
ON THE ASSESSMENT OF COMMUNITIES OF WEB

SERVICES

by

REEM KATEB

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

Master of Applied Science

Major: Information System Security

Thesis Advisor:

Dr. Jamal Bentahar

Concordia University

Montreal, Quebec, Canada

2013

Copyright c© REEM KATEB, 2013. All rights reserved.

iii

ABSTRACT

The notion of community of web services has been recently proposed and investi-

gated to gather functionally similar web services in the same virtual space. This allows

increasing the visibility of web services and their collaboration, which makes their dis-

covery and composition easier. Using the community infrastructure, users are supposed

to direct their requests to the communitys manager (called master), that is in charge of

selecting the appropriate web service. Because many communities providing the same

functionality are available, selecting the best community to deal with, from the users

and providers perspectives, is a key factor that still needs to be investigated. Another

particularly challenging issue yet to be addressed is the selection by the master of the

appropriate web service to be hosted in the community. Reputation has been proposed

as a means to help users, providers, and masters evaluate and rank different candidates.

However, reputation is mainly based on users feedback, which is not always accurate.

Moreover, other performance parameters should be considered in the selection game.

In this thesis, we propose a new assessment process that focuses on various per-

formance aspects of the community rather than just its reputation. This assessment

considers the performance parameters from the users, providers, and masters perspec-

tives. In this approach, the communities performance rate is mainly based on the web

services hosted by those communities. Such an assessment approach helps the master of

the community differentiate between web services so that only the appropriate ones can

be invited or accepted to join based on the communities requirements. It also helps the

users and providers select the best available communities.

The proposed method works on three steps. The first step focuses on defining and

iv

computing the evaluation metrics used in the assessment process while considering the

requirements of all the stakeholders, namely users, providers, and communities. Thus,

each community or web service is described by a vector of metrics. The second step

includes the clustering of the evaluated communities and web services using the resulted

vectors from the first step. During the third step, the resulting clusters are ranked using

a function called goodness function. Web services and communities belonging to the

best cluster are then selected. The effectiveness of the proposed assessment approach is

tested by simulation and comparison to two other approaches in the literature.

v

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to those who helped me

with various aspects of conducting research and the writing of this thesis. First and

foremost, Dr. Jamal Bentahar for his guidance, patience and support throughout this

research and the writing of this thesis. His insights and words of encouragement have

often inspired me and renewed my hopes for completing my graduate education. I would

also like to thank Mr. Ehsan for his contributions to this work. I would additionally

like to thank all my friends and colleagues who made themselves available by providing

support in many ways. Special thanks goes to my parents for their continuous support

through my studies far away from home. Finally, I would like to dedicate my ultimate

thanks to my beloved husband Youssef and my little princess Aleen for their encourage-

ment and never ending support.

vi

TABLE OF CONTENTS

ABSTRACT . iii

ACKNOWLEDGEMENTS . v

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER 1. INTRODUCTION . 1

1.1 Context of Research . 1

1.2 Motivations . 2

1.3 Contributions . 3

1.4 Thesis Organization . 4

CHAPTER 2. BACKGROUND AND RELATED WORK 5

2.1 Web Services . 5

2.1.1 Definition . 5

2.1.2 Web Service Architecture . 6

2.1.3 Operations . 10

2.2 Communities of Web Services . 11

2.2.1 Definitions . 12

2.2.2 Architecture . 12

2.2.3 Operations . 14

2.3 Related Work . 17

2.3.1 Evaluating Web Services . 17

vii

2.3.2 Evaluating Communities . 19

CHAPTER 3. COMMUNITIES AND WEB SERVICES ASSESSMENT 21

3.1 Introduction . 21

3.2 Assessing Communities of Web Services 22

3.2.1 The Evaluation Process . 22

3.2.2 Clustering with K-Means . 32

3.2.3 Goodness Function . 32

3.3 Assessing Web Services . 33

3.3.1 The Evaluation Process . 33

3.4 Conclusion . 42

CHAPTER 4. IMPLEMENTATION . 43

4.1 Simulation Environment . 43

4.2 Results and Analysis . 45

4.2.1 Communities Assessment . 46

4.2.2 Web Services Assessment . 48

4.3 Conclusion . 54

CHAPTER 5. CONCLUSION AND FUTURE WORK 55

5.1 Summery of Contributions . 55

5.2 Future Work . 56

BIBLIOGRAPHY . 57

viii

LIST OF TABLES

Table 4.1 Experiments Parameters . 44

Table 4.2 Web Services’ Classes: Benchmark 45

Table 4.3 Communities’ Classes: Benchmark 46

ix

LIST OF FIGURES

Figure 2.1 Web Service Components and Operations 7

Figure 2.2 Web Service Protocol Stack . 7

Figure 2.3 Web Service Layered Architecture 11

Figure 2.4 Communities of Web Services Architecture 13

Figure 3.1 Assessing Communities of Web Services 23

Figure 3.2 Community’s Internal Connection Using The Concept of Group 26

Figure 4.1 Comparison of Communities Received Requests 47

Figure 4.2 Comparison of Users’ Satisfaction about Communities 49

Figure 4.3 Comparison of Communities Execution Time 50

Figure 4.4 Comparison of Web Services Response Time 51

Figure 4.5 Comparison of Web Services Number of Requests 52

Figure 4.6 Comparison of Web Services’ Contribution 53

1

CHAPTER 1. INTRODUCTION

In this chapter, I will introduce the context of my research and discuss the motivations

behind it. This chapter also presents the contributions of this thesis. The conclusion of

this chapter is an overview of the thesis organization.

1.1 Context of Research

Web services are software components that have emerged as a core technology for

sharing resources and merging processes inside companies or organizations. Most or-

ganizations relay on web services and use them as an interface to integrate different

applications within their boundaries because they provide a concrete implementation of

service oriented architecture (SOA). To build and access web services, different standards

are used, such as: Web Service Definition Language (WSDL), Universal Description, Dis-

covery and Integration (UDDI), and Simple Object Access Protocol (SOAP). Providers

of web services publish their services over the Internet, and consumers request these

services. However, to send a request users have to discover the services first to see if

they satisfy their needs. As the number of developed web services providing similar

functionalities continues to grow, the need for a good discovery method becomes critical.

In general, the objective of the discovery process is to find services that satisfy the

users’ needs and requirements. However, discovering and selecting a single web service

that meets these requirements, from over a hundred available services, is a difficult task.

A solution to this problem is to group web services providing similar and complementary

2

functionalities into communities [6, 7, 38].

A community hosts different web services (called slaves) having similar or comple-

mentary functionalities but different qualities of service. The community is lead by a

master web service, and one of its responsibilities is to invite new web services and eject

existing ones if they are not performing as expected. Communities help users direct

their requests to the master of the community, which chooses the best service that meets

their requirements. As those communities contain a certain number of web services, this

will ease the selection of slaves on behalf of users. They also help keep a high standard

for available services, as when a web service fails to respond to users’ request, it is the

master’s responsibility to find another web service for replacement.

The main focus of this thesis is to help users choose the best community among

many others to seek services, and to assist providers select the best community to join.

Furthermore, we will focus on helping the master of the community decide which web

service to invite, and which web service to fire.

1.2 Motivations

The first motivation of this thesis is to facilitate and enhance the selection process of

web services. With the increased number of web services having similar functionalities,

more arguments arise on how to find the best service to fit the requestors’ requirements.

However, the problem is that some web services do not advertise accurate QoS informa-

tion, which is directly related to their performance. The QoS is a set of non-functional

properties associated with each service. QoS is measured by using different metrics,

such as response time, availability, thruput, price, and so on. One of the main issues in

SOA, is that when advertising their services, providers could be untrustworthy and may

publish high QoS information to receive more requests.

As the communities are designed to handle the users’ requests, finding the best service

3

to invite as a member of the community is critical for the master. In fact, users send their

requests directly to the master, which puts a huge responsibility on this master when it

comes to choosing the best web services to invite. However, if users are satisfied with

the provided services, that will lead them to send more requests to the same community.

Assessing the web service from the master’s point of view is still an open issue in the

literature about communities of web services that this thesis aims to address.

The second motivation is to help users and providers select the community that suits

them best. The fact that users have to look for appropriate communities that host

the requested services and providers have to find suitable communities to host their

services requires differentiating between these communities. The community assessment

and ranking have been studied in previous proposals based on the reputation parameter

[22, 12, 24]. This motivates us to find a way to do this assessment by considering other

performance aspects. Although reputation is an important issue reflecting the trust

that users, providers and masters have on the web services, other aspects such as the

connectivity and wiliness to collaborate are also fundamental and need to be studied.

1.3 Contributions

This thesis presents two main contributions. First, we introduce an assessment

method to help the master of a given community select the best services to invite with

respect to the community’s needs. In this assessment we focus on the non-functional

properties (QoS) of each web service to distinguish the best one. We also focus on

different community’s needs, as different communities may be interested in different

properties.

In the second contribution, we introduce an assessment method to differentiate com-

munities by considering the overall performance. This assessment is done from two

different perspectives: providers and users.

4

In our implemented system for simulation purposes, we analyze the effectiveness of

our method by comparing it to a reputation based selection and to a random selection.

We found that our model is outperforming the other models in terms of satisfying the

master, users, and providers (i.e., web services) requirements.

1.4 Thesis Organization

The reminder of this thesis is organized as follows: Chapter 2 presents background

information to help understand the rest of the thesis, and an overview of previous re-

lated work. First, we discuss the web service definition, architecture, and operation,

and present the concept of community of web services, its architecture, and operations.

Chapter 3 discusses our proposed methods. We first introduce the communities’ assess-

ment process from users’ and providers’ perspectives. Afterwards, we present the web

services assessment. Chapter 4 describes our simulation environment, then we analyze

the results to show the effectiveness of our method. Chapter 5 concludes this thesis and

provides suggestions for future research.

5

CHAPTER 2. BACKGROUND AND RELATED WORK

This chapter discusses relevant background information important to understand the

rest of the thesis. Section 2.1 presents a brief discussion of web services, web services

architecture, and operations. Section 2.2 introduces the concept of communities of web

services from the architecture and operations perspectives. Section 2.3 discusses relevant

related work that has been done to evaluate and assess communities of web services

based on trust and reputation. The assessment of web services based on reputation and

QoS will also be discussed in this section.

2.1 Web Services

2.1.1 Definition

In daily life, we can associate the concept of service to many metaphors, which might

include utilities. Any service that is available over the internet, such as flight booking,

hotel reservation, etc., is called web service if it uses a standardized XML messaging

system. Web services are flexible as they are not bonded to any programming language

or operating system.

The World Wide Web Consortium (W3C) defines web services as follows:“A software

system designed to support interoperable machine-to-machine interaction over a network.

It has an interface described in a machine-processable format (specifically WSDL). Other

systems interact with the web service in a manner prescribed by its description using

SOAP messages, typically conveyed using HTTP with XML serialization in conjunction

6

with other Web-related standards”. When developers declare a new web service, it will

be discovered based on its description that fully describes the service. Developers also

have to declare a public interface and a readable documentation to help other developers

when integrating different services [10].

2.1.2 Web Service Architecture

In this part, we describe the architecture of web services from two perspectives: first,

by examining web service components; and second, by examining the web service protocol

stack [8].

A. Web Service Components

Web service architecture provides a message exchange mechanism that has three main

components [8]:

1. Service Provider

The Service provider is the provider of the web service, whose responsibility is

implementing the service and making it available over the internet.

2. Service Requestor

The service requestor is the consumer of the web service who wishes to make use

of a service provider’s service. The requestor opens a network connection with the

web service and sends an XML request.

3. Service Registry

The service registry is a centralized directory of services where providers can de-

clare new web services or find an existing one. Figure 2.1 shows the web service

components and how they interact with each other.

8

the transport protocols one of its important foundations. This layer’s responsibility

is to transport messages between applications. Web services’ messages can be

transported by using web protocols such as HyperText Transport Protocol (HTTP)

or Secure HTTP (HTTPS), Simple Mail Transfer Protocol (SMTP), File Transfer

Protocol (FTP), and any communications protocol.

2. Messaging Services

This layer contains the most fundamental web services specifications and technolo-

gies such as eXtensible Markup Language (XML), Simple Object Access Protocol

(SOAP), and WS-Addressing. This layer is in charge of making the encoding mes-

sages in a common XML format understandable at both ends. The specifications

model the base of interoperable messaging between web services. The following are

some important terminologies used in this layer.

a. XML Messaging

The world of web services is basically modelled based on the core set of XML

specifications. XML is not a language, it is a metalanguage which can be used

to define new languages. It has gained its acceptance because it enables various

computer systems to share data more effectively, without considering the underly-

ing operating system or programming language. There are many XML tools which

are available for mostly every programming language, including C, C++, Java,

Perl, and Python, and operating system. XML is always the natural choice for

developers when they decide to build a web service messaging system.

b. SOAP

It is an XML-based protocol used to provide a simple and lightweight technique

to exchange information between services. It is used to minimize the cost and

difficulty of merging applications that are build on different platforms. SOAP is

an XML document with three elements: an envelope, a header and body. It is

9

defined independently of the inherent messaging transport technique in use, where

it makes use of many options of transports for message exchange.

c. WS-Addressing

WS-Addressing defines XML elements to identify the endpoints of web services and

to secure end-to-end endpoints in messages. It also enables messaging systems in

supporting message transmission through networks.

3. Service Description

This layer’s responsibility is to describe the public interface of a given web ser-

vice using Web Service Description Language (WSDL). WSDL is the most mature

metadata used to describe web services. It gives the developers a chance to describe

the functional characteristics of the web service. It also offers a standard language-

agnostic view of client services. WSDL is an XML file that specifies the public

interface of services over the network as a group of endpoints operating on mes-

sages with either document-oriented or procedure-oriented information. It allows

the description of endpoints and their messages without considering the message

formats or network protocols in use. The public interface of web services contains

information about all available functions, all data type information about XML

messages, information about the transport protocol to be used, and addresses data

to locate the service.

4. Service Discovery

This layer is used to centralize services into a common registry and ease the func-

tion of finding/publishing web services by storing the important data that de-

scribes these services. This data should be in a discoverable and searchable form

to consumers [32]. It is handled by using Universal Description, Discovery, and

Integration protocol (UDDI). UDDI is a widely recognized specification of a web

service registry, which was originally created by Microsoft, IBM, and Ariba. UDDI

10

is a technical specification used to help find and publish web services. This reg-

istry enables anyone to search in its existing data. This data is divided into three

groups: White pages (for general information), Yellow pages (for general classifica-

tion data), and Green pages (for technical information). UDDI normally consists

of tow parts as follows:

(a) UDDI as a technical specification used to build directory of businesses and

web services, where the information is stored using a specific XML format.

(b) UDDI as a business registry, which is an operational implementation of UDDI

specification.

UDDI can be rendered in one of the following three ways [11]:

(a) Public UUDI: this way can be used as a resource for Internet-Based web

services.

(b) Intra Enterprise UDDI: when an enterprize has a private UDDI registry to

provide more control over services description.

(c) Inter Enterprise UDDI: to present the content of the sharable services between

specific business partners.

The web service layered architecture as described in [3] considers two additional

layers: Quality of Service (QoS) and Component. The QoS layer is in charge of

security and reliability. The component layer considers the composition where dif-

ferent protocols can be used such as Business Process Execution Language (BPEL).

Figure 2.3 shows the different layers.

2.1.3 Operations

In this section, we describe the operations of web services, which can be classified as

follows [3]:

12

2.2.1 Definitions

Communities have different meanings depending on where we use them. In Oxford

Dictionary, community is “a group of people living in the same place or having a par-

ticular characteristic in common”. When it comes to web services, Benatallah et al [4]

specify community as an aggregation of web services with the same functionality and

different non-functional, properties. Medjahed and Boubuettaya [31] use community to

provide an ontological organization of web services having the same domain of interest.

Medjahed and Atif use community to implement rule-based techniques for comparing

context policies of web services [30]. Maamar et al. [24, 23] describe the community as

something that can give an explanation of the required functionality without referring

to any web service that may respond to this functionality at run-time. The definitions

given by Benatallah et al., Medjahed and Bouguettaya, and Medjahed and Atif do not

expose the dynamic nature of the community. Communities must have the ability to

attract and retain web services, specify the membership rules, and eject web services

when they do not accomplish their performance commitments [23, 5, 15, 22].

2.2.2 Architecture

Figure 2.4 describes the architecture of communities of web services and how they

connect to web services’ providers and UDDI registries. The components of this archi-

tecture include: the providers of web services, UDDI registries (or any type of registries

like ebXML), and communities of web services. Communities are dynamic by nature.

Specific scenarios and protocols are used to establish communities.

When it comes to communities, the traditional way of defining, announcing, and

invoking web services is still the same, and the functionalities that UDDI registries nor-

mally offer to providers for selection are still the same (see for instance [27, 32]). The

selection of web services from communities occur independently from the way these ser-

vices are grouped into the community. As the master web service leads the community,

14

of web services. The master runs the CN protocol by sending a call for bids to all slave

web services inside the community (CN Step 1). This call usually considers the non-

functional criteria (QoS) that the user required for selecting web services. The slave web

services check their capacities to meet these requirements and their ongoing commitments

in other compositions before getting back to the master (CN Step 2). The slave who is

interested in biding replies back to the master web service; then the master will check

all bids before choosing the winner (CN Step 3). The winner is notified, and then it

gets ready to execute the composition task (CNStep 3), and other slaves are notified

as well(CN Step4). The winner is decided based on the requested and offered QoS and

other criteria such as trust and reputation [23, 7].

In a community of web services, the master is designed in two different ways. First,

by having a dedicated web service to play the master role during the entire time of

being in the community. This master web service is independently developed and never

participates in any composition. Second, by identifying a web service out of web services

already inside the community [23].

2.2.3 Operations

The operations of the community include the community development, the attraction

and retention of web services, and web services selection [6, 7, 24, 23].

a. Community Development

The main purpose of designing a community is to gather web services with similar

functionality to ease the discovery process. This is a designer-driven activity which oc-

curs in two steps. First, by defining the functionality of the community by attaching it

to a specific ontology. This binding is important because providers of web services use

different terminologies to explain their functionality. Using a special ontology is impor-

tant when mapping the description of web service’s functionality onto the description of

the community’s functionality. Second, by deploying the master web service to lead the

15

community and take over its responsibilities. One of the master’s responsibilities is to

attract web services to join its community and to check the credentials of web services

such as QoS before admitting it to the community. This checking has two advantages:

it improves the security level among web services in the community, and it enhances the

trustworthiness level of the master web service. Disassembling the Community of web

services is also a designer-driven activity requested by the master. This oversees all the

community activities such as arrival of new web service, departure of some web services,

nominating slaves to be part of composition, etc.

When the master notices that the number of web services inside the community is less

than a certain threshold, and when the amount of participation in composite web services

over a specific period of time is less than another threshold, the community would be

dismantled since it is not performing well. The designer sets both thresholds. When

the web service is ejected from a community, it can join another community as long as

it provides the same functionality as the new community and meets the community’s

requirements and policies.

b. Web Service Attraction and Retention

Attracting and retaining web services is one of the master’s responsibilities. We

discussed how the community of web services could disappear if the number of membered

web services drops below a certain threshold. As attracting new web services drives the

master of the community to regularly check the UDDI registries searching for new web

services, the master can use rewards and incentives to attract the providers, such as high

visibility, free security infrastructure, and high rate of collaboration [16, 19, 21]. Any

changes in a web service’s description could raise challenges as this service may not suit

the community’s objective. Hereafter, the master starts interacting with the provider of

this service, and asking the provider to register its service within the community. Tow

arguments are used during this interaction. First, the high rate of participation of the

existing web services in composition scenarios. Second, the short response-time when

16

handling users’ requests, and the effectiveness of security techniques against malicious

web services [6, 7]

The retention of web services for a long time inside a community is a good index for

the following elements:

1. As web services in a community are in competition, they also show an attitude of

cooperation [24, 14]. In the community of web services, peers are not subject to

attack each other.

2. Providers of web services set a satisfaction rate in composite web services, and web

services are, to a certain extent, satisfied with this rate [19, 21].

3. Web services are aware of peers in the community, where they can substitute them

in case of failure with the minimum impact on the ongoing composite web services

[16].

Web services’ attraction and retention scenarios bring the attention to a third sce-

nario, where the master of the community asks a web service to leave the community.

Such request could be issued upon the assessment of the following properties:

1. When a web service has some changes in its functionality, which do not match the

community’s functionality.

2. The web service inside the community is unreliable when it fails to participate in

compositions due to some operational problems.

3. When a web service loses its reputation, so it cannot get opportunities to participate

in composite business scenarios.

c. Web Services Selection

In a community of web services, the master runs the Contract-Net Protocol (CN Pro-

tocol) to select web services to participate in compositions. CN Protocol contracting and

17

subcontracting are between two types of agents: initiator (the master of the community)

and participants (slaves inside the community). An agent can be initiator, participant, or

both at any time. Mapping CN Protocol onto a community’s operations happens when

the user selects a community based on its functionality; the user contacts the master

of this community in order to identify the appropriate slave web service to implement

this functionality. Then the master runs the CN Protocol to select the appropriate web

service as discussed in Section 2.2.2.

2.3 Related Work

In this section, we discuss relevant related work about evaluating web services and

communities of web services. While there are significant proposals on web services’

evaluation, little work exists on classifying communities of web services.

First, we focus on web services assessment. A lot of work has been done to evaluate

web services from the user’s perspective by mainly considering the reputation of web

services [26, 15, 42, 28, 34] and its QoS [19, 22, 21, 36]. However, evaluating web services

from the master’s perspective, considering the overall performance and not only the

reputation, has not been addressed yet.

2.3.1 Evaluating Web Services

In [37], Y. Wang and J. Vassileva noted that in addition to helping in the selection

process, the reputation model aims to distinguish the good and bad web services, where

in a dynamic environment it is unusual to have a web service associated to a fixed

reputation level all the time. Web services can appear and disappear, come in new

shape, be upgraded without previous notice, and resume operation after interruption.

They may accommodate their good performance level that they provided in the past.

Their proposed mechanism uses a centralized or decentralized, person or resource, global

18

or personalized criteria. This model is focused on reputation and is mainly based on

users’ feedback which cannot be considered trustworthy all the time.

In [41], Xu, Martin, Powley and Zulkernine used web services’ non-functional prop-

erties to assess their overall reputation. They suggested a reputation model combining

an augmented UDDI registry and a manager. The service reputation is assessed by as-

signing scores based on the users’ feedback. The reputation model has been experienced

to find suitable services and the results showed high performance as long as all users

feedback are honest. However, malicious users are not taken into account in this work

although users’ rating affect the reputation score, which may end up not to be accurate

based on the malicious rating.

In [34], Ali, Majitha, Rana, and Walker noted that the discovery approaches us-

ing UDDI could not help locate web services based on their behaviors and capabilities.

The proposed approach consists of the matchmaker service, composer service, discovery

manager service, and reputation manager service. The matchmaker compares requested

service reputation with the advertised services, then the discovery manager service re-

quests the composer if the matchmaker is not able to do the comparison. The composer

puts together the services with the same functionality, then matches the requested rep-

utation with the advertised ones. The reputation manager computes the reputation in

three different phases including: 1) reputation interrogation phase; 2) reputation rating

phase; and 3) reputation computation phase. Then the reputation score is associated to

the service along with the computation time. Similar to the previous work, malicious

feedback are not distinguished from the honest one, which can jeopardize the overall

system performance.

In [13], Jurca and Falting noted that web services should be contracted through

service level agreements to specify certain QoS. Monitoring these agreements at run-time

occur via a reputation mechanism. This mechanism tries to identify selfish providers who

do not put the required effort into maintain the announced QoS but it still cannot prevent

19

them from cheating.

Maximilien and Singh argued in [28] that an efficient reputation model for web services

should be based on independent and trusted parties. Those parties are known as agencies.

The role of an agency is to gather the right information a bout the quality of web services

and present it in an appropriate format to potential users at selection time.

In [32], Ran proposed a discovery model that considers the functional and non-

functional properties equally important in the discovery process. This model can co-

work with the existing UDDI registries to help users find the appropriate service with

the required quality. A new role, named certifier, is introduced to verify the advertised

QoS to the user. The QoS is organized into different categories, each category needs to

be associated with different metrics. However, in the proposed model the author did not

provide equations to compute those metrics so that the user can obtain an accurate QoS.

In [29], Maximilien and Singh proposed a dynamic service selection using a QoS

ontology integrated with an agent framework. They used agents and agencies theories

to solve the dynamic selection of web services by taking into consideration the non-

functional requirements when computing the QoS. They used a QoS ontology so that

involved agents can match the advertised QoS with the requested one. The QoS ontology

has been defined but equations to calculate them to help evaluate the quality of the web

service are not provided.

2.3.2 Evaluating Communities

In [12], Elnaffar et al. proposed a reputation-based community architecture where

users and providers look forward to communicate with reputable communities. Providers

aim to increase their visibility to reap lucrative outcomes, and users look forward to

receive high quality of service. The proposed reputation model considers the perspectives

of both users and providers. The authors proposed an extended UDDI registry, which

supposes to host the entries for communities in addition to the conventional entries of

20

web services. They focused on how to structure and update the reputation system, how

to maintain the reputation up-to-date, and how to make it accessible.

In [17], Khosravifar et al. proposed a reputation model based on four metrics, namely

responsiveness, in-demand, satisfaction, and time recency. They analyzed the feedback

logging mechanism used to provide users’ feedback and provided a reliable mechanism

able to manage malicious acts of agents. The controller agent which they introduced is

making sure that any violation is correctly identified and involved agents are penalized.

They conducted simulations showing how their model provides a system that is able to

adjust the level of reputation.

Compering the performance of web service communities with single agent-based web

services from trust and reputation perspectives has been investigated by Khosravifar et

al. in [15]. A reputation model is used to rank communities and web services where

different reputation parameters are considered. The authors discussed what would en-

courage a single web service join a community of web services, even if this joining could

impact other parameters in a negative way. In addition, they measure the benefits that a

single web service gains when it joins a community. In measuring the general service rep-

utation, they considered two parameters, namely satisfaction and in-demand, to reflect

the basic reputation assessment of a web service. Finally, they analyzed the efficiency of

community of web services in comparison twith a single web service in different aspects.

21

CHAPTER 3. COMMUNITIES AND WEB SERVICES

ASSESSMENT

3.1 Introduction

In recent years, we have seen a significant increase of interest in web services. As

the number of available web services continued to grow, there was a need to make these

web services cooperate and coordinate their actions within virtual structures such as

communities of web services. The concept of community of web services arose to ease

and improve the discovery and selection processes of web services in an open environment

such as the Internet, and to successfully answer user requests as discussed in Chapter

2. Communities of web services facilitate the discovery process and help find the best

service available. Communities also help find substitutes in case the web service cannot

answer the request after being committed to it.

In general, single web services may fail to accept all requests from users, which may

cause their overall reputation to decrease within the environment and may also lead to

lose some users. In a community of web services, the community collects a set of web

services having the same functionality. Many communities come online and some of them

provide the same functionality, which lead to a competition between them. Users will be

more interested in binding to the best community that hosts the appropriate web services,

which will successfully respond to their requests. Moreover, providers are interested in

cooperating with the best communities that can combine a high participation rate with

a good way to advertise their services.

22

In communities of web services which offer the same functionality, the reputation

assessment is considered as a distinguisher factor that provides the masters with good

incentives to act truthfully. However, a good assessment should go beyond the traditional

trust and reputation so that other performance aspects are taken into consideration.

The remainder of this chapter is organized as follows. In Section 3.2, we define the

procedure of assessing web services communities from the perspectives of providers and

users. In Section 3.3, we discuss the assessment of web services from the master of the

community’s perspective. Section 3.4 concludes the chapter.

3.2 Assessing Communities of Web Services

In this section, we define the assessment process of Community of Web Services

(CWS) from two different perspectives: providers and users. This assessment follows the

following three steps as shown in Figure 3.1:

1. Defining the evaluation metrics, which forms the evaluation process.

2. Clustering using the k-means algorithm.

3. Calculating the goodness function of each cluster’s centroid (mean).

3.2.1 The Evaluation Process

This process is performed from two different perspectives. First, the users’ perspec-

tive; second, the providers’ perspective.

Henceforth, Ci denotes the candidate community i, which is under consideration by

user Ui and provider WSi. |Ci| denotes the number of web services hosted by the com-

munity Ci.

24

1. Provider’s Perspective

As the number of communities increases, single web services would prefer to join

a community to increase their visibility and benefit from the community infras-

tructure. From a large number of communities, providers are interested in joining

the community that can help them achieve their goals in terms of having access to

a large number of users. For this reason, providers need to differentiate between

communities under consideration to decide which community to join. This process

gives the provider a sense of how each community is performing by considering

different factors defined based on the IEEE std. 1061 to evaluate the quality of

each community [45].

For each factor we proposed different metrics that are calculated for a given period

of time [t1, t2] using different parameters. We consider large window [t1, t2] so

that the considered parameters are not null. However, if the denominator of an

equation is null, the metric is also considered null. In the rest of this chapter, we

only consider the case where the denominators are different from 0.

(a) Connectivity:

i. Substitutability: Substitutability measures the connectivity between web

services in Ci in term of substitution. The substitutability of a community

Ci at a specific period of time, denoted by SubCi , is measured by calcu-

lating the total number of failed requests and the number of substituted

requests among the failed ones.

SubCi =
RCi

substituted

RCi

failed

where RCi

substituted is the total number of substituted fail requests at time

25

[t1, t2], and RCi

failed refers to the total number of failed requests at the

same period of time.

ii. Internal Connection: To measure the internal connection we gather web

services that can substitute each other into groups, and the lowest num-

ber of groups reflects the highest community connectivity. The concept of

group means a collection of at least two web services, which are strongly

connected to one another so that each web service can substitute the

other. In fact, web services are gathered in one group based on the sim-

ilarity of their non-functional proprieties where each one can substitute

the other in case of failure or compose with each other to respond to

complex requests. A group is therefore a strongly connected graph where

nodes are web services and edges mean substitutability or composition

links. The internal connection of a community is computed as follows:

IntConCi =
|G|Ci

|Ci|

where |G|Ci is the number of disjoint groups inside the community, and

|Ci| is the number of web services hosted by the community, which is

assumed to be non empty during the time interval [t1, t2].

Let us assume we have three communities Ca, Cb, and Ci with 10 web ser-

vices in each as shown in Figure 3.2. The community Ci has the highest

connectivity between its web services in term of substitution/composition.

The community Ca has the lowest connectivity because it has the most

number of groups. In fact, the community Ci shows a strongly homoge-

neous community compared to Ca and Cb.

iii. External Connection (for collaboration): External connection measures

the ability of community Ci to connect with external web services (out-

side the community) in terms of collaboration and composition. It is

27

ProCi =
ReqCi

|Ci|

where ReqCi is the total number of requests Ci received during [t1, t2], and

|Ci| denotes the number of web services in Ci during the same period of time.

(c) Efficiency:

i. Responsiveness: Responsiveness is the metric that shows how fast the

master is in nominating the best slave web service from the community,

which can handle the user’s request with respect to required quality of

service, how fast the slave web service is in responding to the requested

service, and how fast the substitution is in case of failure. Let Ci be the

community under evaluation by user Uj. The Responsiveness metric is

measured by computing the total number of respond time (the time a

master takes to complete the nomination and the time a slave takes to

respond) to the requests Rk of the user Uj, and the extra time in case of

substitution during the considered period of time.

ResCi

Uj
=

1

n

n
∑

k=1

(Res
Ci,Rk

Uj
+ Sub

Ci,Rk

Uj
)

where ResCi

Uj
is the response time community Ci takes to answer all user

Uj requests during the interval [t1, t2], n is the number of requests received

from Uj to this community during this period of time, and Sub
Uj ,Rk

Ci
is

the time needed to substitute the slave responsible for the request Rk by

another one. If no substitution is happening, then Sub
Ci,Rk

Uj
= 0.

(d) Satisfaction: This factor measures the users’ opinion of a community with

which they recently interfaced, and considers the provided service during a

specific period of time. This metric is computed by observing the positive

28

feedback from user Uj, PosFed
Uj

Ci
and the total feedbacks received from the

same user during the time window [t1, t2] TotFed
Uj

Ci
.

SatCi

Uj
=

PosFedCi

Uj

TotFedCi

Uj

The overall users satisfaction is given by the following equation where u is the

number of users interacted with the community between t1 and t2.

SatCi =

∑u

k=1 Sat
Ci

Uk

u

(e) Availability: This metric measures the availability rate of the community so

that it can receive requests from the users. It gives the provider an indication

of how many requests the community can receive during a given period of time

in percentage. Each web service wsk within the community comes with its

own availability AvlCi,wsk , which can be monitored during the window [t1, t2].

The community availability is then computed as the average availability of

the members as follows:

AvlCi =

∑|Ci|
k=1 Avl

Ci
wsk

|Ci|

(f) Popularity: To measure the popularity of the community we consider two

factors: 1) the in-demand, which reflects the popularity from the number

of requests directed to the community; and 2) the number of web services

hosted in the community. The popularity of the community is a significant

property to attract new web services to sign-up with the community. Joining

communities with high popularity means having access to a high number of

requests and benefiting from high rate of substitutability from peers. We

compute popularity as follows:

29

PopCi = µ1InDeCi + µ2
|Ci|

∑M

k=1 |Ck|

where M is the number of considered communities, µ1 + µ2 = 1, and µ1 and

µ2 are fixed by the evaluator depending on his preferences and

InDeCi =
RCi

received
∑M

k=1 R
Ck

received

where RCi

received is the number of requests received by Ci during [t1, t2], and M

is the number of communities under consideration.

(g) Objectiveness : This factor measures the objectiveness of the master of the

community when selecting which web service to accept and which web service

to select for an ongoing composition.

i. Selectivity: This metric measures the selectivity rate of the community

in terms of acceptance rate with regard to membership requests sent by

web services. Selective communities is an indication of the quality stan-

dard used by those communities when it comes to evaluating slave web

services. Selectivity is computed considering the number of total mem-

bership requests TMRCi and the number of accepted requests AMRCi :

SelCi =
AMRCi

TMRCi

ii. Expected Requests: This metric is used by the provider of a web service

to measure the web service’s probability of being selected by the master

and having some requests. For a typical community Ci, the service re-

quests is a discreet event that can be modelled as random variables that

follow a Poisson distribution. Poisson distribution is a discrete proba-

bility distribution that expresses the probability of a number of events

occurring in a period of time. The expected number of requests is re-

ferred to as the Poisson rate λ. However, this distribution assumes that

30

the events occur independently of the time since the last event. This as-

sumption means that requests are independent of any other factor such as

the web service reputation and QoS, which changes with time. To better

model the dynamics of requests that depend on other factors, we use the

non-homogeneous Poisson process [33], which is a Poisson process with

dynamic rate λCi(x) denoting the mean number of requests received by

community Ci at time moment x. The rate λCi(x) is a function of time

and the arrival of requests to the community Ci during the time window

[t1, t2] (mCi([t1, t2])) can be formulated as a non-homogeneous Poisson

process as follows:

mCi([t1, t2]) =

∫ t2

t1

λCi(x) dx

Thus, the probability of having exactly n requests is given as follows:

p(mCi([t1, t2]) = n) =
mCi([t1, t2])n

em
Ci ([t1,t2]) × n!

The number of requests a web service wsk can expect, for a given n, is

given by:

ECi[t1,t2]
wsk

(n) =
p(mCi([t1, t2]) = n)× n

|Ci|

iii. fairness: This metric is used to reflect the fairness rate of the master

in selecting slave web services to answer users’ requests. It is computed

using the standard deviation of the number of requests directed to each

web service within the community during the considered interval of time.

FairCi =



















1
√

1

|Ci|

∑|Ci|

l=1
(xl−µ)2

if
√

1
|Ci|

∑|Ci|
l=1(xl − µ)2 6= 0

FMAX otherwise

31

where xl is the number of requests given by the master to the community

member wsl during the interval [t1, t2]; µ = 1
|Ci|

∑|Ci|
l=1 xl is the popula-

tion average during the same period; and FMAX if the fixed maximum

number that the fairness can take.

2. User’s Perspective

As perceived by users, a community assessment would help them select communi-

ties hosting web services having the capability to meet their quality expectations.

The performance metrics that can play a role in the evaluation process as seen

by users are in general similar to the ones considered by the providers as both of

them are seeking good quality communities. Users generally focus on the “health”

of the community and its overall reputation. This can be reflected by the follow-

ing parameters defined in the previous subsection: connectivity, responsiveness,

in-demand, satisfaction, productivity, popularity, and availability. Users are less

interested in some internal issues such as fairness. However, knowing the expected

number of requests is a significant indicator of the reputation evolution. On the

one hand, if the number of expected requests for the future is high, this reflects

a good management, but if the availability is low, the user will probably select

another community providing high availability. On the other hand, if the expected

number is low, this means high availability, but less popularity. Users should then

consider a tradeoff between these two metrics. Assuming the availability is fixed,

we formalize this problem as follows:

C∗ = argmax
C∈C

(χ(
MAXR
∑

n=1

p(mC([t1, t2]) = n)× n) + (1− χ)AvlC)

where C is the set of all communities under consideration, MAXR is the maximum

number of requests a community can receive during the interval [t1, t2], and χ is a

coefficient stated by the evaluator.

32

3.2.2 Clustering with K-Means

After the evaluation process, we analyze the communities by clustering all the evalu-

ated communities into groups in order to further facilitate the selection process. Cluster-

ing is the task of classifying a set of data into groups where each cluster contains objects

similar in some sense to each other. The members of a cluster have some common char-

acteristics compared to members of other clusters. The objective is to find a structure

in a collection of data. Clustering algorithms are used extensively not only to organize

and categorize data, but also for data compression and model construction. Clustering

can be done using different algorithms, which differ significantly in their notation of

what constitutes a cluster and how to efficiently find them. We choose for this work

a centroid model where the cluster is represented by a single mean vector (k-means).

However, since the ordering of the input data set does not matter and our problem is

expectation-maximization oriented, k-means clustering is the most suitable [25].

The k-means algorithm is a simple iterative method to divide a given data set into

a number of clusters specified by users. It has been proposed first by Lioyd in 1957

and published later in [20]. This algorithm operates on a set of d-dimensional vectors,

then chooses k points as the initial k cluster representatives or ”centroids”. The way

of selecting these initial points is random from the dataset. Then the iteration between

two steps takes place. First, data assignment occurs where each data point is assigned

to its closest centroid. Second, relocation of ”means” where each centroid is relocated to

the center ”mean ” of all data in this cluster. The Algorithm ends when assignment no

longer changes.

3.2.3 Goodness Function

Once the clusters are identified, we use a goodness function to distinguish the best

cluster. We calculate the goodness function of each cluster centroid (mean) to decide

from which cluster the community will be chosen. To calculate the goodness function,

33

we weight each parameter according to the evaluator’s preferences. For example, if the

satisfaction is important for the user, he will assign a high weight to this metric. The

goodness function is as follows:

GF =
10
∑

i=1

wi ∗ pari

where
∑10

i=1 wi = 1 and each pari is a metric previously defined.

3.3 Assessing Web Services

This section presents the assessment of web services from the master perspective.

Such an assessment takes place when the master of the community decides to invite a

new web service to join its community. First, the master usually checks the available

registries such as UDDI to get information about new web services. Then, the master

starts the assessment process so only the appropriate web services can be invited. This

assessment is done using the same steps as discussed in Section 3.2, namely 1) defining

evaluation metrics, which forms the evaluation process; 2) clustering web services; and

3) calculating the goodness function. Steps 2 and 3 are very similar to the ones defined

in Section 3.2. Here we only focus on step 1.

3.3.1 The Evaluation Process

In this section, we present some metrics, which can be used by the master of the

community to decide which web service to invite. This evaluation is divided into two

different categories. The first category evaluates new web services. The second category

is meant to evaluate existing web services having participated to previous transactions.

1. Evaluating new web services

Before inviting a new web service, the master checks the available registries for web

services providing the same functionality as the community it belongs to. This is

34

done by parsing the web service description language (WSDL) file. When it comes

to the evaluation of a new web service that has not participated in any composition

or transaction, one of two scenarios might occur. The first scenario is when the

new web service is provided by a specific provider, which is already known to the

master from other services it provides. In this case, the master gives the new web

service weight based on the existing services inside the community belonging to

this provider. The second scenario is when the master evaluates a completely new

web service. In this case, we follow a similar strategy to what has been proposed

to solve the bootstrapping problem. Bootstrapping is the problem of assigning an

initial value to a new entity [42]. There are few solutions proposed in the literature

to solve this problem, and any solution can be adapted to web services.

One particular strategy used to solve the bootstrapping problem is the adaptive

strategy. In the adaptive strategy the new entity is assigned a trust value, which

depends on the rate of maliciousness in the system, which is dynamic in the sense

it changes over time. The new entity is assigned a high initial value when the

maliciousness rate is low and, on the other hand, if that rate is high the initial

value is low. Another strategy is the default value strategy, where the new entity is

assigned a default value. This value is generally considered as a threshold and under

this value the entity is considered as malicious. The disadvantage of this strategy

is that depending on this value it can either give advantage existing entities or new

entities. If the initial value is high the existing nodes are negatively affected as the

new entities have a higher value which will encourage malicious entities to leave

and join again to increase their values.

Beyond trust, the following factors can be used to evaluate web services, especially

new arrivals:

(a) Cost: This metric is used to evaluate the web service from an economic point

35

of view, which can be helpful for the community when deciding to invite a

new web service. We define this metric from the following parameters.

i. Execution Price: Is the amount that should be paid to the provider from

the user in order to use the service.

ii. Penalty Price: Is the price that the user should pay in case of any cance-

lation.

iii. Compensation Price: Is the rate that should be paid to the user in case

of any delay or failure from the provider.

(b) Security: The purpose of this parameter is to take into account the different

security aspects for web services, as the service provider might apply different

levels and techniques of security according to the service requestor.

As the number of web services increases, the concern about the security of

services transferred over the public internet increases as well. Some of the

security properties the master should check are presented as follows.

i. Authentication: Is the process of determining if the user or provider is

truthful about his identity. It is implemented using different methods such

as username and password, certificates, or, in an advance way, by using

a more sophisticated system such as Kerberos, a computer network au-

thentication protocol that allows nodes communicating over a non-secure

network to prove their identity to one another in a secure manner requir-

ing a securely encrypted message to be transferred. In password-based

authentication, for example, the provider should use powerful and strong

passwords. This technique cannot be sufficient alone and it should be

combined with other authentication and authorization processes such as

certificates, Public Key Infrastructure(PKI), Kerberos, Remote Authenti-

cation Dial-in User Service (RADIUS), and Lightweight Directory Access

36

Protocol (LDAP).

ii. Authorization: Is the ability of web services to control access to resources

where each service can be accessed only by authorized users or providers.

Web services should set policies to determine the access rights and when

those rights are given.

iii. Encryption: Is the process that applies to a text message (plaintext) to

make it unreadable (cipher) to others except those who have the secret

key and know how to decrypt it. Encryption is used to protect important

data such as files and insure their confidentiality It is also used to pro-

tect information while transferring it through a network, public internet,

mobile telephones and other devices. In web services, important data

that should be encrypted to protect the secrecy and privacy. The master

should evaluate the type and strength of technique this web service uses

to encrypt and decrypt data before inviting it to see whether or not it

satisfies the security levels required in the community.

iv. Non-Reputation: Is the ability to ensure that the message has been sent

and received by the users or providers that claim to send or receive the

message. With non-reputation, the users cannot later deny having sent

or received the message, as it can be obtained by using digital signatures,

confirmation services, and timestamps.

v. Confidentiality: Confidentiality of a web service measures the ability of

the web service to protect its data from unauthorized access.

2. Evaluating existing web services

To evaluate an existing web service which has previous transactions, we follow the

same steps as discussed in section 3.2. First, the evaluation process; second, clustering

using k-means ; and third, calculating the goodness function of each cluster’s centroid

37

(mean). The master of the community will use the following metrics to help in the

evaluation process to determine which web service has performed well, which web service

come with a good yield to the community, and which web service is there whenever it is

needed to participate in a composition or to replace a failed web service.

1. Performance: In order to measure the performance, we compute different metrics

such as response time, throughput, and latency. A good performance means that

web services can execute and complete the requested function quickly and it can

minimize any delay in responding to users’ requests with increasing loads.

(a) Response Time: Is the mean elapse time from the moment of receiving the

request until providing the corresponding response.

Res =

∑n

i=1 Trespond(i)− Trequest(i)

n

Where Trespond(i) is the time when the user receives the respond for the request

i, Trequest(i) is the time the web service receives the request i, and n is the

total number of requests received by the web service. We calculate the average

of the response time for more than one request because the response time of

one request does not represent the typical response time for the web service.

We can also calculate the standard deviation in the usual way.

(b) Throughput: Is the rate of successfully completed requests for the given period

of time [t1, t2].

Thro =
Rresponded

n

Where Rresponded is the number of successfully responded requests and n the

total number of requests.

(c) Latency: Is the time delay that might happen when sending a request and

receiving the respond. As the latency metric increases, the chance of satis-

fying more users’ requests decreases, which negatively affects the web service

38

overall evaluation. It is measured by considering the difference between the

experienced response time Res and the promised one PRes.

Lat = Res− PRes

(d) Availability: Availability of a web service is the probability that it can respond

to a user’s request, which means that the request successfully reaches the

service. This metric can be used by the master of the community to know

the availability rate of a particular web service when it comes to consider this

web service in the nomination process for ongoing compositions, and when to

call this web service to replace another service. The availability during the

interval of time [t1, t2] can be computed by the following formula:

Avl =
uptime

uptime+ downtime

Where downtime refers to the period of time when the web service has failed

to respond to users requests, and uptime is the total time the service has been

ready.

2. Maintainability:

(a) Stability: Is the ability of the web service to remain stable without major

changes that can affect its performance under different circumstances, or, in

other way, it is the ability of the web service to cope with any changes that

may occur without affecting its performance. It is computed as follows:

Sta =
NC

t2− t1

Where NC is the number of major changes the web service undertook during

the window time [t1, t2]. After noticing the changes, the master has to re-

evaluate the web service to see if this changes affect its performance. This can

39

help the master know which web service performs optimally under different

circumstances. Those changes could affect web service’s resources, the way

that the web service handles the requests, or the quality of service provided

by this web service.

(b) Scalability: Is the ability of web service to provide the same quality of ser-

vice under rising request demands, or it is the ability to handle the growing

amount of requests without a diminishment in the quality of service. It can

be calculated by computing the throughput of the web service at a round time

trip.

(c) Robustness: it is the ability of the web service to perform correctly in the

presence of errors or any slight disturbance.

(d) Replaceability : is the ability of the web service to replace others in case of

failure after the call from the master of the community. It can be measured

by considering the number of successful replacements this web service made in

the elapsed time, and the number of received calls from the master to replace

other web services.

Rep =
Rreplaced

Rreplacedcall

Where Rreplacedcall is the total number of calls this web service has received to

replace another service, and Rreplaced is the number of successful replacements.

3. Reliability: Is the ability of the web service to perform its task correctly and re-

peatedly for a specific period of time under some stated conditions. The master

of the community is interested to keep more reliable web services within the com-

munity to satisfy users and community requirements. Mathematically, reliability

is the probability of the web service operating for a certain amount of time [t1, t2]

without failure. It is evaluated as usual as follows:

40

R(t1, t2) = 1−

∫ t2

t1

f(s)ds

Where f is the distribution that models the failure behaviour of a web service, and

it is generally assumed to be Exponential:

f(t) = λe−λt

4. Accessibility: It measures the ability of web services to answer as many users’

requests as possible. The web service might be available but not accessible due to

high demands. This metric can give the master information about the yield of the

web service when it is available, which is a good way to distinguish the active web

services inside the community. It is computed as follows:

Acs =
Rresponded

avl

Where Rresponded is the number of successfully completed requests.

5. Efficiency:

(a) Capacity: Is the maximum number of users’ requests this web service can

handle. When the web service works beyond its capacity, some of its quality

attributes will be affected, such as availability and reliability. This metric

is declared by the web service in its WSDL file and helps the master of the

community when nominating web services to participate in compositions, or

when calling web service to replace failed ones.

6. Out Degree: Is used to measure the popularity of web service among the other web

services.

41

(a) Direct Out Degree: This metric represent the direct composition or substi-

tution of the web service with regard to other peers. This relation normally

happens within the same community. We consider the wight of the edge be-

tween two web services (Wwsi,wsj), which reflects the successful number of

compositions and substitutions over the interval [t1, t2], and the time recency

of this relation (Tr
wsj
wsi). This metric computes in fact the degree of coopera-

tiveness of the web service.

Doutdegreewsi =
∑

wsj∈C

Wwsi,wsj ∗ Tr
wsj
wsi

(b) Indirect Out Degree: It is used for evaluating the popularity of a web service

outside its community, when the relation between web services is established

in more than one step.

Ioutdegreewsj
wsi

=

j−1
∏

k=i

Wwsk,wsk+1
∗ Trwsk+1

wsk

Let WS be the set of all considered web services. Then we have:

Ioutdegreewsi =
∑

wsj∈WS

Ioutdegreewsj
wsi

7. Effectiveness:

(a) Accuracy: It refers to the ability of the web service to perform its functions in

a correct way without errors or mistakes. We simply compute it by counting

the number of correct responses Rcresponded over the total number of provided

responses Rresponded.

Acu =
Rcresponded

Rresponded

42

(b) Contributability: Is to compute the contribution of the web service to the

community in terms of throughput. It measured by calculating the throughput

of the web service and the total throughput of the community as follows:

Conwsi =
throwsi

∑

wsj∈C
throwsj

3.4 Conclusion

In this chapter, we discussed different steps to assess both the communities of web ser-

vices and the web services themselves. First, we presented the evaluation process where

we used different factors for each assessment. Then, we used the k-means algorithm

to cluster the evaluated communities and web services. Finally, we defined the good-

ness function to distinguish the best cluster. Implementation results of the clustering

algorithm and goodness function are reported in the next chapter.

43

CHAPTER 4. IMPLEMENTATION

In this chapter, we discuss the settings of our simulation experiments that aim to show

the effectiveness of our assessment approach. Then, we analyze the obtained results.

4.1 Simulation Environment

Our simulated system consists of two different parts. The first part is about the

assessment of individual web services to help the master decide which web service to invite

to the community. To accomplish this, the master checks the UDDI registries to get the

descriptions of potential new members, then the assessment process begins to evaluate

the nominating services. The second part is about the assessment of communities, which

begins when the provider of the web service intends to join a community or when the

user starts looking for a community.

This simulation is written with Java in the Eclipse environment. Most of web services

(QoS) values are taken from a dataset of 2507 real web services with 9 proprieties for each

web service [2]. We have simulated 100 web services and 30 communities with different

number of clusters. The experiment’s parameters are shown in Table 4.1. The “Change

Value” column represents the values that might change during the experiments based on

the evaluator’s preferences.

To analyze the effectiveness of our proposed method, we compare our three-step

assessment and selection process with two different approaches. The idea of the first

approach, called random selection, is to select web services and communities randomly

44

Table 4.1 Experiments Parameters

Parameters Default value Change value

Number of web services 100 No
Number of communities 30 No
Number of clusters 3 to 20 Yes
Parameter’s wight Equally Yes

without any pre-processing. The key element of the second approach, called reputation-

based selection, is to use web services and communities reputation during the selec-

tion process. This approach has been discussed in [13] and [15]. Unlike our approach,

reputation-based approach does not consider all the relevant web services and commu-

nities parameters, but only focuses on in-demand, satisfaction, execution and response

times, and contributability. For a fair comparison, only those parameters are evaluated

once the different approaches identify the selected community or web service. Moreover,

we considered different k during the implementation to observe the impact of the number

of clusters on the performance of the selected communities and web services.

As mentioned in Chapter 3, we start our assessment by computing the metrics using

the equations we have proposed. For each evaluated web service and community, the

outcome is a vector of n dimension, where n is the number of computed metrics. The

obtained vectors are then used as input to the k-means algorithm, which we implement

to cluster the evaluated communities and web services. Finally, the goodness function

is computed to determine the best cluster that mostly suits the requestor’s needs. To

make the comparison meaningful, we assign to each chosen component (web service

or community), based on each method, the same number of tasks, and we observe the

performance of each one in the same period of time using the aforementioned parameters.

45

4.2 Results and Analysis

The goal of this analysis is to demonstrate that by using our assessment process, web

services and communities that best meet the requirements of communities, users, and

providers have more chance to be selected. To this end, and in order to compare the

three investigated methods against a benchmark, we defined three different classes: high

performing class, medium performing class, and low performing class. For each class

we set a range for each parameter as illustrated in Tables 4.2 and 4.3. In these tables,

except response time, latency, and responsiveness, which are given in s, stability, which

is given in terms of the number of changes during the considered period of time, and

direct and indirect out degrees, which are given in terms of connection weights and time

recency, all the values are given as rates. For instance, 0.7 for availability means the

web service is available 70% of the time. Thus, once the web service or community is

being identified using one of the three methods, we identify the class that fits it more

based on the majority of the metrics. The component (web service or community) is

then considered belonging to the class to which most of its parameters belong. By doing

so, we can measure the quality of each selection process.

Table 4.2 Web Services’ Classes: Benchmark

Feature High Performing Medium Performing Low Performing

Availability 0.7-1.0 0.4-0.6 0.1-0.3
Response Time 0.1-0.3 0.4-0.6 0.7-1.0
Throughput 0.7-1.0 0.4-0.6 0.1-0.3
Latency 0.1-0.3 0.4-0.6 0.7-1.0
Stability 1-3 4-6 7-10
Reliability 0.7-1.0 0.4-0.6 0.1-0.3
Accessibility 0.7-1.0 0.4-0.6 0.1-0.3
Direct Out Degree 0.7-1.0 0.4-0.6 0.1-0.3
Indirect Out Degree 0.7-1.0 0.6-0.4 0.3-0.1
Accuracy 0.7-1.0 0.4-0.6 0.1-0.3
Reblaceability 0.7-1.0 0.4-0.6 0.1-0.3
Contributability 0.7-1.0 0.4-0.6 0.1-0.3

46

Table 4.3 Communities’ Classes: Benchmark

Feature High Performing Medium Performing Low Performing

Substitutability 0.7-1.0 0.4-0.6 0.1-0.3
Internal Connection 0.7-1.0 0.4-0.6 0.1-0.3
External Connection 0.7-1.0 0.4-0.6 0.1-0.3
Productivity 0.7-1.0 0.4-0.6 0.1-0.3
Responsivness 0.1-0.3 0.4-0.6 0.7-1.0
InDemand 0.7-1.0 0.4-0.6 0.1-0.3
Satisfaction 0.7-1.0 0.4-0.6 0.1-0.3
Availability 0.7-1.0 0.4-0.6 0.1-0.3
Popularity 0.7-1.0 0.4-0.6 0.1-0.3
Selectivity 0.7-1.0 0.4-0.6 0.1-0.3

4.2.1 Communities Assessment

We analyze the communities’ assessment by considering the providers’ and users’

perspectives. The goal is to demonstrate that using the proposed method gives a high

probability of selecting a community that best meets the provider’s or user’s require-

ments.

1. Provider’s Perspective

Providers are looking for the best community to join to increase the number of

requests. Thus, we first compare the number of received requests by the commu-

nities (which is used to compute the in-demand) after using the three selection

methods: our evaluation and clustering-based assessment process, random selec-

tion, and reputation-based selection. Figure 4.1 compares the received requests

using these three methods with different number of clusters. Our method shows

better performance than the two other methods over time specially when we chose

a small k (k ∈ [3, 10]) The simulation also shows that the community selected using

our approach belongs to the high performing class, while the ones selected by the

reputation-based approach and the random selection approach belong respectively

to medium and low performing classes.

47

1 11 21 31 41 51 61 71 81 91 100
10

11

12

13

14

15

Number of Runs (small k ∈ [3,10])

N
u

m
b
e
r

o
f
R

e
q

u
e

s
ts

Our Assesment Process

Random Selection

Reputation−based Selection

1 11 21 31 41 51 61 71 81 91 100
 0

 2

 4

 6

 8

10

12

Number of Runs (big k ∈ [11,20])

N
u
m

b
e
r

o
f

R
e
q
u
e
s
ts

Our Assesment Process

Random Selection

Reputation−based Selection

Figure 4.1 Comparison of Communities Received Requests

48

2. User’s Perspective

Users are asked to interact with the masters of communities to request services.

Looking for the appropriate community leads the user to evaluate different com-

munities to choose the best one. Users are more interested in requesting services

from communities that can satisfy their QoS, with minimum execution time.

An interesting observation from the users’ perspective is made when we compare the

users’ satisfaction of each community chosen based on the three different methods.

We plot this comparison in Figure 4.2. We notice that users are more satisfied with

the community selected using our method (with small k) than with the two other

communities.

We also compare the execution time each community takes to answer the user’s re-

quest (nominating the best slave web service, the response time, and the substitute

time in case of failure) in Figure 4.3. We notice form this figure that the commu-

nity chosen based on the proposed method is taking less time to execute users’

requests, while the community chosen based on the random selection is showing a

significantly high execution time.

4.2.2 Web Services Assessment

In this section, we present the analysis of the web service assessment from the master’s

point of view. When the master of the community decides to invite new web services,

the evaluation of all potential services should be done before the selection. The master of

the communities is supposed to invite web services that will have a positive contribution

to the community and satisfy the users’ QoS in a short execution time.

From this perspective, we conducted a comparison of the response time of the chosen

web services using the three considered approaches. We plot the resulting graph in Figure

4.4, where we observe that the response time of web services chosen based on our method

49

1 11 21 31 41 51 61 71 81 91 100
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Number of Runs (small k ∈ [3,10])

U
s
e
rs

 S
a

ti
s
fa

c
ti
o

n

Our Assesment Process

Random Selection

Reputation−based Selection

1 11 21 31 41 51 61 71 81 91 100
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Number of Runs (big k ∈ [11,20])

U
s
e
rs

 S
a
ti
s
fa

c
ti
o
n

Our Assesment Process

Random Selection

Reputation−based Selection

Figure 4.2 Comparison of Users’ Satisfaction about Communities

50

1 11 21 31 41 51 61 71 81 91 100
 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

Number of Runs (small k ∈ [3,10])

E
x
e
c
u
ti
o

n
 T

im
e

Our Assesment Process

Random Selection

Reputation−based Selection

1 11 21 31 41 51 61 71 81 91 100
 5

 8

11

14

17

20

23

26

29

32

35

38

Number of Runs (big k ∈ [11,20])

E
x
e
c
u
ti
o
n

 T
im

e

Our Assesment Process

Random Selection

Reputation−based Selection

Figure 4.3 Comparison of Communities Execution Time

51

is significantly lower than the other web services.

1 11 21 31 41 51 61 71 81 91 100
 0

0.5

 1

1.5

 2

2.5

 3

3.5

 4

Number of Runs (small k ∈ [3,10])

R
e

s
p

o
n

s
e

 T
im

e

Our Assesment Process

Random Selection

Reputation−based Selection

1 11 21 31 41 51 61 71 81 91 100
 0

0.5

 1

1.5

 2

2.5

 3

3.5

 4

Number of Runs (big k ∈ [11,20])

R
e

s
p
o
n
s
e
 T

im
e

Our Assesment Process

Random Selection

Reputation−based Selection

Figure 4.4 Comparison of Web Services Response Time

Furthermore, we compared the different web services from the number of requests

received, which reflect the popularity of the web service. In Figure 4.5, we plot the

simulation results with regard to this property. Again, the web services selected based

on our approach shows better performance.

Another significant metric to consider is the contribution of the web service to its

community as computed in Chapter 3. We report the contribution comparison in Figure

52

1 11 21 31 41 51 61 71 81 91 100
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

Number of Runs (small k ∈ [3,10])

N
u

m
b
e
r

o
f
R

e
q

u
e

s
ts

Our Assesment Process

Random Selection

Reputation−based Selection

1 11 21 31 41 51 61 71 81 91 100
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

Number of Runs (big k ∈ [11,20])

N
u
m

b
e
r

o
f

R
e
q
u
e
s
ts

Our Assesment Process

Random Selection

Reputation−based Selection

Figure 4.5 Comparison of Web Services Number of Requests

53

4.6. Unlike the random-based and reputation-based approaches, our assessment and

clustering-based approach considers this factor when it comes to selecting web services

for composition purposes. This justifies the high performance of our method over time

as depicted in the graph.

1 11 21 31 41 51 61 71 81 91 100
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Number of Runs (small k ∈ [3,10])

W
e
b
 S

e
rv

ic
e
s
 C

o
n

tr
ib

u
ti
o

n
s

Our Assesment Process

Random Selection

Reputation−based Selection

1 11 21 31 41 51 61 71 81 91 100
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Number of Runs (big k ∈ [11,20])

W
e
b

 S
e
rv

ic
e
s
 C

o
n
tr

ib
u
ti
o
n
s

Our Assesment Process

Random Selection

Reputation−based Selection

Figure 4.6 Comparison of Web Services’ Contribution

54

4.3 Conclusion

In this chapter, we reported the results of our simulation and highlighted the effec-

tiveness of our selection method. We clearly showed that our communities’ evaluation

outperforms the random-based and reputation-based approaches. The main reason is

that the random-based approach is selecting communities randomly, so that sometimes

the selection is not appropriate. Although the reputation-based selection makes use of

reputation, which is a key factor, other performance factors are ignored. We observed

that the community chosen based on the assessment process is showing a high number of

requests, so high in-demand, and high satisfaction level. Moreover, we noticed that this

community is taking less time to execute the users’ requests. Our experiments showed

that our method and the reputation-based selection remain consistently close when we

chose big number of clusters, but the proposed method is always performing better when

a small k is chosen. In the web services analysis part, we observed that our method

shows a high number of requests and higher contribution with low response time. In all

the cases, the simulation results showed that the selection based on our method belongs

to the high performing class and outperforms the other two methods specially when we

chose a small number of clusters. However, when we chose bigger number of clusters

we found that the web services selected based on both the assessment process and the

reputation-based selection are consistently close, although our assessment process is still

performing better.

55

CHAPTER 5. CONCLUSION AND FUTURE WORK

5.1 Summery of Contributions

The main contribution of this thesis is the three-step assessment method of web

services and their communities. This method helps users, providers, and masters choose

the best candidate with regard to a set of relevant parameters. With the large number

of web services providing the same functionality, the master of the community struggles

with choosing the best web service to invite. In addition, as the number of communities

providing similar functionalities increases, the competition between them also increases.

This competition makes it difficult for users and providers to choose the best community

that fits their needs.

To address this issue, the master, users, and providers need to perform a compre-

hensive assessment process of the existing communities and web services before making

their choice. The approach we proposed in this thesis works as follows:

1. Step 1: Evaluating web services and communities considering different parameters

from users and providers perspectives. Different equations have been introduced

to compute those metrics.

2. Step 2: Clustering web services and their communities using the k-mean algo-

rithm. The inputs of this clustering algorithm are vectors of dimension n for each

web service and community considered, where n is the number of evaluated metrics

in Step 1. The clustering algorithm runs until it converges. By convergence, we

mean the agents in the k groups that are established are not moving to any other

56

cluster. Thus, when the identified clusters in iteration i are exactly the same as

iteration i− 1, the k-mean algorithm stops.

3. Step 3: Ranking the identified clusters in Step 2 using the goodness function.

To evaluate the effectiveness of our approach, we conducted simulations and com-

pared the approach with two other methods against a classification benchmark of three

identified classes. The results revealed that focusing on the requirements of the master,

users, and providers during the assessment process helps chose the best candidate that

satisfies the stakeholders’ requirements.

5.2 Future Work

This work opens up a number of interesting avenues of research opportunities toward

unanswered questions. This section describes some of the most interesting ones:

• The bootstrapping problem. What is the best way to assign an initial value to a

new entity in a way to suit the context of web services and their communities? We

also may consider developing game-theoretic incentives to encourage new developed

communities and web services to perform well, so that they can get high initial

values from users’ and providers’ points of view.

• In [19], Lim, Thiran, Maamar, and Bentahar consider what they call the 3-way

satisfaction process, which is an optimization approach of selecting web services

based on the satisfaction of communities, users, and web services. The selection

method they propose is done by the master to select the appropriate slave to re-

spond to the user request while considering different constriants of the stakholders.

This approach can be extended to our selection method by selecting the best web

service to invite, while focusing on the satisfaction of all the three parties.

57

BIBLIOGRAPHY

[1] A.S. Ali, S.A. Ludwig, and O.F. Rana. A cognitive trust-based approach for web

service discovery and selection. In Proceedings of the European Conference on Web

Services (ECOWS), pages 38?-40, 2005.

[2] E. Al-Masri and Q.H. Mahmoud. Discovering the Best Web Service. In Proceedings

of the 16th international conference on World Wide Web, Pages 1257–1258, 2007.

[3] M. Bell. Introduction to Service-Oriented Modeling: Service Analysis, Design, and

Architecture. Wiley &Sons, 2008.

[4] . B. Benatallah, Q.Z. Sheng, and M. Dumas. The Self-Serv Environment for Web

Services Composition. IEEE Internet Computing, 7(1):40–48, 2003.

[5] A. Benharref, M. Serhani, S. Bouktif, and J. Bentahar. A New Approach for Quality

Enforcement in Communities of Web Services. In Proceedings of the 8th IEEE

International Conference on Services Computing (SCC), pages 472–479, 2011.

[6] J. Bentahar, Z. Maamar, D. Benslimance, and P. Thiran. An Argumentation Frame-

work for Communities of Web Services. IEEE Intelligent Systems, 22(6):75–83, 2007.

[7] J. Bentahar, Z. Maamar, W. Wan, D. Benslimane, P. Thiran, and S. Subramanian.

Agent-based Communities of Web Services: An Argumentation-driven Approach.

Service-Oriented Computing and Applications 2(4):219–238, 2008.

58

[8] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and D.

Orchard. Web services architecture. http://www.w3.org/TR/ws-arch/, February

2004.

[9] V. Buskens. Social Network and Trust. 2002.

[10] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services de-

scription language (WSDL) 1.1. http://www.w3.org/TR/wsdl, March 2001.

[11] F. Curbera, M. Duftler, R. Khalaf,W. Nagy, N. Mukhi, and S.Weerawarana. Un-

raveling the Web Services: An Introduction to SOAP, WSDL, and UDDI. IEEE

Internet Computing, 6(2):86–93, 2002.

[12] S. Elnaffar, Z. Maamar, H. Yahyaoui, J. Bentahar, and P. Thiran. Reputation of

Communities of Web services - Preliminary Investigation. IEEE International Con-

ference on Advanced Information Networking and Applications, pages 603–1608,

2008.

[13] R. Jurca and B. Faltings. Reputation-based Service Level Agreements for Web Ser-

vices In Proceedings of the International Conference on Service Oriented Computing

(ICSOC), pages 396–409, 2005.

[14] B. Khosravifar, M. Alishahi, E. Khosrowshahi Asl, J. Bentahar, R. Mizouni, and

H. Otrok. Analyzing Coopetition Strategies of Services within Communities. In Pro-

ceedings of the International Conference on Service Oriented Computinf (ICSOC),

pages 656–663, 2012.

[15] B. Khosravifar, J. Bentahar, A. Moazin, Z. Maamar, and P. Thiran. Analyzing

Communities vs. Single Agent-based Web Services: Trust Perspectives. In Proceed-

ings of the 7th IEEE International Conference on Services Computing (SCC), pages

194–201, 2010.

59

[16] B. Khosravifar, J. Bentahar, A. Moazin, and P. Thiran. Analyzing Communities

of Web Services Using Incentives, International Journal of Web Services Research

(IJWSR), 7(3):30–51, 2010.

[17] B. Khosravifar, J. Bentahar, P. Thiran, A. Moazin, and A. Guiot. An approach to

incentive-based reputation for communities of web services. In Proceedings of the

IEEE International Conference on Web Services (ICWS), pages 303?-310, 2009.

[18] Y. Kim, K. Doh. Trust Type Based Semantic Web Services Assessment and Selec-

tion. 10th International Conference on Advanced Communication Technology, pages

2048–2053, 2008.

[19] E. Lim, P. Thiran, Z. Maamar, and J. Bentahar. On the Analysis of Satisfaction

For Web Services Selection. IEEE International Conference on Services Computing

(SCC), pages 122–129, 2012.

[20] S.P. Lloyd. Least Square Quantization in PCM. IEEE Transactions on Information

Theory, 28(2):129-?137.

[21] E. Lim, P. Thiran, Z. Maamar, and J. Bentahar. Using 3-Way Satisfaction For Web

Services Selection. In Proceedings of IEEE International Conference on Services

Computing (ICC), pages 731–732, 2011.

[22] E. Lim, P. Thiran, and Z. Maamar. Towards Defining and Assessing the Non-

Functional Properties of Communities of Web Services. International Conference

on Advanced Information Networking and Applications, pages 578–585, 2011.

[23] Z. Maamar, S. Sattanathan, P. Thiran, D. Benslimane, and J. Bentahar. An Ap-

proach to Engineer Communities of Web Services: Concepts, Architecture, Oper-

ation, and Deployment. International Journal of E-Business Research 5(4):1?-21,

2009.

60

[24] Z. Maamar, P. Thiran, and J. Bentahar. Web Services Communities: From Intra-

Community Coopetition to Inter-Community Competition. E-Business Application

for Product Development and Competitive Growth: Emerging Technologies, pages

333–343, 2011.

[25] J.B. MacQueen. Some Methods for classification and Analysis of Multivariate Ob-

servations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and

Probability. University of California Press. pp. 281-?297, 1967.

[26] Z. Malik, and A. Bouguettaya. RATEWeb: Reputation Assessment for Trust Estab-

lishment among Web services. The VLDB Journal, 18(4):885–911, 2009.

[27] E. Maximilien and M. Singh. A Framework and Ontology for Dynamic Web Service

Selection. IEEE Internet Computing 8(5):84–93, 2004.

[28] E. Maximilien, and M. Singh. Toward Autonomic Web Services Trust and Selection.

In Proceedings of the 2nd International Conference on Service Oriented Computing

(ICSOC), pages 212–221, 2004.

[29] M. Maximilien and M. Singh. An Ontology for Web Services Ratings and Reputa-

tions. In Proceedings of the Workshop on Ontologies in Agent systems (OAS), pages

25–30, 2003.

[30] B. Medjahed and Y. Atif. Context-based Matching for Web Service Composition.

Distributed and Parallel Databases, 21(1):5–37, 2007.

[31] B. Medjahed and A. Bouguettaya. A Dynamic Foundational Architecture for Seman-

tic Web Services. Distributed and Parallel Databases, Kluwer Academic Publishers,

17(2):179–206, 2005.

[32] S. Ran. A Model for Web Services Discovery With QoS. ACM SIGecom Exchanges,

4(1):1–10, 2003.

61

[33] F. Ruggeri and S. Sivaganesan. On Modeling Change Points in Non-Homogeneous

Poisson Processes, Statistical Inference for Stochastic Processes 8(3):311-329, 2005.

[34] A. Shaikh Ali, S. Majitiha, O. Rana, and D. Walker. Reputation-based Seman-

tic Service Discovery. Concurrency and Computation: Practice and Experience,

18(8):817–826, John Wiley & Sons, 2006.

[35] R.G. Smith. The Contract Net Protocol: High-Level Communication and Control

in a Distributed Problem Solver. IEEE Transactions on Computers, C-29(12):1104–

1113, 1980.

[36] R. Sreenath, and M. Singh. Agent-Based Service Selection. Web Semantics: Science,

Service, and Agents on the World Wide Web, 1(3):261–279, 2004.

[37] Y. Wang and J. Vassileva. A Review on Trust and Reputation for Web Service

Selection. In Proceedings of the International Conference on Distributed Computing

Systems and Workshopps (ICDCSW), page 25, 2007.

[38] W. Wan, J. Bentahar and A. Ben Hamza. Modeling and Verifying Agent-based Com-

munities of Web Services. In Proceedings of the 23rd International Conference on

Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA-

AIE), volume 6704 of Lecture Notes in Artificial Intelligence, pp. 68-78, 2010.

[39] X. Wu, V. Kumar, J. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. McLachlan, A.

Ng, B. Liu, P. Yu, Z. Zhou, M. Steinbach, D. Hand, and D. Steinberg. Top 10

Algorithms in Data Mining. Knowledge Information Systems, 14(1):1–37, 2007.

[40] G. Wu, J. Wei, X. Qiao, and L. Li. A Bayesian Network-based QoS Assessment

Model for Web Services IEEE International Conference on Services Computing

(SCC), pages 498–505, 2007.

62

[41] Z. Xu, P. Martin, W. Powley, and F.Zulkernine. Reputation-Enhanced QoS-based

Web Services Discovery. In Proceedings of the IEEE International Conference on

Web Services (ICWS), pages 249–256, 2007.

[42] H. Yahyaoui. A Trust-based Game Theoretical Model for Web Services Collaboration.

Knowledge-Based Systems, 27:162–169, 2011.

[43] Z. Zheng, and M. Lyu. WS-DREAM: A Distributed Reliability Assessment Mecha-

nism for Web Services. IEEE International Conference on Dependable Systems &

Networks, pages 392–397, 2008.

[44] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Sheng. Quality Driven

Web Services Composition. In Proceedings of the 12th International Conference on

World Wide Web, pages 411–421, 2003.

[45] IEEE Standard for a Software Quality Metrics Methodology. IEEE Std 1061-1998 ,

vol., no., pp.i, 31 Dec. 1998 doi: 10.1109/IEEESTD.1998.243394

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS

	LIST OF TABLES
	LIST OF FIGURES
	1. INTRODUCTION
	1.1 Context of Research
	1.2 Motivations
	1.3 Contributions
	1.4 Thesis Organization

	2. BACKGROUND AND RELATED WORK
	2.1 Web Services
	2.1.1 Definition
	2.1.2 Web Service Architecture
	2.1.3 Operations

	2.2 Communities of Web Services
	2.2.1 Definitions
	2.2.2 Architecture
	2.2.3 Operations

	2.3 Related Work
	2.3.1 Evaluating Web Services
	2.3.2 Evaluating Communities

	3. COMMUNITIES AND WEB SERVICES ASSESSMENT
	3.1 Introduction
	3.2 Assessing Communities of Web Services
	3.2.1 The Evaluation Process
	3.2.2 Clustering with K-Means
	3.2.3 Goodness Function

	3.3 Assessing Web Services
	3.3.1 The Evaluation Process

	3.4 Conclusion

	4. IMPLEMENTATION
	4.1 Simulation Environment
	4.2 Results and Analysis
	4.2.1 Communities Assessment
	4.2.2 Web Services Assessment

	4.3 Conclusion

	5. CONCLUSION AND FUTURE WORK
	5.1 Summery of Contributions
	5.2 Future Work

	BIBLIOGRAPHY

