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ABSTRACT

Pseudo Euler-Lagrange and Piecewise Affine Control Applied to Surge and Stall in Axial

Compressors

Seyed Mohamad Amin Seyedahmady Zavieh

This thesis addresses the control of the axial compressor surge and stall phenomena

using Pseudo Euler-Lagrange and Piecewise Affine (PWA) controller synthesis techniques.

These phenomena are considered as major gas turbine compressor instabilities that may

result in failures such as the engine flame-out or severe mechanical damages caused by

high blade vibration. The common approach towards the detection of the rotating stall

and surge is to install various types of pressure sensors, hot wires and velocity probes.

The inception of the rotating stall and surge is recognized by the presence of pressure

fluctuation and velocity disturbances in the gas stream that are obtained through sensors.

The necessary measure is then taken by applying proper stall and surge stabilizing con-

trol actions. The Lyapunov stability of pseudo Euler-Lagrange systems in the literature

is extended to include additional nonlinear terms. Although Lyapunov stability theory is

considered as the cornerstone of analysis of nonlinear systems, the generalization of this

energy-based method poses a drawback that makes obtaining a Lyapunov function a dif-

ficult task. Therefore, proposing a method for generating a Lyapunov function for the

control synthesis problem of a class of nonlinear systems is of potential importance. A

systematic Lyapunov-based controller synthesis technique for a class of second order sys-

tems is addressed in this thesis. It is shown, in terms of stability characteristics, that the
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proposed technique provides a more robust solution to the compressor surge suppression

problem as compared to the feedback linearization and the backstepping methods. The

second contribution is a proposed new PWA approximation algorithm. Such an approx-

imation is very important in reducing the complexity of nonlinear systems models while

keeping the global validity of the models. The proposed method builds upon previous

work on piecewise affine (PWA) approximation methods, which can be used to approxi-

mate continuous functions of n-variables by a PWA function. Having computed the PWA

model of the stall and surge equations, the suppression problem is then solved by using

PWA synthesis techniques. The proposed solution is shown to have higher damping char-

acteristics as compared to the backstepping nonlinear method.
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“At every step from the conception of a rational vision to the formulation of the theory,

faith is necessary: faith in the vision as a rationally valid aim to pursue, faith in the

hypothesis as a likely and plausible proposition, and faith in the final theory, at least until

a general consensus about its validity has been reached.”

— Erich Fromm, The Art of Loving
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P̂i Representation of Pi in the (x̂, ŷ) coordinate system

P0 Arbitrary point in Ω.

P0ξ
Representation of P0 in the ξ axis

PNu Point of maximum error, used for the current lin-

earization stage

Pv A plane such that Pv ⊥Ω and vP0 ∈ Pv

p, p(x) Stands for polynomials

p (As index) p∈ {1,2, . . . ,n} is used for x and x̂, e.g. xp

Qi Flats of dimension (m−3), with i = 1,2

Q̂i Representation of Qi in the (x̂, ŷ) coordinate system

q q ∈ {1,2, . . . ,n} is an index used for x and x̂, e.g. xq

qi qi ∈ {1,2, . . . ,n} with i ∈ {1,2, . . . ,n} is a double in-

dex used for x and x̂, e.g. xqi

qk,λ λ th vertex of a region Rk

R Real numbers set
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Ri ith PWA Region

R j
i jth neighboring region of Ri

RNu Region of the current linearization stage

S,S(a) Integral of the squares of the errors

s1, s2 ∈ R+ are two constants such that s1 < s2

s ∈ R is a variable

T Coordinate transformation function defined in

Lemma 4.4.2

T(ξ ,ζ ) Coordinate transformation function from {(x,y) ∈

Pv} to (ξ ,ζ )

t t ∈ R or t ∈ [0,1] is a variable used for parameteriza-

tion

t1, t2, t3, t4 Points along the parameterization axis t

u Input signal: equation(4.3)

u As an index, used as the number of the algorithms

loop

V1, V2 Two points in Ω used in the proof of Lemma 4.4.4

V, V (t) Function determining points in segment d. See equa-

tion (4.119)

vP0, vP0(x) A unit vector lying in Ω, pointing from P0, and de-

fined in equation (4.88)

vP0ξ , vP0ξ (ξ ) A unit vector coinciding vP0 in the ξ axis. See equa-

tion (4.97)
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vPi, vPi(x) Two unit vectors, with i = 1,2, lying in Ω, pointing

from Pi, and defined in equation (4.102)

vx?, vx?(x) A unit vector lying in Ω, pointing from x?, and defined

in equation (4.113)

x Function argument: equation(4.3)

x1,x2, . . . ,xn Defined for x ∈ Rn as x = [x1,x2, . . . ,xn]
T

xi
0 A nominal point belonging to Ri used for lineariza-

tion of f

x(1),x(2) Nominal points(scalars) in Γ

xb Arbitrary point(scalar) in Γ◦

x11, x12, . . . Sequence of scalars in Γ

xint Intersection point defined in Lemma 4.3.2

xc, xc(t) Parameterized coordinate used for the definition of

c(t)

x̂ Vector defined as x̂ = [x̂1, x̂2, . . . , x̂n]
T

x̂1, x̂2, . . . , x̂n Axes associated with the frame {x̂, ŷ} defined in

Lemma 4.4.2

xφ0( j−1)
j Updated axis orientation after some rotations (See the

proof of Lemma 4.4.2)

xI, xII Two collinear points that belong to Ω. See equation

(4.89)

xI
(s), xII

(s) The same as xI and xII . Where the index s shows that

the variables are functions of s
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xm(Ri) The point of maximum error associated with each re-

gion Ri

x0 Vector defined as x0 = [x10,x20, . . . ,xn0]
T addressing a

nominal point in Ω

x? ∈ Lp j∩Ω is an arbitrary point

y Coordinate representing the range of f

yc, yc(t) Parameterized coordinate used for the definition of

c(t)

ŷ Axis, associated with the frame {x̂, ŷ} defined in

Lemma 4.4.2

αi, α0 Coefficients of linear equation (4.72), with i =

{1,2, . . . ,n}

δ A real infinitesimally small number

δv A curve defined in equation (4.93) (refer to Figure

4.12)

δ̄ , δ̄ (ξ ) Representation of δv in the (ξ ,ζ ) coordinates

ε A sufficiently small positive real number

ε̄ A sufficiently small positive real number

ζ Axis associated with the frame {ξ ,ζ}

η(·) Constant coefficient used in equation (4.54)

λ ∈ {1,2, . . . ,λ max
k } is an index, with λ max

k denoting the

number of vertices of region Rk

ξ Axis associated with the frame {ξ ,ζ}

ξ1,ξ2 Representation of x(I) and x(II), respectively in the

(ξ ,ζ ) coordinates
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φ (i) Rotation angle about xi axis

φ
(i)
0 Rotation angle about xi axis that results in construc-

tion of axes {x̂, ŷ}

ϕ,ϕ(x) A curve that is contained in f (x), and defined by equa-

tion (4.122)

ψ Rotation angle about y axis

Γ Domain of a function of one variable. Lemma 4.3.1

∆ See Def 4.3.2

∆i See Def 4.3.2

Λ(·) Rotation matrix about only one axis by the amount

indicated in the subscript

Λ Rotation matrix defined in equation (4.45)

Λ̄ The same as the rotation matrix Λ with φ (i) replaced

by φ
(i)
0

Λ̄ j,i The element of matrix Λ̄ located in the jth row and the

ith column

ϒ A closed subset of Γ

Ω Domain of functions f , fnl, . . ., that maps Rn to R

Ω′ Domain of a function that maps Rn−1 to R
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Chapter 1

Introduction

1.1 Motivation

For the time being, majority of human needs is met by using technological systems, such

that any new machine may easily become an indispensable part of our lives. From the

basic tasks as warming up our lunch to traveling intercontinental paths modern machines

are inevitable. These machines become more and more complex with time. Nevertheless

the primary human concern − health and safety − has been violated repeatedly through

this mechanized life. Due to the significance of safety, reliability and cost efficiency of

such systems, health monitoring, fault detection and recovery of modern systems play a

crucial role in this era. In particular, the consequences of occurrence of a fault in a class of

systems called safety-critical, may result in sever health problems as injuries or death, cost

penalties, or lack of security. Safety-critical systems, including aircraft, nuclear reactors,

power plants, robotic surgery machines, or even an amusement ride, are of major concern.

Aircraft, as a complex safety-critical system, have received great attention in the

fault diagnosis and recovery field. Therefore, numerous successful attempts have been

made to provide more reliable flights. The flight safety is dependent on the reliability of

many different parameters from the aircraft subsystems, such as structure, flight controls,
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oxygen and ventilation, the power plant and the fuel systems, up to the Air Traffic Control

that includes a number of external equipments as VOR/DME 1 stations and control tower,

to name a few.

The combustion of fuel in jet engines, as an example, occurs at around 1200K.

Hence, for a typical subsonic airliner with more than 200 passengers, the health moni-

toring, fault avoidance strategies and fault tolerance of the propulsion system are of great

importance. The main failures of jet engines include compressor blade damage, turbine

blade erosion, engine flame-out, foreign object damages, engine mechanical vibration,

worn seals, and plugged nozzle. Many factors may result in these failures or malfunctions

that occasionally occur during flight. For instance, the ambient atmospheric conditions

abruptly change as the aircraft switches different flight profiles, such as take-off, climb,

or cruise. The engine governor thus has to adjust the amount of fuel to the combustor to

prevent any potential failure, such as engine flame-out, and to make sure that the thrust

generation is maintained at high performance. In addition, another important factor that

causes compressor vibration, blade damages and engine flame-out is the instabilities of the

gas stream that passes through the compressor. These instabilities are referred to as com-

pressor rotating stall and surge. In this case, a stabilizing control action to the compressor

actuator has to be applied as soon as the surge and stall inception is recognized. This mea-

surement is referred to as fault avoidance strategy. Based on the aforementioned points,

any attempt that improves the reliability of jet engine subsystems enhances the flight and

the passenger safety.

With the increased production of science and technology and the motivation for

the reliability and safety, fault detection, isolation and recovery (FDIR) of systems has

been widely improved, such that different methodologies from different points of view are

developed. There are two major approaches towards FDIR: model-based and data driven.

The model-based FDIR technique, in the case of availability of an accurate mathematical

1VOR and DME are acronyms standing for VHF Omnidirectional Range and Distance Measuring Equip-
ment, respectively.

2



model of the system, has been used since 1970s [4]. Using the thermodynamic and the gas

dynamic laws several models have been developed for the engine components individually

as well as for the power plant, as an integrated system [5]. Reference [6] studied the

real-time fault diagnosis and isolation of jet engines by using a multiple model approach.

Having modeled the fouling and erosion damages for a single spool engine, the authors of

[7] investigated the low fatigue cycle and the creep on the turbine blades.

More specifically, Moore and Greitzer in [3] proposed an accurate approximation of

the axial compressor dynamics in the form of ODEs. Based on this model the authors of

references [8, 9, 10, 11, 12, 13, 14, 15, 16] tackled the surge and stall control problems,

as a fault avoidance technique. These works will be thoroughly reviewed in Chapter 2,

Section 2.3.2. In the absence of an accurate model, data driven FDIR technology, in

many cases, gives a reliable solution to the fault diagnostics and recovery problems. As

in the case of jet engines, a wide spectrum of data can be obtained by both on-line flight

data recording that is produced in each flight as well as the off-line engine maintenances.

References [17, 18, 19, 20, 21, 22] tackled data driven FDIR for jet engines by using

machine learning and competitive learning methods in addition to statistical techniques.

Reference [23] investigated the mechanical damages in the turbine components due to

high gas stream temperature. This research used condition-based health management, as

an FDIR technique, which provides a diagnostic scheme development by monitoring the

deviation of the measured system parameters.

In contrast to the fault diagnosis and prognosis that deal with the monitoring and

analysis of the system health and the detection of a fault, the fault tolerance and recov-

ery provide the necessary measurements to maintain the system operating at a reasonable

performance, in addition to reducing the propagation of the fault to the other operating

subsystems. In fault avoidance strategies the objective is to monitor the system health as

well as take the measurements to avoid potential faults.

Unfortunately, the occurrence of stall in the compression component of the engine
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has the consequences of engine flame-out and high mechanical vibrations. Therefore,

maintaining the engine at its performance, avoiding potential severe damages, reducing

the maintenance cost, and of course increasing the flight safety are the important results

of installing stall and surge stabilizing controllers on jet engines. This thesis addresses the

model-based suppression of the compressor surge and stall by enhancing the control law

of the compressor model.

1.2 On The Proposed Methodologies

1.2.1 Pseudo Euler-Lagrange Systems

A class of physical systems in nature exhibit second order nonlinear behavior, thus they

can be mathematically modeled by second order differential equations. One dimensional

motions including rotation or translation that is caused by exertion of force or torque,

servomotor systems, and pneumatic valves are cases described in [24]. Therefore, any

technique that deals with the stabilization of these systems is of potential importance. In

the case of nonlinear systems, the well-known Lyapunov theory, upon which the control

theory of such systems is based, poses a setback due to the difficult problem of finding

the Lyapunov function itself. Consequently, determining separate classes of Lyapunov

functions on various types of systems makes the stability analysis more systematic [25].

Pseudo Euler-Lagrange systems, as a class of second order systems, have shown an

increasing capability in controller synthesis [25]. Chapter 3 studies a more general form

of this class of second order systems. By adding a nonlinear term, in contrast to previous

work, the dynamics of both states are nonlinear functions of both states. By doing so, a

more general class of nonlinear systems can be analyzed, such as stability analysis of the

Moore-Greitzer compression surge model, which does not fit the theorem given in refer-

ence [25]. As pointed out earlier, pseudo Euler-Lagrange systems can be a good candidate

for second order systems. As will be explained later in Chapter 2, the surge phenomenon
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can be reasonably approximated by a second order system. Therefore, control synthesis

technique of pseudo Euler-Lagrange systems are used in this thesis for the stabilization of

the surge. The main advantages of the proposed theory for stability of the Moore-Greitzer

no-stall surge model as compared to the current two nonlinear techniques − the feedback

linearization and the backstepping − are as follows:

1. The pseudo Euler-Lagrange controller is more robust as compared to the feedback

linearization and the backstepping controllers in the stabilization of the Moore-

Greitzer model, in the sense that the wide margin in choosing the coefficients of

the controller allows us to avoid potential instability of the system due to the distur-

bances.

2. The uncertainty in the available model, that is discussed in Chapter 3, motivates us

to avoid the cancelation of the useful nonlinear terms that enhances the stability of

the system. This cancelation is the essence of the feedback linearization method

that, at least in the case of the Moore-Greitzer model with uncertainties, may lead to

instability.

The alternative techniques for stabilization of rotating stall and surge performed in litera-

ture are provided in Chapter 2.

1.2.2 Piecewise Affine Systems

Piecewise affine (PWA) techniques are shown to be a powerful approach in analysis and

synthesis of nonlinear systems [26, 27, 28]. The key concept behind this idea is that the

nonlinearities appearing in a dynamical system can be reasonably approximated by PWA

functions. The work done in this thesis builds upon previous work on approximation of

functions of n-variables using a piecewise affine method [29], emphasizing the elements

that increase the effectiveness of the approximation algorithm in terms of elimination of
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the need to search for points of maximum error and decreasing the error between the exact

function and its approximation.

Although the concept of PWA systems was initially researched in the late 1940’s, the

first optimal algorithm to approximate nonlinearities with PWA functions appears, to the

best of the author’s knowledge, in 1970’s by Cantoni [30] and Tomek [31]. Many different

attempts have been made to produce suitable PWA models in references [32, 26, 33, 34],

and [29]. Reference [32] addresses PWA approximation of continuous functions by using

uniform simplicial partitions. Later in [26], the idea of refinement of the partitions around

the origin is introduced. The least squares technique as an optimization over simplicial

partitions is addressed in [33]. In references [32] and [26], the domain of the nonlinearity

was uniformly divided into a number of simplices. A point in each simplicial region was

then selected for the linearization of the function.

The main disadvantage of these methods lies in the fact that the number of regions

exponentially grows as the dimension of the domain of approximation is increased. This

drawback can be avoided if the curvature or the variation of the nonlinear function is

considered, as done recently in [34] and [29]. Reference [34] addresses a novel method-

ology in PWA approximation of functions that uses the concept of Lebesgue integration

partitioning. However, the resulting PWA approximation is not guaranteed to be continu-

ous. Uniform grid approximation techniques have been extensively used in the literature

[35, 36, 37, 38, 39, 40, 41]. The authors of [29] address the approximation problem by con-

sidering the curvature of the function. Moreover the continuity problem has been solved

in their work, which, nevertheless, has never been proved. Reference [29] provides the

reader with an interesting and heuristic idea to find the PWA model of a micro air vehicle.

Although, the proposed concept is shown to be efficient as compared to the work done in

this area, the details of the approximation and the supporting theory are missing, which is

a reason for motivating the work on the current thesis.
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The method proposed in this thesis is used to find a PWA model of the Moore-

Greitzer stall and surge models. The resulting PWA models can later be used for the anal-

ysis and/or synthesis problems that have been addressed in reference [28]. Moreover, it is

suggested in [34] that PWA models may be used for piecewise affine identification with

a clustering approach [42], mixed logical dynamics (MLD) model based technique [43],

system verification of conflict maneuvers [44], automated symbolic reachability analy-

sis [45], and probabilistic controllability/observability analysis of discrete-time piecewise

affine systems [46, 47].

With the intersection-based Piecewise Affine (IPWA) models, the following proper-

ties can be achieved:

1. Continuity of the vector fields,

2. Optimality of the linearization of the nonlinear function relative to the maximum

approximation error,

3. Increased reduction of the approximation error for a fixed number of regions (as

compared to the Voronoi-based and the uniform grid PWA models for the motivating

Moore-Greitzer system in Section 5.2),

4. Consistency of the derivative of the nonlinear function with the derivative of its

approximation at the linearization points.

The continuity of the vector field may play a crucial role in controller synthesis for

PWA systems [48]. By the optimality of the linearization we mean that the nonlinear

function is linearized at the points of maximum approximation error. By doing so, not

only the number of approximation stages is reduced, but also the number of regions is

decreased. Note that the smaller the number of regions we have in the PWA model, the

more the computation size of the controller synthesis problem is reduced [28]. Finally, if

the user is required to have zero error at specific points as well as minimum amount of

error in the neighborhood of those points, the IPWA method can serve as a good solution
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to such problems. The reason, as will be shown in Section 4.4.1, is that the algorithm starts

by linearizing the function at a set of user-defined points. Since the function is linearized

at the user-defined points, the approximation error is zero at these points. Moreover, since

the derivative of the exact and the derivative of the IPWA functions are equal, the error in

the neighborhood of the user-defined points is small.

The importance of these properties is well-understood when the PWA synthesis

method is applied to the Moore-Greitzer PWA model, which results in a set of bilinear

matrix inequalities (BMIs). For instance, due to the large number of regions of the PWA

approximation by the current PWA techniques, the solution to the BMIs could not be ob-

tained by using the PenBMI [49] toolbox while PenBMI successfully solved the BMIs by

using the proposed IPWA method as the number of regions is reduced.

1.3 Contributions of the Thesis

The contributions of this work consist of proposing the following two methodologies:

1. A new controller synthesis formulation for pseudo Euler-Lagrange systems is pro-

posed, giving a more general form of this class of second order systems. By adding

a nonlinear term, in contrast to the previous work, the dynamics of both states are

nonlinear functions of both states. In this regard, a more general class of physical

nonlinear systems can be analyzed.

2. A new PWA approximation methodology for functions of n-variables is developed.

It is shown that continuity of the vector field and the increased reduction in the

approximation error are two important properties that can be achieved by using this

technique. These advantages help to reduce the computation complexity of the PWA

controller synthesis method.
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1.4 Structure of the Thesis

The thesis is organized as follows. Axial compressors, a fundamental piece of machinery

in jet engines, are introduced in Chapter 2. In that chapter, the equations governing the

dynamical behavior of axial compressors including surge and stall are developed, accord-

ing to [3]. The pseudo Euler-Lagrange system formulation is given in Chapter 3. Chapter

4 addresses the Intersection-based Piecewise Affine approximation theory with a focus on

functions of one variable in Section 4.3 and functions of n-variables in Section 4.4. The

application of the proposed methodologies to the axial compressor surge and stall models

are then given in Chapter 5, followed by the conclusions in Chapter 6.
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Chapter 2

Gas Turbines Compressors

2.1 Introduction

The principles and methods in the generation of thrust and power in aircraft are involved

in the study of propulsion. In particular, the thrust force produced for jet aircraft (refer

to Figure 2.1) is considered in this context. This force is produced as the difference in

the momentum of the gas passing through the jet engine, as depicted in Figure 2.2a. The

main components of a gas turbine are intake, compressor, combustion chamber, turbine

and nozzle. These components are illustrated in Figure 2.2b.

This chapter briefly introduces axial compressors in Section 2.2. Later in Section 2.3

rotating stall and surge, two important instabilities in compressors, are discussed followed

by derivation of the governing equations.

2.2 Axial Compressors

The working fluid in compressors is pressurized through a change from kinetic to potential

energy through each compression stage. Each stage consists of two parts, a rotor and a

stator. The rotor disc, as its name imparts, rotates by the shaft coming from the turbine,

conveying the kinetic energy to the fluid while the stator is fixed with diverging channels,
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Figure 2.1: Typical tubojet with an axial compressor. This picture refers to GE-J85 engine,
adapted from [1].

converting the kinetic energy of the fluid to potential energy. By doing so the added energy

is stored in the working fluid in the form of pressure.

The performance of a compressor is characterized by the compressor maps. Com-

pressor maps usually consist of curves representing the relation of the rotor rotational

speed, the fluid mass flow rate and the pressure ratio through the compressor. As shown

in Figure 2.3 representing a generic plot of a compressor map, the operating region of a

compressor is limited to a bounded region. The lower bound, called compressor capac-

ity, restricts the compressor operation for the high mass flow range. However, the upper

bound provides a limitation in the low mass flow range. The entrance of the working fluid

in the compressor to the upper inoperable region causes aerodynamic instabilities on the

compressor operation called rotating stall and surge, as stated in [51].

These instability issues regarding the stable operation of a compressor− namely the

rotating stall and surge − are discussed in the next section.
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(a) Air stream through a turbojet, taken from [1].

(b) Gas turbine simple block diagram.

Figure 2.2: A schematic representation of a turbojet functionality.

2.3 Rotating Stall and Surge

2.3.1 Basic Concept

Rotating stall is characterized by the local instability in a compressor in which the distur-

bance occurs in the uniform circumferential flow, that causes stagnant flow in one or more

regions. The stalled regions propagate along the annulus of the compressor at a fraction

of the rotor speed, normally between 20% and 70% of the wheel velocity [52]. The occur-

rence of rotating stall, depending on its magnitude, can severely limit the performance of

the compressor in the sense of the design compression ratio. Moreover, this phenomenon
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Figure 2.3: Single-stage compressor map. The diagram is inspired from [2].

is a nonlinear limit cycle, resulting in high blade vibration that cannot be tolerated by

the compressor. The third potential side effect, includes the thermal load on the turbine

caused by the flow rate reduction, which with the presence of surge may result in engine

flame-out.

Surge is a phenomenon in compressors in which the pressure rise exhibits large

amplitude oscillation, and consequently, the axial average mass flow rate becomes un-

steady. In contrast to the rotating stall, which is two dimensional, the surge has the one

dimensional instability property. However, similar to the rotating stall, this instability phe-

nomenon results in a drastic loss of compression efficiency and high blade and structure

vibrations. By the magnitude of the pressure rise oscillation amplitude, surge is catego-

rized into mild surge, classic surge, modified surge, and deep surge, according to [52].

Contrary to the rotating stall where the average axial flow is steady and the circum-

ferential flow has non-uniformities, in the surge, the axial flow is not steady in time at all,

but it has a uniform pattern in the circumferential direction. In accordance with this fact,

rotating stall sticks locally to the rotating cell while the surge infests the entire compressor
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due to its instability in the axial direction, as argued in [53].

2.3.2 A Brief Survey on the Compressor Instability Problem

A typical industrial strategy to prevent surge and stall is to keep the compressor operation

far enough from the surge limit as depicted in Figure 2.3. This is referred to as avoidance

control action. Note that the term avoidance control should not be confused with the term

fault avoidance strategies. The former action avoids surge and stall while the later refers

to the suppression of the surge and stall in order to avoid further faults such as engine

flame-out, mechanical vibration, or compressor blade damages. However, the maximum

performance of a compressor is achieved sufficiently close to the surge line. This fact

motivates researchers to look for different solutions.

For this purpose, the control synthesis problem of the compressor instabilities by

using feedback control was first addressed in [8] by Epstein and co-authors. Using the

Fourier decomposition of the measured parameters coming from sensors (hot wires in-

stalled upstream of the compressor), the authors of [9] developed a model for rotating

stall. The control action, according to the model, is applied to the system via a set of wig-

gly IGVs 1 that transmit a wave at an appropriate amplitude and phase to the inlet stream.

In [11], the inception of the rotating stall of axial compression system is suppressed by

using pulse air injection. The instability in their case is diagnosed via the pressure sensors

installed close to the rotor face.

Using modulated air injectors, [12] proposes an active feedback control law to stabi-

lize the rotating stall and surge in a transonic single stage axial compressor. By computing

the compressor output and comparing it with the output of the linearized model, reference

[13] addresses the use of linear-based fault identification filter to detect the surge and ro-

tating stall. A high-gain type adaptive control of compressor instabilities is addressed in

[14], the design of which is based on the second order model. Reference [15] proposes a

1IGV is an acronym for Inlet Guide Vane.
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high gain feedback control law, which improves the bifurcation control performance such

that for a larger range of operating conditions the steady state pressure rise is sustained.

The detection of the aerodynamic instabilities in compressors, i.e. rotating stall and

surge, as well as the use of feedback control action inevitably requires the presence of

sensors and measurements of the key parameters (pressure, velocity disturbance, mass

flow rate, temperature rise). Pressure sensors and hot wires are the most effective sensors

noted in the literature. The onset of both surge and rotating stall is diagnosed by the use of

diffusor pressure sensor and hot wire in [54] and [55], respectively. Inlet pressure sensors

are used by [56] to suppress rotating stall only. The authors of [57] and [58] implemented

plenum and duct pressure sensors, respectively, to control the pure surge instability. [59]

also used pressure sensor to apply a surge avoidance control. Besides, [60] employed axial

velocity probes near the rotor blade to measure the circumferential disturbances. By this

means, the author applied a CFD 2 technique to compute and simulate the rotating stall

inception.

In the following section, the equations governing the operation of the axial compres-

sors are derived, due to the work done by Moore and Greitzer [3]. Using the final set of

equations, the rotating stall and surge can be described.

2.3.3 Compressor Model

An axial compression system can be schematically represented as shown in Figure 2.4,

according to [3]. It consists of an intake, an entrance duct with length len, inlet guide vanes

(IGVs), a compression actuator comprised of rotor-stator stages, an exit duct of length lex,

a plenum, which is a reservoir where the compressed fluid is accumulated, a throttle duct

of length lth, and a throttler. Note that lengths len, lex and lth are made non-dimensional

with respect to the mean radius of the compressor wheel R.

2CFD is an acronym for Computational Fluid Dynamics.

15



Figure 2.4: Schematic representation of a non-dimensional axial compression system with
respect to R, adapted from [3].

In this section, the model of the compression system will be developed. The equa-

tions governing such a system are derived by Moore himself [61] and by Moore and Gre-

itzer in [3]. This model is then approximated by a third order ordinary differential equa-

tions, however, the procedure is not given here. For details on the approximation, the

reader is encouraged to refer to the main articles [3, 61].

Assumptions: Following the work done in [3, 61], the next assumptions are made.

1. The plenum size is large enough as compared to the duct cross section area such

that the gas speed can be neglected in the plenum. By this assumption, the plenum

pressure can be considered spatially uniform.

2. The flow through the compressor is considered incompressible. This is a reason-

able assumption since the Mach number through the rotor and stator is small. This

fact results in the gas molecules oscillations to be much below the acoustic reso-

nance. However, the overall process from intake to the plenum is conceived to be

compressible.

3. In order to use the two dimensional flow theory, the hub-to-tip radius ratio of the

blades is assumed to be high.

4. The flow through the entrance duct is irrotational and inviscid.
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5. The IGVs are assumed to guide the flow to the rotor ideally.

In order to determine the net pressure rise through the compression system, the four

components, i.e. entrance duct, IGVs, compressor, and exit duct to the plenum are studied

separately [3]. Before proceeding further, we define φ̄ as the local axial flow coefficient

equal to φ̄ = Cx/U with Cx denoting the axial component of the flow velocity vector and

U denoting the wheel speed at mean wheel radius R. The average value of φ̄ , denoted by

Φ, is then defined as

Φ(ξ ) =
1

2π

∫ 2π

0
φ̄(ξ ,θ)dθ , (2.1)

where θ is the rotational axis about the system symmetric axis η , as show in Figure 2.4,

and ξ is the dimensionless time parameter defined as

ξ =Ut/R. (2.2)

With the definition of Φ in equation (2.1), the parameter φ̄ can be written as the

summation of the average value and the disturbances. This is done by means of velocity

potential φ̃ , the gradient of which with respect to η and θ provides us with the axial and

circumferential velocity coefficients, i.e.

φ̃η =Φ(ξ )+g(ξ ,θ) (2.3)

φ̃θ =h(ξ ,θ) (2.4)

where subscripts designate the partial derivatives, and g and h are the axial and circumfer-

ential velocity disturbances, respectively. Obviously we have∫ 2π

0
g(ξ ,θ)dθ = 0, and

∫ 2π

0
h(ξ ,θ)dθ = 0. (2.5)

Entrance duct: According to the assumptions, the flow is considered irrotational

through the entrance duct. This assumption allows us to define the velocity potential φ̃ ,

which satisfies the Laplace’s equation. Using the Bernouilli’s equation, the following

pressure balance can be written

P1−P2

ρU2 =
1
2
(φ̄ 2 +h2)+(φ̃ξ )2, (2.6)
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where ρ stands for density, and the numeric indices indicate the variables evaluated at the

associated points in Figure 2.4. Following [3], the velocity potential is written as

φ̃ = (η + len)Φ(ξ )+ φ̃
′(ξ ,η), (2.7)

where φ̃ ′ is the velocity potential of the disturbance, and len is the entrance duct length.

Noting that

(φ̃ ′η)2 =g(ξ ,θ), (2.8)

(φ̃ ′θ )2 =h(ξ ,θ), (2.9)

the parameter (φ̃ξ )2 is then computed, according to [3], as

(φ̃ξ )2 = len
dΦ

dξ
+(φ̃ ′

ξ
)2. (2.10)

IGVs: As the disturbed flow passes though the IGVs, the circumferential velocity

disturbance is transformed into the incremental pressure form. This pressure rise can be

written as

P3−P2

ρU2 =
1
2

KGh2, (2.11)

where KG is related to the efficiency of the IGVs. For ideal IGVs, as in this case, we have

KG = 1.

Compressor dynamics: The pressure rise across rotor and stator blades is, accord-

ing to [61], assumed to attain the form

P4−P3

ρU2 = NF(φ̄)− 1
2a

(
2

∂ φ̄

∂ξ
+

∂ φ̄

∂θ

)
, (2.12)

where N is the number of compression stages, a designates the dimensionless blade pas-

sage length reciprocal, and F is the quasi-steady pressure rise coefficient as a function of

φ̄ .

Exit duct and plenum: The pressure at point 5 in Figure 2.4 is assumed to be

spatially uniform. Moreover, the flow velocity at this point is considered to be negligible.
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However, the exit flow from the compressor is rotational, for which the velocity potential

does not exit. Accordingly, assuming that the difference between P5 and P4 is small, the

author of [61] considers a dimensionless coefficient P defined as

P =
P5(ξ )−P

ρU2 , (2.13)

which satisfies the Laplace’s equation ∇2P = 0. Applying the Euler’s equation in the exit

duct gives

(Pη)4 = (φ̃ηξ )2 =
dΦ

dξ
+(φ̃ ′

ηξ
)2. (2.14)

Solving equation (2.14) and combining it with equation (2.13) yields

P5−P4

ρU2 = (P)4 =−lex
dΦ

dξ
− (m−1)(φ̃ ′

ξ
)2, (2.15)

where lex is the exit duct length and m is a coefficient determined by the length of the exit

duct.

Overall pressure rise: Combining equations (2.6), (2.10), (2.11), (2.12) and (2.15)

results in the following equation that gives the net pressure rise through the compression

system with ideal IGVs

P5−P1

ρU2 =

(
NF(φ̄)− 1

2
φ̄

2
)
−
(

len +
1
a
+ lex

)
dΦ

dξ
−m(φ̃ ′

ξ
)2

− 1
2a

(
2φ̃
′
ξ η

+ φ̃
′
θη

)
2

(2.16)

Let us denote the dimensionless net pressure rise in the left hand side of (2.16) by

Ψ, as

Ψ(ξ ),
P5−P1

ρU2 . (2.17)

The following notations

ψ̄c(φ̄), NF(φ̄)− 1
2

φ̄
2, (2.18)

lc , len +
1
a
+ len, (2.19)

Y (ξ ,θ), (φ̃ ′)2 (2.20)
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are also used. Using the Laplace’s equation for the velocity potential disturbance, and

solving it with the Fourier series yields

Ψ(ξ ) = ψ̄c(Φ−Yθθ )− lc
dΦ

dξ
−mYξ +

1
2a

(
2Yξ θθ +Yθθθ

)
. (2.21)

Applying the conservation of mass law to the flow passing through the plenum we

have

lc
dΨ

dξ
=

1
4β 2

(
Φ(ξ )−F−1

T (Ψ)
)
, (2.22)

where FT (ΦT ) = Ψ is the throttle characteristic function, ΦT is the flow coefficient of the

throttle duct, and β is a parameter that will be given later.

In order to complete the system of three unknowns Y , Φ and Ψ, and three equations,

one more equation, besides equations (2.21) and (2.22), is still needed, which can be

obtained by integrating equation (2.21) over θ form 0 to 2π , resulting in

Ψ(ξ )+ lc
dΦ

dξ
=

1
2π

∫ 2π

0
ψ̄c(Φ−Yθθ )dθ . (2.23)

The final set of partial differential equations describing the compressor dynamics are given

here together as

Ψ(ξ ) =ψ̄c(Φ−Yθθ )− lc
dΦ

dξ
−mYξ +

1
2a

(
2Yξ θθ +Yθθθ

)
(2.24a)

lc
dΨ

dξ
=

1
4β 2

(
Φ(ξ )−F−1

T (Ψ)
)

(2.24b)

Ψ(ξ )+ lc
dΦ

dξ
=

1
2π

∫ 2π

0
ψ̄c(Φ−Yθθ )dθ (2.24c)

The basis of the Moore-Greitzer model was first initiated by Greitzer in 1976 in reference

[62], which described the surge phenomenon only. Later in 1983, Moore provided the

model for the rotating stall [63]. The combination of these two models was then published

as the Moore-Greitzer model in [3] that was derived in this section. In addition to the this

model, other researchers provided different models for the axial compressor that can be

found in the literature [64, 65, 66, 67, 68].
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2.3.4 Simplified Moore-Greitzer Model

As mentioned earlier, compressor surge is one of the major engine failures that may result

in flame-out or severe mechanical damages caused by high blade vibration. The equations

governing this phenomenon are the set of complicated PDEs (2.24), which can be sim-

plified in the form of ODEs due to the work done by Moore and Greitzer in [3]. As the

authors of [3] are inspired by the work done on stalled performance of axial compressors

and vibrations [69] and [70], the axisymmetric characteristic function ψ̄c(φ) has the form

ψ̄c(φ̄) = ψ̄c0 +H

[
1+

3
2

(
φ̄

W
−1
)
− 1

2

(
φ̄

W
−1
)3
]
, (2.25)

where ψ̄c0 , H, and W are parameters. Using a Galerkin procedure, explained in the refer-

ence [3], Y is represented as a harmonic function, as

Y =WA(ξ )sin(θ − r(ξ )), (2.26)

where A is the unknown stall amplitude and r is the phase angle that is found to be, ac-

cording to [3], equal to

r = ξ
1

2(1+ma)
. (2.27)

Continuing with the Galerkin procedure, and setting R = A2, φ = Φ− 1, and ψ =

Ψ− 1, we have the following approximation of the system (2.24) in the form of a set of

three first order ODEs, as

φ̇ =−ψ +
3
2

φ +
1− (1+φ)3

2
−3R(1+φ) (2.28a)

ψ̇ =
1

β 2 (φ −u) (2.28b)

Ṙ =−σR2−σR
(
2φ +φ

2) (2.28c)

where R is the normalized rotational velocity amplitude in the stalled cell, φ is the mass

flow rate shifted by unity, ψ is the pressure rise shifted by unity, u is a function of the flow

through the throttle considered as the control input, and σ = f (H,W,m,a), and β are both
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system parameters. Note that the parameters description is addressed in [3]. Moreover,

one can refer to the reference [71] for the experimental results that are obtained for axial

compressors.

The set of equations (2.28) is simply called MG model. Replacing φ , ψ and R by x1,

x2 and x3, respectively, results in

ẋ1 =−x2 +
3
2

x1 +
1− (1+ x1)

3

2
−3x3(1+ x1) (2.29a)

ẋ2 =
1

β 2 (x1−u) (2.29b)

ẋ3 =−σx2
3−σx3

(
2x1 + x2

1
)

(2.29c)

The last equation in (2.28) describes the stall of the compressor blade while the two

remainder equations provide the surge dynamics in the cells of the compression stage. It

is observed that the zero input response of the system is oscillatory (see Figure 2.5). If this

undesirable oscillation is not damped out in a sufficiently short time period, it can make

the engine enter the vibrating condition resulting in severe mechanical damages or engine

flame-out. Therefore, designing a controller that quickly damps out, or in another word

suppresses the oscillations is essential in case of an instability occurrence.

0 5 10 15 20
−6

−4

−2

0

2

t (sec)

x 1, x
2, x

3

Figure 2.5: Simulation result of the open loop nonlinear system. The dashed, dash-dot,
and the solid lines represent x1, x2 and x3, respectively.

With respect to Figure 2.5, the stall oscillation, as the initiator of the surge, over-

damps as fast as 0.3sec compared to the oscillation period of the surge states (φ and ψ) that

is about 9.0sec. Therefore, considering R = 0 in (2.28), as done by Krstić and coauthors
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[10], is a reasonable approximation to decouple the surge states from the stall states. By

doing this, the following second order system is derived

φ̇ =−ψ− 3
2

φ
2− 1

2
φ

3 (2.30a)

ψ̇ =
1

β 2 (φ −u). (2.30b)

Using the same notation, i.e. x1 = φ and x2 = ψ results in

ẋ1 =−x2−
3
2

x2
1−

1
2

x3
1 (2.31a)

ẋ2 =
1

β 2 (x1−u). (2.31b)

Common nonlinear approaches to tackle both problems may be feedback lineariza-

tion, as done in [16] for (2.29), or the backstepping method [10] used for both the third

order and the second order systems ((2.29) and (2.31)). Although these methods have been

shown to be effective for numerous applications, they may have some drawbacks, such as

cancelation of useful nonlinear terms in the feedback linearization method.

2.3.5 Uncertainty in a Parameter

The parameter β in equation (2.29) is defined as

β =
U
as

√
Vp

AcLc
, (2.32)

where U is the compressor wheel speed at its mean diameter, as is the speed of sound, Vp

is the volume of the compressor plenum, Ac is the compressor duct area, and Lc is the total

aerodynamic length of the compressor and duct (refer to Figure 2.4). A deeper observation

of these parameters is given now.

1. Vc, Ac and Lc are geometric parameters that are considered constants.

2. as is the speed of sound in the air, which is a function of temperature T . We have

as =
√

γairRairT , where γair and Rair are the air specific heat ratio and the specific
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gas constant for air. Therefore, any slight change in the compressor temperature can

lead to a change in β .

3. U is the speed of the compressor wheel that can be changed slightly and can be

oscillatory when the surge is growing in the compression cells. Such changes in U

directly changes β .

From what was mentioned, one reaches the conclusion that β as a coefficient of system

(2.29) may change due to the changes in temperature or compressor wheel speed. Using

sensitivity analysis one can determine how much β is vulnerable to the change of the

wheel velocity and the temperature. For this purpose, with respect to the definition of β

from equation (2.32), we have

∂β

∂U
=

1
as

√
Vp

AcLc

=
β

U

Using ∆β and ∆U as slight changes in β and U , one may write

∆β =

(
∆U
U

)
β . (2.33)

Similarly, the same analysis can be done for T , as

∂β

∂T
=
−γairRairU

2
√

(γairRair)3T

√
Vp

AcLc

=− 1
2

β

T

Denoting ∆T as a slight change in the air temperature, one may write

∆β =

(
−1

2
∆T
T

)
β (2.34)

Two independent proposals are given in this thesis to solve the surge and stall prob-

lem. Our first proposal consists of the use of pseudo Euler-Lagrange systems to suppress

the states of the second order system (2.31) to the origin. Towards this end, the pseudo

24



Euler-Lagrange system in [25] is extended to fit system (2.31) in Chapter 3, and the simu-

lation results are presented in Chapter 5, Section 5.1. The second proposal is to design a

state feedback intersection-based PWA controller, which makes the states of system (2.29)

converge to the origin. To design a PWA controller, a PWA model is required. To the best

of the author’s knowledge, a PWA controller has never been used for systems (2.29) and

(2.31). In Chapter 4, the theory to produce a suitable PWA approximation of a nonlinear

system is developed. The proposed novel method is called Intersection-based Piecewise

Affine (IPWA) approximation. The results of IPWA approximation as well as the results

of the PWA controller synthesis problem for the Moore-Greitzer Model (2.29) are then

shown in Chapter 5, Section 5.2.

2.4 Conclusions

Using the laws governing the thermodynamic and fluid behavior of gas stream in each

component, as adapted from [3], the modeling of axial compressors of gas turbines was

addressed in this chapter. The obtained set of equations were in form of PDEs, which

are difficult to tackle with. Using a Galerkin procedure, as addressed in the literature,

these equations were simplified to the form of a set of third order ODEs. Moreover, since

the amplitude of the rotating stall is damped out quickly comparing to the mass flow and

pressure rise states, following [10], the third order ODE was reduced to a second order

ODE. Furthermore, the uncertainty of the parameter β in the set of governing equations

was studied in detail. With the obtained equations in this chapter, one can apply nonlinear

stability analysis and control synthesis techniques for the rotating stall and surge in axial

compressors.

25



Chapter 3

Lyapunov Stability of Pseudo Euler

Lagrange Systems

3.1 Introduction

In this chapter, pseudo Euler-Lagrange systems introduced in [25] are extended to a system

of the same order, but with additional nonlinear terms. The proposed method enables us to

fit a more general class of second order systems for the Lyapunov-based control synthesis

problems, such as the second order axial compression surge phenomenon in jet engines.

Section 3.2 briefly explains the recent work on pseudo Euler-Lagrange systems. The sta-

bility analysis of the extended pseudo Euler-Lagrange systems is addressed in Section 3.3.

Section 3.4 provides the reader with the technique used to formulate a second order sys-

tem as an extended pseudo Euler-Lagrange system. In Section 3.5, the theory suggested

in this thesis is applied to the Moore-Greitzer compression surge model as a motivating

example. Moreover, the control synthesis problem of the Moore-Greitzer model is ad-

dressed by using two current nonlinear methods − namely the feedback linearization and

the backstepping, followed by the conclusions.
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3.2 Review of Pseudo Euler-Lagrange Systems

According to [25], the pseudo Euler-Lagrange systems are described by the following set

of differential equations

ẋ1(t) = f1(x2) (3.1a)

ẋ2(t) =−g1(x1)+g2(x1) f2(x2) (3.1b)

where, f1, f2,g1,g2 ∈ C 1 and satisfy inequalities (3.4) and (3.5). The lemma giving the

Lyapunov stability analysis of such systems and its proof are given here from [25] to

make the thesis self-contained. However, the reader is always encouraged to refer to the

reference [25].

Lemma 3.2.1. [25] For system (3.1) define a class C 1 function

V (x1,x2) = F1(x2)+G1(x1) (3.2)

where

G1(x1) =
∫

g1(x1)dx1, F1(x2) =
∫

f1(x2)dx2 (3.3)

Then if

f1(x2)g2(x1) f2(x2)≤ 0, (3.4)

and

f ′1(x2)> 0, x2 6= 0, (3.5a)

g′1(x1)> 0, x1 6= 0, (3.5b)

the system (3.1) is stable and V is a Lyapunov function provided it is radially unbounded.

If furthermore

• f1(x2) = 0 implies x2 = 0,

• f2(0) = 0,

27



• gi(x1) = 0 implies x1 = 0 for i = 1,2,

then the system (3.1) is asymptotically stable to the origin.

Proof. Using V as a candidate Lyapunov function and computing its derivative over time

using (3.1) yields

V̇ =
∂V
∂x1

ẋ1 +
∂V
∂x2

ẋ2 (3.6)

=g1 f1 + f1[g2 f2−g1] (3.7)

=g2 f1 f2 ≤ 0 (3.8)

which shows that the system is globally stable since V is positive definite under the con-

straints (3.5) and it is assumed to be radially unbounded. Let the following three sets be

defined

M1 ={(x1,x2) | f1(x2) = 0} ,

M2 ={(x1,x2) | f2(x2) = 0} ,

M3 ={(x1,x2) | g1(x1) = 0} .

Using LaSalle’s Invariance Principle (refer to Theorem 3.4 in [72]), we define the set

M = M1∪M2∪M3.

If f1(x2) = 0 then x2 = 0 (constant) and ẋ1, ẋ2, f2(0) are zero. This implies that g1(x1) = 0,

which in turn implies that x1 = 0. If f2(x2) = 0 then x2 = 0, and x2 is zero, which implies

that g1(x1) = 0, and consequently x1 = 0. Finally, if g2(x1) = 0 then x1 = 0, x1 = 0 and

consequently f1(x2) = 0, which implies x2 = 0. Therefore, the largest invariant set of

system (3.1) contained inside M is the origin and system (3.1) is asymptotically stable to

the origin. This completes the proof of the lemma.

Note that the Lyapunov stability of the pseudo Euler-Lagrange systems addressed in

Lemma 3.2.1 has been generalized for higher order systems with specific structure [25].
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To tackle system (3.1) we start with the analysis of the surge part of the Moore-

Greitzer model, as a motivating example. Reconsider equation (2.30) describing the surge

phenomenon in gas turbines, taken from [10].

φ̇ =−ψ− 3
2

φ
2− 1

2
φ

3 (3.9a)

ψ̇ =
1

β 2 (φ −u) (3.9b)

where φ is the mass flow rate through the throttle shifted by unity, ψ is the pressure rise

shifted by unity, u is a function of the flow through the throttle considered as the control

input, and β is considered as a constant. In order to represent (3.9) in the form of (3.1),

the substitution of φ by z2 and ψ by z1 is proposed.

This results in the following state space representation

ż1 =
1

β 2 z2−
1

β 2 u (3.10a)

ż2 =−z1−
3
2

z2
2−

1
2

z3
2 (3.10b)

Comparing (3.10) with (3.1), one can distinguish the pseudo Euler-Lagrange components

associated with Lemma 3.2.1, as

f1(z2) =
1

β 2 z2 +
1

β 2 u(z2) (3.11a)

f2(z2) =−
3
2

z2
2−

1
2

z3
2 (3.11b)

g1(z1) = z1 (3.11c)

g2(z1) = 1 (3.11d)

Even though conditions in (3.4)-(3.5) are easily satisfied, the conditions for asymptotic sta-

bility cannot be satisfied. This can be realized since g2(z1)= 1, and therefore {z1 | g2(z1)=

0}= /0. Moreover, there is no control authority over ż2 to manipulate g2(z1).

This drawback has led us to explore more opportunities by adding more nonlinear

terms to the structure of (3.1), which is addressed in the next section.

29



3.3 Stability Analysis

Let us consider the second order dynamical system of the form

ẋ1 = h1(x1,x2)− f (x2) (3.12a)

ẋ2 = g(x1)+h2(x1,x2) (3.12b)

The main theory associated with the Lyapunov stability of this class of second order sys-

tems is provided in the following theorem.

Theorem 3.3.1. Consider the second order system (3.12). Furthermore, consider V (x1,x2)

as a candidate Lyapunov function defined as

V (x1,x2) = G(x1)+F(x2) (3.13)

where

F(x2) =
∫

f (x2)dx2, G(x1) =
∫

g(x1)dx1 (3.14)

If the following conditions

G(x1)> 0, x1 6= 0 (3.15a)

F(x2)> 0, x2 6= 0 (3.15b)

g(x1)h1(x1,x2)≤ 0 (3.15c)

f (x2)h2(x1,x2)≤ 0 (3.15d)

are satisfied, V (x1,x2) is a Lyapunov function for (3.12) and system (3.12) is stable. In

addition, if V is continuously differentiable and radially unbounded and if

{x ∈ R2 | g(x1)h1(x1,x2)+ f (x2)h2(x1,x2) = 0}

= {(0,0)}, (3.16)

system (3.12) is asymptotically stable.
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Proof. Since there are no cross terms in the right hand side of (3.13), positive definiteness

of the candidate Lyapunov function is guaranteed by (3.15a) and (3.15b). Taking the time

derivative of the candidate Lyapunov function yields

V̇ (x1,x2) =Vx1 ẋ1 +Vx2 ẋ2

=g(x1)(h1(x1,x2)− f (x2))

+ f (x2)(g(x1)+h2(x1,x2))

=g(x1)h1(x1,x2)−g(x1) f (x2)+g(x1) f (x2)

+ f (x2)h2(x1,x2)

=g(x1)h1(x1,x2)+ f (x2)h2(x1,x2) (3.17)

Regarding conditions (3.15c) and (3.15d) we have

g(x1)h1(x1,x2)+ f (x2)h2(x1,x2)≤ 0 (3.18)

implying V̇ (x1,x2) ≤ 0, which implies that V (x1,x2) is indeed a Lyapunov function for

system (3.12). According to the Lyapunov stability theorem [72], (3.12) is then stable.

Moreover, equations (3.16) and (3.18) imply

{x ∈ R2 | V̇ (x) = 0}= {(0,0)}.

Since V is a positive definite, continuously differentiable and radially unbounded function,

the LaSalle’s invariance principle [72] guarantees the global asymptotic stability of this

system to the origin. This completes the proof of the theorem.

3.4 Controller Synthesis

Although many mathematical models do not seem to satisfy conditions (3.15), the presence

of a control input signal, in some cases, can indeed transform the original second order

system in such a way that these conditions are satisfied. This can be done by adding
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control signals u1 and u2 to (3.12), as

ẋ1 = h1(x1,x2)− f (x2)+u1(x1,x2) (3.19a)

ẋ2 = g(x1)+h2(x1,x2)+u2(x1,x2) (3.19b)

The structure of u1 and u2 has to have specific characteristics such that the nonlinear terms

in (3.12) can be manipulated. With this idea in mind, the following structure is proposed

u1(x1,x2) =u11(x1,x2)+u12(x2) (3.20a)

u2(x1,x2) =u21(x1)+u22(x1,x2), (3.20b)

where u11, u12, u21 and u22 are the components of the control input. Note that (3.20)

represents only two nonlinear controllers. The new pseudo Euler-Lagrange components

can thus be defined as

f̃ (x2) = f (x2)−u12(x2) (3.21a)

g̃(x1) = g(x1)+u21(x1) (3.21b)

h̃1(x1,x2) = h1(x1,x2)+u11(x1,x2) (3.21c)

h̃2(x1,x2) = h2(x1,x2)+u22(x1,x2) (3.21d)

which are used to present the generalized pseudo Euler-Lagrange system. The candidate

Lyapunov function attains the form

V =
∫

f̃ (x2)dx2 +
∫

g̃(x1)dx1 (3.22)

ẋ1 = h̃1(x1,x2)− f̃ (x2) (3.23a)

ẋ2 = g̃(x1)+ h̃2(x1,x2). (3.23b)

By properly choosing u1(x1,x2) and u2(x1,x2), one can satisfy (3.15), and system

(3.23) is thus guaranteed to be Lyapunov stable. However, we may have restrictions in the
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control action, as an instance, not all the states may be observable, or not all modes may be

controllable. Moreover, note that the two control channels in the full format given in equa-

tions (3.20) are not usually used simultaneously. Control signals ui j, where i, j ∈ {1,2},

are given to provide the reader with the various options that can be used to manipulate the

original system. For instance, if there is no control authority over the dynamics of the first

state, one needs to leave f̃ (x2) = f (x2) and h̃1(x1,x2) = h1(x1,x2) as they are, hence make

an attempt to drive ẋ2 = g̃(x2)+ h̃2(x1,x2) with u2 to a condition such that the assumptions

of Theorem 3.3.1 are satisfied.

To illustrate this technique, a controller is designed for the nonlinear no-stall Moore-

Greitzer model. In order to show the benefits of the proposed methodology that is applied

to this system, the problem is also solved by using the feedback linearization and the

backstepping techniques for comparison.

3.5 Compressor Surge Stabilization

In this section, the no-stall part of the Moore-Greitzer model is considered as a physi-

cal phenomenon described by a second order ODE. In Subsections 3.5.1 and 3.5.2 the

Moore-Greitzer surge model is controlled by using the feedback linearization as well as

the backstepping techniques, respectively. Later in Subsection 3.5.3 the same problem is

solved by the proposed pseudo Euler Lagrange nonlinear control synthesis method.

3.5.1 Input-Output Feedback Linearization Technique

One of the most common controller design techniques in nonlinear systems is the well-

known feedback linearization. In this section the Moore-Greitzer model is stabilized by

using this technique. For this purpose, consider the set of second order nonlinear equations

in (3.9) representing the surge phenomenon in gas turbines. Using the substitutions x1 = φ ,
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x2 = ψ and u2 = u yields the following representation

ẋ1 =−
3
2

x2
1−

1
2

x3
1− x2 (3.24a)

ẋ2 =
1

β 2 (x1−u2) (3.24b)

Using the change of variables

y1 = x1 (3.25)

for system (3.24), we have

ÿ1 =ẍ1

=−3x1ẋ1−
3
2

x2
1ẋ1− ẋ2

=−3x1ẋ1−
3
2

x2
1ẋ1−

1
β 2 (x1−u2). (3.26)

Replacing x1 and ẋ1 by y1 and ẏ1, respectively we may write

ÿ1 =−3y1ẏ1−
3
2

y2
1ẏ1−

1
β 2 (y1−u2). (3.27)

According to [72], in the input/output linearization approach, the control signal must

be such that all of the nonlinearities are canceled, resulting in a linear map between the

input and the output. The signal u2 must then have the following form

u2 = β
2(3y1ẏ1 +

3
2

y2
1ẏ1 +

1
β 2 y1 + k f

1 ẏ1 + k f
2 y1), (3.28)

where k f
1 and k f

2 are gains to be designed to achieve desirable pole location for the linear

system

ÿ1− k f
1 ẏ1− k f

2 y1 = 0. (3.29)

This will ensure global asymptotic stability of the closed-loop system. The above

controller can be realized by substituting for y1 as x1 and for ẏ1 as

ẏ1 =−
3
2

x2
1−

1
2

x3
1− x2, (3.30)
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resulting in the following nonlinear controller.

u2 =−β
2
[

3
4

x5
1 +

15
4

x4
1 +

(
1
2

k f
1 +

9
2

)
x3

1 +
3
2

x2
1x2

+
3
2

k f
1 x2

1 +3x1x2−
(

1
β 2 + k f

2

)
x1 + k f

1 x2

] (3.31)

Although this controller with gains k f
1 and k f

2 seems to be powerful in the sense

that any oscillation and damping specification (natural frequency and damping ratio) can

be achieved, what this solution lacks is the robustness of the closed-loop system. The

following case is studied.

Following the uncertainty analysis of the parameter β from Chapter 2, consider

equations (2.33) and (2.34). If the speed U at time t1 > t0 is increased by 2% and at time

t2 > t1 the temperature is decreased by 3%, according to equations (2.33) and (2.34), we

have

∆β

β

∣∣∣∣
t1

= 0.02. (3.32)

resulting in

β |t1 = β |t0×1.02. (3.33)

After a fraction of time we will have

∆β

β

∣∣∣∣
t2

=−1
2
(−0.03), (3.34)

which leads to

β |t2 = β |t1×1.015. (3.35)

The overall change in β is now given by

β |t2 = β |t0×1.0353, (3.36)

which implies 3.53% of increment in β due to slight changes in temperature and compres-

sor wheel speed, that are not unlikely to happen.
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Now, following [16], let β = 0.707. With the above sensitivity analysis and using the

same changes due to the uncertainty in the temperature and the compressor wheel speed,

β can easily grow up to 0.732. On the other hand, u2 expressed in (3.28), as the feedback

linearization controller for the nonlinear second order system (3.27), is proportional to β 2,

which indeed is multiplied by the canceling term of the nonlinearities.

Denoting β̄ as the disturbed value of β due to the changes in T and U , and the

nonlinear function q(y1, ẏ1) as

q(y1, ẏ1) =−3y1ẏ1−
3
2

y2
1ẏ1, (3.37)

the closed-loop form of equation (3.27) can be written as

ÿ1 = q(y1, ẏ1)−
1

β̄ 2

(
y1−β

2
[
−q(y1, ẏ1)+

1
β 2 y1 + k f

1 ẏ1 + k f
2 y1

])
(3.38)

Simplifying (3.38) yields

ÿ1 =

[
1−
(

β

β̄

)2
]

q(y1, ẏ1)+

(
β

β̄

)2(
−k f

1 y1− k f
2 ẏ1

)
(3.39)

It can be seen from equation (3.39) that the feedback linearization works perfectly as long

as β̄ = β . Once this condition is violated,±δq(y1, ẏ1), where δ = |1−(β/β̄ )2|, appears in

the equation, for which the feedback linearization stability analysis is no longer valid. This

term, with a potential positive or negative sign, may render the no-stall Moore-Greitzer

model unstable.

3.5.2 Backstepping Technique

In this subsection a backstepping controller is designed for the no-stall part of the Moore-

Greitzer model. The design methodology and the procedure are adapted with a minor

variation from the model in [10], page 70. Considering system (3.24), let x2 denote the

virtual control parameter. The candidate Lyapunov function for the first step of the design

is selected quadratically as follows

V1(x1) =
1
2

x2
1. (3.40)
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The time derivative of V1 is then computed as

V̇1 =x1ẋ1

=x1

(
−3

2
x2

1−
1
2

x3
1− x2

)
(3.41)

Note that to the benefit of avoiding useful nonlinear term cancelation, ẋ1 taken from

(3.24a), can be recast as

ẋ1 =−
1
2

(
x1 +

3
2

)2

x1 +
9
8

x1− x2 (3.42)

so that V̇ will then take the form

V̇1 = x1

(
−1

2

(
x1 +

3
2

)2

x1 +
9
8

x1− x2

)
.

Since x2 acts as the virtual controller, its desired value can then be suggested as

xdes
2 =

(
αb +

9
8

)
x1 (3.43)

,µ(x1), αb > 0, (3.44)

such that V̇1 is guaranteed to be negative definite, where µ(x1) is called stabilizing func-

tion. Note that without recasting (3.24a) into the form of (3.42), the stabilizing function

would contain a squared term to render V̇1 negative definite, which is contradicting our

objective to keep the nonlinearities that are stabilizing terms. Given (3.44), V̇1 can then be

rewritten as

V̇1 =x1

(
−1

2

(
x1 +

3
2

)2

x1 +
9
8

x1− x2 +µ(x1)−µ(x1)

)

=− 1
2

(
x1 +

3
2

)2

x2
1−αbx2

1− (x2−µ(x1))x1 (3.45)

The error parameter w is defined to be the deviation of x2 from its desired value as

w = x2− xdes
2 = x2−µ(x1). (3.46)
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Using w, equation (3.45) can be recast as

V̇1 =−
1
2

(
x1 +

3
2

)2

x2
1−αbx2

1−wx1 (3.47)

Since µ̇(x1) = (αb +9/8)ẋ1, using equation (3.24a), ẇ is then computed as

ẇ =
1

β 2 (x1−u2)− (αb +
9
8
)

(
−3

2
x2

1−
1
2

x3
1− x2

)
(3.48)

Going to the next step, as done in the backstepping technique, the candidate Lyapunov

function V2(x1,x2) is introduced as

V2(x1,w) =V1(x1)+
1
2

w2, (3.49)

and using equation (3.47), its time derivative is given by

V̇2 =V̇1 +wẇ

=− 1
2

(
x1 +

3
2

)2

x2
1−αbx2

1−wx1

+w
[

1
β 2 (x1−u2)− (αb +

9
8
)

(
−3

2
x2

1−
1
2

x3
1− x2

)]
=− 1

2

(
x1 +

3
2

)2

x2
1−αbx2

1

+w
[

x1

(
1

β 2 −1
)
− 1

β 2 u2− (αb +
9
8
)

(
−3

2
x2

1−
1
2

x3
1− x2

)]

At this stage, u2 could be selected such that the multiplier of w in the parentheses is

made equal to zero. However, adding a term FL(V1) to V2, where FL is an unknown to be

determined, can help avoid cancelation of the nonlinearities that enhances the stability of

the system. Doing this, a new candidate Lyapunov function can be suggested as

V (x1,w) =V1(x1)+FL(V1)+
1
2

w2, (3.50)

for which we have

V̇ =V̇1 +F ′LV1
V̇1 +wẇ

=V̇1(1+F ′LV1
)+wẇ
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Substituting V̇1 and ẇ from equations (3.47) and (3.48) yields

V̇ =

[
−1

2

(
x1 +

3
2

)2

x2
1−αbx2

1−wx1

]
(1+F ′LV1

)

+w
[

1
β 2 (x1−u2)− (αb +

9
8
)

(
−3

2
x2

1−
1
2

x3
1− x2

)]
=

[
−1

2

(
x1 +

3
2

)2

x2
1−αbx2

1

]
(1+F ′LV1

)

+w
(
−x1− x1F ′LV1

+
1

β 2 x1−
1

β 2 u2 +
3γb

2
x2

1 +
γb

2
x3

1 + γbx2

)
,

where γb = (αb +9/8). In order to avoid the cancelation of γbx3
1/2 with the control input

u2, one needs to cancel it by using F ′LV1
by setting

F ′LV1
=

γb

2
x2

1 = γbV1(x1), (3.51)

Integrating both sides results in

FL(V1) =
γb

2
V 2

1

=
γb

8
x4

1, (3.52)

Consequently, the final expression for V , using equations (3.40), (3.50) and (3.52), has the

form

V (x1,w) =
1
2

x2
1 +

γb

8
x4

1 +
1
2

w2 (3.53)

>0, (x1,w) 6= (0,0) (3.54)

By equations (3.46) and (3.44) we have w = x2− (αb +9/8)x1, resulting in

V (x1,x2) =
1
2

x2
1 +

γb

8
x4

1 +
1
2

[
x2− (αb +

9
8
)x1

]2

(3.55)

Accordingly, V̇ becomes

V̇ =

[
−1

2

(
x1 +

3
2

)2

x2
1−αbx2

1

]
(1+

γb

2
x2

1)

+w
(
−x1 +

1
β 2 x1−

1
β 2 u2 +

3γb

2
x2

1 + γbx2

)
.
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Rearranging yields

V̇ =− 1
2

(
x1 +

3
2

)2

x2
1(1+

γb

2
x2

1)−αbx2
1(1+

γb

2
x2

1)

+w
(
−x1 +

1
β 2 x1−

1
β 2 u2 +

3γb

2
x2

1 + γbx2

)
=− 1

2

(
x1 +

3
2

)2

x2
1(1+

γb

2
x2

1)−αbx2
1−αb

γb

2
x4

1

+w
(
−x1 +

1
β 2 x1−

1
β 2 u2 +

3γb

2
x2

1 + γbx2

)
Adding and subtracting the term 9γb

8αb
w2, we have

V̇ =

[
−1

2

(
x1 +

3
2

)2

x2
1(1+

γb

2
x2

1)−αbx2
1

]

−
[

αb
γb

2
x4

1−
3γb

2
x2

1w+
9γb

8αb
w2
]

+w
(
−x1 +

1
β 2 x1−

1
β 2 u2 + γbx2 +

9γb

8αb
w
)

(3.56)

Since αb > 0 and γb > 0, the term in the square brackets can be shown to be positive

definite as

αb
γb

2
x4

1−
3γb

2
x2

1w+
9γb

8αb
w2 =

γbαb

2

[
x2

1−
3w
2αb

]2

. (3.57)

This term multiplied by the negative unity and its preceding terms (in the square brackets)

are negative definite. Therefore, our job is to design u2 such that the last term in (3.56)

becomes zero. Towards this end, u2 is selected as

u2 = (1−β
2)x1 +β

2
γbx2 +β

2 9γb

8αb
w, (3.58)

where w = x2− γbx1 and γb = (αb + 9/8). This is a linear controller that guarantees the

asymptotic stability of the Moore-Greitzer no-stall model.

Investigating the designed backstepping controller, the following conclusion is drawn.

Similar to the input/output feedback linearization controller that was designed in Subsec-

tion 3.5.1 (see equation (3.31)), the control input is a function of β 2, as it can be seen from

equation (3.58). Performing a perturbation on the value of β̄ , as done for the feedback
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linearization, the disturbed value of β̄ will be considered for system (3.24). Following

equation (3.56), by replacing u2 with the obtained value in (3.58), the time derivative of

the Lyapunov function of the disturbed close loop system takes the form

V̇ =− 1
2

(
x1 +

3
2

)2

x2
1(1+

γb

2
x2

1)−αbx2
1

−
[

αb
γb

2
x4

1−
3γb

2
x2

1w+
9γb

8αb
w2
]

+

[
1−
(

β

β̄

)2
][
−x1 + γbx2 +

9γb

8αb
w
]

w (3.59)

Although the stabilizing nonlinearities have been preserved with the backstepping,

one can still study what happens as the parameter β̄ is varied. To have equation (3.59)

negative definite, one needs β̄ = β . For instance, for 8% disturbance in β̄ , αb = 2, and

(x1,x2) = (−2.1,2.0) we obtain V̇ = 0.85 > 0. Further increment in αb, leads to a positive

value for V̇ . Therefore, a slight change in β̄ results in the violation of the negativity of V̇ .

Consequently, the control input (3.58), which is based on (3.59), will not be guaranteed to

asymptotically stabilize the no-stall Moore-Greitzer model with the Lyapunov function of

form (3.55). Yet, one needs to consider the fact that the Lyapunov theory provides suffi-

cient conditions for stability of a control system. Therefore, the positivity of V̇ in (3.59)

does not nevertheless impart an instability property to the closed-loop Moore-Greitzer sys-

tem.

3.5.3 Pseudo Euler-Lagrange Technique

Consider again system (3.24). By letting

f (x2) = x2

g(x1) =
1

β 2 x1

h1(x1,x2) =−
3
2

x2
1−

1
2

x3
1

h2(x1,x2) = 0
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one can recognize that g(x1)h1(x1,x2) =
−1
2β 2 x2

1(x
2
1 + 3x1) � 0, implying that the condi-

tion (3.15c) is violated. Accordingly, our task is to design a feedback controller using

u2(x1,x2), such that the set of conditions (3.15) is met. Since there is no control author-

ity over h1(x1,x2) (i.e. u1 = 0), using u2 we need to manipulate g(x1) such that (3.15a),

(3.15b) and (3.15c) are satisfied.

Further investigation of this problem led us to use a change of variables, in order to

convert equations in (3.24) into the form of (3.12). In what follows, the next coordinate

transformation is suggested

y1 = x1 (3.60a)

y2 =−ẋ1− x1

=
3
2

x2
1 +

1
2

x3
1− x1 + x2 (3.60b)

where y1 represents the mass flow rate and y2 the negative of the sum of the mass flow rate

and acceleration through the compressor. The Jacobian of y in (3.60) is given by

J=

 1 0

3
2x2

1 +3x1−1 1

 (3.61)

which is full rank, and according to the implicit function theorem given in reference [73],

x1 and x2 are locally invertible with respect to y1 and y2. Nonetheless y is not a global

diffeomorphism. Substituting the change of variables (3.60), into system (3.24) yields

ẏ1 =− y1− y2 (3.62a)

ẏ2 =

(
−3

2
y3

1−3y2
1 +(1+β

−2)y1

)
− y2

(
3
2

y2
1 +3y1−1

)
−β

−2u2 (3.62b)
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Comparing (3.62) with (3.19) yields

g(y1) =−
3
2

y3
1−3y2

1 +(1+β
−2)y1 (3.63a)

f (y2) = y2 (3.63b)

h1(y1,y2) =−y1 (3.63c)

h2(y1,y2) =−y2

(
3
2

y2
1 +3y1−1

)
(3.63d)

With the assignments (3.63), condition (3.15b) is given by

∫
f (y2)dy2 =

∫
y2dy2 =

1
2

y2
2 ≥ 0

In order to verify the conditions (3.15a), (3.15c) and (3.15d), one needs to manipu-

late g(y1) and h2(y1,y2) using u2(y1,y2) = u21(y1)+u22(y1,y2). This implies to determine

the generalized components of the pseudo Euler-Lagrange system, as expressed in (3.21).

Let us choose u21 as

u21(y1) =−β
2
α(−1

2
y3

1−
3
2

y2
1)−β

2
γy1 (3.64)

where α and γ are constant coefficients. Note that the intuition behind choosing the nonlin-

ear terms in u21(y1) is the fact that according to the proposed substitution law in equation

(3.60), we have −(1/2)y3
1− (3/2)y2

1 = ẋ1 + x2, which is the algebraic sum of the linear

terms. We thus have

g̃(y1) =

(
−3

2
−α

1
2

)
y3

1 +

(
−3−α

3
2

)
y2

1

+(1+β
−2 + γ)y1 (3.65)

With no control action on ẏ1, the functions f̃ and h̃1 remain unchanged as

f̃ (y2) = f (y2) = y2

h̃1(y1,y2) = h1(y1,y2) = −y1

43



To construct the first part of the candidate Lyapunov function, as shown in equation (3.22),

we are to find ∫
g̃(y1)dy1 =

(
−3

8
−α

1
8

)
y4

1 +

(
−1−α

1
2

)
y3

1

+
1
2
(1+β

−2 + γ)y2
1

=y2
1

[(
−3

8
−α

1
8

)
y2

1 +

(
−1−α

1
2

)
y1

+
1
2
(1+β

−2 + γ)

]
(3.66)

Since the factor y2
1 ≥ 0, we need to find the conditions for α and γ , under which the second

order polynomial in equation (3.66) is non-negative according to (3.15a), i.e.

p(y1) =

(
−3

8
−α

1
8

)
y2

1 +

(
−1−α

1
2

)
y1

+
1
2
(1+β

−2 + γ)≥ 0

Towards this end, the properties of the second order polynomials are used, as

∇
2 p(y1)≥ 0 (3.67a)

∆(p(y1))≤ 0 (3.67b)

where ∆(p(y1)) is the discriminant of p(y1) and ∇2(·) is the Hessian operator. Condition

(3.67a) restricts p(y1) to be convex while constraint (3.67b) forces p(y1) not to have a real

root, implying that p(y1)> 0. Accordingly we have

∇
2 p(y1)≥ 0 (=) α <−3 (3.68)

∆(p(y1))≤ 0 (=) γ ≥ α2 +(5+β−2)α +(7+3β−2)

−(α +3)
(3.69)

Note that we need α 6= 0 since otherwise the right hand side term in equation (3.69)

is rendered infinity. Furthermore, to satisfy condition (3.15c) we have

g̃(y1)h̃1(y1,y2) =

(
3
2
+α

1
2

)
y4

1 +

(
3+α

3
2

)
y3

1

− (1+β
−2 + γ)y2

1 (3.70)
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To make (3.70) non-positive, the same argument is used as for (3.66). Factorizing −y2
1 in

(3.70) yields a second order polynomial

p̃(y1) =−
(

3
2
+α

1
2

)
y2

1−
(

3+α
3
2

)
y1 +(1+β

−2 + γ)

for which conditions (3.67) have to be verified. As a result, we have

∇
2 p̃(y1)≥ 0 (=) α <−3 (3.71)

∆(p̃(y1))≤ 0 (=) γ ≤ 9/4α2 +(11+2β−2)α +(15+6β−2)

−2(α +3)
(3.72)

Comparing (3.69) and (3.72) irrespective of β , we have

α2 +(5+β−2)α +(7+3β−2)

−(α +3)
≤

9/4α2 +(11+2β−2)α +(15+6β−2)

−2(α +3)
, (3.73)

for α <−3, by which one can conclude that γ has to be determined by (3.72). Noting that

−(α +3)≥ 0, condition (3.73) can be validated by being equivalent to

2α
2 +2(5+β

−2)α +2(7+3β
−2)≤

9/4α
2 +(11+2β

−2)α +(15+6β
−2)

The above inequality can then be recast as

−1
4

α
2−α−1≤ 0, (3.74)

which can be trivially verified.

Now, let

u22(y1,y2) = β
2
ρy2 (3.75)

where ρ is a constant. Given equation (3.21d) we have

h̃2(y1,y2) =−y2

(
3
2

y2
1 +3y1−1+ρ

)
(3.76)
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Accordingly, condition (3.15d) becomes

f (y2)h̃2(y1,y2) =−y2
2

(
3
2

y2
1 +3y1−1+ρ

)
≤ 0 (3.77)

for which it is required from the non-positivity of the discriminant of the second order

polynomial in parentheses that

ρ ≥ 5
2

(3.78)

Note that from (3.64) and (3.75), the control input attains the form

u2(y1,y2) =u21(y1,y2)+u22(y1,y2) (=)

(=) u2(y1,y2) =β
2
[

α

(
1
2

y3
1 +

3
2

y2
1

)
− γy1 +ρy2

]
(3.79)

Replacing y1 and y2 by (3.60) yields in

u2(x1,x2) = β
2
[

α

(
1
2

x3
1 +

3
2

x2
1

)
− γx1−ρ (ẋ1 + x1)

]
= β

2
[

α

(
1
2

x3
1 +

3
2

x2
1

)
− γx1 +ρ

(
3
2

x2
1 +

1
2

x3
1− x1 + x2

)]
(3.80)

Rearranging results in the following nonlinear controller.

u2(x1,x2) = β
2(α +ρ)(

3
2

x2
1 +

1
2

x3
1)−β

2(γ +ρ)x1−β
2
ρx2 (3.81)

where α , γ and ρ are constants to be determined by (3.68), (3.72) and (3.78), respectively.

Note that according to (3.22), the Lyapunov function of the system (3.62) has the form

V (y1,y2) =y2
1

[(
−3

8
−α

1
8

)
y2

1 +

(
−1−α

1
2

)
y1 +

1
2
(1+β

−2 + γ)

]
+ y2

2, (3.82)

which using (3.60), can be transformed into the (x1,x2) coordinates as

V (x1,x2) =x2
1

[(
−3

8
−α

1
8

)
x2

1 +

(
−1−α

1
2

)
x1 +

1
2
(1+β

−2 + γ)

]
+

[
3
2

x2
1 +

1
2

x3
1− x1 + x2

]2

. (3.83)
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Moreover, the values of α , γ and ρ are determined in such a way that

{y | V̇ (y1,y2) = 0}= {(0,0)}.

In other words the origin is the only equilibrium point of system (3.62). The Lyapunov

function obtained in this example is a polynomial that is continuously differentiable and ra-

dially unbounded. Furthermore, the coefficients α , γ and ρ are such that V > 0. Satisfying

the assumptions of Theorem 3.3.1, system (3.62), and thus system (3.24) are guaranteed

to be globally asymptotically stable to the origin.

Note that inequalities (3.68), (3.72) and (3.78) give a very wide margin for choosing

α , γ and ρ . In practice, they can be chosen such that stability is preserved under small

changes in β̄ . To show this, the control law of the form of equation (3.79) is given here

again

u2(y1,y2) = β
2(α(

1
2

y3
1 +

3
2

y2
1)− γy1 +ρy2) (3.84)

Let α̃ , γ̃ and ρ̃ be the parameters which yields the system to remain stable. Now, consider

the above controller in the following form as

urob(y1,y2) = (β 2
α̃)(

1
2

y3
1 +

3
2

y2
1)− (β 2

γ̃)y1 +(β 2
ρ̃)y2 (3.85)

In order to maintain the disturbed closed-loop system robust using urob, the following

conditions are required

β
2
α̃ = β̄

2
α, (3.86a)

β
2
γ̃ = β̄

2
γ, (3.86b)

β
2
ρ̃ = β̄

2
ρ, (3.86c)
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Conditions (3.86) yield

α̃ =

(
β̄

β

)2

α, (3.87a)

γ̃ =

(
β̄

β

)2

γ, (3.87b)

ρ̃ =

(
β̄

β

)2

ρ, (3.87c)

which implies that for [β̄/β − 1]× 100 percentage disturbance in β̄ , the marginal condi-

tions for coefficients α̃ , γ̃ and ρ̃ must be subject to the shift of [(β̄/β )2−1]×100 percent.

Therefore, if α̃ , γ̃ and ρ̃ are chosen according to (3.87) and α , γ , and ρ by the inequalities

(3.68), (3.72) and (3.78), the system is guaranteed to be stable. For instance, let β̄ is found

out to change by ±8% maximum in some experiments. By conditions (3.87), α̃ , γ̃ and ρ̃

we have

For +8% variation in β̄ For −8% variation in β̄

α̃ = 1.1664α 0.8464α

γ̃ = 1.1664γ 0.8464γ

ρ̃ = 1.1664ρ 0.8464ρ

Combining conditions (3.68), (3.72) and (3.78) to the above criteria one reaches the

new set of conditions α̃ <−3.50, γ̃ > 1.664× 9/4α2+(11+2β−2)α+(15+6β−2)
−2(α+3) , and ρ > 2.92

that guarantees the stability of the Moore-Greitzer surge system (3.24) for a maximum

disturbance of ±8% in β̄ .

Furthermore, note that the only parameter among these, where the condition for

which depends on β is γ . The allowable values for γ , as a function of α and β are studied

with respect to the changes in β̄ . For this purpose Figure 3.1 shows the plot of γ by

using the inequality (3.72). It can be seen that having the selected α , the parameter γ can

be chosen from the epigraph of the plotted curve. This epigraph, providing a large area,

allows the designer to pick up a safe enough value for γ such that the variation of β̄ from

−10.0% to +10.0% does not violate the stability of the Moore-Greitzer model.
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Stable region

Figure 3.1: Plot of minimum allowable values for γ according to the inequality (3.72) with
β̄ being varied from −10%β to +10%β .

Additionally, in the feedback linearization approach, the nonlinearities are canceled

by the same term with an opposite sign to render a linear system for stability issues. Nev-

ertheless, using pseudo Euler Lagrange technique, as done for the Moore-Greitzer model,

the closed-loop system reaches stability by adding a portion of the nonlinear terms, which

is determined by α , γ and ρ . This fact provides the system with a robust property that not

necessarily any potential uncertainty in the model makes the system unstable.

3.6 Conclusions

In this chapter, a new Lyapunov-based control synthesis methodology was proposed based

on previous work done by Rodrigues [25]. This method that is called pseudo Euler-

Lagrange, suits a class of second order systems. The proposed technique was applied to
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the stabilization problem of the no-stall Moore-Greitzer axial compressor model. In order

to compare the stabilization properties of the proposed method, a feedback linearization

and a backstepping controllers were designed. A summary of the controllers designed for

the surge part of the Moore-Greitzer model as well as the proposed Lyapunov functions

are outlined in Tables 3.1 and 3.2, respectively.

Nonlinear Method Control Law

Input / Output u2 = −β 2
[

3
4x5

1 +
15
4 x4

1 +
(

1
2k f

1 +
9
2

)
x3

1 +
3
2x2

1x2

Feedback Linearization + 3
2k f

1 x2
1 +3x1x2−

(
1

β 2 + k f
2

)
x1 + k f

1 x2

]
Backstepping u2 = (1−β 2)x1 +β 2γbx2 +β 2 9γb

8αb
(x2− γbx1)

Pseudo Euler-Lagrange u2 = β 2(α +ρ)(3
2x2

1 +
1
2x3

1)−β 2(γ +ρ)x1−β 2ρx2

Table 3.1: Summary of the controllers for the MG model.

Nonlinear Method Lyapunov Function

Input / Output
Lyapunov theory is not used.

Feedback Linearization

Backstepping V = 1
2x2

1 +
γb
8 x4

1 +
1
2(x2− γbx1)

2

Pseudo Euler-Lagrange V = x2
1
[(
−3

8 −α
1
8

)
x2

1 +
(
−1−α

1
2

)
x1 +

1
2(1+β−2 + γ)

]
+
[3

2x2
1 +

1
2x3

1− x1 + x2
]2

Table 3.2: Summary of the Lyapunov functions for the closed-loop MG model.

As discussed earlier, the main advantages of the pseudo Euler-Lagrange for the sup-

pression of the Moore-Greitzer model oscillation are found to be the following:

• The pseudo Euler-Lagrange technique provides the designed controller with a broad

margin for choosing the control law coefficients such that the stability of the system
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is guaranteed for a range of disturbances.

• During the design procedure, nonlinearities that may enhance the stability quality of

the system are not canceled out as is done in the feedback linearization procedure.

Since there may be uncertainty in the model as well as potential variations of the coeffi-

cients, these advantages help one to have a safe margin of stability. Future suggested work

in this area may include the extension of the pseudo Euler-Lagrange technique to higher

order systems.
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Chapter 4

Intersection-based Piecewise Affine

Approximation of Functions of

n-Variables

4.1 Introduction

This chapter proposes and develops the Intersection-based Piecewise Affine (IPWA) ap-

proximation method. The results will later be used in Chapter 5 to approximate the third

order axial compressor stall and surge system equations. The PWA control synthesis tools,

adapted from [28] can be applied to this model afterwards.

The chapter is organized as follows. Section 4.2 briefly reviews PWA systems. The

approximation theory for functions of one variable is addressed in Section 4.3. Later, in

Section 4.4, the proposed methodology is extended to functions of n-variables, with geo-

metric results shown for functions of two variables The development of results in Section

4.3 for functions of one variable is necessary from two important points of view. First,

it gives a good intuition for understanding the basis of the theory, since the domain of

such functions is a subset of the real number coordinate axis. Second, the proofs of the
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lemmas and theorems in Section 4.4 are based on induction, which inevitably requires the

approximation theory for functions of one variable.

4.2 Review of PWA Systems

Consider the state space representation of a dynamical system as

ẋ = Ax+ fnl(x)+Bu (4.1)

where A ∈ Rn×n, x ∈ Rn is the state vector, B ∈ Rn×n̄, u ∈ Rn̄ is the control input, and fnl

is a nonlinear continuous function defined as fnl : Ω→ Rn, where Ω⊂ Rn. By computing

a PWA approximation for (4.1), Ω is partitioned into a finite number of regions, in each

of which an affine function serves as the approximation of fnl . Let us denote Ri as the ith

PWA region, i∈I = {1,2, ...,N} such that
⋃N

i=1 R i = Ω. In what follows, the subsequent

concepts will be used.

Definition 4.2.1. A PWA system that has N regions is called N-modal. In particular, a

bimodal system refers to a system with two regions.

Remark 4.2.1. Consequently, an N-modal PWA system has N pieces of affine functions.

Definition 4.2.2. The function f̄ : Ω → Rn, where Ω ⊂ Rn, is defined to be the PWA

approximation of the nonlinear function fnl , and is given by

f̄ (x) = Aix+bi, x ∈Ri (4.2)

where i ∈I = {1,2, ...,N} is the index indicating the region.

Note that by replacing fnl(x) in (4.1) by f̄ (x) one obtains the PWA approximation

of the nonlinear system (4.1) as

ẋ = (A+Ai)x+bi +Bu, x ∈Ri (4.3)
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Definition 4.2.3. Intersection-based Piecewise Affine (IPWA) systems are a subset of PWA

systems, that consist of the coefficients Ai and bi being obtained by the methodology that

is proposed in Sections 4.3 and 4.4.

4.3 Approximation Theory For Functions of One-Variable

We begin this section by introducing the main idea of the approximation algorithm. The

first stage of the IPWA approximation is performed by linearizing the nonlinear function

around specific operating points which are given by the user. If, for instance, the task is to

solve a PWA controller synthesis problem for the obtained IPWA system, these points can

be chosen to be the equilibrium points of the nonlinear system. Therefore, the selection

of such points varies depending on the nature of the problem. Each linearization will be

called by tangent hyperplanes. The regions are created by projecting the intersection points

of the hyperplanes onto the domain of the nonlinearity. In the next approximation stage,

the function will be linearized at the intersection points that are obtained in the previous

stage. This process is continued until the desired approximation error is met.

Definition 4.3.1. Consider a nonlinear function f : Ω→R, where Ω⊂Rn. A linearization

hyperplane is denoted by H and is defined to be

H = {(x,y) | y = h(x)}, h(x) = hi(x), x ∈Ri, (4.4)

where

hi(x) = f (xi
0)+∇ f (xi

0)(x− xi
0), (4.5)

and xi
0 ∈Ri, with i = 1,2, . . . ,N are nominal points.

As given in equation (4.1), the nonlinear component of a dynamical system is de-

scribed by fnl(x) = [ f1(x), f2(x), ..., fn(x)]T . If fnl(x) is a continuous function of only one

variable, say x j with j being a fixed number in {1,2, ...,n}, satisfying the conditions given
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subsequently in Theorem 4.3.2, the proposed IPWA algorithm for continuous functions

can be used to construct the IPWA model. For this purpose f̄ (x) is first obtained as in

(4.2) for all fi(x j), where i = {1,2, ...,n}. This approximation will later be added to the

linear components, as in equation (4.3). Therefore, the PWA regions produced during any

linearization stage will take the form of

Ri = {x ∈ R | ds
i < x j < ds

i+1}, (4.6)

where

ds = [q1, x(1)int , ...,x
(k)
int , q2], (4.7)

where q1 and q2 are the domain boundaries, and x(k)int , as shown in Figure 4.1 is the pro-

jection of the intersection of the linearization hyperplanes H1,H2, . . . ,Hk+1 in a sequence

onto Ω with k referring to the number of intersections.

Figure 4.1: Representation of x(1)int , x(2)int , q1, and q2.

The regions of type (4.6) that can be defined with only one variable are called slabs.

PWA systems with slab regions are thus called PWA slab systems [28]. Accordingly, as

Rodrigues and Boyd [28] have shown, for PWA slab systems the state feedback controller

synthesis with a quadratic Lyapunov function can be formulated as a convex optimization

problem subject to an infinite set of LMIs. Although the solution to the synthesis problem
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is not addressed in [28], the resulting approximation of the nonlinear system introduced

can be used to design a PWA controller.

Henceforth, the Greek letter Γ is used as the domain of a function if n = 1 while Ω

is generally used for n > 1. Moreover, in order to denote a point in Γ, two indices with the

first index being always 1, are used as x11,x12, . . . ∈ Γ (instead of x1,x2, . . .). This is done

to avoid any potential confusion of a sequence of points in Γ⊂ R with the components of

the vector x = [x1,x2, . . . ,xn] ∈Ω, where Ω⊂ Rn.

The supporting hyperplane theorem, taken form [73], is presented here since it is

used frequently in this section.

Theorem 4.3.1. [73] Let D be a convex set and let P ∈ ∂D be a point. Then there is a

hyperplane containing P and containing D in one of its closed half spaces.

The following proposition can be derived from the supporting hyperplane theorem,

adapted form [73], Section 7.4.

Proposition 4.3.1. Let f : Ω→R be a concave function, and P ∈Ω be an arbitrary point.

Suppose that f ∈ C 1 in the neighborhood of P. Then

f (x)≤ f (P)+∇ f (P)(x−P) (4.8)

for all x ∈Ω.

Note that given Γ as a set, the notation Γ◦ is used to denote the interior set of Γ.

Lemma 4.3.1. Consider a concave function f : Γ→R, Γ⊂R. Suppose that f is class C 1

in a neighborhood of two distinct points x11,x12 with x11 < x12 ⊂ Γ◦. Then

f ′(x12)≤ f ′(x11). (4.9)

Proof. Given two points x11 and x12, let xb ∈ Γ◦ be an arbitrary point. Note that f as a

concave function is absolutely continuous in ϒ = [xb−ε,xb+ε]⊂ Γ, for ε > 0 sufficiently

small [74]. Using this property, f ′(x) exists almost in ϒ. Therefore, if f ′(xb) does not exist,
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one concludes f ′(xb−ε) and f ′(xb+ε) exist, or simply ∃{ f ′(x−b ), f ′(x+b )}. Consequently,

for x−b < xb a tangent hyperplane h̄(x) can be constructed as

h̄(x) = f (x−b )+ f ′(x−b )(x− x−b ) (4.10)

Using the continuity of f , we have

lim
ε→0

x−b = lim
ε→0

xb− ε = xb,

lim
ε→0

f (x−b ) = lim
ε→0

f (xb− ε) = f (xb).

There is no assumption on the existence of f ′(xb). Noting that ε > 0 is sufficiently

small, one may write

lim
ε→0

f ′(x−b )≈ f ′(x−b ).

Therefore, taking the limit from equation (4.10) one may write

h̄(x)
∣∣
ε→0 = f (xb)+ f ′(x−b )(x− xb). (4.11)

The function f (x) can be approximated at x+b > xb using the Taylor series as

f (x)|x+b ≈ f (x+b )+ f ′(x+b )(x− x+b ) (4.12)

Since f is continuous, we have

lim
ε→0

x+b = lim
ε→0

(xb + ε) = xb,

lim
ε→0

f (x+b ) = lim
ε→0

f (xb + ε) = f (xb).

Let us assume f may not be differentiable at xb. With sufficiently small ε > 0, we

have

lim
ε→0

f ′(x+b )≈ f ′(x+b ).

Taking the limit from both sides of (4.12), we have

f (x)|x+b ≈ f (xb)+ f ′(x+b )(x− xb). (4.13)
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Note that the function f is concave, and by Proposition 4.3.1 we have

f (x)≤ h̄(x), ∀x ∈ Γ. (4.14)

Let x = xb + δ , where δ > 0 is an infinitesimally small number. Using (4.13) to

approximate f (xb +δ ) and (4.11) to evaluate h̄(xb +δ ), the inequality (4.14) becomes

f (xb)+ f ′(x+b )(xb+δ − xb)≤

f (xb)+ f ′(x−b )(xb +δ − xb)

Simplifying the left and the right hand side terms yields

f ′(x+b )≤ f ′(x−b ) (4.15)

so that inequality (4.15) in a sequence including f ′ implies that (4.9) is held, no matter if

f is differentiable at xb or not.

Remark 4.3.1. A lemma with a similar result to Lemma 4.3.1 is provided in [74] (Chapter

5, Section 5, Lemma 15).

Lemma 4.3.2. Consider a concave function f : Γ→R, Γ⊂R, and assume that f is class

C 1 in a neighborhood of x11,x12 with x11 < x12 ⊂ Γ◦. Let the function f be linearized

around x11 and x12 with lines h1(x) and h2(x), respectively. Assuming h′1(x) 6= h′2(x), the

intersection of H1 = {(x,y) | y = h1(x)} and H2 = {(x,y) | y = h2(x)} is a singleton, i.e,

{xint}= {x | h1(x) = h2(x) } (4.16)

Furthermore, x11 ≤ xint ≤ x12.

Proof. From the assumption, since {x11,x12} ⊂ Γ◦ and since f is concave and locally of

class C 1 around x11 and x12, we have h′1(x) = f ′(x11) 6= ∞ and h′2(x) = f ′(x12) 6= ∞. More-

over, h′1(x) 6= h′2(x) implies that H1 and H2 are not parallel, and therefore they intersect

with each other at some point equal to xint . To prove that H1 and H2 intersect and xint is the

unique solution for the intersection of h1 and h2, one is required to show that h1(x) 6= h2(x)

58



for x 6= xint . Note that h1(x) and h2(x) are determined by the linearization of f around x11

and x12, as

h1(x) = f (x11)+ f ′(x11)(x− x11), (4.17a)

h2(x) = f (x12)+ f ′(x12)(x− x12), (4.17b)

Let us assume h1(x) = h2(x) for x 6= xint . This results in

x =
[ f (x11)− f (x12)]+ [ f ′(x12)x12− f ′(x11)x11]

f ′(x12)− f ′(x11)
= xint . (4.18)

Since from the assumption of the lemma h′1(x) 6= h′2(x), we therefore conclude that f ′(x11) 6=

f ′(x12) as well as x11 6= x12. Therefore, equation (4.18) provides a unique value for x being

x = xint . Consequently, h1(x) = h2(x) only for x = xint or in other words h1(x) 6= h2(x) for

x 6= xint , which implies that xint is a singleton.

By Proposition 4.3.1 we have

h1(x)≥ f (x) (4.19a)

h2(x)≥ f (x) (4.19b)

From this point, the proof of x11 ≤ xint ≤ x12 follows by contradiction. First, let x12 < xint .

Since H1 and H2 intersect with each other, we have

h1(xint) = h2(xint)

Using (4.17), this implies that

f (x12)+ f ′(x12)(xint− x12) = f (x11)+ f ′(x11)(xint− x11)

This in turn implies that

f (x12)− f (x11)− f ′(x12)x12 + f ′(x11)x11 =−xint( f ′(x12)− f ′(x11)) (4.20)

On the other hand

h2(x)−h1(x) = f (x12)+ f ′(x12)(x− x12)− f (x11)− f ′(x11)(x− x11)

=
[

f (x12)− f (x11)− f ′(x12)x12 + f ′(x11)x11
]

+ x( f ′(x12)− f ′(x11)) (4.21)
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Substituting (4.20) into (4.21) yields

h2(x)−h1(x) =−xint( f ′(x12)− f ′(x11))+ x( f ′(x12)− f ′(x11))

= ( f ′(x12)− f ′(x11))(x− xint) (4.22)

Finally, using (4.9) (the result of Lemma 4.3.1), it is concluded from (4.22) that

h2(x)≥ h1(x), ∀x < xint (4.23)

It was assumed that x12 < xint which, by using (4.23), implies that

h2(x12)≥ h1(x12), x12 < xint (4.24)

By substituting x12 into (4.17b) we have

h2(x12) = f (x12) (4.25)

Combining (4.24) and (4.25) results in the following condition

f (x12)≥ h1(x12), ∀x < xint

by which equation (4.19a), and consequently Proposition 4.3.1 are violated, implying that

xint ≤ x12. Similarly, the same argument can be used to show that xint ≥ x11, confirming

that x11 ≤ xint ≤ x12.

Definition 4.3.2. The distance function ∆ : Ω→ R is defined as

∆(x) = ∆i(x), x ∈Ri, i ∈I , (4.26)

where

∆i(x) =

 |hi(x)− f (x)| , hi(x)< f (x),

hi(x)− f (x) , hi(x)≥ f (x).
(4.27)

Lemma 4.3.3. Let f : Γ→R, Γ⊂R be a class C 1 concave function. Consider an arbitrary

point x0 ∈ Γ. Assume that the linearization of f around the point x0 is described by a
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hyperplane H defined by equations (4.4) and (4.5). Then for any direction pointing from

x0, ∆(x) defined by (4.26) and (4.27) is monotonically increasing, i.e.

∇∆(x) ·vx0(x)≥ 0, x ∈ Γ, (4.28)

where

vx0(x) =
x− x0

|x− x0|
, x ∈ Γ (4.29)

is a unit vector.

Proof. Since f is concave, therefore− f is convex. The function h is also convex, because

it is affine. Since the convexity property is held under addition of convex functions [73],

∆(x) = h(x)− f (x) is convex.

Since h is the linearization of f at x0 and f is concave, we have h≥ f , according to

Proposition 4.3.1. This always results in ∆(x)≥ 0 according to the definition in (4.26) and

(4.27). In addition, since f (x0) = h(x0), ∆(x0) = 0, and we can conclude that

x0 = arg min
x∈Γ

∆(x)

as a point of global minimum of ∆(x). Using the first order necessary condition for the

minimum points [73], we have

∇∆(x0) = 0. (4.30)

Furthermore, noting that ∆(x) is convex, Lemma 4.3.1 allows us to conclude that

∆′(x) is either increasing or remains stationary as x is increased. This, in view of (4.30),

leads to the conclusion that

∇∆(x)≤0, ∀x < x0,

∇∆(x)≥0, ∀x > x0,

which, by using the definition of vx0 in (4.29), can be rewritten in a more compact form as

∇∆(x) ·vx0(x)≥ 0, x ∈ Γ.
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Using the results of Lemma 4.3.3 and Lemma 4.3.2, Theorem 4.3.2 is given below

to find the points of maximum error in Γ, defined as emax = supx∈Γ
∆(x). Before giving the

theorem, the following definition is necessary.

Definition 4.3.3. [75] The convex hull of the set of k points P1,P2, . . . ,Pk ∈ Ω is denoted

by conv(P1,P2, . . . ,Pk) and is defined as

conv(P1,P2, . . . ,Pk) = {x ∈Ω | x =
k

∑
i=1

tiPi, ti ≥ 0,
k

∑
i=1

ti = 1},

Theorem 4.3.2. Consider a class C 1 concave function f : Γ→R, over a convex set Γ⊂R.

Let the function be linearized around two points x11,x12 ∈ Γ, with equations y = h1(x) and

y = h2(x), respectively. Furthermore, consider the point Pint = (xint ,yint) = {(x,y) | y =

h1(x), y = h2(x)}. The solution to the following maximization problem

arg sup
x∈Γ

∆(x) (4.31)

lies either on xint or at the boundary, with boundary ∂Γ = {q1,q2}.

Proof. It can be recognized by Lemma 4.3.2 that x11 ≤ xint ≤ x12. Furthermore x11,x12 ∈

Γ, which implies that xint divides Γ into two sub-domains, each of which contains one

of {x11,x12}. Let us denote the sub-domain containing x11 by Γx11 and the sub-domain

containing x12 by Γx12 . In order to prove this theorem, Γ will be split into 4 different

sub-domains, namely Γ2, Γ1, Γ3 and Γ4, as follows

Γ2 = conv(x11,xint), Γ1 = Γx11 \Γ2

Γ3 = conv(xint ,x12), Γ4 = Γx12 \Γ3

(4.32)

By condition of Lemma 4.3.3, the distance function ∆(x), from equations (4.26) and (4.27),

can be represented as

∆(x) =

 ∆1(x) = h1(x)− f (x) , x ∈ Γx11

∆2(x) = h2(x)− f (x) , x ∈ Γx12

(4.33)

In view of the fact that vx11 and vx12 , as shown in Figure 4.2, are determined by using
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Figure 4.2: The intersection of H1 and H2 at Pint .

(4.29), as unit direction vectors at x11 and x12, respectively, the following two cases are

investigated.

CASE 1. x ∈ Γ2
⋃

Γ3

CASE 2. x ∈ Γ1
⋃

Γ4

CASE 1. First, we consider x ∈ Γ2. Let xΓ2(r) = x11 + εr, where r ∈ {r ∈ Z >

0 | r < rmax2} with rmax2 denoting a relatively large integer and ε > 0 is a small constant

determined in Γ2 as ε =(xint−x11)/rmax2 . Using vx11 as a function of x, we have ∇∆1(xΓ2) ·

vx11(xΓ2) ≥ 0 by Lemma 4.3.3. Therefore, for sufficiently small ε , ∆1(x11) ≤ ∆1(x11 +

ε), which is equivalent to ∆1(xΓ2(0)) ≤ ∆1(xΓ2(1)). Similarly, we have ∆1(xΓ2(1)) ≤

∆1(xΓ2(2)), which using a sequence including 0≤ r ≤ rmax2 will reach the conclusion that

∆1(xΓ2(r))≤ ∆1(xΓ2(rmax2)). In other words we have

∆1(x)≤ ∆1(xint), ∀x ∈ Γ1. (4.34)

Using the same reasoning, when we consider x ∈ Γ3, let us define xΓ3(r) = x12−εr,

where r ∈ {r ∈ Z> 0 | r < rmax3} with rmax3 being a large integer, and ε is obtained in Γ3

as ε = (x12− xint)/rmax3 . Along the same lines, one can conclude that

∆2(x)≤ ∆2(xint), ∀x ∈ Γ2. (4.35)
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CASE 2. In the second place, let x ∈ Γ1. using Lemma 4.3.3 we have ∇∆1(x) ·

vx11(xΓ1) ≥ 0. Considering xΓ1(r) = x11− εr, where r ∈ {r ∈ Z > 0 | r < rmax1} with

rmax1 being a large integer and ε is determined in Γ1 as ε = (x11− q1)/rmax1 , we may

write ∆1(xΓ1(0)) ≤ ∆1(xΓ1(1)). Note that q1,q2 ∈ ∂Γ as stated in the theorem. Using a

sequence, similar to the argument in Case 1, we have

∆1(x)≤ ∆1(q1), ∀x ∈ Γ3. (4.36)

For x ∈ Γ4, one can easily use the same reasoning to check that

∆2(x)≤ ∆2(q2), ∀x ∈ Γ4. (4.37)

Equations (4.34), (4.35), (4.36) and (4.37) guarantee that an element from the set

{xint ,q1,q2} is indeed a solution to (4.31). This completes the proof of the theorem.

The objective of the approximation algorithm at each stage is to linearize the func-

tion at points of maximum error occurring during the previous linearization. Theorem

4.3.2 ensures that after the first stage of approximation, the solution to (4.31) lies either at

xint , or q1, or q2. If the first two linearization hyperplanes H1 and H2 are based on the lin-

earization of f at some points in the domain very close to q1 and q2 such that ∆(q1)≤ edes

and ∆(q2) ≤ edes, the solution to (4.31) will be xint , referring to Theorem 4.3.2. There-

fore, xint is the next point at which f should be linearized (see the upper plot in Figure

4.3). Denoting the linearization hyperplane around xint by H3, the second approximation

stage starts as the point xint adopts a new notation x13 (see the lower plot in Figure 4.3).

Updating the distance function ∆(x) using (4.26), the problem of approximating f is to

find

1) arg sup
x11≤x≤x13

∆(x) (4.38)

2) arg sup
x13≤x≤x12

∆(x), (4.39)

64



which are the new points of maximum error. Since f is concave within x11 ≤ x≤ x13 and

x13 ≤ x ≤ x12, Theorem 4.3.2 is then used to find the solution to (4.38) and (4.39). This

process is continued as long as supx∈Γ ∆(x)> edes.

Figure 4.3: The upper plot shows the first stage of the approximation while the lower plot
provides the second stage. Note that the superscripts reset at each stage.

With all the theoretical background that has been provided in this subsection, the

algorithms for the intersection-based PWA approximation can be described in the next

subsection. The flow diagram of the lemmas and the theorems that result in this algorithm

is illustrated in Figure 4.4
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Theorem 4.3.1

Proposition 4.3.1

Lemma 4.3.2 Lemma 4.3.1 Lemma 4.3.3

Theorem 4.3.2

IPWA 
Algorithms for 

functions of
one variable

Figure 4.4: The flow of the theory for the proposed algorithms in Subsection 4.3.1 for
functions of one variable.

4.3.1 The IPWA Algorithms

In this subsection, the algorithms implementing the intersection-based PWA (IPWA) ap-

proximation for both concave/convex and continuous functions are introduced.

Concave/Convex Functions

This algorithm is proposed for a concave function. If f is convex, − f is then considered.

Problem 4.3.1. Consider a concave function f : Γ→ R, where Γ ⊂ R. Find f̄ over the

domain of f .

Algorithm 4.3.1.

1. The primary linearization points are determined first. The points are chosen to co-

incide with the points for which the user needs zero error. As mentioned above,
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the primary linearization points are selected in accordance with the nature of the

problem for which the IPWA is being obtained.

2. Using Taylor series, the function f is linearized around all the points that are ob-

tained in step 1. The linearization hyperplanes and the functions representing them

are denoted by Hi and hi(x), respectively, where i ∈I = {1,2, ...,Nu} and Nu is the

number of linearization points at the uth iteration.

3. Each two neighboring hyperplanes Hi will intersect with each other, resulting in a

point under consideration of Lemma 4.3.2. These points are designated by P(k)
int (x),

where k ∈K = {1,2, ...,Nu−1}. Note that since each two neighboring hyperplanes

intersect with each other, the number of intersection points is always equal to Nu−1.

4. The projection of all intersection points P(k)
int on Γ is denoted by x(k)int .

5. Using Theorem 4.3.2 the points at which the local maximum error occurs are deter-

mined. According to this theorem, these points belong to the set M =

{x11,x
(1)
int , ...,x

(k)
int ,x12}. The global maximum is then obtained by updating ∆(x) us-

ing (4.26), and then evaluating ∆(x) for all the elements of M. Comparing the results,

the value at which the global maximum error occurs and the error itself are found as

xemax = arg max
x∈M

∆(x)

emax = max
x∈M

∆(x)

6. The stopping criterion is defined as

emax ≤ edes (4.40)

where edes is called desired error and is defined to be the maximum allowable error

determined by the user. If the stopping criterion is met, the IPWA approximation
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is returned. Otherwise, the point of maximum error is given to Step 3 for the next

linearization stage. This iteration is continued until the stopping criterion is satisfied.

Remark 4.3.2. One can still add other initial points heuristically to Step 1, such as the

points of zero curvature. This idea was originally suggested by Casselman and Rodrigues

in reference [76], as the essential idea of the SLP method.

Continuous Functions

In this subsection, the function f is considered to be only continuous but not necessar-

ily concave. Despite the fact that such a function is rather difficult to tackle, in many

applications the nonlinear function is neither concave nor convex. For this purpose, the

IPWA algorithm for approximating continuous functions is given in this subsection. In

this algorithm, the inflection points of f (x) are first found. The curvature of f at these

points attains zero and the convexity of f changes. The set of inflection points is denoted

by K = {x1
κ ,x

2
κ , · · · ,x

q
κ}. Therefore, the function f can be split into q+ 1 functions, as

f1(x), f2(x), · · · , fq+1(x), each being either convex or concave. For this purpose, the ini-

tial linearization points are chosen to be the elements of K. The equations expressing the

initial linearization hyperplanes h1
κ ,h

2
κ , · · · ,h

q
κ are then constructed by using the Taylor

series. Since each fi(x) possesses either the concavity/convexity property, the IPWA algo-

rithm for concave/convex functions is therefore used to compute the IPWA approximation

for each fi(x).

The details of this method are summarized in the following algorithm.

Problem 4.3.2. Consider a continuous function f : Γ→ R, where Γ⊂ R. Find f̄ .

Algorithm 4.3.2.

1. In the initial linearization stage, select the points from both categories:
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(a) the initial point, as chosen in Step 1, and

(b) elements of set K.

2. Repeat Steps 3 to 6 from the Algorithm 4.3.1 for f .

Remark 4.3.3. The regions produced by both proposed Algorithms 4.3.1 and 4.3.2 are

convex and have been defined in equation (4.6).

In this section, the approximation methodology for functions of one variable has

been studied. The next section, deals with the same problem for functions of n-variables.

4.4 Approximation Theory For Functions of n-Variables

In Lemma 4.3.2 an intersection property of concave functions was derived. Lemma 4.4.5

will extend the results of Lemma 4.3.2 to n dimensions, but before going further, the

following results are essential.

Definition 4.4.1. [75] A set D is convex if a segment d between any two points V1,V2 ∈D,

lies in D, i.e.

d = {V1 +(V2−V1)t, t ∈ [0,1]} ∈ D. (4.41)

Definition 4.4.2. The hypograph of function f : Ω→R is denoted by H ( f ) and is defined

as

H ( f ) = {(x,y) ∈Ω | y≤ f (x)}. (4.42)

Definition 4.4.3. The epigraph of f is denoted by E( f ) and is defined as

E( f ) = {(x,y) ∈Ω | y≥ f (x)}. (4.43)

Lemma 4.4.1. Let f : Ω→ R be a concave function over a convex set Ω⊂ Rn. The axes

{x,y} are defined such that x ∈ Ω and y ∈ R is the image of x under f . Assume that H =

{(x,y) | y = h(x)} is a hyperplane. Define the parameterized curve c(t) = (xc(t),yc(t))
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such that {(xc(t),yc(t))} = {(x,y) | y = h(x) = f (x)}, where t ∈ R. Then there always

exists a unique convex set D such that {(xc(t),yc(t)) ∈Ω} ⊆ ∂D.

Proof. A hyperplane defined in the space Ω×R is an affine manifold which is a con-

vex set of points. Since f (x) is concave, its hypograph H ( f ) = {(x,y) | y ≤ f (x)} is

then a convex set. Moreover, the intersection of two convex sets is a convex set. There-

fore, D = {(x,y) | y = h(x)}∩{(x,y) | y ≤ f (x)} is a convex set. Furthermore, we have

{(x,y) | y = h(x) = f (x)} ⊆ {(x,y) | y = h(x)}∩{(x,y) | y≤ f (x)}. Therefore, according

to the definitions of c(t) and D, we have {(xc(t),yc(t))} ⊆ ∂D.

Figure 4.5: The intersection of H with {(x,y) | y = f (x)} in three dimensional space.

For more clarification of the proof, see Figure 4.5 for the case Ω ⊂ R2. Note that

c(t) is later produced by intersecting the graphs of f and h at a certain point as (P1, f (P1)),

where P1 ∈Ω, and therefore the existence of c is guaranteed.

Definition 4.4.4. [77] An r-flat denoted by Fr is the set of points in the space Rm, where

r ≤ m, and is defined as

Fr = {ν = ν0 +
r

∑
i=1

tiθi, ti ∈ R}, (4.44)

where θ1,θ2, . . . ,θr, are r linearly independent vectors in Rm and ν0 is a constant vector.

Remark 4.4.1. From Definition 4.4.4, the hyperplanes in Rm can be defined as Fm−1.

Furthermore, points, lines and planes are F0, F1, and F2, respectively.
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Definition 4.4.5. Consider a hyperplane in the Ω×R space, where Ω ⊂ Rn. The co-

ordinate system (x̂, ŷ), where x̂ = [x̂1, x̂2, . . . , x̂n]
T and ŷ ∈ R is defined such that axes

{x̂1, x̂2, . . . , x̂n} lie in H and ŷ is normal to H.

Definition 4.4.6. The operator T : (x,y)→ (x̂, ŷ) is defined to be the coordinate transfor-

mation between (x,y) and (x̂, ŷ).

Note that the (x̂, ŷ) coordinate system is depicted in Figure 4.6 for the case of n = 2.

Figure 4.6: Hyperplane H = {(x,y) | y = h(x)} and the coordinate system (x̂, ŷ) that is
embedded in H such that {ŷ} ⊥ H. Note that (x0,h(x0)) is the origin of the coordinate
system (x̂, ŷ).

Remark 4.4.2. Coordinates (x̂, ŷ) can be obtained from (x,y) by n+ 1 consecutive rota-

tions about x1,x2, . . . ,xn and y axes by angles φ (1),φ (2), . . . ,φ (n) and ψ , respectively. The

rotation matrix is computed as [78]

Λ(φ (1),φ (2), . . . ,φ (n),ψ) = Λψ ×Λ
φ (n)×Λ

φ (n−1)× . . .×Λ
φ (1), (4.45)

where Λ(·) is the rotation matrix associated with each elementary rotation angles φ (1),

φ (2), . . . ,φ (n) and ψ .

The system of coordinates (x̂, ŷ) lies on H and its origin is considered to be fixed at

an arbitrary point (x0,h(x0)) (refer to Figure 4.6 for the case of n = 2). In view of this
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fact and (4.45), the mapping function T from (x,y) to (x̂, ŷ) coordinates and its inverse are

constructed as 

x̂1

x̂2

...

x̂n

ŷ


= T





x1

x2

...

xn

y




= Λ



x1− x10

x2− x20

...

xn− xn0

y−h(x0)


, (4.46)



x1

x2

...

xn

y


= T−1





x̂1

x̂2

...

x̂n

ŷ




= Λ

T



x̂1

x̂2

...

x̂n

ŷ


+



x10

x20

...

xn0

h(x0)


. (4.47)

In order to locate the axes {x̂1, x̂2, . . . , x̂n} on H, n consecutive rotations about axes

x1,x
φ0(1)
2 , . . . ,xφ0(n−1)

n by given angles φ (i) = φ
(i)
0 , with i ∈ {1,2, . . . ,n} are used. Note

that xφ0(1)
2 is the updated orientation of x2 after the rotation about x1 by φ

(1)
0 is made,

and for j ∈ {2,3, . . . ,n}, xφ0( j−1)
j is the updated orientation of x j after the rotation about

xφ0( j−2)
j−1 is made. Accordingly, Λ̄ is defined to be

Λ̄ = Λ(φ
(1)
0 ,φ

(2)
0 , . . . ,φ

(n)
0 ,ψ). (4.48)

The composed rotation that is based on the rotation matrix Λ̄ will automatically position

the axis ŷ normal to H.

Remark 4.4.3. The role of ψ in (4.48) is to rotate the axes (x̂1, x̂2, . . . , x̂n) in h(x) about ŷ

while ŷ is maintained normal to H. Once the values of φ
(i)
0 are given, T : (x,y)→ (x̂, ŷ) is

used as a function of ψ .

Lemma 4.4.2. Consider f , H and c(t) from Lemma 4.4.1, and define x = [x1,x2, . . . ,xn]
T .

Assume the coordinate (x̂, ŷ), as considered in Definition 4.4.5, is located at an arbitrary
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point (x0,h(x0)), where x0 = [x10,x20 , . . . ,xn0]
T . Then c(t) can be implicitly represented by

equation C(x̂1, x̂2, . . . , x̂n) = 0 in (x̂1, x̂2, . . . x̂n) coordinates. Furthermore, if f ∈ C k, then

∇kC(x̂) exists.

Proof. Since {(xc(t),yc(t))} ⊂H and (x̂1, x̂2, . . . x̂n) coordinates are defined in H, c(t) can

be implicitly represented by an equation as C(x̂1, x̂2, . . . , x̂n) = 0 in (x̂1, x̂2, . . . x̂n) coordi-

nates. In order to determine C(x̂), one needs to compute the equation F̂(x̂, ŷ) = 0 as the

implicit representation of f (x) in the (x̂, ŷ) frame. Since {(xc(t),yc(t))} = {(x,y) | y =

f (x)}∩{(x,y) | y = h(x)} and the fact that the origin of (x̂, ŷ) coordinate system is located

on H, we can conclude

C(x̂) = F̂(x̂,0). (4.49)

For this purpose, Remark 4.4.2 and Λ̄ defined in equation (4.48) are used. Substitut-

ing y with f (x) in (4.46) and solving (4.46) for ŷ gives

ŷ =
n

∑
i=1

(xi− xi0)Λ̄n+1,i +( f (x)−h(x0))Λ̄n+1,n+1 (4.50)

Using (4.47), xi is expressed in terms of x̂ j and ŷ as

xi =
n

∑
j=1

x̂ jΛ̄ ji + ŷΛ̄n+1,i + xi0, ∀i ∈ {1,2, . . . ,n} (4.51)

Replacing xi by (4.51), f is equivalently denoted by

f (x) = f (x1(x̂, ŷ),x2(x̂, ŷ), . . . ,xn(x̂, ŷ))

= f

(
n

∑
j=1

x̂ jΛ̄ j1 + ŷΛ̄n+1,1 + x10, . . . ,
n

∑
j=1

x̂ jΛ̄ jn + ŷΛ̄n+1,n + xn0

)

= f̂ (x̂, ŷ). (4.52)

Substituting xi from (4.51) into (4.50) and using of the notation (4.52) results in

0 =
n

∑
i=1

(
n

∑
j=1

x̂ jΛ̄ ji + ŷΛ̄n+1,i

)
Λ̄n+1,i− ŷ+

(
f̂ (x̂, ŷ)−h(x0)

)
Λ̄n+1,n+1,
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which is an implicit representation of function f (x) in the (x̂, ŷ) coordinates. This implicit

function is denoted by F̂(x̂, ŷ) = 0, and is defined as

F̂(x̂, ŷ) =
n

∑
i=1

(
n

∑
j=1

x̂ jΛ̄ ji + ŷΛ̄n+1,i

)
Λ̄n+1,i− ŷ

+( f̂ (x̂, ŷ)−h(x0))Λ̄n+1,n+1. (4.53)

The mapping function F̂ can be recast as

F̂(x̂, ŷ) =
n

∑
j=1

η jx̂ j +ηn+1ŷ+ηn+2 f̂ (x̂, ŷ)+ηn+3 = 0, (4.54)

where

η j =
n

∑
i=1

Λ̄ jiΛ̄n+1,i, ∀ j ∈ {1,2, . . . ,n},

ηn+1 =
n

∑
i=1

Λ̄
2
n+1,i−1,

ηn+2 = Λ̄n+1,n+1,

ηn+3 =−Λ̄n+1,n+1h(x0).

Letting ŷ = 0 in the equation F̂(x̂, ŷ) = 0, the equation C(x̂) = 0, representing the intersec-

tion of the graph of f with H can be obtained as

C(x̂) =F̂(x̂,0)

=
n

∑
j=1

η jx̂ j +ηn+2 f̂ (x̂,0)+ηn+3 = 0, (4.55)

which indeed is the representation of c(t) in the (x̂, ŷ) frame.

In order to investigate the differentiability property of C(x̂), it is sufficient to examine

the same property for f̂ (x̂,0) since the rest of the components are linear and thus of class

C ∞. Regarding (4.52) with q ∈ {1,2, . . . ,n} we have

∂ f̂
∂ x̂q

=
n

∑
p=1

∂ f
∂xp

∣∣∣∣
x=x(x̂,ŷ)

∂xp

∂ x̂q
. (4.56)
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Note that xp is a linear function of x̂q, and thus the last term in (4.56) is constant. Taking

the kth derivative with respect to x̂qi , where qi ∈ {1,2, . . . ,n} with i ∈ {1,2, . . . ,k}, yields

∂ k f̂
∂ x̂q1∂ x̂q2 . . .∂ x̂qk

=

n

∑
p1=1

[
n

∑
p2=1

. . .

[
n

∑
pk=1

[
∂ k f

∂xp1∂xp2 . . .∂xpk

∣∣∣∣
x=x(x̂,ŷ)

∂xpk

∂ x̂qk

]
. . .

∂xp2

∂ x̂q2

]
∂xp1

∂ x̂q1

]
. (4.57)

Since f ∈ C k as well as xi is a linear combination of (x̂1, x̂2, . . . , x̂n, ŷ), one concludes

that all components in the right hand side of (4.57) exist and thus ∇k f̂ (x̂,0) exits. As

remarked before, the existence of ∇k f̂ (x̂,0) together with (4.55) implies the existence of

∇kC(x̂). This completes the proof of this lemma.

Corollary 4.4.1. Based on the assumptions and the results of Lemma 4.4.1, if H ⊥Ω, then

c(t) can be represented as a concave function in the (x̂, ŷ) coordinates.

Proof. Consider the coordinate transformation T that maps (x,y) to (x̂, ŷ), as defined in

Definition 4.4.6. The transformation function T positions the axes {x̂1, x̂2, . . . , x̂n} in the

n-dimensional space of the hyperplane H such that {ŷ} ⊥ H. Regarding Remark 4.4.3, T

is a function of ψ , by which the axes {x̂1, x̂2, . . . , x̂n} can freely rotate about ŷ axis. Since

H ⊥Ω, with a proper choice of ψ = ψ0, the orientation of the {x̂, ŷ} frame is adjusted such

that {x̂n} ‖ {y}. This is schematically shown in Figure 4.7 for n = 2.

Let {c(t) = (xc(t),yc(t))}= H ∩{(x,y) | y = f (x)}, according to Lemma 4.4.1. As

long as H ⊥Ω, and therefore H ‖ {y}, the set D defined as

D = H ( f )∩H (4.58)

can serve as the hypograph of c, i.e. D = H (c). Because f (x) is concave, by Lemma

4.4.1, D is a convex set too. Furthermore, a function is concave if its hypograph is convex

[73]. Therefore, the fact that D = H (c) is convex implies that c(t) can be represented by

a concave function. This function is defined by using the explicit representation of c by

C(x̂), as provided in Lemma 4.4.2. We thus can define g : Ω′→ R, where Ω′ ⊂ Rn−1 is a
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Figure 4.7: The hyperplane H ⊥ Ω is cutting the graph of f at c. The frame {x̂, ŷ} is
oriented on H such that {ŷ} ⊥Ω and {x̂n} ‖ {y}, with n = 2. Note that H ( f ) denotes the
hypograph of f .

concave function such that

{x̂ | x̂n = g(x̂1, x̂2, . . . , x̂n−1)}= {x̂ |C(x̂) = 0}. (4.59)

Corollary 4.4.2. Under the assumptions and the results of Corollary 4.4.1, if f : Ω→R is

a convex function, then c(t) can be represented by a convex function in (x̂, ŷ) coordinates

denoted by g as in equation (4.59).

Proof. This can be trivially shown by using the fact that for f being convex,− f is concave.

Lemma 4.4.3. Let f : Ω → R be a concave function, where Ω ⊂ Rn is a convex set.

Suppose that f ∈ C 1 in the neighborhood of arbitrary distinct points Pi ∈Ω, with i = 1,2.

Let Haux = {(x,y) | y = haux(x)} represent a hyperplane passing through (P1, f (P1)) and

(P2, f (P2)). Assume that h1 and h2 are linearizations of f at P1 and P2, respectively, and
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h1−h2 is not identically zero everywhere. We now have li = Hi∩Haux, and by considering

c from the result of Lemma 4.4.1, li is tangent to c at (Pi, f (Pi)), where i = 1,2.

Proof. In order to avoid potential confusion, let us define the dimension of the space,

where the graph of f is embedded as m = dimΩ+dim f = n+1. Per the assumption that

Haux is an arbitrary hyperplane passing through (Pi, f (Pi)), one has

(Pi, f (Pi)) ∈ {(x,y) | y = haux(x)}∩{(x,y) | y = hi(x)}. (4.60)

Therefore Hi∩Haux exists and is denoted by

li = {(x,y) | y = hi(x) = haux(x)}, (4.61)

Equations (4.60) and (4.61) imply that (Pi, f (Pi)) and li are a common point and a

common flat Fm−2, respectively for Hi and Haux. Moreover hi− haux is not identically

zero everywhere since (P1, f (P1)) /∈ H2 and (P2, f (P2)) /∈ H1 but (Pi, f (Pi)) ∈ Haux, where

i = 1,2. It is therefore understood that li passes through (Pi, f (Pi)). By Lemma 4.4.1,

because f is a concave function, c as the boundary of the convex set D = {(x,y) | y =

haux(x)}∩{(x,y) | y≤ f (x)} can be determined as

{(xc(t),yc(t))}= {(x,y) | y = haux(x)}∩{(x,y) | y = f (x)}. (4.62)

Considering the facts that (Pi, f (Pi))∈{(x,y) | y= f (x)} and (Pi, f (Pi))∈{(x,y) | y=

haux(x)}, where i ∈ {1,2}, one can say that (Pi, f (Pi)) ∈ {(x,y) | y = haux(x)∩ f (x)}.

Therefore, per equation (4.62) it can be realized that

{(P1, f (P1)),(P2, f (P2))} ⊂ {(xc(t),yc(t))}. (4.63)

Note that

1. (P1, f (P1)) ∈ l1 and (P2, f (P2)) ∈ l2,

2. equation (4.61) implies that li ⊂ {(x,y) | y = hi(x)}, i = 1,2,
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3. H1 and H2 are tangent to f at (P1, f (P1)) and (P2, f (P2)), respectively,

so that one can conclude that l1 and l2 are tangent to f at (P1, f (P1)) and (P2, f (P2)),

respectively. Furthermore, since

1. l1 and l2 are tangent to f at (P1, f (P1)) and (P2, f (P2)), respectively,

2. li ⊂ {(x,y) | y = haux(x)}, i = 1,2,

3. equation (4.62) implies {(xc(t),yc(t))} ⊂ {(x,y) | y = haux(x)},

4. given the relation (4.63),

5. c is contained in f ,

one can then state that l1 and l2 are tangent to c at (P1, f (P1)) and (P2, f (P2)) respectively.

See Figure 4.8 for the case of Ω⊂ R2.

Figure 4.8: The tangent hyperplanes H1 and H2 to f at (P1, f (P1)) and (P2, f (P2)) are
shown. The auxiliary hyperplane is positioned arbitrarily while holding the condition of
Lemma 4.4.4.

Lemma 4.4.4. Consider the function f , the points {P1,P2} as well as the assumptions and

the result of Lemma 4.4.3, there exits a hyperplane Haux such that l1 is not parallel to l2.
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Figure 4.9: Hyperplanes H1 and H2, shown in grey, are tangent to f at (P1, f (P1)) and
(P2, f (P2)). Haux and H̄aux are two distinct auxiliary hyperplanes both passing through
(P1, f (P1)) and (P2, f (P2)). Note that {c(t) = (xc(t),yc(t))} = {(x,y) | y = haux(x)} ∩
{(x,y) | y = f (x)} and {c̄(t) = (xc̄(t),yc̄(t))}= {(x,y) | y = h̄aux(x)}∩{(x,y) | y = f (x)}.
It is assumed that l̄1 ‖ l̄2.

Proof. Consider two arbitrary distinct auxiliary hyperplanes, as Haux and H̄aux, both pass-

ing through (Pi, f (Pi)), with i = 1,2. These hyperplanes are shown in Figure 4.9 for n = 2.

Hyperplanes Haux and H̄aux, therefore cut the graph of f and Hi. The reason is that Hi is

tangent to f at (Pi, f (Pi)), and Haux and H̄aux each pass through (Pi, f (Pi)). Let

li =Haux∩Hi, (4.64a)

l̄i =H̄aux∩Hi. (4.64b)

Assume that l̄1 ‖ l̄2 and l1 ‖ l2. The following facts can then be concluded

1. Hyperplanes Haux and H̄aux are distinct and intersecting with each other at (Pi, f (Pi)),

for i = 1,2, implying that li ⊂ Haux is not parallel to l̄i ⊂ H̄aux. This implies that li

and l̄i intersect with each other.

2. The equations in (4.64) imply that li, l̄i ⊂ Hi.
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3. l1 ‖ l2 and l̄1 ‖ l̄2 are assumed to hold.

By Item 1, li and l̄i intersect with each other. Therefore, a unique hyperplane can be

passed through l1 and l̄1, and a unique hyperplane can be passed through l2 and l̄2. The

combination of this result with the result of Item 2 shows that the unique hyperplane that

can be represented by li and l̄i is Hi, for i = 1,2. Note that m = n+ 1, and Item 3 on the

other hand shows that l1 and l̄1 that are in H1 are respectively parallel to two l2 and l̄2 that

are in H2. This yields the following result

H1 ‖ H2. (4.65)

Since hi is the linearization of f at Pi, we have ∇ f (Pi) = ∇hi, which together with

(4.65) results in

∇ f (P1) = ∇ f (P2). (4.66)

Equation (4.66) with the assumption of h1−h2 not being identically everywhere violates

the fact that f is a concave function of class C 1 in the neighborhood of P1 and P2. Hence,

if there exists the hyperplane H̄aux for which the assumption l̄1 ‖ l̄2 is held, then for any

other hyperplane, such as the Haux that passes through (P1, f (P1)) and (P2, f (P2)), we have

l1 not parallel to l2. This completes the proof of the lemma.

Lemma 4.4.5. Consider a concave function f : Ω→ R, over a convex set Ω ⊂ Rn with

x ∈ Ω and y ∈ R as the image of f over Ω. Suppose f is of class C 1 in a neighborhood

of two distinct points P1,P2 ∈ Ω. Let f be linearized at P1 and P2 with hyperplanes H1 =

{(x,y) | y = h1(x)} and H2 = {(x,y) | y = h2(x)}, respectively. Assume ∇ f (P1) 6= ∇ f (P2),

and the intersection of H1 and H2 is a singleton

Lint = {(x,y) | y = h1(x),y = h2(x)} (4.67)

and its projection onto Ω, denoted by Lp j = projΩ Lint , lies between P1 and P2. In addition,

Lint is a Fm−2, where m = n+1.
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Proof. Lemma 4.3.2 tackles the similar problem for f being a function of only one vari-

able. Assume the result of Lemma 4.4.5 is true for a function of (n−1)-variables such as

g : Ω′→ R, where Ω′ ⊂ Rn−1, the proof is given using induction as follows.

The functions h1(x) and h2(x) representing the two hyperplanes are defined as

hi(x) = f (Pi)+∇ f (Pi)(x−Pi), i ∈ {1,2}. (4.68)

Since from the assumption f ∈ C 1 for x ∈ {x | ‖x−Pi‖< ε}, where ε is sufficiently small,

and ∇ f (P1) 6= ∇ f (P2), one concludes that

∇h1(x) 6= ∇h2(x). (4.69)

Therefore, H1 in not parallel to H2, implying that H1 and H2 intersect with each other. In

order to determine Lint = H1 ∩H2, one must set y = h1(x) and y = h2(x), and solve the

following set. Invoking the definition of h1 and h2 from equation (4.68) one may write

A[x, y]T = b (4.70)

where

A=

 ∇ f (P1) −1

∇ f (P2) −1

 , b =

 ∇ f (P1)P1− f (P1)

∇ f (P2)P2− f (P2)

 , (4.71)

and ∇ f (Pi), with i = 1,2 is considered to be a row vector. Since ∇ f (P1) 6= ∇ f (P2), ac-

cording to the assumptions, the row vectors of matrix A, i.e.

A1 = [∇ f (P1) −1],

A2 = [∇ f (P2) −1],

are linearly independent. Consider the following set of equations representing Lint

n

∑
i=1

α jixi +α j,n+1y+α j0 = 0, ∀ j = {1,2, . . . ,n+1}, (4.72)

where α j0 and α ji are constants and α j j = 0. This together with the fact that A1 and A2 are

linearly independent implies that the solution to equation (4.70) is unique [79], and there-

fore Lint is a singleton. Recall from the proof of Lemma 4.4.3, m = dim(Ω)+ dim(y) =
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Figure 4.10: The tangent hyperplanes H1 and H2 to f at (P1, f (P1)) and (P2, f (P2)). The
auxiliary hyperplane Haux is positioned arbitrarily while the condition of Lemma 4.4.4 is
satisfied.

n+1 is defined as the dimension of the space where the graph of f (x) is embedded. Note

that by Proposition 1-13 in [77], since H1 and H2 are two non-parallel Fm−1, the intersec-

tion of H1 and H2 in Rm, denoted by Lint and represented by equation (4.72), is a Fm−2.

Although the existence of this intersection may seem to be trivial, the more impor-

tant result of this lemma lies in the fact that Lp j is located between P1 and P2, i.e.

∃M ∈ Lp j : ‖P1M‖+‖P2M‖= ‖P1P2‖, (4.73)

where M ∈Ω is a point, P1M, P2M and P1P2 are segments. First we address that H1 and H2

have two distinct common flats of dimension (m−3) denoted by {Q1,Q2} ∈Ω×R, i.e.

Q1 6= Q2 (4.74a)

Q1,Q2 ⊂ {(x,y) | y = h1(x)} (4.74b)

Q1,Q2 ⊂ {(x,y) | y = h2(x)} (4.74c)

In order to find Q1 and Q2, two auxiliary hyperplanes Haux and H̃aux, are used.

The hyperplane Haux is produced by passing an arbitrary Fm−1 through the two points

82



(P1, f (P1)) and (P2, f (P2)). Note that Haux should not be perpendicular to Ω. This is

schematically shown in Figure 4.10 for m = 3, as the highest tangible space.

Since the conditions of Lemma 4.4.3 are satisfied, we have

li = Hi∩Haux. (4.75)

such that li is tangent to c at (Pi, f (Pi)). According to Lemma 4.4.4, the arbitrary hy-

perplane Haux can be chosen such that l1 is not parallel to l2. According to Proposition

1-13 [77], since Haux and li are not parallel in Rm, li is an Fm−2. Moreover, by the same

proposition l1 and l2 are two non-parallel Fm−2 in H, and we have Q1, which is defined as

Q1 = l1∩ l2, (4.76)

and represents an Fm−3.

In the next step, the auxiliary hyperplane H̃aux is constructed by using the points

(P1, f (P1)) and (P2, f (P2)), not arbitrarily but such that H̃aux ⊥Ω (refer to Figure 4.11 for

n = 2). By choosing the right angle, we have

{P1,P2} ⊂ {x | H̃aux∩Ω}. (4.77)

The hyperplane H̃aux intersects with f at c̃, satisfying the conditions of Corollary

4.4.1. Therefore, c̃ can be represented by a concave function, as g : Ω′→ R, where Ω′ ⊂

Rn−1 defined as

x̂n = g(x̂1, x̂2, . . . , x̂n−1). (4.78)

Note that H1 and H2 are tangent to f at (P1, f (P1)) and (P2, f (P2)). The two flats of

dimension (m−2) as l̃1 and l̃2 are therefore determined to be

l̃i = Hi∩ H̃aux. (4.79)

By Lemma 4.4.3 and the fact that the function g is a representation for c̃, we have l̃1

and l̃2 tangent to g at (P1, f (P1)) and (P2, f (P2)). As stated in the beginning of the proof,

we assumed that the results of this lemma are true for a function of n−1-variables. Note
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Figure 4.11: The tangent hyperplanes H1 and H2 to f at (P1, f (P1)) and (P2, f (P2)). The
auxiliary hyperplane H̃aux ⊥Ω, cutting the graph of f at c̃. Note that D̃ = H̃aux∩S [ f ]. The
frame {x̂, ŷ} is oriented on H̃aux such that {ŷ} ⊥Ω and {x̂n} ‖ {y}, with n = 2 as an special
case.

that by equation (4.77) we have P1,P2 ∈ H̃aux. Hence, letting P̂i = T (Pi), with i = 1,2, and

noting that g(P̂i) = T ( f (Pi)), we can use the results of Lemma 4.4.5 to state that l̃1 and l̃2

intersect with each other at a flat of dimension m−3, as Q̂2, and in addition,

∃M′ ∈ projΩ′ Q̂2 : ‖P̂1M′‖+‖P̂2M′‖= ‖P̂1P̂2‖ (4.80)

Denoting Q2 = T−1(Q̂2), since H̃aux ⊥ Ω, conditions (4.77) and (4.80) imply that for

projΩ Q2 there exists a point such as M where

∃M ∈ projΩ Q2 : ‖P1M‖+‖P2M‖= ‖P1P2‖ (4.81)

In order to show that Q1 6=Q2 the following reasoning is used. Let laux =Haux∩H̃aux.

Since (Pi, f (Pi)) ∈ Haux and (Pi, f (Pi)) ∈ H̃aux, with i = 1,2, we have (P1, f (P1)) ∈ laux,

(P2, f (P2)) ∈ laux.
(4.82)
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Moreover, since l̃1 is tangent to f at (P1, f (P1)) by Lemma 4.4.3, and (P1, f (P1)) 6=

(P2, f (P2)), we have (P2, f (P2)) /∈ l̃1. Similarly, we can write (P1, f (P1)) /∈ l̃2. Summa-

rizing these results, we have (P1, f (P1)) ∈ l̃1,

(P2, f (P2)) /∈ l̃1,
and

 (P1, f (P1)) /∈ l̃2,

(P2, f (P2)) ∈ l̃2,
(4.83)

Equations (4.82) and (4.83) imply that l̃1 ∩ l̃2 6⊂ laux. Recall that Q2 = l̃1 ∩ l̃2 and laux =

Haux∩ H̃aux, therefore we conclude that

Q2 6⊂ Haux∩ H̃aux. (4.84)

Using the same reasoning for Q1 we have

Q1 6⊂ Haux∩ H̃aux. (4.85)

Therefore, noting that Q1 ⊂ Haux and Q2 ⊂ H̃aux, equations (4.84) and (4.85) yield

Q1 6= Q2. (4.86)

So far, the following results are obtained

Q1 ⊂ H1 and Q1 ⊂ H2, (4.87a)

Q2 ⊂ H1 and Q2 ⊂ H2, (4.87b)

Q1 6= Q2. (4.87c)

With the results in (4.87), conditions in (4.74) are satisfied, implying that Lint = H1 ∩

H2 exists and is constructed by using Q1 and Q2. Note that since Q2 ⊂ Lint , we have

projΩ Q2 ⊂ Lp j. This fact along with condition (4.81) yields M ∈ Lp j guaranteeing (4.73)

to be true. This completes the proof of the lemma.

Before going further, the following lemma, which is essential in this context is pre-

sented.
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Lemma 4.4.6. Let f : Ω→R be a concave function, where Ω⊂Rn is a convex set. Assume

that f is class C 1 in the neighborhood of point P0 ∈ Ω. Assume also that f is linearized

with h(x) by the Taylor series around P0. Then for any direction vector pointing from P0

in Ω defined as

vP0(x) =
x−P0

‖x−P0‖
, (4.88)

the distance function ∆(x), defined in (4.26) and (4.27), is monotonically increasing, i.e.

for two collinear points xI,xII ∈Ω defined as xI = s1vP0

xII = s2vP0

, s1,s2 ∈ R+, and s1 < s2, (4.89)

we have

∇∆(xI) ·vP0(x)≤ ∇∆(xII) ·vP0(x), x ∈Ω. (4.90)

Proof. Since the convexity of two functions is held under their addition [73], and the fact

that − f and h are both convex, ∆(x) = h(x)− f (x) is convex too. Moreover, according

to Proposition 4.3.1, h ≥ f , which implies that ∆(x) ≥ 0. Since f (P0) = h(P0), we have

∆(P0) = 0, as a global minimum of ∆ in Ω, i.e.

P0 = arg min
x∈Ω

∆(x). (4.91)

Let Pv be a plane specified as vP0 ∈ Pv and Pv ⊥ Ω, as plotted in Figure 4.12 for

n = 2. Consequently we have Pv ‖ {y}. Consider two orthogonal axes {ξ ,ζ} in the plane

Pv such that

vP0 ∈ {ξ} and {ζ} ‖ {y}. (4.92)

Since ∆(x) is convex, −∆(x) is concave, allowing us to use the results of Corollary

4.4.1. Note that the plane Pv is an F1 being perpendicular to Ω, so that the intersection of

the graph of−∆(x) with plane Pv can be represented by a concave function of one variable,

as g : Ω∩Pv→R. Since g is concave,−g is convex. Let us denote−g by δv : Ω∩Pv→R.

In this case we have ξ ∈ Ω∩Pv and ζ ∈ R as the image of δv over Ω∩Pv. Accordingly,
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we can write

ζ = δv(ξ ) (4.93)

Note that the plot of y = ∆(x) and ζ = δv(ξ ) for n = 2 is shown in Figure 4.12.

Figure 4.12: The plane Pv intersecting the epigraph of ∆(x) at Dc generates the convex
function δv(ξ ). Note that the triple-bar sign (≡) indicates coincidence in this plot.

Let T(ξ ,ζ ) : {(x,y) ∈ Pv} → (ξ ,ζ ) denote a transformation mapping from (x,y) to

(ξ ,ζ ) coordinate system. Since P0 lies in Pv and by equation (4.92) the axis {ξ} is along

vP0 , one can define (P0ξ
,0) = T(ξ ,ζ )(P0,0) as the representation of P0 in the (ξ ,ζ ) coordi-

nate system. Using an alternative definition for δv as {(ξ ,ζ ) | ζ = δv(ξ )}= {(x,y) | y =

∆(x)}∩Pv, we have

{(ξ ,ζ ) | ζ = δv(ξ )} ⊂ {(x,y) | y = ∆(x)} (4.94)

which implies

(P0ξ
,δv(P0ξ

)) = T(ξ ,ζ )(P0,∆(P0)) (4.95)
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From equations (4.91), (4.94) and (4.95) one concludes that(
arg inf

ξ

δv(ξ ), inf
ξ

δv(ξ )

)
= T(ξ ,ζ )

(
arg inf

x
∆(x), inf

x
∆(x)

)
(4.96)

Now, we have δv(ξ ) that is a convex function of one variable defined in the (ξ ,ζ )

coordinate system, and P0ξ
is its global minimum point. Moreover, from equation (4.92)

the unit vector vP0 is along ξ implying that one can use a replacement unit vector defined

as

vP0ξ
(ξ ) =

ξ −P0ξ

‖ξ −P0ξ
‖
. (4.97)

Using Lemma 4.4.2, the function δv(ξ ) is of class C 1 since ∆(x) ∈ C 1. Consequently, the

assumptions of Lemma 4.3.3 are satisfied, and thus we have

∇δv(ξ ) ·vP0ξ
(ξ )≥ 0, ξ ∈Ω∩Pv. (4.98)

Note that ζ = δv(ξ ) yields the image of x ∈ {x | x ∈Ω∩Pv}= {x | x = svP0,s ∈R} under

∆(x) in the ζ coordinate. This result together with equation (4.94) implies that equation

(4.98) represents the directional derivative of ∆(x) along vP0 in the (ξ ,ζ ) coordinates,

which allows us to write

∇∆(x) ·vP0(x)≥ 0, (4.99)

for x ∈ {x | x ∈ Ω∩Pv}. Since Pv is dependent on the direction of vP0(x), it is concluded

that (4.99) holds for x ∈Ω. Consequently, equation (4.99) yields

∇∆(xI) ·vP0(x)≤ ∇∆(xII) ·vP0(x), s1 < s2. (4.100)

The maximum error of approximation is defined as emax = supx∈Ω ∆(x), where ∆(x)

is defined in equations (4.26) and (4.27). Using the results of Lemmas 4.4.5 and 4.4.6,

Theorem 4.4.1 is given to find the set of points in Ω where emax lies.

88



Theorem 4.4.1. Consider a class C 1 concave function f : Ω→R, Ω⊂Rn. Assume that Ω

is bounded. Let the function be linearized around two distinct points P1,P2 ∈Ω with hyper-

planes H1 = {(x,y) | y = h1(x)} and H2 = {(x,y) | y = h2(x)}, respectively. Furthermore,

consider a flat of dimension (n− 1) as Lint defined in (4.67). Also, let Lp j = projΩ Lint .

Then, the solution to the following maximization problem

arg sup
x∈Ω

∆(x) (4.101)

lies either on Lp j, or at the boundary of the domain ∂Ω.

Proof. It can be recognized by Lemma 4.4.5 that Lp j is located between P1 and P2. Fur-

thermore, Lp j which intersects Ω at {q1,q2} = ∂Ω∩Lp j, divides Ω into two regions Ri

with i = 1,2, such that Pi ∈Ri. Therefore, ∂Ri consists of the discriminating line Lp j and

a part of ∂Ω. Define two unit vectors

vPi(x) =
x−Pi

‖x−Pi‖
, x ∈Ri, i = 1,2. (4.102)

Figure 4.13: Two regions R1 and R2 that are produced as a result of the intersection of
Ω ⊂ R2 and Lp j are illustrated. Points xI

(0) and xII
(smax)

are also shown for an arbitrary
direction of vector vP1 associated with region R1.

Note that the distance function in this case is a piecewise function defined by equa-

tion (4.26), that is repeated below as

∆(x) = ∆i(x), x ∈Ri, i = 1,2, (4.103)
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where

∆i(x) =

 |hi(x)− f (x)| , hi(x)< f (x),

hi(x)− f (x) , hi(x)≥ f (x).
(4.104)

According to Lemma 4.4.6, for any x ∈Ri that specifies the direction of vPi , there

exists a set of pairs (xI,xII) which is produced for each of the regions by using s1,s2 ∈R+,

as {
(xI,xII) | xI

(s1)
= s1vPi, xII

(s2)
= s2vPi, s1 < s2 ≤ smax

}
, (4.105)

where the index (si) shows that xI , and xII are functions of s1 and s2, respectively. In

addition, smax is a limitation for s2 such that xII
(smax)

∈ ∂Ri. Using the results of Lemma

4.4.6, we have

∇∆i(xI) ·vPi ≤ ∇∆i(xII) ·vPi, s1 < s2, (4.106)

which for s1 = 0 and s2 = ε , where ε is a sufficiently small positive real number, yields

∇∆i(xI
(0)) ·vPi ≤ ∇∆i(xII

(ε)) ·vPi, 0 < ε, (4.107)

By definition of xI and xII in (4.105) and the fact that s1,s2 ≥ 0, it is realized that xI

and xII are increased in the direction of vPi . This conclusion together with the inequality

(4.107) implies

∆(xI
(0))≤ ∆(xII

(ε)). (4.108)

Inequality (4.108) in a sequence of (xI,xII) including s2 = s1 + pε , with s1 = 0 and p ∈

{p ∈ N | p < pmax}, where pmax is defined such that smax = s1 + pmaxε , implies that

∆(xI
(0))≤ ∆(xII

(smax)
). (4.109)

As noted earlier, xII
(smax)

∈ ∂Ri, and according to inequality (4.109) one concludes that the

value of ∆(x) is maximum for x ∈ ∂Ri. On the other hand, Ri consists of the discriminat-

ing line Lp j and a part of ∂Ω. Therefore, the solution to (4.101) lies either on Lp j or ∂Ω.

This completes the proof of the theorem.
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Referring to Definition 4.3.1 the piecewise affine hyperplanes for P1 and P2 as the

nominal points is described by

H = {(x,y) | y = h(x)}, h(x) = hi(x), x ∈Ri, , i = 1,2, (4.110)

where

hi(x) = f (Pi)+∇ f (Pi)(x−Pi). (4.111)

Let us denote h(x), defined in equation (4.110) and used in Theorem 4.4.1, the first

stage of the intersection-based PWA approximation of the concave function f . This ap-

proximation can proceed to the next approximation stage if the function is linearized at the

point of maximum error. Towards this end, the continuity of the approximated function is

required.

Theorem 4.4.2. The PWA approximation of a concave function f : Ω→ R by h(x) given

in equations (4.110) and (4.111) is continuous, i.e.

lim
ε→0

h1(x?+ εvx?(x)) = lim
ε→0

h2(x?+ εvx?(x)), ∀x ∈Ω, (4.112)

where x? ∈ Lp j∩Ω and

vx?(x) =
x− x?

‖x− x?‖
. (4.113)

Proof. The continuity property of h can be trivially shown by recalling that h is constructed

as a result of the intersection of hyperplanes h1 and h2. The existence of these intersections

are guaranteed by Lemma 4.4.5. Therefore, h defined by (4.110) is continuous.

During any linearization stage, the PWA regions are produced by projecting Lint

onto Ω. consequently, polytopic regions are produced in the domain. In order to accelerate

each linearization stage, the procedure of finding the point of maximum error should be

studied in detail. With the properties of ∆(x) provided in Lemma 4.4.6 and Theorem 4.4.1,

Theorem 4.4.3 provides a straightforward tool for obtaining the points of maximum error.

However, we need two preliminary definitions before presenting Theorem 4.4.3.
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Definition 4.4.7. [77] The convex hall of a set of finite number of points is called polytope.

Definition 4.4.8. The notation n-Polytope is used to denote the polytope of dimension n in

space.

As a remark to the definition of polytopes, a vertex is a 0-polytope, a segment is a

1-polytope, a polygon is a 2-polytope, and a polyhedron is a 3-polytope.

Theorem 4.4.3. Given the assumption and results of Theorems 4.4.1 and 4.4.2, if f is

linearized by hi over an n−dimensional polytopic region Ri, the solution to (4.101) lies at

one of the vertices of Ri.

Proof. The proof of this theorem is given by using induction. Two steps are given here.

Based on the arguments in each step, a conclusion is drawn for the Step n.

Step 1: Polytopic regions are convex, therefore by Theorem 4.4.1 the point xmax =

arg maxx∈Ri
∆(x) lies at the boundary of the Ri. Let Lp j be the side of R i, where xmax lies.

By Lemma 4.4.5 we have

Lp j = projΩ Lint . (4.114)

Based on the fact that Lint is an Fm−2, as stated in Lemma 4.4.5, the hyperplane Hort as an

Fm−1 can be constructed such that Hort ⊥Ω and Lint ⊂ Hort . Consequently, we have

Lp j ⊂ Horth∩Ω. (4.115)

The function ∆(x) is convex over Ω. Therefore, the result in equation (4.115) and Corol-

laries 4.4.2 and 4.4.1 are used to state that {(x,y) | y = ∆(x)}∩Hort can be represented by

a convex function g, as

{(x̂, ŷ) | ŷ = 0, x̂n =g(x̂1, x̂2, . . . , x̂n−1), x̂ ∈ Hort}=

{(x̂, ŷ) | (x̂, ŷ) = T (x,∆(x)), x ∈ Lp j}, (4.116)

where the coordinates (x̂, ŷ) are defined in Definition 4.4.5 with {x̂n} ‖ {y}, and T is the

coordinate transformation function defined in Definition 4.4.6.
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Now, we have a convex function g : Lp j→R. Region R i is an n-polytope. Note that

Lp j as a side of the polytopic region R i is an (n−1)-polytope. Define

x̂max = arg max
(x̂1,x̂2,...,x̂n−1)∈Lp j

g(x̂1, x̂2, . . . , x̂n−1). (4.117)

Step 2: Based on the results of Step 1, Theorem 4.4.1 can be used for g to conclude

that x̂max lies in the ∂Lp j. Note that ∂Lp j consists of the sides of Lp j. Each side is an

(n−2)-polytope. The point of x̂max therefore lies in an (n−2)-polytope.

Continuing with the same reasoning to find the point of maximizing ∆(x) in Ri, we

arrive at the conclusion that in the Step n, the point of maximum error lies at the boundary

of a 1-polytope. A 1-polytope is a segment and the sides of a segment are vertices. These

vertices are the vertices of R i. This completes the proof of the theorem.

Definition 4.4.9. Consider a set D. The cavity of D is denoted by cav(D) and is defined

to be the set

cav(D) = conv(D)\D. (4.118)

where conv(D) denotes the convex hull of D as defined in Definition 4.3.3.

Another important point which has to be considered in the new PWA approximation

methodology is the convexity of the regions. If the produced regions are not convex, a

wide range of theorems for analysis and synthesis cannot be applied to our PWA models.

For this reason, the following theorem guarantees the convexity of such regions.

Theorem 4.4.4. Consider a class C 1 concave function f : Ω→ R, where Ω ⊂ Rn is a

convex set. The IPWA regions Ri produced as a result of the projection of hi onto Ω are

convex.

Proof. The proof of this theorem is given by contradiction. Let Ri be a non-convex region

as shown in Figure 4.14a for n = 2. Since the region Ri is non-convex and is produced by

projecting Hi onto Ω, the hypograph of Hi is defined in Ri is non-convex. Accordingly,
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(a) A part of segment d lies out of Ri.

(b) As a result of non-convex region, the asso-
ciated hyperplane becomes non-convex. The
cavity of Hi is filled with H1 and H2.

Figure 4.14: By contradiction, Ri is assumed to be a non-convex region. This figure shows
Ri and Hi for a two-dimensional domain (n = 2).

the set Hi over Ri is a non-convex subset of the hyperplane that serves as the linearization

of f at Pi.

Using the violation of the definition of convex sets as given by Definition 4.4.1 for

Ri, there exists a segment d with V ∈ d, as

V (t) =V1 +(V2−V1)t,

 t ∈ [0,1],

V1,V2 ∈Ri,
(4.119)

such that we have

M = d \{V ∈Ri} (4.120)

By Definition 4.4.9, we have M ∈ cav(Ri). Since ∇hi 6= ∇h j, where j is the index for

the neighboring region, and the fact that h is continuous, there must be more than one

hyperplane filling the cav(Hi). In other words, if there is only one hyperplane as H j such

that cav(Hi) ∈H j, then the fact that ∇hi 6= ∇h j implies h defined in (4.110) and (4.111) is

not continuous. Consequently, there are more than one region that fill the cav(Ri). This

implies that there are more that one region where M lies. Let d, while connecting V1 and

V2, intersects with at least two regions R1 and R2. These regions are shown for the case

of n = 2 in Figure 4.14a for illustrative purposes. Define t1 < t2 < t3 < t4 ∈ [0,1] such that
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V (t1)∈Ri, V (t2)∈R2, V (t3)∈R1, and V (t4)∈Ri. Based on the continuity of h together

with the assumption that ∇hi 6= ∇h j, we have either of the following conditions:

∇hi(V (t1)) ·v < ∇h2(V (t2)) ·v > ∇h1(V (t3)) ·v < ∇hi(V (t4)) ·v, (4.121a)

∇hi(V (t1)) ·v > ∇h2(V (t2)) ·v < ∇h1(V (t3)) ·v > ∇hi(V (t4)) ·v, (4.121b)

where v is a unit vector along the segment d. Let ϕ(x) be defined as

ϕ(x), f (x), ∀x ∈ d. (4.122)

Using definition of point V from equation (4.119), one can replace x by V (t) in (4.122) to

state ϕ(V (t)) = f (V (t)). It can be shown by Corollary 4.4.1 that ϕ(V (t)) is concave since

f (x) is concave. To avoid potential distraction, the details of the proof of this statement

is omitted here. Moreover, the concavity of ϕ(V (t)) implies that ϕ(V (t)) is absolutely

continuous [74]. Also ϕ(V (t)) is differentiable almost everywhere.

Since t1 < t2 < t3 < t4, according to Lemma 4.3.1 we have

∇ϕ(V (t1))< ∇ϕ(V (t2))< ∇ϕ(V (t3))< ∇ϕ(V (t4)) (4.123)

Note that hi, h1, and h2 are the linearization of the concave function f , therefore they serve

as supporting hyperplanes for both f (x) and ϕ(V (t)). On the other hand, condition (4.123)

dictates the condition for the gradient of the supporting hyperplanes of function ϕ(V (t)),

which is not consistent with condition (4.121a) nor with (4.121b), implying that Ri cannot

be non-convex.

Equipped with the theories that have been provided in this subsection, the algorithm

for the intersection-based PWA approximation can be described in the next subsection.

Figure 4.15 shows the flow diagram of the lemmas and the theorems that result in the

IPWA algorithms provided in Subsection 4.4.1
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Lemma 4.4.2Lemma 4.4.1

Lemma 4.4.3

Corollary 4.4.2

Corollary 4.4.1

Lemma 4.4.4

Lemma 4.4.5

Lemma 4.4.6

Theorem 4.4.2

Theorem 4.4.1

Theorem 4.4.3

Theorem 4.4.4

Proposition 4.3.1

Lemma 4.3.1

IPWA 
Algorithms for 

functions of
n-variables

Theorem 4.4.5

Figure 4.15: The flow diagram of the theory for the proposed algorithms in Subsection

4.4.1 for functions of n−variables. Note that the yellow blocks are from the IPWA ap-

proximation theory for functions of one variable.
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4.4.1 The IPWA Algorithms

In this subsection, algorithms to perform the intersection-based PWA approximation for

both concave/convex and continuous functions are introduced.

Concave/Convex Functions

This algorithm is proposed for a concave function. If f is convex, − f is then considered.

Problem 4.4.1. Consider a class C 1 concave function f : Ω→ R, where Ω⊂ Rn. Find f̄

over the domain of f .

Algorithm 4.4.1.

1. The primary linearization points are given.

2. Choose one of the linearization points from Step 1 and denote it by PNu , where Nu is

the number of linearization points at the uth iteration. At this stage u = 1 and Nu is

determined by Step 1.

3. Using Taylor series, the function f is linearized around PNu . The produced lineariza-

tion hyperplane is denoted by Hi = {(x,y) | y = hi(x)}.

4. (a) If Nu = 1, go to Step 5.

(b) If Nu = 2, H1 and H2 intersect with each other at L1,2
intu , according to Lemma

4.4.5. Projecting L1,2
intu onto Ω results in L1,2

p ju .

(c) If Nu > 2, find the intersections of hNu with hi, where i ∈ {1,2, . . . ,Nu− 1}.

Denote them by LNu,i
intu , and their projection onto Ω by LNu,i

p ju , where u is the lin-

earization iteration number. Note that Li, j
p j is the projection of Li, j

int over Ω from

the previous iteration. Note that the superscript j stands for the neighboring

region of the ith region.
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The result of Sub-items 4b and 4c will be a set of convex regions denoted by Rk,

where k ∈ {1,2, . . .Nu}, as guaranteed by Theorem 4.4.4. In case of the Sub-item

4a, we have R1 = Ω.

5. Designate all vertices of regions Rk by qk,λ , where λ ∈ {1,2, . . . ,λ max
k }, with λ max

k

denote the number of vertices of region Rk.

6. If f is already linearized around all the primary linearization points from Step 1, go

to Step 7. Otherwise, choose the next primary linearization point, at which f is not

linearized yet. Then let u := u+1, and go to Step 3.

7. By Theorem 4.4.3, the point at which the emax occurs is determined as

emax = sup
k,λ

∆(qk,λ ) (4.124)

8. The stopping criterion is defined as

emax ≤ edes (4.125)

where edes is called the desired error and is defined to be the maximum allowable

error determined by the user. If the stopping condition is satisfied, the IPWA ap-

proximation is complete and, therefore exit the iteration. Otherwise, u := u+1 and

PNu = arg sup
k,λ

∆(qk,λ ) (4.126)

Then go to Step 3. This iteration is continued until the stopping condition is satisfied.

Remark 4.4.4. The primary linearization points are suggested under two categories:

First, in case of controller synthesis, the reference point where after applying the con-

troller the system is expected to reach to the trajectories, and second, any point for which

zero amount of error is required by the user.
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Continuous Functions

Despite the fact that non-concave functions are rather difficult to tackle, many applications

have nonlinearities that are neither concave nor convex. For this purpose, two different

algorithms which are successfully applied to the axial compression surge and stall problem

are given in this subsection.

A. Fourth Order Concave Polynomial Approximation (FOCP)

The first algorithm proposed for approximating a non-concave function f (x) by a PWA

function is based on the mean curvature of the function graph. First the definition of

Weingarten map is give for n = 2.

Definition 4.4.10. [80] Let S(x, f (x)) denote the smooth surface representing the graph

of a smooth function f : Ω→ R. The Weingarten map of S is then defined as follows.

W =−∇n(x), (4.127)

where n(x) is the unit normal vector field.

Definition 4.4.11. Given the smooth surface S(x, f (x)) and W denoting the Weingarten

map of S from Definition 4.4.10, the mean curvature of S over Ω, is denoted by curvΩ S

and is defined to be

curvΩ S =
1
2

traceW (S). (4.128)

For the definition of the mean curvature of higher dimensional surfaces the reader is

referred to [81]. The idea is to approximate a function by a fourth order polynomial p(x)

with a specific structure such that:

1. The values of f (x) and p(x) are identical at the origin.

2. Although f (x) is not a concave/convex function, it possesses either a negative or a
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positive average value of its mean curvature over Ω. The second criterion is there-

fore,

sign[curvΩ S(x, f (x))] = sign[curvΩ S(x, p(x))] (4.129)

3. [p(x)− f (x)]2 is minimized over Ω.

With these specifications, the next theorem can be formulated to approximate f .

Theorem 4.4.5. Let the function f : Ω→ Rn be given over a convex set Ω. Assume that

for S(x, f (x)) defined in Definition 4.4.11 we have sign(curvΩ S) = −1. Let x0 ∈ Ω be a

given point for the approximation of f . Then, by solving the system of algebraic equalities

and inequalities (4.131), (4.132) and (4.133a), f can be approximated by a fourth order

concave polynomial of the form

p(x) =
n

∑
i=1

4

∑
j=1

ai jx
j
i +a0 (4.130)

Proof. Since x0 is a given point for the approximation of f (x), it is important to make p(x)

pass through x0. We thus write

p(x)|x0 = f (x)|x0

implying that

a0 = f (x0) (4.131)

For p to be concave the negative-definiteness of its Hessian matrix is required. Since p

comes from a specific class of fourth order polynomials (4.130), we have

∂ 2 p
∂xi∂x j

= 0, ∀i 6= j,

which significantly simplifies the structure of the Hessian matrix as

∇
2(p) =
12a14x2

1 +6a13x1 +2a12 0 0

0 . . . 0

0 0 12an4x2
n +6an3xn +2an2


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For the above matrix to be negative-definite, the eigenvalues which are the diagonal

elements need to be negative, i.e.

12ai4x2
i +6ai3xi +2ai2 = xi

1

T  12ai4 3ai3

3ai3 2ai2

 xi

1

< 0,

where i ∈ {1,2, . . . ,n}. This condition in turn can be achieved by ai4 < 0

8ai4ai2−3a2
i3 > 0

(4.132)

To optimally determine the other polynomial coefficients, the least squares technique is

used [73]. Towards this end, the integral of squares of the errors S(a) is minimized subject

to the polynomial coefficients a = [a11, ...,a14, . . . ,an1, ...,an4] as

S(a) =
∫

Ω

[ f (x)− p(x,a)]2dx1dx2 . . .dxn

minS(a)

Since S(a) is convex, the solution can be trivially found by applying the first order neces-

sary condition [73], namely by finding the solution of the following set of linear algebraic

equations

∂S(a)
∂ai j

= 0 (4.133a)

where i ∈ {1,2, . . . ,n} and j ∈ {1,2,3,4}.

Remark 4.4.5. In order to find the the polynomial coefficients, the following procedure is

conducted.

1. The set of equations (4.131), (4.132) and (4.133a) are applied to PENBMI [49] with

YALMIP [82] interface.
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2. If the polynomial coefficients are found satisfying (4.132), exit the algorithm. Oth-

erwise go to the Step 3.

3. one of the equations from (4.133a) will be eliminated as follows. The solution to

(4.131), (4.132) and (4.133a) for ai j is computed, and emax is determined 4× n

times. Each time only one of the equations from (4.133a) is eliminated. At the end,

ai j associated with the trial that resulted in the minimum emax is selected.

Problem 4.4.2. Consider a class C 2 non-concave/non-convex function f : Ω→ R, where

Ω⊂ Rn. Assuming that the average value of the mean curvature of f is negative, find f̄ .

Once the non-concave function f̄ is approximated by a concave polynomial, the

concave algorithm 4.4.1 can be applied to find the IPWA.

B. Conservative Heuristic Approach (CONS)

For a number of non-concave/non-convex functions, curvΩ S(x, f (x)) attains a value close

to zero, which forcibly prevents us to approximate it with a concave/convex function. For

these types of non-concave/non-convex functions, the Conservative Approach is proposed.

In this algorithm, the non-concave function f is approximated in a way similar to the con-

cave approximation algorithm, with the main difference that the surface mean curvature

of f is considered. This is due to the fact that the theorems provided in Subsection 4.4

are not valid for non-concave functions. Although the concept of the surface mean cur-

vature does not demonstrate separation of concave and convex parts of a function, it can

heuristically be used to find the initial linearization points that are not in the highly curved

part of the surface S(x, f (x)). Hence, every step of the approximation by the conservative

heuristic approach has to be checked to determine if the results of the above theorems are

not violated. The detail of this method is explained in what follows.

Problem 4.4.3. Consider a non-concave/non-convex function f : Ω→ R, where Ω⊂ Rn.

Assuming curvΩ S(x, f (x))≈ 0, find f̄ .
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Algorithm 4.4.2.

1. In the initial linearization stage, select the points from the following categories:

(a) the given points, and

(b) the points at which the absolute value of the surface mean curvature attains a

minimum value.

2. Repeat Steps 2 and 3 from Algorithm 4.4.1.

3. Do Step 4 from Algorithm 4.4.1, but with the following main differences. Check

if LNu,i
intu associated with the intersection of hNu and hi is located between PNu and Pi,

with i ∈ {1,2, . . . ,Nu−1}. If this condition is not satisfied, the algorithm is stopped,

and no IPWA approximation will be returned. Furthermore, the associated region

with PNu is created as instructed in the Algorithm 4.4.3 (described next).

4. Using a numerical optimization method such as the steepest descent, or Newton’s

method, find the points of emax over the entire domain.

5. The sopping criterion consists of two parts:

(a) Either the condition (4.125) is satisfied or

(b) LNu,i
p ju is not located between the two linearization points.

If the stopping criterion is not met, the loop is repeated from Step 2 to the end of

Step 5. Otherwise the PWA intersection-base approximation for f is returned.

Non-convex regions are difficult to define or to work with. Therefore, they need

to be divided into several convex subregions. The procedure for dividing the non-convex

regions is described next.

Algorithm 4.4.3.
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1. Consider the uth iteration of the linearization. Let the non-convex regions for lin-

earization points Pi, where i ∈ {1,2, . . . ,Nu−1} be already determined. Note that in

these non-convex regions hi are defined.

2. The function f is linearized by hNu around PNu . The part of hNu(x) for which

hNu(x)> hi(x) is then discarded.

3. The remaining part of hNu is projected onto Ω, creating region RNu .

4. Since RNu is not guaranteed to be convex, it is split into as many regions as Li, j
p ju

intersects RNu , where i, j ∈ {1,2, . . . ,Nu}.

5. The boundary of RNu consists of Li, j
p ju that are Fm−2. The half-spaces HSi, j are

defined to be the either side of Li, j
p ju in Ω. The half-spaces are convex, therefore

their intersections are convex too. Denote any intersection of three half-spaces that

belongs to RNu by R
(r)
Nu

such that RNu =
⋃

r R
(r)
Nu

.

6. RNu is returned that is divided into a number of convex sub-regions R
(r)
Nu

.

4.5 Conclusions

In this chapter, a new methodology for producing a continuous PWA approximation of

nonlinear functions was developed. Using this technique, the axial compressor stall and

surge problem will be treated in the next chapter, which has not been addressed before in

the literature. The proposed IPWA approximation has the following properties:

• Continuity of the vector fields,

• Optimality of the linearization of the nonlinear function relative to the maximum

approximation error,
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• Increased reduction of the approximation error for a fixed number of regions and

vice versa (as compared to the Voronoi-based and the uniform grid PWA models for

the motivating Moore-Greitzer system as discussed in Section 5.2),

• Consistency of the derivative of the nonlinear function with the derivative of its

approximation at the linearization points.

In particular the reduction in the number of the PWA regions for a fixed approximation

error is discussed here. With the current complexity in solving bilinear matrix inequalities,

which occurs for many physical systems, number of PWA regions plays a significant role

for finding the PWA state feedback gains. The more the number of the PWA regions, the

harder is solving the set of BMIs.
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Chapter 5

Axial Compressor Surge and Stall

Suppression

This chapter addresses the control synthesis problem of the Moore-Greitzer axial compres-

sor model describing the two major compressor instabilities − surge and rotating stall −

using both pseudo Euler-Lagrange and piecewise affine methodologies. The compressor

no-stall (surge) problem has already been addressed in Chapter 3. This chapter is orga-

nized as follows. Section 5.1 addresses the simulation of the closed-loop system associated

with application of each nonlinear technique. In Section 5.2, the IPWA model of the third

order stall and surge system is given. Finally, a PWA synthesis technique is used to control

the system.
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5.1 Pseudo Euler-Lagrange (PEL) Approach

5.1.1 Pseudo Euler-Lagrange Control Synthesis Problem

As given in Chapter 2, the third order Moore-Greitzer compressor model has the following

form

ẋ1 =−x2 +
3
2

x1 +
1− (1+ x1)

3

2
−3x3(1+ x1) (5.1a)

ẋ2 =
1

β 2 (x1−u) (5.1b)

ẋ3 =−σx2
3−σx3

(
2x1 + x2

1
)

(5.1c)

Furthermore, as shown in Chapter 2, the simplifying equations corresponding to (5.1) for

obtaining the pure surge model is given by

ẋ1 =−x2−
3
2

x2
1−

1
2

x3
1 (5.2a)

ẋ2 =
1

β 2 (x1−u), (5.2b)

As developed in Chapter 3, the pseudo Euler-Lagrange controller has the following form

u2(x1,x2) = β
2(α +ρ)(

3
2

x2
1 +

1
2

x3
1)−β

2(γ +ρ)x1−β
2
ρx2. (5.3)

By conditions (3.68), (3.78), (3.87a) and (3.87c), α and ρ are selected to be α = −4 and

ρ = 3.0. Since potential variations of β̄ is considered, one needs to be careful in selecting

γ . This is accomplished by using the allowable γ chart shown in Figure 3.1 as well as

equation (3.87b). Accordingly, γ = 3.5 for α = −4 is chosen. With this selection the

closed-loop surge model is stabilized with a maximum variation of ±8% in the parameter

β̄ . The simulation results are provided in Figure 5.1

Although the controller was successfully applied to the pure surge model (5.2), one

needs to investigate the stability property of the full order closed-loop system (5.1) using

this controller (5.3). For this purpose, it is important to know when the controller is to

be applied to the surged model. The reason is that x3 = 0 was assumed in the pure surge
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Figure 5.1: Simulation of the closed-loop system by the pseudo Euler-Lagrange with an
8% variation in β̄ for the initial condition x0 = [0.5 −1.2].

model, whereas x3 6= 0 corresponding to the initial time. The following two suggestions

are proposed.

Suggestion 1: Sensors

Using hot wires, or velocity probes the circumferential velocity disturbance can be

measured. According to equations (2.20) and (2.26), the disturbance is related to the stall

amplitude A, which is related to x3 as x3 = A2. Therefore, the inception and settling time

of x3 can be measured. Let us denote the settling time of x3 by ts. The controller (5.3)

is then applied to the third order system (5.1) at ts, which is the method that is used in

practice. In order to implement the proposed controller in MATLAB, one either needs to
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i xmin
i0 xmax

i0 Nb
i

1 −2.0 2.0 {1, 2, . . . , 7}
2 −2.0 2.0 {1, 2, . . . , 7}
3 0.0 1.0 {1, 2, . . . , 7}

Table 5.1: Set of parameters that specify the initial conditions of the open-loop full order
Moore-Greitzer model.

simulate sensors, or to follow the Suggestion 2.

Suggestion 2: Simulation Experiment

Using a relatively wide range of initial conditions, the open-loop system (5.1) is

simulated for the stall amplitude. The set of initial conditions for each state has the form

xi0 ∈
{

xi | xi = xmin
i0 +

ni

maxni
(xmax

i0 − xmin
i0 ), ni ∈ Nb

i

}
, (5.4)

where i = 1,2,3 is the state index, xmin
i0 and xmin

i0 are the minimum and the maximum initial

values considered for the state xi, and Nb
i is a bounded subset of natural numbers. Figure

5.2 illustrates the open-loop simulation of (5.4) associated with more than 340 sets of

initial conditions that are given in Table 5.1.

According to the simulation conducted for these initial conditions (refer to Figure

5.2), x3 damps out very quickly as compared to the other two states and reaches zero. Note

that the initial conditions for x1 and x2 are chosen from the sets |x10| ≤ 2 and |x20| ≤ 2.

This is due to the fact that the settling time for x3 was decreased while |x10| and |x20| were

increased beyond 2, according to the simulation results.

As shown in Figure 5.2, the state x3 settles down within less that 0.7 seconds, al-

lowing one to apply the proposed PEL controller to the third order model. However, a

modeled sensor in MATLAB is used to determine the settling time of x3 in the following

simulations.
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Figure 5.2: Simulation of the open-loop third order Moore-Greitzer model with more than

340 sets of initial condition.
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5.1.2 Comparison

Pseudo Euler-Lagrange:

The proposed controller in equation (5.3) is used to control the third order Moore-

Greitzer model (5.1). The results of the simulations are shown using the solid lines in

Figures 5.4a, 5.4b, and 5.4c. The initial conditions used for the simulations are given as

follows

x0 = [−1.2 1.0 0.5]T , (5.5a)

x0 = [0.6 −1.4 0.2]T , (5.5b)

x0 = [1.7 −0.4 0.9]T . (5.5c)

Backstepping:

One of the best techniques that is used to control the system (5.2) is backstepping.

The design procedure, as well as the solution to this problem is already addressed in Sec-

tion 3.5.2. The backstepping control law that was obtained in Chapter 3 is repeated here

u2 = (1−β
2)x1 +β

2
γbx2 +β

2 9γb

8αb
(x2− γbx1) (5.6)

The closed-loop system was given a disturbance of an 8% change in β̄ , for which the

simulations are given in Figure 5.3.

Although the system does not become unstable, according to equation (3.59) the

candidate Lyapunov function is not negative definite (for (x1,x2) = (−2.1,2.0) we have

V̇ = 0.85 > 0). This implies that there is no guarantee that for a different initial condition

the system is stable. However, we still take into the consideration that a Lyapunov function

may be found for the closed-loop disturbed MG system by the controller (5.6). Therefore,

using the initial conditions that are given in (5.5), the controller in (5.6) is applied to the

third order MG model. The results of the simulations are shown using the dashed lines in

Figures 5.4a, 5.4b, and 5.4c. Comparing the third order system (5.1) response using the
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PEL and the backstepping controllers, as shown in Figure 5.4, the following observations

are made.
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(a) States corresponding to the solid and dashed lines represent x1 and x2, re-

spectively.
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(b) Control input signal.

Figure 5.3: Simulation of the closed-loop system by the backstepping with an 8% variation

in β̄ for the initial condition x0 = [0.5 −1.2].
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(c) The initial condition is x0 = [1.7 −0.4 0.9]T .

Figure 5.4: States corresponding to the solid and dashed lines represent the closed-loop

third order MG model by using PEL and backstepping techniques, respectively.
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(c) The initial condition is x0 = [1.7 −0.4 0.9]T .

Figure 5.5: The solid and dashed lines correspond to the PEL and backstepping control

laws, respectively. Note that the kink point represents the first control signal after the

delay.
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1. The settling time of the states using the PEL controller is less than the settling time

of the states using the backstepping controller.

2. Using the backstepping controller the maximum overshoot of the system response

is less than the system response by using the PEL.

Figure 5.5 represents the PEL control action versus the backstepping control action. As it

was discussed in Section 5.1.1, the stall amplitude is measured using sensors. As the stall

amplitude is damped out, the control signal obtained by using the second order system

(5.2) is applied to the third order system (5.1).

Feedback Linearization:

The control law that was driven based on the feedback linearization technique is

given below

u2 =−β
2
[

3
4

x5
1 +

15
4

x4
1 +

(
1
2

k f
1 +

9
2

)
x3

1 +
3
2

x2
1x2

+
3
2

k f
1 x2

1 +3x1x2−
(

1
β 2 + k f

2

)
x1 + k f

1 x2

]
. (5.7)

This controller for the surge model loses stability for an 8% of disturbance in the β̄ (refer

to Figure 5.6). The position of the closed-loop poles are chosen to yield

ζ = 0.5

ωn = 0.5

so that Pi =−ζ ωn±
√

1−ζ 2ωn j. The simulations associated with this system are given in

Figure 5.6. Note that the aircraft is considered as a safety-critical system. Figure 5.6 shows

that the feedback linearization method does not provide a reliable and robust solution for

the aerial engine surge problem due to instability.

5.1.3 Conclusions

In this section, the axial compressor surge problem was treated with three different non-

linear control techniques. As shown, the pseudo Euler-Lagrange provided the third order
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Figure 5.6: Simulation of the closed-loop system by the feedback linearization with an 8%
variation in β̄ for the initial condition x0 = [0.5 −1.2].

Moore Greitzer model with robustness. Accordingly, for some system parameter varia-

tions the system was still guaranteed to be stable, which could not be accomplished by

using the feedback linearization technique. The backstepping controller was also able

to stabilize the disturbed system to the origin. Nevertheless, we did not obtain a formal

mathematical proof that the backstepping method guarantees stability under parameter

variations.
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5.2 Piecewise Affine Approach

5.2.1 IPWA Approximation and the Modeling Problem

In this section the proposed IPWA approximation method will be compared to the uniform

grid and the Voronoi-based PWA approximation techniques. Accordingly, a brief intro-

duction of these methods and the general notion of the algorithms are given. However,

the reader is encouraged to refer to the original literature, namely reference [39] for the

uniform grid and reference [76] for the Voronoi-based techniques.

A. Uniform Grid PWA Approximation Technique

The uniform grid PWA approximation can be used to approximate a continuous function

of n−variables. However, the following algorithm is given for a function of 2−variables,

since the nonlinear functions that are approximated in this section are functions of 2−variables.

Let f : Ω→ R be a continuous nonlinear function, where Ω⊂ R2.

1. Axes {x1} and {x2} are uniformly partitioned into m1 and m2 regions, respectively.

2. By using a sized partitioning of each axis (i.e. {x1,x2}), the domain is uniformly

partitioned into m1×m2 rectangular regions that are denoted by RR
i j, where R in

the superscript stands for rectangular, and i ∈ {1,2, . . . ,m1} and j ∈ {1,2, . . . ,m2}.

Denote the vertices of RR
i j by V1, V2, V3 and V4.

3. Using the main diagonal V1V3 each rectangular region RR
i j is the subdivided into two

simplices, which in this case are triangles. These simplicial regions are denoted by

RU
i j and RL

i j. Note that the vertices of RU
i j are {V1,V2,V3} and the vertices of RL

i j

are {V1,V3,V4}.

4. The nonlinear function f is then evaluated at each vertex of the regions RU
i j and

RL
i j. Accordingly, two hyperplanes {(x,y) | y = hU

i j(x)} and {(x,y) | y = hL
i j(x)}
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are constructed by using the sets of points {(V1, f (V1)),(V2, f (V2)),(V3, f (V3))} and

{(V1, f (V1)),(V3, f (V3)),(V4, f (V4))}, respectively.

5. The algorithm returns functions hU
i j : RU

i j → R and hL
i j : RL

i j→ R.

In order to reach a desirable maximum approximation error, the number of partitions cor-

responding to each axis is increased. Therefore, the algorithm is conducted starting Step

3.

B. Voronoi-based PWA Approximation Technique

The Voronoi-based PWA approximation technique was originally introduced for functions

of 2−variables [76]. In this section, a concise algorithm associated with this methodology

is given.

Definition 5.2.1. [76] Let Ω⊂ R2 denote a given domain, and Ξ = {X1,X2, . . . ,Xm} ⊂Ω

designate the set of generators or Voronoi centers. The Voronoi cell V (Xi) in Ω corre-

sponding to the generator in Xi is then defined by

V (Xi) = {x ∈Ω | ‖x−Xi‖< ‖x−X j‖}, ∀Xi,X j ∈ Ξ with j 6= i. (5.8)

Let f : Ω→R be a continuous nonlinear function, where Ω⊂R2. The Voronoi-base

PWA approximation of f is computed as follows:

1. A set of initial generators Ξ = {X1,X2, . . . ,Xm} are given. The criterion to determine

the generators is based on the points, where the surface of the function f has the

minimum value of mean curvature, as defined in Definition 4.4.1.

2. The domain Ω is then partitioned into m Voronoi cells denoted by V (Xi) according

to Definition 5.2.1.

3. For each generator, the hyperplane {(x,y) | y = hi(x)} is constructed by linearizing

f around Xi. The functions hi : V (Xi)→ R are therefore produced.
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4. The maximum error emax is obtained numerically, as

emax = arg max

[
sup

x∈V (Xi)

( f (x)−hi(x))

]
(5.9)

The argument of the above maximization is denoted by x∗.

5. Let edes be the user-defined desirable maximum approximation error. Then if the

criterion emax < edes is satisfied, the algorithm is stopped and it returns functions hi.

Otherwise go to Step 6.

6. Let Xm+1 = x∗ and m := m+1. Go to Step 2.

C. Application of PWA Approximation Methods to the Moore-Greitzer Model

With reference to equation (5.1), the MG model uses two nonlinear functions

f1(x) =−σx2
3−σx3

(
2x1 + x2

1
)

(5.10a)

f2(x) =
1− (1+ x1)

3

2
−3x3x1 (5.10b)

The approximation domain Ω for both of these functions is chosen as follows

Ω = {x | Dx+d ≤ 0} (5.11)

D =



−0.8894 0.45714

0.48678 0.87353

1 0

−0.49103 0.87114

−0.34182 −0.93976

−1 0


, d =



1.6467

1.6396

0

1.7946

1.0253

1.5


The above region is chosen as the domain of the nonlinearity because in the chosen Ω we

have

• the operating point is contained, and
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• f1 is highly nonlinear,

By checking the Hessian matrix of f1 and f2, it can be shown that these functions are

not concave nor convex, implying that the algorithm for concave functions cannot directly

be applied to them.

Although f1 is not concave over Ω, the average of its mean surface curvature is

negative H̄Ω( f1) = −0.67. For this reason, we can apply the FOCP 1 algorithm to com-

pute the concave approximant, for which the intersection-based PWA approximation for

concave functions is applicable. Although H̄Ω( f2) =−0.13 is negative, the concave poly-

nomial approximation is not suitable for f2. For this reason, the CONS 2 algorithm is used

to determine the intersection-based approximation of f2. Since the regions are convex

polytopes, they can be defined as

Ri = {x | Eix+ ei ≤ 0} (5.12)

where Ei is an m×3 and ei is an m×1 matrices, and m is the number of edges associated

with the ith region.

The maximum error and the number of regions that are obtained for the approx-

imation are listed in Table 5.2. As can be seen from Table 5.2, for a fixed number of

regions the intersection-based PWA approximation for the MG model yields less amount

of approximation error.

5.2.2 PWA Control Synthesis Problem

The synthesis method used in this section is the PWA state feedback method, primarily

based on [28]. For this purpose, a common quadratic Lyapunov function V = xT Px is

required such that V > 0 and V̇ <−αV , where P is a 3×3 symmetric matrix and α > 0.

These conditions guarantee the exponential stability of the PWA system. The reader is

1FOCP is an acronym standing for Fourth Order Concave Polynomial Approximation introduced in Sub-
section 4.4.1.A.

2CONS is an acronym standing for Conservative Approach introduced in Subsection 4.4.1.B.
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PWA Approximation of f1(x) with 5 Regions
APPROXIMATION METHOD emax CONTINUITY

Intersection-based FOCP 8.53 Continuous
Voronoi-based 9.88 Discontinuous
Uniform Grid 10.65 Continuous

PWA Approximation of f2(x) with 2 Regions
Intersection-based CONS 3.46 Continuous
Voronoi-based 5.58 Discontinuous
Uniform Grid 4.89 Continuous

Table 5.2: A brief summary of the PWA approximation of f1(x) and f2(x) using different
methods.

encouraged to refer to [28] for more detail. Following [28], the next BMI has to be solved

for determining the state feedback gains G1 G2

GT
2 G3

< 0 (5.13)

where G1 =(AiQ+BiYi)
T +(AiQ+BiYi)+αQ+QT ET

i ΛiEiQ, G2 =(bi+Bimi)+QT ET
i Λiei

and G3 = eT
i Λiei. In the above inequality Q= P−1 and Yi =KiQ, where Ki is the state feed-

back gain for the ith region, mi is the state feedback affine term and Λi is an m×m matrix

with non-negative elements. For more detail the reader is referred to [28].

Solving the inequality (5.13) by using PENBMI [49] with YALMIP [82] interface,

the following Lyapunov matrix is obtained

P =


701.1853 −265.5056 1.2700

−265.5056 103.7864 −0.5107

1.2700 −0.5107 0.0039

 (5.14)
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The resulting state feedback gains are given by

K1 = [ 736.89 −115.61 42.91 ], m1 = 0

K2 = [ 786.65 −125.01 47.05 ], m2 =−2.8603

K3 = [ 720.50 −112.82 42.03 ], m3 = 3.1026

K4 = [ 1027.7 −162.13 60.64 ], m4 =−2.0473

K5 = [ 724.66 −113.45 42.21 ], m5 =−1.6368

By selecting β = 1/
√

2 and α = 7 taken from [16], the simulation results for two different

sets of initial conditions, namely x0 = [0.4, −1.4, 0.5]T and x0 = [1.04, 0.55, 0.5]T , are

shown in Figures 5.7a and 5.7b . In simulations, by applying the state feedback gains

to the intersection-based PWA MG model, it follows that the oscillatory nonlinear model

(5.1) is damped out within a short time period. As can be seen form Figures 5.7a and 5.7b,

the settling times corresponding to x0 = [0.4, −1.4, 0.5]T and x0 = [1.04, 0.55, 0.5]T are

2.4 and 0.8 seconds, respectively.

5.2.3 Conclusions

In this section, the intersection-based PWA approximation method, as a new and powerful

method in the PWA approximation of nonlinear systems was developed. Using the algo-

rithms provided in Section 4.4.1, the PWA models can be constructed for a wide range

of nonlinear functions. The method was successfully applied to the Moore-Greitzer axial

compressor surge and stall dynamics, as a safety-critical system. This model had never

been stabilized by using the PWA method in the literature before. However, due to the

computational complexities involved solving the BMIs are difficult in certain cases. For

instance, using PENBMI we were not be able to obtain the state feedback gains for the

PWA model obtained by the Voronoi-based and the uniform grid PWA approximation

methods.
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(b) The initial condition is x0 = [1.04, 0.55, 0.5]T .

Figure 5.7: Simulation results of the closed-loop MG model using the state feedback PWA
controller. The dashed, dash-dot and the solid lines represent x1, x2 and x3, respectively.
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Chapter 6

Conclusions and Future Research

6.1 Conclusions

This chapter summarizes the main contributions of this research. In Chapter 2, the axial

compressor that is used in gas turbines were introduced. Then rotating stall and surge

were discussed. They are two important instabilities in a compressor that may cause se-

vere mechanical damage and engine flame-out. Following the work done by Moore and

Greitzer in [3], a second order surge and a third order surge and rotating stall dynamics

were provided.

In Chapter 3, pseudo Euler-Lagrange systems that were introduced in [25] were ex-

tended to a system of the same order, but with additional nonlinear terms. The proposed

method enables one to fit a more general class of second order systems for performing

and solving Lyapunov-based control synthesis problems, such as the second order axial

compression surge phenomenon in jet engines. Accordingly, the stability analysis of the

extended pseudo Euler-Lagrange systems and the technique used to formulate a second

order system as an extended pseudo Euler-Lagrange system were addressed. The pro-

posed technique was applied to the stabilization problem of the no-stall Moore-Greitzer

axial compressor model. In order to compare the stabilization properties of the proposed
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method, a feedback linearization and a backstepping controllers were also designed as

benchmark methods. The main advantages of the pseudo Euler-Lagrange method for the

suppression of the Moore-Greitzer model oscillation were found to be the following:

• The pseudo Euler-Lagrange technique provides the designed controller with a broad

margin for choosing the control law coefficients such that the stability of the closed-

loop system is guaranteed for a range of disturbances.

• During the design process, nonlinearities that may enhance the stability quality of

the system are not canceled out as it is done in the feedback linearization technique.

In Chapter 4, the Intersection-based Piecewise Affine (IPWA) approximation method

was proposed. After a brief review on PWA systems, the approximation theory for func-

tions of one variable was first addressed. The theory of the proposed methodology was

then extended to functions of n-variables. Using the intersection-based Piecewise Affine

(IPWA) models, the following properties can be achieved:

• Continuity of the vector fields,

• Optimality of the linearization of the nonlinear function relative to the maximum

approximation error,

• Increased reduction of the approximation error for a fixed number of regions can be

achieved for the motivating Moore-Greitzer system in Section 5.2 (as compared to

the Voronoi-based and the uniform grid PWA models),

• Consistency of the derivative of the nonlinear function with the derivative of its

approximation at the linearization points.

The obtained and derived IPWA approximation technique results were used to approximate

a third order axial compressor stall and surge system. The PWA control synthesis tools [28]

are then used to design controllers for the obtained IPWA model.
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In Chapter 5, the control synthesis problem of the Moore-Greitzer axial compres-

sor model describing the two major compressor instabilities − namely the rotating stall

and surge − was addressed by using both the pseudo Euler-Lagrange and the piecewise

affine methodologies. The associated closed-loop system simulations corresponding to

each nonlinear technique were provided. The obtained IPWA model of the third order

stall and surge system, and a PWA synthesis technique [28] is then used to control the

closed-loop system.

6.1.1 Contributions

The contributions of this work consist of proposing the following:

1. A new controller synthesis formulation for pseudo Euler-Lagrange systems is pro-

posed, giving a more general form of this class of second order systems. By adding a

nonlinear term, in contrast to previous work, the dynamics of both states are nonlin-

ear functions of both states. In this regard, a more general class of physical nonlinear

systems can be analyzed. Moreover, since there are always modeling uncertainties

of as well as potential parameter variations, the advantages of the PEL method en-

able one to have a safe margin of stability.

2. A new PWA approximation methodology for functions of n-variables is developed.

It is shown that continuity of the vector field and increased reduction in the approx-

imation error are two important properties that can be achieved by using this tech-

nique. These advantages help to reduce the computation complexity of the PWA

controller synthesis method.

6.2 Future Research

Based on the proposed methodologies in this thesis, the following interesting extensions

are suggested. In Chapter 3, pseudo Euler-Lagrange systems were extended to comprise
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more complex nonlinearities. Accordingly, the potential extensions in this field may in-

clude:

• Exploring the opportunities of the PEL systems addressed in Theorem 3.3.1 for

higher order systems. Most of the physical phenomena are described by higher order

set of differential equations. Aircraft flight dynamics, car dynamics or gas turbine

governing equations are cases in point. Therefore, extending the PEL systems to

higher order ODEs may provide a systematic procedure for designing Lyapunov-

based controllers.

In Chapter 4, a new methodology for generating a PWA approximation of functions

of n-variables was addressed. However, one can still consider the following problems:

• Considering the PWA synthesis problem for a given plant, how many regions are

sufficient for the IPWA approximation such that a PWA state feedback gains are

guaranteed to be determined?

• Given the amount of error, what is the approximation algorithm that minimizes the

number of regions?

• The robustness of the controller designed for the rotating stall and surge phenomena

is an interesting problem. To investigate such a problem, the interested reader is

referred to [83], where the uncertainty of parameters in piecewise affine systems are

addressed.

• And last but not the least, one can explore the use of PWA differential inclusion for

the stability analysis and the control synthesis problems of a given plant based on

the following suggestion. The nonlinear function associated with plant dynamics

can be bounded with two convex (or concave) functions as the upper and the lower

bound of the differential inclusion. IPWA algorithm can then be applied to generate

the IPWA approximation of the upper and the lower bounds.
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