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ABSTRACT 

Generalized Prandtl-Ishlinskii Hysteresis Model and its Analytical Inverse for 
Compensation of Hysteresis in Smart actuators 

Mohammad Al Janaideh 

Smart actuators such as piezoceramics, magnetostrictive and shape memory alloy 

actuators, invariably, exhibit hysteresis, which has been associated with oscillations in the 

open-loop system's responses, and poor tracking performance and potential instabilities 

of the close-loop system. A number of phenomological operator-based hysteresis models 

such as the Preisach model, KrasnoseFskii-Pokrovskii model and Prandtl-Ishlinskii 

model, have been formulated to describe the hysteresis nonlinearities and to seek 

compensation of the hysteresis effects. Among these, the Prandtl-Ishlinskii model offers 

greater flexibility and unique property that its inverse can be attained analytically. The 

Prandtl-Ishlinskii model, however, is limited to rate-independent and symmetric 

hysteresis nonlinearities. In this dissertation research, the unique flexibility of the 

Prandtl-Ishlinskii model is explored for describing the symmetric as well as nonlinear 

hysteresis and output saturation properties of smart actuators, and for deriving an 

analytical inverse for effective compensation. 

A generalized play operator with dissimilar envelope functions is proposed to 

describe asymmetric hysteresis and output saturation nonlinearities of different smart 

actuators, when applied in conjunction with the classical Prandtl-Ishlinskii model. 

Dynamic density and dynamic threshold functions of time rate of the input are further 

proposed and integrated in the classical model to describe rate-dependent symmetric and 

asymmetric hysteresis properties of smart actuators. A fundamental relationship between 

in 



the thresholds of the classical and the resulting generalized models is also formulated to 

facilitate parameters identification. The validity of the resulting generalized Prandtl-

Ishlinskii models is demonstrated using the laboratory-measured data for piezoceramic, 

magnetostrictive and SMA actuators under different inputs over a broad range of 

frequencies. The results suggest that the proposed generalized models can effectively 

characterize the rate-dependent as well as rate-independent hysteresis properties of a 

broad class of smart actuators with output saturation. The properties of the proposed 

generalized models are subsequently explored to derive its inverse to seek an effective 

compensator for the asymmetric as well as rate-dependent hysteresis effects. The 

resulting inverse is applied as a feedforward compensator and simulation results are 

obtained to demonstrate its effectiveness in compensating the symmetric as well as 

asymmetric hysteresis of different smart actuators. The effectiveness of the proposed 

analytical inverse model-based real-time compensator is further demonstrated through its 

implementation in the laboratory for a piezoceramic actuator. 

Considering that the generalized Prandtl-Ishlinskii model provides an estimate of 

the hysteresis properties and the analytical inverse is a hysteresis model, the output of the 

inverse compensation is expected to yield hysteresis, although of a considerably lower 

magnitude. The expected compensation error, attributed to possible errors in hysteresis 

characterization, is analytically derived on the basis of the generalized model and its 

inverse. The design of a robust controller is presented for a system preceded by the 

hysteresis effects of an actuator using the proposed error model. The primary purpose is 

to fuse the analytical inverse compensation error model with an adaptive controller to 

achieve to enhance tracking precision. The global stability of the chosen control law and 
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the entire closed-loop system is also analytically established. The results demonstrated 

significantly enhanced tracking performance, when the inverse of the estimated Prandtl-

Ishlinskii model is considered in the closed-loop control system. 
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Chapter 1: Introduction and Literature Review 

1.1 Introduction 

Ferromagnetic materials and smart actuators invariably exhibit hysteresis, which 

is a path-dependent memory effect where the output relies not only on the current state 

but also on the past output history. The presence of the hysteresis in smart actuators, such 

as piezoceramic, magentostrictive and shape memory alloy actuators (SMA) has been 

widely associated with various performance limitations. These include the oscillations in 

the responses of the open-as well as closed-loop systems, and poor tracking performance 

and potential instabilities in the closed-loop system. 

Considerable continuing efforts are thus being made to seek methods for effective 

compensation of hysteresis effects in order to enhance the tracking performance of smart 

actuators, particularly for closed-loop micro-positioning systems. The characterization 

and modeling of the hysteresis properties of smart actuators, however, is vital for 

designing efficient compensation algorithms. Considering that the hysteresis properties of 

such actuators are strongly dependent upon the type of materials, magnitude of input and 

the rate of input in a highly nonlinear manner, the characterizations as well as modeling 

of the phenomenon pose considerable challenges. For instance, a piezoceramic actuator 

generally exhibits symmetric minor and major hysteresis loops, while magentostrictive 

and SMA actuators yield highly asymmetric hysteresis effects, which further depend 

upon the rate of input. Smart actuators also exhibit output saturation, which further 

contributes to the modeling challenge. 
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A number of hysteresis models have been proposed in the literature for 

characterizing the hysteresis properties of different materials and smart actuators. These 

could be broadly classified into phenomenological models [1-5] and physics-based 

models [6-15]. The most cited phenomenological models include the Preisach, 

Krasnosel'skii-Pokrovskii and Prandtl-Ishlinskii models. These models have been widely 

applied to characterize hysteresis properties of smart actuators and ferromagnetic 

materials. The rate-dependence of hysteresis effects, however, have been considered in 

only a few studies employing the Preisach model in conjunction with a dynamic density 

function [73]. The compensation of the hysteresis effects of smart actuators has been the 

primary focus of many reported studies. Control algorithms based on inverse hysteresis 

compensators have been suggested to be more effective in compensating the hysteresis 

effects [23, 30]. Some reported hysteresis models have thus been employed for deriving 

the inverse hysteresis models to serve as a compensator for the hysteresis effects, 

particularly these based on the Preisach model. The Preisach model, however, is not 

analytically invertible; numerical methods are thus employed to obtain approximate 

inversions of the model. The effectiveness of the approximate inversions in conjunction 

with different controllers in hysteresis compensation have been demonstrated in a few 

studies [31, 36]. 

Unlike the Preisach and Krasnosel'skii-Pokrovskii models, the Prandtl-Ishlinskii 

model offers an attractive and unique property of being analytically invertible. The 

Prandtl-Ishlinskii model may thus serve as an effective inverse-based hysteresis 

compensation method. The Prandtl-Ishlinskii model and its analytical inverse, however, 

have been limited only to symmetric and rate-independent hysteresis properties. The 
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inherent flexibility of the model, particularly with respect to the play operators, could 

permit effective characterization of asymmetric hysteresis effects and output saturation. 

The rate-dependent hysteresis effects could be also incorporated using this flexible 

feature. The greatest potential advantage of the Prandtl-Ishlinskii model lies in its 

analytical invertability, which could be extended for the rate-dependent and asymmetric 

hysteresis nonlinearities with output saturation. The resulting inverse model would be 

very attractive for real-time compensation of the hysteresis effects in a wide range of 

smart actuators with varying hysteresis nonlinearities. 

This dissertation research proposes a generalized analytically invertible Prandtl-

Ishlinskii model for characterizing rate-dependent symmetric as well as asymmetric 

hysteresis nonlinearities. A generalized play operator with different envelope functions is 

proposed for describing asymmetric hysteresis loops with output saturation, while the 

rate-dependent effects considered by a dynamic density function in the input. The validity 

of the proposed Prandtl-Ishlinskii formulations is demonstrated using the laboratory-

measured hysteresis properties of piezoceramic, magentostrictive and SMA actuators. 

The key properties of the proposed generalized model are described and employed in 

deriving the analytical inverse of the model for its application as a feedforward 

compensator. An error analysis of the inverse compensator is also presented, and the 

effectiveness of the compensator is demonstrated. 

In this chapter, the relevant reported studies on characterization and modeling of 

hysteresis properties of smart actuators and materials, and hysteresis compensation 

methods are discussed. The studies, grouped under relevant subjects, are briefly described 
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to build essential background, and formulate the scope and objectives of the dissertation 

research. 

1.2 Experimental Characterization of Hysteresis 

The extreme challenges in describing the hysteresis in materials and smart 

actuators have been widely recognized, which are primarily to its strongly nonlinear and 

memory effects [1, 7]. Consequently, the hysteresis properties of different materials and 

smart actuators have been widely characterized through experimental means in order to 

enhance an understanding of the essential properties and to seek modeling methods. 

Although, the experimentally-measured hysteresis properties of ferromagnetic materials 

have been extensively reported, the hysteresis properties of smart actuators are reported 

in a fewer recent studies. This is mostly attributed to recent growth in application of the 

smart actuators in various sectors, such as micro-positioning sectors. The ferromagnetic 

materials and smart actuators, generally, exhibit major and minor hysteresis loops in the 

output-input characteristics and output saturation. As an example, Figure 1.1 illustrates 

the measured hysteretic relation between the applied magnetic field and the response flux 

density of a ferromagnetic material. The reported results have shown very similar trends 

in view of the hysteresis phenomenon [ 1, 82], which are summarized below: 

• The output flux density (5) depends on the past and current values of the input 
magnetic field (//); 

• The output flux density (B) increases as the magnetic field (H) increases and 
decreases as the magnetic field decreases (//); 

• The width of the hysteresis loop, also referred to as the coercivity of the material, 
corresponding to zero magnetic flux density output (B), increases as the amplitude 
of the input magnetic field (H) increases; 
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• The major hysteresis loop can be formed by decreasing and increasing the input of 
the magnetic fields between the extreme minimum magnetic field (/7min) and 
maximum (Hmax) values; 

• The paths for increasing inputs in the (H, B) plane are nonintersecting as are paths 
for decreasing inputs; 

• The output flux density (B) tends to saturate as the input field (H) exceeds certain 
limit that may depend upon the properties of the material. 

• The hysteresis loops are generally considered rate-independent and show 
insignificant variations under inputs in the low frequency range. 

-500 0 500 

Magnetic Field f A/m] 

Figure 1.1: Measured hysteresis properties of ferromagnetic materials [ 1 ]. 

The reported experimental studies on smart actuators are systematical reviewed to 

enhance an understanding of the hysteresis properties of different actuators, particularly 

the piezoceramic, SMA and magentostrictive actuators. The piezoceramic actuators have 
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been the focus of relatively larger number of studies. This may be attributed to their wide 

applications in micro-positioning applications. These studies consistently show that 

piezoceramic actuators exhibit strong hysteresis effects between the measured input 

voltage and output displacement responses. Hysteresis between the command voltage and 

the actuator position is known to cause inaccuracy and oscillations in the system 

response, which may lead to instability of the closed-loop system [31]. Ge and Jouaneh 

[22] performed measurements to characterize the hysteresis properties of a piezoceramic 

actuator, developed by Physik Instrument Company. The measured data was used to test 

the validity of the modified Preisach model, proposed by the authors. The actuator used 

in the study provided a nominal displacement of 20um under an excitation of 1000 V. A 

capacitive sensor with a resolution of 2.5 nm was used to measure the displacement of the 

actuator. The measurements were performed under sinusoidal input voltages of constant 

amplitude (800 V) at two different distinct frequencies (0.1 and 100 Hz). The study 

concluded that both excitations yield similar hysteresis suggesting negligible effects of 

the rate of input. The data reported for the 100 Hz excitation, however, revealed slightly 

higher hysteresis. 

Hu and Ben Mrad [64] measured the hysteresis of a piezoceramic actuator, where 

the nominal displacement was 3000 nm under an input voltage of 100 V. The width of 

the measured voltage-to-displacement was obtained as 15% of the maximum 

piezoceramic expansion under a very low frequency. Yu et al. [34] measured the 

hysteresis of a piezoceramic bimorph actuator, and concluded that the hysteresis is rate-

independent only up to 10 Hz. Hughes and Wen [20] measured the hysteresis properties 

of piezoceramic patches and Nitinal SMA muscles coupled with a cantilever beam. The 
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measurements were performed to characterize the minor hysteresis loops and wiping-out 

properties of the beam coupled with the selected actuator, while the beam deflection was 

measured using strain gauges. The piezoceramic patches showed high degree of 

congruency in the comparable minor loops and the wiping out property was largely 

satisfied. The effects of different preloads on the actuators' hysteresis were also 

investigated by applying high magnitude static force to the tip of the beam. The results 

showed hysteresis nonlinearities, while the peak displacement response decreased with 

the preload. All of the reported studies on piezoceramic actuators observed an increase in 

the width of hysteresis loop with an increase in the excitation magnitude. 

The hysteresis properties of shape memory alloys (SMA) and magnetostrictive 

actuators have also been investigated in a few studies [21, 28, 33]. Such actuators show 

hysteresis effects together with output saturation which dependent on the type of actuator 

and nature of input. Magnetostriction is the phenomenon associated with strong coupling 

between the magnetic and mechanical properties of the materials. Some ferromagnetic 

materials as Terfenol-D show this phenomenon between the output strain and the applied 

input current. The output strains are produced due to the applied current and thus the 

magnetic field, which tends to alter the magnetization of the material. Where the 

piezoceramic actuators require high voltages (50-100 V) to produce desired strains, 

magnetostrictive actuators respond to significantly lower voltages. Consequently, these 

actuators can be excited under low voltage. The SMAs, such as nickel-titanium and 

copper zinc aluminum alloys, exhibit capability to recover the strain (approximately up to 

10%) without permanent deformation [56]. All of the reported studies have considered 

experimental characterization under sinusoidal inputs, with only few exceptions. Yu et al. 
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[34] measured the hysteresis properties of a piezoceramic actuator under sinusoidal and 

triangular input voltage waveforms. The results showed dependence of the hysteresis 

loop under a sinusoidal input was observed to be larger than that under the triangular 

input. This could be attributed to the difference in the rates of the two input waveforms. 

While a triangular waveform yields a constant magnitude of the rate of input, the 

sinusoidal waveform yields varying rate. 

Yu et al. [34] showed that the hysteresis effect in a piezoceramic actuator is rate-

independent up to 10 Hz, beyond that the hysteresis of the actuator is rate-dependent and 

the measured peak displacement amplitude decreases as the frequency of the input 

voltage is increased. In a similar manner, Ben Mrad and Hu [61] performed 

measurements to characterize the hysteresis properties of a piezoceramic actuator at 

different excitation frequencies. The study concluded that the width of the hysteresis loop 

increases to 38.6% of the measured displacement amplitude at 800 Hz, compared to 15% 

at a very low frequency. Another study showed that hysteresis of a Terfenol-D 

magnetostrictive actuator is rate-independent up to 5 Hz [33]. An increase in the 

frequency of input current resulted in larger width of the hysteresis loop and lower peak-

to-peak displacement response. The measured data revealed that the peak-to-peak 

displacement of the magentostrictive actuator decreased to approximately 68% of its 

maximum expansion at a low frequency, when the excitation frequency was increased up 

to 300 Hz. 
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1.3 Hysteresis Models 

The measured hysteresis properties have been extensively applied to formulate a 

number of phenomenological and to identify model parameters applicable for specific 

actuators. A large number of analytical models have been proposed in the literature to 

characterize the hysteresis properties of smart actuators and ferromagnetic materials. The 

reported hysteresis models can be classified into physics-based models [6- 15] and 

phenomenological models [1-5]. The physics-based models are generally derived on the 

basis of a physical measure, such as energy, displacement, or stress-strain relationship. 

Alternatively, the phenomenological models describe the hysteresis properties without 

attention to the physical properties of the hysteretic system. Many of these models were 

initially proposed for specific physical systems and were later generalized for 

applications to other systems. 

1.3.1 PHYSICS-BASED HYSTERESIS MODELS 

The physics-based models are generally derived on the basis of a physical 

measure, such as displacement, energy, or stress-strain relationship. Jiles and Atherton 

[15] developed a hysteresis model on the basis of observed physical properties of 

ferromagnetic materials. The model comprised analytical expression relating the 

reversible and irreversible motions of ferromagnetic material particulars. The model was 

subsequently used by Smith and Ounaies [9] for describing the hysteresis phenomenon of 

piezoceramic materials. Ikuta et al. [6] proposed a mechanical model to characterize 

hysteresis in SMA actuators using the stress-strain relationships of the SMA materials. 

Smith et al. [8] proposed a nonlinear energy-based hysteresis model in conjunction with 
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the operator-based Preisach model for characterizing hysteresis of magnetostrictive 

actuators. 

The physics-based hysteresis models generally require comprehensive knowledge 

of the physical phenomenon for the hysteretic system, which may be difficult for 

particular materials or actuators. Furthermore, the generalization of a physics-based 

hysteresis model is quite difficult for application to different actuators and materials, 

since these may encompass different physics properties and structures. Furthermore, 

inversions of physics-based models have not been explored for applications in hysteresis 

compensation of smart material actuators. Although the physics-based models can 

effectively characterize symmetric as well as asymmetric hysteresis effects [6], the rate-

dependent hysteresis effects have not been attempted through such models. Considering 

the complexities associated with physics-based models, the phenomenological models 

have been emphasized for simulation of the hysteresis effects of different smart actuators 

and for compensators design. A number of phenomenological models have evolved for 

characterizing the hysteresis nonlinearities. The primary goal of these models is to 

accurately predict the hysteresis in order to study the hysteresis effects and to facilitate 

the design of controllers for compensating the hysteresis effects [20-30, 53, 54]. The most 

widely cited models based on the input and output behaviors include: the operator based 

hysteresis models such as Preisach model [1], KrasnosePskii-Pokrovskii model [4], 

Prandtl-Ishlinskii model [2]; and differential equation-based hysteresis models such as 

Duhem model [3] and Bouc-Wen model [17]. These models are briefly described below. 
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1.3.2 DIFFERENTIAL EQUATION-BASED PHENOMENOLOGICAL MODEL 

These models generally constitute a nonlinear differential equation relating the 

output to the magnitude and direction of the input. The Duhem and the Bouc-Wen 

models are the most widely used differential equation based models. 

Duhem Model 

Duhem model is a differential equation-based hysteresis model, where the output 

x(i) is affected by change in the direction of the input v(/). The output-input relationship 

is expressed by the following differential equation [3]: 

yo(t) = fM0M0) v+(0-72(y(0,v(0) v"(0 (l.i) 

where 

,1(/)=K4|v(o (12) 

where the input v(/) and the output y0{t) are continuous and differentiable functions over 

the interval [0, T\. An increase in input v{t) causes the output y0{t) to increase along a 

particular path. The output, however, tends to decrease along a different path under a 

decreasing input. This behavior of the output can be expressed as [3]: 

&o_jMH0,y„(t)) for v(/)>o 

<*> UWO.J'.O)) for v(/)<0 

Hodgdon and Coleman [18] proposed a differential equation for the input magnetic field 

(H) and the output flux density (B) to characterize hysteresis in ferromagnetic materials 
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using Duhem model. This model is analytically presented by the following differential 

equation: 

B(0 = a\H(t)\lf(W)) - B(t))+ H(t)g(H(t)) (1.4) 

The change in the output B with respect to the input H was expressed by the following 

differential equations: 

dB_Ja[f(H)-B} + g(H) H>0 
dH \-a[f{H)-B}+g{H) H<0 

where a is a constant, and / and g are referred to as material functions. Using (1.4) and 

(1.5) Hodgdon-Coleman model can also be expressed as [3]: 

J D 

— = a's&(H)[f(H)-B] + g(H) (1.6) 
del 

where 

, rr, h for H>0 
sgn(tf)= J (1.7) 

[-1 jor H < 0 

The stability of the Duhem model is ensured by the following properties of the material 

functions, / andg: 

a) / is a piecewise smooth and monotonically increasing odd function and the 

derivative / ( H ) is non-zero, while / (oo) is finite, such that: 

f(H) = -f{-H) & l i m ^ < W < o o (1.8) 

b) g is a piecewise continuous even function of//, and its derivative g'(oo) is finite, 
such that: 
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g(H) = g(-H) & lim ^£Ll < co (i .9) 

c) The materials function must satisfy the following for characterizing hysteresis 
properties: 

\jm[f\H)-g(H)] = 0 (1.10) 

d) The material functions must satisfy the following inequalities for all finite values 

H,f\H),mdg(H): 

/ ' ( / /) > g(H) > ae°" J[/'(<f) -g^W'dt; (1.11) 
H 

The above-stated properties of the material functions generally impose severe 

limitations for the model applications in control system design. The most important 

property of the Hodgdon-Coleman model, however, is the existence of the minor 

hysteresis loops in a stable manner [3]. Furthermore, the output of the Duhem model is 

rate-independent and it yields symmetric hysteresis loops. 

Bouc-Wen Model 

The Bouc-Wen model [17] is a nonlinear differential equation-based model, 

which originates from the Bouc model presented in [16]. The model has been extensively 

used to describe the hysteretic behaviour between the applied displacement and the 

output force in wide ranges of mechanical systems. This model is presented by the 

following differential equation: 

i „ = a v - £ | f z j | z / % 7 u | z / (1.12) 

where z0{t) is output, v(t) is input and Q is a positive integer. The output of the hysteresis 

model is strongly dependent upon the model Constantsa ,fi, and y . This differential 
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equation-based model does not contain material functions that tend to limit the 

applicability of the Duhem model. The model parameters are generally derived from the 

measured hysteresis of a particular material or system. Different forms of Bouc-Wen 

model have been proposed to suit the observed hysteresis properties of different systems, 

materials, and actuators [78, 79]. Hysteretic systems including hysteretic isolators [18] 

and magentorheological fluid dampers [19] are some examples. The major limitations of 

the Bouc-Wen models are associated with the parameters identifications. The differential 

equation-based models are not invertible and thus cannot be applied in inverse model-

based hysteresis compensation. 

1.3.3 OPERATOR-BASED HYSTERESIS MODELS 

A number of operator-based phenomenological hysteresis models have been 

proposed to describe the hysteresis in different smart actuators. Unlike the differential 

equation-based model, the operator-based models are considered to be better suited for 

the design of control algorithms for compensating hysteresis effects due to their 

invertability. These models include: the Preisach model [1, 5]; KrasnoseFskii-Pokrovskii 

model [4]; and Prandtl-Ishlinskii model [2]. Such models have been widely applied for 

modeling hysteresis nonlinearities in materials and smart actuators [20-30], and are 

briefly described below. 

Preisach model 

The Preisach model has been most widely applied for characterizing the 

hysteresis properties of ferromagnetic materials and smart actuators [1]. The 

mathematical formulations of the Preisach model and its application in different fields 
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have been thoroughly described by Mayergoyz [1]. This classical Preisach model was 

developed to characterize hysteresis in the ferromagnetic materials [1]. This model 

comprised a set of relay operators Ka0. For a given input v(f) eCm[0, 7] and initial state 

&•{-!, 1}, the output of the relay operator KJv](t) is expressed as [1]: 

Kafi[v](t) = 

+1 for v(/) > a 

-1 for v(0 < fi 

^ M ( O ) for v(t)<a & v(t)>p 

where K„Jv](0) is given by: 

(1.13) 

Uv](0) = 

+ 1 for v(0) > a 

- 1 /or v(0) < p 

£, for v(0)<a & v(0)>/? 

(1.14) 

The above operator forms a rectangular loop relating the input and the output of a 

hysteretic system, where the output of the operator is either +1 or -1 depending on the 

value of the current input. The constants a and P define the switching thresholds of the 

input corresponding to upward and downward shifts in the output, as illustrated in Figure 

1.2. 

p 

.4 

, 

• ' 

— p . 
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• 4 — 

_I 

p . 

a 

Figure 1.2: Relay hysteresis operator [1, 82]. 
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The output of the relay operator switches from -1 to +1 when the current input is larger 

than a, and from +1 to -1 when the current input is less than /?. It is apparent that the 

model employs a discontinuous hysteresis operator. For a given input v(t) e Cm[0, T], 

the output of the Preisach hysteresis model, which is formulated using the above operator 

is expressed as [1]: 

Hv](0= JJ Picc,P) Kafi[v\(t) dadp ( 1 1 5 ) 

where p(a, /?) is an integrable positive density function, which is identified from the 

measured data for a particular material or a smart actuator. The argument of the operator 

is written in square brackets to indicate the functional dependence, since it maps a 

function to another function. 

The Preisach model is completely characterized by two properties [1]: wiping-out 

and congruent minor-loop properties. The wiping out property means that the output is 

affected only by the current input and the history of the output, while the effect of all 

other inputs is wiped out. The congruent minor-loop property requires that all equivalent 

minor loops be similar. Two minor loops are said to be equivalent if they are generated 

under monotonically varying inputs of identical amplitudes. 

Preisach model (1.15) has undergone many refinements over the past two decades 

to broaden its applications to a wide range of actuators and materials [1, 20-22, 66]. 

Different forms of the classical Preisach model have thus evolved to model hysteresis in 

various materials and smart actuators. Ge and Jouaneh [22] proposed a modified relay 

operator to characterize the hysteresis in a piezoceramic actuator. The relay operator with 

threshold values of ' -T and '+1 ' is replaced by a modified operator with threshold values 
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o f 0' and ' + 1 \ This was based upon the dipole's polarization of piezoceramic materials 

occurring in only one direction. Hughes and Wen [20] proposed the Preisach model for 

characterizing hysteresis in piezoceramic and SMA actuators. The study proposed a 

density function in the form of a second-order polynomial and investigated the 

fundamental properties of the Preisach model for describing the hysteresis in both the 

materials. Gorbet et al. [21] applied the first-order-decreasing curves technique to 

identify the density function (Preisach function) of the Preisach model. In this study 

different forms of the Preisach functions were explored for characterizing the hysteresis 

nonlinearities of two-wire and single wire SMA actuators. 

Krasnosel'skii-Pokrovskii model 

KrasnosePskii-Pokrovskii operator is a hysteresis operator that is derived from the 

Preisach relay operator [4]. This operator is constructed based on two functions that are 

bounded by two piecewise Lipschitz continuous functions. A ridge function is defined in 

the following manner for formulation of the Krasnosel'skii-Pokrovskii operator: 

<j(x) = 

-1 
2x 

+ — 
a 

1 

for 

for 

for 

x<0 

0<x<a 

x>a 

(1.16) 

where a is a constant in the output-input characteristics of the operator that is shown in 

Figure 1.3. For a given input v(/)eC [0, 7] the output of the Krasnosel'skii-Pokrovskii 

operator can be expressed as: 

L(t) = 

max(Z(/_),cr(v(/)-a)) for v(l)>v(t_) 

.min(Z(0,t7(v(/)-/?)) for v(t)<v{tj (1.17) 

UO M v(/) = v(/J 
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where the L(t) is the output of the operator and a and fi are constants similar to these 

defined in the relay operator. The Krasnosel'skii-Pokrovskii operator maps C [0, 7] to C 

[0, 7] [4]. Considering the finite slope of the operator, it can be concluded that the 

operator is Lipschitz continuous. The output of the Krasnosel'skii-Pokrovskii model, 

A[v](f), is expressed by [4]: 

A[v](/)= jjp(a,j3)L[v](t)dad/3 ( U 8 ) 

wherep(a, ft) is a integrable positive density function. 

The Krasnosel'skii-Pokrovskii model has been used to model the hysteresis 

properties of different smart actuators. Banks et al. [27] introduced the properties of the 

Krasnosel'skii-Pokrovskii model to characterize hysteresis nonlinearities in SMA 

actuators. Galinaities [28] employed the Krasnosel'skii-Pokrovskii operator instead of the 

relay operator in the Preisach model to characterize and to compensate hysteresis 

nonlinearities of a piezoceramic actuator. 

L 
I 

PJ/ 
'V 
• / * >/ 

•* • 

+1 _ 
1 —• / 

a ft 
\l> 

'^rwuiiixifxrl^r < • \ 

-1 a 

m+ 

V 

Figure 1.3: KrasnoseFskii-Pokrovskii operator [4, 82]. 
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Prandtl-Ishlinskii model 

Similar to the Preisach model, the Prandtl-Ishlinskii model is constructed using 

the play or stop hysteresis operators. Unlike the discontinuous relay operators in the 

Preisach model, the play and stop operators are continuous hysteresis operators which are 

characterized by the input v and the threshold r. A detailed discussion about these 

operators can be found in [2]. The stop operator has been proposed to characterize the 

elastic-plastic behavior in continuum mechanics [2]. Figures 1.4 and 1.5 illustrate the 

input-output characteristics of the play and stop operators, respectively. Figure 1.5 

illustrates the linear stress-strain relationship as per Hooke's law, when the stress is 

below the yield stress r, which is denoted as the threshold. Analytically let Cm [0, T\ 

represents the space of piecewise monotone continuous functions. For any input v(t) e 

Cm [0, T\, the output of the stop operator, Er[v](t) is defined by: 

£r[v](0) = er(v(0)) 

^ K O ^ M O - v W + ̂ MC/,.)); /, </</i+1 and 0</<7V-l (1.19) 

er (v) = min(r, max( — r, v)) 

Figure 1.4: Play hysteresis operator [2, 82]. 
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The one dimensional play operator has been described by the motion of a piston 

within a cylinder of length 2r. The position of the center of the piston is represented by 

coordinate v, while the cylinder position is given by w. For any input v(t) e Cm[0,tE], the 

output of the play operator, Fr[v](t) is defined by: 

^M(0)=/ r(v(0) ,0) = M<0), 

Fr[V](0 = fr(y(t),Fr[v](ti));tl<t<tMmdO<i<N-l 

fr (
v>w) = max( v—r, min( v + r, wj). 

(1.20) 

where 0 = t0 < tx <... < tN = T is a partition of [0, 7] such that the function v is monotone on 

each of the sub-intervals [tit ti+j]. 

The maximum value of the stop operator is determined by threshold r in the (v, w) 

plane. From definitions (1.19) and (1.20), it can be proven that operator Fr[v] is the 

complement of operator Er[v] and they are related in the following manner for any 

piecewise monotone input function v(?) e C„,[0,r] and threshold r>0 [2]: 

^[v](0 + ̂ [v](/) = v(0 

Er[v] 

(1.21) 

Figure 1.5: Stop hysteresis operator [2, 82]. 
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Due to the nature of the play and stop operators, the above is based on v(/) e Cm 

[0, 7] of piecewise monotone continuous functions. These, however, can be extended to 

space C [0, 7] of continuous functions. Furthermore, play and stop operators are 

continuous in time and in space. Continuity in time is significant from a physical 

perspective, while the continuous parameter dependence is important for development of 

practical parameter estimation method [30]. Using the stop operator Er[v](t), the output of 

the Prandtl-Ishlinskii model, which maps C[0,T] into C[0,T], is defined by [2]: 

ft 

Q[v](t) = \p(r)Er[v](t)dr (1.22) 
o 

where £i[v](/) is the output of the Prandtl-Ishlinskii model and p(r) is an integrable 

density function, satisfying p(r) > 0, to be identified from the experimental data. The 

output of the Prandtl-Ishlinskii model is also defined using the play operator Fr[v](t), 

such that [2]: 

R 

n[v](/) = qv(t) + J p(r)Fr[v](t)dr (1.23) 
o 

Owing to the unity slope of the play and stop operators, it can be concluded that 

the outputs of the Prandtl-Ishlinskii models (1.22) and (1.23) are Lipschitz continuous 

under Lipschitz continuous inputs [2]. Since the density function p(r) vanishes for large 

values of r, the choice of R = oo as the upper limit of integration is widely used in the 

literature as a matter of convenience [2]. Because the play and stop hysteresis operators 

and density function, defined above, are rate-independent, the Prandtl-Ishlinskii models 

are applicable for characterizing only rate-independent hysteresis. The Prandtl-Ishlinskii 

model is a continuous hysteresis model and its inversion has also been derived 
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analytically [2]. However, the Prandtl-Ishlinskii models, based on the play or the stop 

operators, are limited to symmetric hysteresis loops due to symmetric properties of the 

hysteresis operators. 

1.3.4 RATE-DEPENDENT HYSTERESIS MODELS 

A few operator-based hysteresis models have been proposed to characterize the 

rate-dependent hysteresis effects [33, 34, 64, 68, 73]. Many of these models were 

originally proposed for rate-independent hysteresis properties and were later modified to 

characterize rate-dependent hysteresis. The most common approach to account for rate-

dependent effects is to apply a dynamic density function in the classical rate-independent 

hysteresis model. Mayerqoyz [73] proposed a rate-dependent Preisach model by 

introducing the time rate of the output in the density function to characterize rate-

dependent hysteresis phenomenon. Yu et al. [34] characterized the rate-dependent 

hysteresis in a piezoceramic actuator using a dynamic density function incorporating the 

time rate of the input. The study demonstrated the effect of the rate by evaluating the 

outputs corresponding to input voltages at two distinct frequencies 0.05 and 5 Hz. Ben 

Mrad and Hu [64] employed the dynamic density function in the Preisach model, where 

the input was replaced by applying average rate of the input. Model results were 

evaluated under sinusoidal inputs at six distinct frequencies in the 0.1 to 800 Hz range. 

The model validity was demonstrated using the measured responses of a piezoceramic 

actuator, which were presented by only six distinct data points in the major hysteresis 

loop. Ang et al. [68] proposed a density function in conjunction with the Prandtl-

Ishlinskii model and the deadzone operators to characterize the rate-dependent hysteresis 
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in a piezoceramic actuator. The validity of this model was demonstrated in terms of 

sinusoidal inputs between 1 and 19 Hz excitation frequencies. The proposed dynamic 

model reduced the maximum hysteresis error by more than 50%, compared to that 

attained from the rate-independent hysteresis model. 

The above-reported studies were mostly based on the Preisach model coupled 

with a dynamic density function comprising the rate of either input or the output. This 

approach, however, may offer limited ability to describe the rate-dependent hysteresis. 

Alternatively, a dynamical model coupled with the Preisach model was proposed by Tan 

and Baras [33] in an attempt to characterize the rate-dependent hysteresis effects in a 

magnetostrictive actuator. The study showed model validity in predicting the major loops 

under inputs up to 300 Hz. 

1.4 Hysteresis Compensation 

The hysteresis in smart actuators has been associated with oscillations and poor 

tracking performance of the closed-loop system. Consequently considerable efforts have 

been made towards design of controllers for compensation of hysteresis. A vast number 

of controllers have been proposed to reduce the error due to hysteresis effects. The 

proposed control algorithms could be classified in two broad categories, namely non-

inverse based control methods and inverse based control methods. 

1.4.1 NON-INVERSE-BASED CONTROL METHODS 

Compensation of hysteresis nonlinearities has been carried out in many studies 

without considering the inverse of the hysteresis models. Model-based hysteresis 
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compensation methods employ the phenomenological hysteresis models to construct 

controllers to compensate for the actuator hysteresis. A number of control methods have 

been proposed to compensate for smart actuators such as robust adaptive [55], energy-

based [56, 60], and sliding model control systems, which employ the hysteresis model of 

the actuator for constructing the controller. Su et al. [55, 59] proposed an adaptive 

controller that is employed to control a nonlinear system preceded by unknown Prandtl-

Ishlinskii hysteresis nonlinearities. In this study, the proposed controller leads to the 

desired output and the global stability was presented. Gorbet et al. [56] proposed a 

control approach based on the energy to control a SMA actuator, which showed 

hysteresis nonlinearities. The study employed the Preisach model, and verified the energy 

properties and the state space of the model. The minimum energy states were 

recommended to formulate the controller synthesis and the passivity was established for 

the relationship between the input and the time rate of the Preisach model output on the 

basis of the energy. The results demonstrated the effectiveness of the method in 

compensating the hysteresis of the SMA actuator. Cruz-Hemandez and Hayward [57] 

proposed a hysteresis compensation method for piezoceramic and SMA actuators based 

on shifting of the phase of the periodic signal. The method employed a phaser comprising 

a parallel combination of a linear filter and a rate-independent Preisach hysteresis model, 

and concluded that the method could reduce the major and minor hysteresis loops in 

piezoceramic and SMA actuators. Liaw et al. [81] proposed a sliding model adaptive 

controller to control a piezoceramic actuator. The piezoceramic actuator is characterized 

using electromechanical model which is analytically expressed via second-order-
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differential equation. In this study, the results show the capability of the proposed sliding 

mode controller to compensate the hysteresis nonlinearities of the piezoceramic actuator. 

The control methods for compensation of hysteresis effects have been also 

employed for differential equation-based hysteresis models, such as Bouc-Wen and 

Duhem models. Su et al. [67] used the Duhem model to control a nonlinear system 

preceded by known hysteresis using adaptive control method. The solution properties of 

the model were combined with the adaptive control technique. However, the strong 

nonlinearity together with the lack of exact mathematical properties of the differential 

models poses complex challenge for the control system design and its real-time control 

application. 

1.4.2 INVERSE MODEL-BASED METHODS 

The inverse model-based hysteresis compensation methods generally employ a 

cascade of a hysteresis model and its inverse together with a controller to compensate for 

the hysteresis effects. These methods, however, necessitate the formulation of the 

hysteresis model inverse, which is often a challenging task. The concept of an open-loop 

inverse control system for compensation of hysteresis effects is shown in Figure 1.6, 

where v is the input, v* is the output, and P and F] are the hysteresis model and its 

inverse, respectively. This method is pioneered by Tao and Kokotovic [31], and involves 

the formulation of the inverse operator of the hysteretic system. Their study developed a 

control algorithm to compensate the hysteresis nonlinearities of a system comprising a 

linear plant proceeded by a hysteresis block representing a hysteretic actuator. An 
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adaptive hysteresis inverse compensator is cascaded with the hysteretic system to 

mitigate the effects of hysteresis. 

Inverse feedforward Hysteretic system 
Compensator 

Figure 1.6: Open-loop inverse control system. 

Considerable efforts have also been made in deriving the inverse 

phenomenological operator base hysteresis models in order to seek inverse-based 

hysteresis compensation. These efforts have resulted in either numerical or analytical 

inversions of the hysteresis models. The numerical inverse of a model, however, is an 

approximate right inverse. For a given input v(7), the application of the approximate 

inverse P~][.] in the compensator, shown in Figure 1.7, yields an output v , such that the 

output of hysteretic system P is close to v. The evaluation of approximate inverse P~ 

depends on the initial state of the model P[v](0). The numerical methods employ a 

preselected range of the input [vmjn, vmax]. The output of the inverse compensation can be 

expressed analytically as the composition of P and P"1 : 

v\t) = PoP-i[v^i) (1-24) 

Owing to the approximate inverse, the error of the numerical inverse can be defined as: 
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e\t) = v(t)-v(t) (1.25) 

V 

p-ll] PI] 
V 

Figure 1.7: Illustration of numerical hysteresis inversion. 

Preisach and KrasnosePskii-Pokrovskii models are not analytically invertible. Different 

numerical methods have been developed to obtain inversions of these models [23, 26, 

41]. Ge and Jouaneh [23] used inverse Preisach model, which was obtained using a 

numerical algorithm, as a feedforward compensator with PID feedback control system to 

reduce the hysteresis nonlinearities in a piezoceramic actuator. Inversion of the 

Krasnosel'skii-Pokrovskii model was applied by Galinaitis [27] in open-loop control 

system to compensate hysteresis of a piezoceramic actuator. In this study, compensation 

of hysteresis nonlinearities was demonstrated for sinusoidal inputs of different amplitudes 

at a low frequency of 0.05 Hz. In a similar manner, Song et al. [41] proposed a modified 

Preisach model to characterize and to compensate the hysteresis nonlinearities in a 

piezoceramic actuator with PD-lag and PD-lead controllers with the numerical inverse of 

the modified model in a closed-loop control system. Reduction in hysteresis 

nonlinearities was demonstrated experimentally for major and minor hysteresis loops 

under low excitation frequencies (0.5 Hz). Tan and Baras [25] applied inverse Preisach 

model, which is obtained numerically, in an adaptive control algorithm to compensate the 

hysteresis nonlinearities of a magnetostrictive actuator. Janocha and Kuhnen [53] 

compensated the hysteresis effects of a piezoceramic actuator using inverse Prandtl-
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Ishlinskii model, which is constructed numerically, in an open-loop control system. In 

addition to the above mentioned model-based inverse methods, neural networks and 

fuzzy system models have also been presented to compensate the hysteresis nonlinearities 

of the smart actuators by constructing the inverse model [62,63, 80]. 

The compensation based numerical inversions of the hysteresis models exhibit 

several limitations. Firstly, the numerical inverse of model can be considered only as an 

approximate inverse. This approximation tends to cause errors, when the numerical 

inverse is used as a feedfowrard compensator to compensate for hysteresis nonlinearities. 

Secondly, a numerical inverse of a hysteresis model cannot be considered to be unique. 

Different numerical algorithms or different limits in the applied input may yield different 

solutions of the inverse. Furthermore, a numerical inverse is only applicable for the 

specified input and the initial conditions. The numerical inverse is also computationally 

intensive, which may limit its real-time control applications. Finally, a numerical inverse 

of the hysteresis models has not been attempted to include the rate dependence. 

The numerically-derived model inversion yields certain degree of error, and thus 

the tracking error in the output of compensated system responses. The error of the inverse 

compensation methods based on numerical inversions has not been attempted. While the 

majority of the studies consider the compensation error to be bounded for the controller 

design. The stability of the closed-loop control system comprising the controlled plant 

preceded by the numerical inverse compensation cannot be established due to uncertain 

inversion error. 

Unlike the Preisach and Krasnosel'skii-Pokrovskii models, the Prandtl-Ishlinskii 

model offers a unique advantage, since its inverse can be obtained analytically. This is 
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attributed to the initial loading curve concept of the Prandtl-Ishlinskii model which 

provides an alternative description for the Prandtl-Ishlinskii model and essential basis to 

derive the analytical inverse. The initial loading curve is a stress-strain curve and is 

defined when the initial state of the Prandtl-Ishlinskii model is zero and when the input 

increases monotonically [2]. The analytical inversion of the Prandtl-Ishlinskii model is 

more attractive to compensate hysteresis nonlinearities in real-time applications. Owing 

to the analytical exact inverse, the inversion error of the inverse Prandtl-Ishlinskii model 

is zero. Moreover, this inverse offers significant benefits in real-time control applications. 

The knowledge of the exact description of the compensation error, in a given application, 

would facilitate the design of robust controllers and stability analysis, which are lacking 

with the numerical inverse. However, the advantages of the Prandtl-Ishlinskii model are 

limited to the class of hysteresis it can describe, namely the symmetric and the rate-

independent hysteresis. 

The reported studies involving inverse compensation generally exhibit 

compensation errors, even when the exact Prandtl-Ishlinskii model inverse is employed. 

This error has been generally attributed to characterization errors. Krejci and Kuhnen 

[30] applied the analytical inverse of the Prandtl-Ishlinskii model as a feedforward 

controller to compensate the hysteresis nonlinearities of a piezoceramic actuator. As 

mentioned before, the advantage of the Prandtl-Ishlinskii model is analytically invertible, 

and it can be conveniently implemented as a feedforward compensator for mitigating the 

hysteresis nonlinearities. Characterization of hysteresis properties in smart actuators 

using phenomenological operator-based hysteresis models generally involves estimation 

of the density function as well as the thresholds of the hysteresis operator on the basis of 
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measured data acquired for a particular actuator. The resulting model generally exhibits 

some degree of error between the model output and the measured characteristics. Ping 

and Ge [22] showed that the Preisach model derived to characterize the hysteresis 

nonlinearities in a piezoceramic actuator yields error in the 2 to 3% range. In a similar 

manner, the KrasnoseFskii-Pokrovskii model that is employed by Galinaitis [27] to 

characterize the major and minor hysteresis loops of a piezoceramic actuator at 0.05 Hz 

yields error of 2.8 to 4.3%. Krejci and Kuhnen [30] showed the percentage error of the 

Prandtl-Ishlinskii model used to characterize hysteresis of a piezoceramic actuator is in 

the order of 0.82%. The observed errors could be attributed to the characterization error. 

The estimated hysteresis models have been employed to construct the inverse of the 

Preisach, Krasnosel'skii-Pokrovskii and Prandtl-Ishlinskii models. The resulting inverse 

models are also expected to yield compensation errors of comparable order, when applied 

as a compensator. The systematic model inverse error, however, can be accurately 

described, when the exact analytical inverse is available. 

1.5 Scope and Objectives 

A number of hysteresis models have been evolved to characterize the hysteresis 

properties of various smart actuators. Although these models can provide reasonably 

good prediction of hysteresis of selected smart actuators, the input rate dependence of the 

hysteresis is generally not considered. The smart actuators, however, exhibit strong 

effects of the rate of the applied input on the hysteresis while Preisach model with 

dynamic density function could adequately describe the rate-dependent and asymmetric 

hysteresis nonlinearities; its inverse for compensation design is achievable only through 
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numerical means. The numerically-derived inverse models, invariably, yield 

compensation errors attributable to the characterization and inverse estimation errors. 

Furthermore, the errors cannot be accurately predicted and stability of closed-loop system 

could not be established. 

Alternatively, the analytical invertible Prandtl-Ishlinskii hysteresis model could 

be effectively applied to minimize the errors associated with estimation of the inverse. 

The exact analytical inverse also facilitates the real-time compensation of the hysteresis 

effects. The Prandtl-Ishlinskii model, however, is limited to symmetric unbounded and 

rate-independent hysteresis properties. The Prandtl-Ishlinskii model and its inverse are 

thus not applicable for hysteresis compensation in class of actuators that exhibit 

asymmetric major and minor hysteresis loops, output saturation and input rate 

dependence of the hysteresis effects. These include the piezoceramic, SMA and 

magnetostrictive actuators. 

It is desirable to derive generalized hysteresis models capable of describing 

symmetric as well as asymmetric hysteresis effects with output saturation over a range of 

input frequencies. It is also desirable that the models be continuous in order to derive 

their analytical inverse for their applications in real-time hysteresis compensation. It is 

hypothesized that the play operator and the density function of the Prandtl-Ishlinskii 

model can be sufficiently generalized to include the asymmetric hysteresis shapes with 

output saturation and the rate-dependent hysteresis effects. It is further hypothesized the 

resulting generalized Prandtl-Ishlinskii can be analytically inverted since it would be a 

mere extension of the classical Prandtl-Ishlinskii model. The analytical inverse would not 

only permit the analysis of the error but also the stability of the closed-loop system. 
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1.5.1 OBJECTIVES OF THE DISSERTATION RESEARCH 

The overall goal of the dissertation research is formulated on the basis of the 

above-mentioned hypothesizes. The key goals of the dissertation research involve the 

formulation of the generalized Prandtl-Ishlinskii model for characterization of 

asymmetric, saturated and rate-dependent hysteresis properties of different smart 

actuators, and its inversion. 

The specific objectives of the dissertation research are summarized below: 

(a) Develop generalized Prandtl-Ishlinskii models to characterize asymmetric, saturated, 
and rate-dependent hysteresis properties of smart actuators. Through formulations of 
a generalized play operator, and dynamic threshold and density functions. 

(b) Characterization of the hysteresis properties of different smart actuators subject to 
wide ranges of inputs involving variations in type, magnitude and frequency. Analyse 
the measured characteristics in an attempt to quantify the asymmetric, saturated and 
rate-dependent hysteresis nonlinearities. 

(c) Formulate analytical inverse of the generalized Prandtl-Ishlinskii models for their 
application as a feedforward compensator to compensate for the asymmetric, 
saturated, and rate-dependent hysteresis nonlinearities. 

(d) Derive the error of the inverse compensation of the Prandtl-Ishlinskii model 
analytically using the initial loading curve. 

(e) Propose a robust controller design for compensation of. inverse error through 
integration of the Prandtl-Ishlinskii model and its inverse in a closed-loop system, and 
perform stability analysis. 

1.6 Organization of the Dissertation 

The dissertation research works are systematically organized in six chapters. 

Chapter 2 describes the analytical formulations of the generalized Prandtl-Ishlinskii 
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models to describe the rate-dependent symmetric as well as asymmetric hysteresis 

properties of materials and smart actuators with output saturation. A generalized play 

hysteresis operator is integrated to the Prandtl-Ishlinskii model for characterizing 

asymmetric as well as symmetric hysteresis properties with output saturation. A rate-

dependent play hysteresis operator is also proposed and applied to the classical Prandtl-

Ishlinskii model in conjunction with a dynamic density function to characterize the 

symmetric rate-dependent hysteresis properties. Furthermore, a generalized rate-

dependent play hysteresis operator with dissimilar envelope functions is presented to 

characterize asymmetric and rate-dependent hysteresis properties. 

In Chapter 3, the input-output characteristics of three different smart actuators, 

including piezoceramic, SMA, and magnetostrictive actuators, are thoroughly analyzed 

for characterizing their hysteresis properties, particularly the hysteresis loops and their 

dependence on the rate of the input. For this purpose, a comprehensive experimental 

study was undertaken to characterize hysteresis properties of a piezoceramic actuator 

under sinusoidal and triangular waveform excitations in a wide frequency range (1 to 500 

Hz). The output-input properties of the SMA and magnetostrictive actuators, acquired 

from different laboratories, are analyzed to identify the concerned nonlinearities. 

The validity and applicability of the generalized Prandtl-Ishlinskii models to 

characterize symmetric as well as asymmetric rate-independent hysteresis properties of 

different smart actuators with output saturation are demonstrated in Chapter 4. The 

validation is demonstrated by comparing the model responses with the measured input-

output characteristics of magnetostrictive, SMA, and piezoceramic actuators over a wide 

range of inputs. Characterization of the rate-dependent hysteresis nonlinearities of 
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piezoceramic actuators under sinusoidal and triangular input waveforms are carried out 

over a wide range of excitation frequencies. 

Chapter 5 presents the formulations of the analytical inverse of the generalized 

Prandtl-Ishlinskii models described in Chapter 2. The analytical inversions of the Prandtl-

Ishlinskii models are integrated as a feedforward compensator to compensate the 

asymmetric, saturated and rate-dependent hysteresis effects. The effectiveness of the 

compensations is illustrated through simulations and laboratory experiments with a 

piezoceramic actuator. 

In Chapter 6, the analytical error of the Prandtl-Ishlinskii model-based inverse 

compensator is systematically derived analytically. To derive the error of the inverse 

compensation analytically, the initial loading curve of the Prandtl-Ishlinskii model and 

composition of the initial loading curve of the Prandtl-Ishlinskii model are presented. 

Then, the inverse of the estimated Prandtl-Ishlinskii model is derived and presented based 

on the initial loading curve and its inverse, respectively. Simulation results are attributed 

to demonstrate for the error of the inverse compensation employing inverse of the 

estimated Prandtl-Ishlinskii model. 

The analytical error model of the inverse compensator is applied to propose a 

robust controller design in Chapter 7. The stability analysis is further presented for the 

closed-loop system comprising a plant preceded with the output of the inverse 

compensation. The major conclusions derived from the study and the major contributions 

are summarized in Chapter 8 together with thoughts as further desirable studies. 
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Chapter 2: Modeling Hysteresis Nonlinearities 

2.1 Introduction 

A number of phenomenological models have been proposed to describe hysteresis 

in smart actuators. These include the Preisach model [1,5], the Krasnosel'skii-Pokrovskii 

model [4], and the Prandtl-Ishlinskii model [2]. The Prandtl-Ishlinskii model offers 

advantage over the Preisach and the Krasnosel'skii-Pokrovskii models, since its inverse 

can be computed analytically, which makes it extremely attractive for real-time control 

applications, particularly for real-time compensation of hysteresis contributions. The 

classical Prandtl-Ishlinskii model has been applied to characterize symmetric and rate-

independent hysteresis properties of materials and smart actuators. The model can yield 

considerable errors when an asymmetry exists in the hysteresis loops, such as those 

observed in the output-input properties of the SMA and magnetostrictive actuators [20, 

25], or when the output-input relations are dependent on the rate of the applied input. 

The hysteresis models have been mostly applied to describe rate-independent 

hysteresis effects in ferromagnetic and smart actuators, assuming negligible effect of the 

rate of input. A few studies have experimentally characterized the output-input 

relationships of different actuators under varying inputs [33, 34, 61, 64]. These clearly 

showed dependency of the actuator displacement on the rate of input, while the area 

bounded by the hysteresis loop also increased under increasing input frequency. The data 

reported for various piezoceramic actuators under different excitation magnitudes and 

frequencies suggest nearly symmetric major as well as minor hysteresis loops, which are 
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strongly dependent upon the rate of input. Unlike the piezoceramic actuators, 

magnetostrictive actuators exhibit highly asymmetric hysteresis property about the input 

or the output axis. On the basis of laboratory measurements, it has been further shown 

that hysteresis in magnetostrictive actuators is strongly rate-dependent beyond certain 

frequencies [33]. Furthermore, the Prandtl-Ishlinskii model cannot describe output 

saturation of the hysteresis loops, invariably observed in smart actuators. Development of 

an effective controller for compensating the hysteresis effects necessitates formulations 

of the models that can provide accurate prediction of the rate-dependent hysteresis 

properties together with the output saturation. 

In an attempt to overcome the limitations of the Prandtl-Ishlinskii model, Kuhnen 

[29] proposed deadzone operators in addition to the classical play operator of the Prandtl-

Ishlinskii model so as to characterize asymmetric hysteresis nonlinearities of the 

magnetostrictive actuators. Brokate and Sprekels [2] and Visintin [3] have described a 

nonlinear play operator that may be applied to the Prandtl-Ishlinskii formulation to 

describe symmetric as well as asymmetric output-input loops coupled with output 

saturation. A number of dynamic density functions have also been proposed to predict 

rate-dependent behavior of smart actuators, when integrated to the classical 

phenomenological models [34, 64, 68]. Alternatively, a dynamical model coupled with 

the Preisach operator was proposed in an attempt to characterize rate-dependent 

hysteresis effects [33]. Smith [7] presented a homogenized energy approach using the 

Preisach model to characterize rate-dependent hysteresis in a magnetostrictive actuator. 

In this chapter, generalized Prandtl-Ishlinskii models are systematically formulated 

to describe the rate-dependent symmetric as well as asymmetric hysteresis properties of 
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materials and smart actuators with output saturation. A rate-dependent play hysteresis 

operator is initially proposed and applied to the classical Prandtl-Ishlinskii model in 

conjunction with a dynamic density function to characterize the symmetric rate-

dependent hysteresis properties. A generalized play hysteresis operator is subsequently 

formulated and integrated to the model for characterizing asymmetric as well as 

symmetric hysteresis properties with output saturation. 

2.2 Prandtl-Ishlinskii Model 

The Prandtl-Ishlinskii model utilizes the play operator and the density function to 

describe the input-output hysteresis relationships. The formulation of the classical 

Prandtl-Ishlinskii model is introduced below. 

2.2.1 PLAY HYSTERESIS OPERATOR 

The play hysteresis operator, used in the classical Prandtl-Ishlinskii model, is 

continuous, rate-independent, and symmetric operator. This hysteresis operator has been 

thoroughly described in [2]. Figure 2.1 illustrates the output (w) -input (v) characteristics 

of the play operator, as a function of the threshold r, which is a positive constant. This 

constant handles the hysteresis nonlinearity of the play operator and the Prandtl-Ishlinskii 

hysteresis model. The play operator Fr has also been described by the motion of a piston 

within a cylinder of length 2r, where the instantaneous position of center of the piston is 

represented by the coordinate v and that of the cylinder position by w [2]. 

Analytically, for any input v(t)eCm[0,T], where Cm represents the space of 

piecewise monotone continuous functions, such that the function v is monotone on the 
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sub-intervals [t\, t\+\], the output of the play hysteresis operator is analytically expressed 

for /0=0 < t\ < ... < (N = Tas [2]: 

^ M ( 0 ) = /r(v(0),0) = >v(0) 

Ht) = fr(y(t)X Fr[v](Oy, for t, <t<tM and 0<i<N-\; 

fr(v,w) = max(v-r,min(v+r),w)) 

(2.1) 

w' 

-r V^ 

i 

/r v* 

Figure 2.1: The output-input properties of the play hysteresis operator. 

The argument of the operator is written in square brackets to indicate the functional 

dependence, since it maps a function to another function. Some key properties of the play 

hysteresis operator are briefly described below: 

• Rate-independence: The play operator Fr[v] is a rate-independent hysteresis 

operator, such that: 

Fr[v]oG = Fr[voG] (2.2) 
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where G is a continuous increasing function, G: [0, T], satisfying G(0)=0 and G(T)=T. 

Considering that a number of smart actuators and ferroelectric materials show 

hysteresis effects dependent on the rate of input, the play hysteresis may yield 

significant error when used in the Prandtl-Ishlinskii model. 

• Range: For a given input v(/) eC[0, T] and threshold r > 0, the range of the play 

operator (2.1) is defined as [2]: 

maxFr[v](0 = /r(max(v(/)),W(0)) 
140J] 140.T) 

(2.3) 
/nmF r[v](0 = /r(mm(v(0),w(0)) 

This property shows that the maximum and minimum outputs of the play operator are 

directly dependent on the input v. Consequently, the play operator is unbounded and 

cannot describe output saturation output. 

• Lipschitz-continuity: For a given input v(/) and threshold r > 0, the output of the 

play operator (2.1) can be extended to Lipschitz continuous [2]. This property is 

important to construct the analytical inverse of the Prandtl-Ishlinskii model, for 

compensation of hysteresis effects in real-time control applications. 

• Memory Effects: The play operator is a hysteresis operator with nonlocal-memory 

effect, where the output of the operator depends on the current value of input as well 

as the past values of output [2]. 

2.2.2 INPUT-OUTPUT RELATIONSHIP OF THE PRANDTL-ISHLINSKII MODEL 

The Prandtl-Ishlinskii model, a phenomenological hysteresis model based 

operator, is presented as a summation of a number of weighted play hysteresis operator. 

The Prandtl-Ishlinskii model utilizes play operator Fr, described in (2.1), to describe the 

following relationship between the output n[v](/) and the input v as [2]: 
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R 

U[v](t) = qv(t) + jp(r)Fr[v](t)dr (2-4) 
o 

where p(r) is termed as a density function, satisfying p(r) > 0, and q is a positive 

constant. 

The density function represents a probability distribution in terms of integrals, and 

serves as a weighting for the play operators. In general, the density function is identified 

from the experimental data of a particular material or actuator. It can be account for the 

output-input sensitivity of the actuator. The density function of the Prandtl-Ishlinskii 

model should be always positive to maintain the counter-clockwise direction of the play 

operator. The Prandtl-Ishlinskii model with the density function maps C[tO,oo) into 

C[t0,co). The density function p(r) generally vanishes for large values of r, while the 

choice of R = <x> as the upper limit of integration is widely used in the literature for the 

sake of convenience [2]. This direction of the loop means lagging between the output of 

Prandtl-Ishlinskii model and the input. It should be mentioned that the hysteresis loops of 

the smart actuators and ferromagnetic materials are counter-clockwise. 

The Prandtl-Ishlinskii model can also be expressed by summation of various play 

operators together with the density function as: 

n[v](/) = qv(t) + <T pir, )Fn [v](/) (2.5) 
i=i 

where n is the number of the play operators. 

Example 2.1: The output-input relations of the play operator and the Prandtl-Ishlinskii 

model are illustrated by considering the following example. Consider an input of the form 

v(>)=10sin(27tt), t e[0, 5] to the Prandtl-Ishlinskii model that is presented in (2.5).Figure 

2.2(a) illustrates the output-input relations of the play operator obtained through solution 
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of (2.1) upon considering five different values of threshold r. The results clearly show the 

strong dependence of the operator response on the threshold value. The output-input 

relation is further derived from solution of Prandtl-Ishlinskii model (2.4), by considering 

only five play operators, r = [1.3, 2.6, 3.9, 5.2, 6.5], q=0.5 and Af=0.01, as shown in 

Figure 2.2(b). The density function of the form p(r) = 0.1e"°lris assumed. The example 

shows symmetric hysteresis loop, attributed to the symmetric output of the play 

hysteresis operators, shown in Figure 2.2(a). Furthermore, the hysteresis loops of the 

Prandtl-Ishlinskii model presented in Figure 2.2(b) do not exhibit output saturation due to 

unbounded play operator. It can be concluded that the Prandtl-Ishlinskii model could 

adequately describe symmetric hysteresis loops but it cannot characterize asymmetric and 

saturated major and minor hysteresis properties. However, the Prandtl-Ishlinskii model 

can characterize symmetric hysteresis loops of piezoceramic actuators. 

'-10 T - 6 ' " ' A " -2 o" 2 4 6 8 10 

Input 
(a) 

Figure 2.2: Input-output relations of: (a) play operators corresponding to different 
threshold values, and (b) the Prandtl-Ishlinskii model under v(/) = 10sin(27t/)-
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Although the Prandtl-Ishlinskii model has been applied for characterizing the 

hysteresis properties of piezoceramic actuators [30, 53], it exhibits a number of 

limitations. Some of the primary limitations of the classical Prandtl-Ishlinskii model are 

summarized below: 

• Output-Input asymmetry: The Prandtl-Ishlinskii models yield symmetric output-

input hysteresis loops, which are attributed to the symmetric nature of the play 

operator under increasing and decreasing inputs. The model applications have thus 

reported for the piezoceramic actuators, which generally show symmetric major 

and minor hysteresis loops. 

• Output saturation: Owing to the unbounded nature of the play operator, the 

Prandtl-Ishlinskii model cannot be applied to characterize the output saturation 

property, which is widely observed in various smart actuators and ferromagnetic 

materials. 

• Rate-dependent hysteresis: The smart actuators and various materials invariably 

exhibit hysteresis that is dependent upon the rate of the applied input. The Prandtl-

Ishlinskii model cannot describe the rate dependence of the hysteresis, which is 

attributed to the rate-independent play operator and density function. 

The classical Prandtl-Ishlinskii model, therefore, cannot accurately characterize 

the hysteresis properties of magnetic materials and smart actuators, which invariably 

exhibit nonlinear dependence on the rate of input, output saturation and output 

asymmetry about the input. Kuhnen [29] proposed deadzone operators in addition to the 

classical play operator of the Prandtl-Ishlinskii model so as to characterize asymmetric 

hysteresis nonlinearities of the magnetostrictive actuators. This model, however, could 

not characterize saturated hysteresis properties. Furthermore, the resulting model is 

considered to be quite complex for control application. 
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The prediction ability of the Prandtl-Ishlinskii model could be enhanced, 

particularly in the content of the above sated nonlinearities, by considering alternate play 

operator and density function. In the subsequent sections, three different Prandtl-

Ishlinskii models are formulated in a systematic manner for charactering; (i) rate-

independent asymmetric hysteresis with output saturation; (ii) rate-dependent symmetric 

hysteresis; and (iii) generalized rate-dependent asymmetric hysteresis properties with 

output saturation. Generalized and rate-dependent play operators are proposed to describe 

the nonlinear hysteresis properties of different actuators in a generalized manner. 

2.3 A Generalized Rate-Independent Prandtl-Ishlinskii Model 

Brokate and Sprekels [2] and Visintin [3] have described an alternative play 

operator with symmetric as well as asymmetric output-input characteristics. Although 

this operator was proposed nearly 80 years ago, its application to describe hysteresis in 

conjunction with the Prandtl-Ishlinskii model has not yet been explored. This operator 

may also describe the output saturation property and is thus termed 'generalized play 

operator' in the dissertation. 

2.3.1 THE GENERALIZED PLAY HYSTERESIS OPERATOR 

The generalized play operator is a nonlinear play operator, where an increase and 

decrease in the input v causes the output w to increase and decrease, respectively, along 

the curves y, and yr, as shown in Figure 2.3. The minor loops of the input v and the 

output w are bounded by the curves yt and yr (yt <yr) which are continuous envelope 

functions for the input-output properties [3]. The output of this generalized operator can 
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exhibit asymmetric loops. The generalized play operator for any input v(/) e Cm[0,T] is 

analytically defined as: 

sr[v](0)=y;;(v(o),o)=z(o) 

S'r[v](0 = *(v(0,«S,
r[v](/,)); for tt <t<tM and 0<i<N-l (2-6) 

s(v, z) - max(ft (v) - r, minfo (v)+r, z)) 

where Yi, yr :-9t ->9t are strictly increasing and continuous envelope functions. 

Figure 2.3: Generalized play operator. 

In the above formulation, r refers to the threshold value of the classical play 

operator, which is the magnitude of increasing or decreasing input v(/) corresponding to 

zero output w(t), as illustrated in Figure 2.1. Unlike the classical play operator, the 

generalized operator yields zero outputs, z(t)=0, at two different values, ^ and Cg, of the 

increasing and decreasing inputs v(/), as shown in Figure 2.3. The difference in the 

magnitudes of C,] and 2̂ allows for describing asymmetric hysteresis loops. These 

constants corresponding to increasing and decreasing inputs are related to the envelope 
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functions and the threshold r in the following manner 

£ = r , » for v(0>0 
(2-7) 

Zi=r;\-r) far v(0<0 

The above equations can be expressed as: 

r,(<Z1) = r for v(f)>0 

rr(Ci) = -r for v(/)<0 

Then Equation (2.8) yields a relationship between the constants 

r, as: 

2 

For a given threshold r and envelope functions yi and, yr the generalized play hysteresis 

operator can be constructed using (2.8) and (2.9). 

Some of the key properties of the generalized play operator can be described as 

follows: 

• Lipschitz-continuity: For a given input v(t), the Lipschitz-continuity of the 
generalized play operator can be ensured when the functions yi and yr are Lipschitz 
continuous [2, 3]. 

• Rate-independent: The generalized play operator Sr is a rate-independent hysteresis 

operator, provided: 

Sr[v]oG = Sr[voG\ (2.10) 

• Range: For a given input v(f)eC[0,7] and z(0) = Sr[v](0) = s(v(0),0), then the 

maximum and the minimum values of the generalized play operator depend on the 

envelope functions yr and y,, respectively, such that: 

(2.8) 

C\, £?, and the threshold 
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max Sr[v](t) = 5(max n (v(O) ,z(0)) 

(2.11) 

minSr[v](t) = s(rmn/MO),*®)) 

The above stated properties suggest that the generalized play hysteresis operator 

can exhibit asymmetric output by selecting different envelope functions for increasing 

and decreasing input. Moreover, by choosing bounded envelope functions, the play 

hysteresis operator can exhibit saturated output since the maximum and minimum output 

of operator, as shown in (2.11), depends on the selected envelope functions. The 

application of the generalized operator to the Prandtl-Ishlinskii model could thus help to 

characterize asymmetric and saturated hysteresis loops. Moreover, the analytical 

inversion of the model could also be realized since the functions yt and yr are Lipschitz 

continuous. The inverse constructed using invertible envelope functions, could then be 

employed as a feedforward compensator for the asymmetric and saturated hysteresis 

effects. 

2.3.2 INPUT-OUTPUT RELATIONSHIP OF THE GENERALIZED PRANDTL-
ISHLINKSII MODEL 

The generalized Prandtl-Ishlinskii model is subsequently formulated upon 

integrating the generalized play operator Sr and the density function as: 

R 

<5>M{t) = \p(.r)Sr[v}{t)dr (2.12) 
o 
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The above model integrating the play operator with appropriate envelope functions can 

describe the minor and major hysteresis loops of smart actuators and materials with 

asymmetry and saturation properties. The model may also be expressed as: 

®[v](t) = fjp(ri)Sri[v]{t) (2.13) 

where n is the number of the generalized play operators. 

Remark 2.1: The classical play operator, defined in (2.1), can be shown to be is a special 

case of the generalized play operator. The generalized play operator (2.6) reduces to the 

classical operator when identical envelope functions, yr(v) = y,{v) = v . 

Remark 2.2: The classical Prandtl-Ishlinskii model is a special case of the generalized 

model. By letting yr{y) = yl(y) = v, the generalized model reduces to the classical 

Prandtl-Ishlinskii model, described in (2.4). 

Remark 2.3: The generalized play hysteresis operator is hysteresis operator with 

nonlocal-memory effect, where the output of the generalized operator depends on the 

current value of input as well as the past values of output. 

Example 2.2 :The response characteristics of the Prandtl-Ishlinskii models based on 

asymmetric generalized as well as the classical play operators are illustrated under a 

complex harmonic input of the form: v(<)=4.6sin(7t/)+3.1cos(3.47c0, t e [0, 5] . This input 

permits for evaluating major as well as minor loops in the play hysteresis operators' 

outputs. The simulations are performed using different envelope functions to study their 

influence on the outputs of the generalized play operators. For the illustrative example, 

hyperbolic-tangent functions are selected as the envelope functions of the generalized 

play operator, such that: vr(v) = 6tanh(0.4v) and ;rr(v) = 6tanh(0.25v). A constant 

density function p(r)=0.45 is further chosen for both the classical and the generalized 

models in order to relax its effect in the responses. A total of 11 play operators are 
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selected for the simulation with threshold values as: r = [0,0.525,1.05,1.575, 2.1, 2.625, 

3.15,3.675,4.2,4.725,5.25]. 

Figures 2.4(a) and 2.4(b) show the input-output relations of the classical (CPO) and 

generalized play operators (GPO), respectively, corresponding to threshold values , r -

0, 1.575, 3.15, and 4.725, under the selected complex harmonic input. Both the play 

operators (GPO and CPO) exhibit increasing hysteresis with increasing threshold value. 

The CPO, however, yields symmetric major and minor hysteresis loops under increasing 

and decreasing inputs, while the GPO exhibits highly asymmetric input-output curves 

under the same inputs. Furthermore, unlike the outputs of the CPO, the outputs of the 

GPO exhibit saturation. Figures 2.5(a) and 2.5(b) show the outputs of the classic and 

generalized Prandtl-Ishlinskii models incorporating classical and generalized play 

operators, respectively, for same values of r. The results clearly show that the generalized 

model yields saturated asymmetric major and minor hysteresis loops, which are attributed 

to the selected envelope functions. The results further show that the width of the 

hysteresis loops under negative input is more than that under the positive input, which is 

also attributed to the selected envelope functions. The model with classical operators, 

however, exhibits unsaturated and symmetric major and well as minor hysteresis loops. 

The generalized Prandtl-Ishlinskii model can also yield symmetric hysteresis loops for 

envelope functions, yt (v) = yr (v), as it would be the case for the classical model. The 

generalized model, however, characterizes the output saturation unlike the classical 

model, as it is evident from outputs of the operator and the model, shown in Figures 

2.6(a) and 2.6(b), respectively. The results thus suggest that the generalized Prandtl-

Ishlinskii model comprising the generalized play operator can describe the symmetric as 

well as asymmetric hysteresis properties with output saturation. The output-input 

relationships, however, are strongly determined by the envelope functions of the 

generalized play hysteresis operators. 
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(b) 

Figure 2.4: Input-output properties of the play hysteresis operators under v(t) = 4.6sin(7tt) 
+ 3.1COS(3.4J«): (a) Classic play operator, 7/(v) = 7,.(v) = v; and (b) Generalized play 

operator, / /(v) = 6tanh(0.4v) and^,.(v) = 6tanh(0.25v). 
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Figure 2.5: Response characteristics of the Prandtl-Ishlinskii hysteresis models 
employing: (a) classical play operator; and (b) generalized play operator. 
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Figure 2.6: Input-output relations of: (a) the generalized play operators corresponding to 
different threshold values; and (b) the generalized Prandtl-Ishlinskii model under v(t) = 
4.6sin(7r0 +3.1COS(3.4JT0, and y,(v) - yr(y) = 6tanh(0.4v). 
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2.4 Prandtl-Ishlinskii Model Based Rate-Dependent Play Operator 

Both the classical and the generalized Prandtl-Ishlinskii models are considered 

applicable for characterizing rate-independent hysteresis properties of materials and 

actuators. This is attributed to the rate-independent classical and generalized play 

operators. Various materials and actuators, however, exhibit output-input hysteresis that 

is strongly dependent upon the rate of applied input in a highly nonlinear manner [33, 64, 

68]. These studies have invariably shown that the majority of the smart actuators and 

ferromagnetic materials generally exhibit greater hysteresis with increasing time rate of 

the input, while the output amplitude decreases. 

2.4.1 FORMULATION OF RATE-DEPENDENT PLAY HYSTERESIS OPERATOR 

An alternate play operator comprising the rate of the input {dv/dt) is proposed for 

integration to the Prandtl-Ishlinskii for characterizing rate-dependent hysteresis properties 

materials and smart actuators. The definition of the play operator, presented in (2.1), 

suggests that the width of the play hysteresis operator is directly related to the threshold r, 

which is also evident from Figure 2.2(a). The increase in the hysteresis with increasing 

the rate of the input may thus be characterized by a relatively larger threshold r. 

furthermore, the output of play hysteresis operator depends on either v - r for v>0 or v + 

r for v<0, while r is always positive. Unlike the operator used in the Preisach model, 

where the input is limited to either ' - 1 ' or '+1 ' [1], the outputs of play operator employed 

in Prandtl-Ishlinskii model are not limited to fixed values. The results in Figure 2.2(a) 

further show that the peak output of the operator decreases with increasing values of r. 

Moreover, the width of the hysteresis loops is directly related to the threshold /-, which is 
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illustrated in Figure 2.2, for an input of the form v(f)=10sin(20 with initial value 

ivM(0)=0. 

The properties of the play hysteresis operator may thus be further exploited for 

describing the rate-dependent output-input properties of the smart actuators and 

ferromagnetic materials. The identification of an appropriate threshold value, however, 

forms the most important task for defining the hysteresis properties. Consequently, a 

dynamic threshold, r = r(v), is proposed and a relationship among the output of the play 

operator, the dynamic threshold F and the input v(t), is formulated based on the reported 

and measure output-input properties (presented in Chapter 3) of smart actuators, as: 

FMO) = f(rMO) (2-14) 

Analytically, let Cm[0,T] represent the space of piecewise monotone continuous 

functions. For any input, v(t)e.Cm[0,T], let 0 = to < ti <....< tn = T be a partition 

within the span [0, 7], such that the function v is monotone on each of the sub-intervals 

[t„ tj+i]. The output of the rate-dependent play operator is then proposed as a function of 

the dynamic threshold, as: 

^(v(0)) = /F(v(0),0)=w(0) 

FM0) = fM0,FMO); for t,<t<ti+] and 0</<iV-l (215) 

f. (v, w) = max(v - F, min(v + F, w)) 

A dynamic threshold function of the following form is initially proposed on the basis of 

the observed output-input properties of a piezoceramic actuator: 
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r = a\n{/3+l\v(tX) (2.16) 

where a > 0, /? > 1, A > 0 , and s > 1 are positive constants. 

Remark 2.4: In the above formulations, the choice of the dynamic threshold f is not 

unique. This would depend upon the nature of hysteresis of a particular material or a 

device. 

The properties of the proposed rate-dependent play hysteresis operator comprising 

proposed dynamic threshold function (2.16) are evaluated to ensure their general 

applicability, which are summarized below: 

• The output hysteresis of a rate-dependent operator increases monotonically with 

increase in the time rate of input, v(t). This is apparent from (2.16). An increase in 

the rate of input would yield a higher value of the dynamic threshold, r = r(v(/)). 

For two inputs of different time rates, such that: max[ v, (t)] > max[ v2 (/)] and v, (0) > 

v2(0), the proposed dynamic threshold function would yield max[ r(v, (t))] > 

max[r(v2(0)]-

• The hysteresis of the proposed play operator also increases monotonically with 

increase in the amplitude of input v(/), and thus the magnitude of v(/). A higher 

amplitude would thus yield a higher value of r , as it is evident from (2.16). 

• The dynamic threshold function r yields a nearly constant value when the rate of 

input is very small or when a low frequency input is applied, which yields 

r = a In(/?). The proposed operator can thus describe the rate-independent 

hysteresis properties. 
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2.4.2 RATE-DEPENDENT PRANDTL-ISHLINSKII MODEL 

The rate-dependent Prandtl-Ishlinskii model is formulated upon integrating the 

proposed rate-dependent play operator (2.15). The output of the rate-dependent model 

n(v(/)) is then expressed analytically as: 

Ti(v(t)) = qv(t) + \p(r)F?v((t))dF (2.17) 
o 

The above model may also be expressed as: 

n(v(0) = <7v(0 + X > ( W ( v ( 0 ) (2.18) 

The numerical implementation of the generalized rate-dependent Prandtl-

Ishlinskii model is realized using discrete input v(k) corresponding to interval k with a 

step size h (k=0,1,2, ... , N; N=T/h) such that: 

H(*) = qvtQ+^pirJF- (v(*)) (2.19) 
;=i 

The time rate of the input is estimated from the discrete inputs, such that: 

v* =(v(/4)-v(/w))/(r t-f4 .1) (2.20) 

Example 2.3: The response characteristics of the proposed rate-dependent Prandtl-

Ishlinskii hysteresis model, presented in (2.17), is illustrated for a complex harmonic 

input of the form: v(r)=6sin(27t/t)+3sin(3jc/t); where f is the fundamental frequency of the 

inputs. The simulations are performed under different input fundamental frequencies (10, 

50, 100, and 200 Hz) to study the influence of the rate of the input. The input further 

permits for evaluations of major and minor loops in the operators' outputs. The 

simulations were performed by arbitrary selecting the constants in dynamic threshold 

model (2.16) as: a=1.8, /?=1.0, /.=0.001 and s = \. The simulation parameters were 
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selected are: T=4/f, N=301, At=0.02/f, w(0)=0 and q=0.1. A constant density function, 

/>(r)=0.005e"0'01r, is further chosen for the model in order to relax its effect in the output 

responses. Figure 2.7 shows the output-input relationships attained from the Prandtl-

Ishlinskii model using the rate-dependent play hysteresis operator under inputs 

corresponding to the selected fundamental frequencies. Simulation results show an 

increase in hysteresis and decrease in output amplitude of the hysteresis loops with 

increase in the fundamental frequency of the input. The hysteresis of the major loops is 

considerably larger than those of the minor loops due to varying input amplitudes. The 

simulation results show that rate-dependent Prandtl-Ishlinskii model based on the 

dependent play operator, can exhibit rate-dependent hysteresis loops. Furthermore, the 

simulation results show that the rate-dependent hysteresis effects maintain the wipe-out 

property and the memory effects in the output. 
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Figure 2.7: The input-output properties of the Prandtl-Ishlinskii model employing the 
rate-dependent play operator under inputs at different frequencies. 
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2.4.3 RATE-DEPENDENT PRANDTL-ISHLINSKII MODEL BASED DYNAMIC 
DENSITY FUNCTION 

The rate-dependent Prandtl-Ishlinskii model described in (2.17) can be further 

enhanced by employing a dynamic density function. Mayergoyz [1] proposed a rate-

dependent Preisach model by introducing the speed of the output in the Preisach function. 

In a similar manner, Ben Mrad and Hu [64] and Yu et al. [34] further proposed a rate-

dependent density function to the Preisach model to characterize the rate-dependent 

hysteresis effects of piezoceramic actuators. A dynamic density function for the Prandtl-

Ishlinskii model can also be formulated in a similar manner as a function of the dynamic 

threshold, apart from input v(t) and its time rate v(/). The rate-dependent Prandtl-

Ishlinskii model with dynamic density function is thus formulated upon integrating the 

dynamic density function p(F,v(t),v(t)) and the function h(v(t),v(t)) in the model, such 

that: 

n(v(0) = Mv(0,v(0)+}/^v(0,v(/))iv (v(t))dr ( 2 - 2 1 ) 

0 

where /?(v(/), v(/)) and p(r,v(t),v(t)) are positive continuous functions. The validity of 

the proposed rate-dependent model is examined in Chapter 4 under various inputs, 

including harmonic, complex harmonic and triangular waveforms, using the measured 

data of different smart actuators in a wide frequency range. 

Remark 2.5: The choices of h and p are not unique. These would depend upon the 

nature of rate-dependent hysteresis of a particular material or actuator. 
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2.5 Prandtl-Ishlinskii Model Based Generalized Rate-Dependent Play 
Operator 

Owing to the symmetric properties of rate-dependent play operator, the rate-

dependent Prandtl-Ishlinskii model cannot be applied to characterize the asymmetric rate-

dependent hysteresis properties. Alternatively, a generalized rate-dependent play 

operator, which is constructed using envelope functions, can be proposed to describe 

asymmetric rate-dependent hysteresis properties as a function of the dynamic threshold as 

well as generalized rate-independent play hysteresis operator (2.6). 

2.5.1 GENERALIZED RATE-DEPENDENT PLAY HYSTERESIS OPERATOR 

The rate dependence of the output is characterized by introducing the dynamic 

threshold r in the generalized play operator formulation in a manner similar to that 

applied to the symmetric play hysteresis operators. The resulting modified generalized 

play hysteresis operator could describe the rate-dependent asymmetric hysteresis non-

linearities. This operator can be analytically described for input \{t) e Cm[0,T] as: 

S?(v(0)) = *r-(v(0),0) = z(0) 

SMt)) = s-Mt),S?(v(t))) ; for /, <t <tM and Ui<N-\ (2-22) 

sT (v, z ) = max iy, (v) - r, min( yr (v) + r,zj) 

2.5.2 THE GENERALIZED RATE-DEPENDENT PRANDTL-ISHLINSKII MODEL 

The generalized rate-dependent Prandtl-Ishlinskii model is formulated upon 

integrating the above generalized play operator together with the density function p(r). 
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This density function is expected to enhance prediction abilities of the generalized model 

for asymmetric hysteresis nonlinearities. The output of the model 0(v(/)) is then 

expressed as: 

R 

®(v(t)) = \p(r)S-r(v(t))dr (2.23) 
o 

The model can also be expressed as: 

W / ) ) = £ / * W y ( v ( / ) ) (2-24) 

where n is the number of the generalized rate-dependent play operators. The numerical 

implementation of the generalized Prandtl-Ishlinskii model is formulated using discrete 

inputs v(£)with a step size of h (k=0,1, 2, ... , TV; N=Tlh) , such that: 

<>(v(*)) = X piFj )SFj (v(*)) (2.25) 
/=' 

Example 2.4: The response characteristic of the proposed generalized rate-dependent 

Prandtl-Ishlinskii model is illustrated through simulation parameters in Example 2.3. To 

relax the symmetric properties in the rate-dependent hysteresis loops is relaxed by 

selecting following envelope functions: 

y,(v) = 1.3v 
" (2.26) 
7r(v) = 1.0v+1.50 

Figure 2.8 presents the responses of the generalized rate-dependent Prandtl-Ishlinskii 

model under complex harmonic inputs corresponding to different fundamental 

frequencies (10, 50, 100, and 200 Hz). The results show that as the fundamental 

frequency of the input increases, the hysteresis increases and in the amplitude of the 

major and minor loops decreases. The results further show that the model employing the 
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generalized rate-dependent play operator yields asymmetric rate-dependent hysteresis 

loops. It is thus ascertained that the generalized rate-dependent play operator not only 

relaxes the symmetry of the rate-dependent Prandtl-Ishlinskii model, but it could also 

yield the rate-dependent hysteresis effects. 
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Figure 2.8: Simulation results attained from the Prandtl-Ishlinskii model employing the 
generalized rate-dependent play operator under a complex harmonic input at different 
fundamental frequencies. 

2.6 Summary 

The hysteresis properties of smart actuators exhibit symmetric as well as 

asymmetric hysteresis loops that are strongly dependent upon the rate of the input. 
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Furthermore, the outputs of the smart actuators generally exhibit saturation. Three 

different Prandtl-Ishlinskii models are formulated to characterize these nonlinearities in a 

systematic manner. A generalized play operator is initially proposed to characterize 

asymmetric output-input property by selecting different envelope functions. The 

generalized operator is integrated to the Prandtl-Ishlinskii model to obtain 

characterization of asymmetric as well as symmetric major and minor hysteresis loops 

with output saturation. The results show that the integration of the proposed generalized 

play operator to the classical Prandtl-Ishlinskii model can effectively characterize the 

asymmetric saturated hysteresis properties of a class of materials and smart actuators. 

A rate-dependent play operator is subsequently proposed on the basis of dynamic 

threshold functions in an attempt to describe the rate dependence of the output-input 

hysteresis. A rate-dependent Prandtl-Ishlinskii model is then formulated on the basis of 

the rate-dependent operator and a dynamic density function. The simulation results show 

that the hysteresis increases considerably with increasing frequency of the input, although 

the model yields only symmetric hysteresis loops. Finally a generalized rate-dependent 

Prandtl-Ishlinskii model is proposed by introducing the dynamic threshold within the 

generalized play operator together with a dynamic density function. The simulation 

results attained under a complex harmonic input at different frequencies demonstrated 

that the generalized model describe the symmetric as well as asymmetric rate-dependent 

hysteresis properties of materials and smart actuators with output saturation. The 

envelope and dynamic density functions in the model, however, are not unique and must 

be defined from the hysteresis properties of the particular actuator or material. The 

nonlinear rate-dependent hysteresis of different actuators is thus thoroughly described in 
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the following chapter. The model parameters are subsequently identified in Chapter 4 and 

the model validity is demonstrated under wide rages of inputs. 
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Chapter 3: Characterization of Hysteresis Properties of Smart 
Actuators 

3.1 Introduction 

The input-output characteristics of smart actuators, such as piezoceramic, 

magnetostrictive, and SMA actuators, invariably exhibit hysteresis nonlinearities. The 

presence of hysteresis is known to cause considerable positioning errors in micro/nano-

positioning applications. The hysteresis nonlinearities may also lead to instability in the 

closed-loop operations of smart actuators [31]. The positioning accuracy of such 

actuators could be significantly enhanced through hysteresis compensation of the closed-

loop system. A number of hysteresis models have thus been developed to characterize the 

hysteresis nonlinearities and to develop control methods for hysteresis compensation [21-

36]. Many actuators generally exhibit asymmetric output-input characteristics that are 

strongly dependent upon the rate of the input. Such extreme nonlinearities present 

considerable challenges in modeling of hysteresis properties. The reported hysteresis 

compensation methods, however, generally ignore the effects of input on the hysteresis 

and yield errors under inputs at higher frequencies. 

The hysteresis properties of smart actuators, whether symmetric or asymmetric, 

could be characterized using the generalized Prandtl-Ishlinskii model formulated in the 

previous chapter. The development of a reliable model, however, necessitates thorough 

understanding and characterization of input-output characteristics of smart actuators. 

Although the hysteresis of smart actuators has been the subject of a vast number of 

studies [e.g., 20, 21, 27], the characterization of the hysteresis properties of smart 

actuators subjected to different rates of inputs have been presented in a relatively fewer 
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studies. Hu and Ben Mrad [64] measured the hysteresis of a piezoceramic actuator and 

reported that the width of measured voltage-displacement curve was nearly 15% of the 

peak actuator expansion at very low excitation frequencies. Ge and Jouaneh [22] 

measured the hysteresis properties of a piezoceramic actuator under sinusoidal excitations 

at 0.1 and 100 Hz and concluded that the properties were comparable under both 

excitations, although the response to 100 Hz excitation revealed larger hysteresis. The 

measurements performed by Yu et al. [34], on the other hand, showed that the hysteresis 

of a piezoceramic actuator could be considered rate-independent only under excitations at 

frequencies below 10 Hz. The study also showed larger hysteresis under sinusoidal 

excitations, when compared to that attained under a triangular input. Tan and Baras [25] 

measured hysteresis properties of a magnetostrictive actuator under sinusoidal excitations 

in the 10 - 300 Hz range, and concluded that the hysteresis in the output displacement 

increased as the excitation frequency of the input current was increased. In a similar 

manner, Oates et al. [74.] demonstrated the rate-dependent hysteresis in a 

magnetostrictive actuator through measurements under inputs in the 100-500 Hz range. 

Gorbet et al. [21] and Hughes and Wen [20] conducted measurements of shape memory 

alloy (SMA) actuators, which showed saturated major and minor hysteresis nonlinearities 

between the input temperature and the output displacement. 

In this chapter, the input-output characteristics of three different smart actuators, 

including piezoceramic, SMA, and magnetostrictive actuators, are thoroughly analyzed 

for charactering their hysteresis properties, particularly the major and minor hysteresis 

loops and their dependence on the rate of the input. For this purpose, a comprehensive 

experimental study was undertaken to characterize hysteresis properties of a 
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piezoceramic actuator under sinusoidal and triangular waveform excitations in a wide 

frequency range (1 to 500 Hz). The data for two different SMA and magnetostrictive 

actuators were obtained from the University of Waterloo [21] and the University of 

Maryland [25] laboratories, respectively. The acquired data were analyzed to illustrate 

the nonlinear hysteresis properties and their dependence on the rate of input, and to 

identify target responses for model parameters identifications. 

3.2 Experimental Characterization of Hysteresis of a Piezoceramic 
Actuator 

The hysteresis properties of a piezoceramic actuator, P-753.31C, were 

characterized in the laboratory under a wide range of operating conditions involving 

frequency, bias and magnitude of the excitation voltage. The actuator provided a 

maximum displacement of 100 urn from its static equilibrium position, and it integrated a 

capacitive sensor (sensitivity =lfim/V; resolution < 0.1 nm) for measurement of the 

actuator displacement response. The natural frequency of this piezoceramic actuator is 

2.9 KHz. A voltage amplifier (LVPZT, E-505) with a fixed gain of 10 provided 

excitation voltage to the actuator in the 0 to 100 V range. The experimental setup is 

schematically presented in Figure 3.1. 

The experiment was designed to study the effects of main factors on the hysteresis 

properties of the actuator; which included bias, frequency, magnitude and type of 

excitation voltage. Different values of positive bias were introduced in the input signal to 

ensure a positive excitation of the piezoceramic actuator. The measurements were 

performed under two types of excitation voltages; harmonic and triangular. The 
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experiments under harmonic excitations were conducted with different bias and 

amplitudes at several discrete frequencies in the 1 to 500 Hz range. The input voltage and 

output displacement signals were acquired and stored into a multi-channel oscilloscope, 

which were subsequently expressed by the Lissajous curves. The experiments under 

triangular input waveforms were conducted to study the hysteresis effects under a 

constant excitation rate. 

Displacement 
Sensor v . 

\ 

Displacement signal 

r 

fflk 

' ' 

" I 

Piezoceramic actuator 

' 

Signal coniditioner 

uispiacemeni 

' ' i 

AmpWtef lVPZT(E-505) 

Voltage 

i 

r 

Data acquisition 

and analysis 

i • 

Input signal 

Figure 3.1: A schematic representation of the experimental setup. 

The experiments were designed to include three different series with objectives to 

derive: (i) the effects of input rate on the major hysteresis loops; (ii) the effects of input 

rate on the minor hysteresis loops; and (iii) the influence of the input waveform. Results 

attained are used to fully characterize the rate-dependent hysteresis effects, which are 

discussed in the following sections. Each measurement was repeated 3 times. Although 

the measurements were invariably repeatable, mean data of the 3 trials were considered 

for characterizing the hysteresis properties. 
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3.2.1 MAJOR HYSTERESIS LOOP TESTS 

In the first series of experiments, the response characteristics of the actuator were 

measured to characterize the major hysteresis loops at 12 different excitation frequencies 

(0.1,1, 10, 20, 50, 100,150, 200, 300, 350, 400, and 500 Hz). For this purpose, harmonic 

excitation signal with bias of 40 V was synthesized to ensure positive voltage input 

during loading and unloading, while the magnitude was fixed as 40 V. The resulting 

major loops relating displacement responses to the input voltage are shown in Figure 3.2 

for various excitation frequencies. The results clearly show that the hysteresis is strongly 

dependent upon the rate of input, particularly at frequencies above 10 Hz. An increase in 

excitation frequency not only yields larger width of the major loop but also reduces the 

peak displacement output of the actuator, which has also been observed in a few reported 

studies [34, 64]. The major loop hysteresis is quantified by the peak hysteresis H 

normalized with respect to peak-to-peak output M, as shown in Figure 3.3. The measured 

data was further analyzed to quantify hysteresis and displacement attenuation as a 

function of the excitation frequency. The percent hysteresis of the actuator is illustrated in 

Figure 3.4 (a) as a function of the input frequency. The results show that percent 

hysteresis increases nearly exponentially with increasing excitation frequency at 

frequencies above 10 Hz. Figure 34(b) illustrates the considerable attenuation of the 

peak-to-peak displacement response with increasing frequency, which also tends to be 

considerable at frequencies above 10 Hz. The results suggest that the rate-independent 

hysteresis models could be considered valid for describing the actuator hysteresis under 

excitations below 10 Hz only. 
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Figure 3.2: Measured major hysteresis loops relating displacement response of a 
piezoceramic actuator to the applied voltage at different frequencies. 
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peak displacement response at different excitation frequencies. 
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3.2.2 MINOR HYSTERESIS LOOPS TEST 

This series attempted to characterize minor hysteresis loops of the actuator 

under harmonic excitations of various amplitudes and frequencies in the 0.1 to 200 Hz 

range (0.1, 1, 10,20, 50, 100, 150, and 200 Hz). The experiments were conducted in two 

stages, where the first stage involved the study of influence of excitation amplitude on the 

hysteresis, while the bias was held constant (20 V). For this purpose, three different 

levels of excitation voltages were considered (5, 10, and 20 V), which resulted in 

excitation voltages of 20 ± 5, 20 ± 10 and 20 ± 20 V, respectively. In the second stage, 

three different bias voltages (30, 60, and 90 V) were considered in conjunction with 

constant amplitude of 10 V to characterize the effect of bias voltage on the minor 

hysteresis loops. The variations in the bias voltage resulted in excitation voltages of 

30± 10, 60± 10 and 90± 10 V, respectively. 

Figure 3.5 illustrates the minor hysteresis loops under excitation at 100 Hz and 

percent hysteresis as a function of frequency measured during the first stage of 

experiments under the three excitations, 20±5, 20±10 and 20±20 V. Results clearly show 

significant effect of input magnitude on the percent hysteresis; a higher magnitude of 

excitation yields slightly larger hysteresis. The change in the output-input curve yields 

greater attenuation of the actuator output under lower excitation voltages, in addition to 

that caused by the excitation frequency, as seen in Figure 3.6. Both the percent hysteresis 

and attenuation of output displacement tend to be considerable at frequencies above 10 

Hz. Figure 3.7 shows that the variations in bias voltage caused an insignificant effect on 

the percent hysteresis. Figure 3.8 illustrates the peak-to-peak displacement responses 

measured during the second stage of the experiments under bias voltages of 30, 60 and 90 
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(amplitude =20 V) as a function of the excitation frequency. These also suggest relatively 

small effect of bias voltage on the output attenuation. 
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Figure 3.5: (a) Influence of excitation magnitude on the minor hysteresis loops at an 
excitation frequency of 100 Hz, and (b) Variation in percent hysteresis of the minor loops 
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3.2.3 INFLUENCE OF THE INPUT WAVEFORM 

A few studies have also shown the influence of excitation waveform on the 

response hysteresis of piezoceramic actuators using harmonic and triangular excitations 

at low frequencies of 5 Hz [34] and below 20 Hz [69]. It was shown that a triangular 

waveform yields slightly lower maximum hysteresis nonlinearity H of the mean curve 

when compared to that under a harmonic excitation. Such differences may be attributed 

to difference in the time rate of the input waveform. In this study, the hysteresis 

properties of the actuator are measured under triangular and sinusoidal input waveforms 

of identical amplitude (40 V) with a bias of 40 V but four different excitation frequencies 

(1, 10, 100, 200 Hz). The measured data revealed nearly negligible effect of the 

waveform at frequencies of I and 10 Hz, while the waveform effect was apparent at 

higher frequencies (100 and 200 Hz), as shown in Figure 3.9. 

The peak hysteresis loop nonlinearities H tends to be lower under the triangular 

input compared to that under sinusoidal input, which can be attributed to relatively lower 

magnitude of rate of change of the triangular input compared to that of the sinusoidal 

input, as shown in Figure 3.10. The figure compares the input waveforms at selected 

frequencies and their rate (dv/dt). Moreover, the constant rate of change of the input most 

likely yields relatively lower slope of the output-input curve under the triangular input. 

The sharp discontinuity in the triangular also further yields considerably lower peak-to-

peak displacement response compared to response to the sinusoidal input, which could be 

attributed to limited bandwidth of the actuator [69]. 
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3.3 Input-Output Characteristics of Magnetostrictive Actuators 

Magnetostriction is the phenomenon of strong coupling between the magnetic and 

mechanical properties. Some ferromagnetic materials as Terfenol-D show this 

phenomenon between the output strain and the applied magnetic field. The output strains 

are produced due to the applied magnetic field which produces changes in magnetization. 

Magnetostrictive actuators have been widely used in micro-positioning applications and 

vibration control. 

The major and minor hysteresis loop properties of a magnetostrictive actuator 

have been measured by Xiaobo Tan [25, 33]. The measurements were performed under 

increasing triangular waveform input currents with amplitude ranging from -0.7 to 1.2 A. 

The study also measured the hysteresis properties under harmonic excitations at different 

frequencies in the 10 to 100 Hz (10, 20, 50, and 100 Hz). The magnitude of the input 

current ranged from -0.7 to 0.9 A. The measured data was acquired and analyzed to study 

the major and minor hysteresis loops and rate dependence of the actuator hysteresis. 

Figure 3.11 shows the measured output displacement vs input current relationships for a 

magnetostrictive actuator acquired under increasing triangular input currents, with 

amplitude ranging from -0.7 to 1.2 A [25]. The measured data clearly show asymmetric 

major and minor hysteresis loops as well as output saturation in the output displacement. 

Figure 3.12 illustrates hysteresis properties of a magnetostrictive actuator at 

different excitation frequencies. The results attained under inputs at four frequencies in 

the 10 to 100 Hz range show considerable variations in the hysteresis loops. Figure 3.13 

illustrates the percent hysteresis of the actuator, while Figure 3.14 illustrates variations in 

percent hysteresis as a function of frequency of the input. The results show that the 
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hysteresis increases with frequency in a nonlinear manner. This dependence of output 

magnitude on the excitation frequency, however, would differ with type of actuator or 

material. 
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Figure 3.11: Measured output-input responses of a magnetostrictive actuator [25]. 
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Figure 3.12: Measured hysteresis loops relating displacement response of a 
magnetostrictive actuator to its applied current at different excitation frequencies [33]. 

78 



100 

I 
60 

40 

20 

A 

A 

A 

20 40 60 80 

Frequency (Hz) 

100 120 

Figure 3.13: Percent hysteresis of the magnetostrictive actuator under excitations at 
different frequencies (based on data obtained from [33]). 

40 60 80 

Frequency (Hz) 

120 

Figure 3.14: Variations in displacement amplitude of a magnetostrictive under excitations 
at different frequencies (based on data obtained from [33]). 

79 



3.4 Input-Output Characteristics of SMA Actuators 

The output-input hysteresis properties of two shape memory alloy (SMA) 

actuators have been measured by Robert Gorbet [21]. The study performed measurements 

on two SMA actuators, including a one-wire and two-wire actuators. The measurements 

were performed to establish relationships between the output displacement and the input 

temperature. The variations in input temperature were realized by applying triangular 

waveform currents of varying magnitudes. For single-wire SMA actuator, the current was 

varied from 0 to 1 A, which resulted in input temperature variations from 0 to 175° C. 

The input current for the two-wire SMA actuator ranged from -1 to 1 A resulting 

temperature variations from -175 to 175° C. 

The input current variations were at a low frequency. The acquired data were 

analyzed to derive the minor and major hysteresis loops of the two SMA actuators, while 

the rate dependence of the actuators output and hysteresis could not be established. The 

output displacement responses of the two actuators are illustrated in Figure 3.15 as a 

function of variations in the input temperature. The results clearly show highly 

asymmetric output-input relations of both actuators. The asymmetry is evident iruboth the 

major as well as minor hysteresis loops. The results also show notable output saturation. 

The output displacement of the single-wire actuator tends to saturate most notably at 

temperatures exceeding 80°C. The two-wire actuator also exhibit similar saturation when 

the magnitude of the temperature approaches 50°C. 
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Figure 3.15: Measured output-input responses of two smart actuators: (a) a two-wire SMA 
actuator; and (b) a one-wire SMA actuator wire [21]. 
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3.5 Discussions 

The experimental results of the smart actuators show different hysteresis properties 

between the input and the output. These hysteresis properties are presented in Table 3.1 

for piezoceramic, magnetostrictive and SMA actuators. The piezoceramic actuator show 

symmetric hysteresis loops without output saturation, while the magnetostrictive and 

SMA actuators show asymmetric major and minor hysteresis loops as well as output 

saturation in the output displacement. The piezoceramic actuator show symmetric rate-

dependent hysteresis effects between the input voltage and the output displacement, 

where the hysteresis increases as the excitation frequency of the input voltage increases at 

frequencies above 10 Hz, while the amplitude of the output displacement decreases. On 

the other hand, the magnetostrictive actuator exhibits asymmetric rate-dependent 

hysteresis effects when the frequency of the input current increases. 

Table 3.1: Hysteresis properties of smart actuators. 

Smart actuator . , , _. , , ^ Symmetric Asymmetric ^ *\. 
mdependent dependent saturation 

Piezoceramic v v S X X 

Magnetostrictive 

Shape Memory j y </ . </ 
Alloys 

The experimental results show that developing a hysteresis model to characterize 

the hysteresis properties of the smart actuators is a challenge. The required hysteresis 

model should exhibit the following hysteresis properties: 
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• Symmetric hysteresis loops to characterize the rate-independent hysteresis 

properties of the piezoceramic actuators. 

• Asymmetric hysteresis loops to characterize the rate-independent hysteresis 

properties of the magnetostrictive and SMA actuators. 

• Output saturation to characterize saturated hysteresis loops of the 

magnetostrictive and SMA actuators 

• Symmetric rate-dependent hysteresis loops to characterize the rate-dependent 

hysteresis properties of the piezoceramic actuators. 

• Asymmetric rate-dependent hysteresis loops to characterize rate-dependent 

hysteresis properties of the magnetostrictive actuators. 

The following Prandtl-Ishlinskii models, presented in Table 3.2, can be applied to 

characterize symmetric, asymmetric and rate-dependent hysteresis properties. These 

models are: 

• The classic Prandtl-Ishlinskii model, constructed by classic play operator, can be 

used to characterize rate-independent and symmetric hysteresis loops of the 

piezoceramic actuators. 

• The generalized Prandtl-Ishlinskii model, implemented using the generalized rate-

independent play hysteresis operator, can be used to characterize asymmetric and 

saturated hysteresis loops of the SMA and magnetostrictive actuators. 

• The rate-dependent Prandtl-Ishlinskii model based rate-dependent play operator 

can be applied to characterize rate-dependent hysteresis loops of the piezoceramic 

actuators. 

• The generalized rate-dependent Prandtl-Ishlinskii model based generalized rate-

dependent play operator can be used to characterize asymmetric rate-dependent 

hysteresis loops of the magnetostrictive actuators. 

83 



Table 3.2: Hysteresis properties of the Prandtl-Ishlinskii hysteresis models. 

Hysteresis model 

Classic PI 

Rate-dependent PI 

Generalized PI 

Generalized rate-
dependent PI 

3.6 Summary 

Rate-
independent 

V 

s 
s 
s 

Rate-
dependent 

X 

s 
X 

^ 

Symmetric 

y 

X 

S 

s 

Asymmetric 

X 

S 

^ 

s 

Output 
saturation 

X 

X 

/ 

^ 

Hysteresis properties of piezoceramic, magnetostrictive, and SMA actuators are 

thoroughly characterized under a range of excitation either from reported data or 

laboratory measurements. Measurements performed on a piezoceramic actuator under 

different input voltages in the 1 to 500 Hz frequency range revealed strong dependence of 

the response and the hysteresis on the excitation frequency. The hysteresis nonlinearities 

of the major as well as minor loops increased considerably with increasing input 

frequency, while the peak-to-peak displacement amplitude decreased. This dependence 

was particularly strong at frequencies above 10 Hz. It was thus concluded that the 

majority of the widely reported hysteresis models would be applicable for under 

excitations up to 10 Hz only. The experimental results attained under triangular 

waveform inputs in the 1 to 200 Hz showed that a triangular waveform yields relatively 

smaller hysteresis nonlinearities compared to that under a sinusoidal input, which is 

attributed to relatively smaller magnitude of the constant rate of change of the triangular 

input. 
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Unlike the piezoceramic actuators, the measured output-input characteristics of 

the magnetostrictive and SMA actuators showed asymmetric major as well as minor 

hysteresis loops between the input and the output. These actuators also show output 

saturation in the major as well as minor hysteresis loops. The magnetostrictive actuators 

further revealed rate-dependent hysteresis effects similar to the piezoceramic actuators. 

The results suggested that the asymmetry in the major/minor hysteresis loops, the rate 

dependence of the hysteresis effects and output saturation must be adequately considered 

in the hysteresis model. The Prandtl-Ishlinskii models formulated in Chapter 2 can 

adequately describe these nonlinear hysteresis effects. The classic Prandtl-Ishlinskii 

model, presented in Section 2.2, can effectively characterize the symmetric rate-

independent hysteresis loops such that observed for the piezoceramic actuator at low 

excitation frequencies. The generalized Prandtl-Ishlinskii model, presented in Section 

2.3, can yield asymmetric hysteresis major and minor hysteresis loops with output 

saturation as observed in the magentostrictive and SMA actuators. The rate-dependent 

Prandtl-Ishlinskii models, presented in Sections 2.4 and 2.5, can effectively describe the 

symmetric as well as asymmetric rate-dependent hysteresis properties. The classic and 

the generalized Prandtl-Ishlinskii models are subsequently explored in Chapter 4 to 

characterize the observed hysteresis properties of the smart actuators. 
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Chapter 4: Modeling Rate-Dependent and Asymmetric 
Hysteresis Nonlinearities of Smart Actuators 

4.1 Introduction 

Smart materials based actuators, such as piezoceramic, magnetostrictive and shape 

memory alloy actuators are widely used in micro-positioning, vibration control and 

manufacturing applications [32-52]. These actuators, however, exhibit hysteresis 

phenomenon, which can cause inaccuracy and oscillations in the system response, and 

could lead to instability of the closed-loop system. A number of models have been 

proposed to characterize the hysteresis phenomenon in smart actuators. Hughes and Wen 

[20] proposed Preisach model comprising a second-order polynomial density function 

and evaluated the fundamental wipe-out and minor-loop congruent properties of 

piezoceramic and SMA actuators, which were verified experimentally. Ge and Jouaneh 

[22] characterized the hysteresis in a piezoceramic actuator using modified relay 

operators with threshold values of 0 and +1, which replaced the threshold values of -1 

and +1 of the classical operator. The effectiveness of the FOD (first-order decreasing 

curves) method in identifying different forms of the Preisach function was demonstrated 

by Gorbet et al. [21, 60] to characterize the hysteresis properties of two different SMA 

actuators. Choi et al. [72] proposed a proportional relationship between the major 

hysteresis loop and FOD curves of a SMA actuator to further simplify the parameters 

identification of a hysteresis model-based modified operator. Preisach model also has 

been used to characterize hysteresis properties of magnetostrictive actuators. As an 

example, Tan and Baras [25] characterized major and minor hysteresis loops of 

magnetostrictive actuators using Preisach model together with the recursive parameter 
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identification approach. Another phenomenological operator-based hysteresis model is 

the Krasnosel'skii-Pokrovskii model which is constructed by integral of a density 

function and the Krasnosel'skii-Pokrovskii operator. Unlike the relay operator, the 

Krasnosel'skii-Pokrovskii operator is constructed using two piecewise Lipschitz 

continuous functions and two threshold values [4]. Banks et al. [28] and Galinaities [27] 

applied this model to characterize hysteresis effects in smart actuators. These hysteresis 

models have been mostly applied to describe rate-independent hysteresis effects in 

ferromagnetic and smart actuators, although the rate-dependent hysteresis nonlinearities 

of such actuators have been widely demonstrated. 

Alternatively, dynamic density functions have been defined to predict rate-

dependent hysteresis properties in conjunction with Preisach model [33, 34, 64, 74]. 

Smith et al. [7] presented a homogenized energy model using Preisach model to 

characterize the rate-dependent hysteresis in a magnetostrictive actuator over a wide 

frequency range (1-2 kHz). Ang et al. [68] proposed a dynamic function and dead zone 

operator for the Prandtl-Ishlinskii model in an attempt to characterize the rate-dependent 

hysteresis in piezoceramic actuators. The validity of the model was demonstrated for a 

harmonic input at 10 Hz, and a complex harmonic input comprising 5, 20 and 35 Hz 

components. 

In this chapter, it is shown that the generalized Prandtl-Ishlinskii model based 

play hysteresis operator can be used to characterize symmetric as well as asymmetric 

rate-independent hysteresis properties of different smart actuators with output saturation 

by selecting different envelope functions. The validity of the resulting generalized 

Prandtl-Ishlinskii model is demonstrated by comparing the model responses in terms of 
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saturated symmetric and asymmetric major and minor hysteresis loops with the measured 

input-output characteristics of magnetostrictive, SMA and piezoceramic actuators. The 

validity of the proposed model is demonstrated using measured data acquired for 

piezoceramic and magnetostrictive actuators, which show symmetric and asymmetric 

rate-dependent hysteresis, respectively. 

4.2 Classical Prandtl-Ishlinskii model for Characterizing Hysteresis in 
Smart Actuators 

Classic Prandtl-Ishlinskii model (2.5) has been used to characterize rate-

independent and symmetric hysteresis properties of piezoceramic actuators [30]. In this 

section, the properties of the Prandtl-Ishlinskii model are explored and the model is 

applied to characterize hysteresis properties of piezoceramic, magnetostrictive and SMA 

actuators. A density function of the following form is selected for the classic Prandtl-

Ishlinskii model: 

p(r) = pe"r (4.1) 

where r is a constant and p is a positive constant. The threshold function of the play 

operator is chosen as: 

rj=cj y = l, 2, 3, ....,/?. (4.2) 

where c is a positive constant. The parameters of the classical Prandtl-Ishlinskii model 

are identified through minimization of an error squared function given by: 

M 2 

j(X) = 2(n(v(0)-j>m(0) (4.3) 
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where FI(v(/)) is the response of the classical Prandtl-Ishlinskii model, ym is the measured 

displacement of an actuator, M is the number of data points considered, J is the error 

function for the major as well as minor hysteresis loops, and X is the parameters vector 

given by: {X} = {x, p, q, and c}. The error minimization problem was solved using the 

MATLAB optimization toolbox, subject to following constraints: 

p,q,c>0 

The solutions of the minimization problem were attained for different starting parameter 

vectors, which converged to very similar solutions. The minimization problem was 

solved using the data for the piezoceramic actuator under a complex harmonic input, 

v(7)=50+10sin(27t/)+ 36cos(5. Int). The resulting model parameters identified using the 

piezoceramic actuator data are summarized in Table 4.1. The results, shown in Figure 

4.1, show that the classic Prandtl-Ishlinskii model can accurately characterize the 

symmetric major as well as minor hysteresis properties of a piezoceramic actuator. 

The application of the classical Prandtl-Ishlinskii model is further attempted to 

characterize the saturated asymmetric hysteresis properties of SMA and magnetostrictive 

actuators, described in Sections 3.3 and 3.4, respectively. The resulting model parameters 

identified using reported measured data for two SMA and a magnetostrictive actuator are 

summarized in Table 4.2. Figures 4.2 and 4.3 illustrate the comparisons of the measured 

and the model displacement responses of the two actuators, respectively. From the 

results, it is apparent that the classical model yields substantial errors in predicting 

asymmetric hysteresis and output saturation properties of a class of smart actuators. This 

attributed to the symmetric and unbounded properties of the play hysteresis operator. 
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Table 4.1: Identified parameters of the classical Prandtl-Ishlinskii model. 

Parameter 
c 
P 
X 

<i 

Value 
2.243 
0.056 
0.041 
0.631 

Table 4.2: Identified parameters of the classical Prandtl-Ishlinskii model using the 
reported measured data for two SMA and a magnetostrictive actuators. 

Parameter Two-wire 
SMA actuator 

One-wire 
SMA actuator 

Magnetostrictive 
actuator 

c 
p 
r 
9 

2.338 
7.712X10-3 

5.494x10-3 

2.882xl0-7 

4.8735 
37.442xl0-3 

17.120xl0"3 

0.02681 

0.1751 
2.4944 
0.7502 
0.3464 

s 
c 
w 
S 
o 

-20 0 20 

Input voltage 

60 

Figure 4.1: Comparisons of displacement responses of the classic Prandtl-Ishlinskii 
hysteresis model with the measured data of a piezoceramic actuator under complex 
harmonic input f , measured;——— , model). 
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Figure 4.2: Comparisons of displacement responses of the classical Prandtl-Ishlinskii 
model with the measured data of two SMA actuators: (a) one-wire SMA actuator wire; 
and (b) two-wire SMA actuator. (—e , measured; - -A- - , model). 
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Figure 4.3: Comparisons of displacement responses of the classical Prandtl-Ishlinskii 
model with the measured responses of the magnetostrictive actuator ( — — , 
measured; , model). 
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4.3 Generalized Rate-Independent Prandtl-Ishlinskii Model for 
Characterizing Hysteresis in Smart Actuators 

In this section, the generalized Prandtl-Ishlinskii model, described in Chapter 2, is 

applied for characterizing asymmetric hysteresis properties of SMA and magentostrictive 

actuators with output saturation. The validity of generalized Prandtl-Ishlinskii model 

(2.13) is demonstrated by comparing the model responses with the measured major and 

minor hysteresis loops of the SMA, magnetostrictive and piezoceramic actuators. 

4.3.1 FORMULATION OF ENVELOPE FUNCTIONS AND PARAMETERS 
IDENTIFICATION 

The parameters of the generalized play hysteresis operator and the density 

function need to be defined on the basis of known characteristics of a smart actuator. A 

hyperbolic tangent function perhaps a better choice for the envelope functions to describe 

the output of such a function is continuous and invertible. The suggested envelope 

functions for generalized play operator (2.10) are expressed as: 

yr{y) = ao tanh(a,v + a,) + o, 
(4.4) 

yl (v) = b0 tanh(6,v + b2) + b% 

where a0 > 0, a/> 0, 02, 03, b0 > 0, b/> 0, bi, and hi are constants to be identified using 

the experimental data. 

The model parameters are identified using the reported measured output-input 

data, presented in Figure 3.15, for two SMA (single and double wires) and 

magnetostrictive actuators. The generalized model parameters are identified through 

minimization of an error sum squared function (4.3). The parameters vector for the 
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generalized model is given by: {X)={ao, aj, 02, 03, bo, bj, b2, b3, r, p, and c}. The error 

minimization problem was solved using the MATLAB optimization toolbox, subject to 

following constraints: 

a0, ai, bo, bj,p, c> 0 

The solutions of the minimization problem were attained for different starting parameter 

vectors, which converged to very similar solutions. The minimization problem was 

solved using the data for all three actuators and the resulting model parameters are 

summarized in Table 4.3. 

The applicability of the generalized Prandtl-Ishlinskii model for characterizing 

symmetric hysteresis of piezoceramic actuators was further investigated. The simulations 

were performed for both the generalized and classical Prandtl-Ishlinskii models 

employing similar density and threshold functions, described in (4.1) and (4.2), 

respectively. Linear envelope functions of the following form were used in generalized 

play operator (2.6): 

7r(v) = aov+a\ 
(4.5) 

where a0> 0, a\, bo>0, and b\ are constants. 

Parameters identification of the generalized Prandtl-Ishlinskii model was 

performed also on the output-input characteristics of the piezoceramic actuator. The 

measured data which is presented in Figure 4.1 were used to solve the error minimization 

problem defined in (4.3) to identify the model parameters. Table 4.4 summaries the 

identified parameters of the generalized Prandtl-Ishlinskii model. It can be seen that the 
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coefficients a0 and b0 of the two envelope functions are quite comparable, which suggests 

similar envelope functions for nearly symmetric hysteresis properties of the piezoceramic 

actuator. 

Table 4.3: Parameters of the generalized Prandtl-Ishlinskii model identified using the 
reported measured data for two SMA actuators and a magnetostrictive actuator. 

Two-wire One-wire Magnetostrictive 
parameters SMA actuator SMA actuator actuator 

c 
p 
T 

a0 

ai 

a2 

a3 

bo 
b, 

b2 

b3 

2.3665 
0.17533 
0.0049 
21.7265 
0.01124 
0.0001 

0 
23.1275 
0.01494 
1.8176 

0 

0.013 
1.281 
0.011 
1.545 
0.019 
0.288 
-0.923 
0.672 
0.026 
-0.239 
-0.159 

0.857 
1.361 
0.214 
15.991 
0.978 
-0.373 

0 
14.109 
0.973 
0.648 

0 

Table 4.4: Identified parameters for the generalized Prandtl-Ishlinskii models using the 
measured output-input characteristics of the piezoceramic actuator. 

Parameters Generalized Prandtl-Ishlinskii model 
C 1.194 
P 0.388 
T 0.081 
a0 0.326 
«) 5.535 
b0 0.396 
bt -9.982 
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4.3.2 EXPERIMENTAL VESICATIONS 

The validity of the generalized Prandtl-Ishlinskii model incorporating the 

generalized play operator with hyperbolic-tangent envelope functions is investigated by 

comparing the model responses with the available measured data of the SMA, 

magnetostrictive and piezoceramic actuators. Figures 4.4 and 4.5 illustrate comparisons 

of the generalized model responses of the SMA and magnetostrictive actuators, 

respectively, with the measured data. The results clearly suggest that the model can 

effectively predict asymmetric hysteresis properties of both types of actuators. Moreover, 

the model can also characterize output saturation of both the SMA actuators in the 

proximity of the extreme input temperatures, as seen in the output displacement vs input 

temperature properties of the one- and two-wire SMA actuators. Figure 4.5, in a similar 

manner, illustrates comparisons of the major and minor loops in the displacement 

responses of the model with the corresponding measured data. The results suggest 

reasonably good agreements between the model and measured displacement responses. 

The effectiveness of the generalized model in predicting the asymmetric saturated 

hysteresis responses of the single-wire SMA and magnetostrictive actuators can also be 

seen from comparisons of the displacement responses in the time domain, presented in 

Figures 4.6 and 4.7, respectively. The figures present the comparison of the model 

responses with the measured data for both actuators. The results show notable prediction 

error for both the actuator models. The peak errors in the displacement responses of the 

generalized Prandtl-Ishlinskii model using generalized play operator with the hyperbolic 

envelope functions of the one-wire SMA and magnetostrictive actuators are 0.66 mm and 

95 



2.94 \im, respectively, which are approximately 3% of the maximum outputs for both the 

actuators. 

"0 20 40 60 80 100 120 140 160 180 "200 -150 -100-60 0 50 100 150 200 

Input Temperature , n P u t Temperature 

(a) W 
Figure 4.4: Comparisons of displacement responses of the generalized Prandtl-Ishlinskii 
model with the measured data of two SMA actuators: (a) one-wire SMA actuator wire; 
and (b) two-wire SMA actuator. ( - - •* - - - model; O , measured). 
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Figure 4.5: Comparisons of displacement responses of the generalized Prandtl-Ishlinskii 
model with the measured responses of the magnetostrictive actuator ( , measured; 
———., model). 
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Figure 4.6: (a) Comparisons of time histories of displacement responses of the 
generalized Prandtl-Ishlinskii model with the measured data of the single-wire SMA 
actuator ( - - A - -, measured; a — , model); and (b) variations in the error. 
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Figure 4.7: (a) Comparisons of time histories of displacement responses of the 
generalized Prandtl-Ishlinskii model with the measured data of the magnetostrictive 
actuator (_ _ _ _ , measured; , model); and (b) variations in the error magnitude. 
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Figure 4.8: Comparisons of displacement responses of the Prandtl-Ishlinskii hysteresis 
models with the measured data of the piezoceramic actuator under complex harmonic 
( , measured; , model). 
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Figure 4.9: Comparisons of differences in output displacements of the generalized and 
classical Prandtl-Ishlinskii models and the measured data under complex harmonic input, 
( &•—- , classical model; a— , generalized model). 
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The output-input responses of the generalized model employing linear envelope 

functions are also evaluated under complex harmonic input of the form, v(/)= 

10sin(23t/)+36cos(5.l7tf) in order to characterize symmetric hysteresis of the 

piezoceramic actuator. The results are compared with the measured data for the 

piezoceramic actuator in Figure 4.8. Although the validity of the classical Prandtl-

Ishlinskii model in predicting the symmetric hysteresis properties presented in Figure 4.1 

has been demonstrated, the generalized model can provide enhanced prediction of the 

symmetric hysteresis properties. Figure 4.9 presents a comparison of output errors of the 

two models, classic and generalized Prandtl-Ishlinskii models, in the time domain, with 

respect to the laboratory-measured data. The peak deviation between the generalized 

Prandtl-Ishlinskii model responses and the measured data are in the order of 1.02um. 

While classic Prandtl-Ishlinskii model shows 2.59 um peak errors under complex 

harmonic and triangular inputs, respectively. These results suggest that the generalized 

Prandtl-Ishlinskii model could also characterize symmetric hysteresis properties more 

accurately, when compared to the classical model. 

4.4 Rate-Dependent Prandtl-Ishlinskii Model for Characterizing Rate-
Dependent Hysteresis of a Piezoceramic Actuator 

The measured output-input characteristics of the piezoceramic actuator, presented 

in Chapter 3, exhibit hysteresis effects that strongly dependent on the rate of the input. 

The effect was particularly strong at above 10 Hz. Both the classical and generalized 

models would yield significant errors under inputs at frequencies above 10 Hz. 

Furthermore, the measured responses revealed certain dependence on the type of the 

input. This was evident from the responses attained under triangular waveform inputs in 
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the 1 to 200 Hz, which revealed relatively smaller width of the hysteresis loops compared 

to that under a sinusoidal input. 

The dependence of the output in the rate of input could be incorporated within the 

generalized and classical Prandtl-Ishlinskii models through formulation of the rate-

dependent play operator and dynamic density function. A rate-dependent Prandtl-

Ishlinskii model is thus formulated for charactering the hysteresis responses of smart 

actuators over a wide range of input frequencies, such that: 

n(v(0)=Mv(/),v(0)+Jg(v(0,v(0)M^(v(0)^ <46> 

where g(v,v) and h(v,v) are positive continuous functions of the current input v(t) and 

its time rate v(/). The choices of the functions h(y,v) and g(v,v) are not unique, these 

would depend upon the nature of hysteresis of particular material or device. The 

functions Ji(v,v) and g(v,v) of the following forms may be chosen to characterize rate-

dependent hysteresis effects: 

h{v(t), v(0) = a1e-nHmenvi0 (4.7) 

g(v(/),v(0) = «2e-^<,)^"('> (4.8) 

where a\, 02, m\, mi, «i and n-i are constants. The dynamic threshold r is selected as: 

r=af\\n{pi+Zl\v{tf) (4.9) 

where A, and a are positive constants, /?, > 1 and e, > 1. The order of the rate-

dependent threshold is determined by positive integer zr that decides the order of the 

dynamic threshold. A higher-order threshold function was found to characterize 
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hysteresis effects more accurately under high frequency inputs. A second-order dynamic 

threshold r (zr - 2) is formulated in the following manner: 

r = a l n ^ +^|v(Or')ln(^2 +^ |v (Or 2 ) (4.10) 

4.4.1 PARAMETERS IDENTIFICATION 

The measured major hysteresis loop under different excitation frequencies of the 

piezoceramic actuator was applied to identify the parameters of the rate-dependent 

Prandtl-Ishlinskii model. Dynamic threshold (4.10) and the functions h(y,v) and g(v,v) 

defined in (4.7) and (4.8), respectively, need to be defined on the basis of known 

characteristics of a specific actuator. The experimental data obtained for the piezoceramic 

actuator under harmonic inputs at various frequencies in the lto 500 Hz range are applied 

to identify the model parameters. The parameter vectorX= {a, f}\, p2, h,h, s), £2, a\, #2, 

p, x, mi, rri2, nj, 1x2}, was identified through minimization of an error sum-squared 

function over a wide frequency range, given by: 

AX) = ̂ YjCjf(n(v(i))-ym(i)f (4.11) 

subject to: 

a, X\,X2, £\,£2, a\,02,p > 0 

# , # > 1 

where r!(v(/)) is the displacement response of the rate-dependent Prandtl-Ishlinskii 

model corresponding to a particular excitation frequency and ym is the measured 

displacement under the same excitation frequency. The error function is constructed 
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through summation of squared errors over a range of input frequencies. A weighting 

constant Cy (//=1, ..., n) was introduced to emphasize the error minimization at higher 

frequencies. The index i (i =1, ..., M ) refers to the number of data points considered to 

compute the error function J for one complete hysteresis loop. A total of 100 data points 

(M=100) were available for each measured hysteresis loop. 

The solutions of the minimization problem with various starting vectors resulted 

in the following solution for the model parameters: a=1.0, A/=0.00710, ^2=0.00128, 

#=1.0, #=2.3, £i=l.0,sf=l.0, a/=0.189, a2=0.116, mj=n,=2.9^l0'6, and m2=n2=0 were 

subsequently used to simulate the rate-dependent Prandtl-Ishlinskii model to examine its 

validity for characterizing major as well as minor hysteresis loops under harmonic inputs 

in the 1-500 Hz frequency range. The following inputs are applied also to excite the 

piezoceramic actuator: (i) sinusoidal input voltages of amplitude 40 V at 1, 10, 20, 150, 

200, 250, 300, 350, and 500 Hz, (ii) complex harmonic input voltages of the form, 

v(0=50+10sin(2;r#) +36COS(3.4TT/7), at 1, 10 , 50 , and 100 Hz, and (iii) triangular input 

voltages of amplitude 40 V at 1,10,150, and 200 Hz. 

4.4.2 MAJOR HYSTERESIS LOOP SIMULATION 

The simulation results attained under harmonic inputs (amplitude=40V) in the 1 

to 500 Hz frequency range are compared with the measured major hysteresis loops data 

to demonstrate the validity of the rate-dependent Prandtl-Ishlinskii model. Figure 4.10 

compares the model responses with the measured data under excitations at different 

frequencies in the 1 to 500 Hz range. The results suggest good agreements between the 

model and measured results, while the peak displacement error is below 5 urn, 
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irrespective of the rate of the input. In practice, both the measured and model results 

show increasing hysteresis and decreasing output amplitude with increasing excitation 

frequency. Figure 4.11 illustrates corresponding outputs of the rate-dependent play 

operator at different excitation frequencies, where the nonlinearity in the output increases 

as the excitation frequency of the input voltage increases. 

Input voltage Input voltage Input voltage 

Input voltage Input voltage Input vollage 

- i . . , ^J — L , . , , ._ 
0 2 0 40 6 0 8 0 0 2 0 4 0 6 0 8 0 

Input voltage Input voltage 

Figure 4.10: Comparisons of measured responses with the results derived from rate-
dependent model under inputs at different excitation frequencies ( — — — , measured; 
,•...,.,—,.., model). 
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Input Input Input 

Input Input Input 

Input Input 

Figure 4.11: Input output relationships of the rate-dependent play operator at different 
frequencies. 

4.4.3 MINOR HYSTERESIS LOOP SIMULATION 

The ability of the rate-dependent Prandtl-Ishlinskii model in predicting minor 

hysteresis loop behavior is further investigated over a wide range of excitation 

frequencies. For this purpose, the model responses to an input of the form, 

v(/)=50+l 0s\n(2nf /)+36cos(3 Anf t), are evaluated and compared with the measured data 

at 1, 10 , 50 and 100 Hz fundamental frequencies. The simulation results of the rate-

dependent model attained under selected fundamental frequencies are compared with the 

measured displacement responses in Figure 4.12. The results demonstrate reasonably 

good agreements in minor loop responses of the model with the measured data, 

irrespective of the fundamental frequency considered. Time histories of displacement 

responses of the rate-dependent Prandtl-Ishlinskii model are further compared with the 
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measured data obtained under the complex harmonic excitations with fundamental 

frequencies of 1, 10, 50 and 100 Hz in Figure 4.13. The figure also shows the time-

histories of error between the model and measured responses. The results suggest very 

good agreements between the predicted and measured displacement responses, while the 

peak displacement error is below 5 um, irrespective of the fundamental frequency. Table 

4.5 summarizes the percentage of norm and peak errors of the rate-dependent model at 

different fundamental frequencies, which tend to be bounded between 5.06-6.50% and 

3.57-4.77%, respectively. 

0 10 20 30 40 50 60 70 

Input voltage 
0 10 2 0 3 0 4 0 5 0 6 0 7 0 G O 

Input voltage 

Figure 4.12: Comparisons of measured responses with the results derived from rate-
dependent Prandtl-Ishlinskii model under inputs at different fundamental frequencies ( 

, measured; ———. , model). 

Table 4.5: Percent errors between the model and measured displacement responses at 
different excitation frequencies. 

Frequency (Hz) 
1 
10 

150 
200 

Percentage of norm error % 
6.11 
6.18 
5.06 
6.50 

Percentage of maximum error % 
3.85 
4.77 
3.57 
4.30 
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Figure 4.13: (a) Time histories of measured and model displacement responses at 
different fundemntal frequencies (••••••••—••, measured; , model), (b) Time histories 
of error in measured and model displacement responses at different fundemtal 
frequencies. 
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4.4.4 TRIANGULAR WAVEFORM INPUT 

The validity of the model is further explored under a triangular waveform voltage 

input at four excitation frequencies (1, 10, 100 and 200 Hz). The excitation was defined 

to yield peak amplitude of 40 V with a bias of 40 V, as it was applied in experiments. The 

model simulations were performed using the model parameters identified under distinct 

harmonic inputs to ascertain the general applicability of the model. Figure 4.14 illustrates 

comparisons of the model results in terms of major hysteresis loops with the 

corresponding measured data under the selected excitation frequencies. The results show 

good agreements between the model results and the measured data, although some 

deviations are evident in both the peak-to-peak displacement response and width of the 

hysteresis loop. The model results exhibit oscillations in the response corresponding to 

upper half of the triangular waveform, v(t) > 40 V, at higher frequencies, which are also 

evident in the measured data. These oscillations are caused by discontinuity in v(/) of 

the triangular input. The results further show asymmetric responses under upper and 

lower halves of the triangular waveform, where the oscillations are absent under the 

lower half of the waveform. This asymmetry is attributed to opposite signs of higher 

magnitudes of time rate of input at the extremities (v(Y)>0 near v(f) ~ 0 V; and v(/) < 

0 near v(t) ~ 80 V), which cause relatively small and large magnitudes, respectively, of 

the functions h(v,v) and g(v,v) described in (4.7) and (4.8). Such oscillations tend to 

diminish at lower frequencies, which can be attributed to relatively smaller magnitudes of 

v(/) and hysteresis. 

The time histories of the displacement responses of the rate-dependent model are 

also compared with the measured data obtained under the triangular excitations at 
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frequencies of 1, 10, 100 and 200 Hz in Figure 4.15. The figure also shows the error 

between the model and measured responses. The results clearly show very good 

agreements between the predicted and measured displacement responses under triangular 

waveform excitations at all the selected frequencies, as it was observed under harmonic 

and complex harmonic excitations. The peak displacement error is below 5 um under 

excitations at 1 and 10 Hz, while the peak error increases to nearly 5.15 um at 200 Hz. 

20 40 60 

Input voltage 

S 
A 
e o 
S 
a> 
o 
J2 
D. 
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frlOHz 

0 20 40 60 
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20 40 60 

Input voltage 

Figure 4.14: Comparisons of measured responses with the results derived from rate-
dependent Prandtl-Ishlinskii model under triangular inputs at different frequencies 
( , measured;"™--——-- , model). 
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Figure 4.15: (a) Comparisons of measured displacement responses with those of the rate-
dependent model under triangular inputs at different excitation frequencies ( • , 
measured; ,model); and (b) Error between the measured and model displacement 
responses. 

4.5 Generalized Rate-Dependent Prandtl-Ishlinskii Model 

Smart material actuators invariably exhibit rate-dependent hysteresis that may be 

either symmetric or asymmetric depending upon the actuation principle. The generalized 

Prandtl-Ishlinskii model, described in Section 2.5, is further enhanced to describe rate-
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dependent symmetric and asymmetric hysteresis. The generalized rate-dependent 

Prandtl-Ishlinskii model, presented in (2.23), is realized upon integration of a density 

function and the generalized rate-dependent play operator, capable of generating minor as 

well as major hysteresis loops with varying slopes of the ascending and descending input-

output curves. The dynamic threshold function has been described in (4.10) to enhance 

the prediction of rate-dependent hysteresis effects. The validity of the resulting 

generalized rate-dependent model is demonstrated by comparing the displacement 

responses of the model with the measured symmetric and asymmetric responses obtained 

for the piezoceramic and magnetostrictive actuators, respectively, under inputs at 

different frequencies in the 1-200 Hz and 10-100 Hz ranges. The model validity for the 

SMA actuator was not attempted since the data was not available and the fact that the 

rates of variations in the input temperature are relatively low. 

4.5.1 PARAMETERS IDENTIFICATION 

On the basis of the observed hysteresis properties of a magnetostrictive actuator, 

higher-order polynomial envelope functions are defined to realize asymmetric hysteresis 

properties of the operator and the model. These envelope functions are expressed as: 

sr 

rr(v)=Ea»v"+fl» 
"=1 (4.12) 

where s/ and sr are the orders of envelope function / ;(v) andyr(v), respectively. The 

constants of the proposed functions can be selected to realize different degree of 

asymmetry in the hysteresis properties. The generalized rate-dependent Prandtl-Ishlinskii 
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model is formulated using dynamic threshold r (4.9) is selected to characterize the rate-

dependent hysteresis. A classical form for the function h =qv and density function (4.1) 

are chosen in order to characterize the rate-dependent asymmetric hysteresis properties. 

The parameters of the envelope functions, dynamic threshold, and density function need 

to be defined on the basis of known characteristics of specific smart actuators. Rate-

dependent play operators are defined by constructing first (s/ =sr =1) and third-order (si 

=sr =3) envelope functions, as described in (4.12), in order to illustrate the influence of 

the order on the outputs of the rate-dependent Prandtl-Ishlinskii model. The experimental 

data obtained for the magnetostrictive actuator [33] and the piezoceramic actuator under 

harmonic inputs at various frequencies in the 10-100 and 1-200 Hz ranges, respectively, 

were considered for model parameters identification. The parameters identification, 

however, was limited to the generalized model alone in order to investigate its ability to 

predict both symmetric and asymmetric hysteresis effects of the respective actuators. 

The model parameters vectorX—{a, fii, fo, /./, Xi, p, r, a0, a/, a ,̂ 03, b0, b], b?, b$, 

q}, was identified through minimization of the error sum-squared function the 

displacement response of the generalized rate-dependent Prandtl-Ishlinskii model and the 

measured displacement over entire range of excitation frequencies. The error 

minimization problem was solved under the following constrains: 

a, Xu h,£1, £2, p,q> 0 

PhP2>l 

The minimization problem for the magnetostrictive actuator, solved considering 

only one level of input current amplitude of 0.8 A with a bias of 0.1 A {ny=\), since the 

data was available only under this excitation. Four different excitation frequencies (n2=4), 
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namely, 10, 20, 50, and 100 Hz, however were considered, with a total of 60 data points 

(/i,=60) for each hysteresis loop. For the piezoceramic actuator, the input voltage 

amplitude was limited to 40 V («r=l), while the data corresponding to four different 

frequencies of 1, 50, 100, and 200 Hz (n2=l) were considered with a total of 50 data 

points («;=50) for each hysteresis loop. A weighting constant Cj (jf=l, 2, 3, and 4) was 

introduced corresponding to selected excitation frequencies of 10, 20, 50 and 100 Hz for 

the magnetostrictive; and 1, 50, 100 and 200 Hz for the piezoceramic actuator, to 

emphasize the error minimization at higher frequencies. The solutions were obtained for 

a range of starting vectors and weighting constants. The weighting constants 

corresponding to minimize weighted sum squared error over the entire frequency range 

selected, which are summarized in Table 4.6 for both models. Table 4.7 presents the 

identified parameters of the generalized rate-dependent Prandtl-Ishlinskii models based 

upon linear and nonlinear envelope functions for the piezoceramic and magnetostrictive 

actuators. 

Table 4.6: Weighting constants Cjf applied in the minimization function for identification 
of parameters based upon magnetostrictive and piezoceramic actuator data. 

Magnetostrictive actuator Piezoceramic actuator 

Frequency(Hz) 

10 
20 
50 
100 

Q 
si =sr= 1 si =sr= 3 

13 11 
15 29 
24 12 
33 14 

Frequency(Hz) 

1 
50 
100 
200 

Q 
5/ —sr= 1 Si =sr= 3 

22 14 
27 12 
28 22 
44 32 
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Table 4.7: Identified parameters of the generalized rate-dependent Prandtl-Ishlinskii 
model using rate-dependent play operator of linear (si =sr= 1) and nonlinear (si =sr= 3) 
envelope functions for the magnetostrictive and piezoceramic actuators. 

Parameter 

a 

fil. 
fii 
h 
h 
P 
T 

a0 

ai 

ai 

ai 
bo 
b, 
b2 

b3 

1 

Rate-dependent play operator of linear 
envelope functions 

Magnetostrictive 
Actuator 

3.721 
1.199 
1.199 
0.063 
0.002 
0.005 
0.092 
19.908 
23.268 

— 

— 

-5.424 
3.190 

— 

— 

1.408 

Piezoceramic 
actuator 

2.795 
2.745 
1.021 

1.137xl0-3 

1.085* 10-4 

0.011 
0.044 
0.681 
0.681 

— 

— 

-0.199 
0.4584 

— 

— 

0.217 

Rate-dependent play operator of 
nonlinear envelope functions 

Magnetostrictive 
actuator 

4.848 
1.090 
1.199 

1.7312xl0"2 

6.322xl0"3 

0.005 
0.092 
-7.737 
30.265 
1.629 
2.861 
-3.338 
25.276 
-9.789 
9.098 
-7.510 

Piezoceramic 
actuator 

1.792 
2.264 
1.101 

1.642X10"6 

1.658* 10"5 

0.020 
0.038 
0.480 
0.239 

1.611XKT4-
5.609xl0"5 

-0.199 
0.248 

-6.883x10^ 
3.785xl0"5 

0.218 

4.5.2 EXPERIMENTAL VERIFICATIONS 

The validity of the generalized rate-dependent Prandtl-Ishlinskii models 

employing the rate-dependent play operators with linear and nonlinear envelope functions 

is examined by comparing the model responses with the measured data for the both 

actuators under different excitation frequencies. Figure 4.16 illustrates comparisons of the 

displacement responses of the generalized model based on asymmetric linear (s/ =sr =1) 

and nonlinear envelope functions (s/=sr=3) with the measured data of the 

magnetostrictive actuator corresponding to inputs at different discrete frequencies (10, 

20, 50, and 100 Hz). The results clearly suggest that the model can effectively predict the 
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asymmetric hysteresis properties of the actuator. Both the measured data and the model 

results exhibit relatively larger displacement amplitude of the actuator under negative 

current, even though the magnitude of the negative current is smaller (0.7 A) due to the 

bias current of 0.1 A. The comparisons also show slight deviations in the measured and 

model responses. The magnitude of the deviation is observed to be relatively large when 

linear and envelope functions are used to construct the generalized play operator. 

The time histories of displacement responses of the models employing linear and 

nonlinear envelope functions subject to excitations at the selected frequencies are also 

compared with the measured data in Figure 4.17. The results show reasonably good 

agreements between the model responses and the measured data corresponding to all the 

selected excitation frequencies. While the model with linear envelope function yields 

notable errors in the vicinity of the peak responses, the use of nonlinear envelope 

function reduces this error. The reason is that the gradient at the turning point changes 

with frequency and this will not be accounted by varying the threshold value. The time 

histories of the displacement errors corresponding to different input frequencies are also 

shown in Figure 4.18. The peak errors in responses of the model employing linear and 

nonlinear envelope functions vary within the above-stated bounds. The results further 

show that the model can effectively predict the rate-dependent hysteresis effect with 

reasonably good accuracy. Table 4.8 summarizes the peak errors between the measured 

data and outputs of the models employing rate-dependent play operator with linear and 

nonlinear envelope functions in terms of absolute peak displacement error and the peak 

percent error based on the measured response. 
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Figure 4.16: Comparisons of displacement responses of the generalized rate-dependent 
Prandtl-Ishlinskii model with the measured responses of a magnetostrictive actuator 
under different input frequencies: (a) play operator with linear envelope functions, s/= sr 

= 1; and (b) play operator with nonlinear envelope functions, s/=sr=3. ( 
— — - , measured; — , model). 
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Figure 4.17: Comparisons of time histories of displacement responses of models with the 
measured data of a magnetostrictive actuator at different input frequencies: (a) play 
operator with linear envelope function, s/ =sr= 1; and (b) play operator with nonlinear 
envelope function, s/ =sr= 3, ( , measured; , model). 
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Figure 4.18: Time histories of errors between the model and measured displacement 
responses of the magnetostrictive actuator at different input frequencies: (a) play operator 
with linear envelope functions, s/ =sr= 1; and (b) play operator with nonlinear envelope 
functions, s/=s,= 3. 
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As seen in the table, the peak errors of the generalized rate-dependent Prandtl-Ishlinskii 

model using rate-dependent play operator with linear and nonlinear envelope functions 

are bounded between 4.50 to 6.01 um and 3.09 to 5.00 um, respectively. The 

corresponding peak percent peak errors are bounded between 8.58% to 13.08% and 

5.98% to 10.95%. The results suggest that the use of rate-dependent play operator of 

nonlinear envelope function (si =^r=3) can help to reduce the prediction error over the 

range of excitation frequencies considered in the study. Furthermore, the measured and 

model responses of both the rate-dependent play operators show increasing hysteresis 

and decreasing output amplitude with increasing excitation frequency of the input 

current. 

Table 4.8: Displacement and percent peak errors between responses of the models based 
on linear (s/ =.yr

=l) and nonlinear (s/ =sr= 3) envelope functions of rate-dependent play 
operator and the measured data of the magnetostrictive actuator at different excitation 
frequencies. 

Frequency(Hz) 

10 
20 
50 
100 

Peak error in 
Sl=Sr=l 

4.50(8.58) 
5.13(9.92) 

6.01 (12.19) 
5.97 (13.08) 

um (percent error) 
si =sr= 3 

3.75(7.15) 
3.09 (5.98) 
4.36 (8.78) 
5.00(10.95) 

The validity of the generalized rate-dependent Prandtl-Ishlinskii model employing 

generalized rate-dependent play operators with linear and nonlinear envelope functions is 

also investigated for predicting symmetric hysteresis properties of the piezoceramic 

actuator. The generalized model was solved under a sinusoidal voltage input at four 

different frequencies using the parameters listed in Table 4.7. The resulting displacement 
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responses of the models are compared with the corresponding measured data in Figure 

4.19. Although the results attained from both the models show reasonably good 

agreements with the measured data, irrespective of the frequency, the model with 

nonlinear envelope functions yields relatively lower error. Both the model results and the 

measured data show increasing hysteresis and decreasing output amplitude with 

increasing frequency of the input voltage. 

The time histories of the models responses are further compared with the measured 

data in Figure 4.20 for the selected excitation frequencies. The results again suggest 

reasonably good agreements between the predicted and measured displacement responses 

of both the models, irrespective of the selected input frequency, although deviations in 

the vicinity of the peak response are also evident, particularly at the higher frequency of 

200 Hz. The use of nonlinear envelope functions in the rate-dependent play operator 

yields slightly better prediction of the response hysteresis as it was observed for the 

asymmetric hysteresis properties of the magnetostrictive actuator. The model employing 

the rate-dependent play operator with linear envelope function, however, provides lesser 

error under input frequencies of 50 and 100 Hz. Figure 4.21 illustrates the errors between 

the model responses and the measured data of the piezoceramic actuator. The results 

show that the peak errors, generally, occur in the vicinity of the peak response and remain 

in the order of 6 um for the model with linear envelope functions, irrespective of the 

input frequency. The peak magnitude and percent errors of both the models 

corresponding to different excitation frequencies are further are summarized in Table 4.9. 

120 



1-40-30-20-10 0 10 20 30 40 50 

Input voltage 
i0 -40 -30 -20 -10 0 10 20 30 40 50 

Input voltage 

(a) 

-40 -30 -20 -10 0 10 20 30 40 50 

Input voltage 

-40 -30 -20 -10 0 10 20 30 40 50 

Input v o l t a g e 

'% -40 -30 -20 -10 0" 10 20 30 « 50 

Input voltage 

(b) 

Figure 4.19: Comparisons of displacement responses of the generalized rate-dependent 
model with the measured data of a piezoceramic actuator under different input 
frequencies (——™» , measured; , model): (a) play operator with linear envelope 
function, s/=sr= 1; and (b) play operator with nonlinear envelope function, s/ =s,-= 3. 
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Figure 4.20: Time histories of displacement responses of the model and the piezoceramic 
actuator at different input frequencies ( , measured; , model) : (a) rate-
dependent play operator with linear envelope functions, s/ =sr= 1; and (b) rate-dependent 
play operator with nonlinear envelope functions, s/ =s,= 3. 

122 



0.01 0.02 0.03 

Time(s) 
(a) 

0.005 0.01 0.016 

Time(s) 

Time(s) 

f=100Hz 

VVWI 

0.02 0.03 

Time(s) 

§ 

t -5 
WWWl/y Vi 

(b) 

004 006 

Time(s) 

Figure 4.21: Time histories of errors between the model and measured displacement 
responses of the piezoceramic actuator at different input frequencies: (a) play operator 
with linear envelope functions, 5/ =sr= 1; and (b) play operator with nonlinear envelope 
functions, si =sr= 3. 
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Table 4.9: Peak displacement and percent peak errors between responses of the models 
based on linear (s/ =sr= 1) and nonlinear (s/ =sr= 3) envelope functions of rate-dependent 
play operator and the measured data of the piezoceramic actuator at different excitation 
frequencies. 

Frequency(Hz>) 

10 
50 
100 
200 

Peak error in 
Sl =Sr= 1 

5.87 (7.48) 
5.44 (7.24) 
6.08(8.11) 
6.84 (9.39) 

um (percent error) 
Si =Sr= 3 

4.99 (6.36) 
5.49 (7.30) 
3.81 (5.09) 
4.87 (6.68) 

4.6 Summary 

The validity of the generalized Prandtl-Ishlinskii model in predicting asymmetric 

and saturated major as well as minor input-output hysteresis loops was demonstrated for 

two different SMA actuators and a magnetostrictive actuator on the basis of the available 

measured data. The peak prediction errors for the actuators considered in the study were 

observed to be within 3% of the maximum output under triangular inputs of varying 

magnitudes. It is concluded that the Prandtl-Ishlinskii model comprising the generalized 

play operator can also describe symmetric hysteresis properties of a piezoceramic 

actuator, when linear envelope functions are employed. Although the classical model can 

also characterize the symmetric hysteresis properties, the generalized model revealed 

relatively smaller error for the piezoceramic actuator considered in the study. 

The validity of the rate-dependent Prandtl-Ishlinskii model was also examined 

under harmonic, complex harmonic and triangular waveforms, in a wide frequency range. 

The effectiveness of the model in characterizing major as well as minor hysteresis loops 

is particularly demonstrated under inputs at different frequencies. Comparisons of model 

results with the measured data obtained for the piezoceramic and magentostrictive 
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actuators revealed reasonably good agreements between the two in terms of both the 

major and minor hysteresis loops under harmonic and complex harmonic input voltages, 

irrespective of the excitation frequency. The simulation results revealed considerable 

increase in width of the hysteresis loops with increasing frequency of the input voltage, 

while the corresponding amplitude of output displacement decreased. The model results 

of the piezoceramic actuator attained under triangular waveform inputs in the 1 to 200 Hz 

frequency range also revealed very good agreements with the measured data. Both the 

experimental and model results showed that a triangular waveform yields relatively 

smaller width of the hysteresis loops compared to that under a sinusoidal input, which is 

attributed to relatively smaller magnitude of the constant rate of change of the triangular 

input. The large values of the time rate of change of triangular input near the extremities, 

however, caused oscillations in the responses at higher frequencies, which were evident 

from both the measured and model results. 

From the results, it can be concluded that the Prandtl-Ishlinskii model comprising 

the generalized rate-dependent play operator described by nonlinear envelope function 

can provide better predictions of the symmetric as well as asymmetric hysteresis 

properties under different rates of inputs. Furthermore, the generalized rate-dependent 

model can also predict the rate-independent hysteresis characteristics reasonably well, as 

it is evident from the responses under low frequency inputs. The use of higher order 

envelope functions of the rate-dependent play operator helps reduce the prediction error 

of the rate-dependent Prandtl-Ishlinskii model. 

The generalized Prandtl-Ishlinskii models are considered to be analytically 

invertible. This property is extremely desirable for real-time hysteresis compensations 
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and micro-positioning control. The analytical invertible generalized Prandtl-Ishlinskii 

models are investigated in the following chapter. 
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Chapter 5: Formulations of Inverse Prandtl-Ishlinskii Models 
for Hysteresis Compensation 

5.1 Introduction 

The exact inverses of the Preisach and KrasnoseF'skii-Pokrovskii models are not 

available, only numerical methods can be used to obtain approximate inversions of these 

models [22, 24, 26, 40, 53, 54, 58, 61, 69-71]. Ping and Ge [23] applied the inverse 

Preisach model as a feedforward compensator with PID controller to reduce hysteresis 

effects of a piezoceramic actuator. Galinaities [27] proposed the KrasnoseF'skii-

Pokrovskii operator instead of the used relay operator in the Preisach model and its 

inverse to characterize and to compensate the hysteresis effects of a piezoceramic 

actuator. Tan and Baras [25] applied an adaptive control approach to compensate 

hysteresis effects in a magnetostrictive actuator using the Preisach hysteresis model and 

its inverse. Nealis and Smith [71] proposed a robust control method for smart material 

actuators to achieve enhanced tracking performance using the inverse Preisach model. 

Song et al. [41], in a similar manner, applied the inverse Preisach model in conjunction 

with a lag-lead controller for compensation of hysteresis effects in a piezoceramic 

actuator. 

Unlike the Preisach and KrasnoseF'skii-Pokrovskii models, the Prandtl-Ishlinskii 

model is analytically invertible, and it can be conveniently implemented as a feedforward 

compensator for mitigating the hysteresis nonlinearities. The analytically derived inverse 

offers significant benefits in real-time control applications. This is because the 

compensation error can be obtained which will make it possible to design robust 

controller with stability analysis, which is lacking in studies using numerical inverse. 
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However, the advantage of the Prandtl-Ishlinskii model is limited by the class of 

hysteresis it can describe, namely the symmetric and rate-independent hysteresis with 

unbounded output. Krejci and Kuhnen [30] applied the Prandtl-Ishlinskii model to 

characterize and to compensate hysteresis nonlinearities of a piezoceramic actuator. In 

this chapter, the analytical inversions of the proposed generalized Prandtl-Ishlinskii 

model, the rate-dependent Prandtl-Ishlinskii model, and the generalized rate-dependent 

Prandtl-Ishlinskii model will be discussed for compensation symmetric, asymmetric, 

saturated, and rate-dependent hysteresis effects. It should be mentioned that the purpose 

of the analytical inverse is to obtain the analytical error of the inverse compensation. The 

error analysis of the inverse compensation will be presented for the Prandtl-Ishlinskii 

model and its inverse in Chapter 6. 

5.2 Analytical inversion of the Prandtl-Ishlinskii model 

An inverse Prandtl-Ishlinskii model has been obtained analytically in [2]. In order 

to construct the analytical inverse for the generalized Prandtl-Ishlinskii models, described 

in Chapter 2, the Prandtl-Ishlinskii model described by the initial loading curve. The 

inverse of the Prandtl-Ishlinskii model can be applied to compensate symmetric and rate-

independent hysteresis effects. In this section, the inverse of the Prandtl-Ishlinskii model 

is presented using the initial loading curve concept. 

5.2.1 CONCEPT OF THE INITIAL LOADING CURVE (SHAPE FUNCTION) 

The initial loading curve (shape function) is essential concept to present an 

alternative description for the Prandtl-Ishlinskii model as well as to derive the analytical 
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inversion of the generalized Prandtl-Ishlinskii models. Initial loading curve of the 

Prandtl-Ishlinskii model can be explained, physically, as a stress-strain curve, which is 

formulated due to increasing the load from zero to some final value [2]. This curve 

describes the possible hysteresis loops generated by the Prandtl-Ishlinskii model. The 

initial loading curve is defined when the initial state of the Prandtl-Ishlinskii model is 

zero and when the input increases monotonically. Figure 5.1 shows the relation between 

the vertical height g and the length of its projection onto the v-axis, x. The output g can be 

expressed when the input v increases and decreases by x as [2]: 

g{x) = x-2r (5.1) 

The output g can be also expressed as [2]: 

g(x) = sgn(*)max(|*|-2r,0) (5.2) 

Then, the previous equation can be modified as: 

g(;t) = 2sgn(x)max(|jc|/2-r,0) (5.3) 

/ 
y. 

Figure 5.1: the relation between the vertical elevation g and the length of its projection 
onto the v-axis. 
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The classical Prandtl-Ishlinskii model is generally expressed analytically as: 

R 

n[v](t) = qv(0 + $p(r)Fr[v](t)dr (5.4) 
o 

The initial loading curve of Prandtl-Ishlinskii model (5.4) is defined as [2]: 

r 

<p(r) = qr + $p(Og(Od£ (5.5) 
0 

The derivative of initial loading curve (5.5) with respect to threshold r yields: 

r 

<p'(r) = q + jp(OdC (5.6) 
0 

The density function of the model is the derivative of Equation (5.6) with respect to the 

threshold r: 

<pu(r) = p{r) (5.7) 

Equation (5.7) shows that the second derivative of initial loading curve (5.6) with respect 

to the threshold r is the density function p{r) of Prandtl-Ishlinskii model (5.4). Also, the 

constant q of Prandtl-Ishlinskii model can be obtained by substituting zero threshold, r = 

0, into (5.6) as: 

<p'(0) = q (5.8) 

Based on Equations (5.7) and (5.8), the alterative description of Prandtl-Ishlinskii model 

(5.4) using initial loading curve (5.5) can be expressed analytically as [2]: 

n[v](0 = <p\0)v(1) + $Fr[v](0<p"{r)dr (5.9) 
o 
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Remark 5.1: The shape function <p{f) of Prandtl-Ishlinskii model is convex and^"(r)>0 

[2]. 

Remark 5.2: For the shape function <p(r)= r, the Prandtl-Ishlinskii model (5.4) is reduced 

ton[v](t) = v(o. 

Example 5.1: Let's construct the Prandtl-Ishlinskii model using the density function p{r) 

=0.1 r and q =0.17. The output of the model is expressed analytically as: 

n[v](0 = 0.17v(0 + Jo. lrFr[v](t)dr (5.10) 

The output of the model under the harmonic input v(t)=7s\n(ni)/( 1+0.06/) for t s [0, 13] is 
shown in Figure 5.2. 
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Figure 5.2: Input output relations of Prandtl-Ishlinskii model (5.10). 

The initial loading curve of Prandtl-Ishlinskii model (5.10) is defined as: 

r 

(p(r) = 0A7r + ^0X(r-C)dC (5.11) 
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The input-output relationship for initial loading curve (5.11) is shown in Figure 5.3(a). 

Then <p\r) and q>"(r) are expressed as: 

^'(r) = 0.17+f 0 . 1 ^ 
0 

0>M(r) = O.lr 

(5.12) 

(5.13) 

The output of Prandtl-Ishlinskii model (5.9) using initial loading curve (5.11) is presented 

in Figure 5.3(b). Because the second derivative of the initial loading curve is the density 

function and the constant #=0.17 can be obtained by substituting r = 0 in (5.12); the 

example illustrates that Prandtl-Ishlinskii model indeed can be described analytically 

using the initial loading curve. 

a-

(a) 
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Figure 5.3: Input output relations of: (a) Initial loading curve (5.11); and (b) Prandtl-
Ishlinskii model. 

132 



5.2.2 INVERSE PRANDTL-ISHLINSKII MODEL 

After introducing the Prandtl-Ishlinskii model expressed by the initial loading 

curve concept, the inverse Prandtl-Ishlinskii model which is also expressed by the initial 

loading curve can be introduced. This is the key for the development of the general frame 

of the inverse generalized Prandtl-Ishlinskii model. The inversion of the classical Prandtl-

Ishlinskii model is expressed analytically as [30]: 

n-'[v](0 = qMt) + J/#)F f MCOtf (5-14) 
0 

where r is the threshold of the inverse, F.[v] is the play operator of the inverse Prandtl-

Ishlinskii model, and the constant ql is defined as: 

g - ' = I <515) 
q 

The threshold r of the inverse Prandtl-Ishlinskii model is defined for / = 0, ... , n and 

r0<i\<... < rn+i =R = co as [30]: 

r,=<p(r,) (5.16) 

this yields: 

T 

r,=rM+jVc-)<ft- (5.17) 

To obtain the analytical inverse of the Prandtl-Ishlinskii model, the output of the 

composition of the initial loading p(r) and its inverse (p'\r) must yield the threshold r as: 

<p"V(r)) = r (5.18) 

The derivative of Equation (5.18) with respect to the threshold r yields: 



Then, the substitution of (5.16) in (5.19) yields: 

(5.19) 

(5.20) 

Figure 5.4: Input-output characteristics of: (a) Initial loading curve q>{r), and (b) Inverse 
-h of initial loading curve <p~ (r). 

Figure 5.4 shows the initial loading curve <p(r), which is convex, and the inverse of the 

initial loading curve <p~'(r), which is concave. Because the exact inverse of the initial 

loading curve <jf\r) exists, the composition of the initial loading curve and its inverse, as 

shown in Figure 5.5, yields cp'\(p{r)) - r. 
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Figure 5.5: Input-output characteristics of composition initial loading curve q>{r) and its 
inverse <p~ (/-). 

The inverse classical Prandtl-Ishlinskii model based on the initial loading curve can be 

expressed analytically as [30]: 

IT1 [v](/) = p H (r)v(/) + \<p'' " ( ^ M O * (5.21) 

In the following the identification of the inverse Prandtl-Ishlinskii model parameters 

identified using the initial loading curve of the model will be discussed. 

The inverse of Prandtl-Ishlinskii model can be also expressed numerically as [30]: 

n-,[v](0 = ̂ ,v(o+£A^M(0 

Equation (5.6) can be expressed for r e [/";,r;+i) j— 0, ..., n as: 

(5.22) 
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0>'(>-) = <7 + i > , (5.23) 
;=1 

Then by substituting (5.23) into (5.17) , the threshold r, can be expressed as: 

/ - i 

The summation of Equation (5.24) over / from 1 toy" yields [30]: 

y-i 
rJ=qrJ+^lp,(rJ-rl) (5.25) 

Equation (5.20) can be expressed as: 

^ h ( / } ) = lV(>}) (5.26) 

The density function of the inverse model can be computed in each interval \rp r.+]) 

using the following equations: 

M = q + £p, (5-27) 

1=1 

The substitution of (5.27) and (5.28) into (5.26) for each interval [/},/}+,) yields: 

- , < £ . 1 
q + / Pi= — : — 

- <,+±P, ( 529) 

/=i 

Then Equation (5.29) can be expressed as: 
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for j=l: qA +PX= (5.30) 

for j=2: q~l+Pi+Pi= (5.31) 
q + p]+p2 

for j=n : f' + p\ + Pi + - + P„= (5.32) 
q + pl+p2+.... + pn 

The weights of the density function are obtained as: 

forj=J: A = ~ , P) , (5.33) 

. . , f, _ Pi (5.34) 
for J=2: Pi - —. v ' 

(q + Pi+p)(q + p2) 

. _ Pj 
for j=n Pj- -j jzt 

The parameters of the inverse are identified as [30]: 

;=1 ;=1 

(5.35) 

<7_1 = - (5.36) 
q 
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rJ=grJ+Yipl(rJ-rl) (5.37) 

p.= , * ' . , 

to+ip,xi+£p,) (538) 

i=l i=l 

The inverse of the Prandtl-Ishlinskii model is investigated via the following example to 

compensate the hysteresis effects. 

Example 5.2: An input signal of the form: v(/)=5sin(2n:0+4cos(6/) is considered to 

evaluate minor as well as major hysteresis loops. The chosen simulation parameters are: 

T= 20, At = 0.01, q = 0.18. The following density function is selected as: 

p(r) = 0Ae^u (5.39) 

The threshold function is selected as: 

#j =0.24/, /= 1, 2, 3, . . . ,n = 20 (5.40) 

Figure 5.6 shows the simulation results of the Prandtl-Ishlinskii model and its inverse. 

Inverse Prandtl-Ishlinskii model is employed to compensate the hysteresis nonlinearities 

of the Prandtl-Ishlinskii model. Parameters of the inverse Prandtl-Ishlinskii model which 

are identified by Equations (5.36), (5.37), and (5.38). Figure 5.6 shows the capability of 

the inverse Prandtl-Ishlinskii model to compensate the hysteresis effects. The results 

show the exact inverse of Prandtl-Ishlinskii model compensates the symmetric hysteresis 

nonlinearities. Because the Prandtl-Ishlinskii model can only be applied to characterize 

symmetric and rate-independent hysteresis properties, the inverse of the model that is 

presented in this section cannot compensate asymmetric as well as saturated hysteresis 

properties. In this section, analytical inverse of the generalized Prandtl-Ishlinskii model, 

which exhibits asymmetric as well as saturated hysteresis loops, is presented analytically. 
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Input Input 

Figure 5.6: Compensation of symmtric hysteresis using inverse Prandtl-Ishlinskii model. 

5.2.3 FORMULATION OF INVERSE GENERALIZED PRANDTL-ISHLINSKII 
MODEL 

In this subsection, the inverse of the generalized Prandtl-Ishlinskii model is 

formulated based on the initial loading curve concept. Generalized Prandtl-Ishlinskii 

model that is formulated in Chapter 2 using generalized play operator Sr [v](t) to yield 

output <J>[v]0) is presented as: 

®[v](t) = jp(r)Sr[v](t)dr (5.41) 
o 

The output 0[v](?) of the generalized Prandtl-Ishlinskii model can be expressed as: 

<D[v](0 = 
|n+[r,(v)](o for v(o>o 

(5.42) 
[n-[yr{v)](t) for v(/)<0 

where the output of the Prandtl-Ishlinskii model n+[v](/) and IT[v](f) for increasing and 

decreasing input v(/) can be expressed as : 
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n+[v](t) = lp(r)F;[v](t)dr 

I (5.43) 
n-[v](t) = jp(r)Fr-[v](t)dr 

o 

Where the outputs of the play operator for increasing and decreasing inputs v(/) are 

expressed as: 

F;[v}(0 = rm^v(t)-rMt)) 

F;[v](0 = min(v(0 + r,w(/)) 

Consequently, Equation (5.41) can be expressed as: 

(5-44) 

n + o y , ( v ( 0 ) for v(t)>0 
®[v](t) = { "KK" J W (5.45) 

\lToyr{y{t)) for v(/) < 0 ; 

Then, it can be concluded that Equation (5.41) can be expressed as: 

o+[v](o = rr[.](/) or,(y) 

O-[v]( / ) = n - [ . ] ( 0 oyr{y) 

Equation (5.46) can be further expressed as: 

U+'\.]o O+[v](0= y,{v) 

(5.46) 

n-"'[.]o a>-[v](o = yr(v) 
(5-47) 

Because the envelope functions j \ and yr are invertible, Equation (5.47) can be presented 

as: 

r;1 o n+~ [.] o o>+[v](o=v 
(5.48) 

r;1 o rr~'[.]o o-[v](o=v 
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It can be concluded form (5.48) that the inverse of the generalized Prandtl-Ishlinskii 

model can be expressed as: 

<D+"[V](O= n'o rr" [v](o 

<J>-_1M(0= y?o n-"1 [v](o 

Using the inverse of the Prandtl-Ishlinskii model n~ ' [v]( / ) can be expressed as: 

(5.49) 

n-'[v](0= 
]p(r)F;[v](t)dr for v (0>0 
o 

]p(r)Fr[v](t)dr for v(t)<0 

(5.50) 

Then, the inverse of the generalized Prandtl-Ishlinskii model can be expressed in terms of 

density function and play operator as: 

<D-'[v](/) = 

r;lojp(r)F;[v](t)dr for v(/)>0 
o 

7? o\p(r)F7[v}(t)dr for v(/)<0 

(5.51) 

Since Equation (5.51) includes the inverse of the classical Prandtl-Ishlinskii model (5.14) 

without using the linear term q'xv, it is then straight forward to follow the same 

derivation. The inverse generalized Prandtl-Ishlinskii model can be presented by the 

initial loading curve concept as: 

*>>](/) = 
Y'i o ]<p-U'(r)F;[v](t)df for v(/)>0 

o 
R 

Tr1 o \(p'U\r)Fr[v]{t)dr for v(/)<0 

(5.52) 
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The modified initial loading curve for Prandtl-Ishlinskii model (5.43) can be expressed 

as: 

r 

<p(r) = jp(0(C-r)dC (5.53) 
o 

The density function of the generalized Prandtl-Ishlinskii model can be computed as: 

<p"(r) = p(r) (5.54) 

The generalized Prandtl-Ishlinskii model can be presented as: 

®[v)(t) = ]<p"(r)Sr[v](t)dr (5.55) 
o 

The above equation shows that the generalized Prandtl-Ishlinskii model can be presented 

by initial loading curve cp{r). Then the inverse of the generalized Prandtl-Ishlinskii 

model can be expressed as: 

^[v](t) = j^"(r)S.[v](t)dr (5.56) 
o 

where r is the threshold of the inverse model and #T' is the inverse of the modified 

initial loading curve. 

The key properties of the inverse generalized Prandtl-Ishlinskii model are same as 

these of inverse classical model. Some of these properties are summarized below: 

• Hysteresis operator: The inverse of the generalized Prandtl-Ishlinskii model is a 

hysteresis operator since it is formulated by integrating play hysteresis operators and 

a density function; 

• Clockwise operator: Since the density function of the inverse generalized model is 
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negative, the inverse generalized Prandtl-Ishlinskii model yields clockwise input-

output curves; 

• Lipschitz-continuity: For a given input v(/) e C [0, 7], it can be conclude that the 

inverse generalized Prandtl-Ishlinskii model is Lipschitz continuous; 

• Monotonicity: For a given input v(f) e C [0, 7], the inverse generalized Prandtl-

Ishlinskii model is a monotone operator, since inverse Prandtl-Ishlinskii model is a 

monotone and the density function/^/-) is integrable. 

5.2.4 PARAMETERS IDENTIFICATION 

In this subsection, the parameters of the inverse generalized Prandtl-Ishlinskii 

model, the threshold r and the density function p(r), are identified. The generalized 

Prandtl-Ishlinskii model can also be expressed as: 

*[v](0=X>(^,[v](0 (5.57) 

The inverse of the model (5.57) can be expressed as: 

<J>-'[v](0 = 
Y? o ( J M O ^ M C O ) for v(0>0 

r X S ^ ) ^ [ v ] « ) for v(0<0 
(5.58) 

Consequently, the inverse of the Prandtl-Ishlinskii model should be reformulated as: 

n[v](0 = X ^ ) ^ M ( 0 (5.59) 
<=0 

To obtain the parameters of the inverse model, the composition of the modified initial 

loading curve and its inverse yields the threshold r as: 
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<P~\<P(rj)) = rj (5.60) 

where./' = J, 2, ... , n. For the threshold r<?= 0, the output of the play operator reduces to 

the input v as: 

F r = 0 [ v ] = v (5.61) 

Then, the output of the Prandtl-Ishlinskii model for j-0 can be expressed as: 

n [ v ] ( 0 = /?(0)v (5.62) 

Consequently, the inverse of the Prandtl-Ishlinskii model for ro = 0 can be expressed as: 

n - , [ v ] ( 0 = (p(0))- 'v (5.63) 

The derivative of the modified initial loading curve with respect to the threshold r can be 

expressed as: 

<p\r) = p«+±Pi
 (564) 

i=i 

where 

r.-m (5"5) 

In a similar manner the derivative of the modified initial loading curves with respect to 

the threshold r is: 

1 
where 

($-,)'(r) = p0+YJPi (5.66) 

144 



1 
Po = — (5.67) 

Po 

The thresholds of the inverse are positive and are related to the thresholds /}• of the model 

as: 

0 = ^ / ( 0 - 1 ) (5.68) 
;=0 

Because the derivative of Equation (5.60) with respect to the threshold r can be expressed 

as: 

<P (r) = —— (5.69) 

Then it can be concluded that the weights of the density function of the inverse 

generalized Prandtl-Ishlinskii model can be presented as: 

Pj = 7 — ^ H (5-VO) 

5.3 Inverse Rate-Dependent Prandtl-Ishlinskii Models 

As shown in Chapter 3, the smart actuators, such as piezoceramic and 

magnetostrictive actuators show strong rate-dependent hysteresis effects that increases as 

the excitation frequency of the input increases beyond certain frequency. Inverse of the 

rate-independent hysteresis models, when employed as feedforward compensators to 

compensate the rate-dependent hysteresis nonlinearities, can exhibit considerable errors 

in the output compensation, which may cause inaccuracies and oscillations in the closed-
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and open-loop systems responses. Such oscillations, as an example, could be particularly 

detrimental in applications involving micro/nano-positioning control. In this section, 

inverse of the rate-dependent Prandtl-Ishlinskii model is presented for the purpose of 

compensating the rate-dependent hysteresis effects in smart actuators. 

5.3.1 INVERSE RATE-DEPENDENT PRANDTL-ISHLINSKII MODEL 

Analytical inverse of the rate-dependent Prandtl-Ishlinskii is formulated in this 

subsection. In other words, exact inverse of this rate-dependent model is reachable, 

consequently making it more attractive for compensation rate-dependent hysteresis of 

smart actuators. As shown in Chapter 2, the rate-dependent Prandtl-Ishlinskii model is 

expressed as: 

rT(v(/)) = <7v(/)+f/7(r)/v (V(t))dr (5.71) 
o 

Following the same procedure shown in section 5.2, the inverse rate-dependent Prandtl-

Ishlinskii model can be analytically expressed as: 

H-' (v(/)) = qMO + jfchFf (v(0M'" (5.72) 
0 

where f is the dynamic threshold of the inverse and p(r) < 0 defines the dynamic 

density function of the inverse model. The rate-dependent Prandtl-Ishlinskii model can be 

also expressed as: 

U(v(t)) = q-]v(0 + ip(r,)Ffi (liO) (5.73) 
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The inverse of the rate-dependent Prandtl-Ishlinskii model can be presented as: 

n-'(v(0) = qMt) + I M ) ^ WO) (5.74) 
1=1 

Based on the pervious description of the rate-dependent Prandtl-Ishlinskii model, the 

parameters of the inverse are expressed as: 

q = - (5.75) 
q 

rj=Vj+2aP,{rj-r^ (5.76) 
;=1 

Pj= J H 

(*+5>/X?+I>,) 

Pj_ 
(5.77) 

i=l ;=1 

Owing to the symmetric properties of the rate-dependent play hysteresis operator, 

the inverse of the rate-dependent Prandtl-Ishlinskii model can be used only to compensate 

rate-dependent symmetric hysteresis effects such as piezoceramic actuators. However, 

the magnetostrictive actuators show asymmetric rate-dependent hysteresis effects. In the 

following subsection, the inverse of the generalized rate-dependent Prandtl-Ishlinskii 

model will be presented. 

5.3.2 INVERSE GENERALIZED RATE-DEPENDENT PRANDTL-ISHLINSKII 
MODEL 

The generalized rate-dependent Prandtl-Ishlinskii model is formulated upon 

integrating the generalized rate-dependent play operator together with the density 

function p(r). This model exhibits high capability to characterize asymmetric rate-
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dependent hysteresis effects. This model successfully characterizes the asymmetric rate-

dependent hysteresis effects of magnetostrictive actuator at different excitation 

frequencies. The model output C>(v(/)) is expressed as: 

R 

O(v(0) = \p(r)S-r (y(t))dr (5.78) 
o 

Inverse of the generalized rate-dependent Prandtl-Ishlinskii model is presented to 

compensate the asymmetric rate-dependent hysteresis effects in smart actuators. The 

inverse of model can be used as a feedforward compensator in the control system. The 

exact inverse of the generalized rate-dependent Prandtl-Ishlinskii model can be derived if 

the inverse of the envelope functions y, and y~ :R-*R exists. Then, the inverse of 

the generalized rate-dependent Prandtl-Ishlinskii model can be analytically expressed as: 

o>(0)= r;
} o (n*+" (v(0) for v(o>o 

r;
] o (W-~\v(t)) for v(o<o 

where output of the inverse rate-dependent Prandtl-Ishlinskii model can be expressed 

under increasing and deceasing input as: 

rT+-1 (v(/)) = J P&F; (v(t))dF 
0 

rT""W)) = jp(hFr((v(0)dF 
o 

The generalized Prandtl-Ishlinskii model can also be expressed as: 

(5.80) 

<W0) = 2>W(v(0) (5-81) 
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where n is the number of the generalized rate-dependent play operators that are used in 

the implementation. The parameters of the inverse, the density function p(F) and the 

threshold r, are expressed as: 

k=— (5-82) 
Po 

PJ= , Pj , - i 
,_ ^ _ w - 6 " - * (5-83) 

=0 <=o 

(=0 

Remark 5.3: The above formulation of inverse generalized Prandtl-Ishlinskii model 

follows the same presented in section 5.3. The only difference is the dynamic threshold. 

5.4 Inverse Generalized Prandtl-Ishlinskii Model for Compensation 

In this section, simulation results are carried out to compensate asymmetric and 

saturated hysteresis of different input/output relationships. Hysteresis is obtained using 

generalized Prandtl-Ishlinskii. The analytical inverse of the generalized Prandtl-Ishlinskii 

model is employed as a feedforward compensator to compensate asymmetric as well as 

saturated hysteresis nonlinearities. 

5.4.1 COMPENSATION OF ASYMMETRIC HYSTERESIS LOOPS 

The effectiveness of inverse of the generalized Prandtl-Ishlinskii model in 

compensating asymmetric hysteresis nonlinearities is investigated in this section. An 
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input signal of the form: v(/)=5sin(27tf)+4cos(<fr) is considered to evaluate minor as well 

as major hysteresis loops. The following envelope functions are proposed to construct the 

asymmetric hysteresis loops using the generalized model: 

y,(v) = v 
(5.85) 

yr(v) = \2v+\.9 

The chosen simulation parameters are: T=20 and A/=0.01. The following density function 

is selected as: 

/?(/•) = 0.07e-*lr (5.86) 

The thresholds of the generalized play operator are selected as: 

rj=0.24j, j=0; 1,2, . . . , B = 49 (5.87) 

Figure 5.7 shows the simulation results of the generalized Prandtl-Ishlinskii model. The 

figure shows the capability of the model to show asymmetric major as well as minor 

hysteresis loops. Inverse generalized Prandtl-Ishlinskii model is employed to compensate 

saturated hysteresis nonlinearities of the generalized Prandtl-Ishlinskii model. Parameters 

of the inverse generalized Prandtl-Ishlinskii model are identified by Equations (5.68) and 

(5.70). This inverse model is used as feedforward compensator to compensate hysteresis 

effects of the generalized Prandtl-Ishlinskii model. Figure 5.8 shows the capability of the 

inverse generalized Prandtl-Ishlinskii model to compensate the asymmetric hysteresis 

effects. The results show that the exact inverse of generalized Prandtl-Ishlinskii yields 

linear input-output relationship between the input and the output of the inverse 

compensation. 

150 



-10 -8 -6 -A -2 0 2 4 6 

v(0 

Figure 5.7: Input-output relations of generalized Prandtl-Ishlinskii model of y/(v)=1.3v-
0.4andyr(v)=l-7v-1.9. 
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Figure 5.8: Compensation of asymmetric hysteresis loopsmwith inverse generalized 
Prandtl-Ishlinskii model of yi(y)=v and yr(v)=l .2v+l .9. 

5.4.2 COMPENSATION OF SATURATED HYSTERESIS LOOPS 

The effectiveness of the inverse generalized Prandtl-Ishlinskii model in 

compensating the saturated hysteresis effects is illustrated in this section. Simulation 

results are carried out to show capability of the inverse generalized Prandtl-Ishlinskii 

hysteresis model to compensate the saturated hysteresis nonlinearities. The following 

envelope functions are proposed for the pervious simulation in Section 5.4.1: 
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/ , (v) = 8tanh(0.22v - 0.6) 
(5.88) 

7r (v) = 7.7 tanh(0.2v+0.1)+0.1 

Figure 5.9 shows the input-output characteristics of the generalized Prandtl-Ishlinskii 

model. The figure shows the saturation property in the output of the generalized Prandtl-

Ishlinskii model for major as well as minor hysteresis loops. Inverse generalized Prandtl-

Ishlinskii model is employed to compensate the saturated hysteresis nonlinearities of the 

generalized Prandtl-Ishlinskii model. Parameters of the inverse generalized Prandtl-

Ishlinskii model which are computed via Equations (5.68) and (5.70). Inverse of the 

generalized Prandtl-Ishlinskii model is employed as a feedforward compensator to 

compensate saturated hysteresis effects of the generalized Prandtl-Ishlinskii model. 

Figure 5.10 shows the capability of the inverse generalized Prandtl-Ishlinskii model to 

compensate the saturated hysteresis effects. The results show that the inverse generalized 

Prandtl-Ishlinskii model, which is obtained analytically, can be applied to compensate 

hysteresis nonlinearities with output saturation. 
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Figure 5.9: Input-output relations of generalized Prandtl-Ishlinskii model of y/(v) = 8tanh 
(0.22v-0.6), yr(v)= 7.7tanh (0.2v+0.1)+0.1. 
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Figure 5.10: Compensation of saturated hysteresis loopswith inverse generalized Prandtl-
Ishlinskii model y/(v) = 8tanh (0.22v-0.6), yr(v)= 7.7tanh (0.2v+0.1)+0.1. 

5.5 Inverse Rate-Dependent Prandtl-Ishlinskii Models for 
Compensation 

The simulations were performed to compensate symmetric and asymmetric rate-

dependent hysteresis nonlinearities using inverse symmetric and asymmetric rate-

dependent Prandtl-Ishlinskii models as feedforward compensators at different excitation 

frequencies. The rate-dependent model is constructed with rate-dependent play operator, 

while the generalized rate-dependent Prandtl-Ishlinskii model is constructed using the 

generalized rate-dependent play hysteresis operator. In this section compensation of the 

rate-dependent hysteresis nonlinearities presented in Examples 2.3 and 2.4 are carried 

out. 

5.5.1 COMPENSATION OF RATE-DEPENDENT HYSTERESIS 

An input signal of the form: v(0=6sin(2/7rt)+3sin(3/7tt); is considered to evaluate 

minor as well as major hysteresis loops, while four fundamental frequencies are 

considered (/=10, 50, 100, and 200 Hz). The simulation parameters of Example 2.3 were 

chosen. In this example, the results obtained from the model show an increase in the 
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hysteresis nonlinearities as the fundamental frequency increases. The inverse of the rate-

dependent model is employed to compensate the rate-dependent hysteresis nonlinearities. 

The parameters of the inverse rate-dependent Prandtl-Ishlinskii model are computed by 

Equations (5.75), (5.76), and (5.77). As shown in Figure 5.11, the inverse of the rate-

dependent model is used as a feedforward compensator to compensate the rate-dependent 

hysteresis effects at different excitation frequencies. The inverse of the rate-dependent 

model compensate the hysteresis effects at different fundamental frequencies. 

5.5.2 COMPENSATION OF ASYMMTRIC RATE-DEPENDENT HYSTERESIS 

Compensation of asymmetric rate-dependent hysteresis nonlinearities are carried 

out via inverse generalized rate-dependent Prandtl-Ishlinskii model. Simulation 

parameters of Example 2.4 are used in this subsection. The inverse of the generalized 

rate-dependent model is applied as a feedforward compensator. The parameters of the 

inverse model are computed by Equations (5.82), (5.83), and (5.84). The results obtained 

in Example 2.4 show an increase in the hysteresis, as the fundamental frequency 

increases. The results further show that the model employing the generalized rate-

dependent play operator yields asymmetric rate-dependent hysteresis loops. As shown in 

Figure 5.12, the inverse generalized rate-dependent Prandtl-Ishlinskii model compensates 

asymmetric rate-dependent hysteresis nonlinearities. The results show that the inverse 

generalized rate-dependent Prandtl-Ishlinskii model compensates asymmetric rate-

dependent hysteresis nonlinearities. 
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Figure 5.11: Compensation of rate-dependent symmetric hysteresis nonlinearities at different 
excitation frequencies using inverse rate-dependent Prandtl-lshlinskii model as a feedforward 
compensator. 
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Figure 5.12: Compensations of asymmetric rate-dependent hysteresis nonlinearities at different 
excitation frequencies using inverse generalized rate-dependent Prandtl-Ishlinskii model as a 
feedforward compensator. 
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5.6 Experimental Verification of Hysteresis Compensation 

The generalized Prandtl-Ishlinskii model can also describe the symmetric hysteresis 

properties such as those observed in piezoceramic actuators, by letting y,{y) = yr{y), 

which is still different from the classical Prandtl-Ishlinskii model. The effectiveness of 

the inverse generalized model in compensating the symmetric hysteresis effects is 

investigated through simulation and laboratory experiments. The experiments were 

performed on a piezoceramic actuator (P-753.31C). 

5.6.1 PARAMETERS IDENTIFICATION AND MODEL VALIDATION 

Two different experiments were performed in the laboratory involving 

characterization of hysteresis and compensation. The experiments were performed 

initially to characterize the major and minor hysteresis properties of the piezoceramic 

actuator. The measured data were used to identify the generalized model parameters. The 

inverse generalized model was subsequently identified and applied as a feedforward 

compensator in the ControlDesk platform. The measurements were then performed to 

measure the compensated displacement response under the same input. Figure 5.13 

illustrates a schematic of the experimental setup for both the experiments, where the input 

in the characterization experiment was directly applied to the actuator. In the 

compensation experiment, the input was applied to the actuator through the inverse 

model. 
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Figure 5.13: Experimental setup for compensation of hysteresis nonlinearities of the 
piezoceramic actuator using inverse generalized Prandtl-Ishlinskii model as a feed 
forward compensator. 

The measured displacement and input voltage data were used for identifying the 

parameters of the generalized Prandtl-Ishlinskii model subject to the complex harmonic 

input used in the experimental study. Considering the nearly symmetric hysteresis 

properties of the piezoceramic actuator, linear envelope functions were chosen, such that: 

7,(v) = 7r(v) = c0v+c, (5.89) 

where c0 is a positive constant. The following density function is proposed for the model: 

P(r) = pe~ 

while the threshold /}• were chosen as: 

(5.90) 

fj=cj, y = 0 , l , 2 , . . . , 9 (5.91) 

The model parameters (c, p, r, c0, and c/) were identified through minimization of the 

error function defined in (4.3). Solutions were attained for a number of starting values of 
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the parameter vector, which converged to similar values. The generalized Prandtl-

Ishlinskii model parameters were identified as: e=3.47,/>=0.54, r=0.16, co=0.89, c/=0.37. 

The validity of the generalized Prandtl-Ishlinskii model employing the generalized play 

operators was examined by comparing the model displacement responses with the 

measured data, as shown Figure 5.14. The results clearly suggest that the model can 

effectively predict the hysteresis properties of the piezoceramic actuator. Furthermore, 

the output-input properties appear to be symmetric and the generalized model can 

accurately describe the symmetric hysteresis loops. Figure 5.15(a) presents a comparison 

of output of the model in the time domain, with respect to the laboratory-measured data. 

The peak deviation between the generalized Prandtl-Ishlinskii model responses and the 

measured data is in the order of 2.8 um, as shown in Figure 5.15 (b). 
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Figure 5.14: Comparisons of output-input responses of the generalized model with the 
measured responses (—-»»—— , measured; , model). 
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Figure 5.15 Time histories of measured and model displacement responses ( , 
measured; , model), (b) Time histories of error in measured and model 
displacement responses. 

5.6.2 MOTION TRACKING EXPERIMENT 

The inverse of the generalized Prandtl-Ishlinskii hysteresis model was derived and 

employed as a feedforward controller to compensate the hysteresis nonlinearities of the 

piezoceramic actuator. The parameters of the inverse model were identified from those of 

the generalized model together with the relations (5.66), (5.67), and (5.68). The 

thresholds of the play hysteresis operator of the inverse are: {0, 1.86, 4.79, 8.33, 12.22, 

16.3161, 20.53, 24.80, 29.12, 33.46}, while the density function values were derived as: 

{1.87, -0.68, -0.20, -0.089, -0.044, -0.023, -0.013, -0.007, -0.004, -0.002}. The input-

output characteristics of the inverse generalized Prandtl-Ishlinskii model are shown in 
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Figure 5.16 under the complex harmonic input. 
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Figure 5.16: Input-output characteristics of the inverse generalized Prandtl-Ishlinskii 
model. 

The measured input-output characteristics of the piezoceramic actuator with 

inverse model feedforward compensator are illustrated in Figure 5.17(b), while the errors 

with and without the compensator are compared in Figure 5.17(a). The results show that 

the inverse model feedforward compensator can effectively suppress the hysteresis effect, 

although some deviations are also evident. These deviations may be attributed to small 

prediction errors of the model as seen in Figure 5.14. 

The compensation effectiveness of the inverse model is further evaluated by 

comparing the time histories of the measured displacement responses of the piezoceramic 

actuator with and without the inverse feedforward compensator. For the purpose, the 

positioning error is computed as the deviation between the measured displacement and 

the input voltage. It should be noted that the input voltage defines the desired 

displacement responses since the sensitivity of the capacitive position sensor is 1 um/V. 

The results clearly show the compensation effectiveness of the inverse model. The 

peak position error of the piezoceramic actuator is nearly 7.5 um (7.52%), while the peak 
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error with inverse feedforward controller is only 2.41 um (2.43%). The results suggest 

that the proposed inverse of the generalized Prandtl-Ishlinskii model could effectively 

compensate hysteresis effects in real-time application. The exact inverse of the 

generalized Prandtl-Ishlinskii model can be also conveniently applied in closed-loop 

control algorithms, which would be most likely enhance compensation the inverse 

effects. 

Remark 5.4: To achieve higher positioning performance, control algorithms in closed-

loop systems can be easily developed together with inverse generalized Prandtl-Ishlinskii 

model to further eliminate the compensation errors as well as unknown disturbance. This 

is the major motivation for the development of the inverse model. 
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Figure 5.17 (a) Comparison of time-history of error between the output displacement and 
the input voltage, ( — ™ « « , without inverse feedforward controller; -—— , with 
inverse feedforward controller), (b) Output-input characteristics of the piezo caremic 
stage with Inverse feedforward compensator. 
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5.6.3 DISCUSSION 

As shown in the previous section, the inverse generalized Prandtl-Ishlinskii model 

shows error in the output of the inverse compensation when the inverse generalized 

Prandtl-Ishlinskii model is applied as a feedforward compensator. The cause of the 

compensation error in the output responses is the characterization error of the generalized 

Prandtl-Ishlinskii model. It is obvious that the error in the output of the inverse 

compensation will affect the performance of the piezoceramic actuator when it is coupled 

with a system. Because the inverse Prandtl-Ishlinskii models have been obtained 

analytically in Chapter 5, the error of the inverse compensation can be derived 

analytically. To obtain the error of the inverse compensation; the composition expression 

for the Prandtl-Ishlinskii model and inverse of the estimated Prandtl-Ishlinskii model will 

be presented and derived, respectively. 

5.7 Summary 

An analytical inverse of the generalized Prandtl-Ishlinskii model, which is 

constructed by the generalized play operator, is formulated for the purpose of 

compensation of the asymmetric and saturated hysteresis nonlinearities. This is carried 

out by presenting the generalized Prandtl-Ishlinskii model using the initial loading curve, 

which provides an alternative description for the generalized Prandtl-Ishlinskii model. 

This inverse can be used as a feedforward compensator to mitigate hysteresis effects. 

Parameters identification for the inverse generalized Prandtl-Ishlinskii model is discussed 

using the initial loading curve and envelope functions. Inverse rate-dependent and 

generalized Prandtl-Ishlinskii models, constructed by rate-dependent and generalized 
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rate-dependent play operators, consequently, are also obtained analytically. The 

analytically derived inverse Prandtl-Ishlinskii hysteresis models offer significant benefits 

in real-time control applications, because the compensation error of the inverse Prandtl-

Ishlinskii model can be obtained which will make it possible to design robust controller 

with stability analysis, which will be presented in Chapter 7. Simulation results show the 

capability of the inverse generalized Prandtl-Ishlinskii model (inverse feedforward 

compensator) to compensate asymmetric and saturated hysteresis nonlinearities. On the 

other hand, rate-dependent and generalized rate-dependent Prandtl-Ishlinskii models have 

also been used compensate rate-dependent symmetric as well as asymmetric hysteresis 

effects. 

Modeling and compensation of the hysteresis nonlinearities in a piezoceramic 

actuator using the generalized Prandtl-Ishlinskii model and its inverse are carried out 

experimentally. The compensator, which is the inverse of the generalized Prandtl-

Ishlinskii model, reduces the hysteresis effects in the output displacement of the 

piezoceramic actuator. Because of the characterization error between the model and 

measured output responses of the actuator, the error of the inverse compensation was not 

zero. The output of the inverse compensation shows slight nonlinear effects between the 

input voltage and the measured displacement. 
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Chapter 6: Analytical Error of Inverse Compensation with 
Prandtl-Ishlinskii Model 

6.1 Introduction 

To characterize hysteresis in smart actuators using the Prandtl-Ishlinskii model, 

the density function and the thresholds of the model have to be determined. This is 

carried out generally by estimation of the density function and the thresholds based on the 

measured data However, as shown in Chapter 4 that the characterization errors of the 

Prandtl-Ishlinskii models are not zero. Using the Prandtl-Ishlinskii model with estimated 

density and threshold functions to construct the inverse model and to utilize this inverse 

model for the compensation, as shown in Figure 6.2, will generate the compensation 

error. Because this error has not been identified in the literature, the stability analysis for 

the closed-loop control system with inverse compensation has not been presented. 

The analytical error of the inverse compensation is presented for a hysteresis with 

Prandtl-Ishlinskii model presentation. Owing to the analytical inverse of the Prandtl-

Ishlinskii model, the error of the inverse compensation is obtained analytically. To derive 

the error of the inverse compensation analytically, the initial loading curve of the Prandtl-

Ishlinskii model and composition of the initial loading curve of the Prandtl-Ishlinskii 

model are presented. Then, the inverse of the estimated Prandtl-Ishlinskii model is 

derived and presented based on the initial loading curve and its inverse, respectively. 

Simulation results for the error of the inverse compensation are demonstrated in details 

for the inverse of the estimated Prandtl-Ishlinskii model. 
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6.2 Problem Statement 

Figure 6.1 shows when v is applied as an input signal to the hysteretic actuator, 

the output of the hysteretic actuator v (/) can be analytically presented as: 

v(t) = P[u](t) (6.1) 

where P represents the hysteresis model for the hysteretic actuator. If the inverse of the 

hysteresis model Fx can be obtained, it can be employed as a feedforward compensator 

to compensate the hysteresis nonlinearities as shown in Figure 6.2. The inverse operator 

P'] takes v as input and outputs a signal P"'[v](t), such that the output P[v](i) is v*, such 

as: 

v*(0 = P o F'[v](t) 
(6.2) 

where "o" denotes the composition operator. 

* 
v 

Figure 6.1: Hysteretic actuator. 

v(/) 
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Figure 6.2: Open-loop control with inverse compensation. 
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The error of the compensated output can be expressed as: 

e(0 = v(0-v*(0 (6.3) 

However, as shown in Chapter 5, the exact inverse of the Prandtl-Ishlinskii model is 

achievable and can be obtained analytically. Then the output of the inverse compensation 

can be presented as: 

v(/) = non-,[v](/) (6.4) 

If the exact inverse of the Prandtl-Ishlinskii model can be applied, the error of the inverse 

compensation should be zero and v (t)=v(t). However, as shown in Chapter 4 that the 

characterization errors of the Prandtl-Ishlinskii models which are used to characterize 

different hysteresis effects in smart actuators are not zero. Consequently, when the 

inverse of these hysteresis models, formulated in Chapter 5, are applied to compensate 

for the hysteresis nonlinearities, the error of the inverse compensation will not be zero 

and the output of the inverse compensation will not show linear input-output relationship. 

In this chapter, analytical expression for the error e(t) of the inverse compensation will be 

derived using the inverse of the estimated Prandtl-Ishlinskii model. 

6.3 Analytical Expression of the Composition of the Prandtl-Ishlinskii 
Model 

In this section analytical expression of the composition for the Prandtl-Ishlinskii 

model will be briefly presented. The expression, which is presented in [77], is essential to 

obtain the error of the inverse compensation. The Prandtl-Ishlinskii model n which 

integrates the play operator Fr and the density function p(r) to characterize the hysteresis 
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nonlinearities is expressed as: 

l l[v](0 = qv(t) + $ p(r)Fr[v](t)dr (6.5) 

Figure 6.3 illustrates the concept of composition of the Prandtl-Ishlinskii model. The 

figure shows when the output of the Prandtl-Ishlinskii model np(r)[v](;), constructed with 

initial loading curve <p(r), is applied as an input to another Prandtl-Ishlinskii model n ^ 

with initial loading curve y/(r), the composition n ^ f n ^ K O can be characterized by 

Prandtl-Ishlinskii model n;/(r)[v](/) with initial loading curve ij(r). 

Figure 6.3: Composition of the Prandtl-Ishlinskii model. 

Analytically, for two different initial loading curves <p(r) and y/(r), the output of the 

Prandtl-Ishlinskii models are expressed as : 

n, ( r )[v](0 = <p'(0)v(t) + JFr[v](0<p"(r)dr 

0 

K 

n r ( r )[v](/) = ^'(OMO + \Fr[v](t)y/'(r)dr 
0 

The outputs of the above Prandtl-Ishlinskii models can be denoted as 

(6.6) 

(6.7) 



0(O = IWv](/) (6.8) 

p(0 = nHr)[v](o (6.9) 

The composition of the two Prandtl-Ishlinskii model is defined as [77]: 

n , w on , w [v ] (o = n,w[v](o (6.io) 

where 

r/(r)=(poy/{r) (6.11) 

Equation (6.10) can be written as: 

n^v/(r)[v](0=n7(r)[v](o (6.12) 

The Prandtl-Ishlinskii model of the initial loading curve ij(r) can be expressed as: 

R 

n7(r)[v](/) = ^(0)v(/) + J i v [ v ] ( / > 7 " ( ^ (6.13) 
0 

where rj"{r) is a density function and TJ'(0) is a positive constant. Equation (6.13) shows 

that the composition of the Prandtl-Ishlinskii model with initial loading curves c/> and y/ is 

a Prandtl-Ishlinskii model with initial loading curves rj(r). 

6.3.1 ILLUSTRATIVE EXAMPLE 

Consider an input of the form v(/) = 7sin(^)/(l + 0.06/) and t e[0. 13] for 

Prandtl-Ishlinskii model presented in (6.5). The Prandtl-Ishlinskii models constructed 

with <p"(r) = 0.\r, iff"(r) = 0A2r, <p'(0) = 0.17, and y/(0) = 0.2 are expressed as: 
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I W v ] ( 0 = 0.17v(/) + ]Fr[v]MOAr)dr (6.14) 

IVJvKO = 0.2v(0 + jFr[v](0(0.12r)^ (6.15) 

The chosen simulation parameters are: At=0.005, r e [0, 7], and Ar=0.01. Outputs of 

models (6.14) and (6.15) are shown in Figures 6.4(a) and 6.4(b), respectively. The output 

of Prandtl-Ishlinskii model n^(r)[v](f), which is also denoted as 6(f), is applied as an 

input signal to Prandtl-Ishlinskii model n^(r) (6.15). Then obtain the output of the Prandtl-

Ishlinskii model p(t) constructed by the initial loading curve y/(r): 

n. 

pit) = 020(f) + jFr[0](O(O.12r)<fr 
(6.16) 

The input-output characteristics of the composition between the outputs 6(i) and p(i) is 

shown in Figure 6.4(c). The initial loading curves of Prandtl-Ishlinskii models (6.14) and 

(6.15) are expressed as: 

•6 4 -2 0 2 4 6 

v(0 

(a) 

- 2 0 2 4 6 8 * S A 3 

v(i) 

(b) 

v(0 

(c) 

Figure 6.4: Input-output characteristics of Prandtl-Ishlinskii models: (a) n^^fv], (b) 
I W v ] , and (c) UnU)[v]. 
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p(r) = 0 . 1 r + ^ r 3 (6.17) 

y/(r) = 0.17r + ^ r 3 (6.18) 

Then the initial loading curve rj(r) is expressed as: 

, , 17r r3 3r5 3r7 r9 „ 1Q , 
«(r) = + + + + (6.19) 

1000 1000 5000 12500 125000 

The outputs of Initial loading curves (6.17), (6.18), and (6.19) are shown in Figure 6.5. 

Prandtl-Ishlinskii model that is constructed using initial loading curve tj(r) is defined as: 

nr,{r)[v](t) = 7?'(0)v(t) + \Fr[v)(t)Tj"(r)dr (6.20) 
o 

where the density function is expressed as : 

„, , 6r 60r3 126r5 72r7 , , _ . . 
n' (r) = + + + (6.21) 

1000 5000 12500 12500 
and. 

7 '(0) = — (6.22) 
' ' 1000 V ' 

Figure 6.6 illustrates comparison between the output of Prandtl-Ishlinskii models (6.20) 

and (6.16). The Figure shows perfect matching between the outputs of the models. 
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6.4 Inverse of the Estimated Prandtl-Ishlinskii Model 

After introducing the composition of the Prandtl-Ishlinskii model, the expression 

for the inverse of estimated Prandtl-Ishlinskii model is also required. Owing to the 

characterization error between the measured data and the outputs of the hysteresis 

models, the error of the inverse compensation cannot be zero. In this section, the inverse 

of the estimated Prandtl-Ishlinskii model is derived. This inverse will be employed to 

derive the error of the inverse compensation. 

As shown in Section 5.2 that the Prandtl-Ishlinskii model is identified by the 

initial loading curve. In a similar manner, the inverse of the Prandtl-Ishlinskii model is 

presented by the inverse of the initial loading curve. Consequently, the inverse of the 

estimated Prandtl-Ishlinskii model is identified using the inverse of the estimated initial 

loading curve. Let the initial loading curve of the Prandtl-Ishlinskii model is <p, the 

inverse of the estimated initial loading curve is i// = qTl, and the estimated density 

function of the inverse Prandtl-Ishlinskii model is p'(r) = y/"(r)<0. Then, the analytical 

inverse of the estimated Prandtl-Ishlinskii model is expressed as: 

IWvKO = qMt)+]p(r)FMOdr (6.23) 

o 

where f is the threshold of the inverse model. This threshold can be expressed for / = 0, 

1, 2, ..., n as: 

// 

i-i 
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As shown in (6.23), the inverse of the Prandtl-Ishlinskii model is a Prandtl-Ishlinskii 

model. It can be concluded that the inverse of the estimated Prandtl-Ishlinskii model is 

Lipschitz continuous and maps C [0, T\ to C [0, T\. The inverse of estimated Prandtl-

Ishlinskii model can be also numerically expressed as: 

nr(r)[v](0 = qMt) + 5>^[v](0tf, (6.25) 
7 = 1 

To compute the threshold of the inverse, the following steps are carried out for 

r e[rj, ry+1), where j=0, 1, 2 n: 

J 

l-\ 

<p'(r) = q + YjpiAri (6.26) 

Then the threshold r : 

r, = f,A Hq + YjP^' _r'-i) (6-27) 

for / = 0,1 ,2 ... , n, the summation of equation (6.27) from 1 toy : 

7-1 

pj = Qrj +HP< (rj ~ r> ) ^ <6-2 8) 
/=1 

To compute the weights of the density function of the inverse model in each interval 

[>>0+1) for ./=0, 1, 2 »: 

(p'y{r) = \lqf{r) (6.29) 

Then, 
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<P\r) = q + YJpM (6.30) 
;=I 

The following equation can be obtained by substituting (6.30) and (6.31) in (6.29): 

J j 

<IA+YJP>^=—i (6.32) 

Equation (6.32) can be expressed as: 

for 7=7: q~l +>-Ar, = — (6.33) 
q+pM 

for j=2: qX + /3,*Ar, + p2Ar2 = —- (6.34) 
q + p ^ + p2Ar2 

for j=n: <7~' + P\&\ + p\br2 + •••• + P*AK = — (6.35) 
9 + P\ &\ + Pl&l + • - + Pn&n 

Then, the density function of inverse of Prandtl-Ishlinskii model (6.25) on each interval 

can be expressed as: 

fory=7: Pi = ' . . . (6.36) 
q(q + p.Ar^Ar, 

p7Ar7 

for 7 =2: P2=~- 7 T~77 —7—r (6-37) 
(q + p]Ar]+ pAr2 )(q + p2Ar2 )Ar2 
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for j=n: Pj=-
Pj^i 

H 
(q + X pfoXq + S Pi^&r, 

(6.38) 

6.5 Analytical Error of the inverse Compensation of the Prandtl-
Ishlinskii Model 

For the first time in the literature, the error of the inverse compensation is 

formulated analytically for the Prandtl-Ishlinskii model using the inverse of the estimated 

Prandtl-Ishlinskii model. This analytical formulation shows that the error of the inverse 

compensation of the Prandtl-Ishlinskii model is still a Prandtl-Ishlinskii model. 

Theorem 6.1: When the inverse of the estimated Prandtl-Ishlinskii model FL.,. ,is 

applied as a feedforward compensator to mitigate the hysteresis nonlinearities of the 

Prandtl-Ishlinskii model n (r), as shown in Figure 6.7, the error of the inverse 

compensation for the input v(/) e C[0,T] can be expressed as: 

e(t) = (1 -i7/(0))v(0- \Fr[v]W{r)dr (6.39) 
o 

where 7](r) = (p(<p"' (r)) is initial loading curve, 77,.'(0) is a positive constant, and 

r]r'' ( r ) is the density function. 

Figure 6.7: Illustration of inverse compensation of the Prandtl-Ishlinskii model. 
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Proof: 

The error of the inverse compensation can be expressed as: 

e ( 0 = v ( / ) - v * ( 0 (6.40) 

The output of compensation v (t) can be expressed using initial loading curves <p and ^~' 

as: 

v'(/)=n„,,on^(r)[v](/) (6.4i) 

where II.., is the inverse of the estimated Prandtl-Ishlinskii model, which is presented in 

Section 6.4. Using the composition expression for the Prandtl-Ishlinskii model that is 

presented in Section 6.3, the output of the inverse compensation that is presented in 

(6.41) can be expressed as: 

v * W = n ^ - V ) [ v ] ( 0 (6.42) 

Then, by substituting (6.41) in (6.40), the error of the output compensation is expressed 

as: 

e (0 = v ( 0 - n ^ . . V ) [ v ] ( 0 (6.43) 

The initial loading curve of the Prandtl-Ishlinskii model and its inverse can be expressed 

as: 

?j(r)= (p{r)o(j)~\r) (6.44) 

Using Equation (6.44), the error can be then defined as: 

e{t) = v{t)-Un{r)[v]{t) (6.45) 
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Then, the output of the Prandtl-Ishlinskii model with the inverse of the estimated 

Prandtl-Ishlinskii model can be presented as: 

n„p)[v](/) = /7'(0)v(0 + f Fr[v](W(r)dr (6.46) 
o 

then, error of the inverse compensation (6.45) can be expressed as: 

e(t) = (1 -v:m<t)-\FrM{t)i\r)dr (6.47) 
o 

• 

Remark 6.1: For the Prandtl-Ishlinskii model of initial loading curve (p{r), if the exact 

inverse of the Prandtl-Ishlinskii model is constructed with (p~\r), then the initial loading 

curve in (6.39) is simplified as: 

r?(r) = r (6.48) 

and 

7/(0) = 1 (6.49) 

then, the error of the inverse compensation (6.47) is reduced to: 

e ( 0 = 0 (6.50) 

and the compensated output is reduced to : 

v ( / ) = v (0 (6.51) 
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6.6 Simulation Results 

In this section, simulations are carried out for the error of the inverse 

compensation of the Prandtl-Ishlinskii model. The parameters of the inverse of the 

estimated Prandtl-Ishlinskii model are computed by Equations (6.28) and (6.38). A 

harmonic input of the form, v{t) = 7sin(7rf)/(l + 0.06/), t e [0, 13] is used as a desired 

input signal. The following initial loading curve is applied to formulate the Prandtl-

Ishlinskii model: 

r 

<p(r) = 0A7r + \0A<Z(r-Od£ (6.52) 
0 

In this subsection, the exact inverse of Prandtl-Ishlinskii hysteresis model is constructed 

by using the inverse of initial loading curve (6.52). The simulations results for the model 

and its inverse are presented in Figures 6.8(a) and 6.8(b), respectively. The inverse of the 

Prandtl-Ishlinskii model, constructed by the initial loading curve (p (;-), is applied as a 

feedforward compensator to compensate the hysteresis nonlinearities of the Prandtl-

Ishlinskii model that is constructed by the initial loading curve (p(r). The compensated 

output, presented in Figure 6.8(c), shows linear relationship between the desired input 

and the compensated output. The figure shows that the inverse feedforward compensator 

mitigates the hysteresis nonlinearities. 

The compensation output, which is also computed by (6.46), is presented in 

Figure 6.9(a). This Figure shows linear relationship between the input signal and the 

output of the compensation. The error of the inverse compensation that is obtained from 

Theorem 6.1 is presented in Figure 6.9 (b). The figure shows that the error of the inverse 

compensation is zero, e(/)=0. 
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The following estimated initial loading curve is employed to construct the inverse Prandtl-

Ishlinskii model: 

r 

<p{r) = 0.2r+\0.2£(r-Od<Z (6.53) 

As shown in Figure 6.10, the inverse of the estimated Prandtl-Ishlinskii model, which is 

constructed by the inverse of the estimated initial loading curve <p~\r), is applied as a 

feedforward compensator to compensate the hysteresis nonlinearities of the Prandtl-

Ishlinskii model that is obtained using initial loading curve (6.52). The input-output 

characteristic of the inverse of the estimated Prandtl-Ishlinskii model is shown in Figure 

6.10(a). The output of the inverse compensation that is presented in Figure 6.10(c) shows 

hysteresis nonlinearities. 

Using Theorem 6.1, the output of the inverse compensation, obtained via Equation 

(6.46), is presented in Figure 6.11(a) and the input-output characteristic of the error of the 

inverse compensation is shown in Figure 6.11(b). While, the time history of the error is 

presented Figure 6.11(c). The simulation results show the capability of Theorem 6.1 to 
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compute the error of the inverse compensation for the Prandtl-Ishlinskii model. The results 

demonstrate that the error of the inverse compensation shows hysteresis nonlinearities 

between the desired input and the output of the inverse compensation. Consequently, it can 

be concluded that the error of the compensation may cause undesirable inaccuracies or 

oscillations and even instability. 

6.7 Summary 

Stability analysis generally cannot be constructed for inverse-based control methods 

when the compensated output of the hysteretic actuator is coupled to a system because the 

error of inverse compensation has not been identified in the literature. For the first time in 

the literature, analytical error of the inverse compensation of Prandtl-Ishlinskii hysteresis 

model has been presented. The inverse of the estimated Prandtl-Ishlinskii, which is applied 

as a feedforward compensator, is employed to derive the error of the inverse compensation. 

The analytical error of the inverse compensation is presented in Theorem 6.1. This error 

shows hysteresis nonlinearities between the desired input and the compensated output, which 

can be easily understood physically. The analytical inverse of the hysteresis is a hysteresis; 

therefore their compensation should still be a hysteresis. This explanation coincides with 

analytical analysis. It can be concluded that the error of the compensation may cause 

undesirable inaccuracies or oscillations and even instability. Simulation results show the 

capability of Theorem 6.1 to compute the error of the inverse compensation. The error of the 

inverse compensation is used in Chapter 7 to design controller for a nonlinear plant 

proceeded by the hysteretic system with inverse compensation in a closed-loop system. 
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Chapter 7: An Adaptive Controller Design for Inverse 
Compensation Error 

7.1 Introduction 

The previous chapter presents the analytical error of the inverse compensation for 

the Prandtl-Ishlinskii model. The results show that the error of the inverse compensation 

can be also presented by a Prandtl-Ishlinskii model. Obviously, the error of the inverse 

compensation will cause undesirable inaccuracies or oscillations and even instability. 

Owing to the analytical error expression of the inverse compensation, controller design as 

well as corresponding stability analysis for a controlled plant actuated with inverse 

compensation that proceeded with the output of the inverse compensation is presented in 

this chapter. 

Su et al. [55] proposed an adaptive robust controller to control a system preceded 

with hysteresis nonlinearities of the Prandtl-Ishlinskii model without using inverse 

compensation. Because the error after the inverse compensation is a Prandtl-Ishlinskii 

model, therefore, the control design presented in [55] can be used to control a plant that 

preceded with inverse compensation of the Prandtl-Ishlinskii model. It should be 

mentioned that the purpose of this chapter is: 

i. To couple the output of the inverse compensation into a controlled plant in a 

closed-loop system. 

ii. To perform the stability analysis for a closed-loop system when the inverse 

compensation is applied to compensate the hysteresis nonlinearities. 

iii. To study the effects of the inverse compensation and its error on the tracking error 

performance of the closed-loop system. 

185 



7.2 Problem Statement 

Figure 7.1 presents a controlled system consisting of a plant (dynamic system) 

preceded by a hysteretic actuator with its inverse compensation. In this figure, the 

hysteric actuator is characterized by the Prandtl-Ishlinskii model IT^) and the inverse of 

the estimated Prandtl-Ishlinskii I I . . , is applied as a feedforward compensator to 

compensate the hysteresis nonlinearities of the hysteretic actuator. The output of the 

inverse compensation n o ._, is applied as an input signal to a controlled plant, 

generally characterized as a dynamic system. The controller shown in Figure 7.1 is 

applied to compensate the error generated by the inverse compensation. This error has 

been derived in Chapter 6. The dynamic system is described in the following canonical 

form: 

x"(0 + X^(x(0 , i (0 , - , x-1(o)=^n^_I(r)[M](0 (7.i) 

where 7, presents the known continuous linear or nonlinear functions. The parameters a, 

and control gain b are constants. The output of the inverse compensation is expressed 

analytically as: 

R 

n^..,M(0 = fjr'(0)u(t) +j Fr[u]W(r)dr (7.2) 
0 

It is a common assumption that the sign of b is known. Without loss of generality, assume 

that b is a positive constant, b > 0. System (7.1) can be represented with as: 
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x"(0 + 2>^(x(0 ,* (0 , . . . ,x^(.0)=br?r'(P) u(t) + b\Fr[u](t)?i"(r)dr (7.3) 
M 0 

The above equation yields a linear relation of the input signal, b7jr\0) u(t), and a 
R 

nonlinear term, b[Fr[u](t)Tj"{r)dr. 

* » « * * » * * « * » • t • » » ) * # » » » • » • * * * » * * « * « - » # • 

Input | j-aM" 
m B 

i§ 
fi 

J? 

m 

* 
i 
Hi 1 

- J -: 
• 

« » 

Output 

Figure 7.1: Closed-loop control system with inverse compensation. 

Remark 7.1: It is clear that the first term on the right-hand side of (7.3) is a linear 

function of the signal u(t). In this case, it is possible to combine the currently available 

controller design techniques with the error of the inverse compensation of Prandtl-

Ishlinskii model. This was the primary motivation behind derivation of the analytical 

inverse as well as the error of the inverse compensation. 

Remark 7.2: If the hysteresis in the system is known, that is, p(r) and Fr[u](t) are given 

or can be accurately estimated, for any continuous input function u(t) at a time instant t, 

the inverse mitigates the nonlinear effects, and the error e(t) is zero. Then, system (7.3) 

can be expressed as: 

x"{t) + Yja,Y{x{t\x{t),...,x"-\t))=bu(t) (7.4) 
;=l 
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7.3 Control Design 

In this section, an adaptive variable structure controller is applied to control plant 

(7.1) that preceded by the inverse compensation where the inverse is constructed by the 

Prandtl-Ishlinskii model. The controller is designed by the error of the inverse 

compensation will guarantee the global stability and yield tracking within a desired 

precision. Assume that the reference signal xJJ) is a smooth bounded signal and its time 

derivatives xd° (1 < / < n) are bounded. The control objective is to design a control law 

u(i) to force state vector x=[x,x,.... ,x""']rto follow a desired trajectory xj 

= [xd,xd,.... ,Xj~'Y, i.e. x -> xd as / —>oo. In this chapter, the back-stepping design 

method is used in the design of the robust controller. Using the back-stepping approach, 

system (7.3) can be expressed as: 

i,(0 = x2(0 

(7.5) 

*„->(0 = *„(0 

*„(/) = -y^jaiYi(x(O) + Hl-7Jr\0)Mt)-b]Fr[u](t)7J"(r)dr 
-=1 0 

Define new variables for / = 2, 3, ..., n, as: 

Zl(0 = * i - * , / ( ' ) 

zi(J) = xi-x'f-ai_} 

where ctj which is the virtual control at the z'th step is defined as: 

(7.6) 
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ffi(0=-v,(0 

«, ( 0 = -c,z, ( 0 - z,-i ( 0 + a w (^ , • • 5 -*/—1 » •*£/ 9 * • * 5 •*(/ o 
(7.7) 

According to the analysis in Chapter 6, it is easily deduced that T]r'(G) = <p(<p ')'(O) is a 

positive constant, then b =brf'r(0) is an unknown positive parameter. To avoid 

chattering, as in [75, 76], a smooth function sg(z) is adopted: 

sgl{zi) = { W. 
z, 

K-z,2r+2
+|z,i 

, KM 

where <5, are positive design parameters. A function/(z,) is also used as: 

/,(*,) = [1 , KM 
[o , |*,|<4 

Then, 

(7.8) 

(7.9) 

^ - , ) . / ; ^ ) = 

Z,>J, 

(7.10) 

To ensure the resultant functions are differentiable, similarly, zf are replaced by 

(\z\-S,)"''*2 f, m m e Lyapunov function and z, are replaced by (|z; | - <5, )"~'+2 sg, in the 

design procedure. 

Step 1: Choose the design virtual control law a\ as: 

or, = - (c , + - ) ( |z , | - 8X)" jg, (z ,) - (£, + ] > g , (z,) (7.11) 
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where c\ is a positive design parameter. Consider the following Lyapunov function V\, 

defined in [75], as: 

^-A-dz . i -^r . / ; (7.12) 

then, the derivative of V\ yields: 

V,={\z\-8,Tfxsg^)z% (7.13) 

Considering zx = z2+a}, the following inequality can be obtained: 

^=(hM)V>&(*,)(*2+«i) 
i (7.14) 

<-{c,+-){\z,\-S,f"f,+(\z,\-8,y(\z2\-82-\)f, 

Step i (/ = 2, ..., n-X) choose: 

a, =-{c, +^X\Zi\-Sir
Msgl(zi) + d,_1 -(SM +l)sg,(z,) (7.15) 

The corresponding Lyapunov function is also adopted as [75]: 

V,= ^ - r ( h M r + 2 / + ^ , (7.16) 
n —1 + 2 

The derivative Vi is given by: 

= -ick(\Zk\-skr^/k +(|z,.|-^.r'+1y;(K,l|-^1 -i) (7.17) 

-I(|z,|-^)2<--+V,+^ 

where M-, is expressed as: 
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M,=(h|-^,)2("-,+,)y; -\(Khs^2("'M)f^ (718) 

+(\^\-sMy-i+i(\zt\-sl-v)fM 

Since Mt < 0 [75], it can be concluded that: 

(|z,|-^r'+Iy;(|z/+1|-^.+1-i)-l(|z,.|-^.)2^+1>y; 
(7.19) 

Step n: In the last step, the compensation error of Prandtl-Ishlinskii model and its inverse 

are considered. The following definitions are given: 

a=a-a (7.20) 

P = P~P (7.21) 

Vt\t,r) = f,h"{f,r)-nb'\r) (7.22) 

where a, /?,and r/b"(t,r) are estimate of a, /?, and r;b"(r), respectively. Define Z?o(0 

as: 

R 

5 o (0Aj /7 , " ( r ) |F f M(0 |d i r (7.23) 
o 

Then the estimated #„(/) is defined as: 

R 

B0(t)A^h'\t,r)\Fr[u](tpr (7.24) 
o 

Choose the Lyapunov function V„ as: 
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^ = S - ^ ^ ^ ^ r 2 ^ + ^ r r « + i 3 r 2 + ^ J ( % ' , 2 a ^ ) ) ^ (7-25) 
£1 «—1 + 2 2 2 / 2#^ 

Then Fn can be expressed as: 

r • 

1 ^ r) 

2<lt d 

(7.26) 

In the last step, the control law is designed as follows: 

u = pu (7.27) 

u=-(cn+l)(\zn\-Sn)sgn(zn)-a
TY + uh +x{

d
n) +«„_, (7.28) 

uh=-sg„(z„)B0(t) (7.29) 

The adaptation laws are expressed as: 

P = -yu{\z„\-5n)fnsg„(<zn) (7-30) 

" = (K\S„)f„sgn(zn)TY (7.31) 

^?j»{t,r) = q{\Zn\-Sn)fn\Fr[u-\(t)\ (7.32) 

where y, <f, and r are adaptation gains. According to the definition in (7.6), it can be 

obtained that: 

z = x -x{n) —ft 

(7.33) 
= a,Y + brru(0 + fFr[u](tyJh"(r)clr-xiJ')-d„_] 

o 

Considering the results in (7.19) and (7.33), Equation (7.26) can be expressed as: 



i=\ 

|(K_I|-^-,)4y;+(KI-^)/„%(^) 
R (7.34) 

(aTY + btlu{t) + \Fr[umri>\r)dr-x¥ -d„_ , ) 
o 

r ^ J dt 

By using the control law in (7.27) and definition (7.21), which can be expressed as 

p — p + fi, Equation (7.34) can be presented as: 

»- i 

Vn < - £ C ( . ( | z , | - Srf^f, + M„ -(\zn\-Sn)fnsg„(zn)a
rY 

I=I 

+ (\^-^JfnsgAzJbJ(u) + ̂ „\-S„)fnsgn(zj\Fr[u](0 77r(r)dr (7-35) 
o 

+ S r - , ^ + - i ^ + _ f ^ " ( / , r ) | - 7 6 " ( / , r > / r 
/ tf o Sr 

where M„ is expressed as: 

^„ = (K-i|-^,)(Kh^ -!)/„-. -(K|-^)V„ (7.36) 

Then inequality (7.35) is expressed as: 

Vn<J^ci(\Z,\-Si)
2^M)fl+Mn+a{-(\zn\-Sn)fn Sgn(zn)Y + T-^) 

;=] 

+ bn p(^-P + (\zn\-Sn)fnSgn(zn)u) + (\zn\-Sn)fnsgn(zn)uh ( 7 . 3 7 ) 

0 ^ 0 ^ 

By adopting the adaptive laws defined in (7.30), (7.31), and (7.32), the following 

inequality can be obtained: 
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K„<-2> (( |z, |-<J,.)2<"-<+ 17; (7.38) 

From (7.29), it is obvious that V„ is non-increasing function, and by Barbalat's Lemma, it 

concludes that (|z,.| — St) —> 0 as f—» oo. Thus, it is obtained that: 

l im|x(0 - xd (/)| = £, (7.39) 

The above suggests that the inverse compensation error of the closed-loop system can be 

reduced to desired precision. Proposed adaptive controller design (7.27) together with 

the update laws in (7.30), (7.31) and (7.32) can guarantee the global boundedness of the 

closed-loop system. 

Remark 7.3: It is important to note that the dynamic system (7.1) is only used as an 

illustration to determine how the controller can be designed with the error of the inverse 

compensation. However, it can be extended for a general class of systems. It should be 

mentioned that the goal of this chapter is to show the controller design strategy in a 

simple setting that reveals its essential features. 

7.4 Simulation Results 

In this section, the methodology of employing the error of the inverse 

compensation with the robust controller presented in the previous section is illustrated 

using the following nonlinear system: 

jc(0 = a ! ~ g ' ' + n . _ , M ( 0 (7.40) 
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where n._, [v](f)is the output of the inverse compensation when the inverse of the 

estimated Prandtl-Ishlinskii is applied as a feedforward compensator to compensate for 

the hysteresis nonlinearities. The initial loading curve g>(r) that is applied to characterize 

the hysteretic actuator is described by: 

R 

07(r) = 0.17r + J 0.11#(r-£)<#• (7.41) 
o 

The estimated initial loading curve employed to construct the inverse Prandtl-Ishlinskii 

model as a feedforward compensator to compensate the hysteresis nonlinearities in 

closed-loop control system is assumed as: 

R 

(f>(r) = 0.2r+\0.2%(r-Z)dr (7.42) 
o 

In order to demonstrate the significance of considering the hysteresis nonlinearities in 

control design, the simulation is carried out considering the nonlinear term of the Prandtl-

Ishlinskii model (UN* 0)and without considering the nonlinear term (UN- 0). The initial 

states for the simulation parameters are selected as: R=40, N = 4000, a(0) = 0.13, 

J3{Q) = 0.431, and x(0) = 1.05, while a harmonic signal of the formx</(/)=12.5sin(2.30, is 

applied as the desired trajectory. Owing to the lack of an analytical approach for selecting 

the control constants, an iterative simulation is carried out to select these constants. For 

this purpose, an adaptive structure control law is used together with the adaptation laws. 

The parameters of the robust adaptive controller are selected as: Si = 0.150, q = 0.001, 

ci = 10, y = 0.09, and T= 0.09. Estimated initial loading curve (7.42) is applied to 

construct the inverse of the estimated Prandtl-Ishlinskii model. 
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Simulation results are shown in Figure 7.2, where the results involving the 

nonlinear term («N =*= 0 ) are indicted by solid line, while those excluding the nonlinear 

term («N = 0) are shown by dotted line. As shown in Figure 7.2(a), the output of the 

inverse compensation shows hysteresis effects between the desired input and the 

compensated output. The control signal with and without considering the nonlinear part is 

shown in Figure 7.2(b). The output of the inverse compensation with and without 

considering the nonlinear term of the model is presented in Figure 7.2(c). The time 

history for the desired trajectory and the system output x(t) are shown in Figure 7.2(d). In 

Figure 7.2(e), the time history of the tracking errors of the state JC(/) with and without 

considering the nonlinear part of the model are presented. 

The controller constructed based on the error of the inverse compensation clearly 

demonstrates excellent tracking performance as evident from the results. The controller 

can thus effectively overcome the error of the inverse compensation. The results also 

show the necessity to consider the compensation error which is generally ignored by the 

vast of majority publications using the inverse approach. 

To show the significant of the derived error of the inverse compensation in 

closed-loop control system, the simulations were performed: (i) without considering the 

inverse of the Prandtl-Ishlinskii model, where the estimated initial loading curve is 

(p(r) = r; and (ii) with considering the exact inverse of the Prandtl-Ishlinskii model, 

where estimated initial loading curve (7.41) is applied. The time histories without using 

the inverse and with using the exact inverse are shown in Figures 7.3(a) and 7.3(b), 

respectively. The results show higher tracking error when the simulation is carried out 

without considering the inverse of the Prandtl-Ishlinskii model in the closed-loop control 
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system. On the other hand, better tracking performance can be obtained when the exact 

inverse is considered instead of the inverse of the estimated Prandtl-Ishlinskii model. It 

can be concluded that better tracking performance can be achieved in the control design 

by considering the inverse Prandtl-Ishlinskii model as well as the error of the inverse 

compensation. 

7.5 Summary 

The error of the inverse compensation is applied to design a robust controller to 

control a system that it is preceded by a hysteretic actuator in a closed-loop control 

system. The primary purpose is to consider the derived error of the inverse compensation 

with the adaptive controller to achieve high tracking performance. The control law 

ensures global stability of the entire system and achieves both stabilization and tracking 

within a desired precision. Simulations that performed on a nonlinear system with the 

error of the inverse compensation illustrate the effectiveness of considering the error of 

the inverse. The results demonstrate better tracking performance when the compensation 

error of the estimated Prandtl-Ishlinskii model is considered in the closed-loop control 

system. 
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Figure 7.2: (a) Inverse compensation based on the estimated initial loading curve, (b) 
Control signal with Uh^O and w/,= 0, (c) Output of the inverse compensation with uh^O 
and Uh =0 (d) Desired trajectory xrf(/)=12.5sin(2.3t) and the system output x{t), (e) 
Tracking errors with ii/, ^ 0 and uh = 0. ( - — — , u/, ^ 0 ; , u/, = 0 ) . 
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Chapter 8: Conclusions and Recommendations for Future 
Studies 

8.1 Major Contributions 

The hysteresis phenomenon, invariably, occurs in smart actuators, such as 

piezoceramics, magnetostrictive and shape memory alloys actuators. When a plant is 

preceded by such hysteresis nonlinearity, the system usually exhibits undesirable 

inaccuracies or oscillations and even instability due to the hysteresis effects. The 

dissertation research has proposed controller design for compensation of hysteresis 

nonlinearities on the basis of proposed generalized Prandtl-Ishlinskii models and their 

inversions. The major contributions of the dissertation research are summarized below: 

(i) A generalized Prandtl-Ishlinskii model is proposed on the basis of generalized 
play operator, with different loading and unloading envelope functions, to 
describe the symmetric as well as asymmetric major and minor hysteresis 
loops with output saturation. 

(ii) Dynamic density and threshold functions are proposed to formulate a 
generalized rate-dependent Prandtl-Ishlinskii model for describing the 
symmetric as well as asymmetric and rate-dependent hysteresis effects 
together with output saturation. 

(iii)The validity of the proposed generalized models are thoroughly demonstrated 
for different smart actuators, namely, piezocermic, SMA and magnetostrictive, 
for a wide range of inputs involving harmonic and triangular waveforms of 
different magnitudes and frequencies. 

(iv)Relationships between the parameters of the generalized play operator and 
classic play operator are proposed to facilitate identification of the generalized 
operator. 

(v) Inversions of the proposed generalized models are formulated analytically 
using the initial loading curve with an objective to develop inverse-model 
based compensation method. The applicability of the inverse models is 
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demonstrated for compensation of saturated symmetric and asymmetric 
hysteresis of smart actuators over a wide range of input frequencies. 
Furthermore, the initial loading curve is explored to facilitate compensation of 
the hysteresis effects. 

(vi)An analytical method is developed for estimation of the compensation error on 
the basis of the proposed models and their inverse. 

(vii) An adaptive controller design is used together with essential control laws 
to achieve compensation of the hysteresis effects of a smart actuator that 
coupled with a plant. Stability analysis of the closed-loop systems is 
presented. 

8.2 Major conclusions 

The dissertation research on compensation of hysteresis nonlinearities involved five 

sequential major developments, namely: developments in generalized models for 

describing hysteresis nonlinearities of smart actuators; develops in exact analytical 

inversions of the generalized models; compensation of hysteresis effects using the model 

inverse; compensation error analysis; and controller design. The major conclusions drawn 

from each task are summarized below: 

8.2.1 DEVELOPMENTS IN GENERALIZED HYSTERESIS MODELS 

• The smart actuators, invariably, exhibit symmetric or asymmetric major and 
minor hysteresis loops with output saturation. 

• The hysteresis effects are strongly influenced by the rate of input; an increase 
in the input frequency yields higher hysteresis but lower peak output. 

• The classic Prandtl-Ishlinskii model cannot describe saturated asymmetric and 
rate-dependent hysteresis effects of smart actuators but can yield an exact 
analytical inverse for real-time compensation of the hysteresis effects. 
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• The use of dynamic threshold and density functions in the rate of input in the 
Prandtl-Ishlinskii model can provide reasonably good prediction of the rate-
dependent hysteresis of the smart actuators. The peak prediction error was 
below 5% for the piezoceramic and magnetostrictive actuators under inputs up 
to 500 Hz. 

• A generalized play operator with different loading and unloading envelope 
functions can be effectively applied in the Prandtl-Ishlinskii model to describe 
asymmetric hysteresis loops with output saturation. The resulting generalized 
Prandtl-Ishlinskii model revealed peak prediction error in order of 3% for 
SMA and magnetostrictive actuators. 

• The threshold values of the generalized play operator can be directly 
estimated from those of the classic play operator. 

• The generalized Prandtl-Ishlinskii model comprising the generalized play 
operator with dissimilar envelope functions also yields better estimation of the 
nearly symmetric hysteresis loops, as observed in the piezocermic actuators. 

8.2.2 DEVELOPMENTS IN INVERSE HYSTERESIS MODELS 

• Since the generalized Prandtl-Ishlinskii model is a mere extension of the 
classic Prandtl-Ishlinskii model, the inverse of the generalized Prandtl-
Ishlinskii model can be defined analytically. 

• Unlike the numerically-derived inverse hysteresis, the proposed inverse of the 
generalized Prandtl-Ishlinskii model is unique. 

• An analytical inverse of the generalized Prandtl-Ishlinskii model is insured if 
the envelope functions are continuous and invertible. 

• It is proven that the inverse of the generalized Prandtl-Ishlinskii model is a 
generalized Prandtl-Ishlinskii model. 

• While the Prandtl-Ishlinskii model is based upon its initial loading curve, the 
inverse Prandtl-Ishlinskii model is based on the inverse initial loading curve. 
The inverse generalized Prandtl-Ishlinskii model further necessitates the 
inverse of the envelope functions of the generalized play operator. 

202 



• The shape function of the initial loading curve of the Prandtl-Ishlinskii model 
is convex, while that of the inverse in concave. The composition of the initial 
loading curve and its inverse yields a linear function in threshold. 

• The inverse generalized Prandtl-Ishlinskii model yields clockwise input-
output curves due to negative density function. 

8.2.3 COMPENSTION OF HYSTERESIS EFFECTS USING INVERSE MODEL 

• The exact analytical inverse of the generalized hysteresis model can be 
conveniently applied as a feedforward compensator to achieve hysteresis 
compensation in real-time applications. 

• The compositions of the inverse generalized models and generalized models 
yield total compensation of the hysteresis error, irrespective of the output 
saturation, asymmetric nature of the hysteresis loop or magnitude and the rate 
of the input. 

• The experimental investigations in compensation of hysteresis effects in a 
piezoceramic actuator using the model inversion resulted in peak 
compensation error in the order of 2.4%, while it was nearly 7.5% in the 
absence of the feedforward compensator. The compensation error of the 
feedforward compensator was attributed to the characterization error, which 
was found to be in the order of 2.8%. 

8.2.4 ERROR ANALYSIS 

• The exact analytical inverse of the Prandtl-Ishlinskii model permits 
determination of error of the inverse compensation analytically, which has not 
yet been presented in the reported studies. 

• It is analytically proven that the input-output characteristics of the error show 
hysteresis effects between the desired input and the compensated output. The 
proposed analytical expression of the error of the inverse compensation is thus 
a Prandtl-Ishlinskii model. 

• The compensation error can be suppressed to zero when the exact initial 
loading curve is known. 
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• The compensation error resulting from the inverse Prandtl-Ishlinskii model is 
unbounded due to unbounded nature of the classical play operator. Additional 
control algorithms are thus vital for error compensation. 

• The error of the inverse compensation is a linear relationship between die 
input and the compensated output and a nonlinear disturbance that may arise 
from characterization errors. 

8.2.5 AN ADAPTIVE CONTROL DESIGN FOR HYSTERESIS COMPENSATION 

• The knowledge of exact analytical inverse of the hysteresis model and the 
error greatly simplifies the task of controller design for hysteresis 
compensation of a plant preceded by a smart actuator. 

• The proposed adaptive control design together with the defined updated 
adaptive laws guarantees the global boundedness of the closed-loop system 
and thus the output tracking with greater precision. 

• The knowledge of exact error of the inverse compensator permits the real-time 
applications to plants in a highly efficient manner. 

• The control laws ensure global stability of the closed-loop system, which is 
proven. 

• The application of the proposed controller and inverse compensator to a 
nonlinear plant demonstrated that the controller provides stabilization . 

8.3 Recommendation for the Future Studies 

The dissertation research represents the use of the Prandtl-Ishlinskii model to 

model and to compensate hysteresis nonlinearities inherent in smart actuators for micro-

positioning applications. The proposed models not only provided reasonably good 

prediction of the saturated symmetric and asymmetric rate-dependent hysteresis effects 

but also serve the essential basis for realizing effective compensation of hysteresis in 
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real-time applications. Following are some suggested further studies that should be 

undertaken to enhance the hysteresis compensation in varying studies: 

• The applicability of the proposed generalized models and their inversions 
should be explored for compensation of (i) rate-dependent hysteresis in 
piezoceramic actuators; and (ii) saturated asymmetric rate-dependent 
hysteresis in magnetostrictive actuators. 

• The design of controllers is desirable for compensation of hysteresis effects of 
the above stated actuators. 

• Analysis of the error of the inverse compensation of the rate-dependent 
Prandtl-Ishlinskii model is desirable for design of an adaptive robust control 
employing the error of the inverse compensation. 

• Further efforts are desirable in extending the proposed methodologies for 

modelling rate-dependent hysteresis nonlinearities of ferromagnetic materials 

using the generalized rate-independent and the generalized rate-dependent 

Prandtl-Ishlinskii models. 

• Further efforts are also desirable for compensation of asymmetric and 
saturated hysteresis nonlinearities of the shape memory alloy actuators using 
the inverse generalized Prandtl-Ishlinskii model as a feedforward 
compensator. 

• The proposed Prandtl-Ishlinskii models and their inversions may be 

investigated to model and compensate the hysteresis nonlinearities in 

ultrasonic motors, which show rate-dependent hysteresis effects. 
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