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ABSTRACT 

Reconfigurable Control Allocation Design with 
Applications to Unmanned Aerial Vehicle and Aircraft 

Qing-Li Zhou 

The main objective of this thesis is to design and evaluate reconfigurable flight 

control system against control surfaces faults in Unmanned Aerial Vehicle (UAV) 

and aircraft without modifying the baseline controller/control law by using control 

re-allocation technique. The faults are introduced in the form of partial loss and 

stuck at unknown positions of control surfaces on the UAV and aircraft. Four 

control reallocation algorithms with applications to UAV and fixed-wing aircraft 

were investigated, which include a pseudo-inverse, a fixed-point algorithm, a direct 

control allocation algorithm and a weighted least squares method. The thesis work is 

evaluated by a nonlinear UAV model ALTAV (Almost-Light-Than-Air-Vehicles), 

developed by Quanser Inc., and a nonlinear aircraft model ADMIRE (Aero-Data-

Model-in-Research-Environment), developed by the Group of Aeronautical 

Research and Technology in Europe (GARTEUR). Different faults have been 

introduced in control surfaces with different commanded inputs. Gaussian noise was 

introduced in the ALTAV model. Different faults have been introduced in control 

surfaces with different command inputs. Comparisons were made under normal 

situation, fault conditions without control re-allocation, and with control 

reallocation. Simulation results show the satisfactory reconfigurable flight control 

system performance using control re-allocation methods for ALTAV UAV model 

and ADMIRE aircraft model. 
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1. Introduction 

An Unmanned Aerial Vehicle (UAV) is an aircraft that is driven by power. It can fly 

without an on-board operator and can be re-used and is re-usable. One of the most 

appealing topics among the research control community is the application of modern 

control theory to UAVs. Such vehicles can be controlled remotely by an operator on the 

ground, or autonomously via a pre-designed program. Interest in using UAVs is due to 

their wide-range field applications, both civil and military. Applications like traffic 

surveillance, area mapping and forest fire detection require high manoeuvrability of the 

aircraft and the robustness of the control algorithm with respect to parameter 

uncertainties and disturbances like wind and weather condition changes. UAV is playing 

an increasingly important role in modern high technology thanks to its unique 

characteristics [1]. However, due to the lack of a pilot, UAV loses the human ability of 

making smart decisions. This may lead to mission failure when UAV operates in 

abnormal conditions, such as flight computer failure, airborne sensor failure and control 

surface damage. On the other hand, UAV in war needs to have a good performance to 

escape the opponent's attack. From domestic and foreign high reliability flight control 

system development, the UAV flight control system requires high reliability and high 

survivability to maximally ensure the safety of the UAV and equipment, in order for the 

UAV to safely complete reconnaissance and surveillance missions. The same as UAV, all 

modern airplanes with pilots depend upon their flight control systems to provide the 

handling qualities necessary for successful flight. Therefore, it is necessary to develop 

flight control systems that can enable aircrafts to successfully complete missions in the 
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presence of non-fatal fault cases through reconfigurable flight control system design. 

Some previous research works were introduced in [5, 6, 10]. 

As one part of this thesis, the Quanser Almost-Lighter-Than-Air Vehicle (ALTAV) UAV 

model is used in simulation studies. The ALTAV uses buoyancy to float in the air in a 

way that is similar to ships floating in water. The Quanser ALTAV [2, 4] provides a 

platform to demonstrate control reallocation methods for unmanned aerial vehicles. 

As the other part of this thesis, the GARTEUR Aero-Data Model [19] in Research 

Environment (ADMIRE) aircraft model is also evaluated. This benchmark model 

provides a realistic, nonlinear, fixed-wing aircraft model. 

For using these two benchmarks, partial loss and stuck faults have been implemented for 

reconfigurable flight control system design. Four reconfigurable control allocation 

methods, pseudo-inverse, fixed-point, direct control allocation and weighted least squares, 

are used and evaluated. These techniques meet the challenges for the partial loss and 

stuck fault on control surfaces in simulations. 

1.1. Fault Tolerant Control System 

With the developments in control systems, high reliability, availability and safety have 

become important requirements, included in many international standards and regulations. 

Besides the quality and robustness, use of hardware redundancy is a traditional way to 

improve process reliability and availability, which has been extended to the use of 

software redundancy during the last decades. 

The Fault-Tolerant Control System (FTCS), also known as fail-safe control system, is a 
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control system that possesses the ability to accommodate for system failures 

automatically and to maintain overall system stability and acceptable performance in the 

event of component failures [23]. The objective of FTCS is to maintain safety and 

reliability of modern engineering systems. Typically, a FTCS consists of three parts: a 

reconfigurable controller, which includes baseline controller and control allocation 

modules, a Fault Detection and Identification (FDI) scheme, and a control law 

reconfigurable mechanism. This thesis will focus on the development of the 

reconfigurable control allocation technique. 

The importance of reconfigurable control allocation has now attracted wide attention, 

especially the signal treatment, pattern recognition, adaptive control, optimization and 

intelligent control; the integration of these techniques under the concept of reconfigurable 

control has sped up the reconstruction of the flight control system technology. 

Generally, relying on information from the fault detection and diagnosis, reconfigurable 

control allocation can be classified into two categories: 

(1) Reconstruction methods relying on FDI information (Active) 

These methods refer to the use of a variety of information of prior failure and impact; 

a pre-established program of reconstruction stored in the onboard computer, when 

fault happens, redistribution control system commands according to the results of FDI 

to offset the impact of control surface stuck or compensate the impact of partial loss; 

effective use of the remaining control surfaces to complete missions or to ensure safe 

landing; the stability and acceptable performance of the entire system can be 

maintained. In certain circumstances, degraded performance may have to be accepted. 

Also, this method can calculate control reconfiguration on-line and re-distribute the 
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control commands [3, 7, 8, 12, 13, 15]. 

(2) Control not relying on FDI information (Passive) 

In contrast to (1), these methods are also known as reliable control systems. System 

components and controllers are designed to be robust against a class of presumed 

faults. At the beginning of the design phase, the main goal in a fault-tolerant control 

system is to design components and controllers with a suitable structure to achieve 

stability and satisfactory performance, not only when all control components are 

functioning normally, but also in cases when there are malfunctions in sensors, 

actuators, or other system components. 

This robust flight control system can maintain stability in the presence of faults. This 

approach needs neither FDI scheme nor controller reconfiguration, but it has limited 

fault-tolerant capabilities [16-18]. Discussions on passive FTCS are beyond the scope 

of this thesis. 

Following the wide-range development of UAV, the demand for higher system 

performance, quality and cost efficiency leads to the growth of complexity in control 

systems. In control systems, severe faults happen such as actuator or sensor outages; 

producing a break-up of the control loop, which must be restructured to prevent failure at 

the system level. Control allocation reconfiguration is an active approach in control 

theory to achieve fault-tolerant control of dynamic systems, without need to restructure 

the controller parameter. Control reconfiguration is a building block toward increasing 

flight dependability. 

The structure diagram of a fault-tolerant control system is shown below (not considering 

the FDI block). 
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Figure 1.1 Simple structure of fault tolerant control system 

Figure 1.1 shows that the control allocation block and control reallocation block are 

placed between the control law and actuators. The system uses the control allocation 

block when the system operates in normal conditions; the system uses the control 

reallocation block after it has faults caused by control surfaces or actuators. The 

algorithms implemented into the control allocation and reallocation blocks must be 

chosen amongst many different constrained optimization based algorithms. These include, 

but are not limited to: least-squares, linear programming and quadratic programming. The 

simplest control allocation method is based on the unconstrained least squares algorithm 

with small modifications to consider position limits of the actuators. More complex 

methods are derived from the constrained least squares optimization to solve the control 

allocation problem. Until recently, it was believed that control allocation was too 

complex and computationally intensive for real world use in flight control cases. 

However, the recent, dramatic improvement in computer speed and the development of 

more efficient algorithms have changed the situation considerably. 

This led to the development of different fault tolerant control techniques. In this thesis, 
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fault tolerant control of ALTAV is achieved based on the following control reallocation 

techniques: 

1. Pseudo-inverse (Pinv) 

2. Fixed-point (Fix) 

3. Direct Control Allocation (DCA) 

4. Weighted Least Square(WLS) 

1.2. The Main Content of The Thesis 

Reconstruction technology research of control system is based on the redundancy 

configuration and control redundancy ability to manipulate control surfaces, guarantee 

UAV and aircraft survival ability at a non-serious fault. This project mainly studies UAV 

and aircraft control redundancy ability to control manipulating surfaces, the ability to 

track the desired trajectory path mission and safe return despite a minor fault and the 

ability to work well and safe return when a serious failure happens. The reconfigurable 

control allocation methods can ensure UAV and aircraft stability under incomplete or not 

completely manipulated information. As to redundant control manipulation surfaces, 

when one of the manipulation surfaces has a malfunction or damage, UAV and aircraft 

can increase the residual amount of remaining control surfaces to achieve stable flight 

control effects. 

The structure of this thesis is as follows. The second chapter presents the basic concept, 

theory of control allocation and two fault models. The third chapter presents four 

different reconfigurable control methods, not only explaining these methods in theory, but 
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also gives example to explain. Then, the fourth chapter describes the basic dynamics of 

the ALTAV UAV and benchmark model. The fifth chapter describes the ADMIRE 

aircraft model. The sixth chapter presents the implementation of control allocation 

methods in ALTAV UAV and ADMIRE aircraft benchmarks. Then, the seventh chapter 

presents ALTAV simulation results of different types and in different circumstances, 

while the eighth chapter presents ADMIRE results. The ninth chapter is a conclusion of 

my work, summarize my contribution and possible future work. 
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2. Flight Control Allocation 

Control allocation is useful for control of over-actuated systems; control allocation is 

concerned with how to distribute the deflection of multiple control surfaces of the aircraft 

to generate the required control inputs, including heading, pitch, roll moments, and forces, 

when the number of control surfaces is greater than the number of required control inputs. 

Using control allocation, the actuator selection task is separated from the regulation task in 

the control design. The control allocation problem is studied following the work of Durham 

[21]. 

Figure 2.1 Control allocation block diagram 

Figure 2.1 is the control system structure when control allocation is used. The control 

system is made up of a control law, specifying the total control effect, v should be 

produced and a control allocator, which distributes this control demand among the 

individual actuators, u is produced. In this system, actuators generate a total control effect 

V , which determines the system behavior. If the control allocation is successful, 

v = V-
sys 
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Today, control allocation is a research topic in aerospace control, marine vessel control 

and UAV control. 

It can also be seen from Figure 2.1 that the flight control system can be split into two 

parts: (1) control law and control allocation. That is to say that there are two control 

systems which should be re-designed to maintain the stability and desired transient and 

steady-state performance when the actuator, sensor or computer have a fault. In this 

thesis, reconfigurable control law is out of our scope. The main focus will be placed on 

reconfigurable control allocation or termed alternatively as control re-allocation. This 

control re-allocation block is placed between the control law and the actuators. There are 

some benefits that lead us to separate the control re-allocation block: 

1) Actuator constraints can be taken into account. If one actuator saturates and fails 

to produce similar or close to the control effect under nominal conditions, the 

remaining functional actuators may be used to make up the difference. 

2) Reconfiguration can be performed if the effectiveness of the actuators changes 

over time, or in the event of an actuator failure, without having to redesign the 

control law. 

3) Actuator utilization can be treated independently and can be optimized for the 

application considered. 

The purpose of this work is to provide different algorithms to re-allocate the control 

effectors (control surfaces or actuators) in overall FCS by redistributing the control effect 

to the remaining healthy control surfaces, and at the same time, canceling the effects of 

control surface deflection stuck at neutral or non-neutral position, as well as partial loss, 

by generating a compensated control signal to be finally fed into the FCS. 
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Figure 2. 2 Control re-allocation block diagram 

The control re-allocation algorithms use the redundancy of the control allocation 

technique until the actuators get saturated. These algorithms are the same as used in the 

control allocation block. The idea is, for a normal situation (without fault), the signals 

from the control law go through the control allocation block and pass to the actuator, then 

to the system. When fault occurs, the signals from the control law pass through the 

control re-allocation block and to the actuator. The algorithms applied in the control re­

allocation block re-distribute the control signals calculated by the baseline control law in 

the presence of faults and send the redistributed signals to each control surface to achieve 

acceptable performance. 

2.1. Introduction to Control Allocation 

Control allocation is frequently described depending on the application. In this section, 

effort is made to develop a generic mathematical statement of the control allocation 

problem. 



Mathematically, a control allocator solves an underdetermined, typically constrained, 

system of equations. The input to the control allocator is the total control effect to be 

produced, the virtual control input v(t)e Rk . The output of the control allocator is the 

true control input w(/)e Rm, where m>k. 

Given v(t), we need to find u{t) such that 

g(u(t)) = v(0 

where g: Rm (_> Rk is the mapping from actual control input to virtual control input in 

the system to be controlled. 

Considering the case of a linear dynamic system in state-space form 

Eq. (2-1) x = Ax + Buu 

y = Cx 

xeR" is the system state, ueRm is the input of the control signals, and AeR"*", 

Bu e R"*m. Assuming that Bu has ran k<m, it has a null space of dimension m-k in which 

the control input can be perturbed without affecting x . Thus, there are several 

redundancies that can be resolved using the control allocation technique. 

Since Bu is rank deficient it can be factorized as: 

Eq. (2-2) Bu = BVB 

where Bv e R"*k and B e Rkxm are both of rank k. Introducing the virtual control input 

as: 

Eq. (2-3) v = Bu 

where v e Rk and B is known as the control effectiveness matrix. The system dynamics 



can be rewritten as: 

Eq. (2-4) X = Ax + Bvv 

y = Cx 

To incorporate actuator force constraints, we require that: 

Eq. (2-5) u <u<u for z = l,...,w 
i v / "min.i i — max,; 1 L " * ^ — J ' " 

Given the limits, an exact solution may not exist, despite the redundancy. Furthermore, 

even if an exact solution exists, it cannot be assumed to be unique. Finding a solution to 

Eq. (2-3) within the constraints of Eq. (2-5) is defined as the control allocation problem. 

For control of UAV, the state vector x can include the position, velocity, heading, roll and 

pitch. The output vector;; may contain position, heading rate, roll rate and pitch rate. The 

control vector u contains forces generated by four propellers driven by four motors. 

2.2. Fault Modeling of Control Surfaces 

The objective of this section is to model faults so that the reconfigurable mechanism can 

be evaluated under different fault scenarios. A fault is any kind of malfunction which 

occurs in a system and that results in system instability and unacceptable performance 

degradation. Faults can occur in any component or part of the system/plant, such as 

actuator faults, sensor faults, structural or dynamic faults. 

The control surfaces of an UAV can be affected by several types of faults. The control 

surfaces can be fully stuck at neutral/non-neutral position, or they can suffer a partial loss 

of the control surface area. 
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Common control surface faults to be considered in this thesis include [11]: 

(1) Loss of effectiveness (LOE) fault, 

(2) Freezing or lock-in-place (LIP) fault, 

(3) Floating fault, 

(4) Hard-over fault (HOF). 

Loss of effectiveness is characterized by lowering the actuator gain with respect to its 

nominal value. In the case of LIP fault, the actuator freezes at a particular position and 

does not respond to subsequent commands. HOF is characterized by the actuator moving 

to its upper or lower limits regardless of the commanded signal. The speed of actuator 

response is bounded by the actuators rate limits. A floating fault occurs when the actuator 

floats with zero moment and does not contribute to the control effectors. 

Different types of actuator faults may be mathematically parameterized as follows: 

true 

Ucmd 

Kt>cmd 

0 

Ucmdih) 

um or uM 

No Failure Case 

0<s< k(t) < 1, W > tF (LOE) 

Vt > tF (Float) 

Vt>tF(LIP) 

Vt>tF(HOF) 

Where tF denotes the time instant of fault occurrence in the actuator, k denotes its 

effectiveness coefficient such that k E [e,l] and s denotes its minimum effectiveness, 

um and uM denote the minimum and maximum values of the input, respectively. 

The above fault modeling can be represented in a general form as follows: 

"true = °kUcmd + C1 " <*W 

This includes all the above cases in a single representation, where utrue is the actuator 
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output, ucmd is the output of the controller (also an input to the actuator), a = 1 and k = 1 

represent the fault-free case, a = 1 and s < k < 1 represent the cases of partial loss of 

control effectiveness fault, a = 0 represents a float, LIP or HOF fault case. um < u < uM 

is the position at which the actuator locks in the case of float, lock-in-place and hard-over 

faults. 

For modeling the faults, it is assumed that the linearized dynamics of the normal or fault-

free UAV at a trim condition is given by: 

Eq. (2-6) x- Ax + B u 

y = Cx 

where x G R" is the system state, u £ Rm is the input of the control signals, y e Rp 

represents the output that will follow the command input, and^4€/?"x", B e R"xm and 

C € Rpx" are matrices. 

It is also assumed that the baseline flight control law and the control allocator have been 

designed to provide satisfactory stabilization and command tracking performance for the 

UAV under normal flight conditions. 

2.2.1. Partial Loss 

During normal operation, the actuator would operate exactly as directed by the controller. 

This means that the actuators are 100% effective in executing the control commands. 

When a partial loss occurs in a control actuator, the actuator would not be able to 
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completely track the control command given by the baseline controller. Therefore, the 

baseline control law or control allocator needs to be recalculated (reconfigured) based on 

the knowledge of the fault that occurred. One way to quantify the magnitude of the 

actuator fault is by defining a parameter known as control effectiveness factor y [3]. The 

control effectiveness factor will represent the loss of the one to one relationship between 

the control command (controller output) and the true actuator action, as shown in Figure 

2.3. 

Control 
Signals 

* 
* • 

* • 

"i , command 

**i, fault = ^command—* 100% effectiveness 

Mi, fruit- 7 * Mi, command - * Y *100% effectiveness 

Figure 2. 3 Actuator failures by control effectiveness factor 

where y' is the control effectiveness factor, / = \,...,m 

The system with the actuator faults modeled by control effectiveness factors can be 

written as: 

x = AX + BM 
Eq. (2-7) f 

y-Cx 

where Bf is the post-fault control input matrix related to the nominal control input matrix 
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B. So, Bf can be modeled in the following way: 

Eq.(2-8) Bf=B*T 

where 

V 0 0 0" 

r = o r
2 o o 

0 0 0 ym _ 

y'=\, i = \,...,m, denotes the healthy I actuator and y'=0 corresponds to total failure in 

•th 

the I actuator. Naturally, 0 < y' <1 represents partial loss in control effectiveness. For 

example, yx =0.1 means the remaining effectiveness in the first control surface is 10%, or 

in other words, the control surface has lost 90% of its effectiveness. 

Since the control effectiveness factors are parameters located between the controller 

command and the actuator actions, modeling can be viewed as multiplicative faults in 

nature. 

2.2.2. Stuck Failure 

Stuck fault is one serious fault scenario. Once stuck, the actuators can no longer respond 

to control commands. It is difficult to deal with stuck actuator faults because the 

remaining actuators must compensate for the effects of the failed actuators in the overall 

system. In practical situations, stuck faults are much more challenging and difficulty to be 

handled than partial faults. Here is the brief description [14]. 

During normal flight, the motion of a UAV can be described by Eq. (2-6). The closed-
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loop system is stable under this condition, and its states can follow those of a reference 

model. In the presence of stuck actuators, it is necessary that the closed-loop system will 

remain stable and that the system states can still follow those of the reference model. 

The reference model has the form 

xm=Amxm+Br 
Eq. (2-9) 

ym = Cx
m 

where xm e R" is the system state of the reference model, ym e Rp represents the output 

of the reference model, r eRm is the input of the reference model, andAm e R"x" is the 

system matrix. 

Under normal system operation, subtracting the reference model from Eq. (2-6), it 

follows that 

Eq.(2-10) e = Ame + [A-Am]x + B[u-r] 

where e = x - xm, representing the state tracking error. 

The control input u can be designed as: 

Eq. (2-11) u = -Fxy + r 

whereFt is a constant matrix such thatBF{C = [A-Am]. 

The tracking error system, Eq. (2-10), then takes the following form: 

Eq.(2-12) e =Ame 

By definition, the tracking error dynamics, Eq. (2-9), are stable. Once some actuators are 

stuck, the input to physical model u will no longer be effective in maintaining the 

model's path because the corresponding control signals are blocked by the stuck actuators. 
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Under this circumstance, the controller has to be reconfigured by adjusting the remaining 

(healthy) control signals such that the system can still follow the reference model. 

With stuck actuators, the system Eq. (2-6) can be written as: 

• 
x =AX + BM,+B,U, 

Eq. (2-13) 

y = Cx 

where w, <= R"1 represents the remaining control input, u 2 e Rmi is a constant vector that 

contains the values at which the actuators are stuck, and B] e R"xm' and B2 e R"*™2 are the 

input distribution matrices with ml+m2 -m. 

Stuck actuators reduce the number of healthy control surfaces. Their effects can be 

viewed as additional constant disturbances imposed onto the system, which may drive the 

system away from the desired path. The closed-loop system stability may also be affected 

due to the loss of some control channels. 

2.3. Control Allocation of ALTAV 

According to the ALTAV non-linear model, three controller outputs, heading angular rate 

and pitch and roll angular rates, determine the desired action to three axes of the UAV 

movement. These three variables are used to produce the control signals to be sent to the 

four motors. Therefore, the control allocation block has three input variables (<p, 9, y) and 

four output variablesF{,F2,F3,F4. The control effectiveness matrix Bb is picked from the 

rows and columns in the 5-matrix of the state-space model describing the lineralized 

dynamics of the actuator motors in the ALTAV model. 



For control allocation implementation, some approximations of the non-linear model 

must be made; these enable us to consider the control allocation problem in a much 

simpler and easier way/form. 

First, we ignore actuator dynamics. It is assumed that the actuators are capable of moving 

indefinitely fast and without offset problems. 

Second, we think of control surfaces as moment generators. The benefit is that the 

actuator has an exact force or position and a generated aerodynamic moment. 
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3. Control Reallocation Methods 

The main idea of control reallocation is that once one or more control surfaces get stuck 

or partially lost during the flight, control reallocation methods should be able to use the 

redundancy of operable control surfaces to cancel the effects of the jammed and partial 

loss of the control surfaces and provide the same, or almost the same, desired control 

inputs [4, 5, 9, 22, 24, 25]. 

Let us now review the most common methods for control allocation in the literature. 

Many proposed "methods" correspond to different ways of computing the solution for a 

certain control allocation objective, rather than different objectives. In this thesis, the aim 

is to make a clear distinction, for each control reallocation method, between what the 

solution is searched for and how the solution can be computed numerically. Four 

algorithms have been implemented for control reallocation, which will be described in 

this chapter. 

1. Cascaded Generalized Pseudo-Inverse (CGI) 

2. Fixed-point algorithm (Fix) 

3. Direct Control Allocation (DCA) 

4. Weighted Least Squares (WLS) 

3.1. Optimization Based Control Allocation 

Optimization based methods rely on the following pragmatic interpretation of the control 

allocation problem. Given a virtual control command v, determine a feasible control input 
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u such that Bu=v. This can be considered in the following way: 

• If there are several solutions, pick the best one. 

• If there is no solution, determine u such that Bu approximates v as much as 

possible. 

Description of Method 

As a measure of how "good" a solution or an approximation is, the Ip norm is used. For 

a particular p, we will refer to this as Ip optimal control allocation. The Ip norm of a 

vector u e Rm is defined as: 

Eq. (3-1) p \i=\ ' J forl<m<oo 

The optimal control input is given by the solution to a two-step optimization problem. 

Eq. (3-2) u = argmin\\Wu (w - ud ) \ p 

Q = arg min \WV (Bu - v)| 
u min<«<w max" "P 

where ud is the desired control input and Wu and Wv are weighting matrices. The above 

equation should be interpreted as follows: GivenQ, the set of feasible control inputs that 

minimizes Bu-v (weighted by Wv ), pick the control input that minimizes 

u - ud (weighted by Wu). 

3.2. Problem Statement 

Let the linearized dynamics of the normal UAV or aircraft at a trim condition be given by 
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Eq. (3-3) x = Ax + B u 

When one or more control surfaces suddenly have partial loss of their effectiveness or 

become stuck at an unknown position, Eq. (3-3) becomes 

Eq. (3-4) x = Ax + Bfuf + d 

where B f is the post-fault control effectiveness matrix. For partial loss, d = 0. For a stuck 

fault, attention needs to be paid so that uf is the remaining control surface and d is the 

input to the UAV or aircraft caused by the stuck surfaces. 

Let y — Cyx be a selected /^-dimensional controlled output vector to be used in defining 

the control allocation, then the derivative of y is, 

Eq.(3-5) 'y = Cy'x 

Substituting Eq. (3-4) into the above equation, one gets 

Eq. (3-6) y = CyAx + CyBfuf +Cyd 

In general, the number of control surfaces is greater than or equal to the number of 

control output vectors. Relying on the reference model which represents the desired 

dynamics of the closed-loop system, the healthy UAV or aircraft would produce control 

input um if all of the control surfaces were normal. Then, the derivative of ym is 

Eq.(3-7) ym=CyAx + CyBum 

The objective of the control reallocation is to seekw^ for enabling Eq. (3-6) to be as close 

as possible to Eq. (3-7) and may be rewritten as 
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Eq. (3-8) CyBfUf + Cyd = CyB Um 

So the actual y — ym, y will remain approximate to ym. Such a uf can be determined by 

minimization of the quadratic function. 

Eq. (3-9) 

mmJ = ^[(l-e)(CyBfu/+Cyd-CyBum)rQ(CyBfuf+Cyd-CyBum) + euT
/Q2uf] 

Subject to 

Eq.(3-10) «m i n<w <wmax 

where wmin and umax are the smallest and biggest control inputs acting on the control 

surfaces and Q is a positive-definite matrix of appropriate dimension. 

3.3. Cascade Generalized Pseudo-Inverse Method 

Pseudo-Inverse as a reconfigurable control method of an active fault-tolerant control 

system consists of changing the feedback gain to complete the reconfiguration of the fault 

system. In fact, it completes fault-tolerant control through reconstructing flight control 

allocation. Pseudo-Inverse, in some control surfaces/actuators failure, can make use of 

the remaining fault-free control surfaces/actuators, in an appropriate linear combination, 

to reconfigure the control signals of control surfaces. Mathematically, the method is 

usually expressed as multiplying one pseudo-inverse array before the original input, thus 

its name. This method is widely used for control allocation. The main reason is its 

calculation and application, which are extremely easy. In the 1980s, many researchers 

conducted theoretical studies and simulations on the pseudo-inverse of the flight control 
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system. Also this method has executed flight tests on xBQM-106 UAV [29]. 

The pseudo-inverse method gives the solution by disregarding Eq. (3-10) constraints; a 

solution can be obtained by minimizing the quadratic function: 

Eq.(3-ll) 

mmJ = hsCyBfuf + Cyd-CyBuJ Q {CyBfuf + Cyd-CyBuJ] 

SupposeCyBf — By,Cyd — dy andCyB um — vd, called as virtual control. 

The above equation is rewritten as 

1 T 
Eq. (3-12) mm J = -[(Byuf +dy -vd)

TQ{Byuf +dy -vd)] 

Subject to 

Byuf+dy =vd 

An explicit solution can be obtained as: 

Eq.(3-13) uf=B+
y(vd-dy) 

where 

Eq.(3-14) B+
y=BT

y(ByB
T

yy
l 

and By is the pseudo-inverse of By. 

The solution of the pseudo-inverse in Eq. (3-13) will not be feasible for all achievable 

virtual control inputs v, and several ways to accommodate this constrain have been 

proposed. The simplest alternative is to truncate Eq. (3-13) by clipping those components 

that violate some constraint. However, since this typically causes only a few control 

inputs to saturate, it seems natural to use the remaining control inputs to make up the 

difference. 
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Virnig and Bodson [9] propose a Redistributed Pseudo Inverse (RPI) scheme, in which 

the control inputs that violate their bounds in the pseudo-inverse solution are saturated 

and removed from the optimization. Then, the control allocation problem is resolved with 

only the remaining control inputs as free variables. Bordignon [22] proposes an iterative 

variant of RPI. Instead of only redistributing the control effect once, the author proposes 

to keep redistributing the inputs as they become saturated. This is known as the Cascaded 

Generalized Inverse (CGI) approach. 

The method of CGI arises from the idea that if a generalized inverse commands a control 

to exceed a position limit, then that control should be set at the exceeded limit, and the 

rest of the controls redistributed to achieve the desired moment. This procedure can be 

used with either pseudo-inverse or generalized inverse weighted with a diagonal matrix. 

Initially, a generalized inverse computed using Eq. (3-13) and Eq. (3-14) is used to 

allocate the controls given in response to some desired moment. 

If none of the elements in the solution are saturated, then the desired moment lies within 

the limits of the constraints. If any of the elements in the solution exceed their constraints, 

that element is set equal to its constraint, and its effects at saturation are subtracted from 

the desired moment. The effect of a saturated control is equivalent to the control position 

multiplied by the column of B matrix which corresponds to that control. The resulting 

moment is the part of the moment demand that must be satisfied by the remaining control 

authority which is denoted as v. For example, if the ith control saturates, then 

Eq.(3-15) u=U; ,,,v — Bii; ,, 
^ v J i i{sat)> i i(sat) 

Next, the saturated controls are removed from the problem. When a pseudo-inverse is 

used, this is done by removing the corresponding column, Bi, from B. The reduced B 
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matrix is denoted by B*. The new pseudo-inverse is then computed by plugging B* into 

Eq. (3-14) to get B*+ . Now the new solution is once again checked for saturation. If there 

is a saturated element, the algorithm runs one more time according to the above method. 

Ultimately, either no new control will be saturated, or all the remaining controls are 

saturated, or the reduced B will have n or fewer columns. When no new controls are 

saturated, an admissible solution is found. If all the controls are saturated, the controls are 

set to their limits and the moment is unattainable using this method. 

In the following, an example is given to demonstrate the concept of CGI. 

CGI Example 

Suppose 

w, +2u2 - v 

B = [l 2],u = v = 3.5 

Constrained by 

0<w, <2 

0<w2 <1 

The initial values for ud are given by 

First iteration, calculating Pseudo-inverse B+ : 

B+ = [\ 2f-([l 2]-[l 2f)-1 
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_ °-2 

Then, 

u2 
= B+-v = 

"0.2" 

0.4 
•3.5 = 

"0.7" 

_1.4_ 

w2is infeasible since it exceed its limit at u2=\. So, the control allocation problem is 

resolved with only w,as a free variable. Replacing the original B matrix by5* = [l 0], 

the virtual control input that should be produced by ux is given by 

v* = 3.5-[l*0 + 2*w2] = 3.5-2=1.5 

Then, we need to operate the second iteration. 

The solution is then given by 

w, = 5*+-v*=l*1.5=1.5. 

So, we get 

u2 
= 

"1.5" 

1 

Now, let us check whether this solution is feasible or not. v= 1.5+2*1=3.5 fits and the 

algorithm stops. In this example, Cascade Generalized Inverse (CGI) was successful since 

the output is the true solution after two iterations. 

However if the constraints in the above example were changed to 

1 < w, < 2 

0<u2 <1 

Running the same procedures, after the first iteration, u\ = 0.7 and «2 = 1.4. These values 

exceed their constraints. According to CGI regulations, ul and «2 are set to 1. 

27 



Checking v=l*l+2*l=3, this result is not satisfactory. So, this is an incorrect result. 

Using CGI does not guaranteed that the optimal solution will be found. 

3.4. Fixed-Point Method 

The fixed-point method is simple. In comparison with CGI, this method is used to handle 

actuator saturation [5]. Many of the computations need to be performed only once before 

iterations start. Remarkably, the algorithm also provides an exact solution to the 

optimization problem, and it is guaranteed to converge. Its drawback is that convergence 

of the algorithm can be very slow and strongly dependant on the problem. The number of 

iterations required can vary by orders of magnitude depending on the desired vector. In 

addition, the choice of the parameter e is sensitive, as it affects the objectives, as well as 

the convergence of the algorithm [9]. The fixed-point method is based on the mixed 

allocation problem. 

The fixed-point method finds the control input vector u by minimizing the quadratic 

function 

Eq.(3-16) minJ = -[(l-£)(Byuf+dy-vd)
TQl (Byuf+dy-vd) + suT

fQ2uf] 

For 0 < £ < 1 

For the case when the constraints of Eq. (3-10) were not considered, solving the QP 

problem becomes much easier and the solution uf is obtained from the unique solution of 

the linear algebraic system = 0, which gives 



uj = (1 - s)[(BT
yQ, By +£Q2Y

l BT
yQ} (vdu - dy ) 

For another case, Eq. (3-10) constraints are active and involved in the applications. 

Applying this method to the quadratic programming problem, the fixed-point algorithm is 

given as 

Eq.(3-17) uk+l = sat[(l-s)nBT
y(vd-dy)-(nM-I)uk] 

= [F(vd-dy)-Guk] k = 0,...,N-\ 

where N-l is the maximum number of iterations, 

Eq.(3-18) M = (\-£)B
T

yQlBy+sQ2 

and 

1 
Eq. (3-19) n = M\l 

Sat (•) is the saturation function that clips the components of the vector u to their 

allowable value. 

sati (u) 

«,. U; < w, 

u, u±<ui<ui i = \t...,m 

W, U, > U; 

This algorithm provides an exact solution to the optimization problem, and is guaranteed 

to converge. The convergence can be very slow and choosing a proper value e is very 

important. Whether e is good or not directly affects the optimal solution. A large value 

speeds up the convergence but makes it hard for the algorithm to find the exact solution. 

A small value for s leads to slightly slower convergence but the algorithm converges 

closer to its optimal solution. 

The fixed-point algorithm can be interpreted as a gradient search method where the 
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iterations are clipped to satisfy the constraints. 

An example 

Consider the following. 

B = [2 l ] , F = 3 

«„ta=[-l "if 

"max = [l ^ 

e = 0.001 

Here, £?i and Q2 are unit matrices and d = 0 . 

The first thing to find is the initial condition for u. This is done by 

u -
("min+Wmax) 

T-r + 

2 

_1_ "0" 

_0_ 

To compute the output we use: 

w*+i =(Fv-Guk) 

where 

Fv = {\-s)-n-BT v 

= (1-0.001) 0.2002 3 = 
1.1998 

0.5999 

and: 

G = n*M-I 

First, we calculate M : 

M = (l-s)BTB + eI 
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= (1-0.001)([2 if [2 l]) +0.001 
1 0 

0 1 

3.9970 1.9980 

1.9980 1.0000 

Then, calculating n, 

1 
n = "I, 

So, G = 0.2002 

3.9980 1.9980 

1.9980 1.0000 

"3.9970 1.9980 

1.9980 1.0000 

= 0.2002 

1 0 

0 1 

-0.2000 0.3999 

0.3999 -0.7998 

Inserting the above F and G matrices into Eq. (3-17) gives: 

u, — 
1.1998 

0.5999 

"1.1998" 

0.5999 

3.9970 1.9980 

1.9980 1.0000 

0 
0 

The next thing is to check if any element in ux exceeded the saturation limit. This is done 

by: 

sat^u) = 
ui w; < ui 

u, <u, <u, ?~1) 2 
i i i 

Uj Ui > Ut 

If one of the outputs exceeds the constraints it will be set equal to the constraint, 

w, is given from the first iteration 
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1.0000 
1 [0.5999_ 

Now, we are ready to do the next iteration. In the following table the results of the 

iteration are given with the initial guess of u0 = 0 . 

Table 3.1: Results from each iteration 

Iteration no. 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

U] 

0.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

U2 

0.0000 

0.5999 

0.6798 

0.7437 

0.7948 

0.8357 

0.8683 

0.8945 

0.9154 

0.9321 

0.9455 

error for w/ 

1.0000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

error for U2 

1.0000 

0.4001 

0.3202 

0.2563 

0.2052 

0.1643 

0.1317 

0.1055 

0.0846 

0.0679 

0.0545 

To get a satisfactory solution, it is necessary to do more iteration. From this example, it 

can be seen clearly that u can converge to the optimal solution after repeated iterations. 

In this calculated example, the correct solution was achieved after 98 iterations. 

The advantage of the CGI method is its numerical simplicity, but clipping must be 

applied to enforce the actual constraint and can yield poor results. It does not guarantee 

32 



that the optimal solution will be found. Fix method provides an exact solution to the 

optimization problem, but this algorithm is relative slow and requires relatively high 

number of iterations before a solution can be found. 

3.5. Direct Control Allocation Method 

The objective of direct control allocation is to find a control vector u that gives the best 

approximation of v in the given direction. Thus, direct control allocation weighs 

directionality over moment generation, which is an important characteristic especially for 

applications such as flight control. In a special case of matrix B, direct allocation provides 

a unique solution to the problem. The condition for this property is that any q rows of B 

must be linearly independent, where q is the number of rows in B [9]. For flight control, 

the number of rows in B is usually three. In this case, the three components of v in the 

model reference control law are the accelerations in p, q and r, as outputs are three 

rotational accelerations. The columns of B represent the contributions of the various 

control surfaces to each of the three rotational accelerations. 

Given a matrix B, find a real number a and a vector w, such that J = a is maximized, 

subject to 

Eq. (3-20) (B)u, = av 

Eq. (3-21) a = ^-^-
v 

and 
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If a>l, let 

Eq. (3-22) u = — 
a 

Otherwise, let 

u = uj 

An advantage of direct allocation includes the straight forwardness of the allocation 

problem. No design variables must be selected, since the solution to the problem is 

determined by the control effectiveness matrix (B) and the constraints. When a>l, no 

element in u will be saturated. A method of implementing direct allocation is to use 

linear programming. 

3.5.1.Constrained Optimization Using Linear Programming 

Linear programming (LP) is regarded as a practical application of mathematics, as its 

applications are broad and universal. LP is an optimization approach that deals with 

meeting a desired objective such as minimizing or maximizing cost, in the presence of 

linear constraints such as limited resources. 

Standard form: 

The basic linear programming problem consists of two major parts: 

• The objective function, and 

• A set of constraints 
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For a maximization problem, the objective function is expressed as: 

Max Z = CXXX + c2-*-2 "*" c3*3 + ••• + ^ ^ 

where c/ = payoff of each unit of they activity that is undertaken and xj = magnitude of 

th the / activity. 

The constraints can be considered as: 

a\\x\ +anx2 +#13*3 +--- + a\„x„ ^ bx 

91 1 C/'j ' j^ 'T ~t~ ClyiJ\>'i i . . . i C*^i -A- _ i L / ^ 

Also expressed as 

Eq. (3-23) Ax < b 

where A E. Rmxn , ay = amount of the i resource that is consumed for each unit of the 

j activity and b e Rm, bi= amount of the i resource that is available. That is, the 

resource is limited. The second general type of constraint specifies that all activities must 

have a positive value. 

JC, >0, x2 >0,---,xn > 0 

Simplified as 

Eq. (3-24) X > 0 

Together, the objective function Eq. (3-23) and the constraints Eq. (3-24) specify the 

linear programming problem. 
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3.5.2.Linear Programming 

Bodson re-formulated direct control allocation as a linear programming problem [9]. LP 

problem can be derived. When re-defining the control allocation problem to fit a linear 

programming formulation, the standard linear LP problem consists in finding a vector x 

which minimizes: 

Eq. (3-25) J = CTX 

Subject to: 

Eq. (3-26) 0<x<h,Ax = b 

In this equation alternative formulations exist, replacing 0 < x<hby x > 0 and Ax=b 

by Ax > b. However, these differences are not significant and do not effect our discussion. 

To solve a linear programming problem in its standard form from the control allocation 

problem, a matrix M must be defined. The largest element of v must be identified 

beforehand. The largest element in v is denoted vmax, while the two remaining elements 

of v are defined as v, andv2. According to the position of the largest element in v, Mis 

defined. The index of M corresponds to the position of the largest element in v. The 

matrix Mis then defined as one of three cases: 

fl/f — 
j k ? 3 — 

M,= 
1 

— 

-

v, 
2 

3 

V 
max 

0 
0 

— v 
max 

vmQ max 

0 

v l ~ 

V 2 _ 

0 

v 
max_ 

Af, = 
- V m a x V l 0 

0 3 max 

Using this M matrix, we can define the LP problem in standard form. To solve the 

problem, A is first defined: 
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Eq. (3-27) A = M B 

Then, b is defined as 

Eq.(3-28) b = -A-Xmh 

Proceeding to define h, we have: 

Eq.(3-29) h = Xmm-xn 

T 

The objective function ( C ) must also be defined according to the problem. We define 

C as: 

Eq. (3-30) CT = -BTV 

The equations are then set up in a standard LP tableau, and the linear programming 

problem is then solved. In our implementation, the MATLAB function "linprog" is used 

in program codes. Sometimes, the solution vector (x) must be scaled according to a 

scaling factor {a). According to the value of the scaling factor, a logical choice is made to 

determine whether or not the solution vector should be scaled. If the scaling factor is 

larger than one, the solution vector should be scaled. 

The scaling factor is calculated as 

(Bu)Tv 
Eq(3-31) a=Vs) 

An example 

We have: 
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v = 

v l 

V 2 

3. 
= 

"0" 

9 

0 
, B = 

1 0 0 0 

0 1 0 1 

0 0 1 1 

" - 5 " 

-10 

- 2 

_ - l _ 

<u< 

" 5 " 

10 

2 

1 

where 

We proceed by defining M. Since the largest element of v is v2, 

Mis defined as 

M= 
- 9 0 0 

0 0 - 9 

Following the procedure described above and using Eq. (3-27), we define A: 

A = 
- 9 0 0 

0 0 - 9 

1 0 0 0" 

0 1 0 1 

0 0 1 1 

= 
- 9 0 0 0 

0 0 0 0 

Using Eq. (3-28) we define b: 

- 9 0 0 0 

0 0 0 0 

" - 5 " 
-10 

- 2 

-1 

"-45" 

_-27_ 

Using Eq. (3-29) we define h: 

h = 

5 

10 

2 

1 

- 5 

-10 

- 2 

- 1 

10 

20 

4 

2 

Using Eq. (3-30) we define the objective function ( CT ): 
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-1 

0 

0 
0 

0 

- 1 

0 
-1 

0" 

0 

- 1 
- 1 

Tnl 

9 
n 
U 

" 0 " 

- 9 

0 
- 9 

Writing the linear programming tableau, we define the following: 

c 

Rl 

R2 

*x 

0 

-9 

0 

X2 

-9 

0 

0 

x, 

0 

0 

-9 

* 4 

-9 

0 

-9 

b 

0 

-45 

-27 

Where row c is the objective function and Rl and R2 are the rows of A. 

Looking at the objective function, it can be seen that we must increase X2 and X4 to 

obtain a better value of the objective function. To do this, both X2 and A"4 are driven to 

their saturated values, X2 = 20 and X4 = 2. 

We obtain the following tableau: 

c 

Rl 

R2 

* , 

0 

-9 

0 

x, 

0 

0 

-9 

b 

0 

-45 

-9 

This gives an easy solution for both X] and X,: X, =5 and A-
3 = 1 

The x vector then becomes 
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5 

20 
x = 

1 

2_ 

Before we arrive at the final solution, we must first return from the LP problem definition, 

and obtain a formulation for use with the control allocation problem. 

Continuing to use formulation, we calculate: 

10 

- 1 

1 

At last, the scaling factor must be calculated and applied to the solution if appropriate. 

Using the following formula, the scaling factor is calculated: 

{Bufv 99 

U = X + X = mm 

a = • = — =1.2222 
( v V ) 81 

Since a>\, all elements of u must be divided by a to complete the calculations. This gives 

a final solution of 

0 

8.1918 

-0.8181 

0.8181 

u = 

In order to find out whether this solution produces the right moment in the right direction, 

we can calculate: 

v = Bu = 
1 0 0 0] 

0 1 0 1 

0 0 1 1 

0 

8.1918 

-0.8181 

0.8181 _ 

— 

"0" 

9 

0 

40 



This calculation shows that the solution found using linear programming is correct. 

3.6. Weighted Least Squares 

In this section, we will consider the weighted least squares (WLS) method. WLS is one 

use of the active set methods [27, 28] to solve the l2 optimal control allocation problem. 

3.6.1. Active Set Method 

Based on O. Harkegard [26], the active set method is widely used to solve constrained 

quadratic programming (QP), and it has been proven that an optimal solution can be 

achieved in a finite number of iterations. The use of the active set method has two 

obvious advantages: 

1. Reduce the constraints of the question, thus enabling to solve the question easily. 

2. Reduce the possibility of incompatibility with QP sub-problems. 

The bound and equality constrained least squares problem may be written as follows: 

mir|Uw-^| 
u ' ' 

Bit = v 

Here, C 
f J \ 

K-Ij 
andt/ 

' u^ 

\~UJ 

Cu>U 

, so Cu > U is equivalent to W < W < W, 

The active set method solves this problem by solving a series of equality constraint 

problems. The thinking is that, in each step, some of the inequality constraints are 
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regarded as equality constrains, and form the working set W, while the remaining 

inequality constraints are disregarded. The active set of the solution is the working set at 

optimum. 

3.6.2. Weighted Least Squares Discussion 

Considering the choice of norm, a common technique is to approximately reformulate the 

sequential optimization problem (3-2) as a weighted optimization problem: 

u = ̂ gmv^Wu{u~ud)\
P + j\Wv{Bu-v)\ 

u<u<u 

where y»\ to emphasize that, primarily, Bu-v should be minimized, choosingp=2. 

When the control allocator is initiated, and there is no previous solution available, 

o (u + u) . „, 
u = — and W - 0 are selected. 

The cost function is rewritten in standard form: 

where 

Eq. (3-32) 

Solving 

Eq. (3-33) 

Eq. (3-34) 

K(«-udf +]jWv(Bu-vf r2wvv r2wvv 

wuud j 

y~2wvB 

v K J 

b = y2Wvv 

V Wu«d J 

u = argminUw-6 

Bu-v 
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Eq. (3-35) Cu > U 

Let u° be a feasible starting point. A point is feasible if it satisfies Eq. (3-34) and Eq. (3-

35). Let the working set FF contain a subset of the active inequality constraints at u°. For 

i = l,2 ... 

Given a suboptimal iterates', find the optimal perturbation p, considering the inequality 

constraints in the working set as equality constraints and disregarding the remaining 

inequality constraints. Solve 

Eq. (3-36) min |U(« '+p)-b\ 
p 

Bp = 0 

p, =0,ieW 

For one situation, if u' + p is feasible, then set w'+1 =u' + pand compute the Lagrange 

multipliers in the form: 

Eq.(3-37) AT(Au-b) = (BT C0
r) 

If all X > 0, u'+x is the optimal solution to Eq. (3-34). The iteration will stop withw = w'+I. 

Otherwise, remove the constraints associated with the most negative A from the working 

set. 

For another situation, if u' + p is in feasible, need to determine the maximum step 

a length such that u'+ -u' +cxp is feasible. Add the bounding constraint at w'+1to the 

working set. 
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An example 

Let us revisit the case using the CGI algorithm and see how the WLS algorithm solves 

this problem. 

Same as the CGI algorithm example, 

w, +2w2 = v 

B= [1 2], u = , v=3.5 

l<w, <2 

0 < u2 < 1 

WU=I ,WV=I and y is big enough, chose/ = 1 x 106. Set initial 

un =• 
u • +u 

mm max = [0.5 1.5f 

Calculating A and b according to Eq. (3-32), 

A = 
(I \ 

y2WvB 

, w 

/1000 2000^ 

1 0 

V 0 1 

b = 
r i \ 

y2Wvv 

V Wuud , 

^3500^ 

0 

V 0 j 

Initial residual: 

d—b-A*u-

^1000^ 

-1.5 

v -0 .5 y 

Perturbation: 
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p = A\d 

Getting the new point: 

-0.8 

V 0 . 9 y 

w1 =u° + p = 
ro.7N 

The solution of the new point is the same as the solution of the failure case using the CGI 

algorithm. The new point is not the optimized point; we need to compute distances to the 

different boundaries. 

Since a < 1 is the maximum step length, we initiate with one. Hence, the maximum step 

length a is solved for: 

a = 0.5556 

So, updating the point and residual, 

'1.0556^ 
u2 =ul +ap = 

d -b- A*ap 

v1.0000y 

444.4447 

-1.0556 

-1.0000 

Re-computing the optimal perturbation vector p, 

p = A'\d = 

The new point is 

f 0.4444^ 

0 

w3 -u2 + p -
'1.5^ 

v1.0y 

Calculating the X by Eq. (3-37), 

X -2 .0 
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Since A > 0 , the optimal solution is found. This confirms that u = w3 = 

optimal solution to the problem. 

'1.0^ 

V1.5, 
is the 
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4. ALTAV UAV Benchmark 

The Almost-Light-Than-Air-Vehicle (ALTAV) simulation is designed to permit the 

examination and evaluation of candidate control algorithms for the operation of one or 

more such vehicles. 

•tm <'W* »*«£**! w i - n m ^ i m * ^ 

I .III.1V.-1'"-! - ' 

4 , » i u 

K"^j<lBC 
n ' ^ B r 

Figure 4.1 ALTAV Simulink figure 

The current implementation of the simulator software is designed primarily as a design 

and evaluation tool for the system state variable controllers. However, the simulation will 

also be suitable for testing higher level fleet control algorithms. It uses the Simulink 

Aerospace - Blockset Euler-6DOF block for tracking the vehicle's position and 

orientation through time [2]. 
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4.1. ALTAV UAV Dynamics 

The actual Almost-Light-Than-Aerial-Vehicle (ALTAV) system used in this paper is a 

six degrees of freedom unmanned aerial vehicle. The variables describing the motion are 

x, y, z, 6,y and^. These variables correspond to the translation in x, y and z directions 

and rotation about z, y and x axes (heading, pitch and roll), respectively. It should be 

noted that the system uses a 'right-hand' coordinate system with the positive z 

direction as down. The behavior of the ALTAV system is governed by the 

following equations (in the vehicle frame): 

Mx = F; sin(y) -Cxx 

My = Fi sin(^) -Cyy 

Mz = -FjS cos(^)cos(^) - FB + Mg -C2z 

Jee = (FJ - F2l + F3l - FJ) sin(p) - CeG 

Jyf = (FJ - F3l) - FBLB sin(r) - Cyf 

V = -W ~ FJ) ~ FBLB sin($ - Cj 

where 

M Mass of the vehicle, 

x, v, z, 6, y, d> Vehicle position and orientation, 

J ,J ,J Moments of inertia about x, y and z axes, respectively, 

f Buoyant force resulting from the volume of helium in the vehicle, 
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F i = \ 4 Force magnitude of motors, 

/ Perpendicular distance between the motors and vehicle center of gravity, 

C. Drag coefficient in the directions i e[x,y,z,0,y,0] which serves as a 

damping term for the motor in that direction, 

p Angular offset from vertical of the motor thrust vectors. 

4.2. ALTAV Simulator Software 

The ALTAV simulation is based on a physical model. The simulation software is 

basically composed of several files: 

ALTAV_modeI.mdl 

-Simulink model of ALTAV and the associated control and inputs for flying the vehicle. 

-This model also includes a Simulink VR Toolbox graphical rendering subsystem (VR 

GUI block). This block is for generating a graphical interface only and has no effect on 

the simulation. In this paper, this block is out of our scope. 

ALTAVSetm 

-Matlab script file which initializes the simulation with a square trajectory as the input 

path. 

-Includes SetParams.m and SetPath.m. 

ALTAVSetcircle.m 

-Matlab script file which initializes the simulation when circle trajectory as input path. 
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-Includes SetParams.m and SetPathcircle.m. 

SetParams.m 

- Matlab script file which initializes all of the control, plant and physical parameters of 

the simulation. 

SetPath.m/SetPathcircle.m 

-These files assign the desired flight path trajectory for use by the system when not 

operating under manual control via a joystick. SetPath.m/SetPathcircle.m are two distinct 

trajectories are designed as model ALTAV input. The target trajectories are a square and 

a circle, respectively, which the vehicle attempts to follow. 

Plot_compare.m 

-Script file which executes the simulation for t time steps in order to gather performance 

information from the simulation. 

Operating procedures: 

• Starting Matlat 

• Open ALTAVmodel.mdl 

• Execute ALTAVSet.m 

• Start ALTAVmodel.mdl simulation 

4.3. Mdl Representation 

The ALTAVmodel.mdl diagram can be divided into four distinct regions (see Figure 

4.2): the flight path input, the flight command controllers, the physical model of the 

system, and the "Real World" correction. The ALTAV simulation is wholly contained 
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within the 'ALTAV Simulation' with ALTAV model.mdl. 

Figure 4. 2 Simulink block diagram of the ALTAV 

4.4. Flight Path Input 

The flight path block refers to as trajectory generators, generating a desired flight path for 

the vehicle, see Figure 4.3. The flight path is a sequence of time-stamped positions. 

Currently, the vehicle's flight paths are specified by (x, y) coordinates, elevation and 

vehicle heading. In this project, there are two different trajectory selection designs: 

squares trajectory and circle trajectory as model input. Square trajectory input is currently 

specified through the variables defined in SetPath.m, while circle trajectory input is 

designed through a Simulink block diagram. This information can be easily supplied 

from other sources, such as variables from the workspace or other generated flight paths. 
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Constant 

CIRCLE 

Zt 

TrajZ 1 

Xt 

TrajX 1 

Yt 

TrajY 1 

• o 

Traj . Selection 

Trajectory selection 

Figure 4. 3 ALTAV trajectory selections 

In addition to the above mentioned variables for vehicle control is the 'V offset' input. 

This variable is used to investigate the behavior of the system when a vectored offset is 

added to the motors. This can be used in the future for improved handling in wind, 

though, at this stage, it is not used and the automatic control of the vehicle under such 

conditions is beyond the scope of this study. 

4.5. Flight Command Controllers 

Flight command controllers in the ALTAV UAV Simulink diagram have two levels. The 

first level of control generates pitch and roll command to move the vehicle in (x, y) space. 

In the next level, flight controllers provide commands to the four motors to maintain the 

specified elevation, yaw, pitch and roll. Within the 'Controller' block of the Simulink 

diagram, all controllers use a set of PID to accomplish control. 
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The specific parameters for controlling the vehicle are found in the Matlab script 

SetParas.m. Modeling of real vehicle characteristics is important to match the simulator 

to the real world as accurately as possible. 

4.6. Real World Correction 

In order to evaluate the performance of the system in the real world, it is necessary to 

model such effects as sensor noise and sensor delay. This block applies Gaussian noise to 

each of the system state variables with some predefined delay (as specified in 

SetParams.m). The noise is assumed to have zero mean and bias with a variance 

determined either theoretically or through experimentation. 

In addition, each actuator has a rate limiter and a saturation cap to ensure that the system 

more closely mirrors the real system. These values have been selected based on empirical 

tests performed on the system components, such as maximum thrust and maximum 

vectoring rate. Again, these values can be seen and changed in SetParams.m. 

4.7. Simulation Script Files 

SetParams.m simulation parameters 

The file SetParams.m contains all of the pertinent parameters for simulations. These 

include the parameters for the various PID controllers maintaining the state of the 

ALTAV to the physical specifications of the vehicles, which govern the vehicle flight 

characteristics. 
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The file is broken down as follows: 

ALTAV Control Values 

-These are the variables that specify the performance of the controllers running on the 

vehicle. The definition of variables is described in the comments part. The rate limits are 

used to prevent a change in target waypoint from being interpreted as a step input thus 

permitting much smoother operation. 

Real System Values 

-These are the values of the noise and sensor delays for the system sensors. If no noise is 

desired, the value of the variable NOISE is set to zero. Conversely, should noise be 

desired, NOISE should be set equal to one. 

Motor Parameters 

-This section defines the motor saturation values and the spin-up rate limits for the 

motors. In addition, the measured motor torque (as a function of generated thrust) can be 

included. This model assumes that all motors are rotating in the same direction (counter­

clockwise). 

Model System Physical Parameters 

-This section defines such physical parameters as the mass of the system and the pertinent 

dimensional values. This includes different physical shapes for the vehicles and the 

appropriate configuration measurements. 

It should be noted that the distances and coordinates referenced in this section are all 

relative to the CoG of the vehicle, rather than the centre of the vehicle itself. This 

protocol is used because the vehicle itself does not matter in the equations of motion, 

only the positions of the various components relative to the centre of gravity. 
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Hence, a Centre of Buoyancy (CoB) coordinate of [0, 0, 1] places the centre of buoyancy 

(usually the centre of volume) 1 meter directly above the centre of gravity and the vehicle 

is stable. [0, 0,-1] puts the CoB 1 m below the CoG for an unstable vehicle. 

The Payload, Avionics Processor Unit (APU) and electronics and battery masses and 

positions can also be specified. This is relevant to both mass and lift calculations and 

moments of inertia calculations. This information is calculated here. 

Model Initial Conditions 

-This defines such initial conditions as the starting position, orientation and velocity of 

the vehicle. This is primarily used for testing and debugging. 
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5. ADMIRE Aircraft Benchmark 

The ADMIRE (Aero-Data Model in Research Environment) benchmark has been 

developed from the aero data obtained from a generic, single seated, single engine fighter 

aircraft with a delta-canard configuration. The ADMIRE model is a non-linear, six degree 

of freedom simulation model of a small fighter aircraft consisting of a single engine 

delta-canard wing fighter aircraft model implemented in Matlab/Simulink and is 

maintained by the Department of Autonomous Systems of the Swedish Research Agency 

(FOI)[19,20]. 

5.1. Aircraft Dynamic 

The aircraft dynamics are modeled as a set of twelve first-order non-linear differential 

equations in the form: 

Eq. (5-1) x = / («,«, A) x e 9?12xl, u e <R,2xl and A e 9?12xl 

Eq. (5-2) z = g(x, u, A) z e <R31xl 

where x is the state vector, u is the input vector, z is the output vector, and A is the 

vector containing uncertain and variable parameters. 

The ADMIRE flight operation region is up to mach 1.2 and altitude up to 6 km. The 

aircraft model has 12 state components related to aircraft dynamics 

(VT,a,/3,pb,qb,rb,Q>,d,x¥,xv,yv,zv) and additional components due to the presence of 

actuators and components of a flight control system. The force equations in the aircraft 
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body axes frame are: 

Eq.(5-3) 'u = Fxasro+T-gsm0-qbwb+rbvb 

m 

F 
Eq. (5-4) v = Xaero + g cos (9 s in0 + p b w b - r b u b 

m 

F 
Eq. (5-5) w = ^ ^ + gcos0cos<f>-pbvb+qbub 

m 

The components of state derivatives, vector x in equation (1), are as follows: 

Eq. (5-6) VT = -*—* * * * * 

Eq. (5-8) 

VT 

uh wh - wh u, 
Eq. (5-7) a = -*-£ f-*-

ub +wb 

VbVT-VbVT 

V«-i„+i*V» ,V„-i«V.-ii L t-> /c r\\ x ** yy zz / xz v yy zz ' zz xz * Xz i s 

Eq. (5-9) /? = ; - f p b q b + ™ qbrb + » Mz + i i -r i i -il
 II -r 

XX ZZ XZ XX ZZ XZ XX ZZ XZ 

M„ 
XX ZZ XZ 

2 x 

Eq. (5-10) q=-r^pl + ̂ —^-pbrb + ̂ f-rb
2 + My 

I ±u I ±D ° I ° I 
yy yy yy yy 

2 
xz 

I I _/2 <•»•» ' I I -I2 ™b II -I2 "^ 
XX ZZ XZ XX ZZ XZ XX ZZ XZ 

T-. sC i 1 \ * ^ xx yy/zz xz , \* yy * zz * xx ) * xz * vv , , 

Eq. (5-11) rb = — pbrb + -JSL— -. qbrb + r r ** r2 Mz + 

z—rMx 
I I -I2 

XX ZZ XZ 
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Eq. (5-12) ¥ 
qb s in <j) + rb c o s </) 

cos# 

Eq. (5-13) 6 = qb c o s <j) - rb s in <f> 

Eq. (5-14) $- Pb + t a n ^ ( < 7 A s m </> + rb c o s ^) 

The output vector consists of the state variables, plus additional variables defined by the 

equations: 

Eq. (5-15) ub = VT cos a cos /? 

Eq. (5-16) vb = VT sin p 

Eq.(5-17) wb = Vr sin«coSyff 

The above three equations provide the body-axis velocitiesub ,vb and wb, respectively. 

The engine thrust works in the direction of the xb axis. So, load factors along the zb and 

yb axes are derived from the total aerodynamic forces in the body fixed z and y axes only. 

Eq. (5-18) 
-F-Zaero 

mgo 

Eq. (5-19) ny = 
Yaero 

mg0 

The Mach number M and flight angle y are computed as: 

Eq. (5-20) M- T 

a(h) 

Eq. (5-21) y = -arcsm 
z 

V J 

The coefficients of drag and lift, defined in the stability-axes frame are: 

58 



Eq. (5-22) CD = CN sin a + CT cos a 

Eq. (5-23) CL = CN cos a - CT sin a 

The side force coefficient CY, roll moment coefficient C,, pitch moment coefficient Cm, 

yawing moment coefficient Cn and forces FXaero and FZaero in the xb, yb and zb axis are 

generated as outputs. 

5.2. ADMIRE Model 

To evaluate the designed control allocation algorithms produced in this thesis, the 

ADMIRE model is used for simulation. 

Figure 5.1 ADMIRE control surface configurations 

Further details about ADMIRE: 

1. Dynamics: The dynamic model consists of the nonlinear rigid body equations, 

along with the corresponding equations for the position and orientation. Actuator 
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and sensor dynamics are included. 

2. Aerodynamics: The aero-data model is based on the Generic Aero-data Model 

(GAM) developed by Saab AB and was extended for high angles of attack. 

3. Control surfaces: The actuator suite consists of canards (left and right), leading-

edge flaps (left and right), elevons (inner, outer, right and left), a rudder and thrust 

vectoring capabilities. In this model, the landing edge flaps will not be used for 

control allocation since these do not produce large aerodynamic moments. Thrust 

vectoring will also not be used in this project due to lacking documentation. The 

remaining seven control surfaces are denoted in Figure 5.1. u denotes the 

commanded deflection while 8 represents the actual deflection. 

4. Actuator models: The servo dynamics of the utilized control surfaces are given by 

first-order systems with a time constant of 0.05s, corresponding to a bandwidth of 

20 rad/sec. Actuator position and rate constraints are also included. Table 1 shows 

the actual rate and position constraints for flight below Mach 0.5. 

5. Flight envelope: The flight envelope covers Mach numbers up to 1.2 and altitudes 

up to 6000m. Longitudinal aero-data exist up to an angle of attack of 90 degrees, 

while lateral aero-data only exist for angles of attack up to 30 degrees. 

ADMIRE control surface limits below Mach 0.5 

Control surface 

Canards 

Elevons 

Rudder 

Min. deflection(deg) 

-55 

-30 

-30 

Max deflection(deg) 

25 

30 

30 

Max. rate(deg/sec) 

50 

150 

100 
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5.3. ADMIRE Simulation Model 

The ADMIRE simulation model includes four blocks: the Flight Control System block, 

Computer Delay and Transport Delay block, Saturators Rate-limiters and Actuators block 

and Aircraft Response block. The ADMIRE non-linear model in Simulink is represented 

as follows. 

|t?0fcg(3l|-

Fas 

FIP 

tt/g 

rfiy 

Dlstt/ftoPa/am 

Control 
System 

Total 
Computer 

Delay 

Transport 
delay 

Saturators 
Rateiimiters 

and 
Actuators 

3 
Aircraft 

Response 

*«%, 
^ 

*Qk 

-*m 
+&!> 

<§> 

^*W. 

*m 
•*m 

*-*<*% 

\—+& *<m 

Figure 5. 2 Simulink block diagram of the ADMIRE 

Figure 5.2 shows the Simulink block diagram of the ADMIRE benchmark. The fault 

model was not included since the original aircraft model was not implemented for fault-

tolerant control search purposes. The inputs are given by the pilot, such as longitudinal 

(Fes) and lateral (Fas) stick deflection, rudder pedal deflection (Frp), and throttle stick 

setting (Tss). 
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6. Control Reallocation Implementation 

This section will present the implementation of different control allocation methods in the 

ALTAV and ADMIRE Simulink nonlinear models. Simulations are conducted in order to 

analyze whether different control allocation algorithms possess the ability to re-stabilize 

UAV or aircraft and provide reasonable command-tracking performance. The following 

implementation has been considered: 

1. Partial loss of the control input. 

2. Stuck at unknown position. 

This section is organized as follows. The implementation of the UAV ATLAV model is 

presented in 6.1. The implementation of the Aircraft ADMIRE model is presented in 6.2. 

6.1. Implementation in ALTAV 

The files for partial and stuck faults in the ALTAV model are differentiated as: 

For partial loss: 

ALTAV_model_test_partial_fault.mdl (Gaussian noise added), 

ALTAV_model_test_partial_fault_simple.mdl (no Gaussian noise) 

For stuck fault: 

ALTAVmodelteststuckfault.mdl (Gaussian noise added) 

ALTAVmodelteststuckfaultsimple.mdl (no Gaussian noise) 
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6.1.1. Simulink Block for Nonlinear Model 

Figure 6.1 ALTAV simulink with control reallocation block (Gaussian noise added) 

The description for Figures 6.1 and 6.2 are given in Section 4.3, 4.4, 4.5 and 4.6. 

-^> tn1 Out1 

r-|j» In 2 Out2 

•ff^ In 3 Out3 

In4 Out4 

-M? 

*\F2 

Fault in motor number -

Elev(z)L^ 

F1 

Pilch (gamma) 

F2 
Roll (phi) 

FHeading (Iheta) 

Control Rsafloeatton Gontto! 

^QD-

•te 
Cmd|4 

Heading 

To. Workspace 

Tta} .Selection 

Figure 6. 2 ALATV Simulink with control reallocation block (no Gaussian noise) 
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6.1.2. Implementation of Partial Loss 

~i > 

r~ 
motor 1 

In1 
V 

Product 
Out1 

2 y 
motor 2 

Product 1 
Out2 

3 
In 3 

motors 

Product 2 
Out 3 

motor 4 +*( 4 ^ 
Prodiicta Out;4 

Figure 6. 3 ALTAV Simulink block of partial loss implementation 

Figure 6.3 show faults in control surfaces implementation. The control effectiveness 

factory, described in section 2.2.1, is represented by Simulink step blocks which 

multiply the control motor signal. The parameter 'Final value' denotes the 

numerical value of y and the parameter "Step time" sets the time when the fault 

occurs. In normal conditions, the parameter "Final value" must remain in 1 and the 

"Step time" must be zero. These values are given in Matlab prompt using the file 

ALTAV_Bfault_partial.m in ALTAV, ADMIRE_Bfault_partial.m in ADMIRE. 

6.1.3.Implementation of Partial Loss 

Stuck at non-zero position: 
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n 
motor 1 fault 

In1 

* ! 

Product 1 

JL,_I V 

MemorySwitch 

n 

+€> 

double 

Data Type .Conversion 

•K-

Gain 

Out1 

Figure 6. 4 Simulink block for stuck at current position 

Figure 6.4 is used to generate the stuck fault at a non-zero position in the Simulink 

model. The gain (k) is the magnitude of the fault. This is implemented only in the 

motor 1 control surface. 

Runaway 

Constant 

Data Type Conversion Gain 

JT
 ! 

Integrator Saturation 

Logical 
. Operator 

Figure 6. 5 Simulink block for runaway 
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Figure 6.5 shows the fault implementation of a runaway in the Simulink block. This 

is implemented only in the motor2 control surface. The faults are selected using the 

file ALTAVBfaultstuck.m in the Matlab prompt. 

In the ALTAV non-linear model, the location of the fault is placed in the UAV 

response block, right before the system dynamics, as shown in Figures 6.1 and 6.2. 

6.1.4.Implementation of Control Reallocation 

The Control Re-allocation block is placed between the control system block and 

fault motor number block. Implementation of control re-allocation is divided into 

two parts according to the types of the UAV fault: 

1) Partial loss 

• The files that simulate the reconfigurable fault-tolerant control system are 

(Gaussian noise added) 

ALTAV_model_test_partial_CGI.mdl 

ALTAVmodeltestpartialFixedpoint.mdl 

ALTAVmodeltestpartialDCA.mdl 

ALTAV_model_test_partial_WLS.mdl 

• The files which simulate the reconfigurable fault-tolerant control system are 

(no Gaussian noise) 

ALTAV_model_test_partial_CGI_simple.mdl 

ALTAV_model_test_partial_Fixedpoint_simple.mdl 

ALTAV_model_test_partial_DCA_simple.mdl 
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ALTAV_model_test_partial_WLS_simple.mdl 

Figure 6. 6 ALTAV Simulink diagram of control reallocation as partial loss 

Figure 6.6 shows control reallocation diagram when one or multiple control 

actuators have partial loss. 

2) Stuck fault 

• The files which simulate the reconfigurable fault-tolerant control system are 

(Gaussian noise added) 

ALTAVmodelteststuckCGI.mdl 

ALTAVmodelteststuckFixedpoint.mdl 

ALTAV_model_test_stuck_DCA.mdl 

ALT A Vmode l t e s t s tuckWL S. mdl 

• The files which simulate the reconfigurable fault-tolerant control system are 

(no Gaussian noise) 
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ALTAVmodelteststuckCGIsimple.mdl 

ALTAV model_test_stuck_Fixedpoint_simple.mdl 

ALTAVmodelteststuckDCAsimple.mdl 

ALTAVmodelteststuckWLSsimple.mdl 
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Figure 6. 7 ALTAV Simulink diagram of control reallocation as stuck fault 

Figure 6.7 shows control reallocation diagram when one or multiple control 

actuators stuck at current position or unknown position. 

6.2. Implementation in ADMIRE 

The files for partial and stuck faults in the ADMIRE non-linear model are differentiated 

as 

For partial loss: 

ADMIRE_model_partial_fault.mdl 
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For stuck fault: 

ADMIRE model stuck fault.mdl 

Figure 6. 8 ADMIRE Simulink with control reallocation block 

In the ADMIRE non-linear model, implementation of partial loss and stuck fault is 

similar to the ALTAV non-linear model. It is worth noting that there are seven 

control surfaces in the ADMIRE aircraft model, while there are four in the ALTAV 

UAV model. Take partial loss as an example, shown in Figure 6.9. 
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Figure 6. 9 ADMIRE Simulink block of partial loss implementation 

Different Simulink files are given below in the ADMIRE non-linear model: 

ADMIR.E_model_partial_CGI.mdl 

ADMIRE_model_partial_Fixedpoint.mdl 

ADMIRE_model_partial_DCA.mdl 

ADMIRE_model_partial_WLS.mdl 

ADMIREmodelstuckCGI.mdl 

ADMIREmodelstuckFixedpoint.mdl 

ADMIRE_model_stuck_DCA.mdl 

ADMIRE model stuck WLS.mdl 
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7. Simulation Results in ALTAV 

In this chapter, as a part of the project, partial loss and stuck at an unknown position in 

the motor control surface and the reconfigurable control system are implemented in the 

ALTAV non-linear model. An evaluation of the influence of Gaussian noise is given first, 

then trajectory selection, and finally simulation results in the presence of partial loss and 

stuck failures are presented. Simulations are conducted in order to investigate the ability 

of the reconfigurable control system to re-stabilize the aircraft and provide reasonable 

command-tracking performance. 

In the ALTAV non-linear model, there are two different trajectories as model 

control inputs. Simulation time varies according to the input trajectory: 

1) Square trajectory: simulation time is 80s, fault is generated at 50s and the 

control reconfiguration starts at 50s. 

2) Circle trajectory: simulation time is 120s, fault is generated at 80s and the 

control reconfiguration starts at 80s. 

The simulation results shown below are compared to the four reconfigurable control 

algorithms, Pseudo-Inverse, Fixed Point, Direct Control Allocation and Weighted 

Least Squares algorithm. These algorithms generate the signals for deflection on the 

UAV motors. 

7.1. Influence of Gaussian Noise 

In order to evaluate the performance of the system in the real world, it is necessary to 
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model such effects as sensor noise and sensor delay. This block applies Gaussian noise to 

each of the system state variables with some predefined delay. The noise is assumed to 

have zero mean and bias, with a variance determined either theoretically or through 

experimentation. Two examples to explain: 

(1) Square trajectory input, partial loss in motor 1 with 70%. 

ALTAV Trajectory Tracking 

! 1 1 1 1 

: -» : : : 
i 

|\ If ; 

\ I 

M i l " 
! H * 1-

*—Trajectory 

- Without bul l 

— Withtaul 

1 i 1 : 

1 1 1 -

: "! w\ ; : 

Figure 7.1 Virtual and actual trajectory diagram (Gaussian noise added) 
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R e c o r W ^ 
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' 1 L 

i 
I 

-15 -10 -5 

Figure 7. 2 Virtual and actual trajectory diagram (no Gaussian noise) 
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(2) Circle trajectory input, motor 3 stuck at 0.35 

ALTAV Trajectory Tracking 

Figure 7. 3 Virtual and actual trajectory diagram (Gaussian noise added) 
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Figure 7. 4 Virtual and actual trajectory diagram (no Gaussian noise) 
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Figure 7.1 and 7.2 show the influence of with/without Gaussian noise to the model 

when the square trajectory is the input. Figure 7.3 and 7.4 show the difference between 

adding Gaussian noise and no Gaussian noise in the circle trajectory model. From 

these figures, we can see the CGI, Fix, DCA and WLS, their virtual trajectories with 

disturbance shaking around the desired trajectories, deflection error is bigger with 

Gaussian noise without, but the track is still following the square trajectory. In a practical 

system, different kinds of disturbances always exist, but in this paper, removing Gaussian 

noise will not affect the study of the problem. 

Also, some reconfigurable models with Gaussian noise take time to operate, their 

calculations are long, and simulation is very slow. So, just the ALTAV Simulink 

models without Gaussian noise are considered in the following discussion. 

7.2. Trajectory Selections 

There are two different trajectories used as control input commands for the ALTAV 

platform. Let us compare the difference between these two trajectories. 
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ALTAV Trajectory Tracking 
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Figure 7. 5 The square virtual trajectory vs the desired trajectory 
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Figure 7. 6 The circle virtual trajectory vs the desired trajectory 

Figure 7.6 shows, in the original ALTAV simulation model, the virtual trajectory without 

disturbance completely tracks the desired trajectory without any error under circle as 

commanded input. Figure 7.5 shows that the virtual trajectory follows the desired 
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trajectory with an error under square trajectory commanded input, its error magnitude 

increases when the trajectory suddenly changes the direction. 

7.3. Simulation Results for Partial Loss 

Partial loss control effectiveness scenario is considered as follows: 

Input command: Square trajectory as model input 

Scenario 

1 

2 

3 

Partial Loss 

Motor 1 with 75 % loss 

Motor 3 with 50 % loss 

Motor 4 with 80 % loss 

Input command: Circle trajectory as model input 

Scenario 

1 

2 

3 

Partial Loss 

Motor 2 with 80 % loss 

Motor 3 with 90 % loss 

Motor 4 with 75 % loss 

For an easy comparison with all different control re-allocation algorithms, together 

with normal and faulty responses, the simulation result includes seven curves in 

each graph. These curves are: 

Black: Trajectory 

Green: Without fault 
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Blue plus solid line: Fault 

Yellow: Reconfiguration with CGI method 

Magenta: Reconfiguration with Fix method 

Red plus dash line: Reconfiguration with DCA method 

Cyan: Reconfiguration with WLS method 

The following simulation results are related to partial loss without Gaussian noise. 

7.3.1.Square trajectory as model input 

Scenario 1: 

Input: Square input 

Output: motor 1 with 75% loss 

ALTAV Trajectory Tracking in X, Y, Z 
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Figure 7. 7 Output response of X, Y, Z position 
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Figure 7. 9 Output responses of Theta, Gamma and Phi 
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As it can be seen from the above figures, the reconfigurable curves of fixed-point, 

DCA and WLS track the desired trajectory curve with a stable X position error. The 

configurable curves of CGI just track to the half of the fourth phase of the trajectory 

curves. In Figure 7.7, the Y position of the virtual trajectory curve using the CGI 

method should change from -10 to 10 when the model operate from 60s to 80s 

whereas the Y position of actual curves in the CGI method change from -10 to -3.5 

when the model operates from 60s to 80s. On the other hand, the X position curves 

track the original trajectory without error, but with delay. 

Scenario 2: 

Input: Square input 

Output: motor 3 with 50% loss 
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Figure 7.10 Output response of X, Y, Z position 
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ALTAV Trajectory Tracking 
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Figure 7. 11 UAV virtual and reallocation tracking trajectory 
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Figure 7.12 Output responses of Theta, Gamma and Phi 
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In Figure 7.11, the reconfigurable curves of fixed-point, DCA and WLS track the 

desired trajectory curve with a stable X position error. The configurable curves of 

the CGI method just track to the half of the fourth phase of the trajectory curves. In 

Figure 7.10, X and Y position curves in Fix, DCA and WLS follow the trajectory 

without error, but with delay. The X position curve in CGI fails to follow as 

reconfiguration starts, but curves return to the desired trajectory as curves end. The 

Y position curve in the CGI method fails to follow the desired trajectory curves. The 

Y position of the virtual trajectory curve in the CGI method should change from -10 

to 10 when the model operates from 60s to 80s, whereas the Y position of the actual 

curves using the CGI method change from -10 to 0 when the model operates from 

60s to 80s. 

Scenario 3: 

Input: Square input 

Output: motor 4 with 80% loss 
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Figure 7.13 Output response of X, Y, Z position 
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Figure 7.14 Virtual and reallocation tracking trajectory 
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ALTAV Trajectory Tracking in Theta,Gamma,Phi 
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Figure 7.15 Output responses of Theta, Gamma and Phi 

In Figure 7.14, the reconfigurable curves of the fixed-point, DCA and WLS operate 

on the first half of the fourth phase of trajectory, whereas the reconfigurable curves 

of the CGI operate on the first half of the third phase of trajectory. In Figure 7.13, 

the X position reconfigurable curves of fixed-point, DCA and WLS track the 

trajectory curves with a delay, whereas the X position curves in the CGI follow the 

trajectory curve with a steady position error. The Y position reconfigurable curves 

in all methods have a position error when the model operates from 60s to 80s. 

7.3.2.Circle trajectory as model input 

Scenario 1: 

Input: Circle input 

Output: motor 2 with 80% loss 
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ALTAV Trajectory Tracking in X, Y, Z 
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Figure 7.16 Output response of X, Y, Z position 
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Figure 7.17 UAV virtual and reallocation tracking trajectory 
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ALTAV Trajectory Tracking in Theta.Gamma.Phi 

. . 1 1 ! 

.. _, r_ 

\\i\tl 

; ^r~~~~' 
\ / ^ i 
\~/f-^~ *i ~-~~— 

60 
t(sees) 

60 
t (sees) 

60 
t (sees) 

r;;;;;;l;;;;;;:;;b"::::::j:::::::::h:::::::t::::::-:i 

- i i • • 1 — i 1 

Figure 7.18 Output responses of Theta, Gamma and Phi 

In this scenario, the reconfigurable curves fixed-point, DCA and WLS follow the 

desired trajectory curves with a small error in Figure 7.17. The reconfigurable 

curves CGI fail to follow the trajectory curves. 

Scenario 2: 

Input: Circle input 

Output: motor 3 with 90% loss 
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ALTAV Trajectory Tracking in X Y, Z 
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Figure 7.19 Output response of X, Y, Z position 
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Figure 7. 20 UAV virtual and reallocation tracking trajectory 

86 



2 

0 

-2 -

0 

Without fault 
With fault 
Rec°nph» 
Recon,. , . , 

f ixed paint 

Recon,^ 

ReconWLS 
20 

ALTAV Trajectory Tracking in Theta.Gamma.Phi 

i i i i 

40 60 80 100 120 
t (sees) 

I I I 

I I I 

1 1 1 
1 1 1 
I 1 1 

t (sees) 

60 
t (sees) 

Figure 7. 21 Output responses of Theta, Gamma and Phi 

As it can be seen from the above figures, the actual trajectory curves of the four 

different methods track the virtual trajectory with a small error, magnitude of error 

increase when reconfigurable time increases. 

Scenario 3: 

Input: Circle input 

Output: motor 4 with 75% loss 
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ALTAV Trajectory Tracking in X, Y, Z 
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Figure 7. 23 UAV virtual and reallocation tracking trajectory 



ALTAV Trajectory Tracking in Theta,Gamma,Phi 
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Figure 7. 24 Output responses of Theta, Gamma and Phi 

In Figure 7.23, the reconfigurable curves of fixed-point, DCA and WLS track the 

trajectory curves with a small error and delay. The configurable curve of CGI fails 

to follow the virtual trajectory curve. In Figure 7.22, the X and Y position curves of 

fixed-point, DCA and WLS track the desired curves, whereas the X and Y position 

curves of CGI increases their magnitude error when reconfigurable time increases. 

Summary for partial loss 

The result shows that, when partial loss occurs in UAV motor, the performance is 

worse than the normal condition, and sometimes the fault is very critical. But the 

control reallocation technique gives a better solution for the loss and the UAV can 

track the normal situation without affecting performance. On the whole, the fixed-

point, DCA and WLS methods show a better result and help the UAV to recover 
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from the fault and fly more safety than the CGI method regardless of square or 

circle input. 

7.4. Simulation Results for Stuck Faults 

In this section, the simulation results for stuck faults are shown for the UAV model 

without Gaussian noise. 

Stuck fault scenario is considered as follows: 

Input command: Square trajectory as model input 

Scenario 

1 

2 

Stuck Fault 

Motor 1 stuck at an unknown position 

Motor 3 stuck at the current position 

Input command: Circle trajectory as model input 

Scenario 

1 

2 

Stuck Fault 

Motor 2 stuck at an unknown position 

Motor 4 stuck at the current position 

7.4.1.Square trajectory as model input 

Scenario 1: 

Input: Square input 

Fault: Motor 1 stuck at an unknown position 

90 
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Figure 7. 26 UAV virtual and reallocation tracking trajectory 
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ALTAV Trajectory Tracking in Thela,Gamma,Phi 
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Figure 7. 27 Output responses of Theta, Gamma and Phi 

In this scenario, all four control reallocation methods do not ideally track the virtual 

trajectory and the actual trajectories operate on the first half of the fourth phase of 

trajectory. The reason is that from Figure 7.25, the Y position curves fail to follow 

the desired trajectory curves. The Y position of the virtual trajectory curve should 

change from -10 to 10 when the model operates from 60s to 80s, whereas the Y 

position of the actual curves of control reallocation methods change from -10 to -3 

when the model operate from 60s to 80s. 

Scenario 2: 

Input: Square input 

Fault: Motor 3 stuck at the current position 
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ALTAV Trajectory Tracking in X, Y, Z 
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Figure 7. 28 Output response of X, Y, Z position 
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Figure 7. 29 UAV virtual and reallocation tracking trajectory 
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ALTAV Trajectory Tracking in Theta.Gamma.Phi 
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Figure 7. 30 Output responses of Theta, Gamma and Phi 

It can be seen that the control reallocation curves of four different methods follow 

the desired trajectory curves with a delay and small error. 

7.4.2. Circle trajectory as model input 

Scenario 1: 

Input: Circle input 

Fault: Motor 2 stuck at an unknown position 
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ALTAV Trajectory Tracking in X, Y, Z 
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Figure 7. 32 UAV virtual and reallocation tracking trajectory 
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AL.TAV Trajectory Tracki ing in Theta.Gamma.Phi 

E u 

E 
m 
O -0.2 

Without fault 

- With fault 

Recon . 
pinv 

- Recon,, 

t (sees) 

60 
t (sees) 

t (sees) 

-t i < + 

Figure 7. 33 Output responses of Theta, Gamma and Phi 

In this scenario, the reconfigurable curves of the four methods fail to follow the 

desired trajectory curves, just compensate some fault. 

Scenario 2: 

Input: Circle input 

Fault: Motor 4 stuck at the current position 
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ALTAV Trajectory Tracking in X, Y, Z 
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Figure 7. 34 Output response of X, Y, Z position 

ALTAV Trajectory Tracking 

\ y \ : : x 
1 ./ 1 1 1 1 I V 
1 . / 1 _ _ i _ _ J 1 1 v 

1 ' 1 1 1 i 1 

/ : : : : : 

— — Trajectory 

Without fault 

With fault 
te0%, 
R e O T W i » l 

Reconm 

\ 

i \ M M i\ 

N. i i i ! i / 
J .. \ 1 1 1 L J -A \ 
\ ' N ! : ! ; '--^ i 

"I ! r""?'~-i^lr""" !' 1 

i ' i i 

•20 -15 •5 0 5 
X Position (m) 

10 15 

Figure 7. 35 UAV virtual and reallocation tracking trajectory 
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ALTAV Trajectory Tracking in Theta,Gamma,Phi 

' Without fault 
With fault 

R e c°nph» 
Recon,ka l fpo ln l 

R e c o i W 

ReconWLS 

1 1 1 1 

1 1 1 1 

t (sees) 

1 
T 

1 \ 
r 

1 
T - 7 ^*** * *^ < 

1 
60 

t (sees) 

I 1 

' 

1 

1 ! 

*r**^*^ 

i 

^-^___ 
i 

i—
 

60 
t(sees) 

Figure 7. 36 Output responses of Theta, Gamma and Phi 

From Figure 7.35, the four reallocation curves follow the desired trajectory curves 

with a small error and delay. 

Summary for stuck fault 

As can be seen from the results obtained, on the one hand, the control 

reconfigurable trajectories of four different algorithms follow the desired 

trajectories well, just with a delay and small error when system faults cause by 

stuck at the current position. The reason is that the X, Y reconfigurable position 

curves follow the desired position curves. On the other hand, all four control 

reconfigurable curves do not ideally track the desired trajectory, but improve the 

UAV tracking ability when system faults cause by stuck at an unknown position. 
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8. Simulation Results in ADMIRE 

In this section, simulation results in different control reconfigurable algorithms are 

shown in the ADMIRE non-linear model. Their control input is different: the 

ALTAV model control input is given by a square or circle trajectory. In the ALTAV 

model, trajectory is selected by the operator or program. The ADMIRE model 

control inputs are given by the pilot, among them are longitudinal (Fes) and lateral 

(Fas) stick deflection, and rudder deflection (Frp). Step input is considered in this 

project. 

For the ADMIRE aircraft model, simulation time is 10s, the fault is generated at 2s 

and control reconfiguration starts at 2s. Same as in the ALTAV model, the 

simulation results of the ADMIRE model are shown below. Different algorithms 

generate the signals for deflection on the aircraft's seven control surfaces. 

Partial loss control effectiveness scenario is considered as follows: 

Scenario 

1 

2 

Control Input 

Longitudinal stick, step 50N 

Lateral stick, step -3ON 

Partial Loss 

Right canard 85% loss 

Left outer elevon 40% loss 

Stuck fault scenario is considered as follows: 

Scenario 

1 

2 

Control Input 

Longitudinal stick, step 50N 

Lateral stick, step -3ON 

Stuck Fault 

Right canard stuck at 1 deg 

Left outer elevon stuck at 1 deg 

99 



Same as for ALTAV, for easy comparison with all the different control re-allocation 

algorithms, together with normal and faulty responses the simulation result includes 

six curves in each graph. These curves are: 

Green: Without fault 

Blue plus solid line: Fault 

Cyan: Reconfiguration with CGI method 

Magenta: Reconfiguration with Fix method 

Red plus dash line: Reconfiguration with DCA method 

Black plus dash line: Reconfiguration with WLS method 

8.1. Partial Loss Simulation Result 

The following simulation results are related to partial loss for the ADMIRE non­

linear aircraft model. 

Scenario 1: 

Input: Longitudinal stick deflection, step 50N as control input 

Fault: Right canard with 85% loss 
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ADMIRE - Nonlinear data,Fault in drc. 
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In this scenario, the reconfigurable curves of the CGI, DCA and WLS methods track 

the desired output response with a small error, whereas the fix method follows the 

output response with a steady state error in Figure 8.1 and 8.3, with increasing 

magnitude in Euler angles until simulation runs in Figure 8.2. 

Scenario 2: 

Input: Lateral stick deflection, step -30N as control input 

Fault: Left outer elevon with 40% loss 
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From the above figures, it can be seen that the reconfigurable curves of the CGI, 

DCA and WLS methods track the desired output response with a small error. The 

Fix curve follows the desired output response with a steady-state error, whereas its 

magnitude increase in Euler angles y/ in Figure 8.5. 

Summary for partial loss 

It can be clearly seen from the results obtained, when partial loss occurs, the aircraft 

performance degrades from the normal condition. But the reconfigurable control 

technique gives a better solution for the loss and maintains the aircraft to follow the 

normal situation without degrading the performance. The CGI, DCA and WLS 

methods show better results and help the aircraft to recover from the fault and give a 
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safety flying than Fix method. 

8.2. Simulation Results for stuck Faults 

The following simulation results are related to stuck faults for ADMIRE non-linear 

aircraft model. 

Scenario 1: 

Input: Longitudinal stick deflection, step 50N as control input 

Fault: Right canard stuck at 1 deg 
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From the above figures, the reconfigurable curves of CGI and WLS track the desired 

output response, the fix method can not complete the simulation and stops at 3.7s, 

the DCA method tracks the desired output response with a steady error in Figures 

8.7 and 8.9, whereas its magnitude increases in Figure 8.9. 

Scenario 2: 

Input: Lateral stick deflection, step -30N as control input 

Fault: Left outer elevon stuck at 0.1 deg 
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In this scenario, the reconfigurable curves of CGI, WLS and DCA track the desired 

output response, whereas p in Figure 8.10 and/? in Figure 8.12 have steady errors, fix 

method can not complete the simulation and stops at 3.1s. 

Summary for stuck fault 

The results shows, the output response from CGI, WLS and DCA methods track the 

desired output response of the aircraft, and even some variables have steady errors. 

The Fix algorithm exceeds the saturation limit and making the system unstable. This 

leads to sudden change in the control surface loosing the track of desired output 

response results in degrading the performance of the aircraft. 
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9. Conclusion and Future Work 

Reconfigurable flight control research is an important development direction in 

future UAV flight control systems. It possesses a profound study value and wide 

application prospect. Currently, it has become the focus of the high-tech field of 

aviation research. This work, combined with the aircraft requirements of the pre-

research project, analyzed the performance of the ALTAV and ADMIRE control 

reallocation technique under the presence of partial loss and stuck faults. Simulation 

and implementation of the test scenarios were conducted in the UAV ALTAV and 

ADMIRE benchmark models. The test scenarios of ALTAV were carried out in non­

linear environments of the benchmark models with and without real world 

correction. There were two different flight paths as model trajectories in each 

environment of the benchmark. The test scenarios of ADMIRE were implemented in 

non-linear environment. The model input was the step input coming from 

longitudinal and lateral stick deflection. The results have been shown under the 

influence of partial loss and stuck at unknown positions in both the ALATV and 

ADMIRE environments. 

A reconfigurable control allocation technique for flight control system to handle the 

fault was obtained. A detailed description about the control re-allocation technique 

has been presented. Implementation of fault scenarios in the ALTAV and ADMIRE 

benchmark models has been demonstrated. Four reconfigurable methods: cascaded 

generalized inverse, fixed-point, direct control allocation and weighted least squares, 
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were used to distribute the control surfaces to provide the desired control moments 

and forces for the fault UAV and aircraft. 

For the UAV ALTAV model, following the results presented the overall 

performance of Fix, DCA and WLS show an effective tracking of the command 

input of the UAV, leading to minimum error compared to the CGI method for partial 

loss in the control motor. For stuck fault, the algorithms have better performance if 

system faults cause by stuck at a current position. 

For the aircraft ADMIRE model, the reconfigurable methods of CGI, DCA and 

WLS track the desired output response better than the Fix method for partial loss on 

control surface. The simulation performance of the CGI and WLS methods are 

better than Fix and DCA in stuck faults. 

In my work, my contribution is that an initial study of reconfigurable control 

allocation is applied to a realistic and nonlinear UAV and fixed-wing aircraft 

models. The different control reallocation: the cascaded generalized inverse 

algorithm, fixed-point algorithm, direct control allocation algorithm and weighted 

least squares algorithm are implemented and tested under ALTAV UAV and 

ADMIRE aircraft benchmarks, designing two different trajectories selection as 

UAV control input. Different control actuator faults caused by partial loss and by 

stuck at a current or an unknown position are implemented in these two benchmarks 

and are used for evaluating the control reallocation scheme. When partial loss and 
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stuck faults occur in UAV/aircraft control surfaces, the performance degrades from 

the normal condition even though the fault is not very critical. However, the 

reconfigurable control techniques give a better solution for these two fault scenarios 

and maintain UAV/aircraft's ability to track the normal situation without degrading 

performance. Simulation results have shown satisfactory results for accommodating 

the partial loss and stuck failures. Implementation of four reconfigurable control 

allocation algorithms improve UAV and aircraft flight control system's reliability 

and survivability, enabling them to complete pre-planned missions and to land 

safely even if the flight control system has faults caused by control 

actuators/effectors. 

Future works include the investigation and testing on other control reallocation 

methods, the extension from one UAV to a UAV formation, and the investigation on 

reconfigurable baseline control techniques, in conjunction with control allocation 

techniques to achieve improved performance. In addition, the incorporation of fault 

detection and diagnosis schemes in ALTAV and ADMIRE environment is also to be 

conducted. 
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