct, I 

24 College level students admitted into the Calculus courses are supposed to know these properties as they 

have studied them in their last mathematics course in high school. Experience shows that this is not the 

case; students have several difficulties and misconceptions in relation with trigonometric functions. The 

verification of this supposition was out of the scope of the present research. 



would ask him or her about his or her methods and how could they be sure that the 

answer was right. These interventions varied according to the students' behavior. 

My intervention consisted mostly in 

• suggesting the student to consider the limits of e and cos(x) independently 

and then to combine them to conjecture the limits of ecos(x) at +00 and -00, 

and 

• asking whether the student could use the calculator to conjecture the limits 

or to verify his or her answers. 

As it can be seen in the transcription of the interviews (Appendix A) my 

interventions in this part were frequent but short and repetitive. I would repeat perhaps 

several times the question "could you use the calculator to check your answer?" until the 

student reacted to it, or I would insist on considering the limits of e and cos(x) 

independently and then trying to combine the answers, but without giving hints on how to 

do this. In addition, students who eventually used the calculator tended to arrive to 

conclusions about the limits after doing only one substitution. In those cases, I would ask 

them if they were convinced by their own calculations, or if they thought that substituting 

with one value was sufficient, etc. 

I observed that asking the students whether they could use the calculator to guess 

the limits or to verify the answers they had already conjectured would trigger a torrent of 

thoughts in the students. Independently of whether they ended up using the calculator or 
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not, they seemed to interpret this offer as a permission to think outside the box. They 

would start questioning their thoughts and beliefs. Some would attempt to graph the 

functions involved in the problems and draw conclusions about the limits from the 

graphs. Although their reasoning was sometimes fraught with misconceptions, it was 

clear that they were able to think mathematically. Unlike the routine problems in part 2, 

the non-routine problems had the effect of revealing students' misconceptions; not only 

for me but also for the students. 

5.3.3 Overview of students' performance on the tasks in the 

third part of the interview 

Table 5.34 summarizes students' performance on the three problems before any 

intervention on my part. In the table, and in what follows, correct answer means an 

answer that contained not only a correct evaluation of the limit but also a reasonable 

mathematical justification. The category of correct answers excludes answers with 

justifications such as "zero times anything is zero", "does not exist times anything is does 

not exist", or "infinity times anything is infinity". 

N=28 Correct answer Incorrect answer No answer 

Problem 3.1 32.1 (9) 21 .5 (6 ) 46 .4(13) 

Problem 3.2 21 .5(6) 32.1 (9) 46 .4(13) 

Problem 3.3 50(14) 10.7(3) 39 .3(11) 

T A B L E 5.32. Frequency of correct, incorrect, and lack of answer in the three problems given to students in 

the third part of the interview, before the interviewer's intervention. 
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The thirteen students in the first two entries of the third column are the same. The 

six students that got a correct answer for 3.2 are a subset of those that got a correct 

answer for 3.1. The six students who got an incorrect answer for 3.1 also got an incorrect 

answer for 3.2. The three other students who got a wrong answer for 3.2, got a correct 

answer in 3.1; these three students stated that the answers of both 3.1 and 3.2 were the 

same, or changed in sign (+co to -oo), thus getting an incorrect answer for 3.2. 

Four students (S2, SI6, SI8 and S26) spontaneously suggested using the calculator 

to conjecture the limits or to verify their answers. These students did a table of values to 

infer the behavior of e in plus and minus infinity (all four students) and of cos(x) (only 

students SI6, SI8 and S26). All these students plugged in integers (9, 10, 100, -10, -

100); students SI 6 and S18 did two different table of values, one for ex and the other for 

cos(x), they didn't multiply the values they had obtained for each function. Only student 

S26 built a table of values for the function excos(x). Two students, S9 and S28 neither 

asked for a calculator nor gave me a chance to offer it to them as they immediately 

provided correct answers for the three problems with mathematically valid justifications. 

Nine students refused to use the calculator in one way or another to calculate limits (see 

discussion below). 

Table 5.35 summarizes students' performance on the three problems after my 

intervention. 

In the following section, I present some more detailed information about students' 

behavior in this part of the interview. 
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N = 28 Correct answer Incorrect answer No answer 

Problem 3.1 53.6 (15 ,+6 ) 17.9 ( 5 , - 1 ) 2 8 . 6 ( 8 , - 3 ) 

Problem 3.2 6 0 . 7 ( 1 7 , + 1 1 ) 1 7 . 9 ( 5 , - 4 ) 21.4 ( 6 , - 6 ) 

Problem 3.3 67 .9(19, +5) 7.1 ( 2 , - 1 ) 25 (7, - 4 ) 

T A B L E 5.33. Frequency of correct, incorrect, and lack of answer in the three problems given to students in 

the third part of the interview, after the interviewer's intervention. The numbers preceded by signs + or -

indicate how numbers of students in a given category changed with respect to performance before the 

interviewer's intervention (see Table 5.34). 

5.3.4 Details of students' behavior in the third part of the 

interview 

In this section, I first present students' behavior on tasks 3.1 and 3.2, which were often 

tackled by the students together, and then their behavior on task 3.3. In each case, I start 

by describing students' behavior before my intervention, which is then contrasted with 

their behavior after my intervention. 

5 3 . 4 . 1 Tasks 3.1 and 3.2: ^ (; ) _ ( ) 

Students' behavior before the intervention 

Of the 28 students, nineteen (67.8%) considered the limits of e and cos(x) independently 

and from that tried to derive a conclusion about the limits of e*cos(x) at +oo and -oo. 

Some students knew the answers for the limits of eT and cos(x) at +oo and —oo; some knew 

the graphs and could infer the limits from them; others correctly guessed the limits by 

using the calculator. 



In relation to problem 3.1, of the nineteen (19) students mentioned in the paragraph 

above, nine (9) (see Table 5.34) derived a correct answer with a mathematically valid 

justification (making use of the fact that the cosine function is bounded by 1 and -1 , and 

reaches those bounds). Of the students who derived an incorrect answer (6), most argued 

that "plus infinity times anything is plus infinity"; one student (S22) used the argument 

"does not exist times anything is does not exist". 

Of the nine (9) students who derived a correct answer for problem 3.1, six (6) 

derived also the correct answer for 3.2 (see Table 5.34), again using the fact that the 

cosine is a bounded function. The other three (3) students claimed that 3.2 had the same 

answer as 3.1, thus getting an incorrect answer for 3.2. Students who derived a wrong 

answer for 3.1 based on analyzing the behaviors of the cosine and the exponential 

functions separately, also derived a wrong answer for 3.2 (with the exception of student 

SI8, who got a wrong answer in 3.1, plus infinity, but a correct answer in 3.2). In 

addition, students who could not find an answer for 3.1 could not do it for 3.2 either 

(thirteen students). 

Of the thirteen (13) students who did not provide an answer for problem 3.1 before 

my intervention (see Table 5.34), three (3) remained silent in front of the problems. Four 

(4) elaborated on possible approaches, discussed the graphs and the behavior of the 

cosine and the exponential-functions and tried reasoning on the behavior of their product. 

However, they would not find their own arguments sufficiently convincing and therefore 

refrained from reaching a conclusion. Of the remaining six (6) students, three (3) said 

they did not "remember" how to do problems like 3.1 and 3.2; two (2) said that they did 
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not know how to do the tasks; one said that he did not "remember doing problems with 

the exponential function". 

From students' behavior, I conclude that almost half of the interviewed students 

had immediate access to meaningful resources to approach problems 3.1 and 3.2; I refer 

to the nine students who actually found the right answers plus the four students who 

engaged in a meaningful discussion although they did not arrive at an answer. About 18% 

of the students based their answers in misconceptions, thus arriving at wrong conclusions. 

Finally, about 32% of the interviewed students were stuck because of the problems 

looked unfamiliar to them. 

Students' behavior after the intervention 

I intervened in interviews with students who obtained incorrect answers or who didn't 

provide any answers. 

Of the six students who got a wrong answer for 3.1 before any intervention on my 

part, two ended up obtaining a correct answer. In the case of problem 3.2, the number of 

students changing from a wrong answer (8 students) to a correct one was six (6). 

Of the thirteen (13) students who could not provide any answers for 3.1 and 3.2 

before my intervention (see Table 5.34), three (3) were able to find an answer, and four 

succeeded in finding a correct answer for 3.2. 

Despite the details described above, the increase in correct answers in 3.1 and 3.2 

after my intervention shows that students did have resources to find the limits and to 

provide either theoretical or empirical valid justifications. It is just that these resources 



were not immediately available to them. Students needed to be slightly pushed in the 

direction of non-standard techniques, and then they were able to use them. This would 

suggest that these non-routine problems and the reasoning involved in solving them are 

within the "zone of proximal development" of these students. Moreover, students who 

got incorrect answers or no answers at all in the beginning showed later that they were 

capable of critical and scientific thinking. For example, the following exchange took 

place with student S14, who first got an incorrect answer for 3.2 and whom I asked if she 

could use the calculator to verify her answer (see pages 330-331): 

S14: [Calculating.] Syntax error... [after more calculations] it is zero. 

I: Is that just for e to the xl 

S14: No, no, for e to the x times cosine of.r. It gave me zero. 

I: Which number did you plug in? 

S14: Nine nine... ten nines, with a negative sign. 

I: So you got zero. Are you convinced it should be zero instead of does not exist as you wrote 

before? 

SI4 :1 know the calculator lies sometimes [laughs]. But, yeah, I think so, it keeps getting to zero. 

I: Now that the calculator told you that is zero, do you have an argument of why that 's true? 

S14: I know that e to the x as x goes to negative infinity is zero, and the cosine keeps going so 

there's no limit, and I guess that if you multiply them... I can't picture the graph on my head, I can 

picture them separately but I can ' t combine them. But I would think that it does not exist though... 

by multiplying it, it changes the amplitude... then it shouldn't exist bccause it keeps going anyway. 

I: But the fact that this is going to zero is changing the amplitude... 

S14: Oh, but it is getting smaller and smaller and smaller, so it would be zero. Yeah. 

1: You are changing the amplitude but each time by a smaller factor. 
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S14: Yeah, so the limit is zero. That shows that the limit can be in the middle of the thing. [This last 

observation refers to a discussion we had before about whether a function could cross one of its 

asymptotes.] 

Student S14 was critical about her own conclusion, inferred from the data obtained 

by using the calculator. She understood that independently of the exponential function, 

there is an infinite oscillation induced by the cosine function, but eventually she saw that 

the values were getting smaller and smaller - in absolute value - and could picture the 

situation in her mind: "the limit can be in the middle". 

Student S20 did not give answers for 3.1 and 3.2 before my intervention; however, 

after my suggestion of considering the graphs of cosine and the exponential function, and 

the use of the calculator, the following exchange took place: 

I: So what the limit would be when ,Y increases? 

S20: I am taking this in Cal II now, something about this. This [the cosine function] diverges, does 

not give... Oh, that's the topic. Convergence and divergence. If it gives a definite answer, then it 

converges. If it does not, it diverges. This is a divergent limit [the limit of cos(x) as ,Y tends to 

infinity]. So there's no proper answer for it. 

I: Ok. And what about when you multiply by the exponential function. 

S20: But this is unknown, I do not know what it is [3.1]. But this [3.2] is a number like say, between 

one and minus one, multiplying it by zero is gonna give zero, I think. This is my guess. 

I: Ok. And what about this one? [3.1] 

S20: This is gonna give plus or minus infinity. If it is cosine of a negative number, maybe it is going 

to give you something negative. The number x chosen will give a negative number, multiplied by a 

big number gives minus infinity. 
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Eventually, student S20 was able to reason out the behavior of the function ecos(x) 

at +00 and -oo from the fact that the cosine function is bounded by 1 and -1 and the 

respective limits of the exponential function. 

5.3.4.2 Task 3.3: l i m ^ ^ v_>0 x 

Students' behavior before the intervention 

Prior to my intervention, of the twenty eight (28) students, fourteen (14; 50%) gave a 

correct answer in task 3.3. Of these 14 students, five (5) used L'Hopital's rule, one 

student (S2) used his calculator, seven (7) said they had memorized the answer, and one 

student (S28) sketched the geometric proof typically given in college level Calculus 

textbooks. Among the other fourteen (14) students, three (3) gave an incorrect answer 

and 11 did not give an answer (see Table 5.34). 

Of the students who could not provide an answer, four recognized the problem as 

one they had seen before, but said that they did not remember how to find the limit, or 

what the answer was. 

Students' behavior after the intervention 

Of the three students who got incorrect answers before my intervention, one ended up 

finding the correct answer using L'Hopital's rule and another realized that her answer 

could be wrong. Of the eleven students who did not give an answer, four were able to 

find the right answer (three using the calculator and one using L'Hopital's rule). 
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The behavior of the function sin(x)/x around zero is quite difficult to see, and 

impossible to graph. Hence, rather than discussing the graph, students engaged in a 

discussion related to finding limits numerically. In this sense, this problem proved to be 

useful in showing some of students' misconceptions. For example, 18% (5) of the 

students said they could not use the calculator to find the limit because the only thing 

they could think of was plugging in zero, and thus getting zero over zero. Students said, 

for example: 

S18: I don't think [the limit] exists. Because you can't divide by zero, so I'd say the limit does not 

exist (page 354). 

S24: You get the limit when you put it in, when you make .x equal whatever the number is here [in 

the expression .v—>c] (page 393). 

To my question "what this [the symbol ,T—>0] means for you?" student S27 

answered: 

S27: When x is exactly at zero (page 409). 

In some cases, when students knew by heart that the answer for the limit was one or 

used L'Hopital's rule to calculate it, I asked them if they would be able to find the limit if 

they couldn't remember the answer or if they knew another way to find the limit that 

wasn't using L'Hopital's rule. For example, the following exchange took place with 

student S23 (page 386): 

I: If you didn't know the answer was one. If you did not remember, could you still figure it out? 
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S23: Probably plugging numbers? 

I: Ok, how would you do that? 

S23: Sine of five... and then closer to zero. 

I: Which other numbers? 

S23: What do you mean? 

I: Well, you said you'll plug in five first, what you 'd do next? 

S23: Plug in one? First I plug in zero. Sine of zero is zero. 

I: So what happens if you plug zero? 

S23:1 guess it would be one or zero. Well, zero over zero is a... what 's the word in... 

I: Indetermination? 

S23: Yes, I don't know what I 'd do. 

Student S20 said that the limit could be found using the squeeze theorem and wrote 

a flawed argument using it. Student S25 said (page 398): 

S25: Oh, I do not know, I thought that for some reason the answer is one, but if you plug in zero you 

get zero over zero. 

In the next section, I describe the "third snapshot" of students' practices in relation 

with limits tasks. 
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5.3.5 A model of students' praxeologies based on the third part 

of the interview (non-routine tasks) 

The preceding analysis shows that almost 50% of the interviewed students had immediate 

access to meaningful resources to tackle non-routine problems - thirteen students in 

problem 3.1, ten in 3.2 and fourteen in 3.3. From the remaining students, on average, 

38% of the students were able to arrive at correct answers after the intervention, showing 

that they did have resources, but had not considered them without encouragement (four 

out of fifteen students in problem 3.1, nine out of eighteen in problem 3.2, and five out of 

fourteen in 3.3). 

Independently of their performance, all students recognized problems in this part as 

non-routine ones. Their discourse related to this recognition was based on unfamiliarity: 

they claimed that these were problems that they have not often - or ever - done ("I don't 

remember doing limits with e'r", "I don't know", "do we cover this in Calculus 1?"). In 

this sense, I surmise that, in the most general setting, students immediately classify tasks 

they are confronted with into those they have done ("familiar") and those they have not 

done (unfamiliar). The set of familiar tasks contains the set of routine tasks, but these sets 

are not identical. For example, for many students, 3.3 was a familiar task, although it 

does not qualify as a routine task (in this thesis) as it does not appear on final 

examinatfons. 

These two types of tasks - "familiar tasks" and "unfamiliar tasks" - define two 

different praxeologies related to limit finding tasks. The techniques to tackle unfamiliar 

tasks include finding limits from graphs and numerically. It is my conjecture that the 
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technology associated with these techniques is precisely the fact that the problems are of 

the unfamiliar type. The justification of the technique is that routine techniques do not 

apply to these problems - for example, the expressions cannot be factored or rationalized 

- and therefore one must resort to unorthodox means. This justification is a cognitive 

norm. On the theory level, the students made use of mathematical rules (e.g., the limit of 

a bounded function multiplied by a function that tends to zero is zero), and mathematical 

strategies', e.g., making a table of values to conjecture the value of a limit. Therefore, 

students' spontaneous models to tackle unfamiliar limits are based on cognitive norms 

and mathematical rules and strategies. When dealing with these types of problems, 

students eventually - before or after my intervention - positioned themselves as Learners, 

bringing together different techniques and concepts, challenging their own beliefs, their 

confidence in the calculator, and being suddenly aware of their misconceptions. Hence, 

there is a radical difference if we compare this partial model with the model inferred from 

snapshot #2, which was based on social, didactic, cognitive and mathematical norms. In 

the next section, 1 put together the three partial models in an effort of deriving a general 

model of students' spontaneous models in front of the task of finding limits. 

5 . 4 PUTTING THE PICTURES TOGETHER: A MODEL OF 

STUDENTS' SPONTANEOUS MODELS OF THE KNOWLEDGE TO 

BE LEARNED 

The three partial models described in sections 5.1, 5.2 and 5.3 complement each other in 

the sense that they are snapshots of students' behavior in front of different types of 

problems related to the same task: "find the limit of a given function". 
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From snapshot #1, I was able to construct a model of students' models to deal with 

routine limits (e.g., items 1, 3, 4), non-routine limits that resemble routine ones (e.g., 

items 5, 9, 12), and non-routine limits that vaguely resembled non-routine ones (e.g., 

items 13, 14). The inclusion of the two expressions involving trigonometric functions 

(items 19 and 20) in the classification task helped to throw light on how students perceive 

non-routine problems that do not resemble the routine ones in an essential way. Some 

sin(x) students recognized them as such, but others identified 19, l i m — — , as a limit they 
. v - > 0 

were familiar with. This was also the case in the third part of the interview where they 

were explicitly asked to find that limit (see discussion at the end of section 5.3). 

Based on a comparison of students' behavior in the three parts of the interview, I 

surmise that students identify as a routine problem any problem that resembles it - where 

the resemblance is based on the algebraic form of the function - and that students do not 

consider the possibility of using non-standard techniques on routine problems. These two 

situations combined make students unable to tackle problems that resemble routine tasks 

but differ from them on the conceptual level. For example, student S6 based his 

classification in part one on recognition of familiarity with the given expressions. Then 

he failed to find the limit 2.3, which resembled a routine problem, in part 2 of the 

x2 _ 4 
interview. He was saying, when dealing with the limit 2.3. (lim—- ): 

*->5-x' - 5 

S6: My first reflex was, is always, I put the five here so 1 saw it was over zero. [...] Again I factor 

out but... [...] 1 can't remember how to treat it. [...] 
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However, he succeeded in finding the limit 3.2 ( lim ex cos(x)). First he said that 

the value of the limit was the same as the one he gave for 3.1 (infinity) but after I made a 

brief intervention he found the correct limit by reasoning about the behavior of the two 

functions involved in the expression and their product. Our exchange was the following: 

I: What about e to the xl 

S6: Oh, no, it would all go towards zero, yes, that 's true, e to the x would be closer and closer to 

zero. So this would go towards... but I do not know how to treat the cos in that situation. I know this 

goes towards zero [for the exponential function] and cos ... Because even if this is going towards 

zero, if my cos is getting bigger and smaller... but it is always the same sequence multiplied by 

that, I guess I could assume it is going towards zero. 

He even made the non-trivial reflection that, if a function is going towards zero and 

it is multiplied by a function that is getting bigger and smaller, that does not guarantee by 

itself that the limit would be zero. He convinced himself that the limit was zero when he 

realized that the behavior of cosine was "always the same sequence". 

Students SI6 and S18 made a classification based on the algebraic form of the 

functions, evoking topics in a school Algebra textbook in the first part of the interview. 

Both of them failed in finding the limit 2.3. When given 2.3, student S16 said: 

S16: I know there's a difference of squares but that wouldn't change much because nothing will 

cross out. If I put the five it 'd become a number over zero. I guess there's no limit. I 'm not sure. 

Later on, when he and 1 we were discussing his approaches to all the problems in 

part two, 1 asked him why he thought that there was no limit. He said: 
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S16: Well, I 'm not sure because there's nothing I can cancel out and I 'm missing something... 

Yet, when given problem 3.1, he spontaneously thought about using the calculator: 

S16: Well, this [for the limit of the exponential function in 3.1] is infinity... [...] Can I use my 

calculator? 

Student SI8, like students S6 and SI6, was stuck when trying to apply standard 

techniques. When given problem 2.3, she said: 

SI 8: You are giving me the ones I like, I see difference of squares. The first thing I 'd do is to break 

it out. But I can already tell by the twenty five, that the five would pose a problem at the bottom. So 

x plus five, x minus five. The problem is that I need to get rid of the x minus five or else my 

denominator will end up being zero, which isn't good at all. What can I do to get rid of the 

denominator? How can I do to get rid of the x minus five? I am stuck. 

Yet when dealing with problems 3.1 and 3.2, not only did S18 spontaneously ask to 

use the calculator and used it to conjecture the limits, she was also able to reason. Her 

reasoning went along the following line: because the cosine function is bounded (she 

considered incorrect bounds, however, confusing the values of the angles with the value 

of the cosine), what matters for the limit is the behavior of the exponential function. 

When given task 3.3, the following exchange took place: 

SI 8: Oh... I am not a big fan of trigonometry... How does cos look again? I can't use a calculator 

to see the pattern, can I? 

I: Yes, you can. [...] 

SI 8: Ok, this equals positive infinity... oh, no... Ok, I'd say positive infinity for now. 
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I: Which calculations you were doing? 

S18: Oh, trial and error. As x gets bigger what 's v. Cos of ten, cos of a hundred. Then I went to e to 

the x and it gets bigger, I should have remembered. So basically you multiply and just approaches 

infinity, from what I remember. [...] Here [3.2] I do more trial and error with negative numbers. In 

this case, as x approaches negative infinity... we are getting closer and closer to zero. So I would say 

zero. 

I: So exactly which calculations were you doing? 

SI8: I was doing e to the negative ten, e to the negative a hundred, to see the pattern, and it gets 

smaller and smaller and smaller, approaching zero. 

I: But you did not try the multiplication. 

SI8: No, because the way I see it is cosine, whether is a positive or a negative it keeps revolving 

around pi, pi over two, three quarters pi, around and around in the circle and it the number would 

never keep getting smaller or bigger, it just keeps revolving that circle. So basically what matters to 

me is e to the x. 

Student S21 also failed in finding 2.3: 

S21: Ok. So at the top and bottom there 's a square term, like .T square and four, two square, and x 

square and five square. If you put in the five I do not think it would be an indeterminate form. 

Twenty five minus four nineteen over zero. I think you have to fix that somehow. 

I: Why? 

S21: Because if it is over zero I think it could mean infinity, or it is not defined. So you have to... I 

think maybe L'Hopital ' s rule... [...] At the top you could do also x plus two and.r minus two. I think 

.Y plus two times x minus two over, it would not help though, x minus five times .V plus five. It could 

be undefined? At five? 

However, when given 3.1, he reasoned: 
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S21: [3.1] Well, there 's an e, that would keep growing. Cosine goes between one and negative one. 

Well, the cosine you can't really find it, it keeps going up and down so the limit does not exist. For 

the e to the x it would be positive infinity. It might be that you have to do L'Hopital 's rule but I am 

not sure. Oh, no, because it is not a division. You have to make it a division, e x, because cosine is 

also one over secant. Then L'Hopital 's rule you can do the derivative of the one on top over the 

derivative of the one on bottom. The derivative of secant is secant x tan JC, I think. I think the limit... 

Well, since cos is either one or negative one it would be positive infinity or negative infinity. 

But since it is to infinity, it can't really exist. 

He was also stuck at the resemblance of 2.3 with routine problems and could not 

reason out the value of the limit. Yet, in 3.1, he considered different approaches and 

finally he reasoned that a function bounded between one and negative one, when 

multiplied by a function diverging to positive infinity, must oscillate infinitely. 

These four students were unable to find limit 2.3. They could not overcome the fact 

that the typical techniques that apply to routine tasks did not seem to work in this case. 

They claimed that they did not remember how to deal with a limit of this kind or that they 

could not see how to use the standard techniques. Nevertheless, when given the 

essentially non-routine tasks, they proved to have other resources to deal with limits; they 

either spontaneously thought of using the calculator, or they reasoned about the behavior 

of a function from the behavior of its factors. 

Furthermore, from students' discourses in the different parts of the interview, I 

surmise that when dealing with familiar tasks - parts 1 and 2, and problem 3.3 - they do 

not feel the necessity to support their techniques with a scientific conceptual discourse. 

They position themselves as Students or Clients. These positions make it natural to rely 

on (or refer to) the institution's authority when asked to justify. However, when dealing 



with unfamiliar tasks - problems 3.1 and 3.2 - students seem to switch to the position of 

Learners, responsible for the explanatory discourses. 

In trying to combine the partial models inferred from snapshots #1, #2 and #3, 1 

noticed that in some sense they define nested praxeologies. In Table 5.36 I tried to 

schematize the picture made out of the three snapshots. Of course, the picture is still (will 

always be) incomplete. 

Students distinguish familiar limits from unfamiliar limits mostly based on the 

algebraic form of the function - rational functions and functions with radicals are familiar 

- and on their recall of having dealt with a given instance - for some students the limit 

lim s i n ( x ) js a familiar one. Within familiar limits, they distinguish routine from non-

-v->0 x 

routine. These distinctions are not of mathematical nature, but of social, cognitive and 

didactic kind. Based on these differences, students decide which techniques to apply. The 

possible causes and implications of this model are discussed in the next chapter. 
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TASKS TECHNIQUES TECHNOLOGY THEORY 
Ti: Familiar 
tasks 

Ti 1: Routine tasks T i n : T y p e 1 TIII : T e c h n i q u e s in 

PB1 and PB2. 
0111: Based on the algebraic form of 
the funct ion; evokes typical examples 
in college Calculus textbooks. Mixture 
of social, didactic, cognit ive and 
mathematical norms. (Complexive 
thinking.) 

© i n : Absen t or of 
syncretic nature. 

1 

Ti 12: Type 2 TI 12: Techniques in 
[M]P3 or direct 
subst i tut ion. 

6112: Based on the algebraic form of 
the funct ion; evokes typical examples 
in college Calculus textbooks. Mixture 
of social, didactic, cognit ive and 
mathematical norms. (Complexive 
thinking.) 

0 i 12: A b s e n t or of 
syncretic nature. 

T12: Tasks that don't resemble 
routine tasks (e.g. limit o f s i n ( x ) / x as 

T12: Memorizing or 
using non-s tandard 
techniques (finding 
limits by graphing or 
numerically). 

012: The problem cannot be tackled 
with standard techniques ; a cognit ive 
n o r m (Complexive thinking.) 

©12: Absen t or of 
syncretic nature. 

T1.1: Tasks that resemble routine 
tas ks 

TIT: Based on TI 11 and 
TI 12. 

01.1: Based on the resemblance with 
Ti i; a social n o r m (Complexive 
thinking.) 

©i.i: A b s e n t or of 
syncret ic nature. 

T2: Unfamiliar tasks T2: Finding limits by 
graphing and 
numerically. 

02: The problem cannot be tackled 
with s tandard techniques; a cognit ive 
n o rm 

02: Based on 
mathematical mles and 
strategies (conceptual 
thinking). 

TABLE 5.34. A model of students' spontaneous models of the knowledge to be learned about limits. 
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CHAPTER 6 

DISCUSSION AND CONCLUSIONS 

SI 2: Well it's just because is like you can't factor this. Can you? No, I don't think you 

can. So the only thing they could ask us is to divide by x. (Student SI2 explaining why 

3 - 2 
Y + 4 Y + 9 she assumed that the expression ijm — coiresponded to a limit taken at 

-r-> 1 x + 2 
infinity.) 

In this chapter, 1 present a discussion of the results described in the previous chapters. 

Then 1 discuss these findings in relation with previous literature about the teaching and 

learning of limits. In the third section, 1 summarize the conclusions of this thesis. The 

chapter ends with directions for future research. 

6 .1 DISCUSSION OF THE RESULTS 

The following discussion is based on findings presented in Chapters 4 and 5. First, I 

discuss my theoretical model of instructors' spontaneous models of the knowledge to be 

learned about limits. Next, I discuss my theoretical model of students' spontaneous 

models of the knowledge to be learned, their modes of thinking and their positioning in 

the Community-of-study institution. Finally, I reflect on the possible relations between 

instructors' and students' models. 
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6.1.1 Knowledge to be taught and knowledge to be learned: the 

institutional perspective 

In Chapter 4,1 presented a characterization of the mathematical praxeologies MP1, MP2 

and [M]P3 in the College-Calculus institution, relative to the "find the limit" tasks 

appearing in final examinations. From this characterization, and considering instructors' 

solutions to final examinations, a model of instructors' spontaneous models of the 

knowledge to be learned about limits was built (where instructors were taken as 

participants of the Final-Examination institution). This model was a compound of three 

praxeologies reduced to practical blocks (their theoretical blocks were virtually non-

existent), labeled as PB1, PB2 and PB3a/b, corresponding to the routine types of tasks 

TI, T2 and T3, respectively. 

As observed in Chapter 4, with respect to MP1 and MP2, the outline of the course 

indicates sections of the textbook in which explanatory discourses on both the technology 

and the theory levels are given. In particular, the technology (in both MP1 and MP2) 

refers to the fact that if two functions agree in all but one value c, their limits at c are the 

same. This statement is justified by a graph (second level of justification - theory level); 

a mathematical proof of the statement is presented in an appendix, which is not listed in 

the outline of the course. As it has been pointed out before, the fact that the technology 

and the graph justifying it belong to the topics listed in the outline indicates that this is 

knowledge to be taught from the perspective of the College-Calculus institution. The 

mathematical proofs (and definitions) belong to the scholarly knowledge. This means that 
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an important fragment of explanatory discourses in MP1 and MP2 does belong to the 

knowledge to be taught25. The situation of the praxeology [M]P3 is strikingly different. 

From a mathematical point of view, the techniques in MP] and MP2 are 

unavoidable to solve tasks of types TI and T2. Textbooks provide several examples of 

the applications of the techniques xl and T2, and these examples can be used by students 

as "templates" to apply the techniques. 

With respect to tasks of type T3 in [M]P3, textbooks provide several examples of 

applying techniques x3a or x3b26 (see Chapter 4). These techniques, however, are not as 

unavoidable as t l and t2. I explain what 1 mean in more detail. Consider, for example, 

TI and xl, which I recall here. 

TASK T l : Find l i m ^ ^ 
Q(x) 

Description: c is a fixed constant; P(x) and Q(x) are polynomials such that the 

factor x-c occurs in both P(x) and Q(x); x-c has degree one in Q(x). 

TECHNIQUE xl : (Substitute c for x and recognize the indetermination 0/0.) 

Factor P(x) and Q(x) and cancel common factors. Substitute c for x. The 

obtained value is the limit. 

25 As it was mentioned before, in the context of this research, knowledge to be learned is understood as a 

subset of the knowledge to be taught whose minimum core can be deduced from tasks appearing in final 

examinations. 

26 Not only in the textbook assigned to the course in the studied institution. As observed in footnote 17 in 

Chapter 4, this is the typical approach to limits of rational functions at infinity in college level Calculus 

textbooks. 
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In mathematical symbols: 

l in ™ = a n ^ - ^ W = lim A W = A M 

— (x-c)Q,(x) Qt(x) Qt(c) 

where P(c) = 0 and Q(c) = 0, but x - c is a factor of neither Pt(x) nor Q>(x). 

To find the value of the limit, it is essential to know the form of Pi (x) and Qi(x). In 

fact, the goal of the technique is to find these two polynomials, which are factors of P(x) 

and Q(x). A similar observation can be made with respect to T2 and x2. 

Now consider, for example, T3 and x3a (technique x3b is only a slight modification 

of x3a): 

TASK TYPE T3: Evaluate the following limit: l i m ^ ^ . 
Q(x) 

Description: P(x) and Q(x) are polynomials such that m, the degree of P(x), is 

less or equal to «, the degree of Q(x). 

TECHNIQUE r3a: Divide both P(x) and Q(x) by x". Simplify each tenn and 

then use the algebraic properties of limits and the fact that the limit of a 

constant over a power of x, as x —»oo , is 0. 

In mathematical symbols: 
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m M ' 

Z aiX a „ 
—— —— + s 0 if m<n „" n-m J 

' = 0 1 _ X _ — ) N = lim — 
bx' b„+s hr m = 
_!_ bn 

m n 

5 > ' 

where s and <S tend to 0 by virtue of the fact that the limit of a constant 

over a positive power of x, as x—»oo, is 0. 

To find the value of the limit, it is irrelevant to know the forms of e and d, it 

suffices to know am, bn, m and n, which are values explicitly given in the expression 

P(x)/Q(x). Once this is understood, the use of technique x3a can be avoided. Instead, for 

every instance of T3, the following technique, labeled T3, can be applied: 

TECHNIQUE T3: (as formulated in the "guidelines" in the textbook.) Let P(x) 

be the numerator, with leading coefficient am, and Q(x) be the 

denominator, with leading coefficient bm. Compare m and /?, the degrees 

of P(x) and Q(x), respectively. If m = n, the value of the limit is am/b„. If 

m< n, the value of the limit is 0. 

For this technique T3, the general description of x3a would be a "technology" 93: a 

proof of the validity of x3. In the praxeology where x3a is a "technique", for each 

particular task of type T3, students are performing an illustration of the proof, defying the 

"economy of mathematics" (Castela, 2004: 37), but satisfying the norms of the didactic 
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contract (Brousseau, 1997: 31) suggested in the model solutions of final examination 

questions provided by instructors, and, to some extent, in the textbook. 

Some textbooks (in particular the one assigned to the Calculus course in the 

studied institution) provide the technique r3. In these textbooks, however, there are no 

examples of applications of this technique, and, there are no mathematically valid 

justifications of this technique: the technique is given after several examples of the 

application of x3a/b to different, particular instances of T3, without making explicit how 

this "new" technique is obtained. The absence of examples of applications of T3 disrupts 

the didactic flow of the textbook. In the case of tasks of type TI and T2 the worked out 

examples can be used by students as templates to apply xl and x2. In the case of tasks of 

types T3, when the students search for templates in the textbook to apply technique x3, 

they find applications of x3a/b. 

The sequence T3 - x3a - x3 - 93 is a very simple example of how techniques and 

proofs are sometimes developed in mathematics. A particular task is presented (for 

example, an instance of T3). Relevant features of this task are identified and a type of 

tasks is defined (e.g., T3). A technique is developed to tackle the particular instances that 

are given (for example, x3a). It is noticed that a generalization of this technique can be 

obtained (x3). This generalization becomes a technique for solving the type of tasks, and 

the previous method of solving the tasks (such as x3a) is generalized to give a proof of 

the new, more efficient technique (part of 03). It is hard to understand why the 

opportunity to show this construction is missed in the textbook, since the operations 

required are at the level of high school Algebra. Whether this opportunity is used in the 

classrooms or not, cannot be inferred from the available data. Nevertheless, as noted 
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above, instructors' solutions to final examinations show the use of x3a (or x3b) to tackle 

instances of T3 (model PB3). Hence, the model of instructors' knowledge to be learned 

(relative to the Final-Examination institution) corresponds, in the case of tasks of type 

T3, to a Babylonian way of doing mathematics - do the same for every particular 

problem, again and again, without recognizing patterns in the techniques. The goal seems 

to be set in identifying patterns in the tasks - and so to have types of tasks - but the 

further step of recognizing patterns in techniques and theories seems to be avoided at 

college level - at least in relation to the topic "limits of functions". 

Furthermore, in the three praxeologies, MP1, MP2 and [M]P3, the practical blocks 

belong to the knowledge to be taught, but (parts of) the theoretical blocks belong to this 

type of knowledge only in the cases of MP1 and MP2. In the case of [M]P3, the complete 

theoretical block is exclusively in the domain of the scholarly knowledge. There are no 

portions of the theoretical block of [M]P3 that belong to the knowledge to be taught, not 

even in the form of intuitions as it is the case for the theoretical blocks of MP1 and MP2. 

The institution's rationale for this choice remains to be investigated. 

The model of the instructors' spontaneous models of the knowledge to be learned 

about limits built in Chapter 4 reveals that these spontaneous models correspond only to 

practical blocks (PB1, PB2 and PB3a/b), that is, to systems of tasks and techniques. In 

other words, instructors, as participants of the Final-Examination institution, do not 

expect students to reproduce the explanatory discourses corresponding to the knowledge 

to be taught about MP1 and MP2. Furthermore, as explained above, instructors do not 

expect students to learn, derive or even use, the technique x3. On the contrary, they 

expect students to reproduce technique x3a or x3b whenever an instance of T3 is given. In 
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the next section, I discuss how these expectations (the "PBs model") may influence 

students' spontaneous models of the knowledge to be learned. 

6.1.2 Institutionalized and non-institutionalized practices 

At the end of Chapter 4, it was observed that the occurrence of types of tasks Tl , T2 and 

T3 is not institutionalized in the sense of the IAD framework - there are no explicit rules 

stating that these types of tasks have to appear in final examinations. On the contrary, 

their occurrence is the result of a tradition, i.e., of following certain norms. Furthermore, 

none of the techniques corresponding to these tasks are institutionally regulated, whether 

by the College-Calculus institution, or by the Final-Examination sub-institution. On the 

one hand, there are no explicit rules that would state which techniques students have to 

use. On the other, the "value" (in the form of a grade) that an instructor assigns to the use 

11 
of a certain technique is left to his or her discretion' . 

It follows, from the observations above, that the PBs model of the knowledge to be 

learned about limits, from the perspective of the Final-Examination institution, is not 

regulated within the institution: neither the occurrence of the tasks nor the techniques to 

be used to accomplish these tasks obey some explicit rules. I do not mean to say, 

however, that I think these practices should be institutionalized. I only wish to highlight 

the fact that these practices are based on norms rather than rules. It is this, more than the 

absence of institutional rales, that allows students to base their models of the knowledge 

27 For example, one teacher may give a higher grade to a student using an algebraic technique than to a 

student employing a numeric or a graphing technique, while in the same term and with respect to the same 

final exam, another teacher may assign the same grade to students using these two different approaches. 
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to be learned on social, cognitive and didactic norms rather than on mathematical rules. 

The "normative" character of instructors' models of the knowledge to be learned 

emphasizes learning on the plane of tradition rather than on the scientific, mathematical 

plane. It is as if the implicit institutional discourse was, "this technique is used to solve 

this problem because this is how things are usually done here" instead of, for example, 

"this technique is used to solve this problem because it is one of the (many) mathematical 

strategies to find the answer and because of this or that mathematical feature of this 

problem, it is an efficient strategy, better than...". This, as it is discussed below, may have 

the effect that students end up learning how to behave normally rather than how to 

behave mathematically. 

6.1.3 Knowledge to be learned: the students' perspective 

In Chapter 5, I have built partial models of students' spontaneous models of the 

knowledge to be learned about limits, which were then combined to outline a general 

theoretical model of students' spontaneous models of the knowledge to be learned. 

Of course, any investigation of a (didactic) phenomenon is partial; we can only aim 

to take one or more "good" snapshots of it that would allow us to make inferences that 

reflect some relevant features of the phenomenon. In this sense, the three snapshots taken 

in this research are just pieces of a bigger picture that can never be completed. A 

combination of these pieces allowed me to build a model that might help explaining 

students' behavior in front of limit finding tasks (Chapter 5, Section 5.4). 



In the following sections I reflect on the possible causes and consequences of the 

partial and the general models. 

6.1.2.1 The didactic organization of concepts vs. a conceptual system 

The first part of the interview (the classification task) provided me with a snapshot of 

students' spontaneous behavior when considering limit expressions. In the other two 

parts of the interview, there was a context that certainly influenced students' behavior. In 

the second part, students were asked to solve non-routine tasks that resembled routine 

tasks; in the third part they were asked to solve essentially non-routine tasks. 

The classification task aimed at understanding how students contextualize the limit 

expressions. At least 68% (19 out of 28) of the students proposed a classification that 

evokes the way in which concepts are presented in textbooks (high school Algebra and 

college level Calculus textbooks). Of course, concepts and techniques have to be 

presented in some way. Students' behavior, however, suggests that, for many students, 

concepts have become closely associated with their didactic organization. Furthermore, 

because the presentation of techniques t l , T2 and x3a/b in the textbooks and in the 

instructors' solutions to final examinations puts a strong emphasis on the algebraic 

aspects, students may have misinterpreted these techniques as purely algebraic. Thus, for 

example, students would consider the features "rational functions", "radicals", and "none 

of these" (see section 5.1.1.1), as their guiding features to choose a technique, instead of, 

for example, considering types of indeterminations. In fact, the routine tasks are such that 

interpreting them and the corresponding techniques from an algebraic perspective is 

likely to produce a correct solution. Students may take it as a fact that the algebraic 
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approach always gives the right answer, and thus become unable to tackle problems for 

which this algebraic approach fails. This conjecture from students' behavior in the first 

part of the interview, has been confirmed by their behavior in the second part, where 

students seemed rather obsessed with using some algebraic technique (for example, 

71.4% of the students tried technique T1 in problem 2.1 in the second part of the 

interview). 

The analysis of the first and second parts of the interview revealed that students 

have a "step by step" procedure to tackle limit finding tasks. This procedure can be 

inferred from students' own explanatory discourses, e.g. (see also Section 5.2): 

SI: Ok. The first thing I do when I see limits is to put in the number it goes to to see what it 

gives. So in this case [Task 2 .1] I do zero over two, right? [. . .] Then [ . . . ] What I would do is 

factor. Now 1 don ' t remember [ . . . ] 

SI : Yeah. The methods. There was always first you try to factor and cross out anything that you 

can. Then. . . [ . . . ] 

S8: These... basically rationalization [explaining why certain items were put in class 1], like that 's 

the first thing I think of. I have to do that first. These I have to factor first [class 2], (Student S8 ' s 

explanatory discourse in the classification task.) 

S8: Yes, I have to factor, I have to see if I can factor first and then if something cancels out. [...] 

First plug it in, I guess. This is so Cal one... There is no reason to cancel out if it doesn' t give zero 

on the denominator [she still factored the expression], (S8 explaining her general approach to 

problems in the second part of the interview.) 

This procedure follows didactic norms: students are trying to recall the "steps" to 

follow in solving TI, T2 and T3 tasks as they are presented in the textbook. Concepts 

(and techniques) have not been integrated into a conceptual system; what students handle 



are fragments of the didactic presentation and their attention is focused on remembering 

the order of this presentation rather than on arranging their knowledge in a suitable way 

to deal with the task at hand. 

The tasks appearing in final examinations, Tl , T2 and T3, cannot help students in 

rearranging their knowledge, away from the didactic presentation and towards a 

conceptual system. The tasks themselves reproduce the way in which problems and 

techniques and technologies are presented in the textbooks. 

6.1.2.2 Students' modes of thinking 

The classification task has shown that 83% (see Table 5.30) of the students operated in 

the complexive mode of thinking when justifying techniques (technology part of their 

praxeology). These students were at the age and stage of their cognitive development 

which is propitious for the development of the conceptual mode of thinking. Yet, with 

respect to concepts relative to limits of functions, most of them were operating at the 

complexive level. Their attention would shift from one feature to another of a limit 

finding task, and they would fail to identify features relevant from the perspective of 

Calculus. Students operating at the complexive level of thinking would not identify the 

abstract logical connections among the individual instances of the limit finding tasks; 

they would only see empirical connections emerging from their individual, immediate 

experiences. Routine tasks Tl , T2 and T3 could not challenge this mode of thinking. To 

solve them, it suffices to identify algebraic features with which students are familiar: 

division of polynomials (Tl and T3), the reducibility ("factorability" in students' 

language) of the polynomials (if not "factorable", then it is an instance of T3), and the 



presence of radicals (T2). This is an indication that instructors' models of the knowledge 

to be learned do not challenge students' complexive mode of thinking with respect to the 

limit finding tasks. Therefore, institutional practices do not fulfill the role of pulling 

students' cognitive development beyond their immediate individual capabilities - that is, 

they fall short of awakening "a whole series of functions that are in a stage of maturation 

lying in the zone of proximal development" (Vygotsky, 1987: 212). 

As noted in Chapter 3, Section 3.2.1.2, a student's mode of thinking inferred from 

the classification task reflects thinking involved not only in forming the classes, but also 

in the criteria to decide which item goes into which class. Absence of the theoretical 

blocks in the instructors' models of the knowledge to be learned deprived many (26 of 

the 28 interviewed students - 93%) students of means to develop mathematical 

justifications at the conceptual level. Students had no mathematical theoretical resources 

to reflect on their own behavior and to justify it. Hence, their explanatory discourses 

about why they would use this or that technique, referred to social validations of the 

techniques, that is, to the institutional uses and not to why the techniques were 

mathematically valid in this or that situation. Analysis of students' behavior in the second 

part of the interview supported this interpretation: many have explained their "factoring" 

behavior by a habit ("this is what we usually do in this case"), rather than by reference to 

mathematical reasons (see Chapter 5, page 182). 

Furthermore, the absence of the theoretical blocks may be one of the causes of 

students switching from the complexive mode of thinking at the technology level to the 

syncretic mode at the theory level. This kind of behavior affected at least 30% of the 

students. Although some fragments of the theoretical blocks belong to the knowledge to 
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be taught (and perhaps to the knowledge to be learned in some sub-institutions of the 

College-Calculus institution), the fact that no part of them belongs to the knowledge to be 

learned in the Final-Examination institution may allow students to neglect (mathematical) 

theory. It is not their business. Hence, when required to provide deeper explanatory 

discourses, students would produce reasons based on affect (which represents thinking at 

the syncretic level). 

As mentioned, according to Vygotsky, the development of the highest levels of 

thinking requires instruction. Thus, if adolescents are not challenged, through instruction, 

to think at the highest level of conceptual development, we might be missing the right 

moment to propitiate the development of some intellectual abilities in students. At the 

university, it may already be too late (Sierpinska 1994: 140). If it does in some domains 

but not in the mathematical courses, there is a risk they will never develop conceptual 

thinking in mathematics. The remedial courses in mathematics offered to mature entry 

candidates at the university may not be able to develop conceptual thinking in students 

whose ways of thinking in mathematics have stopped, at the crucial moment of their 

cognitive development, at the complexive level (Sierpinska 2000: 245). 

6.1.2.3 The negative influence of the PBs model on students' 

spontaneous models 

Perhaps one of the main contributions of the second part of the interview has been to 

show the negative influence of the PBs model on students' spontaneous models. The 

institutional practices, that make the tasks and techniques in this model routine, are such 

that they have conditioned students to expect only these tasks and to consider the 
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possibility of applying only these techniques. This does not mean that students are 

doomed to fail when dealing with non-routine problems that resemble the routine ones 

(see Table 5.33). Nevertheless, while dealing with these problems students have shown 

that their thinking is not mathematical thinking. 

The four tasks presented to the students in the second part of the interview belong 

to what can be identified as the knowledge to be taught: these are topics covered by the 

textbook in sections listed in the outline of the course. Tasks of these types, however, did 

not appear in the final examinations of the last 6 years. The first three problems (2.1, 2.2 

and 2.3) do not look like the ones in the textbook but resemble the routine tasks in the 

sense that the polynomials involved can be easily factored; students approached these 

problems by way of algebraic techniques. It is problem 2.4 that they easily recognized as 

a non-routine but still familiar task; this task does resemble the ones that, occasionally, 

they had to deal with in the textbook (and probably also in the classroom). For a 

mathematician or for a Calculus teacher at the college level, problems 2.1, 2.2 and 2.4 are 

all of the same type. The interviews revealed, however, that students would rather treat 

problems 2.1, 2.2 and 2.3 as belonging to the same type, while problem 2.4 would be in a 

separate category. The reasons for these models are based on habit; habit induced by the 

normal practices of the institution. Of course, routine tasks might be chosen so as not to 

trick the students into using algebraic techniques when they are not needed. The analysis 

of the second part of the interviews shows, however, that they have a negative impact on 

students' generalizations: where a mathematician sees a limit that can be found by direct 

substitution (e.g. problem 2.2), the students see a limit that has to be found by an 

algebraic technique. Furthermore, when in a rational expression the polynomials could be 
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factored using simple techniques but there were no common factors, as was the case in 

problems 2.1 and 2.3, this caused confusion and a significant number of students could 

not produce an answer (42.9% of the students in the case of problem 2.3; see Table 5.33). 

In the routine problems presented in textbooks and final examinations, students have 

identified patterns on which they have built their spontaneous models for practices related 

to limits of functions. These patterns, however, are not mathematical. Yet students' 

models are valid or, perhaps, more accurately, viable. They are viable because the 

College-Calculus institution to which they belong does not propose tasks that would 

challenge them. 

6.1.2.4 Non-routine and essentially non-routine tasks; the Zone of 

Proximal Development 

As noted in the previous section, in the second part of the interview students took it for 

granted that the problems were routine ones. They took it for granted not only because 

the problems resembled the routine ones but also because, as the students claimed, they 

have never been given non-routine problems (see Section 5.2.2). Because of this, 

students' spontaneous models are such that when a problem can be solved using a routine 

technique (problem 2.2) students fail to see that there are other, more efficient 

approaches28. If a problem does not admit a routine technique (problem 2.3), students are 

2S This type of behavior is well-known irt psychology; it has been found to be very common in the classical 

research by Luchins & Luchins (1950: 281). In Luchins (1942) it was attributed to the mechanisms of 

"habituation'': "Einstellung - habituation - creates a mechanized state of mind, a blind attitude towards 

problems: one does not look at the problem on its own merits but is led by a mechanical application of a 

used method" (Luchins, 1942: 15). 
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stuck on their approach29. The conditioning induced by the tasks in the final examinations 

has obscured other techniques that the students may have learned in the course (e.g., 

direct substitution or finding limits numerically). When dealing with this type of 

problems, students cannot think outside the box. 

The third part of the interview presented a different scenario. Because the 

problems in this third part were essentially different from the routine ones, students 

discarded at once the possibility of using routine techniques. Students' failure in 

providing a correct answer, before any intervention of the interviewer, ranged from 50% 

(in problem 3.3) to 79% (in problem 3.2) and was much higher than the range 4% to 57% 

in the second part of the interview on problems 2.2 and 2.3, respectively. Nevertheless, at 

the slightest prompt from the interviewer, students proved to be able to think in 

mathematical termsj0. 

Of course, both non-routine tasks that resemble routine tasks and essentially non-

routine tasks are in the zone of proximal development of these students. When dealing 

with essentially non-routine limits, however, students proved to be able to combine their 

mathematical knowledge (not only about limits but also about operations with functions, 

graphs, and uses of the calculator). This is something that they seemed unable to do when 

29 This behavior has also been identified as common in classical psychological research (Duncker, 1945, 

called it "functional fixedness") 

"l0 Behavior of this kind - the ability to abandon habituation and solve non-routine problems - has also been 

studied in classical psychology (Maier, 1945). Mayer (1992) was trying to identify the differences between 

the experiments of Duncker (1945) and Maier, that could reconcile their apparently contradictory results. 

One of these factors was that, "the change from normal use to [a new use] was great in Maier 's experiment 

but small in the experiments by Duncker" (Mayer, 1992: 62). In my study, this corresponds to the fact that 

tasks in part 3 of the interview were essentially non-routine. 
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dealing with non-routine tasks resembling the routine ones. Furthermore, students were 

critical about their own beliefs and the results they obtained from the calculator. This led 

them to take theoretical responsibility of their affirmations; they could no longer rely on 

arguments based on habit. All this suggests that essentially non-routine tasks are the type 

of tasks that may guide students to engage in more formal reasoning, in creative and 

critical thinking, and hence allow them to move towards the construction of a conceptual 

system. 

6.1.2.5 Students' positioning in the institution Community-of-study 

The analyses of the second and third parts of the interview have shown that students' 

positioning in the institution Community-of-study changes as a function of the tasks they 

are engaged with31. If the goal of mathematical instruction is to create conditions that 

would propitiate the development of mathematical concepts, it seems reasonable to say 

that these conditions should aim at enticing students to assume the position of Learner. 

When students faced tasks that they interpreted as routine tasks (part 2) they 

seemed to take the position of Client or Student. From their perspective, the institution 

would give them only routine tasks (Clients misinterpret this as a rule; Students trust that 

the institution will follow its own norms'2). When they found that the tasks were not 

routine, they seemed to lose interest in them. I surmise that, in the case of Clients, this 

This may happen in other institutions as well, for example, on a market participants can be in the position 

of seller or buyer and they may change their position depending on the particular specificities of a given 

situation. 

See Chapter 3, page 68. 
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disinterest is the result of the fact that these tasks are not means to obtain their goals 

(passing the course, graduating, etc.). In the case of Students, the lack of interest could be 

the result of realizing that the institution has conditioned them in such a way that at the 

slightest perturbation on a problem, they are unable to tackle it with confidence. When 

explaining their behavior in the second part of the interview, students referred to 

"reflexes" they have developed by dealing with routine tasks - e.g., S6, S7 - and to the 

way they have been "trained" - e.g., S23. 

In the position of Client or Student, a student relies on authority for justification; it 

is not his or her business to know technologies and theories. Clients do not need this to 

obtain their goals as they take it as their right never to be asked to produce discourses at 

the technology or theory level in Final-Examinations. Students abide by the norms of the 

institution: the institution does not ask them anything about technologies and theories; 

hence, they do not learn them. 

When, however, students were asked to deal with essentially non-routine tasks, 

they behaved as cognitive subjects and they based their explanatory discourses on 

mathematical rules and strategies. In other words, students positioned themselves as 

Learners. 



6 . 2 DISCUSSION OF THE RESULTS IN THE CONTEXT OF 

PREVIOUS RESEARCH 

In this section, I discuss how the results obtained in this thesis are related with findings in 

previous literature. 

6.2.1 Practical blocks and theoretical blocks in the knowledge to 

be taught and in the knowledge to be learned 

In their paper, Barbe et al. (2005) present a model of the scholarly knowledge and of the 

knowledge to be taught about limits in Spanish high schools. In the knowledge to be 

taught, and in relation with limit finding tasks, they have identified only a practical block. 

The corresponding theoretical block - present in the scholarly knowledge - is absent. In 

other words, in relation with limit finding tasks, the curriculum proposes only a practical 

block. The types of tasks TI, T2 and T3 described in Chapter 4 and their respective 

technologies xl, x2 and x3, are a subset of the practical block described by Barbe et al. 

(ibid., p. 244-245). In the context of Calculus taught in Spanish high schools, however, 

the above mentioned "absence" was different from the corresponding one in the College-

Calculus institution I have observed. In the Spanish high school, the theoretical blocks 

are absent from the knowledge to be taught. In the College-Calculus institution, the 

theoretical blocks (or at least, parts of them) were present in the knowledge to be taught. 

They were absent from the knowledge to be learned. 

From the perspective of an institutional analysis, this difference is essential. In the 

context of the College-Calculus institution that I study here, the theoretical blocks 

corresponding to techniques xl, T2 and i3 form part of an institutionalized practice. In 
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particular, they are institutionalized by the Curriculum institution. They do not, however, 

form part of any institutionalized practice of the Final-Examination institution: the model 

of the knowledge to be learned of the instructors participating in this institution follows 

norms, not rules. This tension between institutionalized and weakly - or not at all -

institutionalized practices might play a significant role in the spontaneous models of 

instructors as participants of the Classroom institution; this remains to be investigated33. 

As discussed above (Section 6.1.2 and its Subsection 6.1.2.3), however, it definitely plays 

a role in shaping the spontaneous models of students as participants of the Community-

of-study. 

The combined results of Barbe et al. and mine imply that, at some point of the 

process of didactic transposition, the theoretical block corresponding to limit finding 

tasks disappears. The study of Barbe et al. indicates the negative influence of this 

absence in the teacher's practice. This thesis points to the negative influence of the 

absence in the students' practices. The origin of this disappearance can probably be found 

by studying the history of the complex processes of didactic transposition in the 

particular educational institutions (Barbe et al., 2005: 245). I surmise that this 

disappearance, in the language of the IAD framework, is related to the layer of norms in 

these institutions. 

Instructors have to "decode" the knowledge to be taught as stated in curricular documents to transform it 

into knowledge actually taught. I believe that the IAD framework, in which rules, norms, and strategies are 

well defined, can contribute to the understanding of this decoding process. 
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6.2.2 Routine and non routine tasks 

Several authors have acknowledged the (negative) influence of routine tasks in students' 

practices. For example, Tall (1992) observes that specific examples are likely to dominate 

the learning and this could lead to misinterpretation of one's own experience. In 

particular, by repeatedly using examples of sequences in which the general term is given 

by an algebraic formula, we cause students to mistakenly assume that this formula is an 

essential part of the theory (ibid. pp. 501-502). 

The work carried out by Lithner (2000; 2004) implies that the problem is not (only) 

with college level Calculus students' misinterpretation of their experience. The blame 

must be attributed, at least partly, to the experiences to which the institutions expose the 

students. As it was pointed out in Chapter 1, Lithner's research (2004) shows that 90% of 

the exercises in the Calculus level college textbooks can be done by searching the text for 

methods, that is, looking for template solutions. The results presented in this thesis have 

shown that, when the textbook is not available (the situation of the final examination or 

of the task-based interviews), students' intellectual effort is invested in trying to recall the 

"steps" in these templates. Furthermore, their choice of a method for a given problem is 

based on patterns and features that are not always relevant from the point of view of 

Calculus (e.g., they choose to apply a factoring technique based on the fact that the 

function is a rational expression without taking into account the types of 

indeterminations). This implies that students studying strategies may be based on 

memorizing "steps" and on identifying (non-relevant) patterns or features. For example, 

students have shown that, when dealing with the tasks in the first and second parts of the 

interview, they tend to evoke the didactic presentation of concepts in the textbooks. 
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instead of the concepts themselves. The absence of a theoretical block in the worked out 

examples in the textbooks leaves the students with no means to figure out what is 

relevant and what is not. However, this does not appear as a problem, neither to the 

students nor to the institution, as the proposed tasks in the final examinations can be very 

well solved with these non-mathematical strategies. 

A study of Calculus students dealing with non-routine tasks by Selden et al. (1999) 

describes students who, while able correctly to solve routine tasks, were helpless in front 

of the non-routine ones. The authors surmise that this inability is not exclusively the 

result of the students' lack of knowledge, but also of the students' difficulties in 

retrieving this knowledge and applying it to non-routine tasks. The analysis of part 3 of 

the interviews that I have carried out confirms these results. Selden et al. raise two 

questions. One is the question of the accessibility of knowledge: why is a student who has 

knowledge to tackle a given problem unable to retrieve it? The other question is: if a 

student does retrieve the knowledge, how does he or she do it? My research implies that, 

in the case of limit finding tasks, knowledge to tackle at least some essentially non-

routine tasks seems to be on the "surface", retrievable at the slightest prompt; in 

Vygotsky's terms, it belongs to students' ZPD. The reasons why students cannot retrieve 

it on their own might lie in a combination of the way homework exercises are presented, 

the students' study habits (ibid., p. 18), the overwhelming presence of routine problems 

in the textbooks (Lithner, 2004), and the institutional norms regulating tasks in final 

examinations. 

The main difference between routine tasks and non-routine tasks is given by the 

categorization itself: problems that are practiced all the time, and problems that are not. 
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Of course, the nature of the tasks is important - for example, as it was observed before, it 

is in the nature of the tasks TI, T2 and T3 that these cannot help students in the formation 

of a conceptual system. It would not suffice, however, to transform the non-routine tasks 

into routine tasks and train students in solving them. What might help is a change in some 

institutional educative habits. For example - by creating situations where students are 

given a chance to engage in creative, critical mathematical thinking (the type of thought 

that students have used when dealing with the tasks proposed in the third part of the 

interview). 

6.2.3 Students' types of knowledge 

In Chapter 5 I have built a model of students' spontaneous models of the knowledge to be 

learned and showed how this model does not follow exclusively mathematical rules but is 

strongly based on cognitive, didactic and social norms. The fact, however, that this model 

does not correspond (exclusively) to mathematical knowledge does not mean that is not 

some kind of knowledge. The question of the type of knowledge that students build in 

place of the one accepted by the community of mathematicians, in relation with a 

particular concept, has been formulated by different authors (e.g., Hitt, 2006). Referring 

to college Calculus students, Smith and Moore (1991) write: 

Much of what our students have actually l ea rned . . . . - more precisely, what they have invented for 

themselves - is a set of 'coping skills' for getting past the next assignment, the next quiz, the next 

exam. When their coping skills have failed them, they invent new ones. The new ones don't have to 

be consistent with the old ones; the challenge is to guess right among the available options and not 

to get faked out by the teacher's tricky questions.. . (ibid., p. 85, cited in Tall, 1996: 307) 
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The results obtained in my study suggest that students' "inventions" are 

emphasized and validated by the tasks proposed by the institution. They are rooted in the 

void left by the absence of a theoretical component in the knowledge to be learned as 

defined by some sub-institutions of the College-Calculus institution. Participants of these 

institutions fill this void with cognitive, didactic and social norms. As Sierpinska (2000) 

points out 

There is a clear-cut division of labor, whereby the student is given no control over the validity of the 

statements on which he or she bases the reasonings and calculations. This atmosphere is enhanced 

by the assignment o f ' exe rc i s e s ' [ . . . ] where the student is not given a chance to choose a method of 

solution [ . . . ] Knowledge acquired in this way is very likely a 'school survival' knowledge, not a 

scientific knowledge of any kind. (Sierpinska, 2000: 245) 

Despite the normal behavior that students have displayed in the first and second 

parts of the interviews, they do have some mathematical knowledge about limits. There is 

evidence for this in the third part of the interview, where students were making use of 

mathematical rules and strategies to tackle the proposed problems. These mathematical 

rules and strategies do not belong to the knowledge to be learned as defined by the Final-

Examination institution. It remains to be investigated where this knowledge comes from 

and how students make it their own. 

6.2.4 Students' "formal", "informal" and "technical" behavior 

The analysis of the interviews shows that, in front of routine tasks and tasks that resemble 

routine tasks, students behave as if they were operating in E.T. Hall's "informal" and 

"formal" spheres of culture, rather than in the "technical" sphere (Hall, 1,981; see also 



Sierpinska, 1994: 161-169, for an adaptation to mathematics development, teaching and 

learning). On the one hand, students refer to having been "trained" for choosing this or 

that technique in front of a task, and "reflexes" developed out of this "training". This type 

of learning is in the informal level, similar to the way one learns a sport, like biking or 

skiing. It is not enough that someone tells you what to do; learning occurs through 

observation, imitation and repetition. On the other hand, students' justify their choice of a 

technique to tackle a problem by stating their beliefs and convictions that the technique 

indeed applies (their expectations about the tasks that the institution asks them to do). 

These beliefs and convictions are themselves based on explicitly communicated elements 

of tradition, i.e. part of the formal plane of culture, which is transmitted by admonition 

and does not require any justification: "this is how things are done, no ifs, ands or buts". 

Furthermore, students' use of the technique is an algorithmic use; it is based on a recall of 

a set of "instructions" or "steps" given by the textbook or the instructor. As, however, 

there is no technical level - no mathematical justification of the technique - the steps 

form an arbitrary list. A simple consequence of this arbitrariness is that students have 

difficulties in remembering the order. Thus, for example, they hesitate whether to do 

direct substitution first or factoring first. 

When dealing with non-routine tasks, the interviewed students suddenly started 

behaving as if operating in the technical sphere of the mathematical culture. They felt the 

necessity of explicitly formulating their knowledge, they were cautious and critical about 

their own statements. 

Sierpinska suggests that the cultural roots of epistemological obstacles are to be 

sought in the formal and informal spheres of culture (Sierpinska, 1994). As discussed in 



Chapter 1, research within the epistemological perspectives was concerned with students' 

concept formation prior to any formal teaching and learning; in abstraction from the 

institutional context. On the other hand, my own research - framed within institutional 

practices perspectives - is concerned with students' behavior after formal teaching and 

learning has already started. This, combined with the discussion above, implies that the 

weight an institution gives to the informal and the formal layers of culture may facilitate 

or, on the contrary, hinder students' overcoming of epistemological obstacles. 

6 . 3 CONCLUSIONS 

In the interviews carried out in this study, students revealed that their spontaneous models 

to deal with limit finding tasks are not built using Calculus criteria. Their approaches to 

finding limits of rational expressions show that their models are grounded in high school 

Algebra, and in a type of strategic knowledge associated with succeeding on the final 

examination. Thus, their praxeologies are not exclusively mathematical but strongly 

based in social, cognitive and didactic norms. The analysis of instructors' spontaneous 

models of the knowledge to be learned about finding limits has shown that the 

institutional approach - as it is - cannot help students in "rebuilding" their models so that 

they eventually become models of mathematical behavior (instead of models of normal 

behavior). Furthermore, institutional practices, based on norms and emptied of theoretical 

content, do not challenge students' complexive mode of thinking. 

The different notions of knowledge described in the process of didactic 

transposition highlight "the institutional relativity of knowledge and situate didactic 

problems at an institutional level, beyond individual characteristics of the institutions' 
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subjects" (Bosch et al., 2005). In the present work, 1 tried to highlight the possible 

relativity of these notions when considered from an anthropological point of view. As it 

was pointed out in the introduction, from a strictly epistemological perspective, notions 

such as knowledge to be taught or knowledge to be learned might be quite well defined 

objects. From an anthropological perspective, they become relative to the institution to 

which they belong. Even this relativity is not subtle enough, however. The notion of 

praxeology does not distinguish between practices regulated by rules, and practices 

regulated by norms. Hence, although the ATD notion of praxeology can be used to build 

a theoretical epistemological model of knowledge, it may not be sufficiently sharp as a 

tool for describing the differences between the spontaneous models of knowledge that 

participants in different positions with respect to the institution may have. I found it 

helpful to complement the ATD framework with the IAD framework to clearly see and 

describe these differences. 

6.4 FUTURE RESEARCH 

Research aimed at understanding the relations among the different sub-institutions of the 

College-Calculus institution, what are the available positions in each of them, and based 

on which criteria participants are assigned - or assigned themselves - to these positions, 

will contribute to our understanding of institutionalized mathematical activity. In what 

follows I suggest possible directions for future research from an institutional perspective. 

In Section 6.1.1 it was observed that the sequence T3 - t3a - x3 - 03 provides a 

simple example of how proofs are sometimes developed in mathematics. The opportunity 

to show this is missed in the textbook. Furthermore, instructors, as participants of the 
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Final-Examination institution, expect students to use technique x3a (or x3b) to tackle 

instances of T3. As it was mentioned before, the institution's rationale for this choice 

remains to be investigated. On the other hand, modeling instructors' implicit models - as 

participants of other institutions (e.g., the Curriculum institution or the Classroom 

institution) - of the knowledge to be learned about limits, would contribute to the 

understanding of students' behavior in front of limit finding tasks and the different status 

- relative to different institutions - of the knowledge to be learned. 

In the context of the College-Calculus institution studied here, the Classroom, as an 

institution, interacts and shares participants with the Curriculum and the Final-

Examination institutions. Barbe et al.'s (2005) paper focuses on some aspects of the 

interactions between the institutions Curriculum and Classroom. In particular, they 

analyze teachers' decoding of the curricular documents - the step in the process of 

didactic transposition that changes knowledge to be taught into knowledge actually 

taught - through the lens of ATD. Perhaps, an analysis of such decoding based on the 

combined framework ATD-IAD would allow us to characterize the institutional status of 

this decoding process, that is, to understand which are the mechanisms that regulate it. In 

relation with the Final-Examination institution, it was described above (Section 6.2.1) 

how instructors' spontaneous models about limits influence students' spontaneous 

models of the knowledge to be learned. To investigate the role played by these implicit 

models in the spontaneous models of instructors as participants of the Classroom 

institution, will contribute to the understanding of the Classroom - Final-Examination 

interactions. 



Finally, as observed in Section 6.2.3, despite the negative influence of routine tasks, 

students were able to engage in mathematical - as opposed to 'normal' - thinking about 

limits of functions. This phenomenon requires an explanation. The fact of just engaging 

in mathematical thinking could be, simply, the effect of the realization that, in the 

interview, the institutional norms are not binding any more. This does not explain, 

however, why the students' mathematical thinking about the non-trivial non-routine tasks 

was also so often correct. They seem to have learned more about functions and limits in 

the Calculus course than what they thought they had to learn. How did they learn it and 

what exactly is the nature of this 'surplus' knowledge remains to be investigated. This 

will be the direction of my future research. 



.237 

REFERENCES 

Alock, L. and Simpson, A. (2004). Convergence of Sequences and Series: Interactions 

between visual reasoning and the learner's beliefs about their own role. 

Educational Studies in Mathematics, 57, 1-32. 

Alock, L. and Simpson, A. (2005). Convergence of Sequences and Series 2: Interactions 

between visual reasoning and the learner's beliefs about their own role. 

Educational Studies in Mathematics, 58, 77-100. 

Artigue, M., Batanero, C. and Kent, Ph. (2007). Mathematics teaching and learning at 

post-secondary level. In F.K. Lester, jr. (Ed.), Second Handbook of Research on 

Mathematics Teaching and Learning, p. 1011-1050. Reston, VA:NCTM. 

Asiala, M., Brown, A., DeVries, D., Dubinsky, D., Mathews, D. and Thomas, K. (1996). 

A framework for research and curriculum development in undergraduate 

mathematics education. Research in Collegiate Mathematics Education II, CBMS 

Issues in Mathematics Education, 6, 1-32. 

Asiala, M., Dubinsky, D., Mathews, D. Morics, S. and Oktac, A. (1997). Student 

understanding of cosets, normality and quotient groups. Journal of Mathematical 

Behavior, 16(3), 241-309. 

Bachelard, G. (1938). La formation de /'esprit scientifique. Paris: J. Vrin. 

Barbe, J., Bosch, M., Espinoza, L. and Gascon, J. (2005). Didactic restrictions on the 

teacher's practice: the case of limits of functions in Spanish high schools. 

Educational Studies in Mathematics, 59, 235-268. 

Bazzini, L. (2001) 'From grounding metaphors to technological devices: A call for 

legitimacy in school mathematics'. Educational Studies in Mathematics, 47(3), 259-

271. 



.238 

Bosch, M., Chevallard, Y. and Gascon, J. (2005). 'Science or Magic?' The use of models 

and theories in didactics of mathematics. 4th Congress of the European Society for 

Research in Mathematics Education. ( h t t p : / / c c n n c 4 c r m . c s / P a p c r s % 2 0 d c f i n i t i u s / i i / B o s c h % 2 0 C h c v a i i . p d f ) 

Brousseau, G. (1983). Les obstacles epistemologiques et les problems en mathematiques. 

Recherches en Didactique des Mathematiques, 4(2), 164-198. 

Brousseau, G. (1997). Theory of Didactical Situations in Mathematics. Dortrecht: 

Kluwer. 

Brown, L. and Reid, D.A. (2006). 'Embodied cognition: Somatic markers, purposes and 

emotional orientations'. Educational Studies in Mathematics, 63(2), 179-192. 

Cantoral, R. and Farfan, R. (2003). Mathematics education: a vision of its evolution. 

Educational Studies in Mathematics, 53, 255-270. 

Castela, C. (2004). Institutions influencing mathematics students' private work: a factor 

of academic achievement. Educational Studies in Mathematics, 57, 33-63. 

Chevallard, Y. (1985). La Transposition Didactique. Du savoir savant au savoir 

enseigne. Grenoble: La Pensee Sauvage. 

Chevallard, Y. (1999). L'analyse des pratiques enseignantes en theorie anthropologique 

du didactique. Recherches en Didactique des Mathematiques, 19(2), 221-266. 

Chevallard, Y. (2002). Organiser l'etude. 1. Structures et fonctions. In J.-L. Dorier, M. 

Artaud, M. Artigue, R. Berthelot, R. Floris (Eds.), Actes de la He Ecole d'Ete de 

Didactique des Mathematiques (pp. 3-22). Grenoble: La Pensee Sauvage. 

Cobb, P. and Yackel, E. (1996). Constructivist, emergent, and sociocultural perspectives 

in the context of developmental research. Educational Psychologist, 31(3), 175-

190. 

Cornu, B, (1983). Quelques obstacles a l'apprentissage de la notion de limite. Recherche 

en Didactique des Mathematiques, 4, 236-268. 

http://ccnnc4


.239 

Cornu, B. (1991). Limits. In D. Tall (Ed.), Advanced Mathematical Thinking (pp. 153-

166). Dordrecht, The Netherlands : Kluwer. 

Cotrill, J., Dubinsky, E., Nichols, D., Schwingendorf, K., Thomas, K., Vidakovic, D. 

(1996). Understanding the limit concept: beginning with a coordinated process 

scheme. Journal of Mathematical Behavior, 15, 167-192. 

Davis, R. and Vinner, S. (1986). The notion of limit: some seemingly unavoidable 

misconception stages. Journal of Mathematical Behavior, 5(3), 281-303. 

Dubinsky, E. (1991). In D. Tall (Ed.), Advanced Mathematical Thinking (pp. 153-166). 

Dordrecht, The Netherlands: Kluwer Academic. 

Dubinsky, E. and Yiparaki, O. (2000). 'On student understanding of AE and EA 

quantification', CBMS Issues in Mathematics Education, 8, 239-289. 

Duncker, K. (1945). On problem solving. Psychological Monographs, 58(5), Whole No. 

270. 

Edwards, L., Radford, L. and Arzarello, F. (Eds.) (2009). Gestures and Multimodality in 

the Construction of Mathematical Meaning. Special Issue. Educational Studies in 

Mathematics, 70(2). 

Fischbein, E. (2001). Tacit models and infinity. Educational Studies in Mathematics, 48, 

309-329. 

Godindo, J.D., Batanero, C. and Roa, R. (2005). A semiotic analysis of combinatorial 

problems and its resolution by university students. Educational Studies in 

Mathematics, 60(1), 3-36. 

Goldin, G.A. (1997). Observing mathematical problem solving through task-based 

interviews. Journal for Research in Mathematics Education. Monograph 9, 

Qualitative Research Methods in Mathematics Education, 40-177. 



.240 

Gray, E. and Tall, D. (2002). Duality, Ambiguity and Flexibility: A Proceptual view of 

Simple Arithmetic. The Journal for Research in Mathematics Education, 26, 115-

141. 

Grugnetti, L., Achille, M., Marchini, C., Groupe "zeroallazero", (2006). Activites 

didactiques a caractere vertical pour la construction du concept de limite. Annales 

de Didactique et des Sciences Cognitives, 11, 229-250. 

Hah Roh, K. (2008). Students' images and their understanding of definitions of the limit 

of a sequence. Educational Studies in Mathematics, 69, 217-233. 

Hahkioniemi, M. (2006). Associative and reflective connections between the limit of the 

difference quotient and limiting process. Journal of Mathematical Behavior, 25, 

170-184. 

Hall, E.T. (1981). The silent language. New York, Anchor Press, Doubleday (First 

edition: 1959). 

Hardy, N. (2009). Students' perceptions of institutional practices: the case of limits of 

functions at college level Calculus courses. Submitted. 

Harel, G., Selden, A. and Selden, J. (2006). Advanced Mathematical Thinking. In A. 

Gutierrez and P. Boero (Eds), Handbook of Research on the Psychology of 

Mathematics Education (pp. 147-172). Sense Publishers. 

Hitt, F. (2006). Students' functional representations and conceptions in the construction 

of mathematical concepts. An example: the concept of limit. Annales de 

Didactique et des Sciences Cognitives,11, 251-267. 

Hitt, F. and Lara-Chavez, H. (1999). Limits, continuity and discontinuity of functions 

from two points of view : That of the teacher and that of the students. In L. Bills 

(Ed.), Proceedings of the British Society for Research into Learning Mathematics, 

19, 49-54. 



.241 

Johnson, M. (1987). The Body in the Mind: The Bodily Basis of Meaning, Imagination 

and Reason. Chicago: The University of Chicago Press. 

Kidron, I. and Zehavi, N. (2002). The role of animation in teaching the limit concept. The 

International Journal of Computer Algebra in Mathematics Education, 9, 205-

227. 

Lakoff, G. and Johnson, M. (1980). The Metaphors we Live by. Chicago: The University 

of Chicago Press. 

Lakoff, G. and Nunez, R. (2000). Where Mathematics Comes From. New York: Basic 

Books. 

Lerman, S. (2001). Cultural, discursive psychology: A sociocultural approach to studying 

the teaching and learning of mathematics. Educational Studies in Mathematics, 

46(1/3), 87-113. 

Lerman, S. and Sierpinska, A. (1996). Epistemologies of mathematics and of 

mathematics education. In A. Bishop, K. Clements, C. Keitel, J. Kilpatrick, and C. 

Laborde (Eds.), International Handbook of Mathematics Education, pp. 827-876. 

The Netherlands: Kluwer. 

Lithner, J. (2000). Mathematical reasoning in task solving. Educational Studies in 

Mathematics, 41, 165-190. 

Lithner, J. (2004). Mathematical reasoning in calculus textbook exercises. Journal of 

Mathematical Behavior, 23, 405-427. 

Luchins, A.S. and Luchins, E.H. (1950). New experimental attempts at preventing 

mechanization in problem solving. Journal of General Psychology42, 219-291. 



.242 

Luchins, A.S. (1942). Mechanization in problem solving. Psychological Monographs, 

54(6), Whole No. 248. 

Maier, N.R.F. (1945). Reasoning in humans III: The mechanisms of equivalent stimuli of 

reasoning. Journal of Experimental Psychology, 35, 349-360. 

Mamona-Downs, J. (2001). Letting the intuitive bear on the formal: a didactical approach 

for the understanding of the limit of a sequence. Educational Studies in 

Mathematics, 48(2/3), 259-288. 

Mayer, R.E. (1992). Thinking, Problem Solving and Cognition. New York: Freeman. 

Monaghan, J. (1991). Problems with the language of limits. For the Learning of 

Mathematics, 11(3), 20-24. 

Nunez, R. (2000). 'Mathematical idea analysis: What embodied cognitive science can say 

about the human nature of mathematics'. Proceedings of the 24,h Conference of the 

International Group for the Psychology of Mathematics Education, Vol. I, 3-22. 

Ostrom, E. (2005). Understanding institutional diversity. Princeton University Press. 

Praslon, F. (2000). Continuites et ruptures dans la transition terminale S/DEUG Sciences 

en analyse. Le cas de la notion de derive et son environnement. Doctoral thesis, 

University Paris 7: IREM Paris 7. 

Przenioslo, M. (2004). Images of the Limit of Functions Formed in the Course of 

Mathematical Studies at the University. Educational Studies in Mathematics, 

55(1/3), 103-132. 

Przenioslo, M. (2005). Introducing the concept of convergence of a sequence in 

secondary school. Educational Studies in Mathematics, 60, 71-93. 

Raman, M. (2004). Epistemological messages conveyed by three college mathematics 

textbooks. Journal of Mathematical Behavior, 23, 389-404. 



.243 

Rassmussen, C. Nemirovsky, R., Olszervski, J., Dost, K. and Jhonson, J.L. (2004). On 

forms of knowing: The role of bodily activity and tools in mathematical learning. 

Educational Studies in Mathematics, 57(3), 303-321. 

Richard, P. R. (2004). L'inference figurale: un pas de raisonnement discursive-graphique. 

Educational Studies in Mathematics, 57, 229-263 

Schoenfeld, A. (1985). Mathematical Problem Solving. Orlando, FL: Academic Press. 

Schoenfeld, A. (2002). In L. D. English (Ed.), Handbook of International Research on 

Matheamtics Education (pp. 435-487). Mahwah, NJ: Lawrence Erlbaum 

Associates. 

Selden, A. and Selden, J. (Guest Eds.). (2005). Advanced mathematical thinking [special 

issue]. Mathematical Thinking and Learning, 7(1). 

Selden, A., Selden, J., Hauk, S. and Mason, A. (1999). Do Calculus students eventually 

learn to solve non-routine problems. Technical report, Department of 

Mathematics, Tennessee Technological University. 

Sensevy, G., Schubauer-Leoni, M-L., Mercier, A., Ligozat, F. and Perrot, G. (2005). An 

attempt to model the teacher's action in the mathematics classroom. Educational 

Studies in Mathematics, 59(1/3), 153-181. 

Sierpinska, A. (1985). Obstacles epistemologiques relatives a la notion de limite. 

Recherche en Didactique des Mathematiques, 6(1), 5-68. 

Sierpinska, A. (1987). Humanities students and epistemological obstacles related to 

limits. Educational Studies in Mathematics, 18, 371-397. 

Sierpinska, A. (1990). Some remarks on understanding mathematics. For the learning of 

mathematics, 10(3), 24-36. 

Sierpinska, A. (1994). Understanding in Mathematics. Studies in Mathematics Education 

Series. The Falmer Press. 



.244 

Sierpinska, A. (2000). 'On some aspects of students' thinking in linear algebra'. In J.-L. 

Dorier (Ed.), On the Teaching of Linear Algebra (pp. 209-246). Dortrecht: 

Kluwer Academic Publishers. 

Sierpinska, A., Bobos, G. and Knipping, Ch. (2008). Source of students' frustration in 

pre-university level, prerequisite mathematics courses. Instructional Science, 36, 

289-320. 

Sfard, A. (1991). On the Dual Nature of Mathematical Conceptions: Reflections on 

Processes and Objects as Different Sides of the Same Coin. Educational Studies 

in Mathematics, 22(1), 1-36. 

Tall, D. (1991). The Psychology of Advanced Mathematical Thinking. In D. Tall (Ed.), 

Advanced Mathematical Thinking (pp. 3-21). Dordrecht, The Netherlands: 

Kluwer Academic. 

Tall, D. (1992). The Transition to Advanced Mathematical Thinking: Functions, Limits, 

Infinity and Proof. In D. A. Grouws (Ed.), Handbook of Research on Matheamtics 

Teaching and Learning (pp. 495-511). MacMillan, New York. 

Tall, D. (1996). Functions and Calculus. In A.J. Bishop, K. Clements, Ch. Keitel, J. 

Kilpatrick and C. Laborde (Eds.) International Handbook of Mathematics 

Education (pp. 289-325). Kluwer Academic Publishers. 

Tall, D. (2006). A theory of mathematical growth through embodiment, symbolism and 

proof. Annales de Didactique et des Sciences Cognitives, 11, 195-215. 

Tall, D. and Schwarzenberger, L. (1978). Conflicts in the Learning of Real Numbers and 

Limits. Mathematics Teaching, 82, 44-49. 

Tall, D. and Vinner, S. (1981). Concept image and concept definition in Mathematics 

with particular reference to limits and continuity. Educational Studies in 

Mathematics,12(2), 151-169. 



.245 

Varela, F.J., Thompson, E. and Rosch, E. (1993). The Embodied Mind: Cognitive Science 

and Human Experience. Cambridge, MA: MIT Press. 

Vygotsky, L.S. (1987). Thinking and Speech. In R.W. Rieber & A.S. Carton (Eds.), The 

Collected Works of L.S. Vygotsky. Volume 1. Problems of General Psychology. 

New York & London: Plenum Press. 

Wood, T., Cobb, P. and Yackel, E. (1995). Reflections on learning and teaching 

mathematics in elementary school. In L. Steffe and J. Gale (Eds.), Constructivism 

in education, pp. 401-422. Hillsdale, NJ, USA: Lawrence Erlbaum. 



.246 

APPENDIX A 

This appendix contains the transcription of the 28 interviews with students. Students are 

identified as in the body of the thesis: SI to S28. The tables Al to A28 appearing here are 

the same as the tables 5.1a to 5.28a appearing in Chapter 5. The notation [...] is used to 

represent a long silence. 

STUDENT SI 

I: The first thing I ' l l ask you to do is to look at these twenty cards. I want you to classify 

them into groups, according to any rule that makes sense to you. 

S: Ok. [...] 

S: Something like that... there has to be three groups? 

I: No, no, as many as you want. 

S: Something like that. 

Class Members of class (labels 
refer to Table 3.3). 

Phrases used by the student in response to the question "'what 
was the rule of your choice?". 

1 2, 5, 9, 12, 17 Difference of squares. 
2 6 , 7 Constants. 
3 19, 20 With trigs. That confuses me. 
4 3, 10,13, 14, 18 With square roots. 
5 1,4, 8, 11, 15, 16 Polynomials. 

Figure A l (Copy of Table 5.1a). Student S i ' s classification. 

I: Can you explain me what was the rule of your choice? 

S: Ok, here are all the... how do you call them? Difference of squares? I put those 

together [class 1]. These are... 
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I: Constants? 

S: Yeah [class 2], These are with trigs [class 3]. 

I: Ok. 

S: Because that confuses me so I put them together. These are all ones with roots on them 

[class 4], 1 don't know why I put them together. And these are all the polynomials [class 

5]. You just like... 

I: Let say you are working or studying with a friend and you have to read this [card 8] 

aloud, how do you read that? 

S: How would I read that? 

I: Yes. 

S: The limit as x approaches one of four x cube plus seven x minus nine? 

I: Ok. So now I am going to ask you to solve some limits. And as I told you, I am 

interested in the process of solving, so as much as you can, please think aloud. 

S: Ok. 

I: So 1 would know what comes to your mind first... 

S: Ok. The first thing I do when I see limits is to put in the number it goes to to see what 

it gives. So in this case [2.1] 1 do zero over two. right? [...] Then [...] what 1 would do is 

factor. Now I don't remember if I factor a negative one, can I cross them out? [She meant 

whether factoring a negative one from the numerator will leave a factor x + 1 as the one 
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appearing in the denominator]. [...] Can 1 do that? [...] I don't remember any of this. I 

don't know why. 

I: Ok. Let's move on. We'll go back and forth between problems. So now I give you 

another one [2.2]. 

S: Ok. [...] So this is what I'd do in this case. So basically I just factored this out and 

crossed it out. [She factored the denominator, and cancelled the common factors on 

numerator and denominator. She stopped there], 

I: And your final answer would be? [She wrote the equivalent expression without the 

common factors and substituted in her mind to obtain negative one, she wrote negative 

one as a final answer], 

S: Ok? 

I: Ok. What about this? [2.3]. [...] 

I: What happens with that one? [She wrote 21/0], Did you try anything in your mind? 

S: No, nothing works up. 

I: Why do you say that nothing works up? 

S: Ok, well. Because if I put it in I get nothing, well I get twenty one over zero. 

I: Ok. 
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S: Then [...] if I factor it out it doesn't give me anything different, like you can't cross 

anything out. But then... 1 am trying to remember, back to Cal I, all the different steps 

you could do. 

I: Oh, so you are trying to remember the techniques? The methods? 

S: Yeah. The methods. There was always first you try to factor and cross out anything 

that you can. Then... [...] 

I: Ok. 

S: I am sorry [because she couldn't get an answer]. 

1: It's ok; actually you don't need to get the right answer to help me on my research. 

S: Ok, this one [2.4] [...] 

S: I don't like the cube, I'll take that out. [She factored an x from the numerator, though 

she left the constant as 9, instead of as 9/x], Oh, I don't need to do that [she meant the 

factoring she just did], 

I: Why not? 

S: Ok, hold on. I'm just thinking, if I put in one... it gives an answer, right? Because 

then... [She wrote 14/3]. 

I: Ok. I'm just curious... say in this one [2.2], did you try replacing the x by two in the 

beginning or you just factored first? 
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S: No, I just factored first because I knew this was one of the factors of that [ofx2 - 9 in 

the denominator], 

I: But do you think it was necessary? 

S: No, I guess... [...] No, it wasn't necessary. But when I saw this... it just made more 

sense to me that way. 

I: And for this one [2.1], the first thing you did was to replace by one, but when you saw 

that you got zero over two... 

S: Yeah, the next step was to factor because they look very similar. 

I: Ok, but why do you think you have to go into another step? 

S: You mean why this wouldn't be the final answer? 

I: Yes. 

S: Eeeh... 

I: You think this zero over two is like this one [pointing at the 21/0 she obtained in 2.3]. 

S: Yeah. 

I: Ok. I have one more for you. If you can find these three limits... [...] 

I: Do you remember what the graphs of e to the x and cosine x look like? 

S: Cos x yeah, because... isn't it like this. 

I: Yes. And '<? to the x? 
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S: Something like this. [She correctly sketched y = ex and y = cos(x).] 

I: Can you figure out from the graphs what the limit might be? 

S: From the graphs? [...] Would it... [...] I am not sure. 

I: If you were, let say, on an exam, and you need to figure out those limits and you have 

no clue what to do, would you think of using the calculator to try to figure them out? 

S: Probably not. 

I: Ok, and how about the last one? 

S: The last one? [...] Looks like a problem 1 saw... [...] 1 think, probably, 1 would try to 

use L'Hopital's rule. Which is the derivative of each one, right? [...] [She wasn't sure 

about the derivatives.] 

I: And once you find the derivatives what would you do? 

S: Then put in the values. That's what 1 would do with this one. 

S T U D E N T S 2 

I: Ok, so the first thing is, these are twenty problems, I ask you to classify them according 

to any rule that makes sense to you. 

S: As for deriving them? I mean, integrating them? 

I: Any rule that makes sense to you. 

S: Ok. [...] 
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Class Members of class (labels Phrases used by the student in response to the question "what 
refer to Table 3.3). was the rule of your choice?". 

1 6 , 7 Limit of a constant. You can do it right away. 
2 3, 10, 18 Multiply top and bottom by the square root. 
3 1,2, 9, 15, 16, 17 Fractions. 
4 4, 5, 11, 12 Fractions to infinity. 
5 13. 14 These are square roots but to infinity. 
6 8 
7 19, 20 

Figure A2 (Copy of Table 5.2a). Student S2 :s classification. 

S: This one is the limit of a constant so that you can do it right away [class 1]... Are there 

the ones you have to factor... no... You want them according to how to solve them? 

I: Not necessarily, just according to a rule of your choice. 

S: There's probably another way to get this... 

I: So you have these groups. 

S: These are the ones you multiply top and bottom by the square root [class 2], 

I: And these ones [class 3]? 

S: These... I think it would be sort of fractions. 

I: Why these are separate from these ones? 

S: I had a reason... 1 don't know. Maybe this was meant to be a whole group. 

1: And these are separate because...? 

S: Those are to infinity [class 4], 

I: And these [class 5]? 
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S: Those are the same idea as the square root [class 2], but to infinity [class 5], those were 

to a number [class 2], 

I: How would you read this [expression 8] aloud if someone asked you? 

S: Limit of four times x cube plus seven x minus nine. 

I: Ok. 

S: Limit x to the one of all that. 

I: Ok. Next, I ask you to solve some limits, and as much as you can, I ask you to talk 

aloud [2.1]. 

S: Ok, this one is limit of x to the one and the function is x minus one over x square plus 

x. Generally, if I saw this on a test, what I would do first would be to put in a number 

very close to one, a little bit bigger and a little bit smaller than one and get a number 

probably extremely close... Is it ok if 1 use my calculator. 

I: Yes. 

S: So something very close to one like zero point nine nine nine divided by the same 

number squared plus zero point nine nine nine. I get close to zero. So when I put 

something really close on the left side I get zero, something very close to zero. And now I 

will check if it is continuous. When I put something really close to the right side, so one 

point zero zero one minus one, divided by one point zero zero one squared plus one point 

zero zero one. So from the right I also get something very close to zero. So now I know 

it's continuous. At this point 1 think it's probably zero. If 1 wanted to find the limit by 

other way, 1 think 1 could use L'Hopital's rule here? Which gives one over two x plus 
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one, does that work? Oh, no, never mind, it's not infinity over infinity. What I think it 

might work is if I separate them into two different parts. If I have A- over x square plus x 

minus one overx square plusx. Which follows the rules of how you are allow... how you 

are allow to solve for limits. Now I can easily put in the x values, so one over two minus 

one over two, so in this case the limit does equal to zero. So I can do it from left and right 

or just fooling around until you get something where you are not dividing by zero or 

anything. 

I: Ok, and why do you think you have to go through this step? 

S: Well, I guess I could just put in the one here, but I am use to have something divided 

by zero. 

I: What about this one [2.2]? 

S: For this one... now I am gonna try being very smart, I am gonna make sure it doesn't 

just go to an asymptote or anything. Here I don't think you need... you can just put the 

two I think. But you have to check right and left I think. So I put numbers really close, I'd 

put two point zero zero one... so when 1 approach from the right 1 get something very 

close to one. Now I do one point nine nine nine, once again I get something very close to 

one. So I know it should be continuous because I checked on both sides of the two, as far 

as I know I could do a final proof and put in the two because I just_ checked it is 

continuous. So I have two plus three... five over negative five so in this case I get 

negative one. Ok, so I think originally I got negative one. 

S: [2.3] Oh, here you do have an asymptote, from the bottom part you get zero, and 

dividing by zero is a very bad thing. So in this case... well. 1 think right off the back it's 



going to give infinity because as you get closer and closer the numbers become larger and 

larger. 1 check by doing the same as for the last two problems. I'd take four point nine 

nine... I get two thousand ninety nine... which is a huge number, so it's approaching 

negative infinity on this side. On the other side 1 put five point zero zero one... In this 

case I get a positive number. [He made a sketch.] But technically you can't have a 

positive infinity and a negative infinity at the same time, so I'd put this one doesn't exist. 

S: [2.4] I don't think there's any way to factor this which would be very handy. So I have 

to go to my method... one point zero zero one... Well I should also check for asymptotes 

before... but the bottom is not zero. Ok, I am approaching from the right and I get 

something like four point sixes. And zero point zero zero nine... from this side I get 

something similar, both sides something like four point five. So it seems it would be 

continuous. Roughly four point five. Now I check that the middle value is the same, just 

to check that the point doesn't jump away. So one cube plus four times one square... I 

this case I'm getting four point six to the infinity. 

I: If you had.... If this was a test would you write something else? 

S: Yes, I would write a lot more. 

I: Like what, what would you write? 

S: Generally, something like checking for a vertical asymptote, the denominator at one is 

not zero. Then I do checking... approaching from the right so in this direction, we can 

take a value close to one but larger and I just pick one point zero zero one, the limit as x 

approaches one from the right... equal four point six. And then 1 do the same for the 

other side. 
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I: And you'd do this only for this value or you'd try with others? 

S: I probably only do it with this value, but I know you are suppose to try others before 

jumping into a conclusion. And then I would check the middle value and if it works I 

would say that's the limit. 

1: What would you think... of a problem you get different from the right than from the 

left? 

S: Then 1 don't think the limit exists. We did this at the beginning in cal one. 1 don't 

remember a hundred percent... broken discontinuity? 

S: Ok, 1 am not especially good at this but 1 think that as this goes to infinity you get... 

Ah, well for this one... right when I look at the cos, we are talking about it in radians, it 

doesn't setting upon anything because it's oscillating. So 1 don't think there would be a 

real limits... This is in radians right? As for e to the x... this is like two point seven, 

right? So the limit would be infinity but the cos of x doesn't mean anything because it's 

going up and down. So I don't think this would have a limit. It would just keep going up 

and down, so 1 don't think this exist. This one [3.2] I think it would be the same 

scenario... although... no, e to the minus x is getting smaller and smaller, if you have e to 

the minus a thousand [he checked in the calculator], so yes, it's approaching zero. So no 

matter what the cos is, as x approaches negative infinity, e to the x is getting closer to 

zero, so regardless of what cos is, e to the x would make it zero. So this is one of the 

functions that look like this [he got a very good sketch of the whole function]. Ok. Sine 

of zero... 1 think that's zero [he checked in the calculator] yes. Over zero, ok. so that's 

infinite. On either side... [he checked in the calculator]. Ok, even if at the point, when x 
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equals to zero it doesn't exist, on either side is equal to one. I just make sure it's equal to 

one [he checked again]. So even if it doesn't exist, sine of x is equal to one... no, yes, it's 

ok. [He did the calculation again in the calculator.] Ok, I'm just going to go with what the 

calculator says and say the limit is one, because that seems to be the case, even if it 

doesn't exist when x equals zero. 

I: What is it that you were doing? 

S: I kept trying numbers closer to zero. 

1:1 propose you one more [I wrote lim sin — ] 
v -

S: Sine of one over x.. . ok, that's different. Sine of infinity, at the point sine of infinity 

doesn't exist because it's up and down, up and down. Doesn't really exist. And you can't 

divide by zero, so there's nothing at this point. On either side of it... well, either is 

positive or negative, you are going to have sine of a number really really big so the value 

for one over x... the sine of infinity in either side. Hold on. Let me think. 1 could try my 

handy method where you try a number very close to zero. I'm thinking this would not 

exist. 

I: Why would you say that? 

S: Because I'm thinking the infinite value would be... as x approaches zero the infinite 

value approaches infinity, and sine of infinite doesn't really exist. When you go to either 

side you are gonna have a big number and a really big negative number. But I guess it 

would exist, because sine it doesn't matter... Oh, no, 1 don't think it exists. Because sine 

of a negative number if I'm doing it in radians and sine of a positive number should be 
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different, so it would kind of hit like this on one side and down on the other side. Like 

this, I think. I have a graphing calculator, but 1 can't use it. 

I: What would you do with the graphing calculator? 

S: I'd just graph the function. 

I: Ok, let's do that. 

S: In general you are not allow to. It helps to picture it. Sine of one over x... I have to 

change the... I have to zoom in it. Oh, there is a limit, it's going to be zero. Because it 

exist on either side and the value is approaching zero on either side, so it does exist. Why 

does that happen? Because as it goes to zero you are going closer and closer to sine of 

infinity that doesn't exist. I am not quite sure why the limit would be zero. 

I: Can you zoom more? 

S: I can find the limit, no problem, but as far as knowing why... I am trying to understand 

why it converges. It's hard to work with sine because sine is a number that doesn't have 

like asymptotes... which would make it easy because I could say it goes to this number. 

STUDENT S3 

I: The first thing I ask you to do is, these are twenty cards, I ask you to classify them 

according to any rule that makes sense to you. 

S: What do you mean by making sense? 

I: I give you all these and you put them... 
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S: Like in the same family? 

I: Put them in groups... 

S: Like if I know how to solve them? 

I: Just into groups according to... 

S: Ok, I group them. 

I: ... what's more relevant for you or... 

S: Ok. [...] Ok. 

Class Members of class (labels 
refer to Table 3.3). 

Phrases used by the student in response to the question "what 
was the rule of your choice?". 

1 4, 5, 11, 12, 13, These ones 1 organized them for the same technique to solve 
the problem. The infinity thing. Taking the highest power and 
that would help me to find the limit. 

2 1,2, 8, 9, 10, 15, 16, 17, 18 This was basically how to solve the problem, like is gonna be 
zero over zero type and 1 have to separate them and then find a 
way of doing it. 

3 6 , 7 This one is basically like whatever you are going the limit is 
going to be the same, it's constants. 

4 3, 19,20 Limit going to zero. With the sine and the trig thing. 1 put the 
zeros together. 

5 14 This one I don't know. 

Figure A3 (Copy of Table 5.3a). Student S 3's classification. 

I: Can you explain me what was your rule? 

S: These ones [class 1] I organize them like for the same technique to solve the problem. 

And... 

I: What would be that technique? 
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S: Would be like the infinity thing, like taking the highest power and that would help me 

finding the limit. And this [class 2] was basically how to solve the problem, like is gonna 

be zero over zero type and I have to separate them and then I'd find a way of doing it. 

I: And the others? 

S: This one [class 3] is basically like whatever you are going the limit is going to be the 

same, it's constant. And this is the limit going to zero [class 4], with the sine and the trig 

thing [class 6] and this one [class 5] I don't know... but I put the zeros together. 

I: And these are separate? 

S: This is the same idea as this, solving. 

I: And why did you put this and this [expressions 3 and 14] in different groups? 

S: I don't know, basically I looked at limit goes to zero, that's what I see. 

I: Now I ask you to solve some limits. 

S: Ok. [...] 

I: Can I ask you, if possible, would you think aloud? So I can keep track of what you are 

thinking. 

S: Oh, sure. 

I: What was that you were doing? 

S: [2.1] The first thing, I checked if is the zero over zero type, because if it is zero over 

zero I would have to factor and cancel out and then find the limit. But if I remember zero 
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over a number is just zero. So the top is going to zero over two, zero divided by two is 

going to be zero. 

I: But why did you factor here? 

S: Because I try the zero over zero thing not realizing... 

I: When did you realize the denominator was not zero? 

S: I was substituting one on the bottom. 

I: Did you do the substitution here or here [the initial form or the factored form]? 

S: No, here [the factored form]. 

I: Ok, what about this [2.2]? 

S: This one you can substitute right away and you'll see the limit. Like two plus three 

minus one divided by four minus nine... minus five two. 

S: [2.3] Ok. So the top you have a number over zero, so you have to factorize them so I 

can see if any can cancel out and then find the limit. Because at the bottom you have 

zero... so I'm basically gonna solve it. [...] Now I am stuck. [...] Isn't the limit going to 

infinity? 

1: Why do you think it's infinity? 

S: Now I'm guessing. 

I: Are you guessing from calculation or...? 
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S: I am trying to remember from cal one, but I am thinking if this over this... could it be 

possible that the limit doesn't exist? 

I: And when you say that you are trying to remember, are you trying to remember a rule 

or a calculation? 

S: The rule that we learned. And I'm just thinking about the rules... 

I: Let me give you another one [2.4]. 

S: I substitute... 

I: Ok, and going back to this one [2.3] if you wanted... would it help you in any way to 

use the calculator to find the limit? 

S: With the calculator? No. Because how could... because if I substitute x by five... I have 

twenty one over zero... If I remember, this means going to infinity. 

I: Ok. And if someone asks you to read this [2.3] aloud, what would you say? 

S: Limit of... limit of x going to... limit of the function x square minus four divided by... 

no, wait. It's the limit of x square minus four divided over x square minus twenty five 

going to... as limit going to five. 

I: And when you read this, what do you have in mind? 

S: When reading this I say for this function I am looking... x going to five would be my 

limit at that point. 
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I: And for example, for this one [2.1], when you say that this equals zero... what do you 

understand by that? 

S: Equal zero. Is as the limit, when as this function going to one is going to be closer and 

closer to zero, it's not gonna be zero, but it's gonna be closer to zero. That's how making 

it limiting it. 

1: Ok, let's finish with this. [...] 

I: What did you try with the calculator? 

S: Oh, I was just checking what cos of zero so to draw. [...] 

S: This is always infinity [for the exponential function in 3.1], [...] 

I: What is it that you are thinking? 

S: I am thinking about the limit of e to the x and cos of x as x goes to infinity is positive 

infinity, or maybe I would figure the graph first... How do we solve this problem? 

I: If you have to look at them separately? 

S: This is just infinity, and cos is just plus or minus one. 

I: And from that can you figure out the limit of the multiplication? 

S: But the only point at where they are meeting is at one. Can I say the limit is one? If I 

only look at this... 

I: But what about this [the expression _x —> oo in 3.1]? 

S: I would say the limit doesn't exist. 
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I: What about this one [3.2]? 

S: This one, as the limit goes to minus infinity this is going to zero but not zero and the 

cos is gonna be plus or minus one, so infinity... no. 

I: Do you know any way in which you can use the calculator to help you find these 

limits? 

S: No. Maybe with a graphing calculator. 

I: How would you use a graphing calculator. 

S: By graphing. 

I: What about this one [3.3]? 

S: Zero over zero. I would use the graph first... [She did a table of values to get the 

graph.] Sine pi over two divided pi over two. 

I: Why did you choose pi over two. 

S: Because sine of pi over two is one. So as it goes to zero... Now I am remembering the 

squeeze theorem... 

I: How would you use the squeeze theorem? [...] 

I: Could you use the squeeze theorem for this one [3.2]? [...] 

S: 1 don't think so... How could 1 use the squeeze theorem there? 

I: Why do you think you can use it here but not here [3.3 but not 3.2]? 
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S: Because of the sine... it was one of the examples we did, but it was with sine of x, but 

now I have sine of x divided by x. [...] 

I: If you wanted to do the same here as in here... 

S: This one would be zero, and this, what I'm thinking... doesn't exist. 

I: Ok. 

STUDENT S4 

I: The first thing I ask you to do is to classify these cards into groups, as many as you 

need, according to any rule that makes sense to you. 

S: In groups you said, right? 

I: Yes. [...] 

S: That's it, three groups. 

Class Members of class (labels 
refer to Table 3.3). 

Phrases used by the student in response to the question "what 
was the rule of your choice?"". 

1 6, 7, 8, 9, 10 These ones 1 just have to plug in the numbers. 
2 4, 5, 11, 12, 13, 14, These ones are all limits where x goes to infinity. 
3 1 , 2 , 3 , 15, 16, 17, 18, 19, 20 These ones give zero at the bottom. 

Figure A4 (Copy of Table 5.4a ). Student S4'sclassification. 

I: Can you explain me... 

S: These ones I just looked [class 1]... I just have to plug in the numbers. These ones 

[class 2] are all limits where x goes to infinity. Although in the first group there are limits 

where something goes to infinity, the variable is not in the function [card 6], These ones 
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are all as x goes to infinity, and these ones [class 3] are all that give me zero at the 

bottom. 

I: When you were doing this, was there a point when you consider a different 

arrangement? 

S: Not really. I was just confuse, I just wanted to make sure some of them would give me 

zero. 

I: So why this is in this group? 

S: Because is sine of one over zero, whenever there was something over zero I put it here 

[class 3], 

I: Ok. Let's say, this one, if you were studying with a friend and you have to read him 

this [card 8] on the phone, what would you say? 

S: Limit as x goes to one of four x cube plus seven x minus nine. 

I: Now I ask you to solve some limits, this is the first one [2.1], If you can think aloud, so 

I can keep track of the order in which you are thinking... 

S: Ok, this is, I just write zero. I plugged in the one, it gave me zero at the top so I don't 

care about the bottom. 

I: What about this one [2.2]? 

S: This one [...] I just plugged in the two and... 

I: Ok [2.3], 
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S: These ones I don't remember how to do them. 

I: When you say these ones, what do you mean? 

S: The ones you get zero at the bottom, I don't remember how to do them. Maybe you 

have to cancel something, but I can't remember. [...]! can't remember, sorry. 

I: What about this one [2.4]? 

S: Ok. I just plug in the number and it gives me thirteen over three. 

I: When you write, for example here, when you write that this limit equals negative one, 

what do you have in mind? Does it have any meaning for you? 

S: Well, ok... well... I just, yes, it's like when x approaches two, what the function 

becomes. Here the function becomes minus one. And it doesn't approach it, it actually 

becomes minus one. 

I: So when you say it becomes minus one you mean it is minus one. 

S: It is minus one, it is not close to it, it is minus one. 

I: Ok, let's move to the next one. [...] 

S: Cosine of that... [...] I would say for the first one [3.1] infinity. 

I: Why would you say infinity? 

S: e to the infinity would be something like infinity... and here is the problem: 1 don't 

know the definition of cosine. 1 don't know what cosine of something very big would 
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be... but don't matter how small the number here would be... multiply by something that 

is infinity would still give infinity. 

I: Do you remember the graph of cosine? 

S: Yes. Something... is that sine? 

I: Well, they are shifted so they are very similar. 

S: This is periodic so at infinity there's no real value because it continues doing that. [...] 

I: What about this one [3.2]? 

S: I would say... We don't have a value for that then I don't think we would have a value 

for this. My guess would be... my guess would be that they don't exist. 

I: Both of them? 

S: Yes, I am not sure what the cosine function does in the negative... but I am pretty sure 

is similar to what it does that way. So it wouldn't have a specific value as it approaches 

infinity or negative infinity so they would be pretty much the same. 

I: What about the exponential function? 

S: Ok. [...] Well, I guess minus infinity. I just don't see the difference between minus 

infinity from positive infinity. 

I: If you could use your calculator to check if your guesses are right, could you do it? 

Could you use it to find what these limits are? 

S: I would certainly plug in some numbers? 
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I: Do you have one? 

S: Yes. Ok. So, e to the something... 

I: You have to change it to radians. 

S: Oh, ok. Something very very big would give me... oh, come on, a small value [he got 

an error]... Ok. 

I: Do you know why you get the math error? 

S: Well, 1 guess it doesn't have space for the number. 

I: Let's try with a hundred. 

S: Ok, e to the hundred... is something really big, so it is infinity. 

I: You are checking with that... so you are sure it's infinity. Could you use the calculator 

to check the whole thing? 

S: Well, cosine of something very big... ok, cosine of something very big becomes 

negative. Cosine... ok. If it always gives a negative number then I would guess that it 

gives negative infinity. If 1 were in a test I would do that. But then, I don't know when it 

goes negative and when it goes positive... [He tried more numbers.] Ok, no. Why it does 

that? 

I: You got a positive number now? 

S: Yes. This doesn't have a specific value when it goes to infinity... 

I: And this one, can you check [3.2]? 



.270 

S: It becomes a really really tiny number... What? Ok, as this goes to... I get very 

confused with minus infinity. If I do e to the minus a hundred... 

I: Do you remember the graph of e to the xl 

S: No. 

I: When you did e to the minus a hundred you got? 

S: A very very tiny number. So this [eA] goes to zero? [...] And the cosine I wouldn't 

know. Cosine just goes up and down. 

I: So what about the multiplication? 

S: Well, if this approaches zero, then it [3.2] would approach zero. And this [3.1] infinity. 

I: What about this one [3.3]? 

S: Sine of zero is... zero [checking in the calculator]. [...] I am just guessing... [he wrote 

infinity], 

I: Why would you guess infinity? 

S: Oh, wait, sine of zero is zero. [...] I don't know. 

I: Do you think in this case you can try using the calculator to guess what that is? 

S: No. 

I: Why not? 
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S: Because this is the kind of thing... 1 don't know how to ask the calculator that question. 

If 1 would plug zero it would give me error. 1 wouldn't know how to use my calculator 

for that. 1 don't think it would give me any information. 

STUDENT S5 

I: I ask you to do different things, the first one is... these are twenty cards, I ask you to 

classify them according to any rule that makes sense to you. 

S: Like difficulty? 

I: Anything that makes sense to you. 

S: Like trying to relate them. [...] 

S: That's it. 

Class Members of class (labels 
refer to Table 3.3). 

Phrases used by the student in response to the question ""what was 
the rule of vour choice?"'. 

1 2, 4, 5, 9, 12, 15, 16, 17 Quadratics on top or whatever I saw, like this is a cube but since 
it 's to infinity... The ones that are very mechanical. 

2 1, 11 These are the same idea [as class 1] but require more work. 
3 19, 20 Trig ones. 
4 6 , 7 The answer is already given. 
5 3, 10, 13, 14, 18 With the conjugate that you have to put on the bottom. 
6 8 

Figure A5 (Copy of Table 5.5a ). Student S5's classification. 

I: Can you explain me the rule you use. 

S: These ones are the quadratics on top or whatever 1 saw [class 1], like this is a cube but 

since it's to infinity... like 1 didn't do it... but these are the ones that are very mechanical. 

These [class 2], sort of the same idea but maybe they require more work, a couple more 
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xs to work with. These are the trig ones [class 3]. These [class 4] the answer is already 

given. And these ones [class 5] are with the conjugate that you have to put on the bottom. 

I: And if you have to read this [card 8] aloud, say you are talking to someone on the 

telephone and you have to read this, what would you say? 

S: What I am suppose to say or what would I say? I'd say four x three plus seven x minus 

nine, but I should say four x cube plus seven x minus nine. 

I: But... 

S: Maybe x arrow one. 

I: If you read the whole thing what would you say? 

S: That would be limit of four x cube plus seven x minus nine x to one. 

I: Next I ask you to find some limits. 

S: It's so long since I did limits... [...] 

S: Ok, this is relatively easy [2.1] ... this is zero over two so I have to, I don't remember... 

so the limit is zero? Yes, right, is the zero over zero that I have to keep working. 

I: Ok, what about this one [2.2]? [.,.] 

S: Minus one. 

I: What about this one [2.3]? 

[...] [He factored numerator and denominator, then left that calculation and factored out 

an x from numerator and denominator and cancelled them.] 
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I: No, leave it, please [my intervention as he wanted to erase the first factoring], 

S: Ok. This would be something over zero. Four point two over zero. 

I: Ok, and the answer for the limit would be? 

S: [Inaudible. He wrote 4,2/0 = 0.] 

I: Ok, what about this one [2.4]? [...] 

S: One plus... fourteen over three. Just plug in the one. 

I: Why in here [2.4] you just plug in right away but in here [2.3, you factored]... 

S: Because in here [2.3] I knew that five square minus twenty five would give me zero so 

I tried to do some more work to see if I could get out of it. But here [2.4] I thought that it 

would work, putting in the one. 

I: But then in here [2.3] before doing this [factoring out an x from numerator and 

denominator] you did try to check [if something would cancel by factoring the difference 

of squares]... 

S: Well, I guess kind of saw it automatically [the difference of squares]. 

I: And in here [2.2] you saw that two? 

S: No, actually in here [2.2] I didn't see it right away, I just solve the x plus three and I 

saw the opportunity that they will cancel out. 

I: But do you think in this case is necessary to do this operation? 

S: Eh... no. Probably not... I made my life harder. 
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I: Do you think there could be a problem in which doing this way [factoring, cancelling 

and then substituting] or just substituting would give you a different answer? 

S: You mean in the case when substituting would give you zero? 

I: Well, just in general. 

S: Well, I guess, if at the bottom you get zero and you keep doing it you get a completely 

different answer which is like the right answer, so yes, I guess. 

I: And in this one [2.1] do you remember what you did? 

S: I remember seeing one minus one and here was one plus one and I tried doing 

something different but 1 still get zero over a number so it's zero. 

I: And let's say in this problem... for example [2.2], when you see that this equals 

negative one, what does it mean to you? 

S: Well, when I was kind of in the cal one mode type of thing I would see that minus one 

is like a barrier, like the limit is a barrier. But now, that I haven't touch it for a couple of 

months, 1 see it as a very mechanical thing, find the answer, cancel out, plug in... 1 don't 

see it visually anymore because I am not in the cal one mode. 

I: Ok, one more problem. 

S: Oh, shit, I hate these. I don't remember. Sine of zero is zero, then, oh... I don't 

remember how to do these at all. 

I: Could you use your calculator to try to somehow guess the answers? 
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S: Well for this [3.3] I just would plug in, sine of zero, zero over zero, and whenever you 

get zero over zero I know something is wrong. For these [3.1 and 3.2], if I had zero it 

would have been more encouraging, but I have infinity... 

I: But you think there's any way in which you could use the calculator to try to guess 

those limits? 

S: 1 wouldn't do that as a reflex. Maybe 1 just try a few things out of desperation. 

Sometimes when 1 don't know what to do I take out my calculator... so maybe I sort, 

maybe you don't see the logic in this, but I start switching things around, I put in three 

and that makes sense... 

I: Do you remember the graph of e to the x, the graph of cosine? 

S: I remember sine of one over x, that was crazy... Oh, cosine, yes. And sine was kind of 

the opposite, well, not the opposite but... Like one starts here and one starts here. And e 

to the x 1 just don't remember. 

I: And would the calculator help you to figure out what the graph is? 

S: Well, I don't really never use a graphic calculator. 

I: No, I mean a regular calculator. 

S: A normal one? I guess, what I would do is put e to the zero, e to the one, and so on. 

And I get a general idea and try to derive a general idea. 

I: Do you think you can do one of those for me? 
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S: [He tried some numbers on his calculator.] When x equals zero you have a one, when x 

is two... Ok, I try a negative number I guess, so it gets smaller. From this I figure out that 

it looks like this, it never touches the x axis and keeps on getting... yes smaller. 

I: And looking at this graph you did, if you had to figure out the limit as x goes to infinity 

[I wrote lime* ] and as x goes to negative infinity [I wrote lim e" ], just by looking at the 
X->/ ,V-> -X 

graph. 

S: I say the limit approaches towards this side... 

I: So what the answer would be? 

S: I choose this one [ lim ex ]. 
. v - > - X 

I: Sorry? What the answer would be? 

S: 1 say it's closer and closer to... zero, but I am not sure. 

I: And for this one [ lime* ] what would you say? 
V , f 

S: I would say also zero... No, no, it would be different. Y would be infinity, so / o f x 

would be infinity. 

I: And using this do you think you can figure out the answer for these [3.1 and 3.2]? 

S: Well, now that I do have the graph, I would try to plug in numbers. Maybe I can see 

something from that... yeah. [He plugged numbers in the calculator.] e to the... it does get 

bigger... I didn't try any negative numbers. So it gets smaller towards here, and it 

gradually gets bigger. So as x approaches negative infinity it would be zero [3.2]. 
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I: Using a similar idea can you try this one [3.3]? 

S: Here 1 have zero over zero so like there's nothing, the equation is... sort of does not 

exist. Except for that I'd put infinity I guess. 

I: And could you use the calculator in some way? 

S: No, because it's just plug in the zero... it's more technical I guess... 

STUDENT S6 

I: This are twenty cards, I ask you to classify them according to any rule that makes sense 

to you. 

S: Ok. [...] Any way is right, right? [...] 

Class Members of class (labels 
refer to Table3.3). 

Phrases used by the student in response to the question "what 
was the rule of \ our choice?". 

1 4 , 6 , 7 , 8 , 1 4 , 1 9 These ones 1 spot them very quickly. 
2 5, 11, 12, 13 ,20 These ones are infinity or infinity over infinity. 
3 1, 2 ,3 , 9, 10, 15, 16, 17, 18 They were going to zero or it was a zero over zero form . 

Figure A6 (Copy of Tab l e 5.6a). Student S6's classification. 

I: What was your rule? 

S: These ones I spot them very quickly [class 1], these ones are infinity or infinity over 

infinity [class 2], and these ones I put them if I knew they were going to zero or if it was 

a zero over zero form [class 3], 

I: So this group was infinity over infinity or infinity... this for example [he had placed 

card 1 in class 2]? 

S: No, right, this one would be here [class 3], 
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I: Why there? 

S: I would have to calculate twenty seven minus nine... over... yes it's zero over zero. 

I: And this one [he had placed card 19 in class 3]? 

S: I don't remember how to treat this one, ok, it was one the answer right? So it would be 

here, with the ones I can do right away [class 1], 

I: But in your classification you were thinking about the answer? 

S: Yes, I was thinking how to take it apart to see if I could go to the answer quickly or if 

it was an indeterminate form. 

I: And this one [card 20]? 

S: This one I saw the one over x and I knew it was infinity right away. 

I: Ok. Now I ask you to solve some limits [2.1]. And if you can think aloud. 

S: Ok. I start, 1 do one minus one, I see it's zero over three and... 1 remember that it has to 

be going to infinity for me to take the leading coefficients. So I factor the bottom I guess 

to try to cancel the x minus one... Oh, how do you treat this? Is zero over three, should be 

treated as an indeterminate? 

I: You can use your calculator if that helps you in any way. 

S: I never use calculators. It might be useful but I feel it slows me down. Ok, so it's zero 

over three... [he decided to use the calculator and did some calculations]. 

I: What are the calculations you are doing? 
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S: I put zero point five and I will go towards one. [...] Ok, I think is going towards zero... 

but it's frustrating that I can't prove it, 1 know there's a way. 

I: Ok, I'll give you another [2.2]. 

S: Ok, this one, this one I think I'm gonna factor the bottom, that's gonna to work out. 

[...] I think that's correct. 

I: What about this one [2.3]? 

S: My first reflex was, is always, I put the five here so I saw it was over zero. [...] Again I 

factor out but... [...] I can't remember how to treat it. [...] 

I: If you have to read this [2.3] aloud, what would you say? 

S: You mean like the numbers? 

I: The whole expression. 

S: I would say the limit of x square minus four over x square minus twenty five. 

I: And what does it mean to you? 

S: As my x goes towards five point... I always picture that big / that we see everywhere. I 

see the x axis... like a correlating point... 

I: For example in here, when you say this equals negative one, what's the meaning of that 

for you? 

S: So as this function moves towards x equals two, v moves towards negative one, like a 

boundary. 
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I: What moves to what. 

S: The whole function moves towards x equals two, there would be a correlating point y 

equals one. That's how I see it. The limit of x square as x goes to two equals four, that's 

how I see it, that's how I see all of them. 

I: Ok, what about this [2.4]? 

S: I see this is very simple, I just plug in the numbers. [He went back to problem 2.1.] 

I: Now, if you try to use this idea of the x going towards something, would that help you 

in any way to find the limit? 

S: I could probably find it by trial and error. 

I: How would that be? 

S: I would try a bunch of values around that point. 

I: Ok. Do you think that this trial and error method [plugging values in the calculator] is 

less accurate than doing this [direct substitution]? 

S: No, I think it amounts to the same... but we look for the easy way out to do, and we are 

so used to having formulas for everything and like a method to do everything, we are not 

used to computational, I think. 

I: And do you think the step that you did here [2.2] was necessary to solve the problem. 

S: No it wasn't. 

I: Why not? 
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S: Because there's nothing going zero over zero. 

I: Why do you think you did it? Because in the other problems, the first thing you did was 

to substitute, but not here. 

S: I think because I saw the top factors out... I think every time I see x square minus nine 

I get mentally excited and I want to factor out and cancel. And I knew I would be able to 

cancel so I was confident. 

I: Ok, the last thing, to solve those three limits. 

S: I know e to the x would go to infinity. Cosine of infinity... it can't exist because it's a 

harmonic motion. 

I: What about this case [3.2], when it's going to minus infinity? 

S: Oh, it doesn't matter, it's going to be the same thing. 

I: What about e to the x? 

S: Oh, no, it would all go towards zero, yes, that's true, e to the x would be closer and 

closer to zero. So this would go towards... but I don't know how to treat the cos in that 

situation. I know this goes towards zero [for the exponential function] and cos ... Because 

even if this is going towards zero, if my cos is getting bigger and smaller... but it's always 

the same sequence multiplied by that, I guess I could assume it's going towards zero. 

I: Do you think you could use the calculator? 

S: I could try, I could do minus ten... [he did it] Ok, so this is minus ten. I am doing 

minus twenty. Yes, I think is getting closer to zero. Yeah, it is going towards zero. And 
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this one [3.1], I could test it but I am pretty sure it's going towards infinity. Yes, it goes 

to infinity. If you can treat it this way, 1 don't remember how to treat it. And this one 

[3.3], oh, yeah because sine goes... as sine goes towards zero... how I use to treat this... I 

just remember the graph getting smaller and smaller, and it goes towards zero. 

I: But that is as x goes towards infinity. 

S: Oh, yes, but as x goes towards zero... I remember it going towards one. 

I: Why do you remember that? 

S: Well, I remember memorizing it. 

STUDENT S7 

I: The first thing I ask you to do is... here are twenty cards, I ask you to classify them into 

groups, according to any rule that makes sense to you. 

S: Ok. [...] Is there any limit on groups? 

I: No. 

S: I hope I don't get a grade on this... 

I: No, this is not a test at all, there is no right answer or wrong answer. [...] 

S: Ok. 
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Class Members of class (labels 
refer to Table 3.3). 

Phrases used by the student in response to the question "what 
was the rule of your choice?". 

1 19, 20 With sine. 
2 3, 10, 13, 14, 18 Contain square roots. 
3 1 , 2 , 4 , 5 , 9 , 11, 12, 15, 16, 17 Polynomials. 
4 6, 7, 8 By replacing. 

Figure A 7 (Copy of Table 5.7a). Student S7 rs classification. 

I: What are your four groups? 

S: With sine [class 1], These are that contain square roots [class 2]. These are 

polynomials [class 3]. These are just by... [class 4] 

I: Just by? 

S: Replacing [class 4]. 

I: How do you read this [expression 8], if you have to read it aloud? 

S: Limit as x approaches one of four x cube plus seven x minus nine. 

I: Ok. Then I ask you to solve some limits, and if you can think aloud... 

S: [2.1] Well, because it's a polynomial, the coefficient is higher, we can do the misse en 

evidence o f the x. Because the first down has a minus and the one has a plus... unless I 

can take the minus here and cancel, so it be one x and I replace so it be one. 

I: Ok. What about this one [2.2]? 

S: This is a perfect square so we can do x plus three, x minus three. Cancel and replace 

two. So we have two minus one over one, so it'd be minus one. 

I: What about this one [2.3]? 
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S: I can take an x square because it's up and down. It'd be x minus [inaudible] over one 

minus twenty five square, and this would go to five, well here the limit goes to zero, and 

here two. So one minus zero over one minus zero it would be one. 

I: How about this [2.4]? 

S: If we replace the one, it'd be one plus two. And here it'd be four plus nine which is 

fourteen. So it's not an indetermination as infinity over infinity or zero over zero. Is 

fifteen... no... 

I: Ok. Let's say... in this problem here [2.2], do you think it was necessary this step that 

you did here? Could you solve the problem without doing this? 

S: Yes, because if you replace the two it'd give four minus nine, so that's minus five, and 

here it'd be five times one. so it'd be minus five over five, so it'd be minus one. 

I: And why do you think you did this anyway [the factoring]? 

S: Well... 1 don't know... for me... because most of the exercises that we were given, 

every time that you'd replace it'd give you zero over zero, so it's kind of a reflex. 

I: And what about this one [2.3]? Do you think you can solve the problem without doing 

this step? 

S: This... you get twenty one over zero [as she's doing direct substitution], I am not sure, 

because as you replace the five, it'd give twenty five over zero, which is impossible, it's 

not defined. 

I: Ok. 
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S: I can't remember any other way. 

I: Ok. Maybe in this example here [2.2]... when you see written that limit as x goes to two 

of this function equals negative one. What do you have in mind? What's the meaning of 

that for you? 

S: It would be in the graph. If the value of x approaches two, then you'll approach minus 

one, the limit would approach minus one, it won't be higher than minus one. 

I: Ok. When you say the limit would be minus one... what do you mean exactly? 

S: Well, if x, for example, is two here, all the values that are approaching two on the x 

axis, they will be approaching minus one on the v axis. They wouldn't... between, I don't 

know from minus infinity to two, for example, there would be... there would always stop 

at minus one... they wouldn't cross, an asymptote? 

I: Ok. The last one, I ask you to solve these limits. And again, if you can think aloud... 

[...] 

I: If you have to solve them separately, just the limit of e to the x and the limit of cosine 

of x, as x goes to infinity, could you do it? 

S: Well, the limit of e to the x, the graph of e to the x is like this, so it'd be plus infinity. 

I: And for the cosine? 

S: Is like this [he correctly sketched the graph of cosine]. I think the limit would go... I 

am not sure. 
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I: If you have to use your calculator... Could you use your calculator to guess those 

limits? 

S: Well, I could start at... a value, plug in two and continue, and if was going towards the 

same... I think the limit would be one, because it continues to one. 

I: What about this one [3.2]? 

S: For e to the x, it'd go to zero, and if it's minus something so it would be one over e to 

the x, so that limit is zero, and then I am not really sure about the cosine x. I think is one. 

I: Let's say is one... what this multiplication would give you? 

S: Zero. 

I: What about the last one [3.3]? 

S: This I know there was a property with sine of x overx, but 1 can't remember exactly... 

I: And why can't you just calculate it? 

S: Because it's over zero, you can't divide by zero. 

STUDENT S8 

I: The first thing I ask you to do is, here are twenty cards, I ask you to classify them 

according to any rule of your choice, any rule that makes sense to you. 

S: Ok. [...] Ok. 
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Class Members of class (labels 
refer to Table 3.3). 

Phrases used by the student in response to the question "what 
was the rule of vour choice?". 

1 3, 10, 13, 18 Rationalization. 1 have to do that first. 
2 1,2, 4, 5, 9, 11, 12, 15, 16, 17 Factor. I have to do that first. Then see if something cancels 

out. 
3 19, 20 Trig. 
4 6, 7 , 8 Just plug in. 
5 14 Not sure [what to do]. 

Figure A8 (Copy of Table 5.8a ). Student S8's classification. 

I: Can you explain me what was the rule. 

S: These... basically rationalization [class 1], like that's the first thing 1 think of. I have to 

do that first. These I have to factor first [class 2]. These are trig ones [class 3]. These you 

can just plug in [class 4]. And this I am not sure [class 5]. 

1: Let's say, if 1 ask to read this [card 8] aloud what would you say? 

S: Four x cube plus seven x minus nine. 

I: And the whole thing, the whole statement? 

S: The limit as x approaches one of four x cube plus seven x minus nine. 

I: Ok, and this group you said it was to factor? 

S: Yes, I have to factor, I have to see if I can factor first and then if something cancels 

out. 

I: Ok. Now I ask you to solve some limits. And as much as you can, think aloud so I can 

keep track of what you are thinking. 

S: [2.1] Ok, the first thing I do is to see if the denominator is zero, I guess... Zero over 

two, zero. Then 1 factor, it doesn't work. 
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I: Why did you decide to factor? 

S: Because... to see if something... Is forced pattern I guess. I just plug it in. 

I: What about this one [2.2]? [...] 

S: First plug it in, I guess. This is so cal one... There is no reason to cancel out if it 

doesn't give zero on the denominator [she still factored the expression], 

I: Why do you think you did this? 

S: Because, usually in cal one what the teacher gave us the denominator would equal 

zero, so therefore you had to find out the asymptote, or if there was a hole, discontinuous. 

I: What about this one [2.3]? 

S: Ok, this is fine, you plug it in, you get zero... [...] I don't know what I would do. 

Because nothing factors [she meant that there are no common factors]... no 

rationalization. I don't know. [...] Do I have to do it? 

I: What about this one [2.4]? [...] 

S: Fourteen over three. 

I: Say... when you write this, the limit is fourteen over three, what's the meaning of that 

for you? 

S: You mean graphically? 

I: What do you think about when I say that the limit of this expression is fourteen over 

three? What does that bring to your mind? 
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S: First a blank. Then, well, I can see the function... as x approaches one from both sides, 

it approaches this number. 

I: What is it that approaches one and what approaches that number? 

S: Is... I can see x equals one and the function approaches fourteen over three, that point 

there. 

I: Ok, the last thing. [...] 

S: Ok. [...] Actually, I don't know. 

I: If you have to calculate them separately, the limit of e to the x and the limit of cosine of 

x... 

S: Well, e to the x would be infinity, and cos o f x alternates... so it wouldn't exist? 

I: And with those two ideas combined, can you figure out what the limit of the 

multiplication is? 

S: Well, this one doesn't exist [for the cosine] and this one goes to infinity [for e to the x]. 

It doesn't exist? 

I: If you could use the calculator to check this, would that help you in any way? 

S: No. 

I: You don't remember using the calculator in cal one to calculate limits? 

S: No... unless for basic calculations. But not for theoretical, like finding the derivative or 

the limit. 
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I: How about this [3.2]? 

S: Well... cos would be the same. 

I: Do you remember the graph of e to the x. 

S: Something like this, right? 

I: Can you use the calculator to check your graph? 

S: Well, I could, if I plug in... but for cos, I know it goes like this and it always alternate 

between one and negative one. 

I: Could you use the calculator to check if what you remember about the graph of e to the 

x is right? [...] 

S: Ok. 

1: So what's the limit as x goes to minus infinity. 

S: Zero. 

I: And then combining the graph of cosine and this, can you figure out the limit of the 

multiplication? 

S: 1 don't think it exists. 

I: How about this one [3.3]? [...] 

S: This looks very familiar. [...] 

I: Are you trying any calculations in your mind? 
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S: I am trying to picture the graph... And then plugging in zero but that doesn't help. 

I: And in this case do you think you could use the calculator? 

S: No. Because I already know how the sine function looks like. Sine of zero equals zero. 

I: If you just had to calculate the limit of this... [I wrote lim — ], what is that? [...] 
v - > 0 x 

S: I could use the calculator to guess... it would be infinity. Yes, definitely it would be 

infinity. 

I: Why? 

S: Well, actually, it goes like that. 

I: Why from the positive side you say it goes up? 

S: Because at zero point zero zero zero one it would be really really really big. 

I: And when you said that in this case you would be able to use the calculator, what were 

you thinking? How would you use it? 

S: Plugging in zero point zero zero one... 

1: Can't you use that in here [3.3]? 

S: Yes. Definitely. 

I: Can you try it? 

S: Ok. [...] 
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S: It goes to zero point zero five seven one... this doesn't make any sense at all. 

I: Is the calculator in radians? 

S: No! Ok. [...] It approaches one. 

I: Now that you tried this... do you think you could use the calculator to try to check these 

ones [3.1 and 3.2]? 

S: Ok, but what can I plug to equal infinity? 1 don't think I can. 

I: When it says... like in here, it says x goes to zero, but you didn't plug in zero, right? 

S: Right. Ok. 

I: So when here says x to infinity... 

S: I don't think you can. Because if you plug a very very very big number, it doesn't 

show where it is, unless you graph it. 

I: Ok, let me understand this idea that you have. You say that if you plug a big number 

you are still far from infinity? 

S: Well, if you plug a very big number, it shows error. 

I: But, when you plug a very small number, like zero point zero zero one, do you think 

that's realistic for the limit? 

S: Well, sort of... kind of... in a sense no, but you do get the right answer. 

I: In which sense no. 
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S: In the sense that you really never reach the actual... what it is, because you can't. 

I: Let's say you take a really big number, a trillion, and a very small number, zero point 

many many zeros and then a one, do you think that with this number you are closer to 

zero than with your trillion you are closer to infinity? 

S: No. I think they are both as far. 

STUDENT S9 

I: Ok, the first thing I ask you to do, these are twenty cards, I ask you to classify them 

according to any rule of your choice... any rule that makes sense to you. [...] 

Class Members of class (labels 
refer to Table 3.3). 

Phrases used by the student in response to the question "what 
was the rule of your choice?". 

1 2 , 4 , 9 , 17 Numerator and denominator have the same degree. 
2 1, 11, 12, 15 Upper is more than lower. 
3 5, 16 Upper is less than lower. 
4 8, 14 Polynomial. 
5 3, 10, 13, 18 Upper is less than lower and it's not an integer. [The power is 

not an integer.] 
6 19, 20 Sines. 
7 6 , 7 Constants 

Figure A9 (Copy of Table 5.9a ). Student S9"s classification. 

I: Can you explain me what was your rule? 

S: Numerator and denominator have the same degree [class 1], This is upper is more than 

lower [class 2]. This is upper is less than lower [class 3]. This is polynomial [class 4]. 

And this is upper is less than lower and is not an integer [class 5]. These are sines [class 

6]. These are constants [class 7]. 

I: If you have to read this [card 8] aloud to a friend, what would you say? 

S: The limit of... when is approaching one. 
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I: Now I ask you to solve some limits. If you can while you do it, tell me what you are 

thinking. 

S: [2.1] Can I use what I learned in calculus two? 

I: Yes, anything you know. [...] 

[She found the limit but is not able to talk while doing them, so I gave her all remaining 

three limits in part 2.] 

I: Ok, in this one [2.2], do you remember what was the first thing you tried? 

S: I see 1 can cancel something. I know this can turn... you can cancel, it's more easy. 

I: Do you think it's necessary? 

S: 1 don't think it's necessary, but I think it's faster. 

I: If not, what other thing could be done? 

S: Just substitute the number. 

I: Why is it easier to simplify? [...] 

I: In the first one [2.1] did you try substitution right away? 

S: I tried substitution and this is zero [the numerator] but if this was zero [the 

denominator] I would change it... 

I: And in this one, when you write that the limit is one, what is the idea for you? 

S: We learned the theorem... the limit is going to be... 
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I: But, say you have to explain the meaning of this to someone else, what would you say? 

S: I don't know, just two numbers. 

I: The last one... to calculate these three limits. [...] 

I: Ok, why did you write here [3.1] that this doesn't exist? 

S: Because this changes, when x approaching to infinity. 

I: How about this one [3.2]? 

S: This is going to infinity but this doesn't exist. 

I: But what about in this case, when x is going to negative infinity? 

S: Oh, this is zero, so this one would be zero. 

I: Why would it be zero? 

S: Because this [the cosine function] is always between one and minus one. 

I: Ok. And here [3.3]? 

S: This a theorem. 

STUDENT S10 

I: The first thing I'll ask you to do is... here are twenty cards, with different statements in 

each... I ask you to classify them into groups according to any rule that makes sense to 

you. 

S: Ok, well, 1 am not sure exactly how to proceed with this... I guess well 1 can say this 
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looks like a problem where you know they look like something that will break into 

[inaudible] you know, x minus three times x plus three or something like that, you know. 

They would just break up, so the first thing I would probably do is factoring and 

cancelling them out, but again I might need a pen and paper to see if it would work, 

probably it would though you know, but it could be one of those screwed problems that 

it's gonna drive me nuts. But it looks like a fairly simple problem where you just put 

some factors you know. And this one [card 1 ] looks pretty similar to that. The top is a 

little odd but you know... it's a little odd because there's usually an x square right in 

front but I'm pretty sure that yeah I think it would work if you have something that 

cancels out like a minus two x or something like that... But I don't know maybe 1 should 

take into account the limit, so x is going to infinity, x is going to three, but like usually for 

something like that it's better just to try to... because everything here is kind of scattered 

so you know... It's probably best to simplify everything and then solve it, you know. 

Again this [card 8] does look like... this looks like a bit similar so... oh oh, ok, this one 

seems like a bit of a trick, as if it is too easy, like x goes to one you know and there's 

nothing even under it. It's just... 

I: So you'll put it on a different group? 

S: Yeah. I'll throw that in here too. I don't know, maybe partial fractions could be useful 

but still I think this is a stage in which you can just factor you know, break it up into little 

bits you know. Leave the square... anything that would work out. This one [card 15] will 

definitely work, I can tell already. I can even calculate that... that's like x minus two 

times x plus one, yeah, or something like that. I don't know, it [card 15] seems kind of 

tricky actually because it's going to be x plus one times x minus two divided by x minus 



one so that's actually gonna be a bit tricky I guess... but again 1 think it can be break up 

because it's going to be two things multiplying each other so you can basically, so you 

can get x minus one divided by x plus one you know, and you can do some long division 

you know, something like that and you'll get a simple value, simple enough 1 think. And 

then you get probably two terms so you know it would work out I believe. This one 

looks... that's just gonna... I think, 1 don't know, again this [card 9] is one of the ones 

where it looks it's really really really simple, but I am pretty sure it's gonna go to 

something screwed because here you have x plus two times x minus two you know. Then 

you got x minus... x minus four times x minus... no, times x plus one. So yeah, that one 

would be a bit tricky but... you might want to break that into partial fractions... 1 am 

pretty sure... Yeah, you could do that, it's cool. Now this one [card 2] is easy, because 

this would be x plus one times x minus one and you can already cancel something out... 

yeah, you would get something that would work fine. You see... x plus two times... yeah 

I think this one would need partial fractions. Ok, this one is pretty insanely easy, so over 

there goes. 1 don't know, I haven't done enough problems of x cube minus one [card 5], It 

might work as a difference of squares, I might... but even still it's a little tricky because 

there'd still be a different term up above there. It would be x minus five times x plus five 

and you also have... if like, if something like a difference of squares would work like x 

minus one times x plus one times x minus one or something like that, it still be a lot of 

terms down there and different ones would appear so I'll put that over here. This one... 

I'm pretty sure this one's, yeah you can just use L'Hopital's rule on this [card 19] you 

know. Cosine x over one, that'll give you one you know, that's probably a basic rule, so 

that's easy. Xgoes closer to zero, this gets big... I'm not sure! Ok, let see. All the ones 



we did x's going to infinite so... I always had a hard time figuring out like the sign of 

infinite, you know that's a little, I don't know why 1 can't seem to figure that out but 1 

can't so over here. This one [card 10] is really really really... yeah I'm pretty sure you 

gonna have zero over eight, wouldn't it? Isn't that allowed? Is not one in which zero is 

beneath so I'm pretty sure that would work. And even if it wasn't I'm pretty sure... no 

you can't break it up. But it's zero over eight so it goes over there. Let see square root of 

x plus two [card 3]... I don't know, something about it tells me that if I had pen and paper 

and I did this I might get an easy answer just because it looks like the one that's really 

complicated but it's actually pretty simple but on the top of my head I can't quite think of 

it and it does look like even if you do square roots... Let see, square root of five [card 

18]... square root of... Again I'm not too sure about it, I can't think of it just on the 

[inaudible] so I'll put it on that pile. I think that's... this one, yeah. Let see, you can just 

use L'Hopital's rule here [card 18]... you can do that here too because the base is just 

five minus x, the derivative of that is one, minus one, but that doesn't really matter, so 

then you are just left with two terms that you can deal with separately and you get 

something so that's actually pretty easy now that I think about it. So I'm putting it over 

there. Again [card 14] L'Hopital's rule apparently, I think. Yeah, because you do 

L'Hopital's rule, it will still be going to infinite, so it's just gonna be infinite, yeah, I 

think so. Seems really easy, seems really easy. It's just, it's going to infinite and there's 

no way... this isn't gonna be zero... I don't know, I think there actually might be a limit 

here, just because it'll get higher and higher so it's gonna be the square root and there's 

always gonna be this term you know, so... I think what I would do here is maybe, I don't 

know if you can, maybe square it, just square the whole thing you know, and then see 
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what you get, I don't know. That looks like it might make things more complicate 

actually. 1 can't think of it right away so I'll put that there. And I'm not even saying 

anything about that [card 6]. 

Class Members of class (labels 
refer to Table3.3). 

Phrases used by the student in response to the question "'what 
was the rule of your choice?". 

1 3 , 6 , 7, 8, 10, 12, 13, 18, 19 Easy. 
2 1 , 2 , 4 , 11, 16 Factoring. 
3 5 , 9 , 14, 15, 17,20 Not sure [how to find the limit]. 

Figure A10 (Copy of Table 5.J0a). Student SlO's classification. 

I: Good. Let see, those were the factoring ones right? 

S: Yeah. 

I: Let say for this one [card 11], how would you approach it? How would you use a 

factoring technique to solve it? 

S: I may have overestimated on that one. I suppose what I could do, and although I'm not 

sure this would get me anywhere, but I suppose I'll do it anyway, is something along the 

line of completing the square you know, because you got a seven x here you know, it's 

going to be three point five or something so you take three point five square and you add 

that and you subtract it you know, and you take this value out and you get the square you 

know, you get the little factor here. It might be something up there and if it isn't you 

know I'm not quite sure what you do next. 1 might have to restart the problem you 

know... just do some long division. Long division will be a lot simpler actually. Because 

with long division... No. but actually I was saying before, with completing the square, 

that would work for a bit. if it doesn't get rid of anything you can do long division, you'll 

be left with the remainder, that would be divided by that, but it would be a lot simpler, so 
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yeah. 

I: How about... A different question I'll ask you now, let say you are studying with a 

friend and you talk on the phone with him and you have to read this [card 2] to him. What 

would you say? 

S: For this one? 1 guess it's you know x square minus one over x minus like x minus one 

together time x minus three together. 

I: And if you had to read the whole expression? Everything that is here. 

S: Well I say at first, you know I can say the limit as x goes to one but that's irrelevant 

you know this is the only complicated part, limit as x goes to one is pretty easy to 

understand. 

I: Ok. Now I'll ask you to solve some limits. 

S: All right. 

I: And again, if you can sort of think aloud so 1 can have an idea of what's in your 

mind... 

S: Well you know the first thing you'll do here [2.1] I guess would be to factor whether it 

worked or not. It doesn't quite work here because you got x minus one over x plus one, 

you can't deal with that. And you got... the denominator is bigger than the numerator so 

you can't really do long division but I'm pretty sure you can do partial fractions here. So 

you have to split it like this, you have x times x plus one you know. So that would be a 

over x plus b over x plus one, which gives you two terms and these ones would just be 

constants so that would be pretty easy you know. So you do the multiplication... x minus 



one equals a times x plus one plus b times x. And you know for that basically what you 

do is... you got to make one of this equal to zero, that way you can find the value of the 

other. I'll make x equal zero that will make life damn simpler so zero minus one equals a 

times zero plus one, which now gives you minus one equals a. So you got, let see. 

Negative one... sorry, I scratched a little but... you got a that is negative one so you can 

put it there and solve for the rest you know, which is basically equals negative one over 

yeah, x plus one. Yeah, I think that works you know. [...] I don't know, for some reason it 

looks something it's gonna go screwed and I'm not sure [...] Ok, yeah yeah... 

I: You want to find b, right? 

S: Yeah yeah, this is what confused me a little... I thought if I had an equal negative one 

I could just replace it and solve but it's not really working. But I'll just do the same thing, 

I'll make x equals negative one so I can get rid of a... make life even simpler you know. I 

don't know, for all the other problems I did with partial fractions the x just disappears 

you know, something like that... I can usually leave it like that but... So negative two 

equals a times zero plus negative b. So b is two. Well I am taking a fair amount of space, 

I'm thinking that's ok. Then this gives you limit x goes towards to one of negative one 

overx plus two over x plus one, and now this is going to be fairly simple, it's just because 

none of these values are going to get one over zero so it won't matter. It's going to be 

negative one plus two over two, just one, it's gonna be zero. 

I: What about this one [2.2]? 

S: This is gonna be nice and simple and easy. 1 don't even have to do all this, it's not 

gonna be something over zero. I can just.. . I don't even have to factor anything. I can just 
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put it in right now. It's going to be five times one times four minus nine. I'm not sure 

what that would be. That would be negative one. 

I: What about this one [2.3]? 

S: Ok, that's not gonna be... I think what I'll do is... actually I think you can just use... 

no no I'll make life simpler, I'll just use partial fractions you know. Let see... I'll start by 

opening it up and giving some factors, you know, like this and... x plus five, like that. 

Just to make life easy I'm gonna take out one of this, that's gonna make x minus two... 

and I'm just gonna do here what I did before, again you know. [...] That's going to be b 

over x minus five and a over x plus five you know. I guess x equal to five and seven 

equals a time zero plus ten b. So be equals point seven. And I am not putting it in there, 

I'm just going to make x equals minus five. And it will be negative three over here, 

equals a times negative ten plus b zero... equals zero point three, again pretty simple. So 

now I'll put them all the way back here you know. I'll put a little line there, make it a 

little easier to read... I might have [inaudible] a little trap for myself, but I think it would 

be ok anyway, it's just because I'm gonna have to values here you know, I'm gonna have 

zero point seven over x minus five and zero point three over x plus five. Now this is just 

going to be me taking a bit of a hunch, it might be a terrible hunch but I'll do it anyway. 

Basically, x is going to be going to five, so this is going to be zero and that's going to be 

pretty crappy but if I have to actually... no actually, this is fine, what I was going to do 

was I just well there's another term here so it's going to be fine I'm going to get a value 

you know but just to be safe, because I'm not quite sure if that would be acceptable. I'm 

going to have to terms that are gonna to go limit to x to the five you know, it's going to 

be... I'll just write zero point seven times x minus two over x minus five plus limit of 
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zero point three times x minus two over x plus five. Over here it doesn't matter, 1 can just 

put that in here and it won't make a difference. Over here, if I have to, I could use 

L'Hopital's rule because this would be one down here and this would also be one, so that 

would be zero point seven... I guess... yeah... you know it seems ok. If it isn't I'll blame 

it all on L'Hopital's you know. And over here it would be zero point three times three 

over ten, which is zero point zero... is that right? Yes, it's right. And I'll add them 

together. 

I: Do you remember that there are some conditions under which you can apply 

L'Hopital's rule? 

S: Well, now that you mention it... but no, I don't remember them. No, I don't. 

I: Ok, what about this one [2.4]? 

S: Well, that's sweet, nothing is going to be zero here. It's just going to be one plus four 

plus nine over one plus two, which is fourteen over three. I'm not going to bother writing 

decimals that's gonna be a waste of time. 

I: Let see, in the first one you did, that you started with the partial fractions method, do 

you think it was necessary to do these steps to get the answer or... 

S: The problem is that right now partial fractions are a pretty simple thing to do, 

especially when is this simple, so I went for that one. 

I: But once you have the problem written in this way, is it in any way simpler than this 

expression here? [I meant the expression obtained by partial fractions compare with the 

one given in the exercise.] 
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S: Well, now that you mention it, I accidentally forgot that this would be... that this 

would not be zero and that was dumb... yeah that was a bit of a waste of time but 1 guess 

I wanted to show off my use of partial fractions... 

1: And let me ask you a question about this other exercise [2.2]... when you write here 

that this limit equals negative one, what's the meaning of that for you? What do you have 

in mind when you say the limit as x goes to two of this function equals negative one? 

S: Well this is again thanks to my Cal I teacher, he explained a brilliant story about limits 

you know, although I'm not going to go into a lot of depth about it because he refer to it 

as almost almost almost almost having sex with somebody and then getting out at the last 

minute... basically the idea of the limit is that it gets closer and closer and closer to 

something, and sometimes it gets there, and sometimes it doesn't you know, this is 

something because nothing equals zero it gets to two and when it does is going to be 

negative one, if it would be something else, I think if it would be equal zero over here it 

would get closer and closer and closer to zero but it wouldn t get there... is that clear 

enough? 

I: So the fact that nothing is zero here means that it actually will get to negative one. 

S: It's really just the bottom [denominator], the top part can be zero you know, it's just 

the bottom because it doesn't make sense, for whatever reason. 

I: Ok, ok. This is the last one. 

S: Ok... well, this [3.1] is problematic because I'm not sure what the cosine as x goes to 

infinite is. What x is when it is infinite in cosine but let see... It's not quite accurate but 



that's never the point... Well ok, I don't quite remember the conditions for L'Hopital's 

rule but in this moment of desperation I'm going to kind of cheat and use it because you 

know you are going to do the cosine of x over e to the negative x and that works you 

know. You can do the limit as x goes to [...] It works for positive infinite. So let's see, 

L'Hopital's rule... again this doesn't quite help me because I'm not sure about cosine of 

infinite or sine of infinite... 

I: Let's say you could use your calculator... would that help you? 

S: I could write a really big number and then try cosine... the problem of that is that it's 

bouncing back and forth between whatever it is so you know. I could have x equals nine 

hundred and ninety seven and then nine hundred and ninety seven plus five and that kind 

of screws it all up you know. 

I: What about the e to the x? What's the limit of e to the x as x tends to infinity? 

S: Well, that's pretty much infinite because it's just going to get bigger and bigger and 

bigger, and the problem you know, and the problem is I would say it's infinite but I don't 

know if cosine of infinite is equal to zero or if it is equal to one or... well it is really 

whether it equal zero because if it equals zero then the whole thing equals zero, and if is 

anything above that, I'm just going to take a hunch and assume that a number times 

infinite is infinite. 

I: And could you use the calculator to kind of guess what the answer would be? 

S: Well the problem with that is... I just type a big number, I'm going to write it down so 

I don't forget it [...] Well this is in degrees... 
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I: Is in degrees? 

S: Well it doesn't really matters I can add degrees... I'm just... It's now negative, and 

before it was positive [he tried two different big numbers]. Before it was point nine 

something but now is back down again. So 1 can't really use a big number because 1 used 

every single digit... I did nine nine nine nine... but again that probably wouldn't help me 

because as long as it shoots back and forth it doesn't approach anything I know. And I'm 

pretty sure there's an answer for what cosine of infinite is but I just don't know it. Is one 

of those things I haven't look at... 

I: What about the last one [3.3]? 

S: I'm pretty sure we covered that... This is the sort of thing where we can use 

L'Hopital's rule again and I'm pretty sure this will work here because mainly because 

this is one of those fundamental rules of calculus, where sine of x over x equals one you 

know. Or is it the other way around? X over sine x equals one? Oh, it wouldn't matter, if 

it equals one it should work either way around. So it'd be cosine of zero is one, it's one. 

I: What you just said... is it sine of x equals one? Or is it the limit as x goes to zero of 

sine of x over x that equals one? 

S: Well I don't know, what I did here is I just used L'Hopital's rule to convert it basically 

so that I could put an x and it give me and actual value of the limit... 

I: But let's say that now 1 change it and I write sine of x over x equals... and I ask you 

what that equals... would you say one? 

S: No, 1 don't think... 1 wouldn't be able to... no, because x could be anything in here, 
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but here x is approaching zero... x is approaching zero so therefore I can use L'Hopital's 

rule and punch that in there. But here sine of... here, this would just... this is one of those 

situations where I would try my calculator though 1 don't think it would help me would 

it? 

I: What would you try to punch in there? 

S: Well, it's not going to help me because... 

[He tried a few numbers in the calculator for the expression sine o f * over x.] 

S: So yeah, is bouncing back and forth like with the cosine and I was pretty sure it would. 

But you don't know what x is. And x could be anything in here. It could be high and then 

down, and high and then down. So I don't know, if you say x goes to infinite I would say 

zero because this would never be bigger than one and this would be a lot bigger, and this 

would be divided, so it would be zero if x goes to infinite. But... here it's just that. 

STUDENT S l l 

I: The first thing I'll ask you to do is... here are twenty cards, I ask you to classify them 

according to any rule that makes sense to you. 

S: Ok, so this are twenty of them... I am not very good at this, I have to think a lot. [...] 

Normal... this a normal one... It can be anything, right? Substitution... 

I: Just a way of organizing these cards... 
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Class Members of class (labels 
refer to Table3.3). 

Phrases used by the student in response to the question "what 
was the rule of your choice?". 

1 1 ,2 ,4 , 9, 16, 17 These are fractions. 
2 3, 5, 11, 12, 13, 14 These are going to infinity or zero. 
3 6, 7, 8 Easy ones. You can do them right away. 
4 15 Fraction that can't be div ided. 
5 19, 20 Sines. 
6 10, 18 

Figure A l l ( C o p v of Table 5.11a). Student SI l ' s classification. 

S: Ok, ok. [...] I'll put fractions with fractions [class 1]. [...] These are going to infinity 

[class 2]. These are just a number [class 3]. These are fractions [class 1]. Ok, I think I am 

done. 

I: Ok, let's see. You put these two [class 5] together because...? 

S: I guess because they were sines [class 5]. 

I: Ok. Did you have a general rule when you were organizing? 

S: There is a lot of them, but since I saw... this is radical o;ie eh? Not really, maybe if 

they were fractions... like I can think of dividing them and then something that doesn't 

work if I put it up here... 

I: And why are these in different groups [objects in classes 1 and 4]? 

S: Well, these are fractions, but this I can't divide [card 15]. These I don't know. Maybe 

we should put all the fractions together, but the ones you can divide. This we can do 

something like that too. This we can multiply and put it down to get rid of the top. 

I: And this [an object in class 1]? 

S: This you can divide the top by the bottom. 
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I: But not this one [card 15]? 

S: No. Not by an easy way I can think of. Not by long division anyway. 

I: Ok, let's see the other groups. What are these? 

S: These are going to infinity or zero [class 2], I think. Yeah. 

I: And these ones [class 3]? 

S: These ones are just the easy ones, you can do them right away [class 3], 

I: Ok. And this [card 7]? 

S: And this is just the limit of three going to five so you get three... or five, I am not sure. 

I actually don't remember seeing those. [...] Maybe it doesn't make any sense [she means 

the classification], 

I: Well, if it does make sense to you... Then I ask you to solve some limits. 

S: Ok. Anyway I want? 

I: Yeah. 

S: If I remember how to do it... 

I: And while you are doing it, if you could think aloud so I can keep track of what you are 

thinking... 

S: Ok. I don't remember how to do this [2.1]. I think I can pull an x out of here [taking 

common factor x from the denominator], like... On the top is the same thing and on the 

bottom is going to be x plus one. but then 1 cannot cancel an)lhing. I mean that doesn't 
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work. This is really really far in my head. [...] If I put one here this will be zero? I'd like 

it better if you give me antiderivatives. If I multiply top and bottom by x minus one... 

that's just make it longer... 

I: Where did you get this part from? 

S: No, I just put it away and then I said well if I plug in one, but then it gives zero [the 

numerator], and this is actually two [the denominator]. And zero divided by two I am not 

sure if it is zero or is infinity. 

I: [Since she took her calculator in the beginning and put it next to her, I asked the 

following.] Do you think you can check with the calculator? 

S: Ok... if it gives math error... Ok, zero, but then the derivative will be zero. 

I: The derivative? 

S: The limit, I mean. But I don't think of anything else that 1 can do, so I'll do it like that. 

I: Ok, what about this one [2.2]? 

S: My first impulse is to open this up to see what I can get in common. So I'll just do it 

like I always do it and then I just cancel things out. This stays the same. This is x to the 

two minus nine, this is x to the two minus plus two x minus three, divided x to the two 

minus nine, and then... If I do, can I erase? [She multiplied out the numerator to get x2 + 

2x - 3.] 

I: No, please just leave like that. 
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S: Ok, because this is more complicated, I cannot cancel anything. But then if I use the 

top as it is and if 1 open the bottom [factor the bottom]... So x plus three and x minus 

three, I can cancel these two and is x minus one over x minus three and I can just plug in 

two. One... minus one, it's going to be minus one. 

I: Ok, what about this [2.3]? 

S: If I open them, there's is nothing 1 can cancel... there must be something else. I cannot 

bring them up either, then I can't divide. I cannot pull any xs out. I'll open them [factor 

them] and I see after, maybe, but I don't think here anything will work. I can put this to 

be u and this to be v and then I can do like quotient rule. 

I: Quotient rule? 

S: Uminus, u v minus v u over v to the two. 

I: To do the derivative? 

S: Yeah, but that won't work because it's derivatives and this is limits. So, so, so [she 

tried substitution]... this is twenty one on zero... but then that would be infinity. Ok, I am 

not sure. 

I: Ok, what about this one [2.4]? 

S: This I think I can do long division, at least I'll try to. I have to complete the square 

[she means completing the missing terms so to have all the powers of x] or whatever is on 

the top. So zero x plus nine and then divide. [...] This doesn't work. But then I have a two 

x that I cannot take away because of the x to the two. This is not a minus b to the two, so 

it won't work. So I plug in one... fourteen over... three. I guess I can always do that, just 
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plug it in. It's fourteen over three. Other things won't work, so this is the only thing I can 

do. 

I: Now, if you look at the problems, say in these three problems... in here you did this 

factoring and then you end up replacing the x by five [2.3], do you think this step was 

necessary? 

S: Not really. No. 

I: And why do you think you did it? 

S: Just to visualize better sometimes... but it's not completely... Because if you put it in 

here [before factoring] you get the same thing, will give the same twenty one over zero. 

I: And what about in here [2.2]? 

S: Then yes [in 2.2 the factoring led to cancellation], because if I put in two... would it 

work? And then I did all that for nothing? I didn't check actually, this would be five, this 

would be two minus one.... minus five, that's not minus one. So it would give the same 

thing. 

I: Do you think there could be a problem where if you do it in this way [factoring] you 

get an answer and if you do it in this way [direct substitution] you get a different answer? 

S: If it's a problem? 

I: Same type of problem, could it be that when you replace the x you get a number and 

when you do the factoring and simplification you get a different number. 

S: Well, it should've been the same thing. 
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I: Just a question, when you look at this expression [lim f ( x ) = 0] here... what do you 
x~>-2 

read? If you have to read it aloud, what would you say? 

S: As x goes to minus two, /of x is zero. 

I: And what's the meaning of that for you? 

S: Like it approaches zero, so the more is going to minus two the more it's to zero. 

I: What's approaching minus two, what's approaching zero? 

S: The line is approaching zero when x is minus two. Something... I don't know from 

where it's approaching minus two. You know what I mean? 

I: I am not sure. 

S: Like if I draw a line like th i s , /o f x is zero when x is approaching minus two, but it 

won't always be zero, so is something like that, and then when you get to zero, well, it's 

zero. 

I: Does it get there? 

S: Well, it's approaching... maybe, not... I really don't remember. 

I: Ok, let's move to the last part. 

S: I don't know if my things will give you a lot of insight... How lost I am... Oh, my 

gosh! If I plug in zero [in 3.3] it would be one. [She tried something on her calculator.] 

No, sine of zero is zero, so zero over zero. I think we are learning this on calculus two. 

Can I use that? 
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I: Yes, anything you know, you remember... 

S: Ok. I can do then like a Hospital's rule, whatever. So I do the derivative of this, it 

would be... This is one, over one. Ok, that's not that bad. And the others... x is going to 

infinity, cos of infinity... These [meaning 3.1 and 3.2] I think we should treat them the 

same way, 1 just don't know how. I can always bring something down. I can do cos to the 

x over e to the minus x and then try to figure something out of the infinity over infinity. 

I: If you have to think of them separately [I wrote lime1 and limcos(x) ]... 
. r -»cc r > y. 

S: Can I do graphs? 

1: Yes, of course. 

S: e to the x is like this, is going to infinity. And this... will be between one and minus 

one, but then it would keep going forever and ever, so it's going to be infinity too. 

Because it won't stop. 

I: And what do you think it would happen when you multiply them? 

S: Multiplying infinity by infinity it's just infinity. 

I: What about this [3.2]? 

S: If I do e to the minus infinity, e to the zero [she checked on her calculator]. I have one 

here, so it's going this way [she graphed] so it would be zero, it would just approach zero, 

it would never reach zero. 

I: Can you use that to guess the answer for the multiplication here? 
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S: This will be for sure minus infinity [for the cosine function], it'd be like this but to the 

other way. Can we say it doesn't exist [she meant the multiplication]? Because it's not 

gonna touch. 

I: Can you think of any way of using the calculator to check, to confirm your ideas? 

S: I can put e to the x and then I can put like a huge number like three million, like one 

zero zero zero zero. That gives me error, it means it goes to infinity. Because it doesn't 

really shows me a number. And then if I do cos... Oh, it was minus infinity [so she trie 

again with the exponential] so minus a thousand, it gives zero, but it doesn't really touch. 

And cos of minus one zero zero zero, this would be infinity, so it would be zero.[She did 

not look at her answer in the calculator.] 

STUDENTS12 

I: The first thing I'll ask you to do is... these are twenty cards, with different problems in 

each of them, 1 ask you to classify them into groups according to any rule that makes 

sense to you. 

S: Anything? 

1: Yes, you look at those and say I'll put these together and these together... 

S: Ah, ok. [...] 

Class Members of class (labels 
refer to Table 3.3). 

Phrases used by the student in response to the question "what 
w as the rule of your choice?". 

1 6 , 7 Constants. 
2 1,2, 4, 5, 8, 9, 11, 12, 15, 16, 

17 
Polynomials. The ones you have to divide by x or cancel out. 

3 3, 10, 13, 14, 18 Roots. 
4 19. 20 

Figure A12 (Copy of Table 5.12a ). Student S12"s classification. 
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S: These are constants... this is one group [class 1], Polynomials [class 2], I guess. These 

are the ones that you divide byx. [...] Roots [class 3].. . and... just like that. 

I: Ok. At some point, when you were organizing these [class 2], you mentioned a 

technique to solve... Do you think that technique applies to all of them? 

S: No. [She looked at each of the limits in class 2 but didn't change the classification] 

I: But anyway, if you want to group them you'll put all of them together? Like you did in 

the beginning? 

S: Yes. I don't know... these either you divide by x or cancel out. 

I: If you have to... let say you are studying with a friend and you have to read this 

[expression 8] aloud, what would you say? 

S: Read that? 

I: Yes. 

S: Limit as x goes to one of four x cube plus seven x minus nine. 

1: Ok. Then I'll ask you to solve some limits. And if you can think aloud so I can get an 

idea of what comes first to your mind... it'd be great. 

S: [Staring at the exercise.] Is that like a Cal 1...? 

I: Well, you can use anything you know to solve it. 

S: Ok. [Inaudible.] 

I: Yes. 
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S: Well I guess I'll take out the one x, so is x minus one on x plus one... which doesn't 

give me anything. Well it's just zero right? It's just zero. [She was referring to the limit in 

2.1. She took x as a common factor in the denominator.] 

I: Ok. How about this one [2.2]? 

S: [...] So I'll just... I am [inaudible] I'll put the two in it? Because it's just five times 

minus one over minus five, it's one. 

I: In the beginning that's the first thing you saw? 

S: Yeah, because if it would have been another number, like it would have... 

I: But do you remember, when you just looked at the problem, did it come first to you to 

replace by two? 

S: No. First I saw that I could factor and cancel out x plus three, but then instead of doing 

that like I try putting in the two. 

I: Ok. 

S: Ok, so this one [2.3] I would factor out but then I'll try again [she meant trying the 

substitution technique]. Yeah, so it doesn't work, because here [the denominator] is zero. 

So I'll factor out which won't really help me [she didn't try the factoring]. Well it's just 

infinity right? 

I: Ok. The last one [2.4], 

S: [...] Isn't this one [the limit of the function] just infinity too? I don't really remember if 

we are allow, when you can like... let say you divide by v cube... Can 1 do it, even if I 
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have just one x cube? Or is the rule like... because if 1 do it then I'll get one over zero 

which is infinity... Oh, it's one right? [For the 1 in * l .] 

I: Yeah. 

S: Oh. [...] Then it's just fourteen over three. 

I: Why did you think it was infinity? 

S: Oh, because I like I saw... 1 didn't look... I didn't see it was one [in ]. So if it 

would have been like as x goes to infinity and you divide everything by x cube then here 

it's zero and zero [for the two last terms in the numerator and the two terms in the 

denominator] and here is one [for the first term in the numerator], so one by zero is 

infinity. 

I: And why do you think that... because you didn't look at this [ * i ] . . . you looked at 

this problem and you thought it was an infinity type of problem... did it remind you of 

problems you've seen before? 

S: Well it's just because is like you can't factor this. Can you? No, I don't think you can. 

So the only thing they could ask us is divide by x. 

I: So all the problems you remember where x was going to a number were problems in 

which you could factor? 

S: Yes. 

I: Ok. One more thing. I ask you to calculate these three limits. 

S: [Staring at the paper] I don't remember. [...] Oh. it's the product rule, right? Is it? 
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I: Did you say power rule? 

S: The product rule. 

I: For derivatives? 

S: Yes... but here I have to find the limit. Ok, so this is infinity and cos of... can't you 

say it's just infinity. Because this is infinity and cos is... bounded. So infinity... I don't 

remember... if that's how we do it... And... e to the negative infinity... is zero, 1 think. 

[She picked up her calculator and did a calculation in it.] 

I: Which calculation are you doing? 

S: Oh, just e to the negative nine. So e to the minus infinity, the limit of that is zero, so 

the limit will be zero because cos is again bounded by... a constant? And the limit as x 

approaches zero... can I use L'Hopital's rule? Because this is zero over zero, then 

L'Hopital's rule... like you just do the derivative of them. That's cos o f x over one so it's 

just one. 

I: In the first one here, do you know if your answer is plus infinity or minus infinity? 

S: Plus, I guess. Because as x gets bigger, y gets bigger two. 

I: Do you think you can use your calculator to check if your answer is right? 

S: I guess... yes. I do e to the nine thousand [she punched the numbers in her calculator] 

and it doesn't work, e to the nine hundred? Oh. it doesn't work, maybe it doesn't exist, e 

to the hundred... well it's not infinity but it's very big... 

I: And if you multiply by cosine of a hundred? 
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S: It doesn't change... the number [she seemed confused about the fact that the number 

didn't change], 

I: If you were on an exam, would you think of using the calculator? 

S: Yes, I double check everything. 

I: And would this suffice? You will convince after doing this calculation? 

S: Yes... well if I had time I would do it with other numbers maybe. 

I: Which other numbers would you choose? 

S: Well I'd do bigger ones... but nine hundred didn't work. Five hundred? [She did it.] 

Doesn't work. Two hundred? Yes, very big. 

STUDENT S13 

I: The first thing I ask you to do is, here are twenty cards, I ask you to classify them 

according to any rule that makes sense to you. [...] 

I: Can you explain me your rule? 

S: First of all these are all x cube. 

I: They contain x cube. 

S: So you can do long division. 

I: Oh, so they have x cube in the numerator. And this one? 

S: [Inaudible.] 
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I: That one? 

S: These are all square roots and you are suppose to do one solution. 

I: One...? 

S: Because they are all square roots. 

I: And this one, it has square root too [but it's not in the square root-class]. 

S: Because of the denominator. 

I: Why these are in the same group? 

S: Because they don't have denominator. 

I: And this one? 

S: These are all square in the numerator. 

I: And these are? 

S: Just one... I am going to change my idea. I am sorry. 

I: What is the arrangement now? 

Class Members of class (labels 
refer to Table 3.3). 

Phrases used by the student in response to the question "what 
was the rule of your choice?". 

1 19, 20 

2 1,2,3, 7, 8,9, 10, 15, 16, 17, 
18 

X goes to a number. 

3 4, 5, 6, 11, 12, 13, 14 X goes to infinity. There's one way of solving for all of them. 

Figure A13 (Copy of Table 5.13a). Student S13's classification. 
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S: These are the same thing because x goes to a number. These are [inaudible] to a 

number. These x goes to infinity and there is one solution for all of them. 

I: And why do you prefer this order better than the other one? 

S: Because in this there is one solution for all of them. 

I: Do you mean one solution or one technique. 

S: Yes, one way of solving it. 

1: Let's say, if 1 ask you to read this [expression 8] aloud what would you say? 

S: You mean like a question? 

I: What it says here. 

S: Limit of x goes to one of four x cube plus seven x minus nine. I am sorry I changed my 

mind before, but 1 didn't see the x before [in the symbol x — i n each of the 20 cards of 

the classification task]. 

I: It's ok. Now 1 ask you to solve some limits. If you can, while your working, think 

aloud. 

S: [2.1] So the first thing I would plug in the number. One minus one over one plus one, 

and this is zero. We are fine because there is no infinity over infinity or zero over zero. 

This is good. 

S: Here [2.2] first I plug the number but I know is not going to work, two plus two, two 

square... five over minus five, this is minus one. Again you plug in the number [2.3]... 
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twenty one over zero, it's infinity, because there's no infinity over infinity or zero over 

zero, it's fine. Here [2.4]... fourteen over three. Yeah. These are easy. 

I: When you write here that this limit equals zero, what do you have in mind? What it 

means for you? 

S: I think this is basically to plug in a number, for example if you have limit x goes to 

something, what happens if I plug x in the equation. Is it acceptable or not acceptable? If 

the equation works for this number or not. 

I: Let me give you an extra problem. Let's say [ lim * + x — - ]. [...] .w-3 X2 _ 9 

S: This is zero over zero. So it's going to be... yes, zero over zero. So you do x plus 

three... over... Are you sure this is a two? [He Was not sure about my writing.] 

I: It is a one. 

S: No, no, no. [He had trouble with the factoring.] So, x plus two... So the answer is five 

over [inaudible], 

I: And in this case what is the meaning of the limit being five over six? 

S: Excuse me? 

I: Now when you say that this limit is five over six, what does it mean to you? 

S: I mean the limit, when v goes to minus three of this equation is five over six, after I 

solve. I mean if you plug in directly isn't gonna work, you have to solve first. 

I: And when you say the word limit, what do you have in mind? 
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S: Limit... basically... For any equation, if you want to take limit... what's the smallest 

number that works out for this equation. When x goes to... what's the best number you 

can get when you plug in x in the equation. 

I: Next, the last. [...] 

I: If you separate them [the two functions in 3.1], can you calculate the limit? 

S: What's the cosine of plus infinity? 

I: Sorry? 

S: Is there something cosine plus infinity [he actually wrote cos(co)]? 

I: Well, infinity is not a number. [...] 

I: Could you use somehow the calculator to find this limit [3.1]? 

S: It could work i fx goes to a number. But infinity... [...] 

I: What about the last one [3.3]? 

S: Sine of zero is zero, right? [...] 

I: What is it that you wrote before... about the adding one or subtracting one? 

S: I was trying to add something... to see... 

STUDENT S14 

I: The first thing I'll ask you to do is. here are twenty cards, I ask you to classify then 

according to any rule that makes sense to you. [...] 
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S: Like any rule that I can apply to solve them. 

I: Anything that makes sense to you. 

S: Can I say like they are similar, the same method I am using? 

I: Yes, you can say that. 

S: Do I include things we learn in cal two? 

I: Yes, anything. [...] 

S: I think I am good. 

I: Can you explain me your groups? 

S: These are the ones I divide by the highest degree. That I would solve it easily, I think. 

These ones you used, how do you call that, the division ones... 

I: 1 don't know, what do you mean? 

S: You got the product rule and the division one. 

I: You mean for derivatives? 

S: Oh, ok, hold on. [She re-did the exercise.] I don't remember... [...] 

Class Members of class (labels 
refer to Table3.3). 

Phrases used by the student in response to the question "what 
was the rule of your choice?". 

1 2 ,3 , 10, 13,18, 19 L'Hopital 's rule. Zero over zero or infinity over infinity. 
2 14, 20 These ones I didn't know where to put them. 
3 6, 7, 8 Straightforward. You just replace the x. 
4 1 ,4 ,5 , 9, 11, 12, 15, 16, 17 Divide by the highest degree. 

Figure A14 (Copy of Table 5.14a). Student S14"s classification. 
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S: Ok, these [class 1] you have to apply L'Hopital's rule to all of them, and these ones 

[class 2]... wait [...]. I am not sure how to classify them... 

I: So what are these ones [class 3]? 

S: These [class 3] are really straightforward. 

I: Why is this also straightforward [card 8]? 

S: You just replace the x. 

I: And these [class 4] ones? 

S: You just divide by the highest degree. 

I: These are by L'Hopital's rule [class 1]? 

S: Yes, is zero over zero, infinity over infinity. 

I: And these [class 2] ones? 

S: These are the ones that 1 didn't know where to put them. 

I: If you have to, say you are working with a friend and you have to read him or her this 

[expression 8], what would you say? 

S: Limit as x goes to one, as x approaches one, of four x cube plus seven x minus nine. 

I: When you say x goes to one or x approaches one, what's the image you have in mind? 

What's the idea you have of that. 

S: Like the function approaches that but never reaches it. 
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I: But when you say approaches... 

S: Getting closer to. 

I: Now I will ask you to solve some limits. First this one [2.1], [...] Oh, don't erase, just 

start again on the side. 

S: I don't remember my limits. 

I: But do you have anything on mind that you should do? 

S: Yeah... because I get zero [on the numerator], my answer is zero. 

I: Why? 

S: Because if you directly plug it in, it's gonna be zero over two [she writes 0/2], 

I: Did you try doing the substitution before doing this? 

S: Oh, I started that, I didn't realize... because what we are doing now [in Calculus 2], 

I: But do you know if you get zero over two what the answer would be? 

S: I don't remember. [...] It's gonna be zero. 1 don't remember. Can I go studying and 

come back [laughing]? 

I: What about this one [2.2]? [...] 

S: I don't remember, plug in? 

1: Do you remember some situations where you can plug in and others where you can't? 
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S: When it's improper, when you get over zero you can't plug in. You have to do 

L'Hopital's rule. 

I: So what about this? 

S: 1 don't remember. 

I: If you plug in what do you get? 

S: Mmmm, negative one. I don't know if that's right. 

1: Are you convinced that's the answer? 

S: No, I don't remember anything from limits. I know it's wrong. I am sorry, I don't 

remember. 

I: When you were doing the classification before, you told me that these were straight 

forward. Why you were so sure before and now... ? 

S: I don't know. Because now I am just thinking I don't remember my limits. 

I: When you say you don't remember... 

S: I don't remember how to do them. Like if you ask me now, we are doing series and 

sequences, I can do that. 

I: You don't remember the methods? 

S: Yeah, like what the answers should come out to be. I don't remember all the rules too. 

I: If you look at these one [2.3], what... 
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S: This one goes to infinity. Like it's zero over zero, that's not right. I don't remember 

how to fix that. I don't remember what you do when it's not right. 

I: When you say not right... 

S: Like it's over zero. 

I: But in this case [2.2], is that right? 

S: No, I don't know, because I don't remember my limits anymore, so I'm kind of 

thinking I'm not doing anything right. 

1: If you have to explain what this expression means... 

S: The limit as x approaches negative two o f / o f x is zero. So as it approaches negative 

two, on the x axis, as x approaches negative two, the limit is zero, y zero is here [she 

made an incorrect sketch]. It should be like that, I don't think that's right. I don't 

remember. 

I: Ok, I ask you now to look at these three limits. [...] 

S: I think the limit does not exist. But I am not sure. I use to know this stuff. I have no 

clue. Wait, cosine of zero is... one. Am I right? Yes [checking in the calculator]. 

I: Could you use the calculator to check if your answers are right or wrong? 

S: Yes, I could try a very big number and see what happens. 

I: Ok. 

S: [Doing calculations in the calculator.] Yeah, doesn't exist [for the limit in 3.1]. 
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I: What about this one [3.2]? 

S: [Calculating.] Syntax error... it's zero. 

I: Is that just for e to the x? 

S: No, no, for e to the x times cosine of x. It gave me zero. 

I: Which number did you plug in? 

S: Nine nine... ten nines, with a negative sign. 

I: So you got zero, are you convinced it should be zero instead of doesn't exist as you 

wrote before? 

S: I know the calculator lies sometimes [laughs]. But, yeah, I think so, it keeps getting to 

zero. 

I: Now that the calculator told you that is zero, do you have an argument of why that's 

true? 

S: I know that e to the x as x goes to negative infinity is zero, and the cosine keeps going 

so there's no limit, and 1 guess that if you multiply them... I can't picture the graph on my 

head, I can picture them separately but I can't combine them. But I would think that it 

doesn't exist though... by multiplying it, it changes the amplitude... then it shouldn't exist 

because it keeps going anyway. 

I: But the fact that this is going to zero is changing the amplitude... 

S: Oh. but it's getting smaller and smaller and smaller, so it would be zero. Yeah. 
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I: You are changing the amplitude but each time by a smaller factor. 

S: Yeah, so the limit is zero. That shows that the limit can be in the middle of the thing. 

I: Having that idea, what do you think that would happen in this case [as x goes to 

positive infinity]. You are changing the amplitude. 

S: Yeah, it would be... no, because x increases so it would be no limit. Yeah! I remember 

something [laughing], 

I: When you say in here that this is one [3.3] do you mean that sine of x over x is one or... 

S: Yes, the function... the limit as x approaches to zero. 

STUDENT S15 

I: The first thing I ask you to do is, these are twenty cards, I ask you to classify them 

according to any rule that makes sense to you. [...] 

S: Ok. 

Class Members of class (labels 
refer to Table3.3). 

Phrases used by the student in response to the question "what 
was the rule of vour choice?'". 

1 1, 8, 11, 12, 15 The power is higher on top. 
2 3, 5, 10, 14, 16, 18 The powers are higher at the bottom. 
3 2, 4, 9, 13, 17 The powers are the same. 
4 6 , 7 There's no variable. No .r, just a number. 
5 19, 20 With trigs and there's no powers. 

Figure A1S (Copy of Table 5.15a). Student S15"s classification. 

I: Tell me about the groups. 

S: One group is where the power's higher on top [class 1]. The second group is where 

powers in the bottom are smaller [class 2; he probably meant that the powers in the 
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bottom are higher]. And the third group is where powers are the same [class 3], One 

where there's no like variable, no x, just a number [class 4], And the other is with trigs 

and there's no powers [class 5], 

I: Ok, if you have to read this [card 8] aloud what would you say? 

S: I would tell them the limit as x approaches one of four x cube plus seven x minus nine. 

I: Now I ask you solve some limits. 

S: Oh... how do you do this [2.1]? [...] What if I screw up? [...] I would say... zero. 

I: Why would you say zero? 

S: Oh, I would check it first. [...] Ok. This one [2.2]? [...] I think... minus one. 

I: Ok, what about this [2.3]? 

S: Zero... so... [...] I am probably making this more complicate that what I have to... If I 

had a calculator, what I would do is plug in values from the right and I'd see where is 

going to and then try from the left and see where's going to. 

I: Can you try? I have my calculator. 

S: [He tried some numbers in the calculator.] Ok, to infinity... Then... negative infinity. 

I: Ok, what about this [2.4]? 

S: [...] Oh, one. So... fourteen over three. 

I: Why in the first three problems... say why in the first one you factored the x out? 
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S: Oh, no, no, I do that in every problem to see if something would cancel. Even if 

nothing cancels 1 do it anyway, in case I miss something. 

I: So that's the reason here too [2.2]? 

S: Yes, even if nothing cancels I just do it anyway. 

I: So if nothing cancels, do you think you still get the same answer if you don't factor? 

S: I'd try... Yeah, you would get the same answer... wait, I am confused by my own 

writing... Yeah, you would get the same answer. 

I: Could it be a problem where you get a different answer? I mean that with simplification 

and without simplification you get a different answer? 

S: Not actually. 

I: If you have to explain, say in this problem, that the limit as x goes to two of this 

function is negative one, what does that mean for you? 

S: The answer? What does the answer means to me? I don't know how it looks like [he 

sketches a function]. But say this is negative one, this is two, so it's closer to this value... 

It means nothing important to me. 

I: Ok, finally I ask you to calculate these three limits. 

S: This is indeterminate [for the limit of the cosine function as x goes to positive or 

negative infinity], you don't know... how would you calculate this? This [3.3] is one, I 

think. 
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I: Do you remember the graph of cosine? 

S: Yes, it's like this. 

I: Does the graph help you in any way to figure out what the limit is? 

S: No. There is no limit because it's up and down. 

I: And what about the multiplication with the exponential? 

S: With e to the x you mean? 

I: Yes. I mean, it is true that the cosine doesn't have a limit as it goes up and down but 

when multiplied by e to the x, does it have a limit? 

S: Maybe, I don't know. When you divide yes, for sure. But when you multiply... 

I: Why when you divide you get a limit? 

S: [3.3] Because the way I see it is like, sine over x right, the sine function, what the x 

does, because it's a straight line is mixed... 1 can't explain, it's the line right and the sine 

function is symmetrical, and what the line does is like is like cut the... the x in the bottom 

cuts the sine function and makes it smaller and smaller and smaller. So I believe that if 

you divide something it should like shrink it. But here [3.1], since this is infinity, 

regardless of what this is, it should be actually plus infinity. 

I: Ok, what about the other one [3.2]? 

S: As this approaches zero, it doesn't matter what this does, it should be zero. 

I: Do you think you could use the calculator to check if your guesses are right? 



S: Well, I do believe it [he believes in his guesses] say this is zero, it would be one times 

whatever number... if this is like a million, no matter what this is, it would be bigger than 

the previous number. 

I: Could you check? 

S: It could be wrong because cos varies up and down. [He tried some numbers in the 

calculator.] It is true cos goes up and down, is positive and negative positive and 

negative. Ok so... You know what I also know, I know cos goes only up to ninety nine 

million nine hundred... like nine nine nine. Because once I tried cos of one billion and it 

gave me an error, so I try to see what's the limit, what's the biggest number it goes to and 

I got ninety nine million nine nine nine nine... I want to know why. [He keeps trying 

numbers on the calculator.] You see, I get an error, it's very weird. Why is that, ok, 

anyway. [...] I would say you can't find the limit because it goes up and down all the 

time. I would say that for certain intervals, like pi over two intervals or something like 

that, like pi over two to pi over four it would go to infinity but then next pi over two, it 

would go the other way. 

I: What about for this one [3.2]? 

S: It should apply the same thing. It doesn't exist. 

I: Why not in this case? 

S: Because it doesn't matter if it goes to negative infinity or positive infinity [he means 

the values of.*], because certain intervals will determine where it's going. 

I: It doesn't matter that here [3.1] was infinity but here [3.2] is zero? 



S: No, I don't think so... wait. This would be almost zero times whatever... it would be 

zero. 

I: And why did you put one here [3.3]? 

S: Last semester... actually in the summer I read the book and I remember this. 

I: Do you know anyway of checking if that's right or wrong? 

S: I would go right and left with the calculator. 

I: Do you know any other way that is not using the calculator? 

S: Maybe... maybe not. If it is for a million dollars maybe... No. 

I: I didn't have a million dollars for you anyway... 

STUDENT S16 

I: These are twenty cards, the first thing I ask you to do is to classify these cards into 

groups according to any rule of your choice. 

S: Make groups? 

I: Yes, as many as you want. [...] 

Class Members of class (labels 
refer to Table 3.3J. 

Phrases used by the student in response to the question "what 
was the rule of your choice?". 

1 2 , 5 , 9 , 1 2 , 1 7 Difference of squares. 

2 19, 20 Trig functions. 
3 3, 10, 13, 14, 18 These have square roots. 
4 6, 7 Limit of constants. 

5 1, 4, 8, 11, 15, 16 Quadratic or third degree. 

Figure A16 (Copy of Table 5.16a). Student S16's classification. 
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S: Ok, I think that's it. All these have perfect squares... difference of squares [class 1]. 

These are trig functions [class 2]. These have square roots [class 3]. These are the limit of 

constants [class 4], These are either of quadratic or third degree [class 5]. 

1: Ok. Let's say, how do you read this [expression 15] aloud if you have to read it to 

someone else. 

S: The limit as x approaches one of the function x square minus x minus two all divided 

by x minus one. 

I: Ok. Next I ask you to solve some limits. This is the first one [2.1]. And if you can think 

aloud so I can keep track of what you are thinking. 

S: Ok. First I check... I put in the number... if the limit gives me a number over zero. But 

you get one minus one over one square plus one, so is zero. 

I: Ok. 

S: [2.2] At the bottom is a difference of squares which will cancel out with the top. Then 

I put in the two, which will become one over negative one so will become negative one. 

S: [2.3] I know there's a difference of squares but that wouldn't change much because 

nothing will cross out. If I put the five it'd become a number over zero. I guess there's no 

limit. I'm not sure. 

I: What about this one [2.4]? 

S: In this one you can put in the one because it'd give us a number. So one cube... 

fourteen over three. 
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I: Do you think in this problem [2.2] was necessary this step? 

S: No. No, I guessed it would be easier to simplify, to take out some terms. 

I: But if you don't simplify what would you do instead? 

S: I'll put in the two and calculate. 

I: And will you still get the same answer? 

S: Eeh... Can I try that? [He does direct substitution.] So yeah. 

I: Do you think there could be a problem in which doing like this [direct substitution] and 

like this [simplifying first] you can get different answers? 

S: Well, I guess it depends... I guess if it was limit as x goes to three that would give you 

zero so you'd have to take out... 1 mean negative three, that would become zero. 

1: And for this one [2.3]. You were saying before that the limit doesn't exist? 

S: Well, I'm not sure because there's nothing 1 can cancel out and I'm missing 

something... 

I: When you say this doesn't exist, what do you have in mind? What does that mean to 

you? [...] Or, say, when you look at this [2.1] and you say the limit is zero, what do you 

have in mind? What's the meaning of that? 

S: As we approach one, the value of the function approaches zero. 

I: Ok, the last problem. 
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S: Well, this [for the limit of the exponential function in 3.1] is infinity... [...] Can I use 

my calculator? 

I: Yes, yes. 

[He did some calculations with the calculator.] 

S: Ok, cos only goes from negative one to one. I'm not really sure, this will be zero? 

I: What did you do with the calculator? 

S: I try to put in cos big numbers but I kept getting bigger, I guess because cos is up and 

down, the two bounds. 

I: And what about e to the xl 

S: e to the x is infinity because it just keeps going up as it does the graph. I guess this is 

going to be infinity times negative infinity... I guess you can do L'Hopital's rule, but 

that's not from cal one. 

I: And what about this one [3.2]? 

S: This one, you replace with negative infinity, e... one over e to the infinity which will 

become zero. Zero times cos will become zero. 

I: Could you use your calculator to check if your answer is right or wrong? 

S: [He spoke as he did the calculations on the calculator.] One over e to a very big 

number... I do one divided by e two hundred times cos two hundred and it becomes six 

point seven four times ten to the negative eighty eight so it becomes closer to zero. 
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I: And you think you can do something similar to figure out this one [3.1]? 

S: e two hundred times cos two hundred. It's point five times ten to the eighty six so it 

keeps getting bigger and bigger. 

I: So what is this limit? 

S: The limit as* approaches positive infinity is positive infinity. 

I: Are you convinced? 

S: Well, because this goes from one to negative one, and this will always get bigger. But 

then if that's negative [the cosine] it'd make it negative. I'd say it goes to infinity. 

I: And what about this one [3.3]? 

S: If you plug in zero you get zero over zero, which is undefined. So that doesn't work. 

[...] I remember from cal one there were special limits with sine or cosine, but 1 don't 

remember what they were. 

I: And if you wanted to try something with your calculator? 

S: Well, sine of zero... makes an error, because divided by zero is undefined. 

I: But could you use it in any other way to figure out what the limit might be? Something 

that is not replacing by zero? 

S: Eh... Well, I know that in cal two you can take the derivative of top and bottom. Cos of 

zero is one, so it'd be one over one which is equal to one. 

I: And can you think a way of using the calculator to check if this is right? 
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S: [...] Unless... you can use a number really really close to zero, like point zero zero one. 

Gives zero point nine nine nine, which is really close to one. 

STUDENT S17 

I: I will ask you to do different tasks... the first is to organize these twenty cards into 

groups according to any rule that makes sense to you. [...] 

S: Like polynomials? 

I: It can be any rule that makes sense to you. 

S: Ok. [...] 

S: There's no specific number of piles? 

I: No. You can do as many as you want. 

S: Ok. [...] Ok. 

I: Can you explain me the rule you had in mind? 

Class Members of class (labels 
refer to Table 3.3). 

Phrases used by the student in response to the question "what 
was the rule of your choice?". 

1 19, 20 These are trig. 
2 6 , 7 These are regular limits, there's not much to do. 
3 8 There's no fraction. 
4 3, 10, 13, 14, 18 These are square roots. 
5 1 ,4 These are trinomials. 
6 2 , 5 , 9 , 11, 12, 15, 16, 17 These are regular. Not that tricky. Factorable. 

Figure A17 (Copy of Table 5.17a). Student S17's classification. 

S: These are trig. These are regular limits, there's not much to do. Here there's no 

fraction. These are square roots. These are trinomials. These are regular. 



.342 

I: When you say regular what do you mean? 

S: Not that tricky. 

I: Things you've seen before? 

S: Yes. Factorable. 

I: And for you how this [expression 4] is different from this [expression 5]? 

S: This [expression 4] has two cubes. 

I: Ok. Now I will ask you to solve a few limits. 

[2-1] [ ..] 

I: Ok, what about this one [2.2]? If it's not too hard for you, if you could think aloud so I 

can keep an idea... a track of the way you are thinking the problem. 

S: Ok. [...] [What follows is about 2.3.] Do I have to get an answer? Or can I just leave 

what I wrote? 

I: Why? 

S: Because I got zero. 

I: How... what was the order in which you thought... 

S: Xplus five, x minus five, x minus four, x plus four. 

I: Why you didn't write... 



.343 

S: If I plug in now it can't be done, it's zero [he meant the denominator is zero]. So I 

figure there's must be another way to do it. 

I: So you did the long division, and you got this... Ok. What about this [2.4]? [...] 

S: Can I leave my answer like this? 

I: Yes. Why did you do long division here? 

S: I am forgetting if I have to divide the top by the bottom or the bottom by the top. 

I: But why did you think you have to do something here? 

S: Because the top is larger than the bottom. There's an x square in the bottom and an x 

cube [in the top]. When I see that, I think I have to divide. 

I: Ok. Let's say if we look at the problems. Do you think it was necessary this [factoring] 

to get the answer? 

S: I think it makes it easier, if you can cross things out. 

I: Ok. But could you have found the answer without doing that? 

S: Probably not. Maybe if you multiply this out and then do long division. 

I: Ok. And here was it necessary to do the factoring? 

S: Yes, because you can't divide them. 

I: Do you think you can get the answer without doing that? 

S: Not in a way I can think of 
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I: And what was the next step from here to here? 

S: I simplified, cancelled out and plugged in x approaches two. 

I: And why couldn't you do it in here? 

S: I assumed it wouldn't work but now I see that it would work. 

I: What about in here? 

S: This one now because twenty five minus twenty five would give you zero so you have 

to simplify. 

I: How do you read this [ lim f{x) = 2 ]? 

.V—>7 

S: Limits as x approaches seven for the function/of x equals two. 

I: And when you say that, what do you have in mind? 

S: Well, the graph would be approaching seven, well, x would be approaching seven. 

I: If someone asks you what this mean, what would you say? 

S: I would say, y equals two. [...] Like [...]. 

I: Ok. Now I give you these problems. [...] 

S: I don't remember doing limits with ex. 

I: Not even if you look at this problem separately? [The limit of eA and the limit of the 

cosine function.] [...] 



I: If you could use the calculator to find or guess these limits, would that help in 

way? 

S: Well, this is infinity. So it would just be infinity, the answer. 

I: What would be infinity? 

S: If you make x infinity, it would just be infinity. 

I: What is it that would be infinity? 

S: The limit approaches infinity. If you make e to the infinity it would just be infinity. 

I: And what about the other one? 

S: Can I use the calculator? 

I: Yes. 

S: It wouldn't be infinity. 

I: For the cosine? Do you remember the graph of the cosine function? 

S: Yes, it looks like that. 

I: And by looking at the graph, can you tell what the limit would be? 

S: One? Negative one? 

I: And considering this, what about the multiplication of the two functions? 

S: It would still be infinity. 

I: What about this one [3.2]? 
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S: It'd be negative infinity. 

I: Negative infinity for which one? 

S: For this [the exponential]. This [the cosine function] would still be one and negative 

one. 

I: And what would be the answer for the multiplication? 

S: Negative infinity. 

I: Do you remember the graph of e to the xl [...] 

S: Like this... or... not really. I don't remember. 

I: Can you use the calculator to verify if this is right or wrong? 

S: If I put e to a high number. Say a thousand. It'd give me an error, so it's infinity. And 

if I put a negative number it would be negative infinity. 

I: Do you want to try? 

S: It would give me the same error... No, it's zero. And for the cos it doesn't matter, it's 

the same thing. So this would be zero, if you multiply anything by zero, it's zero. 

I: Ok. What about this one [3.3]? [...] 

I: What rule are you using in there? 

S: A trig identity. [...] 

S: Well, I don't know... this is one over one, so it would be zero. 
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I: Which trig identity are you using? 

S: Sine x equals one over cos x. 

I: Do you remember any rule for this that you learned in cal one. 

S: To solve the limit of this? 

I: Or maybe, would the calculator help you in any way...? 

S: I am not remembering what to do. 

I: When you did cal one, did you use calculators to solve limits? 

S: After we simplified. 

I: So you could always simplify. 

S: Yes. 

STUDENT S18 

I: So the first thing I ask you to do, here you have twenty cards, I ask you to classify them 

according to any rule that makes sense to you. 

S: So if I see a pattern, I just... 

I: Anything that makes sense to you... [...] 

S: I am trying to break it down into how to factor them, so if I see a trinomial I put them 

here [class 1], if I see a square root I put it here [class 2], if I see like a difference of 
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squares I put it on the middle [class 3]. I am not sure where to put this one... [...] I'll keep 

them aside, an extra, these are the ones 1 don't know. 

I: So what was again the rule? These are square roots. 

S: If there's a square root I keep them here [class 2], These seem all to have a difference 

of squares, I like those [class 3]. These are all trinomials [class 1]. These have a trinomial 

in the denominator but a difference of squares a kept it aside [expressions 5 and 9, 

members of class 3]. These are just to limits three and seven so I kept them aside [class 

4], The trigonometric I put them in this different category [class 5]... I wasn't sure where 

to put them. 

Class Members of class (labels 
refer to Table 3.3). 

Phrases used by the student in response to the question "what 
was the rule of your choice?". 

1 1 ,4 ,8 , 11, 15, 16 These are all trinomials. 

2 3, 10, 13, 14, 18 There's a square root. 

3 2, 5, 9, 12, 17 These have a difference of squares. 1 like those. 
These have a trinomial on the denominator but difference of 
squares 1 kept them aside. 

4 6, 7 Limits three and seven. 

5 19, 20 Trigonometric. 

Figure A18 (Copy of Table 5.18a). Student S18"s classification. 

I: If you have let say... you are talking on the phone with a friend and you have to read 

this [card 8] to him, what would you say? 

S: The limit as x approaches one of four x cube plus seven x minus nine. 

I: Now, where you were telling me about the difference of squares, you said you like 

them, why? 
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S: It's a stupid reason but it's because they work out nice, like x square minus four is x 

minus two, x plus two. 

I: They are kind of neat. 

S: Yeah, they work out well. If you have to factor a trinomial you have to break it and 

then it's complicated. Different of squares is just two and two and it always works. 

I: Ok, now I ask you to solve some limits, and if you kind of think aloud it'd be great for 

me, so I can keep track of what comes first to your mind and so on. 

S: Ok, I am a bit [inaudible] with this. The first problem [2.1] x approaches one and we 

have x minus one so that doesn't work, we need to find a way to factor that out. The best 

thing I could do, let's see, if I could factor out the denominator, limit as x approaches 

one... we can take out an x and get x times x plus one and then we have x minus one over 

x plus one... I am really stuck here. Let's see if I started this right. This is as far as I can 

get now. How long do I have for each of them. Because if I could get this to be x minus 

one, this would factor well, and I'd just have limit of x. But right now, as far as I know, 

we have x approaches one and x minus one so we get zero divided by... divided by the 

denominator. And as far as I can see that could be zero. So limit as x approaches one, I 

don't like the fact that there's a zero on the numerator, but as far as 1 can remember all I 

can say is zero divided by one plus one, two, which is zero. 

I: Ok. I'll ask you a few more and then I'll go back and ask you questions about each of 

them. 



S: Ok. Oh, difference of squares [2.2], I like that. X approaches two, we keep the 

numerator, x plus three and x minus one. I factor out the denominator, x plus three, x 

minus three. We can get rid of the x plus three here. X approaches two, x minus one over 

x minus three, which would come out... negative one, as x approaches two. 

I: Ok, what about this [2.3]? 

S: You are giving me the ones I like, 1 see difference of squares. The first thing I'd do is 

to break it out. But I can already tell by the twenty five, that the five would pose a 

problem at the bottom. So x plus five, x minus five. The problem is that I need to get rid 

of the x minus five or else my denominator will end up being zero, which isn't good at 

all. What can I do to get rid of the denominator? How can I do to get rid of the x minus 

five? I am stuck. 

I: What about this one [2.4]? 

S: So it's not a difference of squares. How can I factor this? Well is the limit as x 

approaches one, so where would my problem be? There's no problem at all. Unless I 

could factor this... Say just to be nice I'd try... no never mind. The best thing 1 could do is 

say just not to factor and say the limit as x approaches one would be one plus four plus 

nine over three, which would equal fourteen thirds. 

I: Ok. Say in this one. Do you think it was necessary to do the factoring? 

S: Ah... I think it was necessary. I mean, if you do the limit as x approaches two without 

the factoring, I won't get something wrong like a zero on the denominator because two 

square is four minus nine... Was it necessary, no. But I was taught, if you could factor, 
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factor. The one I just did [2.4] I didn't factor, because I didn't get the time to check if it 

was factorable. But if it was, it would had been better to factor. 

I: Better you mean... it would give you a different answer or... 

S: 1 don't know. I just think is better to factor, to keep it safe. Let's say if 1 plug two in 

here [2.2] I get five times one, over... it still comes out to negative one. So it wouldn't 

make a difference not to factor it. 

I: Do you think there could be a problem where there is a difference? 

S: I guess in the sense.... better safe than sorry... I mean if you factor, you know that you 

factor well. 1 mean if there's something not factorable and you think you have to factor 

and you factor wrong is worst than not factoring it. But if you can factor, you kind of 

avoid mistakes, as long as you know how to factor... 

I: And this was always the approach you had in cal one? 

S: Basically I look at a problem and the first thing I see... and I always assume it is 

factorable, 1 mean, they never gave me a problem that wasn't factorable, so I wouldn't 

even ask whether it's factorable. I'd say, ok, where can I factor it. And I'd say ok let's 

look at the different categories. If I see a trinomial or a difference of squares and the 

method to factor them. And so long and so forth. But if it wasn't factorable... I never 

came across a problem that wasn't factorable. 

I: And do you remember coming across with something like this [2.1]? 
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S: Yes, is one of the tricky ones. You have to think of a special... I don't know, I am not 

saying this would work, but you can multiply by negative one to inverse the signs of your 

equation and then you'd be able to simplify and it would work out. 

I: And in this case? 

S: 1 don't remember. 

1: You don't remember what you should do? 

S: I've been out of practice. The more I practice, the more I remember. 

I: At this point you feel you forgot what would be the method for 

S: In a situation like this, yes. 

I: I have one more question about this, say about this one, that you've got that the limit 

equals negative one. What that means for you? What's the meaning you have in mind 

when you say the limit of this equals negative one? 

S: I picture a function in a graph, I don't know how the function looks like, but I picture a 

function, and I see that as x approaches negative one, sorry as x goes to two, it would be 

negative one. So it would be closer and closer to negative one but it wouldn't necessarily 

reach it. So, well in some cases may be it reaches but as far as I know it doesn't reach. 

And let say you have an asymptote at negative one, and that would be it. From what I 

remember. 

I: Ok, last one. 
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S: Oh... I am not a big fun of trigonometry... How does cos look again? I can't use a 

calculator to see the pattern, can I? 

I: Yes, you can. [...] 

S: Ok, this equals positive infinity... oh, no... Ok, I'd say positive infinity for now. 

I: Which calculations you were doing? 

S: Oh, trial and error. As x gets bigger what's v. Cos of ten, cos of a hundred. Then I went 

to e to the x and it gets bigger, I should have remembered. So basically you multiply and 

just approaches infinity, from what I remember. [...] Here [3.2] I do more trial and error 

with negative numbers. In this case, as x approaches negative infinity... we are getting 

closer and closer to zero. So I would say zero. 

I: So exactly which calculations were you doing? 

S: I was doing e to the negative ten, e to the negative a hundred, to see the pattern, and it 

gets smaller and smaller and smaller, approaching zero. 

I: But you didn't try the multiplication. 

S: No, because the way I see it is cosine, whether is a positive or a negative it keeps 

revolving around pi, pi over two, three quarters pi, around and around in the circle and it 

the number would never keep getting smaller or bigger, it just keeps revolving that circle. 

So basically what matters to me is e to the x. 

I: I see. 

S: And as x approaches zero, sine of zero is zero... so zero. That's all I can say. 
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I: Why would you say zero? 

S: Well, sine of zero is zero, you plug in zero in the bottom and is zero. 1 can't see any 

way of factoring it, so I wouldn't... unless I use some sort of trigonometric identity, 

which 1 honestly can't stand... 

I: But... could you use the calculator to try to check if that's zero or not? 

S: Well, sine of zero is zero. So let's say you have sine of zero point one... sine of zero 

point zero zero one, so it approaches zero... Oh, does that mean that the limit doesn't 

exist? Yes, I don't think it exists. Because you can't divide by zero, so I'd say the limit 

doesn't exist. 

I: I insist on the idea... do you think that you can use the calculator to check whether it 

doesn't exist or... 

S: Well, I know that if I try... If you... because I am not using my calculator to find the 

limit, I am using the calculator to see the pattern, what the function is doing. I know if I 

put anything divided by zero I would get an error. 

I: But do you think that this trial and error method to see the pattern... 

S: Well, that's something I'll do if... basically, all the things I did are things that on a 

normal basis I would recognize without the calculator. But using the calculator, for me, 

let's say if I blank out, ok, what happens as x gets bigger and bigger, what's e to the x, I'd 

put that in the calculator and I'd remember the pattern. Or let's say I forget is it cos of x 

that is zero or is it sine of x? So I'll use the calculator to remember. But not to determine 

the limits, I don't think 1 can use my calculator. 
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I: And do you think you can somehow get some help from the calculator to check if this 

infinity is really plus infinity? 

S: I can't get help from the calculator to see if that's plus infinity. The calculator would 

just help me to remember what happens with e to the x. because I can't do e to a hundred 

in my head. 

I: And what about the graphing features in your calculator, do you ever use them? 

S: 1 haven't use them in a long time. I use them a lot in secondary school to graph the 

parabolas, in secondary five when we did conics. But since then I haven't use it. 

I: Ok. 

STUDENT S19 

I: The first thing I ask you to do is... here you have twenty cards, I ask you to classify 

them according to any rule that makes sense to you. 

S: Ok. [...] Ok. 

Class Members of class (labels 
refer to Table 3.3). 

Phrases used by the student in response to the question "what 
was the rule of your choice?'". 

1 1 , 2 , 3 , 1 5 , 1 8 , 1 9 , 2 0 Zero over zero. 
2 .9, 10, 16, 17 A number over zero. Or zero over a number. 

3 6, 7, 8, A definite number. 

4 4 , 5 , 1 1 , 1 2 , 1 3 , 1 4 , Infinity over infinity. [Card 14] goes to infinity. 

Figure A19 (Copy of Table 5.19a). Student S19's classification. 

I: Can you tell me about the groups you did? 
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S: This was zero over zero [class 1]... This, zero over... No, infinity... no, a number over 

zero [class 2]. A definite number [class 3], And either infinity over a number... or... a 

number over zero, again? No, that doesn't make sense. Something over infinity, infinity 

over infinity [class 4], 

I: So it's infinity over infinity... or... This one is [class 1]? 

S: Zero over zero. 

I: And this one [card 14]? 

S: It went to infinity. 

I: This ones were definite numbers. Why this one would fall in this category? 

S: Oh, no, it goes here. 

I: Why there? 

S: It's a number over zero. 

I: Ok. And this ones... were zero over zero [class 1]? 

S: Yes. 

I: And this are a number over zero [class 2]? 

S: Yes. 

I: And this [expression 16]? 

S: That's zero over a number. 
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I: Oh, so it's a number over zero or zero over a number? 

S: Yes. 

I: Ok. Let's say you are working with a friend, and you need to speak this aloud, say on 

the phone. What would you say? 

S: Find the limit as x goes to one for four x cube plus seven x minus nine. 

I: Ok. Next thing I ask you to solve some limits. 

S: Ok. [2.1] [...] Can I use my calculator? 

I: Yes. [...] 

S: Ok. 

I: So... here you chose this number instead of this one? 

S: Yes. 

I: Why? 

S: Because it was closer to one. 

I: And if you'd try a number even closer? 

S: You would get even closer to what the number was... I did four nines... I got three 

zeros and a five and some other numbers. 

I: Ok. 

S: Then I'd say this goes to zero. 
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I: Do you remember another way of doing this, that's not a table of values? 

S: No. 

I: What about this one [2.2]? [...] 

S: Oh, you can factor this one. And then you can cancel the x plus three and then you 

substitute the number... it gives you one over... one over minus one, minus one. 

I: Why couldn't you do something similar in the previous one? 

S: Because if you factor it... you get limit... you can't cancel two different... 

I: What about this one [2.3]? 

S: Ok. So... Factor them both. [...] 1 don't know what to do. 

I: Why? 

S: Because you can't cancel anything and the bottom equals zero. 

I: Ok. If the bottom wasn't zero what would you do? 

S: I would plug in five, in the equation. 

I: What about this one [2.4]? 

S: So here you just plug in the number. [...] 

I: Ok. So 1 go back to the first one [2.1]. Why you didn't just plug in the number in here? 

S: Because if you plug the number in the top you get zero over a number. 

I: You get zero over... 
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S: Zero over two... which is zero. But it doesn't seem like a possible answer. 

I: Why not? 

S: Oh... 

I: Ok. Do you remember when I gave you the problem, did you plug in the number? 

S: Yes, and I saw it was zero over a number. 

I: Ok. When you write here... let's say, here you wrote that this limit equals negative 

one... what do you have in mind. Does it have any meaning for you? 

S: It's the slope of the tangent to that line... no. Sorry. That's the number when x equals 

two on the graph. So if this was plotted on a graph, at x equals two the number would be 

minus one. 

I: One more set of problems. [...] 

S: I don't remember how to do this. 

I: Let's say you have to do them separately. Just the limit as x goes to infinity of e to the 

x and the limit as x goes to infinity of cosine of x. Could you do that? 

S: No. 

I: And if you do like you did for the first problem... a table of values? 

S: Ok. Are you allow to do that with infinity though? 

I: Yes... 
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S: Ok. [...] Ok. 

I: Where did you get this numbers from? Which calculations you were doing? 

S: Because... 

I: Where were you pluging these values? 

S: Here. 

I: And here you got error? Do you know why you got error? 

S: Because the number was too high. 

I: And why this is infinity? 

S: Because the number is going to be very very high, so it doesn't matter what you 

multiply it by, you would still get infinity. 

I: And here is zero? 

S: Yes. 

I: Ok. 

STUDENT S20 

1: The first thing I'll ask you to do is to look at these twenty cards. 1 want you to classify 

them into groups, according to any rule that makes sense to you. 

S: Any rule of my choice? 

I: Yes. 
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S: How many groups? As much as 1 want? 

I: Yes. [...] 

I: Done? 

S: Yes. 

Class Members of class (labels 
refer to Table 3.3). 

Phrases used by the student in response to the question "what 
was the rule of your choice'?". 

1 4 , 5 , 1 1 , 1 2 , 1 3 , 1 4 With the infinity. I should take the biggest power up and down. 
2 6, 7, 8, 9, 10 The answer is clear. These ones are solvable if you put in the 

number. 
3 1, 2, 3, 15, 16, 17, 18, 19, 20 Indeterminate. If you substitute you get a number over zero. 

Figure A20-1. Student S20's classification. In the conversation that follows, the student changed his 

classification to the one shown in table 20b. The difference consists in having a new class containing cards 

19 and 20. 

I: Can you explain me what was your rule? 

S: The first one [class 1] is with the infinity, because I know I should take the biggest 

power up and down, oh, this one should be here [he removes card 6 from class 1 and 

places it in class 2]. Ok, I take the biggest number here [meaning the cards remaining in 

class 1], that's the rule 1 know. 

I: How would that work in here [card 5]? 

S: I take x square over x cube, so I take one over x. So the answer is zero. 

I: And for this one [card 13], for example, how that will work? 

S: This one... 1 forgot... based on... 1 should square it? Multiply by the conjugate... 

I: And what about this one [card 14]? 
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S: This one is infinity minus infinity. I don't think it goes to infinity though... is 

positive... so the answer is zero. 

I: But when you put them together in the same group, what were you thinking? 

S: Just the infinity thing. I didn't look at one by one, 1 just thought I can take the 

biggest... like this one too [card 11], over x should be infinity, and here too [card 5], so 

this is one over x. [Even if he did realize that this technique does not work in all the cases 

in class 1, he does not change the class.] 

I: Ok, and what about these [class 2]? 

S: These ones, any numbers. But these ones are solvable if you put in the number, it gives 

an answer. If you substitute here [class 3] you get a number over zero, indeterminate. 

I: Ok. 

S: So this is when the answer is [inaudible] at the end. 

I: The answer is...? 

S: Clear. 

I: Oh, in these ones. Straightforward. 

S: Yes. You have to plug in first if it gives you an indeterminate you have to change the -

form, these ones need more work [for the ones in class 3]. This should be alone [for card 

19], this is indeterminate again. This is equal to one but it's a special rule, like the cosine. 

I: Do you remember what rule is that one? 
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S: Squeeze. I can do it with squeeze, but 1 know it's one... or zero... one, one. [He placed 

card 19 on a class of its own.] 

I: So this will be separate now. 

S: Yes. I just saw that. If there was the cosine one again, it'll be here too. [As he goes 

through the cards he placed in class 3 he stops at card 20.] This one, one over zero is 

infinity; sine of infinity is not infinity right? You can't find an answer. So this is an 

indeterminate? So you can't find a definite answer. I am learning about this, it's 

divergence [he's been studying divergent series in Calculus II which he is presently 

taking]. It diverges? I'll put it with this [he places it in the new class together with card 

19]. [His talk is really rhetoric; he is not waiting for me to answer his questions.] 

I: With this? 

S: Or... Yes, same family, as an exception. 

I: Ok. 

S: So these two are like special exceptions. 

S: These ones [the ones remaining in class 3] you should use rules, because if you plug 
i 

the numbers in, like five minus five [card 17], will give you zero, so a number over zero, 

indeterminate, so you need to change the form. Either multiply by the conjugate or factor. 
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Class Members of class (labels 
refer to Table 3.3). 

Phrases used by the student in response to the question "what 
was the rule of your choice?". 

1 4, 5, 11, 12, 13, 14 With the infinity. I should take the biggest power up and down. 
2 6, 7, 8, 9, 10 The answer is clear. These ones are solvable if you put in the 

number. 
3 1 , 2 , 3 , 15, 16, 17, 18 Indeterminate. If you substitute you get a number over zero. 
4 19, 20 Exceptions. 

F igure A20-2 (Copy of Table 5.20a). Student S20's final classification. 

I: Ok. Next I'll ask you to solve four limits. 

S: Solve them? 

I: Yes, and as much as you can... when you are thinking, maybe think aloud. 

S: [2.1] Ok, if I want to put one is gonna give me two, but zero over two is zero. So I 

need to either change this, factor this into x plus one... oh, no, zero. I just plug in 

numbers, and it doesn't give zero though, so zero over a number, two, which is zero. 

S: [2.2] Ok, so I plug in the number first. Five over minus five, minus one. 

S: [2.3] This I need to factor. Five squared minus twenty five will give me zero, so I need 

to change something... x squared minus twenty five... x plus two, x minus two... x minus 

five, x plus five, cancelling this will help me do nothing, even if I factor it will give me x 

minus two, x plus two, over x minus five, x plus five. So in both cases I'm gonna have a 

number over zero, which is, a number over zero is infinity, plus infinity... x squared is a 

very big number... 

I: Ok, the last one. 

S: [2.4] One plus four... ten over three. This one is easy. 

I: And let say you need to read this [ lim / ( x ) = 0], how would you read it? 



.365 

S: Limit o f / o f x... ok as x gets nearer to minus two, the function / o f x is approaching 

zero. 

I: Well. This is the last part. I ask you to find these three limits. 

[...] [He wrote quickly the answer for the last limit, one, and writes a proof using squeeze 

theorem, that doesn't work.] 

S: This one is tough [meaning the first two limits]... cosine... there's no finite number 

for it. This one is a very big big number. If you put cosine of a hundred is going to give 

you a number, if you put cosine of a bigger number is going to give you another number. 

So... did we see this in Cal 1? 

I: It depends on the teacher I guess... What about the exponential function. 

S: Yes, this I know, e to the infinity is infinity, e to the minus infinity is one over e to the 

infinity, one over... zero. This I know. Multiplied also by a big number is going to give a 

big number. 

I: Cosine of... 

S: a big number... 

I: will give you? 

S: Will be between minus one and one. Pi by two and minus pi by two, no? Two different 

numbers... gives small numbers. Maybe not. 

I: Could you use in some way the calculator to guess what these limits are? 
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S: If 1 don't know it, yeah, I can try bigger and bigger numbers to see what it approaches. 

[He tried in the calculator.] It gives different numbers. Let say cosine... gives a negative 

number. 

I: Are you doing the calculation just for the cosine or for both... 

S: No, just for the cosine. I know this is approaching infinity. [He tried more numbers.] 

Minus one. The answer is going to be between minus one, plus one. So whatever the x 

value is, even if it increases too. it is going to be oscillating. The value cannot be... 

I: You mean just for... 

S: Yes, just for the cosine. This is always infinity multiplied by the value [3.1]. This is 

zero multiplied by a number [3.2], No, this is not infinity. I think this is zero. Should I 

give a definite answer now? 

I: No. You said this is ... why do you think is zero? 

S: This is zero [for the exponential function], and this is approaching a small number [for 

the cosine], 

I: Do you remember the graph of cosine? 

S: Yes. It starts like this, right? [He started the graph at the point (0, 1) and graphs the 

cosine function to the right of thej-axis.] 

I: And what about to the other side? 

S: Same thing. Same thing as this. [He graphed to the left of the v-axis.] So even if it is a 

big number, the value is still gonna be between one and minus one. You can't... 
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I: So what the limit would be when x increases? 

S: I am taking this in Cal II now, something about this. This diverges [the cosine 

function], doesn't give... Oh, that's the topic. Convergence and divergence. If it gives a 

definite answer, then it converges. If it doesn't, it diverges. This is a divergent limit [the 

limit of cos(x) as x tends to infinity]. So there's no proper answer for it. 

I: Ok. And what about when you multiply by the exponential function. 

S: But this is unknown, I don't know what it is [3.1]. But this [3.2] is a number like say, 

between one a minus one, multiplying it by zero is gonna give zero, I think. This is my 

guess. 

I: Ok. And what about this one? [3.1] 

S: This is gonna give plus or minus infinity. If it's cosine of a negative number, maybe 

it's going to give you something negative. The number x chosen will give a negative 

number, multiplied by a big number gives minus infinity. 

S: And this is a rule [3.3]. Squeeze. 

STUDENTS21 

I: The first thing I ask you to do is... here are twenty cards, I ask you to classify them 

according to any rule of your choice. 

S: Like how easy they are? 

I: Anyway you like, anything that makes sense to you. [...] 
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S: I put these together because the limit as x approaches infinity [class 1]. And this one I 

left it on its own [class 2] because it's simpler. This one [class 3] is also simpler but I put 

it with this one. I put all the ones with division in one pile [class 4], I put the ones with 

sine function in one pile [class 5]. 

I: And this one [card 8] you left it alone because...? 

S: This one looks easier because it's a trinomial, on its own. There's no division or square 

root signs. 

I: And how do you read this [card 8]? If you have to read this aloud, what would you say? 

S: I'd say the limit of four x cube of seven x minus nine as x approaches one. 

I: Ok... These fractions [cards 11, 12 and 13] you didn't put them here [class 1] even if 

the limit was as x approaches infinity... 

S: I didn't see that. I guess they should go with this pile [class 1]. 

Class Members of class (labels 
refer to Table 3.3). 

Phrases used by the student in response to the question "what 
w as the rule of your choice?". 

1 4, 5, 11, 12, 13, 14 Limit as x approaches infinity. 
2 8 Simpler. There's no division or square roots. 
3 6 , 7 Also simpler. 
4 1,2, 3, 9, 10, 15, 16, 17, 18 With division. 
5 19,20 With sine function. 

Figure A21 (Copy of Table 5.21a). Student S21 's classification. 

I: The next thing, I ask you to solve some limits. 

S: Do I write on the paper? 

I: Yes, please. 



.369 

S: The limit [2.1] is zero because if you put one where the xs are you get zero over two 

and so the limit is zero. 

I: Ok. What about this one [2.2]? 

S: This one [...] I think it would be negative one. If you put two where the xs are it would 

be two plus three is five times one over four minus one which is negative five. So 

negative one. 

I: Ok. Just to know the way in which you are thinking the problem, when you looked at 

it, what was the first thing you did. 

S: I thought that I might have to multiply out the top, but then I saw that it would be 

simpler maybe if I just put the five. 

I: Ok. What about this one [2.3]? And if you can, while you are doing the problem, if you 

can think aloud so I can follow what you are thinking... 

S: Ok. So at the top and bottom there's a square term, like x square and four, two square, 

and x square and five square. If you put in the five I don't think it would be an 

indeterminate form. Twenty five minus four nineteen over zero. I think you have to fix 

that somehow. 

I: Why? 

S: Because if it is over zero I think it could mean infinity, or it's not defined. So you have 

to... I think maybe L'Hopital's rule... [...] At the top you could do also x plus two and x 

minus two. I think x plus two times x minus two over, it would not help though, x minus 

five times x plus five. It could be undefined? At five? 
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I: You mean the function or the limit? 

S: Yeah, I think the function is undefined. 

I: And how about the limit? Or let me ask you instead, for this problem here [2.1] that 

you wrote the answer to be zero, what is it that you have in mind when you say this is 

zero? 

S: Well, because at the bottom is a number but at the top one minus one is zero so zero 

divided by anything is zero, so I don't have to go any further and 1 say is zero. 

I: But the operation... When you say here the limit is zero or here is negative one [2.2], 

what's... does it have a meaning for you? [...] 

I: No? What about this one then [2.4]? 

S: Ok. I don't think there's any problem with this one because you could put in one. One 

to the power of anything is one, so it would be fourteen over three, and that would be the 

limit. So as the function... like on the x axis as it goes to one there's a limit of fourteen 

over three. 

I: And what do you mean when you say there's a limit of fourteen over three? 

S: It approaches the point fourteen over three on the;- axis. 

I: Ok, then what about this one. When x approaches five on the x axis... 

S: Could it be that the limit is undefined? Because the function does something maybe 

like is not going on a straight line, it could be like a curve? 



I: And what about this, let say you want to sketch on the y axis the idea of this, what 

would you sketch? 

S: Well, there's the x axis and there's a point one on the x axis and [...] This is below 

seven [the 14/3], Maybe close to five... whatever, it is fourteen over three. And I don't 

know how this looks like but maybe it could be, it could be something like this. No, no, 

that's an asymptote. So at fourteen over three, this is one. I think it could be something 

like that but I am really not sure. 

S: [3.1] Well, there's an e, that would keep growing. Cosine goes between one and 

negative one. Well, the cosine you can't really find it, it keeps going up and down so the 

limit doesn't exist. For the e to the x it would be positive infinity. It might be that you 

have to do L'Hopital's rule but I am not sure. Oh, no, because it's not a division. You 

have to make it a division, e x, because cosine is also one over secant. Then L'Hopital's 

rule you can do the derivative of the one on top over the derivative of the one on bottom. 

The derivative of secant is secant x tan x, I think. I think the limit... Well, since cos is 

either one or negative one it would be positive infinity or negative infinity. But since it's 

to infinity, it can't really exist. 

I: And what about this one [3.2]? 

S: [...] If e is to something negative, it'd keep growing but negative. Cosine is going 

between one and negative one. And I think it would be kind of the same thing except 

since e would be negative for here the values are positive, for here they would be 

negative and vice versa. 
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I: Do you think that if you could use your calculator, you could check somehow your 

answers? 

S: I don't think so, because the way it looks... it just looks it'd keep going up and down, 

and there wouldn't be a real limit. 

I: And could you check somehow this phenomenon of going up and down? With the 

calculator? 

S: No. 

I: What about this one [3.3]? 

S: Well, this is zero over zero, so you could do L'Hopital's rule, 1 think. Because we 

learned this and we are being tested now on this. So it'd be cos x over... oh, no, that 

wouldn't work. 

I: Why not? 

S: Because the bottom it's just dx. 

I: And...? 

S: I don't think you can cancel out the dx. Or maybe you can and it would be cos of zero 

which is one. 

I: What is it that you get here in the denominator when you cancel these out? 

S: One. 

I: Ok, do you remember any other way of doing this, that is not using L'Hopital's rule. 
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S: I don't really remember. I'd say zero over zero, undefined. 

STUDENT S22 

S: Just, does it have to be a logical order? 

I: Well, something that does makes sense to you. 

S: O.k. [...] O.k. 

I: That's it? 

S: Yeah. 

Class Members of class (labels 
refer to Table 3.3). 

Phrases used by the student in response to the question "what 
was the rule of your choice?". 

1 2, 9, 17 Equal top and bottom, the powers equal to two. Can be 
factored and simplified. 

2 6, 7 Constants. 
3 3, 10, 13, 14, 18 With square roots. You have to rationalize. Common methods. 
4 4 You can just simplify it and it will be nine over three. 
5 19, 20 Trigonometric. 
6 1, 5, 11, 12, 15, 16 Unequal top and bottom. Work out with rules. 
7 8 Substitute the A-. 1 just need to substitute the x. 

Figure A22 (Copy of Table 5.22a). Student S22's classification. 

I: O.k. Can you explain me the rule you chose? 

S: O.k. Well, this one is just, is equal top and bottom, the powers equal to two [class 7], 

Mmm, these are... these are just constants [class 3]. These are with square roots, so are 

by themselves [class 5]. These are unequal top and bottom, so I put them together [class 

6]. And this has trigonom... eh, trigonometric [class 2]. And these ones can be factored 

and simplified [class 7], 

I: O.k. so they go together? 
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S: Yeah. 

I: What do we have here, lim? How do you read this? [Pointing at card 6.] 

S: [Reading 6] Is the limit, is... well these are just constants, so the limit as x goes to 

infinity of seven so the answer is seven, 'cause these are just plain constants. Ah, this one 

is top and bottom are equal factors so it"s nine over three, because you can just simplify it 

and it will be nine over three the limit [looking at 4], Ah, these are square roots [class 5] 

so like there's gonna be like... if I have to take it... they are just square roots, so that's 

just a different... you just probably you have to rationalize and stuff like that, so there are 

like all these... all these common methods. These are like improper, I think that's what 

they're called, like top and bottom are not the same [class 6], so then I have to work that 

out with rules there. These are trigonometric [class 2] and this is just alone [showing 8] 

because... I think 1 just have to substitute x... 

I: Can you read it? 

S: Limit equals four x cube plus seven x minus nine... limit as x goes to one is four... of 

four x cube plus seven x minus nine... ? [Reading 8] And then these are just, these can be 

like factor and simplify to make it more easy to solve [class 7]. 

I: Next, I'll show you some problems like the ones you saw before but I'll ask you to 

solve them. 

S: To solve it? 

I: Yes. [...] 

S: 1 don't know if they are right though... [...] 
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I: O.k. Let have a look at the problems. Can you tell me in which way you solve this, 

what was it that you did? [2.1] 

S: Well, I just plugged in. [She first factored the denominator, but then erased her 

calculation.] 

I: You just substituted? 

S: Yes. 

I: And for this one? 

S: I simplified it... and after I simplified it, I substituted. 

I: So here [2.1] you substituted but not here [2.2] right? 

S: Yes, I simplified it because 1 thought it could be simplified but if 1 don't simplify it 

instead [tries the problem without simplifying, doing direct substitution] but I guess I 

could've done substitution, it doesn't matter... yeah, I could have right? Because it gives 

the same answer... ? Five divided by... four minus... yeah, it gives the same answer. 

I: Do you know why in this case you don't need to simplify? 

S: Yes, because nothing here equals zero so I didn't really have to simplify. 

I: And what about this one? [2.3] 

S: This one 1 don't know. 1 think... because 1 couldn't figure it out, 'cause the 

denominator equals to zero and 1 can't simplify to make it not equal to zero. Then I 

realize that it was irrational function 1 realize there's probably an asymptote at x equals 
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five so then when x equals... approaches five aah, the limit as x approaches five is 

infinity. 1 guess, but 1 wasn't sure about it. 

I: Did you try substitution first? 

S: No, I just simplified it [she factored the denominator], but even, well even if... well I 

did it mentally and is zero at the bottom. 

I: But do you remember when you did the problem, did you try substitution first? 

S: No, I simplified it 

I: And what about this one? [2.4] 

S: In this one I tried long division and then realized it wasn't gonna work [she tried long 

division and then erased it], then I realize that's when you can do just substitution. 

I: O.k. I will give you the last one [meaning the last set of problems, part 3]. 

S: I am bad? I'm not helping? 

I: No, no, you are helping. 

S: Oh my gosh [staring at the problems in part 3]. [...] Can I use cal two? 

I: Yes, yes. [...] 

S: O.k. These ones don't exist [3.1 and 3.2] and this one equal to zero [3.3]. 

I: How did you do this one? [3.3] 



S: Well, this one I did it mentally I guess, in my head I pictured the graph of sine and 

then I figured when x approaches zero it's zero, and then zero, so it'll be zero divided by 

zero which is really indeterminate or like it doesn't exist also [she wrote "0 / doesn't 

exist"], that's what I think, or indeterminate. And this one it's just, 1 know, this is equal to 

ah... e to the infinity is infinity and then cos x is the same thing as this [pointing at a 

graph of cosine she did] so it has no limit as it approaches infinity, so just both don't 

exist. 

I: O.k., as x goes to infinity, the cosine it's like this and you say the cosine of x doesn't 

have a limit. But you think i t s the same for the product? When you multiply by e to the 

x? 

S: Yeah, well, just doesn't exist. 

I: And the same will be for this one [3.2] even if this changes [-co instead of +°o]? 

S: Well, yeah. It's just going on the other direction, but like cos just goes on like this. So 

it just gonna give infinity in both ways... I guess... And everything times infinity should 

give infinity, so this just doesn't exist. 

I: If you could use your calculator... could you test your guesses, somehow, with your 

calculator? Tell me before you punch anything what would you do with the calculator? 

Let say we are looking at this one [3.3]. 

S: Well, I'll put sine zero first. Then I'd realize is zero. 

I: But sine x divided by x... So that wouldn't help... Let see what gives you when you 

put sine zero divided by zero. 
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S: Error. 

I: Error. Yeah, so you can't do that. 

S: So it doesn't exist. 

I: Is there anything else you could do just to get a sense...? 

S: Well, now I am thinking of cal two because we just did like indeterminate forms and 

stuff like that with L'Hopital's rule, but then I don't know if I can apply to that because I 

don't remember if it has to be the derivative and 1 don't remember my exact rules. 

I: What's the derivative of sine x? 

S: The derivative? Cos x. 

I: And the derivative of x? 

S: Oh, yeah, but L'Hopital's rule is integrate, you have to integrate... the integral of sine 

x, that's what I would do... now I mixed up my rules. But 1 don't know what I would do. 

I don't know I mixed up my rules. 

I: Suppose using this calculator and instead of zero you put zero point one. [She just 

calculates sine of zero point one.] Yes, but the function is divided by x. 

S: O.k., it approaches one. And then sine of point zero one divided by point zero one, 

one. So it approaches one. So as x approaches... point zero zero one divided by ... 

I: So you repeat with many more zeros... and what are you observing? 

S: That it is approaching one. 
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I: You've got zero point nine nine nine... 

S: Yes. 

I: Is this convincing for you? 

S: Yeah. 

I: You would put equal one here? 

S: Yeah. 

I: So what equals one? Is it the limit? Or is it sine of x over x? 

S: No, it's the limit as x approaches zero of sine x divided by x is equal to one. 

I: You think you could use this idea to get the other two? 

S: So I'll put really big numbers? But then cos it's just always oscillating. And then it's 

multiplication so it's just cos of... let say a big number [punching in the calculator], but 

it's just going like this [pointing at the graph she did], O.k. times... 

I: But for you it doesn't exist. 

S: No... O.k., I'll do cos of five hundred first and then we'll do a bigger number after, 

times e\o. . . error. 

I: O.k. Cosine you say it's oscillating. Sometimes positive, sometimes negative. 

S: [She did some calculations with smaller numbers.] So positive and minus infinity? So 

it doesn't exist. 
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I: You were saying before... that here doesn't make much difference [pointing 3.2] 

because the graph is the same. But what about for this one? [Pointing at the exponential 

function.] 

S: Well, I think if I am not mistaken, the graph of e to the x is something like that [graphs 

the exponential function]... that I can check with the calculator... e to the zero is one, so 

it's going like that... 

I: So what's the limit of e to the power of x as x goes to minus infinity? 

S: It's zero. 

I: And then you are multiplying it by cosine ... 

S: Really big? 

I: No, cosine is never really big or really small... it's between one and negative one. 

S: So minus infinity times... if it's going to minus... if it's going to zero... Then it's zero 

because anything time zero... so it is equal to zero. 

I: What it? 

S: Negative... as e to the negative infinity the limit o f x as x approaches... the limit of e 

to the x as x approaches negative infinity is zero. 

I: And the limit of this whole function? [Meaning the product of the exponential with the 

cosine.] 

S: Is zero... But you just convinced me two seconds ago that it was infinity. 
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I: No... why did 1 convince you? 

S: Why? Because we were talking about this... now I don't remember. 

I: No, I was just trying to follow if you were talking about e to the x only, or e to the x 

times cosine x, that the limit is equal to zero. But now you are convinced that limit of e to 

the x when x goes to minus infinity is zero. 

S: Yes. 

I: But what about this whole function? 

S: I don't know. 1 don't know. 

I: You don't know... 

S: But then we can use like the rule [she starts writing the product rule for derivatives 

applied to this function]. But I don't even know if that's when you apply the rule... E to 

the x plus e to the x cos x.. . does not even it. 

I: You mean using L'Hopital's rule? 

S: No, the quotient rule. Or the product rule. But when we use the product rule? Now I'm 

mixed up in my head. 

STUDENT S23 

I: These are twenty cards, I ask you to classify them according to any rule that makes 

sense to you. 

S: So like... 
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I: You have to make groups... separate them in any way that has a sense to you. [...] 

S: I am allowed to ask you what this limit is [card 20]? 

I: Mmmm, why? In which way are you classifying? 

S: Because this is one [card 19], I think... and this [card 20] is zero? 

I: What's the rule you are using for the classification? 

S:Well, these are complicated polynomials with cubes, these are ones that won't take me 

very long to solve, just factoring, stuff like that, this is most by the conjugate, this is on 

its own... [he is still doing the classification]. Can I make as many groups as I want? 

I: Yes. [...] 

S: Ok, I am done. 

I: So what's the final classification? What are the groups? 

S: Multiplying by the conjugate [class 1], Cancelling out, very simple cancelling out 

[class 2 and 3], More complicated, cubes [class 4 and 5], No cubes and no multiplying by 

the conjugate [class 6], This is a definite answer, polynomial [class 7], 
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Class Members of class (labels 
refer to Table 3.3). 

Phrases used by the student in response to the question ''what 
was the rule of your choice?". 

1 3, 10, 18 Multiplying by the conjugate. 
2 12 There's no xs. Simple cancelling out, x—»oo. 
3 2, 9, 15, 17 Simple cancelling out. 
4 4, 5, 11 More complicate, cubes, x—>oo. 
5 1, 16 More complicate, cubes. They look very similar to me [...] 

you'd use the same technique to solve them. 
6 13, 14 No cubes and no multiplying by the conjugate. 
7 8 Definite answer. 
8 6 .7 There's no xs. 
9 19, 20 They are both sines. There are some similarities. 

Figure A23 (Copy of Table 5.23a). Student S23's classification. 

[In the following discussion he changed the classification so that the final result is what's 

shown in the table above.] 

I: Why did you combine these two [cards 1 and 16 in class 5]? 

S: They look very similar to me, ljke you'd use the same technique to solve them. 

I: And this [class 8]? 

S: Where there's no xs. 

I: And this [class 7]? 

S: Definite answers. 

I: When you say definite answers, what do you have in mind? 

S: Well, because is x to a number and it's all the same techniques. I guess I would 

separate divisions from the others. 

I: And how do you think this is different from this one? 
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S: Mm, I guess is not. I guess this should go here, and so this, and that one. But not this 

one. 

I: Why wouldn't you change that one? 

S: Because of the cube, I remember the technique is not the same. I don't remember all 

the techniques. 

I: And these two go together [class 9]? 

S: Well, they are both sines, I know this is one [card 19], I am not sure about this one 

[card 20], but still there are some similarities. 

I: Ok, so the next part, I ask you to solve some limits, and if you can sort of think aloud? 

S: Ok, factoring the x, that's the first thing. Actually I don't know if that's going to help 

me or not. I think at that point I get... maybe I factor out the top to see what that gives. 

It'd be one minus one over x, in my head 1 replace it with one, so it's one times zero. So 

zero over two, the answer is zero. 

I: Why your first step was to factor the x? 

S: I don't know, I think... I just been trained to see factors. 

[2.2. He factored, cancelled and substituted.] 

S: [2.3.] 1 replace... so it's over zero, plus infinity? [2.4.] Factoring out the x square top 

and bottom I guess. Now 1 notice this is _Y to one. This cancels out... fourteen over three. 

I: What were you saying about x to one? 
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S: After I did this steps... we use to that when it was only x to infinity. It doesn't change 

anything in here. 

I: And if you had notice in the beginning that x goes to one, what would you do? 

S: I would just put in the one, to see if it works out. 

I: And if you look at the other problems now, do you think it was necessary to factor? 

S: No, it wasn't. 

I: And what could you have done instead? 

S: Just replace. But I always factor, no matter what. 

I: When you look at this expression [ lim / ( x ) = 0], how do you read it? 

.R—»-L ' 

S: I think/of x equals zero. 

I: And if I ask you to read it for me, what would you say? 

S: Limit of the function/equals zero from x to negative two. 

I: And does it have a meaning for you? 

S: I don't know. I kind of forget the meaning of limits. 

I: Ok, the last thing. 

S: I know this is one [3.3]. 1 don't know why I remember this, but when I see sin x over x 

I remember is one. 
I: Is sine of x over x that's is one or the limit of sine of x over x... 
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S: I think is the limit, but whatever you want... 

I: Do you remember why this is one? 

S: I remember looking at a graph and getting smaller, vaguely. 

I: If you didn't know the answer was one. If you didn't remember, could you still figure it 

out? 

S: Probably plugging numbers? 

I: Ok, how would you do that? 

S: Sine of five... and then closer to zero. 

I: Which other numbers? 

S: What do you mean? 

I: Well, you said you'll plug in five first, what you'd do next? 

S: Plug in one? First I plug in zero. Sine of zero is zero. 

I: So what happens if you plug zero? 

S: I guess it would be one [because of the zero over zero] or zero. Well, zero over zero is 

a... what's the word in... 

I: Indetermination? 

S: Yes, 1 don't know what I'd do. 

I: And what about the other two. 
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S: I think there was a rule about this but I don't remember. 

I: Do you think that you can use the calculator to figure out these limits? 

S: If I was desperate, I'd probably try plugging in numbers. 

I: And which numbers would you try? 

S: I don't know, probably five, I like number five. I know that wouldn't work. Like I'd 

do every other question on the test and then come back to this one. Usually there are 

more problems with simple questions. 

I: If you have to look at them independently [I write lim ex and limcos(x)] and in this 
.V-> J > > J 

case these limits [I write lim ex and lim cos(x) ]. Do you know what to do in this case? 
A * - X .V—> -<r 

S: e is just a number so to infinity it would be infinity. Cos is a different thing. Now I 

remembering the unit circle but I don't think that helps. Well, cos of any number gives 

you just another number. Infinity times any number is just infinity. I guess the answer is 

negative or positive infinity. Because with cos you can get positive or negative. And here 

[3.2] the same. 

I: What happens with the function e to the x as x goes to negative infinity? 

S: Oh, negative infinity, so zero. Thanks. So this one would be zero. 

I: Why it would be zero? 

S: e to a really small number would be zero. Oh, no, limit zero, thank you. 
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I: What do you mean by what you wrote there [next to 3.2 he wrote lim ]? 

Y-»0 

S: Is not zero, it's very close to zero. 

I: So this you say zero [3.2]? 

S: No, very close to zero. 

I: And when multiplied by cosine... ? 

S: Well, cosine of any number is just another number so... 

STUDENT S24 

I: So the first thing I'll ask you to do... here are twenty cards with different statements. 

I'll ask you to classify them into groups according to any rule that makes sense to you. 

S: Ok, ok. [,..] 

I: Ok, can you explain me each of the groups? 

Class Members of class (labels 
refer to Table 3.3). 

Phrases used by the student in response to the question "what 
was the rule of your choice?". 

1 6, 7 Just a number in them. 
2 2 , 5 , 9 , 12, 15, 16, 17 Squares. Squares at the top. 
3 3, 10, 13, 14, 18 Roots. Roots at the top. 
4 1,4, 8, 11 Cubes. Cubes at the top. 
5 19, 20 Sines 

Figure A24 (Copy of Table 5.24a). Student S24's classification. 

S: I kind of went through a pattern... These are with just a number in them [class 1]. 

These are with squares [class 2], these are roots [class 3], cubes [class 4] and sines [class 

5], Squares at the top, roots at the top, cubes at the top, and sines. 
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I: Ok, so that was the first thing that came to your mind when you started classifying 

these. 

S: Yeah, just like that. 

I: If you have to read this [card 8], let say you are talking with a friend on the phone, and 

you have to read this to your friend, what would you say? 

S: The limit as x approaches one of four x cube plus seven x minus nine. 

I: Ok. Next I'll ask you to solve some limits. And if you can sort of think aloud so I can 

have an idea of what you are thinking when you look at these... 

S: Ok, so you can't put it in right away because it gives zero on the top. So... 1 don't 

write limit as I do it, I write it at the end. [She did not write limit at all.] The bottom is x 

times x plus one. [...] I think this is completely wrong. [She scratched her first step, which 

was factoring the denominator.] I can't remember... 

I: You said before you can't... 

S: You can't put it right away because it gives zero on top. 

I: And what do you get below? 

S: Two. 

I: And what's zero divided by two? 

S: It's just zero. You can just do that? Yes, so the limit equals zero. 

I: What about this one? [2.2] 
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S: [...] Two plus three times two minus one over two square minus nine equals five times 

one over negative five equals negative one. [2.3] In this case I have zero on the bottom, is 

it? So x plus two times x minus two over x plus five times x minus five [...]. I don't know. 

[...] If it's zero on the bottom, it's just infinity. I don't know. 

I: What did you just say about infinity? 

S: If it's zero on the bottom it becomes infinity. 

I: What is it that becomes infinity? 

S: It's undefined. Is it possible it's just undefined? So twenty one over zero. 

I: When you say undefined you mean twenty one over zero is undefined or the limit is 

undefined? 

S: The limit is undefined. 

I: Ok, what about this one? [2.4] 

S: One cube plus four times one square plus nine over one square plus two. One plus four 

plus nine over one plus two. Fourteen over three. 

I: Ok, let say maybe in this one... When you write, or when you see written the limit as x 

goes to two of this expression equals negative one... what's the meaning of that for you? 

S: Like in a graph? 

I: What does it bring to your mind? If the teacher is speaking or you read in a book the 

limit as x goes to two of this function equals negative one... [...] 
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I: What come to your mind? Nothing? A concept? An idea? A graph? 

S: Well, a graph? 

I: Ok, in terms of a graph... what? 

S: Well, if x is approaching two, the graph is here at negative one [she draws a pair of 

axes and the point (2, -])]. 

I: You mean that point? 

S: Yes. 

I: Ok, the last. 

[She wrote wrong answers very quickly.] 

I: Ok, why did you say this is infinity [3.1]? 

S: Because e to the infinity is infinity. 

I: And why did you put here minus infinity [3.2]? 

S: I figured because it's negative infinity it would just be infinity. 

I: So e to the negative infinity... do you think it's negative infinity? Why do you think 

that in both cases the multiplication, multiplying by the cosine, doesn't make a 

difference? [...] Because you say e to the infinity is infinity, right? But why when you 

multiply by the cosine you still get infinity? 

S: Cosine of infinity, 1 don't know w hat that is. So 1 figured it would probably be a very 

bie number. 
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I: Ok, if you could use somehow your calculator to check your answers... how would you 

do it? 

S: I would try cosine of one and then cosine of a hundred and see if it gets to infinity... 

I: Can you try? 

S: [She tried some numbers.] Yes, it increases. 

I: Which numbers did you try? 

S: One and one hundred. 

I: And what did you get. 

S: That it increases. 

I: Let say you were looking at this problem [3.2] and you couldn't guess the negative 

infinity. How could you use your calculator to try to find an answer? 

S: Cosine of negative one... cosine of negative a hundred, so it gets bigger. E to the 

negative one... e to the negative a hundred... it's a much small number. It's a much 

smaller number. So probably that one will equals zero. E to the negative infinity just 

keeps going closer and closer to zero. 

I: And what about the last one [3.3], can you try something similar with the calculator [as 

answer she wrote undefined and 0]. 

S: Yes, sine of zero is zero, so zero over zero... is that one? [She punches zero over zero 

on the calculator to check.] Or undefined? Undefined, so it's zero. 
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I: Why is it zero? 

S: Because the top is zero. Sine x is zero so it'd be zero zero which is zero. Or is it 

undefined? 

I: Well... it depends on the problem... I just want to be sure 1 understand what you are 

saying... You mean that sine of zero over zero is zero? 

S: Zero over zero is zero. 

I: Ok, so that's just for this, right? [I mean the expression that she wrote before.] 

S: Yes. 

I: But what about the limit? Is there any difference between this expression here, the limit 

as x approaches zero of sine of x over x and this expression here [just s in(°) ]? 
0 

S: You get the limit when you put it in, when you make x equal whatever the number is 

here [in the expression x—>c]. 

I: Ok, but zero over zero is an undefined calculation, you cannot do it. So this is 

undefined. 

S: So the limit is undefined. 

I: But what is undefined is zero over zero. Still the limit might exist, depending on the 

problem. Do you think you have a way to check whether is the limit undefined or not? 

S: There's probably a way... 
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I: Ok... 

S: I don't remember. 

I: In here [3.1 and 3.2] you chose one and one hundred and negative one and negative a 

hundred. Why did you choose those numbers? 

S: Well, because negative infinity is a really big number, I mean really small number, so I 

figured negative one and negative a hundred, which is even a smaller number... 

I: And do you think that this idea of picking numbers, like negative one, negative a 

hundred... Could you apply this idea to this problem [3.3]? Instead of replacing x by 

zero. 

S: I guess so. I put zero because this [jr—>0] told me it should be zero. I guess you could, 

if it gives you a proper number. 

I: Which kind of numbers could you use? 

S: Maybe again the one and the hundred? 

STUDENT S25 

I: So the first thing is... these are twenty cards, I ask you to classify them according to any 

rule of your choice. 

S: Like the answer? 

I: Whatever you feel you say you want to classify these for yourself. 

S: Ok. [...] Ok. 1 think that's it. 
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Class Members of class (labels 
refer to Table 3.3). 

Phrases used by the student in response to the question "what 
was the rule of your choice?"'. 

1 4, 5, 6, 7, 8, 10, 17 Real answer. 
2 2, 9, 11, 12, 14, 15, 16, 18, 20 Answer is infinity. 
3 1,3, 13, 19 Answer is zero over zero or infinity over infinity. 

Figure A25 (Copy of Table 5.25a). Student S25's classification. 

I: Can you tell me what was the rule for classification that you chose? 

S: I chose if they have like a real answer [class 1], the ones where the answer was infinity 

[class 2], and when the answer was zero over zero or infinity over infinity [class 1]. I 

think so... 

I: Ok. How do you read this [card 8]? If you have to read it aloud, what would you say? 

S: How would I read the answer? 

I: How do you read this sentence, this expression? 

S: Oh, limit from... limit... limit going from... limit going x towards one of four x cube 

plus seven x minus nine. Limit of x going towards one, yeah. 

I: Ok. Next I ask you to solve a few limits [2.1]. [...] 

S: This I think is just zero, I think. Like if you just plug in you get zero over two. 

I: So you just plug it in? 

S: I don't remember if you are suppose to do the thing... to factor the highest degree from 

the top and the bottom, because I'd have one over one and one over one which is one. 

I: Why would you have one over one? 
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S: Ah... because you have, because this would be... over one minus one over x... oh, no, 

so it'd still be zero, zero over two, so zero. 

I: Ok. What about this one [2.2]? 

S: [...] Negative five? You just put two where x is. [2.3] I don't remember if you are 

suppose to take the x square out... probably you get the same... just positive infinity. 

I: Do you think it might be the case when you solve the problem just by substitution, like 

you did here, and when you do some algebra you get something different answers? 

S: Well, I remember that sometimes yes. I think that is when you are going towards 

infinity, then you get a different answer when you do this. 

I: And these are two different answers or one is the right one and the other not. 

S: Yes, I think so, I think that if it's going towards infinity you have, I think I remember 

now, you have infinity over infinity, you are suppose to factor out the highest degree and 

then get a real number as your answer. 

I: Ok, so this is your answer, and what about this? 

S: I was saying, if x is going towards infinity... 

1: But if they are different? 

S: If they are different I think this is the right answer. 

I: Ok. 

S: [2.4] Fourteen over three. 
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I: Ok, the last thing I ask you to do. 

S: Ok. [...] Well, 1 don't think cos of positive infinity exists. Doesn't just cos goes from 

negative one to one? So I 'd write it doesn't exist. But I am sure there might be some sort 

of technique for these... or something. 

I: So you are saying that the limit of the cosine function here doesn't exist. But what 

about this function, that is a multiplication. 

S: Well, this would be positive infinity [for the exponential function], but it still wouldn't 

exist because cos of positive infinity doesn't exist. 

I: And what about this [3.2]? 

S: The same thing though this would be going towards zero [for the exponential 

function]. Yeah, that would be going towards zero, and that doesn't exist. So I don't 

remember if there was some sort of technique to solve this. I don't remember. 

I: But if you had to... guess what the answer is... 

S: I'd say they don't exist. And now I remember there was a technique for this too, I sort 

of remember the answer being one... equal one. 

I: If you could use the calculator to try to answer these two problems [3.1 and 3.2], what 

would you do? 

S: Well, it's going to say error if 1 put cos of two [he tries that]... I though cos could only 

be on one... but here I just get a value. Does cos go from negative one to one? 

I: What do you mean by goes from negative one to one? 
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S: Like the values... 

I: Do you remember the graph? 

S: It's like that and it's... like that isn't it? 

I: So what is it that goes from negative one to one? The x? 

S: They goes between negative one and one. So it's the arccos that doesn't go with more 

than one... So cos of a really big number gives me an error. Is it one, cos of infinity? 

Sorry, what did you ask me about the calculator? 

I: If you could use to figure out the limits... would it help you in any way to use the 

calculator? 

S: No, I don't think so, I don't think it would help me with the answer. 

I: What's the meaning of the answer of this problem? 

S: Well, at infinity, at wherever infinity is, this... 

I: Or what about this one [3.3]... when you say that this equals one, what's the meaning of 

that answer? 

S: Oh, I do not know, I thought that for some reason the answer is one, but if you plug in 

zero you get zero over zero. 

I: But let's say it is one. What's the meaning of saying that the limit of this function 

equals one? 

S: The function of sine of x divided by x gives you one. 
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I: The sine of x over x gives one? Or the limit? 

S: Oh, right. The function of sine of x going to zero divided by x going to zero gives you 

one. 

I: And when you say going to zero, what is that you are thinking? 

S: Numbers very close to zero? 

I: Numbers very close to zero for sine of x or for xl 

S: Both? 

I: So the operation here is sine of x divided by x when x is very close to zero... can you do 

that in the calculator? 

S: Ah... Like a very very small number? [He does that.] I get one. 

I: And using that idea, can you try something for these ones? 

S: e to the one million, e to the ten million I get an error, for cos I get negative one, so it 

wouldn't exist if e cannot go to ten million. But I thought the function e was like this, so 

in my head I would have thought e to the x at positive infinity is just positive infinity. 

I: Yes, the calculator is giving an error because the numbers are too big, so it doesn't fit 

in here. 

S: So I'd get going to positive infinity... I am going to have cos of ten million... 
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STUDENT S26 

I: These are twenty cards and I ask you to classify them into groups according to any rule 

that makes sense to you. [...] Ok, can you explain me what your rule was? 

Class Members of class (labels Phrases used by the student in response to the question "what 
refer to Table 3.3). was the rule of your choice'?'". 

1 6 , 7 Constants. 
2 2 ,4 , 9, 17 The thing on the top and the bottom. 
3 1, 11, 12, 15 These the power is more in the top than the bottom. 
4 5, 16 These the opposite. 
5 3, 10, 13, 14, 18 Square roots. 
6 8 
7 19,20 Sines. 

Figure A26 (Copy of Table 5.26a). Student S26's classification. 

S: I did the constants [class 1], And here 1 did the thing on the top and the bottom [classes 

2, 3 and 4], these the power is more in the top than the bottom [class 3] , these ones the 

opposite [class 4] and these ones the roots [class 5], And the sines [class 7], 

I: Now I ask you to solve some limits and if you could think aloud... 

S: [2.1] Ok, this is zero over two. So this is not an indetermination. [...] So, we just learn 

the L'Hopital's rule... but that's for zero over zero. So 1 factor the bottom... But the limit 

is zero. Zero over two is zero. [2.2] Nine... I just put the numbers in... five times one 

over... [...] [2.3] Twenty five minus twenty five... I can't factor. [...] I want to get rid of 

the x minus five so I factor x minus five from the top. [...] The bottom approaches zero so 

it's going to be plus infinity of minus infinity, so 1 just plug in a positive numberto see if 

it's positive or negative. The limit as x approaches five from positive... I put five point 

zero something, this is positive so plus infinity, and the other is minus infinity [he did not 

use the calculator for this]. [2.4] [He wrote the right result.] 
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I: Ok. I ask you a few questions about them... Why did you think you still factor here... In 

the beginning you did substitution, and you realized it was zero over two. Why did you 

still factor the bottom? 

S: I tried maybe... because by factoring maybe it would cancel... could have been easier, 

but if it doesn't work I just plug it in. 

I: Do you think you can get a different answer by doing the factoring than the answer you 

got in the beginning? 

S: Probably it's not gonna work the factoring. You have x minus one and x plus one, so it 

won't work. 

I: What about this one? You factor here and then... 

S: I tried to factor an x minus five from the top but I still got an x minus five so it didn't 

work. Then it was approaching zero so it was infinity. 

I: Do you know what was the rule for not to keep getting the x minus five? 

S: The conjugate? 

1: How should be this polynomial so that when you do long division you don't get a 

remainder? 

S: This should be a factor of x plus five... a perfect factor. A four can't divide a five. 

I: And then you went back here and you saw... 
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S: Well, something divided by something closer to zero is infinity. So I plugged a number 

bigger than five to see if was positive or negative. 

I: So do you think all this calculation was needed or you could just avoid it? 

S: You could just avoid it but... yeah, you could avoid it. If it's a number over zero you 

don't need this. 

I: Just one more question... Why did you still do it? You didn't realize in the beginning 

that was a number over zero? 

S: I realized somehow but whenever I see a fraction, I see the factoring first. If I look at 

this, 1 don't see x square minus four, I see x minus two, x plus two. By doing this I see it 

better, and then I saw the x minus five and that's zero and... 

I: Ok. The last one. If you can, like before, let me know what you are thinking. 

S: Yes. This is an indetermination of infinity times infinity... well cos... is infinity times a 

number. [...] The limit as x goes to infinity doesn't exist because this is a wave, so this 

limit [the product] does not exist. 

I: What about the other one [3.2]? 

S: This is the same graph [for cosine] and e to the x... same thing, it shouldn't exist 

because e to the x goes to infinity... because the graph of e to the x... let me see my 

calculator, e to the... 

I: What did you try with the calculator? 
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S: I tried to put in some numbers. I tried a hundred and then a thousand, to see if it keeps 

growing or if it comes back. 

I: And what did you get? 

S: Putting a hundred I got negative, and then with a thousand I got positive, and then 

negative again. So this doesn't exist... both of them, because one is positive infinity and 

the other is negative infinity. 

I: Do you want to try with the calculator [3.2]? 

S: Cos of a negative angle times e to the... this is gonna come close to zero. So this is 

going to be e to the negative one hundred times cos... this is gonna get closer to zero. So 

the graph is like this... on this side doesn't exist but on this side it gets to zero. 

I: What about this [3.3]? 

S: This is one. It's zero over zero but if you do the L'Hopital's rule is going to be cos 

over one, cos of zero over one, so this is one. 

I: Do you remember any rule that is not using L'Hopital's? 

S: By doing the triangles in the circle, because the sine... if you draw the circle and a 

triangle like this, this is one, this is sine and this is cosine, so this is the same... what you 

do you look at it like this, the value here is bigger than this triangle and smaller than this 

triangle so when you do this smaller than this smaller than this and then you can cancel... 

do the limits and this limit is going to one and this limit is going to one so this has to go 

to one. 
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STUDENT S27 

I: The first thing I ask you to do is... this are twenty cards, I ask you to classify them into 

groups according to any rule of your choice. [...] 

S: Does it matter how many groups there are? 

I: No. [...] 

Class Members of class (labels 
refer to Table 3.3). 

Phrases used by the student in response to the question "what 
was the rule of your choice?". 

1 6 , 7 The limit is to a number. 
2 1 , 2 , 3 , 8, 9, 10, 15, 16, 17, 

18, 19, 20 
The .x is going to a number. 

3 4, 5, 11, 12, 13, 14 Functions going to infinity. 

Figure A27 (Copy of Table 5.27a). Student S27's classification. 

I: Can you tell me what was the rule? How did you decide to put them in one pile or the 

other? 

S: I figure it what was the limit was going to, like what kind of limits but 1 just wasn't 

sure... 

I: Ok, so you put these two [class 1] together because...? 

S: They both the limit is to a number. 

I: And this pile? 

S: They are all functions with the x going to a number [class 2], And those are all 

functions going to infinity [class 3]. 
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I: Ok, good. Then I ask you to solve some limits. And, as much as you can, when you are 

solving the problems, if you can think aloud so I can keep track of the ideas coming to 

your mind. 

S: [2.1] Ok, I replace x with one, so it becomes one minus one over one plus one, which 

is zero over two... So the limit as it goes to the right and to the left... [...] [she wrote 

X—1 1 X—1 1 
lim — = — and lim = ' — ] Then... it goes to... 1 don't remember what it 
*^x2+x 2 x^>rx

2+x 2 

happens when it does that. 

I: Why do you say this is a half? What is the calculation that you did? 

S: Because these numbers are a lot bigger than one and... oh, wait. Oh, no, it should be 

zero, shouldn't it? [She wanted to erase her work.] 

I: No, please, leave it, just write on the side. If you want you can cross it. [She crossed it.] 

S: Ok, so this should be zero [she wrote the result of the direct substitution 0/2 and then, 

this equals 0]. 

I: If you have to read this [2.1] aloud, so you have to read it to someone else, what would 

you say? 

S: The limit of x minus one over x square plus one as x goes to one. 

I: What about this one? [2.2] 

S: Five times one over... minus five, minus one. 

I: Why did you open this problem [2.1] into these two different problems? 
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S: Because the upper part of that one goes to zero as x approaches one, so you can't solve 

it. 

I: Ok, next this [2.3], [...] 

S: This one you have to open it up also, I think [she means considering x—>5" and 

x ->5+ ]. [...] Can I use my calculator? 

I: Yes, of course. 

[She tried some numbers in her calculator.] 

S: So that approaches infinity... and this negative infinity. 

I: What did you use the calculator for? 

S: I just did twenty one divided by little little numbers close to zero. 

I: Ok, last one [2.4]. [...] 

S: Fourteen over three. 

I: Ok, the last thing. [...] Why do you think that one [3.1] is plus infinity? 

S: Because e to the power of very big numbers is very big numbers, and the cos of very 

big numbers I don't know. I thinks is bigger numbers, but I don't know. [...] This gets 

smaller, so it would be zero. 

I: Do you think you could use the calculator to check if your guess is right? 

S: What? 
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I: Because you say that here is zero... Why do you say here is zero? 

S: This one I think of plus infinity but when I put big numbers it gets smaller, so that one 

goes towards zero and zero times anything is just zero. 

I: Do you remember the graph of the cosine function? 

S: Yeah. 

I: Can you draw it? 

S: 1 think it's [she gets a good sketch of the cosine function.] 

I: Can you read on the graph what the limit would be? 

S: No, not really. 

1: And if you wanted to test... You were saying anything by zero gives you zero. Let's say 

you were not sure and you wanted to check with your calculator if this answer is right. 

Would you be able to test that? Would the calculator help you in any way? 

S: I think so, because I could plug first one hundred and then a thousand and then... 

I: Can you do it? 

S: Yes. Cosine of a hundred is point eighty six, then cosine of a thousand is point fifty 

six, then cosine of ten thousands is negative point ninety five... So... 

I: That would be to check for the cosine function, right? Could you check for the whole 

thing? 
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S: Yeah. E to the one hundred is two point three ten to the forty three, so a big number. 

Then time the cos which was point eighty six... it's a very big number. So it's a very big 

number. So maybe it does go to infinity? 

I: What about this one [3.2]? 

S: e of a power of negative a hundred is a very very negative big number so negative 

infinity... because the cosine of a negative number is the same as the cosine of a positive 

number, so that won't change. 

I: Why negative infinity? Which of the two is going to negative infinity? 

S: e to the x, I think. 

I: What did you get here? 

S: Oh, no no no, wait, zero. Sorry, yeah... times ten to the negative forty four. 

I: What about the last one [3.3]? 

S: I don't remember the trick for this one. What the trick was? Oh, my god. 1 believe it's 

zero, but I don't remember why. 

I: Can you check with the calculator? 

S: Well, sine of zero is zero. And zero... is divided by zero, so zero over zero. The limit...-

but I don't remember, I don't remember the proof for it. 

I: Could you use the calculator to verify... to check if the thing you remember is right? 

S: 1 don't remember what it was. 
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I: But I mean using the calculator as you did before. 

S: Taking the sine of zero? 

I: I mean doing some calculation that would help you to check... 

S: Oh, I could take the limit as x approaches zero from the right of sine of x over x, for 

numbers bigger than zero, as point zero zero one [she does the calculation for point zero 

zero one], the limit approaches one. And the limit as x approaches zero from the left. [She 

does the calculation for negative point zero zero one.] It approaches one. 

I: So what would you say about the limit? 

S: That it approaches one? 

I: I am curious now about the distinction you did here. Here you said, when you were 

calculating this part, you were saying this [ x —»0+] is for numbers just above zero? What 

this [ * _>.o ] means for you then? 

S: When x is exactly at zero. 

STUDENTS28 

I: These are twenty cards, with different statements... and I ask you to classify them into 

groups according to any rule that makes sense to you. 

S: I start now? 

I: Yes. [...] 

S: There's so many possibilities. 
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I: In which sense. 

S: Well, I could place them by order of polynomial or if the limit is infinity or definite 

number... Here I put all polynomials where the degree is higher in the numerator than in 

the denominator... This is a kind of tricky question... 

I: But there is no right or wrong answer... 

S: I know, but I am looking for an order that is... [inaudible] [...] 

[He took paper and a pencil to quickly find the limits he could not figure out in his mind.] 

[...] 

S: Ok, I think am done. 

Class Members of class (labels 
refer to Table 3.3). 

Phrases used by the student in response to the question "what 
was the rule of your choice?'". 

1 5, 7, 9, 14 The limit go to zero. 
2 11, 12, 15, 16, 17 The limit is plus/minus infinity. 
3 1 , 2 , 3 , 4 , 6, 8, 10, 13, 18, 19 Finite numbers that are not zero. 
4 20 Divergent. 

Figure A28 (Copy of Table 5.28a). Student S28's classilication. 

I: Ok, can you explain me what was the rule... 

S: Well, I may have made a mistake in the calculation... Those are all the ones where the 

limit tends to one... ah, that go to zero [class 1], Those are... this is plus infinity [class 2], 

this is... I am not sure, this is zero. Ok, these are zeros [class 1], these are plus infinity 

[class 2], these are finite numbers that are not zero [class 3], this is neither plus infinity 

nor minus infinity [class 20]... and this... Ok, [pointing at each of the classes] zero [class 
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1], plus infinity, minus infinity [class 2], divergent [class 4], and a number not zero [class 

3]. 

I: Ok, say for this one [card 14], how do you know..., which calculation... 

S: Well, when this tends to plus infinity this is going to tend to x, because this is going to 

be very big and once you do the square root of this the one will just vanish and you'll 

have minus x so it will be zero. It might not be some kind of theorem but I figure out is 

this way. And this one, is zero the numerator and the denominator is not zero therefore 

this goes to zero. 

I: And in the beginning you said there were many ways to order these, to classify them. 

You were saying maybe looking at the polynomials or the limits... why did you choose 

this way of classifying? 

S: Well, if I would have choose the limit [he means classifying according to x - > c ] it 

would not have been specific enough... so I decided to put them in something that already 

tells you if you are going to have an answer finite, zero, divergent or plus infinity. 

I: And why do you distinguish zero from finite? Why do you have a pile for zero and a 

pile for non zero answers? What's the difference in your mind? 

S: Well... that's kind of strange... I don't know. For my mind zero... it's a number but is 

not as... it does not the same value, like in term of number, as another number. Because 

it's not actually a number, you don't have really anything. So this is why I put it as 

different from other finite numbers. 
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I: Ok, we move to the next part. I ask you to find these limits. And, if you can think aloud 

so I can track the ideas that come to your mind... 

S: Yes, that's great. [In 2.1] I just evaluate the limit by doing the numerator which is 

zero, and the denominator is two, therefore the numerator approaches zero and the 

denominator approaches two, therefore it approaches zero. 

S: [In 2.2] There's two ways of doing this, I just do the polynomial... extend the 

polynomial [he means performing the multiplication by distribution properties], so it's 

going to be four plus... four minus three... which will be five, and this is four minus nine 

which is minus five, so this is minus one. Or I could have done two plus three is equal to 

five, two minus one equal to minus one... I get two different answers, what's wrong... oh, 

ok, minus one. 

I: What about this one? [2.3] 

S: This was in the cards, it's zero, oh no, it's plus infinity, sorry. So is twenty five minus 

four over twenty five minus twenty five which is... over zero, which will tend to plus 

infinity... If I'm wrong you won't say it right? 

I: Mmm, no. 

S: Ok. 

I: But I am more interested in the way you are thinking than in the final answer. Then, at 

the end we can talk about the answers if you want. 

S: [In 2.4] I just replace it one plus four plus nine over one plus two, which is fourteen 

over three, and this is the answer. 
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I: Why in this problem... why do you think this was the first thing you did, instead of just 

doing this. 

S: Because for some reason I find it easier to break in small polynomials... I don't know. 

I get confuse as you see [meaning the calculation mistake he did]... I don't see it. 1 see it 

better like this. It's easier for me this than this. 

I: Ok. If I ask you to read this [ lim / ( x ) ~ 0] aloud, what would you say? 

S: The limit when x tends to minus two of the function/of x is zero. 

I: And what this means to you? When you read that, what's the meaning that comes to 

you? 

S: That means that... well if you don't consider this [that f(-2) does not exist] I would say 

that at minus two is zero. But with this, it tells me that... I know that at this point it should 

be if it would have exist it should be at minus two but since it says it doesn't exist 1 will 

put an open dot. 

I: So the last one [part 3]. 

S: There's nothing after? 

I: No. 

S: Oh. ok. Well, this goes to plus infinity [for the exponential function], this goes to... 

plus one. minus one [for the cosine function]. I could say... because this is plus or minus 

infinity. Well, my teacher would say that this limit won't exist, but 1 say it's plus infinity 

and minus infinity. And this is of course zero because this goes to zero [the exponential 
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function] and this is plus one and minus one [the cosine function], this goes very rapidly 

to zero [the exponential], so you don't care if it's minus one of plus one. [He draws a 

very good sketch of the function f ( x ) = ex cos(x).] And this [limit 3], well this is the one 

thing, because... and it's useful in proving the derivative of sine because, you'll use this 

that is one [he writes the definition of derivative of the sine function to show that you 

need this limit for the calculation]. And you also need this for the smaller gold 

approximation [inaudible] and when you make triangles very small it's going to be 

almost equal to the angle itself, so this one. [Inaudible.] And also when x is in radians, 

this function, the sine function... well, now I am talking about radians which is not... 

Well, the fact that it is in radians will give that the derivative is the cosine function. And 

it won't be the cosine if it is in degrees or other form of angles. 

I: Do you know why this is one? Or do you have a justification for yourself of why this is 

one? 

S: Well, you mean like a technical proof? 

I: Well, something that you know... that you'd say I know it's one because... 

S: Because you see that, if you close up... if you zoom very close this function, your sine 

is like this, and you have x like this, it's almost gonna be the same, therefore it's one. 

This is my proof [he laughs]. 

I: And do you remember any analytic proof? 

S: Well, unless... 1 am not sure how to explain it, because they both have slope one so if 

you divide it. you'll get... 
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APPENDIX B 

In this Appendix are shown the documents handed to the researcher in Mathematics 

Education participating in the triangulation process (see Chapter 3, Section 3.3) with 

whom I only had written communication. 

Document 1: Instructions for assessing students' modes of thinking 

about limits in terms of Vygotsky's theory of development of 

scientific concepts 

In his theory of concept development, Vygotsky distinguished three main stages a child 

goes through in developing conceptual (scientific) thinking: syncretic heaps, complexes 

and concepts (Vygotsky, 1987: 134-166), each with several phases. The most mature 

phase of complexes is pseudoconcepts. Each of these stages and phases is characterized 

by a mode of thinking. The general pattern of this development seems to be recapitulated 

each time a student embarks on the project of understanding or building a mathematical 

concept (Sierpinska, 1994). 

Below is a description of the four modes of thinking - syncretic heaps, complexive 

thinking, pseudoconceptual thinking and conceptual thinking - with examples. In a 

separate document I am providing you with excerpts from transcripts of individual 

interviews with college students that have successfully passed a Calculus I course. The 

interviews were structured around 3 tasks the students were asked to engage with (they 

were "task-based interviews"). The excerpts are all drawn from the same part of the 

interviews, namely the part based on the task described below. 
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Students were given 20 cards. Each card contained a limit expression of the type 

lim f ( x ) where f(x) was a constant, a polynomial, a rational function, division of 

functions involving radicals, or a trigonometric function, and a was either a constant or 

00. The students were asked to classify the 20 cards according to any rule of their choice. 

The list of the 20 expressions on the cards is given at the end of these instructions. 

The expressions in this list have been numbered to facilitate communication of students' 

classifications in the thesis, but they were not numbered when presented to the students. 

Next to each expression in the list, two values have been written: the first one is the 

outcome of direct substitution, and the second is the value of the limit. Of course, this 

information was not given to the students, but it can be useful for the assessment since 

many students refer to these values in their classification.. 

What I am asking you to do is the following: 

1. Read the descriptions of the Vygotskyan modes of thinking given below. (See Note 1.) 

2. Read each interview excerpt carefully and analyze it to decide which Vygotskyan 

mode of thinking the student is using. (See Note 2.) 

3. Write a short justification of your decision in each case. 

Note 1: The description of the Vygotskyan stages of concept development given to the 

researcher were exactly those described in Chapter 2. He was also given the example that 

appears after that description. 
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Note 2: The researcher was given the excerpts of interviews with students SI, S6, S8, 

S14, and S28 corresponding to the first section of the interview, these can be found in 

pages 246-247, 277-278, 286-287, 324-327, and 409-411. 

Document 2: The 20 expressions given to the students in part 1 of the 

interview. 

Limit expression Outcome of direct substitution Value of the limit 

3 2 7 Q .x — x — Sx — y 
j lim _ 
' 2x — 4.x — 6 

0/0 2 

2 lim 
' ' (.x - 1)(.T - 3) 

0/0 -1 

V.x + 2-^2 
3. I l m

n -x—> 0 x 

0/0 l/[2sqrt(2)] 

9.xJ - .x + 2 
4 lim 

' 3 / + 1 

co/cc 9/3 

, 2 - 2 5 
5 lim 

x—> 00 T
J _ ] 

co/oo 0 

6. I i m 7 

.x-»00 
7 

n lim 3 
' .x->5 

3 

0 lim 4.x + 7.x - 9 2 2 

, 2 - 4 
9. J ™ 2 

a ^ 2 . T - 3 . x - 4 

0/-6 0 

l0-
0/8 0 
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3 0 , •c + 2x + 1 

11. I l m 2 
x +7x-\ 

oo/oo +<X> 

,v 2 - l 
12 lim 

• X->00 x _ , 
oo/oo +00 

hx2 + \ 
13 ' ' m 

• - v ^ o 3_v _ 5 

oo/oo -sqrt(2)/3 

1 2 j4 lim ix + 
jr—> oo 

00-00 0 

2 . x -x-2 
15. 1 , m -2/0 ±<x> 

2 x + 6 * + 19 
16. 1 , m . 3 

x -3x + 2 
26/0 ±crj 

2 
x - 4 

17. I , m . 2 - 2 5 

21/0 

a/JT + 20 - - /s 
i e lim [5-sqrt(5)]/0 ±00 

sin(.r) 
0/0 1 

f ' l 
o r , lim sin — 20 ^ 0 [XJ 

Doesn' t exist. 

Table B l . The first column corresponds to the expressions given to students for the classification task. The 

second column shows the outcome of direct substitution, and the third, the value of the limit. 
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Assessment on student's modes of thinking by a researcher in 

Mathematics education not involved in the process of this research 

Student SI: Complex 

a. "Difference of squares" vs. "Polynomials". 

b. "[Trig] confuses me.. 

While one of the classes was chosen affectively - "[Trig] confuses me so 1 put them 

together" - the classification seems to have been motivated primarily by the appearance 

of the limit expression. Student SI has classified the limits without appealing to any 

unifying rule or hierarchy; furthermore, a unifying rule is impossible, since the classes 

are not mutually exclusive (e.g. Group 1 is a subset of Group 5). Therefore, the student is 

employing complexive thinking (with, perhaps, a syncretic motivation). 

Student S6: Syncretic Image 

a. "I spot it right away" vs. "Infinity over infinity" 

b. #4 and #14 are both "Infinity over Infinity" but are classified as "I spot it right 

away". 

Limits are classified by the ease with which the student can evaluate them. This is a 

purely affective, subjective classification, both impossible to formalize and independent 

of the limits themselves. Thus, the student is thinking syncretically. Student S6, explicitly 

used an affective relation as the classifying feature for Group 1. 
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Student S8: Complex 

a. Mixture of descriptions of the expression ("Trig.") and methods of solution. 

("Rationalization," "Factor," "Just plug in."). 

b. "Just plug in" and "Rationalization" are not mutually exclusive (e.g. Limit 10). 

This student is also employing complexive thinking. The classes are a mixture of 

descriptions of the expression itself ("Trig.") and the methods she would use to evaluate 

the limits ("Factor."). No universal rule is theoretically possible, since the classes 

overlap. 

Student S14: Complex 

a. "These ones 1 didn't know where to put them." 

The student has classified the limits by the technique he would use to evaluate them. 

One of the student's groups is a catch-all class for limits which he is unable to evaluate 

using the techniques he knows. However, this is a reflection of the student's limited 

knowledge, and not an indication of affective classification. Since classification scheme 

results in ambiguous classes - limits for which you "divide by the highest degree" are 

also amenable to L'Hopital's rule - it is the result of complexive thinking. 

Student S28: Concept 

a. Precise categorization by the value of the limit 

b. Idiosyncratic but unambiguous classification of numbers. 
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The student explicitly searches for a unifying key: "1 am looking for an order that is...." 

The classification is unambiguous and the key is explicit. The student is at the level of 

concepts. 

Discussion 

The assessment matches exactly the modes of thinking that I inferred for these students at 

the technology level. Also, the particular behavior from which the researcher and myself 

inferred these modes is similar in each case. Thus, for student SI, the researcher wrote 

"student S1 has classified the limits without appealing to any unifying rule or hierarchy" 

and he noticed that group 1 ("difference of squares") is a subset of group 5 

("polynomials'"). In my own analysis (see Chapter 5) I observed that the hierarchy of 

features changed from one class to another. Furthermore, we both observed that there was 

a syncretic motivation in the construction of the class containing the trigonometric 

objects. 

Both, the researcher and myself, inferred that student S6 was thinking in syncretic 

images. The researcher wrote "limits are classified by the ease with which the student can 

evaluate them", I observed that his classification was based on a recognition of 

familiarity of the given expressions. 

With respect to\s tridents S8 and SI4, we both observed that they were employing 

complexive thinking. For example, in relation to student S8, I observed that another 

person would not be able to reconstruct her classification based on the phrases she 

provided, as for example, one would place expressions 9 and 10 in class 4 because both 

limits can be found by "just plugging in". The researcher wrote: "no universal rule is 
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theoretically possible, since the classes overlap" based on the observation that "'Just plug 

in' and 'Rationalization' are not mutually exclusive (e.g. Limit 10)". 

Finally, we both considered student S28 to be thinking in terms of concepts. The 

researcher wrote: "the student explicitly searches for a unifying key" [...] "The 

classification is unambiguous and the key is explicit. The student is at the level of 

concepts." While I observed that "the student was preoccupied for having a general 

conceptual key and he considered other criteria for classifying but discarded them for not 

being 'specific enough'. He made his classification key explicit: 'I decided to put them in 

something that already tells you if you are going to have an answer finite, zero, divergent 

or infinity'." 


