
Reconflgurable Control Allocation Design

with Applications

to Unmanned Aerial Vehicle and Aircraft

Qing-Li Zhou

A Thesis

in

The Department

of

Mechanical and Industrial Engineering

Presented in Partial Fulfillment of the Requirement

for the Degree of Master of Applied Science (Mechanical Engineering) at

Concordia University

Montreal, Quebec, Canada

August 2009

© Qing-Li Zhou, 2009

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-63090-7
Our file Notre reference
ISBN: 978-0-494-63090-7

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

•#-•

Canada

ABSTRACT

Reconfigurable Control Allocation Design with
Applications to Unmanned Aerial Vehicle and Aircraft

Qing-Li Zhou

The main objective of this thesis is to design and evaluate reconfigurable flight

control system against control surfaces faults in Unmanned Aerial Vehicle (UAV)

and aircraft without modifying the baseline controller/control law by using control

re-allocation technique. The faults are introduced in the form of partial loss and

stuck at unknown positions of control surfaces on the UAV and aircraft. Four

control reallocation algorithms with applications to UAV and fixed-wing aircraft

were investigated, which include a pseudo-inverse, a fixed-point algorithm, a direct

control allocation algorithm and a weighted least squares method. The thesis work is

evaluated by a nonlinear UAV model ALTAV (Almost-Light-Than-Air-Vehicles),

developed by Quanser Inc., and a nonlinear aircraft model ADMIRE (Aero-Data-

Model-in-Research-Environment), developed by the Group of Aeronautical

Research and Technology in Europe (GARTEUR). Different faults have been

introduced in control surfaces with different commanded inputs. Gaussian noise was

introduced in the ALTAV model. Different faults have been introduced in control

surfaces with different command inputs. Comparisons were made under normal

situation, fault conditions without control re-allocation, and with control

reallocation. Simulation results show the satisfactory reconfigurable flight control

system performance using control re-allocation methods for ALTAV UAV model

and ADMIRE aircraft model.

iii

Acknowledgement

Many people have contributed in a variety of ways to the production of this thesis. First

of all, I am grateful to my supervisor, Professor Youmin Zhang, for giving me the

opportunity to perform this research at Concordia University and for his continuous

guidance and support. His inspiring advice and encouragement has guided me during this

thesis. This work would have never been done without his great vision, experience and

insight. I also highly appreciate his giving me great freedom in selecting my research

topics.

Also, I would like to thank all my friends and colleagues here, at Concordia University,

who have been a source of great strength to me.

I want to express my gratitude to the Quanser incorporation and GARTEUR group for

giving me the simulation software and information on the baseline. And, special thanks to

Concordia University for providing the facilities to complete this work.

Last, but not least, I am sincerely thankful to my parents and my husband, Xiang-Dong,

for their encouragement and incredible support. Especially, I thank Xiang-Dong for being

so generous in taking care of our kids and letting me put more time on finishing my

studies. Here, I also thank my two kids for their loveliness and obedience. I am lucky to

have such a wonderful, lovely and supportive family.

IV

This thesis is dedicated to my parents and my husband,

Xiang-Dong,

For their love and understanding.

V

Table of Contents

List of Figures ix

1. Introduction 1

1.1. Fault Tolerant Control System 2

1.2. The Main Content of The Thesis 6

2. Flight Control Allocation 8

2.1. Introduction Control Allocation 10

2.2. Fault Modeling of Control Surfaces 12

2.2.1. Partial Loss 14

2.2.2. Stuck Failure 16

2.3. Control Allocation of ALTAV 18

3. Control Reallocation Methods 20

3.1. Optimization Based Control Allocation 20

3.2. Problem Statement 21

3.3. Cascaded Generalized Pseudo-Inverse Method 23

3.4. Fixed-Point Method 28

3.5. Direct Control Allocation Method 33

3.5.1. Constrained Optimization Using Linear Programming 34

3.5.2. Linear Programming 36

3.6. Weighted Least Squares 41

3.6.1. Active Set Method 41

3.6.2. Weighted Least Squares Discussion 42

vi

4. ALTAV UAV Benchmark 47

4.1. ALTAV UAV Dynamics 48

4.2. ALTAV Simulator Software 49

4.3. Mdl Representation 50

4.4. Flight Path Input 51

4.5. Flight Command Controllers 52

4.6. Real World Correction 53

4.7. Simulation Script Files 53

5. ADMIRE Aircraft Benchmark 56

5.1. Aircraft Dynamic 56

5.2. ADMIRE Model 59

5.3. ADMIRE Simulation Model 61

6. Control Reallocation Implementation 62

6.1. Implementation in ALTAV 62

6.1.1. Simulink Block for Nonlinear Model 63

6.1.2. Implementation of Partial Loss 64

6.1.3. Implementation of Partial Loss 64

6.1.4. Implementation of Control Reallocation 66

6.2. Implementation in ADMIRE 68

7. Simulation Results in ALTAV 71

7.1. Influence of Gaussian Noise 71

vii

7.2. Trajectory Selections 74

7.3. Simulation Results for Partial Loss 76

7.3.1. Square trajectory as model input 77

7.3.2. Circle trajectory as model input 83

7.4. Simulation Results for Stuck Faults 90

7.4.1. Square trajectory as model input 90

7.4.2. Circle trajectory as model input 94

8. Simulation Results in ADMIRE 99

8.1. Partial Loss Simulation Result 100

8.2. Simulation Results for Stuck Faults 105

9. Conclusion 110

10. References 113

viii

List of Figures

Figure 1. 1 Simple structure of fault tolerant control system 5

Figure 2. 1 Control allocation block diagram 8

Figure 2. 2 Control re-allocation block diagram 10

Figure 2. 3 Actuator failures by control effectiveness factor 15

Figure 4. 1 ALTAV Simulink figure 47

Figure 4. 2 Simulink block diagram of the ALTAV 51

Figure 4. 3 ALTAV trajectory selections 52

Figure 5. 1 ADMIRE control surface configurations 59

Figure 5. 2 Simulink block diagram of the ADMIRE 61

Figure 6. 1 ALTAV simulink with control reallocation block (Gaussian noise added)... 63

Figure 6. 2 ALATV Simulink with control reallocation block (no Gaussian noise). 63

Figure 6. 3 ALTAV Simulink block of partial loss implementation 64

Figure 6. 4 Simulink block for stuck at current position 65

Figure 6. 5 Simulink block for runaway 65

Figure 6. 6 ALTAV Simulink diagram of control reallocation as partial loss 67

Figure 6. 7 ALTAV Simulink diagram of control reallocation as stuck fault 68

Figure 6. 8 ADMIRE Simulink with control reallocation block 69

Figure 6. 9 ADMIRE Simulink block of partial loss implementation 70

Figure 7. 1 Virtual and actual trajectory diagram (Gaussian noise added) 72

Figure 7. 2 Virtual and actual trajectory diagram (no Gaussian noise) 72

Figure 7. 3 Virtual and actual trajectory diagram (Gaussian noise added) 73

Figure 7. 4 Virtual and actual trajectory diagram (no Gaussian noise) 73

ix

Figure 7. 5 The square virtual trajectory vs the desired trajectory 75

Figure 7. 6 The circle virtual trajectory vs the desired trajectory 75

Figure 7. 7 Output response of X, Y, Z position 77

Figure 7. 8 UAV virtual and reallocation tracking trajectories 78

Figure 7. 9 Output responses of Theta, Gamma and Phi 78

Figure 7. 10 Output response of X, Y, Z position 79

Figure 7. 11 UAV virtual and reallocation tracking trajectory 80

Figure 7. 12 Output responses of Theta, Gamma and Phi 80

Figure 7. 13 Output response of X, Y, Z position 82

Figure 7. 14 Virtual and reallocation tracking trajectory 82

Figure 7. 15 Output responses of Theta, Gamma and Phi 83

Figure 7. 16 Output response of X, Y, Z position 84

Figure 7. 17 UAV virtual and reallocation tracking trajectory 84

Figure 7. 18 Output responses of Theta, Gamma and Phi 85

Figure 7. 19 Output response of X, Y, Z position 86

Figure 7. 20 UAV virtual and reallocation tracking trajectory 86

Figure 7. 21 Output responses of Theta, Gamma and Phi 87

Figure 7. 22 Output response of X, Y, Z position 88

Figure 7. 23 UAV virtual and reallocation tracking trajectory 88

Figure 7. 24 Output responses of Theta, Gamma and Phi 89

Figure 7. 25 Output response of X, Y, Z position 91

Figure 7. 26 UAV virtual and reallocation tracking trajectory 91

Figure 7. 27 Output responses of Theta, Gamma and Phi 92

X

Figure 7. 28 Output response of X, Y, Z position 93

Figure 7. 29 UAV virtual and reallocation tracking trajectory 93

Figure 7. 30 Output responses of Theta, Gamma and Phi 94

Figure 7. 31 Output response of X, Y, Z position 95

Figure 7. 32 UAV virtual and reallocation tracking trajectory 95

Figure 7. 33 Output responses of Theta, Gamma and Phi 96

Figure 7. 34 Output response of X, Y, Z position 97

Figure 7. 35 UAV virtual and reallocation tracking trajectory 97

Figure 7. 36 Output responses of Theta, Gamma and Phi 98

Figure 8. 1 Response of p, q, r 101

Figure 8. 2 Response of Euler angles y/,0,<f> 101

Figure 8. 3 Response of cc,/3,y 102

Figure 8. 4 Response of p, q, r 103

Figure 8. 5 Response of Euler angles if/,0,<j) 103

Figure 8. 6 Response of a,/3,y 104

Figure 8. 7 Response of p, q, r 105

Figure 8. 8 Response of Euler angles y/,6,<f> 106

Figure 8. 9 Response of a,/3,y 106

Figure 8. 10 Response of p, q, r 107

Figure 8. 11 Response of Euler angles y/,0,(/> 108

Figure 8. 12 Response of cc,fi,y 108

xi

1. Introduction

An Unmanned Aerial Vehicle (UAV) is an aircraft that is driven by power. It can fly

without an on-board operator and can be re-used and is re-usable. One of the most

appealing topics among the research control community is the application of modern

control theory to UAVs. Such vehicles can be controlled remotely by an operator on the

ground, or autonomously via a pre-designed program. Interest in using UAVs is due to

their wide-range field applications, both civil and military. Applications like traffic

surveillance, area mapping and forest fire detection require high manoeuvrability of the

aircraft and the robustness of the control algorithm with respect to parameter

uncertainties and disturbances like wind and weather condition changes. UAV is playing

an increasingly important role in modern high technology thanks to its unique

characteristics [1]. However, due to the lack of a pilot, UAV loses the human ability of

making smart decisions. This may lead to mission failure when UAV operates in

abnormal conditions, such as flight computer failure, airborne sensor failure and control

surface damage. On the other hand, UAV in war needs to have a good performance to

escape the opponent's attack. From domestic and foreign high reliability flight control

system development, the UAV flight control system requires high reliability and high

survivability to maximally ensure the safety of the UAV and equipment, in order for the

UAV to safely complete reconnaissance and surveillance missions. The same as UAV, all

modern airplanes with pilots depend upon their flight control systems to provide the

handling qualities necessary for successful flight. Therefore, it is necessary to develop

flight control systems that can enable aircrafts to successfully complete missions in the

l

presence of non-fatal fault cases through reconfigurable flight control system design.

Some previous research works were introduced in [5, 6, 10].

As one part of this thesis, the Quanser Almost-Lighter-Than-Air Vehicle (ALTAV) UAV

model is used in simulation studies. The ALTAV uses buoyancy to float in the air in a

way that is similar to ships floating in water. The Quanser ALTAV [2, 4] provides a

platform to demonstrate control reallocation methods for unmanned aerial vehicles.

As the other part of this thesis, the GARTEUR Aero-Data Model [19] in Research

Environment (ADMIRE) aircraft model is also evaluated. This benchmark model

provides a realistic, nonlinear, fixed-wing aircraft model.

For using these two benchmarks, partial loss and stuck faults have been implemented for

reconfigurable flight control system design. Four reconfigurable control allocation

methods, pseudo-inverse, fixed-point, direct control allocation and weighted least squares,

are used and evaluated. These techniques meet the challenges for the partial loss and

stuck fault on control surfaces in simulations.

1.1. Fault Tolerant Control System

With the developments in control systems, high reliability, availability and safety have

become important requirements, included in many international standards and regulations.

Besides the quality and robustness, use of hardware redundancy is a traditional way to

improve process reliability and availability, which has been extended to the use of

software redundancy during the last decades.

The Fault-Tolerant Control System (FTCS), also known as fail-safe control system, is a

2

control system that possesses the ability to accommodate for system failures

automatically and to maintain overall system stability and acceptable performance in the

event of component failures [23]. The objective of FTCS is to maintain safety and

reliability of modern engineering systems. Typically, a FTCS consists of three parts: a

reconfigurable controller, which includes baseline controller and control allocation

modules, a Fault Detection and Identification (FDI) scheme, and a control law

reconfigurable mechanism. This thesis will focus on the development of the

reconfigurable control allocation technique.

The importance of reconfigurable control allocation has now attracted wide attention,

especially the signal treatment, pattern recognition, adaptive control, optimization and

intelligent control; the integration of these techniques under the concept of reconfigurable

control has sped up the reconstruction of the flight control system technology.

Generally, relying on information from the fault detection and diagnosis, reconfigurable

control allocation can be classified into two categories:

(1) Reconstruction methods relying on FDI information (Active)

These methods refer to the use of a variety of information of prior failure and impact;

a pre-established program of reconstruction stored in the onboard computer, when

fault happens, redistribution control system commands according to the results of FDI

to offset the impact of control surface stuck or compensate the impact of partial loss;

effective use of the remaining control surfaces to complete missions or to ensure safe

landing; the stability and acceptable performance of the entire system can be

maintained. In certain circumstances, degraded performance may have to be accepted.

Also, this method can calculate control reconfiguration on-line and re-distribute the

3

control commands [3, 7, 8, 12, 13, 15].

(2) Control not relying on FDI information (Passive)

In contrast to (1), these methods are also known as reliable control systems. System

components and controllers are designed to be robust against a class of presumed

faults. At the beginning of the design phase, the main goal in a fault-tolerant control

system is to design components and controllers with a suitable structure to achieve

stability and satisfactory performance, not only when all control components are

functioning normally, but also in cases when there are malfunctions in sensors,

actuators, or other system components.

This robust flight control system can maintain stability in the presence of faults. This

approach needs neither FDI scheme nor controller reconfiguration, but it has limited

fault-tolerant capabilities [16-18]. Discussions on passive FTCS are beyond the scope

of this thesis.

Following the wide-range development of UAV, the demand for higher system

performance, quality and cost efficiency leads to the growth of complexity in control

systems. In control systems, severe faults happen such as actuator or sensor outages;

producing a break-up of the control loop, which must be restructured to prevent failure at

the system level. Control allocation reconfiguration is an active approach in control

theory to achieve fault-tolerant control of dynamic systems, without need to restructure

the controller parameter. Control reconfiguration is a building block toward increasing

flight dependability.

The structure diagram of a fault-tolerant control system is shown below (not considering

the FDI block).

4

r
Control

Reallocation h

Input Control

Law
Control
Allocation

Sensors

L* Actuators
— •

Flight
Dynamics r >

Output

Figure 1.1 Simple structure of fault tolerant control system

Figure 1.1 shows that the control allocation block and control reallocation block are

placed between the control law and actuators. The system uses the control allocation

block when the system operates in normal conditions; the system uses the control

reallocation block after it has faults caused by control surfaces or actuators. The

algorithms implemented into the control allocation and reallocation blocks must be

chosen amongst many different constrained optimization based algorithms. These include,

but are not limited to: least-squares, linear programming and quadratic programming. The

simplest control allocation method is based on the unconstrained least squares algorithm

with small modifications to consider position limits of the actuators. More complex

methods are derived from the constrained least squares optimization to solve the control

allocation problem. Until recently, it was believed that control allocation was too

complex and computationally intensive for real world use in flight control cases.

However, the recent, dramatic improvement in computer speed and the development of

more efficient algorithms have changed the situation considerably.

This led to the development of different fault tolerant control techniques. In this thesis,

5

fault tolerant control of ALTAV is achieved based on the following control reallocation

techniques:

1. Pseudo-inverse (Pinv)

2. Fixed-point (Fix)

3. Direct Control Allocation (DCA)

4. Weighted Least Square(WLS)

1.2. The Main Content of The Thesis

Reconstruction technology research of control system is based on the redundancy

configuration and control redundancy ability to manipulate control surfaces, guarantee

UAV and aircraft survival ability at a non-serious fault. This project mainly studies UAV

and aircraft control redundancy ability to control manipulating surfaces, the ability to

track the desired trajectory path mission and safe return despite a minor fault and the

ability to work well and safe return when a serious failure happens. The reconfigurable

control allocation methods can ensure UAV and aircraft stability under incomplete or not

completely manipulated information. As to redundant control manipulation surfaces,

when one of the manipulation surfaces has a malfunction or damage, UAV and aircraft

can increase the residual amount of remaining control surfaces to achieve stable flight

control effects.

The structure of this thesis is as follows. The second chapter presents the basic concept,

theory of control allocation and two fault models. The third chapter presents four

different reconfigurable control methods, not only explaining these methods in theory, but

6

also gives example to explain. Then, the fourth chapter describes the basic dynamics of

the ALTAV UAV and benchmark model. The fifth chapter describes the ADMIRE

aircraft model. The sixth chapter presents the implementation of control allocation

methods in ALTAV UAV and ADMIRE aircraft benchmarks. Then, the seventh chapter

presents ALTAV simulation results of different types and in different circumstances,

while the eighth chapter presents ADMIRE results. The ninth chapter is a conclusion of

my work, summarize my contribution and possible future work.

7

2. Flight Control Allocation

Control allocation is useful for control of over-actuated systems; control allocation is

concerned with how to distribute the deflection of multiple control surfaces of the aircraft

to generate the required control inputs, including heading, pitch, roll moments, and forces,

when the number of control surfaces is greater than the number of required control inputs.

Using control allocation, the actuator selection task is separated from the regulation task in

the control design. The control allocation problem is studied following the work of Durham

[21].

Figure 2.1 Control allocation block diagram

Figure 2.1 is the control system structure when control allocation is used. The control

system is made up of a control law, specifying the total control effect, v should be

produced and a control allocator, which distributes this control demand among the

individual actuators, u is produced. In this system, actuators generate a total control effect

V , which determines the system behavior. If the control allocation is successful,

v = V-
sys

8

Today, control allocation is a research topic in aerospace control, marine vessel control

and UAV control.

It can also be seen from Figure 2.1 that the flight control system can be split into two

parts: (1) control law and control allocation. That is to say that there are two control

systems which should be re-designed to maintain the stability and desired transient and

steady-state performance when the actuator, sensor or computer have a fault. In this

thesis, reconfigurable control law is out of our scope. The main focus will be placed on

reconfigurable control allocation or termed alternatively as control re-allocation. This

control re-allocation block is placed between the control law and the actuators. There are

some benefits that lead us to separate the control re-allocation block:

1) Actuator constraints can be taken into account. If one actuator saturates and fails

to produce similar or close to the control effect under nominal conditions, the

remaining functional actuators may be used to make up the difference.

2) Reconfiguration can be performed if the effectiveness of the actuators changes

over time, or in the event of an actuator failure, without having to redesign the

control law.

3) Actuator utilization can be treated independently and can be optimized for the

application considered.

The purpose of this work is to provide different algorithms to re-allocate the control

effectors (control surfaces or actuators) in overall FCS by redistributing the control effect

to the remaining healthy control surfaces, and at the same time, canceling the effects of

control surface deflection stuck at neutral or non-neutral position, as well as partial loss,

by generating a compensated control signal to be finally fed into the FCS.

9

fault

JttXBfaNCPm normal©
- " ' " " - - - - ,

I S *

After| fault |
ocaurs r-..-r.-::i-. •;:,:, :-?L i

I Control . J
re-allocation

Feedback signal from sensor J:

Figure 2. 2 Control re-allocation block diagram

The control re-allocation algorithms use the redundancy of the control allocation

technique until the actuators get saturated. These algorithms are the same as used in the

control allocation block. The idea is, for a normal situation (without fault), the signals

from the control law go through the control allocation block and pass to the actuator, then

to the system. When fault occurs, the signals from the control law pass through the

control re-allocation block and to the actuator. The algorithms applied in the control re­

allocation block re-distribute the control signals calculated by the baseline control law in

the presence of faults and send the redistributed signals to each control surface to achieve

acceptable performance.

2.1. Introduction to Control Allocation

Control allocation is frequently described depending on the application. In this section,

effort is made to develop a generic mathematical statement of the control allocation

problem.

Mathematically, a control allocator solves an underdetermined, typically constrained,

system of equations. The input to the control allocator is the total control effect to be

produced, the virtual control input v(t)e Rk . The output of the control allocator is the

true control input w(/)e Rm, where m>k.

Given v(t), we need to find u{t) such that

g(u(t)) = v(0

where g: Rm (_> Rk is the mapping from actual control input to virtual control input in

the system to be controlled.

Considering the case of a linear dynamic system in state-space form

Eq. (2-1) x = Ax + Buu

y = Cx

xeR" is the system state, ueRm is the input of the control signals, and AeR"*",

Bu e R"*m. Assuming that Bu has ran k<m, it has a null space of dimension m-k in which

the control input can be perturbed without affecting x . Thus, there are several

redundancies that can be resolved using the control allocation technique.

Since Bu is rank deficient it can be factorized as:

Eq. (2-2) Bu = BVB

where Bv e R"*k and B e Rkxm are both of rank k. Introducing the virtual control input

as:

Eq. (2-3) v = Bu

where v e Rk and B is known as the control effectiveness matrix. The system dynamics

can be rewritten as:

Eq. (2-4) X = Ax + Bvv

y = Cx

To incorporate actuator force constraints, we require that:

Eq. (2-5) u <u<u for z = l,...,w
i v / "min.i i — max,; 1 L " * ^ — J ' "

Given the limits, an exact solution may not exist, despite the redundancy. Furthermore,

even if an exact solution exists, it cannot be assumed to be unique. Finding a solution to

Eq. (2-3) within the constraints of Eq. (2-5) is defined as the control allocation problem.

For control of UAV, the state vector x can include the position, velocity, heading, roll and

pitch. The output vector;; may contain position, heading rate, roll rate and pitch rate. The

control vector u contains forces generated by four propellers driven by four motors.

2.2. Fault Modeling of Control Surfaces

The objective of this section is to model faults so that the reconfigurable mechanism can

be evaluated under different fault scenarios. A fault is any kind of malfunction which

occurs in a system and that results in system instability and unacceptable performance

degradation. Faults can occur in any component or part of the system/plant, such as

actuator faults, sensor faults, structural or dynamic faults.

The control surfaces of an UAV can be affected by several types of faults. The control

surfaces can be fully stuck at neutral/non-neutral position, or they can suffer a partial loss

of the control surface area.

12

Common control surface faults to be considered in this thesis include [11]:

(1) Loss of effectiveness (LOE) fault,

(2) Freezing or lock-in-place (LIP) fault,

(3) Floating fault,

(4) Hard-over fault (HOF).

Loss of effectiveness is characterized by lowering the actuator gain with respect to its

nominal value. In the case of LIP fault, the actuator freezes at a particular position and

does not respond to subsequent commands. HOF is characterized by the actuator moving

to its upper or lower limits regardless of the commanded signal. The speed of actuator

response is bounded by the actuators rate limits. A floating fault occurs when the actuator

floats with zero moment and does not contribute to the control effectors.

Different types of actuator faults may be mathematically parameterized as follows:

true

Ucmd

Kt>cmd

0

Ucmdih)

um or uM

No Failure Case

0<s< k(t) < 1, W > tF (LOE)

Vt > tF (Float)

Vt>tF(LIP)

Vt>tF(HOF)

Where tF denotes the time instant of fault occurrence in the actuator, k denotes its

effectiveness coefficient such that k E [e,l] and s denotes its minimum effectiveness,

um and uM denote the minimum and maximum values of the input, respectively.

The above fault modeling can be represented in a general form as follows:

"true = °kUcmd + C1 " <*W

This includes all the above cases in a single representation, where utrue is the actuator

13

output, ucmd is the output of the controller (also an input to the actuator), a = 1 and k = 1

represent the fault-free case, a = 1 and s < k < 1 represent the cases of partial loss of

control effectiveness fault, a = 0 represents a float, LIP or HOF fault case. um < u < uM

is the position at which the actuator locks in the case of float, lock-in-place and hard-over

faults.

For modeling the faults, it is assumed that the linearized dynamics of the normal or fault-

free UAV at a trim condition is given by:

Eq. (2-6) x- Ax + B u

y = Cx

where x G R" is the system state, u £ Rm is the input of the control signals, y e Rp

represents the output that will follow the command input, and^4€/?"x", B e R"xm and

C € Rpx" are matrices.

It is also assumed that the baseline flight control law and the control allocator have been

designed to provide satisfactory stabilization and command tracking performance for the

UAV under normal flight conditions.

2.2.1. Partial Loss

During normal operation, the actuator would operate exactly as directed by the controller.

This means that the actuators are 100% effective in executing the control commands.

When a partial loss occurs in a control actuator, the actuator would not be able to

14

completely track the control command given by the baseline controller. Therefore, the

baseline control law or control allocator needs to be recalculated (reconfigured) based on

the knowledge of the fault that occurred. One way to quantify the magnitude of the

actuator fault is by defining a parameter known as control effectiveness factor y [3]. The

control effectiveness factor will represent the loss of the one to one relationship between

the control command (controller output) and the true actuator action, as shown in Figure

2.3.

Control
Signals

*
* •

* •

"i , command

**i, fault = ^command—* 100% effectiveness

Mi, fruit- 7 * Mi, command - * Y *100% effectiveness

Figure 2. 3 Actuator failures by control effectiveness factor

where y' is the control effectiveness factor, / = \,...,m

The system with the actuator faults modeled by control effectiveness factors can be

written as:

x = AX + BM
Eq. (2-7) f

y-Cx

where Bf is the post-fault control input matrix related to the nominal control input matrix

15

Actuators

Manipula ted
var iables

(System

ui. fault

B. So, Bf can be modeled in the following way:

Eq.(2-8) Bf=B*T

where

V 0 0 0"

r = o r
2 o o

0 0 0 ym _

y'=\, i = \,...,m, denotes the healthy I actuator and y'=0 corresponds to total failure in

•th

the I actuator. Naturally, 0 < y' <1 represents partial loss in control effectiveness. For

example, yx =0.1 means the remaining effectiveness in the first control surface is 10%, or

in other words, the control surface has lost 90% of its effectiveness.

Since the control effectiveness factors are parameters located between the controller

command and the actuator actions, modeling can be viewed as multiplicative faults in

nature.

2.2.2. Stuck Failure

Stuck fault is one serious fault scenario. Once stuck, the actuators can no longer respond

to control commands. It is difficult to deal with stuck actuator faults because the

remaining actuators must compensate for the effects of the failed actuators in the overall

system. In practical situations, stuck faults are much more challenging and difficulty to be

handled than partial faults. Here is the brief description [14].

During normal flight, the motion of a UAV can be described by Eq. (2-6). The closed-

16

loop system is stable under this condition, and its states can follow those of a reference

model. In the presence of stuck actuators, it is necessary that the closed-loop system will

remain stable and that the system states can still follow those of the reference model.

The reference model has the form

xm=Amxm+Br
Eq. (2-9)

ym = Cx
m

where xm e R" is the system state of the reference model, ym e Rp represents the output

of the reference model, r eRm is the input of the reference model, andAm e R"x" is the

system matrix.

Under normal system operation, subtracting the reference model from Eq. (2-6), it

follows that

Eq.(2-10) e = Ame + [A-Am]x + B[u-r]

where e = x - xm, representing the state tracking error.

The control input u can be designed as:

Eq. (2-11) u = -Fxy + r

whereFt is a constant matrix such thatBF{C = [A-Am].

The tracking error system, Eq. (2-10), then takes the following form:

Eq.(2-12) e =Ame

By definition, the tracking error dynamics, Eq. (2-9), are stable. Once some actuators are

stuck, the input to physical model u will no longer be effective in maintaining the

model's path because the corresponding control signals are blocked by the stuck actuators.

17

Under this circumstance, the controller has to be reconfigured by adjusting the remaining

(healthy) control signals such that the system can still follow the reference model.

With stuck actuators, the system Eq. (2-6) can be written as:

•
x =AX + BM,+B,U,

Eq. (2-13)

y = Cx

where w, <= R"1 represents the remaining control input, u 2 e Rmi is a constant vector that

contains the values at which the actuators are stuck, and B] e R"xm' and B2 e R"*™2 are the

input distribution matrices with ml+m2 -m.

Stuck actuators reduce the number of healthy control surfaces. Their effects can be

viewed as additional constant disturbances imposed onto the system, which may drive the

system away from the desired path. The closed-loop system stability may also be affected

due to the loss of some control channels.

2.3. Control Allocation of ALTAV

According to the ALTAV non-linear model, three controller outputs, heading angular rate

and pitch and roll angular rates, determine the desired action to three axes of the UAV

movement. These three variables are used to produce the control signals to be sent to the

four motors. Therefore, the control allocation block has three input variables (<p, 9, y) and

four output variablesF{,F2,F3,F4. The control effectiveness matrix Bb is picked from the

rows and columns in the 5-matrix of the state-space model describing the lineralized

dynamics of the actuator motors in the ALTAV model.

For control allocation implementation, some approximations of the non-linear model

must be made; these enable us to consider the control allocation problem in a much

simpler and easier way/form.

First, we ignore actuator dynamics. It is assumed that the actuators are capable of moving

indefinitely fast and without offset problems.

Second, we think of control surfaces as moment generators. The benefit is that the

actuator has an exact force or position and a generated aerodynamic moment.

19

3. Control Reallocation Methods

The main idea of control reallocation is that once one or more control surfaces get stuck

or partially lost during the flight, control reallocation methods should be able to use the

redundancy of operable control surfaces to cancel the effects of the jammed and partial

loss of the control surfaces and provide the same, or almost the same, desired control

inputs [4, 5, 9, 22, 24, 25].

Let us now review the most common methods for control allocation in the literature.

Many proposed "methods" correspond to different ways of computing the solution for a

certain control allocation objective, rather than different objectives. In this thesis, the aim

is to make a clear distinction, for each control reallocation method, between what the

solution is searched for and how the solution can be computed numerically. Four

algorithms have been implemented for control reallocation, which will be described in

this chapter.

1. Cascaded Generalized Pseudo-Inverse (CGI)

2. Fixed-point algorithm (Fix)

3. Direct Control Allocation (DCA)

4. Weighted Least Squares (WLS)

3.1. Optimization Based Control Allocation

Optimization based methods rely on the following pragmatic interpretation of the control

allocation problem. Given a virtual control command v, determine a feasible control input

20

u such that Bu=v. This can be considered in the following way:

• If there are several solutions, pick the best one.

• If there is no solution, determine u such that Bu approximates v as much as

possible.

Description of Method

As a measure of how "good" a solution or an approximation is, the Ip norm is used. For

a particular p, we will refer to this as Ip optimal control allocation. The Ip norm of a

vector u e Rm is defined as:

Eq. (3-1) p \i=\ ' J forl<m<oo

The optimal control input is given by the solution to a two-step optimization problem.

Eq. (3-2) u = argmin\\Wu (w - ud) \ p

Q = arg min \WV (Bu - v)|
u min<«<w max" "P

where ud is the desired control input and Wu and Wv are weighting matrices. The above

equation should be interpreted as follows: GivenQ, the set of feasible control inputs that

minimizes Bu-v (weighted by Wv), pick the control input that minimizes

u - ud (weighted by Wu).

3.2. Problem Statement

Let the linearized dynamics of the normal UAV or aircraft at a trim condition be given by

21

Eq. (3-3) x = Ax + B u

When one or more control surfaces suddenly have partial loss of their effectiveness or

become stuck at an unknown position, Eq. (3-3) becomes

Eq. (3-4) x = Ax + Bfuf + d

where B f is the post-fault control effectiveness matrix. For partial loss, d = 0. For a stuck

fault, attention needs to be paid so that uf is the remaining control surface and d is the

input to the UAV or aircraft caused by the stuck surfaces.

Let y — Cyx be a selected /^-dimensional controlled output vector to be used in defining

the control allocation, then the derivative of y is,

Eq.(3-5) 'y = Cy'x

Substituting Eq. (3-4) into the above equation, one gets

Eq. (3-6) y = CyAx + CyBfuf +Cyd

In general, the number of control surfaces is greater than or equal to the number of

control output vectors. Relying on the reference model which represents the desired

dynamics of the closed-loop system, the healthy UAV or aircraft would produce control

input um if all of the control surfaces were normal. Then, the derivative of ym is

Eq.(3-7) ym=CyAx + CyBum

The objective of the control reallocation is to seekw^ for enabling Eq. (3-6) to be as close

as possible to Eq. (3-7) and may be rewritten as

22

Eq. (3-8) CyBfUf + Cyd = CyB Um

So the actual y — ym, y will remain approximate to ym. Such a uf can be determined by

minimization of the quadratic function.

Eq. (3-9)

mmJ = ^[(l-e)(CyBfu/+Cyd-CyBum)rQ(CyBfuf+Cyd-CyBum) + euT
/Q2uf]

Subject to

Eq.(3-10) «m i n<w <wmax

where wmin and umax are the smallest and biggest control inputs acting on the control

surfaces and Q is a positive-definite matrix of appropriate dimension.

3.3. Cascade Generalized Pseudo-Inverse Method

Pseudo-Inverse as a reconfigurable control method of an active fault-tolerant control

system consists of changing the feedback gain to complete the reconfiguration of the fault

system. In fact, it completes fault-tolerant control through reconstructing flight control

allocation. Pseudo-Inverse, in some control surfaces/actuators failure, can make use of

the remaining fault-free control surfaces/actuators, in an appropriate linear combination,

to reconfigure the control signals of control surfaces. Mathematically, the method is

usually expressed as multiplying one pseudo-inverse array before the original input, thus

its name. This method is widely used for control allocation. The main reason is its

calculation and application, which are extremely easy. In the 1980s, many researchers

conducted theoretical studies and simulations on the pseudo-inverse of the flight control

23

system. Also this method has executed flight tests on xBQM-106 UAV [29].

The pseudo-inverse method gives the solution by disregarding Eq. (3-10) constraints; a

solution can be obtained by minimizing the quadratic function:

Eq.(3-ll)

mmJ = hsCyBfuf + Cyd-CyBuJ Q {CyBfuf + Cyd-CyBuJ]

SupposeCyBf — By,Cyd — dy andCyB um — vd, called as virtual control.

The above equation is rewritten as

1 T
Eq. (3-12) mm J = -[(Byuf +dy -vd)

TQ{Byuf +dy -vd)]

Subject to

Byuf+dy =vd

An explicit solution can be obtained as:

Eq.(3-13) uf=B+
y(vd-dy)

where

Eq.(3-14) B+
y=BT

y(ByB
T

yy
l

and By is the pseudo-inverse of By.

The solution of the pseudo-inverse in Eq. (3-13) will not be feasible for all achievable

virtual control inputs v, and several ways to accommodate this constrain have been

proposed. The simplest alternative is to truncate Eq. (3-13) by clipping those components

that violate some constraint. However, since this typically causes only a few control

inputs to saturate, it seems natural to use the remaining control inputs to make up the

difference.

24

Virnig and Bodson [9] propose a Redistributed Pseudo Inverse (RPI) scheme, in which

the control inputs that violate their bounds in the pseudo-inverse solution are saturated

and removed from the optimization. Then, the control allocation problem is resolved with

only the remaining control inputs as free variables. Bordignon [22] proposes an iterative

variant of RPI. Instead of only redistributing the control effect once, the author proposes

to keep redistributing the inputs as they become saturated. This is known as the Cascaded

Generalized Inverse (CGI) approach.

The method of CGI arises from the idea that if a generalized inverse commands a control

to exceed a position limit, then that control should be set at the exceeded limit, and the

rest of the controls redistributed to achieve the desired moment. This procedure can be

used with either pseudo-inverse or generalized inverse weighted with a diagonal matrix.

Initially, a generalized inverse computed using Eq. (3-13) and Eq. (3-14) is used to

allocate the controls given in response to some desired moment.

If none of the elements in the solution are saturated, then the desired moment lies within

the limits of the constraints. If any of the elements in the solution exceed their constraints,

that element is set equal to its constraint, and its effects at saturation are subtracted from

the desired moment. The effect of a saturated control is equivalent to the control position

multiplied by the column of B matrix which corresponds to that control. The resulting

moment is the part of the moment demand that must be satisfied by the remaining control

authority which is denoted as v. For example, if the ith control saturates, then

Eq.(3-15) u=U; ,,,v — Bii; ,,
^ v J i i{sat)> i i(sat)

Next, the saturated controls are removed from the problem. When a pseudo-inverse is

used, this is done by removing the corresponding column, Bi, from B. The reduced B

25

matrix is denoted by B*. The new pseudo-inverse is then computed by plugging B* into

Eq. (3-14) to get B*+ . Now the new solution is once again checked for saturation. If there

is a saturated element, the algorithm runs one more time according to the above method.

Ultimately, either no new control will be saturated, or all the remaining controls are

saturated, or the reduced B will have n or fewer columns. When no new controls are

saturated, an admissible solution is found. If all the controls are saturated, the controls are

set to their limits and the moment is unattainable using this method.

In the following, an example is given to demonstrate the concept of CGI.

CGI Example

Suppose

w, +2u2 - v

B = [l 2],u = v = 3.5

Constrained by

0<w, <2

0<w2 <1

The initial values for ud are given by

First iteration, calculating Pseudo-inverse B+ :

B+ = [\ 2f-([l 2]-[l 2f)-1

26

_ °-2

Then,

u2
= B+-v =

"0.2"

0.4
•3.5 =

"0.7"

1.4

w2is infeasible since it exceed its limit at u2=\. So, the control allocation problem is

resolved with only w,as a free variable. Replacing the original B matrix by5* = [l 0],

the virtual control input that should be produced by ux is given by

v* = 3.5-[l*0 + 2*w2] = 3.5-2=1.5

Then, we need to operate the second iteration.

The solution is then given by

w, = 5*+-v*=l*1.5=1.5.

So, we get

u2
=

"1.5"

1

Now, let us check whether this solution is feasible or not. v= 1.5+2*1=3.5 fits and the

algorithm stops. In this example, Cascade Generalized Inverse (CGI) was successful since

the output is the true solution after two iterations.

However if the constraints in the above example were changed to

1 < w, < 2

0<u2 <1

Running the same procedures, after the first iteration, u\ = 0.7 and «2 = 1.4. These values

exceed their constraints. According to CGI regulations, ul and «2 are set to 1.

27

Checking v=l*l+2*l=3, this result is not satisfactory. So, this is an incorrect result.

Using CGI does not guaranteed that the optimal solution will be found.

3.4. Fixed-Point Method

The fixed-point method is simple. In comparison with CGI, this method is used to handle

actuator saturation [5]. Many of the computations need to be performed only once before

iterations start. Remarkably, the algorithm also provides an exact solution to the

optimization problem, and it is guaranteed to converge. Its drawback is that convergence

of the algorithm can be very slow and strongly dependant on the problem. The number of

iterations required can vary by orders of magnitude depending on the desired vector. In

addition, the choice of the parameter e is sensitive, as it affects the objectives, as well as

the convergence of the algorithm [9]. The fixed-point method is based on the mixed

allocation problem.

The fixed-point method finds the control input vector u by minimizing the quadratic

function

Eq.(3-16) minJ = -[(l-£)(Byuf+dy-vd)
TQl (Byuf+dy-vd) + suT

fQ2uf]

For 0 < £ < 1

For the case when the constraints of Eq. (3-10) were not considered, solving the QP

problem becomes much easier and the solution uf is obtained from the unique solution of

the linear algebraic system = 0, which gives

uj = (1 - s)[(BT
yQ, By +£Q2Y

l BT
yQ} (vdu - dy)

For another case, Eq. (3-10) constraints are active and involved in the applications.

Applying this method to the quadratic programming problem, the fixed-point algorithm is

given as

Eq.(3-17) uk+l = sat[(l-s)nBT
y(vd-dy)-(nM-I)uk]

= [F(vd-dy)-Guk] k = 0,...,N-\

where N-l is the maximum number of iterations,

Eq.(3-18) M = (\-£)B
T

yQlBy+sQ2

and

1
Eq. (3-19) n = M\l

Sat (•) is the saturation function that clips the components of the vector u to their

allowable value.

sati (u)

«,. U; < w,

u, u±<ui<ui i = \t...,m

W, U, > U;

This algorithm provides an exact solution to the optimization problem, and is guaranteed

to converge. The convergence can be very slow and choosing a proper value e is very

important. Whether e is good or not directly affects the optimal solution. A large value

speeds up the convergence but makes it hard for the algorithm to find the exact solution.

A small value for s leads to slightly slower convergence but the algorithm converges

closer to its optimal solution.

The fixed-point algorithm can be interpreted as a gradient search method where the

29

iterations are clipped to satisfy the constraints.

An example

Consider the following.

B = [2 l] , F = 3

«„ta=[-l "if

"max = [l ^

e = 0.001

Here, £?i and Q2 are unit matrices and d = 0 .

The first thing to find is the initial condition for u. This is done by

u -
("min+Wmax)

T-r +

2

1 "0"

0

To compute the output we use:

w*+i =(Fv-Guk)

where

Fv = {\-s)-n-BT v

= (1-0.001) 0.2002 3 =
1.1998

0.5999

and:

G = n*M-I

First, we calculate M :

M = (l-s)BTB + eI

30

= (1-0.001)([2 if [2 l]) +0.001
1 0

0 1

3.9970 1.9980

1.9980 1.0000

Then, calculating n,

1
n = "I,

So, G = 0.2002

3.9980 1.9980

1.9980 1.0000

"3.9970 1.9980

1.9980 1.0000

= 0.2002

1 0

0 1

-0.2000 0.3999

0.3999 -0.7998

Inserting the above F and G matrices into Eq. (3-17) gives:

u, —
1.1998

0.5999

"1.1998"

0.5999

3.9970 1.9980

1.9980 1.0000

0
0

The next thing is to check if any element in ux exceeded the saturation limit. This is done

by:

sat^u) =
ui w; < ui

u, <u, <u, ?~1) 2
i i i

Uj Ui > Ut

If one of the outputs exceeds the constraints it will be set equal to the constraint,

w, is given from the first iteration

31

1.0000
1 [0.5999_

Now, we are ready to do the next iteration. In the following table the results of the

iteration are given with the initial guess of u0 = 0 .

Table 3.1: Results from each iteration

Iteration no.

0

1

2

3

4

5

6

7

8

9

10

U]

0.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

U2

0.0000

0.5999

0.6798

0.7437

0.7948

0.8357

0.8683

0.8945

0.9154

0.9321

0.9455

error for w/

1.0000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

error for U2

1.0000

0.4001

0.3202

0.2563

0.2052

0.1643

0.1317

0.1055

0.0846

0.0679

0.0545

To get a satisfactory solution, it is necessary to do more iteration. From this example, it

can be seen clearly that u can converge to the optimal solution after repeated iterations.

In this calculated example, the correct solution was achieved after 98 iterations.

The advantage of the CGI method is its numerical simplicity, but clipping must be

applied to enforce the actual constraint and can yield poor results. It does not guarantee

32

that the optimal solution will be found. Fix method provides an exact solution to the

optimization problem, but this algorithm is relative slow and requires relatively high

number of iterations before a solution can be found.

3.5. Direct Control Allocation Method

The objective of direct control allocation is to find a control vector u that gives the best

approximation of v in the given direction. Thus, direct control allocation weighs

directionality over moment generation, which is an important characteristic especially for

applications such as flight control. In a special case of matrix B, direct allocation provides

a unique solution to the problem. The condition for this property is that any q rows of B

must be linearly independent, where q is the number of rows in B [9]. For flight control,

the number of rows in B is usually three. In this case, the three components of v in the

model reference control law are the accelerations in p, q and r, as outputs are three

rotational accelerations. The columns of B represent the contributions of the various

control surfaces to each of the three rotational accelerations.

Given a matrix B, find a real number a and a vector w, such that J = a is maximized,

subject to

Eq. (3-20) (B)u, = av

Eq. (3-21) a = ^-^-
v

and

33

If a>l, let

Eq. (3-22) u = —
a

Otherwise, let

u = uj

An advantage of direct allocation includes the straight forwardness of the allocation

problem. No design variables must be selected, since the solution to the problem is

determined by the control effectiveness matrix (B) and the constraints. When a>l, no

element in u will be saturated. A method of implementing direct allocation is to use

linear programming.

3.5.1.Constrained Optimization Using Linear Programming

Linear programming (LP) is regarded as a practical application of mathematics, as its

applications are broad and universal. LP is an optimization approach that deals with

meeting a desired objective such as minimizing or maximizing cost, in the presence of

linear constraints such as limited resources.

Standard form:

The basic linear programming problem consists of two major parts:

• The objective function, and

• A set of constraints

34

For a maximization problem, the objective function is expressed as:

Max Z = CXXX + c2-*-2 "*" c3*3 + ••• + ^ ^

where c/ = payoff of each unit of they activity that is undertaken and xj = magnitude of

th the / activity.

The constraints can be considered as:

a\\x\ +anx2 +#13*3 +--- + a\„x„ ^ bx

91 1 C/'j ' j^ 'T ~t~ ClyiJ\>'i i . . . i C*^i -A- _ i L / ^

Also expressed as

Eq. (3-23) Ax < b

where A E. Rmxn , ay = amount of the i resource that is consumed for each unit of the

j activity and b e Rm, bi= amount of the i resource that is available. That is, the

resource is limited. The second general type of constraint specifies that all activities must

have a positive value.

JC, >0, x2 >0,---,xn > 0

Simplified as

Eq. (3-24) X > 0

Together, the objective function Eq. (3-23) and the constraints Eq. (3-24) specify the

linear programming problem.

35

3.5.2.Linear Programming

Bodson re-formulated direct control allocation as a linear programming problem [9]. LP

problem can be derived. When re-defining the control allocation problem to fit a linear

programming formulation, the standard linear LP problem consists in finding a vector x

which minimizes:

Eq. (3-25) J = CTX

Subject to:

Eq. (3-26) 0<x<h,Ax = b

In this equation alternative formulations exist, replacing 0 < x<hby x > 0 and Ax=b

by Ax > b. However, these differences are not significant and do not effect our discussion.

To solve a linear programming problem in its standard form from the control allocation

problem, a matrix M must be defined. The largest element of v must be identified

beforehand. The largest element in v is denoted vmax, while the two remaining elements

of v are defined as v, andv2. According to the position of the largest element in v, Mis

defined. The index of M corresponds to the position of the largest element in v. The

matrix Mis then defined as one of three cases:

fl/f —
j k ? 3 —

M,=
1

—

-

v,
2

3

V
max

0
0

— v
max

vmQ max

0

v l ~

V 2 _

0

v
max_

Af, =
- V m a x V l 0

0 3 max

Using this M matrix, we can define the LP problem in standard form. To solve the

problem, A is first defined:

36

Eq. (3-27) A = M B

Then, b is defined as

Eq.(3-28) b = -A-Xmh

Proceeding to define h, we have:

Eq.(3-29) h = Xmm-xn

T

The objective function (C) must also be defined according to the problem. We define

C as:

Eq. (3-30) CT = -BTV

The equations are then set up in a standard LP tableau, and the linear programming

problem is then solved. In our implementation, the MATLAB function "linprog" is used

in program codes. Sometimes, the solution vector (x) must be scaled according to a

scaling factor {a). According to the value of the scaling factor, a logical choice is made to

determine whether or not the solution vector should be scaled. If the scaling factor is

larger than one, the solution vector should be scaled.

The scaling factor is calculated as

(Bu)Tv
Eq(3-31) a=Vs)

An example

We have:

37

v =

v l

V 2

3.
=

"0"

9

0
, B =

1 0 0 0

0 1 0 1

0 0 1 1

" - 5 "

-10

- 2

_ - l _

<u<

" 5 "

10

2

1

where

We proceed by defining M. Since the largest element of v is v2,

Mis defined as

M=
- 9 0 0

0 0 - 9

Following the procedure described above and using Eq. (3-27), we define A:

A =
- 9 0 0

0 0 - 9

1 0 0 0"

0 1 0 1

0 0 1 1

=
- 9 0 0 0

0 0 0 0

Using Eq. (3-28) we define b:

- 9 0 0 0

0 0 0 0

" - 5 "
-10

- 2

-1

"-45"

-27

Using Eq. (3-29) we define h:

h =

5

10

2

1

- 5

-10

- 2

- 1

10

20

4

2

Using Eq. (3-30) we define the objective function (CT):

38

-1

0

0
0

0

- 1

0
-1

0"

0

- 1
- 1

Tnl

9
n
U

" 0 "

- 9

0
- 9

Writing the linear programming tableau, we define the following:

c

Rl

R2

*x

0

-9

0

X2

-9

0

0

x,

0

0

-9

* 4

-9

0

-9

b

0

-45

-27

Where row c is the objective function and Rl and R2 are the rows of A.

Looking at the objective function, it can be seen that we must increase X2 and X4 to

obtain a better value of the objective function. To do this, both X2 and A"4 are driven to

their saturated values, X2 = 20 and X4 = 2.

We obtain the following tableau:

c

Rl

R2

* ,

0

-9

0

x,

0

0

-9

b

0

-45

-9

This gives an easy solution for both X] and X,: X, =5 and A-
3 = 1

The x vector then becomes

39

5

20
x =

1

2_

Before we arrive at the final solution, we must first return from the LP problem definition,

and obtain a formulation for use with the control allocation problem.

Continuing to use formulation, we calculate:

10

- 1

1

At last, the scaling factor must be calculated and applied to the solution if appropriate.

Using the following formula, the scaling factor is calculated:

{Bufv 99

U = X + X = mm

a = • = — =1.2222
(v V) 81

Since a>\, all elements of u must be divided by a to complete the calculations. This gives

a final solution of

0

8.1918

-0.8181

0.8181

u =

In order to find out whether this solution produces the right moment in the right direction,

we can calculate:

v = Bu =
1 0 0 0]

0 1 0 1

0 0 1 1

0

8.1918

-0.8181

0.8181 _

—

"0"

9

0

40

This calculation shows that the solution found using linear programming is correct.

3.6. Weighted Least Squares

In this section, we will consider the weighted least squares (WLS) method. WLS is one

use of the active set methods [27, 28] to solve the l2 optimal control allocation problem.

3.6.1. Active Set Method

Based on O. Harkegard [26], the active set method is widely used to solve constrained

quadratic programming (QP), and it has been proven that an optimal solution can be

achieved in a finite number of iterations. The use of the active set method has two

obvious advantages:

1. Reduce the constraints of the question, thus enabling to solve the question easily.

2. Reduce the possibility of incompatibility with QP sub-problems.

The bound and equality constrained least squares problem may be written as follows:

mir|Uw-^|
u ' '

Bit = v

Here, C
f J \

K-Ij
andt/

' u^

\~UJ

Cu>U

, so Cu > U is equivalent to W < W < W,

The active set method solves this problem by solving a series of equality constraint

problems. The thinking is that, in each step, some of the inequality constraints are

41

regarded as equality constrains, and form the working set W, while the remaining

inequality constraints are disregarded. The active set of the solution is the working set at

optimum.

3.6.2. Weighted Least Squares Discussion

Considering the choice of norm, a common technique is to approximately reformulate the

sequential optimization problem (3-2) as a weighted optimization problem:

u = ̂ gmv^Wu{u~ud)\
P + j\Wv{Bu-v)\

u<u<u

where y»\ to emphasize that, primarily, Bu-v should be minimized, choosingp=2.

When the control allocator is initiated, and there is no previous solution available,

o (u + u) . „,
u = — and W - 0 are selected.

The cost function is rewritten in standard form:

where

Eq. (3-32)

Solving

Eq. (3-33)

Eq. (3-34)

K(«-udf +]jWv(Bu-vf r2wvv r2wvv

wuud j

y~2wvB

v K J

b = y2Wvv

V Wu«d J

u = argminUw-6

Bu-v

42

Eq. (3-35) Cu > U

Let u° be a feasible starting point. A point is feasible if it satisfies Eq. (3-34) and Eq. (3-

35). Let the working set FF contain a subset of the active inequality constraints at u°. For

i = l,2 ...

Given a suboptimal iterates', find the optimal perturbation p, considering the inequality

constraints in the working set as equality constraints and disregarding the remaining

inequality constraints. Solve

Eq. (3-36) min |U(« '+p)-b\
p

Bp = 0

p, =0,ieW

For one situation, if u' + p is feasible, then set w'+1 =u' + pand compute the Lagrange

multipliers in the form:

Eq.(3-37) AT(Au-b) = (BT C0
r)

If all X > 0, u'+x is the optimal solution to Eq. (3-34). The iteration will stop withw = w'+I.

Otherwise, remove the constraints associated with the most negative A from the working

set.

For another situation, if u' + p is in feasible, need to determine the maximum step

a length such that u'+ -u' +cxp is feasible. Add the bounding constraint at w'+1to the

working set.

43

An example

Let us revisit the case using the CGI algorithm and see how the WLS algorithm solves

this problem.

Same as the CGI algorithm example,

w, +2w2 = v

B= [1 2], u = , v=3.5

l<w, <2

0 < u2 < 1

WU=I ,WV=I and y is big enough, chose/ = 1 x 106. Set initial

un =•
u • +u

mm max = [0.5 1.5f

Calculating A and b according to Eq. (3-32),

A =
(I \

y2WvB

, w

/1000 2000^

1 0

V 0 1

b =
r i \

y2Wvv

V Wuud ,

^3500^

0

V 0 j

Initial residual:

d—b-A*u-

^1000^

-1.5

v -0 .5 y

Perturbation:

44

p = A\d

Getting the new point:

-0.8

V 0 . 9 y

w1 =u° + p =
ro.7N

The solution of the new point is the same as the solution of the failure case using the CGI

algorithm. The new point is not the optimized point; we need to compute distances to the

different boundaries.

Since a < 1 is the maximum step length, we initiate with one. Hence, the maximum step

length a is solved for:

a = 0.5556

So, updating the point and residual,

'1.0556^
u2 =ul +ap =

d -b- A*ap

v1.0000y

444.4447

-1.0556

-1.0000

Re-computing the optimal perturbation vector p,

p = A'\d =

The new point is

f 0.4444^

0

w3 -u2 + p -
'1.5^

v1.0y

Calculating the X by Eq. (3-37),

X -2 .0

45

Since A > 0 , the optimal solution is found. This confirms that u = w3 =

optimal solution to the problem.

'1.0^

V1.5,
is the

46

4. ALTAV UAV Benchmark

The Almost-Light-Than-Air-Vehicle (ALTAV) simulation is designed to permit the

examination and evaluation of candidate control algorithms for the operation of one or

more such vehicles.

•tm <'W* »*«£**! w i - n m ^ i m * ^

I .III.1V.-1'"-! - '

4 , » i u

K"^j<lBC
n ' ^ B r

Figure 4.1 ALTAV Simulink figure

The current implementation of the simulator software is designed primarily as a design

and evaluation tool for the system state variable controllers. However, the simulation will

also be suitable for testing higher level fleet control algorithms. It uses the Simulink

Aerospace - Blockset Euler-6DOF block for tracking the vehicle's position and

orientation through time [2].

47

4.1. ALTAV UAV Dynamics

The actual Almost-Light-Than-Aerial-Vehicle (ALTAV) system used in this paper is a

six degrees of freedom unmanned aerial vehicle. The variables describing the motion are

x, y, z, 6,y and^. These variables correspond to the translation in x, y and z directions

and rotation about z, y and x axes (heading, pitch and roll), respectively. It should be

noted that the system uses a 'right-hand' coordinate system with the positive z

direction as down. The behavior of the ALTAV system is governed by the

following equations (in the vehicle frame):

Mx = F; sin(y) -Cxx

My = Fi sin(^) -Cyy

Mz = -FjS cos(^)cos(^) - FB + Mg -C2z

Jee = (FJ - F2l + F3l - FJ) sin(p) - CeG

Jyf = (FJ - F3l) - FBLB sin(r) - Cyf

V = -W ~ FJ) ~ FBLB sin($ - Cj

where

M Mass of the vehicle,

x, v, z, 6, y, d> Vehicle position and orientation,

J ,J ,J Moments of inertia about x, y and z axes, respectively,

f Buoyant force resulting from the volume of helium in the vehicle,

48

F i = \ 4 Force magnitude of motors,

/ Perpendicular distance between the motors and vehicle center of gravity,

C. Drag coefficient in the directions i e[x,y,z,0,y,0] which serves as a

damping term for the motor in that direction,

p Angular offset from vertical of the motor thrust vectors.

4.2. ALTAV Simulator Software

The ALTAV simulation is based on a physical model. The simulation software is

basically composed of several files:

ALTAV_modeI.mdl

-Simulink model of ALTAV and the associated control and inputs for flying the vehicle.

-This model also includes a Simulink VR Toolbox graphical rendering subsystem (VR

GUI block). This block is for generating a graphical interface only and has no effect on

the simulation. In this paper, this block is out of our scope.

ALTAVSetm

-Matlab script file which initializes the simulation with a square trajectory as the input

path.

-Includes SetParams.m and SetPath.m.

ALTAVSetcircle.m

-Matlab script file which initializes the simulation when circle trajectory as input path.

49

-Includes SetParams.m and SetPathcircle.m.

SetParams.m

- Matlab script file which initializes all of the control, plant and physical parameters of

the simulation.

SetPath.m/SetPathcircle.m

-These files assign the desired flight path trajectory for use by the system when not

operating under manual control via a joystick. SetPath.m/SetPathcircle.m are two distinct

trajectories are designed as model ALTAV input. The target trajectories are a square and

a circle, respectively, which the vehicle attempts to follow.

Plot_compare.m

-Script file which executes the simulation for t time steps in order to gather performance

information from the simulation.

Operating procedures:

• Starting Matlat

• Open ALTAVmodel.mdl

• Execute ALTAVSet.m

• Start ALTAVmodel.mdl simulation

4.3. Mdl Representation

The ALTAVmodel.mdl diagram can be divided into four distinct regions (see Figure

4.2): the flight path input, the flight command controllers, the physical model of the

system, and the "Real World" correction. The ALTAV simulation is wholly contained

50

within the 'ALTAV Simulation' with ALTAV model.mdl.

Figure 4. 2 Simulink block diagram of the ALTAV

4.4. Flight Path Input

The flight path block refers to as trajectory generators, generating a desired flight path for

the vehicle, see Figure 4.3. The flight path is a sequence of time-stamped positions.

Currently, the vehicle's flight paths are specified by (x, y) coordinates, elevation and

vehicle heading. In this project, there are two different trajectory selection designs:

squares trajectory and circle trajectory as model input. Square trajectory input is currently

specified through the variables defined in SetPath.m, while circle trajectory input is

designed through a Simulink block diagram. This information can be easily supplied

from other sources, such as variables from the workspace or other generated flight paths.

51

Constant

CIRCLE

Zt

TrajZ 1

Xt

TrajX 1

Yt

TrajY 1

• o

Traj . Selection

Trajectory selection

Figure 4. 3 ALTAV trajectory selections

In addition to the above mentioned variables for vehicle control is the 'V offset' input.

This variable is used to investigate the behavior of the system when a vectored offset is

added to the motors. This can be used in the future for improved handling in wind,

though, at this stage, it is not used and the automatic control of the vehicle under such

conditions is beyond the scope of this study.

4.5. Flight Command Controllers

Flight command controllers in the ALTAV UAV Simulink diagram have two levels. The

first level of control generates pitch and roll command to move the vehicle in (x, y) space.

In the next level, flight controllers provide commands to the four motors to maintain the

specified elevation, yaw, pitch and roll. Within the 'Controller' block of the Simulink

diagram, all controllers use a set of PID to accomplish control.

52

The specific parameters for controlling the vehicle are found in the Matlab script

SetParas.m. Modeling of real vehicle characteristics is important to match the simulator

to the real world as accurately as possible.

4.6. Real World Correction

In order to evaluate the performance of the system in the real world, it is necessary to

model such effects as sensor noise and sensor delay. This block applies Gaussian noise to

each of the system state variables with some predefined delay (as specified in

SetParams.m). The noise is assumed to have zero mean and bias with a variance

determined either theoretically or through experimentation.

In addition, each actuator has a rate limiter and a saturation cap to ensure that the system

more closely mirrors the real system. These values have been selected based on empirical

tests performed on the system components, such as maximum thrust and maximum

vectoring rate. Again, these values can be seen and changed in SetParams.m.

4.7. Simulation Script Files

SetParams.m simulation parameters

The file SetParams.m contains all of the pertinent parameters for simulations. These

include the parameters for the various PID controllers maintaining the state of the

ALTAV to the physical specifications of the vehicles, which govern the vehicle flight

characteristics.

53

The file is broken down as follows:

ALTAV Control Values

-These are the variables that specify the performance of the controllers running on the

vehicle. The definition of variables is described in the comments part. The rate limits are

used to prevent a change in target waypoint from being interpreted as a step input thus

permitting much smoother operation.

Real System Values

-These are the values of the noise and sensor delays for the system sensors. If no noise is

desired, the value of the variable NOISE is set to zero. Conversely, should noise be

desired, NOISE should be set equal to one.

Motor Parameters

-This section defines the motor saturation values and the spin-up rate limits for the

motors. In addition, the measured motor torque (as a function of generated thrust) can be

included. This model assumes that all motors are rotating in the same direction (counter­

clockwise).

Model System Physical Parameters

-This section defines such physical parameters as the mass of the system and the pertinent

dimensional values. This includes different physical shapes for the vehicles and the

appropriate configuration measurements.

It should be noted that the distances and coordinates referenced in this section are all

relative to the CoG of the vehicle, rather than the centre of the vehicle itself. This

protocol is used because the vehicle itself does not matter in the equations of motion,

only the positions of the various components relative to the centre of gravity.

54

Hence, a Centre of Buoyancy (CoB) coordinate of [0, 0, 1] places the centre of buoyancy

(usually the centre of volume) 1 meter directly above the centre of gravity and the vehicle

is stable. [0, 0,-1] puts the CoB 1 m below the CoG for an unstable vehicle.

The Payload, Avionics Processor Unit (APU) and electronics and battery masses and

positions can also be specified. This is relevant to both mass and lift calculations and

moments of inertia calculations. This information is calculated here.

Model Initial Conditions

-This defines such initial conditions as the starting position, orientation and velocity of

the vehicle. This is primarily used for testing and debugging.

55

5. ADMIRE Aircraft Benchmark

The ADMIRE (Aero-Data Model in Research Environment) benchmark has been

developed from the aero data obtained from a generic, single seated, single engine fighter

aircraft with a delta-canard configuration. The ADMIRE model is a non-linear, six degree

of freedom simulation model of a small fighter aircraft consisting of a single engine

delta-canard wing fighter aircraft model implemented in Matlab/Simulink and is

maintained by the Department of Autonomous Systems of the Swedish Research Agency

(FOI)[19,20].

5.1. Aircraft Dynamic

The aircraft dynamics are modeled as a set of twelve first-order non-linear differential

equations in the form:

Eq. (5-1) x = / («,«, A) x e 9?12xl, u e <R,2xl and A e 9?12xl

Eq. (5-2) z = g(x, u, A) z e <R31xl

where x is the state vector, u is the input vector, z is the output vector, and A is the

vector containing uncertain and variable parameters.

The ADMIRE flight operation region is up to mach 1.2 and altitude up to 6 km. The

aircraft model has 12 state components related to aircraft dynamics

(VT,a,/3,pb,qb,rb,Q>,d,x¥,xv,yv,zv) and additional components due to the presence of

actuators and components of a flight control system. The force equations in the aircraft

56

body axes frame are:

Eq.(5-3) 'u = Fxasro+T-gsm0-qbwb+rbvb

m

F
Eq. (5-4) v = Xaero + g cos (9 s in0 + p b w b - r b u b

m

F
Eq. (5-5) w = ^ ^ + gcos0cos<f>-pbvb+qbub

m

The components of state derivatives, vector x in equation (1), are as follows:

Eq. (5-6) VT = -*—* * * * *

Eq. (5-8)

VT

uh wh - wh u,
Eq. (5-7) a = -*-£ f-*-

ub +wb

VbVT-VbVT

V«-i„+i*V» ,V„-i«V.-ii L t-> /c r\\ x ** yy zz / xz v yy zz ' zz xz * Xz i s

Eq. (5-9) /? = ; - f p b q b + ™ qbrb + » Mz + i i -r i i -il
 II -r

XX ZZ XZ XX ZZ XZ XX ZZ XZ

M„
XX ZZ XZ

2 x

Eq. (5-10) q=-r^pl + ̂ —^-pbrb + ̂ f-rb
2 + My

I ±u I ±D ° I ° I
yy yy yy yy

2
xz

I I _/2 <•»•» ' I I -I2 ™b II -I2 "^
XX ZZ XZ XX ZZ XZ XX ZZ XZ

T-. sC i 1 \ * ^ xx yy/zz xz , * yy * zz * xx) * xz * vv , ,

Eq. (5-11) rb = — pbrb + -JSL— -. qbrb + r r ** r2 Mz +

z—rMx
I I -I2

XX ZZ XZ

57

Eq. (5-12) ¥
qb s in <j) + rb c o s </)

cos#

Eq. (5-13) 6 = qb c o s <j) - rb s in <f>

Eq. (5-14) $- Pb + t a n ^ (< 7 A s m </> + rb c o s ^)

The output vector consists of the state variables, plus additional variables defined by the

equations:

Eq. (5-15) ub = VT cos a cos /?

Eq. (5-16) vb = VT sin p

Eq.(5-17) wb = Vr sin«coSyff

The above three equations provide the body-axis velocitiesub ,vb and wb, respectively.

The engine thrust works in the direction of the xb axis. So, load factors along the zb and

yb axes are derived from the total aerodynamic forces in the body fixed z and y axes only.

Eq. (5-18)
-F-Zaero

mgo

Eq. (5-19) ny =
Yaero

mg0

The Mach number M and flight angle y are computed as:

Eq. (5-20) M- T

a(h)

Eq. (5-21) y = -arcsm
z

V J

The coefficients of drag and lift, defined in the stability-axes frame are:

58

Eq. (5-22) CD = CN sin a + CT cos a

Eq. (5-23) CL = CN cos a - CT sin a

The side force coefficient CY, roll moment coefficient C,, pitch moment coefficient Cm,

yawing moment coefficient Cn and forces FXaero and FZaero in the xb, yb and zb axis are

generated as outputs.

5.2. ADMIRE Model

To evaluate the designed control allocation algorithms produced in this thesis, the

ADMIRE model is used for simulation.

Figure 5.1 ADMIRE control surface configurations

Further details about ADMIRE:

1. Dynamics: The dynamic model consists of the nonlinear rigid body equations,

along with the corresponding equations for the position and orientation. Actuator

59

and sensor dynamics are included.

2. Aerodynamics: The aero-data model is based on the Generic Aero-data Model

(GAM) developed by Saab AB and was extended for high angles of attack.

3. Control surfaces: The actuator suite consists of canards (left and right), leading-

edge flaps (left and right), elevons (inner, outer, right and left), a rudder and thrust

vectoring capabilities. In this model, the landing edge flaps will not be used for

control allocation since these do not produce large aerodynamic moments. Thrust

vectoring will also not be used in this project due to lacking documentation. The

remaining seven control surfaces are denoted in Figure 5.1. u denotes the

commanded deflection while 8 represents the actual deflection.

4. Actuator models: The servo dynamics of the utilized control surfaces are given by

first-order systems with a time constant of 0.05s, corresponding to a bandwidth of

20 rad/sec. Actuator position and rate constraints are also included. Table 1 shows

the actual rate and position constraints for flight below Mach 0.5.

5. Flight envelope: The flight envelope covers Mach numbers up to 1.2 and altitudes

up to 6000m. Longitudinal aero-data exist up to an angle of attack of 90 degrees,

while lateral aero-data only exist for angles of attack up to 30 degrees.

ADMIRE control surface limits below Mach 0.5

Control surface

Canards

Elevons

Rudder

Min. deflection(deg)

-55

-30

-30

Max deflection(deg)

25

30

30

Max. rate(deg/sec)

50

150

100

60

5.3. ADMIRE Simulation Model

The ADMIRE simulation model includes four blocks: the Flight Control System block,

Computer Delay and Transport Delay block, Saturators Rate-limiters and Actuators block

and Aircraft Response block. The ADMIRE non-linear model in Simulink is represented

as follows.

|t?0fcg(3l|-

Fas

FIP

tt/g

rfiy

Dlstt/ftoPa/am

Control
System

Total
Computer

Delay

Transport
delay

Saturators
Rateiimiters

and
Actuators

3
Aircraft

Response

*«%,
^

*Qk

-*m
+&!>

<§>

^*W.

*m
•*m

-<*%

\—+& *<m

Figure 5. 2 Simulink block diagram of the ADMIRE

Figure 5.2 shows the Simulink block diagram of the ADMIRE benchmark. The fault

model was not included since the original aircraft model was not implemented for fault-

tolerant control search purposes. The inputs are given by the pilot, such as longitudinal

(Fes) and lateral (Fas) stick deflection, rudder pedal deflection (Frp), and throttle stick

setting (Tss).

61

6. Control Reallocation Implementation

This section will present the implementation of different control allocation methods in the

ALTAV and ADMIRE Simulink nonlinear models. Simulations are conducted in order to

analyze whether different control allocation algorithms possess the ability to re-stabilize

UAV or aircraft and provide reasonable command-tracking performance. The following

implementation has been considered:

1. Partial loss of the control input.

2. Stuck at unknown position.

This section is organized as follows. The implementation of the UAV ATLAV model is

presented in 6.1. The implementation of the Aircraft ADMIRE model is presented in 6.2.

6.1. Implementation in ALTAV

The files for partial and stuck faults in the ALTAV model are differentiated as:

For partial loss:

ALTAV_model_test_partial_fault.mdl (Gaussian noise added),

ALTAV_model_test_partial_fault_simple.mdl (no Gaussian noise)

For stuck fault:

ALTAVmodelteststuckfault.mdl (Gaussian noise added)

ALTAVmodelteststuckfaultsimple.mdl (no Gaussian noise)

62

6.1.1. Simulink Block for Nonlinear Model

Figure 6.1 ALTAV simulink with control reallocation block (Gaussian noise added)

The description for Figures 6.1 and 6.2 are given in Section 4.3, 4.4, 4.5 and 4.6.

-^> tn1 Out1

r-|j» In 2 Out2

•ff^ In 3 Out3

In4 Out4

-M?

*\F2

Fault in motor number -

Elev(z)L^

F1

Pilch (gamma)

F2
Roll (phi)

FHeading (Iheta)

Control Rsafloeatton Gontto!

^QD-

•te
Cmd|4

Heading

To. Workspace

Tta} .Selection

Figure 6. 2 ALATV Simulink with control reallocation block (no Gaussian noise)

63

6.1.2. Implementation of Partial Loss

~i >

r~
motor 1

In1
V

Product
Out1

2 y
motor 2

Product 1
Out2

3
In 3

motors

Product 2
Out 3

motor 4 +*(4 ^
Prodiicta Out;4

Figure 6. 3 ALTAV Simulink block of partial loss implementation

Figure 6.3 show faults in control surfaces implementation. The control effectiveness

factory, described in section 2.2.1, is represented by Simulink step blocks which

multiply the control motor signal. The parameter 'Final value' denotes the

numerical value of y and the parameter "Step time" sets the time when the fault

occurs. In normal conditions, the parameter "Final value" must remain in 1 and the

"Step time" must be zero. These values are given in Matlab prompt using the file

ALTAV_Bfault_partial.m in ALTAV, ADMIRE_Bfault_partial.m in ADMIRE.

6.1.3.Implementation of Partial Loss

Stuck at non-zero position:

64

n
motor 1 fault

In1

* !

Product 1

JL,_I V

MemorySwitch

n

+€>

double

Data Type .Conversion

•K-

Gain

Out1

Figure 6. 4 Simulink block for stuck at current position

Figure 6.4 is used to generate the stuck fault at a non-zero position in the Simulink

model. The gain (k) is the magnitude of the fault. This is implemented only in the

motor 1 control surface.

Runaway

Constant

Data Type Conversion Gain

JT
 !

Integrator Saturation

Logical
. Operator

Figure 6. 5 Simulink block for runaway

65

Figure 6.5 shows the fault implementation of a runaway in the Simulink block. This

is implemented only in the motor2 control surface. The faults are selected using the

file ALTAVBfaultstuck.m in the Matlab prompt.

In the ALTAV non-linear model, the location of the fault is placed in the UAV

response block, right before the system dynamics, as shown in Figures 6.1 and 6.2.

6.1.4.Implementation of Control Reallocation

The Control Re-allocation block is placed between the control system block and

fault motor number block. Implementation of control re-allocation is divided into

two parts according to the types of the UAV fault:

1) Partial loss

• The files that simulate the reconfigurable fault-tolerant control system are

(Gaussian noise added)

ALTAV_model_test_partial_CGI.mdl

ALTAVmodeltestpartialFixedpoint.mdl

ALTAVmodeltestpartialDCA.mdl

ALTAV_model_test_partial_WLS.mdl

• The files which simulate the reconfigurable fault-tolerant control system are

(no Gaussian noise)

ALTAV_model_test_partial_CGI_simple.mdl

ALTAV_model_test_partial_Fixedpoint_simple.mdl

ALTAV_model_test_partial_DCA_simple.mdl

66

ALTAV_model_test_partial_WLS_simple.mdl

Figure 6. 6 ALTAV Simulink diagram of control reallocation as partial loss

Figure 6.6 shows control reallocation diagram when one or multiple control

actuators have partial loss.

2) Stuck fault

• The files which simulate the reconfigurable fault-tolerant control system are

(Gaussian noise added)

ALTAVmodelteststuckCGI.mdl

ALTAVmodelteststuckFixedpoint.mdl

ALTAV_model_test_stuck_DCA.mdl

ALT A Vmode l t e s t s tuckWL S. mdl

• The files which simulate the reconfigurable fault-tolerant control system are

(no Gaussian noise)

67

ALTAVmodelteststuckCGIsimple.mdl

ALTAV model_test_stuck_Fixedpoint_simple.mdl

ALTAVmodelteststuckDCAsimple.mdl

ALTAVmodelteststuckWLSsimple.mdl

heading dot

gamma dot

> phi dot
•

Scope 2

fConstantt

MAUAB
Function

CGI algorithm

Switch

Out1

. O t l t 2 :

Out3

->CD
Out4

Scope'.

Constant?, Constant

Figure 6. 7 ALTAV Simulink diagram of control reallocation as stuck fault

Figure 6.7 shows control reallocation diagram when one or multiple control

actuators stuck at current position or unknown position.

6.2. Implementation in ADMIRE

The files for partial and stuck faults in the ADMIRE non-linear model are differentiated

as

For partial loss:

ADMIRE_model_partial_fault.mdl

68

For stuck fault:

ADMIRE model stuck fault.mdl

Figure 6. 8 ADMIRE Simulink with control reallocation block

In the ADMIRE non-linear model, implementation of partial loss and stuck fault is

similar to the ALTAV non-linear model. It is worth noting that there are seven

control surfaces in the ADMIRE aircraft model, while there are four in the ALTAV

UAV model. Take partial loss as an example, shown in Figure 6.9.

69

c 1 y-
tn1

Partial Fault

Right canard
fault

Left canard
fault

Right outer elevon
feuit

Right inner elevon
fault

Left inner elevon
fault

Left outer elevon
, fault ,, ,

Rudder fault

U
V
i-
i-

v
Ou»1

Figure 6. 9 ADMIRE Simulink block of partial loss implementation

Different Simulink files are given below in the ADMIRE non-linear model:

ADMIR.E_model_partial_CGI.mdl

ADMIRE_model_partial_Fixedpoint.mdl

ADMIRE_model_partial_DCA.mdl

ADMIRE_model_partial_WLS.mdl

ADMIREmodelstuckCGI.mdl

ADMIREmodelstuckFixedpoint.mdl

ADMIRE_model_stuck_DCA.mdl

ADMIRE model stuck WLS.mdl

70

http://ADMIR.E_model_partial_CGI.mdl

7. Simulation Results in ALTAV

In this chapter, as a part of the project, partial loss and stuck at an unknown position in

the motor control surface and the reconfigurable control system are implemented in the

ALTAV non-linear model. An evaluation of the influence of Gaussian noise is given first,

then trajectory selection, and finally simulation results in the presence of partial loss and

stuck failures are presented. Simulations are conducted in order to investigate the ability

of the reconfigurable control system to re-stabilize the aircraft and provide reasonable

command-tracking performance.

In the ALTAV non-linear model, there are two different trajectories as model

control inputs. Simulation time varies according to the input trajectory:

1) Square trajectory: simulation time is 80s, fault is generated at 50s and the

control reconfiguration starts at 50s.

2) Circle trajectory: simulation time is 120s, fault is generated at 80s and the

control reconfiguration starts at 80s.

The simulation results shown below are compared to the four reconfigurable control

algorithms, Pseudo-Inverse, Fixed Point, Direct Control Allocation and Weighted

Least Squares algorithm. These algorithms generate the signals for deflection on the

UAV motors.

7.1. Influence of Gaussian Noise

In order to evaluate the performance of the system in the real world, it is necessary to

71

model such effects as sensor noise and sensor delay. This block applies Gaussian noise to

each of the system state variables with some predefined delay. The noise is assumed to

have zero mean and bias, with a variance determined either theoretically or through

experimentation. Two examples to explain:

(1) Square trajectory input, partial loss in motor 1 with 70%.

ALTAV Trajectory Tracking

! 1 1 1 1

: -» : : :
i

|\ If ;

\ I

M i l "
! H * 1-

*—Trajectory

- Without bul l

— Withtaul

1 i 1 :

1 1 1 -

: "! w\ ; :

Figure 7.1 Virtual and actual trajectory diagram (Gaussian noise added)

ALTAV Trajectory Tracking

1

1 1 '<
\ ll '

i

Trajectory

Without fault

With fault

R e c o n p*w

R e c o r W ^

-—"""V*
teMVs

' 1 L

i
I

-15 -10 -5

Figure 7. 2 Virtual and actual trajectory diagram (no Gaussian noise)

72

(2) Circle trajectory input, motor 3 stuck at 0.35

ALTAV Trajectory Tracking

Figure 7. 3 Virtual and actual trajectory diagram (Gaussian noise added)

ALTAV Trajectory Tracking

5 / - -

-15 -10 0 5

XPosit ion(m)

r y " —--H--" - -I - ~-H-— - " " " •

I / 1 1 1 J t \ 1

•••f-h-i- i-frt

— — Trajectory

Without fault

With fault

RecorW

— R e c o n f l ,adpoht

Reconrx,

Rec°Vs

_ . _ L —

% J- _ -L -1 -J \ - l y^L

\ V N ^
]' J^^ '

10 15 20 25

Figure 7. 4 Virtual and actual trajectory diagram (no Gaussian noise)

73

Figure 7.1 and 7.2 show the influence of with/without Gaussian noise to the model

when the square trajectory is the input. Figure 7.3 and 7.4 show the difference between

adding Gaussian noise and no Gaussian noise in the circle trajectory model. From

these figures, we can see the CGI, Fix, DCA and WLS, their virtual trajectories with

disturbance shaking around the desired trajectories, deflection error is bigger with

Gaussian noise without, but the track is still following the square trajectory. In a practical

system, different kinds of disturbances always exist, but in this paper, removing Gaussian

noise will not affect the study of the problem.

Also, some reconfigurable models with Gaussian noise take time to operate, their

calculations are long, and simulation is very slow. So, just the ALTAV Simulink

models without Gaussian noise are considered in the following discussion.

7.2. Trajectory Selections

There are two different trajectories used as control input commands for the ALTAV

platform. Let us compare the difference between these two trajectories.

74

ALTAV Trajectory Tracking

a- t

! 1 1

! ! !

TraJBclwy

Without disturbance

1 ! '

X Position (m)

Figure 7. 5 The square virtual trajectory vs the desired trajectory

ALTAV Trajectory Tracking

>-

Tr^ectory

Without dntuibance

i / i i i x i I

----|-S^--t"":""T"j^/ ":""'

-20 -15 IS 20

X Position (m)

Figure 7. 6 The circle virtual trajectory vs the desired trajectory

Figure 7.6 shows, in the original ALTAV simulation model, the virtual trajectory without

disturbance completely tracks the desired trajectory without any error under circle as

commanded input. Figure 7.5 shows that the virtual trajectory follows the desired

75

trajectory with an error under square trajectory commanded input, its error magnitude

increases when the trajectory suddenly changes the direction.

7.3. Simulation Results for Partial Loss

Partial loss control effectiveness scenario is considered as follows:

Input command: Square trajectory as model input

Scenario

1

2

3

Partial Loss

Motor 1 with 75 % loss

Motor 3 with 50 % loss

Motor 4 with 80 % loss

Input command: Circle trajectory as model input

Scenario

1

2

3

Partial Loss

Motor 2 with 80 % loss

Motor 3 with 90 % loss

Motor 4 with 75 % loss

For an easy comparison with all different control re-allocation algorithms, together

with normal and faulty responses, the simulation result includes seven curves in

each graph. These curves are:

Black: Trajectory

Green: Without fault

76

Blue plus solid line: Fault

Yellow: Reconfiguration with CGI method

Magenta: Reconfiguration with Fix method

Red plus dash line: Reconfiguration with DCA method

Cyan: Reconfiguration with WLS method

The following simulation results are related to partial loss without Gaussian noise.

7.3.1.Square trajectory as model input

Scenario 1:

Input: Square input

Output: motor 1 with 75% loss

ALTAV Trajectory Tracking in X, Y, Z

1

0 10 20

iijllll

t

I I i I

.B**fc±^
40 50 60 70 8

sees)

20 [•

40
I(sees)

Figure 7. 7 Output response of X, Y, Z position

77

ALTAV Trajectory Tracking

Trajectory

Without fault

With fault
R e c o r W
Rec°nfb,edpoM

R e c o n ^

ReconWLS

1 J

. - I

i

5 0
X Position (m)

Figure 7. 8 UAV virtual and reallocation tracking trajectories

ALTAV Trajectory Tracking in Theta,Gamma,Phi

C

I :

i
i

1" " " " i "

I ; <

Without fault
With fault
Recon ^

RBC°nllx«Wpohl

Reconfjra

ReconWLS

1 I

i ~T*~*~»—

' ' ^ ^ ~ ^ ~ ~ - ~ - ~ - -
i I !

40
t (sees)

I
j? o

G
am

1 1 1 1 1

i/>^ '
I — — I

40
t (sees)

Figure 7. 9 Output responses of Theta, Gamma and Phi

78

As it can be seen from the above figures, the reconfigurable curves of fixed-point,

DCA and WLS track the desired trajectory curve with a stable X position error. The

configurable curves of CGI just track to the half of the fourth phase of the trajectory

curves. In Figure 7.7, the Y position of the virtual trajectory curve using the CGI

method should change from -10 to 10 when the model operate from 60s to 80s

whereas the Y position of actual curves in the CGI method change from -10 to -3.5

when the model operates from 60s to 80s. On the other hand, the X position curves

track the original trajectory without error, but with delay.

Scenario 2:

Input: Square input

Output: motor 3 with 50% loss

ALTAV Trajectory Tracking in X, Y, Z

E

X
 P

os
itr

on

(m
)

P
os

iti
on

>-

I

tio
n

20

10

0

-10

-20

10

0

-10

-20

50

0

-50

N -100

-150

Figure 7.10 Output response of X, Y, Z position

79

J
L

\

) 10 20

M
il

I I I

50 60 70 SO
t (sees)

10 20 30 40
t(sees)

T] (r

10 20 30 40
t (sees)

50 60 70 80

50 60 70 80

ALTAV Trajectory Tracking

oh-

- Trajectory

Without fault

- With fault

Recon .

-~ Recon, fwedpoait

Recants

.1

X Position (m)

Figure 7. 11 UAV virtual and reallocation tracking trajectory

0.5

0

•0.5

;

ALTAV

Without fault

With fault
Rec°npi„»
Reconft<e<fpoM

R e c o n , ^

R e c o nWLS

Trajectory Tracking in Theta.Gamma.Phi

1

i
l

!

^ • ' • ^ ' "

40
t (sees)

40
t (sees)

-
—

1

^ 1 . _

[1

1 1

' T ~£*~j£^ "' / ' .. ! _j>—-T^ T.: _ ._ '

I I I

0

-0.2

-0.4
40

t(sees)

Figure 7.12 Output responses of Theta, Gamma and Phi

80

In Figure 7.11, the reconfigurable curves of fixed-point, DCA and WLS track the

desired trajectory curve with a stable X position error. The configurable curves of

the CGI method just track to the half of the fourth phase of the trajectory curves. In

Figure 7.10, X and Y position curves in Fix, DCA and WLS follow the trajectory

without error, but with delay. The X position curve in CGI fails to follow as

reconfiguration starts, but curves return to the desired trajectory as curves end. The

Y position curve in the CGI method fails to follow the desired trajectory curves. The

Y position of the virtual trajectory curve in the CGI method should change from -10

to 10 when the model operates from 60s to 80s, whereas the Y position of the actual

curves using the CGI method change from -10 to 0 when the model operates from

60s to 80s.

Scenario 3:

Input: Square input

Output: motor 4 with 80% loss

81

ALTAV Trajectory Tracking in X, Y. Z

1 i i
t : : :
i •

!
0 10

- - "]

20

Trajectoiy
Without fault

With fault

R e c o n phv

Recon f | x e d p o h l

R e c o r W

ReconWLS 0

1̂ 5:

50

_ _ .. _

60

— !

70

6

t (sees)

40
I (sees)

n " ; ; ; ; ; ; j

i i i i i i i 40
t(sees)

Figure 7.13 Output response of X, Y, Z position

5

0

~ -5

E_

o

o
Q.

>- -10

-15

-20

•25

-1

ALTAV Trajectory Tracking

I

s

Trajectoiy

Without fault

With fault

RectV
™- Recon,. . . ,

fLxedpoml
R e c o n ^

R e c o i l s

i : :

^^^T

I

i

f \ } \ \
I I I

5 -1 9 -5 0

XPosition(m)

5 1 0 15

Figure 7.14 Virtual and reallocation tracking trajectory

82

ALTAV Trajectory Tracking in Theta,Gamma,Phi

1
—

Without fault

With fault
Rec°Vv
R8confix.apohi
R s c o n ^

RsconWLS

r 1
1

J _ ± 1 I I -L

I I I i ^ ~ 1 / I

£. 0

-0.2

40
t(sees)

Figure 7.15 Output responses of Theta, Gamma and Phi

In Figure 7.14, the reconfigurable curves of the fixed-point, DCA and WLS operate

on the first half of the fourth phase of trajectory, whereas the reconfigurable curves

of the CGI operate on the first half of the third phase of trajectory. In Figure 7.13,

the X position reconfigurable curves of fixed-point, DCA and WLS track the

trajectory curves with a delay, whereas the X position curves in the CGI follow the

trajectory curve with a steady position error. The Y position reconfigurable curves

in all methods have a position error when the model operates from 60s to 80s.

7.3.2.Circle trajectory as model input

Scenario 1:

Input: Circle input

Output: motor 2 with 80% loss

83

ALTAV Trajectory Tracking in X, Y, Z

u u I I 1 1 1 1

0L 1 L 1 L 1 r,-„,7„.-,-

Figure 7.16 Output response of X, Y, Z position

ALTAV Trajectory Tracking

-5 0 5

X Position (m)

Figure 7.17 UAV virtual and reallocation tracking trajectory

84

ALTAV Trajectory Tracking in Theta.Gamma.Phi

. . 1 1 !

.. _, r_

\\i\tl

; ^r~~~~'
\ / ^ i
\~/f-^~ *i ~-~~—

60
t(sees)

60
t (sees)

60
t (sees)

r;;;;;;l;;;;;;:;;b"::::::j:::::::::h:::::::t::::::-:i

- i i • • 1 — i 1

Figure 7.18 Output responses of Theta, Gamma and Phi

In this scenario, the reconfigurable curves fixed-point, DCA and WLS follow the

desired trajectory curves with a small error in Figure 7.17. The reconfigurable

curves CGI fail to follow the trajectory curves.

Scenario 2:

Input: Circle input

Output: motor 3 with 90% loss

85

file:////i/tl

ALTAV Trajectory Tracking in X Y, Z

t (sees)

„ _ _ _ . . _ I 1 I I I
60

t (sees)

60
t (sees)

Figure 7.19 Output response of X, Y, Z position

ALTAV Trajectory Tracking

/

h

1 '•"' 1 1 1 """" 1 1

/ i i I I I , I i

1 1 1 I

/ I 1 1 1 1 \ 1 1

— Trajectory

Without fault

With fault

Recon . pnv

Recoi l^

R e c o V s

! •! ! ! I !'\ ! ;
_ 1 , („„_, _ , . . ,.i +. , __

\ 1 i.) | 1 J-gt _| _ - ^ / C J. |

1 1 1 1 1 1 1 1

0 5 10
XPosilionfm)

15 20 25

Figure 7. 20 UAV virtual and reallocation tracking trajectory

86

2

0

-2 -

0

Without fault
With fault
Rec°nph»
Recon,. , . ,

f ixed paint

Recon,^

ReconWLS
20

ALTAV Trajectory Tracking in Theta.Gamma.Phi

i i i i

40 60 80 100 120
t (sees)

I I I

I I I

1 1 1
1 1 1
I 1 1

t (sees)

60
t (sees)

Figure 7. 21 Output responses of Theta, Gamma and Phi

As it can be seen from the above figures, the actual trajectory curves of the four

different methods track the virtual trajectory with a small error, magnitude of error

increase when reconfigurable time increases.

Scenario 3:

Input: Circle input

Output: motor 4 with 75% loss

87

ALTAV Trajectory Tracking in X, Y, Z

_

0

1

1 ^ ^ " ^ ^ ^

20

1

~ ^ - ^

40

^—^— Trajectoiy
Without fault
With fault
R«c o n

P»,»
Recon,ueaco ln |

R e c o n ^

RBCOnWl.S

1 1 ___^—-

eo

^ % ..

100 120

i i i i r
I I I I ;

J i J- 1 u

-1 ' 1 • . _ L.

Figure 7. 22 Output response of X, Y, Z position

ALTAV Trajectoiy Tracking

I \ ^y- I I

; / ; ; ;
/ i •

i /

—--yr — - r — T — - : —-

\; ; :
\ l c 1 1

i " N J i i

1 I

1 X .

— Tfajectoty

Wrtlrot fault

With fault
R c c < %

— R r a W » t
R e c a ^ ,

tecVs

r - r " / -
1 /'
: / :

1 U - / - - L
1 /• 1

y <
r " ' l 1

1

•15 -10 •5 0 5

XPostion(m)

Figure 7. 23 UAV virtual and reallocation tracking trajectory

ALTAV Trajectory Tracking in Theta,Gamma,Phi

--

••-•• W i thou t fault

— — - W i t h fault

Recon .
pinv

"" - R e c ° n f t a B dpo in t

R e c o n ^

R e c o n ^ g

I 1 1 1

1 1 i ~y^^ '

! i \—:: :''--rr:™:-r=T"

Figure 7. 24 Output responses of Theta, Gamma and Phi

In Figure 7.23, the reconfigurable curves of fixed-point, DCA and WLS track the

trajectory curves with a small error and delay. The configurable curve of CGI fails

to follow the virtual trajectory curve. In Figure 7.22, the X and Y position curves of

fixed-point, DCA and WLS track the desired curves, whereas the X and Y position

curves of CGI increases their magnitude error when reconfigurable time increases.

Summary for partial loss

The result shows that, when partial loss occurs in UAV motor, the performance is

worse than the normal condition, and sometimes the fault is very critical. But the

control reallocation technique gives a better solution for the loss and the UAV can

track the normal situation without affecting performance. On the whole, the fixed-

point, DCA and WLS methods show a better result and help the UAV to recover

89

from the fault and fly more safety than the CGI method regardless of square or

circle input.

7.4. Simulation Results for Stuck Faults

In this section, the simulation results for stuck faults are shown for the UAV model

without Gaussian noise.

Stuck fault scenario is considered as follows:

Input command: Square trajectory as model input

Scenario

1

2

Stuck Fault

Motor 1 stuck at an unknown position

Motor 3 stuck at the current position

Input command: Circle trajectory as model input

Scenario

1

2

Stuck Fault

Motor 2 stuck at an unknown position

Motor 4 stuck at the current position

7.4.1.Square trajectory as model input

Scenario 1:

Input: Square input

Fault: Motor 1 stuck at an unknown position

90

ALTAV Trajectory Tracking in X, Y, Z

t (sees)

40
t (sees)

40
t (sees)

Figure 7. 25 Output response of X, Y, Z position

ALTAV Trajectory Tracking

\] [[

\ ^ i
\ i

\

i j ^ _

Trajectory

Without fault

With fault

Rec°npin»

Reconf«edpoi,t

R e c o n , ^

ReconWLS

,.V i

1
-10

X Position (m)

Figure 7. 26 UAV virtual and reallocation tracking trajectory

91

ALTAV Trajectory Tracking in Thela,Gamma,Phi

0.2

2. o
0.

-0.2

-0.4

1 1

Without fault

With fault

R e c o npinv

R e c <"Wd,x, int

Rec°"DCA

ReCOnWLS

1 1 1

r~""~\Ll_ ;
i l^^s*^^
1 1 1

30 40
t (sees)

40
t (sees)

0 10

I

20 30

1 1

1

40
t(sees)

1
—

i

-

-

-

-

--

--

50

1

44
60

I

- -i - , / ' - -

-

-

-

-

1

70 80

1

I 1 ! I ! I I

Figure 7. 27 Output responses of Theta, Gamma and Phi

In this scenario, all four control reallocation methods do not ideally track the virtual

trajectory and the actual trajectories operate on the first half of the fourth phase of

trajectory. The reason is that from Figure 7.25, the Y position curves fail to follow

the desired trajectory curves. The Y position of the virtual trajectory curve should

change from -10 to 10 when the model operates from 60s to 80s, whereas the Y

position of the actual curves of control reallocation methods change from -10 to -3

when the model operate from 60s to 80s.

Scenario 2:

Input: Square input

Fault: Motor 3 stuck at the current position

92

ALTAV Trajectory Tracking in X, Y, Z

1 1

T n

0 10 20

— — Trajectory
—• Without fault

With fault
R e c o npinv
Recon (i) | e (j p o h l

R e c o n ^

R 8 c o n m . s

I I I

50 60 70 80
t (sees)

40
t (sees)

i I I I I I I
I 1

__.„—.——•'»-"~~™"^..s

40
1 (sees)

Figure 7. 28 Output response of X, Y, Z position

ALTAV Trajectory Tracking

v 1 ;

\T :
K ;

u

- ^ ^ — Trajectory

• Without fault

With fault
R e c o l W

-Recon (i x e d p o W

R e c o n , ^

R e c o r d s

^ 1 ! .. . 1

X Position (m)

Figure 7. 29 UAV virtual and reallocation tracking trajectory

93

ALTAV Trajectory Tracking in Theta.Gamma.Phi

J.

L.

_

Ijilll i m-,,^~---™-+--~c^" ; .. —-——.̂

1 1 1
40

t (sees)

40
1 (sees)

40
t (sees)

Figure 7. 30 Output responses of Theta, Gamma and Phi

It can be seen that the control reallocation curves of four different methods follow

the desired trajectory curves with a delay and small error.

7.4.2. Circle trajectory as model input

Scenario 1:

Input: Circle input

Fault: Motor 2 stuck at an unknown position

94

ALTAV Trajectory Tracking in X, Y, Z

- J — — " " — - T - ^ ' ' ^

] 20 40 60 80 100 120
t (sees)

I I I ! ! _ _ _ —

i i i i ^ 7

\ 1 + 1- ----"' I

! I ! ! !

Figure 7. 31 Output response of X, Y, Z position

ALTAV Trajectory Tracking

•S 0 5

X Position (m}

Figure 7. 32 UAV virtual and reallocation tracking trajectory

95

AL.TAV Trajectory Tracki ing in Theta.Gamma.Phi

E u

E
m
O -0.2

Without fault

- With fault

Recon .
pinv

- Recon,,

t (sees)

60
t (sees)

t (sees)

-t i < +

Figure 7. 33 Output responses of Theta, Gamma and Phi

In this scenario, the reconfigurable curves of the four methods fail to follow the

desired trajectory curves, just compensate some fault.

Scenario 2:

Input: Circle input

Fault: Motor 4 stuck at the current position

96

ALTAV Trajectory Tracking in X, Y, Z

t (sees)

t (sees)

Figure 7. 34 Output response of X, Y, Z position

ALTAV Trajectory Tracking

\ y \ : : x
1 ./ 1 1 1 1 I V
1 . / 1 _ _ i _ _ J 1 1 v

1 ' 1 1 1 i 1

/ : : : : :

— — Trajectory

Without fault

With fault
te0%,
R e O T W i » l

Reconm

\

i \ M M i\

N. i i i ! i /
J .. \ 1 1 1 L J -A \
\ ' N ! : ! ; '--^ i

"I ! r""?'~-i^lr""" !' 1

i ' i i

•20 -15 •5 0 5
X Position (m)

10 15

Figure 7. 35 UAV virtual and reallocation tracking trajectory

97

ALTAV Trajectory Tracking in Theta,Gamma,Phi

' Without fault
With fault

R e c°nph»
Recon,ka l fpo ln l

R e c o i W

ReconWLS

1 1 1 1

1 1 1 1

t (sees)

1
T

1 \
r

1
T - 7 ^*** * *^ <

1
60

t (sees)

I 1

'

1

1 !

*r**^*^

i

^-^___
i

i—

60
t(sees)

Figure 7. 36 Output responses of Theta, Gamma and Phi

From Figure 7.35, the four reallocation curves follow the desired trajectory curves

with a small error and delay.

Summary for stuck fault

As can be seen from the results obtained, on the one hand, the control

reconfigurable trajectories of four different algorithms follow the desired

trajectories well, just with a delay and small error when system faults cause by

stuck at the current position. The reason is that the X, Y reconfigurable position

curves follow the desired position curves. On the other hand, all four control

reconfigurable curves do not ideally track the desired trajectory, but improve the

UAV tracking ability when system faults cause by stuck at an unknown position.

98

8. Simulation Results in ADMIRE

In this section, simulation results in different control reconfigurable algorithms are

shown in the ADMIRE non-linear model. Their control input is different: the

ALTAV model control input is given by a square or circle trajectory. In the ALTAV

model, trajectory is selected by the operator or program. The ADMIRE model

control inputs are given by the pilot, among them are longitudinal (Fes) and lateral

(Fas) stick deflection, and rudder deflection (Frp). Step input is considered in this

project.

For the ADMIRE aircraft model, simulation time is 10s, the fault is generated at 2s

and control reconfiguration starts at 2s. Same as in the ALTAV model, the

simulation results of the ADMIRE model are shown below. Different algorithms

generate the signals for deflection on the aircraft's seven control surfaces.

Partial loss control effectiveness scenario is considered as follows:

Scenario

1

2

Control Input

Longitudinal stick, step 50N

Lateral stick, step -3ON

Partial Loss

Right canard 85% loss

Left outer elevon 40% loss

Stuck fault scenario is considered as follows:

Scenario

1

2

Control Input

Longitudinal stick, step 50N

Lateral stick, step -3ON

Stuck Fault

Right canard stuck at 1 deg

Left outer elevon stuck at 1 deg

99

Same as for ALTAV, for easy comparison with all the different control re-allocation

algorithms, together with normal and faulty responses the simulation result includes

six curves in each graph. These curves are:

Green: Without fault

Blue plus solid line: Fault

Cyan: Reconfiguration with CGI method

Magenta: Reconfiguration with Fix method

Red plus dash line: Reconfiguration with DCA method

Black plus dash line: Reconfiguration with WLS method

8.1. Partial Loss Simulation Result

The following simulation results are related to partial loss for the ADMIRE non­

linear aircraft model.

Scenario 1:

Input: Longitudinal stick deflection, step 50N as control input

Fault: Right canard with 85% loss

100

ADMIRE - Nonlinear data,Fault in drc.
0.2

0.1

I •
-0.1

-0.2

1 >
Nofeult
Fault

Rconfig(pinv)
Reconfig(fix)
Reconfig(DCA)
Reconfig(WLS)

i |

; ; ; ; ; ; ;
1 1 , 1 1 1 1

| | | \ | • \ J

r i i - !• - ,
0.5 1

I [1 1 . . . 1 1 ! 1 1
1 t 1 1 / ••• 1 1 1 1 1

1 (~ X ' * ! ' ' — — ' +

1 [1 1 1 1 1 1 1

0.1

0.05
In
!> 0

-0.05

-0.1
2 2.5

time [s]

Figure 8.1 Response of p, q, r

ADMIRE - Nonlinear data,Fault in drc.

2 . -0.2 -

a
-

Nofault

Fault

Rconfig(pinv)

Reconfig(flx)

Reconfig(DCA)

Reconfig(WLS)

1

i i i i i i i

\ \ \ \ \ \ \

i ! ! 1 ! ! ! '
i i i i i i i

„ _ _ _ !_ - _ _ _ _) _ _ _ 1 _ _ _ ^ _ ^ " f l _ - l (_ - _ _ i _ _ _ _) _ _ 4 - - _ - _

i i ^ _ - _ . - r ~ "*" i < i i i i

1.5 2 2.5
time [s]

Figure 8. 2 Response of Euler angles y/,6,(f>

~l 1 T 1 I 1 1 T - •-

101

ADMIRE - Nonlinear data,Fault in drc.
0.4, , , , , 1 ,

0.03

_ 0.02 ; \ •

S i i i
— 0.01 1 1 1

Figure 8. 3 Response of a,fi,y

In this scenario, the reconfigurable curves of the CGI, DCA and WLS methods track

the desired output response with a small error, whereas the fix method follows the

output response with a steady state error in Figure 8.1 and 8.3, with increasing

magnitude in Euler angles until simulation runs in Figure 8.2.

Scenario 2:

Input: Lateral stick deflection, step -30N as control input

Fault: Left outer elevon with 40% loss

102

Nofault

Fault

Rconfig(pinv)

Reconfig(fbc)

Reconfig(DCA)

- Reconfig(WLS)

0.5 1

ADMIRE - Nonlineai data,Fault in dloe.

I I I I x I I I I I
1 j , +. _ ; I , 1 1 +

I I I I I- I I I [

1 0

-0.1

Or

-0.02

f
2 . -0.04

2 2.5 3
time [s]

Figure 8. 4 Response of p, q, r

ADMIRE - Nonlinear data,Fault in dloe.

-

Nofault

Fault

Rconfig(pinv)

Reconfig(fix)

— Reconfig(DCA)

Reconfig(WLS)

,

" " i \ ! \ ! [• " ! ' ! ' • • • - .

f"-S—; -̂ ^p^p.-̂ -̂ L..-
1 \ N • -. [' \ ' ' ' ; - ^
i i i i i i i

0.5 1

0 05

_ 0

%
it -0 05
15

~ -0.1

-0.15L

I

I

\. _

" ^ > ^

- - -1 -
. - ! _ . _ ' - I ._ ..

...L ̂ ._; : : ;
i i • - i..... i.... 1 - — ^ _ ^

I I I I I I I

0

r
t - 1

-6

|

l

~ ~ ~ ~ ~ ~ L ~ - " - - - ^

;

[

! ' t ^ - • —

|

~~^L
1

1.5 2 2.5 3 3.5 4
time [s]

Figure 8. 5 Response of Euler angles y/,6,(f>

103

ADMIRE - Nonlinear data.Fault in dloe.

Nofaull
Fault

Rconfig(pinv)

Reconfig(fix)

Reconfig(DCA)
- Recon«g(WLS)

£ 0

0.5 1

1 ,_ ^ ^ _ ^ _ ! r , _ _ -^TJ^JJ , , ,

2.5
time [s]

-0.151—

Figure 8.6 Response of CC,/3,y

From the above figures, it can be seen that the reconfigurable curves of the CGI,

DCA and WLS methods track the desired output response with a small error. The

Fix curve follows the desired output response with a steady-state error, whereas its

magnitude increase in Euler angles y/ in Figure 8.5.

Summary for partial loss

It can be clearly seen from the results obtained, when partial loss occurs, the aircraft

performance degrades from the normal condition. But the reconfigurable control

technique gives a better solution for the loss and maintains the aircraft to follow the

normal situation without degrading the performance. The CGI, DCA and WLS

methods show better results and help the aircraft to recover from the fault and give a

104

safety flying than Fix method.

8.2. Simulation Results for stuck Faults

The following simulation results are related to stuck faults for ADMIRE non-linear

aircraft model.

Scenario 1:

Input: Longitudinal stick deflection, step 50N as control input

Fault: Right canard stuck at 1 deg

ADMIRE - Nonlinear data,Fault in drc.

r
Q. 0 -

-0.5

-
Nofaull

Fault

Rconfig(pinv)

Reconfig(flx)

Reconfig(DCA)

Reconfig(WLS)

J 1 L 1 . / 1 ' J _ _ ± _

] \ \ ''.. \ / \ |]

1 1 1 " l ' i l l
0.5 1

0.5

0

5T -0.5

-1.5

-2

i l l i _ 1 _ l I l l
i i ^ - i i . i i i i i

\ 1 ;. _.. _'4.._—: _; ;

1 1 1 j i 1 ' - ' - , 1 - i -

i i i i i i i i i

0.5 1

0.2

I •
-0.2

. _ '_ ' - - i ' ' i _ i . •' i i
i i i i i i i. I I

i i i '"•• j . i . . -• ' i i i
r i i i i i " • - " i i i i

i i i i i i i i
0.5 1 1.5 2.5

time [s]

Figure 8. 7 Response of p, q, r

105

ADMIRE - Nonlinear data,Fault in drc.

-
Nofault
Fault

Rconfig(pinv)
Reconflg(fix)
Reconflg(DCA)

Reconfig(WLS)

1 1 1 1 1 1 ! _ „ - ' !

' • '

i i i i i i i
0.5 1

i i i i I ^ ^ ^ i^rzTC~*Z~'-\ i i

" I 1 - I T I 1 : - - i 1 r

1

l o ,
4

o

-0.5

- - -\-- -\

I . I . I I

-- ;--• - - " -]
r !

.
1 1.5 2.5

time [s]

Figure 8. 8 Response of Euler angles y/,6,(f)

0.5

al
ph

a

[d
eg

]

O
l

O

Nofault

- - Fault

Rconflg(pinv)

Reconfig(ftx)

Reconfig(DCA)

Reconflg(WLS)
t

ADMIRE - Nonlinear data,Fault in drc.

' I l l •••- I ' !•••• I
j _ _ _ • T | i ' . j | | !

1 I I I ! I I

1.5 2 2.5 3 3.5
time [s]

S 0.5

I o! — i r i i 1 1 T

Figure 8. 9 Response of a,f3,y

106

From the above figures, the reconfigurable curves of CGI and WLS track the desired

output response, the fix method can not complete the simulation and stops at 3.7s,

the DCA method tracks the desired output response with a steady error in Figures

8.7 and 8.9, whereas its magnitude increases in Figure 8.9.

Scenario 2:

Input: Lateral stick deflection, step -30N as control input

Fault: Left outer elevon stuck at 0.1 deg

0.5

0

-0.5

-1.5
C

Nofaull

Fault

Rconfig(pinv)

Reconfig(fix)

Reconfig(DCA)

Reconlig(WLS)

]
0.5

ADMIRE Nonlinear data. Fault in dloe.

i i l i i. i i i

f\-f-
1 1.5

" - - f -

2

- - - : - [- • ; - ^ . , - j - - -

2.5 3

-,L-
""''""

3.5 4

- ~' ~ T ~ ' - ~

4.5

- r -

~""~"-~

0.5

r:
cr

-1.5

-2

I t I I I I I I I

I I I I • I I I I I

, ^ _ , , -̂ , , , 1 1
_ _ | 1 (, | V _ , [, H

I i I 1 1 " • ,v 1 1 1 1

1 1 1 | | ^ H 1 4 j _

1 1 1 1 1 1 1 1 1

0.05

H 0

-0.05

1 [I 1 1 1 1 1 1

.----f---f^^..];̂ ^.i^^:^--:f-:.v:
2.5

time [s]

Figure 8.10 Response of p, q, r

107

ADMIRE - Nonlinear data,Fault in dloe.

Nofault

Fault

Rconflg(pinv)

Reconfig(fix)

Reconfig(DCA)

Reconfig(WLS)

i

J - J L - L. ^1 J -1 L -

n > • • < • • •
i i i i > i i i

_ l L_

1 1-5 2 2.5 3 3.5
time [s]

Figure 8.11 Response of Euler angles y/,0,(/)

ADMIRE - Nonlinear data.Fault in dloe.

j -0.02

0.05

™ 0

™ -0.05

§) -0.1

Nofault
Fault
Rconfig(pinv)
Reconfig(fix)
Reconfig(DCA)
Reconfig(WLS)

-1 -
'
' - . - < - - - - - = j = -= ^ , = .

'
i ' i i ' • - ! ! I

0 0.5 1

\

I \ \
a 0 .5 1

\

0 0 .5

1.5

——--̂L

1.5

"

1.5

I
2

i
2

2

2.5

- . , ; : - _ -

2.5

t i m e [s]

'
- • • { - - . , . . , , . . ,

; ' " " • •

2.5

' ' •

3

. . . ! ' • -

3

1

" r "--7

'
3

3.5

• - " - - ! - -

3.5

3.5

4

- —|

•4

4

4.5

4.5 !

4.5 £

Figure 8.12 Response of a,/3,y

108

In this scenario, the reconfigurable curves of CGI, WLS and DCA track the desired

output response, whereas p in Figure 8.10 and/? in Figure 8.12 have steady errors, fix

method can not complete the simulation and stops at 3.1s.

Summary for stuck fault

The results shows, the output response from CGI, WLS and DCA methods track the

desired output response of the aircraft, and even some variables have steady errors.

The Fix algorithm exceeds the saturation limit and making the system unstable. This

leads to sudden change in the control surface loosing the track of desired output

response results in degrading the performance of the aircraft.

109

9. Conclusion and Future Work

Reconfigurable flight control research is an important development direction in

future UAV flight control systems. It possesses a profound study value and wide

application prospect. Currently, it has become the focus of the high-tech field of

aviation research. This work, combined with the aircraft requirements of the pre-

research project, analyzed the performance of the ALTAV and ADMIRE control

reallocation technique under the presence of partial loss and stuck faults. Simulation

and implementation of the test scenarios were conducted in the UAV ALTAV and

ADMIRE benchmark models. The test scenarios of ALTAV were carried out in non­

linear environments of the benchmark models with and without real world

correction. There were two different flight paths as model trajectories in each

environment of the benchmark. The test scenarios of ADMIRE were implemented in

non-linear environment. The model input was the step input coming from

longitudinal and lateral stick deflection. The results have been shown under the

influence of partial loss and stuck at unknown positions in both the ALATV and

ADMIRE environments.

A reconfigurable control allocation technique for flight control system to handle the

fault was obtained. A detailed description about the control re-allocation technique

has been presented. Implementation of fault scenarios in the ALTAV and ADMIRE

benchmark models has been demonstrated. Four reconfigurable methods: cascaded

generalized inverse, fixed-point, direct control allocation and weighted least squares,

no

were used to distribute the control surfaces to provide the desired control moments

and forces for the fault UAV and aircraft.

For the UAV ALTAV model, following the results presented the overall

performance of Fix, DCA and WLS show an effective tracking of the command

input of the UAV, leading to minimum error compared to the CGI method for partial

loss in the control motor. For stuck fault, the algorithms have better performance if

system faults cause by stuck at a current position.

For the aircraft ADMIRE model, the reconfigurable methods of CGI, DCA and

WLS track the desired output response better than the Fix method for partial loss on

control surface. The simulation performance of the CGI and WLS methods are

better than Fix and DCA in stuck faults.

In my work, my contribution is that an initial study of reconfigurable control

allocation is applied to a realistic and nonlinear UAV and fixed-wing aircraft

models. The different control reallocation: the cascaded generalized inverse

algorithm, fixed-point algorithm, direct control allocation algorithm and weighted

least squares algorithm are implemented and tested under ALTAV UAV and

ADMIRE aircraft benchmarks, designing two different trajectories selection as

UAV control input. Different control actuator faults caused by partial loss and by

stuck at a current or an unknown position are implemented in these two benchmarks

and are used for evaluating the control reallocation scheme. When partial loss and

i l l

stuck faults occur in UAV/aircraft control surfaces, the performance degrades from

the normal condition even though the fault is not very critical. However, the

reconfigurable control techniques give a better solution for these two fault scenarios

and maintain UAV/aircraft's ability to track the normal situation without degrading

performance. Simulation results have shown satisfactory results for accommodating

the partial loss and stuck failures. Implementation of four reconfigurable control

allocation algorithms improve UAV and aircraft flight control system's reliability

and survivability, enabling them to complete pre-planned missions and to land

safely even if the flight control system has faults caused by control

actuators/effectors.

Future works include the investigation and testing on other control reallocation

methods, the extension from one UAV to a UAV formation, and the investigation on

reconfigurable baseline control techniques, in conjunction with control allocation

techniques to achieve improved performance. In addition, the incorporation of fault

detection and diagnosis schemes in ALTAV and ADMIRE environment is also to be

conducted.

112

.References

1) Escareno J., Salazar-Cruz S. and Lozano R., "Embedded control of a four-rotor

UAV," In proc. of the 2006 American Control Conference, Minneapolis,

Minnesota, USA, June 14-16 3936-3, 2006, pp 941.

2) Earon, E., "Almost-Light-Than-Air-Vehicle Fleet Simulation," Technical

Report, V. 2.1, Quanser Inc., Toronto, Canada, 2005.

3) Zhang, Y. M., Jiang, J., "An Active Fault-Tolerant Control System against

Partial Actuator Failures," IEEE Proceedings- Control Theory and

Applications, Vol. 149, no. 1, 2002. pp. 95-104.

4) Meskin, N., Jiang, T., Sobhani, E., Khorasani, K. and Rabbath, C.A. "A

Nonlinear Geometric Fault Detection and Isolation Approach for Almost-

Light-Than-Air-Vehicles," ,4merz'ca« Control Conference, 2007.

5) Zhang, Y. M., Suresh, V. S., Jiang, B. and Theilliol, D., "Reconfigurable

Control Allocation against Aircraft Control Effector Failures," IEEE Multi-

conference on Systems and Control, Singapore, 2007.

6) Burken, John J., Lu, P., Wu, Z., and Bahm, C. "Two Reconfigurable Flight-

Control Design Methods: Robust Servomechanism and Control Allocation,"

Journal of Guidance, Control, and Dynamics, Vol. 24, no. 3, 2001. pp 482-493.

7) Yang, K. C. FL, Yuh, J. and Choi, S. K., "Fault-Tolerant System Design of an

Autonomous Underwater Vehicle-ODIN: an Experimental Study," International

Journal of Systems Science, 1999, Vol. 30, no. 9, pp. 1011-1019.

8) Omerdic, E., and Toal, D., "Control Allocation of Over-Actuated Thruster-

113

Propelled Underwater Vehicles," Mobile and Marine Robotics Research Group,

ECE Department, University of Limerick, Ireland.

9) Bodson, M., "Evaluation of optimization methods for control allocation," Journal

of Guidance, Control, and Dynamics, Vol. 25, no. 4, 2002, pp 703-711.

10)Davidson, J. B., Lallman, F. J. and Bundick, W. T., "Integrated Reconfigurable

Control Allocation," In proc. of AIAA Guidance, Navigation, and Control

Conference, Montreal, Canada, August 2001, pp. 1-11.

ll)Boskovic, J. D., Bergstrom, S. E., and Mehra, R. K., "Retrofit Reconfigurable

Flight Control in the Presence of Control Effector Damage," Proceedings of the

2005 American Control conference, June 2005, pp. 2652-2657.

12)Ahmed-Zaid, F., Ioannou, P., Gousman, K., and Rooney, R., "Accommodation of

Failure in the F-16 Aircraft Using Adaptive Control," IEEE Control Systems

Magazine, 1991, pp. 73-78.

13)Maybeck, P. S., and Stevens, R. D., "Reconfigurable Flight Control via Multiple

Model Adaptive Control Methods," IEEE Transactions an on Aerospace and

Electronic Systems, 1991, Vol. 27, no. 3, pp. 470-479.

14) Chen, W., and Jiang, J., "Fault-Tolerant Control against Stuck Actuator Faults,"

IEEE Pro.-Control Theory Appl, Vol. 152, no. 2, March 2005.

15)Zhang, Y. M., and Jiang, J., "Fault Tolerant Control System Design with Explicit

Consideration of Performance Degradation," IEEE Transactions an on Aerospace

and Electronic Systems, 2003, Vol. 39, no. 3, pp. 838-848.

16)Liao, F., Wang, J. L., and Yang, G. H., "Reliable Robust Flight Tracking Control:

An LMI Approach," IEEE Transactions on Control Systems Technology, 2002,

114

Vol. 10, no. 1, pp. 76-89.

17) Yang, G. H., Zhang, S. Y., Lam, J., and Wang, J. L., "Reliable Control Using

Redundant Controllers," IEEE Transactions on Automatic Control, 1998a, Vol.

43, no. l),pp. 1588-1593.

18)Veillette, R. J., and Medanic, J. V. and Perkins, W. R., "Design of Reliable

Control System," IEEE Transactions on Aerospace and Electronic Systems, 1992,

Vol. 37, no. 3, pp. 290-304.

19)Forssell, L., Nilsson, U., "ADMIRE The Aero-Data Model in a Research

Environment version 4.0, Model Description," FOI- Swedish Defence

Research Agency, Technical Report, December 2005.

20) "Failure Scenarios and Assessment Criteria for Fault Detection, Isolation and

Reconfiguration Techniques," GARTEUR Action Group FM(AG16), 2004.

21)Durham, W. C , "Constrained Control Allocation," Journal of Guidance,

Control, and Dynamics, Vol. 17, no. 4, 1993. pp 717-725.

22)Bordignon, K. A., "Constrained Control Allocation for Systems with

Redundant Control Effectors," Ph.D. Thesis. Virginia Polytechnical Institute

and State University, 1996.

23)Zhang, Y. M. and Jiang, J., "Bibligraphical review on reconfigurable fault-

tolerant control systems," In proc. Of the 5th IF AC Symp. On fault Detection,

Supervision and Safety for Technical Processes, Washington, D.C., USA, June

2003. pp. 265-276.

24) Sivasubramaniam, S.V., "Reconfigurable Control Allocation Techniques for

Realistic Aircraft," Project Report, Aalborg University Esbjerg, Denmark, 2006.

115

25)Bakkensen, J., Josph, V., and Merrild, U., "Flight Control Allocation Using

Optimization Based Linear and Quadratic Programming," Project Report DE7-

771, Aalborg University Esbjerg, Denmark, 2004.

26)Harkegard, Ola. "Backstepping and Control Allocation with Applications to

Flight Control," Ph. D. thesis, Linkoping University, Linkoping, 2003.

27)Nocedal, J., and Wright, S. J., "Numerical Optimization," Springer, 1999.

28)Bjorck, A., "Numerical Methods for Least Squares Problems," SIAM, 1996.

29)Andrade, John M., "U.S. Military Aircraft Designations and Serials 1909-

1979," Midland, 1979.

116

