
An Implementation of the DPLL Algorithm

Tanbir Ahmed

A thesis

in

the Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Computer Science

Concordia University

Montreal, Quebec, Canada

July 2009

©Tanbir Ahmed, 2009

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
OttawaON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-63140-9
Our file Notre reference
ISBN: 978-0-494-63140-9

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'Internet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

• + •

Canada

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Tanbir Ahmed

Entitled: An Implementation of the DPLL Algorithm

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of the University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

Chair
Dr. Rajagopalan Jayakumar

Examiner
Dr. Peter Grogono

____ Examiner
Dr. Clement Lam

Supervisor
Dr. Vasek Chvatal

Approved by
Chair of Department or Graduate Program Director

Date Dr. Robin A. L. Drew, Dean

Faculty of Engineering and Computer Science

Abstract
An Implementation of the DPLL Algorithm

Tanbir Ahmed

The satisfiability problem (or SAT for short) is a central problem in several fields of com­

puter science, including theoretical computer science, artificial intelligence, hardware de­

sign, and formal verification. Because of its inherent difficulty and widespread applications,

this problem has been intensely being studied by mathematicians and computer scientists

for the past few decades. For more than forty years, the Davis-Putnam-Logemann-Loveland

(DPLL) backtrack-search algorithm has been immensely popular as a complete (it finds a

solution if one exists; otherwise correctly says that no solution exists) and efficient proce­

dure to solve the satisfiability problem. We have implemented an efficient variant of the

DPLL algorithm. In this thesis, we discuss the details of our implementation of the DPLL

algorithm as well as a mathematical application of our solver.

We have proposed an improved variant of the DPLL algorithm and designed an efficient

data structure for it. We have come up with an idea to make the unit-propagation faster than

the known SAT solvers and to maintain the stack of changes efficiently. Our implementation

performs well on most instances of the DIMACS benchmarks and it performs better than

other SAT-solvers on a certain class of instances. We have implemented the solver in the

C programming language and we discuss almost every detail of our implementation in the

thesis.

An interesting mathematical application of our solver is finding van der Waerden num­

bers, which are known to be very difficult to compute. Our solver performs the best on the

class of instances corresponding to van der Waerden numbers. We have computed thirty of

these numbers, which were previously unknown, using our solver.

iii

Acknowledgements

I would like to express my hearty gratitude to my supervisor, Dr. Vasek Chvatal,

for his immense help and encouragement. I am grateful to him for generously

taking me as his student. This work would not have been possible without his

invaluable guidance. He patiently read several drafts of the thesis, graciously helped

me to put my thoughts in order, and directed me towards finishing it. He is more of

a school than an individual.

I would like to cordially thank my committee members, Dr. Clement Lam, and

Dr. Peter Grogono for carefully reading my thesis and giving their precious com­

ments and suggestions. I especially want to thank Ehsan Chiniforooshan for reading

part of my thesis and providing useful feedbacks.

I would like to thank Halina Monkiwewicz, Pauline Dubois, Edwina Bowen,

Massy Joulani, and Hirut Adugna for their kind help in administrative matters in

various times.

Finally, I thank Andalib, my wife, for her endless love, which has sustained me

throughout.

iv

Contents

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 The Satisfiability problem 1

1.2 The DPLL algorithm 2

1.3 Motivation and Scope 4

1.4 Organization of the thesis 5

2 Implementation aspects of DPLL 7

2.1 Branching rules 7

2.1.1 A paradigm for branching rules 8

2.1.2 Branching rules that fit the paradigm 8

2.1.2.1 Dynamic Largest Individual Sum (DLIS) 8

2.1.2.2 Dynamic Largest Combined Sum (DLCS) 9

2.1.2.3 Jeroslow-Wang (JW) rule 9

2.1.2.4 2-Sided Jeroslow-Wang rule 9

v

2.1.2.5 DSJrule 10

2.1.2.6 MOMS heuristics 10

2.1.2.7 Approximate Unit-Propagation Count (AUPC) rule . 11

2.1.2.8 CSatrule 11

2.2 Data structures 13

2.2.1 Adjacency lists 13

2.2.1.1 Assigned literal hiding 13

2.2.1.2 The counter-based approach 13

2.2.1.3 Counter-based approach with satisfied clause hiding 14

2.2.1.4 Counter-based approach with satisfied clause and

assigned literal hiding 14

2.2.2 Lazy data structures 14

2.2.2.1 Head-Tail lists 15

2.2.2.2 Two literal watch method 16

2.3 Preprocessing the formula 17

2.3.1 Adding resolvents 17

2.3.2 Subsuming clauses 18

2.3.3 Binary equivalent literal propagation 18

2.4 Pruning techniques 19

2.4.1 Literal assignment forced by a pair of binary clauses 19

2.4.2 Clause recording 19

2.4.2.1 Implication graph 19

2.4.2.2 Learning conflict clauses 20

2.4.2.3 Random restarts and clause recording 21

vi

2.4.3 Non-chronological backtracking 21

2.5 Well-known SAT solvers 23

2.5.1 Satz 23

2.5.2 GRASP 24

2.5.3 Chaff, zChaff 26

2.5.4 MiniSat 28

3 Our implementation of the solver 29

3.1 Revised DPLL algorithm 29

3.2 DPLL pseudocode of our implementation 30

3.3 The data structure 32

3.3.1 Storing literals and clauses 33

3.3.2 Stack of Changes 35

3.3.3 Storing assignment information 36

3.3.4 Other global variables and arrays 36

3.4 Details of functions 37

3.4.1 SetVar - computing F\v 38

3.4.2 UnSetVar - recovering F from F\v 41

3.4.3 The DPLL function 43

3.4.3.1 Unit-propagation block 43

3.4.3.2 Branching 45

3.4.3.3 Backtracking and backjumping 47

3.4.4 Monotone literal fixing 49

3.4.5 Input cleanup and preprocessing 52

3.4.5.1 Our preprocessor 54

vii

3.4.5.2 Adding a clause to the formula 63

3.4.6 Branching rules 66

3.4.6.1 Dynamic Largest Combined Sum (DLCS) 66

3.4.6.2 MOMS heuristic-based branching rule, MinLen . . . 68

3.4.6.3 2-sided-Jeroslow-Wang 71

3.5 Comparing performance of branching rules 72

3.5.1 DIMACS benchmark instances 73

3.5.1.1 aim instances 73

3.5.1.2 dubois instances 75

3.5.1.3 pret instances 76

3.5.1.4 par instances 77

3.5.1.5 Other DIMACS instances 78

3.6 Performance of our solver 81

3.6.1 On DIMACS instances 81

3.6.2 Other instances from SATLIB solvers collection 83

3.6.2.1 Uniform Random 3-SAT 83

4 SAT and van der Waerden numbers 85

4.1 Van der Waerden numbers 85

4.2 SAT encoding of van der Waerden numbers 86

4.3 Experiments on some van der Waerden formulas 87

4.4 New van der Waerden numbers found by Kouril 88

4.5 Some new van der Waerden numbers found by us 91

4.6 Van der Waerden numbers known so far 93

4.7 Immediate future work 95

viii

5 Conclusion 96

5.1 Summary of the thesis work 96

5.2 What we have not done? 97

5.3 Future work 97

A Some satisfiable instances of SAT 98

A.l Counting clauses 98

A.l.l The condition 98

A.1.2 Optimality of the condition 99

A.2 Counting number of occurrences of variables 100

A.2.1 The condition 100

A.2.2 Optimality of the condition 102

A. 3 Comparing the conditions by example 103

B Deterministic fc-SAT algorithms other than DPLL 105

B.l 2-SAT algorithms 105

B.l.l Polynomial-time algorithm based on Davis-Putnam [19] . . . 105

B.l.2 Limited-backtracking DPLL-like polynomial-time algorithm . . 106

B.l.3 A linear-time algorithm 107

B.2 Monien-Speckenmeyer Algorithm 110

B.2.1 O* ((2k - l)n'k)-time fc-SAT algorithm 110

B.2.2 O* (/3£)-time fc-SAT algorithm, where (3k is the biggest number

satisfying pk = 2 - 1/0* I l l

B.2.3 O* (ajj)-time /c-SAT algorithm, where ak is the biggest num­

ber satisfying ak = 2 - l/ak
k~

l 112

ix

B.3 Local search based fc-SAT algorithms 113

B.3.1 O* ((^T)n)-t ime algorithm for k-SAT by Dantsin et al. [17] . 115

B.3.2 O* (1.481n)-time algorithm for 3-SAT by Dantsin etal. [17] . 1 1 5

References 117

Index 124

x

List of Tables

3.1 PERFORMANCE ON aim INSTANCES 74

3.2 PERFORMANCE ON dubois INSTANCES 76

3.3 PERFORMANCE ON THE pret INSTANCES 77

3.4 PERFORMANCE ON THE par INSTANCES 78

3.5 PERFORMANCE ON THE i i INSTANCES 78

3.7 PERFORMANCE OF OUR SOLVER ON dubois INSTANCES 81

3.8 PERFORMANCE OF OUR SOLVER ON pret INSTANCES 82

3.9 PERFORMANCE OF OUR SOLVER ON par INSTANCES 82

3.10 PERFORMANCE OF OUR SOLVER ON phole INSTANCES 82

3.11 PERFORMANCE OF OUR SOLVER ON ssa INSTANCES 83

3.12 PERFORMANCE OF OUR SOLVER ON i i INSTANCES 83

3.13 PERFORMANCE ON THE uf INSTANCES 84

4.1 PERFORMANCE ON THE vdw INSTANCES 88

4.2 RUNNING TIME ON VAN DER WAERDEN INSTANCES 88

4.3 VAN DER WAERDEN NUMBERS FOUND BY KOURIL 89

4.4 VAN DER WAERDEN NUMBERS FOUND BY US 91

4.5 VAN DER WAERDEN NUMBERS KNOWN SO FAR 93

xi

List of Figures

2.1 A TYPICAL IMPLICATION GRAPH 2 0

2.2 COMPUTING THE BACKTRACK LEVEL (SEE FIGURE 2.1) 22

3.1 THE MULTIGRAPH UNDERLYING THE dubois FORMULA OF DEGREE d . . 75

3.2 EXAMPLES OF GRAPHS CORRESPONDING TO pret INSTANCES 77

xii

Chapter 1

Introduction

1.1 The Satisfiability problem

The satisfiability problem (or SAT for short) is a central problem in several fields

of computer science, including theoretical computer science, artificial intelligence,

hardware design, and formal verification. Following is a definition of the satisfia­

bility problem taken from Chvatal and Reed [10]:

A truth assignment is a mapping / that assigns 0 (interpreted as FALSE)

or 1 (interpreted as TRUE) to each variable in its domain; we shall enu­

merate all the variables in the domain The complement Xi

of each variable x, is defined by f(xi) = 1 - f(xi) for all truth assign­

ments / . Both Xi and Xi are called literals; ifu = Xi then u = Xj. A clause

is a set of (distinct) literals and a formula is a family of (not necessarily

distinct) clauses. For example, {xi,X2,x3} is a clause with three distinct

literals and {{xi,X2},{xi,x2},{xi,X2},{xi,x2}} is a formula with four

clauses over two variables.

1

A truth assignment satisfies a clause if it maps at least one of its literals

to 1; the assignment satisfies a formula if and only if it satisfies each of

its clauses. A formula is called satisfiable if it is satisfied by at least one

truth assignment; otherwise it is called unsatisfiable. The problem of

recognizing satisfiable formulas is known as the satisfiability problem, or

SAT for short.

1.2 The DPLL algorithm

Given a formula F and a literal u in F, we let F\u denote the residual formula

arising from F when f(u) is set to 1: explicitly, this formula is obtained from F by

(i) removing all the clauses that contain u, (ii) deleting It from all the clauses that

contain u, (in) removing both u and u from the list of literals.

Example: F = {{x1,x2,x3} ,{xux2,x4} ,{xux3,x5} ,{x3,x6}}

F\xi = {{x2,x4} , {x3, x6}}

Algorithm 1.1 ALGORITHM DP_KERNEL(F)

I
2
3
4
5
6
7
8
9

10

G = F
while G includes a clause C such that |C| < 1 do

if C = 0 then return G
else if C = {v} then G = G\v

end while
while there is a monotone literal in G do

v = any monotone literal
G = G\v

end while
return G

Trivially F is satisfiable if and only if at least one of F\u and F\u is satisfiable.

It is customary to refer to the number of literals in a clause as the length (rather

2

than size) of the clause. Clauses of length one are called unit clauses If a formula F

includes a unit clause {u}, then every truth assignment / that satisfies F must have

/(it) = 1; hence F is satisfiable if and only if F\u is satisfiable. A literal u in a for­

mula F is called monotone if u appears in no clause in F. If u is a monotone literal

and if F is satisfiable, then F is satisfied by a truth assignment / such that f(u) = 1.

Hence F is satisfiable if and only if F\u is satisfiable. These observations have been

used by Davis and Putnam [19] in an algorithm for solving SAT. Their recursive ap­

plications transform any formula F into a formula G such that G is satisfiable if and

only if F is satisfiable. G is referred in Ouyang [51] as DAVIS-PUTNAM KERNEL (the

term was originally coined by Chvatal) of F. Algorithm 1.1 is the pseudocode for

computing G, where the first while loop is referred as unit-clause-propagation and

the second while loop is referred as monotone-literal-fixing. Monotone-literal-fixing

does not create unit clauses; during this process, clauses containing monotone lit­

erals are removed entirely, leaving the other clauses unchanged. Davis, Logemann

amd Loveland [18] use the the Davis-Putnam Kernel in an algorithm for testing

satisfiability, which is called Davis-Putnam-Logemann-Loveland algorithm, or the

DPLL algorithm (Algorithm 1.2) for short.

Each recursive call of DPLL may involve a choice of a literal u. Algorithms for

making these choices are referred to as branching rules. Different branching rules

are discussed in detail in section 2.1.

3

Algorithm 1.2 RECURSIVE ALGORITHM DPLL(F)
I
2
3
4:
5:
6
7:
8
9

10
11

function DPLL(F)
while F includes a clause C such that \C\ ^ 1 do

if C = 0 then return UNSATISFIABLE
else if C = {v} then F = F|u

end while
if F = 0 then return SATISFIABLE
Choose a literal u using a branching rule
if DPLL(F|u) = SATISFIABLE then return SATISFIABLE
if DPLL(F|u) = SATISFIABLE then return SATISFIABLE
return UNSATISFIABLE

end function

1.3 Motivation and Scope

SAT is a very interesting problem both theoretically and practically. Cook [12]

proved it to be NP-Complete [27]. We know that there is no deterministic algo­

rithm that solves every SAT instance in polynomial time [27] unless P=NP. The

speed of an implementation of a SAT algorithm like DPLL depends mostly on the

branching rule, the data structure, and the search techniques used. Size of the DPLL-

tree (as defined in section 2.1) varies greatly with branching rules and for a given

branching rule, the speed of the implementation may significantly vary because of

the data structure used to store and manipulate the formula. Again if we have a

good implementation that performs well on most known instances, one can always

come up with a new and challenging instance. All these demoralising circumstances

can hardly stop us from writing another implementation with a new idea either in

the branching rule or in the data structure or both. Sometimes, a tough instance

motivates us to write our own version.

Many interesting search problems (Integer programming, Travelling Salesman

4

Problem, Graph Colouring, Subgraph Isomorphism, Subset Sum problem, etc.) that

we encounter in our day-to-day lives and in the industry are NP-Complete [27].

Implementation of SAT introduces us to the solution techniques of those problems

and enhances our understanding about them as well. In this thesis, we do the

following:

(i) Survey various algorithms, known results and implementation techniques,

(w) Implement DPLL with a fast data structure,

(m) Compare the performance of our solver with other well-known solvers on

popular benchmark instances,

(iv) Use the solver to compute some new van der Waerden numbers (section 4).

1.4 Organization of the thesis

The next four chapters are organized in the following manner:

CHAPTER 2: This chapter contains a detailed survey on the implementation as­

pects of DPLL. In section 2.1, we discuss the branching rules that can be described

using a unified Paradigm (section 2.1.1): Dynamic Largest Individual Sum (DLIS),

Dynamic Largest Combined Sum (DLCS), Jeroslow-Wang (JW), 2-Sided Jeroslow-

Wang, DSJ rule, MOMS heuristics, Approximate Unit-Propagation Count (AUPC),

and CSat rule. In section 2.2, we discuss well-known data structures: adjacency-

lists (assigned literal hiding, counter-based approach, counter-based approach with

satisfied clause hiding) and lazy data structures (Head-Tail lists and Two Literals

5

Watch method). In section 2.3, we discuss preprocessing techniques: adding resol­

vents, subsumption, and binary equivalent literal propagation. In section 2.4, we

discuss pruning techniques: literal assignment forced by a pair of binary clauses,

clause recording (implication graph, learning conflict clauses, random restarts), and

non-chronological backtracking. In section 2.5, we discuss various features (for ex­

ample, branching rule, data structure) of some modern SAT solvers like GRASP,

SATZ, CHAFF, ZCHAFF and MINISAT.

CHAPTER 3: In this chapter, we describe the implementation of the solver in

detail. It includes the DPLL pseudocode of our implementation, data-structure

(storing variables and clauses, stack of changes, assignment information and other

global variables and arrays) and details of functions (reducing the formula, re­

versing the changes, unit-propagation, branching, backtracking and backjumping).

Code listings of different parts of the algorithm are in C.

CHAPTER 4: In this chapter, we investigate an interesting mathematical applica­

tion of our SAT solver. Using a suitable branching rule, we compute some previously

unknown van der Waerden numbers.

CHAPTER 5: In this chapter, we summarize the work we have done and the work

we have not done. We also discuss possible future improvements on the solver.

APPENDIX A: Here, we describe some easily verifiable counting conditions under

which a formula is satisfiable. In each case, we discuss the condition, an efficient

algorithm to find a satisfying assignment, and optimality of the condition.

APPENDIX B: Here, we describe known deterministic fc-SAT (in a k-SAT problem,

every clause is of length k) algorithms other than DPLL.

6

Chapter 2

Implementation aspects of DPLL
In this chapter, we describe some of the implementation aspects of the DPLL al­

gorithm such as branching rules (denned in section 1.2), data structures, prepro­

cessing and techniques used to dismiss parts of the search space. We also briefly

describe features of some of the popular SAT solvers. This survey will introduce

the reader to various implementation techniques of the DPLL algorithm and pro­

vide necessary background material for Chapters 4 and 5, which describe the main

contribution of the thesis.

2.1 Branching rules

Branching rules used for choosing a literal to set to TRUE during the search repre­

sent a key aspect of backtrack search SAT algorithms [4, 26, 34, 35, 66]. Several

heuristics have been proposed over the years, each striving for a tradeoff between

the time it requires and its ability to reduce the amount of search [34]. In this sec­

tion, we discuss a few well-known branching rules and in section 2.5, we discuss

some others.

7

It is customary to represent each call of DPLL(F) by a node of a binary tree.

By branching on a literal u, we mean calling DPLL(F|u). If this call leads to a

contradiction, then we call DPLL(F|u). Every node that is not a leaf has at least

one child and may not have both the children. This tree is referred as DPLL-tree in

the literature. The shape and size of the tree depends not only on the input formula

F, but also on the branching rule.

2.1.1 A paradigm for branching rules

Here is a paradigm for branching rules introduced in Ouyang [51], which associates

a weight w(F,u) with each literal u and chooses a function $ of two variables. The

paradigm is this:

• Find a variable x that maximizes $(w(F, x),w(F, x));

choose x if w(F, x) ^ w(F, x) and choose x otherwise.

If more than one variable maximizes $, then ties have to be broken by some

rule. Usually, w(F, u) is defined in terms of dk(F, u), which is the number of clauses

of length k in F that contain literal u.

2.1.2 Branching rules that fit the paradigm

2.1.2.1 Dynamic Largest Individual Sum (DLIS)

This branching rule is (*) with

w(F,u) = ^2dk(F,u),
k

*(x,y) = max{x,y}.

8

This is the default branching rule of GRASP [46, 47]

2.1.2.2 Dynamic Largest Combined Sum (DLCS)

This branching rule is (*) with

w(F,u) = ^ d f c (F , «) ,
k

$(x,y) = x + y.

2.1.2.3 Jeroslow-Wang (JW) rule

This branching rule is 0) with

w(F,u) = £Vfcdfc(F,u),
k

$(x,y) = max{x,y}.

This rule was proposed by Jeroslow and Wang [35].

2.1.2.4 2-Sided Jeroslow-Wang rule

This branching rule is (*) with

w(F,u) = ^2- f cd f c(F,u) ,
k

$(x,y) = x + y.

This rule was proposed by Hooker and Vinay [34].

9

2.1.2.5 DSJrule

This branching rule is (*) with

w(F,u) = 4d2(F,u) + 2d3{F,u) + ^2dk{F,u),

$(x,y) = (x + l) (y + l) .

This rule was proposed by van Gelder and Tsuji in [65]

2.1.2.6 MOMS heuristics

This branching rule is (•) with

w(F,u) = da(F,u),

$(x,y) = xy2k + x + y.

where s be the length of the smallest unsatisfied clause in F. MOMS is shorthand

for Maximum Occurences on clauses of Minimum Size [26]. The value of k can

vary, e. g., MOMS is used in SATZ[44] with k = 10.

Van Gelder and Tsuji [65] independently came up with MINLEN which is O)

with the same w(F,u) as MOMS and $(x,y) = (x + l)(y + 1), which is the same

$(x, y) as MOMS with k = 0.

10

2.1.2.7 Approximate Unit-Propagation Count (AUPC) rule

This branching rule is (*) with

w(F,u) = d2(F,u),

$(x,y) = xy + x + y.

This rule was used In the solver BERKMIN [29]. Here, w(F, u) counts the number of

new unit clauses generated by setting u to TRUE. The reason for the word 'Approxi­

mate' in its name is that an actual unit-propagation is not conducted. The function

$(x, y) is the same as MOMS with k = 0.

2.1.2.8 CSatrule

This branching rule is (*) with

(F,u) = £ > (l +
4*: _ 2k+1) ^k^,U^ an<^'

w{F,u) = wQ(F,u)+ ^2 wo(F,v),
{u,v}eF

$(x,y) = x + y + 1.5 • min{x,y} ;

This rule was proposed by Dubois, Andre, Boufkhad, and Carlier in [22].

How good are branching rules in DPLL?

The following example [50] demonstrates how dramatically the choice of a branch­

ing rule can influence the size of the DPLL-tree. Take a formula with variables

11

x\, x2,..., xn and clauses

1. \Xi, Xn_\ , Xn j , \Xj , Xn—\, Xnj, \Xi, X n _j , Xn j , \Xi, Xn—\ , Xnj

for i = 1,2 n — 2, L > " 5 * ' *) '

2. {zj,xj+1,...,a;n_3,a:n_2} for j = 1,2,... ,n - 3.

This formula is unsatisfiable. Here, the size of the DPLL-tree branching on the vari­

able with the smallest subscript is 2"_1 - 1 and the size of the DPLL-tree branching

on the variable with the biggest subscript is 7.

12

2.2 Data structures

The performance of a good implementation of the DPLL algorithm depends not only

on the branching rule but also on the data structure. A survey of the data structures

can be found in [45]. Here we describe some of the data structures used in some

well-known SAT solvers.

2.2.1 Adjacency lists

Most implementations of the DPLL algorithm represent clauses as lists of literals

and associate with each variable x a list of clauses that contain a literal in {x,x}.

In general, we use the term adjacency lists to refer to data structures in which each

variable x contains a complete list of clauses that contain a literal in {x,x}.

2.2.1.1 Assigned literal hiding

For each clause, three lists are maintained: unassigned, assigned TRUE and assigned

FALSE. A clause is satisfied if one or more of these literals are assigned TRUE, un­

satisfied if all its literals are assigned FALSE, and unit (current length equals one) if

exactly one literal is unassigned and the remaining literals are assigned FALSE.

2.2.1.2 The counter-based approach

An alternative approach to keep track of unsatisfied, satisfied and unit clauses is

to associate literal counters with each clause. For a clause C, let nt and n/ be the

number of literals assigned TRUE and FALSE, respectively. The clause C is unsatisfied

if rif equals \C\, satisfied if nt ^ 1, and unit if nj = \C\ — 1 and nt — 0. When a

13

clause is declared unit, the list of literals is traversed to identify which literal needs

to be set to TRUE. An example of a SAT solver that utilizes counter-based adjacency

lists is GRASP [46].

2.2.1.3 Counter-based approach with satisfied clause hiding

When a literal is assigned a truth value, a potentially large number of clauses have

to be traversed in order to be marked as satisfied. Some of these clauses may have

been already satisfied by a previous assignment to some other literal. Hence, each

time a clause C becomes satisfied, C is hidden from the list of clauses of all the

literals that are contained in C. This technique was used in SCHERZO [14] to solve

covering problems.

2.2.1.4 Counter-based approach with satisfied clause and assigned literal

hiding

In addition to hiding satisfied clauses as described in section 2.2.1.3, literals that

are assigned FALSE are hidden from the list of literals in clauses.

2.2.2 Lazy data structures

Adjacency list-based data structures share a common problem: each literal u keeps

references to a potentially large number of clauses. Moreover, it is often the case

that most of u's clause references need not be analyzed when u is assigned, since

they do not become unit or unsatisfied. Lazy data structures are characterized by

each literal keeping only a reduced set of clause references.

14

2.2.2.1 Head-Tail lists

The first lazy data structure proposed for SAT was the Head-Tail lists data structure,

originally used in the SATO SAT solver [67]. Each clause maintains two references:

the head and the tail references. Initially, in each clause, the first and the last

literals are referenced as head and tail, respectively. Each literal u maintains two

linked lists:

• list of clauses with literal u as the head reference and

• list of clauses with literal u as the tail reference.

If a literal u is set to FALSE, then

1. in each clause C containing u as the head reference, the solver looks for an

unassigned literal in the direction of the tail reference such that

(i). If a literal is found, which is set to TRUE, then the clause C is identified

as satisfied and the search for an unassigned literal in C is stopped.

(ii). If such a literal v is found, which is unassigned and is not the tail refer­

ence of C, then v becomes the new head reference of C. The correspond­

ing literal references are updated.

(Hi). If such a literal v is found, which is unassigned and is the tail reference of

C, then C is identified as a unit clause and the tail reference is identified

as unit literal.

(iv). If no such v is found, the tail reference is reached and the tail reference

is assigned FALSE, then C is identified as unsatisfied.

15

2. in each clause C containing u as the tail reference, the solver looks for an

unassigned literal in the direction of the head reference; and the above process

is repeated.

When backtracking, recovering the previous references is necessary.

2.2.2.2 Two literal watch method

SAT solver CHAFF [49] proposed a new data structure called the Two literal watch

method. Each clause maintains two references as watched literals. Each literal u

maintains a list of clauses that contain u as one of the two watched literals.

If a literal u is set to FALSE, then for each clause C that contains u as a watched

literal, the solver looks for a literal, which is not set to FALSE:

1. If such a literal v is found and v is assigned TRUE, then C is identified as

satisfied.

2. If only such literal is v, which is unassigned and is not the other watched

literal, then v becomes the new watched literal.

3. If only such literal is v, which is unassigned and is the other watched literal,

then C is identified as unit clause and the other watched literal is identified

as unit literal.

4. If no such v is found, then C is identified as unsatisfied.

When backtracking, recovering the references is not necessary.

16

2.3 Preprocessing the formula

In this section, we describe some preprocessing techniques, which if judiciously

applied, significantly simplify the input formula before calling DPLL. Some of the

operations may be integrated in the recursive DPLL algorithm as well.

2.3.1 Adding resolvents

Two clauses C\ and C2 are said to clash if there is exactly one literal u, such that

u e C\ and u e C2. If Ci and C2 clash, then their resolvent is defined as d U C2 -

{u,u} and is denoted by C\VC2. If clauses C\ and C2 are satisfied by some truth

assignment z, then their resolvent is also satisfied by z. Adding CiVC2 does not

change the satisfiability status of the formula.

If C\ and C2 differ in only one literal u such that u e Ci and u e C2, then C\ and

C2 are called neighbours. Clauses, which are neighbours clash and their resolvent is

a subset of both of them. If C\ and C2 are neighbours, then any truth assignment

that satisfies CiVC2 will also satisfy both C\ and C2. So adding C\VC2 to the

formula and removing C\ and C2 from the formula will not change the satisfiability

status of the formula.

If an empty clause is obtained as a resolvent in a formula F, then F is unsatisfi-

able. Given an unsatisfiable formula, we can always generate a sequence of opera­

tions of adding resolvents that produces an empty clause. The latter observation is

due to Robinson [53].

If we try to add resolvents corresponding to every pair of literals u and u, then

we may end up having too many clauses. At the same time, we will have many long

17

clauses. So we often put restrictions on the maximum length of the resolvent and

on the maximum number of resolvents to be added to the formula.

2.3.2 Subsuming clauses

If two nonempty clauses C\ and C2 are such that C2 C C\, then any truth assignment

that satisfies C2 will satisfy C\. So d can be removed from the formula without

changing its satisfiability status. The operation is called subsumption, where C2

subsumes C\.

We can apply subsumption between every pair of clauses in the formula prior

to initiating the search. This produces a very small number of subsumed clauses

for most benchmarks. But a combination of adding resolvents and subsumption

simplifies some instances. For instance, the clauses C\ being {ui,u2)u3} and C2

being {ui,u2}, cannot subsume each other, but C\VC2 adds the clause {u2,u3},

which subsumes C\.

2.3.3 Binary equivalent literal propagation

Let a formula F contain clauses {yi\,u2} and {ui,u2}. Since these two clauses are

satisfied if and only if either {ui i-> TRUE, u2»-> TRUE} or {ux H-> FALSE, u21-> FALSE},

u\ and u2 are said to be equivalent. Hence all occurences of ux (respectively Hi) can

be substituted by u2 (respectively u2), so that F having one variable less, is sim­

plified. If {ui,u3} and {u2,u3} are clauses in F, then the first substitution changes

{ui,u3} into {u2,u3} makes u2 and u3 equivalent. So, the equivalency relation can

be propagated to simplify F.

18

2.4 Pruning techniques

In this section, we describe techniques that can be applied during search to reduce

the size of the DPLL-tree.

2.4.1 Literal assignment forced by a pair of binary clauses

If F contains no unit clause but two binary clauses {ui,u2} and {^1,^2}, setting

ui to FALSE leads to a conflict. So ui is forced and could be used to simplify F by

computing F\u\.

2.4.2 Clause recording

Given a set of variable assignments that leads to a conflict, a new clause is created

that prevents the same assignments from occurring simultaneously again during the

subsequent search. To create such a clause, an implication graph (as denned in the

following section) has to be maintained during unit-propagation.

2.4.2.1 Implication graph

An implication graph is a directed acyclic graph where each vertex represents a vari­

able assignment. A label x = b@d of a vertex means the variable x is assigned a truth

value b in {0,1} at decision level d. The decision level for all forced assignments is

the same as that of the corresponding decison assignment in the unit-propagation.

Let C contains literals Ui and Uj drawn from the variables Xi and Xj, respectively. If

^ is set to FALSE and u, is the only unassigned literal when C becomes unit, then a

directed edge from x, to xj} labelled by C, is added to the implication graph. Here,

19

C is called the antecedent clause of the literal corresponding to the variable Xj. In

Figure 2.1 (taken from [47]), a subset of a SAT formula is shown.

Current truth assignment: {x9 = 0@l,xi2 = l@2,xi3 = l@3,xi0 = 0@4,xn = 0@5, •
Current branching assignment: {x\ = 1@8}

xw = 0@4
PA

x5 = 1@8

Xl = 1@8 < ^ x4 = 1 @ 8 X ^ ^ g c o n f l i c t

Pl =

c2 =
c3 =
c4 =
c5 =
c6 =
c7 =
c8 =
c9 =

{Xl,x2}
{Xi,X3,X9}

{x2, x3,x4}
{X4,X5,XIQ}

{£4, #6, £11}

{x5,x6}
{xux7,xi2}
{x\,x8}
{x7,x8,xi3}

6

x6 = 1@8
^5

x9 = 0@1 i n = 0@5

Figure 2.1: A TYPICAL IMPLICATION GRAPH

2.4.2.2 Learning conflict clauses

Conflict analysis relies on the implication graph to determine the reasons for the

conflict. The conjunction of the decision assignments in the antecedent clauses in a

unit-propagation is the reason for the conflict in that unit-propagation. By negating

it, we obtain a clause, which is called conflict clause.

The clause learned can be used to prevent the same set of assignments from

occuring again during the subsequent search. Inspecting the implication graph in

Figure 2.1, we can readily conclude that the sufficient condition for this conflict to

be identified is (xi0 = 0) A (xn = 0) A (x9 = 0) A (xi = 1). In that case, the conflict

clause learned is {x\,x9,xio,xn}-

20

2.4.2.3 Random restarts and clause recording

To find a satisfying assignment quickly, some solvers (e. g., CHAFF, MINISAT) uti­

lize a technique called random restart [30]. They want to avoid spending a long

time searching in some unproductive branch of the DPLL-tree. Random restart pe­

riodically undoes all the decisions and restarts the search from the very beginning.

Restarting is not a waste of the previous effort as long as the recorded clauses are

still present.

2.4.3 Non-chronological backtracking

Clause recording is tightly associated with non-chronological backtracking, which is

also known as conflict-directed backjumping [4].

The chronological backtracking search strategy always causes the search to con­

sider the last, yet untoggled, decision assignment. By contrast, non-chronological

backtracking may backtrack further up to a higher decision level. This technique

was originally proposed by Stallman and Sussman [60] and further studied by

Gaschnig [28] and others. It attempts to identify the conflict clauses and backtrack

directly so that at least one of those variable assignments is modified. This tech­

nique was implemented initially by Bayardo and Schrag [4] and Silva and Sakallah

[47].

Recorded clauses are used for computing the decision level to backtrack, which

is defined as the most recent decision level of all variable assignments of the literals

in each newly recorded clause. Figure 2.2 illustrates non-chronological backtrack­

ing on the same example as in Figure 2.1, with learned conflict clause Cw added.

21

Cl =

c2 =
c3 =
C 4 =

c5 =
c6 =
c7 =
c8 =
c9 =
C'lo =

{^1,^2}
{Xi,X3,X9}
{x2,x3,a;4}
{x4,X5,Zio}
{X4,Xs,X\i}
{x5,x6}
{xi,x7,xu}
{xi,xs}
{x7,x8,x13}
{x9,xw,xn • Xl}

A
/

',6
I
I
' 7 r 1

xir=o@5
7^ X7 = 1@8

x12 = 1@2

Xi

J0

Figure 2.2: COMPUTING THE BACKTRACK LEVEL (SEE FIGURE 2.1)

Here, the new conflict clause is {xg, xw, x n , x12, x13}. So the backtrack level is 5.

22

2.5 Well-known SAT solvers

In this section, we discuss some well-known SAT solvers with brief descriptions of

some of their important features.

2.5.1 Satz

SATZ was developed by Li and Anbulagan [44].

(i) SATZ'S UPLA BRANCHING RULE: In SATZ, unit-propagation is integrated in the

branching rule itself. The function U P (F) returns the resulting formula after

running a unit-propagation.

Algorithm 2.3 SATZ - BRANCHING RULE

I

2
3
4
5
6

7
8

9
10
11
12
13
14
15
16
17
18

procedure SELECT > Given a formula F
for each unassigned variable x do

Let Fi and F2 be two copies of F
F, = UP(FX U {*}), F2 = U P (F 2 U {X})

if Fi = 0 or F2 = 0 then return SATISFIABLE

if both Fj and F2 contain an empty clause then return UNSATISFIABLE

else if Fi contains an empty clause then x = FALSE and F = F2

else if F2 contains an empty clause then x = TRUE and F = Fx

if neither Fj nor F2 contains an empty clause then
w{x) = number of binary clauses in F\ but not in F
w(x) — number of binary clauses in F2 but not in F

end if
end for
for each unassigned variable x in F do

$(x) = w(x) x w(x) x 1024 + w(x) + w(x)
end for
branch on the unassigned variable x such that $(x) is the highest

end procedure

Although solvers POSIT[26] and TABLEAU[16] used unit-propagation based

branching rules, the real power of unit-propagation is integrated in SATZ [44]

23

on top of MOMS heuristic.

(H) SATZ'S PREPROCESSOR [43]: SATZ runs a loop with unit-propagation, binary

equivalent literal propagation, adding resolvents of length at most 3, and us­

ing subsumption until F contains an empty clause or no change occurs in F.

Algorithm 2.4 SATZ - PREPROCESS

l
2
3
4
5
6
7
8
9

10
11
12
13
14

procedure PREPROCESS

repeat
unit-propagation
if {ui,u2} e F and {ui,u2} G F then

replace all occurences of u\ (and u{) with u2 (and u2 respectively)
remove {ui,u2} and {ui,u2} from F

end if
if there are clause C\ and C2 s. t. they clash and \C{\7C2\ ^ 3 then

add d V C 2 to F
end if
ifCi C C2 then F = F - {C2}

until F contains an empty clause or no change happens in F
if F contains an empty clause then return UNSATISFIABLE

end procedure

2.5.2 GRASP

GRASP was developed by Silva and Sakallah [46, 47]. The name stands for Generic

seaRch Algorithm for the Satisfiability Problem. GRASP views the occurence of a

conflict as an opportunity to augment the problem description with conflict clauses.

Conflict clauses are used to compute backtrack decision levels and recognize simi­

lar conflicts later in the search. The GRASP algorithm calls the recursive function

SEARCH(d,/3), which returns SUCCESS, i. e., SATISFIABLE if it finds a satisfying as­

signment, or else returns FAILURE, i. e., UNSATISFIABLE. Here, d, which is an input

24

parameter, is the current decision level and (5, which is an output parameter, saves

the decision level to backtrack.

The recursive SEARCH function consists of four major operations:

(i) DECiDE(ef): If all the clauses are satisfied, then this function returns SUCCESS.

Otherwise, it chooses a decision assignment at level d of the search process.

It chooses the variable and the assignment that directly satisfies the largest

number of clauses.

(ii) DEDUCE(d): This function implements unit-propagation and implicitly main­

tains the resulting implication graph. It returns with a SUCCESS unless one or

more clauses become unsatisfied. In the latter case, the implication graph is

updated and a CONFLICT indication is returned.

(Hi) DIAGNOSE(d, /3): This function identifies the conflict clauses that can be added

to the formula, as described in section 2.4, to avoid similar conflicts in future.

(iv) ERASE (): This function deletes the assignments at the current decision level.

The SEARCH function starts by calling DECIDE(CQ to choose a variable assign­

ment at decision level d. It then determines the consequences of this elective as­

signment by calling DEDUCE(d). If this assignment does not cause any clause to be

unsatisfied, SEARCH is called recursively at decision level d + 1. If a conflict arises

due to this assignment, DIAGNOSE^, (5) function is called to analyze this conflict

and to determine an appropriate decision level for backtracking the search. When

SEARCH encounters a conflict, it returns with a CONFLICT indication and causes the

elective assignment made on entry to the function to be erased.

25

Algorithm 2.5 GRASP ALGORITHM - SEARCH

l
2
3
4
5
6
7
8

9
10
11
12
13

function SEARCH(d,/3) t> d: current decision level;/?: backtrack decision level
ifDECiDE(d) = SUCCESS then return SUCCESS

while TRUE do
if DEDUCE(CQ ^ CONFLCIT then

if SEARCH(<2+ l,/3) = SUCCESS then return SUCCESS

else if (3 ^ d then ERASE () and return CONFLICT

end if
if D I A G N O S E ^ /?)=CONFLICT then

ERASEO, return CONFLICT

end if
ERASE()

end while
end function

2.5.3 Chaff, zChaff

Moskewicz et al. [49] developed CHAFF, which efficiently implements DPLL with

the following specific features:

(i) OPTIMIZED UNIT-PROPAGATION: In practice, for most SAT problems, approxi­

mately 90% of the solver's running time is spent in unit propagation. CHAFF

implements an efficient unit-propagation engine. It maintains a counter of

the number of unassigned literals for each clause. A clause is visited for the

unit-clause-literal only when the counter is one. CHAFF uses the watch literal

schme that was described in section 2.2.

(ii) BRANCHING RULE: CHAFF introduced the Variable State Independent Decay­

ing Sum (VSIDS) branching rule mentioned in section 2.1. Each literal u is

associated with a counter initialized to the number of clauses that contain u in

the initial formula. When a clause is added to the formula, the counter associ­

ated with each literal in the clause is incremented. An unassigned literal with

26

the highest counter is chosen for branching. Ties are broken arbitrarily. All

counters are divided by a constant, say 2, (i. e., a decay of 50%) after every

1000 conflicts. So literals in older clauses drop in values over time, ensuring

that recent clauses are satisfied first.

{in) CONFLICT ANALYSIS: CHAFF employs a conflict resolution scheme that is very

much similar to GRASP.

(iv) CLAUSE DELETION: CHAFF supports the deletion of added conflict clauses to

avoid running out of memory. It uses scheduled lazy clause deletion. When

each clause is added, it is examined to determine at what point in the future,

if any, the clause should be deleted.

(v) RESTARTS : CHAFF employs the restart feature which clears all literal assign­

ments but keeps the learned clauses. This policy helps to avoid the conflicts

occured in the previous run.

ZCHAFF implements the well known CHAFF [49] algorithm. It was the best

complete solver in the SAT competition [54] in 2004 in the industrial category.

It uses the VSIDS decision heuristic for branching, two-literal watch-lists for unit-

propagation and conflict-driven clause learning along with non-chronological back­

tracking for restructuring the DPLL-tree.

ZCHAFF periodically deletes some learned clauses using usage statistics and

clause lengths to estimate the usefulness of a clause.

27

2.5.4 MiniSat

MINISAT is an optimized CHAFF-like SAT solver written by Een and Sorensson [58].

It is based on the two-literal watch-list for fast unit-propagation [49] and clause

learning by conflict-analysis [47]. It entered the SAT Competition [54] in 2005 and

was awarded Gold in three industrial categories and one of the crafted categories.

Important features in MINISAT are:

/
(i) ORDER OF ASSIGNMENT: The decision heuristic of MINISAT is an improved

VSIDS order, where variable activities are decayed 5% after each conflict. The

original VSIDS decays 50% after each 1000 conflicts. Empirically, this per­

forms better than the original VSIDS. To keep the variables sorted by activity

at all times, a heap is used.

(ii) BINARY CLAUSES: Binary clauses are implemented by storing the literal to be

propagated directly in the watch list. This scheme outperforms the version

storing all binary clauses in separate set of vectors on the side.

(Hi) CLAUSE DELETION: MiniSat deletes learned clauses more aggressively than

the other solvers like CHAFF on an activity heuristics. The limit on how many

learned clauses are allowed is increased after each restart. Keeping the num­

ber of clauses low seems to be important for some small but hard instances.

(iv) CONFLICT CLAUSE MINIMIZATION: For each literal u in a newly formed conflict

clause C, it checks each antecedent clause C" of u to possibly find a neighbour

of C. Then CVC subsumes C and u is removed from the conflict clause.

28

Chapter 3

Our implementation of the solver

In this chapter, we describe the way we have implemented the DPLL algorithm

with details of its data-structure and functions. Code is in C and lines of code are

numbered for reference in the description. Before going into the pseudocode of our

implementation, we present a revised version (Algorithm 3.6) of Algorithm 1.2,

which avoids unnecessary work wherever possible.

3.1 Revised DPLL algorithm

We have the following observations:

1. We get an empty clause in F\u only if u is in a clause of length one in F. So

during unit-clause-propagation, for every new unit-clause-literal u, we avoid

computing F\u and return UNSATISFIABLE when F contains both {u} and {u}.

2. We can learn clauses to compute backtrack levels and restructure the DPLL-

tree remaining in the original framework of the DPLL algorithm.

29

In Algorithm 3.6, Global variables depth and backtrack_level are used to re­

structure the DPLL-tree. Details of these variables are discussed in section 3.3.4.

Algorithm 3.6 REVISED DPLL ALGORITHM

l

2
3

4
5
6

7
8

9
10
11
12
13
14
15
16
17

function DPLL(F)

while TRUE do
if there are contradictory unit clauses then return UNSATISFIABLE

else if there is a clause {v} then F = F\v
else break

end while
if F = 0 then return SATISFIABLE

choose a literal v (using a branching rule)
if DPLL(F|V) = SATISFIABLE then return SATISFIABLE

CI = conflict clause learned
if backtrack_level ^ depth-1 then

if DPLL(F|U) = SATISFIABLE then return SATISFIABLE

C2 = conflict clause learned
update backtrack_level using C\ and C2

end if
return UNSATISFIABLE

end function

3.2 DPLL pseudocode of our implementation
Algorithm 3.7 is the version of DPLL that we have implemented. The key functions

are DPLL() itself, SETVAR(U) (computes F\v) and UNSETVAR(U) (recovers F from

F\v). Ming Ouyang used the last two names in [51]. Our implementation of these

functions with corresponding C code listings will be discussed in section 3.4. The

function GETBRANCHINGVARIABLE chooses a yet-to-be-assigned variable for branch­

ing using a prescribed branching rule. One other important function which is used

to add non-chronological backtracking (conflict-directed backjumping), is LEARN-

CONFLICTCLAUSE. In addition to them, there are basic stack functions to operate on

locally and globally declared stacks.

30

Algorithm 3.7 THE DPLL PSEUDOCODE OF OUR IMPLEMENTATION

function DPLL() > runs on formula F
while TRUE do

if there are contradictory unit clauses then
while IsSTACKEMPTY(local_unit_clauses_stack) = FALSE do

u = STACKPOP(local_unit_clauses_stack)
UNSETVAR(U)

end while
store the antecedent clauses to learn a conflict clause
return UNSATISFIABLE

else if there is a clause C = {u} then
STACKPuSH(local_unit_clauses_stack, u)
SETVAR(U)

else
BREAK

end if
end while
if F = 0 then return SATISFIABLE

v = GETBRANCHINGVARIABLE(branching_rule)
SETVARO)

if DPLL() = SATISFIABLE then return SATISFIABLE

UNSETVAR(V)

Cx - LEARNCONFLICTCLAUSE

if backtrack.level ^ depth — 1 then
SETVARC-U)

ifDPLL() = SATISFIABLE then return SATISFIABLE

UNSETVAR(-U)

C2 = LEARNCONFLICTCLAUSE

Update backtrack_level using C\ and C2

end if
while ISSTACKEMPTY(local_unit_clauses_stack) = FALSE do

u — STACKPOP(local_unit_clauses_stack)
UNSETVAR(U)

end while
return UNSATISFIABLE

end function

31

3.3 The data structure

It is not obvious how to best represent a formula F such that Algorithm 3.7 runs

the fastest. In this section, we describe the data structures used to implement the

algorithm in detail with the corresponding codes in C. While designing the data

structure, we have identified the following areas of possible improvement:

1. UNIT CLAUSE PROPAGATION: Since we spend most of the time during the

search in unit-propagation, it is a good idea to perform all basic operations

required for unit-propagation in as little time as possible.

2. RECORDING AND REVERSING CHANGES: Each time we compute F\v from F, we

make certain changes to the formula. When we backtrack, we have to recover

F from F\v reversing all those changes. It is important to record the changes

in such a way that the reversal process remains inexpensive.

We make the following assumptions (preprocessor takes care of them) about the

formula:

1. The formula contains no empty clause. If the initial formula does not contain

an empty clause, then it never generates an empty clause during the search.

2. The maximum length of a clause is 32 (number of bits in the microprocessor).

If there is a clause longer than 32, then the preprocessor replaces them with

smaller clauses introducing new variables. This assumption is necessary for

faster retrieval of unit-clause-literal when a clause becomes unit.

32

3.3.1 Storing literals and clauses

Throughout the searching process, we need the list of all literals in each clause and

the list of all clauses each literal is in. Structure l i t e ra l_ info maintains informa­

tion specific to a literal.

typedef s t ruct l i teral_info{
int is_assigned;
int n_occur;
int * lit_in_clauses;
int * lit_in_clause_locs;
int is_unit;
int antecedent-Clause;

}l i teral_info;

l i t e r a l . i n fo linfo[MAX_VARS] [2] ;

The field is_assigned which is either YES or No helps to maintain the list of

free (unassigned) literals during runtime. Fields n_occur, l i t_in_clauses and

l i t_in_clause_locs store respectively the count, list of clauses in the original for­

mula that contain the literal and the list of locations of the literal in the correspond­

ing clauses. Variable linf o is a global array where linf o [j] [SATISFIED] stores the

information related to literal j : if it is assigned, number of times j occurs in F, list

of clauses that contain j and the list of locations of the literal in the corresponding

clauses. Similarly, linfoEj] [SHRUNK] stores the information related to literal - j .

When literal k becomes the only unassigned literal in a clause C, the is_unit field

of k is set to YES and C is recorded in the antecedent_clause field.

33

Structure clause_inf o maintains information specific to a clause.

typedef struct clause_info{

int
int
int
int
int
int

* literals;

current-length;

originalJLength;

is_satisfied;

binary_code;

currentoicl;

}clause_info;

clause_info * clauses;

int n_ .clause, r_clauses;

The field l i t e r a l s stores the list of all literals in the clause. The original

and the current lengths of the clause are stored in fields original_length and

current_length respectively. When a literal in the clause is set to FALSE, the

current_length decreases by one. The is_sat isf ied field is No if the clause is

not satisfied (i. e., none of its literals is set to TRUE) and YES otherwise. The field

binary_code holds an integer, the binary encoding of which corresponds to the bit-

string obtained from the literals setting T if UNASSIGNED and '0' if FALSE. The field

current_ucl stores the unit-clause-literal if the clause has become unit and stores

zero otherwise. Global array clauses stores the clauses and they remain in the

memory throughout the search. No clause is physically removed from the formula

when satisfied, only the is_sat isf ied field is set to TRUE. Variables n_clauses and

r_clauses hold the original and current size (number of clauses) of the formula

respectively.

34

3.3.2 Stack of Changes

The following structure keeps track of changes made while computing the residual

formula and is used when the changes are needed to be reversed.

typedef s t ruct changes_info{
int clause_index;
int l i tera l - index;

}changes_info;

changes_info changes [MAX.CLAUSES];
unsigned int changes_index;
unsigned int n_changes [MAX-VARS] [2] ;

When the is_sat isf ied field of a clause is changed to YES, the clause-index

is saved. When a currently unassigned literal in a clause is set to FALSE, both the

clause-index and the literal-index are saved in clause_index and l i tera l_index

respectively, so that they can be directly accessed when reversal of the changes

is needed. The global array changes stores all the changes and is indexed by

changes_index.

Variables n_changes[depth][SATISFIED] and n_changes[depth][SHRUNK] store

respectively the number of clauses satisfied (or resolved) and the number of clauses

shrunk at level depth in the branching tree while computing residual formula with

the corresponding literal at that level. They are used while changes need to be

reversed.

35

3.3.3 Storing assignment information

For each variable we store the current assignment information through the follow­

ing structure.

typedef struct

int type;

int depth;

int decision;

}assign_info;

assign_info{

assign_info assign[MAX_VARS] ;

When a literal is assigned a value, TRUE or FALSE, the value is stored in the

field type and the depth at which the assignment is made is stored in depth. The

field decision stores ASSIGN_BRANCHED or ASSIGN_IMPLIED depending on whether

the literal was chosen by a branching decision or was forced to have an assign­

ment. By default, the field decision stores ASSIGN_NONE. In addition to storing

assignment information, this structure is used to compute backtracking levels for

non-chronological backtracking.

3.3.4 Other global variables and arrays

There are global variables that play crucial roles in the search process, which are

discussed below:

(i) Variables contradictory_unit_clauses and conf l i c t i n g _ l i t e r a l : when lit­

erals x and x are the only unassigned literals in two different yet-to-be-satisfied

clauses, the variable contradictory_unit_clauses is set to YES. This saves

36

an unnecessary unit-propagation, which would end up with an empty clause.

If this variable is set to YES, then we return UNSAT. One of the conflicting

literal is stored in conf l i c t i n g _ l i t e r a l .

(ii) Array gucl_stack and variable n_gucl: when a new unit clause is detected,

the unit-clause-literal is stored in global array gucl_stack which implements

a stack of size n_gucl. Element popped from this stack is used for unit-clause-

propagation when there are no contradictory unit clauses.

(Hi) Variables depth, backtrack_level and raax_depth: the variable depth stores

the level of a node in the branching tree. (The depth level of the node is

at most backtrack_level). Variable backtrack_level is usually one less

than depth, but it can be equal to depth when depth equals to zero and for

depth greater than one, the difference can be more than one indicating that a

conflict-directed backjumping is necessary. Variable max_depth, local to dpll,

is used to track non-chronological backtracking.

(iv) Array impl_clauses and ic_cnt: array irapl_clauses and variable ic_cnt

are used to store the antecedent clauses in an unit-propagation that leads to

a contradiction.

3.4 Details of functions

In this section, we discuss key functions and procedures we use to implement DPLL.

Most of the functions have a pseudocode followed by numbered code-listing in C

and description of the code.

37

3.4.1 SetVar - computing F \ v

Algorithm 3.8 shows the pseudocode for implementation of the SETVAR procedure.

Algorithm 3.8 DPLL - SETVAR

l
2
3
4
5
6
7
8
9

10
11
12
13
14
15

procedure SETVARO)

for each yet-to-be-satisfied clause C such that v eC do
mark C as satisfied
update clause count for C
save changes information for v

end for
for each yet-to-be-satisfied clause C such that v e C do

set v as FALSE and update the length of C
if \C\ = 1 then find the literal £ in C that is unassigned
if 1 is also a unit-clause-literal then mark contradictory unit clauses
save changes information for v

end for
update depth and backtrack level
remove v and v from the list of unassigned literals

end procedure

The following code listing shows the C implementation of SETVAR.

1 void SetVar(int v)
2 {
3 register int i;
4 register int p = abs(v), q = (v>0) ? SATISFIED : SHRUNK;
5 for(i=0; i<linfo[p][q].n_occur; ++i)
6 {
7 reg is te r int j = l in fo [p] [q] . l i t_ in_c lauses [i] ;
8 i f (c lauses [j] . i s_sa t i s f i ed) continue;
9 c lauses [j] . i s_sa t i s f i ed = YES;

10 —r_clauses;
11 changes[changes_index++].clause_index = j ;
12 n_changes[depth][SATISFIED]++;
13 }
14 q = !q;

38

15 f o r (i = 0 ; i < l i n f o [p] [q] . n _ o c c u r ; ++i)
16 {
17 r e g i s t e r i n t j = l i n f o [p] [q] . l i t _ i n _ c l a u s e s [i] ;
18 i f (c l a u s e s [j] . i s _ s a t i s f i e d) cont inue ;
19 r e g i s t e r i n t k = l i n f o [p] [q] . l i t _ i n _ c l a u s e _ l o c s [i] ;
20 — c l a u s e s [j] . c u r r e n t . l e n g t h ;
21 c l ause s [j] . b ina ry_code -= ((1 « k)) ;
22 changes[changes_index] .c lause_index = j ;
23 changes[changes_index++] . l i t e ra l_ index = k;
24 n_changes[depth][SHRUNK]++;
25 i f (c l a u s e s [j] . c u r r e n t _ l e n g t h == 1)
26 {
27 register int loc = int(log2(clauses[j].binary_code));
28 register int w = clauses[j].literals[loc];
29 register int s = abs(w), t = (w>0) ? SATISFIED : SHRUNK;
30 linfo[s][t].antecedent_clause = j;
31 if(linfo[s][(!t)].is.unit == YES)
32 {
33 contradictory_unit_clauses = TRUE;
34 conflicting_literal = w;
35 }
36 e l s e i f (l i n f o [s] [t] . i s _ u n i t == NO)
37 {
38 gucl_s tack[n_gucl] = c l a u s e s [j] . c u r r e n t _ u c l = w;
39 l i n f o [s] [t] . i s _ u n i t = YES;
40 ++n_gucl;
41 }
42 }
43 }
44 i f (d e p t h kk back t rack_leve l == depth-1)
45 ++backtrack_level ;
46 ++depth;
47 l info[p][SATISFIED]. is .ass igned = YES;
48 linfo[p][SHRUNK].is_assigned = YES;
49 }

Different parts of the function SetVar work as follows:

5-13 This for loop implements lines 2-5 of Algorithm 3.8. It scans through the

39

l i t_in_clauses list associated with the literal v. In each iteration, we retrieve

a clause, say C, that contains the literal v (in 0(1) time). The is_sat isf ied

field of C is set to YES and the size of the formula, r_clauses is decremented

by one. All changes are saved in the changes list, and the number of changes

made in this phase of action (which is stored in n_changes [depth] [SATISFIED])

is incremented by one.

15-43 This for loop implements lines 7-12 of Algorithm 3.8. It scans through the

l i t_in_clauses list associated with the literal -v. In each iteration, we

retrieve a clause, say C, that contains the literal -v (in 0(1) time). The

binary_code field of the clause C is initially an integer 2 | c | - 1, which is a

bitstring of \C\ Vs. If -v is the A;-th (k e {0,1, • • • , \C\ - 1}) literal in C, then

we subtract (1 < k) (shift operations are constant-time) from binary_code

of C. When \C\ = 1, we know that binary.code equals 2* for some non-

negative integer t less than 32. We can compute, in time 0(1), the integer

log2(binary_code) which is the location of the unit-clause-literal, say w, in

C. The clause that becomes unit is saved in the antecedent_clause field of

the corresponding entry of the linf o list. If -w is also a unit-clause-literal,

then contradictory_unit_clauses is set to YES and w is recorded as the

conf l i c t i n g _ l i t e r a l . Otherwise, w is saved both in gucl.stack and in the

current_ucl field of C and w is identified as a unit-clause-literal. All changes

are saved in the changes list, and the number of changes made in this phase

of action (which is stored in n_changes [depth] [SHRUNK]) is incremented by

one.

40

44-48 These lines implement lines 13-14 of Algorithm 3.8. Once the residual for­

mula is obtained, depth is incremented by one and the backtrack_level is

updated. Finally, both the literals v and -v are identified as assigned. There­

fore, we have computed the residual formula FI v.

3.4.2 UnSetVar - recovering F from F\v

Algorithm 3.9 shows the pseudocode for implementation of the UNSETVAR proce­

dure.

Algorithm 3.9 DPLL - UNSETVAR

l
2
3
4
5
6
7
8
9

10
11
12
13
14:
15

procedure UNSETVAR(V)

update depth and backtrack level
while the stack-of-changes for v is not empty do

retrieve the clause C and the corresponding literal-index
increment length of C by 1
if the literal was set as unit then undo it
update binary code of C

end while
while the stack-of-changes for v is not empty do

retrieve the clause C
mark C as not satisfied
increment the formula size by 1

end while
set v and v as unassigned

end procedure

Following is the C-code listing of UNSETVAR.

1 void UnSetVar(int v)
2 {
3 register int i;
4 register int p = abs(v), q = (v>0) ? SATISFIED : SHRUNK;
5 —depth;
6 if(depth && backtrack_level == depth)

41

—backtrack_level;
while(n.changes[depth][SHRUNK])
{

--n_changes[depth][SHRUNK];
reg is te r int j = changes[—changes_index].clause_index;
reg is te r int k = changes[changes_index].literal_index;
++clauses[j].current_length;
i f (c lauses[j] .current_length == 2)
{
int s = abs(clauses[j].current_ucl);
int t = (clauses[j].current_ucl > 0) ? SATISFIED : SHRUNK;
linfo[s][t].is_unit = NO;
clauses[j].current_ucl = 0;

}
clauses[j].binary_code += ((1 « k)) ;

}
while(n_changes[depth][SATISFIED])
{

—n_changes[depth][SATISFIED];
reg is te r int j = changes[—changes_index].clause_index;
c lauses [j] . i s_sa t i s f i ed = NO;
++r_clauses;

}
linfo[p][SATISFIED].is_assigned = NO;
linfo[p][SHRUNK].is.assigned = NO;

Different parts of the function UnSetVar work as follows:

5-7 These lines implement line 2 of Algorithm 3.9. We are now reversing all the

changed made in level depth-1. The value of depth is decremented by one

and the backtack_level is updated.

8-22 This while loop implements lines 3-8 of Algorithm 3.9. It runs through the

stack of changes n_changes [depth] [SHRUNK] times. In each iteration, we

retrieve the clause C and the literal-index k in that clause from the changes

42

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

list in 0(1) time and increment the clause-length by one. If \C\ = 2, i. e.,

if C was a unit-clause, then information related to the unit-clause-literal is

updated. The binary_code field of C is updated by adding 2k, i. e., 1 <C k, to

it.

23-29 This while loop implements lines 9-13 of Algorithm 3.9. It runs through the

stack of changes n_changes [depth] [SATISFIED] times. In each iteration, we

retrieve the clause-number (which was set as satisfied) in 0(1) time, turn it

back to not satisfied, and increment the formula size by one.

30-31 These lines implement line 14 of Algorithm 3.9. Both v and v are taken back

to the list of unassigned literals.

3.4.3 The DPLL function

The dpll function has the prototype int dpll () ; it does not receive any parameter

and returns either SAT or UNSAT. Local array luc l . s tack implements a stack of

size n_lucl. This stack is a dynamically extendable list (it uses the C real loc

function for allocation), which is freed when DPLL returns UNSAT. For convenience

in describing the details of this function, we break down the code listing into parts

and describe these parts separately.

3.4.3.1 Unit-propagation block

The while loop of lines 5-39 implements lines 2-16 of Algorithm 3.7.

1 int dpl lO
2 {

43

3 int * lucl_stack = NULL;
4 register unsigned int n_lucl = 0;
5 while(1)
6 {
7 if(contradictory_unit_clauses)
8 {
9 icl.cnt = 0;

10 i n t c l = a b s (c o n f l i c t i n g _ l i t e r a l) ;
11 impl_clauses[ic l_cnt++] = l info[c l] [SATISFIED].antecedent_clause;
12 impl_clauses[ic l_cnt++] = l info[cl][SHRUNK].antecedent_clause;
13 a s s i g n [c l] . d e c i s i o n = ASSIGN.NONE;
14 whi le (n_ luc l)
15 {
16 UnSe tVar (luc l_s tack[—n_luc l]) ;
17 r e g i s t e r i n t s = a b s (l u c l _ s t a c k [n _ l u c l]) ;
18 r e g i s t e r i n t t = luc l_s t ack [n_ luc l]>0 ? TRUE : FALSE;
19 i rapl_clauses[ic l_cnt++] = l i n f o [s] [t] . a n t e c e d e n t _ c l a u s e ;
20 a s s i g n [s] . t y p e = UNASSIGNED;
21 a s s i g n [s] . d e c i s i o n = ASSIGN_NONE;
22 }
23 contradictory_unit_clauses = FALSE;
24 free(lucl_stack);
25 n_gucl = 0;
26 return UNSAT;
27 }
28 else if (n_gucl)
29 {
30 lucl_stack = (int*)realloc(lucl_stack,(n_lucl+l)*sizeof(int));
31 register int implied_lit = gucl_stack[—n_gucl];
32 lucl_stack[n_lucl++] = implied_lit;
33 assign[abs(implied_lit)].type = implied_lit>0 ? TRUE : FALSE;
34 assign[abs(implied_lit)].decision = ASSIGN_IMPLIED;
35 SetVar(implied_lit);
36 n_units++;
37 }
38 else break;
39 >

7-27 This if block implements lines 3-9 of Algorithm 3.7. If there is a pair of

44

contradictory unit clauses, then this block is executed. We do not need to

make a lookup for contradictory unit clauses. In fact, whenever the is_unit

field of a literal u is already set to TRUE and -u becomes a unit-clause-literal,

the global constant contradictory_unit_clauses is set to TRUE. Lines 10-12

retrieve the antecedent clauses of the conflicting literals and store them in the

impl_clauses array. Each iteration of the while loop (14-22) pops a literal

from lucl_stack, reverses the changes made by SETVAR and retrieves (to

store in the impl.clauses array) the antecedent clause of that literal. Lines

23-26 set the contradictory_unit_clauses to FALSE, free the lucl_stack,

set the global unit clauses stack gucl_stack as empty and return UNSAT.

29-37 This block implements lines 10-12 of Algorithm 3.7. When there is no pair

of contradictory unit clauses, we look for unit-clause-literals in the global

unit clauses stack gucl_stack. Unit-clause-literal popped from gucl_stack

is pushed into the local stack lucl_stack. The fact that the assignment was

forced is recorded by marking the unit-clause-literal as ASSIGN_IMPLIED. Fi­

nally, the residual formula is computed using that literal.

3.4.3.2 Branching

Lines 40-65 implement lines 17-22 of Algorithm 3.7.

40 if(!r_clauses) return SAT;
41 register int v = GetLiteral2SJW().;
42 assign[abs(v)].type = v > 0 ? TRUE : FALSE;
43 assign[abs(v)].depth = depth;
44 assign[abs(v)].decision = ASSIGN.BRANCHED;
45 SetVar(v);
46 if(dpllO) return SAT;

45

47 UnSetVar(v);
48 assign[abs(v)].decision = ASSIGN_NONE;
49 register int max_depth = 0, i, j, k, m, left = FALSE;
50 if(icl_cnt)
51 {
52 while(icl_cnt)
53 {
54 i = impl_clauses[—icl_cnt];
55 k = clauses[i].original.length;
56 for(j=0; j < k; ++j)
57 {
58 m = a b s (c l a u s e s [i] . l i t e r a l s [j]) ;
59 if(assign[m].decision == ASSIGN_BRANCHED &&
60 assign[m].depth > max_depth)
61 raax_depth = assign[m].depth;
62 }
63 >
64 lef t = TRUE;
65 >

40 This line implements line 17 of Algorithm 3.7. If the formula is empty, i. e.,

r_clauses is zero, then we return SAT.

41-46 These lines implement lines 18-20 of Algorithm 3.7. At this point, since there

exist no contradictory unit clauses and there remain clauses to be satisfied, we

choose a literal using the 2-sided-Jeroslow-Wang branching rule (any other

branching rule could be accomodated by changing the single line 41) to be

assigned as TRUE. The fact that the assignment was made by a branching deci­

sion is recorded by marking the literal as ASSIGN_BRANCHED. After computing

the residual formula F\v, we proceed to the left child of the DPLL-tree by

making a recursive call to dpll.

47-65 These lines implement lines 21-22 of Algorithm 3.7. If the left child of the

46

DPLL-tree returns UNSAT, then we recover F from F\v by calling UnSetVar.

The while loop (lines 52-63) looks at the literals that were assigned by a

branching decision in the irapl_clauses (the antecedent clauses of the unit-

literals during unit-propagation) and update the variable max_depth with the

assignment depth of the most recent branching decision.

3.4.3.3 Backtracking and backjumping

Lines 66-105 implement lines 23-35 of Algorithm 3.7.

66 ++n_backtracks;
67 if(backtrack_level >= depth-1)
68 {
69 assign[abs(v)].type = !assign[abs(v)].type;
70 assign[abs(v)].decision = ASSIGN_IMPLIED;
71 SetVar(-v);
72 if(dpllO) return SAT;
73 UnSetVar(-v);
74 assign[abs(v)].type = UNASSIGNED;
75 assign[abs(v)].decision = ASSIGN_N0NE;
76 if(left kk icl.cnt)
77 {
78 while(icl_cnt)
79 {
80 i = impl_clauses[—icl_cnt];
81 k = clauses[i].original_length;
82 for(j=0; j < k; ++j)
83 {
84 m = abs(clauses[i].literals[j]);
85 if(assign[m].decision == ASSIGN_BRANCHED kk
86 assign[m].depth > raax_depth)
87 max_depth = assign[m].depth;
88 }
89 >
90 if(max_depth < backtrack_level)
91 backtrack_level = max_depth;

47

92 }
93 }
94 icl_cnt = 0;
95 while(n_lucl)
96 {
97 int z = lucl_stack[—n_lucl];
98 UnSetVar(z);
99 assign[abs(z)].type = UNASSIGNED;
100 assign[abs(z)].decision = ASSIGN_N0NE;
101 }
102 free(lucl_stack);
103 contradictory_unit_clauses = FALSE;
104 return UNSAT;
105 >

Line 67 is used for diagnostic purposes. Lines 67-93 implement the if block

(lines 23-29) of Algorithm 3.7.

69-72 These lines implement lines 24-25 of Algorithm 3.7. If backjumping is not

suggested by the backtrack level, then we proceed to the right child of the

DPLL-tree making a recursive call to dpll on the reduced formula F\v.

The assignment decision of the literal is switched from ASSIGN_BRANCHED to

ASSIGN_IMPLIED as it was forced.

73-89 These lines implement lines 26-27 of Algorithm 3.7. If the right child of the

DPLL-tree returns UNSAT, then we recover F from F\v by calling UnSetVar.

The while loop in lines 78-89 are identical to lines 52-63 of the dpll listing.

90-91 These lines implement line 28 of Algorithm 3.7. The backtrack level is up­

dated.

95-104 These lines implement lines 30-34 of Algorithm 3.7. The changes made in

48

the unit propagation immediately preceeding the decision to branch on v are

reversed. Finally lucl_stack is freed, and UNSAT is returned.

3.4.4 Monotone literal fixing

After the unit-propagation block, every clause is of length at least two. At this

point, we can look for literals that do not appear in their complemented form in

the residual formula. Such literals are referred as monotone literals, as described

in section 1.2. Setting a monotone literal u to TRUE has the following effects:

1. The clauses that contain u are removed.

2. No clause shrinks.

3. The satisfiability of the instance does not change (F is satisfiable if and only

if F\u is satisfiable).

If we want to add this feature to the solver, then we have to insert the following

lines and the C code segments in Algorithm 3.7 and in the listing of dpll, respec­

tively.

1 The following two lines should be inserted after line 4 of dpll listing. Here,

ml_stack is a local array that implements a stack of size n_ml.

int * ml_stack = NULL;
int n_ml = 0;

2 The following 4 lines should be inserted after line 17 in Algorithm 3.7.

49

l: for each monotone literal u in F do
2: STACKPuSH(local_monotone_literal_stack, u)
3: SETVAR(u)
4: end for

The corresponding C listing that should be inserted after line 40 of dpll, im­

mediately follows. It scans through all unassigned literals in the residual for­

mula and if there is a monotone literal u, then it computes F\u using SetVar.

1 for(int i=l; i<=n_vars; ++i)
2 {
3 int x, y, u, C;
4 x = y = 0;
5 if(assign[i].decision == ASSIGN_N0NE)
6 {
7 u = 0;
8 . fo r (in t j=0; j<linfo[i][SATISFIED].n_occur; ++j)

9 -C
10 C = linfo[i][SATISFIED].lit_in_clauses[j];
11 x += l -c lauses[C] . is_sat isf ied;
12 }
13 for(int j=0; j<linfo[i][SHRUNK].n_occur; ++j)
14 {
15 C = linfo[i][SHRUNK].lit_in_clauses[j];
16 y += l -c lauses[C] . is_sat isf ied;
17 }
18 if(x && !y) u = i ;
19 if(y && !x) u = - i ;
20 if(u)
21 {
22 ml_stack = (int*) realloc(ml_stack,(n_ml+l)*sizeof(int));
23 ml_stack[n_ml++] = u;
24 assign[abs(u)].type = u>0 ? TRUE : FALSE;
25 assign[abs(u)].depth = depth;
26 assign[abs(u)].decision = ASSIGN_IMPLIED;
27 SetVar(u);
28 }
29 }

50

30 }

3 The following 4 lines should be inserted after line 29 in Algorithm 3.7. The C

implementation of the while loop, which should be inserted after line 93 of

dpll listing, follows immediately. For each literal v popped from ml_stack,

we recover F from F\v.

1: while IsSTACKEMPTY(local_monotone_literal_stack) = FALSE do
2: u = STACKPOP(local_monotone_literal_stack)
3: UNSETVAR(u)
4: end while

1 while(n_ml)
2 {
3 int u = ml_stack[—n_ml];
4 UnSetVar(u);
5 assign[abs(u)].type = UNASSIGNED;
6 assign[abs(u)].decision = ASSIGN_N0NE;
7 }

51

3.4.5 Input cleanup and preprocessing

Our solver reads SAT instances in DIMACS satisfiability format [20]:

1. Comments may appear before the actual problem specification begins. Each

comment line begins with a lower-case character c. These lines are ignored

by the solver.

2. After the comments, there is a single line that specifies the instance. The

line begins with a lower-case letter p, followed by the word cnf (to indicate

that the problem is in Conjunctive Normal Form), the number n of variables

(variables are the integers 1,2, • • • , n), the number m of clauses; followed by

the encoding of the m clauses. Each of the clauses is encoded by a list of

integers followed by a zero (indicating the end of the clause). These integers

are chosen from {1,2,• • • ,n,-l,-2,- • • , —n} as literals and they appear in

an arbitrary order. There may be redundant literals in a clause and redundant

clauses in a formula. For instance, the file

c This i s a comment
p cnf 4 2
2 - 1 4 0
2 - 3 0

represents the formula with variables with variables xi,x2>xs,x4 that consists

of the two clauses {xi,x2,x4} and {x2,x3}.

When reading the input file, we do the following:

1. We remove variables that do not occur in the formula from the list of free

variables. We do so by storing ASSIGN_REMOVED in the assign[u] .decision

52

for the variable u. When a satisfying assignment is found, these variables

remain as "don't cares".

2. We remove clauses that contain a pair of literals u and u, which makes the

clause satisfied by any truth assignment.

3. We remove duplicate literals from a clause and store the remaining literals in

sorted order.

4. We remove duplicate clauses.

5. If some clause C consists of literals u0,ui,--- ,uk where k ^ 32, then we

replace C by a set of clauses {C0, Ci, • • • , Ct_i} with t = \(k - 1)/30"|. These

clauses involve t—\ new variables y0, yx, • • • , yt_2 and are defined as follows:

(i). C0 = {u0,ux,-- • ,u3o,yo},

(ii). Q = {yi-i,U30i+i, • • • , 1*30(1+1).!/i} for 1 ^ i ^ t - 2, and

(iii). Ct-i = {yt_2,u30(t-i)+i,- •• ,uk}.

If C is not satisfied by a truth assignment z, i. e., the literals u0, ux, • • • ,Uk are

all set to FALSE, then {C0, • • • , Ct_i} is not satisfied by z. Because, C0 cannot

be satisfied by setting yQ to FALSE and if we set y0 to TRUE to satisfy C0, then

Ct-i cannot be satisfied. If C is satisfied by z, then a literal Uj, with 0 < j ^ k,

must have been set to TRUE by z. If Uj G Q for 0 ^ i < t - 1, then we

can satisfy {C0, ••• , Ct-\} by setting y0, yx, • • • , y4_i to TRUE and yu • • • , yt-2 to

FALSE.

53

3.4.5.1 Our preprocessor

Our preprocessor is described in Algorithm 3.10. Here, we implement unit-propagation,

monotone-literal-fixing, restricted resolution and subsumption. We repeat them in

this order until there is no change in F. The unit-propagation is similar to the unit-

propagation block in section 3.4.3.1 except that there is no need to store the unit

literals and the implication clauses. Fixing monotone literals is also same as de­

scribed in section 3.4.4 except that there is no need to store the monotone literals.

Of course, other features like equivalency reasoning (see [43]) can be added to

solve the DIMACS pret and par instances easily.

Algorithm 3.10 OUR PREPROCESSOR

I
2
3
4
5
6
7
8
9

10

function PREPROCESS(F)

initialize threshold on the number of resolvents
while TRUE do

unit-propagation
fix monotone literals
add resolvents retricted by length and the threshold
subsume clauses if you can
if no changes occurs to F then break

end while
end function

Adding resolvents

We compute length restricted-resolvents as in Algorithm 3.12. As defined earlier in

section 2.3.1, two clauses Cx and C2 are said to clash on a variable x, if x is the only

variable such that x e C\ and x e C2 (or, x e C\ and x e C2). In that case, the

resolvent of Cx and C2 is defined as C\ U C2 - {x,x} and denoted by CiVC2.

54

Algorithm 3.11 COMPUTE RESOLVENTS

1: function COMPUTER.ESOLVENT(:r, j , k, length, length.l imit)
2: C = {}
3: for each i e {j, k} do
4: for each literal it in d do
5: if x = abs(u) or u G C then
6: continue
7: else if it e C then
8: return false
9: else

10: C = CU{u}
11: if |C| > length_limit then return false
12: end if
13: end for
14: end for
15: length = \C\
16: return true
17: end function

The following C listing implements Algorithm 3.11.

1 int compute_resolvent(int x, int a, int b, in t & len, int l imit)
2 {
3 register int j, k;
4 int * check = (int *)calloc(n_vars+l, sizeof(int));
5 int found = FALSE;
6 int res_size = 0;
7 int C[2] = {a, b};
8 for(j=0; j<2; ++j)
9 {
10 for(k=0; k<clauses[C[j]].original_length; ++k)
11 {
12 register int w = abs(clauses[C[j]].literals[k]);
13 if(w == x) continue;
14 else if(check[w] == c lauses [C[j]] . l i t e ra l s [k]) continue;
15 else if(check[w] == -c l auses [C[j]] . l i t e r a l s [k])
16 {
17 free(check); return FALSE;
18 }

55

19 else if(assign[abs(clauses[C[j]].literals[k])].decision
20 != ASSIGN_N0NE) continue;
21 else if(check[w] == 0)
22 {
23 check[w] = c l auses [C[j]] . l i t e r a l s [k] ;
24 resolvent[res_size++] = c l ause s [C[j]] . l i t e r a l s [k] ;
25 i f (res_size > l imit)
26 {
27 free(check); return FALSE;
28 }
29 >
30 }
31 >
32 len = res_size;
33 free(check);
34 return TRUE;
35 }

Here, The local array check is used to detect duplicate and complemented lit­

erals while scanning through the two clauses to obtain a resolvent. To store a new

resolvent, we use the global array resolvent, which is indexed by res_size.

8-31 These lines implement lines 3-14 of Algorithm 3.11. The parameter a; is a

variables such that x belongs to one of the clauses and x belongs to the other

clause. We look at each literal of each clause C of the two clauses. If the

current literal u is x or x, then we continue. If check [abs (u)] equals to u,

i. e., u £ C, then we continue; if check[abs(u)3 equals to u, i. e., another

variable other than x appears in one of the clauses and appears complemented

in the other clause, then we return FALSE. If check [abs (u)] equals to zero,

then we store u in check [abs (u)] and resolvent. If res_size is bigger then

limit, then we return FALSE.

32-34 Otherwise, we return TRUE.

56

Note that unit-propagation and monotone literal fixing make some clauses sat­

isfied; this is the reason why we write "unsatisfied clauses" rather than "clauses" in

lines 2 and 3 of Algorithm 3.12.

Here, resolvents_added and n_resolvents_threshold are global variables stor­

ing the number of resolvents added so far and the number of resolvents we are

allowed to add, respectively.

Algorithm 3.12 GETTING RESTRICTED RESOLVENTS

l
2
3
4
5
6
7
8
9

10
11
12
13

function GETRESOLVENTS(X, length_limit, F)
for each unsatisfied clause Cj such that x e Cj do

for each unsatisfied clause Ck such that x e Ck do
if COMPUTERESOLVENTO, j , k, length, length_limit)=true then

if resolvents_added < n_resolvents_threshold then
add the resolvent to F

else
return false

end if
end if

end for
end for

end function

The following C listing implements Algorithm 3.12.

1 int get_restr icted_resolvent(int x, int l imit)
2 {
3 register int i, j, k, a, b, res_length;
4 int found;
5 changes_occured = FALSE;
6 for(i=0; i<linfo[x][SATISFIED].n_occur; ++i)
7 {
8 a = linfoLx] [SATISFIED].lit_in_clauses[i];
9 i f (c lauses [a] . i s_sa t i s f ied == NO)

10 {
11 for(j=0; j<linfo[x][SHRUNK].n_occur; ++j)
12 {

57

13 b = linfo[x][SHRUNK].lit_in_clauses[j];
14 i f (c lauses [b] . i s_sa t i s f ied == NO)
15 {
16 found = compute_resolvent(x, a, b, res_length, limit);
17 if(found)
18 {
19 if(resolvent_added < n_resolvents_threshold)
20 {
21 resolvent_added +=
22 add_a_clause_to_formula(resolvent, res_length);
23 changes_occured = TRUE;
24 }
25 else return -1;
26 }
27 }
28 }
29 }
30 }
31 return -1;
32 }

6-30 The nested for loops implement lines 2-12 of the algorithm 3.12. If a resol­

vent is found, i. e., compute_resolvent returns TRUE, then the clause stored

in resolvent, which is of length res_length, is our length-restricted resol­

vent. If the resolvent-count does not exceed the threshold, then the resolvent

is added to the formula; otherwise, we stop searching resolvents. The func­

tion add_a_clause_to_f orraula(int [] , in t) , which takes an array and its

size as parameters and stores it into the data structure as a clause, is described

in section 3.4.5.2.

58

Removal of subsumed clauses

Algorithm 3.13 takes two clauses Cj and Ck as parameters. It returns TRUE if Cj c

Ck) and returns FALSE otherwise.

Algorithm 3.13 SUBSUMABLE

function SUBSUMABLE(J, k)
for each literal u e Ck do

store u in check [abs(u)]
end for
for each literal u e Cj do

if u 7^check[abs(u)3 then return false
end for
return true

end function

The C implementation of Algorithm 3.13 is as follows:

1 int subsumable(int j , in t k)
2 {
3 reg i s te r int i ;
4 int * check = (int *) calloc((n_vars+l) , s i zeo f (in t)) ;
5 for(i=0; i<clauses[k].original_length; ++i)
6 check[abs(c lauses[k] . l i te ra ls [i])] = c l a u s e s [k] . l i t e r a l s [i] ;
7 for(i=0; i<clauses[j] .or iginal_length; ++i)
8 i f (c l a u s e s [j] . l i t e r a l s [i] != check[abs (c lauses [j] . l i t e ra l s [i])])
9 { free(check); return NO; }
10 free(check);
11 return YES;
12 }

Here, we use local array check to mark the literals in Ck. For each literal u

in Ck, we store u in check [abs (u)] . For each literal u in Cj} if u is not equal to

check [abs (u)], then we return FALSE and else we return TRUE.

59

We remove subsumed clauses as described in Algorithm 3.14.

Algorithm 3.14 SUBSUMING CLAUSES

I

2
3
4
5
6
7:
8
9

10
11

function SUBSUMECLAUSES(F)

for each unassigned literal u do
for each unsatisfied clause Cj such that u e Cj do

for each unsatisfied clause C& such that u e Ck do
if j = k then continue
if \Cj\ ^ \Ck\ then continue
if SuBSUMABLE(j,fc)=true then remove Ck from F

end for
end for

end for
end function

Lines 1-33 implement Algorithm 3.14.

1 int preprocess_subsume()
2 {
3 register int n_subsumed = 0;
4 register int i, j, k, cl, c2, type;
5 changes_occured = FALSE;
6 for(i=l; i<=n_vars; ++i)

8 if(assign[i].decision != ASSIGN.NONE) continue;
9 for(type=0; type<=l; ++type)
10 {
11 for(j=0; j<linfo[i][type].n_occur; ++j)
12 {
13 for(k=0; k<linfo[i][type].n_occur; ++k)
14 {
15 if(j==k) continue;
16 cl = l i n fo [i] [type] . l i t _ in_c lauses [j] ;
17 c2 = l in fo[i] [type] . l i t_ in_c lauses [k] ;
18 i f (c l auses [c l] . i s_sa t i s f i ed II
19 c lauses[c2] . is_sat isf ied) continue;
20 i f (c lauses[c l] .or ig inal_length >=
21 clauses[c2].original_length) continue;
22 if(subsumableCcl, c2))

60

•c
clauses[c2] . i s_sat is f ied = YES;
—r_clauses;
n_subsumed++;
changes_occured = TRUE;

}
}

}
}

}
}

1-33 The function preprocess_subsume() scans through the literals and for each

unassigned literal u, it picks each pair of distinct yet-to-be-satisfied clauses Cj

and Ck that contain u. If \Cj\ < \Ck\ and Cj subsumes Ck, then Ck is removed

from F.

The following listing is the C implementation of Algorithm 3.10.

1 int preprocessO
2 {
3 register int total_changes_occured, n_s = 0;
4 if(n_clauses < 500) n_resolvents_threshold = n_clauses * 5;
5 else if(n_clauses < 1000) n_resolvents_threshold = n_clauses * 4;
6 else if(n_clauses < 1500) n_resolvents_threshold = n_clauses * 3;
7 else if(n_clauses < 3000) n_resolvents_threshold = n_clauses * 2;
8 else n_resolvents_threshold = n_clauses;
9 while(1)
10 {
11 total_changes_occured = 0;
12 if(preprocess_unit_propagation()==UNSAT)
13 {
14 printf ("Resolvents: °/0d\n", resolvent_added);
15 printf("Subsumed: %d\n", n_s);
16 return UNSAT;
17 }
18 total_changes_occured += changes_occured;

61

23
24
25
26
27
28
29
30
31
32
33

19 preprocess_monotone_literal_fixingO;
20 total_changes_occured += changes_occured;
21 if(resolvent_added < n_resolvents_threshold)
22 {
23 for(int i=l; i<=n_vars; ++i)
24 if(assign[i].decision == ASSIGN_NONE)
25 if(get_restricted_resolvent(i, 3)==UNSAT)
26 {
27 printf("Resolvents: %d\n", resolvent_added);
28 printf ("Subsumed: °/„d\n", n_s);
29 return UNSAT;
30 }
31 total_changes_occured += changes_occured;
32 }
33 n_s += preprocess_subsume();
34 total_changes_occured += changes_occured;
35 if(total_changes_occured == 0) break;
36 }
37 printf ("Resolvents: °/.d\n", resolvent_added);
38 printf ("Subsumed: °/,d\n", n_s);
39 return -1;
40 }

3-8 These lines initialize the value of n_resolvents_threshold.

9-36 This while loop executes unit-propagation, monotone-literal-fixing, restricted

resolution and subsumption in this order until no change occurs (maintained

by the variables changes_occured and total_changes_occured) in F.

62

3.4.5.2 Adding a clause to the formula

Algorithm 3.15 describes what additions and updates we make in the data structure

when we add a clause.

Algorithm 3.15 ADDING A CLAUSE TO F
l: function ADDCLAUSE(C, n)
2: sort the array C
3: if C is already in F then return false
4: initialize clauses and store literals
5: for each literal, update linf o structure
6: if n = 1 then
7: if {—C[0]} is also a clause in F then set contradictory_unit_clauses
8: else store C[0] as a unit clause literal and update gucl_stack
9: end if

10: end function

Following is the C implementation of Algorithm 3.15:

1 int add_a_clause_to_forraula(int C[], in t n)
2 {
3 register int i;
4 qsort (C, n, sizeof(int), compare);
5 if(clause_present(C, n)) return FALSE;
6 clauses = (clause_info *)realloc(clauses,
7 (n_clauses+l)*sizeof(clause_info));
8 clauses[n_clauses].is_satisfied = NO;
9 clauses[n_clauses].current_length = n;
10 clauses[n_clauses].original_length = n;
11 clauses[n_clauses] .binary_code = (((l«(n-l))-l)«l) + 1;
12 clauses[n_clauses].current_ucl = 0;
13 clauses[n_clauses].literals =
14 (int *) malloc((n + 1) * sizeof(int));
15 if(n>raax_clause_len) max_clause_len = n;
16 for(i=0; i<n; ++i)
17 {
18 int p = abs(C[i]) , q = C[i]>0 ? SATISFIED : SHRUNK;
19 l info[p][q] . l i t_ in_clauses =

63

20 (i n t *) r e a l l o c (l i n f o [p] [q] . l i t _ i n _ c l a u s e s ,
21 (l i n f o t p] [q] . n _ o c c u r + l) * s i z e o f (i n t)) ;
22 l i n f o [p] [q] . l i t _ i n _ c l a u s e _ l o c s =
23 (i n t *) r e a l l o c (l i n f o [p] [q] . l i t _ i n _ c l a u s e _ l o c s ,
24 (l i n f o t p] [q] . n _ o c c u r + l) * s i z e o f (i n t)) ;
25 l i n f o [p] [q] . l i t _ i n _ c l a u s e s [l i n f o t p] [q] . n _ o c c u r] = n_c lauses ;
26 l i n f o t p] [q] . l i t _ i n _ c l a u s e _ l o c s [l i n f o [p] [q] . n _ o c c u r] = i ;
27 l i n fo tp] tq] .n_occur++;
28 l i n f o t p] t q] . i s _ a s s i g n e d = NO;
29 c l a u s e s t n _ c l a u s e s] . l i t e r a l s [i] = C[i] ;
30 a s s i g n t p] - d e c i s i o n = ASSIGN_NONE;
31 a s s i g n t p] - t y p e = UNASSIGNED;
32 }
33 i f (n == 1)
34 {
35 i n t s = a b s (c l a u s e s t n _ c l a u s e s] . l i t e r a l s t O]) ;
36 i n t t = c l a u s e s t n _ c l a u s e s] . l i t e r a l s [0] > 0 ? SATISFIED : SHRUNK;
37 l i n f o t s] t t] . a n t e c e d e n t _ c l a u s e = n_c lauses ;
38 i f (l i n f o t s] t (! t)] . i s _ u n i t == YES)
39 {
40 contradictory_unit_clauses = TRUE;
41 conflicting_literal = clausestn_clauses].literals [0];
42 }
43 e l s e i f (l i n f o t s] t t] . i s _ u n i t == NO)
44 {
45 gucl_s tacktn_gucl] = c l a u s e s t n _ c l a u s e s] . l i t e r a l s t O] ;
46 c lauses t n _ c l a u s e s] . c u r r e n t _ u c l = c l a u s e s [n . c l a u s e s] . l i t e r a l s [0] ;
47 l i n f o t s] t t] . i s . u n i t = YES;
48 ++n_gucl;
49 }
50 }
51 ++n_clauses;
52 ++r_clauses;
53 return TRUE;
54 }

4-15 These lines implement lines 2-4 of Algorithm 3.15.

16-32 The for loop line 5 of Algorithm 3.15.

64

33-50 These lines implement lines 6-9 of Algorithm 3.15.

The function clause_present(int C[], in t n) is implemented as follows:

1 int clause_present(int C[], int n)
2 {
3 register int i, j, k, p, q;
4 p = abs(C[0]); q = C[0] > 0 ? SATISFIED : SHRUNK;
5 for(j=0; j<linfo[p][q].n_occur; ++j)
6 {
7 i f (c lauses[l info[p] [q] . l i t_ in_clauses[j]] .or ig ina l_ length == n)
8 {
9 int match_count = 0;

10 for(k=0; k<n; ++k)
11 {
12 i f (c lauses[l info[p] [q] . l i t_ in_clauses[j]] . l i t e ra ls [k]==C[k])
13 match_count++;
14 else break;
15 }
16 if(match_count == n) return TRUE;
17 }
18 >
19 return FALSE;
20 }

If a clause C is a duplicate of some already existing clause C, then every literal

in C must be in C" and the lengths must be equal. We pick the very first literal u

in C and scan the clauses that contain u. If the number of matching literals in any

of these clauses equals n, then C is duplicate and we return TRUE. Otherwise, we

return FALSE. (Note that both C and C are sorted.)

65

3.4.6 Branching rules

Not only is it important to select the right branching rule, but also it is neces­

sary to have a fast implementation of it. Here, we describe a few branching rules

that we have implemented in our solver. In section 3.5, we compare their per­

formances with the aim of choosing a branching rule in our solver for further ex­

periments. Throughout section 3.4.6, we let dk{F,u) be the number of yet-to-be-

satisfied clauses of length k in F that contain u. As denned in section 2.1, with each

literal u, we associate a weight function w(F,u). We find a variable x that maxi­

mizes $(w{F,x) ,w{F,x))\ and then we choose the literals if w(F,x) ^ w(F,x) and

choose x otherwise.

3.4.6.1 Dynamic Largest Combined Sum (DLCS)

Here, w(F, u) is the number of occurences of literal u in the unsatisfied clauses and

$(s,t) = s + t. Algorithm 3.16 shows the pseudocode for implementation of the

GETLITERALDLCS procedure.

Algorithm 3.16 DPLL - GETLITERALDLCS

l: procedure GETLITERALDLCS

2: max = 0
3: for each unassigned variable x do
4: s = ^2kdk(F,x)
5: t = J2kdk(F,x)
6: r = s + t
7: if r > max then
8: max = r
9: if s ^ t then u = x else u — x

10: end if
11: end for
12: return u
13: end procedure

66

Now we provide the C listing of DLCS branching rule:

1 i n l i n e i n t GetLiteralDLCSQ
2 {
3 register unsigned int i, j, C;
4 register unsigned int max = 0 , r, s, t;
5 register int u;
6 for(i=l; i<=n_vars; ++i)
7 {
8 if(assign[i].decision == ASSIGN_N0NE)
9 {
10 s = t = 0;
11 for(j=0; j<linfo[i][SATISFIED].n_occur; ++j)
12 {
13 C = l i n f o [i] [S A T I S F I E D] . l i t _ i n _ c l a u s e s [j] ;
14 s += l - c l a u s e s [C] . i s _ s a t i s f i e d ;
15 >
16 fo r (j=0 ; j<linfo[i][SHRUNK].n_occur; ++j)
17 {
18 C = l in fo [i] [SHRUNK] . l i t_ in_c lauses [j] ;
19 t += l - c l a u s e s [C] . i s _ s a t i s f i e d ;
20 }
21 r = s + t ;
22 i f (r > max)
23 {
24 max = r ;
25 i f (s >= t) u = i ;
26 e l s e u = - i ;
27 }
28 }
29 }
30 r e t u r n u;
31 }

11-15 These lines implement line 4 of Algorithm 3.16.

16-20 These lines implement line 5 of Algorithm 3.16.

67

3.4.6.2 MOMS heuristic-based branching rule, MinLen

Here, w(F,u) is the number of occurences of literal it in the smallest unsatisfied

clauses and ®(s,t) = (s + 1) * {t + 1). Algorithm 3.17 shows the pseudocode for

implementation of the GETLITERALMINLEN procedure.

Algorithm 3.17 DPLL - GETLITERALMINLEN

2
3
4
5
6
7
8

9
10
11

12:
13

procedure GETLITERALMINLEN

k = length of the shortest unsatisfied clause in F
for each unassigned variable x do

s = dk(F,x)
t = dk(F,x)
r = (s + l)*{t+l)
if r > max then

max = r
if s ^ t then u — x else u = x

end if
end for
return x

end procedure

The following listing is the C implementation of line 2 in Algorithm 3.17.

1 inl ine int get_length_of_shortest_clause()
2 {
3 reg is te r int i , j , C, type, rain = max_clause_len;
4 if(min == 2) return rain;
5 for(i=l ; i<=n_vars; ++i)
6 {
7 if(assign[i].decision == ASSIGN.NONE)
8 {
9 for(type=0; type<2; ++type)

10 {
11 for(j=0; j<linfo[i][type].n_occur; ++j)
12 {
13 C = l in fo [i] [type] . l i t _ in_c lauses [j] ;
14 i f (!c lauses[C] . i s_sa t i s f ied &&

68

15 clauses[C].current_length < min)
16 {
17 rain = clauses[C].current_length;
18 if(rain == 2) return 2;
19 }
20 }
21 }
22 }
23 >
24 r e t u r n min;
25 >

The following listing is the C implementation of lines 4-5 in Algorithm 3.17. It

takes a variable x and the length of the shortest clause k as input parameters and

outputs dk(F, x) and dk(F,x) in s and t respectively.

1 void get_M0MS(int x, int k, unsigned int &s, unsigned int &t)
2 {
3 r e g i s t e r i n t j , c;
4 s = t = 0;
5 fo r (j=0 ; j<linfo[x][SATISFIED].n_occur; ++j)
6 {
7 c = l i n fo [x] [SATISFIED] . l i t _ in_c l auses [j] ;
8 i f (c l a u s e s [c] . c u r r e n t . l e n g t h == k)
9 s += 1 - c l a u s e s [c] . i s _ s a t i s f i e d ;

10 }
11 fo r (j=0 ; j<linfo[x][SHRUNK].n_occur; ++j)
12 {
13 c = l in fo[x] [SHRUNK]. l i t_ in_c lauses[j] ;
14 i f (c l a u s e s [c] . c u r r e n t _ l e n g t h == k)
15 t += 1 - c l a u s e s [c] . i s _ s a t i s f i e d ;
16 }
17 }

Now we provide the C listing of Algorithm 3.17:

1 i n l i n e i n t GetLiteralMinLenO
2 {

69

3 register unsigned int i, k;
4 register unsigned int max = 0, r, s, t;
5 register int u;
6 for(i=l; i<=n_vars; ++i)
7 {
8 if(assign[i].decision == ASSIGN.NONE)
9 {
10 k = get_length_of_shortest_unsatisfied_clause();
11 get_M0MS(i, k, s, t);
12 r = (s+l)*(t+l);
13 if(r > max)
14 {
15 max = r;
16 if(s >= t) u = i;
17 else u = -i;
18 }
19 }
20 }
21 return u;
22 }

Originally Satz's (described in section 2.5) branching rule used MOMS heuristic

with ®(s,t) = s + t + s *t* 1024, which has similar performance as Minlen. Later,

unit-propagation based lookahead was integrated to Satz's branching rule to reduce

the number of nodes in the DPLL-tree. As a result, the branching rule has become

expensive as it makes many calls to SetVar and works best only with Satz and

Satz-like solvers, where branching rule is highly integrated to the solver.

70

3.4.6.3 2-sided-Jeroslow-Wang

Here, w(F,u) is defined as Y^k2~kdk{F,u) and <E>(s,i) as s + t. Algorithm3.18 shows

the pseudocode for implementation of the GETLITERAL2SJW procedure.

Algorithm 3.18 DPLL - GETLITERAL2SJW

l
2
3
4
5
6
7
8
9

10
11
12
13
14

procedure GETLITERAL2SJW

s = t — max = 0
mien = length of the longest clause in F
for each unassigned variable x do

s = J2k2mlen~kdk(F>x)
t = Ek2mlen~kdk(F,x)
r = s + t
if r > max then

max = r
if s ^ t then it = x else u = x

end if
end for
return u

end procedure

Now, we provide the C listing of 2-Sided Jeroslow-Wang:

1 inl ine int GetLiteral2SJW()
2 {
3 register unsigned int i, j, C;
4 register unsigned int max = 0 , r, s, t, mien = max_clause_len;
5 register int u;
6 for(i=l; i<=n_vars; ++i)
7 {
8 if(assign[i].decision == ASSIGN.NONE)

9 {
10 s = t = 0;
11 for(j=0; j<linfo[i] [SATISFIED].n_occur; ++j)
12 {
13 C = l in fo[i] [SATISFIED].lit_in_clauses[j];
14 s += ((! clauses[C] . is_sat isf ied)«(mlen-clauses[C] . length)) ;
15 }

71

16 for(j=0; j<linfo[i][SHRUNK].n_occur; ++j)
17 {
18 C = linfoEi][SHRUNK].lit_in_clauses[j];
19 t += ((!clauses[C] . i s_sat is f ied)«(mien-clauses[C] . length)) ;
20 }
21 r = s + t ;
22 i f (r > max)
23 {
24 max = r ;
25 i f (s >= t) u = i ;
26 else u = - i ;
27 >
28 }
29 }
30 return u;
31 }

6-29 This for loop implements lines 4-12 of Algorithm 3.18. For each unassigned

variable x, two for loops (lines 11-20) compute respectively s and t (lines

5-6) of Algorithm 3.18.

3.5 Comparing performance of branching rules

We know that the size of the DPLL-tree depends significantly on the branching

rule. Several different branching rules have been proposed over the last couple

of decades, but it is not really understood why a particular branching rule is better

then the others. Most of the branching rules are based on intuitive ideas but no

guarantees or theoretical proofs are given. Due to the inherent difficulty of the sat­

isfiability problem, it seems impossible to design a branching rule that is good for

nearly all instances of the satisfiability problem. In choosing a branching rule for

our solver, we are no different. We look at the number of calls made to SetVar using

72

different branching rules on selected instances from popular DIMACS benchmarks

and see which one makes the least number of calls to SetVar on most instances.

Here, we are assuming that the instances are simplified by the preprocessor.

3.5.1 DIMACS benchmark instances

DIMACS SAT challenges [20] include the instances: aim, Iran, jnh, dubois, gcp,

parity, i i , hanoi, bf, ssa, phole, and pret. These instances are widely used by

SAT-solvers for testing performances. In this section, we check the the performance

of our solver with different branching rules (DLCS, MINLEN, and 2sJW) on the

instances aim, pret, dubois, par, i i , and jnh.

3.5.1.1 aim instances

Asahiro, Iwama, and Miyano [2] developed techniques to generate random formu­

las with some prescribed parameters (satisfiablity, literal distribution, clause distri­

bution and number of satisfying truth assignments) in addition to the number of

variables. The formulas generated have names started with aim for Asahiro, Iwama

and Miyano. Each of the satisfiable instances has a unique satisfying assignment.

Many of the these instances (satisfiable and unsatisfiable) can be solved by the

preprocessor and the solver is invoked only if a satisfaction or a contradiction is

not reached during preprocessing. Table 3.1 shows the total number of resolvents

added, total number clauses subsumed, number of calls to SetVar and the CPU

time. The number of resolvents added is restricted by the threshold on the number

of resolvents.

73

Table 3.1: PERFORMANCE ON aim INSTANCES

INSTANCE

a i m - 1 0 0 - l _ 6 - y e s l - l . c n f (S)
a i m - 1 0 0 - l _ 6 - y e s l - 2 . c n f (S)
a i m - 1 0 0 - l _ 6 - y e s l - 3 . c n f (S)
a i m - 1 0 0 - l _ 6 - y e s l - 4 . c n f (S)
a i m - 1 0 0 - 2 _ 0 - y e s l - l . c n f (S)
a im-100 -2_0 -yes l -2 . cn f (S)
a im-100 -2_0 -yes l -3 . cn f (S)
a im-100 -2_0 -yes l -4 . cn f (S)
a i m - 1 0 0 - 3 _ 4 - y e s l - l . c n f (S)
a im-100-3_4-yes l -2 . cn f (S)
a im-100-3_4-yes l -3 . cn f (S)
a im-100-3_4-yes l -4 . cn f (S)
a i m - 1 0 0 - 6 _ 0 - y e s l - l . c n f (S)
a im-100 -6_0 -yes l -2 . cn f (S)
a i m - 1 0 0 - 6 _ 0 - y e s l - 3 . c n f (S)
a im-100 -6_0 -yes l -4 . cn f (S)
a i m - 1 0 0 - l _ 6 - n o - l . c n f (U)
a im-100- l_6-no-2 .cnf (U)
a im-100- l_6-no-3 .cnf (U)
a im-100- l_6-no-4 .cnf (U)
a im-100-2_0-no- l . cn f (U)
a im-100-2_0-no-2 .cnf(U)
a im-100-2_0-no-3 .cnf(U)
a im-100-2_0-no-4 .cnf(U)
a i m - 2 0 0 - l _ 6 - y e s l - l . c n f (S)
a i m - 2 0 0 - l _ 6 - y e s l - 2 . c n f (S)
a i m - 2 0 0 - l _ 6 - y e s l - 3 . c n f (S)
a i m - 2 0 0 - l _ 6 - y e s l - 4 . c n f (S)
a i m - 2 0 0 - 2 _ 0 - y e s l - l . c n f (S)
a im-200 -2_0 -yes l -2 . cn f (S)
a im-200-2_0-yes l -3 . cn f (S)
a im-200-2_0-yes l -4 . cn f (S)
a i m - 2 0 0 - 3 _ 4 - y e s l - l . c n f (S)
a im-200-3_4-yes l -2 . cn f (S)
a im-200-3_4-yes l -3 . cn f (S)
a im-200-3_4-yes l -4 . cn f (S)
a i m - 2 0 0 - 6 _ 0 - y e s l - l . c n f (S)
a im-200-6_0-yes l -2 . cn f (S)
a im-200 -6_0 -yes l -3 . cn f (S)
a im-200-6_0-yes l -4 . cn f (S)
a im-200 - l_6 -no - l . cn f (U)
a im-200- l_6-no-2 .cnf (U)
a im-200- l_6-no-3 .cnf (U)
a im-200- l_6-no-4 .cnf (U)

RESOLVENTS

249
348
290
800
990

1000
369
665

1700
1700
1695
1695
2396
2400
2 4 0 0
2392

800
800
785
800
8 1 4
995
990
780

1600
766

1289
1600
1985
1995
1995
1995
2 7 1 6
2716
2716
2708
3525
3567
3 5 4 9
1592
1600
1585
1600
1600

SUBSUMED

57
149
115
492
454
314
119
995
682
584
441
744

1008
972

1088
899
384
349
446
345

58
792
505
555

1030
403
952
922
959
996

1198
1277

758
894
569
926

1042
700

2 2 5 1
706

1156
1212
1149
1496

#SETVARS(BR)
100 (2SJW)
100 (2SJW)
100 (2SJW)
100 (2SJW)
100 (2SJW)
100 (2SJW)
100 (2SJW)
100 (2SJW)

102 (M I N L E N)

100 (2SJW)
100 (M I N L E N)

100 (M I N L E N)

100 (M I N L E N)

100 (M I N L E N)

100 (2sJW)
100 (M I N L E N)

12 (M I N L E N)

46 (2SJW)
7 (M I N L E N)

11 (M I N L E N)

0
1 (2SJW)
1 (2sJW)
0 (2SJW)

200 (2SJW)
200 (2SJW)
2 0 0 (2SJW)
2 0 1 (2SJW)
200 (2SJW)
200 (2SJW)
200 (2SJW)
200 (2SJW)
2 0 0 (2SJW)

676 (M I N L E N)

201 (M I N L E N)

200 (M I N L E N)

200 (M I N L E N)

200 (2sJW)
2 0 0 (M I N L E N)

200 (2SJW)
21 (M I N L E N)

12 (M I N L E N)

22 (M I N L E N)

6 (2sJW)
Continued on ft

CPU TIME

0.00s
0 .00s
0 .00s
0.00s
0 .00s
0.00S
0.00s
0 .00s
0.00S
0.00s
0 .00s
0 .00s
0 .00s
0.00s
0.00S
0.00S
0.00s
0.00S
0.00s
0 .00s
0.00S
0.00s
0 .00s
0.00S
0.00s
0.00S
0 .00s
0.00S
0.00S
0.00s
0 .00s
0.00s
0.00S
0.00S
0.00S
0.00S
0.00S
0.00s
0.00S
0.00S
0.00s
0.00S
0.00S
0.00s

ext Page. . .

74

Table 3.1: PERFORMANCE ON aim INSTANCES (CONTINUED...)

a im-200-2_0-no- l . cn f (U)
a im-200-2_0-no-2 .cnf(U)
a im-200-2_0-no-3 .cnf(U)
a im-200-2_0-no-4 .cnf(U)

1995
1995
1995
2000

1531
1397
1246
1600

8 (2SJW)
4 (2SJW)
7 (2sJW)
7 (2SJW)

0 .00s
0.00S
0.00S
0.00S

We observe that 2s JW performs better on some of the aim instances and MinLen

performs better on the others.

3.5.1.2 dubois instances

Oliver Dubois contributed a SAT formula generator, called gensathard.c, to the

DIMACS collection. A dubois formula of degree d is an encoding of the parity

problem of the multigraph in figure 3.1. The graph has 2d vertices and 3d edges.

The lower leftmost vertex is assigned parity 0, and the other vertices are assigned

parity 1. Since the sum of the parities is odd, the formula is unsatisfiable. A dubois

formula with degree d has 3d variables (a variable labels an edge) and 8d clauses

(four times the number of vertices). Most of these instances can be solved during

preprocessing.

Xd-l . Zl .

X2d-\ 1 X2d\ X2d+\

X2d-2

f ^ 1

X2d+2

X2d-3

%3d-2

Xd

X3d-i\ X3d

Figure 3.1: THE MULTIGRAPH UNDERLYING THE dubois FORMULA OF DEGREE d

75

Table 3.2: PERFORMANCE ON dubois INSTANCES

INSTANCE
dubois20.cnf (U)
dubois21.cnf(U)
dubois22.cnf(U)
dubois23.cnf(U)
dubois24.cnf(U)
dubois25.cnf(U)
dubois26.cnf(U)
dubois27.cnf(U)
dubois28.cnf(U)
dubois29.cnf(U)
dubois30.cnf(U)
dubois50.cnf(U)

RESOLVENTS
720
840
788
920
856

1000
924

1080
992

1160
1060
1740

SUBSUMED
448
655
796
714
544
773
592
831
640
899
688

1168

#SETVARS(BR)
0
0
0
0
0
0
0
0
0
0
0
0

CPU TIME
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00S
0.00S
0.00S
0.00S
0.00s
0.00s

For all these instances, contradictory unit clauses are found during preprocessing

and hence UNSAT is returned before calling the solver.

3.5.1.3 pret instances

Daniele Pretolani contributed to the DIMACS collection a SAT formula generator

t r i s a t . c that generates the PRET instances. Given an integer s greater than 3,

the generator first produces a connected 3-regular graph with s vertices. Then

it starts with PRET4, which is K4, the complete graph with four vertices (Figure

3.2(a)). It then keeps expanding the graph as follows: (i) take a vertex v and two

of its neighbors v\ and v2, (ii) introduce two new vertices v[and v'2 and replace

the two edges {v,vi} and {v,v2} by the five edges {v,v[}, {v,v'2}, {vi,v[}, {v2,v'2}

and {v[,v2}. The result depends on the order of the vertices and the choices of the

neighbours. In general, there may be multiple pairs of neighbours to choose. The

generator t r i s a t . c has a deterministic way for doing it. In Figure 3.2, (b), (c), (d)

and (e) are obtained by working on the vertices vx, v2, v3 and v4 in that order.

76

Vs(v'3) V6{v'4) U5 V& D5 V6 V5 Vs

t>10(t)2) ^ 9 (^ 5) " 1 0 v9

Figure 3.2: EXAMPLES OF GRAPHS CORRESPONDING TO pret INSTANCES

Table 3.3: PERFORMANCE ON THE pret INSTANCES

INSTANCE (S/U)

pret60-25.cnf(U)
pret60-40.cnf(U)
pret60-60.cnf(U)
pret60-75.cnf(U)

DLCS
68157438 (33.18s)
68157438 (33.31s)
68157438 (33.77s)
68157438 (33.20s)

MINLEN

11491010 (6.35s)
11491010 (6.42s)
11491010 (6.35s)
11491010 (6.36s)

2SJW
16354642 (6.72s)
16354642 (6.48s)
16354642 (6.58s)
16354642 (6.54s)

3.5.1.4 par instances

The PAR formulas, contributed by James Crawford, encode parity learning prob­

lems. Consider the parity functions over subsets of {21,2:2, • • • ,xn}. The inputs to

the functions are vectors in {0, l } n , and the function computes the parity of a sub­

set, V, of {xi,x2, • • •, xn}. The parity learning problem is, given m pairs of sample

inputs and corresponding outputs, identify the subset V that determines the func­

tion values. These instances are all satisfiable, and the satisfying assignments can

be translated to the incidence vectors of V.

77

Table 3.4: PERFORMANCE ON THE par INSTANCES

INSTANCE

p a r l 6 - l . c n f (S)
p a r l 6 - 2 . c n f (S)
p a r l 6 - 3 . c n f (S)
p a r l 6 - 4 . c n f (S)
p a r l 6 - 5 . c n f (S)
p a r l 6 - l - c . c n f (S)
p a r l 6 - 2 - c . c n f (S)
p a r l 6 - 3 - c . c n f (S)
p a r l 6 - 4 - c . c n f (S)
p a r l 6 - 5 - c . c n f (S)

DLCS
5 0 5 4 7 0 4 (3.81S)
2 0 1 3 5 7 9 (1 .43s)
1 7 7 4 5 8 4 (1 .32s)
7 3 1 7 8 7 4 (5.18S)

1 0 8 4 9 8 0 8 (8 .72s)
2 2 1 0 6 9 5 (2 .61s)
6 7 2 2 9 9 2 (8 .90s)

69938 (0.07s)
4 0 9 4 1 6 1 (5.13S)
5 8 9 6 5 1 8 (7 .07s)

M I N L E N

3137702 (2.90s)
1960298 (1.69s)

1 8 2 3 2 7 4 (1.77S)
4 3 0 2 5 2 7 (3.65S)
6141771 (5.79s)

1 7 3 2 6 7 7 (1.90S)
6 5 1 0 9 3 4 (7 .82s)
2 0 3 1 9 7 9 (2.53S)
2 5 4 6 0 3 9 (3.68S)
1720827 (1 .93s)

2SJW
3 9 0 6 0 5 5 (2 .67s)
3 5 4 7 1 1 2 (2.07S)
1143446 (0.76s)
4075472 (2.55s)

1 3 0 9 3 5 0 7 (9.20S)
1660189 (1.33s)
1506899 (1.29s)

1 2 8 6 3 7 1 (1 .18s)
1794838 (1.58s)
1 8 4 2 0 8 7 (1.43s)

We observe that each of the three branching rules perform better than the other

two on some of the par instances.

3.5.1.5 Other DIMACS instances

The i i instances are described in Kamath, Karmakar, Ramakrishnan, and Resende

[37] and have been contributed to the DIMACS collection by Mauricio Resende.

Table 3.5: PERFORMANCE ON THE i i INSTANCES

INSTANCE (S /U)

i i l 6 b 2 . c n f (S)
i i l 6 c 2 . c n f (S)
i i l 6 d 2 . c n f (S)
i i l 6 e 2 . c n f (S)
i i 3 2 b l . c n f (S)
i i 3 2 b 2 . c n f (S)
i i 3 2 b 3 . c n f (S)
i i 3 2 b 4 . c n f (S)
i i 3 2 c l . c n f (S)
i i 3 2 c 2 . c n f (S)
i i 3 2 c 3 . c n f (S)
i i 3 2 d l . c n f (S)
i i 3 2 d 2 . c n f (S)
i i 3 2 e l . c n f (S)
i i 3 2 e 2 . c n f (S)

DLCS
1491641 (14.00s)

4 3 8 2 3 5 (3.27S)
24103 (0.24s)

3 5 2 3 3 2 (2.54S)
1107 (0 .01s)
10498 (0.04s)

2660 (0.02s)
7252 (0.07s)

216 (0.00s)
368 (0.00s)

4 4 6 (0.01S)
527 (0.00S)

155344 (0.40S)
2 1 1 (0 .00s)
622 (0 .01s)

MINLEN

3 7 1 3 4 5 6 (34.03S)
47149 (0.90s)

1 4 6 0 8 3 7 (24 .10s)
1 2 3 3 7 (0.21S)

222 (0.00s)
2 1 0 0 9 (0 .08s)

3 2 6 6 (0 .09s)
6342 (0.14S)

1 8 4 (0 . 0 1 S)
220 (0 .01s)
271 (0.01s)
476 (0.00s)

1730 (0.01s)
195 (0.00s)
267 (0.00s)

Contii

2SJW
3 8 9 4 9 6 3 (37 .41s)

1 2 8 7 2 3 (1.14S)
1 4 5 4 6 9 9 (10 .51s)

12209 (0.09s)
2 9 8 8 (0.02S)

2 7 8 6 3 4 (0.89S)
121849 (0.60S)

2 0 8 3 8 5 9 (14.58S)
217 (0 .01s)

2498 (0 .03s)
1 0 7 4 7 (0.06S)

1 6 7 1 8 3 (0.30S)
5 0 1 3 1 7 5 (9 .36s)

210 (0 .00s)
3 3 0 0 (0 .03s)

iued on Next Page. . .

78

Table 3.5: PERFORMANCE ON i i INSTANCES (CONTINUED...)

i i 3 2 e 3 . c n f (S)
i i 3 2 e 4 . c n f (S)
i i 3 2 e 5 . c n f (S)

764 (0.01s)
16042 (0 .16s)

1171 (0.04s)

3 0 4 6 (0 .08)
652 (0.10s)

9 0 6 6 (0.31S)

6 3 4 7 1 8 (2 .66s)
7 5 8 3 5 4 (4.45S))

1 5 6 1 6 3 2 (17 .25s)

We observe that DLCS performs better on some of the i i instances and MinLen

performs better on the others.

The jnh instances are contributed to the DIMACS collection by John Hooker and

are described in [57].

PERFORMANCE ON THE jnh INSTANCES

INSTANCE

j n h l . c n f (S)
jnh2 .cnf (U)
jnh3 .cnf (U)
jnh4 .cnf (U)
jnh5 .cnf (U)
jnh6 .cnf (U)
j nh7 . cn f (S)
jnh8 .cnf (U)
jnh9 .cnf (U)
jnhlO.cnf(U)
j n h l l . c n f (U)
j n h l 2 . c n f (S)
j nh l3 . cn f (U)
j n h l 4 . c n f (U)
j n h l 5 . c n f (U)
j n h l 6 . c n f (U)
j n h l 7 . c n f (S)
j n h l 8 . c n f (U)
j n h l 9 . c n f (U)
jnh20.cnf(U)
jnh201 .cnf (S)
jnh202.cnf(U)
jnh203.cnf(U)
jnh204 .cnf (S)
jnh205 .cnf (S)
jnh206.cnf(U)
jnh207 .cnf (S)
jnh208.cnf(U)

DLCS
1965 (0 .01s)

160 (0 .00s)
1522 (0 .00s)

6 6 7 (0 .00s)
214 (0 .00s)

1131 (0.01S)
121 (0.00S)
170 (0 .00s)
315 (0.01S)
820 (0.00S)
842 (0.01S)
409 (0 .00s)
186 (0 .00s)
3 8 5 (0.00S)
723 (0 .01s)

10115 (0 .05s)
8 1 0 (0.01S)

1060 (0 .01s)
1334 (0 .00s)

361 (0.00S)
97 (0 .00s)

155 (0 .00s)
504 (0.00S)
759 (0.01S)
100 (O.OOs)

1055 (O.OOS)
1644 (0.01S)
1555 (0.01S)

M I N L E N

257 (O.OOs)
113 (O.OOS)
805 (O.OOs)
526 (O.OOs)
163 (0.01s)
483 (O.OOs)

97 (O.OOs)
9 6 (O.OOs)

261 (O.OOs)
206 (O.OOs)
238 (O.OOs)
157 (O.OOs)
156 (O.OOs)
154 (O.OOs)
431 (O.OOs)

5272 (0.02s)
4 2 2 (0 .01s)
467 (O.OOs)
410 (O.OOs)
257 (O.OOs)
98 (O.OOs)

103 (O.OOs)
419 (O.OOs)

608 (0 .01s)
396 (O.OOs)
806 (O.OOs)

1089 (O.OOs)
513 (O.OOs)

Continued (

2SJW
1189 (O.OOS)

102 (O.OOs)
1390 (0.01S)

6 2 9 (0.01S)
4 3 7 (O.OOs)

1188 (0.01S)
256 (O.OOS)
150 (O.OOS)
4 4 0 (O.OOS)
702 (O.OOS)
295 (O.OOS)
157 (O.OOs)
268 (O.OOS)
245 (O.OOS)
581 (O.OOS)

9290 (0.04S)
122 (O.OOs)

1149 (O.OlS)
9 0 4 (O.OlS)
388 (O.OlS)

92 (O.OOs)
155 (O.OOS)
4 7 2 (O.OOS)
323 (O.OOs)
120 (O.OOS)

1052 (O.OOS)
1661 (O.OlS)

997 (O.OOS)
jn Next Page. . .

79

PERFORMANCE ON THE jnh INSTANCES (CONTINUED...)

jnh209.cnf(S)
jnh210.cnf(S)
jnh211.cnf(U)
jnh212.cnf(S)
jnh213.cnf(S)
jnh214.cnf(U)
jnh215.cnf(U)

285 (O.OOS)
129 (O.OOS)
175 (O.OOS)

2448 (O.Ols)
98 (O.OOs)

416 (O.OOS)
345 (O.OOs)

201 (O.OOs)
119 (O.OOs)
149 (O.OOs)
205 (O.OOs)
149 (O.Ols)
388 (O.OOs)
172 (O.OOs)

227 (O.OOS)
132 (O.OOs)
193 (O.OOs)

1837 (O.OOS)
116 (O.OOs)
413 (O.OOs)
329 (O.OOS)

Branching rule MinLen performs consistently better on the jnh instances.

It seems reasonably difficult to find a branching rule that works well on most

classes of instances. In the following section, we use MINLEN as the branching rule

(since it performs consistently better on the DIMACS instances) to compare our

solver with other well-known solvers.

80

3.6 Performance of our solver

In this section, we compare the running time of our solver with SATZ [44], ZCHAFF

[49], and MINISAT [58] on some DIMACS satisfiability instances [20] and some

other instances from the SATLIB collection [55]. We have compiled and run them

on a 2.2 GHz AMD Opteron 64-bit processor machine in the cirrus cluster at Con­

cordia University.

3.6.1 On DIMACS instances

In the previous section, we have discussed some of the DIMACS SAT instances (aim,

pret, dubois, and par) while comparing the performance of different branching

rules on our solver. For detail of other instances, see [20]. In this section, we com­

pare the performance of our solver with other well-known solvers (SATZ, ZCHAFF,

and MINISAT) on some DIMACS instances.

Table 3.7: PERFORMANCE OF OUR SOLVER ON dubois INSTANCES

INSTANCES (S /U,#VARS,#CLAUSES)

dubois20.cnf (U, 60, 160)
dubois21.cnf (U, 63, 168)
dubois22.cnf (U, 66, 176)
dubois23.cnf (U, 69, 184)
dubois24.cnf (U, 72, 192)
dubois25.cnf (U, 75, 200)
dubois26.cnf (U, 78, 208)
dubois27.cnf (U, 81, 216)
dubois28.cnf (U, 84, 224)
dubois29.cnf (U, 87, 232)
dubois30.cnf (U, 90, 240)
dubois50.cnf (U, 150, 400)

SATZ

3.90s
4.35s

11.74s
31.22s
35.18s

>60s
>60s
>60s
>60s
>60s
>60s
>60s

ZCHAFF

0.01s
0.01s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.01s
0.01s
0.01s
0.01s

MINISAT

0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s

OUR SOLVER

0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s

81

Table 3.8: PERFORMANCE OF OUR SOLVER ON pret INSTANCES

INSTANCES (S /U,#VARS,#CLAUSES)

pret60-25.cnf (U, 60, 160)
pret60-40.cnf (U, 60, 160)
pret60-60.cnf (U, 60, 160)
pret60-75.cnf (U, 60, 160)

SATZ

5.92s
5.55s
5.41s
5.28s

ZCHAFF

0.01s
0.01s
0.01s
0.01s

MlNISAT

0.00s
0.00s
0.00s
0.00s

OUR SOLVER

6.35s
6.42s
6.35s
6.36s

Table 3.9: PERFORMANCE OF OUR SOLVER ON par INSTANCES

INSTANCES (S /U,#VARS,#CLAUSES)

par8-l .cnf (S, 350, 1149)
par8-2.cnf (S, 350, 1157)
par8-3.cnf (S, 350, 1171)
par8-4.cnf (S, 350,1155)
par8-5.cnf (S, 350, 1171)
par8-l-c .cnf (S, 64, 254)
par8-2-c.cnf (S, 68, 270)
par8-3-c.cnf (S, 75, 298)
par8-4-c.cnf (S, 67, 266)
par8-5-c. cnf (S, 75, 298)
par l6- l .cnf (S, 1015, 3310)
parl6-2.cnf (S, 1015, 3374)
parl6-3.cnf (S, 1015, 3344)
par l6-4 .cnf(S , 1015, 3324)
par l6-5 .cnf(S , 1015,3358)
par l6- l -c .cnf (S, 317, 1264)
parl6-2-c.cnf (S, 349, 1392)
parl6-3-c.cnf (S, 334, 1332)
parl6-4-c.cnf (S, 324, 1292)
parl6-5-c.cnf (S, 341, 1360)

SATZ

0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
1.45s
0.08s
2.86s
1.84s
0.26s
0.39s
0.15s
0.48s
0.10s
0.30s

ZCHAFF

0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.76s
1.07s
0.28s
0.28s
0.76s
0.36s
0.77s
0.13s
0.01s
0.58s

MlNISAT

0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.04s
0.31s
0.20s
0.01s
0.17s
0.01s
0.16s
0.11s
0.00s
0.10s

OUR SOLVER

0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
2.90s
1.69s
1.77s
3.65s
5.79s
1.90s
7.82s
2.53s
3.68s
1.93s

Table 3.10: PERFORMANCE OF OUR SOLVER ON phole INSTANCES

INSTANCES (S/U,#VARS,#CLAUSES)

hole6. cnf (U, 42, 133)
hole7. cnf (U, 56, 204)
hole8. cnf (U, 72, 297)
hole9.cnf (U, 90,415)
holelO.cnf (U, 110,561)

SATZ

0.00s
0.02s
0.17s
1.62s

16.74s

ZCHAFF

0.01s
0.03s
0.25s
1.04s
5.57s

MlNISAT

0.00s
0.02s
0.26s
1.70s

28.88s

OUR SOLVER

0.00s
0.01s
0.19s
1.90s

20.78s

82

Table 3.11: PERFORMANCE OF OUR SOLVER ON ssa INSTANCES

INSTANCES (S / U , # V A R S , # C L A U S E S)

ssa0432-003.cnf (U, 435, 1027)
ssa6288-047.cnf (U, 10410, 34238)
ssa7552-038.cnf (S, 1501, 3575)
ssa7552-158.cnf (S, 1363, 3034)
ssa7552-159.cnf (S, 1363, 3032)
ssa7552-160.cnf (S, 1391, 3126)

SATZ
0.00s
0.14s
0.05s
0.03s
0.04s
0.03s

ZCHAFF

0.01s
0.01s
0.01s
0.00s
0.00s
0.00s

MlNISAT
0.00s
0.01s
0.00s
0.00s
0.00s
0.00s

O U R SOLVER

0.26s
0.26s
0.00s
0.00s
0.00s
0.00s

Table 3.12: PERFORMANCE OF OUR SOLVER ON i i INSTANCES

INSTANCES (S / U , # V A R S , # C L A U S E S)

i i l 6 b 2 . c n f
i i l 6 c 2 . c n f
i i l 6 d 2 . c n f
i i l 6 e 2 . c n f
i i 3 2 b l . c n f
i i 3 2 b 2 . c n f
i i 3 2 b 3 . c n f
i i 3 2 b 4 . c n f
i i 3 2 c l . c n f
i i 3 2 c 2 . c n f
i i 3 2 c 3 . c n f
i i 3 2 d l . c n f (
i i 3 2 d 2 . c n f (
i i 3 2 e l . c n f (
i i 3 2 e 2 . c n f (
i i 3 2 e 3 . c n f (
i i 3 2 e 4 . c n f (
i i 3 2 e 5 . c n f

;S, 1076, 16121)
[S, 924, 13803)
[S, 836, 12461)
[S, 532, 7825)
[S, 228, 1374)
[S, 261 , 2558)
[S, 348, 5734)
;S, 381 , 6918)
[S, 225, 1280)
;S, 249, 2182)
[S, 279, 3272)
S, 332, 2703)

[S, 404, 5153)
S, 222, 1186)
S, 267, 2746)
S, 330, 5020)
S, 387, 7106)
S, 522, 11636)

SATZ

0.39s
0.44s
0.46s
0.58s
0.05s
0.15s
0.87s
1.14s
0.05s
0.15s
0.34s
0.09s
0.24s
0.04s
0.16s
0.51s
1.22s
2.05s

ZCHAFF

0.36s
0.01s
0.01s
0.01s
0.00s
0.00s
0.00s
0.02s
0.00s
0.01s
0.01s
0.01s
0.01s
0.01s
0.00s
0.01s
0.01s
0.00s

MlNISAT
0.00s
0.01s
0.00s
0.01s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.01s
0.01s
0.01s

OUR SOLVER

34.03s
0.90s

24.10s
0.21s
0.00s
0.06s
0.06s
0.13s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.00s
0.01s
0.07s
0.25s

We do not list the performance on the aim and jnh instances as all four solvers

perform well on them.

3.6.2 Other instances from SATLIB solvers collection

3.6.2.1 Uniform Random 3-SAT

3-SAT instances with m clauses over n variables in the SATLIB collection have been

generated in the following way:

83

1. Each of the m clauses is constructed by drawing a literal uniformly at random

from the 2n possible literals.

2. Clauses containing duplicate literals are not added.

3. Clauses containing both a literal and its complement are not added.

We compare our solver with MINISAT on several instances (both satisfiable and

unsatisfiable) of the SATLIB collection. Here, we list the total running time, taken

by each solver on several instances.

Table 3.13: PERFORMANCE ON THE uf INSTANCES

INSTANCE (S/U)

ufl25-538 (100 sa t i s f i ab l e instances)
uufl25-538 (100 unsat i s f iable instances)
ufl50-645 (100 sa t i s f i ab le instances)
uuf150-645 (100 unsat i s f iable instances)
ufl75-753 (100 sa t i s f i ab le instances)
uuf175-753 (100 unsat i s f iable instances)

OUR SOLVER

0.60s
2.25S
2.65S
7.83S
9.74s

27.02S

MINISAT

0.10s
0.34s
0.45s
0.50s
1.72s
3.45s

We observe that our solver does not perform well, compared to ZCHAFF and

MINISAT on well-known instances from DIMACS and SATLIB. In the following chap­

ter, we discuss a class of instances (vdw instances) where our solver (with a suitable

branching rule) performs better than any other known SAT-solver. We have used the

solver to compute some previously unknown van der Waerden numbers (denned in

section 4.1). These numbers are published in Ahmed [1].

84

Chapter 4

SAT and van der Waerden numbers

When we started coding for DPLL, the instances we used to test the performance

were instances related to the van der Waerden numbers, defined in the following

section. In various phases, we have improved and optimized our solver to per­

form in these instances as efficiently as possible. Eventually, we have been able to

compute thirty new van der Waerden numbers.

4.1 Van der Waerden numbers

The van der Waerden number w(r; kx, k2, • • • , kT) is the least integer m such that for

every partition P\ U P2 U • • • U Pr of the set {1,2, • • • , m], there is an index j in

{1,2, • • • ,r} such that Pi contains an arithmetic progression of kj terms. A list of

van der Waerden numbers known so far is given in Table 4.5 at the end of this

chapter.

85

4.2 SAT encoding of van der Waerden numbers

Given positive integers r,k\, — ,k r , and n, we construct a SAT formula (an instance

of the satisfiability problem), which is satisfiable if and only if w(r; h,k2,- • • , kr) >

n. We consider the following two cases:

When r = 2, we have variables xt for 1 ^ i < n and the following clauses:

(a) {xa,xa+d,--- ,xa+d(fcl_i)} with a ^ l,d ^ l ,a + d(/ci - 1) ^ n,

(6) {xa,xa+d,--- ,xa+d(fc2_i)} with a ^ 1 , 0 l,a + d(fc2 - 1) < n.

Here, a;* = TRUE encodes i e Pj and Xj = FALSE encodes i E P2 (if Xj is not

assigned but the formula is satisfied, then i can be arbitrarily placed in either of

the blocks of the partition). Clauses (a) prohibit the existence of an arithmetic

progression of length k\ in Pi and clauses (b) prohibit the existence of an arithmetic

progression of length k2 in P2.

When r > 2, we take one variable for each integer and each block of the parti­

tion. Each variable xitj with 1 ^ i ^ n, 1 ^ j < r, takes value TRUE if and only if the

integer i belongs to a block P,- of a partition. This generates nr variables. The dou­

ble subscripts i,j can be routinely encoded as single subscripts such as r(i - 1) + j

or i + n(j — 1). We have the following clauses:

(a) INTEGER % is IN AT LEAST ONE BLOCK: For each integer i, we have the clause

{xi,i,Xit2, • • • , xi>r} to ensure that i belongs to at least one block of the parti­

tion.

(b) No ARITHMETIC PROGRESSION OF LENGTH kj IN BLOCK PJ-. This is the most

important constraint. For 1 ^ j < r, l ^ a ^ n - k j + 1 and 1 < d ^

86

[(n — a)/(kj — 1)J, we add the following clauses:

(c) INTEGER i is CONTAINED IN AT MOST ONE BLOCK: We want an integer not to

be contained in more than one block of the partition. To do so, we add the

following clauses: {xi:S,Xi^} for 1 < i ^ n, 1 < s < t < r.

Clauses of the third kind are not necessary, but their presence may steer the

branching rules towards better decisions.

4.3 Experiments on some van der Waerden formulas

We denote a van der Waerden instance by wr-fci kr-n. cnf, where r is the num­

ber of blocks in the partition and n is an integer. The instance is satisfiable if and

only if n < w(r; k\,..., kr). In this section, we report the results of the experiment

on some known values of van der Waerden numbers to evaluate the performance

of different branching rules on these instances. In this experiment, we run our

solver on 2.2 GHz AMD Opteron 64-bit processors of the c i r rus cluster at Con­

cordia University. Preprocessing (as described in section 3.4.5.1) does not help in

simplifying these instances. From Table 4.1, we see that 2s JW consistantly performs

better (in terms of the number of calls to SetVar and running time) than the other

two branching rules on the vdw instances. So, we fix 2s JW as the branching rule for

further experiments on the vdw instances.

87

Table 4.1: PERFORMANCE ON THE vdw INSTANCES

INSTANCE

w2-3-3-9.cnf(U)
w2-3-4-18.cnf(U)
w2-3-5-22.cnf(U)
w2-3-6-32.cnf(U)
w2-3-7-46.cnf(U)
w2-3-8-58.cnf(U)
w2-3-9-77.cnf(U)
w2-3-10-97.cnf(U)
w2-3-ll-114.cnf(U)
w2-3-12-135.cnf(U)
w2-3-13-160.cnf(U)
w2-4-4-35.cnf(U)
w2-4-5-55.cnf(U)
w2-4-6-73.cnf(U)
w2-4-7-109.cnf(U)
w2-5-5-178.cnf(U)

DLCS
34(0.00S)

157 (0.00S)
452 (0.00S)
1889 (0.00S)

24597 (0.02S)
55668 (0.08s)

386856 (0.83S)
4505603 (12.96s)

42613428 (147.50s)
459501234 (1807s)

(> 6 HRS)
3684 (0.00s)

79428 (0.13S)
6312526 (13.47s)

3389336998 (11476s)
(> 6 HRS)

M I N L E N

34 (0.00S)
116 (O.OOs)
420 (O.OOs)
1898 (O.OOS)

36976 (0.03S)
47103 (0.09S)

217512 (0.56s)
1635291 (5.30S)

10145290 (38.99S)
73592941 (343.64s)
616727175 (3208s)

1490 (O.OOs)
27284 (0.10S)

1567336 (6.92s)
166908653 (979s)

(> 6 HRS)

2SJW
32 (O.OOs)

123 (O.OOS)
396 (O.OOs)
1432 (O.OOs)

20174 (0.02s)
28326 (0.05s)

109984 (0.27s)
749378 (2.30s)

4249781 (15.31s)
25027457 (109s)

204929576(971s)
1334 (O.OOs)

20842 (0.04s)
936838 (2.39s)

68788298 (297s)
8177796 (125.20s)

4.4 New van der Waerden numbers found by Kouril

In 2006, Kouril [39] found seven new van der Waerden numbers, one of which

was w(2; 5,6). Unaware of Kouril's progress, we were also trying to determine this

number. Once we have found in 2007 that this number is 206, we tried to improve

the running time of our solver on w2-5-6-206. cnf. It turned out that in proving the

instance w2-5-6-206. cnf to be unsatisfiable, our solver (using 2sJW as branching

rule) performs (takes 6.2 days) significantly better than any other known solver (for

example, MINIS AT takes 35 days).

Table 4.2: RUNNING TIME ON VAN DER WAERDEN INSTANCES

INSTANCE

w-2-4-7-109.cnf
w-2-3-13-160.cnf
w-3-3-4-4-89
w-4-3-3-3-3-76.cnf
w-2-5-6-206.cnf

S/U
(U)
(U)
(U)
(U)
(U)

SATZ

25.8 mins
-
-
-
-

ZCHAFF

>100 mins
-
-
-
-

MINISAT

4.1 mins
20.6 mins
>10 days
>15 days
35 days

O U R SOLVER

4 mins
15.9 mins
4.1 days
3.9 days
6.2 days

88

Table 4.2 shows that our solver performs better than other well-known solvers

on hard van der Waerden instances.

Table 4.3 provides a good partition related to all the van der Waerden numbers

found by Kouril and also iu(2;6,6) found by Kouril and Paul [40]. Here a good

partition means a partition Pi U P2 U • • • U Pr such that no P, contains and arithmetic

progression of kj terms. We will use strings to denote partitions; for example,

11221122 denotes Pi - {1,2,5,6} and P2 = {3,4,7,8}.

Table 4.3: VAN DER WAERDEN NUMBERS FOUND BY KOURIL

w(r;ki,k2,--- ,K)
«>(2; 3,14)

w(2;3,15)

io(2;3,16)

^(2; 4,8)

186

218

238

146

EXAMPLE OF A GOOD PARTITION

22121222 22222222 22112222 21222222
21222222 22121222 22222122 22222122

22222221 12221222 22222222 22122112
22222222 21212222 21222222 22122222
12122222 22222122 21222222 2222A211
22221222 22222212 22212222 2
(where A is arbitrary).

22222222 21222122 22222122 21122222
12222222 22221222 21222222 22211222
22222212 22222212 22212221 22222222
22221122 22222212 22222212 22222222
21222222 22212222 12122222 12112222
22222221 22222122 22222221 12222222
22221122 22222212 22222222 2

2222A221 22222222 22222212 1222B222
22212211 22222222 22222221 22222112
12222222 22221221 21222222 22222221
22222222 22221222 12222222 22122122
22222122 22222222 22212212 22221121
22222222 22222122 12222222 12222222
222221C2 21222221 12222212 22222222
21222222 22222
(where ABC is arbitrary).

112221A2 12222112 22222122 12222211
12212222 12111222 21221121 21222222
21122222 12211222 21222212 11222112
22222211 21222222 21122212 11222221
12212222 122B1121 2

Continued on Next Page...

89

Table 4.3: VAN DER WAERDEN NUMBERS FOUND BY KOURIL

(where AB is arbitrary).

u>(2;5,6) 206 21112111 22122221 11222211 11211122
21222212 11222221 12122221 22211121
11121221 12112212 11112111 22212222
12112222 21121222 21222111 21111212
21121122 12111121 11222122 22121122
22211212 22212221 11211112 22211122
22122AB1 21112
(where AB is arbitrary).

u>(2;6,6) 1132 A1222211 21111121 22221222 11222221
22122212 11122212 11212112 21122121
22121112 22121112 11211111 22111211
11212222 21221111 21211112 21222221
21111211 12211111 21121112 12221112
12212122 11221121 21121222 11121222
12212222 21122212 22212111 11211222
21212222 11211111 21222212 22112222
21221222 12111222 12112121 12211221
21221211 12221211 12112111 11221112
11112122 22212211 112B2111 12212222
21211112 11122111 11211211 12122211
12122121 22112211 21211212 22111212
22122122 22211222 12222121 11112112
2221C122 22112111 11212222 12221122
22212212 22121112 22121121 21122112
21212212 11122212 11121121 11112211
12111121 22222122 11112221 11122122
22212111 12111221 11112112 11121222

11121221 21221122 11212112 12221112
12221221 22222112 22122221 21111121
12222111 22221121 11112122 22122211
22222122 12221211 12221211 21211221
12212122 12111222 12111211 21111122
11121111 21222221 2211112D 21111221
22222121 11121112 21111121 12111212
22111212 21212211 22112121 12122211
12122212 21222221 12221222 21211111
21122221 E1222211 21111121 22221222
11222221 22122212 11122212 11212112
21122121 22121112 22121112 11211111
22111211 11212222 21221111 2F211112
21222221 21111211 12211111 21121112
12221112 12212122 11221121 21121222

11121222 12212222 21122212 22212111
11211222 21G

Continued on Next Page.

90

Table 4.3: VAN DER WAERDEN NUMBERS FOUND BY KOURIL

to(3;2,3,8)

tu(3;2,4,7)

72

119

(where ABCDEFG is arbitrary).

33333233 23233323 33333233 32323323
33331323 32323332 33333323 33232332
3333333

33333322 23223332 33233233 33332233
32333232 33233333 22232233 22233323
23313333 33232323 32233232 33333322
32223333 23323332 333333

4.5 Some new van der Waerden numbers found by us

We have found thirty previously unknown van der Waerden numbers. These num­

bers and the corresponding good partitions are listed in Table 4.4.

Table 4.4: VAN DER WAERDEN NUMBERS FOUND BY US

w[r;ki,k2,--- ,kk)
w(3;2,3,9)

iy(3;2,3,10)

iu(3; 2,3,11)

u>(3;2,3,12)

w(3;2,3,13)

90

108

129

150

171

EXAMPLE OF A G O O D PARTITION

33333332 33332333 33332322 32333332
33322333 33332333 33323333 33133223
23333323 33223333 33323233 3

33333233 33333332 33233323 33333323
33322333 32323333 32333233 13333333
33233333 22323333 33233322 33333323
33333333 233

33333322 33323333 33322333 22333333
33332323 33333233 33333332 33233323
23333333 33323233 32331333 33333223
33333233 33233333 33323333 23323333

33333333 33323233 23333333 33323223
33233333 33333323 33333223 23333333
33332333 32323333 33333332 23333333
33233333 32333332 12233333 33333322
33332333 23333333 33332

33333333 33332333 33323333 33332232
23333333 33233333 23333333 32332323
33333323 33333332 32333333 33333321
33333332 23233333 33323233 33223333
33332332 32333333 32333333 33233333
33233333 33

Continued on Next Page...

91

Table 4.4: VAN DER WAERDEN NUMBERS FOUND BY US

IO(3;2,5,5)

10(4:2,2,3,8)

iu(4;2,2,3,9)

w(4;2,2,3,10)

tu(4;2,2,4,5)

u»(4;2,2,4,6)

u/(4;2,3,3,5)

«,(5;2,2,2,3,4)

io(5;2,2,2,3,5)

tu(5;2,2,2,3,6)

^(5:2,2,2,3,7)

iu(5;2,2,2,3,8)

io(5;2,2,2,4,4)

w(5; 2,2,2,4,5)

ty(5;2,2,3,3,4)

=
=

=

=

=

180

83

99

119

75

93

86

29
44

56

72

88

54

79

63

33232332 32223233 32222322 22322323
33232223 33323333 23323222 32333222
23222232 23233323 22233332 33332333
32223233 32322322 22322223 33232223
23323333 23333212 32333232 23222232
22233323 22232332 223

44444434 44433434 44434443 43444334
44444144 24344344 44434344 44344434
44443344 44434444 44

43443444 44444343 44343444 44443433
43444344 44442444 44444144 44443444
34334344 44444343 44343444 44444344
34

34434444 43443444 44444434 44443344
44444344 44334424 44344444 44433444
44444341 43444444 34344344 44444334
44434444 44434444 344444

43434444 34434441 33343343 33444434
43444433 34334333 44443443 44443334
33443424 44

33343344 44433434 34444343 33444434
44434444 43334444 34333423 43314444
43433344 44343344 44343444 3343

43433444 34444224 33232444 43442424
32244232 43434444 14444343 42324422
34242443 44442324 34224

54554555 44143555 45544255 5445
55544545 55454425 55345555 45555144
54555454 455

45555545 55545455 54455555 45551423
44555554 55544555 5545555
55555544 54555455 55552445 44555545
55515555 45555445 44355555 54555454
4555555

55455455 55544555 45455554 55555535
55555454 41455555 55454455 55545555
55255544 55455555 4555545
54554544 45544454 55255454 44554445
45315545 44455444 54554

55554554 55554445 44544455 55455455
55444544 54442555 35555155 44454454
44555545 445555

55443453 53543545 55332335 45553455
54543144 55535335 35445553 544343

Continued on Next Page...

92

Table 4.4: VAN DER WAERDEN NUMBERS FOUND BY US

u;(6;2,2,2,2,3,3)
tu(6;2,2,2,2,3,4)
u;(6;2,2,2,2,3,5)

w(6;2 ,2 ,2 ,2 ,3 ,6)

w{6;2,2,2,2,4,4)

u;(6;2,2,2,3,3,3)

u>(7;2,2,2,2,2,3,3)
u>(7;2,2,2,2,2,3,4)

u)(8;2,2 ,2 ,2 ,2 ,2 ,3 ,3)
tu(9;2 ,2 ,2 ,2 ,2 ,2 ,2 ,3 ,3)

=
=
=

=

~

=

=
=

=
=

21
33
50

60

56

42

24
36

25
28

66556655 43216655 6655
65656655 46566366 56215565 66655666
56665655 65666525 66636666 46665565
56166565 56665666 6
66665666 66556665 66666552 35466656
66665566 65656666 56616656 665
56656555 66555656 63665655 56655565
66166465 25665556 5666555
55446465 56655646 44531246 46556655
64644565 4
67766776 16345727 6677667
77676677 76646277 57773616 67776676
777
87877883 78126578 77488787
89899828 99597148 86889399 898

4.6 Van der Waerden numbers known so far

Table 4.5 contains a complete listing of known van der Waerden numbers.

Table 4.5: VAN DER WAERDEN NUMBERS KNOWN so FAR

w(r
w(2
w{2
w{2
w{2
w{2
w{2
iu(2

iu(2

iu(2

io(2

w{2
w{2
w{2
w{2
w{2

h,k2,--- ,kr)
3,3)
3,4)
3,5)
3,6)
3,7)
3,8)
3,9)
3,10)
3,11)
3,12)
3,13)
3,14)
3,15)
3,16)
4,4)

9
18
22
32
46
58
77
97

114
135
160
186
218
238

35

REFERENCE

CHVATAL [9]

CHVATAL [9]

CHVATAL [9]

CHVATAL[9]

CHVATAL[9]

BEELER AND O'NEIL [6]

BEELER AND O'NEIL [6]

BEELER AND O'NEIL [6]

LANDMAN, ROBERTSON AND CULVER [41]

LANDMAN, ROBERTSON AND CULVER [41]

LANDMAN, ROBERTSON AND CULVER [41]

KOURIL [39]

KOURIL [39]

KOURIL [39]

CHVATAL [9]

Continued on Next Page...

93

Table 4.5: VAN DER WAERDEN NUMBERS KNOWN SO FAR

w{2
w{2
w(2
w(2
w(2
w(2
w{2
w(3
w(3
w(3
w(3
w(3
w(3
w(3
w(3
w(3
w(3
w(3
w(3
w(3
w(3
w(3
w(3
w(3
w(3
w{3
w(3
w(4
w(4
w{4
w(4
w(4
w(4
w(4
w(4
w(4
w(4
w(A

4
4
4
4
5
5
6
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
2
2
2
2
2
2
2
2
2
2
2

5)
6)
7)
8)
5)
6)
6)
3,3)
3,4)
3,5)
3,6)
3,7)
3,8)
3,9)
3,10)
3,11)
3,12)
3,13)
4,4)
4,5)
4,6)
4,7)
5,5)
3,3)
3,4)
3,5)
4,4)
2,3,3)
2,3,4)
2,3,5)
2,3,6)
2,3,7)
2,3,8)
2,3,9)
2,3,10)
2,4,4)
2,4,5)
2,4,6)

55
73

109
146
178
206

1132
14
21
32
40
55
72
90

108
129
150
171
40
71
83

119
180
27
51
80
89
17
25
43
48
65
83
99

119
53
75
93

CHVATAL [9]

BEELER AND O'NEIL [6]

BEELER [5]

KOURIL [39]
STEVENS AND SHANTARAM [59]

KOURIL [39]
KOURIL AND PAUL [40]

BROWN [7]

BROWN [7]

BROWN [7]

BROWN [7]

LANDMAN, ROBERTSON AND CULVER [41]

KOURIL [39]

AHMED [1]

AHMED [1]

AHMED [1]

AHMED [1]

AHMED [1]

BROWN [7]

BROWN [7]

LANDMAN, ROBERTSON AND CULVER [41]

KOURIL [39]

AHMED [1]

CHVATAL [9]

BEELER AND O'NEIL [6]

LANDMAN, ROBERTSON AND CULVER [41]

LANDMAN, ROBERTSON AND CULVER [41]

BROWN [7]

BROWN [7]

BROWN [7]

LANDMAN, ROBERTSON AND CULVER [41]

LANDMAN, ROBERTSON AND CULVER [41]

AHMED [1]

AHMED [1]

AHMED [1]

BROWN [7]

AHMED [1]

AHMED [1]

Continued on Next Page...

94

Table 4.5: VAN DER WAERDEN NUMBERS KNOWN SO FAR

w(A
io(4

io(4

u>(4
u>(5
w(5
w(5
w(5
w(5
w(5
w(5
w(5
w(5
w(5
w(6
w(6
w(6
w(6
w(6
w(6
w(l
w(7
w(8
w(9

2,3,3,3)
2,3,3,4)
2,3,3,5)
3,3,3,3)
2,2,2,3,3)
2,2,2,3,4)
2,2,2,3,5)
2,2,2,3,6)
2,2,2,3,7)
2,2,2,3,8)
2,2,2,4,4)
2,2,2,4,5)
2,2,3,3,3)
2,2,3,3,4)
2,2,2,2,3,3)
2,2,2,2,3,4)
2,2,2,2,3,5)
2,2,2,2,3,6)
2,2,2,2,4,4)
2,2,2,3,3,3)
2,2,2,2,2,3,3)
2,2,2,2,2,3,4)
2,2,2,2,2,2,3,3)
2,2,2,2,2,2,2,3,3)

40
60
86
76
20
29
44
56
72
88
54
79
41
63
21
33
50
60
56
42
24
36
25
28

BROWN [7]

LANDMAN, ROBERTSON AND CULVER [41]

AHMED [1]

BEELER AND O'NEIL [6]

LANDMAN, ROBERTSON AND CULVER [41]

AHMED [1]

AHMED [1]

AHMED [1]

AHMED [1]

AHMED [1]

AHMED [1]

AHMED [1]

LANDMAN, ROBERTSON AND CULVER [41]

AHMED [1]

AHMED [1]

AHMED [1]

AHMED [1]

AHMED [1]

AHMED [1]

AHMED [1]

AHMED [1]

AHMED [1]

AHMED [1]

AHMED [1]

4.7 Immediate future work

(i) Computing w(2; 3,17), w{2; 4,9), and w{2; 5,7),

(ii) Computing w(5; 3,3,3,3,3): which is ^ 171 [32],

(in) Computing w(3;4,4,4) the current lower bound O 293) of which is 30 years

old [52].

95

Chapter 5

Conclusion

In this chapter, we describe the summary of the thesis and future work in this direc­

tion.

5.1 Summary of the thesis work

We have contributed the following:

(i) We have presented an improved variant of the DPLL algorithm.

(ii) We have described efficient implementation of our version of DPLL.

(iii) We have computated thirty new van der Waerden numbers.

(iv) We have done a survey of some extremal properties of random /c-SAT formulas

and described two easily verifiable counting conditions under which a k-SKT

formula is satisfiable.

96

(v) We have done a survey of the known deterministics fc-SAT algorithms and

described some of them in order of running times.

5.2 What we have not done?

(i) Conflict-clause recording,

(ii) VSIDS branching rule and random restarts

5.3 Future work

(i) Using the solver in attempts to compute new van der Waerden numbers and

similar partition-related problems, for example, computing the 5th Schur num­

ber a s(5). It can be also used in attempts to compute Ramsey numbers2

r(m,n).

(ii) Implementation of new ideas in branching rules.

(in) Implementation of new ideas for parallel processing.

(iv) Implementation of new ideas on the data structure.

lA Schur number s(k) is the largest integer m such that {1,2, • • • , m} can be partitioned into k
sum-free sets (A set S is sum-free if the intersection of S and S + S is empty).

2A Ramsey number r(m, n) is the minimum integer v such that all undirected graphs of order v
contain a complete subgraph (all vertices are adjacent to each other) of order m or an independent
set (no vertices are adjacent to each other) of order n.

97

Appendix A

Some satisfiable instances of SAT
In this section, we discuss some easily verifiable counting conditions under which

a SAT formula is satisfiable. In each case, we discuss the condition and an efficient

algorithm to find a satisfying assignment. We also discuss the optimality of the

conditions and compare them mutually by examples.

A.1 Counting clauses

A. 1.1 The condition

Theorem A. 1.1 provides a simple condition for satisfiability of a SAT formula. The

proof of the condition and an efficient algorithm to find a satisfying assignment (as

described in the following section) are implicit in Erdos and Selfridge [24].

THEOREM A.1.1. If a formula F satisfies the condition

^ 2 - l c l < l , (A.1)

98

then F is satisfiable.

Proof of theorem A. 1.1. Let x be an unassigned variable in F. Let F0 be the set of

clauses that contain x as a literal, and F\ be the set of clauses that contain x as a

literal. Then,

j - 2-ic' = Yl 2~|c|+1 + E 2_|c| (A-2)
CeF|x c e F 0 C G F - (F O U F !)

j2 2-w = J22_|c|+1 + E 2~|c| (A-3>
CeF|x C€Fj CeF-(FoUFi)

From (A.2) and (A.3), we get:

I j ^ 2 - i c i + Y, 2~ | c |) = E 2 _ | c | (A-4>
\cGF| i CeF|x / C&F

From (A.4), since F satisfies (A.l), at least one of F\x or F\x satisfies (A.l) in

place of F. So, we set x = TRUE, and F = F|x if E C 6 F | X 2 _ | C | < EC €F|X 2~ | C |5

otherwise we set x = FALSE, and F = F\x. Since we proceed satisfying (A.l), the

assignment obtained at the end is satisfying. •

A. 1.2 Optimality of the condition

The result in Theorem A. 1.1 is tight since there are unsatisfiable SAT formulas with

J2ceF 2_|C ' = 1- F°r example, let F be a SAT formula with variables x\,x2, and x3

and clauses {xux2,x3}, {xux2,x3}, {xux2,x3}, {x-i,x2,x3}, {xx,x2}, and {xi,z2}.

Here, EceF^ - ' 0 ' = 1 a nd F is unsatisfiable.

99

A.2 Counting number of occurrences of variables

A. 2.1 The condition

Let r, s-SAT denote the class of instances with exactly r literals per clause and each

variable x appearing either as literal x or as literal x at most s times.

THEOREM A.2.1 (Tovey [62]). Every instance ofk,k-SATis satisfiable.

In the proof of Theorem A.2.1, we will require a few definitions. A graph is

called bipartite if its vertices can be labeled "left" and "right" in such a way that

each edge has one end among the left vertices and the other end among the right

vertices. A matching M in a graph G is a set of pairwise non-adjacent edges (no two

edges have a common vertex). A cover in a graph G is a subset K of the vertices

such that every edge of G has at least one end in K. We state the following theorem,

as this will be used to prove Theorem A.2.1.

THEOREM A.2.2 (Konig-Egervary [38,23]). In a bipartite graph, the largest number

of edges in a matching is equal to the smallest number of vertices in a cover.

Proof of theorem A.2.1. Given a k, k-SKT formula F with clauses Ci, C2, • • • ,Cm

over variables xi,x2,--- , ^ , w e construct a bipartite graph G with C\, C2, • • • ,Cm

as the left nodes, x l t x2, • • • , xn as the right nodes, and by adding an edge between

d and Xj if and only if Xj e Ci or Xj G Co Let var(Ci) denote {x : x E C or x e C}.

Given / C {1,2, • • • ,m}, let i equal the number of pairs (x,d) such that i e /

and Ci contains either x or x as a literal. Since every clause contains exactly k

literals, we have

100

t = \I\k (A.5)

Again, every variable occurs at most k times. So,

t ^ k\\Jvar{Ci)\ (A.6)

From (A.5) and (A.6), we get

lUuar(Ci) |^ | / | (A.7)

We want to show that if G satisfies condition (A.7) for all / C {1,2, • • • , m}, then

G has a matching of size m. Suppose G does not have a matching of size m. We

show that there exists a set J C {1,2, • • • ,m) such that G does not satisfy condition

(A.7) for J. Let M be a matching in G with the largest number of edges such that

|M| < m. Let K be a cover in G with the smallest number of vertices. By Theorem

A.2.2, |M| = |K|, and so |K| < m. From the set {1,2, • • • , m}, we put j e J if and

only if Cj is not in K. So, all the edges incident on vertices Cj} where j e J, are

covered by the |K| — (m~\J\) right vertices in K. So,

\\Jvar(Cj)\ = \K\-m+\J\ < \J\.
ieJ

Therefore, G has a matching of size m.

If G has a matching M of size m, then every C* is matched to a distinct Xj. For

each edge (Cj, Xj) in M, set Xj to TRUE if Xj € Cj, and x̂ to FALSE if Xj G Cj. Hence,

101

F is satisfiable. D

Graph G has m + n vertices and at most kn edges. A matching of size m can be

computed in time O ((m + n)1/2fcn) using the Hopcroft-Karp Algorithm [33]. Then

from the matching, we can obtain a satisfying assignment.

A.2.2 Optimality of the condition

For k = 3, the condition in Theorem A.2.1 is tight. Let F be a 3-SAT formula with

variables x, y, and z and clauses: {x,y,z}, {x,y,z}, {x,y,z}, {x,y,l}, {x,y,z},

{x,y,~z}, {x,y,z}, and {x,y,z}. This formula is unsatisfiable and each variable

appears 8 times in the formula. Now, we construct a 3,4-SAT instance Fi from F,

which is unsatisfiable.

For i — 1, • • • , 8, we replace the i-th occurrence of x by new variable xi} the z-th

occurrence of y by new variable yi} and the i-th occurrence of z by new variable Zi.

We add the following 8 clauses to Fi:

{xuyuzi}, {x2,y2,22}, {x3,y3,z3}, {x4,y4,z4},

{X5,y5,zs}, {x6,y6,z6}, {x7,y7,z7}, {x8,y8,z8}.

For i — 1, • • • , 8, we introduce variables pi} qit and ri} and add the following 24

clauses to Fx:

{xi,x2,Pi}, {x2,x3,p2}, {x3,x4,p3}, {x4,x5,p4},

{x5,x6,p5}, {x6,x7,p6}, {x7,xs,p7}, {x8,xup8},

{yi>y2>9i}> {y2,y3,q2}, { y a , ^ . ^ } . {y4,y5 ,94}.

{ys,y6>95}> {y6,y7>96}» {y7,y8,97}» {y8,yi ,98}.

102

{zi,Z2,ri}, {z2,z3,r2}, {z3,z4,r3}, {z4)z5,r4},

{Z5,ZQ,T5}, {z6,Z7,f6}, {z7,Z8,f7} , {zs,Zi,f&} ,

To force xx, • • • ,x8to all TRUE or all FALSE, we need to force each of pi, • •• ,p8

to TRUE. To force pi to TRUE, we introduce variables a1} a2, a3, 61} b2, b3, d\, d2, and

d3 and the following 13 clauses:

{Pi,ai,h}, {di,aubi} , {di,aubi} , {di,ai,&i},

{P1.a2.b2}, {d2.a2.b2}, {^2,^2,^2}, {^2,02,^2},

{P1.a3.63}, {d3.a3.b3}> {d3,a3,b3}, {d3.a3.b3} ,

{di,d2,d3} ,

In this way, variables pi, • • • ,p8, can all be forced to TRUE with 72 new variables

and 104 new clauses. We can do the same to force yx, • • • , y8 to all TRUE or all FALSE,

and zx, • • • , z8 to all TRUE or all FALSE.

Finally, we get an unsatisnable 3,4-SAT instance Fi with 344 clauses over 264

variables.

For k > 3, the condition in Theorem A.2.1 is not tight. For example, we do not

have an unsatisnable instance of 4,5-SAT.

A. 3 Comparing the conditions by example

EXAMPLE A.3.1. Here we give an example of a satisfiable formula that satisfies the

condition in Theorem A.1.1, hut not the conditions given by Theorem A.2.1. Let Fx

be a 4-SAT formula with 15 clauses over the variables xx, x2, x3, and x4.

103

http://%7bP1.a2.b2%7d
http://%7bd2.a2.b2%7d
http://%7bP1.a3.63%7d
http://%7bd3.a3.b3%7d
http://%7bd3.a3.b3%7d

{xux2,x3,x4}, {xux2,x3,x4}, {xi,x2,x3,x4}, {xi,x2,x3,x4}, {xux2,x3,x4},

{xux2,x3,x4} , {xi,x2,x3,x4} , {xux2,x3,x4} , {xux2,x3,x4} , {xux2,x3,x4} ,

{xux2,x3,x4} , {xux2,x3,x4} , {xi,x2,x3,x4} , {xux2,x3,x4} , {xi,x2,x3,x4} .

Formula Fi is satisfied by {x^ H-+ TRUE, x2 >-> TRUE, x3 \-* TRUE, x4 \-^> TRUE}. In Fu

• The number of clauses is 15, which is less than 24. So the condition in Theorem

A. 1.1 is satisfied.

• Each variable Xi for 1 < i < 4, occurs 15 times (which is bigger than A). So

the condition in Theorem A.2.1 is not satisfied.

EXAMPLE A.3.2. Here we give an example of a satisfiable formula that satisfies the

condition in Theorem A.2.1, but not the other condition given by Theorem A.l.l.

Let F2 be a 3-SAT formula with variables x\, • • • ,x9 and clauses

{xi,x2,x3}, {xi,x2,x3}, {xi,x2,x3},

{aj4)x5,a;6}, {x4,x5,xe}, {x4,x5,x6},

{x7,x8,x9}, {x7,x8,x9}, {x7,x8,x9},

Here, F2 is satisfied by {xx H-> TRUE, x41-> TRUE, x71-> TRUE}.

• The number of clauses is 9, which is greater than 23 - 1. So the condition in

Theorem A.l.l is not satisfied.

• Each variable occurs exactly 3 times in the formula. So the condition in The­

orem A.2.1 is satisfied.

104

Appendix B

Deterministic fc-SAT algorithms other

than DPLL

In this section, we describe some known deterministic algorithms (other than DPLL)

for &-SAT. We briefly discuss the ideas behind these algorithms.

B.l 2-SAT algorithms

Cook [12] observed (from Davis-Putnam [19]) that 2-SAT can be solved in polyno­

mial time.

B.l.l Polynomial-time algorithm based on Davis-Putnam [19]

Two clauses C\ and C2 are said to clash if there is exactly one literal u, such that

u e C\ and u e C2. If Ci and C2 clash, then their resolvent is defined as C\ U

C2 - {u,u} and is denoted by C\VC2- If clauses C\ and C2 are satisfied by some

105

truth assignment z, then their resolvent is also satisfied by z. Adding C1VC2 does

not change the satisfiability status of the formula. If two clauses of length at most

two clash, then their resolvent is also of length at most two. So if we keep adding

resolvents to a (< 2)-SAT formula F over n variables, then the resulting formula

may have at most 1 + 2n + 4(") = 2n2 + 1 clauses. Thus the process terminates

adding at most O (n2) resolvents. If we encounter an empty clause, then F is not

satisfiable; otherwise it is satisfiable.

B. 1.2 Limited-backtracking DPLL-like polynomial-time algorithm

Even, Itai and Shamir [25] suggested a limited-backtracking DPLL-like algorithm

(Algorithm B.19) for 2-SAT that runs in polynomial time.

Algorithm B.19 SOLVING 2-SAT WITH LIMITED BACKTRACKING

1

2

3

4
5

6

7
8

9
10
11
12:
13
14
15:

procedure LIMITED-BACKTRACKING-DPLL-2SAT(F)

while there is a clause of length at most one in F do
if F contains an empty clause then return UNSATISFIABLE

if F contains a unit clause {u} then F = F\u
end while
if F is empty then return SATISFIABLE

choose an unassigned literal u
F' = F\u
while there is a unit clause {v} in F' do F' = F'\v
if F' does not contain an empty clause then

return LIMITED-BACKTRACKING-DPLL-2SAT(F')

else
return LIMITED-BACKTRACKING-DPLL-2SAT(F|U)

end if
end procedure

The idea is that if setting a literal u to TRUE does not immediately lead to a

contradiction by unit-propagation, then the assignment may be fixed. In that case,

106

the set of clauses in the resulting formula is a subset of the set of clauses in the

original formula and the resulting formula is satisfiable if and only if the original

formula is satisfiable.

B.1.3 A linear-time algorithm

Aspvall, Plass and Tarjan[3] came up with a linear time algorithm for (< 2)-SAT

as described in Algorithm B.20. Let F be a (^ 2)-SAT formula with m clauses over

variables {xi,--- ,xn}. Let G(F) be the directed graph, as defined in [3], with

vertices {xi,--- ,xn,xi,--- ,xn} and edges {{u,v)\{u,v} e F}. So G(F) has 2n

vertices and at most 2m directed edges.

Let u ~* v denote a directed walk u -* ••• —> v in G(F). We observe that if

u ~~* v, then every satisfying assignment setting u to TRUE has to set v to TRUE as

well. If u ~> u, then every satisfying assignment sets u to FALSE. If u -w v ~~> u,

then every satisfying assignment sets u and v to the same truth value. Also by

construction of G(F), we observe that u ~» v if and only if v -^ u.

LEMMA B.l . l (Aspvall, Plass, Tarjan [3]). A 2-SAT formula F is unsatisfiable if and

only ifG(F) contains a directed walk x -~» x -^ x.

Proof of lemma B.l. l . Let F be a 2-SAT formula over n variables. The resolvent

of clauses {x, u] and {x, v} in F is {u, v}. Adding the resolvent to F will introduce

edges u —» v and v —>• u to G(F). But u -+ x —> v and u —*• x - • it were already

in G(F). Let F ' be the formula obtained after adding resolvents to F as long as

possible. We have u —> v in G(F') if and only if we have u ~-> v in G(F) with w / « ,

We know that F is unsatisfiable if and only if F' contains {x} and {x}. Formula F'

107

containing {x} and {#} is equivalent to the existence of x —> x —> x in G(F'), which

in turn, is equivalent to x ~* x -^ x in G(F). •

Algorithm B.20 (Aspvall, Plass, Tarjan [3]) constructs a satisfying assignment in

time 0(m + n) provided G(F) contains no directed walk of the form x ~* x ~» x.

A graph is strongly connected if every two vertices are mutually reachable. The

maximal strongly connected subgraphs of a graph are vertex-disjoint and are called

strongly connected components. The strongly connected components of a directed

graph can be computed in time 0{m + n) (Tarjan [61]) using depth-first-search.

If Si and S2 are strongly connected components such that an edge leads from a

vertex in S\ to a vertex in S2, then S\ is a predecessor of S2 and S2 is a successor of

Si. Each clause {u,i>} in F contributes two edges u —> u and TJ —> u in G(F). So,

for each strongly connected component S in G(F), there is a strongly connected

component S (which is S with labels of vertices complemented and directions of

edges reversed) in G(F). If Si and S2 are two strongly connected components in

G(F) and Si is a predecessor of S2, then Si is a successor of S2.

Algorithm B.20 SOLVING «2)-SAT IN O (m + n) TIME

l

2

3

4

5

6

7

8:

9

10

11

procedure LINEAR2SAT(F)

S = strongly connected components of G(F)
for each unassigned component S in S do

if S contains literals u and u as vertices then
return UNSATISFIABLE

end if
set each literal labelling vertices of S to TRUE
set each literal labelling vertices of S to FALSE

end for
return SATISFIABLE

end procedure

108

If any strongly connected component S does not contain two vertices labelled

by a literal and its complement, then S ^ S.

If any strongly connected component is set to TRUE, then its successors are also

set to TRUE. If any strongly connected component is set to FALSE, then its prede­

cessors are also set to FALSE. So complementary components have complementary

truth values and no path leads from a TRUE component to a FALSE component.

109

B.2 Monien-Speckenmeyer Algorithm

Monien and Speckenmeyer [48] came up with the very first algorithms for fc-SAT

that run in less than 2™ steps. The basic idea was to branch on a shortest unsatisfied

clause. Algorithms B.21, B.22, and B.23 are three variants of Monien-Speckenmeyer

algorithm with gradual improvements in running time. In this section, we use

O* (cn) (where c > 1) instead of O (c™ • poly(n)) to indicate that the polynomial

factor is suppressed.

B.2.1 O* ((2k - l)n/fc)-time k-SAT algorithm

This algorithm comes from the simple observation that any clause of length k has

2 ^ - 1 possible satisfying assignments.

Algorithm B.21 SOLVING K-SAT IN TIME O* (CJJ) WITH ck = (2fc - \)l'k

l
2
3
4
5
6
7:
8
9

10
11

procedure M S1 (F)
if F = 0 then return SATISFIABLE

if F contains an empty clause then return UNSATISFIABLE

if F is a 2-SAT then return LINEAR2SAT(F)

C = shortest unsatisfied clause {ui, u2, • • • , ui} in F
for each of the 2* — 1 satisfying assignments of C do

compute simplified formula Fj
if MS 1(F) = SATISFIABLE then return SATISFIABLE

end for
return UNSATISFIABLE

end procedure

Let Tk{n) be the complexity of Algorithm B.21. Now, ignoring polynomial fac­

tors, we get the recurrence

T f c(nK(2 f c- l)T f c(n-fc) ,

110

which gives the upper bound O* (c£) with ck = (2fc - l)1/fc. In particular, the running

time for 3-SAT is O* (1.913").

B.2.2 O* (/?£)-time k-SAT algorithm, where 0k is the biggest num­

ber satisfying f3k = 2 - l//?j?

Algorithm B.22 K-SAT ALGORITHM (FASTER THAN ALGORITHM B.21)

2
3
4
5
6
7
8
9

10

procedure MS2(F)
if F = 0 then return SATISFIABLE

if F contains an empty clause then return UNSATISFIABLE

C — shortest unsatisfied clause {u\,u2, • • • ,ue} in F
for i = 1 to £ do

Fi ~ {C - {ui,--- ,Ui-i,Ui} : C E F,Cil{ui,--- ,v,i-i,Ui} = 0}
if MS2(FJ = SATISFIABLE then return SATISFIABLE

end for
return UNSATISFIABLE

end procedure

If F consists of n variables, then each Fi for 1 ^ i ^ £ (line 6 of Algorithm

B.22) consists of n — i variables. Let the running time be Tk(n), where n is the num­

ber of yet-to-be-assigned variables. Omitting constants that lead to sub-dominant

polynomial factors, we get

Tk{n) ^ Tk{n - 1) + Tk{n - 2) + • • • + Tk{n - k).

We have the running time O* ((3k), where (3k is the largest zero of

1 -aT 1 x"k.

I l l

In particular, for 3-SAT, p3 = 1.8393....

B.2.3 O* (a]J)-time fc-SAT algorithm, where ak is the biggest num­

ber satisfying ak = 2 - 1/ajJT1

A truth assignment 2 over a subset V of the set of variable is autark in F if and only

if every clause C in F that shares one or more variables with V is satisfied by z.

Determining auturkness of a given assignment is not expensive.

Algorithm B.23 K-SAT ALGORITHM (FASTER THAN ALGORITHM B.22)
l: procedure MS3(F)
2: if F - 0 then return SATISFIABLE

3: if F contains an empty clause then return UNSATISFIABLE

4: C = shortest unsatisfied clause {ui,u<2, • • • ,ue} in F
5: for i — 1 to £ do
6: t = assignment induced by {u\ H-> 0, u2 >-> 0, • • • , Uj_i 1—> 0, ii, 1—> 1}
7: if t is AUTARK then
8: F = {C :C EF, var{C) n war({wi, • • • , ixj) = 0}
9: return MS3(F)

10: end if
11: end for
12: for i = 1 to £ do
13: Fi = {C-{ui,--- ,tii-i,Ui} : C G F , C n { u i , - " ,w»- i ,M = 0}
14: if MS3(F) = SATISFIABLE then return SATISFIABLE

15: end for
16: return UNSATISFIABLE

17: end procedure

In Algorithm B.23, we observe that if the first for loop contains no autark as­

signment, then in the second for loop, every subformula F4 contains a clause of

length at most k - 1. This behaviour is sufficient to guarantee a better estimation

112

than the one given by Algorithm B.22. The recurrence for Algorithm B.23 is

Tk(n) < Tk(n - 1) + Tk(n - 2) + • • • + Tk(n -k + 1).

We have the running time O* {oil), where ak is the largest zero of

l _ x - i x - k + i .

In particular, for 3-SAT, Q3 = 1.618....

B.3 Local search based fc-SAT algorithms

Let F be a fc-SAT formula with variables xt, x2, • • • ,xn. The Hamming distance be­

tween two truth assignments z\ and z2 is

n

'Y^zi{xi)®z2{xi).

The Hamming ball of radius r around an assignment z in {0, l } n is the set of

all assignments whose Hamming distance to z is at most r. Each Hamming ball

of radius r has YA=O (") assignments in it (let this number be denoted by V(n, r)).

From Stirling's approximation n! « \phva (^)n, with 0 ^ a < 1, we get

»)„ ! C » V (B.1)
on) yj2irna{\ - a) \aa(l - a) 1 " " /

Function - a log2 a - (1 - a) log2(l - a), denoted by h(a), which is maximum at

a = 1/2, is known as the binary entropy function. With r = pn and 0 < p < 1/2, we

113

file:///phva

get

V(n)r)^2h{p)n

A covering code of radius r is a subset of {0, l } n that covers all the 2n assign­

ments by Hamming balls of radius r. Constructing an optimal covering code is

NP-complete. But a near-optimal covering code can be constructed using a greedy

approximation algorithm, as described in [17]. For any covering code ^, we have

\^\-V(n,r) ^2n. So,

Algorithm B.24 LOCAL SEARCH BASED K-SAT ALGORITHM

l

2

3

4

5
6
7:
8
9

10

procedure HSEARCH(F, Z, r)
if F = 0 then return TRUE

if r < 0 then return FALSE

if F contains an empty clause then return FALSE

Pick a clause C that is false under z
for each literal u e C do

if HSEARCH(F|U, Z, r - 1)=TRUE then return TRUE

end for
return FALSE

end procedure

Once we have a covering code of radius r, for every assignment z in the covering

code, we can search for a satisfying assignment locally in the Hamming ball of

radius r around z. But it is not necessary to search through all V(n, r) assignments

inside the ball. If the formula F is not satisfied by z, then there is a clause C which

is not satisfied by z. Then F has a satisfying assignment in the Hamming ball of

radius r around z if and only if there is a literal u in C such that F\u has a satisfying

assignment in the Hamming ball of radius r — 1 around z.

114

B.3.1 O* ((^ r)
n)-t ime algorithm for k-SAT by Dantsin et al. [17]

Dantsin et al. [17] gave algorithm B.25 for k-SAT, which runs in time O* ((^ -) n) .

Algorithm B.25 LOCAL SEARCH BASED fc-SAT ALGORITHM

l: procedure HAMMINGBALLSAT(F, n)

3: Generate a covering code ff using a greedy approximation algorithm
4: for each assignment z in ^ do
5: if HSEARCH(F, Z, pn)=TRUE then return SATISFIABLE

6: end for
7: return UNSATISFIABLE

8: end procedure

Function HSEARCH(F, Z, p) runs in time O* (kr). Therefore, Algorithm B.25 has

a running time:

T(n,p) ^ poly(n) • 2{1-h{p))n • kpn

= poly{n) • 2{1-h(p))n • 2pnl0S2k

= poly(n) • 2n(1+plog2P+(1-p ' log2(1-^+plog2 'c '

= poly{n) • 2 " (1 + S T T log2 kh+kTT log2 ^ + 5 ^ log2 *)

poly(n) • 2"(1+log2 STI) = poly{n)
2k

^k+1

For 3-SAT, Algorithm B.25 runs in time O* (1.5n) (Here p = 0.25).

B.3.2 O* (1.481n)-time algorithm for 3-SAT by Dantsin et al. [17]

Algorithm B.24 can be modified to run in time O* (2.848r) instead of O* (3r), which

improves the running time of Algorithm B.25 to O* (1.481") for 3-SAT. Here, the

115

HSEARCH(F, Z, r) is modified so that if there is a clause {ui,u2,u3}, which is false

under z and F contains a clause {%} for some i in {1,2,3}, then we do not run

HSEARCH(F|UJ, Z, r - 1). To estimate the number of leaves of the recursion tree,

let the function be H{r). The recurrence is

H(r) = 6 • (H(r - 2) + H(r - 3)), (B.2)

for r ^ 3 with H{0) = 1, H(l) = 3 and H(2) = 9. Now, H{r) = O* {ar), where a

is s/i + N/2 W 2.848, the largest root of as - 6a - 6 = 0. With p = 0.26, for 3-SAT,

Algorithm B.25 runs in time

T(n,0.26) ^ poly(n) • (2.848026 • 21-h(a26))" = O* (1.481").

Brueggemann and Kern [8] improved the recurrence (B.2) to

H(r) = 6-H{r-2) + 5-H(r-3), (B.3)

Here, H[r) = O* {(5r), where (3 is 2.792, the largest root of (33 - 6/? - 5 = 0. With

p = 0.264, for 3-SAT, Algorithm B.25 runs in time

T(n,0.264) < poly(n) • (2.7920264 • 21-fc(a264>)n = O* (1.473").

116

Bibliography

[1] AHMED T., Some new van der Waerden numbers and some van der Waerden-

type numbers, INTEGERS, 9 (2009), #A06, 65-76, MR2506138.

[2] ASAHIRO Y., IWAMA K., MIYANO E., Random generation of test instances with

controlled attributes, DIMACS Series on Discrete Mathematics and Theoretical

Computer Science, 26 (1996), 377-394.

[3] ASPVALL B., PLASS M. F., TARJAN R. E., A linear-time algorithm for testing the

truth of certain quantified boolean formulas, Information Processing Letters,

8(3) (1979), 121-123, MR0526451.

[4] BAYARDO R., SCHRAG R., Using CSP look-back techniques to solve real-world

SAT instances, Proceedings of the 14th Nat. (US) Conf. on Artificial Intelligence,

1997, 203-208.

[5] BEELER M., A new van der Waerden number, Discrete Applied Math. 6 (1983),

207, MR0707027.

[6] BEELER M., O'NEIL P., Some new van der Waerden numbers, Discrete Math.

28 (1979), 135-146, MR0546646.

117

[7] BROWN T. C , Some new van der Waerden numbers (preliminary report),

Notices American Math. Society 21 (1974), A-432.

[8] BRUEGGEMANN T., KERN W., An improved deterministic local search algo­

rithm for 3-SAT, Theo. Computer Science, 329 (2004), 303-313.

[9] CHVATAL V., Some unknown van der Waerden numbers, in: Combinatorial

structures and their applications, Proc. Calgary Internat. Conf., Calgary, Alta.,

1969, Gordon and Breach, New York, 1970, 31-33, MR0266891.

[10] CHVATAL V., REED B., Mick Gets Some (The Odds Are on His Side), Proceed­

ings of the 33rd Annual Symposium on FOCS, 1992, 620-627.

[11] CHVATAL V., SZEMEREDI E., Many hard examples for resolution, J. ACM, 35(4)

(1988), 759-768, MR1072398.

[12] COOK S. A., The complexity of theorem proving procedures, Third Annual

Symposium on the Theory of Computing, ACM, 1971, 151-158.

[13] CORMEN T. H., LEISERSON C. E., RIVEST R. L., STEIN C , Introduction to

Algorithms, 2nd ed., The MIT Press and McGraw-Hill, 1990.

[14] COUDERT O., On solving covering problems, Proceedings of the ACM/IEEE De­

sign Automation Conference, 1996, 197-202.

[15] COUDERT O., MADRE J. C , New ideas for solving covering problems, Proceed­

ings of the ACM/IEEE Design Automation Conference, 1995.

[16] CRAWFORD J. M., AUTON L. D., Experimental results on the crossover point

in random 3-SAT, Artificial Intelligence Journal, 81 (1996), 1-2, MR1396824.

118

[17] DANTSIN E., GEORDT A., HIRSCH E. A., KANNAN R., KLEINBERG J., PAPADIM-

ITRIOU C , RAGHAVAN P., SCHONING U., A deterministic (2 - 2/(k + l))n al­

gorithm for k-SKT based on local search, Theoretical Comp. Set, 289 (2002),

69-83, MR1932890.

[18] DAVIS M., LOGEMANN G., LOVELAND D., A machine program for theorem-

proving, Comm. ACM, 5 (1962), 394-397, MR0149690.

[19] DAVIS M., PUTNAM H., A computing procedure for quantification theory, J.

ACM, 7 (1960), 201-215, MR0134439.

[20] DIMACS Implementation Challenges,

<http://dimacs.rutgers.edu/Challenges>.

[21] DRANSFIELD M. R., LIU L., MAREK V. W., TRUSZCZYNSKI M., Satisfiability

and computing van der Waerden numbers, The Electronic J. of Combinatorics,

11(1) (2004), R41, MR2097307.

[22] DUBOIS O., ANDRE P., BOUFKHAD Y., CARLIER J. SAT vs UNSAT, DIMACS

Series on Discrete Mathematics and Theoretical Computer Science, 26 (1996),

415-436.

[23] EGERVARY J., Matrixok kombinatorikus tulajdonsagairol, Matematikai es

Fizikai Ldpok, 38 (1931), 16-28.

[24] ERDOS P., SELFRIDGE J. L., On a combinatorial game, J. Combinatorial Theory,

Series A, 14 (1973), 298-301, MR0327313.

119

http://dimacs.rutgers.edu/Challenges

[25] EVEN S., ITAI A., SHAMIR A., On the complexity of timetable and multicom-

modity flow problems, SIAMJ. Computing, 5(4) (1976), 691-703.

[26] FREEMAN J. W., Improvements to Propositional Satisfiability Search Algo­

rithms, Ph. D. Thesis, University of Pennsylvania, 1995.

[27] GAREY M., JOHNSON D., Computers and Intractability; A Guide to the Theory

of NP-Completeness, ISBN 0-7167-1045-5, 1979, MR0519066.

[28] GASCHNIG J., Performance measurement and analysis of certain search algo­

rithms, Ph. D. Thesis, CMU, 1979.

[29] GOLDBERG E., NOVIKOV Y., Berkmin: A Fast and Robust SAT Solver DATE,

2002.

[30] GOMES C. P., SELMAN B., KAUTZ H., Boosting Combinatorial Search Through

Randomization, Proc. ofAAAI, 1998.

[31] GOWERS T., A new proof of Szemeredi's theorem, Geom. Funct. Anal, 11(3)

(2001), 465-588, MR1844079.

[32] HERWIG P., HEULE M. J. H., LAMBALGEN M. VAN, AND MAAREN H. VAN., A

new method to construct lower bounds for Van der Waerden numbers, The

Electronic Journal of Combinatorics, 14 (2007), #R6.

[33] HOPCROFT J. E., R. M. KARP, An n5/2 algorithm for maximum matchings in

bipartite graphs, SIAM Journal on Computing, 2(4) (1973), 225-231.

[34] HOOKER J. N., VINAY V., Branching rules for satisfiability, J. Automat. Reason.,

15(3) (1995), 359-383, MR1356629.

120

[35] JEROSLOW R., WANG J., Solving propositional satisfiability problems, Annals

of Mathematics andAI, 1 (1990), 167-187.

[36] KAHN, A. B. Topological sorting of large networks, Communications of the

ACM, 5 (11) (1962), 558-562.

[37] KAMATH A. P., KARMAKAR N. K., RAMAKRISHNAN K. G., RESENDE M. G. C.,

A Continuous Approach to Inductive Inference, Math. Programming, 57(2)

(1992), 215-238, MR1195025.

[38] KONIG D., Graphen und Matrizen, Matematikai es Fizikai Ldpok, 38 (1931),

116-119.

[39] KOURIL M., A Backtracking Framework for Beowulf Clusters with an Exten­

sion to Multi-Cluster Computation and Sat Benchmark Problem Implementa­

tion, Ph. D. Thesis, University of Cincinnati, Engineering : Computer Science

and Engineering, 2006.

[40] KOURIL M., PAUL J.L., The van der Waerden number W(2,6) is 1132, Experi­

mental Mathematics, 17(1) (2008), 53-61, MR2410115.

[41] LANDMAN B., ROBERTSON A., CULVER C , Some new exact van der Waerden

numbers, Integers: Electronic J. Combinatorial Number Theory, 5(2) (2005),

A10, MR2192088.

[42] Li C. M., A constraint-based approach to narrow search trees for satisfiability,

Information Processing Letters, 71 (1999), 75-80.

121

[43] Li C. M., Equivalent literal propagation in Davis-Putnam Procedure Discrete

Applied mathematics, 130/2 (2003), 251-276.

[44] Li C. M., ANBULAGAN, Heuristics Based on Unit Propagation for Satisfiability

Problems Proceedings of 15th International Joint Conference on Artificial Intel­

ligence, 1997, 366-371.

[45] LYNCE I., MARQUES-SILVA J., Efficient data structures for backtrack search SAT

solvers, Annals of Mathematics and Artificial Intelligence, 43 (2005), 137-152.

[46] MARQUES-SILVA J. P., SAKALLAH K., A new search algorithm for satisfiability,

Proceedings of ACM/IEEE International Conference in Computer Aided Design,

(1996), 220-227.

[47] MARQUES-SILVA J. P., SAKALLAH K., GRASP: A search algorithm for proposi-

tional satisfiability, IEEE Transactions on Computers, 48 (1999), 506-521.

[48] MONIEN B., SPECKENMEYER E., Solving satisfiability in less than 2" steps, Dis­

crete Applied Math., 10 (1985), 287-295.

[49] MOSKEWICZ N., MADIGAN C , ZHAO Y., ZHANG L., MALIK S., Engineering an

efficient SAT solver, Proceeding of the Design Automation Conference, (2001),

530-535.

[50] OUYANG M., HOW good are branching rules in DPLL?, Discrete Applied Math.,

89(1-3) (1998), 281-286, MR1663116.

[51] OUYANG M., Implementation of the DPLL algorithm, PhD Thesis, Rutgers Uni­

versity, 1999.

122

[52] RABUNG J. R., Some progression-free partitions constructed using Folkman's

method, Canad. Math. Bull, 22(1) (1979), 87-91.

[53] ROBINSON J. A., A machine-oriented logic based on the resolution principle,

J. ACM, 12(1) (1965), 23-41.

[54] SAT Competitions web page,

<http://www.satcorapetition.org>.

[55] SATLIB - Benchmark Problems,

<http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html>.

[56] SCHIEUX T., VERFAILLIE G., Nogood recording for static and dynamic con­

straint satisfaction problems, Proc. Inter. Conf. Tools onAI, 1 (1993), 48-55.

[57] SELMAN B., MITCHELL D. G., LEVESQUE H. J., Generating Hard Satisfiability

Instances, Artificial Intelligence, 81 (1996), 17-29.

[58] SORENSSON N., EEN N., MiniSat vl.13 - A SAT Solver with Conflict-Clause

Minimization, MiniSat Page, <www. minisat. se>.

[59] STEVENS R., SHANTARAM R., Computer-generated van der Waerden parti­

tions, Math. Computation, 32 (1978), 635-636, MR0491468.

[60] STALLMAN R. M., SUSSMAN G. J., Forward reasoning and dependency-

directed backtracking in a system for computer-aided circuit analysis, Artificial

Intelligence, 9 (1977), 135-196.

[61] TARJAN R. E., Depth first search and linear time graph algorithms, SIAM J.

Comput, 1(2) (1972), 126-160.

123

http://www.satcorapetition.org
http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
http://www.%20minisat.%20se

[62] TOVEY C. A., A simplified NP-complete satisfiability problem, Discrete Applied

Math., 8 (1984), 85-89.

[63] VAN DER WAERDEN B. L., Beweis einer Baudetschen Vermutung, Nieuw Archief

voor Wiskunde, 15 (1927), 212-216.

[64] VAN DER WAERDEN B. L., HOW the proof of Baudet's conjecture was found,

in: Studies in Pure Mathematics, Papers presented to Richard Rado on the oc­

casion of his sixty-fifth birthday, Academic Press, London and New York, 1971,

251-260.

[65] VAN GELDER A., TSUJI Y. K., Satisfiability testing with more reasoning and

less guessing, DIMACS Series in Discrete Mathematics and Theoretical Computer

Science, 26 (1996), 559-586, MR1423138.

[66] ZHANG H., SATO: An efficient propositional solver, Proceedings of the Interna­

tional Conference on Automated Deduction, 1997, 272-275.

[67] ZHANG H., STICKEL M., Implementing the Davis-Putnam method, Proceedings

of SAT 2000, eds. I. Gent, H. van Maaren and T. Walsh, 2000, 309-326.

124

Index

fc-SAT, 6
2-Sided Jeroslow-Wang rule, 9

adjacency lists, 13
antecedent clause, 20
assigned literal hiding, 13
AUPCrule, 11
autark assignment, 112

binary entropy function, 113
bipartite, 100
branching rules, 3

Chaff, 26
chronological backtracking, 21
clause, 1
clause recording, 19
conflict analysis, 20
conflict clause, 20
conflict clause minimization, 28
conflict learning, 20
counter based approach, 13
cover, 100
covering code, 114
CSatrule, 11

DLCS rule, 9
DLIS rule, 8
DPLL-algorithm, 3
DPLL-tree, 8
DSJ rule, 10

formula, 1

good partition, 89

GRASP, 14, 24

Hamming ball, 113
Hamming distance, 113

implication graph, 19

Jeroslow-Wang (JW) rule, 9

Lazy data structures, 14
literals, 1

matching, 100
MiniSat, 28
MinLen, 10
MOMS heuristics, 10
monotone literal, 3
monotone-literal-fixing, 3

non-chronological backtracking, 21, 27

predecessor, 108

Ramsey number, 97
random restart, 21
random restarts, 21
residual formula, 2
resolvent, 17,105

satisfiability problem, 2
satisfiable, 2
satisfying a clause, 2
satisfying a formula, 2
SATO, 15
Satz, 23

125

Satz's preprocessor, 24
Satz's UPLA branching rule, 23
Schur number, 97
stack of changes, 35
strongly connected components, 108
strongly connected graph, 108
subsumption, 18
successor, 108

truth assignment, 1
Two literal watch method, 16

unit clauses, 3
unit-clause-propagation, 3
unsatisfiable, 2

van der Waerden number, 85
VSIDS, 26, 28

watched literals, 16

zChaff, 27

126

