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Abstract 
An Implementation of the DPLL Algorithm 

Tanbir Ahmed 

The satisfiability problem (or SAT for short) is a central problem in several fields of com­

puter science, including theoretical computer science, artificial intelligence, hardware de­

sign, and formal verification. Because of its inherent difficulty and widespread applications, 

this problem has been intensely being studied by mathematicians and computer scientists 

for the past few decades. For more than forty years, the Davis-Putnam-Logemann-Loveland 

(DPLL) backtrack-search algorithm has been immensely popular as a complete (it finds a 

solution if one exists; otherwise correctly says that no solution exists) and efficient proce­

dure to solve the satisfiability problem. We have implemented an efficient variant of the 

DPLL algorithm. In this thesis, we discuss the details of our implementation of the DPLL 

algorithm as well as a mathematical application of our solver. 

We have proposed an improved variant of the DPLL algorithm and designed an efficient 

data structure for it. We have come up with an idea to make the unit-propagation faster than 

the known SAT solvers and to maintain the stack of changes efficiently. Our implementation 

performs well on most instances of the DIMACS benchmarks and it performs better than 

other SAT-solvers on a certain class of instances. We have implemented the solver in the 

C programming language and we discuss almost every detail of our implementation in the 

thesis. 

An interesting mathematical application of our solver is finding van der Waerden num­

bers, which are known to be very difficult to compute. Our solver performs the best on the 

class of instances corresponding to van der Waerden numbers. We have computed thirty of 

these numbers, which were previously unknown, using our solver. 
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Chapter 1 

Introduction 

1.1 The Satisfiability problem 

The satisfiability problem (or SAT for short) is a central problem in several fields 

of computer science, including theoretical computer science, artificial intelligence, 

hardware design, and formal verification. Following is a definition of the satisfia­

bility problem taken from Chvatal and Reed [10]: 

A truth assignment is a mapping / that assigns 0 (interpreted as FALSE) 

or 1 (interpreted as TRUE) to each variable in its domain; we shall enu­

merate all the variables in the domain The complement Xi 

of each variable x, is defined by f(xi) = 1 - f(xi) for all truth assign­

ments / . Both Xi and Xi are called literals; ifu = Xi then u = Xj. A clause 

is a set of (distinct) literals and a formula is a family of (not necessarily 

distinct) clauses. For example, {xi,X2,x3} is a clause with three distinct 

literals and {{xi,X2},{xi,x2},{xi,X2},{xi,x2}} is a formula with four 

clauses over two variables. 
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A truth assignment satisfies a clause if it maps at least one of its literals 

to 1; the assignment satisfies a formula if and only if it satisfies each of 

its clauses. A formula is called satisfiable if it is satisfied by at least one 

truth assignment; otherwise it is called unsatisfiable. The problem of 

recognizing satisfiable formulas is known as the satisfiability problem, or 

SAT for short. 

1.2 The DPLL algorithm 

Given a formula F and a literal u in F, we let F\u denote the residual formula 

arising from F when f(u) is set to 1: explicitly, this formula is obtained from F by 

(i) removing all the clauses that contain u, (ii) deleting It from all the clauses that 

contain u, (in) removing both u and u from the list of literals. 

Example: F = {{x1,x2,x3} ,{xux2,x4} ,{xux3,x5} ,{x3,x6}} 

F\xi = {{x2,x4} , {x3, x6}} 

Algorithm 1.1 ALGORITHM DP_KERNEL(F) 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 

G = F 
while G includes a clause C such that |C| < 1 do 

if C = 0 then return G 
else if C = {v} then G = G\v 

end while 
while there is a monotone literal in G do 

v = any monotone literal 
G = G\v 

end while 
return G 

Trivially F is satisfiable if and only if at least one of F\u and F\u is satisfiable. 

It is customary to refer to the number of literals in a clause as the length (rather 
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than size) of the clause. Clauses of length one are called unit clauses If a formula F 

includes a unit clause {u}, then every truth assignment / that satisfies F must have 

/(it) = 1; hence F is satisfiable if and only if F\u is satisfiable. A literal u in a for­

mula F is called monotone if u appears in no clause in F. If u is a monotone literal 

and if F is satisfiable, then F is satisfied by a truth assignment / such that f(u) = 1. 

Hence F is satisfiable if and only if F\u is satisfiable. These observations have been 

used by Davis and Putnam [19] in an algorithm for solving SAT. Their recursive ap­

plications transform any formula F into a formula G such that G is satisfiable if and 

only if F is satisfiable. G is referred in Ouyang [51] as DAVIS-PUTNAM KERNEL (the 

term was originally coined by Chvatal) of F. Algorithm 1.1 is the pseudocode for 

computing G, where the first while loop is referred as unit-clause-propagation and 

the second while loop is referred as monotone-literal-fixing. Monotone-literal-fixing 

does not create unit clauses; during this process, clauses containing monotone lit­

erals are removed entirely, leaving the other clauses unchanged. Davis, Logemann 

amd Loveland [18] use the the Davis-Putnam Kernel in an algorithm for testing 

satisfiability, which is called Davis-Putnam-Logemann-Loveland algorithm, or the 

DPLL algorithm (Algorithm 1.2) for short. 

Each recursive call of DPLL may involve a choice of a literal u. Algorithms for 

making these choices are referred to as branching rules. Different branching rules 

are discussed in detail in section 2.1. 

3 



Algorithm 1.2 RECURSIVE ALGORITHM DPLL(F) 
I 
2 
3 
4: 
5: 
6 
7: 
8 
9 

10 
11 

function DPLL(F) 
while F includes a clause C such that \C\ ^ 1 do 

if C = 0 then return UNSATISFIABLE 
else if C = {v} then F = F|u 

end while 
if F = 0 then return SATISFIABLE 
Choose a literal u using a branching rule 
if DPLL(F|u) = SATISFIABLE then return SATISFIABLE 
if DPLL(F|u) = SATISFIABLE then return SATISFIABLE 
return UNSATISFIABLE 

end function 

1.3 Motivation and Scope 

SAT is a very interesting problem both theoretically and practically. Cook [12] 

proved it to be NP-Complete [27]. We know that there is no deterministic algo­

rithm that solves every SAT instance in polynomial time [27] unless P=NP. The 

speed of an implementation of a SAT algorithm like DPLL depends mostly on the 

branching rule, the data structure, and the search techniques used. Size of the DPLL-

tree (as defined in section 2.1) varies greatly with branching rules and for a given 

branching rule, the speed of the implementation may significantly vary because of 

the data structure used to store and manipulate the formula. Again if we have a 

good implementation that performs well on most known instances, one can always 

come up with a new and challenging instance. All these demoralising circumstances 

can hardly stop us from writing another implementation with a new idea either in 

the branching rule or in the data structure or both. Sometimes, a tough instance 

motivates us to write our own version. 

Many interesting search problems (Integer programming, Travelling Salesman 
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Problem, Graph Colouring, Subgraph Isomorphism, Subset Sum problem, etc.) that 

we encounter in our day-to-day lives and in the industry are NP-Complete [27]. 

Implementation of SAT introduces us to the solution techniques of those problems 

and enhances our understanding about them as well. In this thesis, we do the 

following: 

(i) Survey various algorithms, known results and implementation techniques, 

(w) Implement DPLL with a fast data structure, 

(m) Compare the performance of our solver with other well-known solvers on 

popular benchmark instances, 

(iv) Use the solver to compute some new van der Waerden numbers (section 4). 

1.4 Organization of the thesis 

The next four chapters are organized in the following manner: 

CHAPTER 2: This chapter contains a detailed survey on the implementation as­

pects of DPLL. In section 2.1, we discuss the branching rules that can be described 

using a unified Paradigm (section 2.1.1): Dynamic Largest Individual Sum (DLIS), 

Dynamic Largest Combined Sum (DLCS), Jeroslow-Wang (JW), 2-Sided Jeroslow-

Wang, DSJ rule, MOMS heuristics, Approximate Unit-Propagation Count (AUPC), 

and CSat rule. In section 2.2, we discuss well-known data structures: adjacency-

lists (assigned literal hiding, counter-based approach, counter-based approach with 

satisfied clause hiding) and lazy data structures (Head-Tail lists and Two Literals 
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Watch method). In section 2.3, we discuss preprocessing techniques: adding resol­

vents, subsumption, and binary equivalent literal propagation. In section 2.4, we 

discuss pruning techniques: literal assignment forced by a pair of binary clauses, 

clause recording (implication graph, learning conflict clauses, random restarts), and 

non-chronological backtracking. In section 2.5, we discuss various features (for ex­

ample, branching rule, data structure) of some modern SAT solvers like GRASP, 

SATZ, CHAFF, ZCHAFF and MINISAT. 

CHAPTER 3: In this chapter, we describe the implementation of the solver in 

detail. It includes the DPLL pseudocode of our implementation, data-structure 

(storing variables and clauses, stack of changes, assignment information and other 

global variables and arrays) and details of functions (reducing the formula, re­

versing the changes, unit-propagation, branching, backtracking and backjumping). 

Code listings of different parts of the algorithm are in C. 

CHAPTER 4: In this chapter, we investigate an interesting mathematical applica­

tion of our SAT solver. Using a suitable branching rule, we compute some previously 

unknown van der Waerden numbers. 

CHAPTER 5: In this chapter, we summarize the work we have done and the work 

we have not done. We also discuss possible future improvements on the solver. 

APPENDIX A: Here, we describe some easily verifiable counting conditions under 

which a formula is satisfiable. In each case, we discuss the condition, an efficient 

algorithm to find a satisfying assignment, and optimality of the condition. 

APPENDIX B: Here, we describe known deterministic fc-SAT (in a k-SAT problem, 

every clause is of length k) algorithms other than DPLL. 
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Chapter 2 

Implementation aspects of DPLL 
In this chapter, we describe some of the implementation aspects of the DPLL al­

gorithm such as branching rules (denned in section 1.2), data structures, prepro­

cessing and techniques used to dismiss parts of the search space. We also briefly 

describe features of some of the popular SAT solvers. This survey will introduce 

the reader to various implementation techniques of the DPLL algorithm and pro­

vide necessary background material for Chapters 4 and 5, which describe the main 

contribution of the thesis. 

2.1 Branching rules 

Branching rules used for choosing a literal to set to TRUE during the search repre­

sent a key aspect of backtrack search SAT algorithms [4, 26, 34, 35, 66]. Several 

heuristics have been proposed over the years, each striving for a tradeoff between 

the time it requires and its ability to reduce the amount of search [34]. In this sec­

tion, we discuss a few well-known branching rules and in section 2.5, we discuss 

some others. 
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It is customary to represent each call of DPLL(F) by a node of a binary tree. 

By branching on a literal u, we mean calling DPLL(F|u). If this call leads to a 

contradiction, then we call DPLL(F|u). Every node that is not a leaf has at least 

one child and may not have both the children. This tree is referred as DPLL-tree in 

the literature. The shape and size of the tree depends not only on the input formula 

F, but also on the branching rule. 

2.1.1 A paradigm for branching rules 

Here is a paradigm for branching rules introduced in Ouyang [51], which associates 

a weight w(F,u) with each literal u and chooses a function $ of two variables. The 

paradigm is this: 

• Find a variable x that maximizes $(w(F, x),w(F, x)); 

choose x if w(F, x) ^ w(F, x) and choose x otherwise. 

If more than one variable maximizes $, then ties have to be broken by some 

rule. Usually, w(F, u) is defined in terms of dk(F, u), which is the number of clauses 

of length k in F that contain literal u. 

2.1.2 Branching rules that fit the paradigm 

2.1.2.1 Dynamic Largest Individual Sum (DLIS) 

This branching rule is (*) with 

w(F,u) = ^2dk(F,u), 
k 

*(x,y) = max{x,y}. 
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This is the default branching rule of GRASP [46, 47] 

2.1.2.2 Dynamic Largest Combined Sum (DLCS) 

This branching rule is (*) with 

w(F,u) = ^ d f c ( F , « ) , 
k 

$(x,y) = x + y. 

2.1.2.3 Jeroslow-Wang (JW) rule 

This branching rule is 0 ) with 

w(F,u) = £Vfcdfc(F,u), 
k 

$(x,y) = max{x,y}. 

This rule was proposed by Jeroslow and Wang [35]. 

2.1.2.4 2-Sided Jeroslow-Wang rule 

This branching rule is (*) with 

w(F,u) = ^2- f cd f c(F,u) , 
k 

$(x,y) = x + y. 

This rule was proposed by Hooker and Vinay [34]. 
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2.1.2.5 DSJrule 

This branching rule is (*) with 

w(F,u) = 4d2(F,u) + 2d3{F,u) + ^2dk{F,u), 

$(x,y) = (x + l ) ( y + l ) . 

This rule was proposed by van Gelder and Tsuji in [65] 

2.1.2.6 MOMS heuristics 

This branching rule is (•) with 

w(F,u) = da(F,u), 

$(x,y) = xy2k + x + y. 

where s be the length of the smallest unsatisfied clause in F. MOMS is shorthand 

for Maximum Occurences on clauses of Minimum Size [26]. The value of k can 

vary, e. g., MOMS is used in SATZ[44] with k = 10. 

Van Gelder and Tsuji [65] independently came up with MINLEN which is O) 

with the same w(F,u) as MOMS and $(x,y) = (x + l)(y + 1), which is the same 

$(x, y) as MOMS with k = 0. 
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2.1.2.7 Approximate Unit-Propagation Count (AUPC) rule 

This branching rule is (*) with 

w(F,u) = d2(F,u), 

$(x,y) = xy + x + y. 

This rule was used In the solver BERKMIN [29]. Here, w(F, u) counts the number of 

new unit clauses generated by setting u to TRUE. The reason for the word 'Approxi­

mate' in its name is that an actual unit-propagation is not conducted. The function 

$(x, y) is the same as MOMS with k = 0. 

2.1.2.8 CSatrule 

This branching rule is (*) with 

(F,u) = £ > ( l + 
4*: _ 2k+1 ) ^k^,U^ an<^' 

w{F,u) = wQ(F,u)+ ^2 wo(F,v), 
{u,v}eF 

$(x,y) = x + y + 1.5 • min{x,y} ; 

This rule was proposed by Dubois, Andre, Boufkhad, and Carlier in [22]. 

How good are branching rules in DPLL? 

The following example [50] demonstrates how dramatically the choice of a branch­

ing rule can influence the size of the DPLL-tree. Take a formula with variables 
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x\, x2,..., xn and clauses 

1. \Xi, Xn_\ , Xn j , \Xj , Xn—\, Xnj, \Xi, X n _j , Xn j , \Xi, Xn—\ , Xnj 

for i = 1,2 n — 2, L > " 5 * ' * ) ' 

2. {zj,xj+1,...,a;n_3,a:n_2} for j = 1,2,... ,n - 3. 

This formula is unsatisfiable. Here, the size of the DPLL-tree branching on the vari­

able with the smallest subscript is 2"_1 - 1 and the size of the DPLL-tree branching 

on the variable with the biggest subscript is 7. 
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2.2 Data structures 

The performance of a good implementation of the DPLL algorithm depends not only 

on the branching rule but also on the data structure. A survey of the data structures 

can be found in [45]. Here we describe some of the data structures used in some 

well-known SAT solvers. 

2.2.1 Adjacency lists 

Most implementations of the DPLL algorithm represent clauses as lists of literals 

and associate with each variable x a list of clauses that contain a literal in {x,x}. 

In general, we use the term adjacency lists to refer to data structures in which each 

variable x contains a complete list of clauses that contain a literal in {x,x}. 

2.2.1.1 Assigned literal hiding 

For each clause, three lists are maintained: unassigned, assigned TRUE and assigned 

FALSE. A clause is satisfied if one or more of these literals are assigned TRUE, un­

satisfied if all its literals are assigned FALSE, and unit (current length equals one) if 

exactly one literal is unassigned and the remaining literals are assigned FALSE. 

2.2.1.2 The counter-based approach 

An alternative approach to keep track of unsatisfied, satisfied and unit clauses is 

to associate literal counters with each clause. For a clause C, let nt and n/ be the 

number of literals assigned TRUE and FALSE, respectively. The clause C is unsatisfied 

if rif equals \C\, satisfied if nt ^ 1, and unit if nj = \C\ — 1 and nt — 0. When a 
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clause is declared unit, the list of literals is traversed to identify which literal needs 

to be set to TRUE. An example of a SAT solver that utilizes counter-based adjacency 

lists is GRASP [46]. 

2.2.1.3 Counter-based approach with satisfied clause hiding 

When a literal is assigned a truth value, a potentially large number of clauses have 

to be traversed in order to be marked as satisfied. Some of these clauses may have 

been already satisfied by a previous assignment to some other literal. Hence, each 

time a clause C becomes satisfied, C is hidden from the list of clauses of all the 

literals that are contained in C. This technique was used in SCHERZO [14] to solve 

covering problems. 

2.2.1.4 Counter-based approach with satisfied clause and assigned literal 

hiding 

In addition to hiding satisfied clauses as described in section 2.2.1.3, literals that 

are assigned FALSE are hidden from the list of literals in clauses. 

2.2.2 Lazy data structures 

Adjacency list-based data structures share a common problem: each literal u keeps 

references to a potentially large number of clauses. Moreover, it is often the case 

that most of u's clause references need not be analyzed when u is assigned, since 

they do not become unit or unsatisfied. Lazy data structures are characterized by 

each literal keeping only a reduced set of clause references. 

14 



2.2.2.1 Head-Tail lists 

The first lazy data structure proposed for SAT was the Head-Tail lists data structure, 

originally used in the SATO SAT solver [67]. Each clause maintains two references: 

the head and the tail references. Initially, in each clause, the first and the last 

literals are referenced as head and tail, respectively. Each literal u maintains two 

linked lists: 

• list of clauses with literal u as the head reference and 

• list of clauses with literal u as the tail reference. 

If a literal u is set to FALSE, then 

1. in each clause C containing u as the head reference, the solver looks for an 

unassigned literal in the direction of the tail reference such that 

(i). If a literal is found, which is set to TRUE, then the clause C is identified 

as satisfied and the search for an unassigned literal in C is stopped. 

(ii). If such a literal v is found, which is unassigned and is not the tail refer­

ence of C, then v becomes the new head reference of C. The correspond­

ing literal references are updated. 

(Hi). If such a literal v is found, which is unassigned and is the tail reference of 

C, then C is identified as a unit clause and the tail reference is identified 

as unit literal. 

(iv). If no such v is found, the tail reference is reached and the tail reference 

is assigned FALSE, then C is identified as unsatisfied. 
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2. in each clause C containing u as the tail reference, the solver looks for an 

unassigned literal in the direction of the head reference; and the above process 

is repeated. 

When backtracking, recovering the previous references is necessary. 

2.2.2.2 Two literal watch method 

SAT solver CHAFF [49] proposed a new data structure called the Two literal watch 

method. Each clause maintains two references as watched literals. Each literal u 

maintains a list of clauses that contain u as one of the two watched literals. 

If a literal u is set to FALSE, then for each clause C that contains u as a watched 

literal, the solver looks for a literal, which is not set to FALSE: 

1. If such a literal v is found and v is assigned TRUE, then C is identified as 

satisfied. 

2. If only such literal is v, which is unassigned and is not the other watched 

literal, then v becomes the new watched literal. 

3. If only such literal is v, which is unassigned and is the other watched literal, 

then C is identified as unit clause and the other watched literal is identified 

as unit literal. 

4. If no such v is found, then C is identified as unsatisfied. 

When backtracking, recovering the references is not necessary. 
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2.3 Preprocessing the formula 

In this section, we describe some preprocessing techniques, which if judiciously 

applied, significantly simplify the input formula before calling DPLL. Some of the 

operations may be integrated in the recursive DPLL algorithm as well. 

2.3.1 Adding resolvents 

Two clauses C\ and C2 are said to clash if there is exactly one literal u, such that 

u e C\ and u e C2. If Ci and C2 clash, then their resolvent is defined as d U C2 -

{u,u} and is denoted by C\VC2. If clauses C\ and C2 are satisfied by some truth 

assignment z, then their resolvent is also satisfied by z. Adding CiVC2 does not 

change the satisfiability status of the formula. 

If C\ and C2 differ in only one literal u such that u e Ci and u e C2, then C\ and 

C2 are called neighbours. Clauses, which are neighbours clash and their resolvent is 

a subset of both of them. If C\ and C2 are neighbours, then any truth assignment 

that satisfies CiVC2 will also satisfy both C\ and C2. So adding C\VC2 to the 

formula and removing C\ and C2 from the formula will not change the satisfiability 

status of the formula. 

If an empty clause is obtained as a resolvent in a formula F, then F is unsatisfi-

able. Given an unsatisfiable formula, we can always generate a sequence of opera­

tions of adding resolvents that produces an empty clause. The latter observation is 

due to Robinson [53]. 

If we try to add resolvents corresponding to every pair of literals u and u, then 

we may end up having too many clauses. At the same time, we will have many long 
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clauses. So we often put restrictions on the maximum length of the resolvent and 

on the maximum number of resolvents to be added to the formula. 

2.3.2 Subsuming clauses 

If two nonempty clauses C\ and C2 are such that C2 C C\, then any truth assignment 

that satisfies C2 will satisfy C\. So d can be removed from the formula without 

changing its satisfiability status. The operation is called subsumption, where C2 

subsumes C\. 

We can apply subsumption between every pair of clauses in the formula prior 

to initiating the search. This produces a very small number of subsumed clauses 

for most benchmarks. But a combination of adding resolvents and subsumption 

simplifies some instances. For instance, the clauses C\ being {ui,u2)u3} and C2 

being {ui,u2}, cannot subsume each other, but C\VC2 adds the clause {u2,u3}, 

which subsumes C\. 

2.3.3 Binary equivalent literal propagation 

Let a formula F contain clauses {yi\,u2} and {ui,u2}. Since these two clauses are 

satisfied if and only if either {ui i-> TRUE, u2»-> TRUE} or {ux H-> FALSE, u21-> FALSE}, 

u\ and u2 are said to be equivalent. Hence all occurences of ux (respectively Hi) can 

be substituted by u2 (respectively u2), so that F having one variable less, is sim­

plified. If {ui,u3} and {u2,u3} are clauses in F, then the first substitution changes 

{ui,u3} into {u2,u3} makes u2 and u3 equivalent. So, the equivalency relation can 

be propagated to simplify F. 
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2.4 Pruning techniques 

In this section, we describe techniques that can be applied during search to reduce 

the size of the DPLL-tree. 

2.4.1 Literal assignment forced by a pair of binary clauses 

If F contains no unit clause but two binary clauses {ui,u2} and {^1,^2}, setting 

ui to FALSE leads to a conflict. So ui is forced and could be used to simplify F by 

computing F\u\. 

2.4.2 Clause recording 

Given a set of variable assignments that leads to a conflict, a new clause is created 

that prevents the same assignments from occurring simultaneously again during the 

subsequent search. To create such a clause, an implication graph (as denned in the 

following section) has to be maintained during unit-propagation. 

2.4.2.1 Implication graph 

An implication graph is a directed acyclic graph where each vertex represents a vari­

able assignment. A label x = b@d of a vertex means the variable x is assigned a truth 

value b in {0,1} at decision level d. The decision level for all forced assignments is 

the same as that of the corresponding decison assignment in the unit-propagation. 

Let C contains literals Ui and Uj drawn from the variables Xi and Xj, respectively. If 

^ is set to FALSE and u, is the only unassigned literal when C becomes unit, then a 

directed edge from x, to xj} labelled by C, is added to the implication graph. Here, 
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C is called the antecedent clause of the literal corresponding to the variable Xj. In 

Figure 2.1 (taken from [47]), a subset of a SAT formula is shown. 

Current truth assignment: {x9 = 0@l,xi2 = l@2,xi3 = l@3,xi0 = 0@4,xn = 0@5, • 
Current branching assignment: {x\ = 1@8} 

xw = 0@4 
PA 

x5 = 1@8 

Xl = 1@8 < ^ x4 = 1 @ 8 X ^ ^ g c o n f l i c t 

Pl = 

c2 = 
c3 = 
c4 = 
c5 = 
c6 = 
c7 = 
c8 = 
c9 = 

{Xl,x2} 
{Xi,X3,X9} 

{x2, x3,x4} 
{X4,X5,XIQ} 

{£4, #6, £11} 

{x5,x6} 
{xux7,xi2} 
{x\,x8} 
{x7,x8,xi3} 

6 

x6 = 1@8 
^5 

x9 = 0@1 i n = 0@5 

Figure 2.1: A TYPICAL IMPLICATION GRAPH 

2.4.2.2 Learning conflict clauses 

Conflict analysis relies on the implication graph to determine the reasons for the 

conflict. The conjunction of the decision assignments in the antecedent clauses in a 

unit-propagation is the reason for the conflict in that unit-propagation. By negating 

it, we obtain a clause, which is called conflict clause. 

The clause learned can be used to prevent the same set of assignments from 

occuring again during the subsequent search. Inspecting the implication graph in 

Figure 2.1, we can readily conclude that the sufficient condition for this conflict to 

be identified is (xi0 = 0) A (xn = 0) A (x9 = 0) A (xi = 1). In that case, the conflict 

clause learned is {x\,x9,xio,xn}-
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2.4.2.3 Random restarts and clause recording 

To find a satisfying assignment quickly, some solvers (e. g., CHAFF, MINISAT) uti­

lize a technique called random restart [30]. They want to avoid spending a long 

time searching in some unproductive branch of the DPLL-tree. Random restart pe­

riodically undoes all the decisions and restarts the search from the very beginning. 

Restarting is not a waste of the previous effort as long as the recorded clauses are 

still present. 

2.4.3 Non-chronological backtracking 

Clause recording is tightly associated with non-chronological backtracking, which is 

also known as conflict-directed backjumping [4]. 

The chronological backtracking search strategy always causes the search to con­

sider the last, yet untoggled, decision assignment. By contrast, non-chronological 

backtracking may backtrack further up to a higher decision level. This technique 

was originally proposed by Stallman and Sussman [60] and further studied by 

Gaschnig [28] and others. It attempts to identify the conflict clauses and backtrack 

directly so that at least one of those variable assignments is modified. This tech­

nique was implemented initially by Bayardo and Schrag [4] and Silva and Sakallah 

[47]. 

Recorded clauses are used for computing the decision level to backtrack, which 

is defined as the most recent decision level of all variable assignments of the literals 

in each newly recorded clause. Figure 2.2 illustrates non-chronological backtrack­

ing on the same example as in Figure 2.1, with learned conflict clause Cw added. 
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Cl = 

c2 = 
c3 = 
C 4 = 

c5 = 
c6 = 
c7 = 
c8 = 
c9 = 
C'lo = 

{^1,^2} 
{Xi,X3,X9} 
{x2,x3,a;4} 
{x4,X5,Zio} 
{X4,Xs,X\i} 
{x5,x6} 
{xi,x7,xu} 
{xi,xs} 
{x7,x8,x13} 
{x9,xw,xn • Xl} 

A 
/ 

',6 
I 
I 
' 7 r 1 

xir=o@5 
7^ X7 = 1@8 

x12 = 1@2 

Xi 

J0 

Figure 2.2: COMPUTING THE BACKTRACK LEVEL (SEE FIGURE 2.1) 

Here, the new conflict clause is {xg, xw, x n , x12, x13}. So the backtrack level is 5. 
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2.5 Well-known SAT solvers 

In this section, we discuss some well-known SAT solvers with brief descriptions of 

some of their important features. 

2.5.1 Satz 

SATZ was developed by Li and Anbulagan [44]. 

(i) SATZ'S UPLA BRANCHING RULE: In SATZ, unit-propagation is integrated in the 

branching rule itself. The function U P ( F ) returns the resulting formula after 

running a unit-propagation. 

Algorithm 2.3 SATZ - BRANCHING RULE 

I 

2 
3 
4 
5 
6 

7 
8 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

procedure SELECT > Given a formula F 
for each unassigned variable x do 

Let Fi and F2 be two copies of F 
F, = UP(FX U {*}), F2 = U P ( F 2 U {X}) 

if Fi = 0 or F2 = 0 then return SATISFIABLE 

if both Fj and F2 contain an empty clause then return UNSATISFIABLE 

else if Fi contains an empty clause then x = FALSE and F = F2 

else if F2 contains an empty clause then x = TRUE and F = Fx 

if neither Fj nor F2 contains an empty clause then 
w{x) = number of binary clauses in F\ but not in F 
w(x) — number of binary clauses in F2 but not in F 

end if 
end for 
for each unassigned variable x in F do 

$(x) = w(x) x w(x) x 1024 + w(x) + w(x) 
end for 
branch on the unassigned variable x such that $(x) is the highest 

end procedure 

Although solvers POSIT[26] and TABLEAU[16] used unit-propagation based 

branching rules, the real power of unit-propagation is integrated in SATZ [44] 
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on top of MOMS heuristic. 

(H) SATZ'S PREPROCESSOR [43]: SATZ runs a loop with unit-propagation, binary 

equivalent literal propagation, adding resolvents of length at most 3, and us­

ing subsumption until F contains an empty clause or no change occurs in F. 

Algorithm 2.4 SATZ - PREPROCESS 

l 
2 
3 
4 
5 
6 
7 
8 
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10 
11 
12 
13 
14 

procedure PREPROCESS 

repeat 
unit-propagation 
if {ui,u2} e F and {ui,u2} G F then 

replace all occurences of u\ (and u{) with u2 (and u2 respectively) 
remove {ui,u2} and {ui,u2} from F 

end if 
if there are clause C\ and C2 s. t. they clash and \C{\7C2\ ^ 3 then 

add d V C 2 to F 
end if 
ifCi C C2 then F = F - {C2} 

until F contains an empty clause or no change happens in F 
if F contains an empty clause then return UNSATISFIABLE 

end procedure 

2.5.2 GRASP 

GRASP was developed by Silva and Sakallah [46, 47]. The name stands for Generic 

seaRch Algorithm for the Satisfiability Problem. GRASP views the occurence of a 

conflict as an opportunity to augment the problem description with conflict clauses. 

Conflict clauses are used to compute backtrack decision levels and recognize simi­

lar conflicts later in the search. The GRASP algorithm calls the recursive function 

SEARCH(d,/3), which returns SUCCESS, i. e., SATISFIABLE if it finds a satisfying as­

signment, or else returns FAILURE, i. e., UNSATISFIABLE. Here, d, which is an input 
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parameter, is the current decision level and (5, which is an output parameter, saves 

the decision level to backtrack. 

The recursive SEARCH function consists of four major operations: 

(i) DECiDE(ef): If all the clauses are satisfied, then this function returns SUCCESS. 

Otherwise, it chooses a decision assignment at level d of the search process. 

It chooses the variable and the assignment that directly satisfies the largest 

number of clauses. 

(ii) DEDUCE(d): This function implements unit-propagation and implicitly main­

tains the resulting implication graph. It returns with a SUCCESS unless one or 

more clauses become unsatisfied. In the latter case, the implication graph is 

updated and a CONFLICT indication is returned. 

(Hi) DIAGNOSE(d, /3): This function identifies the conflict clauses that can be added 

to the formula, as described in section 2.4, to avoid similar conflicts in future. 

(iv) ERASE (): This function deletes the assignments at the current decision level. 

The SEARCH function starts by calling DECIDE(CQ to choose a variable assign­

ment at decision level d. It then determines the consequences of this elective as­

signment by calling DEDUCE(d). If this assignment does not cause any clause to be 

unsatisfied, SEARCH is called recursively at decision level d + 1. If a conflict arises 

due to this assignment, DIAGNOSE^, (5) function is called to analyze this conflict 

and to determine an appropriate decision level for backtracking the search. When 

SEARCH encounters a conflict, it returns with a CONFLICT indication and causes the 

elective assignment made on entry to the function to be erased. 
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Algorithm 2.5 GRASP ALGORITHM - SEARCH 

l 
2 
3 
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function SEARCH(d,/3) t> d: current decision level;/?: backtrack decision level 
ifDECiDE(d) = SUCCESS then return SUCCESS 

while TRUE do 
if DEDUCE(CQ ^ CONFLCIT then 

if SEARCH(<2+ l,/3) = SUCCESS then return SUCCESS 

else if (3 ^ d then ERASE () and return CONFLICT 

end if 
if D I A G N O S E ^ /?)=CONFLICT then 

ERASEO, return CONFLICT 

end if 
ERASE() 

end while 
end function 

2.5.3 Chaff, zChaff 

Moskewicz et al. [49] developed CHAFF, which efficiently implements DPLL with 

the following specific features: 

(i) OPTIMIZED UNIT-PROPAGATION: In practice, for most SAT problems, approxi­

mately 90% of the solver's running time is spent in unit propagation. CHAFF 

implements an efficient unit-propagation engine. It maintains a counter of 

the number of unassigned literals for each clause. A clause is visited for the 

unit-clause-literal only when the counter is one. CHAFF uses the watch literal 

schme that was described in section 2.2. 

(ii) BRANCHING RULE: CHAFF introduced the Variable State Independent Decay­

ing Sum (VSIDS) branching rule mentioned in section 2.1. Each literal u is 

associated with a counter initialized to the number of clauses that contain u in 

the initial formula. When a clause is added to the formula, the counter associ­

ated with each literal in the clause is incremented. An unassigned literal with 
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the highest counter is chosen for branching. Ties are broken arbitrarily. All 

counters are divided by a constant, say 2, (i. e., a decay of 50%) after every 

1000 conflicts. So literals in older clauses drop in values over time, ensuring 

that recent clauses are satisfied first. 

{in) CONFLICT ANALYSIS: CHAFF employs a conflict resolution scheme that is very 

much similar to GRASP. 

(iv) CLAUSE DELETION: CHAFF supports the deletion of added conflict clauses to 

avoid running out of memory. It uses scheduled lazy clause deletion. When 

each clause is added, it is examined to determine at what point in the future, 

if any, the clause should be deleted. 

(v) RESTARTS : CHAFF employs the restart feature which clears all literal assign­

ments but keeps the learned clauses. This policy helps to avoid the conflicts 

occured in the previous run. 

ZCHAFF implements the well known CHAFF [49] algorithm. It was the best 

complete solver in the SAT competition [54] in 2004 in the industrial category. 

It uses the VSIDS decision heuristic for branching, two-literal watch-lists for unit-

propagation and conflict-driven clause learning along with non-chronological back­

tracking for restructuring the DPLL-tree. 

ZCHAFF periodically deletes some learned clauses using usage statistics and 

clause lengths to estimate the usefulness of a clause. 
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2.5.4 MiniSat 

MINISAT is an optimized CHAFF-like SAT solver written by Een and Sorensson [58]. 

It is based on the two-literal watch-list for fast unit-propagation [49] and clause 

learning by conflict-analysis [47]. It entered the SAT Competition [54] in 2005 and 

was awarded Gold in three industrial categories and one of the crafted categories. 

Important features in MINISAT are: 

/ 
(i) ORDER OF ASSIGNMENT: The decision heuristic of MINISAT is an improved 

VSIDS order, where variable activities are decayed 5% after each conflict. The 

original VSIDS decays 50% after each 1000 conflicts. Empirically, this per­

forms better than the original VSIDS. To keep the variables sorted by activity 

at all times, a heap is used. 

(ii) BINARY CLAUSES: Binary clauses are implemented by storing the literal to be 

propagated directly in the watch list. This scheme outperforms the version 

storing all binary clauses in separate set of vectors on the side. 

(Hi) CLAUSE DELETION: MiniSat deletes learned clauses more aggressively than 

the other solvers like CHAFF on an activity heuristics. The limit on how many 

learned clauses are allowed is increased after each restart. Keeping the num­

ber of clauses low seems to be important for some small but hard instances. 

(iv) CONFLICT CLAUSE MINIMIZATION: For each literal u in a newly formed conflict 

clause C, it checks each antecedent clause C" of u to possibly find a neighbour 

of C. Then CVC subsumes C and u is removed from the conflict clause. 
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Chapter 3 

Our implementation of the solver 

In this chapter, we describe the way we have implemented the DPLL algorithm 

with details of its data-structure and functions. Code is in C and lines of code are 

numbered for reference in the description. Before going into the pseudocode of our 

implementation, we present a revised version (Algorithm 3.6) of Algorithm 1.2, 

which avoids unnecessary work wherever possible. 

3.1 Revised DPLL algorithm 

We have the following observations: 

1. We get an empty clause in F\u only if u is in a clause of length one in F. So 

during unit-clause-propagation, for every new unit-clause-literal u, we avoid 

computing F\u and return UNSATISFIABLE when F contains both {u} and {u}. 

2. We can learn clauses to compute backtrack levels and restructure the DPLL-

tree remaining in the original framework of the DPLL algorithm. 
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In Algorithm 3.6, Global variables depth and backtrack_level are used to re­

structure the DPLL-tree. Details of these variables are discussed in section 3.3.4. 

Algorithm 3.6 REVISED DPLL ALGORITHM 

l 
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function DPLL(F) 

while TRUE do 
if there are contradictory unit clauses then return UNSATISFIABLE 

else if there is a clause {v} then F = F\v 
else break 

end while 
if F = 0 then return SATISFIABLE 

choose a literal v (using a branching rule) 
if DPLL(F|V) = SATISFIABLE then return SATISFIABLE 

CI = conflict clause learned 
if backtrack_level ^ depth-1 then 

if DPLL(F|U) = SATISFIABLE then return SATISFIABLE 

C2 = conflict clause learned 
update backtrack_level using C\ and C2 

end if 
return UNSATISFIABLE 

end function 

3.2 DPLL pseudocode of our implementation 
Algorithm 3.7 is the version of DPLL that we have implemented. The key functions 

are DPLL() itself, SETVAR(U) (computes F\v) and UNSETVAR(U) (recovers F from 

F\v). Ming Ouyang used the last two names in [51]. Our implementation of these 

functions with corresponding C code listings will be discussed in section 3.4. The 

function GETBRANCHINGVARIABLE chooses a yet-to-be-assigned variable for branch­

ing using a prescribed branching rule. One other important function which is used 

to add non-chronological backtracking (conflict-directed backjumping), is LEARN-

CONFLICTCLAUSE. In addition to them, there are basic stack functions to operate on 

locally and globally declared stacks. 
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Algorithm 3.7 THE DPLL PSEUDOCODE OF OUR IMPLEMENTATION 

function DPLL() > runs on formula F 
while TRUE do 

if there are contradictory unit clauses then 
while IsSTACKEMPTY(local_unit_clauses_stack) = FALSE do 

u = STACKPOP(local_unit_clauses_stack) 
UNSETVAR(U) 

end while 
store the antecedent clauses to learn a conflict clause 
return UNSATISFIABLE 

else if there is a clause C = {u} then 
STACKPuSH(local_unit_clauses_stack, u) 
SETVAR(U) 

else 
BREAK 

end if 
end while 
if F = 0 then return SATISFIABLE 

v = GETBRANCHINGVARIABLE(branching_rule) 
SETVARO) 

if DPLL() = SATISFIABLE then return SATISFIABLE 

UNSETVAR(V) 

Cx - LEARNCONFLICTCLAUSE 

if backtrack.level ^ depth — 1 then 
SETVARC-U) 

ifDPLL() = SATISFIABLE then return SATISFIABLE 

UNSETVAR(-U) 

C2 = LEARNCONFLICTCLAUSE 

Update backtrack_level using C\ and C2 

end if 
while ISSTACKEMPTY(local_unit_clauses_stack) = FALSE do 

u — STACKPOP(local_unit_clauses_stack) 
UNSETVAR(U) 

end while 
return UNSATISFIABLE 

end function 
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3.3 The data structure 

It is not obvious how to best represent a formula F such that Algorithm 3.7 runs 

the fastest. In this section, we describe the data structures used to implement the 

algorithm in detail with the corresponding codes in C. While designing the data 

structure, we have identified the following areas of possible improvement: 

1. UNIT CLAUSE PROPAGATION: Since we spend most of the time during the 

search in unit-propagation, it is a good idea to perform all basic operations 

required for unit-propagation in as little time as possible. 

2. RECORDING AND REVERSING CHANGES: Each time we compute F\v from F, we 

make certain changes to the formula. When we backtrack, we have to recover 

F from F\v reversing all those changes. It is important to record the changes 

in such a way that the reversal process remains inexpensive. 

We make the following assumptions (preprocessor takes care of them) about the 

formula: 

1. The formula contains no empty clause. If the initial formula does not contain 

an empty clause, then it never generates an empty clause during the search. 

2. The maximum length of a clause is 32 (number of bits in the microprocessor). 

If there is a clause longer than 32, then the preprocessor replaces them with 

smaller clauses introducing new variables. This assumption is necessary for 

faster retrieval of unit-clause-literal when a clause becomes unit. 
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3.3.1 Storing literals and clauses 

Throughout the searching process, we need the list of all literals in each clause and 

the list of all clauses each literal is in. Structure l i t e ra l_ info maintains informa­

tion specific to a literal. 

typedef s t ruct l i teral_info{ 
int is_assigned; 
int n_occur; 
int * lit_in_clauses; 
int * lit_in_clause_locs; 
int is_unit; 
int antecedent-Clause; 

}l i teral_info; 

l i t e r a l . i n fo linfo[MAX_VARS] [2] ; 

The field is_assigned which is either YES or No helps to maintain the list of 

free (unassigned) literals during runtime. Fields n_occur, l i t_in_clauses and 

l i t_in_clause_locs store respectively the count, list of clauses in the original for­

mula that contain the literal and the list of locations of the literal in the correspond­

ing clauses. Variable linf o is a global array where linf o [j] [SATISFIED] stores the 

information related to literal j : if it is assigned, number of times j occurs in F, list 

of clauses that contain j and the list of locations of the literal in the corresponding 

clauses. Similarly, linfoEj] [SHRUNK] stores the information related to literal - j . 

When literal k becomes the only unassigned literal in a clause C, the is_unit field 

of k is set to YES and C is recorded in the antecedent_clause field. 
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Structure clause_inf o maintains information specific to a clause. 

typedef struct clause_info{ 

int 
int 
int 
int 
int 
int 

* literals; 

current-length; 

originalJLength; 

is_satisfied; 

binary_code; 

currentoicl; 

}clause_info; 

clause_info * clauses; 

int n_ .clause, r_clauses; 

The field l i t e r a l s stores the list of all literals in the clause. The original 

and the current lengths of the clause are stored in fields original_length and 

current_length respectively. When a literal in the clause is set to FALSE, the 

current_length decreases by one. The is_sat isf ied field is No if the clause is 

not satisfied (i. e., none of its literals is set to TRUE) and YES otherwise. The field 

binary_code holds an integer, the binary encoding of which corresponds to the bit-

string obtained from the literals setting T if UNASSIGNED and '0' if FALSE. The field 

current_ucl stores the unit-clause-literal if the clause has become unit and stores 

zero otherwise. Global array clauses stores the clauses and they remain in the 

memory throughout the search. No clause is physically removed from the formula 

when satisfied, only the is_sat isf ied field is set to TRUE. Variables n_clauses and 

r_clauses hold the original and current size (number of clauses) of the formula 

respectively. 
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3.3.2 Stack of Changes 

The following structure keeps track of changes made while computing the residual 

formula and is used when the changes are needed to be reversed. 

typedef s t ruct changes_info{ 
int clause_index; 
int l i tera l - index; 

}changes_info; 

changes_info changes [MAX.CLAUSES]; 
unsigned int changes_index; 
unsigned int n_changes [MAX-VARS] [2] ; 

When the is_sat isf ied field of a clause is changed to YES, the clause-index 

is saved. When a currently unassigned literal in a clause is set to FALSE, both the 

clause-index and the literal-index are saved in clause_index and l i tera l_index 

respectively, so that they can be directly accessed when reversal of the changes 

is needed. The global array changes stores all the changes and is indexed by 

changes_index. 

Variables n_changes[depth][SATISFIED] and n_changes[depth][SHRUNK] store 

respectively the number of clauses satisfied (or resolved) and the number of clauses 

shrunk at level depth in the branching tree while computing residual formula with 

the corresponding literal at that level. They are used while changes need to be 

reversed. 
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3.3.3 Storing assignment information 

For each variable we store the current assignment information through the follow­

ing structure. 

typedef struct 

int type; 

int depth; 

int decision; 

}assign_info; 

assign_info{ 

assign_info assign[MAX_VARS] ; 

When a literal is assigned a value, TRUE or FALSE, the value is stored in the 

field type and the depth at which the assignment is made is stored in depth. The 

field decision stores ASSIGN_BRANCHED or ASSIGN_IMPLIED depending on whether 

the literal was chosen by a branching decision or was forced to have an assign­

ment. By default, the field decision stores ASSIGN_NONE. In addition to storing 

assignment information, this structure is used to compute backtracking levels for 

non-chronological backtracking. 

3.3.4 Other global variables and arrays 

There are global variables that play crucial roles in the search process, which are 

discussed below: 

(i) Variables contradictory_unit_clauses and conf l i c t i n g _ l i t e r a l : when lit­

erals x and x are the only unassigned literals in two different yet-to-be-satisfied 

clauses, the variable contradictory_unit_clauses is set to YES. This saves 
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an unnecessary unit-propagation, which would end up with an empty clause. 

If this variable is set to YES, then we return UNSAT. One of the conflicting 

literal is stored in conf l i c t i n g _ l i t e r a l . 

(ii) Array gucl_stack and variable n_gucl: when a new unit clause is detected, 

the unit-clause-literal is stored in global array gucl_stack which implements 

a stack of size n_gucl. Element popped from this stack is used for unit-clause-

propagation when there are no contradictory unit clauses. 

(Hi) Variables depth, backtrack_level and raax_depth: the variable depth stores 

the level of a node in the branching tree. (The depth level of the node is 

at most backtrack_level). Variable backtrack_level is usually one less 

than depth, but it can be equal to depth when depth equals to zero and for 

depth greater than one, the difference can be more than one indicating that a 

conflict-directed backjumping is necessary. Variable max_depth, local to dpll, 

is used to track non-chronological backtracking. 

(iv) Array impl_clauses and ic_cnt: array irapl_clauses and variable ic_cnt 

are used to store the antecedent clauses in an unit-propagation that leads to 

a contradiction. 

3.4 Details of functions 

In this section, we discuss key functions and procedures we use to implement DPLL. 

Most of the functions have a pseudocode followed by numbered code-listing in C 

and description of the code. 
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3.4.1 SetVar - computing F \ v 

Algorithm 3.8 shows the pseudocode for implementation of the SETVAR procedure. 

Algorithm 3.8 DPLL - SETVAR 

l 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

procedure SETVARO) 

for each yet-to-be-satisfied clause C such that v eC do 
mark C as satisfied 
update clause count for C 
save changes information for v 

end for 
for each yet-to-be-satisfied clause C such that v e C do 

set v as FALSE and update the length of C 
if \C\ = 1 then find the literal £ in C that is unassigned 
if 1 is also a unit-clause-literal then mark contradictory unit clauses 
save changes information for v 

end for 
update depth and backtrack level 
remove v and v from the list of unassigned literals 

end procedure 

The following code listing shows the C implementation of SETVAR. 

1 void SetVar(int v) 
2 { 
3 register int i; 
4 register int p = abs(v), q = (v>0) ? SATISFIED : SHRUNK; 
5 for(i=0; i<linfo[p][q].n_occur; ++i) 
6 { 
7 reg is te r int j = l in fo [p ] [q ] . l i t_ in_c lauses [ i ] ; 
8 i f ( c lauses [ j ] . i s_sa t i s f i ed ) continue; 
9 c lauses [ j ] . i s_sa t i s f i ed = YES; 

10 —r_clauses; 
11 changes[changes_index++].clause_index = j ; 
12 n_changes[depth][SATISFIED]++; 
13 } 
14 q = !q; 
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15 f o r ( i = 0 ; i < l i n f o [ p ] [ q ] . n _ o c c u r ; ++i) 
16 { 
17 r e g i s t e r i n t j = l i n f o [ p ] [ q ] . l i t _ i n _ c l a u s e s [ i ] ; 
18 i f ( c l a u s e s [ j ] . i s _ s a t i s f i e d ) cont inue ; 
19 r e g i s t e r i n t k = l i n f o [ p ] [ q ] . l i t _ i n _ c l a u s e _ l o c s [ i ] ; 
20 — c l a u s e s [ j ] . c u r r e n t . l e n g t h ; 
21 c l ause s [ j ] . b ina ry_code -= ( (1 « k ) ) ; 
22 changes[changes_index] .c lause_index = j ; 
23 changes[changes_index++] . l i t e ra l_ index = k; 
24 n_changes[depth][SHRUNK]++; 
25 i f ( c l a u s e s [ j ] . c u r r e n t _ l e n g t h == 1) 
26 { 
27 register int loc = int(log2(clauses[j].binary_code)); 
28 register int w = clauses[j].literals[loc]; 
29 register int s = abs(w), t = (w>0) ? SATISFIED : SHRUNK; 
30 linfo[s][t].antecedent_clause = j; 
31 if(linfo[s][(!t)].is.unit == YES) 
32 { 
33 contradictory_unit_clauses = TRUE; 
34 conflicting_literal = w; 
35 } 
36 e l s e i f ( l i n f o [ s ] [ t ] . i s _ u n i t == NO) 
37 { 
38 gucl_s tack[n_gucl] = c l a u s e s [ j ] . c u r r e n t _ u c l = w; 
39 l i n f o [ s ] [ t ] . i s _ u n i t = YES; 
40 ++n_gucl; 
41 } 
42 } 
43 } 
44 i f ( d e p t h kk back t rack_leve l == depth-1) 
45 ++backtrack_level ; 
46 ++depth; 
47 l info[p][SATISFIED]. is .ass igned = YES; 
48 linfo[p][SHRUNK].is_assigned = YES; 
49 } 

Different parts of the function SetVar work as follows: 

5-13 This for loop implements lines 2-5 of Algorithm 3.8. It scans through the 
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l i t_in_clauses list associated with the literal v. In each iteration, we retrieve 

a clause, say C, that contains the literal v (in 0(1) time). The is_sat isf ied 

field of C is set to YES and the size of the formula, r_clauses is decremented 

by one. All changes are saved in the changes list, and the number of changes 

made in this phase of action (which is stored in n_changes [depth] [SATISFIED]) 

is incremented by one. 

15-43 This for loop implements lines 7-12 of Algorithm 3.8. It scans through the 

l i t_in_clauses list associated with the literal -v. In each iteration, we 

retrieve a clause, say C, that contains the literal -v (in 0(1) time). The 

binary_code field of the clause C is initially an integer 2 | c | - 1, which is a 

bitstring of \C\ Vs. If -v is the A;-th (k e {0,1, • • • , \C\ - 1}) literal in C, then 

we subtract (1 < k) (shift operations are constant-time) from binary_code 

of C. When \C\ = 1, we know that binary.code equals 2* for some non-

negative integer t less than 32. We can compute, in time 0(1), the integer 

log2(binary_code) which is the location of the unit-clause-literal, say w, in 

C. The clause that becomes unit is saved in the antecedent_clause field of 

the corresponding entry of the linf o list. If -w is also a unit-clause-literal, 

then contradictory_unit_clauses is set to YES and w is recorded as the 

conf l i c t i n g _ l i t e r a l . Otherwise, w is saved both in gucl.stack and in the 

current_ucl field of C and w is identified as a unit-clause-literal. All changes 

are saved in the changes list, and the number of changes made in this phase 

of action (which is stored in n_changes [depth] [SHRUNK]) is incremented by 

one. 
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44-48 These lines implement lines 13-14 of Algorithm 3.8. Once the residual for­

mula is obtained, depth is incremented by one and the backtrack_level is 

updated. Finally, both the literals v and -v are identified as assigned. There­

fore, we have computed the residual formula FI v. 

3.4.2 UnSetVar - recovering F from F\v 

Algorithm 3.9 shows the pseudocode for implementation of the UNSETVAR proce­

dure. 

Algorithm 3.9 DPLL - UNSETVAR 

l 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14: 
15 

procedure UNSETVAR(V) 

update depth and backtrack level 
while the stack-of-changes for v is not empty do 

retrieve the clause C and the corresponding literal-index 
increment length of C by 1 
if the literal was set as unit then undo it 
update binary code of C 

end while 
while the stack-of-changes for v is not empty do 

retrieve the clause C 
mark C as not satisfied 
increment the formula size by 1 

end while 
set v and v as unassigned 

end procedure 

Following is the C-code listing of UNSETVAR. 

1 void UnSetVar(int v) 
2 { 
3 register int i; 
4 register int p = abs(v), q = (v>0) ? SATISFIED : SHRUNK; 
5 —depth; 
6 if(depth && backtrack_level == depth) 
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—backtrack_level; 
while(n.changes[depth][SHRUNK]) 
{ 

--n_changes[depth][SHRUNK]; 
reg is te r int j = changes[—changes_index].clause_index; 
reg is te r int k = changes[changes_index].literal_index; 
++clauses[j].current_length; 
i f (c lauses[ j ] .current_length == 2) 
{ 
int s = abs(clauses[j].current_ucl); 
int t = (clauses[j].current_ucl > 0) ? SATISFIED : SHRUNK; 
linfo[s][t].is_unit = NO; 
clauses[j].current_ucl = 0; 

} 
clauses[j].binary_code += ((1 « k) ) ; 

} 
while(n_changes[depth][SATISFIED]) 
{ 

—n_changes[depth][SATISFIED]; 
reg is te r int j = changes[—changes_index].clause_index; 
c lauses [ j ] . i s_sa t i s f i ed = NO; 
++r_clauses; 

} 
linfo[p][SATISFIED].is_assigned = NO; 
linfo[p][SHRUNK].is.assigned = NO; 

Different parts of the function UnSetVar work as follows: 

5-7 These lines implement line 2 of Algorithm 3.9. We are now reversing all the 

changed made in level depth-1. The value of depth is decremented by one 

and the backtack_level is updated. 

8-22 This while loop implements lines 3-8 of Algorithm 3.9. It runs through the 

stack of changes n_changes [depth] [SHRUNK] times. In each iteration, we 

retrieve the clause C and the literal-index k in that clause from the changes 
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list in 0(1) time and increment the clause-length by one. If \C\ = 2, i. e., 

if C was a unit-clause, then information related to the unit-clause-literal is 

updated. The binary_code field of C is updated by adding 2k, i. e., 1 <C k, to 

it. 

23-29 This while loop implements lines 9-13 of Algorithm 3.9. It runs through the 

stack of changes n_changes [depth] [SATISFIED] times. In each iteration, we 

retrieve the clause-number (which was set as satisfied) in 0(1) time, turn it 

back to not satisfied, and increment the formula size by one. 

30-31 These lines implement line 14 of Algorithm 3.9. Both v and v are taken back 

to the list of unassigned literals. 

3.4.3 The DPLL function 

The dpll function has the prototype int dpll ( ) ; it does not receive any parameter 

and returns either SAT or UNSAT. Local array luc l . s tack implements a stack of 

size n_lucl. This stack is a dynamically extendable list (it uses the C real loc 

function for allocation), which is freed when DPLL returns UNSAT. For convenience 

in describing the details of this function, we break down the code listing into parts 

and describe these parts separately. 

3.4.3.1 Unit-propagation block 

The while loop of lines 5-39 implements lines 2-16 of Algorithm 3.7. 

1 int dpl lO 
2 { 
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3 int * lucl_stack = NULL; 
4 register unsigned int n_lucl = 0; 
5 while(1) 
6 { 
7 if(contradictory_unit_clauses) 
8 { 
9 icl.cnt = 0; 

10 i n t c l = a b s ( c o n f l i c t i n g _ l i t e r a l ) ; 
11 impl_clauses[ ic l_cnt++] = l info[c l ] [SATISFIED].antecedent_clause; 
12 impl_clauses[ ic l_cnt++] = l info[cl][SHRUNK].antecedent_clause; 
13 a s s i g n [ c l ] . d e c i s i o n = ASSIGN.NONE; 
14 whi le (n_ luc l ) 
15 { 
16 UnSe tVar ( luc l_s tack[—n_luc l ] ) ; 
17 r e g i s t e r i n t s = a b s ( l u c l _ s t a c k [ n _ l u c l ] ) ; 
18 r e g i s t e r i n t t = luc l_s t ack [n_ luc l ]>0 ? TRUE : FALSE; 
19 i rapl_clauses[ ic l_cnt++] = l i n f o [ s ] [ t ] . a n t e c e d e n t _ c l a u s e ; 
20 a s s i g n [ s ] . t y p e = UNASSIGNED; 
21 a s s i g n [ s ] . d e c i s i o n = ASSIGN_NONE; 
22 } 
23 contradictory_unit_clauses = FALSE; 
24 free(lucl_stack); 
25 n_gucl = 0; 
26 return UNSAT; 
27 } 
28 else if (n_gucl) 
29 { 
30 lucl_stack = (int*)realloc(lucl_stack,(n_lucl+l)*sizeof(int)); 
31 register int implied_lit = gucl_stack[—n_gucl]; 
32 lucl_stack[n_lucl++] = implied_lit; 
33 assign[abs(implied_lit)].type = implied_lit>0 ? TRUE : FALSE; 
34 assign[abs(implied_lit)].decision = ASSIGN_IMPLIED; 
35 SetVar(implied_lit); 
36 n_units++; 
37 } 
38 else break; 
39 > 

7-27 This if block implements lines 3-9 of Algorithm 3.7. If there is a pair of 
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contradictory unit clauses, then this block is executed. We do not need to 

make a lookup for contradictory unit clauses. In fact, whenever the is_unit 

field of a literal u is already set to TRUE and -u becomes a unit-clause-literal, 

the global constant contradictory_unit_clauses is set to TRUE. Lines 10-12 

retrieve the antecedent clauses of the conflicting literals and store them in the 

impl_clauses array. Each iteration of the while loop (14-22) pops a literal 

from lucl_stack, reverses the changes made by SETVAR and retrieves (to 

store in the impl.clauses array) the antecedent clause of that literal. Lines 

23-26 set the contradictory_unit_clauses to FALSE, free the lucl_stack, 

set the global unit clauses stack gucl_stack as empty and return UNSAT. 

29-37 This block implements lines 10-12 of Algorithm 3.7. When there is no pair 

of contradictory unit clauses, we look for unit-clause-literals in the global 

unit clauses stack gucl_stack. Unit-clause-literal popped from gucl_stack 

is pushed into the local stack lucl_stack. The fact that the assignment was 

forced is recorded by marking the unit-clause-literal as ASSIGN_IMPLIED. Fi­

nally, the residual formula is computed using that literal. 

3.4.3.2 Branching 

Lines 40-65 implement lines 17-22 of Algorithm 3.7. 

40 if(!r_clauses) return SAT; 
41 register int v = GetLiteral2SJW().; 
42 assign[abs(v)].type = v > 0 ? TRUE : FALSE; 
43 assign[abs(v)].depth = depth; 
44 assign[abs(v)].decision = ASSIGN.BRANCHED; 
45 SetVar(v); 
46 if(dpllO) return SAT; 
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47 UnSetVar(v); 
48 assign[abs(v)].decision = ASSIGN_NONE; 
49 register int max_depth = 0, i, j, k, m, left = FALSE; 
50 if(icl_cnt) 
51 { 
52 while(icl_cnt) 
53 { 
54 i = impl_clauses[—icl_cnt]; 
55 k = clauses[i].original.length; 
56 for(j=0; j < k; ++j) 
57 { 
58 m = a b s ( c l a u s e s [ i ] . l i t e r a l s [ j ] ) ; 
59 if(assign[m].decision == ASSIGN_BRANCHED && 
60 assign[m].depth > max_depth) 
61 raax_depth = assign[m].depth; 
62 } 
63 > 
64 lef t = TRUE; 
65 > 

40 This line implements line 17 of Algorithm 3.7. If the formula is empty, i. e., 

r_clauses is zero, then we return SAT. 

41-46 These lines implement lines 18-20 of Algorithm 3.7. At this point, since there 

exist no contradictory unit clauses and there remain clauses to be satisfied, we 

choose a literal using the 2-sided-Jeroslow-Wang branching rule (any other 

branching rule could be accomodated by changing the single line 41) to be 

assigned as TRUE. The fact that the assignment was made by a branching deci­

sion is recorded by marking the literal as ASSIGN_BRANCHED. After computing 

the residual formula F\v, we proceed to the left child of the DPLL-tree by 

making a recursive call to dpll. 

47-65 These lines implement lines 21-22 of Algorithm 3.7. If the left child of the 
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DPLL-tree returns UNSAT, then we recover F from F\v by calling UnSetVar. 

The while loop (lines 52-63) looks at the literals that were assigned by a 

branching decision in the irapl_clauses (the antecedent clauses of the unit-

literals during unit-propagation) and update the variable max_depth with the 

assignment depth of the most recent branching decision. 

3.4.3.3 Backtracking and backjumping 

Lines 66-105 implement lines 23-35 of Algorithm 3.7. 

66 ++n_backtracks; 
67 if(backtrack_level >= depth-1) 
68 { 
69 assign[abs(v)].type = !assign[abs(v)].type; 
70 assign[abs(v)].decision = ASSIGN_IMPLIED; 
71 SetVar(-v); 
72 if(dpllO) return SAT; 
73 UnSetVar(-v); 
74 assign[abs(v)].type = UNASSIGNED; 
75 assign[abs(v)].decision = ASSIGN_N0NE; 
76 if(left kk icl.cnt) 
77 { 
78 while(icl_cnt) 
79 { 
80 i = impl_clauses[—icl_cnt]; 
81 k = clauses[i].original_length; 
82 for(j=0; j < k; ++j) 
83 { 
84 m = abs(clauses[i].literals[j]); 
85 if(assign[m].decision == ASSIGN_BRANCHED kk 
86 assign[m].depth > raax_depth) 
87 max_depth = assign[m].depth; 
88 } 
89 > 
90 if(max_depth < backtrack_level) 
91 backtrack_level = max_depth; 
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92 } 
93 } 
94 icl_cnt = 0; 
95 while(n_lucl) 
96 { 
97 int z = lucl_stack[—n_lucl]; 
98 UnSetVar(z); 
99 assign[abs(z)].type = UNASSIGNED; 
100 assign[abs(z)].decision = ASSIGN_N0NE; 
101 } 
102 free(lucl_stack); 
103 contradictory_unit_clauses = FALSE; 
104 return UNSAT; 
105 > 

Line 67 is used for diagnostic purposes. Lines 67-93 implement the if block 

(lines 23-29) of Algorithm 3.7. 

69-72 These lines implement lines 24-25 of Algorithm 3.7. If backjumping is not 

suggested by the backtrack level, then we proceed to the right child of the 

DPLL-tree making a recursive call to dpll on the reduced formula F\v. 

The assignment decision of the literal is switched from ASSIGN_BRANCHED to 

ASSIGN_IMPLIED as it was forced. 

73-89 These lines implement lines 26-27 of Algorithm 3.7. If the right child of the 

DPLL-tree returns UNSAT, then we recover F from F\v by calling UnSetVar. 

The while loop in lines 78-89 are identical to lines 52-63 of the dpll listing. 

90-91 These lines implement line 28 of Algorithm 3.7. The backtrack level is up­

dated. 

95-104 These lines implement lines 30-34 of Algorithm 3.7. The changes made in 
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the unit propagation immediately preceeding the decision to branch on v are 

reversed. Finally lucl_stack is freed, and UNSAT is returned. 

3.4.4 Monotone literal fixing 

After the unit-propagation block, every clause is of length at least two. At this 

point, we can look for literals that do not appear in their complemented form in 

the residual formula. Such literals are referred as monotone literals, as described 

in section 1.2. Setting a monotone literal u to TRUE has the following effects: 

1. The clauses that contain u are removed. 

2. No clause shrinks. 

3. The satisfiability of the instance does not change (F is satisfiable if and only 

if F\u is satisfiable). 

If we want to add this feature to the solver, then we have to insert the following 

lines and the C code segments in Algorithm 3.7 and in the listing of dpll, respec­

tively. 

1 The following two lines should be inserted after line 4 of dpll listing. Here, 

ml_stack is a local array that implements a stack of size n_ml. 

int * ml_stack = NULL; 
int n_ml = 0; 

2 The following 4 lines should be inserted after line 17 in Algorithm 3.7. 
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l: for each monotone literal u in F do 
2: STACKPuSH(local_monotone_literal_stack, u) 
3: SETVAR(u) 
4: end for 

The corresponding C listing that should be inserted after line 40 of dpll, im­

mediately follows. It scans through all unassigned literals in the residual for­

mula and if there is a monotone literal u, then it computes F\u using SetVar. 

1 for(int i=l; i<=n_vars; ++i) 
2 { 
3 int x, y, u, C; 
4 x = y = 0; 
5 if(assign[i].decision == ASSIGN_N0NE) 
6 { 
7 u = 0; 
8 . fo r ( in t j=0; j<linfo[i][SATISFIED].n_occur; ++j) 

9 -C 
10 C = linfo[i][SATISFIED].lit_in_clauses[j]; 
11 x += l -c lauses[C] . is_sat isf ied; 
12 } 
13 for(int j=0; j<linfo[i][SHRUNK].n_occur; ++j) 
14 { 
15 C = linfo[i][SHRUNK].lit_in_clauses[j]; 
16 y += l -c lauses[C] . is_sat isf ied; 
17 } 
18 if(x && !y) u = i ; 
19 if(y && !x) u = - i ; 
20 if(u) 
21 { 
22 ml_stack = (int*) realloc(ml_stack,(n_ml+l)*sizeof(int)); 
23 ml_stack[n_ml++] = u; 
24 assign[abs(u)].type = u>0 ? TRUE : FALSE; 
25 assign[abs(u)].depth = depth; 
26 assign[abs(u)].decision = ASSIGN_IMPLIED; 
27 SetVar(u); 
28 } 
29 } 
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30 } 

3 The following 4 lines should be inserted after line 29 in Algorithm 3.7. The C 

implementation of the while loop, which should be inserted after line 93 of 

dpll listing, follows immediately. For each literal v popped from ml_stack, 

we recover F from F\v. 

1: while IsSTACKEMPTY(local_monotone_literal_stack) = FALSE do 
2: u = STACKPOP(local_monotone_literal_stack) 
3: UNSETVAR(u) 
4: end while 

1 while(n_ml) 
2 { 
3 int u = ml_stack[—n_ml]; 
4 UnSetVar(u); 
5 assign[abs(u)].type = UNASSIGNED; 
6 assign[abs(u)].decision = ASSIGN_N0NE; 
7 } 
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3.4.5 Input cleanup and preprocessing 

Our solver reads SAT instances in DIMACS satisfiability format [20]: 

1. Comments may appear before the actual problem specification begins. Each 

comment line begins with a lower-case character c. These lines are ignored 

by the solver. 

2. After the comments, there is a single line that specifies the instance. The 

line begins with a lower-case letter p, followed by the word cnf (to indicate 

that the problem is in Conjunctive Normal Form), the number n of variables 

(variables are the integers 1,2, • • • , n), the number m of clauses; followed by 

the encoding of the m clauses. Each of the clauses is encoded by a list of 

integers followed by a zero (indicating the end of the clause). These integers 

are chosen from {1,2,• • • ,n,-l,-2,- • • , —n} as literals and they appear in 

an arbitrary order. There may be redundant literals in a clause and redundant 

clauses in a formula. For instance, the file 

c This i s a comment 
p cnf 4 2 
2 - 1 4 0 
2 - 3 0 

represents the formula with variables with variables xi,x2>xs,x4 that consists 

of the two clauses {xi,x2,x4} and {x2,x3}. 

When reading the input file, we do the following: 

1. We remove variables that do not occur in the formula from the list of free 

variables. We do so by storing ASSIGN_REMOVED in the assign[u] .decision 
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for the variable u. When a satisfying assignment is found, these variables 

remain as "don't cares". 

2. We remove clauses that contain a pair of literals u and u, which makes the 

clause satisfied by any truth assignment. 

3. We remove duplicate literals from a clause and store the remaining literals in 

sorted order. 

4. We remove duplicate clauses. 

5. If some clause C consists of literals u0,ui,--- ,uk where k ^ 32, then we 

replace C by a set of clauses {C0, Ci, • • • , Ct_i} with t = \(k - 1)/30"|. These 

clauses involve t—\ new variables y0, yx, • • • , yt_2 and are defined as follows: 

(i). C0 = {u0,ux,-- • ,u3o,yo}, 

(ii). Q = {yi-i,U30i+i, • • • , 1*30(1+1).!/i} for 1 ^ i ^ t - 2, and 

(iii). Ct-i = {yt_2,u30(t-i)+i,- •• ,uk}. 

If C is not satisfied by a truth assignment z, i. e., the literals u0, ux, • • • ,Uk are 

all set to FALSE, then {C0, • • • , Ct_i} is not satisfied by z. Because, C0 cannot 

be satisfied by setting yQ to FALSE and if we set y0 to TRUE to satisfy C0, then 

Ct-i cannot be satisfied. If C is satisfied by z, then a literal Uj, with 0 < j ^ k, 

must have been set to TRUE by z. If Uj G Q for 0 ^ i < t - 1, then we 

can satisfy {C0, ••• , Ct-\} by setting y0, yx, • • • , y4_i to TRUE and yu • • • , yt-2 to 

FALSE. 
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3.4.5.1 Our preprocessor 

Our preprocessor is described in Algorithm 3.10. Here, we implement unit-propagation, 

monotone-literal-fixing, restricted resolution and subsumption. We repeat them in 

this order until there is no change in F. The unit-propagation is similar to the unit-

propagation block in section 3.4.3.1 except that there is no need to store the unit 

literals and the implication clauses. Fixing monotone literals is also same as de­

scribed in section 3.4.4 except that there is no need to store the monotone literals. 

Of course, other features like equivalency reasoning (see [43]) can be added to 

solve the DIMACS pret and par instances easily. 

Algorithm 3.10 OUR PREPROCESSOR 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 

function PREPROCESS(F) 

initialize threshold on the number of resolvents 
while TRUE do 

unit-propagation 
fix monotone literals 
add resolvents retricted by length and the threshold 
subsume clauses if you can 
if no changes occurs to F then break 

end while 
end function 

Adding resolvents 

We compute length restricted-resolvents as in Algorithm 3.12. As defined earlier in 

section 2.3.1, two clauses Cx and C2 are said to clash on a variable x, if x is the only 

variable such that x e C\ and x e C2 (or, x e C\ and x e C2). In that case, the 

resolvent of Cx and C2 is defined as C\ U C2 - {x,x} and denoted by CiVC2. 
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Algorithm 3.11 COMPUTE RESOLVENTS 

1: function COMPUTER.ESOLVENT(:r, j , k, length, length.l imit) 
2: C = {} 
3: for each i e {j, k} do 
4: for each literal it in d do 
5: if x = abs(u) or u G C then 
6: continue 
7: else if it e C then 
8: return false 
9: else 

10: C = CU{u} 
11: if |C| > length_limit then return false 
12: end if 
13: end for 
14: end for 
15: length = \C\ 
16: return true 
17: end function 

The following C listing implements Algorithm 3.11. 

1 int compute_resolvent(int x, int a, int b, in t & len, int l imit) 
2 { 
3 register int j, k; 
4 int * check = (int *)calloc(n_vars+l, sizeof(int)); 
5 int found = FALSE; 
6 int res_size = 0; 
7 int C[2] = {a, b}; 
8 for(j=0; j<2; ++j) 
9 { 
10 for(k=0; k<clauses[C[j]].original_length; ++k) 
11 { 
12 register int w = abs(clauses[C[j]].literals[k]); 
13 if(w == x) continue; 
14 else if(check[w] == c lauses [C[ j ] ] . l i t e ra l s [k ] ) continue; 
15 else if(check[w] == -c l auses [C[ j ] ] . l i t e r a l s [k ] ) 
16 { 
17 free(check); return FALSE; 
18 } 
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19 else if(assign[abs(clauses[C[j]].literals[k])].decision 
20 != ASSIGN_N0NE) continue; 
21 else if(check[w] == 0) 
22 { 
23 check[w] = c l auses [C[ j ] ] . l i t e r a l s [k ] ; 
24 resolvent[res_size++] = c l ause s [C[ j ] ] . l i t e r a l s [k ] ; 
25 i f ( res_size > l imit) 
26 { 
27 free(check); return FALSE; 
28 } 
29 > 
30 } 
31 > 
32 len = res_size; 
33 free(check); 
34 return TRUE; 
35 } 

Here, The local array check is used to detect duplicate and complemented lit­

erals while scanning through the two clauses to obtain a resolvent. To store a new 

resolvent, we use the global array resolvent, which is indexed by res_size. 

8-31 These lines implement lines 3-14 of Algorithm 3.11. The parameter a; is a 

variables such that x belongs to one of the clauses and x belongs to the other 

clause. We look at each literal of each clause C of the two clauses. If the 

current literal u is x or x, then we continue. If check [abs (u)] equals to u, 

i. e., u £ C, then we continue; if check[abs(u)3 equals to u, i. e., another 

variable other than x appears in one of the clauses and appears complemented 

in the other clause, then we return FALSE. If check [abs (u)] equals to zero, 

then we store u in check [abs (u)] and resolvent. If res_size is bigger then 

limit, then we return FALSE. 

32-34 Otherwise, we return TRUE. 
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Note that unit-propagation and monotone literal fixing make some clauses sat­

isfied; this is the reason why we write "unsatisfied clauses" rather than "clauses" in 

lines 2 and 3 of Algorithm 3.12. 

Here, resolvents_added and n_resolvents_threshold are global variables stor­

ing the number of resolvents added so far and the number of resolvents we are 

allowed to add, respectively. 

Algorithm 3.12 GETTING RESTRICTED RESOLVENTS 

l 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

function GETRESOLVENTS(X, length_limit, F) 
for each unsatisfied clause Cj such that x e Cj do 

for each unsatisfied clause Ck such that x e Ck do 
if COMPUTERESOLVENTO, j , k, length, length_limit)=true then 

if resolvents_added < n_resolvents_threshold then 
add the resolvent to F 

else 
return false 

end if 
end if 

end for 
end for 

end function 

The following C listing implements Algorithm 3.12. 

1 int get_restr icted_resolvent( int x, int l imit) 
2 { 
3 register int i, j, k, a, b, res_length; 
4 int found; 
5 changes_occured = FALSE; 
6 for(i=0; i<linfo[x][SATISFIED].n_occur; ++i) 
7 { 
8 a = linfoLx] [SATISFIED].lit_in_clauses[i]; 
9 i f (c lauses [a ] . i s_sa t i s f ied == NO) 

10 { 
11 for(j=0; j<linfo[x][SHRUNK].n_occur; ++j) 
12 { 
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13 b = linfo[x][SHRUNK].lit_in_clauses[j]; 
14 i f (c lauses [b] . i s_sa t i s f ied == NO) 
15 { 
16 found = compute_resolvent(x, a, b, res_length, limit); 
17 if(found) 
18 { 
19 if(resolvent_added < n_resolvents_threshold) 
20 { 
21 resolvent_added += 
22 add_a_clause_to_formula(resolvent, res_length); 
23 changes_occured = TRUE; 
24 } 
25 else return -1; 
26 } 
27 } 
28 } 
29 } 
30 } 
31 return -1; 
32 } 

6-30 The nested for loops implement lines 2-12 of the algorithm 3.12. If a resol­

vent is found, i. e., compute_resolvent returns TRUE, then the clause stored 

in resolvent, which is of length res_length, is our length-restricted resol­

vent. If the resolvent-count does not exceed the threshold, then the resolvent 

is added to the formula; otherwise, we stop searching resolvents. The func­

tion add_a_clause_to_f orraula(int [ ] , in t ) , which takes an array and its 

size as parameters and stores it into the data structure as a clause, is described 

in section 3.4.5.2. 
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Removal of subsumed clauses 

Algorithm 3.13 takes two clauses Cj and Ck as parameters. It returns TRUE if Cj c 

Ck) and returns FALSE otherwise. 

Algorithm 3.13 SUBSUMABLE 

function SUBSUMABLE(J, k) 
for each literal u e Ck do 

store u in check [abs(u)] 
end for 
for each literal u e Cj do 

if u 7^check[abs(u)3 then return false 
end for 
return true 

end function 

The C implementation of Algorithm 3.13 is as follows: 

1 int subsumable(int j , in t k) 
2 { 
3 reg i s te r int i ; 
4 int * check = (int *) calloc((n_vars+l) , s i zeo f ( in t ) ) ; 
5 for(i=0; i<clauses[k].original_length; ++i) 
6 check[abs(c lauses[k] . l i te ra ls [ i ] ) ] = c l a u s e s [ k ] . l i t e r a l s [ i ] ; 
7 for(i=0; i<clauses[j] .or iginal_length; ++i) 
8 i f ( c l a u s e s [ j ] . l i t e r a l s [ i ] != check[abs (c lauses [ j ] . l i t e ra l s [ i ] ) ] ) 
9 { free(check); return NO; } 
10 free(check); 
11 return YES; 
12 } 

Here, we use local array check to mark the literals in Ck. For each literal u 

in Ck, we store u in check [abs (u) ] . For each literal u in Cj} if u is not equal to 

check [abs (u)], then we return FALSE and else we return TRUE. 
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We remove subsumed clauses as described in Algorithm 3.14. 

Algorithm 3.14 SUBSUMING CLAUSES 

I 

2 
3 
4 
5 
6 
7: 
8 
9 

10 
11 

function SUBSUMECLAUSES(F) 

for each unassigned literal u do 
for each unsatisfied clause Cj such that u e Cj do 

for each unsatisfied clause C& such that u e Ck do 
if j = k then continue 
if \Cj\ ^ \Ck\ then continue 
if SuBSUMABLE(j,fc)=true then remove Ck from F 

end for 
end for 

end for 
end function 

Lines 1-33 implement Algorithm 3.14. 

1 int preprocess_subsume() 
2 { 
3 register int n_subsumed = 0; 
4 register int i, j, k, cl, c2, type; 
5 changes_occured = FALSE; 
6 for(i=l; i<=n_vars; ++i) 

8 if(assign[i].decision != ASSIGN.NONE) continue; 
9 for(type=0; type<=l; ++type) 
10 { 
11 for(j=0; j<linfo[i][ type].n_occur; ++j) 
12 { 
13 for(k=0; k<linfo[i][type].n_occur; ++k) 
14 { 
15 if(j==k) continue; 
16 cl = l i n fo [ i ] [ type ] . l i t _ in_c lauses [ j ] ; 
17 c2 = l in fo[ i ] [ type] . l i t_ in_c lauses [k] ; 
18 i f ( c l auses [c l ] . i s_sa t i s f i ed II 
19 c lauses[c2] . is_sat isf ied) continue; 
20 i f (c lauses[c l ] .or ig inal_length >= 
21 clauses[c2].original_length) continue; 
22 if(subsumableCcl, c2)) 
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•c 
clauses[c2] . i s_sat is f ied = YES; 
—r_clauses; 
n_subsumed++; 
changes_occured = TRUE; 

} 
} 

} 
} 

} 
} 

1-33 The function preprocess_subsume() scans through the literals and for each 

unassigned literal u, it picks each pair of distinct yet-to-be-satisfied clauses Cj 

and Ck that contain u. If \Cj\ < \Ck\ and Cj subsumes Ck, then Ck is removed 

from F. 

The following listing is the C implementation of Algorithm 3.10. 

1 int preprocessO 
2 { 
3 register int total_changes_occured, n_s = 0; 
4 if(n_clauses < 500) n_resolvents_threshold = n_clauses * 5; 
5 else if(n_clauses < 1000) n_resolvents_threshold = n_clauses * 4; 
6 else if(n_clauses < 1500) n_resolvents_threshold = n_clauses * 3; 
7 else if(n_clauses < 3000) n_resolvents_threshold = n_clauses * 2; 
8 else n_resolvents_threshold = n_clauses; 
9 while(1) 
10 { 
11 total_changes_occured = 0; 
12 if(preprocess_unit_propagation()==UNSAT) 
13 { 
14 printf ("Resolvents: °/0d\n", resolvent_added); 
15 printf("Subsumed: %d\n", n_s); 
16 return UNSAT; 
17 } 
18 total_changes_occured += changes_occured; 
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19 preprocess_monotone_literal_fixingO; 
20 total_changes_occured += changes_occured; 
21 if(resolvent_added < n_resolvents_threshold) 
22 { 
23 for(int i=l; i<=n_vars; ++i) 
24 if(assign[i].decision == ASSIGN_NONE) 
25 if(get_restricted_resolvent(i, 3)==UNSAT) 
26 { 
27 printf("Resolvents: %d\n", resolvent_added); 
28 printf ("Subsumed: °/„d\n", n_s); 
29 return UNSAT; 
30 } 
31 total_changes_occured += changes_occured; 
32 } 
33 n_s += preprocess_subsume(); 
34 total_changes_occured += changes_occured; 
35 if(total_changes_occured == 0) break; 
36 } 
37 printf ("Resolvents: °/.d\n", resolvent_added); 
38 printf ("Subsumed: °/,d\n", n_s); 
39 return -1; 
40 } 

3-8 These lines initialize the value of n_resolvents_threshold. 

9-36 This while loop executes unit-propagation, monotone-literal-fixing, restricted 

resolution and subsumption in this order until no change occurs (maintained 

by the variables changes_occured and total_changes_occured) in F. 
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3.4.5.2 Adding a clause to the formula 

Algorithm 3.15 describes what additions and updates we make in the data structure 

when we add a clause. 

Algorithm 3.15 ADDING A CLAUSE TO F 
l: function ADDCLAUSE(C, n) 
2: sort the array C 
3: if C is already in F then return false 
4: initialize clauses and store literals 
5: for each literal, update linf o structure 
6: if n = 1 then 
7: if {—C[0]} is also a clause in F then set contradictory_unit_clauses 
8: else store C[0] as a unit clause literal and update gucl_stack 
9: end if 

10: end function 

Following is the C implementation of Algorithm 3.15: 

1 int add_a_clause_to_forraula(int C[], in t n) 
2 { 
3 register int i; 
4 qsort (C, n, sizeof(int), compare); 
5 if(clause_present(C, n)) return FALSE; 
6 clauses = (clause_info *)realloc(clauses, 
7 (n_clauses+l)*sizeof(clause_info)); 
8 clauses[n_clauses].is_satisfied = NO; 
9 clauses[n_clauses].current_length = n; 
10 clauses[n_clauses].original_length = n; 
11 clauses[n_clauses] .binary_code = (((l«(n-l))-l)«l) + 1; 
12 clauses[n_clauses].current_ucl = 0; 
13 clauses[n_clauses].literals = 
14 (int *) malloc((n + 1) * sizeof(int)); 
15 if(n>raax_clause_len) max_clause_len = n; 
16 for(i=0; i<n; ++i) 
17 { 
18 int p = abs(C[i]) , q = C[i]>0 ? SATISFIED : SHRUNK; 
19 l info[p][q] . l i t_ in_clauses = 
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20 ( i n t *) r e a l l o c ( l i n f o [ p ] [ q ] . l i t _ i n _ c l a u s e s , 
21 ( l i n f o t p ] [ q ] . n _ o c c u r + l ) * s i z e o f ( i n t ) ) ; 
22 l i n f o [ p ] [ q ] . l i t _ i n _ c l a u s e _ l o c s = 
23 ( i n t * ) r e a l l o c ( l i n f o [ p ] [ q ] . l i t _ i n _ c l a u s e _ l o c s , 
24 ( l i n f o t p ] [ q ] . n _ o c c u r + l ) * s i z e o f ( i n t ) ) ; 
25 l i n f o [ p ] [ q ] . l i t _ i n _ c l a u s e s [ l i n f o t p ] [ q ] . n _ o c c u r ] = n_c lauses ; 
26 l i n f o t p ] [ q ] . l i t _ i n _ c l a u s e _ l o c s [ l i n f o [ p ] [ q ] . n _ o c c u r ] = i ; 
27 l i n fo tp ] tq ] .n_occur++; 
28 l i n f o t p ] t q ] . i s _ a s s i g n e d = NO; 
29 c l a u s e s t n _ c l a u s e s ] . l i t e r a l s [ i ] = C[i] ; 
30 a s s i g n t p ] - d e c i s i o n = ASSIGN_NONE; 
31 a s s i g n t p ] - t y p e = UNASSIGNED; 
32 } 
33 i f ( n == 1) 
34 { 
35 i n t s = a b s ( c l a u s e s t n _ c l a u s e s ] . l i t e r a l s t O ] ) ; 
36 i n t t = c l a u s e s t n _ c l a u s e s ] . l i t e r a l s [ 0 ] > 0 ? SATISFIED : SHRUNK; 
37 l i n f o t s ] t t ] . a n t e c e d e n t _ c l a u s e = n_c lauses ; 
38 i f ( l i n f o t s ] t ( ! t ) ] . i s _ u n i t == YES) 
39 { 
40 contradictory_unit_clauses = TRUE; 
41 conflicting_literal = clausestn_clauses].literals [0]; 
42 } 
43 e l s e i f ( l i n f o t s ] t t ] . i s _ u n i t == NO) 
44 { 
45 gucl_s tacktn_gucl ] = c l a u s e s t n _ c l a u s e s ] . l i t e r a l s t O ] ; 
46 c lauses t n _ c l a u s e s ] . c u r r e n t _ u c l = c l a u s e s [ n . c l a u s e s ] . l i t e r a l s [ 0 ] ; 
47 l i n f o t s ] t t ] . i s . u n i t = YES; 
48 ++n_gucl; 
49 } 
50 } 
51 ++n_clauses; 
52 ++r_clauses; 
53 return TRUE; 
54 } 

4-15 These lines implement lines 2-4 of Algorithm 3.15. 

16-32 The for loop line 5 of Algorithm 3.15. 

64 



33-50 These lines implement lines 6-9 of Algorithm 3.15. 

The function clause_present(int C[], in t n) is implemented as follows: 

1 int clause_present(int C[], int n) 
2 { 
3 register int i, j, k, p, q; 
4 p = abs(C[0]); q = C[0] > 0 ? SATISFIED : SHRUNK; 
5 for(j=0; j<linfo[p][q].n_occur; ++j) 
6 { 
7 i f (c lauses[ l info[p] [q] . l i t_ in_clauses[ j ] ] .or ig ina l_ length == n) 
8 { 
9 int match_count = 0; 

10 for(k=0; k<n; ++k) 
11 { 
12 i f (c lauses[ l info[p] [q] . l i t_ in_clauses[ j ] ] . l i t e ra ls [k]==C[k]) 
13 match_count++; 
14 else break; 
15 } 
16 if(match_count == n) return TRUE; 
17 } 
18 > 
19 return FALSE; 
20 } 

If a clause C is a duplicate of some already existing clause C, then every literal 

in C must be in C" and the lengths must be equal. We pick the very first literal u 

in C and scan the clauses that contain u. If the number of matching literals in any 

of these clauses equals n, then C is duplicate and we return TRUE. Otherwise, we 

return FALSE. (Note that both C and C are sorted.) 
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3.4.6 Branching rules 

Not only is it important to select the right branching rule, but also it is neces­

sary to have a fast implementation of it. Here, we describe a few branching rules 

that we have implemented in our solver. In section 3.5, we compare their per­

formances with the aim of choosing a branching rule in our solver for further ex­

periments. Throughout section 3.4.6, we let dk{F,u) be the number of yet-to-be-

satisfied clauses of length k in F that contain u. As denned in section 2.1, with each 

literal u, we associate a weight function w(F,u). We find a variable x that maxi­

mizes $(w{F,x) ,w{F,x))\ and then we choose the literals if w(F,x) ^ w(F,x) and 

choose x otherwise. 

3.4.6.1 Dynamic Largest Combined Sum (DLCS) 

Here, w(F, u) is the number of occurences of literal u in the unsatisfied clauses and 

$(s,t) = s + t. Algorithm 3.16 shows the pseudocode for implementation of the 

GETLITERALDLCS procedure. 

Algorithm 3.16 DPLL - GETLITERALDLCS 

l: procedure GETLITERALDLCS 

2: max = 0 
3: for each unassigned variable x do 
4: s = ^2kdk(F,x) 
5: t = J2kdk(F,x) 
6: r = s + t 
7: if r > max then 
8: max = r 
9: if s ^ t then u = x else u — x 

10: end if 
11: end for 
12: return u 
13: end procedure 
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Now we provide the C listing of DLCS branching rule: 

1 i n l i n e i n t GetLiteralDLCSQ 
2 { 
3 register unsigned int i, j, C; 
4 register unsigned int max = 0 , r, s, t; 
5 register int u; 
6 for(i=l; i<=n_vars; ++i) 
7 { 
8 if(assign[i].decision == ASSIGN_N0NE) 
9 { 
10 s = t = 0; 
11 for(j=0; j<linfo[i][SATISFIED].n_occur; ++j) 
12 { 
13 C = l i n f o [ i ] [ S A T I S F I E D ] . l i t _ i n _ c l a u s e s [ j ] ; 
14 s += l - c l a u s e s [ C ] . i s _ s a t i s f i e d ; 
15 > 
16 fo r ( j=0 ; j<linfo[i][SHRUNK].n_occur; ++j) 
17 { 
18 C = l in fo [ i ] [SHRUNK] . l i t_ in_c lauses [ j ] ; 
19 t += l - c l a u s e s [ C ] . i s _ s a t i s f i e d ; 
20 } 
21 r = s + t ; 
22 i f ( r > max) 
23 { 
24 max = r ; 
25 i f ( s >= t ) u = i ; 
26 e l s e u = - i ; 
27 } 
28 } 
29 } 
30 r e t u r n u; 
31 } 

11-15 These lines implement line 4 of Algorithm 3.16. 

16-20 These lines implement line 5 of Algorithm 3.16. 
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3.4.6.2 MOMS heuristic-based branching rule, MinLen 

Here, w(F,u) is the number of occurences of literal it in the smallest unsatisfied 

clauses and ®(s,t) = (s + 1) * {t + 1). Algorithm 3.17 shows the pseudocode for 

implementation of the GETLITERALMINLEN procedure. 

Algorithm 3.17 DPLL - GETLITERALMINLEN 

2 
3 
4 
5 
6 
7 
8 

9 
10 
11 

12: 
13 

procedure GETLITERALMINLEN 

k = length of the shortest unsatisfied clause in F 
for each unassigned variable x do 

s = dk(F,x) 
t = dk(F,x) 
r = (s + l)*{t+l) 
if r > max then 

max = r 
if s ^ t then u — x else u = x 

end if 
end for 
return x 

end procedure 

The following listing is the C implementation of line 2 in Algorithm 3.17. 

1 inl ine int get_length_of_shortest_clause() 
2 { 
3 reg is te r int i , j , C, type, rain = max_clause_len; 
4 if(min == 2) return rain; 
5 for( i=l ; i<=n_vars; ++i) 
6 { 
7 if(assign[i].decision == ASSIGN.NONE) 
8 { 
9 for(type=0; type<2; ++type) 

10 { 
11 for(j=0; j<linfo[i][ type].n_occur; ++j) 
12 { 
13 C = l in fo [ i ] [ type ] . l i t _ in_c lauses [ j ] ; 
14 i f ( !c lauses[C] . i s_sa t i s f ied && 
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15 clauses[C].current_length < min) 
16 { 
17 rain = clauses[C].current_length; 
18 if(rain == 2) return 2; 
19 } 
20 } 
21 } 
22 } 
23 > 
24 r e t u r n min; 
25 > 

The following listing is the C implementation of lines 4-5 in Algorithm 3.17. It 

takes a variable x and the length of the shortest clause k as input parameters and 

outputs dk(F, x) and dk(F,x) in s and t respectively. 

1 void get_M0MS(int x, int k, unsigned int &s, unsigned int &t) 
2 { 
3 r e g i s t e r i n t j , c; 
4 s = t = 0; 
5 fo r ( j=0 ; j<linfo[x][SATISFIED].n_occur; ++j) 
6 { 
7 c = l i n fo [x ] [SATISFIED] . l i t _ in_c l auses [ j ] ; 
8 i f ( c l a u s e s [ c ] . c u r r e n t . l e n g t h == k) 
9 s += 1 - c l a u s e s [ c ] . i s _ s a t i s f i e d ; 

10 } 
11 fo r ( j=0 ; j<linfo[x][SHRUNK].n_occur; ++j) 
12 { 
13 c = l in fo[x] [SHRUNK]. l i t_ in_c lauses[ j ] ; 
14 i f ( c l a u s e s [ c ] . c u r r e n t _ l e n g t h == k) 
15 t += 1 - c l a u s e s [ c ] . i s _ s a t i s f i e d ; 
16 } 
17 } 

Now we provide the C listing of Algorithm 3.17: 

1 i n l i n e i n t GetLiteralMinLenO 
2 { 

69 



3 register unsigned int i, k; 
4 register unsigned int max = 0, r, s, t; 
5 register int u; 
6 for(i=l; i<=n_vars; ++i) 
7 { 
8 if(assign[i].decision == ASSIGN.NONE) 
9 { 
10 k = get_length_of_shortest_unsatisfied_clause(); 
11 get_M0MS(i, k, s, t); 
12 r = (s+l)*(t+l); 
13 if(r > max) 
14 { 
15 max = r; 
16 if(s >= t) u = i; 
17 else u = -i; 
18 } 
19 } 
20 } 
21 return u; 
22 } 

Originally Satz's (described in section 2.5) branching rule used MOMS heuristic 

with ®(s,t) = s + t + s *t* 1024, which has similar performance as Minlen. Later, 

unit-propagation based lookahead was integrated to Satz's branching rule to reduce 

the number of nodes in the DPLL-tree. As a result, the branching rule has become 

expensive as it makes many calls to SetVar and works best only with Satz and 

Satz-like solvers, where branching rule is highly integrated to the solver. 
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3.4.6.3 2-sided-Jeroslow-Wang 

Here, w(F,u) is defined as Y^k2~kdk{F,u) and <E>(s,i) as s + t. Algorithm3.18 shows 

the pseudocode for implementation of the GETLITERAL2SJW procedure. 

Algorithm 3.18 DPLL - GETLITERAL2SJW 

l 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

procedure GETLITERAL2SJW 

s = t — max = 0 
mien = length of the longest clause in F 
for each unassigned variable x do 

s = J2k2mlen~kdk(F>x) 
t = Ek2mlen~kdk(F,x) 
r = s + t 
if r > max then 

max = r 
if s ^ t then it = x else u = x 

end if 
end for 
return u 

end procedure 

Now, we provide the C listing of 2-Sided Jeroslow-Wang: 

1 inl ine int GetLiteral2SJW() 
2 { 
3 register unsigned int i, j, C; 
4 register unsigned int max = 0 , r, s, t, mien = max_clause_len; 
5 register int u; 
6 for(i=l; i<=n_vars; ++i) 
7 { 
8 if(assign[i].decision == ASSIGN.NONE) 

9 { 
10 s = t = 0; 
11 for(j=0; j<linfo[i] [SATISFIED].n_occur; ++j) 
12 { 
13 C = l in fo[ i ] [SATISFIED].lit_in_clauses[j]; 
14 s += ( ( ! clauses[C] . is_sat isf ied)«(mlen-clauses[C] . length)) ; 
15 } 
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16 for(j=0; j<linfo[i][SHRUNK].n_occur; ++j) 
17 { 
18 C = linfoEi][SHRUNK].lit_in_clauses[j]; 
19 t += ((!clauses[C] . i s_sat is f ied)«(mien-clauses[C] . length)) ; 
20 } 
21 r = s + t ; 
22 i f ( r > max) 
23 { 
24 max = r ; 
25 i f ( s >= t ) u = i ; 
26 else u = - i ; 
27 > 
28 } 
29 } 
30 return u; 
31 } 

6-29 This for loop implements lines 4-12 of Algorithm 3.18. For each unassigned 

variable x, two for loops (lines 11-20) compute respectively s and t (lines 

5-6) of Algorithm 3.18. 

3.5 Comparing performance of branching rules 

We know that the size of the DPLL-tree depends significantly on the branching 

rule. Several different branching rules have been proposed over the last couple 

of decades, but it is not really understood why a particular branching rule is better 

then the others. Most of the branching rules are based on intuitive ideas but no 

guarantees or theoretical proofs are given. Due to the inherent difficulty of the sat­

isfiability problem, it seems impossible to design a branching rule that is good for 

nearly all instances of the satisfiability problem. In choosing a branching rule for 

our solver, we are no different. We look at the number of calls made to SetVar using 
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different branching rules on selected instances from popular DIMACS benchmarks 

and see which one makes the least number of calls to SetVar on most instances. 

Here, we are assuming that the instances are simplified by the preprocessor. 

3.5.1 DIMACS benchmark instances 

DIMACS SAT challenges [20] include the instances: aim, Iran, jnh, dubois, gcp, 

parity, i i , hanoi, bf, ssa, phole, and pret. These instances are widely used by 

SAT-solvers for testing performances. In this section, we check the the performance 

of our solver with different branching rules (DLCS, MINLEN, and 2sJW) on the 

instances aim, pret, dubois, par, i i , and jnh. 

3.5.1.1 aim instances 

Asahiro, Iwama, and Miyano [2] developed techniques to generate random formu­

las with some prescribed parameters (satisfiablity, literal distribution, clause distri­

bution and number of satisfying truth assignments) in addition to the number of 

variables. The formulas generated have names started with aim for Asahiro, Iwama 

and Miyano. Each of the satisfiable instances has a unique satisfying assignment. 

Many of the these instances (satisfiable and unsatisfiable) can be solved by the 

preprocessor and the solver is invoked only if a satisfaction or a contradiction is 

not reached during preprocessing. Table 3.1 shows the total number of resolvents 

added, total number clauses subsumed, number of calls to SetVar and the CPU 

time. The number of resolvents added is restricted by the threshold on the number 

of resolvents. 
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Table 3.1: PERFORMANCE ON aim INSTANCES 

INSTANCE 

a i m - 1 0 0 - l _ 6 - y e s l - l . c n f ( S ) 
a i m - 1 0 0 - l _ 6 - y e s l - 2 . c n f ( S ) 
a i m - 1 0 0 - l _ 6 - y e s l - 3 . c n f ( S ) 
a i m - 1 0 0 - l _ 6 - y e s l - 4 . c n f ( S ) 
a i m - 1 0 0 - 2 _ 0 - y e s l - l . c n f ( S ) 
a im-100 -2_0 -yes l -2 . cn f (S ) 
a im-100 -2_0 -yes l -3 . cn f (S ) 
a im-100 -2_0 -yes l -4 . cn f (S ) 
a i m - 1 0 0 - 3 _ 4 - y e s l - l . c n f ( S ) 
a im-100-3_4-yes l -2 . cn f (S ) 
a im-100-3_4-yes l -3 . cn f (S ) 
a im-100-3_4-yes l -4 . cn f (S ) 
a i m - 1 0 0 - 6 _ 0 - y e s l - l . c n f ( S ) 
a im-100 -6_0 -yes l -2 . cn f (S ) 
a i m - 1 0 0 - 6 _ 0 - y e s l - 3 . c n f ( S ) 
a im-100 -6_0 -yes l -4 . cn f (S ) 
a i m - 1 0 0 - l _ 6 - n o - l . c n f ( U ) 
a im-100- l_6-no-2 .cnf (U) 
a im-100- l_6-no-3 .cnf (U) 
a im-100- l_6-no-4 .cnf (U) 
a im-100-2_0-no- l . cn f (U) 
a im-100-2_0-no-2 .cnf(U) 
a im-100-2_0-no-3 .cnf(U) 
a im-100-2_0-no-4 .cnf(U) 
a i m - 2 0 0 - l _ 6 - y e s l - l . c n f ( S ) 
a i m - 2 0 0 - l _ 6 - y e s l - 2 . c n f ( S ) 
a i m - 2 0 0 - l _ 6 - y e s l - 3 . c n f ( S ) 
a i m - 2 0 0 - l _ 6 - y e s l - 4 . c n f ( S ) 
a i m - 2 0 0 - 2 _ 0 - y e s l - l . c n f ( S ) 
a im-200 -2_0 -yes l -2 . cn f (S ) 
a im-200-2_0-yes l -3 . cn f (S ) 
a im-200-2_0-yes l -4 . cn f (S ) 
a i m - 2 0 0 - 3 _ 4 - y e s l - l . c n f ( S ) 
a im-200-3_4-yes l -2 . cn f (S ) 
a im-200-3_4-yes l -3 . cn f (S ) 
a im-200-3_4-yes l -4 . cn f (S ) 
a i m - 2 0 0 - 6 _ 0 - y e s l - l . c n f ( S ) 
a im-200-6_0-yes l -2 . cn f (S ) 
a im-200 -6_0 -yes l -3 . cn f (S ) 
a im-200-6_0-yes l -4 . cn f (S ) 
a im-200 - l_6 -no - l . cn f (U) 
a im-200- l_6-no-2 .cnf (U) 
a im-200- l_6-no-3 .cnf (U) 
a im-200- l_6-no-4 .cnf (U) 

RESOLVENTS 

249 
348 
290 
800 
990 

1000 
369 
665 

1700 
1700 
1695 
1695 
2396 
2400 
2 4 0 0 
2392 

800 
800 
785 
800 
8 1 4 
995 
990 
780 

1600 
766 

1289 
1600 
1985 
1995 
1995 
1995 
2 7 1 6 
2716 
2716 
2708 
3525 
3567 
3 5 4 9 
1592 
1600 
1585 
1600 
1600 

SUBSUMED 

57 
149 
115 
492 
454 
314 
119 
995 
682 
584 
441 
744 

1008 
972 

1088 
899 
384 
349 
446 
345 

58 
792 
505 
555 

1030 
403 
952 
922 
959 
996 

1198 
1277 

758 
894 
569 
926 

1042 
700 

2 2 5 1 
706 

1156 
1212 
1149 
1496 

#SETVARS(BR) 
100 (2SJW) 
100 (2SJW) 
100 (2SJW) 
100 (2SJW) 
100 (2SJW) 
100 (2SJW) 
100 (2SJW) 
100 (2SJW) 

102 ( M I N L E N ) 

100 (2SJW) 
100 ( M I N L E N ) 

100 ( M I N L E N ) 

100 ( M I N L E N ) 

100 ( M I N L E N ) 

100 (2sJW) 
100 ( M I N L E N ) 

12 ( M I N L E N ) 

46 (2SJW) 
7 ( M I N L E N ) 

11 ( M I N L E N ) 

0 
1 (2SJW) 
1 (2sJW) 
0 (2SJW) 

200 (2SJW) 
200 (2SJW) 
2 0 0 (2SJW) 
2 0 1 (2SJW) 
200 (2SJW) 
200 (2SJW) 
200 (2SJW) 
200 (2SJW) 
2 0 0 (2SJW) 

676 ( M I N L E N ) 

201 ( M I N L E N ) 

200 ( M I N L E N ) 

200 ( M I N L E N ) 

200 (2sJW) 
2 0 0 ( M I N L E N ) 

200 (2SJW) 
21 ( M I N L E N ) 

12 ( M I N L E N ) 

22 ( M I N L E N ) 

6 (2sJW) 
Continued on ft 

CPU TIME 

0.00s 
0 .00s 
0 .00s 
0.00s 
0 .00s 
0.00S 
0.00s 
0 .00s 
0.00S 
0.00s 
0 .00s 
0 .00s 
0 .00s 
0.00s 
0.00S 
0.00S 
0.00s 
0.00S 
0.00s 
0 .00s 
0.00S 
0.00s 
0 .00s 
0.00S 
0.00s 
0.00S 
0 .00s 
0.00S 
0.00S 
0.00s 
0 .00s 
0.00s 
0.00S 
0.00S 
0.00S 
0.00S 
0.00S 
0.00s 
0.00S 
0.00S 
0.00s 
0.00S 
0.00S 
0.00s 
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Table 3.1: PERFORMANCE ON aim INSTANCES (CONTINUED...) 

a im-200-2_0-no- l . cn f (U) 
a im-200-2_0-no-2 .cnf(U) 
a im-200-2_0-no-3 .cnf(U) 
a im-200-2_0-no-4 .cnf(U) 

1995 
1995 
1995 
2000 

1531 
1397 
1246 
1600 

8 (2SJW) 
4 (2SJW) 
7 (2sJW) 
7 (2SJW) 

0 .00s 
0.00S 
0.00S 
0.00S 

We observe that 2s JW performs better on some of the aim instances and MinLen 

performs better on the others. 

3.5.1.2 dubois instances 

Oliver Dubois contributed a SAT formula generator, called gensathard.c, to the 

DIMACS collection. A dubois formula of degree d is an encoding of the parity 

problem of the multigraph in figure 3.1. The graph has 2d vertices and 3d edges. 

The lower leftmost vertex is assigned parity 0, and the other vertices are assigned 

parity 1. Since the sum of the parities is odd, the formula is unsatisfiable. A dubois 

formula with degree d has 3d variables (a variable labels an edge) and 8d clauses 

(four times the number of vertices). Most of these instances can be solved during 

preprocessing. 

Xd-l . Zl . 

X2d-\ 1 X2d\ X2d+\ 

X2d-2 

f ^ 1 

X2d+2 

X2d-3 

%3d-2 

Xd 

X3d-i\ X3d 

Figure 3.1: THE MULTIGRAPH UNDERLYING THE dubois FORMULA OF DEGREE d 
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Table 3.2: PERFORMANCE ON dubois INSTANCES 

INSTANCE 
dubois20.cnf (U) 
dubois21.cnf(U) 
dubois22.cnf(U) 
dubois23.cnf(U) 
dubois24.cnf(U) 
dubois25.cnf(U) 
dubois26.cnf(U) 
dubois27.cnf(U) 
dubois28.cnf(U) 
dubois29.cnf(U) 
dubois30.cnf(U) 
dubois50.cnf(U) 

RESOLVENTS 
720 
840 
788 
920 
856 

1000 
924 

1080 
992 

1160 
1060 
1740 

SUBSUMED 
448 
655 
796 
714 
544 
773 
592 
831 
640 
899 
688 

1168 

#SETVARS(BR) 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

CPU TIME 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00S 
0.00S 
0.00S 
0.00S 
0.00s 
0.00s 

For all these instances, contradictory unit clauses are found during preprocessing 

and hence UNSAT is returned before calling the solver. 

3.5.1.3 pret instances 

Daniele Pretolani contributed to the DIMACS collection a SAT formula generator 

t r i s a t . c that generates the PRET instances. Given an integer s greater than 3, 

the generator first produces a connected 3-regular graph with s vertices. Then 

it starts with PRET4, which is K4, the complete graph with four vertices (Figure 

3.2(a)). It then keeps expanding the graph as follows: (i) take a vertex v and two 

of its neighbors v\ and v2, (ii) introduce two new vertices v[ and v'2 and replace 

the two edges {v,vi} and {v,v2} by the five edges {v,v[}, {v,v'2}, {vi,v[}, {v2,v'2} 

and {v[,v2}. The result depends on the order of the vertices and the choices of the 

neighbours. In general, there may be multiple pairs of neighbours to choose. The 

generator t r i s a t . c has a deterministic way for doing it. In Figure 3.2, (b), (c), (d) 

and (e) are obtained by working on the vertices vx, v2, v3 and v4 in that order. 

76 



Vs(v'3) V6{v'4) U5 V& D5 V6 V5 Vs 

t>10(t)2) ^ 9 ( ^ 5 ) " 1 0 v9 

Figure 3.2: EXAMPLES OF GRAPHS CORRESPONDING TO pret INSTANCES 

Table 3.3: PERFORMANCE ON THE pret INSTANCES 

INSTANCE (S/U) 

pret60-25.cnf(U) 
pret60-40.cnf(U) 
pret60-60.cnf(U) 
pret60-75.cnf(U) 

DLCS 
68157438 (33.18s) 
68157438 (33.31s) 
68157438 (33.77s) 
68157438 (33.20s) 

MINLEN 

11491010 (6.35s) 
11491010 (6.42s) 
11491010 (6.35s) 
11491010 (6.36s) 

2SJW 
16354642 (6.72s) 
16354642 (6.48s) 
16354642 (6.58s) 
16354642 (6.54s) 

3.5.1.4 par instances 

The PAR formulas, contributed by James Crawford, encode parity learning prob­

lems. Consider the parity functions over subsets of {21,2:2, • • • ,xn}. The inputs to 

the functions are vectors in {0, l } n , and the function computes the parity of a sub­

set, V, of {xi,x2, • • •, xn}. The parity learning problem is, given m pairs of sample 

inputs and corresponding outputs, identify the subset V that determines the func­

tion values. These instances are all satisfiable, and the satisfying assignments can 

be translated to the incidence vectors of V. 
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Table 3.4: PERFORMANCE ON THE par INSTANCES 

INSTANCE 

p a r l 6 - l . c n f ( S ) 
p a r l 6 - 2 . c n f ( S ) 
p a r l 6 - 3 . c n f ( S ) 
p a r l 6 - 4 . c n f ( S ) 
p a r l 6 - 5 . c n f ( S ) 
p a r l 6 - l - c . c n f ( S ) 
p a r l 6 - 2 - c . c n f ( S ) 
p a r l 6 - 3 - c . c n f ( S ) 
p a r l 6 - 4 - c . c n f ( S ) 
p a r l 6 - 5 - c . c n f ( S ) 

DLCS 
5 0 5 4 7 0 4 (3.81S) 
2 0 1 3 5 7 9 (1 .43s ) 
1 7 7 4 5 8 4 (1 .32s ) 
7 3 1 7 8 7 4 (5.18S) 

1 0 8 4 9 8 0 8 (8 .72s ) 
2 2 1 0 6 9 5 (2 .61s ) 
6 7 2 2 9 9 2 (8 .90s ) 

69938 (0.07s) 
4 0 9 4 1 6 1 (5.13S) 
5 8 9 6 5 1 8 (7 .07s ) 

M I N L E N 

3137702 (2.90s) 
1960298 (1.69s) 

1 8 2 3 2 7 4 (1.77S) 
4 3 0 2 5 2 7 (3.65S) 
6141771 (5.79s) 

1 7 3 2 6 7 7 (1.90S) 
6 5 1 0 9 3 4 (7 .82s ) 
2 0 3 1 9 7 9 (2.53S) 
2 5 4 6 0 3 9 (3.68S) 
1720827 (1 .93s ) 

2SJW 
3 9 0 6 0 5 5 (2 .67s) 
3 5 4 7 1 1 2 (2.07S) 
1143446 (0.76s) 
4075472 (2.55s) 

1 3 0 9 3 5 0 7 (9.20S) 
1660189 (1.33s) 
1506899 (1.29s) 

1 2 8 6 3 7 1 (1 .18s) 
1794838 (1.58s) 
1 8 4 2 0 8 7 (1.43s) 

We observe that each of the three branching rules perform better than the other 

two on some of the par instances. 

3.5.1.5 Other DIMACS instances 

The i i instances are described in Kamath, Karmakar, Ramakrishnan, and Resende 

[37] and have been contributed to the DIMACS collection by Mauricio Resende. 

Table 3.5: PERFORMANCE ON THE i i INSTANCES 

INSTANCE (S /U) 

i i l 6 b 2 . c n f ( S ) 
i i l 6 c 2 . c n f ( S ) 
i i l 6 d 2 . c n f ( S ) 
i i l 6 e 2 . c n f ( S ) 
i i 3 2 b l . c n f ( S ) 
i i 3 2 b 2 . c n f ( S ) 
i i 3 2 b 3 . c n f ( S ) 
i i 3 2 b 4 . c n f ( S ) 
i i 3 2 c l . c n f ( S ) 
i i 3 2 c 2 . c n f ( S ) 
i i 3 2 c 3 . c n f ( S ) 
i i 3 2 d l . c n f ( S ) 
i i 3 2 d 2 . c n f ( S ) 
i i 3 2 e l . c n f ( S ) 
i i 3 2 e 2 . c n f ( S ) 

DLCS 
1491641 (14.00s) 

4 3 8 2 3 5 (3.27S) 
24103 (0.24s) 

3 5 2 3 3 2 (2.54S) 
1107 (0 .01s ) 
10498 (0.04s) 

2660 (0.02s) 
7252 (0.07s) 

216 (0.00s) 
368 (0.00s) 

4 4 6 (0.01S) 
527 (0.00S) 

155344 (0.40S) 
2 1 1 (0 .00s ) 
622 (0 .01s ) 

MINLEN 

3 7 1 3 4 5 6 (34.03S) 
47149 (0.90s) 

1 4 6 0 8 3 7 (24 .10s ) 
1 2 3 3 7 (0.21S) 

222 (0.00s) 
2 1 0 0 9 (0 .08s) 

3 2 6 6 (0 .09s) 
6342 (0.14S) 

1 8 4 ( 0 . 0 1 S ) 
220 (0 .01s) 
271 (0.01s) 
476 (0.00s) 

1730 (0.01s) 
195 (0.00s) 
267 (0.00s) 

Contii 

2SJW 
3 8 9 4 9 6 3 (37 .41s ) 

1 2 8 7 2 3 (1.14S) 
1 4 5 4 6 9 9 (10 .51s ) 

12209 (0.09s) 
2 9 8 8 (0.02S) 

2 7 8 6 3 4 (0.89S) 
121849 (0.60S) 

2 0 8 3 8 5 9 (14.58S) 
217 (0 .01s ) 

2498 (0 .03s) 
1 0 7 4 7 (0.06S) 

1 6 7 1 8 3 (0.30S) 
5 0 1 3 1 7 5 (9 .36s) 

210 (0 .00s) 
3 3 0 0 (0 .03s) 

iued on Next Page. . . 
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Table 3.5: PERFORMANCE ON i i INSTANCES (CONTINUED...) 

i i 3 2 e 3 . c n f ( S ) 
i i 3 2 e 4 . c n f ( S ) 
i i 3 2 e 5 . c n f ( S ) 

764 (0.01s) 
16042 (0 .16s ) 

1171 (0.04s) 

3 0 4 6 (0 .08) 
652 (0.10s) 

9 0 6 6 (0.31S) 

6 3 4 7 1 8 (2 .66s ) 
7 5 8 3 5 4 (4.45S)) 

1 5 6 1 6 3 2 (17 .25s ) 

We observe that DLCS performs better on some of the i i instances and MinLen 

performs better on the others. 

The jnh instances are contributed to the DIMACS collection by John Hooker and 

are described in [57]. 

PERFORMANCE ON THE jnh INSTANCES 

INSTANCE 

j n h l . c n f ( S ) 
jnh2 .cnf (U) 
jnh3 .cnf (U) 
jnh4 .cnf (U) 
jnh5 .cnf (U) 
jnh6 .cnf (U) 
j nh7 . cn f (S ) 
jnh8 .cnf (U) 
jnh9 .cnf (U) 
jnhlO.cnf(U) 
j n h l l . c n f ( U ) 
j n h l 2 . c n f ( S ) 
j nh l3 . cn f (U) 
j n h l 4 . c n f ( U ) 
j n h l 5 . c n f ( U ) 
j n h l 6 . c n f ( U ) 
j n h l 7 . c n f ( S ) 
j n h l 8 . c n f (U) 
j n h l 9 . c n f ( U ) 
jnh20.cnf(U) 
jnh201 .cnf (S) 
jnh202.cnf(U) 
jnh203.cnf(U) 
jnh204 .cnf (S) 
jnh205 .cnf (S) 
jnh206.cnf(U) 
jnh207 .cnf (S) 
jnh208.cnf(U) 

DLCS 
1965 (0 .01s) 

160 (0 .00s) 
1522 (0 .00s) 

6 6 7 (0 .00s ) 
214 (0 .00s ) 

1131 (0.01S) 
121 (0.00S) 
170 (0 .00s ) 
315 (0.01S) 
820 (0.00S) 
842 (0.01S) 
409 (0 .00s ) 
186 (0 .00s) 
3 8 5 (0.00S) 
723 (0 .01s) 

10115 (0 .05s) 
8 1 0 (0.01S) 

1060 (0 .01s) 
1334 (0 .00s ) 

361 (0.00S) 
97 (0 .00s ) 

155 (0 .00s) 
504 (0.00S) 
759 (0.01S) 
100 (O.OOs) 

1055 (O.OOS) 
1644 (0.01S) 
1555 (0.01S) 

M I N L E N 

257 (O.OOs) 
113 (O.OOS) 
805 (O.OOs) 
526 (O.OOs) 
163 (0.01s) 
483 (O.OOs) 

97 (O.OOs) 
9 6 (O.OOs) 

261 (O.OOs) 
206 (O.OOs) 
238 (O.OOs) 
157 (O.OOs) 
156 (O.OOs) 
154 (O.OOs) 
431 (O.OOs) 

5272 (0.02s) 
4 2 2 (0 .01s ) 
467 (O.OOs) 
410 (O.OOs) 
257 (O.OOs) 
98 (O.OOs) 

103 (O.OOs) 
419 (O.OOs) 

608 (0 .01s ) 
396 (O.OOs) 
806 (O.OOs) 

1089 (O.OOs) 
513 (O.OOs) 

Continued ( 

2SJW 
1189 (O.OOS) 

102 (O.OOs) 
1390 (0.01S) 

6 2 9 (0.01S) 
4 3 7 (O.OOs) 

1188 (0.01S) 
256 (O.OOS) 
150 (O.OOS) 
4 4 0 (O.OOS) 
702 (O.OOS) 
295 (O.OOS) 
157 (O.OOs) 
268 (O.OOS) 
245 (O.OOS) 
581 (O.OOS) 

9290 (0.04S) 
122 (O.OOs) 

1149 (O.OlS) 
9 0 4 (O.OlS) 
388 (O.OlS) 

92 (O.OOs) 
155 (O.OOS) 
4 7 2 (O.OOS) 
323 (O.OOs) 
120 (O.OOS) 

1052 (O.OOS) 
1661 (O.OlS) 

997 (O.OOS) 
jn Next Page. . . 
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PERFORMANCE ON THE jnh INSTANCES (CONTINUED...) 

jnh209.cnf(S) 
jnh210.cnf(S) 
jnh211.cnf(U) 
jnh212.cnf(S) 
jnh213.cnf(S) 
jnh214.cnf(U) 
jnh215.cnf(U) 

285 (O.OOS) 
129 (O.OOS) 
175 (O.OOS) 

2448 (O.Ols) 
98 (O.OOs) 

416 (O.OOS) 
345 (O.OOs) 

201 (O.OOs) 
119 (O.OOs) 
149 (O.OOs) 
205 (O.OOs) 
149 (O.Ols) 
388 (O.OOs) 
172 (O.OOs) 

227 (O.OOS) 
132 (O.OOs) 
193 (O.OOs) 

1837 (O.OOS) 
116 (O.OOs) 
413 (O.OOs) 
329 (O.OOS) 

Branching rule MinLen performs consistently better on the jnh instances. 

It seems reasonably difficult to find a branching rule that works well on most 

classes of instances. In the following section, we use MINLEN as the branching rule 

(since it performs consistently better on the DIMACS instances) to compare our 

solver with other well-known solvers. 
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3.6 Performance of our solver 

In this section, we compare the running time of our solver with SATZ [44], ZCHAFF 

[49], and MINISAT [58] on some DIMACS satisfiability instances [20] and some 

other instances from the SATLIB collection [55]. We have compiled and run them 

on a 2.2 GHz AMD Opteron 64-bit processor machine in the cirrus cluster at Con­

cordia University. 

3.6.1 On DIMACS instances 

In the previous section, we have discussed some of the DIMACS SAT instances (aim, 

pret, dubois, and par) while comparing the performance of different branching 

rules on our solver. For detail of other instances, see [20]. In this section, we com­

pare the performance of our solver with other well-known solvers (SATZ, ZCHAFF, 

and MINISAT) on some DIMACS instances. 

Table 3.7: PERFORMANCE OF OUR SOLVER ON dubois INSTANCES 

INSTANCES (S /U,#VARS,#CLAUSES) 

dubois20.cnf (U, 60, 160) 
dubois21.cnf (U, 63, 168) 
dubois22.cnf (U, 66, 176) 
dubois23.cnf (U, 69, 184) 
dubois24.cnf (U, 72, 192) 
dubois25.cnf (U, 75, 200) 
dubois26.cnf (U, 78, 208) 
dubois27.cnf (U, 81, 216) 
dubois28.cnf (U, 84, 224) 
dubois29.cnf (U, 87, 232) 
dubois30.cnf (U, 90, 240) 
dubois50.cnf (U, 150, 400) 

SATZ 

3.90s 
4.35s 

11.74s 
31.22s 
35.18s 

>60s 
>60s 
>60s 
>60s 
>60s 
>60s 
>60s 

ZCHAFF 

0.01s 
0.01s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.01s 
0.01s 
0.01s 
0.01s 

MINISAT 

0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 

OUR SOLVER 

0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
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Table 3.8: PERFORMANCE OF OUR SOLVER ON pret INSTANCES 

INSTANCES (S /U,#VARS,#CLAUSES) 

pret60-25.cnf (U, 60, 160) 
pret60-40.cnf (U, 60, 160) 
pret60-60.cnf (U, 60, 160) 
pret60-75.cnf (U, 60, 160) 

SATZ 

5.92s 
5.55s 
5.41s 
5.28s 

ZCHAFF 

0.01s 
0.01s 
0.01s 
0.01s 

MlNISAT 

0.00s 
0.00s 
0.00s 
0.00s 

OUR SOLVER 

6.35s 
6.42s 
6.35s 
6.36s 

Table 3.9: PERFORMANCE OF OUR SOLVER ON par INSTANCES 

INSTANCES (S /U,#VARS,#CLAUSES) 

par8-l .cnf (S, 350, 1149) 
par8-2.cnf (S, 350, 1157) 
par8-3.cnf (S, 350, 1171) 
par8-4.cnf (S, 350,1155) 
par8-5.cnf (S, 350, 1171) 
par8-l-c .cnf (S, 64, 254) 
par8-2-c.cnf (S, 68, 270) 
par8-3-c.cnf (S, 75, 298) 
par8-4-c.cnf (S, 67, 266) 
par8-5-c. cnf (S, 75, 298) 
par l6- l .cnf (S, 1015, 3310) 
parl6-2.cnf (S, 1015, 3374) 
parl6-3.cnf (S, 1015, 3344) 
par l6-4 .cnf(S , 1015, 3324) 
par l6-5 .cnf(S , 1015,3358) 
par l6- l -c .cnf (S, 317, 1264) 
parl6-2-c.cnf (S, 349, 1392) 
parl6-3-c.cnf (S, 334, 1332) 
parl6-4-c.cnf (S, 324, 1292) 
parl6-5-c.cnf (S, 341, 1360) 

SATZ 

0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
1.45s 
0.08s 
2.86s 
1.84s 
0.26s 
0.39s 
0.15s 
0.48s 
0.10s 
0.30s 

ZCHAFF 

0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.76s 
1.07s 
0.28s 
0.28s 
0.76s 
0.36s 
0.77s 
0.13s 
0.01s 
0.58s 

MlNISAT 

0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.04s 
0.31s 
0.20s 
0.01s 
0.17s 
0.01s 
0.16s 
0.11s 
0.00s 
0.10s 

OUR SOLVER 

0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
2.90s 
1.69s 
1.77s 
3.65s 
5.79s 
1.90s 
7.82s 
2.53s 
3.68s 
1.93s 

Table 3.10: PERFORMANCE OF OUR SOLVER ON phole INSTANCES 

INSTANCES (S/U,#VARS,#CLAUSES) 

hole6. cnf (U, 42, 133) 
hole7. cnf (U, 56, 204) 
hole8. cnf (U, 72, 297) 
hole9.cnf (U, 90,415) 
holelO.cnf (U, 110,561) 

SATZ 

0.00s 
0.02s 
0.17s 
1.62s 

16.74s 

ZCHAFF 

0.01s 
0.03s 
0.25s 
1.04s 
5.57s 

MlNISAT 

0.00s 
0.02s 
0.26s 
1.70s 

28.88s 

OUR SOLVER 

0.00s 
0.01s 
0.19s 
1.90s 

20.78s 
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Table 3.11: PERFORMANCE OF OUR SOLVER ON ssa INSTANCES 

INSTANCES ( S / U , # V A R S , # C L A U S E S ) 

ssa0432-003.cnf (U, 435, 1027) 
ssa6288-047.cnf (U, 10410, 34238) 
ssa7552-038.cnf (S, 1501, 3575) 
ssa7552-158.cnf (S, 1363, 3034) 
ssa7552-159.cnf (S, 1363, 3032) 
ssa7552-160.cnf (S, 1391, 3126) 

SATZ 
0.00s 
0.14s 
0.05s 
0.03s 
0.04s 
0.03s 

ZCHAFF 

0.01s 
0.01s 
0.01s 
0.00s 
0.00s 
0.00s 

MlNISAT 
0.00s 
0.01s 
0.00s 
0.00s 
0.00s 
0.00s 

O U R SOLVER 

0.26s 
0.26s 
0.00s 
0.00s 
0.00s 
0.00s 

Table 3.12: PERFORMANCE OF OUR SOLVER ON i i INSTANCES 

INSTANCES ( S / U , # V A R S , # C L A U S E S ) 

i i l 6 b 2 . c n f 
i i l 6 c 2 . c n f 
i i l 6 d 2 . c n f 
i i l 6 e 2 . c n f 
i i 3 2 b l . c n f 
i i 3 2 b 2 . c n f 
i i 3 2 b 3 . c n f 
i i 3 2 b 4 . c n f 
i i 3 2 c l . c n f 
i i 3 2 c 2 . c n f 
i i 3 2 c 3 . c n f 
i i 3 2 d l . c n f ( 
i i 3 2 d 2 . c n f ( 
i i 3 2 e l . c n f ( 
i i 3 2 e 2 . c n f ( 
i i 3 2 e 3 . c n f ( 
i i 3 2 e 4 . c n f ( 
i i 3 2 e 5 . c n f 

;S, 1076, 16121) 
[S, 924, 13803) 
[S, 836, 12461) 
[S, 532, 7825) 
[S, 228, 1374) 
[S, 261 , 2558) 
[S, 348, 5734) 
;S, 381 , 6918) 
[S, 225, 1280) 
;S, 249, 2182) 
[S, 279, 3272) 
S, 332, 2703) 

[S, 404, 5153) 
S, 222, 1186) 
S, 267, 2746) 
S, 330, 5020) 
S, 387, 7106) 
S, 522, 11636) 

SATZ 

0.39s 
0.44s 
0.46s 
0.58s 
0.05s 
0.15s 
0.87s 
1.14s 
0.05s 
0.15s 
0.34s 
0.09s 
0.24s 
0.04s 
0.16s 
0.51s 
1.22s 
2.05s 

ZCHAFF 

0.36s 
0.01s 
0.01s 
0.01s 
0.00s 
0.00s 
0.00s 
0.02s 
0.00s 
0.01s 
0.01s 
0.01s 
0.01s 
0.01s 
0.00s 
0.01s 
0.01s 
0.00s 

MlNISAT 
0.00s 
0.01s 
0.00s 
0.01s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.01s 
0.01s 
0.01s 

OUR SOLVER 

34.03s 
0.90s 

24.10s 
0.21s 
0.00s 
0.06s 
0.06s 
0.13s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.00s 
0.01s 
0.07s 
0.25s 

We do not list the performance on the aim and jnh instances as all four solvers 

perform well on them. 

3.6.2 Other instances from SATLIB solvers collection 

3.6.2.1 Uniform Random 3-SAT 

3-SAT instances with m clauses over n variables in the SATLIB collection have been 

generated in the following way: 

83 



1. Each of the m clauses is constructed by drawing a literal uniformly at random 

from the 2n possible literals. 

2. Clauses containing duplicate literals are not added. 

3. Clauses containing both a literal and its complement are not added. 

We compare our solver with MINISAT on several instances (both satisfiable and 

unsatisfiable) of the SATLIB collection. Here, we list the total running time, taken 

by each solver on several instances. 

Table 3.13: PERFORMANCE ON THE uf INSTANCES 

INSTANCE (S/U) 

ufl25-538 (100 sa t i s f i ab l e instances) 
uufl25-538 (100 unsat i s f iable instances) 
ufl50-645 (100 sa t i s f i ab le instances) 
uuf150-645 (100 unsat i s f iable instances) 
ufl75-753 (100 sa t i s f i ab le instances) 
uuf175-753 (100 unsat i s f iable instances) 

OUR SOLVER 

0.60s 
2.25S 
2.65S 
7.83S 
9.74s 

27.02S 

MINISAT 

0.10s 
0.34s 
0.45s 
0.50s 
1.72s 
3.45s 

We observe that our solver does not perform well, compared to ZCHAFF and 

MINISAT on well-known instances from DIMACS and SATLIB. In the following chap­

ter, we discuss a class of instances (vdw instances) where our solver (with a suitable 

branching rule) performs better than any other known SAT-solver. We have used the 

solver to compute some previously unknown van der Waerden numbers (denned in 

section 4.1). These numbers are published in Ahmed [1]. 
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Chapter 4 

SAT and van der Waerden numbers 

When we started coding for DPLL, the instances we used to test the performance 

were instances related to the van der Waerden numbers, defined in the following 

section. In various phases, we have improved and optimized our solver to per­

form in these instances as efficiently as possible. Eventually, we have been able to 

compute thirty new van der Waerden numbers. 

4.1 Van der Waerden numbers 

The van der Waerden number w(r; kx, k2, • • • , kT) is the least integer m such that for 

every partition P\ U P2 U • • • U Pr of the set {1,2, • • • , m], there is an index j in 

{1,2, • • • ,r} such that Pi contains an arithmetic progression of kj terms. A list of 

van der Waerden numbers known so far is given in Table 4.5 at the end of this 

chapter. 
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4.2 SAT encoding of van der Waerden numbers 

Given positive integers r,k\, — ,k r , and n, we construct a SAT formula (an instance 

of the satisfiability problem), which is satisfiable if and only if w(r; h,k2,- • • , kr) > 

n. We consider the following two cases: 

When r = 2, we have variables xt for 1 ^ i < n and the following clauses: 

(a) {xa,xa+d,--- ,xa+d(fcl_i)} with a ^ l,d ^ l ,a + d(/ci - 1) ^ n, 

(6) {xa,xa+d,--- ,xa+d(fc2_i)} with a ^ 1 , 0 l,a + d(fc2 - 1) < n. 

Here, a;* = TRUE encodes i e Pj and Xj = FALSE encodes i E P2 (if Xj is not 

assigned but the formula is satisfied, then i can be arbitrarily placed in either of 

the blocks of the partition). Clauses (a) prohibit the existence of an arithmetic 

progression of length k\ in Pi and clauses (b) prohibit the existence of an arithmetic 

progression of length k2 in P2. 

When r > 2, we take one variable for each integer and each block of the parti­

tion. Each variable xitj with 1 ^ i ^ n, 1 ^ j < r, takes value TRUE if and only if the 

integer i belongs to a block P,- of a partition. This generates nr variables. The dou­

ble subscripts i,j can be routinely encoded as single subscripts such as r(i - 1) + j 

or i + n(j — 1). We have the following clauses: 

(a) INTEGER % is IN AT LEAST ONE BLOCK: For each integer i, we have the clause 

{xi,i,Xit2, • • • , xi>r} to ensure that i belongs to at least one block of the parti­

tion. 

(b) No ARITHMETIC PROGRESSION OF LENGTH kj IN BLOCK PJ-. This is the most 

important constraint. For 1 ^ j < r, l ^ a ^ n - k j + 1 and 1 < d ^ 
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[(n — a)/(kj — 1)J, we add the following clauses: 

(c) INTEGER i is CONTAINED IN AT MOST ONE BLOCK: We want an integer not to 

be contained in more than one block of the partition. To do so, we add the 

following clauses: {xi:S,Xi^} for 1 < i ^ n, 1 < s < t < r. 

Clauses of the third kind are not necessary, but their presence may steer the 

branching rules towards better decisions. 

4.3 Experiments on some van der Waerden formulas 

We denote a van der Waerden instance by wr-fci kr-n. cnf, where r is the num­

ber of blocks in the partition and n is an integer. The instance is satisfiable if and 

only if n < w(r; k\,..., kr). In this section, we report the results of the experiment 

on some known values of van der Waerden numbers to evaluate the performance 

of different branching rules on these instances. In this experiment, we run our 

solver on 2.2 GHz AMD Opteron 64-bit processors of the c i r rus cluster at Con­

cordia University. Preprocessing (as described in section 3.4.5.1) does not help in 

simplifying these instances. From Table 4.1, we see that 2s JW consistantly performs 

better (in terms of the number of calls to SetVar and running time) than the other 

two branching rules on the vdw instances. So, we fix 2s JW as the branching rule for 

further experiments on the vdw instances. 
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Table 4.1: PERFORMANCE ON THE vdw INSTANCES 

INSTANCE 

w2-3-3-9.cnf(U) 
w2-3-4-18.cnf(U) 
w2-3-5-22.cnf(U) 
w2-3-6-32.cnf(U) 
w2-3-7-46.cnf(U) 
w2-3-8-58.cnf(U) 
w2-3-9-77.cnf(U) 
w2-3-10-97.cnf(U) 
w2-3-ll-114.cnf(U) 
w2-3-12-135.cnf(U) 
w2-3-13-160.cnf(U) 
w2-4-4-35.cnf(U) 
w2-4-5-55.cnf(U) 
w2-4-6-73.cnf(U) 
w2-4-7-109.cnf(U) 
w2-5-5-178.cnf(U) 

DLCS 
34(0.00S) 

157 (0.00S) 
452 (0.00S) 
1889 (0.00S) 

24597 (0.02S) 
55668 (0.08s) 

386856 (0.83S) 
4505603 (12.96s) 

42613428 (147.50s) 
459501234 (1807s) 

(> 6 HRS) 
3684 (0.00s) 

79428 (0.13S) 
6312526 (13.47s) 

3389336998 (11476s) 
(> 6 HRS) 

M I N L E N 

34 (0.00S) 
116 (O.OOs) 
420 (O.OOs) 
1898 (O.OOS) 

36976 (0.03S) 
47103 (0.09S) 

217512 (0.56s) 
1635291 (5.30S) 

10145290 (38.99S) 
73592941 (343.64s) 
616727175 (3208s) 

1490 (O.OOs) 
27284 (0.10S) 

1567336 (6.92s) 
166908653 (979s) 

(> 6 HRS) 

2SJW 
32 (O.OOs) 

123 (O.OOS) 
396 (O.OOs) 
1432 (O.OOs) 

20174 (0.02s) 
28326 (0.05s) 

109984 (0.27s) 
749378 (2.30s) 

4249781 (15.31s) 
25027457 (109s) 

204929576(971s) 
1334 (O.OOs) 

20842 (0.04s) 
936838 (2.39s) 

68788298 (297s) 
8177796 (125.20s) 

4.4 New van der Waerden numbers found by Kouril 

In 2006, Kouril [39] found seven new van der Waerden numbers, one of which 

was w(2; 5,6). Unaware of Kouril's progress, we were also trying to determine this 

number. Once we have found in 2007 that this number is 206, we tried to improve 

the running time of our solver on w2-5-6-206. cnf. It turned out that in proving the 

instance w2-5-6-206. cnf to be unsatisfiable, our solver (using 2sJW as branching 

rule) performs (takes 6.2 days) significantly better than any other known solver (for 

example, MINIS AT takes 35 days). 

Table 4.2: RUNNING TIME ON VAN DER WAERDEN INSTANCES 

INSTANCE 

w-2-4-7-109.cnf 
w-2-3-13-160.cnf 
w-3-3-4-4-89 
w-4-3-3-3-3-76.cnf 
w-2-5-6-206.cnf 

S/U 
(U) 
(U) 
(U) 
(U) 
(U) 

SATZ 

25.8 mins 
-
-
-
-

ZCHAFF 

>100 mins 
-
-
-
-

MINISAT 

4.1 mins 
20.6 mins 
>10 days 
>15 days 
35 days 

O U R SOLVER 

4 mins 
15.9 mins 
4.1 days 
3.9 days 
6.2 days 
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Table 4.2 shows that our solver performs better than other well-known solvers 

on hard van der Waerden instances. 

Table 4.3 provides a good partition related to all the van der Waerden numbers 

found by Kouril and also iu(2;6,6) found by Kouril and Paul [40]. Here a good 

partition means a partition Pi U P2 U • • • U Pr such that no P, contains and arithmetic 

progression of kj terms. We will use strings to denote partitions; for example, 

11221122 denotes Pi - {1,2,5,6} and P2 = {3,4,7,8}. 

Table 4.3: VAN DER WAERDEN NUMBERS FOUND BY KOURIL 

w(r;ki,k2,--- ,K) 
«>(2; 3,14) 

w(2;3,15) 

io(2;3,16) 

^(2; 4,8) 

186 

218 

238 

146 

EXAMPLE OF A GOOD PARTITION 

22121222 22222222 22112222 21222222 
21222222 22121222 22222122 22222122 

22222221 12221222 22222222 22122112 
22222222 21212222 21222222 22122222 
12122222 22222122 21222222 2222A211 
22221222 22222212 22212222 2 
(where A is arbitrary). 

22222222 21222122 22222122 21122222 
12222222 22221222 21222222 22211222 
22222212 22222212 22212221 22222222 
22221122 22222212 22222212 22222222 
21222222 22212222 12122222 12112222 
22222221 22222122 22222221 12222222 
22221122 22222212 22222222 2 

2222A221 22222222 22222212 1222B222 
22212211 22222222 22222221 22222112 
12222222 22221221 21222222 22222221 
22222222 22221222 12222222 22122122 
22222122 22222222 22212212 22221121 
22222222 22222122 12222222 12222222 
222221C2 21222221 12222212 22222222 
21222222 22222 
(where ABC is arbitrary). 

112221A2 12222112 22222122 12222211 
12212222 12111222 21221121 21222222 
21122222 12211222 21222212 11222112 
22222211 21222222 21122212 11222221 
12212222 122B1121 2 

Continued on Next Page... 
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Table 4.3: VAN DER WAERDEN NUMBERS FOUND BY KOURIL 

(where AB is arbitrary). 

u>(2;5,6) 206 21112111 22122221 11222211 11211122 
21222212 11222221 12122221 22211121 
11121221 12112212 11112111 22212222 
12112222 21121222 21222111 21111212 
21121122 12111121 11222122 22121122 
22211212 22212221 11211112 22211122 
22122AB1 21112 
(where AB is arbitrary). 

u>(2;6,6) 1132 A1222211 21111121 22221222 11222221 
22122212 11122212 11212112 21122121 
22121112 22121112 11211111 22111211 
11212222 21221111 21211112 21222221 
21111211 12211111 21121112 12221112 
12212122 11221121 21121222 11121222 
12212222 21122212 22212111 11211222 
21212222 11211111 21222212 22112222 
21221222 12111222 12112121 12211221 
21221211 12221211 12112111 11221112 
11112122 22212211 112B2111 12212222 
21211112 11122111 11211211 12122211 
12122121 22112211 21211212 22111212 
22122122 22211222 12222121 11112112 
2221C122 22112111 11212222 12221122 
22212212 22121112 22121121 21122112 
21212212 11122212 11121121 11112211 
12111121 22222122 11112221 11122122 
22212111 12111221 11112112 11121222 

11121221 21221122 11212112 12221112 
12221221 22222112 22122221 21111121 
12222111 22221121 11112122 22122211 
22222122 12221211 12221211 21211221 
12212122 12111222 12111211 21111122 
11121111 21222221 2211112D 21111221 
22222121 11121112 21111121 12111212 
22111212 21212211 22112121 12122211 
12122212 21222221 12221222 21211111 
21122221 E1222211 21111121 22221222 
11222221 22122212 11122212 11212112 
21122121 22121112 22121112 11211111 
22111211 11212222 21221111 2F211112 
21222221 21111211 12211111 21121112 
12221112 12212122 11221121 21121222 

11121222 12212222 21122212 22212111 
11211222 21G 

Continued on Next Page. 
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Table 4.3: VAN DER WAERDEN NUMBERS FOUND BY KOURIL 

to(3;2,3,8) 

tu(3;2,4,7) 

72 

119 

(where ABCDEFG is arbitrary). 

33333233 23233323 33333233 32323323 
33331323 32323332 33333323 33232332 
3333333 

33333322 23223332 33233233 33332233 
32333232 33233333 22232233 22233323 
23313333 33232323 32233232 33333322 
32223333 23323332 333333 

4.5 Some new van der Waerden numbers found by us 

We have found thirty previously unknown van der Waerden numbers. These num­

bers and the corresponding good partitions are listed in Table 4.4. 

Table 4.4: VAN DER WAERDEN NUMBERS FOUND BY US 

w[r;ki,k2,--- ,kk) 
w(3;2,3,9) 

iy(3;2,3,10) 

iu(3; 2,3,11) 

u>(3;2,3,12) 

w(3;2,3,13) 

90 

108 

129 

150 

171 

EXAMPLE OF A G O O D PARTITION 

33333332 33332333 33332322 32333332 
33322333 33332333 33323333 33133223 
23333323 33223333 33323233 3 

33333233 33333332 33233323 33333323 
33322333 32323333 32333233 13333333 
33233333 22323333 33233322 33333323 
33333333 233 

33333322 33323333 33322333 22333333 
33332323 33333233 33333332 33233323 
23333333 33323233 32331333 33333223 
33333233 33233333 33323333 23323333 

33333333 33323233 23333333 33323223 
33233333 33333323 33333223 23333333 
33332333 32323333 33333332 23333333 
33233333 32333332 12233333 33333322 
33332333 23333333 33332 

33333333 33332333 33323333 33332232 
23333333 33233333 23333333 32332323 
33333323 33333332 32333333 33333321 
33333332 23233333 33323233 33223333 
33332332 32333333 32333333 33233333 
33233333 33 

Continued on Next Page... 
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Table 4.4: VAN DER WAERDEN NUMBERS FOUND BY US 

IO(3;2,5,5) 

10(4:2,2,3,8) 

iu(4;2,2,3,9) 

w(4;2,2,3,10) 

tu(4;2,2,4,5) 

u»(4;2,2,4,6) 

u/(4;2,3,3,5) 

«,(5;2,2,2,3,4) 

io(5;2,2,2,3,5) 

tu(5;2,2,2,3,6) 

^(5:2,2,2,3,7) 

iu(5;2,2,2,3,8) 

io(5;2,2,2,4,4) 

w(5; 2,2,2,4,5) 

ty(5;2,2,3,3,4) 

= 
= 

= 

= 

= 

180 

83 

99 

119 

75 

93 

86 

29 
44 

56 

72 

88 

54 

79 

63 

33232332 32223233 32222322 22322323 
33232223 33323333 23323222 32333222 
23222232 23233323 22233332 33332333 
32223233 32322322 22322223 33232223 
23323333 23333212 32333232 23222232 
22233323 22232332 223 

44444434 44433434 44434443 43444334 
44444144 24344344 44434344 44344434 
44443344 44434444 44 

43443444 44444343 44343444 44443433 
43444344 44442444 44444144 44443444 
34334344 44444343 44343444 44444344 
34 

34434444 43443444 44444434 44443344 
44444344 44334424 44344444 44433444 
44444341 43444444 34344344 44444334 
44434444 44434444 344444 

43434444 34434441 33343343 33444434 
43444433 34334333 44443443 44443334 
33443424 44 

33343344 44433434 34444343 33444434 
44434444 43334444 34333423 43314444 
43433344 44343344 44343444 3343 

43433444 34444224 33232444 43442424 
32244232 43434444 14444343 42324422 
34242443 44442324 34224 

54554555 44143555 45544255 5445 
55544545 55454425 55345555 45555144 
54555454 455 

45555545 55545455 54455555 45551423 
44555554 55544555 5545555 
55555544 54555455 55552445 44555545 
55515555 45555445 44355555 54555454 
4555555 

55455455 55544555 45455554 55555535 
55555454 41455555 55454455 55545555 
55255544 55455555 4555545 
54554544 45544454 55255454 44554445 
45315545 44455444 54554 

55554554 55554445 44544455 55455455 
55444544 54442555 35555155 44454454 
44555545 445555 

55443453 53543545 55332335 45553455 
54543144 55535335 35445553 544343 

Continued on Next Page... 
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Table 4.4: VAN DER WAERDEN NUMBERS FOUND BY US 

u;(6;2,2,2,2,3,3) 
tu(6;2,2,2,2,3,4) 
u;(6;2,2,2,2,3,5) 

w(6;2 ,2 ,2 ,2 ,3 ,6) 

w{6;2,2,2,2,4,4) 

u;(6;2,2,2,3,3,3) 

u>(7;2,2,2,2,2,3,3) 
u>(7;2,2,2,2,2,3,4) 

u)(8;2,2 ,2 ,2 ,2 ,2 ,3 ,3) 
tu(9;2 ,2 ,2 ,2 ,2 ,2 ,2 ,3 ,3) 

= 
= 
= 

= 

~ 

= 

= 
= 

= 
= 

21 
33 
50 

60 

56 

42 

24 
36 

25 
28 

66556655 43216655 6655 
65656655 46566366 56215565 66655666 
56665655 65666525 66636666 46665565 
56166565 56665666 6 
66665666 66556665 66666552 35466656 
66665566 65656666 56616656 665 
56656555 66555656 63665655 56655565 
66166465 25665556 5666555 
55446465 56655646 44531246 46556655 
64644565 4 
67766776 16345727 6677667 
77676677 76646277 57773616 67776676 
777 
87877883 78126578 77488787 
89899828 99597148 86889399 898 

4.6 Van der Waerden numbers known so far 

Table 4.5 contains a complete listing of known van der Waerden numbers. 

Table 4.5: VAN DER WAERDEN NUMBERS KNOWN so FAR 

w(r 
w(2 
w{2 
w{2 
w{2 
w{2 
w{2 
iu(2 

iu(2 

iu(2 

io(2 

w{2 
w{2 
w{2 
w{2 
w{2 

h,k2,--- ,kr) 
3,3) 
3,4) 
3,5) 
3,6) 
3,7) 
3,8) 
3,9) 
3,10) 
3,11) 
3,12) 
3,13) 
3,14) 
3,15) 
3,16) 
4,4) 

9 
18 
22 
32 
46 
58 
77 
97 

114 
135 
160 
186 
218 
238 

35 

REFERENCE 

CHVATAL [9] 

CHVATAL [9] 

CHVATAL [9] 

CHVATAL[9] 

CHVATAL[9] 

BEELER AND O'NEIL [6] 

BEELER AND O'NEIL [6] 

BEELER AND O'NEIL [6] 

LANDMAN, ROBERTSON AND CULVER [41] 

LANDMAN, ROBERTSON AND CULVER [41] 

LANDMAN, ROBERTSON AND CULVER [41] 

KOURIL [39] 

KOURIL [39] 

KOURIL [39] 

CHVATAL [9] 

Continued on Next Page... 
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Table 4.5: VAN DER WAERDEN NUMBERS KNOWN SO FAR 

w{2 
w{2 
w(2 
w(2 
w(2 
w(2 
w{2 
w(3 
w(3 
w(3 
w(3 
w(3 
w(3 
w(3 
w(3 
w(3 
w(3 
w(3 
w(3 
w(3 
w(3 
w(3 
w(3 
w(3 
w(3 
w{3 
w(3 
w(4 
w(4 
w{4 
w(4 
w(4 
w(4 
w(4 
w(4 
w(4 
w(4 
w(A 

4 
4 
4 
4 
5 
5 
6 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

5) 
6) 
7) 
8) 
5) 
6) 
6) 
3,3) 
3,4) 
3,5) 
3,6) 
3,7) 
3,8) 
3,9) 
3,10) 
3,11) 
3,12) 
3,13) 
4,4) 
4,5) 
4,6) 
4,7) 
5,5) 
3,3) 
3,4) 
3,5) 
4,4) 
2,3,3) 
2,3,4) 
2,3,5) 
2,3,6) 
2,3,7) 
2,3,8) 
2,3,9) 
2,3,10) 
2,4,4) 
2,4,5) 
2,4,6) 

55 
73 

109 
146 
178 
206 

1132 
14 
21 
32 
40 
55 
72 
90 

108 
129 
150 
171 
40 
71 
83 

119 
180 
27 
51 
80 
89 
17 
25 
43 
48 
65 
83 
99 

119 
53 
75 
93 

CHVATAL [9] 

BEELER AND O'NEIL [6] 

BEELER [5] 

KOURIL [39] 
STEVENS AND SHANTARAM [59] 

KOURIL [39] 
KOURIL AND PAUL [40] 

BROWN [7] 

BROWN [7] 

BROWN [7] 

BROWN [7] 

LANDMAN, ROBERTSON AND CULVER [41] 

KOURIL [39] 

AHMED [1] 

AHMED [1] 

AHMED [1] 

AHMED [1] 

AHMED [1] 

BROWN [7] 

BROWN [7] 

LANDMAN, ROBERTSON AND CULVER [41] 

KOURIL [39] 

AHMED [1] 

CHVATAL [9] 

BEELER AND O'NEIL [6] 

LANDMAN, ROBERTSON AND CULVER [41] 

LANDMAN, ROBERTSON AND CULVER [41] 

BROWN [7] 

BROWN [7] 

BROWN [7] 

LANDMAN, ROBERTSON AND CULVER [41] 

LANDMAN, ROBERTSON AND CULVER [41] 

AHMED [1] 

AHMED [1] 

AHMED [1] 

BROWN [7] 

AHMED [1] 

AHMED [1] 

Continued on Next Page... 
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Table 4.5: VAN DER WAERDEN NUMBERS KNOWN SO FAR 

w(A 
io(4 

io(4 

u>(4 
u>(5 
w(5 
w(5 
w(5 
w(5 
w(5 
w(5 
w(5 
w(5 
w(5 
w(6 
w(6 
w(6 
w(6 
w(6 
w(6 
w(l 
w(7 
w(8 
w(9 

2,3,3,3) 
2,3,3,4) 
2,3,3,5) 
3,3,3,3) 
2,2,2,3,3) 
2,2,2,3,4) 
2,2,2,3,5) 
2,2,2,3,6) 
2,2,2,3,7) 
2,2,2,3,8) 
2,2,2,4,4) 
2,2,2,4,5) 
2,2,3,3,3) 
2,2,3,3,4) 
2,2,2,2,3,3) 
2,2,2,2,3,4) 
2,2,2,2,3,5) 
2,2,2,2,3,6) 
2,2,2,2,4,4) 
2,2,2,3,3,3) 
2,2,2,2,2,3,3) 
2,2,2,2,2,3,4) 
2,2,2,2,2,2,3,3) 
2,2,2,2,2,2,2,3,3) 

40 
60 
86 
76 
20 
29 
44 
56 
72 
88 
54 
79 
41 
63 
21 
33 
50 
60 
56 
42 
24 
36 
25 
28 

BROWN [7] 

LANDMAN, ROBERTSON AND CULVER [41] 

AHMED [1] 

BEELER AND O'NEIL [6] 

LANDMAN, ROBERTSON AND CULVER [41] 

AHMED [1] 

AHMED [1] 

AHMED [1] 

AHMED [1] 

AHMED [1] 

AHMED [1] 

AHMED [1] 

LANDMAN, ROBERTSON AND CULVER [41] 

AHMED [1] 

AHMED [1] 

AHMED [1] 

AHMED [1] 

AHMED [1] 

AHMED [1] 

AHMED [1] 

AHMED [1] 

AHMED [1] 

AHMED [1] 

AHMED [1] 

4.7 Immediate future work 

(i) Computing w(2; 3,17), w{2; 4,9), and w{2; 5,7), 

(ii) Computing w(5; 3,3,3,3,3): which is ^ 171 [32], 

(in) Computing w(3;4,4,4) the current lower bound O 293) of which is 30 years 

old [52]. 
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Chapter 5 

Conclusion 

In this chapter, we describe the summary of the thesis and future work in this direc­

tion. 

5.1 Summary of the thesis work 

We have contributed the following: 

(i) We have presented an improved variant of the DPLL algorithm. 

(ii) We have described efficient implementation of our version of DPLL. 

(iii) We have computated thirty new van der Waerden numbers. 

(iv) We have done a survey of some extremal properties of random /c-SAT formulas 

and described two easily verifiable counting conditions under which a k-SKT 

formula is satisfiable. 
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(v) We have done a survey of the known deterministics fc-SAT algorithms and 

described some of them in order of running times. 

5.2 What we have not done? 

(i) Conflict-clause recording, 

(ii) VSIDS branching rule and random restarts 

5.3 Future work 

(i) Using the solver in attempts to compute new van der Waerden numbers and 

similar partition-related problems, for example, computing the 5th Schur num­

ber a s(5). It can be also used in attempts to compute Ramsey numbers2 

r(m,n). 

(ii) Implementation of new ideas in branching rules. 

(in) Implementation of new ideas for parallel processing. 

(iv) Implementation of new ideas on the data structure. 

lA Schur number s(k) is the largest integer m such that {1,2, • • • , m} can be partitioned into k 
sum-free sets (A set S is sum-free if the intersection of S and S + S is empty). 

2A Ramsey number r(m, n) is the minimum integer v such that all undirected graphs of order v 
contain a complete subgraph (all vertices are adjacent to each other) of order m or an independent 
set (no vertices are adjacent to each other) of order n. 
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Appendix A 

Some satisfiable instances of SAT 
In this section, we discuss some easily verifiable counting conditions under which 

a SAT formula is satisfiable. In each case, we discuss the condition and an efficient 

algorithm to find a satisfying assignment. We also discuss the optimality of the 

conditions and compare them mutually by examples. 

A.1 Counting clauses 

A. 1.1 The condition 

Theorem A. 1.1 provides a simple condition for satisfiability of a SAT formula. The 

proof of the condition and an efficient algorithm to find a satisfying assignment (as 

described in the following section) are implicit in Erdos and Selfridge [24]. 

THEOREM A.1.1. If a formula F satisfies the condition 

^ 2 - l c l < l , (A.1) 
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then F is satisfiable. 

Proof of theorem A. 1.1. Let x be an unassigned variable in F. Let F0 be the set of 

clauses that contain x as a literal, and F\ be the set of clauses that contain x as a 

literal. Then, 

j - 2-ic' = Yl 2~|c|+1 + E 2_|c| (A-2) 
CeF|x c e F 0 C G F - ( F O U F ! ) 

j2 2-w = J22_|c|+1 + E 2~|c| (A-3> 
CeF|x C€Fj CeF-(FoUFi) 

From (A.2) and (A.3), we get: 

I j ^ 2 - i c i + Y, 2~ | c |) = E 2 _ | c | (A-4> 
\cGF| i CeF|x / C&F 

From (A.4), since F satisfies (A.l), at least one of F\x or F\x satisfies (A.l) in 

place of F. So, we set x = TRUE, and F = F|x if E C 6 F | X 2 _ | C | < EC €F|X 2~ | C |5 

otherwise we set x = FALSE, and F = F\x. Since we proceed satisfying (A.l), the 

assignment obtained at the end is satisfying. • 

A. 1.2 Optimality of the condition 

The result in Theorem A. 1.1 is tight since there are unsatisfiable SAT formulas with 

J2ceF 2_|C ' = 1- F°r example, let F be a SAT formula with variables x\,x2, and x3 

and clauses {xux2,x3}, {xux2,x3}, {xux2,x3}, {x-i,x2,x3}, {xx,x2}, and {xi,z2}. 

Here, EceF^ - ' 0 ' = 1 a nd F is unsatisfiable. 
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A.2 Counting number of occurrences of variables 

A. 2.1 The condition 

Let r, s-SAT denote the class of instances with exactly r literals per clause and each 

variable x appearing either as literal x or as literal x at most s times. 

THEOREM A.2.1 (Tovey [62]). Every instance ofk,k-SATis satisfiable. 

In the proof of Theorem A.2.1, we will require a few definitions. A graph is 

called bipartite if its vertices can be labeled "left" and "right" in such a way that 

each edge has one end among the left vertices and the other end among the right 

vertices. A matching M in a graph G is a set of pairwise non-adjacent edges (no two 

edges have a common vertex). A cover in a graph G is a subset K of the vertices 

such that every edge of G has at least one end in K. We state the following theorem, 

as this will be used to prove Theorem A.2.1. 

THEOREM A.2.2 (Konig-Egervary [38,23]). In a bipartite graph, the largest number 

of edges in a matching is equal to the smallest number of vertices in a cover. 

Proof of theorem A.2.1. Given a k, k-SKT formula F with clauses Ci, C2, • • • ,Cm 

over variables xi,x2,--- , ^ , w e construct a bipartite graph G with C\, C2, • • • ,Cm 

as the left nodes, x l t x2, • • • , xn as the right nodes, and by adding an edge between 

d and Xj if and only if Xj e Ci or Xj G Co Let var(Ci) denote {x : x E C or x e C}. 

Given / C {1,2, • • • ,m}, let i equal the number of pairs (x,d) such that i e / 

and Ci contains either x or x as a literal. Since every clause contains exactly k 

literals, we have 
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t = \I\k (A.5) 

Again, every variable occurs at most k times. So, 

t ^ k\\Jvar{Ci)\ (A.6) 

From (A.5) and (A.6), we get 

lUuar(Ci) |^ | / | (A.7) 

We want to show that if G satisfies condition (A.7) for all / C {1,2, • • • , m}, then 

G has a matching of size m. Suppose G does not have a matching of size m. We 

show that there exists a set J C {1,2, • • • ,m) such that G does not satisfy condition 

(A.7) for J. Let M be a matching in G with the largest number of edges such that 

|M| < m. Let K be a cover in G with the smallest number of vertices. By Theorem 

A.2.2, |M| = |K|, and so |K| < m. From the set {1,2, • • • , m}, we put j e J if and 

only if Cj is not in K. So, all the edges incident on vertices Cj} where j e J, are 

covered by the |K| — (m~\J\) right vertices in K. So, 

\\Jvar(Cj)\ = \K\-m+\J\ < \J\. 
ieJ 

Therefore, G has a matching of size m. 

If G has a matching M of size m, then every C* is matched to a distinct Xj. For 

each edge (Cj, Xj) in M, set Xj to TRUE if Xj € Cj, and x̂  to FALSE if Xj G Cj. Hence, 
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F is satisfiable. D 

Graph G has m + n vertices and at most kn edges. A matching of size m can be 

computed in time O ((m + n)1/2fcn) using the Hopcroft-Karp Algorithm [33]. Then 

from the matching, we can obtain a satisfying assignment. 

A.2.2 Optimality of the condition 

For k = 3, the condition in Theorem A.2.1 is tight. Let F be a 3-SAT formula with 

variables x, y, and z and clauses: {x,y,z}, {x,y,z}, {x,y,z}, {x,y,l}, {x,y,z}, 

{x,y,~z}, {x,y,z}, and {x,y,z}. This formula is unsatisfiable and each variable 

appears 8 times in the formula. Now, we construct a 3,4-SAT instance Fi from F, 

which is unsatisfiable. 

For i — 1, • • • , 8, we replace the i-th occurrence of x by new variable xi} the z-th 

occurrence of y by new variable yi} and the i-th occurrence of z by new variable Zi. 

We add the following 8 clauses to Fi: 

{xuyuzi}, {x2,y2,22}, {x3,y3,z3}, {x4,y4,z4}, 

{X5,y5,zs}, {x6,y6,z6}, {x7,y7,z7}, {x8,y8,z8}. 

For i — 1, • • • , 8, we introduce variables pi} qit and ri} and add the following 24 

clauses to Fx: 

{xi,x2,Pi}, {x2,x3,p2}, {x3,x4,p3}, {x4,x5,p4}, 

{x5,x6,p5}, {x6,x7,p6}, {x7,xs,p7}, {x8,xup8}, 

{yi>y2>9i}> {y2,y3,q2}, { y a , ^ . ^ } . {y4,y5 ,94}. 

{ys,y6>95}> {y6,y7>96}» {y7,y8,97}» {y8,yi ,98}. 
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{zi,Z2,ri}, {z2,z3,r2}, {z3,z4,r3}, {z4)z5,r4}, 

{Z5,ZQ,T5}, {z6,Z7,f6}, {z7,Z8,f7} , {zs,Zi,f&} , 

To force xx, • • • ,x8to all TRUE or all FALSE, we need to force each of pi, • •• ,p8 

to TRUE. To force pi to TRUE, we introduce variables a1} a2, a3, 61} b2, b3, d\, d2, and 

d3 and the following 13 clauses: 

{Pi,ai,h}, {di,aubi} , {di,aubi} , {di,ai,&i}, 

{P1.a2.b2}, {d2.a2.b2}, {^2,^2,^2}, {^2,02,^2}, 

{P1.a3.63}, {d3.a3.b3}> {d3,a3,b3}, {d3.a3.b3} , 

{di,d2,d3} , 

In this way, variables pi, • • • ,p8, can all be forced to TRUE with 72 new variables 

and 104 new clauses. We can do the same to force yx, • • • , y8 to all TRUE or all FALSE, 

and zx, • • • , z8 to all TRUE or all FALSE. 

Finally, we get an unsatisnable 3,4-SAT instance Fi with 344 clauses over 264 

variables. 

For k > 3, the condition in Theorem A.2.1 is not tight. For example, we do not 

have an unsatisnable instance of 4,5-SAT. 

A. 3 Comparing the conditions by example 

EXAMPLE A.3.1. Here we give an example of a satisfiable formula that satisfies the 

condition in Theorem A.1.1, hut not the conditions given by Theorem A.2.1. Let Fx 

be a 4-SAT formula with 15 clauses over the variables xx, x2, x3, and x4. 

103 

http://%7bP1.a2.b2%7d
http://%7bd2.a2.b2%7d
http://%7bP1.a3.63%7d
http://%7bd3.a3.b3%7d
http://%7bd3.a3.b3%7d


{xux2,x3,x4}, {xux2,x3,x4}, {xi,x2,x3,x4}, {xi,x2,x3,x4}, {xux2,x3,x4}, 

{xux2,x3,x4} , {xi,x2,x3,x4} , {xux2,x3,x4} , {xux2,x3,x4} , {xux2,x3,x4} , 

{xux2,x3,x4} , {xux2,x3,x4} , {xi,x2,x3,x4} , {xux2,x3,x4} , {xi,x2,x3,x4} . 

Formula Fi is satisfied by {x^ H-+ TRUE, x2 >-> TRUE, x3 \-* TRUE, x4 \-^> TRUE}. In Fu 

• The number of clauses is 15, which is less than 24. So the condition in Theorem 

A. 1.1 is satisfied. 

• Each variable Xi for 1 < i < 4, occurs 15 times (which is bigger than A). So 

the condition in Theorem A.2.1 is not satisfied. 

EXAMPLE A.3.2. Here we give an example of a satisfiable formula that satisfies the 

condition in Theorem A.2.1, but not the other condition given by Theorem A.l.l. 

Let F2 be a 3-SAT formula with variables x\, • • • ,x9 and clauses 

{xi,x2,x3}, {xi,x2,x3}, {xi,x2,x3}, 

{aj4)x5,a;6}, {x4,x5,xe}, {x4,x5,x6}, 

{x7,x8,x9}, {x7,x8,x9}, {x7,x8,x9}, 

Here, F2 is satisfied by {xx H-> TRUE, x41-> TRUE, x71-> TRUE}. 

• The number of clauses is 9, which is greater than 23 - 1. So the condition in 

Theorem A.l.l is not satisfied. 

• Each variable occurs exactly 3 times in the formula. So the condition in The­

orem A.2.1 is satisfied. 
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Appendix B 

Deterministic fc-SAT algorithms other 

than DPLL 

In this section, we describe some known deterministic algorithms (other than DPLL) 

for &-SAT. We briefly discuss the ideas behind these algorithms. 

B.l 2-SAT algorithms 

Cook [12] observed (from Davis-Putnam [19]) that 2-SAT can be solved in polyno­

mial time. 

B.l.l Polynomial-time algorithm based on Davis-Putnam [19] 

Two clauses C\ and C2 are said to clash if there is exactly one literal u, such that 

u e C\ and u e C2. If Ci and C2 clash, then their resolvent is defined as C\ U 

C2 - {u,u} and is denoted by C\VC2- If clauses C\ and C2 are satisfied by some 
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truth assignment z, then their resolvent is also satisfied by z. Adding C1VC2 does 

not change the satisfiability status of the formula. If two clauses of length at most 

two clash, then their resolvent is also of length at most two. So if we keep adding 

resolvents to a (< 2)-SAT formula F over n variables, then the resulting formula 

may have at most 1 + 2n + 4(") = 2n2 + 1 clauses. Thus the process terminates 

adding at most O (n2) resolvents. If we encounter an empty clause, then F is not 

satisfiable; otherwise it is satisfiable. 

B. 1.2 Limited-backtracking DPLL-like polynomial-time algorithm 

Even, Itai and Shamir [25] suggested a limited-backtracking DPLL-like algorithm 

(Algorithm B.19) for 2-SAT that runs in polynomial time. 

Algorithm B.19 SOLVING 2-SAT WITH LIMITED BACKTRACKING 

1 

2 

3 

4 
5 

6 

7 
8 

9 
10 
11 
12: 
13 
14 
15: 

procedure LIMITED-BACKTRACKING-DPLL-2SAT(F) 

while there is a clause of length at most one in F do 
if F contains an empty clause then return UNSATISFIABLE 

if F contains a unit clause {u} then F = F\u 
end while 
if F is empty then return SATISFIABLE 

choose an unassigned literal u 
F' = F\u 
while there is a unit clause {v} in F' do F' = F'\v 
if F' does not contain an empty clause then 

return LIMITED-BACKTRACKING-DPLL-2SAT(F') 

else 
return LIMITED-BACKTRACKING-DPLL-2SAT(F|U) 

end if 
end procedure 

The idea is that if setting a literal u to TRUE does not immediately lead to a 

contradiction by unit-propagation, then the assignment may be fixed. In that case, 
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the set of clauses in the resulting formula is a subset of the set of clauses in the 

original formula and the resulting formula is satisfiable if and only if the original 

formula is satisfiable. 

B.1.3 A linear-time algorithm 

Aspvall, Plass and Tarjan[3] came up with a linear time algorithm for (< 2)-SAT 

as described in Algorithm B.20. Let F be a (^ 2)-SAT formula with m clauses over 

variables {xi,--- ,xn}. Let G(F) be the directed graph, as defined in [3], with 

vertices {xi,--- ,xn,xi,--- ,xn} and edges {{u,v)\{u,v} e F}. So G(F) has 2n 

vertices and at most 2m directed edges. 

Let u ~* v denote a directed walk u -* ••• —> v in G(F). We observe that if 

u ~~* v, then every satisfying assignment setting u to TRUE has to set v to TRUE as 

well. If u ~> u, then every satisfying assignment sets u to FALSE. If u -w v ~~> u, 

then every satisfying assignment sets u and v to the same truth value. Also by 

construction of G(F), we observe that u ~» v if and only if v -^ u. 

LEMMA B.l . l (Aspvall, Plass, Tarjan [3]). A 2-SAT formula F is unsatisfiable if and 

only ifG(F) contains a directed walk x -~» x -^ x. 

Proof of lemma B.l. l . Let F be a 2-SAT formula over n variables. The resolvent 

of clauses {x, u] and {x, v} in F is {u, v}. Adding the resolvent to F will introduce 

edges u —» v and v —>• u to G(F). But u -+ x —> v and u —*• x - • it were already 

in G(F). Let F ' be the formula obtained after adding resolvents to F as long as 

possible. We have u —> v in G(F') if and only if we have u ~-> v in G(F) with w / « , 

We know that F is unsatisfiable if and only if F' contains {x} and {x}. Formula F' 
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containing {x} and {#} is equivalent to the existence of x —> x —> x in G(F'), which 

in turn, is equivalent to x ~* x -^ x in G(F). • 

Algorithm B.20 (Aspvall, Plass, Tarjan [3]) constructs a satisfying assignment in 

time 0(m + n) provided G(F) contains no directed walk of the form x ~* x ~» x. 

A graph is strongly connected if every two vertices are mutually reachable. The 

maximal strongly connected subgraphs of a graph are vertex-disjoint and are called 

strongly connected components. The strongly connected components of a directed 

graph can be computed in time 0{m + n) (Tarjan [61]) using depth-first-search. 

If Si and S2 are strongly connected components such that an edge leads from a 

vertex in S\ to a vertex in S2, then S\ is a predecessor of S2 and S2 is a successor of 

Si. Each clause {u,i>} in F contributes two edges u —> u and TJ —> u in G(F). So, 

for each strongly connected component S in G(F), there is a strongly connected 

component S (which is S with labels of vertices complemented and directions of 

edges reversed) in G(F). If Si and S2 are two strongly connected components in 

G(F) and Si is a predecessor of S2, then Si is a successor of S2. 

Algorithm B.20 SOLVING «2)-SAT IN O (m + n) TIME 

l 

2 

3 

4 

5 

6 

7 

8: 

9 

10 

11 

procedure LINEAR2SAT(F) 

S = strongly connected components of G(F) 
for each unassigned component S in S do 

if S contains literals u and u as vertices then 
return UNSATISFIABLE 

end if 
set each literal labelling vertices of S to TRUE 
set each literal labelling vertices of S to FALSE 

end for 
return SATISFIABLE 

end procedure 
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If any strongly connected component S does not contain two vertices labelled 

by a literal and its complement, then S ^ S. 

If any strongly connected component is set to TRUE, then its successors are also 

set to TRUE. If any strongly connected component is set to FALSE, then its prede­

cessors are also set to FALSE. So complementary components have complementary 

truth values and no path leads from a TRUE component to a FALSE component. 
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B.2 Monien-Speckenmeyer Algorithm 

Monien and Speckenmeyer [48] came up with the very first algorithms for fc-SAT 

that run in less than 2™ steps. The basic idea was to branch on a shortest unsatisfied 

clause. Algorithms B.21, B.22, and B.23 are three variants of Monien-Speckenmeyer 

algorithm with gradual improvements in running time. In this section, we use 

O* (cn) (where c > 1) instead of O (c™ • poly(n)) to indicate that the polynomial 

factor is suppressed. 

B.2.1 O* ((2k - l)n/fc)-time k-SAT algorithm 

This algorithm comes from the simple observation that any clause of length k has 

2 ^ - 1 possible satisfying assignments. 

Algorithm B.21 SOLVING K-SAT IN TIME O* (CJJ) WITH ck = (2fc - \)l'k 

l 
2 
3 
4 
5 
6 
7: 
8 
9 

10 
11 

procedure M S1 (F) 
if F = 0 then return SATISFIABLE 

if F contains an empty clause then return UNSATISFIABLE 

if F is a 2-SAT then return LINEAR2SAT(F) 

C = shortest unsatisfied clause {ui, u2, • • • , ui} in F 
for each of the 2* — 1 satisfying assignments of C do 

compute simplified formula Fj 
if MS 1(F) = SATISFIABLE then return SATISFIABLE 

end for 
return UNSATISFIABLE 

end procedure 

Let Tk{n) be the complexity of Algorithm B.21. Now, ignoring polynomial fac­

tors, we get the recurrence 

T f c(nK(2 f c- l )T f c(n-fc) , 
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which gives the upper bound O* (c£) with ck = (2fc - l)1/fc. In particular, the running 

time for 3-SAT is O* (1.913"). 

B.2.2 O* (/?£)-time k-SAT algorithm, where 0k is the biggest num­

ber satisfying f3k = 2 - l//?j? 

Algorithm B.22 K-SAT ALGORITHM (FASTER THAN ALGORITHM B.21) 

2 
3 
4 
5 
6 
7 
8 
9 

10 

procedure MS2(F) 
if F = 0 then return SATISFIABLE 

if F contains an empty clause then return UNSATISFIABLE 

C — shortest unsatisfied clause {u\,u2, • • • ,ue} in F 
for i = 1 to £ do 

Fi ~ {C - {ui,--- ,Ui-i,Ui} : C E F,Cil{ui,--- ,v,i-i,Ui} = 0} 
if MS2(FJ = SATISFIABLE then return SATISFIABLE 

end for 
return UNSATISFIABLE 

end procedure 

If F consists of n variables, then each Fi for 1 ^ i ^ £ (line 6 of Algorithm 

B.22) consists of n — i variables. Let the running time be Tk(n), where n is the num­

ber of yet-to-be-assigned variables. Omitting constants that lead to sub-dominant 

polynomial factors, we get 

Tk{n) ^ Tk{n - 1) + Tk{n - 2) + • • • + Tk{n - k). 

We have the running time O* ((3k), where (3k is the largest zero of 

1 -aT 1 x"k. 
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In particular, for 3-SAT, p3 = 1.8393.... 

B.2.3 O* (a]J)-time fc-SAT algorithm, where ak is the biggest num­

ber satisfying ak = 2 - 1/ajJT1 

A truth assignment 2 over a subset V of the set of variable is autark in F if and only 

if every clause C in F that shares one or more variables with V is satisfied by z. 

Determining auturkness of a given assignment is not expensive. 

Algorithm B.23 K-SAT ALGORITHM (FASTER THAN ALGORITHM B.22) 
l: procedure MS3(F) 
2: if F - 0 then return SATISFIABLE 

3: if F contains an empty clause then return UNSATISFIABLE 

4: C = shortest unsatisfied clause {ui,u<2, • • • ,ue} in F 
5: for i — 1 to £ do 
6: t = assignment induced by {u\ H-> 0, u2 >-> 0, • • • , Uj_i 1—> 0, ii, 1—> 1} 
7: if t is AUTARK then 
8: F = {C :C EF, var{C) n war({wi, • • • , ixj) = 0} 
9: return MS3(F) 

10: end if 
11: end for 
12: for i = 1 to £ do 
13: Fi = {C-{ui,--- ,tii-i,Ui} : C G F , C n { u i , - " ,w»- i ,M = 0} 
14: if MS3(F) = SATISFIABLE then return SATISFIABLE 

15: end for 
16: return UNSATISFIABLE 

17: end procedure 

In Algorithm B.23, we observe that if the first for loop contains no autark as­

signment, then in the second for loop, every subformula F4 contains a clause of 

length at most k - 1. This behaviour is sufficient to guarantee a better estimation 

112 



than the one given by Algorithm B.22. The recurrence for Algorithm B.23 is 

Tk(n) < Tk(n - 1) + Tk(n - 2) + • • • + Tk(n -k + 1). 

We have the running time O* {oil), where ak is the largest zero of 

l _ x - i x - k + i . 

In particular, for 3-SAT, Q3 = 1.618.... 

B.3 Local search based fc-SAT algorithms 

Let F be a fc-SAT formula with variables xt, x2, • • • ,xn. The Hamming distance be­

tween two truth assignments z\ and z2 is 

n 

'Y^zi{xi)®z2{xi). 

The Hamming ball of radius r around an assignment z in {0, l } n is the set of 

all assignments whose Hamming distance to z is at most r. Each Hamming ball 

of radius r has YA=O (") assignments in it (let this number be denoted by V(n, r)). 

From Stirling's approximation n! « \phva (^)n, with 0 ^ a < 1, we get 

»)„ ! C » V (B.1) 
on) yj2irna{\ - a) \aa(l - a ) 1 " " / 

Function - a log2 a - (1 - a) log2(l - a), denoted by h(a), which is maximum at 

a = 1/2, is known as the binary entropy function. With r = pn and 0 < p < 1/2, we 
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get 

V(n)r)^2h{p)n 

A covering code of radius r is a subset of {0, l } n that covers all the 2n assign­

ments by Hamming balls of radius r. Constructing an optimal covering code is 

NP-complete. But a near-optimal covering code can be constructed using a greedy 

approximation algorithm, as described in [17]. For any covering code ^, we have 

\^\-V(n,r) ^2n. So, 

Algorithm B.24 LOCAL SEARCH BASED K-SAT ALGORITHM 

l 

2 

3 

4 

5 
6 
7: 
8 
9 

10 

procedure HSEARCH(F, Z, r) 
if F = 0 then return TRUE 

if r < 0 then return FALSE 

if F contains an empty clause then return FALSE 

Pick a clause C that is false under z 
for each literal u e C do 

if HSEARCH(F|U, Z, r - 1 )=TRUE then return TRUE 

end for 
return FALSE 

end procedure 

Once we have a covering code of radius r, for every assignment z in the covering 

code, we can search for a satisfying assignment locally in the Hamming ball of 

radius r around z. But it is not necessary to search through all V(n, r) assignments 

inside the ball. If the formula F is not satisfied by z, then there is a clause C which 

is not satisfied by z. Then F has a satisfying assignment in the Hamming ball of 

radius r around z if and only if there is a literal u in C such that F\u has a satisfying 

assignment in the Hamming ball of radius r — 1 around z. 
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B.3.1 O* ((^ r)
n)-t ime algorithm for k-SAT by Dantsin et al. [17] 

Dantsin et al. [17] gave algorithm B.25 for k-SAT, which runs in time O* ( ( ^ - ) n ) . 

Algorithm B.25 LOCAL SEARCH BASED fc-SAT ALGORITHM 

l: procedure HAMMINGBALLSAT(F, n) 

3: Generate a covering code ff using a greedy approximation algorithm 
4: for each assignment z in ^ do 
5: if HSEARCH(F, Z, pn)=TRUE then return SATISFIABLE 

6: end for 
7: return UNSATISFIABLE 

8: end procedure 

Function HSEARCH(F, Z, p) runs in time O* (kr). Therefore, Algorithm B.25 has 

a running time: 

T(n,p) ^ poly(n) • 2{1-h{p))n • kpn 

= poly{n) • 2{1-h(p))n • 2pnl0S2k 

= poly(n) • 2n(1+plog2P+(1-p ' log2(1-^+plog2 'c ' 

= poly{n) • 2 " ( 1 + S T T log2 kh+kTT log2 ^ + 5 ^ log2 *) 

poly(n) • 2"(1+log2 STI) = poly{n) 
2k 

^k+1 

For 3-SAT, Algorithm B.25 runs in time O* (1.5n) (Here p = 0.25). 

B.3.2 O* (1.481n)-time algorithm for 3-SAT by Dantsin et al. [17] 

Algorithm B.24 can be modified to run in time O* (2.848r) instead of O* (3r), which 

improves the running time of Algorithm B.25 to O* (1.481") for 3-SAT. Here, the 
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HSEARCH(F, Z, r) is modified so that if there is a clause {ui,u2,u3}, which is false 

under z and F contains a clause {%} for some i in {1,2,3}, then we do not run 

HSEARCH(F|UJ, Z, r - 1). To estimate the number of leaves of the recursion tree, 

let the function be H{r). The recurrence is 

H(r) = 6 • (H(r - 2) + H(r - 3)), (B.2) 

for r ^ 3 with H{0) = 1, H(l) = 3 and H(2) = 9. Now, H{r) = O* {ar), where a 

is s/i + N/2 W 2.848, the largest root of as - 6a - 6 = 0. With p = 0.26, for 3-SAT, 

Algorithm B.25 runs in time 

T(n,0.26) ^ poly(n) • (2.848026 • 21-h(a26))" = O* (1.481"). 

Brueggemann and Kern [8] improved the recurrence (B.2) to 

H(r) = 6-H{r-2) + 5-H(r-3), (B.3) 

Here, H[r) = O* {(5r), where (3 is 2.792, the largest root of (33 - 6/? - 5 = 0. With 

p = 0.264, for 3-SAT, Algorithm B.25 runs in time 

T(n,0.264) < poly(n) • (2.7920264 • 21-fc(a264>)n = O* (1.473"). 
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