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ABSTRACT

Generalized Prandtl-Ishlinskii Hysteresis Model and its Analytical Inverse for
Compensation of Hysteresis in Smart actuators

Mohammad Al Janaideh

Smart actuators such as piezoceramics, magnetostrictive and shape memory alloy
actuators, invariably, exhibit hysteresis, which has been associated with oscillations in the
open-loop system’s responses, and poor tracking performance and potential instabilities
of the close-loop system. A number of phenomological operator-based hysteresis models
such as the Preisach model, Krasnosel’skii-Pokrovskii model and Prandtl-Ishlinskii
model, have been formulated to describe the hysteresis nonlinearities and to seek
compensation of the hysteresis effects. Among these, the Prandtl-Ishlinskii model offers
greater flexibility and unique property that its inverse can be attained analytically. The
Prandtl-Ishlinskii model, however, is limited to rate-independent and symmetric
hysteresis nonlinearities. In this dissertation research, the unique flexibility of the
Prandtl-Ishlinskii model is explored for describing the symmetric as well as nonlinear
hysteresis and output saturation properties of smart actuators, and for deriving an
analytical inverse for effective compensation.

A generalized play operator with dissimilar envelope functions is proposed to
describe asymmetric hysteresis and output saturation nonlinearities of different smart
actuators, when applied in conjunction with the classical Prandtl-Ishlinskii model.
Dynamic density and dynamic threshold functions of time rate of the input are further
proposed and intégrated in the classical model to describe rate-dependent symmetric and

asymmetric hysteresis properties of smart actuators. A fundamental relationship between
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the thrésholds of the classical and the resulting generalized models is also formulated to
facilitate parameters identification. The validity of the resulting generalized Prandtl-
Ishlinskii models is demonstrated using the laboratory-measured data for piezoceramic,
magnetostrictive and SMA actuators under different inputs over a broad range of
frequencies. The results suggest that the proposed generalized models can effectively
characterize the rate-dependent as well as rate-independent hysteresis properties of a
broad class of smart actuators with output saturation. The properties of the proposed
generalized models are subsequently explored to derive its inverse to seek an effective
compensator for the asymmetric as well as rate-dependent hysteresis effects. The
resulting inverse is applied as a feedforward compensator and simulation results are
obtained to demonstrate its effectiveness in compensating the symmetric as well ‘as
asymmetric hysteresis of different smart actuators. The effectiveness of the proposed
analytical inverse model-based real-time compensator is further demonstrated through its
implementation in the laboratory for a piezoceramic actuator.

Considering that the generalized Prandtl-Ishlinskii model provides an estimate of
the hysteresis properties and the analytical inverse is a hysteresis model, the output of the
inverse compensation is expected to "yiéld hysteresis, although of a considerably lower
magnitude. The expected compensation error, attributed to possible errors in hysteresis
characterization, is analytically derived on the basis of the generalized model and its
inverse. The design of a robust controller is presented for a system preceded by the
hysteresis effects of an actuator using the proposed error model. The primary purpose is
to fuse the analytical inverse compensation error model with an adaptive controller to

achieve to enhance tracking precision. The global stability of the chosen control law and

v



the entire closed-loop system is also analytically established. The results demonstrated
significantly enhanced tracking performance, when the inverse of the estimated Prandtl-

Ishlinskii model is considered in the closed-loop control system.
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Chapter 1: Introduction and Literature Review

1.1 Introduction

Ferromagnetic materials and smart actuators invariably exhibit hysteresis, which
is a path-dependent memory effect where the éutput relies not only on the current state
but also on the past output history. The presence of the hysteresis in smart actuators, such
as piezoceramic, magentostrictive and shape memory alloy actuators (SMA) has been
widely associated with various performance limitations. These include the oscillations in
the responses of the open-as well as closed-loop systems, and poor tracking performance
and potential instabilities in the closed-loop system.

Considerable continuing efforts are thus being made to seek methods for effective
compensation of hysteresis effects in order to enhance the tracking performance of smart
actuators, particularly for closed-loop micro-positioning systems. The characterization
and modeling of the hysteresis properties of smart actuators, however, is vital for
designing efficient compensation algorithms. Considering that the hysteresis properties of
such actuators are strongly dependent upon the type of materials, magnitude of input and
the rate of input in a highly nonlinear manner, the characterizations as well as modeling
of the phenomenon pose considerable challenges. For instance, a piezoceramic actuator
generally exhibits symmetric minér and major hysteresis loops, while magentostrictive
and SMA actuators yield highly asymmetric hysteresis effects, which further depend
upon the rate of input. Smart actuators also exhibit output saturation, which further

contributes to the modeling challenge.



A number of hysteresis models have been proposed in the literature for
characterizing the hysteresis properties of different materials and smart actuators. These
could be broadly classified into phenomenological models [1-5] and physics-based
models [6-15]. The most éited phenomenological models include the Preisach,
Krasnosel’skii-Pokrovskii and Prandtl-Ishlinskii models. These models have been widely
- applied to characterize hysteresis properties of smart actuatdrs and ferromagnetic
materials. The rate-dependence of hysteresis effects, however, have been considered in
only a few studies employing the Preisach model in conjunction with a dynamic density
function [73]. The compensation of the hysteresis effects of smart actuators has been the
primary focus of many reported studies. .Control algorithms based on inverse hysteresis
compensators have been suggested to be more effective in compensating the hysteresis
effects [23, 30]. Some reported hysteresis models have fhus been employed for deriving
the inversé hysteresis models to servev as a compensatof fof the hysteresis effects,
particularly these based on the Preisach model. The Preisach model, however, is not
analytically invertible; numerical methods are thus employed to obtain approximate
inversions of the model. The effectiveness of the approximate inversions in. conjunction
with different controllers in hysteresis compensation have been demonstrated in a few
studies [31, 36].

Unlike the Preisach and Krasnosel’skii-Pokrovskii models, the Prandtl-Ishlinskii
model offers an attractive and unique property of being analytically invertible. The
Prandtl-Ishlinskii model may thus serve as an effective inverse-based hysteresis
compensation method. The Prandtl-Ishlinskii model and its analytical inverse, however,

have been limited only to symmetric and rate-independent hysteresis properties. The



inherent flexibility of the model, particularly with respect to the play operators, could
permit effective characterization of asymmetric hysteresis effects and output saturation.
The rate-dependent hysteresis effects could be also incorporated using this flexible
feature. The greatest potential advantage of the Prandtl-Ishlinskii model lies in its
analytical invertability, which could be extended for the rafe-dependent and asymmetric
hysteresis nonlinearities with output saturation. The resulting inverse model would be
very attractive for real-time compensation of the hysteresis effects in a wide range of
smart actuators with varying hysteresis nonlinearities.

This dissertation research proposes a generalized ‘analytically invertible Prandti-
Ishlinskii ¥nodel for characterizing rate-dependent symmetrié as well as asymmetric
hysteresis nonlinearities. A generalized play operator with different envelope functions is
proposed for describing asymmetric hysteresis loops with output saturation, while the
rate-dependent effects considered by a dynamic density function in the input. The validity
of the proposed Prandtl-Ishlinskii formulations is demonstrated using the laboratory-
measured hysteresis properties of piezoceramic, magentostricive and SMA actuators.
The key properties of the proposed generalized model are described and employed in
deriving the analytical inverse of the model for it§ application as a feedforward
compensator. An error analysis of the inverse compensator is also presented, and the
effectiveness of the compensator is demonstrated.

In this chapter, the relevant repbﬁed studies on characterization and modeling of
hysteresis properties of smart actuators and materials, and hysteresis compensation

methods are discussed. The studies, grouped under relevant subjects, are briefly described

W



to build essential background, and formulate the scope and objectives of the dissertation

research.

1.2 Experimental Characterization of Hysteresis

The extreme challenges in describing the hysteresis in materials and smart
actuators have been widely recognized, which are primarily to its strongly nonlinear and
memory effects [1, 7]. Consequently, the hysteresis properties of different materials and
smart actuators have been widely characterized through experimental means in order to -
enhance an understanding of the essential properties and to seek modeling methods.
Although, the experimentally-measured hysteresis properties of ferrbmagnetic materials
have been extensively reportéd, the hysteresis properties of smart actuators are reported
in a fewer recent studies. This is mostly attributed to recent growth in application of the
smart actuators in various sectors, such as micro-positioning sectors. The ferromagnetic
materials and smart actuators, generally, exhibit major and minor hysteresis loops in the
output-input characteristics and output saturation. As an example, Figure 1.1 illustrates
the measured hysteretic relation between the applied magnetic field and the response flux
density of a ferromagnetic material. The reported results have shown very similar trends
in view of the hysteresis phenomenon [1, 82], which are summarized below:

e The output flux density (B) depends on the past and current values of the input
magnetic field (H);

o The output flux density (B) increases as the magnetic field (/) increases and
decreases as the magnetic field decreases (H);

e The width of the hysteresis loop, also referred to as the coercivity of the matenal,
corresponding to zero magnetic flux density output (B), increases as the amplitude
of the input magnetic field (H) increases;



o The major hysteresis loop can be formed by decreasing and increasing the input of
the magnetic fields between the extreme minimum magnetic field (Hnin) and
maximum (Hyax) values;

e The paths for increasing inputs in the (H, B) plane are nonintersecting as are paths
for decreasing inputs;

e The output flux density (B) tends to saturate as the input field (H) exceeds certain
limit that may depend upon the properties of the material.

e The hysteresis loopbs are generally considered rate-independent and show
insignificant variations under inputs in the low frequency range.

Flux density (N/A.m)

-1000 =500 0 500 1000
Magnetic Field [A/im]

Figure 1.1: Measured hysteresis properties of ferromagnetic materials [1].
The reported experimental studies on smart actuators are systematical reviewed to

enhance an understanding of the hysteresis properties of different actuators, particularly

the piezoceramic, SMA and magentostrictive actuators. The piezoceramic actuators have



beén the focus of relatively larger number of studies. This may be attributed to their wide
applications in micro-positioning applications. These studies consistently show that
piezoceramic actuators exhibit strong hysteresis effects between the measured input
voltage and output displacemént responses. Hysteresis between the command voltage and
the actwator position is known to cause inaccuracy and oscillations in the system
response, which may lead to instability of the closed-loop system [31]. Ge and Jouaneh
[22] performed measurements to characterize the hysteresis properties of a piezoceramic
actuator, developed by Physik Instrument Company. The measured data was used to test
the validity of the modified Preisach model, proposed by the authors. The actuator used
in the study provided a nominal displacement of 20pum under an excitation of 1000 V. A |
capacitive sensor with a resolution of 2.5 nm was used to measure the displacement of the
actuator. The meésurements were performed under sinusoidal input voltages of constant
amplitude (800 V) at two different distinct frequencies (0.1 and 100 Hz). The study
concluded that both excitations yield similar hysteresis suggesting negligible effects of
the rate of input. The data reported for the 100 Hz excitation, however, revealed slightly
higher hysteresis.

Hu and Ben Mrad [64] measured the hysteresis of a piezoceramic actuator, where
the nominal displacement was 3000 nm under an input voltage of 100 V. The width of
the measured voltage-to-displacement vwas obtained as 15% of the maximum
piezoceramic expansion under a 'very low. frequency. Yu et al. [34] measured the
hysteresis of a piezoceramic bimorph actuator, and concluded that the hysteresis 1s rate-
indépendent only up to 10 Hz. Hughes and Wen [20] measured the hysteresis properties

of piezoceramic patches and Nitinal SMA muscles coupled with a cantilever beam. The



measurements were performed to characterize the minor hysteresis loops and wiping-out
propertieé of the beam coupled with the selected actuator, while the beam deflection was
measured using strain gauges. The piezoceramic patches showed high degree of
congruency in the comparable minor loops and the wiping out property was largely
satisfied. The effects of different preloads on the actuators’ 'hyste_resis were also
investigated by applying high magnitude statiq force to the tip of the beam. The results
showed hysteresis nonlinearities, while the peak displacement response decreased with
the preload. All of the reported ‘studies on piezoceramic actuators observed an increase in
the width of hysteresis loop with an increase in the excitation magnitude.

The hysteresis properties of shape memory alloys (SMA) and magnetostrictive
actuators have also been investigated in a few studies [21, 28, 33]. Such actuators show
hysteresis effects together with output saturation which dependeht on the type of actuator
and nature of input. Magnétostriction is the phenomenon associated with strong coupling
between the magnetic and mechanical properties of the materials. Some ferromagnetic
materials as Terfenol-D show this phenomenon between the output strain and the applied
input current. The output strains are produced due to the applied current and thus the
magnetic field, which tends to alter the magnetization Qf the material. Where the
piezoceramic actuators require high voltages (50-100 V) to produce desired strains,
magnetostrictive actuators respond to significantly lowér voltages. Consequently, these
| actuators can be excited under low voltage. The SMAs, such as nickel-titanium and
copper zinc aluminum alloys, exhibit capability to recéver the strain (approximately up to
10%) without perrﬁanent deformation [56]. All of the repoﬁed studies have considered

experimental characterization under sinusoidal inputs, with only few exceptions. Yu et al.



[34] measured the hysteresis properties of a piezoceramic actuator under sinusoidal and
triangular input voltage waveforms. The results showed dependence of the hysteresis
loop under a sinusoidal input was observed to be larger than that under the triangular
input. This could be attributed to the difference in the rates of the two input waveforms.
While a triangular waveform yields a constant magnpitude of the rate of input, the
sinusoidal waveform yields varying rate.

Yu et al. [34] showed that the hysteresis effect in a piezoceramic actuator is rate-
indeperidenf up to 10 Hz, beyond that the hysteresis of the actuator is rate-dependent and
the measured peak displacement amplitude decreases as the frequency of the input
voltage is increased. In a s.imilar .manner, Ben Mrad and Hu [61] performed
measurements to characterize the hysteresis properties of a piezoceramic actuator at
different excitation frequencies. The study concluded that the width of the hysteresis loop
increases to 38.6% of the measured displacement amplitude at 800 Hz, compared to 15%
at a very low frequency. Another sﬁdy showed that hysteresis of a Terfenol-D
magnetostrictive actuator is rate-independent up to 5 Hz [33]. An increase in the
frequency of input current resulted in larger width of the hysteresis loop and lower peak-
to-peak displacement response. The measured data revealed that the peak-to-peak
disp]acement of the magentostrictive actuator decreased to approximately 68% of its
maximum expansion at a low frequency, when the excitation frequency was i.ncreased up

to 300 Hz. | -



1.3 Hysteresis Models

The measured hysteresis properties have been extensively applied to formulate a
ﬁumber of phénomenological and to identify model parameters applicable for specific
actuators. A large number of analytical models have been proposed in the literature to
characterize the hysteresis propérties of smart actuators and ferromagnetic materials. The
reported hysteresis models can be classified into physics-based niodels [6- 15] and
phenomenological models [1- 5]. The physics-based models are generally derived on the
basis of a physical measure, such as energy, displacement, or stress-strain relationship.
Alternatively, the phenomenological modelé describe the hysteresis properties without
attention to the physical properties of the hysteretic system. Many of these models were
mitially proposed for specific physical systems and were later generalized for

applications to other systems.

1.3.1 PHYSICS-BASED HYSTERESIS MODELS

The physics-based models are generally derived on the basis of a physical
measure, such as displacement, energy, or stress-strain relationship. Jiles and Atherton
[15] developed a hysteresis model on the basis of observed physical properties of
ferromagnetic materials. The model comprised analytical expression relating the
reversible and irreversible motions of ferromagnetic material particulars. The model was
subsequently used by Smith and Ounaies [9] for describing the hysteresis phenomenon of
piezoceramic materials. Ikuta et al. [6] proposed a mechanical model to characterize
hysteresis in SMA actuators using the stress-strain relationships of the SMA materials.

Smith et al. [8] proposed a nonlinear energy-based hysteresis model in conjunction with

9



the operator-based Preisach model for characterizing hysteresis of magnetostrictive

actuators.

The physics-based hysteresis models generally require comprehensiye knowledge
of the physical phenomenon for the hysteretic sysfem, which may be difficult for
particular materials or actuators. Furthermore, the generalization of a physics-based
hysteresis model is quite difficult for application to different actuators and materials,
since these may encompass different physics properties and structures. Furthermore,
inversions of physics-based models have not been explored for applications in hysteresis
compensation of smart material actuators. Although the phy§ics-based models can
effectively characterize symmetric és well as asymmetric hysteresis effects [6], the rate-
dependent hysteresis effects have not been attempted through such models. Considering
the complexities associated with physics-based models, the phenomenological models
have been emphasized for simulation of the hysteresis effects of different smart actuators
and for compensators design. A number of phenomenological models have evolved for
characterizing the hysteresis nonlinearities. The primary goal of these models is to
accurately predict the hysteresis in order to study the hysteresis effects and to facilitate
the design of controllers for compensating the hysteresis effects [20-30, 53, 54]. The most
widely cited models based on the input and output beﬁaviors include: the operator based
hysteresis models such as Preisach model [1], Krasnosel’skii-Pokrovskii model [4],
Prandtl-Ishlinskii model [2]; and differential equation-based hysteresis models such as

Duhem model [3] and Bouc-Wen model [17]. These models are briefly described below.
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1.3.2 DIFFERENTIAL EQUATION-BASED PHENOMENOLOGICAL MODEL

These models generally constitute a nonlinear differential equation relating the
output to the magnitude and direction of the input. The Duhem and the Bouc—Wen

models are the most widely used differential equation based models.

Duhem Model

Duhem model is a differential equation-based hysteresis model, where the output
x(¢) 1s affected by change in the direction of the input v(¢). The output-input relationship

is expresséd by the following differential equation [3]:

7,0 = (0@, (1) ¥* (1) = L0, v(t)) v (£) (1.1)
where

()| £v(0)

1.2
> (1.2)

V() =

where the input v(¢) and the output y,(7) are continuous and differentiable functions over
the interval [0, T]. An increase in input v(f) causes the output y,(f) to increase along a
particular path. The output, however, tends to decrease along a different path under a

decreasing input. This behavior of the output can be expressed as [3]:

dy, z{}i(va),y,,(t)) for ¥(D>0 (1.3)

dv | L@y, (1)) for ¥(1)<O
Hodgdon and Coleman [18] proposed a differential equation for the input magnetic field

(H) and the output flux density (B) to characterize hysteresis in ferromagnetic materials
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using Duhem model. This model is analytically presented by the following differential

equation:

B = JHO|FHO) - B®)+ BO2(HO) (1.4)
The change in the output B with respect to the input H was expressed by the following

differential equations:

_d§_={ & [f(H)-Bl+g(H) H>0 05)

dH |-a'[f(H)-B)+g(H) H<0
where a is a constant, and f and g are referred to as material functions. Using (1.4) and

(1.5) Hodgdon-Coleman model can also be expressed as [3]:

dB * “INF £
= sgn(H)f (H) - B}+ g(H) (1.6)
where
.. |1 for H>0
Sgn(H)_{—l for H<O (1.7

The stability of the Duhem model is ensured by the following properties of the material

functions, f and g:

a) f is a piecewise smooth and monotonically increasing odd function and the

derivative 7 (H) is non-zero, while 7'(00) is finite, such that :
= —F(e . df(H) |
b) g is a piecewise continuous even function of H, and its derivative g'(w) is finite,

such that:
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() =g(-H) & Jim EED <o (1.9)

c) The materials function must satisfy the following for characterizing hysteresis
properties:

lim[f(H) - g(H)] =0 (1.10)
d) The material functions must satisfy the following inequalities for all finite values
H, f'(H), and g(H):

7' (H) = g(H) 2 ae™ (') g(@lede (1.11)

The above-stated properties of the material functions generally impose severe
limitations for the model applications in control system design. The most important
property of the Hodgdon-Coleman model, however, is the existence of the minor
hysteresis loops in a stable manner [3]. Furthermore, the output of the Duhem model is

rate-independent and it yields symmetric hysteresis loops.
Bouc-Wen Model

The Bouc—Wen model [17] is a nonlinear differentia] equation-based model,
which originates from the Bouc model presented in [16]. The model has been extensively
used to describe the hysteretic behaviour between the applied displacement and the
'output force in wide ranges of mechanical systems. This model is presented by the

following differential equation:

z, =av- Bl e + =l a1

Z()
where z,(f) 1s output, v(¢) is input and Q is a positive integer. The output of the hysteresis

model is strongly dependent upon the model constantsa , §, and » . This differential



equation-based model does not contain material functions that tend to limit the
applicability of the Duhem model. The model parameters are generally derived from the
measured hysteresis of a particular material or system. Different forms of Bouc-Wen
model] have been proposed to suit the observed hysteresis properties of different systems,
materials, and actuators [78, 79]. Hysteretic systems including hysteretic isolators [18]
and magentorheological fluid dampers [19] are some examples. The major limitations of
the Bouc-Wen models are associated with the parameters identifications. The differential
equation—based models are not invertible and thus cannot be applied in inverse model-

based hysteresis compensation.

1.3.3 OPERATOR-BASED HYSTERESIS MODELS

A number of operator-based phenomenological hysteresis models have been '
proposed to describe the hysteresis 1n different smart actuators. Unlike the differential
equation-based model, the operator-based models are considered to be better suited for
the design of control algorithms for compensating hysteresis effects due to their
invertability. These models include: the Preisach model [1, 5]; Krasnosel’skii-Pokrovskii
model [4]; and Prandtl-Ishlinskii model [2]. Such models have been widely applied for
modeling hysteresis nonlinearities in materials and smart actuators [20-30], and are

briefly described below.
Preisach model

The Preisach model has been most widely applied for characterizing the
hysteresis properties of ferromagnetic materials and smart actuators [1]. The

mathematical formulations of the Preisach model and its application in different fields
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have been thoroughly described by Mayergoyz [1]. This classical Preisach model was

developed to characterize hysteresis in the ferromagnetic materials [1]. This model

comprised a set of relay operators K, . For a given input v(t) €C,[0, T] and initial state

e{-1, 1}, the output of the relay operator K [v](¢) is expressed as [1]:

+1 for W) 2 «a
K, D=9 -1 for W) < B (1.13)
K, 0 for v)<a & v(1)>p

where K [v](0) is given by:

+1 for v0) = a
K, vi0)=3-1 for v0) < B (1.14)
& for v(0)<a & wW(0)>p

The above operator forms a rectangular loop relating the input and the output of a
hysteretic system, where the output of the operator is either +1 or -1 depending on the
value of the current input. The constants a and f# define the switching thresholds of the

input corresponding to upward and downward shifts in the output, as illustrated in Figure

1.2.
K,
A
+1
|1t s
slL] e v
- _A__I

Figure 1.2: Relay hysteresis operator [1, 82].
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The output of the relay operator switches from -1 to +1 when the current input is larger

than a, and from +1 to -1 when the current input is less than £. It is apparent that the

model employs a discontinuous hysteresis operator. For a given input v(t) e C,[0, T],

the output of the Preisach hysteresis model, which is formulated using the above operator
is expressed as [ 1]:
MO = [| plap) K, VIe) dadp (1.15)
] azf
where p(a, f) is an integrable positive density function, which is identified from the
" measured data for a particular material or a smart actuator. The argument of the operator
is written in square brackets to indicate the functional dependence, since it maps a

function to another function.

The Preisach model is completely characterized by two properties [1]: wiping-out
and congruent minor-loop properties. The wiping out property means that the output is
affected only by the current input and the history of the output, while the effect of all
other inputs is wiped out. The congruent minor-loop property requires that all equivalent
minor loops be similar. Two minor loops are said to be equivalent if they are generated

under monotonically varying inputs of identical amplitudes.

Preisach model (1.15) has undergone many refinements over the past two decades
to broaden its applications to a wide range of actuators and materials [1, 20-22, 66].
Different forms of the classical Preisach model have thus evolved to model hysteresis in
various materials and smart actuators. Ge and Jouaneh [22] proposed a modified relay
operator to characterize the hysteresis in a piezoceramic actuator. The relay operator with

threshold values of *-1" and ‘+1" is replaced by a modified operator with threshold values

16



of ‘0’ and *+1°. This was based upon the dipole’s polarization of piezoceramic materials
occurring in only one direction. Hughes and Wen [20] pfoposed the Preisach model for
characterizing hysteresis in piezoceramic and SMA actuators. The study proposed a.
density function in the form of a second-order polynomial and investigated the
fundamental properties of the Preisach model for describing the hysteresis in both the
materials. Gorbet et al. [21] applied the first-order-decreasing curves technique to
identify the density function (Preisach function) of the Preisach model. In this study
different forms of the Preisach functions were explored for characterizing the hysteresis

nonlinearities of two-wire and single wire SMA actuators.
Krasnosel’skii-Pokrovskii model

Krasnosel’skii-Pokrovskii operator is a hysteresis operator that is derived from the
Preisach relay operator [4]. This operator is constructed based on two functions that are
bounded by two piecewise Lipschitz continuous functions. A ridge function is defined in
the following manner for formulation of the Krasnosel’skii-Pokrovskii operator:

-1 for  x<0

o(x)= —]+12_£ for 0<x<a : (1.16)
a

1 for x>a
where a is a constant in the output-input characteristics of the operator that is shown m
Figure 1.3. For a given input ¥{)€C [0, T] the output of the Krasnosel’skii-Pokrovskii

operator can be expressed as:

max( L(t_),oc(V{(t)-a)) for v(t)>w({1)
L) ={min(L(t),c(v()- B)) for v(t)<wv(t.) 1.17)
L) Jor w(r)y=v(1.)
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where the L(?) is the output of the operator and ﬁ and f are constants similar to these
defined in the relay operator. The Krasnosel’skii-Pokrovskii operator maps C [0, T} to C
[0, T] [4]. Considering the finite slope of the operator, it can be concluded that the
operator is Lipschitz continuous. The output of the Krasnosel’skii-Pokrovskii model,‘
A[VI(9), is expressed by [4]:

A = [[ pla. p) LivI©)dadp | (1.18)

azf

where p(a, f) is a integrable positive density function.

The Krasnosel’skii-Pokrovskii model hés been used to rmodel the hysteresis
properties of different smart actuators. Banks et al. [27] introduced the properties of the
Krasnosel’skii-Pokrovskii model to characterize hysteresis nonlinearities in SMA
actuators. Galinaities [28] employed the Krasnosel’skii-Pokrovskii operator instead of the
relay operator in the Preisach model to characterize and to compensate hysteresis

nonlinearities of a piezoceramic actuator.

Figure 1.3: Krasnoselskii-Pokrovskii operator [4, 82].
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Prandtl-Ishlinskii model

Similar to the Preisach model, the Prandtl-Ishlinskii model is constructed using
the play or stop hysteresis operétors. Unlike the discontinuous relay operators in the
Preisach model, the play and stop operators are continuous hysteresis operators which are
characterized by the input v and the threshold ». A detailed discussion about these
operétors can be found in [2]. The stop operator has been proposed to characterize the
elastic-plastic behavior in contiﬂuum mechanics [2]. f‘igures 1.4 and 1.5 illustrate the
mput-output characteristics of the play and stop operators, respectively. Figure 1.5
illustrates the linear stress-strain relationship as per Hooke’s law, when the stress is
below the yield stress r, whiéh is denoted as the threshold. Analytically let C,, [0, T

represents the space of piecewise monotone continuous functions. For any input v(f) €

Cn [0, T1, the output of the stop operator, £,[v](?) is defined by:

E.[vI(0) =e,(v(0))
EvI(#)=e (W(t)—Wt)+E [VI1)); 1, <t<t,, and 0<i< N1 (1.19)

er(v) = min(r, max( =r, V))

gat

Figure 1.4: Play hysteresis operator [2, 82].
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The one dimensional play operator has been described by the motion of a piston
within a cylinder of length 2r. The position of the center of the piston is represented by
coordinate v, while the cylinder position is given by w. For any input w(t) € C,[0,¢,], the

output of the play operator, F,[v](¢) is defined by:

F.v10)= £,(»(0),0) = w(0),
E. Vi) = £,(v(@), E.[vI(2,)) 31, <t <t,,and0<i < N1 (1.20)

i+l

Sfo(viw)=max(v—r,min(v +r,w)).
where 0=1, <t, <..<t, =T is a partition of [0, 7] such that the function v is monotone on
each of the sub-intervals [#; #+/].
The maximum value of the stop operator is determined by threshold 7 in the (v, w)

plane. From definitions (1.19) and (1.20), it can be proven that operator F,[v] is the

complement of operator E,[v] and they are related in the following mamner for any

piecewise monotone input function v(¢) € C,[0,T] and threshold » >0 [2]:

EVI0) +E, V() = ) (1.21)

EM

s
AV

Arsmins _’,

Figure 1.5: Stop hysteresis operator [2, 82].
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Due to the nature of the play and stop operators, the above is based on W(t) € C,,
[0, T] of piecewise monotone continuous functions. These, however, can be extended to
space C [0, T] of continuous functions. Furthermore, play and stop operators are
continuous in time and in space. Continuity in time is significant from a physical
perspective, while the continuous parameter dependence is important for development of
practical parameter estimation method [30]. Using the stop operator E,[v](¢), the output of

the Prandtl-Ishlinskii model, which maps C[0,T] into C[0,T7], is defined by [2]:

i) = [ pE DI (1.22)

where Q[v](f) is the output of the Prandtl-Ishlinskii model and p(r) is an integrable
density function, satisfying p(r) 20, to be identified from the experimental data. The

output of the Prandtl-Ishlinskii model is also defined using the play operator F,[v](?),

such that [2]:

R
Pl = v + [ pEF, ) (1.23)

Owing to the unity slope of the play and stop operators, it can be concluded that
the outputs of the Prandtl-Ishlinskii models (1.22) and (1.23) are Lipschitz continuous
under Lipschitz continuous inputs [2]. Since the density function p(rj vanishes for large
values of r, the choice of R =o0as the upper limit of integration is widely used in the
literature as a matter of convenience [2]. Because the play and stop hysteresis operators
and density function, defined above, are rate-indei)endent, the Prandtl-Ishlinskii models
are applicable for characterizing only rate-independent hysteresis. The Prandtl-Ishlinskii

model is a continuous hysteresis model and its inversion has also been derived
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analytically [2]. However, the Prandtl-Ishlinskii models, based on the play or the stop
operators, are limited to symmetric hysteresis loops due to symmetric properties of the

hysteresis operators.

1.3.4 RATE-DEPENDENT HYSTERESIS MODELS

A few operator-based hysteresis models have been proposed to characterize the
rate-dependgnt hysteresis effects [33, 34, 64, 68, 73]. Many of these models were
0rigin§lly proposed for rate-independent hysteresis properties and were later modified to
characterize rate-dependent hysteresis. The most common aﬁproaéh to account for rate-
dependent effects is to apply a dynamic density function in the classicai rate-independent
hysteresis model. Mayerqoyz [73] proposed a rate-dependent Preisach model by
introducing the time rate of the output in the density function to characterize rate-
dependent hysteresis phenomenon. Yu et al. [34] characterized the rate-dependent
hysteresis in a piezoceramic actuator using a dynamic density function incorporating the
time rate of the input. The study demonstrated the effect of the rate by evaluating the
outputs corresponding to input voltages at two distinct frequencies 0.05 and 5 Hz. Ben
Mrad and Hu [64] employed the dynamic density function in the Preisach model, where
the input was replaced by applying average rate of the imput. Model results were
evaluated under sinusoidal inputs at six distinct frequencies in the 0.1 to 800 Hz range.
The model validity was demonstrated using the measured responses of a piezoceramic
actuator, which were presented by only six distinct data points in the major hysteresis
loop. Ang et al. [68] proposed a density function in conjunction with the Prandtl-

Ishlinskii model and the deadzone operators to characterize the rate-dependent hysteresis
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in a piezoceramic actuator. The validity of this model was demonstrated in terms of
sinusoidal inputs between 1 and 19 Hz excitation frequencies. The proposed dynamic
model reduced the maximum hysteresis error by more than 50%, compared to that
attained from the rate-independent hysteresis model.

The above-reported studies were mostly based on the Preisach model coupled
with a dynamic density function comprising the rate of either input or the output. This
approach, however, may offer limited ability to describe the rate-dependent hysteresis.
Alternatively, a dynamical model coupled with the Preisach model was proposed by Tan
and Baras [33] in an attempt to characterize the rate-dependent hysteresis effects in a
magnetostrictive actuator. The study showed model validity in predicting the major loops

under inputs up to 300 Hz.

1.4 Hysteresis Compensation

The hysteresis in smart actuators has been associated with oscillations and poor
tracking performance of the closed-loop system. Consequently considerable efforts have
been made towards design of controllers for compensation of hysteresis. A’ vast number
of controllers have been proposed to reduce the error due to hysteresis effects. The
proposed control algorithms could be classified in two broad categories, namely non-

inverse based control methods and inverse based control methods.

1.4.1 NON-INVERSE-BASED CONTROL METHODS

Compensation of hysteresis nonlinearities has been carried out in many studies

without considering the inverse of the hysteresis models. Model-based hysteresis



compensation methods employ the phenomenological hysteresis models to construct
controllers to compensate for the actuator hysteresis. A number of control methods have
been proposed to compensate for smart actuators such as robust adaptive [55], energy-
based [56, 60], and sliding model control systems, which employ the hysteresis model of
the actuator for constructing the controller. Su et al. [55, 59] ﬁroposed an adaptive
controller that is employed to control a nonlinear system preceded by unknown Prandtl-
Ishlinskii hystefesis nonlinearities. In this study, the proposed controller leads to the
desired output and the global stability was presented. Gorbet et al. [56] proposed a
control approach based on the energy to control a SMA actuator, which showed
hysteresis nonlinearities. The study emp]oyed the Preisach model, and verified the energy
properties and the state space of the model. The minimum energy states were
recommended to formulate the controller synthesis and the passivity was established for
the relationship between the inpu;( and the time rate of the Preisach model output on the
basis of the energy. The results demonstrated the effectiveness of the method in
compensating the hysteresis of the SMA actuator. Cruz-Hemandez and Hayward [57]
proposed a hysteresis compensation method for piezoceramic and SMA actuators based
on shifting of the phase of the periodic signal. The method employed‘ a phaser comprising
a parallel combination of a linear filter and a rafe-independent Preisach hysteresis model,
and concluded that the method could reduce the major and minor hysteresis loops in
piezoceramic and SMA actuators. Liaw et al. [81] proposed a shiding model adaptive
controller to contfol a piezoceramic actuator..The piezoceramic actuator is characterized

using electromechanical model which is analytically expressed via second-order-
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differential equation. In this study, the results show the capability of the proposed sliding

mode controller to compensate the hysteresis nonlinearities of the piezoceramic actuator.

The control methods for compensation of hysteresis effects have been also
employed for differential equation-based hysteresis models, such as Bouc-Wen and
Duhem models. Su et al. [67] used the Duhem model to control a nonlinear system
preceded by known hysteresis using adaptive control method. The solution properties of
the model were combined with the adaptive control technique. However, the strong
nonlinearity together with the lack of exact mathematical properties of the differential
models poses complex challenge for the control system design and its real-time: control

application.

1.4.2 INVERSE MODEL-BASED METHODS

The inverse model-based hysteresis compensation methods generally employ a
cascade of a hysteresis model and its inverse together with a controller to compensate for
the hysteresis effects. These methods, however, necessitate the formulation of the
hysteresis model inverse, which is often a challenging task. The concept of an open-loop
inverse control system for compensation of hysteresis effects is shown in Figure 1.6,
where v is the input, v" is the output, and P and P are the hysteresis model and its
mverse, respectively. This method is pioneered by Tao and Kokotovic [31], and involves
the formnlation of the inverée operator of the hystefetic system. Their study developed a
control algorithm to compensate the hysteresis nonlinearities of a system comprising a

linear plant proceeded by a hysteresis block representing a hysteretic actuator. An
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adaptive hysteresis inverse compensator is cascaded with the hysteretic system to

mitigate the effects of hysteresis.

v*

\ 4

Inverse feedforward Hysteretic system
Compensator

Figure 1.6: Open-loop inverse control system.

Considerable efforts have also been made in deriving the inverse
phenomenological operator base hysteresis models in order to seek inverse-based
hysteresis compensation. These efforts have resulted in either numerical or analytical
inversions of the hysteresis models. The numerical inverse of a model, however, is an

approximate right inverse. For a given input v(¢), the application of the approximate

inverse P[] in the compensator, shown in Figure 1.7, yields an output v", such that the

output of hysteretic system P is close to v. The evaluation of approximate inverse P
'depends on the initial state of the model P[v](0). The numerical methods employ a

preselected range of the input [Viin, Vimax]- The output of the inverse conipensation can be

expressed analytically as the composition of P and P

V() =P o P [V)() (1.24)
Owing to the approximate inverse, the error of the numerical inverse can be defined as:
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eB=w)-v () (1.25)

— P[] y PL] | —

Figure 1.7: Tllustration of numerical hysteresis inversion.

Preisach and Krasnosel’skii-Pokrovskii médels are not analytically invertible. Different
numerical methods have been developed to obtain inversions of these models [23, 26,
41]. Ge and Jouaneh [23] used inverse Preisach model, which was obtained using a
numerical algorithm, as a feedforward compensator with PID feedback control system to
reduce the hysteresis nonlinearities in a piezoceramic actuator. Inversion of the
Krasnosel’skii-Pokrovskii model was applied by Galinaitis [27] in open-loop control
system to compensate hysteresis of a piezoceramic actuator. In this study, compensation
of hysteresis nonlinearities was demonstrated for sinusoidal inputs of different amplitudes
at a low frequency of 0.05 Hz. In a similar manner, Song et al. [41] proposed a modified
Preisach model to characterize and to compensate the hysteresis nonlinearities in a
piezoceramic actuator with PD-Jag and PD-lead controllers with the numerical inverse of
the modified model in ‘a closed-loop control system. Reduction in hysteresis
nonlinearitieé was demonstrated experimentally for major and minor hystergsis loops.
under low excitation frequencies (0.5 Hz). Tan and Baras [25] applied inverse Preisach
model, which is obtained numerically, in an adaptive control algon'thm to compensate the
hysteresis nonlinearities of a magnetostrictive actuator. Janocha and Kuhnen [53]

compensated the hysteresis effects of a piezoceramic actuator using inverse Prandtl-
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Ishlinskii model, which is constructed numerically, in an open-loop control system. In
addition to the above mentioned model-based inverse methods, neural networks and
fuzzy system models have also been presented to compensate the hysteresis nonlinearities

of the smart actuators by constructing the inverse model [62, 63, 80].

The compensation based numerical inversions of the hysteresis models exhibit

several limitations. Firstly, the numerical inverse of model can be considered only as an

- approximate inverse. This approximation tends to cause errors, when the numerical
inverse is used as a feedfowrard compensator to compensate for hysteresis nonlinearities.
Secondly, a numerical inverse of a hysteresis model cannot be considered to be unique.
Different numerical algorithms or different limits in the applied input may yield different
solutions of the inverse. Furthermore, a numerical inverse is only applicable for the
specified input and the initial conditions. The numerical inverse is also computationally
intensive, which may limit its real-time control applications. Finally, a numerical inversé

of the hysteresis models has not been attempted to include the rate dependence.

The numerically-derived model inversion yields certain degree of error, and thus
the tracking error in the output of compensated system responses. The error of the inverse
compensation methods based on numerical inversions has not been attempted. While the
majority of the studies consider the compensation error. to be bounded for the controller
design. The stability of the closed-loop control system comprising the controlled plant
preceded by the nﬁmerical inverse compensation cannot be established due to uncertain

Inversion error.
Unlike the Preisach and Krasnosel’skii-Pokrovskii models, the Prandti-Ishlinskii
model offers a unique advantage, since its inverse can be obtained analytically. This 1s
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attributed to the initial loading curve concept of the Prandtl-Ishlinskii model which
provides an alternative description for the Prandtl-Ishlinskii model and essential basis to
derive the analytical inverse. The initial loading curve is a stress-strain curve and is
defined when the initial state of the Prandtl-Ishlinskii model is zero and when the input

_ increases mohotoniéally [2]. The analytical inversion of the Prandtl-Ishlinskii model is
more attractive to compensate hysteresis nonlinearities in real-time applications. Owing
to the analytical exact inverse, the inversion error of the inverse Prandtl-Ishlinskii model
is zero. Moreover, this inverse offers significant benefits in real-time control applications.
The knowledge of the exact description of the compensation error, in a given application,
would facilitate the designvof robust controllers and stability anélysis., which are lacking
with the numerical inverse. However, the advantages of the Prandtl-Ishlinskii model are
limited to the class of hysteresis it can describe, namely the symmetric and the rate-
independent hysteresis.

The reported studies involving inverse compensaﬁon generally exhibit
compensation errors, even when the exact Prandtl-Ishlinskii model inverse is employed.
This érror has been generally attributed to characterization errors. Krejci and Kuhnen
[30] applied the‘ analytical inverse of the Prandtl-Ishlinskii model as a feedforward
controller to compensate the hysteresis nonlinearities of a piezoceramic actuator. As
mentioned before, thé advantage of the Prandtl-Ishlinskii model is analytically invel;tib]e,
and it can be conveniently implemented as a feedforward compensator for mitigating the
hysteresis nonlinearities. Characterization of hysteresis properties in smart actuators
using phenomenological operator-based hysteresis models generally involves estimation

of the density function as well as the thresholds of the hysteresis operator on the basis of
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measured data acquired for a particular actuator. The resulting model generally exhibits
some degree of error between the model output and the measured characteristics. Ping
and Ge [22] showed that the Preisach model derived to characterize the hysteresis
nonlinearities in a piezoceramic actuator yields error in the 2 to 3% range. In a similar
manner, the Krasnosel’skii-Pokrbvskii model that is employed by Galinaitis [27] to
characterize the major and migor hysteresis loops of a piezoceramic actuator at 0.05 Hz
yields error of 2.8 to. 4.3%. Krejci and Kuhnen [30] showed the percentage error of the
Prandtl-Ishlinskii model used to characterize hysteresis of a piezoceramic actuator is in
the order of 0.82%. The observed errors could be attributed to the characterization error.
The estimated hysteresis models have been employed to construct the inverse of thé
Preisach, Krasnosel’skii-Pokrovskii and Prandtl-Ishlinskii models. The resulting inverse
models are also expected to yield compensation errors of comparable order, when applied
as a compensator. The systematic model inverse error, however, can be accurately

described, when the exact analytical inverse is available.

1.5 Scope and Objectives

A number of hysteresis models have been evolved té characterize the hysteresis
properties of various smart actuators. Although these models can provide reasonably
good prediction of hysteresis of selected smart actuators, the input rate dependence of the
hysteresis is generally not considered. The smart actuators, however, exhibit strong
effects of the rate of the applied input on the hysteresis while Preisach model with
dynamic density function could adequately describe the rate-dependent and asymmetric

hysteresis nonlinearities; its inverse for compensation design is achievable only through
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numerical means. The numerically-derived inverse models, invariably, yield
compensation errors atfributable to the characterization and inverse estimation errors.
Furthermore, the errors cannot be accurately predicted and stability of closed-loop system
could not be established.

Alternatively, the analytical invertible Prandtl-Ishlinskii hysteresis model could
be effectively applied‘ to minimize the errors associated with estimation of the inverse.
The exact analytical inverse also faciiitates the real-time compensation of the hysteresis
effects. The Prandtl-Ishlinskii model, however, is limited to symmetric unbounded and
rate-independent hysteresis properties. The Prandtl-Ishlinskii model and its inverse are
thus not applicable for hysteresis compensation in class of actuators that exhibit
asymmetric major and minor hysteresis lodps, output saturation and input rate
dependence of the hysteresis effects. These include the piezoceramic, SMA and
magnetostrictive actuators.

It is desirable to derive generalized hysteresis models capable of describing
symmetric as well as asMetﬁc hysteresis effects with output saturation over a range of
input frequencies. It is also desirable that the models be continuous in order to derive
their analytieal mverse for their applicétions in real-time hysteresis compensation. It is
hypothesized that the play operator and the density function of the Prandtl-Ishlinskii
model can be sufficiently generalized to include the asymmetﬁc hysteresis shapes with
oﬁtput saturation and the rate-dependent hysteresis effects. It is further hypothesized the
resulting generalized Pfandtl-Ishlinskii can be ahalytically inverted since it would be a
mere extension of the classical Prandtl-Ishlinskii model. The analytical inverse would not

only permit the analysis of the error but also the stability of the closed-loop system.



1.5.1 OBJECTIVES OF THE DISSERTATION RESEARCH

The overall goal of the dissertation research is formulated on the basis of the
above-mentioned hypothesizes. The key goals of the dissertation research involve the
formulation of the vgeneralized Prandtl-Ishlinskii model for charactenization of
asymmetric, saturated and rate-dependent hysteresis properties of different smart
actuators, and its inversion. |

The specific objectives of the dissertation research are summarized below:

(a) Develop generalized Prandtl-Ishlinskii models to characterize asymmetric, saturated,
and rate-dependent hysteresis properties of smart actuators. Through formulations of
a generalized play operator, and dynamic threshold and density functions.

(b) Characterization of the hysteresis properties of different smart actuators subject to
wide ranges of inputs involving variations in type, magnitude and frequency. Analyse
the measured characteristics in an attempt to quantify the asymmetric, saturated and
rate-dependent hysteresis nonlinearities.

(c) Formulate analytical inverse of the generalized Prandtl-Ishlinskii models for their
application as a feedforward compensator to compensate for the asymmetric,
saturated, and rate-dependent hysteresis nonlinearities.

(d) Derive the error of the inverse compensation of the Prandtl-Ishlinskii model
analytically using the initial loading curve.

(e) Propose a robust controller design for compensation of inverse error through
integration of the Prandtl-Ishlinskii model and its inverse in a closed-loop system, and
perform stability analysis. '

1.6 Organization of the Dissertation

The dissertation research works are systematically organized in six chapters.

Chapter 2 describes the analytical formulations of the generalized Prandtl-Ishlinskii



models to describe the rate-dependent symmetric as well as asymmetric hysteresis
properties of materials and smart actuators with output saturation. A generalized play
hysteresis oeerator is integrated to the Prandtl-Ishlinskii model for characterizing
asymmetric as well as symmetric hysteresis properties with output saturation. A rate-
dependent play hysteresis operator is also proposed and applied to the classical Prandtl-
Ishlinskii model in conjunction with a dynamic density function to charactexize the
symmetric rate-dependent hysteresis properties. Furthermore, a generalized rate-
dependent play hysteresis operator with dissimilar envelope functions is presented to
characterize asymmetric and rate-dependent hysteresis properties.

In Chapter 3, the input-output characteristics of three different smart actuators,
including piezoceramic, SMA, and magnetostrictive actuators, are thoroughly analyzed
for characterizing their hysteresis properties, particularly the hysteresis loops and their
dependence on the rate of the input. For this purpose, a comprehensive experimental
study was undertaken to characterize hysteresis properties of a piezoceramic actuator
under sinusoidal and triangular waveform excitations in a wide frequency range (1 to 500
Hz). The output-input properties of the SMA and magnetostrictive actuators, acquired
from different laboratories, are analyzed to identify the concerned nonlinearities.

The validity and applicability of the generalized Prandtl-Ishlinskii models to
characterize symmetric as well as asymmetric rate-independent hysteresis properties of
different smart actuators with output saturation are demonstrated in Chapter 4. The
validation 1s demonstrated by comparing the model responses with the measured input-
output characteristics .of magnetostrictive, SMA, and piezoceramic actuators over a wide

range of inputs. Characterization of the rate-dependent hysteresis nonlinearities of

%)
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piezoceramic actuators under sinusoidal and triangular input waveforms are carried out

over a wide range of excitation frequencies.

Chapter 5 presents the formulations of the analytical inverse of the generalized
Prandtl-Ishlinskili models described in Chapter 2. The analytical inversions of the Prandtl-
Ishlinskii models are integrated as a feedforward compensator to compensate the
asymmetric, saturated and rate-dependent hysteresis effects. The effectiveness of the
compensations is illustrated through simulations and laboratory expen'ments with a

piezoceramic actuator.

In Chapter 6, the analytical error of the Prandtl-Ishlinskii model-based inverse
compensator is systematically derived analyﬁcally. To derive the error of the inverse
compensation analytically, the initial loading curve of the Prandtl-Ishlinskii model and
composition of the initial loading curve of the Prandtl-Ishlinskii model are presented.
Then, the inverse of the estimated Prandtl-Ishlinskii model is derived and presented based
on the initial loading curve and its inverse, respectively. Simulation results are attributed
to demonstrate for the error of the inverse compensation employing inverse of the

estimated Prandtl-Ishlinskii model.

The analytical error inode] of the inverse compensator is applied to propose a
robust controller design mm Chapter 7. The stability analysis is further presented for the
closed-loop system comprising a plant preceded with the output of the inverse
compensation. The major conclusions derived from the study and the major contributions

are summarized in Chapter 8 together with thoughts as further desirable studies.



Chapter 2: Modeling Hysteresis Nonlinearities

2.1 Introduction

A number of phenomenological models have been proposed to describe hysteresis
in smart actuators. These iﬁcludc the Preisach model [1, 5], the Krasnosel’skii-Pokrovskii
model [4], and the Prandtl-Ishlinskii model [2]. The Prandﬂ-Ishlinskii model offers
advantage over the Preisach and the Krasnosel’skii-Pokrovskii inodels, since its inverse
can be computed analytically, which makes it extremely attractive for real-time control A
applications, particularly for real-time compensation of hysteresis contributions. The
classical Prandtl-Ishlinskii model has been applied fo characterize symmetric and rate-
independent hysteresis properties of materials and smart actuators. The model can yield
considerable errors when an asymmetry exists in the hysteresis loops, such as those
observed in the output-input properties of the SMA and magnetostrictive actuators [20,
25], or when the output-input relations are dependent on the rate of the applied input.

The hysteresis models have been mostly applied to describe rate-independent
hysteresis effects in ferromagnetic and smart actuators, assuming negligible effect of the
rate of input. A few studies have experimentally characterized the output-input
relationships of different actuators under varying inputs [33, 34, 61, 64]. These clearly
showed dependency of the actuator displacement on the rate of input, while the area
bounded by the hysteresis loop also increased under increasing input frequency. The data
reported for various piezoceramic actuators under different excitation magnitudes and

frequencies suggest nearly symmetric major as well as minor hysteresis loops, which are



strongly dependent upon the rate of input. Unlike the- piezoceramic actuators,
magnetostrictive actuators exhibit highly asymmétn'c hysteresis property about the input
or the output axis. On the basis of laboratory measurements, it has been further shown
that hysteresis in magnetostrictive actuators is strongly rate-dependent beyond certain
frequencies [33]. Furthermore, the Prandtl-Ishlinskii model cannot describe output
saturation of the hysteresis loops, invariably observed in smart actuators. Development of
an effective controller for éompensating the hysteresis effects necessitates formulations
0f the models that can provide accurate prediction of the rate-dependent hysteresis
properties together with the output saturation.
In an attempt to overcome the limitation_s of the vPrandtl-IshIinskii'model, Kuhnen
[29] proposed deadzone operators in addition to the classical play operator of the Prandtl-
Ishlinskii model so as to characterize asymmetric hysteresis nonlinearities of the
magnetostrictive actuators. Brokate and Sprekels [2] and Visintin {3] have described a
nonlinear play operator that may be applied to the Prandtl-Ishlinskii formulation to
describe symmetric as well as asymmetric output-input loops coupled with output
saturation. A number of dynamic density functions have also been proposed to predict
rate-dependent behavior of smart actuators, when integrated to the classical
phenomenological models [34, 64, 68]. Alternatively, a dynamical model coupled with
the Preisach operator was proposed in an attempt to charécte'rize rate-dependent
hysteresis effects [33]. Smith [7] presented a homogenized energy approach using the
Preisach model to characterize rate-dependent hysteresis in a magnetostrictive actuator.
In this chapter, generalized Prandtl-Ishlinskii models are systematically formulated

to describe the rate-dependent symmetric as well as asymmetric hysteresis properties of



materials and smart actuators with output saturation. A rate-dependent play hysteresis
operator is initially proposed and applied to the classical Prandtl-Ishlinskii model in
conjunction with a dynamic density function to characterize the symmetric rate-
dependent hysteresis properties. A generalized play hysteresis operator is subsequently
formulated and integrated to the model for characterizing asymmetric as well as

symmetric hysteresis properties with output saturation.

2.2 Prandtl-Ishlinskii Model

The Prandtl-Ishlinskii model utilizes the play operator and the density function to
describe the input-output hysteresis relationships. The formulation of the classical

Prandt]-Ishlinskii model is introduced below.

2.2.1 PLAY HYSTERESIS OPERATOR

The play hysteresis operator, used in the classical Prandtl-Ishlinskii model, is
continuous, rate-independent, and symmetrié operator. This hysteresis operator has been
thoroughly described in [2]. Figure 2.1 illustrates the output (w) —input (v) characteristics
of the play operator, as a funétion of the threshold r, which is a positive constant. This
constant handles the hysteresis nonlinearity of the play operator and the Prandtl-Ishlinskii
hysteresis model. The play operator F, has also been described by the motion of a piston
within a cylinder of length 2r, where the instantaneous position of center of the piston is

represented by the coordinate v and that of the cylinder position by w [2].

Analytically, for any input v(t)e C,[0,T], where C, represents the space of

piecewise monotone continuous functions, such that the function v is monotone on the



sub-intervals [, #+1], the output of the play hysteresis operator is analytically expressed

forte=0<tf<..<iy=Tas[2]:

“FI0) = £,(+(0),0) = w(0)

wt)=f,(/(0), FIVIE)); for t; <t<t,, and 0Si<N-1; - 2.0

[, (v,w)=max(v—-r,min(v+r),w))

7

v

Figure 2.1: The output-input properties of the play hysteresis operator.

The argument of the operator is written in square brackets to indicate the functional
dependence, since it maps a function to another function. Some key properties of the play

hysteresis operator are briefly described below:

o Rate-independence: The play operator F,[v] is a rate-independent hysteresis

operator, such that :

F [v]loG = F,[voG] (2.2)
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where G is a continuous increasing function, G: [0, T}, satisfying G(0)=0 and G(7)=T.
Considering that a number of smart actuators and ferroelectric materials show
hysteresis effects dependent on the rate of input, the play hysteresis may yield

significant error when used in the Prandtl-Ishlinskii model. .

e Range: For a given input v(t) e C[0, T'] and threshold r >0, the range of the play
operator (2.1) is defined as [2]:
max F, V=7, (max (w(z ), w(0))

(2.3)
min F.[v](t) = ﬁ(,i‘;‘oi,')-,(v(’))’ w(0))

10,71

This property shows that the maximum and minimum outputs of the play operator are
directly dependent on the input v. Consequently, the play operator is unbounded and

cannot describe output saturation output.

e Lipschitz-continuity: For a given input v(¢) and threshold r > 0, the output of the
play operator (2.1) can be extended to Lipschitz continuous [2]. This property is
important to construct the analytical inverse of the Prandtl-Ishlinskii model, for

compensation of hysteresis effects in real-time control applications.

o Memory Effects: The play operator is a hysteresis operator with nonlocal-memory
effect, where the output of the operator depends on the current value of input as well

as the past values of output [2].

2.2.2 INPUT-OUTPUT RELATIONSHIP OF THE PRANDTL-ISHLINSKII MODEL

The Prandtl-Ishlinskii model, a phenomenological hysteresis model based
operator, is presented as a summation of a number of weighted play hysteresis operator.
The Prandtl-Ishlinskii model utilizes play operator F,, described in (2.1), to describe the

following relationship between the output I1[v](#) and the input v as [2]:



OpvI() = gv(@) + [ p(r)F, [vI(Ddr 24)

where p(r) is termed as a dénsity function, satisfying p(r) > 0, and g is a positive
constant.

The density function represents a probability distribution in terms of integrals, and
serves as a weighting for the play operators. In general, the density function is identified
from the experimental data of a particular material or actuator. It can be account for the
output-input sensitivity of the actuator. The density function of the Prandtl-Ishlinskii
model should be always positive to maintain the counter-clockwise direction of the play

operator. The Prandtl-Ishlinskii model with the density function maps CJ[z ,«) into
C[t,,0). The density function p(r) generally vanishes for large values of r, while the

choice of R=w as the upper limit of integration is widely used in the literature for the
sake of convenience [2]. This direction of the loop means lagging between the output of
Prandti-Ishlinskii model and the input. It should be mentioned that the hysteresis loops of
the smart actuators and ferromagnetic materials are counter-clockwise.

The Prandtl-Ishlinskii model can also be expressed by summation of various play

operators together with the density function as:

MY = @)+ p)F, D10 @.5)

where 7 is the number of the play operators.

Example 2.1: The output-input relations of the play operator and the Prandtl-Ishlinskii
model are illustrated by considering the following example. Consider an iput of the form

v(1)=10sin(2xz), 1 €[0, 5] to the Prandtl-Ishlinskii model that is presented in (2.5).Figure

2.2(a) illustrates the output-input relations of the play operator obtained through solution
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of (2.1) upon considering five different values of threshold r. The results clearly show the
strong dependence of the operator response on the threshold value. The output-input
relation is further den'ved. from solution of Prandtl-Ishlinskii model (2.4), by considering
only five play operators, » = [1.3, 2.6, 3.9, 5.2, 6.5], ¢g=0.5 and Ar=0.01, as shown in
Figure 2.2(b). The density function of the form p(r) = 0.1¢™" is assumed. The example
shows symmetric hysteresis loop, attributed to the symmetric output of the play
hysteresis operators, shown in Figure 2.2(a). Furthermore, the hysteresis loops of the
Prandtl-Ishlinskii model presented in Figure 2.2(b) do not exhibit output saturation due to
unbounded play operator. It can be concluded that the Prandtl-Ishlinskii model could
adequately describe symmetric hysteresis loops but it cannot characterize asymmetric and

saturated major and minor hysteresis properties. However, the Prandtl-Ishlinskii model

can characterize symmetric hysteresis loops of piezoceramic actuators.

3]

Output

_8 - . 1 S S AU s
0 4 6 4 2 0 2 4 6 B 1
Input

(b)

Figure 2.2: Input-output relations of: (a) play operators corresponding to different
threshold values, and (b) the Prandtl-Ishlinskii model under v(¢) = 10sin(2nz).
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Although the Prandtl-Ishlinskii model has been applied for characterizing the

hysteresis properties of piezoceramic actuators [30, 53], it exhibits a number of

limitations. Some of the primary limitations of the classical Prandtl-Ishlinskii model are

summarized below:

Output-Input asymmetry: The Prandtl-Ishlinskii models yield symmetric output-
input hysteresis loops, which are attributed to the symmetric nature of the play

operator under increasing and decreasing inputs. The model applications have thus

repoﬁed for the piezoceramic actuators, which generally show symmetric major

and minor hysteresis loops.

Output saturation: Owing to the unbounded nature of the play operator, the
Prandtl-Ishlinskii model cannot be applied to characterize the output saturation
property, which is widely observed in various smart actuators and ferromagnetic

materials.

Rate-dependent hysteresis: The smart actuators and various materials invariably
exhibit hysteresis that is dependent upon the rate of the applied input. The Prandtl-
Ishlinskii model cannot describe the rate dependence of the hysteresis, which 1s

attributed to the rate-independent play operator and density function.

The classical Prandtl-Ishlinskii model, therefore, cannot accurately characterize

the hysteresis properties of magnetic materials and smart actuators, which invanably

exhibit- nonlinear dependence on the rate of input, output saturation and output

asymmetry about the input. Kuhnen [29] proposed deadzone operators in addition to the

classical play operator of the Prandtl-Ishlinskii model so as to characterize asymmetric

hysteresis nonlinearities of the magnetostrictive actuators. This model, however, could

not characterize saturated hysteresis properties. Furthermore, the resulting model is

considered to be quite complex for control application.
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The prediction ability of the Prandtl-Ishlinskii model could be enhanced,
particularly in the content of the above sated nonlinearities, by considering alternate play
operator and density function. In the subsequent sections, three different Prandtl-
Ishlinskii models are formulated in a systematic manner for charactering; (i) rate-
independent asymmetric hysteresis with output saturation; (ii) rate-dependent symmetric
hysteresis; and (iii) generalized rate-depgmdent asymmetric hysteresis properties with
output saturation. Generalized and rate-dependent play operators are proposed to describe

the nonlinear hysteresis properties of different actuators in a generalized manner.

2.3 A Generalized Rate-Independent Prandtl-Ishlinskii Model

Brokate and Sprekels [2] and Visintin [3] have described an alternative play
operator with symmetric as well as asymmetric output-input characteristics. Although
this operator was proposed nearly 80 years ago, its application to describe hysteresis in
conjunction with the Prandtl-Ishlinskii model has not yet been explored. This operator
may also describe the output saturation property and is thus termed ‘generalized_ play

operator’ in the dissertation.

2.3.1 THE GENERALIZED PLAY HYSTERESIS OPERATOR

The generalized play operator is a nonlinear play operator, where an increase and

decrease in the input v causes the output w to increase and decrease, respectively, along
the curves 7, and y,, as shown in Figure 2.3. The minor loops of the input v and the
output w are bounded by the curves ¥; and y, (»; <y,) which are continuous envelope

functions for the input-output properties [3]. The output of this generalized operator can



exhibit asymmetric loops. The generalized play operator for any input v(¢) € C,,[0,T] is

analytically defined as:
8,v)(0) = £7(x(0),0)= z(0)
S,[v](t) = s((?£),S.[vI(t,)); for ¢, <t<t,, and 0<i<N-1 (2-6)

5(v,2) = max(y, (v) —r, min(y, (v) +1,2))

where 7, 7, :R >R are strictly increasing and continuous envelope functions.

Vr 14

;¥

Figure 2.3: Generalized play operator.

In the above formulation, r refefs to the threshold value of the classical ’play
operator, which is the magnitude of iﬁcfeasing 6r decreasing inpﬁt v(f) corresponding to
zero output w(f), as illustrated in Figure 2.1. Unlike the classical play operatbr, the
generalized operator yields zero outputs, z(£)=0, at two different values, C) and {y, of the
increasing and decreasing inputs v(f), as shown in Figure 2.3. The difference in the
magnitudes of {; and {; allows for describing asymmetric hysteresis loops. These

constants corresponding to increasing and decreasing inputs are related to the envelope
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functions and the threshold 7 in the following manner:

&G=y'()  for W1)>0

. ) 2.7
Sr=yi (=r) for ¥H<0
The above equations can be expressed as:
vi(&)=r for ¥W)>0 , (2.8)

¥.(§)=-r for ¥(1)<0
Then Equation (2.8) yields a relationship between the constants {;, {7, and the threshold

7, as:

— 7/(51);}9(;2) ) . (29)

For a given threshold r and envelope functions y; and, y, the generalized play hysteresis

7

operator can be constructed using (2.8) and (2.9).

Some of the key properties of the generalized play operator can be described as

follows:

e Lipschitz-continuity: For a given input (), the Lipschitz-continuity of the
generalized play operator can be ensured when the functions y; and y, are Lipschitz
continuous {2, 3].

¢ Rate-independent: The generalized play operator S, is a rate-independent hysteresis

operator, provided:
S [vloG =S [voG] (2.10)
e Range: For a given input v(¢) € C[0,7] and z(0) =S [v](0) = s(+(0),0), then the

maximum and the minimum values of the generalized play operator depend on the
envelope functions y, and y,, respectively, such that:
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max S, [v](r) = s(max , (+()),2(0))

+e[0,T})
(2.11)

min S, [v)(0) = s(min 7,((1)), 2(0))

The above stated properties suggest that the generalized play hysteresis operator
can exhibit asymmetric output by selecting different envelope functions for increasing
and decreasing input. Moreover, by choosing bounded envelope functions, the play
hysteresis operator can exhibit saturated output since the maximum and minimum output
of operator, as shown in (2.11), depends on the selected envelope functions. The
application of the géneralized operator to the Prandtl-Ishlinskii model could thus help to
characterize asymmetric and saturated hysteresis loops. Moreover, the analytical

inversion of the model could also be realized since the functions y; and y, are Lipschitz

continuous. The inverse constructed using invertible envelope functions, could then be
employed as a feedforward compensator for the asymmetric and saturated hysteresis

effects.

2.3.2 INPUT-OUTPUT RELATIONSHIP OF THE GENERALIZED PRANDTL-
ISHLINKSII MODEL

The generalized Prandtl-Ishlinskii model is subsequently formulated upon

integrating the generalized play operator S, and the density function as:

o[vI(0) = [ p(r)S, V)()dr (2.12)
0
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The above model integrating the play operator with appropriate envelope functions can
describe the minor and major hysteresis loops of smart actuators and materials with

asymmetry and saturation properties. The model may also be expressed as:

P10 = 3. S, V1) @.13)

where 7 is the number of the generaﬁzed play operators.

Remark 2.1: The classical play operator, defined in (2.1), can be shown to be is a special
case of the generalized play operator. The generalized play operator (2.6) reduces to the

classical operator when identical envelope functions, y, (V) =y,(v)=v .

Remark 2.2: The classical Prandtl-Ishlinskii model is a special case of the generalized

model. By letting y,(v)=y,(v)=v, the generalized model reduces to the classical

Prandtl-Ishlinskii model, described in (2.4).

Remark 2.3: The generalized play hysteresis operator is hysteresis operator with
nonlocal-memory effect, where the output of the generalized operator depends on the

current value of input as well as the past values of output.

Example 2.2 :The response characteristics of the Prandtl-Ishlinskii models based on
asymmetric generalized as well as the classical play operators are illustrated under a

complex harmonic input of the form: w(f)=4.6sin(nt)+3.1cos(3.4x1), ¢ € [0, 5]. This input

permits for evaluating major as well as minor loops in the play hysteresis operators’
outputs. The simulations are performed using different envelope functions to study their
influence on the outputs of the generalized play operators. For the illustrative example,
hyperbolic-tangent functions are selected as the envelope functions of the generalized

play operator, such that: y (v)=6tanh(0.4v) and y,(v)=6tanh(0.25v). A constant

density function p(r)=0.45 is further chosen for both the classical and the generalized
models in order to relax its effect in the responses. A total of 11 play operators are
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selected for the simulation with threshold values as: » = [0, 0.525, 1.05, 1.575, 2.1, 2.625,
3.15,3.675,4.2,4.725, 5.25].

Figures 2.4(a) and 2.4(b) show the input-output relations of the classical (CPO) and
generalized play operators (GPO), respectively, corresponding to threshold values , r=
0, 1.575, 3.15, and 4.725, under the selécted complex harmonic input. Both the play
bperators (GPO and CPO) exhibit increasing hysteresis with increasing threshold value.
The CPO, however, yields symmetric major and minor hysteresis loops under increasing
and decreasing inputs, while the GPO exhibits highly asymmetric input-output curves
under the same inputs. Furthermore, unlike the outputs of the CPO, the outputs of the
GPO exhibit saturation. Figures 2.5(a) and 2.5(b) show the outputs of the classic and
generalized Prandtl-Ishlinskii models incorporating classical and generalized play
operators, respectively, for same values of r. The results clearly show that the generalized
model yields saturated asymmetric major and minor hysteresis loops, which are attributed
to the selected envelope functioné. The results further show that the width of the
hysteresis loops under negative input is more than that under the positive input, which is
also attributed to the selected envelope functions. The model with classical operators,
however, exhibits unsaturated and symmetric major and well as minor hysteresis loops.

The generalized Prandtl-Ishlinskii model can also yield symmetric hysteresis loops for

envelope functions, y;(v) = 7,(v), as it would be the case for the classical model. The

generalized model, however, characterizes the output saturation unlike the classical
model, as it is evident from outputs of the operator and the model, shown in Figures
2.6(a) and 2.6(b), respectively. The results thus suggest that the generalized Prandtl-
Ishlinskii model comprising the generalized play operator can describe the symmetric as
well as asymmetric hysteresis properties with output saturation. The output-input
relationships, however, are strongly determined by the envelope functions of the

generalized play hysteresis operators.

48



e
e r=0 |
6! | r=1575]

| - r=3.150

Figure 2.4: Input—output properties of the play hysteresis operators under v(f) = 4.6sin(nt)
+ 3.1cos(3.4nt): (a) Classic play operator, y,(v)=y,(v)=v; and (b) Generalized play

operator, y,(v)==6tanh(0.4v) and y,(v) =6tanh(0.25v).
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Figure 2.5: Response charactenistics of the Prandtl-Ishlinskii hysteresis models
employing: (a) classical play operator; and (b) generalized play operator.
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Figure 2.6: Input-output relations of: (a) the generalized play operators corresponding to
different threshold values; and (b) the generalized Prandtl-Ishlinskii model under w(¢) =

4.6sin(nr) +3.1cos(3.4m¢), and y,(v) = y,(v) = 6tanh(0.4v).
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2.4 Prandtl-Ishlinskii Model Based Rate-Dependent Play Operator

Both the classical and the generalized Prandtl-Ishlinskii models are considered
applicable for characterizing rate-independent hysteresis properties of materials and
actuators. This is attributed to the rate-independent classical and generalized play
operators. Various materials and actuators, however, exhibit output-input hysteresis that
is strongly dependent upon the rate of applied input in a highly nonlinear manner [33, 64,
68). These studies have invariably shown that the majority of the smart actuators and
ferromagnetic materials generally exhibit greater hysteresis with increasing time rate of

the input, while the output amplitude decreases. -

2.4.1 FORMULATION OF RATE-DEPENDENT PLAY HYSTERESIS OPERATOR

An alternate play operator comprising the rate of the input (dv/dt) is proposed for
integration to the Prandtl-Ishlinskii for characterizing rate-dependent hysteresis properties
materials and smart actuators. The definition of the play operator, presented in (2.1),
suggests that the width of the play hysteresis operator is directly related to the threshold #,
which is also evident from Figure 2.2(a). The increase in the hysteresis with increasing
the rate of the input may thus be characterized by a relatively larger threshold r.
furthermore, the output of play hysteresis operator depends on either v - r for ¥>0 or v +
r for v<0, whilg.r is aiways ‘positive. Unlike the operator used in the Preisach model,
where the ihputvis limited to either -1’ or *+1° [1], the outputs of play operator employed
in Prandtl-Ishlinskii model are not limited to fixed values. The results in Figure 2.2(a)
further show that the peak output of the operator decreases with increasing values of r.

Moreover, the width of the hysteresis loops is directly related to the threshold r, which is
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illustrated in Figure 2.2, for an input of the form w(f)=10sin(2/) with initial value
F[¥)(0)-.

The properties of the play hysteresis operator may thus be further exploited for
describing the rate-dependent output-input properties of the smart actuators and
ferromagnetic materials. The identification of an appropriate threshold value, however,
forms the most important task for defining the hysteresis properties. Consequently, a

dynamic threshold, 7 =7(v), is proposed and a relationship among the output of the play
operator, the dynamic threshold 7 and the input v(¢), is formulated based on the reported

and measure output-input properties (presented in Chapter 3) of smart actuators, as:

E(0)=fFv@) | 2.14)

Analytically, let C _[0,7"] represent the space of piecewise monotone continuous
functions. For any input, v(#) € C,,[0,T],let 0 = 1) < t; <... <ty = T be a partition

within the span [0, 7], such that the function v is monotone on each of the sub-intervals
[t t:+7]. The output of the rate-dependent play operator is then proposed as a function of

the dynamic threshold, as:

F.(v(0)) = £,(v(0),0)=w(0)
F;'(v(t)) =/ (v(t), E (v(t,.)) ;for t;<t<t,;and 0<i<N-1 (2.15)

(v, w)= max(v —7,min(v+ F,W))

A dynamic threshold function of the following form is initially proposed on the basis of

the observed output-input properties of a piezoceramic actuator:
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F=a n(g+AE)) (2.16)

where >0, g>1, A>0,and £21 are positive constants.

Remark 2.4: In the above formulations, the choice of the dynamic threshold 7 is not

unique. This would depend upon the nature of hysteresis of a particular material or a

device.

The properties of the proposed rate-dependent play hysteresis operator comprising

proposed dynamic threshold function (2.16) are evaluated to ensure their general

applicability, which are summarized below:

The output hysteresis of a rate-dependent operator increases monotonically with

increase in the time rate of input, v(¢). This is apparent from (2.16). An increase in

the rate of input would yield a higher value of the dynamic threshold, 7 = r(¥()).

For two inputs of different time rates, such that: max{ v,(¢)] > max[ v,(#)] and v,(0)>

v,(0), the proposed dynamic threshold function would yield max{r(v,(¢))]>
max[r(v,())].

The hysteresis of the proposed play operator also increases monotonically with
increase in the amplitude of input v(¢), and thus the magnitude of v(¢). A higher

amplitude would thus yield a higher value of 7, as it is evident from (2.16).

The dynamic threshold function 7 yields a nearly constant value when the rate of
input is very small or ‘when a low frequency input is applied, which yields
F=a ln(ﬂ) The proposed operator can thus describe the rate-independent

hysteresis properties.
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2.4.2 RATE-DEPENDENT PRANDTL-ISHLINSKII MODEL

The rate-dependent Prandtl-Ishlinskii model is formulated upon integrating the

proposed rate-dependent play operator (2.15). The output of the rate-dependent model

TI(»(?)) is then expressed analytically as:

TI0() = () + [ pAIE WD @.17)

The above model may also be expressed as:
(@) = gv()) + ) pFIF, (v(t)) ' (2.18)
i=1 .
The numerical implementation of the generalized rate-dependent Prandtl-
Ishlinskii model is realized using discrete input v(k) corresponding to interval & with a

step size h (k=0, 1, 2, ... , N; N=T/h) such that:

TI(k) = qv(k) + 3. pEF; (k) (2.19)

The time rate of the input is estimated from the discrete inputs, such that:

¥ = () — vt ) (t—t,) (2.20)

Example 2.3: The response characteristics of the proposed rate-dependent Prandtl-
Ishlinskii hysteresis model, presented in (2.17), is illustrated for a complex harmonic
input of the form: v(£)=6sin(2nft)+3sin(3nft); where f is the fundamental frequency of the
inputs. The simulations are performed under different input fundamental frequencies (10,
50, 100, and 200 Hz) to study the influence of the rate of the input. The input further
permits for evaluations of major and minor loops in the operators’ outputs. The
simulations were performed by arbitrary selecting the constants in dynamic threshold

model (2.16) as: a=1.8, f=1.0, i=0.001 and &£=1. The simulation parameters were
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selected are: T=4/f, N=301, A=0.02/f, w(0)=0 and ¢=0.1. A constant densify function,
’ p(r)=0.005e'°'°", is further chosen for the model in order to relax its effect in the output
responses. Figure 2.7 shows the output-input relationships attained from the Prandtl-
Ishlinskii model using the rate-dependent play hysteresis operator under inputs
“corresponding to the selected fundamental frequencies. Simulation results show an
increase in hysteresis and decrease in output amplitude of the hysteresis loops with
increase in the fundamental frequency of the input. The hysteresis of the major loops is
considerably larger than those of the minor loops due to varying input amplitudes. The
simulation results show that rate-dependent Prandtl-Ishlinskii model based on the
dependent play operator, can exhibit rate-dependent hysteresis loops. Furthermore, the
simulation results show that the rate-dependent hysteresis effects maintain the wipe-out

property and the memory effects in the output.
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Figure 2.7: The input-output properties of the Prandtl-Ishlinskii model employing the
rate-dependent play operator under inputs at different frequencies.
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2.43 RATE-DEPENDENT PRANDTL-ISHLINSKII MODEL BASED DYNAMIC
DENSITY FUNCTION ’

The rate-dependent Prandtl-Ishlinskii model described in (2.17) can be further
enhanced by employing a dynamic density function. Mayergoyz [1] proposed a rate-
dependent Preisach model by introducing the speed of the output in the Preisach function.
In a similar manner, Ben Mrad and Hu [64] and Yu et al. [34] further proposed a rate-
dependent density function to fhe Preisach model to characterize the rate-dependent
hysteresis effects of piezoceramic actuators. A dynamic density function for the Prandtl-
Ishlinskii model can also be formulated in a similar manner as a function of the dynamic
threshold, apart from input w(¢) and its time fate v(t). The rate-dependent Prandtl-
Ishlinskii model with dynamic density function is thus formulated upon integrating the
dynamic density functioﬁ p{7,v(t), (1)) and the function Z(v(t), v(?)) in the model, such

that:

() = R0, 5(0))+ [ pF,v(0), WOV, (H0))dF (2:21)

where h(v(1),v(t)) and p(F,v(t),v(t)) are positive continuous functions. The validity of
the proposed rate-dependent model is examined in Chapter 4 under various inputs,
including harmonic, complex harmonic and triangular waveforms, uSing the measured

data of different smart actuators in a wide frequency range.

Remark 2.5: The choices of # and p are not unique. These would depend upon the

nature of rate-dependent hysteresis of a particular material or actuator.
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2.5 Prandtl-Ishlinskii Model Based Generalized Rate-Dependent Play
Operator

Owing to the symmetric properties of rate-dependent play operator, the rate-
dependent Prandtl-Ishlinskii model cannot be applied to characterize the asymmetric rate-
dependent hysteresis properties. Alternatively, a generalized rate-dependent play
operator, which is constructed using enveiope functions, can be proposed to describe
asymmetric rate-dependent hysteresis properties as a function of the dynamic threshold as

well as generalized rate-independent play hysteresis operator (2.6).

2.5.1 GENERALIZED RATE-DEPENDENT PLAY HYSTERESIS OPERATOR

The rate dependence of the output is characterized by introducing the dynamic
threshold 7 in the generalized play operator formulation in a manner similar to that
applied to the symmetric play hysteresis operators. The resulting modified generalized
play hysteresis operator could describe the rate-dependent asymmetric hysteresis non-

linearities. This operator can be analytically described for input v(t) € C,[0,7] as:

S.(v(0)) = 5;(1(0),0) = 2(0)

S, (v()) = 5.(v(t), S; (W) ; for ¢, <t <t,,, and 0<i<N-] (222)

5, (v, 2) = max (v, (v) - F,min(y, (v) + 7, Z))

2.5.2 THE GENERALIZED RATE-DEPENDENT PRANDTL-ISHLINSKII MODEL

The generalized rate-dependent Prandtl-Ishlinskii model is formulated upon

integrating the above generalized play operator together with the density function p(7).
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This density function is expected to enhance prediction abilities of the generalized model
for asymmetric hysterésis nonlinearities. The output of the model ®(v(¢)) is then

expressed as:
. R
B = [ pF)S, ((O)dF | (2:23)

The model can also be expressed as:

W) = p()S, (1) | 2.24)
J=

‘where 7 is the number of the generalized rate-dependent play operators. The numerical

- implementation of the generalized Prandtl-Ishlinskii model is formulated using discrete

inputs v(k)with a step size of & (k=0, 1, 2, ... , N; N=T/h) , such that:

BOW) =3 p(F)S, () 2.25)

=

Example 2.4: The response characteristic of the proposed generalized rate-dependent
Prandtl-Ishlinskii model is illustrated through simulation parameters in Example 2.3. To
relax the symmetric properties in the rate-dependent hysteresis loops is relaxed by

selecting following envelope functions:

7 (=13
v, (v)=1.0v+1.50

(2.26)

Figure 2.8 presents the responses of the generalized rate-dependent Prandtl-Ishlinskii
model under complex harmonic inputs corresponding to different fundamental
frequencies (10, 50, 100, and 200 Hz). The results show that as the fundamental
frequency of the input increases, the hysteresis increases and in the amplitude of the

major and minor loops decreases. The results further show that the model employing the
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generalized rate-dependent play operator yields asymmetric rate-dependent hysteresis
loops. It is thus ascertained that the generalized rate-dependent play operator not only
relaxes the symmetry of the rate-dependent Prandtl-Ishlinskii model, but it could also
yleld the rate-dependent hysteresis effects.
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Figure 2.8: Simulation results attained from the Prandtl-Ishlinskii model employing the
generalized rate-dependent play operator under a complex harmonic input at different
fundamental frequencies.

2.6 Summary

The hysteresis properties of smart actuators exhibit symmetric as well as

asymmetric hysteresis loops that are strongly dependent upon the rate of the input.
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Furthermore, the outputs of the smart actuators génerally exhibit saturation. Three
different Prandtl-Ishlinskii models are formulated to characterize these nonlinearities in a
systematic manner. A generalized play operator is initially proposed to characterize
asymmetric output-input property by selecting different envelope functions. The
generalized operator is integrated to the Prandtl-Ishlinskii model to obtain
characterization of asymmetric as well as symmetric major and minor hysteresis loops
with output saturation. The results show that the integration of the proposed generalized
play operator to the classical Prandtl-Ishlinskii model can effectively characterize the
asymmetric saturated hysteresis properties of a class of materials and smart actuators.

A rate-dependent play opérator is subsequenﬂy proposed on the basis of dynamic
threshold functions in an attempt to describe the rate dependence of the output-input
hysteresis. A rate-dependent Prandtl-Ishlinskii model is then formulated on the basis of
the rate-dependent operator and a dynamic density function. The simulation results show
that the hysteresis increases considerably with increasing frequency of the input, although
the model yields only symmetric hysteresis loops. Finally a generalized rate-dependent
Prandtl-Ishlinskii model is proposed by introducing the dynamic threshold within the
generalized play operator together with a dynamic density function. The simulation
results attained under a complex harmonic input at different frequencies demonstrated
that the generalized model describe the symmetric as well as asymmetric rate-dependent
hysteresis properties of materials and smart actuators with output saturation. The
envelope and dynamic density functions in the model, however, are not unique and must
be defined from the hysteresis properties of the particular actuator or material. The

nonlinear rate-dependent hysteresis of different actuators is thus thoroughly described n
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the following chapter. The model parameters are subsequently identified in Chapter 4 and

the model validity is demonstrated under wide rages of inputs.
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Chapter 3: Characterization of Hysteresis Properties of Smart
Actuators

3.1 Introduction

The input-output characteristics of smart actuators, such as piezoceramic,
magnetostrictive, and SMA actuato‘rs,v invariably exhibit hysteresis nonlinearities. The
presence of hystereéis is known to cause considerable positioning errors in micro/nano-
positioning applications. The hysteresis nonlinearities may also lead to instability in the
closed-loop operations of smart actuators [31]. The positioning accuracy of such |
actuators could be significantly enhanced through hysteresis compenséﬁon of the closed-
loop system. A number of hysteresis models have thus been developed to characterize the
hysteresis nonlinearities and to develop control methods for hysteresis compensation [21-
36]. Many actuators generally exhibit asymmetric output-input characteristics that are
strongly dependent upon the rate of the input. Such extreme nonlinearities present
considerable challenges in modeling of hysteresis properties. The reported hysteresis
compensation methods, however, generally ignore the effects of input on the hysteresis
and yield errors under inputs at higher frequencies.

Tﬁe hysteresis properties of smart actuators, whether symmetric or asymmetric,
could be characterized using the generalized Prandtl-Ishlinskii model formulated in the
previéus chapter. The development of a reliable model, however, necessitates thorough
understanding and characterization of input-output characteristicé of smart actuators.
Although the hysteresis of smart actuators has been the subject of a vast number of
studies [e.g., 20, 21, 27], the characterization of the hysteresis properties of smart

actuators subjected to different rates of inputs have been presented in a relatively fewer
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studies. Hu and Ben Mrad [64] measured the hysteresis of a piezoceramic actuator and
reported that the width of measured voltage—displacement curve was nearly 15% of the
peak actuator expansion at very low excitation frequencies. Ge and Jouaneh [22]
measured the hysteresis properties of a piezoceramic actuator under sinusoidal excitations
at 0.1 and 100 Hz and concluded that the properties were comparable under both
excitations, although the response to 100 Hz excitation revealed larger hysteresis. The
measurements performed by Yu et al. [34], on the other hand, showed that the hysteresis
of a piezoceramic actuator could be considered rate-independent only under excitations at
‘ﬁ*equencies below 10 Hz. The study also showed larger hysteresis under sinusoidal
excitations, when compared to that attained under a triangular input. Tan and Baras [25]
measured hysteresis properties of a magnetostrictive actuator under sinusoidal excitations
in the 10 - 300 Hz range, and concluded that the hysteresis in the output displacement
increased as the excitation frequency of the input current was increased. In a similar
manner, Oates et al. [74.] demonstrated the rate-dependent hysteresis in a
magnetostrictive actuator through measurements under inputs in the 100-500 Hz range.
Gorbet et al. [21] and Hughes and Wen [20] conducted measurements of shape memory
alloy (SMA) actuators, which showed saturated major and minor hysteresis nonlinearities
between the input temperature and the output displacement.
. In this chapter, the input-output characten'étics of three different smart actuators,
“including piezoceramic, SMA, and magnetostrictive actuators, are thoroughly analyzed
for charactering their hysteresis properties, particularly the maj‘or and minor hysteresis
loops and their dependence on the rate of the input. For this purpose, a comprehensive

experimental study was undertaken to characterize hysteresis properties of a
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- piezoceramic actuator under sinusoidal and triangular waveform excitations in a wide
_frequency range (1 to 500 Hz). The data for two different SMA and magnetostrictive
actuators were obtained from the University of Waterloo [21] and the University of
Maryland [25] laboratories, respectively. The acquired data were analyzed to illustrate
the nonlinear hysteresis properties and their dependence on the rate of input, and to

identify target responses for model parameters identifications.

3.2 Experimental Characterization of Hysteresis of a Piezoceramic
Actuator

The hysteresis properties of a piezoceramic actuator,' P;753.31C, were
chafacten'zed in the laboratory under a wide range of operating condiﬁons involving
frequency, bias and magnitude ‘of the excitation voltage. The actuator provided a
maximum displacement of 100 pm from its static equilibrium position, and it integrated a
capacitive sensor (sensitivity =lpum/V; resolution < 0.1 nm) for measurement of the
actuator displacement response. The natural frequency of this piezoceramic actuator is
2.9 KHz. A voltage amplifier (LVPZT, E-505) with a fixed gain of 10 provided
excitation voltage to the actuator in the 0 to 100 V range. The experimental setup is
schematically presented in Figure 3.1.

The experime‘nt was designed to study the effects of main factoré on the hysteresis
. properties of the actuator; which included bias, frequency, magnitude and type of
excitation voltage. Different values of positive bias were introduced in the input signal to
ensure a positive excitation of the piezoceramic actuator. The measurements were

performed under two types of excitation voltages; harmonic and triangular. The
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experiments under harmonic excitations were conducted with different bias and
amplitudes at several discrete frequencies in the 1 to 500 Hz range. The input voltage and
output displacement signals were acquired and stored into a multi-channel oscilloscope,
which wére subsequently expressed by the Lissajous curves. The experiments under
triangular input waveforms were conducted to study the hysteresis effects under a

constant excitation rate.

Displacement
Sensor \
k Piezoceramic actuator ¢ l
oeem—rs——ro—rm————
: Amplifier LVPZT(E-505)
Displacement signal
Voltage
A
Yy v
Displacement
A
. - guas >
Signal coniditiones v
Input signal
;y v

Data acquisition

and analysis

Figure 3.1: A schematic representation of the experimental setup.

The experiments were designed to include three different series with objectives to
derive: (i) the effects of input rate on the major hysteresis loops; (ii) the effects of input
rate on the minor hysteresis loops; and (iii1) the influence of the input waveform. Results
attained are used to fully characterize the rate-dependent hysteresis effects, which are
discussed in the following sections. Each measurement was repeated 3 times. Although
the measurements were invariably repeatable, mean data of the 3 trials were considered

for characterizing the hysteresis properties.
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3.2.1 MAIJOR HYSTERESIS LOOP TESTS

In the first series of experiments, the response characteristics of the actuator were
measured to characterize the major hysteresis loops at 12 different excitation frequencies
(0.1, 1, 10, 20, 50, 100, 150, 200, 300, 350, 400, and 500 Hz). For this purpose, harmonic
excitation signal with bias of 40 V wés synthesized to ensure positive voltage input
during loading and unloading, while the magnitude was fixed as 40 V. The resulting
major loops relating displacement responses to the input voltage are shown in Figure 3.2
for various excitation frequencies. The results clearly show that the hysteresis is strongly
dependent upon th¢ rate of input, particularly at frequencies above 10 Hz. An increase in
excitation frequency not only yields larger width of the major loop Sut also reduces the
peak displacement output of the actuator, which has also been observed in a few reported
studies [34, 64]). The major loop hysteresis is quantified by the peak hysteresis H
normalized with respect to peak-to-peak output M, as shown in Figure 3.3. The measured
data was further analyzed to quantify hysteresis and displacement attenuation as a
function of the excitation frequency. The percent hysteresis of the actuator is illustrated in
Figure 3.4 (a) as a function of the input frequency. The results show that percent
hysteresis increases nearly exponentially with increasing excitation frequency at
frequencies above 10 Hz. Figure 3.4(b) illustrates the considerable attenuation of the
peak-to—peak displacement response with increasing frequency, which also tends to be
consid‘erable at frequencies above 10 Hz. The results suggest that the rate-independent
hysteresis models could be considered valid for describing the actuator hysteresis under

excitations below 10 Hz only.
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Figure 3.2: Measured major hysteresis loops relating displacement response of a
piezoceramic actuator to the applied voltage at different frequencies.
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3.2.2 MINOR HYSTERESIS LOOPS TEST

This series attempted to characterize minor hysteresis loops of the actuator
under harmonic excitations of various amplitudes and frequencies in the 0.1 to 200 Hz
range (0.1, 1, 10, 20, 50, 100, 150, and 200 Hz). The experiments were conducted in two
stages, where the first stage involved the study of influence of excitation amplitude on the
hysteresis, while the bias was held constant (20 V). For this pﬁrpose, three different
levels of excitation voltages were considered (5, 10, and 20 V), which resulted n
excitation voltages of 20 + 5, 20 + 10 and 20 + 20 V, respectively. In the second stage,
three different bias voltages (30, 60, and 90 V) were cbnsidered in conjunction with
constant amplitude of 10 V to characterize the effect of bias voltage on the minor
hysteresis loops. The variations in the bias voltage resulted in excitation voltages of

30+10, 60+10 and 9010 V, respectively.

Figure 3.5 illustrates the minor hysteresis loops under excitation at 100 Hz and
percent hysteresis as a function of frequency measured during the first stage of
experiments under the three excitations, 20+5, 2010 and 20+20 V. Results clearly show
significant effect of input magnitude on the percent hysteresis; a higher magnitude of ..
excitation yields shightly larger hysteresis. The change in the output-input curve yields
greater attenuation of the actuator output under lower excitation voltages, in addition to
that caused by the excitation frequency, as -seen in Figure 3.6. Both the percent hysteresis
and attenuation of output displacement tend to be considerable at frequencies above 10
Hz. Figure 3.7 shows that the variations in bias voltage caused an insignificant effect on
the percent hysteresis. Figure 3.8 illustrates the peak-to-peak displacement responses

measured during the second stage of the experiments under bias voltages of 30, 60 and 90

70



(amplitude =20 V) as a function of the excitation frequency. These also suggest relatively

small effect of bias voltage on the output attenuation.
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Figure 3.5: (a) Influence of excitation magnitude on the minor hysteresis loops at an
excitation frequency of 100 Hz, and (b) Variation in percent hysteresis of the minor loops
as a function of excitation frequency (Bias =20V; Amplitudes: square -5; star-10; and ;
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3.2.3 INFLUENCE OF THE INPUT WAVEFORM

A few studies have also shown the influence of excitation waveform on the
response hysteresis of piezoceramic actuators using harmonic and triangular excitations
at low frequencies of 5 Hz [34] and below 20 Hz [69]. It was shown that a triangular
waveform yields slightly lower maximum hysteresis nonlinearity H of the mean curve
* when compared to that under a harmonic excitation. Such differences may be attributed
to difference in the time rate of the input waveform. In this study, the hysteresis
properties of the actuator are measured under triangular and sinusoidal input waveforms
of identical amplitude (40 V) with a bias of 40 V but four different excitation frequencies
(1, 10, 100, 200 Hz). The measured data revealed nearly negligible effect of the
waveform at frequencies of 1 and 10 Hz, while the Waveform effect was apparent at

higher frequencies (100 and 200 Hz), as shown in Figure 3.9.

The peak hysteresis loop nonlinearities H tends to be lower under the triangular
input compared to that under sinusoidal input, which can be attributed to relatively lower
magnitude of rate of change of the triangular input compared to that of the sinusoidal
input, as shown in Figure 3.10. The figure compares the input waveforms at selected
frequencies and their rate (dv/dt). Moreover, the constant rate of change of the input most
likely yields relatively lower slope of the output-input curve under the triangu]af input.
The sharp discontinuity in the triangular also further yields considerably lower peak-to-
peak displacement response coinpared to response to the sinusoidal input, which could be

attributed to limited bandwidth of the actuator [69].
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3.3 Input-Output Characteristics of Magnetostrictive Actuators

Magnetostriction is the phenomenon of strong coupling between the magnetic and
mechanical properties.  Some ferromagnetic' materials as Terfenol-D show this
phenomenon between the output strain and the applied magnetic field. The output strains
are produced due to the applied magnetic field which produces changes in magnetization.
Magnetbstrictive actuators have been widély used in micro-positioning applications and
vibration control.

The major and minor hysteresis loop properties of a magnetostrictive actuator
havé been measured by Xiaobo Tan [25, 33]. The measurements were performed under
increasing triangular waveform input currents with amplitude ranging from -0.7 to 1.2 A.
The study also measured the hysteresis properties under harmonic excitations at different
frequencies in the 10 to 100 Hz (10, 20, 50, and 100 Hz). The magnitude of the input
current ranged from -0.7 to 0.9 A. The measured data was acquired and analyzed to study
the major and minor hysteresis loops and rate dependence of the actuator hysteresis.
Figure 3.11 shows the measured output displacement vs input current relationships for a
magnetostrictive actuator acquired under increasing triangular input currents, with
amplitude ranging from -0.7 to 1.2 A [25]. The measured data clearly show asymmetric
major and minor hysteresis loops as well as output saturation in the output displacement.

Figure 3.12 illustrates hysteresis properties of a magnetostrictive actuator at
different excitation frequencies. The results attained under inputs at four frequencies in
the 10 to 100 Hz range show considerable variations in the hysteresis Ioops.. Figure 3.13
illustrates the percent hysteresis of the actuator, while Figure 3.14 illustrates variations in

percent hysteresis as a function of frequency of the input. The results show that the

77



hysteresis increases with frequency in a nonlinear manner. This dependence of output
magnitude on the excitation frequency, however, would differ with type of actuator or

material.
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Figure 3.11: Measured output-input responses of a magnetostrictive actuator [25].
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Figure 3.12: Measured hysteresis loops relating displacement response of a
magnetostrictive actuator to its applied current at different excitation frequencies [33].
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Figure 3.13: Percent hysteresis of the magnetostrictive actuator under excitations at
different frequencies (based on data obtained from [33]).
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Figure 3.14: Variations in displacement amplitude of a magnetostrictive under excitations
at different frequencies (based on data obtained from [33]).
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3.4 Input-Output Characteristics of SMA Actuators

The output-input hysteresis properties of two shape memory alloy (SMA)
actuators have been measured by Robert Gorbet [21]. The study perfc;rmed measurements
on two SMA actuators, including a one-wire and two-wire actuators. The measurements
were performed to establish relationships between the output displacement and the input
temperature. Tﬁe variations in input temperature were realized by applying triangular
waveform currents of varying magnitudes. For single-wire SMA actuator, the current was
varied from 0 to 1 A, which resulted in input temperature variations from 0 to 175° C.
‘The input current for the two-wire SMA actuator ranged from -1 to 1 A resulting

temperature variations from -175 to 175° C.

The input current variations were at a low frequency. The acquired data were
analyzed to derive the minor and major hysteresis loops of the two SMA actuators, while
the rate dependence of the actuators output and hysteresis could not be established. The
output displacement responses of the two actuators are illustrated in Figure 3.15 as a
function of variations in the input temperature. The results clearly show highly
asymmetric output-input relations of both actuators. The asymmetry. is evident in both the
major as well as minor hysteresis loops. The results also show notable output saturation.
The output displacement of the single-wire actuator tends to saturate most notably at
temperatures exceeding 80°C. The two-wire actuator also exhibit similar saturation when

the magnitude of the temperature approaches 50°C.
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Figure 3.15: Measured output-input responses of two smart actuators: (a) a two-wire SMA
actuator; and (b) a one-wire SMA actuator wire [21].
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3.5 Discussions

The experimental results of the smart actuators show different hysteresis properties
between the input and the output. These hystéresis properties are presented in Table 3.1
for piezoceramic, magnetostrictive and SMA actuators. The piezoceramic actuator show
symmetric hysteresis loops without output saturation, while the magnetostrictive and
SMA actuators shdw asymmetric major and minor hysteresis loops as well as output
saturation in the output displacement. The piezoceramic actuator show symmetricv rate-
dependent hysteresis effects between the input voltage and the output displacement,
where the hysteresis increases as the excitation frequency of the input voltage increases at
frequenéies above 10 Hz, while the amplitude of the output displacerhent decreases. On
the other hand, the magnetostrictive actuator exhibits asymmetric rate-dependent

hysteresis effects when the frequency of the input current increases.

Table 3.1: Hysteresis properties of smart actuators.

Rate- Rate-

. . Output
Smart actuator independent  dependent Symmetric  Asymmetric saturation
Piezoceramic v v v X X
Magnetostrictive » v v X v v
Shape Memory v v v v
Alloys T '

The experimental results show that developing a hysteresis model to characterize
the hysteresis properties of the smart actuators is a challenge. The required hysteresis

model should exhibit the following hysteresis properties:
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e Symmetric hysteresis loops to characterize the rate-independent hysteresis

¢

properties of the piezoceramic actuators.

e Asymmetric hysteresis loops to characterize the rate-independent hysteresis

_ properties of the magnetostrictive and SMA actuators.

e Output saturation - to characterize saturated hysteresis loops of the

magnetostrictive and SMA actuators

e Symmetric rate-dependent hysteresis loops to characterize the rate-dependent

hysteresis properties of the piezoceramic actuators.

e Asymmetric rate-dependent hysteresis loops to characterize rate-dependent

~ hysteresis properties of the magnetostrictive actuators.

The following Prandtl-Ishlinskii models, presented in Table 3.2, can be applied to
characterize symmetric, asymmetric and rate-dependent hysteresis properties. These

models are:

o The classic Prandtl-Ishlinskii model, constructed by classic play operator, can be
used to characterize rate-independent and symmetric hysteresis loops of the

piezoceramic actuators.

o The generalized Prandtl-Ishlinskii model, implemented using the generalized rate-
independent play hysteresis operator, can be used to characterize asymmetric and

saturated hysteresis loops of the SMA and magnetostrictive actuators.

¢ The rate-dependent Prandtl-Ishlinskii model based rate-dependent play operator
can be applied to characterize rate-dependent hysteresis loops of the piezoceramic

actuators.

e The generalized rate-dependent Prandtl-Ishlinskii model based generalized rate-
dependent play operator can be used to characterize asymmetric rate-dependent

hysteresis loops of the magnetostrictive actuators.



Table 3.2: Hysteresis properties of the Prandtl-Ishlinskii hysteresis models.

. Rate - Rate- . . Output
Hysteres1s model independent dependent Symmetric  Asymmetric saturation
Classic PI v X v X X
Rate-dependent PI v v X v X
Generalized PI v X v v e
Generalized rate- '
dependent P1 v v v v v
3.6 Summary

Hysteresis properties of piezoceramic, magnetostrictive, and SMA actuators are
thoroughly characterized undg:r a range of excitation either from reported data or
laboratory measurements. Measurements performed on a piezoceramic actuator under
different input voltages in the 1 to 500 Hz frequency range revealed strong dependence of
the response and the hysteresis on the excitation frequency. The hysteresis nonlinearities
of the major as well as minor loops increased considerably with increasing input
frequency, while the peak-to-peak displacement amplitude decreased. This dependence
was particularly strong at frequencieé- above 10 Hz. It was thus concluded that the
majority of the widely reported hysteresis models would be applicable' for under
excitations up to 10 Hz only. The experimental results attained under triangular
waveform inputs in the 1 to 200 Hz showed that a U'iangularbwavef(‘)rm yields relatively
smaller hysteresis nonlinearities compared to that under a sinusoidal input, which is
attributed to relatively smaller magnitude of the constant rate of change of the triangular
inpht.
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Unlike the piezoceramic actuators, the measured output-input characteristics of
the magnetostrictive and SMA actuators showed asymmetric major as well as minor
hysteresis loops between the input and the output. These actuators also show output
- saturation in the major as well as minor hysteresis loops. The magnetostrictive actuators
further revealed rate-dependent hysteresis effects similar to the piezoceramic actuators.
The results suggested that the asymmetry in the major/minor hysteresis loops, ti)e rate
dependence of the hysteresis effects and output saturation must be adequately considered
in the hysteresis model. The Prandtl-Ishlinskii models formulated in Chapter 2 can
adequately describe these nonlinear hysteresis effects. The classic Prandtl-Ishlinskii
model, presented in Section 2.2, can effectively characterize the symmetric rate-
independent hysteresis loops such that observed for the piezoceramic actuator at low
excitation frequencies. The generalized Prandtl-Ishlinskii model, presented in Section
2.3, can yield asymmetric hystereéis major and minor hysteresis loops with output
saturation as observed in the magentostrictive and SMA actuators. The rate-dependent
Prandtl-Ishlinskii models, presented in Sections 2.4 and 2.5, can effectively describe the
symmetric as well as asymmetric rate-dependent hysteresis properties. The classic and
the generalized Prandtl-Ishlinskii models are subsequently explored in Chapter 4 to

characterize the observed hysteresis properties of the smart actuators.
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~Chapter 4: Modeling Rate-Dependent and Asymmetric
Hysteresis Nonlinearities of Smart Actuators

4.1 Introduction

Smart materials based actuators, such as piezoceramic, magnetostrictive and shape
memory alloy actuators are widely used in micro-positioning, vibration control and
manufacturing applications [32-52]. These actuators, however, exhibit hysteresis
phenomenon, which can cause inaccuracy and oscillations in the system response, and
could lead to instability of the closed-loop system. A number .of models have been
proposed to characterize the hysteresis phenomenon in smart actuators. Hughes and Wen
[20] proposed Preisach model comprising a second;order polynomial density function
and evaluated the fundamental wipe-out and minor-loop congruent properties of
piezoceramic and SMA actuators, which were verified experimentally. Ge and Jouaneh
[22] characterized the hysteresis in a piezoceramic actuator using modified relay
operators with threshold values of 0 and +1, which replaced the threshold values of -1
and +1 of the classical operator. The effectiveness of the FOD (first-order decreasing
curves) method in identifying different forms of the Preisach function was demonstrated
by Gorbet et al. [21, 60] to characterize the hysteresis properties of two different SMA
actuators. Choi et al. [72] proposed a proportional relationship between the major
hysteresis loop and FOD curves of a SMA actuator to further simplify the parameters
identification of a hysteresis model-based modified operator. Preisach model also has
been used to characterize hysteresis properties of magnetostrictive actuators. As an
example, Tan and Baras [25] characterized major and minor hysteresis loops of

magnetostrictive actuators using Preisach model together with the recursive parameter
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identification approach. Another phenomenological operator-based hysteresis model is
the Krasnosel’skii-Pokrovskii model which is constructed by integral of a density
function and the Krasnosel’skii-Pokrovskii operator. Unlike the relay operator, the
Krasnosel’skii-Pokrovskii operator is constructed using two piecewise Lipschitz
continuous functions and two threshold values [4]. Banks et al. [28] and Galinaities [27]
applied this model to characterize hysteresis effects in smart actuators. These hysteresis
models have been mostly applied to describe rate-independent hysteresis effects in
ferromagnetic and smart actuators, although the rate-dependent hysteresis nonlinearities

of such actuators have been widely demonstrated.

Altemnatively, dynamic density functions have been defined to predict rate-
dependent hysteresis properties in conjunction with Preisach model [33, 34, 64, 74].
Smith et al. [7) presented a homogenized energy model using Preisach model to
charactenize the rate-dependent hysteresis in a magnetostrictive actuator over a wide
frequency range (1-2 kHz). Ang et al. [68] proposed a dynamic function and dead zone
operator for the Prandtl-Ishlinskii model in an attempt to characterize the rate-dependent
hysteresis in piezoceramic actuators. The validity of the model was demonstrated for a
harmonic input at 10 Hz, and a complex harmonic input comprising 5, 20 and 35 Hz
components.

In this chapter, it is shown that the generalized Prandtl-Ishlinskii model based
play hysteresis operator can be used to characterize symmetric as well as asymmetric
rate-independent hysteresis properties of different smart actuators with output saturation
by selecting different envelope functions. The validity of the resulting generalized

Prandtl-Ishlinskii model is demonstrated by comparing the model responses in terms of
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saturated symmetric and asymmetric major and minor hysteresis loops with the measured
input-output characteristics of magnetostrictive, SMA and piezoceramic actuators. The
validity of the proposed model is demonstrated using measured data acquired for
piezoceramic and magnetostrictive actuators, which show symmetric and asymmetric

rate-dependent hysteresis, respectively.

4.2 Classical Prandtl-Ishlinskii model for Characterizing Hysteresis in
Smart Actuators

Classic Prandtl-Ishlinskii mode‘l (2.5) bhas been used to characterize rate-
independent and symmetric hysteresis properties of piezoceramic actuators [30]. In this
section, the properties of the Prandtl-Ishlinskii model are explored and the model is
applied to characterize hysteresis properties of piezoceramic, magnetostrictive and SMA
actuators. A density function of the following form is selected for the classic Prandtl-

Ishlinskii model:

pr)=pe’” (4.1)
where 7 is a constant and p is a positive constant. The threshold function of the play

operator is chosen as:

ri=¢g j=1,2,3,..,n 4.2)
where c¢ is a positive constant. The parameters of the classical Prandtl-Ishlinskii model

are identified through minimization of an error squared function given by:
M ' 2
J(X) =3 ([00) - 3, () | (43)
=1
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where II(v(i)) is the response of the classical Prandtl-Ishlinskii model, y,, is the measured
displacement of an actuator, M is the number of déta points considered, J is the error
function for the major as well as minor hysteresis loops, and X is the parameters vector
given by: {X} = {z, p, g, and c}. The error minimization problem was solved using the

MATLAB optimization toolbox, subject to following constraints:

pqc>0

The solutions of the minimization problem were attained for different starting parameter
vectors, which converged to very similar solutions. The minimization problem was
éolved using the data for the piezoceramic actuator under a complex harmonic input,
v()=50+10sin(2nt)+ 36¢co0s(S.1n7). The resultingimodel parameters identified using the
piezoceramic actuator data are summarized in Table 4.1. The results, shown in Figure
4.1, show that the classic Prandtl-Ishlinskii model can accurately characterize the

symmetric major as well as minor hysteresis properties of a piezoceramic actuator.

The application of the classical Prandtl-Ishlinskii model is further attempted to
characterize the saturated asymmetric hysteresis properties of SMA and magnetostrictive
actuators, described in Sections 3.3 and 3.4, respectively. The resulting model parameters
identified using reported measured data for two SMA and a magnetostrictive actuator are
summarized in Table 4.2. Figures 4.2 and 4.3 illustrate the comparisons of the measured
and the model displacement responses of the two actuators, respectively. From the
results, it is apparent that the classical model yields substantial errors in predicting
asymmetric hysteresis and output saturation properties of a class of smart actuators. This

attributed to the symmetric and unbounded properties of the play hysteresis operator.
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Table 4.1: Identified parameters of the classical Prandtl-Ishlinskii model.

Parameter Value
c 2.243
P 0.056
T 0.041
q 0.631

Table 4.2: Identified parameters of the classical Prandtl-Ishlinskii model using the
reported measured data for two SMA and a magnetostrictive actuators.

Parameter Two-wire One-wire Magnetostrictive
SMA actuator SMA actuator actuator
¢ 2.338 4.8735 -~ 0.1751
P 7.712x10°3 37.442x10° 2.4944
T 5.494x10 17.120x10 - 0.7502
g 2.882x107 0.02681 0.3464
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Figure 4.1: Comparisons of displacement responses of the classic Prandtl-Ishlinskii
hysteresis model with the measured data of a piezoceramic actuator under complex
harmonic mput ¢ - ~ - - , measured; , model).
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Figure 4.2: Comparisons of displacement responses of the classical Prandtl-Ishlinskii
model with the measured data of two SMA actuators: (a) one-wire SMA actuator wire;
and (b) two-wire SMA actuator. ( —8—— , measured; - -+ - , model).
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4.3 Generalized Rate-Independent Prandtl-Ishlinskii Model for
Characterizing Hysteresis in Smart Actuators

In this section, the generalized Prandtl-Ishlinskii model, described in Chapter 2, is
applied for characterizing asymmetric hysteresis properties of SMA and magentostrictive
actuators with output saturation. The validity of generalized Prandtl-Ishlinskii model
(2.13) is demonstrated by comparing the model responses with the measured major and

minor hystere‘sibs loops of the SMA, magnetostrictive and piezoceramic actuators.

4.3.1 FORMULATION OF ENVELOPE FUNCTIONS AND PARAMETERS
-IDENTIF ICATION

The parameters of the generalized play hysteresis operator and the density
function need to be defined on the basis of known charactenistics of a smart actuator. A
hyperbolic tangent function perhaps a better choice for the envelope functions to describe
the output of such a function is continuous and invertible. The suggested envelope

functions for generalized play operator (2.10) are expressed as:

y,(v)=aqa tanh(av+a,)+a,
4.49)
y,(v)=b, tanh(bv+5b,)+b, -
where a, > 0, a; > 0, az, a3, b, > 0, b; > 0, by, and b; are constants to be identified using

the experimental data.

The model parameters are identified using the reported measured output-input
data, presented in Figure 3.15, for two SMA (single and double wires) and
magnetostrictive actuators. The generalized model parameters are identified through

minimization of an error sum squared function (4.3). The parameters vector for the
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generalized model is given by: {X}={a,, a;, as, a3, b,, b;, by, b3, 1, p, and c}. The error
minimization problem was solved using the MATLAB optimization toolbox, subject to

- following constraints:

ao, ay, b, by, p, c>0
The solutions of the minimization problem were éttained for different starting parameter
vectors, which converged to very similar solutions. The minimization problem was
solved using the data for all three actuators and the resulting model parameters are

summarized in Table 4.3.

The applicability of the generalized Prandtl-Ishlinskii model for characterizing
symmetric hysteresis of piezoceramic actuators was further investigated. The simulations
were performed for both the generalized and classical Prandtl-Ishlinskii models
employing similar density and threshold functions, described in (4.1) and (4.2),
respectively. Linear enve]bpe functions of the following form Were used in generalized
play operator (2.6):

7,(vV)=a,v+a,
(4.5)
7 (v)=by+b

where a,> 0, a1, b,> 0, and b, are constants.

Parameters identification of the generalized Prandtl-Ishlinskii model was
performed also on the output-input characteristics of the piezocveramic actuator. The
measured data which is presented in Figure 4.1 were used to solve the error minimization
problem defined in (4.3) to identify the model parameters. Table 4.4 summaries the

identified parameters of the generalized Prandtl-Ishlinskii model. It can be seen that the



coefficients a, and b, of the two envelope functions are quite comparable, which suggests

similar envelope functions for nearly symmetric hysteresis properties of the piezoceramic

actuator.

Table 4.3: Parameters of the generalized Prandtl-Ishlinskii model identified using the
- reported measured data for two SMA actuators and a magnetostrictive actuator.

Parameters Two-wire One-wire Magnetostrictive
SMA actuator SMA actuator actuator
c 2.3665 0.013 0.857
P 0.17533 1.281 1.361
T 0.0049 0.011 0.214
a, 21.7265 1.545 15.991
aj 0.01124 0.019 0.978
a; 0.0001 1 0.288 -0.373
as 0 -0.923 0
by 23.1275 0.672 14.109
by 0.01494 0.026 0.973
by 1.8176 -0.239 0.648
b3 0 -0.159 0

Table 4.4: Identified parameters for the generalized Prandtl-Ishlinskii models using the

measured output-input characteristics of the piezoceramic actuator.

Parameters Generalized Prandtl-Ishlinskii model
C 1.194
P 0.388
T 0.081
a, 0.326
ay 5.535
b, 0.396
b -9.982
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4.3.2 EXPERIMENTAL VERFICATIONS

Thé validity of the generalized Prandtl-Ishlinskii model incorporating the
generalized play operator with hyperbolic-tangent envelope functions is investigated by
comparing the model responses with the | available measured data of the SMA,
magnetostrictive and piezoceramic actuators. Figures 4.4 and 4.5 illustrate comparisons
of the generalized model responses of the SMA and magnetostrictive actuators,
respectively, with the measured data. The results clearly suggest that the model can
effectively predict asymmetric hysteresis properties of both types of actuators. Moreover,
the model can also characterize output saturation of both the SMA actuators in the
proximity of the extreme input temperatures, as seen in the output displacement vs input
temperature properties of the one- and two-wire SMA actuators. Figure 4.5, in a similar
manner, - illustrates comparisons of the major and minor loops in the displacement
response§ of the model with the corresponding measured data. The results suggest

reasonably good agreements between the model and measured displacement responses.

The effectiveness of the generalized model in pfedicting the asymmetric saturated
hysteresis responses of the single-wire SMA and magnetostrictive actuators can also be
seen from comparisons of the displacement responses in the time domain, presented in
Figures 4.6 and 4.7, respectively. The figures present the comparison of the model
reéponses with the measured data for both actuators. The results show notable prediction
error for both the actuator models. The peak errors in the displacement responses of the
generalized Prandtl-Ishlinskii model using generalized play operator with the hyperbolic

envelope functions of the one-wire SMA and magnetostrictive actuators are 0.66 mm and
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2.94 pm, respectively, which are approximately 3% of the maximum outputs for both the

.actuators.
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Figure 4.4: Comparisons of displacement responseé of the generalized Prandtl-Ishlinskii
model with the measured data of two SMA actuators: (a) one-wire SMA actuator wire;
and (b) two-wire SMA actuator. ( ----- model;, ~—6—, measured).
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Figure 4.5: Comparisons -of displacement responses of the generalized Prandtl-Ishlinskii
model with the measured responses of the magnetostrictive actuator (- -~ - - , measured;
e, model).
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Figure 4.7: (a) Comparisons of time histories of displacement responses of the

generalized Prandtl-Ishlinskii model with the measured data of the magnetostrictive
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98



60 T T T T T

40}

Displacement (urh)

40

0 20 40 60
Input voltage

Figure 4.8: Comparisons of displacement responses of the Prandtl-Ishlinskii hysteresis
models with the measured data of the piezoceramic actuator under complex harmonic
(== , measured; —— model).
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Figure 4.9: Comparisons of differences in output displacements of the generalized and
classical Prandti-Ishlinskii models and the measured data under complex harmonic input,
(—- , classical model; —&— , generalized model).
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The output-input responses of the generalized model employing linear envelope
functions are also evaluated under complex harmonic input of the form, v(f)=
10sin(2n)+36cos(5.1nt) in order to characterize symmetric hysteresis of the
piezoceramic actuator. The results are compared with the measured data for the
piezoceramic actuator in Figure 4.8. Although the validity of the classical Prandtl-
Ishiinskii model in predicting the symmetric hysteresis properties presented in Figure 4.1
has been demonstrated, the generalized model can provide enhanced prediction of the
symxﬁetric hysteresis properties. Figure 4.9 presents a comparison of output errors of the

_ two models, classic and generalized P;andtl-lshlinskii models, in the time domain, with
respecf to fhe laboratory-measured data. The peak deviation between the generalized
Prandtl-Ishlinskii model responses and the measured data are in the order of 1.02pm.
While classic Prandtl-Ishlinskii model shows 2.59 pm peak errors under complex
harmonic and triangular inputs, respectively. These results suggést that the generalized
Prandtl-Ishlinskii model could also characterize symmetric hysteresis properties more

accurately, when compared to the classical model.

4.4 Rate-Dependent Prandtl-Ishlinskii Model for Characterizing Rate-
Dependent Hysteresis of a Piezoceramic Actuator

The measured output-input characteristics of the piezoceramic actuator, presented
in Chapter 3, exhibit hysteresis effects that strongly dependent on the rate of the input.
The effect was particularly strong at above 10 Hz. Both the classical and generalized
models would yield significant errors under inputs at frequencies above 10 Hz.
Furthermore, the measured responses revealed certain dependence on the type of the

input. This was evident from the responses attained under triangular waveform inputs in
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the 1 to 200 Hz, which revealed relatively smaller width of the hysteresis loops éompared
to that under a sinusoidal input.

The dependence of the output in the rate of input could be incorporated within the
generalized and classical Prahdtl-Ishlinskii models through formulation of the rate-
dependent play operator and dynamic density function. A rate-dependent Prandtl-
Ish]insicii model is thus formulated for charactering the hysteresis responses of smart

actuators over a wide range of input frequericies, such that:

() =h (V(t),f’(t))+j5§(V(t),\"(t))ﬁ(7)F; ((D)dr : (4.6)
0
where §(v,1>) and A (v,fz)- are positi\}e continuous functions of the current input v(f) and
its time rate v(f). The choices of the functions %(v,v) and g(v,v) are not unique, these
would depend upon the nature of hysteresis of particular material or device. The
functions /(v,¥) and g(v,v) of the following forms may be chosen to characterize rate-

dependent hysteresis effects:

r(v(), (1)) = ae Ve 4.7
2((0),v(1)) = a,e Ve (4.8)

where ay, as, my, my, ny and n; are constants. The dynamic threshold 7 is selected as:

F= al—[ln(ﬂ +/1|v ] ) ‘ (4.9)
where 2, and @ are positive constants, 4, >1 and g >1. The order of the rate-

dependent threshold is determined by positive integer z, that decides the order of the

dynamic threshold. A higher-order threshold function was found to charactenize
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hysteresis effects more accurately under high frequency inputs. A second-order dynamic

threshold 7 (z, = 2) is formulated in the following manner:

7 =alg, + AP0} Jin(g, + Lpf) (4.10)

4.4.1 PARAMETERS IDENTIFICATION

The measured major hysteresis loop under different excitation frequencies of the

piezoceramic actuator was applied to identify the parameters of the rate-dependent
Prandtl-Ishlinskii model. Dynamic threshold (4.10) and the functions 4(v,v) and g(v,v)

defined in (4.7) and (4.8), respectively, need to be defined on the basis 6f known
characteristics of a specific actuator. The experimental data obtained for the piezoceramic |
actuator under harmonic inputs at various frequencies in the 1to 500 Hz range are applied
to identify the model parameters. The parameter vector X = {a, fi, B2, 11,42, €1, €2 a1, az,
p, T, my, my nj ng},. was identified through minimization of an error sum-squared

function over a wide frequency range, given by:

I =Y Y, ein-y,0f @.11)

Jpa it
subject to:
a, 4,42, €,82,a1,a2,p>0

B, p>1

where TI(v(r)) is the displacement response of the rate-dependent Prandtl-Ishlinskii

model corresponding to a particular excitation frequency and y, is the measured

displacement under the same excitation frequency. The error function is constructed

102



through summation of squared errors over a range of input frequencies. A weighting

constant C, (ir=1, ..., n) was introduced to emphasize the error minimization at higher

frequencies. The index i (i =1, ..., M) refers to the number of data points considered to
compute the error function J for one complete hysteresis loop. A total of 100 data points

(M =100) were available for each measured hysteresis loop.

The solutions of the minimization problem with various starting vectors resulted
in the following solution for the model parameters: a=1.0, 4,=0.00710, 1,=0.00128,
Br=1.0, =23, £=1.0,6=1.0, a;~0.189, a,=0.116, m1=n1=2.9><10'6, and my=n,=0 were
subsequently used to simulate the rate-dependent Prandtl-Ishlinskii model to examine its
validity for characterizing major as well as minor hysteresis loops under harmonic inputs
in the 1-500 Hz frequency range. The following inputs are applied also to excite the
piezoceramic actuator: (i) sinusoidal input voltages of amplitude 40 V at 1, 10, 20, 150,
200,'250, 300, 350, and 500 Hz, (ii) complex harmonic input voltages of the form,
W(1)=50+10sin(2xff) +36cos(3.4nf 1), at 1, 10, 50 , and 100 Hz, and (iii) triangular input

voltages of amplitude 40 V at 1, 10, 150, and 200 Hz.

44.2 MAJOR HYSTERESIS LOOP SIMULATION

The simulation results attained under harmonic inputs (amplitude=40V) in the 1
to 500 Hz frequency range are compared with the measured major hysteresis loops data
to demonstrate the validity of the rate-dependeﬁt Prandtl-Ishlinskii model. Figure 4.10
compares the model responses with the measured data under excitations at different
frequencies in the 1 to 500 Hz range. The results suggest. good agreements between the
model and measured results, while the peak displacement error is below 5 pm,
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irrespective of the rate of the input. In practice, both the measured and model results
show increasiné hysteresis and decreasing output amplitude with increasing excitation
frequency. Figure 4.11 illustrates corresponding outputs of the rate-dependent play
operator at different excitation frequencies, where the nonlinearity in the output increases

as the excitation frequency of the input voltage increases.
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Figure 4.10: Comparisons of measured responses with the results derived from rate-
dependent model under inputs at different excitation frequencies ( -————— | measured,
, model).
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Figure 4.11: Input output relationships of the rate-dependent play operator at different
frequencies.

4.4.3 MINOR HYSTERESIS LOOP SIMULATION

The ability of the rate-dependent Prandtl-Ishlinskii model in predicting minor
hysteresis loop behavior is further investigated over a wide range of excitation
frequencies. For this purpose, the model responses to an input of the form,
W()=50+10sin(2nf £)+36c0s(3.4nf 1), are evaluated and compared with the measured data
at 1, 10, 50 and 100 Hz fundamental frequencies. The simulation results of the rate-
dependent model attained under selected fundamental frequencies are compared with the
measured disp]acément responses in Figure 4.12. The results demonstrate reasonably
good agreements in minor loop responses of the model with the measured data,
irrespective of the fundamental frequency considered. Time histories of displacement

responses of the rate-dependent Prandtl-Ishlinskii model are further compared with the
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measured data obtained under the complex harmonic excitations with fundamental
frequencies of 1, 10, 50 and 100 Hz in Figure 4.13. The figure also shows the time-
histories of error between the model and measured responses. The results suggest very
good agreements between the predicted and measured displacement responses, while the
peak displacement error is below 5 pm, iﬁespective of the fundamental frequency. Table
4.5 summarizes the percentage of norm and peak errors of the rate-dependent model at
different fundamental frequencies, which tend to be bounded between 5.06-6.50% and

3.57-4.77%, respectively.
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Figure 4.12: Comparisons of measured responses with the results derived from rate-
dependent Prandtl-Ishlinskii model under inputs at different fundamental frequencies (
, measured; , model).

Table 4.5: Percent errors between the model and measured displacement responses at
different excitation frequencies.

Frequency (Hz) Percentage of norm error % Percentage of maximum error %
1 6.11 3.85
10 6.18 : 4.77
150 5.06 3.57
200 6.50 . 4.30
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444 TRIANGULAR WAVEFORM INPUT

The validity of the model is further explored under a triangular waveform voltage
input at four excitation frequencies (1, 10, 100 and 200 Hz). The excitation was defined
to yield peak amplitude of 40 V with a bias of 40 V, as it was applied in experiments. The
model simulations were performed using the model parameters identified under distinct
harmonic inputs to ascertain the general applicability of the model. Figure 4.14 illustrates
comparisons of the model results in terms of major hysteresis loops with the
corresponding measured data under the selected excitation frequencies. The results show
good  agreements between the model results and the measured data, although some
deviations are evident in both the peak-to-peak displacement response and width of the
hysteresis loop. The model results exhibit oscillations in the response corresponding to
upper half of the triangular waveform, v(¢) > 40 V, at higher frequencies, which are also
evident in the measured data. These oscillations are caused by discontinuity in V(¢) of
the triangular input. The results further show asymmetric responses under upper and
lower halves of the triangular waveform, where the oscillations are absent under the
lower half of the waveform. This asymmetry is attributed to opposite signs of higher
magnitudes of time rate of input at the extremities (v(¢)>0 near v(f) = 0 V;and v(¢) <
0 near v(7) = 80 V), which cause relatively small and large magnitudes, respectively, of
the functions 7#(v,%) and g(v,v) described in (4.7) and (4.8). Such oscillations tend to
diminish at lower frequencies, which can be attributed to relatively smaller magnitudes of
v(?) and hysterésis.

The time histories of the displacement responses of the rate-dependent model are

also compared with the measured data obtained under the triangular excitations at
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frequencies of 1, 10, 100 and 200 Hz in Figure 4.15. The figure also shows the error

between the model and measured responses. The results clearly show very good

agreements between the predicted and measured displacement responses under triangular

waveform excitations at all the selected frequencies, as it was observed under harmonic

and complex harmonic excitations. The peak displacement error is below 5 pm under

excitations at 1 and 10 Hz, while the peak error increases to nearly 5.15 pm at 200 Hz.
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Figure 4.14: Comparisons of measured responses with the results derived from rate-
dependent Prandtl-Ishlinskii model under triangular inputs at different frequencies

(=, measured; , model).
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4.5 Generalized Rate-Dependent Prandtl-Ishlinskii Model

Smart material actuators invariably exhibit rate-dependent hysteresis that may be
either symmetric or asymmetric depending upon the actuation principle. The generalized

Prandtl-Ishlinskii model, described-in Section 2.5, is further enhanced to describe rate-
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dependent symmetric and asymmetric hysteresis. The generalized rate-dependent
Prandtl-Ishlinskii model, presented in (2.23), is realized upon integration of a density
function and the generalized rate-dependent play operator, capable of generating minor as
well as major hysteresis loops with varying slopes of the ascending and descending input-
output curves. The dynamic threshold function has been described in (4.10) to enhance
the ‘prediction of rate-dependent hysteresis effects. - Tﬁe validity of the resultihg
generalized rate-dependent model is demonstrated by comparing the displacement
reépoﬁses of the model with the measured symmetric and asymmetric responses obtained
for the piezoceramic and magnetostrictive actuators, respectively, under inputs at
| different frequencies in tbheb 1-200 Hz and 10- 1.00 Hz ranges. The model validity for thé
SMA actuatof was not attempted since the data was not available and the fact that the

rates of variations in the input temperature are relatively low.

4.5.1 PARAMETERS IDENTIFICATION

On the basis of the observed hysteresis properties of a magnetostrictive actuator,
higher-order polynomial envelope functions are defined to realize asymmetric hysteresis

properties of the operator and the model. These envelope functions are expressed as:

7, (v)= Za,,v" +a,
=l 4.12)

7, (v)= Zbﬂv" +b,
n=l
where s; and s, are the orders of envelope function y,(v) andy,(v), respectively. The

constants of the proposed functions can be selected to realize different degree of

asymmetry in the hysteresis properties. The generalized rate-dependent Prandtl-Ishlinskn
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model is formulated using dynamic threshold 7 (4.9) is selected to characterize the rate-
dependent hysteresis. A classical form for the function = gv and density function (4.1)

are chosen in order to characterize the rate-dependent asymmetric hysteresis properties.
The parameters of the envelope functions, dynamic threshold, and density function need
to be defined on the basis of known characteristics of specific smart actnators. Rate-
dependent play operators are defined by constructing first (s; =s, =1) and third-order (s;
=s, =3) envelope functions, as described in (4.12), in order to illustrate the influence of
the order on the outputs of the rate-dependent Prandtl-Ishlinskii model. The experimental
data obtained for the magnetostrictive actuator [33] and the piezoceramic actuator under
harmonic inputs at various ﬁ'equencies. in the 10-100 and 1-200 Hz ranges, respectively,
were considered for model parameters identification. The parameters identification,
however, was limited to the generalized model alone in order to investigate its ability to

predict both symmetric and asymmetric hysteresis effects of the respective actuators.

The model parameters vector X={a, f;, B2, i1, 42, p, T, 4o, a;, a3, as, b,, by, by, bs,
q}, was identified through minfinization of the error sum-squared function the
displacement response of the generalized rate-dependent Prandtl-Ishlinskii model and the
measured displacement over entire range of excitation frequencies. The error

minimization problem was solved under the following constrains:

a, Ay, Az €1, €2, p,g> 0
ﬂl,ﬂZZ] A

The minimization problem for the magnetostrictive actuator, solved considering
only one level of input current amplitude of 0.8 A with a bias of 0.1 A (n3=1), since the

data was available only under this excitation. Four different excitation frequencies (n,=4),
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namely, 10, 20, 50, and 100 _Hz, however were considered, with a total of 60 data points
(n,=60) for each hysteresis loop. For the piezoceramic actuator, the input voltage
amplitude was limited to 40 V (n,=1), while the data corresponding to four different

frequencies of 1, 50, 100, and 200 Hz (n;=1) were considered with a total of 50 data
points (n,=50) for each hysteresis loop. A weighting constant C i (Jr=1,2, 3, and 4) was

introduced corresponding to selected exﬁitation frequencies of 10, 20, 50 and 100 Hz for
the magnetostrictive; and 1, 50, 100 and 200 Hz for the piezoceramic actuator, to
emphasize the error minimization at higher frequencies. The solutions were obtained for
a range of starting vectors and weighting constants. The weighting constants
corresponding to minimize weighted sum squared error over the entire frequency range
selected, which are summarized in Table 4.6 for both models. Table 4.7 presents the
identified parameters of the generalized rate-dependent Prandtl-Ishlinskii models based
upon linear and nonlinear envelope functions for the piezoceramic and magnetostrictive

actuators.

Table 4.6: Weighting constants Cj applied in the minimization function for identification
of parameters based upon magnetostrictive and piezoceramic actuator data.

Magnetostrictive actuator Piezoceramic actuator
. Ci G
Frequency(Hz) s=s=1 =53 Frequency(Hz) S=5~1 553
10 13 11 1 22 14
20 15 29 50 27 12
50 24 12 100 28 22

100 33 14 200 44 32




Table 4.7: Identified parameters of the generalized rate-dependent Prandtl-Ishlinskii
model using rate-dependent play operator of linear (s; =s,= 1) and nonlinear (s; =s,= 3)
envelope functions for the magnetostrictive and piezoceramic actuators.

Rate-dependent play operator of linear Rate-dependent play operator of
Parameter envelope functions nonlinear envelope functions .
Magnetostrictive Piezoceramic Magnetostrictive Piezoceramic
Actuatqr actuator actuator actuator
a 3.721 2.795 4.848 1.792
B © 1.199 2.745 1.090 2.264
B 1.199 1.021 1.199 1.101
by 0.063 1.137x107 1.7312x102 1.642x10®
A3 0.002 1.085x10™ 6.322x107 1.658x107
P 0.005 0.011 0.005 0.020
T 0.092 0.044 0.092 , 0.038
a, 19.908 0.681 -7.137 0.480
a; 23.268 0.681 30.265 0.239
a; 1.629 1.611x10*
a3 2.861 5.609x10°
by -5.424 -0.199 -3.338 ' -0.199
b, 3.190 0.4584 25.276 0.248
b, -9.789 -6.883x10™
b3 9.098 3.785x10°
q 1.408 0.217 -7.510 0.218

4.5.2 EXPERIMENTAL VERIFICATIONS

The wvalidity of the generalized rate-dependent Prandtl-Ishlinskii models
employing the rate-dependent play operators with linear and nonlinear envelope functions
is examined by comparing the model responses with the measured data for the both
actuators under different excitation frequencies. Figure 4.16 illustrates comparisons of the
displacement responses of the generalized model based on asymmetric linear (s; =s, =1)
and nonlinear envelope functions (s=s,=3) with the measured data of the
magnetostrictive actuator corresponding to inputs at different discrete frequencies (10,

20, 50, and 100 Hz). The results clearly suggest that the model can effectively predict the
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asymmetric hysterésis properties of the actuator. Both the measured data and the model
results exhibit relatively larger displacement amplitude of the actuator under negative
current, even though the magnitude of the negative current is smaller (0.7 A) due to the
bias current of 0.1 A. The comparisons also show slight deviations in the measured and
model responses. The magnitude of the deviation is observed to be relatively large when
linear and envelope functions are used to construct the generalizéd play operator.

The time histories of displacement responses of the models employing linear and
nonlinear envelope functions subject to excitations at the selected frequencies are also
compared with the measured data in Figure 4.17. The results show reasonably good
agreements between the model responses and the measured data corresponding to all the
selected excitation frequencies. While the model with linear envelope function yields
notable errors in the vicinity of the peak responses, the use of nonlinear envelope
function reduces this error. The reason is that the gradient at the turning point changes
with frequency and this will not be accounted by varying the threshold value. The time
histories of the displacement errors corresponding to different input frequencies are also
shown in Figure 4.18. The peak errors in responses of the model employing linear and
nonlinear envelope functions vary within the above-stated bounds. The results further
show that the model can effectively predict the rate-dependent hysteresis effect with
reasonably good accuracy. Table 4.8 summarizes the peak errors between the measured
data and outputs of the models employing rate-dependent play operator with linear and
nonlinear envelope functions in terms of absolute peak displacement error and the peak

percent error based on the measured response.
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As seen in the table, the peak errors of the generalized rate-dependent Prandtl-Ishlinskii
model using rate-dependent play operator with linear and nonlinear envelope functions
are bounded between 4.50 to 6.01 pm and 3.09 to 5.00 pm, respectively. The
corresponding peak percent peak errors are bounded between 8.58% to 13.08% and
5.98% to 10.95%. The results suggest that the use of rate-dependent play operator of
nonlinear envelope function (s; =5s,=3) can help to reduce the prediction error over the
range of excitation frequencies considered in the study. Furthermore, the measured and
model responses of both the rate-dependent play operators show increasing hysteresis
and decreasing output amplitude with increasing excitation frequency of the input

current.

Table 4.8: Displacement and percent peak errors between responses of the models based
on linear (s; =s,=1) and nonlinear (s, =s,= 3) envelope functions of rate-dependent play
operator and the measured data of the magnetostrictive actuator at different excitation
frequencies.

Frequency(Hz) Peak error in pm (percent error)
s;=s,~1 5;=5~3
10 '4.50 (8.58) 3.75(7.15)
20 5.13 (9.92) 3.09 (5.98)
50 6.01 (12.19) 4.36 (8.78)
100 5.97 (13.08) 5.00 (10.95)

The validity of the generalized rate-dependent Prandtl-Ishlinskii model employing
generalized rate-depéndent play operators with linear and norﬂinear envelope functions is
also investigated for predicting symmetric hysteresis properties of the piezoceramic
actuator. The generalized model was solved under a sinusoidal voltage input at four

different frequencies using the parameters listed in Table 4.7. The resulting displacement
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responses of the models are compared with the corresponding measured data in Figure
4.19. Although the results attained from  both the models show reasonably good
agreements with the measured data, irrespective of the frequency, the model with
nonlinear envelope functions yields relatively lower error. Both the model results and the
measured data show increasing hysteresis and decreasing output amplitude with

increasing frequency of the input voltage.

The time histories of the models responses are further compared with the measured
data in Figure 4.20 for the selected excitation frequencies. ‘The results again suggest
reasonably good agreemeﬁts between the predicted and measured displacement responses
of both the models, irrespective bf the selected input frequency, although deviations in
the vicinity of the peak response are also evident, particularly at the higher frequency of
200 Hz. The use of nonlinear envelope functions in the rate-dependent play operator
yields slightly better prediction of the response hysteresis as it was observed for the
asymmetric hysteresis properties of the magnetostrictive actuator. The model employing
the rate-dependent play operator with linear envelope function, however, provides lesser
error under input frequencies of 50 and 100 Hz. Figure 4.21 illustrates the errors between
the model responses and the measured data of the piezo;:erarhic actuator. The results
show that the peak errors, genera}ly, occur in the vicinity of the peak response and remain
in the order of 6 pm for the model with linear envelope functions, irrespective of the
input frequency. The peak magnitude and percent errors of both the models

corresponding to different excitation frequencies are further are summarized in Table 4.9.
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Figure 4.19: Comparisons of displacement responses of the generalized rate-dependent
model with the measured data of a piezoceramic actuator under different input
frequencies ( , measured; ——— | model): (a) play operator with linear envelope
function, s;=s,= 1; and (b) play operator with nonlinear envelope function, s; =s,= 3.
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Table 4.9: Peak displacement and percent peak errors between responses of the models
based on linear (s;=s,= 1) and nonlinear (s; =s,= 3) envelope functions of rate-dependent
play operator and the measured data of the piezoceramic actuator at different excitation
frequencies.

Frequency(Hz) Peak error in pm (percent error)
si=s~=1 s1=s=3
10 5.87 (7.48) 4.99 (6.36)
50 5.44 (7.24) 5.49 (7.30)
100 6.08 (8.11) 3.81(5.09)
200 6.84 (9.39) 4.87 (6.68)
4.6 Summary

The validity of &e generalized Prandtl-Ishlinskii model in prédicting asymmetric
and saturated major as well as minor input-output hysteresis loops was demonstrated for
two different SMA actuators and a magnetostrictive actuator on the basié of the available
measured data. The peak prediction errors for the actuators considered in the study were
observed to be within 3% of the maximum output under triangular inputs of varying
magnitudes. It is concluded that the Prandtl-Ishlinskii model comprising the generalized
play operator can also describe symmetric hysteresis properties of a piezoceramic
actuator, when linear envelope functions are employed. Although the classical model can
also characterize the symmetric hysteresis properties, the generalized model revealed
relatively smaller error for the piezoceramic actuator considered in the study.

The validity of the rate-dependent Prandtl-Ishlinskii model was also examined
under harmonic, complex harmonic and triangular waveforms, in a wide frequency range.
The effectiveness of the model in characterizing major as well as minor hysteresis loops
1s particularly demonstrated under inputs at different frequencies. Comparisons of model

results with the measured data obtained for the piezoceramic and magentostrictive
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actuators revealed réasonab]y good agreements between the two in terms of both the
major and minor hysteresis loops under harmonic and complex harmonic input voltages;
irrespective of the excitation frequency. The simulation results revealed considerable
increase in width of the hysteresis loops with increasing frequency of the input voltage,
while the corresponding amplitude of output displacement decreased. The model results
of the piezoceramic actuator attained under triangular waveform inputs in the 1 to 200 Hz
frequency range also revealed very good agreements with the measured data. Both the
‘experimental and model results showed that a triangular waveform yields relatively
smaller width of the hysteresis loops compared to that under a sinusoidal input, which is
attributed to relatively smaller magnitude of the constant rate of change of the triangular
input. The large values of the time rate of change of triangular input near the extremities,
however, caused oscillations in the responses at higher frequencies, which were evident
from both the measured and model results.

From the results, it can be concluded that the Prandtl-Ishlinskii model comprising
the generalized rate-dependent play operator described by nonlinear envelope function
can provide better predictions of the symmetric as well as aéymrhetn'c hysteresis
properties under different rates of inputs. Furthermore, the generalized rate-dependent
model can also predict the rate-independent hysteresis characteristics reasonably well, as
it is evident from the responses under low frequency inputs. The use of higher order
envelope functions of the rate-dependent play operator helps reduce the prediction error
of the rate-dependent Prandtl-Ishlinskii model.

The generalized Prandti-Ishlinskii models are considered to be analytically

invertible. This property 1s extremely desirable for real-time hysteresis compensations
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and micro-positioning control. The analytical invertible generalized Prandtl-Ishlinskii

models are investigated in the following chapter.
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Chapter 5: Formulations of Inverse Prandtl-Ishlinskii Models
for Hysteresis Compensation

5.1 Introduction

The exact inverses of the Preisach and Krasnosel”skii-Pokrovskii models are not
available, only numerical methods can be used to obtain approximate inversions of these
models [22, 24, 26, 40, 53, 54, 58, 61, 69-71]. Ping and Ge [23] applied the inverse
Preisach model as a feedforward compensator with PID controller to reduce hysteresis
effects of a piezoceramic actuator. Galinaities [27] proposed the Krasnosel skii-
Pokrovskii operator instéad of the used relay opefator in the Preisach model and its
inverse to characterize and to compensate thé hysteresis effects of a piezoceramic
actuator. Tan and Baras [25] applied an adaptive control approach to compensate
hysteresis effects in a magnetostrictive actuator using the Preisach hysteresis model and
its inverse. Nealis and Smith [71] proposed a robust control method for smart material
actuators to achieve enhanced tracking performance using the inverse Preisach model.
Song et al. [41], in a similar manner, applied the inverse Preisach model in conjunction
with a lag-lead controller for compensation of hysteresis effects in a piezoceramic
actuator.

Unlike the Preisach and Krasnosel” skii-Pokrovskii models, the Prandtl-Ishlinskii
model is analytically invertible, and 1t can be conveniently implemented as a feedforward
compensator for mitigating the hysteresis nonlinearities. The analytically derived inverse
offers significant benefits in real-time control applications. This is because the
compensation error can be obtained which will make it possible to design robust

controller with stability analysis, which is lacking in studies using numerical inverse.

127



However, the advantage of the Prandtl-Ishlinskii model is limited by the class of
hysteresis it can describe, namely the symmetric and rate-independent hysteresis with
unbounded output. Krejci and Kuhnen [30] applied the Prandtl-Ishlinskii model to
characterize and to compensate hysteresis nonlinearities of a piezoceramic actuator. In
this chapter, the analytical inversions of the proposed generalized Prandtl-Ishlinskii
model, the rate-dependent Prandtl-Ishlinskii model, and the generalized rate-dependent
Prandtl-Ishlinskii model will be discussed for compensation symmetric, asymmetric,
saturated, and rate-dependent hysteresis effects. It should be mentioned that the purpose
of the analytical iﬂverse is to obtain the analytical error of the inverse compensation. The
error analysjis of the inverse compensation will be presénted for the Prandtl-Ishlinskii

model and its inverse in Chapter 6.

5.2 Analytical inversion of the Prandtl-Ishlinskii model

An inverse Prandtl-Ishlinskii model has been obtained analytically in [2]. In order
to construct the analytical inverse for the generalized Prandtl-Ishlinskii models, described
in Chapter 2, the Prandtl-Ishlinskii model described by the initial loading curve. The
inverse of the Prandtl-Ishlinskii model can be applied to compensate symmetric and rate-
independent hysteresis effects. In this section, the inverse of the Prandtl-Ishlinskii model

is presented using the initial loading curve concept.

5.2.1 CONCEPT OF THE INITIAL LOADING CURVE (SHAPE FUNCTION)

The initial loading curve (shape function) is essential concept to present an

alternative description for the Prandtl-Ishlinskii model as well as to derive the analytical
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inversion of the generalized Prandtl-Ishlinskii models. Initial loading curve of the
Prandtl-Ishlinskii model can be explained, physically, as a stress-strain curve, which is
formulated due to increasing the load from zcrb to some final value [2]. This curve
describes the possible hystéresis loops generated by the Prandtl-Ishlinskii model. The
initial loading curve is defined when the initial state of the Prandtl-Ishlinskii model is
zero and when the input increases monotonically. Figure 5.1 shows the relation between
the vertical height g and the length of its projection onto the v-axis, x. The output g can be

expressed when the input v increases and decreases by x as [2]:

gx)=x-2r 5.1

The output g can be also expressed as [2]:

g(x) = sgn(x)max(|x - 2r,0) (5.2)

Then, the previous equation can be modified as:

g(x) =2sgn(x)max(|x/2-r,0) (5.3)

Figure 5.1: the relation between the vertical elevation g and the length of its projection
onto the v-axis.
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The classical Prandtl-Ishlinskii model is generally expressed analytically as:

IO = )+ | pOIF,vI0dr (5.4)

The initial loading curve of Prandtl-Ishlinskii model (5.4) is defined as [2]:

P =gr+ [ p(Oe(O)dS 69

The derivative of initial loading curve (5.5) with respect to threshold r yields:

P(=q+[pO)ds (56)

The density function of the model is the derivative of Equation (5.6) with respect to the

threshold r:

@"(r) = p(r) (5.7)
Equation (5.7) shows that the second derivative of initial loading curve (5.6) with respect
to the threshold r is the density function p(r) of Prandtl-Ishlinskii model (5.4). Also, the
constant g of Prandtl-Ishlinskii model can be obtained by substituting zero threshold, » =

0, into (5.6) as:

9 (0)=¢q (5.8)
Based on Equations (5.7) and (5.8), the alterative description of Prandtl-Ishlinskii model

(5.4) using initial loading curve (5.5) can be expressed analytically as [2]:

NP1 = ¢ OO+ [ E V00" () (5.9)



Remark 5.1: The shape function ¢(r) of Prandt]-Ishlinskii model is convex and¢"(r)>0
[2].

Remark 5.2: For the shape function ¢(r)= r, the Prandtl-Ishlinskii model (5.4) is reduced
to II[v](t) = (o).

Example 5.1: Let’s construct the Prandtl-Ishlinskii model using the density function p(r)

=0.1rand g =0.17. The Qutpuf of the model is expressed analytically as:

Tvi(e) = 0.17v(t)+j0.1r1~;[v](t)dr (5.10)

The output of the model under the harmonic input v(t)=7sin(1ti)/(l+0.06t) fort e [0, 13} is
shown in Figure 5.2. :

i)

4

6

3085 420 2 45 8 10
V)
Figure 5.2: Input output relations of Prandtl-Ishlinskii model (5.10).

The initial loading curve of Prandtl-Ishlinskii model (5.10) is defined as:

¢(r)=o.17r+j0.1§(r-§)d§ (5.11)



The input-output relationship for initial loading curve (5.11) is shown in Figure 5.3(a).

Then ¢'(r) and ¢''(r) are expressed as:

¢'(r)=0.17+jo.1§d; (5.12)

@' (r)=0.1r ’ (5.13)

The output of Prandtl-Ishiinskii model (5.9) ﬁsing initial loading curve (5.11) is presented
in Figure 5.3(b). Because the second derivative »of the initial loading curve is the density
function and the constant g=0.17 can be obtained by substituting » = 0 in (5.12); the
example illustrates that Prandtl-Ishlinskii model indeed can be described analyﬁcally

using the initial loading curve.
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Figure 5.3: Input output relations of: (a) Initial loading curve (5.11); and (b) Prandtl-
Ishlinskii model. :



5.2.2 INVERSE PRANDTL-ISHLINSKII MODEL

After introducing the Prandtl-Ishlinskii model expressed by the initial loading
curve concept, the inverse Prandtl-Ishlinskii model which is also expressed by the initial
loading curve cén be introduced. This is the key for the development of the general frame
of the inverse generalized Prandtl-Ishlinskii model. The inversion of the classical Prandtl-

Ishlinskii model is expressed analytically as [30]:

IT'[v)(6) = V) + [ PRIF VIO (5.14)

where 7 is the threshold of the inverse, F,[v] is the play operator'of the inverse Prandtl-

Ishlinskii model, and the constant g is defined as:

g =] (5.15)

q

The threshold 7 of the inverse Prandtl-Ishlinskii model is defined for / =0, ... , n and

Y

Fy <h <..<F,,=R=w as[30]:

I

= (ﬂ(r,») (5.16)

o 1

this yields:

. _ |
h=r,+ [@0)dr (5.17)

-1
To obtain the analytical inverse of the Prandtl-Ishlinskii model, the output of the

composition of the initial loading ¢(r) and its inverse ¢ () must yield the threshold r as:

o (p(r) =r (5.18)

The derivative of Equation (5.18) with respect to the threshold r yields:



o (Me™" (@(r)=1 (5.19)

Then, the substitution of (5.16) in (5.19) yields:

o Mp™(M)=1 | (5.20)

o(r,)

>
r
(®)

Figure 5.4: Input-output characteristics of: (a) Initial loading curve ¢(r), and (b) Inverse
of initial loading curve ¢”/(r).

Figure 5.4 shows the initial loading curve ¢(r), which is convex, and the inverse of the

initial loading curve ¢~'(7), which is concave. Because the exact inverse of the initial
loading curve ¢~ (F) exists, the composition of the initial loading curve and its inverse, as

“shown in Figure 5.5, yields ¢ (p(r))=r.
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Figure 5.5: Input-output characteristics of composition initial loading curve ¢(r) and its
inverse go"(r).

The invérse classical Prandtl-Ishlinskii xhodel based on the initial loading curve can be

expressed analytically as [30}:

IO = ¢ () + f(/f' "(FV)Odr (5.21)
0

In the following the identification of the inverse Prandtl-Ishlinskii model parameters

identified using the initial loading curve of the model will be discussed.

The inverse of Prandtl-Ishlinskii model can be also expressed numerically as [30]:

00 = 4790 + Y B F; 0 (522)

Equation (5.6) can be expressed for refr,,r,,,) j=0, .., n as:
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o'r)=q+).p,, (5.23)

i=]

Then by substituting (5.23) into (5.17) , the threshold 7, can be expressed as:

/-1
F=Fy+(g+ ). p)n—n) (5.24)
i=1

The summation of Equation (5.24) over / from 1 to j yields [30]:

J-1
,';j =qr; + Zpi(rj —r) (5.25)
=1
Equation (5.20) can be expressed as:
o"F)=1/¢'(r) (5.26)
The density function of the inverse model can be computed in each interval [7,, 7,,)

using the following equations:

;o
' 5.27
P )=q+) p, (5:27)
i=1
1 A Al J -
@@ =¢"+2 b, (5.28)
i=]
The substitution of (5.27) and (5.28) into (5.26) for each interval [7,,7,,) yields:
Ay pa—
2P ] (5.29)
q+2.p

Then Equation (5.29) can be expressed as:
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for j=I: g +p=
' q+p
R
or j=2: 1702 =
for J 9+ht D,
Al A A ‘n 1
Jor j=n: q thtppt.tp,=

qg+p+p,+..+p,

The weights of the density function are obtained as:.

A J4
for j=1: ) e —
' glg+p)
Jor j=2: _ ﬁz = P2

—(q+p| +p)g+p,)

) P P;
for j=n p;=

Jj=1

(q+ 21),-)(61 +2.7)

The parameters of the inverse are identified as [30]:

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)
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4=

Fo=qr,+) p(r,~1) (5.37)

i=l

- D;
py=- 7 =
| @+ pXNg+2p) (5:38)

The inverse of the Prandtl-Ishlinskii model is investigated via the following example to

compensate the hysteresis effects.

Example 5.2: An input signal of the form: v(£)=5sin(2nf)+4cos(6f) is considered to
evaluate minor as well as major hysteresis loops. The chosen simulation parameters are:

T'=20,At=0.01, g =0.18. The following density function is selected as:
p(r)=0.1e7" (5.39)

The threshold function is selected as:
r;=0.24j, j=1,2,3,..,n=20 (5.40)

Figure 5.6 shows the simulation results of ‘ the Prandtl-Ishlinskii model and its inverse.
Inverse Prandtl-Ishlinskii model is employed to compensate the hysteresis nonlinearities
of the Prandtl-Ishlinskii model. Parameters of the inverse Prandtl-Ishlinskii model which
are identified by Equations (5.36), (5.37), and (5.38). Figure 5.6 shows the capability of
the inverse Prandtl-Ishlinskii model to compensate the hysteresis effects. The results
show the exact inverse of Prandtl-Ishlinskii model compensates the symmetric hysteresis
nonlinearities. Because the Prandtl-Ishlinskii model can only be applied to characterize
symmetric and rate-independent hysteresis properties, the inverse of the model that is |
presented in this section cannot compensate asymmetric as well as saturated hysteresis
properties. In this section, analytical inverse of the generalized Prandtl-Ishlinskii model,

which exhibits asymmetric as well as saturated hysteresis loops, is presented analytically.
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Figure 5.6: Compensation of symmtric hysteresis using inverse Prandtl-Ishlinskii model.

5.2.3 FORMULATION OF INVERSE GENERALIZED PRANDTL-ISHLINSKII
MODEL '

In this subsection, the inverse of the generalized Prandtl-Ishlinskii model is

formulated based on the initial loading curve concept. Generalized Prandtl-Ishlinskii
model that is formulated in Chapter 2 using generalized play operator S, [v](¢) to yield

output ®[v}(¢) is presented as:

) = [ p(r)S, [V(1)dr | (5.41)

The output ®[v]() of the generalized Prandtl-Ishlinskii model can be expressed as:

'y, M) for )20

. . (5:42)
Iy, @) for ¥1)<0

O[vi(r) ={

where the output of the Prandtl-Ishlinskii model TT'[v](¢) and IT[v])(¢) for increasing and

decreasing input v(¢) can be expressed as :



R
') = [ P(E; vIOdr
. (5.43)
() = [ p(IF; VIar
0
Where the outputs of the play operator for increasing and decreasing inputs v(f) are

expressed as:

FVI0) = max(v(1) -7, w(1))
FI V() = min(w(t) + r, w(1))

(5.44)

Consequently, Equation (5.41) can be expressed as:

T 0 ,0() for )20

I o y,((t)) for wWt)<O0 (545)

O[v](t) = {

Then, it can be concluded that Equation (5.41) can be expressed as:

O[] =IT"[.I() o 7,(v)

D [vI(@) =IT"[.}®) o 7, (v)

(5.46)

Equation (5.46) can be further ekpressed as:

+-1 +
II" [Jo &'Pln)= y,)
' (5.47)

0" []o @ IO =y,
Because the envelope functions y; and 7y, are invertible, Equation (5.47) can be presented
as:

e +
yilo I []o ' vI()=v

L (5.48)
ylo ITIT [Jo o v)=v
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It can be concluded form (5.48) that the inverse of the generalized Prandtl-Ishlinski1

model can be expressed as:

o 'MIO = 7o I PI0)

] 1 (5.49)
O IO= ylo TIT IO
Using the inverse of _the Prandtl-Ishlinskii model IT™'[v](¢) can be expressed as:
R
[POFDIOF for ()20
i) =43 (5.50)

[PAFDIOF  for 9)<0

Then, the inverse of the generalized Prandtl-Ishlinskii model can be expressed in terms of

density function and play operator as:

R .
ri'o [PAFDIGF  for ¥(1)20
I = 0 , (5.51)
7 o [POF, IO for 0)<0
0 ,
Since Equation (5.51) includes the inverse of the classical Prandtl-Ishlinskii model (5.14)
without using the linear term q"v, it is then straight forward to follow the same

derivation. The inverse generalized Prandtl-Ishlinskii model can be presented by the

initial loading curve concept as:

7' o j o PV for w1)=0
oI = 4 (5.52)
7o [o "B IOEF for ¥(1)<0
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The modified initial loading curve for Prandtl-Ishlinskii model .(5.43) can be expressed

as.

o) = [ pN¢ —rd¢ (5.53)

The density function of the generalized Prandtl-Ishlinskii model can be computed as:

@'"'(r)= b(r) (5.54)

The generalized Prandtl-Ishlinskii model can be presented as:

IO = [2"(")S, V() (5.55)

The above equation shows that the generalized Prandtl-Ishlinskii model can be presented

by initial loading curve @(#). Then the inverse of the generalized Prandtl-Ishlinskii

model can be expressed as:

I = [ (S VI)dF (5.56)

where # is the threshold of the inverse model and @~ is the inverse of the modified
initial loading curve.

The key properties of the inverse generalized Prandtl-Ishlinskii model are same as

these of inverse classical model. Some of these properties are summarized below:

e Hysteresis operator: The inverse of the generalized Prandtl-Ishlinskii model is a
hysteresis operator since it is formulated by integrating play hysteresis operators and

a density function;

s Clockwise operator: Since the density function of the inverse generalized model is
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negative, the inverse generalized Prandtl-Ishlinskii model yields clockwise input-

output curves;

e Lipschitz-continuity: For a given input v(¢) e C [0, T}, it can be conclude that the

inverse generalized Prandtl-Ishlinskii model is Lipschitz continuous;

e Monotonicity: For a given input v(¢f) eC [0, T}, the inverse generalized Prandtl-
Ishlinskii model is a monotone operator, since inverse Prandtl-Ishlinskii model is a

monotone and the density function p(r) is integrable.

5.24 PARAMETERS IDENTIFICATION

In this subsection, the parameters of the inverse generalized Prandtl-Ishlinskii

model, the threshold 7 and the density function p(#), are identified. The generalized

Prandtl-Ishlinskii model can also be expressed as:

IO =3 p()S, D10) 657

The inverse of the model (5.57) can be expressed as:

| 77 o S pr)EIIO) for 9020
OV = =l (5.58)

n

770 QP )FIO) for ¥Wn)<0

Consequently, the inverse of the Prandtl-Ishlinskit model should be reformulated as:

V0 = 3. p()F, [V10) (5.59)

To obtain the parameters of the inverse model, the composition of the modified initial

loading curve and its inverse yields the threshold r as:



—_
o (p(r)=r (5.60)
where j = 1, 2, ..., n. For the threshold rp= 0, the output of the play operator reduces to
'-the input v as:
Fooolvl=v (5.61)
Then, the output of the Prandtl-Ishlinskii model for j/=0 can be expressed as:

Hv)(©) = p(O)v (5.62)

Consequently, the inverse of the Prandtl-Ishlinskii model for »o= 0 can be expressed as:

I [v}(0) = (pO)™v (5.63)
The derivative of the modified initial loading curve with respect to the threshold » can be

expressed as:

J
@' (r)=p, + Zpi (5.64
=1

where

5.65
o =p(0) (:69)
In a similar manner the derivative of the modified initial loading curves with respecf to

the threshold ris:

A S
@)@ = Po +Zpi (5.66)
=l :

where
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Pp=— (5.67)
Po

The thresholds of the inverse are positive and are related to the thresholds 7; of the model

as:

J
F= pr,-r) (5.68)
i=0

Because the derivative of Equation (5.60) with respect to the threshold » can be expressed

as:

1
@'(r;)

()= (5.69)

Then it can be concluded that the weights of the density function of the inverse

generalized Prandtl-Ishlinskii model can be presented as:

A p;

pj=- ] =
(P, + 2, P XPo+ ). 1)

(5.70)

5.3 Inverse Rate-Dependent Prandtl-Ishlinskii Models

As shown in Chapter 3, the smart actuators, such as piezoceramic and
magnetostrictivé actuators show strong rate-dependent hysteresis effects that increases as
the excitation frequency of the input increases beyond certain frequency. Inverse of the
rate-independent hysteresis models, when employed as feedforward compensators to
compensate the rate-dependent hysteresis nonlinearities, can exhibit considerable errors

in the output compensation, which may cause inaccuracies and oscillations in the closed-
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and open-loop systems responses. Such oscillations, as an example, could be particularly
detrimental in applications involving micro/nano-positioning control. In this section,
inverse of the rate-dependent Prandtl-Ishlinskii model is presented for the purpose of

compensating the rate-dependent hysteresis effects in smart actuators.

5.3.1 INVERSE RATE-DEPENDENT PRANDTL-ISHLINSKII MODEL

Analytical inverse of the rate-dependent Prandtl-Ishh'nskii is formulated in this
subsection. In other words, exact inverse of this rate-dependent model is reachable,
consequently making it more attractive for compensation rate-dependent hysteresis of
smart actuétors. As shown in Chapter 2, the rate-dependent Prandtl-Ishlinskii model is

expressed as:

T(v(1) = o)+ [ p(PIF, ()P (5.71)

Following the same procedure shown in section 5.2, the inverse rate-dependent Prandtl-

Ishlinskii model can be analytically expressed as:

™ (1)) = v+ [ BEF, () | (5.72)

where 7 is the dynamic threshold of the inverse and p(F) <0 defines the dynamic
density function of the inverse model. The rate-dependent Prandtl-Ishlinskii model can be

also expressed as:
ﬁ(V(t))=q"V(t)+Zn:i7(F,-)17;, (1)) (5.73)
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The inverse of the rate-dependent Prandtl-Ishlinskii model can be presented as:

I () = 750+ Y BE)F, () 6m

i=1
Based on the pervious description of the rate-dependent Prandtl-Ishlinskii model, the

parameters of the inverse are expressed as:

g =1 (5.75)
p :
. il
r=qr; +ZI7,-(7,~ -7) - (5.76)
2 ]_7j )
Pmm 'S (5.77)
CEDWACEDIWA

OWing to the symmetric properties of the rate-dependent play hysteresis operator,
the inverse of the rate-dependent PrandtI—Ishliﬁskii model can Be used only to compensate
rate-dependent symmetric hysteresis effects such as piezoceramic actuators. However,
the magnetostrictive actuators show asymmetric rate-dependent hysteresis effects. In the
following subsection, the inverse of the generalized rate-dependent Prandtl-Ishlinskii

model will be presented.

5.3.2 INVERSE GENERALIZED RATE-DEPENDENT PRANDTL-ISHLINSKII
MODEL

The generalized rate-dependent Prandtl-Ishlinskii model is formulated upon
integrating the generalized rate-dependent play operator together with the density

function p(#). This model exhibits high capability to characterize asymmetric rate-
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dependent hysteresis effects. This model successfully characterizes the asymmetric rate-
~dependent hysteresis effects of magnetostrictive actuator at different excitation

frequencies. The model output ®(v(t)) is expressed as:

D)) = [ p(F)S; ()P (5.78)

Inverse of the generalized rate-dependent Prandtl-Ishlinskii model is presented to
compensate the asymmetric rate-dependent hysteresis effects in smart actuators. The
inverse of model can be used as a feedforward compensator in the control system. The

exact inverse of the generalized rate-dependent Prandtl-Ishlinskii model can be derived if

. , . -1 - . .
the inverse of the envelope functions ¥, and y,” : R — R exists. Then, the inverse of

the generalized rate-dependent Prandti-Ishlinskii model can be analytically expressed as:

7 o (M () for )20

=", ,
! o (T (W) for ¥(t)<0

(5.79)

where output of the inverse rate-dependent Prandtl-Ishlinskii model can be expressed

under increasing and deceasing input as:

7 (v(0) = [ BGIF; (w(e)d?

. (5.80)
a1 DAL e )
1™ () = [ PEYFS((H))dr
0
The generalized Prandtl-Ishlinskii model can also be expressed as:
D) =) p(F)S, (1)) (5.81)
J=
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where 7 is the number of the generalized rate-dependent play operators that are used in

the implementation. The parameters of the inverse, the density function p(F) and the

threshold ;7, are expressed as:

A 1
o = — 5.82
P =%, (582)
B=- 2
a . & (5.83
5, + 3 5)B, + 5 5) (5:83)
i=0 i=0
o= ZJ:T)(E-)(F,- ~F) (5.84)
i=0

Remark 5.3: The above formulation of inverse generalized Prandtl-Ishlinskii model

follows the same presented in section 5.3. The only difference is the dynamic threshold.

5.4 Inverse Generalized Prandtl-Ishlinskii Model for Compensation

In this section, simulation results are carried out to compensate asymmetric and
saturated hysteresis of different input/output relationships. Hysteresis is obtained using
generalized Prandtl-Ishlinskii. The analytical inverse of the generalized Prandtl-Ishlinskii
model is employed as a feedforward compensator to compensate asymmetric as well as

saturated hysteresis nonlinearities.

5.4.1 COMPENSATION OF ASYMMETRIC HYSTERESIS LOOPS

The effectiveness of inverse of the generalized Prandtl-Ishlinskii model in

compensating asymmetric hysteresis nonlinearities is investigated in this section. An
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input signal of the form: v(f)=5sin(2x7)+4cos(6¢) is considered to evaluate minor as well
as major hysteresis loops. The following envelope functions are proposed to construct the
asymmetric hysteresis loops using the generalized model:

7,(v)=v

(5.85)
7,(v)=1.2v+1.9 '
The chosen simulation parameters are: 7=20 and A=0.01. The following density function

is selected as:

p(r)=0.07¢"" ' (5.86)

The thresholds of the generalizéd play operator are selected as:
r;=024j, j=0;1,2,...,n=49 (5.87)

Figure 5.7 shows the simulation results of the generalized Prandtl-Ishlinskii model. The
figure shows the capability of the model to show asymmetric major as well as minor
hysteresis loops. Inverse generalized Prandtl-Ishlinskii model 1s employed to compensate
saturated hysteresis nonlinearities of the generalized Prandtl-Ishlinskii model. Parameters
of the inverse generalized Prandtl-Ishlinskii model are identified by Equations (5.68) and
(5.70). This inverse model is used as feedforward compensator to compensate hysteresis
effects of 'the generalized Prandtl-Ishlinskii model. Figure 5.8 shows the capability of the
inverse generalized Prandtl-Ishlinskii model to compensate the asymmetric hysteresis
effects. The results show that the exact inverse of generalized Prandtl-Ishlinskii yields
linear input-output relationship between the input and the output of the inverse

compensation.
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Figure 5.7: Input-output relations of generalized Prandtl-Ishlinskii model of y; (v)=1.3v-
0.4 and y,(v)=1.7v-1.9.
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Figure 5.8: Compensation of asymmetric hysteresis loopsmwifh inverse generalized
Prandtl-Ishlinskii model of y(v)=v and y(v)=1.2v+1.9.

54.2 COMPENSATION OF SATURATED HYSTERESIS LOOPS

The effectiveness of the inverse generalized Prandtl-Ishlinskii model in
compensating the saturated hysteresis effects is illustrated in this section. Simulation
results are carried out to show capability of the inverse generalized Prandtl-Ishlinskii
hysteresis model to compensate the saturated hysteresis nonlinearities. The following

envelope functions are proposed for the pervious simulation in Section 5.4.1:
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7,(¥) = 8tanh(0.22v — 0.6)
7,(v) =7.7tanh(0.2v+0.1) +0.1

(5.88)

Figure 5.9 shows the input-output characteristics of the generalized Prandtl-Ishlinskii
model. The figure shows the saturation property in the output of the generalized Prandtl-
Ishlinskii model for major as well as minor hysteresis loops. Inverse generalized Prandtl-
Ishlinskii model is employed to compensate the saturated hysteresis nonlinearities of the
generalized Prandtl-Ishlinskii model. Parameters of the inverse generalized Prandtl-
Ishlinskii model which are computed via Equations (5.68) and (5.70). Inverse of the
generalized Prandtl-Ishlinskii model is employed as a feedforward compensator to
compensate saturated hysteresis effects of the generalized Prandtl-Ishlinskii model.
Figure 5.10 shows the capability of the inverse generalized Prandtl-Ishlinskii model to
compensate the saturated hysteresis effects. The results show that the inverse generalized |
Prandtl-Ishlinskii model, which is obtained analytically, can be applied to compensate

hysteresis nonlinearities with output saturation.

O]

10 R :
0 8 & 4 2 0 2 4 6 8 W

W0
Figure 5.9: Input-output relations of generalized Prandtl-Ishlinskii model of y/(v) = 8tanh
(0.22v-0.6), yAv)= 7.7tanh (0.2v+0.1)+0.1.
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Figure 5.10: Compensation of saturated hysteresis loopswith inverse generalized Prandtl-
Ishlinskii model y{v) = 8tanh (0.22v-0.6), y(v)= 7.7tanh (0.2v+0.1)+0.1.

5.5 Inverse Rate-Dependent Prandtl-Ishlinskii Models for
Compensation

The simulations were performed to compensate symmetric and asymmetric rate-
dependent hysteresis nonlinearities using inverse symmetric and asymmetric rate-
dependent Prandtl-Ishlinskii models as feedforward compensators at different excitation
frequencies. The rate-dependent model is constructed with rate-dependent play operator,
while the generalized rate-dependent Prandtl-Ishlinskii model is constructed using the
generalized rate-dependent play hysteresis operator. In this section compensation of the
rate-dependent hysteresis nonlinearities presented in Examples 2.3 and 2.4 are carried

out.

5.51 COMPENSATION OF RATE-DEPENDENT HYSTERESIS

An input signal of the form: w(£)=6sin(2frt)+3sin(3fat); is considered to evaluate
minor as well as major hysteresis loops, while four fundamental frequencies are
considered ( /=10, 50, 100, and 200 Hz). The simulation parameters of Example 2.3 were

chosen. In this example, the results obtained from the model show an increase in the
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| hysteresis nonlihearities as the fundamental frequency increases. The inverse of the rate-
" dependent model is employed to compensate the rate-dependent hysteresis nonlinearities.
The parameters of the inverse rate-dependent Prandtl-Ishlinskii model are computed by
Equations (5.75), (5.76), and (5.77). As shown in Figure 5.11, the inverse of the rate-
dependent model is used as a feedforward cémpensator to compensate the rate-dependent
hysteresis effects at different excitation frequencies. Thé inverse of the rate-dependent

model compensate the hysteresis effects at different fundamental frequencies.

5.5.2 COMPENSATION OF ASYMMTRIC RATE-DEPENDENT HYSTERESIS

Compensation of asymmetric rate-dependent hysteresis nonlinearities are carried
out via inverse generalized rate-dependent Prandtl-Ishlinskii model. Simulation
parameters of Example 2.4 are used in this subsection. The inverse of the generalized
rate-dependent model is applied as a feedforward compensator. The parameters of the
inverse model are computed by Equations (5.82), (5.83), and (5.84). The results obtained
in Example 2.4 show an increase in the hysteresis, as the fundamental frequency
increases. The results further show that the model employing the generalized rate-
dependent play operator yields asymmetric rate-dependent hysteresis loops. As shown in
Figure 5.12, the inverse generalized rate-dependent Prandtl—Ishlinskii model compensates
asymmetric rate-dependent hysteresis nonlinearities. The results show that the inverse

generalized rate-dependent Prandtl-Ishlinskii model compensates asymmetric rate-

dependent hysteresis nonlinearities.
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Figure 5.11: Compensation of rate-dependent symmetric hysteresis nonlinearities at different
excitation frequencies using inverse rate-dependent Prandtl-Ishlinskii model as a feedforward
compensator.
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Figure 5.12: Compensations of asymmetric rate-dependent hysteresis nonlinearities at different

excitation frequencies using inverse generalized rate-dependent Prandtl-Ishlinskii model as a
feedforward compensator.
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5.6 Experimental Verification of Hysteresis Compensation

The generalized Prandtl-Ishlinskii model can also describe the symmetric hysteresis

properties such as those observed in piezoceramic actuators, by letting y,(v)=y,(v),

which is still different from the classical Prandtl-Ishlinskii model. The effectiveness of
the inverse generalized model in compensating the symmetric hysteresis effects is
investigated through simulation and laboratory experiments. The experiments were

performed on a piezoceramic actuator (P-753.31C).

- 5.6.1 PARAMETERS IDENTIFICATION AND MODEL VALIDATION

Two different experiments were performed in the laboratory involving
characterization of hysteresis and compensation. The experiments were performed
initially to characterize the major and minor hysteresis properties of the piezoceramic
actuator. The measured data were used to identify the generalized model parameters. The
inverse generalized model was subsequently identified and applied as a feedforward
compenéator in the ControiDesk platform. The measurements were then performed to
measure the compensated displacement response under the same input. Figure 5.13
illustrates a schematic of the experimental setup for both the éxpen'ments, whgre the input -
in the characterization experiment was directly applied to the actuator. In the
compensation experiment, the input was applied to the actuator through the inverse

model.
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Figure 5.13: Experimental setup for compensation of hysteresis nonlinearities of the
piezoceramic actuator using inverse generalized Prandtl-Ishlinskii model as a feed
forward compensator. '

The measured displacement and input voltage data were used for identifying the
parameters of the generalized Prandtl-Ishlinskii model subject to the complex harmonic
input used in the experimental study. Considering the nearly symmetric hysteresis

properties of the piezoceramic actuator, linear envelope functions were chosen, such that:

7iW=y,(V)=cy+¢ (5.89)

where ¢, is a positive constant. The following density function is proposed for the model:

pry=pe” (5.90)

while the threshold r; were chosen as:

ri=c¢, j=0,12,..,9 (5.91)

‘The model parameters (c, p, 7, ¢, and ¢;) were identified through minimization of the

error function defined in (4.3). Solutions were attained for a number of starting values of
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the parameter vector, which converged to similar values. The generalized Prandtl-
Ishlinskii model parameters were identified as: ¢=3.47, p=0.54, 1=0.16, ¢,~0.89, ¢,=0.37.
The validity of the generalized Prandtl-Ishlinskii model employing the generalized play
operators was examined by comparing the model displacement responses with the
measured data, as shown Figure 5.14. The results clearly suggest that the model can
effectively predict the hysteresis properties of the piezoceramic actuator. Furthermore,
the output-input properties appear to be symmetric and the generalized model can
accurately describe the symmetric hysteresis loops. Figure 5.15(a) presents a comparison
of output of the model in the time domain, with respect to the laboratory-measured data.
The peak deviation between the generalized Prandtl-Ishlinskii model responses and the

measured data is in the order of 2.8 um, as shown in Figure 5.15 (b).

60

40

20t
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o

a0 2 o 20 40 60

Input voltage

Figure 5.14: Comparisons of outpuf—input responses of the generalized model with the
measured responses ( s====w=e=  measured; —— model).
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, model). (b) Time histories of error in measured and model

5.6.2 MOTION TRACKING EXPERIMENT

The inverse of the generalized Prandtl-Ishlinskii hysteresis model was derived and
employed as a feedforward controller to compensate the hysteresis nonlinearities of the
piezoceramic actuator. The parameters of the inverse model were idéntiﬁed from those of |
the generalized model togethér with the relations (5.66), (5.67), and (5.68). The
thresholds of the play hysteresis opérator of the inverse are: {0, 1.86, 4.79, 8.33, 12.22,
16.3161, 20.53, 24.80, 29.12, 33.46}, while the density function values were derived as:
{1.87, -0.68, -0.20, -0.089, -0.044, -0.023, -0.013, -0.007, -0.004, -0.002}. The input-

output characteristics of the inverse generalized Prandtl-Ishlinskii model are shown in
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Figure 5.16 under the complex harmonic input.
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Figure 5.16: Input-output characteristics of the inverse generalized Prandtl-Ishlinskii

model.

The measured input-output characteristics of the piezoceramic actuator with
inverse model feedforward compensator are illustrated in Figure 5.17(b), while the errors
with and without the compensator are compared in Figure 5.17(a). The results show that
the inverse model feedforward compensator can effectively suppress the hysteresis effect,
although some deviations are also evident. These deviatjons may be attributed to small

prediction errors of the model as seen in Figure 5.14.

The compensation effectiveness of the inverse model is further evaluated by
comparing the time histories of the measured displacement responses of the piezoceramic
actuator with and without the inverse feedforward compensator. For the purpose, the
positioning error is computed és the deviation between the measured displacement and
the input voltage. It should be noted that the input voltage defines the desired

displacement responses since the sensitivity of the capacitive position sensor is 1 pm/V.

The results clearly show the compensation effectiveness of the inverse model. The

peak position error of the piezoceramic actuator is nearly 7.5 um (7.52%), while the peak

161



~ error with inverse feedforward controller is only 2.41 pm (2.43%). The results suggest
that the proposed inverse of the generalized Prandtl-Ishlinskii model could effectively
compensate hysteresis effects in realftime application. The exact inverse of the
generaiized Prandtl-Ishlinskii model can be also conveniently applied in closed-loop
control algorithms, which would be most likely enhance compensation the inverse
effects.

Remark 5.4: To achieve higher positioning performance; control algorithms in closed-
loop systems can be easily developed together with inverse generalized Prandtl-Ishlinskii

model to further eliminate the compensation errors as well as unknown disturbance. This

is the major motivation for the deVelopment of the inverse model.
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Figure 5.17 (a) Comparison of time-history of error between the output displacement and
the input voltage, ( s=emsw== , without inverse feedforward controller; , with
inverse feedforward controller). (b) Output-input characteristics of the piezo caremic
stage with Inverse feedforward compensator.

162



5.6.3 DISCUSSION

As shown in the previous section, the inverse generalized Prandtl-Ishlinskii model
shows error in the output of the inverse compensation when the inverse generalized
Prandtl-Ishlinskii model is applied as a feedforward compensator. The cause of the
compensation error in the output responses is the characterization error of the generalized
Prandtl-Ishlinskii model. It is obvious that the error in the output of .the inverse
compensation will affect the performance of the piezoceramic actuator when it is coupled
with a system. Because the inverse Prandtl-Ishlinskii models have been obtained
analytically. in Chapter 5, the error of the inverse compensation can be derived
analytically. To obtain the error of the inverse compensation; the composition expression
for the Prandtl-Ishlinskii model and inverse of the estimated Prandtl-Ishlinskii model will

be presented and derived, respectively.

5.7 Summary

An analytical inverse of the generalized Prandtl-Ishlinskii model, which is
constructed by the generalized play operator, is formulated for the purpose of
compensation of the asymmetric and saturated hysteresis nonlinearities. This is carried
out by presenting the generalized Prandtl-Ishlinskii model using the initial loading curve,
which provides an alternative description for the generalized Prandtl-Ishlinskii model.
This inverse can be used as a feedforward compensator to mitigate hysteresis effects.
Parameters identification for the inverse generalized Prandtl-Ishlinskii model is discussed
using the 1nitial loading curve and envelope functions. Inverse rate-dependent and

generalized Prandtl-Ishlinskii models, constructed by rate-dependent and generalized
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rate-dependent play operators, consequently, are also obtained analytically. The
analytically derived inverse Prandtl-Ishlinskii hysteresis models offer significant Beneﬁts
in real-time control applications, because the compensation error of the inverse Prandtl-
Ishlinskii model can be obtained which will make it possible to design robust controller
with stability analysis, which will be presented in Chapter 7. Simulation results show the
capability of the inverse generalized Prandtl-Ishlinskii model (inverse feedforward
compensator) to compensate asymmétric and saturated hysteresis nonlinearities. On the
other hand, rate-dependent and generalized rate-dependent Prandtl-Ishlinskii models have
also been used compensate rate-dependent symmetric as well as asymmetric hysteresis
effects.

Modeling and compensation of the hysteresis nonlinearities in a piezoceramic
actuator using the generalized Prandtl-Ishlinskii model and its inverse are carried out
experimentaily. The compensator, which is the inversbe of the generalized Prandtl-
Ishlinskii model, reduces the hysteresis effects in tﬁe output displacement of the
piezoceramic actuator. Because of the characterization error between the Iﬁodel and
measured output responses of the actuator, the error of the mverse compensation was not
zero. The output of the inverse compensation shows slight nonlinear éffects between the

input voltage and the measured displacement.
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Chapter 6: Analytical Error of Inverse Compensation with
Prandtl-Ishlinskii Model

6.1 Introduction

To characterize hysteresis in smart actuators using the Prandtl-Ishlinskii model,
the density function and the thresholds of the model have to be determined. This is
- carried out generally by estimation of the density function and the thresholds based on the
measured data However, as shown in Chapter 4 that the characterization errors of the
Prandtl-Ishlinskii models are not zero. Using the Prandtl-Ishlinskii model with estimated
- density and threshold functions to construct the inverse model and to utilize this inverse
model for the compensation, as shown in Figure 6.2, will generate the compensation
error. Because this error has not been identified in the literature, the stability analysis for

the closed-loop control system with inverse compensation has not been presented.

The analytical error of the inverse compensation is presented for a hysteresis with
Prandti-Ishlinskii model presentation. Owing to the analytical inverse of the Prandtl-
Ishlinskii model, the error of the inverse compensation is obtained analyticall»yb. To derive
the error of the inverse compensation analytically, the initial loading curve of the Prandtl-
Ishlinskii model and composition of the initial loading curve of the Prandtl-Ishlinskii
model are presented. Then, the inverse of the estimated Prandtl-Ishlinskii model is

“derived and presented based on the initial loading curve and its inverse, respectively.
Simulation results for the error of the inverse compensation are demonstrated in details

for the inverse of the estimated Prandtl-Ishlinskii model.
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6.2 Problem Statement

Figure 6.1 shows when v is applied as an input signal to the hysteretic actuator,

the output of the hysteretic actuator v'(f) can be analytically presented as:

vO=Pu©O 6.1
where P represents the hysteresis model for the hysteretic actuator. If the inverse of the
hysteresis model P! can be obtained, it can be employéd as a feedforward compensator
to compensate the hysteresis nonlinearities as shown in Figufe 6.2. The inverse operator
P! takes v as input and outputs a signal P"'[v](t), such that the output P[v](?) is v', such
as:

V() =P o P

(6.2)
= P [PV

where “0” denotes the composition operator.

wW1) v¥(1)

Inverse feedforward compensator Hysteretic system

Figure 6.2: Open-loop control with inverse compensation.
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The error of the compensated output can be expressed as:

e(®)=v(t)-v'(t) ' (6.3)

However, as shown in Chapter 5, the exact inverse of the Prandtl-Ishlinskii model is
achievable and can be obtained analytically. Then the output of the inverse compensation

can be presented as:

V'(t) = Mo IT'[¥)(9) (6.4)

If the exact inverse of the Prandtl-Ishlinskii model can be applied, the error of the inverse
éompensation should be zero and v*(t)=v(t). However, as shown in Chapter 4 that the
characterization errors of the Préndtl-lsh]inskii models which are used to characterize
different hysteresis effects in smart actuators are not zero. Consequently, when the
inverse of these hysteresis models, formulated in Chapter 5, are applied to compensate
for the hysteresis nonlinearities, the error of the inverse compensation will not be zero
and the output of the inverse compensation will not shdw linear input-output relationship.
In this chapter, analytical expreséion for the error e(¢) of thé inverse cbmpensation will be

derived using the inverse of the estimated Prandtl-Ishlinskii model.

6.3 Analytical Expression of the Composition of the Prandtl-Ishlinskii
Model

In this section analytical expression of the composition for the Prandtl-Ishlinskii
model will be briefly presented. The expression, which is presented in [77], is essential to
obtain the error of the inverse compensation. The Prandtl-Ishlinskii model Il which

integrates the play operator F, and the density function p(r) to characterize the hysteresis
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nonlinearities is expressed as:

TV = 9v(0) + | p(EVIOdr (6.5)

Figure 6.3 illustrates the concept of composition of the Prandtl-Ishlinskii model. The
figure shows when the output of the Prandtl-Ishlinskii model I,)[v](f), constructed with
initial loading curve (), is applied as an input to another Prandtl-Ishlinskii model I,
with initial loading curve y(r), the composition Il,[ITy)](¢) can be characterized by

Prandtl-Ishlinskii modelv I1,»[vI(#) with initial loading curve #(r).

o) o) G

—P Ha(r) ['] e} Hu/(r} [ . ] TN

v(?) 40
IT

— ] ry{r}['] _____>

Figure 6.3: Composition of the Prandtl-Ishlinskii model.

Analytically, for two different initial loading curves ¢(r) and w(r), the output of the

Prandtl-Ishlinskii models are expressed as :

R

I, [v}(t) = ' (Op(r) + J.F,[V](I)(ﬂ"(r)dr ' (6.6)

., V)0 = " O + [ E D0y (r)dr 6.7)

The outputs of the above Prandtl-Ishlinskii models can be denoted as :
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o) =11,,[v1(® | (6.8)
p)=11,,[VI(®) (6.9

The composition of the two Prandtl-Ishlinskii model is defined as [77]:

L 0 IL,,, 1(1) =10, V() (6.10)

where

nr)=goy(r) (6.11)

Equation (6.10) can be written as:

I, IO=1,, M6 (6.12)
The Prandtl-Ishlinskii model of the initial loading curve 7(r) can be expressed as:
R
I, V)0 = 7' (Ov() + f E (O (r)dr (6.13)
0 .

where 7"(r) is a density function and 7'(0) is a positive constant. Equation (6.13) shows

that the composition of the Prandtl-Ishlinskii model with initial loading curves ¢ and y is

a Prandtl-Ishlinskii model with initial loading curves #7(r).

6.3.1 ILLUSTRATIVE EXAMPLE‘

Consider an input of the form v(f)=7sin()/(1+0.06t) and €[00, 13] for

Prandtl-Ishlinskii model presented in (6.5). The Prandtl-Ishlinskii models constructed

with ¢"'(r)=0.1r, " (r)=0.12r, ¢'(0)=0.17, and y'(0) = 0.2 are expressed as:
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0, V1) = 0.17%(t) + [ F,[v}(t)(0.1r)dr (6.14)

1, [V](¢) = 0.2v(¢) + [ F,[v}(e)(0.12r)dr (6.15)

The chosen simulation parameters are: A7=0.005, r €[0, 7], and Ar=0.01. Outputs of
models (6.14) and (6.15) are shown in Figures 6.4(a) and 6.4(b), respectively. The output
of Prandtl-Ishlinskii model IT,,,[v](f), which is also denoted as 6(z), is applied as an

input signal to Prandtl-Ishlinskii model I, (6.15). Then obtain the output of the Prandtl-

Ishlinskii model p(i) constructed by the initial loading curve y(r):

pt) = 0.20(0) + [ F[6)1)(0.12r)dr (6.16)

The input-output characteristics of the composition between the outputs 6(f) and p(¢) is

shown in Figure 6.4(c). The initial loading curves of Prandtl-Ishlinskii models (6.14) and

(6.15) are expressed as:

i
sl
|
d
]
5
— oE
! 4
i
*
t; B S e % 4 7T 4 6
V(1) ‘ w(1)
(@ (b) (c)

Figure 6.4: Input-output characteristics of Prandtl-Ishlinskii models: (a) I1,»[v], (b)
,»[v1, and (c) Thy»[v].
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@(r)=0.1r +5—10r3 (6.17)
1 3
l//(r)=0.17r+86r (6.18)

Then the initial loading curve () is expressed as:

17 2 37 37 r

+ + + +— (6.19)
1000 1000 5000 12500 125000

n(r)=
The outputs of Initial loading curves (6.17), (6.18), and (6.19) are shown in Figure 6.5.
Prandtl-Ishlinskii model that is constructed using initial loading curve 5(r) is defined as:
’ R . )
I, [V}(6) = 7' O (r)+ [ F,v)0)" (r)ar (6.20)
0 .

where the density function is expressed as :

6r 6077 126/° 72/
+ + +
1000 5000 12500 12500

7'(r) = (6.21)

and,
17 |
"(0) = —— 6.22
7'(0) 1000 (6.22)

" Figure 6.6 illustrates comparison between the output of Prandtl-Ishlinskit models (6.20)

and (6.16). The Figure shows perfect matching between the outputs of the models.
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Figure 6.5: Input-ouptut ccharacteristics of initial loading curves given by (6.17), (6.18),

and (6.19).
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Figure 6.6: Comparison between outputs of Prandtl-Ishlinskii models (6.16) (

-------- ) and (6.20) (————).
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6.4 Inverse of the Estimated Prandtl-Ishlinskii Model

After introducing the composition of the Prandtl-Ishlinskii model, the expression
for the inverse of estimated Prandtl-Ishlinskii model is also required. Owiﬁg to the
characterization error between the measured data and the outputs of the hysteresis
models, the error of the inverse compensation cannot be zero. In ﬁs section, thé inverse
of the estimated Prandtl-Ishlinskii model is derived. This inverse will be employed to

derive the error of the inverse compensation.

As shown in Section 5.2 that the Prandtl-Ishlinskii model is identified by the
i}nitial loading curve. In a similar manner, the inverse of the Prandtl-Ishlinskii model is
presented by the inverse of the initial loading curve. Consequehtly, the inverse of the
estimated Prandtl-Ishlinskii model is identified using the inverse of the estimated initial

loading curve. Let the initial loading curve of the Prandtl-Ishlinskii model is ¢, the

inverse of the estimated initial loading curve is y =¢@™', and the estimated density

function of the inverse Prandtl-Ishlinskii model is p" () =y"(r)<0. Then, the analytical

inverse of the estimated Prandtl-Ishlinskii model is expressed as:

I, Vi) = 37ve) + [ ' (DR VI (623)

0
where 7 is the threshold of the inverse model. This threshold can be expressed for / = 0,

1,2,...,n as:

f=i+ [§ (6.24)

4=



As shown in (6.23), the inverse of the Prandtl-Ishlinskii model is a Prandtl-Ishlinskii
model. It can be concluded that the inverse of the estimated Prandtl-Ishlinskii model is
Lipschitz continuous and maps C [0, 7] to C [0, 7]. The inverse of estimated Prandtl-

Ishlinskii model can be also numerically expressed as:

I, V() = v + > BrF, IO (629)

i=l

To compute the threshold of the inverse, the following steps are carried out for

relr,, 7,u), where j=0, 1,2, ..., n:

, |
@'(r)=q+) b, (626
i=1
Then the threshold 7 :
1-1
Fi=fy+g+ ). p)n-ny) (627)
i=l

for/=0,1 2 ..., n, the summation of equation (6.27) from 1 toj :

j-1
Fy=qr+ 3 p,(r, =), (6.28)
i=] .

To compute the weights of the density function of the inverse model in each interval

[7,,7,,) for j=0,1,2,.... n:

@A) =1/p'(r) (6.29)

Then,
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J
P (N=q+) ph, ' (6.30)
i=1

J
@A =q"+ ) 5N (6.31)
i=l

The following equation can be obtained by substituting (6.30) and (6.31) in (6.29):

N (6.32)

for j=1- i PN =——— (6.33)
' q+pAn
for i=2 G+ P AF + DA, = I (6.34)
or j=2: 154 A = .
g+ pAn + p,Ar,
A_] AF ~ Ax ~ X A 1
for j=n: 4 +p AR+ DA+t DAY, = (6.35)

g+ pAn+ p,Ar, +....+ p Ar,
Then, the density function of inverse of Prandtl-Ishlinskii model (6.25) on each interval

can be expressed as:

for j=1I: - P =D (6.36)
' ' | ' gq(g+pAR)A '
o+ P,

for j=2: (6.37)

(g+pdn + PA"zi)(q + p,Ar, A,
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p;An

H

forJ= e a8 638)
(q+) PAr)g+ ) DARN,

i=} i=1
j

6.5 Analytical Error of the inverse Compensation of the Prandtl-
Ishlinskii Model -

For the first time in the literature, the error of the inverse compensation is
formulated analytically for the Prandtl-Ishlinskii model using the inverse of the estimated
Prandtl-lshlihskii model. This analytical formulation shows that the error of the inverse

éompensation of the Prandtl-Ishlinskii model is still a Prandtl-Ishlinskii model.

Theorem 6.1: When the inverse o_f the estimated Prandtl-Ishlinskii model Hq,,-.(r)is

applied as a feedforward compensator to mitigate the hysteresis nonlinearities of the

Prandtl-Ishlinskii model IT as shown in Figure 6.7, the emror of the inverse

o(r)?

compensation for the input vw(r)e C[0,7] can be expressed as:

e(t) = (1—-7,"O)W() - [ F, v}t (r)dr (6.39)

where 7(r) = (¢~ (r)) is initial loading curve, 77,'(0) is a positive constant, and

n,"'(r) is the density function.

w(0) 0(r) V()

—— IL, [] Lot —

Figure 6.7: Iltustration of inverse compensation of the Prandtl-Ishlinskii model.
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Proof:

The error of the inverse compensation can be expressed as:

e(t)=v(t)—v (1) : (6.40)
The output of compensation v (£) can be expressed using initial loading curves ¢ and o

-as:

v ()= HW) 0 H(;,_, (r)[v](t) (6.41)
where H¢-, is the inverse of the estimated Prandtl-Ishlinskii model, which is presented in

Section 6.4. Using the composition expression for the Prandtl-Ishlinskii model that is
presented in Section 6.3, the output of the inverse compensation that is presented in

(6.41) can be expressed as:

vi=10__,[®» (6.42)
Then, by substituting (6.41) in (6.40), the error of the output compensation is expressed

as:

e()=v)-I1 ., ,[vI(1) (6.43)
The initial loading curve of the Prandtl-Ishlinskii model and its inverse can be expressed

as:

7= 9(r)0$™ () (6.44)

Using Equation (6.44), the error can be then defined as:
e(t) =v(n)-11,,[v)(0) (6.45)
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Then, the output of the Prandtl-Ishlinskii model with the inverse of the estimated

Prandtl-Ishlinskii model can be presented as:

I [vIe) =n'Ow(e)+ [ Fvion" (dr (6.46)

then, error of the inverse compensation (6.45) can be expressed as:

e(®) = (1 -7, OO - [ Fp)on" (r)dr (6.47)

Remark 6.1: For the Prandtl-Ishlinskii model of initial loading curve @(r), if the exact

inverse of the Prandtl-Ishlinskii model is constructed with ¢™'(r), then the initial loading

curve in (6.39) is simplified as:

nry=r (6.48)

and

70)=1 (6.49)

then, the error of the inverse compensation (6.47) is reduced to:

e(t)=0 (6.50)
and the compensated output is reduced to :

V() =v() (6.51)
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6.6 Simulation Results

In this section, simulations are carried out for the error of the inverse
compensation of the Prandtl-Ishlinskii model. The parameters of the inverse of the
estimated Prandtl-Ishlinskii model are computed by Equations (6.28) and (6.38). A

harmonic input of the form, W(¢) =7sin(/)/(1+0.06¢), ¢t [0, 13] is used as a desired

input signal. The following initial loading curve is applied to formulate the Prandtl-

Ishlinskii model:

o(r)=0.17r +jo. 18(r-¢)d¢ ’ | (6.52)

In this subsection, the exact inverse of Prandtl-Ishlinskii hyst;zresis model is constructed
by using the inverse of initial loading curve (6.52). The simulations results for the model
and its inverse are presented in F igures 6.8(a) and 6.8(b), respectively. The inverse of the
Prandtl-Ishlinskii model, constructed by the initial loading curve (p"(r), is applied as a
feedforward compensator to compensate the hysteresis nonlinearities of the Prandtl-
Ishlinskii model that is constructed by the initial loading curve ¢(r). The compensated
output, presented in Figure 6.8(0), shows linear relationship between the desired input
and the compensated output. The figure shows that the inverse feedforward compensator

mitigates the hysteresis nonlinearities.

The compensation output, which is also computed by (6.46), is presented in
Figure 6.9(a). This Figure shows linear relationship between the input signal and the
output of the compensation. The error of the inverse compensation that is obtained from
Theorem 6.1 is presented in Figure 6.9 (b). The figure shows that the error of the inverse

compensation is zero, e(1)=0.
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Figure 6.8: Input-output characteristics of: (a) Inverse of Prandtl-Ishlinskii model, (b)
Prandtl-Ishlinskii model, and (c) Compensation with the inverse Prandtl-Ishlinskii model.
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Figure 6.9: (a) The input-output characteristics of the inverse compensation (b) Time
histories of the error of the inverse compensation.

The following estimated initial loading curve is employed to construct the inverse Prandtl-

Ishlinskii model:

P(r)=02r+ j0-2§ (r-8)dg (6.53)

As shown in Figure 6.10, the inverse of the estimated Prandtl-Ishlinskii model, which is
constructed by the inverse of the estimated initial loading curve $7'(r), is applied as a

feedforward compensator to compensate the hysteresis nonlinearities of the Prandtl-
Ishlinskii model that is obtained using initial loading curve (6.52). The input-output
characteristic of the inverse of the estimated Prandtl-Ishlinskii model is shown in Figure
6.10(a). The output of the inverse compensation that is presented in Figure 6.10(c) shows

hysteresis nonlinearities.

Using Theorem 6.1, the output of the inverse compensation, obtained via Equation
(6.46), is presented in Figure 6.11(a) and the input-output characteristic of the error of the
inverse compensation is shown in Figure 6.11(b). While, the time history of the error is

presented Figure 6.11(c). The simulation results show the capability of Theorem 6.1 to
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compute the error of the inverse compensation for the Prandtl-Ishlinskii model. The results
demonstrate that the error of the inverse compensation shows hysteresis nonlinearities
between the desired input and the output of the inverse compensation. Consequently, it can
be concluded that the error of the compensation may cause undesirable inaccuracies or

oscillations and even instability.

6.7 Summary

Stability analysis generally cannot be constructed for inverse-based control methods
when the compensated output of the hysteretic actuator is coupled to a system because the
error of inverse compensation has not been identified in the literature. For the first time in
the literature, analytical error of the inverse compensation of Prandtl-Ishlinskii hysteresis
model has been presented. The inverse of the estimated Prandtl-Ishlinskii, which is applied
as a feedforward compensator, is employed to derive the error of the inverse compensation.
The analytical error of the inverse compensation is presented in Theorem 6.1. This error
shows hysteresis nonlinearities between the desired input and the compensated output, which
can be easily understood physically. The analytical inverse of the hysteresis is a hysteresis;
therefore their compensation should still be a hysteresis. This explanation coincides with
analytical analysis. It can be concluded that the error of the compensation may cause
undesirable inaccuracies or oscillations and even instability. Simulation results show the
capability éf Theorem 6.1 to computé the error of the inverse compensation. The error of the
inverse compensation is used in Chapter 7 to design controller for a nonlinear plant.

proceeded by the hysteretic system with inverse compensation in a closed-loop system.
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Chapter 7: An Adaptive Controller Design for Inverse
Compensation Error

7.1 Introduction

The previous chapter presents the analytical error of the inverse compensation for
the Prandt]-Ishlinskii model. The results show that the errof of the inverse compensation
can be also presented by a Prandtl-Ishlinskii model. Obviously, the error of the inverse
compensation will cause undesirable inaccuracies or oscillations and even instability.
Owing to the analytical error expression of the inverse compensation, controller design as
well as corresponding stability analysis for a controlled plant actuated with inverse
compensation that proceeded with the output of the inverse compensation is presented in
this chapter.

Su et al. [55] proposed an adaptive robust controller to control a system preceded
with hysteresis noniinean'ties of the Prandtl-Ishlinskii model without using inverse
compensation. Because the error after the inverse compensation is a Prandtl-Ishlinskii
model, therefore, the control design presented in [55] can be used to control a plant that
preceded with inverse compensation of the Prandtl-Ishlinskii model. It should be
mentioned that the purpose of this chapter is:

i. To couple the output of the .inverse compensation into a controlled plant in a
closed-loop system.

ii. To perform the stability analysis for a closed-loop system when the inverse

compensation is applied to compensate the hysteresis nonlinearities.

ii. To study the effects of the inverse compensation and its error on the tracking error

performance of the closed-loop system.
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7.2 Problem Statement

Figure 7.1 presents a controlled system consisting of a plant (dynamic system)
preceded by a hysteretic actuator with its inverse compensation. In this figure, the

hysteric actuator is characterized by the Prandtl-Ishlinskii model Iy and the inverse of

the estimated Prandtl-Ishlinskii Hé_. ) is applied as a feedforward compensator to

compensate the hysteresis nonlinearities of the hysteretic actuator. The output of the

inverse compensation HW is applied as an input signal to a controlled plant,

0 §7(r)
generally characterized as a dynamic system. The controlier shown in Figure 7.1 is
applied to compensate the error geﬁerated by the inverse compensation. This error has
been derived in Chapter 6. The dynamic system is described in the following canonical

form:

X0+ Y a, (=), 5(0), ..., 27 ()= bI_,,, [u1(0) (7.1)

where Y; presents the known continuous linear or nonlinear functions. The parameters a;
‘and control gain b are constants. The output of the inverse compensation is expréssed
analytically as:

11, [u)(e) =7, O)u(e) + [ F, [ (00" (r)dr (72)

It is a common assumption that the sign of b is known. Without loss of generality, assume

that b is a positive‘ constant, b > 0. System (7.1) can be represented with as:
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k ' R
(O + > a X (5, 50),... ,.x™ (O)=b7,'(0) u(t)+b[ Ll ()dr  (13)

i=l
The above equation yields a linear relation of the input signal, b7,'(0) u(f), and a

R
nonlinear term, b I F {ult)n''(r)dr.
0
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Figure 7.1: Closed-loop control system with inverse compensation.

Remark 7.1: It is clear that the first term on the right-hand side of (7.3) is a linear
function of the signal u(?). In this case, it is possible to combine the currently available
controller design techniques with the error of the inverse compensation of Prandtl-
Ishlinskii model. This was the primary motivation behind derivation of the analytical

inverse as well as the error of the inverse compensation.

Remark 7.2: If the hysteresis in the system is known, that is, p(r) and F,{u](¢) are given
or can be accurately estimated, for any continuous input function u(f) at a time instant ¢,
the inverse mitigates the nonlinear effects, and the error e(t) is zero. Then, system (7.3)

can be expressed as:

() + i a,.Y,(x(t),fc(t), s x™ (t))= bu(r) (7.4)
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7.3 Control Design

In this section, an adaptive variable structure controller is applied to control plant
(7.1) that preceded by the inverse compensation where the inverse is constructed by the
Prandtl-Ishlinskii model. The controller is designed by the emror of the inverse
compensatioﬁ will guarantee the global stability and yield tracking within a desired
precision. Assume that the reference signal x,4(¢) is a smooth bounded signal and its time

derivatives x' (1 <i <n)are bounded. The control objective is to design a control law
u(f) to force state vector x=[x,x,...,x"'] to follow a desired trajectory xs
=[x, %5 ,x7'), 1€, X — Xxga5 [ —>c0. In this éhapter, the back-stepping design

| method is used in the design of the robust controller. Using the back-stepping approach,

system (7.3) can be expressed as:

%(0) = x, (1)

(7.5)
X, (1) = x,(1)
k ‘ . o
x,(0) ==Y aY,(x(1)+b( -7, (0)u(r) —bjF,[u](t )" (r)dr
i=1 0
Define new vanables fori=2, 3, ..., n, as: _
| ‘zl(t)le_xu'(’)
(7.6)

z, () =x, _xi'_, —a;,

where a; which is the virtual control at the ith step is defined as:
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a(t)=—¢z (1)

A 7.7
a()=—c,z,(O) =z, () + & (X, 5 oo s X,y 5 Xg 5 0005 X57)

According to the analysis in Chapter 6, it is easily deduced that 7,'(0)= (¢~ )'(0) is a
positive constant, then b =b7',(0) is an unknown positive parameter. To avoid

chattering, as in [75, 76], a smooth function sg(z) is adopted:

Z,

— s lz,.l =,
58,(2,) = i " (7.8)
L , |zl < o,

G+

where ¢; are positive design parameters. A function fi(z;) is also used as:

()= 1, |z]24, ;
Then,
b,z 24,
sg(2)f(z)=10 , |z]<g, (7.10)
-1, lz,léé',.

To ensure the resultant functions are differentiable, similarly, z’ are replaced by
(|z,|-8,)"""* f, in the Lyapunov function and z; are replaced by (|z,|-5,)""**sg, in the

design procedure.

Step 1: Choose the design virtual control law a; as:

a, = (¢ +—£1-‘-)(’z]|—51 Y'sg,(z,)— (5, +Dsg,(z) (7.11)
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where c; is a positive design parameter. Consider the following Lyapunov function ¥},

defined in [75], as:

1 ns
4 zm(lzll—é‘l)‘ ]f;

then, the denivative of V; yields:
Y =(z]|-8)" fisgi(z)z

Considering %, = z, + , the following inequality can be obtained:

Vx = (Izll“éx)nflsgx(zl) (z, + )

<—(q +%)(lzll_5] )znfx +(|21|_§1 )" (|2,

Stepi (i =2, ..., n-1) choose:

5 n—i+ .
a, =—(c, + Z)(!Zzl -5;) ]Sgi(zi)+ai-] — (6., +Dsg(z)

The corresponding Lyapunov function is also adopted as [75]:

1 n—i+2
4 —m(|2f|“5i) StV

-~

The derivative V, is given by:

Vi = (Izil - 5:')"_”] 5g,(z,)z, + Vi—]

== ¢z~ 6" fi + (2| = 8)"" fillziu| = 6. - D)
k=1

_%(lzil_é‘i)Z(n—iH)f; +M,-

where M; is expressed as:

_52 _l)fl

(7.12)

(7.13)

(7.14)

(7.15)

(7.16)

(7.17)
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2(n-i+ 1 n—-i+
M, = (IZ,-I— 8y f, —Z(lzi—ll—5i—l YD g

(7.18)
+ (Izi—ll -6, )y (lzil -6, -Df.,
Since M, <0 [75], it can be concluded that:
V; < _Z c, (lzkl_ 5k )Z(n—k+])f;{ +
' ' (7.19)

n—i+ 1 Anis
AR ]fi(lzi+||“5f+n—1)—Z(|zi|‘5i)'( Df
Step n: In the last step, the compensation error of Prandtl-Ishlinskii model and its inverse

are considered. The following definitions are given:

d=a-a (7.20)
B=p-8 (7.21)
" r)=n,"{t,ry~n," () (7.22)

where @, 3, and 7,'' (¢, ) are estimate of a, B, and 77,"'(#), respectively. Define B,(?)

as:

F, [u]()dr (7.23)

B,0)A[n," ()

Then the estimated 30 (1) is defined as:

F, [u](t)dr | (7.24)

R .
B,0)A[7,"(t.7)
0

Choose the Lyapunov function V, as:
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qz =F) fivs a"ra+ by ,B +—j (1, @, r)dr  (7.25)

VZ

= =

Then V, can be expressed as:

V=V, + (2|81, sga(z)t, +3 Ta + 20 G +
&

R (7.26)
1 J (, r)aﬁ"(t r)dr
_._ P/ >
275 0
In the last step, the control law is designed as follows:
u=fu , : (7.27)
= -8 )sg,(z)—a"Y +u, +x\ +c,_ (7.28)
u, =—s,(2,)B,(0) (7.29)
The adaptation laws are expressed as:
B=~y u(z|-8,) 1, 58,2, (7.30)
5=(|z,,|~5n) £, sg.(z,) TY (7.31)
—77,"(t N =q(z,|- (7.32)

where y, g ; and T are adaptation gains. According to the definition in (7.6), it can be

obtained that:

Z :x __x((i") dn—l

(7.33)
=a'¥ + b u(t)+ j’ Flul(tyg," (Pdr —x —a,

Considering the results in (7.19) and (7.33), Equation (7.26) can be expressed as:
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. n-1
I/n =__Zciqz -5 )2(»—1+l)f +(I I n—])Z(IZ”I_an —l)f;,_l _

1(|zn_,| =6, £, +(z.| - 5,) f,52,(2,)

(7.39)
(@Y +bu(t)+ j F[ul®)," (r)dr —x” ~ a,.,)

+al'a

BB +

c'—-—,x

1 poegil § } "
_,’ +=Im (t’r)_"”b (t’r)dr
14 q ot
By using the control law in (7.27) and défmition (7.21), which can be expressed as

ﬁ’ = E + £, Equation (7.34) can be presented as:

n-1

¥, <=3 ez~ 52 £+ M, —(|z| 5.)f.52,(z)aTY

i=l

R
+(z,)-8,)1,58,(z,)8, 8@ +(z,|- 5,)1,52, ()| F1d®) 1, (dr - (739

~E bf] = 1 R~ " 0 ~ "
+aTG+L B +— [ 5, (6, r) =77, (t,r)dr
¥ q5 ot

where M, is expressed as:
2
=20 - 6,00z, -6, - D —(z.|-6.)° 1, (7.36)
Then inequality (7.35) is expressed as:

n—1

v, <—~Zc(|z |—5)’<"““"f+M +al-(z,|- 8,7, sg.(z,)Y +T7&)
+b, B (;Zi +(2,| = 8) fr58,(2,)0) + (z,| - 8, 58, (2,)u, (7.37)
+(z.)- 8,07, s2,(2,)] E[u](t)q,,"(r)dH; j 7, (t, r) 77, (t,r)dr

By adopting the adaptive laws defined in (7.30), (7.31), and (7.32), the following

inequality can be obtained:



v, <=3 ¢zl -8 s, (7.38)

i=1

From (7.29), it is obvious that ¥, is non-increasing function, and by Barbalat’s Lemma, it

concludes that (|z,|—&;) —> O as t—co. Thus, it is obtained that:

!'g|x(t) —x,()| =4, (7.39)

The above suggests that the inverse compensation error of the closed-loop system can be
reduced to desired precision.  Proposed adaptive controller design (7.27) together with
the update laws in (7.30), (7.31) and (7.32) can guarantee the global boundedness of the

closed-loop system.

Remark 7.3: It is important to note that the dynamic system (7.1) is only used as an
illustration to determine how the controller can be designed with the error of the inverse
compensation. However, it can be extended for a general class of systems. It should be
mentioned that the goal of this chapter is to show the controller design strategy in a

simple setting that reveals its essential features.

7.4 Simulation Results

In this section, the methodology of employing the error of the inverse
‘compensation with the robust controller presented in the previous section is illustrated

using the following nonlinear system:

_x()
H)=ai"f i1

1 + ex(l) (p_'ow(r)

[(vi(®) (7.40)
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where I1.,  [v](#)is the output of the inverse compensation when the inverse of the

@ op(r)
estimated Prandtl-Ishlinskii is applied as a feedforward compensator to compensate for
the hysteresis nonlinearities. The initial loading curve ¢(r) that is applied to characterize

the hysteretic actuator is described by:

@(r) =0.17r + j’ 0.11(r - &)dr . (7.41)

The estimated initial loading curve employed to construct the inverse Prandtl-Ishlinskii
model as a feedforward compensator to compensate the hysteresis nonlinearities in

closed-loop control system is assumed as:

H(r)=02r+ j 0.2&(r—&E)dr (7.42)

In order to demonstrate the significance of considering the hysteresis nonlinearities in
control design, the simulation is carried out considering the nonlinear term of the Prandti-
Ishlinskii model (uy = 0) and without considering the nonlinear term (uy = 0). The initial
states for the simulation parameters are selected as: R=40, N = 4000, 4(0)=0.13,
[5'(0) =0.431, and x(0) = 1.05, while a harmonic signal of the form x(r)=12.5sin(2.3¢), is
applied as the desired trajectory. Owing to the lack of an analytical approach for selecting
the control constants, an iterative simulation is carried out\ to select these constants. For
~ this purpose, an adaptive structure control law is used together with the adaptation laws.

The parameters of the robust adaptive controller are selected as: d; = 0.150, g = 0.001,

c; =10, y = 0.09, and I'= 0.09. Estimated initial loading curve (7.42) is applied to

construct the inverse of the estimated Prandtl-Ishlinskii model.
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Simulation results are shown in Figure 7.2, where the results involving the
nonlinear term (un= 0) are indicted by solid line, while those excluding the nonlinear
term (un = 0) are shown by dotted line. As shown in Figure 7.2(a), the output of the
inverse compensation shows hysteresis effects between the desired input and the
compensated output. The control signal with and without considering the nonlinear part is
‘shown in Figure 7.2(b)._ Thé output of the inverse conipensation with and without
considering the nonlinear term of the model is presented in Figure 7.2(c). The time
history for the desired trajectory and the system output x(¢) are shown in Figure 7.2(d). In
Figure 7.2(e), the time history of the tracking errors of the state x(f) with and without

considering the nonlinear part of the model are presented.

The controller constructed based on the error of the inverse compensation clearly
» demonstrates excellent tra;:king berformance as evident from the results. The controller
can thus effectively overcbme the error of the inverse compensation. The results also
show the necessity to consider the compensation error which is generally ignored by the

vast of majority publications using the inverse approach.

To show the significant of the derived error of the inverse compensation in
closed-loop control system, the simulations were perfbnned: (1) without considering the
.inverse of the Prandtl-Ishlinskii model, where the estimated initial loading curve is
@(r)=r; and (ii) with considering the exact inverse of the Prandil-Ishlinskii model,
where estimated initial loading curve (7.41) is applied. The time histories without using
the inverse and with using the exact inverse are shown in Figures 7.3(a) and 7.3(b),
respectively. The results show higher tracking error when the simulation is carried out

without considering the inverse of the Prandtl-Ishlinskii model in the closed-loop control
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system. On the other hand, better tracking performance can be obtained when the exact
inverse is considered instead of the inverse of the estimated Prandtl-Ishlinskii model. It
can be concluded that better tracking performance can be achieved in the control design
by considering the inverse Prandtl-Ishlinskii model as well as. the error of the inverse

compensation.

7.5 Summary

The error of the inverse compensation is applied to design a robusf controller to
control a system that it is preceded by a hysteretic actuator in a closed-loop control
system. The primary purpose is to consider the derived error of the inverse compensation
with the adaptive controller to achieve high tracking performance. The control law
ensures global stability of the entire system and achieves both stabilization and tracking
within a desired precision. Simulations that performed on a nonlinear system with the
error of the inverse compensation illustrate the effectiveness of considering the error of
the inverse. The results demonstrate better tracking performance when the compensation
error of the estimated Prandtl-Ishlinskii model is considered in the closed-loop control

system.
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Figure 7.2: (a) Inverse compensation based on the estimated initial loading curve, (b)
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Tracking errors with 1,7 0 and 1, = 0. (emmmer—— , 2tp # 0] rveerenaes ,u, =0).

198



10 -

Time(s)

(a)

-
Yy ids
-
o
LT
e,

N
\J

~,
.,

s
-
-
-
-

<€,

.
~u
-
-
-

.

kL T
o’
-
-~
Fe
-
P

10

Time(s)

(b)

Figure 7.3: Tracking errors of the output with u), = 0 and u,

0, (a) without considering

Sty E O e L1, =0)

the inverse, (b) considering the exact inverse. (

199



Chapter 8: Conclusions and Recommendations for Future
Studies

8.1 Major Contributions

The hysteresis phenomenon, invariably, occurs in smart actuators, such as
piezoceramics, magnetostrictive and shape memory alloys actuators. When a plant is
preceded by such hysteresis nonlinearity, the system usually exhibits undesirable
inaccuracies or oscillations and even instability due to the hysteresis effects. The
dissertation. research has proposed controller design for compensation of hysteresis
noniinearities on the basis of proposed generalized Prandtl-Ishlinskii models and their

inversions. The major contributions of the dissertation research are summarized below:

(1) A generalized Prandtl-Ishlinskii model is proposed on the basis of generalized
play operator, with different loading and unloading envelope functions, to
describe the symmetric as well as asymmetric major and minor hysteresis
loops with output saturation.

(i1) Dynamic density and threshold functions are proposed to formulate a
generalized rate-dependent Prandtl-Ishlinskii model for describing the
symmetric as well as asymmetric and rate-dependent hysteresis effects
together with output saturation.

(iii)The validity of the proposed generalized models are thoroughly demonstrated
for different smart actuators, namely, piezocermic, SMA and magnetostrictive,
for a wide range of inputs involving harmonic and triangular waveforms of
different magnitudes and frequencies.

(iv)Relationships between the parameters of the generalized play operator and
classic play operator are proposed to facilitate identification of the generalized
operator.

(v) Inversions of the proposed generalized models are formulated analytically
using the initial loading curve with an objective to develop inverse-model
based compensation method. The applicability of the inverse models is
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demonstrated for compensation of saturated symmetric and asymmetric
hysteresis of smart actuators over a wide range of input frequencies.
Furthermore, the initial loading curve is explored to facilitate compensation of
the hysteresis effects.

(vi)An analytical method is developed for estimation of the compensation error on
the basis of the proposed models and their inverse.

(vil) An adaptive controller design is used together with essential control laws
to achieve compensation of the hysteresis effects of a smart actuator that
coupled with a plant. Stability analysis of the closed-loop systems is
presented.

8.2 Major‘ conclusions

The dissertation research on comi)ensation of hysteresis nonlinearities involved five -
sequential major developments, namely: developments in generalized models for
describing hysteresis nonlinearities of smart actuators; develops in exact analytical
mversions of the generaﬁzed models; compensation of hysteresis effects using the model
inverse; compensation error analysis; and controller design. The major conclusions drawn

from each task are summarized below:

8.2.1 DEVELOPMENTS IN GENERALIZED HYSTERESIS MODELS

e The smart actuators, invariably, exhibit symmetric or asymmetric major and
minor hysteresis loops with output saturation.

o The hysteresis effects are strongly influenced by the rate of input; an increase
i the input frequency yields higher hysteresis but lower peak output.

e The classic Prandtl-Ishlinskii model cannot describe saturated asymmetric and
rate-dependent hysteresis effects of smart actuators but can yield an exact
analytical inverse for real-time compensation of the hysteresis effects.
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8.2.2

e The use of dynamic threshold and density functions in the rate of input in the
Prandtl-Ishlinskii model can provide reasonably good prediction of the rate-
dependent hysteresis of the smart actuators. The peak prediction error was
below 5% for the piezoceramic and magnetostrictive actuators under inputs up
to 500 Hz.

e A generalized play operator with different loading and unloading envelope
functions can be effectively applied in the Prandtl-Ishlinskii model to describe
asymmetric hysteresis loops with output saturation. The resulting generalized
Prandtl-Ishlinskii model revealed peak prediction error in order of 3% for
SMA and magnetostrictive actuators.

e The threshold values of the generalized play operator can be directly
estimated from those of the classic play operator.

o The generalized Prandtl-Ishlinskii model comprising the generalized play
operator with dissimilar envelope functions also yields better estimation of the
nearly symmetric hysteresis loops, as observed in the piezocermic actuators.

DEVELOPMENTS IN INVERSE HYSTERESIS MODELS

e Since the generalized Prandtl-Ishlinskii model is a mere extension of the
classic Prandtl-Ishlinskii model, the inverse of the generalized Prandtl-
Ishlinskii model can be defined analytically. ’

e Unlike the numerically-derived inverse hysteresis, the proposed inverse of the
generalized Prandtl-Ishlinskii model is unique.

e An analytical inverse of the generalized Prandtl-Ishlinskii model is insured if
the envelope functions are continuous and invertible.

e It is proven that the inverse of the generalized Prandtl-Ishlinskii model is a
generalized Prandtl-Ishlinskii model.

e While the Prandtl-Ishlinskii model is based upon its initial loading curve, the
inverse Prandtl-Ishlinskii model is based on the inverse initial loading curve.
The inverse generalized Prandil-Ishlinskii model further necessitates the
inverse of the envelope functions of the generalized play operator.
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The shape function of the initial loading curve of the Prandtl-Ishlinskii model
is convex, while that of the inverse in concave. The composition of the initial
loading curve and its inverse yields a linear function in threshold.

The inverse generalized Prandtl-Ishlinskii model yields clockwise input-
output curves due to negative density function.

8.2.3 COMPENSTION OF HYSTERESIS EFFECTS USING INVERSE MODEL

The exact analytical inverse of the generalized hysteresis model can be
conveniently applied as a feedforward compensator to achieve hysteresis
compensation in real-time applications.

The compositions of the inverse generalized models and generalized models
yield total compensation of the hysteresis error, irrespective of the output
saturation, asymmetric nature of the hysteresis loop or magnitude and the rate
of the input.

The experimental investigations in compensation of hysteresis effects in a
piezoceramic actuator using the model inversion resulted in peak
compensation error in the order of 2.4%, while it was nearly 7.5% in the
absence of the feedforward compensator. The compensation error of the
feedforward compensator was attributed to the characterization error, which

‘was found to be in the order of 2.8%.

8.24 ERROR ANALYSIS

The exact analytical inverse of the Prandtl-Ishlinskii model permits
determination of error of the inverse compensation analytically, which has not
yet been presented in the reported studies.

It is analytically proven that the input-output charactenistics of the error show
hysteresis effects between the desired input and the compensated output. The
proposed analytical expression of the error of the inverse compensation is thus
a Prandtl-Ishlinskii model.

The compensation error can be suppressed to zero when the exact initial
loading curve is known.



8.2.5

The compensation error resulting from the inverse Prandtl-Ishlinskii model is
unbounded due to unbounded nature of the classical play operator. Additional
control algorithms are thus vital for error compensation.

The error of the inverse compensation is a linear relationship between the
input and the compensated output and a nonlinear disturbance that may arise
from characterization errors.

AN ADAPTIVE CONTROL DESIGN FOR HYSTERESIS COMPENSATION

The knowledge of exact analytical inverse of the hysteresis model and the
error greatly simplifies the task of controller design for hysteresis
compensation of a plant preceded by a smart actuator.

. The proposed adaptive control design together with the defined updated

adaptive laws guarantees the global boundedness of the closed-loop system
and thus the output tracking with greater precision.

The knowledge of exact error of the inverse compensator permits the real-time
applications to plants in a highly efficient manner.

The control laws ensure global stability of the closed-loop system, which is
proven.

The application of the proposed controller and inverse compensator to a
nonlinear plant demonstrated that the controller provides stabilization .

8.3 Recommendation for the Future Studies

The dissertation research represents the use of the Prandtl-Ishlinskii model to

model and to compensate hysteresis nonlinearities inherent in smart actuators for micro-

positioning applications. The proposed models not only provided reasonably good

prediction of the saturated symmetric and asymmetric rate-dependent hysteresis effects

but also serve the essential basis for realizing -effective compensation of hysteresis in
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real-time applications. Following are some suggested further studies that should be

undertaken to enhance the hysteresis compensation in varying studies:

e The applicability of the proposed generalized models and their inversions
should be explored for compensation of (i) rate-dependent hysteresis in
piezoceramic actuators; and (ii) saturated asymmetric rate-dependent
hysteresis in magnetostrictive actuators. |

e The design of controllers is desirable for compensation of hysteresis effects of
the above stated actuators.

e Analysis of the error of the inverse compensation (;f the rate-dependent
Prandtl-Ishlinskii model is desirable for design of an adaptive robust control
employing the error of the inverse compensation.

e Further efforts are desirable in extending the proposed methodologies for
modelling rate-dependent hysteresis nonlinearities of ferromagnetic materials
using the generalized rate-independent and the generalized rate-dependent

Prandtl-Ishlinskii models.

e Further efforts are also desirable for compensation of asymmetric and
saturated hysteresis nonlinearities of the shape memory alloy actuators using
the inverse generalized Prandtl-Ishlinskii model as a feedforward
compensator.

e The proposed Prandtl-Ishlinskii models and their inversions may be
investigated to model and compensate the hysteresis nonlinearities in

ultrasonic motors, which show rate-dependent hysteresis effects.
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