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Dynamic systems that exhibit probabilistic behavior represent a large class of man-made systems

such as communication networks, air traffic control and other mission-critical systems. Evaluation
of quantitative issues like performance and dependability of these systems is of paramount impor-

tance. In this paper, we propose a generalized methodology to formally reason about probabilistic

systems within a theorem prover. We present a formalization of measure theory in the HOL
theorem prover and use it to formalize basic concepts from the theory of probability. We also use

the Lebesgue integration to formalize statistical properties of random variables. To illustrate the

practical effectiveness of our methodology, we formally prove classical results from the theories of
probability and information and use them in a data compression application in HOL.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]:

Mathematical Logic—Proof Theory

General Terms: Verification,Reliability

Additional Key Words and Phrases: Probabilistic Systems, Lebesgue Integration, Measure Theory,

Theorem Proving, Statistical Properties, Information Theory

1. INTRODUCTION

Hardware and software systems usually exhibit some random or unpredictable el-
ements. Examples include failures due to environmental conditions or aging phe-
nomena in hardware components and the execution of certain actions based on a
probabilistic choice in randomized algorithms. Moreover, these systems act upon
and within complex environments that themselves have certain elements of unpre-
dictability, such as noise effects in hardware components and the unpredictable
traffic pattern in the case of telecommunication protocols. Due to these random
components, establishing the correctness of a system under all circumstances usu-
ally becomes impractically expensive. The engineering approach to analyze a sys-
tem with these kind of unavoidable elements of randomness and uncertainty is
to use probabilistic analysis. Even for hardware and software systems for which
correctness may be unconditionally guaranteed, the study of system performance
primarily relies on probabilistic analysis. In fact, the term system performance
commonly refers to the average time required by a system to perform a given task,
such as the average runtime of a computational algorithm or the average message
delay of a telecommunication protocol. These averages can be computed, based on
a probabilistic analysis approach, by using appropriate random variables to model
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inputs for the system model.

Traditionally, computer simulation techniques are used to perform probabilis-
tic analysis. However, they provide less accurate results and cannot handle large-
scale problems due to their enormous computer processing time requirements. This
unreliable nature of the results poses a serious problem in safety critical applica-
tions, such as those in space travel, military, and medicine. A possible solution
for overcoming the accuracy problem of simulation is to conduct probabilistic anal-
ysis within the sound core of a higher-order logic theorem prover. Higher-order
logic [Gordon 1989] is a system of deduction with a precise semantics and is ex-
pressive enough to be used for the specification of almost all classical mathematics
theories. Due to its high expressive nature, higher-order logic can be utilized to
precisely model the behavior of any system, while expressing its random or unpre-
dictable elements in terms of formalized random variables, and any kind of system
property, including the probabilistic and statistical ones, as long as they can be
expressed in a closed mathematical form. Interactive theorem proving [Harrison
2009] is the field of computer science and mathematical logic concerned with pre-
cise computer based formal proof tools that require some sort of human assistance.
Due to its interactive nature, interactive theorem proving can be utilized to reason
about the correctness of probabilistic or statistical properties of systems, which are
usually undecidable.

The foremost criteria for conducting a theorem proving based probabilistic anal-
ysis is to be able to formalize the underlying mathematical theories of measure [Bo-
gachev 2006], probability [Halmos 1944] and Lebesgue integration [Berberian 1998]
in higher-order logic. Using measure theory to formalize probability has the advan-
tage of providing a mathematically rigorous treatment of probability and a unified
framework for discrete and continuous probability measures. In this context, a
probability measure is a measure function, an event is a measurable set and a ran-
dom variable is a measurable function. The expectation of a random variable is its
integral with respect to the probability measure. Lebesgue integration is the nat-
ural choice for developing statistical properties on random variables from measure
theory and is used in most textbooks.

In the recent past, most of the above three fundamentals have been formalized in
higher-order logic. For instance, Hurd [2002] formalized some measure and proba-
bility theory in the HOL theorem prover [Gordon and Melham 1993]. Richter [2004]
and Coble [2010] built upon Hurd’s formalization of measure theory to formalize
Lebesgue integration using the Isabelle/HOL [Paulson 1994] and HOL theorem
provers, respectively. Lester [2007] also attempted the formalization of all the three
fundamental concepts of measure, probability and Lebesgue integral in the PVS
theorem prover [Owre et al. 1992]. But, unfortunately, none of these formalizations
can be termed as complete and thus each approach has its own limitations. For
example, the available formalizations of measure theory do not allow the manipu-
lation of random variables defined on arbitrary topological spaces, the probability
theory formalizations do not not allow us to work with the sum of random variables
as a random variable itself, and finally the Lebesgue integration formalizations have
a very limited support for the Borel algebra [Bogachev 2006], which is a sigma al-
gebra generated by the open sets. These deficiencies restrict the formal reasoning
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about some very useful probabilistic and statistical properties, which in turn limits
the scope of theorem proving based probabilistic analysis of systems.

In this paper, we present a generalized formalization of the measure and proba-
bility theories and Lebesgue integration in order to exploit their full potential for
the formal analysis of probabilistic systems. We extend the measure theory with a
general formalization of the Borel sigma algebra that can be used for any topolog-
ical space. We prove important properties of real-valued measurable functions and
use them to define real-valued random variables and prove their properties. We
also formalize the concept of independence of random variables in HOL and prove
key properties of independent random variables. Additionally, we prove important
properties of the Lebesgue integral and use it to define statistical properties of ran-
dom variables such as the expectation and variance. To the best of our knowledge,
the above capabilities are not shared by any other existing formalization of measure,
probability and Lebesgue integration.

Some of the possible applications of the proposed probability formalization in-
clude the verification of security protocols and communication systems. In this
paper, we formalize the Shannon entropy in higher-order logic as a measure of how
much information was leaked [Smith 2009]. This result can be directly used to ver-
ify properties, such as the anonymity of classical security protocols like the dining
cryptographers [Chaum 1988] and the crowds protocols [Reiter and Rubin 1998].
Similarly, our formalization can be used to verify properties of error-correcting
codes. In order to illustrate the practical effectiveness of our work and its uti-
lization to tackle such applications, we present in this paper a data compression
application in which we prove the Asymptotic Equipartition Property [Cover and
Thomas 1991], a fundamental concept in information theory, and use it to prove
the Shannon source coding theorem which establishes the limits of data compres-
sion [Cover and Thomas 1991]. The source coding theorem states that it is possible
to compress the data and get a code rate that is arbitrarily close to the Shannon
entropy without significant loss of information. Most of the infrastructure that we
needed for this application, such as the properties of real valued measurable func-
tions, properties of the expectation of arbitrary functions, variance, independence
of random variables and the weak law of large numbers, was not available in the
previous formalizations and thus the technical contributions of this paper paved
the path for the verification of Asymptotic Equipartition Property.

We use the HOL theorem prover for the above mentioned formalization and ver-
ification tasks. The main motivation behind this choice was to build upon existing
formalizations of measure [Hurd 2002] and Lebesgue integration [Coble 2010] the-
ories in HOL

The rest of the paper is organized as follows: Section 2 provides a review of related
work. In Section 3, we give an overview of the main definitions of the measure
theory and present our formalization of the Borel theory. Section 4 presents a
formalization of probability spaces and random variables as well as independence of
random variables and related properties. In Section 5 we prove the main properties
of the Lebesgue integral which we use to define statistical properties of random
variables. In this section we also prove important inequalities from the theory of
probability as well as the Weak Law of Large Numbers. In Section 7, we illustrate
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the practical effectiveness of our formalization by proving fundamental results in
information theory and data compression. Finally, Section 8 concludes the paper
and provides hints to future work.

2. RELATED WORK

The early foundations of probabilistic analysis in a higher-order-logic theorem
prover were laid down by Nȩdzusiak [1989] and Bialas [1990] when they proposed a
formalization of some measure and probability theories in higher-order logic. Hurd
[2002] implemented their work and developed a formalization of measure theory in
HOL, upon which he constructed definitions for probability spaces and functions on
them. Despite important contributions, Hurd’s formalization did not include basic
concepts such as the expectation of random variables. Besides, in Hurd’s formal-
ization, a measure space is the pair (A, µ); A is a set of subsets of X, called the set
of measurable sets and µ is a measure function. Hence, the space is implicitly the
universal set of the appropriate type. This approach does not allow to construct
a measure space where the space is not the universal set. The only way to apply
this approach for an arbitrary space X is to define a new type for the elements of
X, redefine operations on this set and prove properties of these operations. This
requires considerable effort that needs to be done for every space of interest.

Based on the work of Hurd [2002], Richter [2004] formalized the measure theory
in Isabelle/HOL, where he has the same restriction on the the measure spaces
that can be constructed. Richter [2004] defined the Borel sets as being generated
by the intervals. In the formalization we propose in this paper, the Borel sigma
algebra is generated by the open sets and is more general as it can be applied not
only to the real numbers but to any metric space such as complex numbers or Rn,
the n-dimensional Euclidean space. It provides a unified framework to prove the
measurability theorems in these spaces. Besides, our formalization allows us to
prove that any continuous function is measurable which is an important result to
prove the measurability of a large class of functions, in particular, trigonometric
and exponential functions.

Coble [2010] generalized the measure theory formalization by Hurd [2002] and
built on it to formalize the Lebesgue integration theory. He proved some properties
of the Lebesgue integral but only for the class of positive simple functions. Besides,
multiple theorems in Coble’s work have the assumption that every set is measurable
which is not correct in most cases of interest. We based our work on the formal-
ization of Coble [2010] where we define a measure space as a triplet (X,A, µ); the
set X being the space. We prove the Lebesgue integral properties and convergence
theorems for arbitrary functions by providing a formalization of the Borel sigma
algebra, which has also been used to overcome the assumption of Cobles’s work.

Hasan built upon Hurd and Coble’s formalizations of measure, probability and
Lebesgue integration to verify the probabilistic and statistical properties of some
commonly used discrete [Hasan and Tahar 2007] and continuous [Hasan et al.
2009] random variables. The results were then utilized to formally reason about the
correctness of many real-world systems that exhibit probabilistic behavior. Some
examples include the analysis of the Coupon Collector’s problem [Hasan and Tahar
2009a], the Stop-and-Wait protocol [Hasan and Tahar 2009b] and the repairability
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condition of hardware reconfigurable memory arrays in the presence of stuck-at
and coupling faults [Hasan et al. 2009]. Hasan’s work demonstrates the practical
usefulness of formal probabilistic analysis using theorem proving but inherits the
above mentioned limitations of Hurd and Coble’s work. For example, separate
frameworks for handling systems with discrete and continuous random variables
are required and the inability to handle multiple continuous random variables. We
believe that the formalization, presented in the current paper, would allow us to
utilize Hasan’s formalized random variables for the analysis of a broader range of
systems and properties.

In his work in topology on the PVS theorem prover, Lester [2007] provided for-
malizations for measure and integration theories but did not prove the properties
of the Lebesgue integral nor its convergence theorems.

Based on the work of Coble [2010], we developed a formalization of the Lebesgue
integration and verified its key properties and Lebesgue convergence theorems using
the HOL theorem prover [Mhamdi et al. 2010b]. In the current paper, we utilized
some parts of this formalization to achieve a generalized methodology for analyzing
systems with probabilistic behavior. The distinguishing features of the current
paper, when compared to this previous work of ours, include the formalization of
random variables and their statistical properties as well as the formal proofs of
classical results from the theories of probability, information and communications
technologies.

Besides theorem proving, probabilistic model checking is the second most widely
used formal probabilistic analysis method [Baier et al. 2003; Rutten et al. 2004].
Like traditional model checking [Baier and Katoen 2008], probabilistic model check-
ing involves the construction of a precise state-based mathematical model of the
given probabilistic system, which is then subjected to exhaustive analysis to ver-
ify if it satisfies a set of probabilistic properties formally expressed in some ap-
propriate logic. Numerous probabilistic model checking algorithms and method-
ologies have been proposed in the open literature, e.g., [de Alfaro 1997; Parker
2001], and based on these algorithms, a number of tools have been developed, e.g.,
PRISM [Kwiatkowska et al. 2005] and VESTA [Sen et al. 2005]. Besides the ac-
curacy of the results, another promising feature of probabilistic model checking is
the ability to perform the analysis automatically. On the other hand, probabilistic
model checking is limited to systems that can only be expressed as probabilistic
finite state machines or Markov chains. Another major limitation of the proba-
bilistic model checking approach is state space explosion [Baier and Katoen 2008].
Similarly, to the best of our knowledge, it has not been possible to precisely reason
about statistical relations, such as expectation and variance, using probabilistic
model checking so far. Higher-order-logic theorem proving, on the other hand,
overcomes the limitations of probabilistic model checking and thus allows conduct-
ing formal probabilistic analysis of algorithms but at the cost of significant user
interaction.

3. MEASURE THEORY

After the discovery of paradoxes in the naive set theory, various axiomatic systems
were proposed, the best known of which is the Zermelo-Fraenkel set theory [Fraenkel
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et al. 1973] with the famous Axiom of Choice (ZFC). This set theory is the most
common foundation of mathematics down to the present day. The Axiom of Choice,
however, implies the existence of counter-intuitive sets and gives rise to paradoxes
of its own, in particular, the Banach-Tarski paradox [Wagon 1993], which says that
it is possible to decompose a solid unit ball into finitely many pieces and reassemble
them into two copies of the original ball, using only rotations and no scaling. This
paradox shows that there is no way to define the volume in three dimensions in
the context of the ZFC set theory and at the same time require that the rotation
preserves the volume, and that the volume of two disjoint sets is the sum of their
volumes. The solution to this is to tag some sets as non-measurable and to assign a
volume only to a measurable set. This solution was adopted in the measure theory
by defining the measure only on a class of subsets called the measurable sets.

A measure is a way to assign a number to a set, interpreted as its size, a gener-
alization of the concepts of length, area, volume, etc. We define the measure on a
class of subsets called the measurable sets. One important condition for a measure
function is countable additivity, meaning that the measure of a countable collection
of disjoint sets is the sum of their measures. This leads to the requirement that the
measurable sets should form a sigma algebra.

Parts of the measure theory were formalized in [Hurd 2002] and [Coble 2010]. We
make use of these formalizations in our development and extend it by formalizing
the Borel sigma algebra and Borel measurable functions. This will allow us to define
and manipulate random variables defined on any topological space.

3.1 General Definitions

Definition 1. (Sigma Algebra)
Let A be a collection of subsets (or subset class) of a space X. A defines a sigma
algebra on X iff A contains the empty set ∅, and is closed under countable unions
and complementation within the space X.

Definition 1 is formalized in HOL as

` ∀X A.

sigma_algebra (X,A) =

subset_class X A ∧ {} ∈ A ∧ (∀s. s ∈ A ⇒ X\s ∈ A) ∧
∀c. countable c ∧ c ⊆ A ⇒

⋃
c ∈ A

where X\s denotes the complement of s within X,
⋃
c the union of all elements of

c and subset_class is defined as

` ∀X A.

subset_class X A = ∀s. s ∈ A ⇒ s ⊆ X

A set S is countable if its elements can be counted one at a time, or in other words,
if every element of the set can be associated with a natural number, i.e., there exists
a surjective function f : N→ S.

` ∀s. countable s = ∃f. ∀x. x ∈ s ⇒ ∃n. f n = x

The smallest sigma algebra on a space X is A = {∅, X} and the largest is its
powerset, P(X), the set of all subsets of X. The pair (X,A) is called a σ-field or
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a measurable space, A is the set of measurable sets.
We define the space and subsets functions such that

` ∀X A. space (X,A) = X

` ∀X A. subsets (X,A) = A

For any collection G of subsets of X we can construct σ(X,G), the smallest sigma
algebra on X containing G. σ(X,G) is called the sigma algebra on X generated
by G. There is at least one sigma algebra on X containing G, namely the power
set of X. σ(X,G) is the intersection of all those sigma algebras and it is formalized
in HOL as

` ∀X G. sigma X G = (X,
⋂
{s | G ⊆ s ∧ sigma_algebra (X,s)})

where
⋂
c denotes the intersection of all elements of c.

Definition 2. (Measure Space)
A triplet (X,A, µ) is a measure space iff (X,A) is a measurable space and µ : A → R
is a non-negative and countably additive measure function.

` ∀X A mu.

measure_space (X,A,mu) =

sigma_algebra (X,A) ∧ positive (X,A,mu) ∧
countably_additive (X,A,mu)

A measure function is countably additive when the measure of a countable union
of pairwise disjoint measurable sets is the sum of their respective measures.

` ∀X A mu.

countably_additive (X,A,mu) =

∀f. f ∈ (UNIV → A) ∧ (∀m n. m 6= n ⇒ DISJOINT (f m) (f n)) ∧⋃
(IMAGE f UNIV) ∈ A ⇒ mu o f sums mu (

⋃
(IMAGE f UNIV))

Similarly, we define the functions m_space, measurable_sets and measure such
that

` ∀X A mu. m_space (X,A,mu) = X

` ∀X A mu. measurable_sets (X,A,mu) = A

` ∀X A mu. measure (X,A,mu) = mu

There is a special class of functions, called measurable functions, that are struc-
ture preserving, in the sense that the inverse image of each measurable set is also
measurable. This is analogous to continuous functions in metric spaces where the
inverse image of an open set is open.

Definition 3. (Measurable Functions)
Let (X1,A1) and (X2,A2) be two measurable spaces. A function f : X1 → X2 is
called measurable with respect to (A1,A2) (or (A1,A2) measurable) iff f−1(A) ∈ A1

for all A ∈ A2.

f−1(A) denotes the inverse image of A. The HOL formalization is the following.

` ∀a b f.

f ∈ measurable a b =
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sigma_algebra a ∧ sigma_algebra b ∧ f ∈ (space a → space b) ∧
∀s. s ∈ subsets b ⇒ PREIMAGE f s ∩ space a ∈ subsets a

Notice that unlike Definition 3, the inverse image in the formalization (PREIMAGE f s)
needs to be intersected with space a because the functions in HOL are total,
meaning that they map every value of a certain HOL type (even those outside
space a) to a value of an appropriate type which may or may not be in space b.
In other words, writing in HOL that f is a function from space a to space b (f ∈
(space a -> space b)), does not exclude values outside space a and hence the
intersection is needed.

In this definition, we did not specify any structure on the measurable spaces. If
we consider a function f that takes its values on a metric space, most commonly
the set of real numbers or complex numbers, then the Borel sigma algebra on that
space is used. In the following, we present our formalization of the Borel sigma
algebra in HOL.

3.2 Borel Sigma Algebra

Working with the Borel sigma algebra makes the set of measurable functions a vec-
tor space. It also allows us to prove various properties of the measurable functions
necessary for the formalization of the Lebesgue integral and its properties in HOL.

Definition 4. (Borel Sigma Algebra)
The Borel sigma algebra on a space X is the smallest sigma algebra generated by
the open sets of X.

` borel X = sigma X (open_sets X)

An important example, especially in the theory of probability, is the Borel sigma
algebra on R, denoted by B(R) which we simply call Borel in the sequel.

` Borel = sigma UNIV (open_sets UNIV)

where UNIV is the universal set of real numbers R. Details about our formalization
of the open sets and other aspects of the Topology of the real line can be found
in [Mhamdi et al. 2010b].

We prove in HOL the following theorem, stating that B(R), which, by definition,
is generated by the open sets of R, is also generated by the open intervals (]c, d[
for c, d ∈ R). This was actually used in many textbooks as a starting definition
for the Borel sigma algebra on R. While we will prove that the two definitions
are equivalent in the case of the real line, our formalization is vastly more general
and can be used for any metric space such as the complex numbers or Rn, the
n-dimensional Euclidian space. We show that B(R) is also generated by any of the
following classes of intervals: ]−∞, c[, [c,+∞[, ]c,+∞[, ]−∞, c], [c, d[, ]c, d], [c, d],
where c, d ∈ R.

Theorem 1. B(R) is generated by the open intervals ]c, d[ where c, d ∈ R

` Borel = sigma UNIV (open_intervals_set)

where the open intervals set is formalized as
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` open_intervals_set =

{{x | a < x ∧ x < b} | a ∈ UNIV ∧ b ∈ UNIV}

Proof. The sigma algebra generated by the open intervals, σI , is by definition
the intersection of all sigma algebras containing the open intervals. B(R) is one of
them because the open intervals are open sets as proven in [Mhamdi et al. 2010b].
Hence, σI ⊆ B(R). Conversely, B(R) is the intersection of all the sigma algebras
containing the open sets. σI is one of them because every open set on the real line is
the union of a countable collection of open intervals, a result we proved in [Mhamdi
et al. 2010b]. Consequently B(R) ⊆ σI and finally B(R) = σI .

To prove that B(R) is also generated by the other classes of intervals, it suffices
to prove that any interval ]a, b[ is contained in the sigma algebra corresponding to
each class. For the case of the intervals of type [c, d[, this follows from the following
equation:

]a, b[ =
⋃
n

[a+
1

2n
, b[ (1)

For the open rays ]−∞, c [, the result follows from the fact that [a, b[ can be written
as the difference of two rays, [a, b[ = ]−∞, b [ \ ]−∞, a [.
In a similar manner, we prove in HOL that all mentioned classes of intervals generate
the Borel sigma algebra on R.

Another useful result, asserts that the singleton sets are measurable sets of B(R).

Theorem 2. ∀c ∈ R, {c} ∈ B(R)

` ∀c. {c} ∈ subsets Borel

The proof of this theorem follows from the fact that a sigma algebra is closed under
countable intersection and the equation

∀c ∈ R {c} =
⋂
n

[c− 1

2n
, c+

1

2n
[ (2)

Recall that in order to check if a function f is measurable with respect to (A1,A2),
it is necessary to check that for any A ∈ A2, its inverse image f−1(A) ∈ A1. The
following theorem states that, for real-valued functions, it suffices to perform the
check on the open rays (]−∞, c[, c ∈ R).

Theorem 3. Let (X,A) be a measurable space. A function f : X → R is
measurable with respect to (A,B(R)) iff ∀c ∈ R, f−1(]−∞, c[) ∈ A

` ∀f a.

f ∈ measurable a Borel =

sigma_algebra a ∧ f ∈ (space a → UNIV) ∧
∀c. {x | f x < c} ∩ space a ∈ subsets a

Proof. We have shown above that ∀c ∈ R, ]−∞, c[∈ B(R). If f is measurable
with respect to (A,B(R)) then f−1(] − ∞, c[) ∈ A. Now suppose that ∀c ∈ R,
f−1(] − ∞, c[) ∈ A, we need to prove ∀A ∈ B(R), f−1(A) ∈ A. Since B(R) is
generated by the open sets, it is sufficient to prove the result for an open set A.
Any open set of R can be written as a countable union of open intervals [Mhamdi
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et al. 2010b]. The result is then derived from the equalities f−1(
⋃
n∈NAn) =⋃

n∈N f
−1(An) and f−1(]−∞, c[) =

⋃
n∈N f

−1(]− n, c[).

In a similar manner, we prove in HOL that f is measurable with respect to
(A,B(R)) iff ∀ c, d ∈ R the inverse image of any of the following classes of intervals
is an element of A: ]−∞, c[, [c,+∞[, ]c,+∞[, ]−∞, c], [c, d[, ]c, d], [c, d].

Every constant real function on a space X is measurable. In fact, if ∀x ∈
X, f(x) = k, then if c ≤ k, f−1(] −∞, c[) = ∅ ∈ A. Otherwise f−1(] −∞, c[) =
X ∈ A. The indicator function on a set A is measurable iff A is measurable. In
fact, I−1

A (]−∞, c[) = ∅, X or X\A when c ≤ 0, c > 1 or 0 < c ≤ 1 respectively.
In the following, we prove in HOL various properties of the real-valued measurable
functions.

Theorem 4. If f and g are (A,B(R)) measurable and c ∈ R then cf , |f |, fn,
f + g, f ∗ g and max(f, g) are (A,B(R)) measurable.

` ∀a f g h c.

sigma_algebra a ∧ f ∈ measurable a Borel ∧
g ∈ measurable a Borel ⇒
((\x. c * f x) ∈ measurable a Borel) ∧
((\x. abs(f x)) ∈ measurable a Borel) ∧
((\x. f x pow n) ∈ measurable a Borel) ∧
((\x. f x + g x) ∈ measurable a Borel) ∧
((\x. f x * g x) ∈ measurable a Borel) ∧
((\x. max (f x) (g x)) ∈ measurable a Borel)

The notation (\x. f x) is the lambda notation of f , used to represent the function
f : x 7→ f(x).

Theorem 5. If (fn) is a monotonically increasing sequence of real-valued mea-
surable functions with respect to (A,B(R)), such that ∀n, x, fn(x) → f(x) then f
is also (A,B(R)) measurable.

` ∀a f fi.

sigma_algebra a ∧ (∀i. fi i ∈ measurable a Borel) ∧
(∀x. mono_increasing (\i. fi i x)) ∧
(∀x. x ∈ m_space m ⇒ (\i. fi i x) −→ f x) ⇒
f ∈ measurable a Borel

Theorem 6. Every continuous function g : R→ R is (B(R),B(R)) measurable.

` ∀g. (∀x. g contl x) ⇒ g ∈ measurable Borel Borel

Theorem 7. If g : R → R is continuous and f is (A,B(R)) measurable then
g ◦ f is also (A,B(R)) measurable.

` ∀a f g.

sigma_algebra a ∧ f ∈ measurable a Borel ∧
(∀x. g contl x) ⇒ g o f ∈ measurable a Borel

Theorem 6 is a direct result of the theorem stating that the inverse image of an open
set by a continuous function is open [Mhamdi et al. 2010b]. Theorem 7 guarantees,
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for instance, that if f is measurable then exp(f), Log(f), cos(f) are measurable.
This is derived using Theorem 6 and the equality (g ◦ f)−1(A) = f−1(g−1(A)). We
now show how to prove that the sum of two measurable functions is measurable.

Proof. We need to prove that for any c ∈ R, (f+g)−1(]−∞, c[) is a measurable
set. One way to solve this is to write it as a countable union of measurable sets.
By definition of the inverse image, (f + g)−1(] − ∞, c[) = {x : f(x) + g(x) <
c} = {x : f(x) < c − g(x)}. Using the density of Q in R [Mhamdi et al. 2010b]
we prove that it is equal to

⋃
r∈Q{x : f(x) < r and r < c − g(x)}. We deduce

that (f + g)−1(] − ∞, c[) =
⋃
r∈Q f

−1(] − ∞, r[) ∩ g−1(] − ∞, c − r[). The right
hand side is a measurable set as a countable union of measurable sets because Q is
countable [Mhamdi et al. 2010b] and f and g are measurable functions.

This concludes our formalization of the measure theory in HOL. This formalization
will allow us to define random variables, events and probability measures in the
next section.

4. PROBABILITY THEORY

Probability provides mathematical models for random phenomena and experiments.
The purpose is to describe and predict relative frequencies (averages) of these ex-
periments in terms of probabilities of events.

The classical approach to formalize probabilities, which was the prevailing defini-
tion for many centuries, defines the probability of an event A as p(A) = NA

N , Where
NA is the number of outcomes favorable to the event A and N is the number of
all possible outcomes of the experiment. Problems with this approach include the
assumption that all outcomes are equally likely (equiprobable), a concept of proba-
bility used to define probability itself and hence this cannot be used as a basis for a
mathematical theory. Besides, for many random experiments the outcomes are not
equally likely. Finally the definition does not work when the number of possible
outcomes is infinite.

Kolmogorov later introduced the axiomatic definition of probability which pro-
vides a mathematically consistent way for assigning and deducing probabilities of
events. This approach consists in defining a set of all possible outcomes, Ω, called
the sample space, A set F of events which are subsets of Ω and a probability measure
p such that (Ω, F, p) is a measure space with p(Ω) = 1.

Using measure theory to formalize probability has the advantage of providing
a mathematically rigorous treatment of probabilities and a unified framework for
discrete and continuous probability measures. In this context, a probability measure
is a measure function, an event is a measurable set and a random variable is a
measurable function. The expectation of a random variable is its integral with
respect to the probability measure.

Basic definitions in the formalization of the probability theory in HOL are based
on the work of Coble [2010]. Our contributions consist in going beyond the defi-
nitions to provide important theorems that will allow us to operate with the basic
concepts such us random variables and their expected values. For instance, the
formalization of Coble [2010] does not allow us to work with the sum of random
variables as a random variable itself; we would have to add it as an assumption.
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Another important shortcoming is the lack of the properties of the expected value
of a random variable such as the linearity and monotonicity.

Definition 5. (Probability Space)
(Ω, F, p) is a probability space iff it is a measure space and p(Ω) = 1.

` ∀p. prob_space p = measure_space p ∧ (measure p (p_space p) = 1)

A probability measure is a measure function and an event is a measurable set.

` ∀p. p_space p = m_space p

` ∀p. prob p = measure p

` ∀p. events p = measurable_sets p

Definition 6. (Independent Events)
Two events A and B are independent iff p(A ∩B) = p(A)p(B).

Here A ∩B is the intersection of A and B, that is, it is the event that both events
A and B occur.

` ∀p a b. indep p a b =

a ∈ events p ∧ b ∈ events p ∧
(prob p (a ∩ b) = prob p a * prob p b)

Definition 7. (Random Variable)
X : Ω→ R is a random variable iff X is (F,B(R)) measurable

` ∀X p. random_variable X p Borel =

prob_space p ∧ X ∈ measurable (p_space p,events p) Borel

where F denotes, as previously, the set of events. Here we focus on real-valued
random variables but the definition can be adapted for random variables having
values on any topological space thanks to our general definition of the Borel sigma
algebra.

` ∀X p s. random_variable X p s =

prob_space p ∧ X ∈ measurable (p_space p,events p) s

The properties we proved for measurable functions are obviously valid for real-
valued random variables.

Theorem 8. If X and Y are random variables and c ∈ R then the following
functions are also random variables: cX, |X|, Xn, X + Y,XY and max(X,Y ).

` ∀X Y c n p.

random_variable X p Borel ∧ random_variable Y p Borel ⇒
random_variable (\x. c * X x) p Borel ∧
random_variable (\x. abs (X x)) p Borel ∧
random_variable (\x. (X x) pow n) p Borel ∧
random_variable (\x. X x + Y x) p Borel ∧
random_variable (\x. X x * Y x) p Borel ∧
random_variable (\x. max (X x) (Y x)) p Borel

Theorem 9. If X is a random variable then exp(X) is also a random variable.
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` ∀X p. random_variable X p Borel ⇒
random_variable (\x. exp (X x)) p Borel

Theorem 10. If X is a positive random variable then so is Log(X).

` ∀X p. random_variable X p Borel ∧ (∀x. 0 < f x) ⇒
random_variable (\x. ln (X x)) p Borel

We prove the last two theorems by first proving that the functions (\x. exp(x))

and (\x. ln(x)) are continuous and then use Theorem 7.

Definition 8. (Independent Random Variables)
Two random variables X and Y are independent iff ∀A,B ∈ B(R), the events
{X ∈ A} and {Y ∈ B} are independent.

The set {X ∈ A} denotes the set of outcomes ω for which X(ω) ∈ A. In other
words {X ∈ A} = X−1(A).

` ∀p X Y. indep_rv p X Y =

∀A B. A ∈ subsets Borel ∧ B ∈ subsets Borel ⇒
indep p (PREIMAGE X A ∩ p_space p) (PREIMAGE Y B ∩ p_space p)

Equivalently, two random variables X and Y are independent iff ∀A,B ∈ B(R),
p({X ∈ A} ∩ {Y ∈ B}) = p({X ∈ A})p({Y ∈ B}).
The event {X ∈ A} is used to define the probability mass function (PMF) of a
random variable.

Definition 9. (Probability Mass Function)
The probability mass function pX of a random variable X is defined as the function
assigning to A the probability of the event {X ∈ A}.

∀A ∈ B(R), pX(A) = p({X ∈ A}) = p(X−1(A))

` ∀p X. pmf p X = (\A. prob p (PREIMAGE X A ∩ p_space p))

We also define the joint PMF of two random variables and of a sequence of random
variables as

∀A,B ∈ B(R), pXY (A,B) = p({X ∈ A} ∩ {Y ∈ B}) = p(X−1(A) ∩ Y −1(B))

∀A1, . . . , An ∈ B(R), pX1...Xn(A1, . . . , An) = p(

n⋂
i=1

{Xi ∈ Ai}) = p(

n⋂
i=1

X−1
i (Ai))

` ∀p X Y. joint_pmf p X Y =

(\(A,B). prob p (PREIMAGE X A ∩ PREIMAGE Y B ∩ p_space p))

` ∀p X s. joint_pmf_sequence p X s =

(\V. prob p (
⋂

(IMAGE (\i. PREIMAGE (X i) (V i)) s)

∩ p_space p))

Theorem 11. If X and Y are independent then ∀A,B ∈ B(R), pXY (A,B) =
pX(A)pY (B)
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` ∀X Y A B p.

random_variable X p Borel ∧ random_variable Y p Borel ∧
indep_rv p X Y ∧ A ∈ subsets Borel ∧ B ∈ subsets Borel

⇒ (joint_pmf p X Y (A,B) = pmf p X A * pmf p Y B)

Theorem 12. If X1, . . . , Xn are pairwise independent then ∀A1, . . . , An ∈ B(R),
pX1...Xn(A1, . . . , An) =

∏n
i=1 pXi(Ai)

` ∀X s V p.

FINITE s ∧ (∀i. i ∈ s ⇒ random_variable (X i) p Borel) ∧
(∀i j. i ∈ s ∧ j ∈ s ∧ i 6= j ⇒ indep_rv p (X i) (X j)) ∧
(∀i. i ∈ s ⇒ V i ∈ subsets Borel) ⇒
(joint_pmf_sequence p X s V = PROD (\i. pmf p (X i) (V i)) s)

In this section we defined basic concepts of probability like the events, probability
measures and random variables. Our main contributions in this section are the
properties of real-valued random variables as well as the formalization of the notion
of independence of random variables and properties related to the joint PMF of a
sequence of mutually independent random variables. The next step towards a
comprehensive formalization of probability in higher-order logic is the definition of
main statistical properties of random variables, such as the expectation and the
variance. The expectation of a random variable is its integral with respect to the
probability measure. Lebesgue is the natural choice and will be discussed next.

5. LEBESGUE INTEGRAL

Similar to the way in which step functions are used in the development of the
Riemann integral, the Lebesgue integral makes use of a special class of functions
called positive simple functions. The Lebesgue integral is first defined for those
functions then extended to non-negative functions and finally to arbitrary functions.
A positive simple function g is a measurable function taking finitely many values.
In other words, it can be written as a finite linear combination of indicator functions
of measurable sets (ai) that form a partition of X.

∀x ∈ X, g(x) =
∑
i∈s

αiIai(x) ci ≥ 0 (3)

Definition 10. Let (X,A, µ) be a measure space. The integral of the positive
simple function g with respect to the measure µ is defined as∫

X

g dµ =
∑
i∈s

αiµ(ai) (4)

` ∀m s a x. pos_simple_fn_integral m s a x =

SIGMA (\i. x i * measure m (a i)) s

The choice of ((αi), (ai), s) to represent g is not unique. However, the integral as
defined above is independent of that choice.
Next, we define the Lebesgue integral of non-negative measurable functions

Definition 11. Let (X,A, µ) be a measure space. The integral of a non-negative
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measurable function f is defined as∫
X

f dµ = sup{
∫
X

g dµ | g ≤ f and g positive simple function} (5)

` ∀m f. pos_fn_integral m f =

sup {r | ∃g. r ∈ psfis m g ∧ ∀x. g x ≤ f x}

where r ∈ psfis m g is equivalent to r = pos_simple_fn_integral m s a x and
g is a positive simple function represented by (s,a,x).
Finally, the integral for arbitrary measurable functions is given in the following
definition.

Definition 12. Let (X,A, µ) be a measure space. The integral of an arbitrary
measurable function f is defined as∫

X

f dµ =

∫
X

f+ dµ−
∫
X

f− dµ (6)

where f+ and f− are the non-negative functions defined by f+(x) = max(f(x), 0)
and f−(x) = max(−f(x), 0).

` ∀m f. fn_integral m f =

pos_fn_integral m (\x. if 0 < f x then f x else 0) -

pos_fn_integral m (\x. if f x < 0 then -f x else 0)

Various properties of the Lebesgue integral for positive simple functions have been
proven in HOL [Coble 2010]. We mention in particular that the above integral is
well-defined and independent of the choice of (αi), (ai), s. Other properties include
the linearity and monotonicity of the integral for positive simple functions. Another
theorem that was widely used in [Coble 2010] has however a serious constraint, as
was discussed in the related work, where the author had to assume that every subset
of the space X is measurable which is equivalent to assuming that every function
defined on that space is measurable.

Utilizing our formalization of the Borel sigma algebra and functions measurable
with respect to it, we have been able to prove that the functions used in the theorem
are in fact measurable without having to assume that every function is measurable.
For example we prove that a positive simple function is a measurable function
as a linear combination of indicator functions on measurable sets. We also use
Theorem 1 to prove that the sets used in the theorem are in fact measurable sets.
The new theorem can be stated as

Theorem 13. Let (X,A, µ) be a measure space, f a non-negative function mea-
surable with respect to (A,B(R)) and (fn) a monotonically increasing sequence of
positive simple functions, pointwise convergent to f such that ∀n, x, fn(x) ≤ f(x)
then

∫
X
f dµ = limn→∞

∫
X
fn dµ.

` ∀m f fi ri r.

measure_space m ∧
f ∈ measurable (m_space m,measurable_sets m) Borel ∧
(∀x. mono_increasing (\i. fi i x)) ∧
(∀x. x ∈ m_space m ⇒ (\i. fi i x) −→ f x) ∧
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(∀i. ri i ∈ psfis m (fi i)) ∧ ri −→ r ∧
(∀i x. fi i x <= f x) ⇒
(pos_fn_integral m f = r)

where the notation xn −→ x means that the sequence xn converges to x.

5.1 Integrability

In this section, we provide the criteria of integrability of a measurable function and
prove the integrability theorem which will play an important role in proving the
properties of the Lebesgue integral.

Definition 13. (Integrable Functions)
Let (X,A, µ) be a measure space, a measurable function f is integrable iff

∫
X
|f | dµ <

∞ or equivalently iff
∫
X
f+ dµ <∞ and

∫
X
f− dµ <∞

` ∀m f. integrable m f =

measure_space m ∧
f ∈ measurable (m_space m,measurable_sets m) Borel ∧
(∃z. ∀r.
r ∈ {r | ∃g. r ∈ psfis m g ∧ ∀x. g x ≤ fn_plus f x} ⇒ r ≤ z) ∧
∃z. ∀r.
r ∈ {r | ∃g. r ∈ psfis m g ∧ ∀x. g x ≤ fn_minus f x} ⇒ r ≤ z

Theorem 14. For any non-negative integrable function f there exists a se-
quence of positive simple functions (fn) such that ∀n, x, fn(x) ≤ fn+1(x) ≤
f(x) and ∀x, fn(x)→ f(x). Besides∫

X

f dµ = lim
n

∫
X

fn dµ

For arbitrary integrable functions, the theorem is applied to f+ and f− and results
in a well-defined integral, given by∫

X

f dµ = lim
n

∫
X

f+
n dµ− lim

n

∫
X

f−n dµ

` ∀m f.

measure_space m ∧ integrable m f ⇒
(∃fi ri r.

(∀x. mono_increasing (\i. fi i x)) ∧
(∀x. x ∈ m_space m ⇒ (\i. fi i x) −→ fn_plus f x) ∧
(∀i. ri i ∈ psfis m (fi i)) ∧ ri −→ r ∧
(∀i x. fi i x <= fn_plus f x) ∧
(pos_fn_integral m (fn_plus f) = r)) ∧

∃gi vi v.

(∀x. mono_increasing (\i. gi i x)) ∧
(∀x. x ∈ m_space m ⇒ (\i. gi i x) −→ fn_minus f x) ∧
(∀i. vi i ∈ psfis m (gi i)) ∧ vi −→ v ∧
(∀i x. gi i x <= fn_minus f x) ∧
(pos_fn_integral m (fn_minus f) = v)
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Proof. Let the sequence (fn) be defined as

fn(x) =

4n−1∑
k=0

k

2n
I{x: k2n≤f(x)< k+1

2n }
+ 2nI{x:2n≤f(x)} (7)

we show that the sequence (fn) satisfies the conditions of the theorem and use
Theorem 13 to conclude that

∫
X
f dµ = limn

∫
X
fn dµ. First, we use the definition

of (fn) to prove in HOL the following lemmas

Lemma 1. ∀n, x, f(x) ≥ 2n ⇒ fn(x) = 2n

Lemma 2. ∀n, x, and k < 4n, k
2n ≤ f(x) < k+1

2n ⇒ fn(x) = k
2n

Lemma 3. ∀x, (f(x) ≥ 2n) ∨ (∃k, k < 4n and k
2n ≤ f(x) < k+1

2n )

Next, we prove that the sequence is pointwise convergent to f , upper bounded by
f and monotonically increasing.

Convergence ∀x, fn(x)→ f(x)
∀x, ∃N such that f(x) < 2N . Then ∀n ≥ N, f(x) < 2n. Using Lemma 3,
∀n ≥ N , there exists a k < 4n such that k

2n ≤ f(x) < k+1
2n . Then using Lemma 2,

∀n ≥ N, fn(x) = k
2n . Consequently, ∀n ≥ N, fn(x) ≤ f(x) < fn(x) + 1

2n and
|fn(x)− f(x)| < 1

2n .

Upper Bound ∀n, x, fn(x) ≤ f(x)
if f(x) ≥ 2n then by Lemma 1 fn(x) = 2n. Hence fn(x) ≤ f(x)
if f(x) < 2n then by Lemma 3 there exists a k < 4n such that k

2n ≤ f(x) < k+1
2n

and by Lemma 2 fn(x) = k
2n . Hence fn(x) ≤ f(x).

Monotonicity ∀n, x, fn(x) ≤ fn+1(x)
If f(x) ≥ 2n+1 then fn(x) = 2n and fn+1(x) = 2n+1. Hence fn(x) ≤ fn+1(x).
if f(x) < 2n+1 then using Lemma 3, there exists a k < 4n+1 such that k

2n+1 ≤
f(x) < k+1

2n+1 and using Lemma 2, fn+1(x) = k
2n+1 . Now we need to determine

fn(x) and compare it to fn+1(x).

k

2n+1
≤ f(x) <

k + 1

2n+1
⇒

k
2

2n
≤ f(x) <

k+1
2

2n

- if k is even and k
2 < 4n then fn(x) = k

2n+1 = fn+1(x)

- if k is even and k
2 ≥ 4n then fn(x) = 2n and fn(x) ≤ fn+1(x)

- if k is odd and k−1
2 < 4n then fn(x) = k−1

2n+1 ≤ fn+1(x)

- if k is odd and k−1
2 ≥ 4n then fn(x) = 2n and fn(x) ≤ fn+1(x)

5.2 Lebesgue Integral Properties

We formally verified in the HOL theorem prover some key properties of the Lebesgue
integral, such as the monotonicity and linearity. Let f and g be integrable functions
and c ∈ R then
- ∀x, 0 ≤ f(x)⇒ 0 ≤

∫
X
f dµ

- ∀x, f(x) ≤ g(x)⇒
∫
X
f dµ ≤

∫
X
g dµ
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-
∫
X
cf dµ = c

∫
X
f dµ

-
∫
X
f + g dµ =

∫
X
f dµ+

∫
X
g dµ

- A and B disjoint sets ⇒
∫
A∪Bf dµ =

∫
A
f dµ+

∫
B
f dµ

Proof. We only show the proof for the linearity of the integral. We start by
proving the property for non-negative functions. Using the integrability prop-
erty, given in Theorem 14, there exists two sequences (fn) and (gn) that are
pointwise convergent to f and g, respectively, such that

∫
X
f dµ = limn

∫
X
fn dµ

and
∫
X
g dµ = limn

∫
X
gn dµ. Let hn = fn + gn then the sequence hn is mono-

tonically increasing, pointwise convergent to f + g and ∀x hn(x) ≤ (f + g)(x)
and using Theorem 13,

∫
X
f + g dµ = limn

∫
X
hn dµ. Finally, using the linear-

ity of the integral for positive simple functions and the linearity of the limit,∫
X
f + g dµ = limn

∫
X
fn dµ + limn

∫
X
gn dµ =

∫
X
f dµ +

∫
X
g dµ. Now we consider

arbitrary integrable functions. We first prove in HOL the following lemma.

Lemma 4. If f1 and f2 are positive integrable functions such that f = f1 − f2

then
∫
X
f dµ =

∫
X
f1 dµ−

∫
X
f2 dµ

The definition of the integral is a special case of this lemma where f1 = f+ and
f2 = f−. Going back to our proof, let f1 = f+ + g+ and f2 = f− + g− then f1

and f2 are non-negative integrable functions satisfying f + g = f1 − f2. Using the
lemma we conclude that∫
X
f +g dµ =

∫
X
f1 dµ−

∫
X
f2 dµ = (

∫
X
f+ dµ+

∫
X
g+ dµ)− (

∫
X
f+ dµ+

∫
X
g+ dµ) =

(
∫
X
f+ dµ−

∫
X
f− dµ) + (

∫
X
g+ dµ−

∫
X
g− dµ) =

∫
X
f dµ+

∫
X
g dµ.

In this section we presented a formalization of the Lebesgue integration in HOL.
We also provided the criteria of integrability of a measurable function and proved
the integrability theorem. We used this theorem to prove the properties of the
Lebesgue integral for arbitrary measurable functions compared to only positive
simple functions in the work of Coble [2010]. This formalization allows us to define
the expectation and other statistical properties of random variables and prove their
properties.

6. STATISTICAL PROPERTIES

We use our formalization of the Lebesgue integral to define the expected value of a
random variable and prove its properties.

6.1 Expected Value

The expected value of a random value X is defined as the integral of X with respect
to the probability measure.

Definition 14. E[X] =
∫

Ω
X dp

` expectation = fn_integral

The properties of the expectation are derived from the properties of the integral.
We focus on random variables for which the expected value exists and prove, among
other properties, the linearity and monotonicity of the expectation.
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6.2 Variance

The variance and covariance of random variables are formalized as follow

` variance p X = expectation p (\x. (X x - expectation p X) pow 2)

` covariance p X Y = expectation p (\x. (X x - expectation p X) *

(Y x - expectation p Y))

Two random variable X and Y are uncorrelated iff Cov(X,Y ) = 0.

` uncorrelated p X Y = (covariance p X Y = 0)

We prove the following properties in HOL.
- V ar(X) = E[X2]− E[X]2

- Cov(X,Y ) = E[XY ]− E[X]E[Y ]
- V ar(X) ≥ 0
- ∀a ∈ R, V ar(aX) = a2V ar(X)
- V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X,Y )
- if X,Y uncorrelated then V ar(X + Y ) = V ar(X) + V ar(Y )

- if ∀i 6= j,Xi, Xj uncorrelated, then V ar(
∑N
i=1Xi) =

∑N
i=1 V ar(Xi)

Next, we use our formalization of the probability concepts in HOL to prove some
important properties, namely, the Chebyshev and Markov inequalities and the Weak
Law of Large Numbers [Papoulis 1984].

6.3 Chebyshev and Markov Inequalities

In probability theory, both the Chebyshev and Markov inequalities provide esti-
mates of tail probabilities. The Chebyshev inequality guarantees, for any probabil-
ity distribution, that nearly all values are close to the mean and it plays a major
role in the derivation of the laws of large numbers [Papoulis 1984]. The Markov
inequality provides loose yet useful bounds for the cumulative distribution function
of a random variable.

Let X be a random variable with expected value m and finite variance σ2. The
Chebyshev inequality states that for any real number k > 0,

P (|X −m| ≥ kσ) ≤ 1

k2
(8)

` ∀p X k.

random_variable X p Borel ∧
integrable p (\x. (X x - expectation p X) pow 2) ∧ 0 < k ⇒
prob p {x | x ∈ p_space p ∧ k <= abs (X x - expectation p X)}
<= variance p X / k pow 2

The Markov inequality states that for any real number k > 0,

P (|X| ≥ k) ≤ E[X]

k
(9)

` ∀p X k.

random_variable X p Borel ∧ 0 < k ⇒
prob p {x | x ∈ p_space p ∧ k <= abs (X x)} <=

expectation p X / k
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Instead of proving directly these inequalities, we provide a more general proof using
measure theory and Lebesgue integrals in HOL that can be used for both as well
as for a number of similar inequalities. The probabilistic statement follows by
considering a space of measure 1.

Theorem 15. Let (S,S, µ) be a measure space, and let f be a measurable func-
tion defined on S. Then for any nonnegative function g, nondecreasing on the range
of f,

µ({x ∈ S : f(x) ≥ t}) ≤ 1

g(t)

∫
S

g ◦ f dµ .

` ∀m f g t.

(let A = {x | x ∈ m_space m ∧ t <= f x} in

measure_space m ∧
f ∈ measurable (m_space m,measurable_sets m) Borel ∧
(∀x. 0 <= g x) ∧ (∀x y. x <= y ⇒ g x <= g y) ∧
integrable m (\x. g (f x)) ⇒
measure m A <= (1 / (g t)) * fn_integral m (\x. g (f x)))

The Chebyshev inequality is derived by letting t = kσ, f = |X −m| and g defined
as g(t) = t2 if t ≥ 0 and 0 otherwise. The Markov inequality is derived by letting
t = k, f = |X| and and g defined as g(t) = t2 if t ≥ 0 and 0 otherwise.

Proof. Let A = {x ∈ S : t ≤ f(x)} and IA be the indicator function of A.
From the definition of A, ∀x 0 ≤ g(t)IA(x) and ∀x ∈ A t ≤ f(x). Since g is non-
decreasing, ∀x, g(t)IA(x) ≤ g(f(x))IA(x) ≤ g(f(x)). As a result, ∀x g(t)IA(x) ≤
g(f(x)). A is measurable because f is (S,B(R)) measurable. Using the monotonic-
ity of the integral,

∫
S
g(t)IA(x)dµ ≤

∫
S
g(f(x))dµ. Finally from the linearity of the

integral g(t)µ(A) ≤
∫
S
g ◦ fdµ.

6.4 Weak Law of Large Numbers (WLLN)

The WLLN states that the average of a large number of independent measurements
of a random quantity converges in probability towards the theoretical average of
that quantity. Interpreting this result, the WLLN states that for a sufficiently
large sample, there will be a very high probability that the average will be close
to the expected value. This law is used in a multitude of fields. It is used, for
instance, to prove the asymptotic equipartition property [Cover and Thomas 1991],
a fundamental concept in the field of information theory.

Theorem 16. Let X1, X2, ... be an infinite sequence of independent, identically
distributed random variables with finite expected value E[X1] = E[X2] = ... = m
and let X = 1

n

∑n
i=1Xi then for any ε > 0,

lim
n→∞

P (|X −m| < ε) = 1 (10)

` ∀p X m v e.

prob_space p ∧ 0 < e ∧
(∀i j. i 6= j ⇒ uncorrelated p (X i) (X j)) ∧
(∀i. expectation p (X i) = m) ∧ (∀i. variance p (X i) = v) ⇒

lim (\n. prob p {x | x ∈ p_space p ∧
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abs ((\x. 1/n * SIGMA (\i. X i x) (count n))x-m) < e}) = 1

Proof. Using the linearity property of the Lebesgue integral as well as the prop-
erties of the variance we prove that

E[X] = 1
n

∑n
i=1m = m and V ar(X) = 1

n2

∑n
i=1 V ar(Xi) = σ2

n .

Applying the Chebyshev inequality to X, we get P (|X −m| ≥ ε) ≤ σ2

nε2 .

Equivalently, 1− σ2

nε2 ≤ P (|X −m| < ε) ≤ 1.

It then follows that limn→∞ P (|X −m| < ε) = 1.
Notice that in the proof we did not need to assume that the random variables are
independent and identically distributed. We simply assume that they are uncorre-
lated and have the same expected value and variance.

To prove the results of this section in HOL we used the Lebesgue integral properties,
in particular, the monotonicity and the linearity, as well as the properties of real-
valued measurable functions. All of these results are not available in the work of
Coble [2010] because his formalization does not include the Borel sets so he cannot
prove the Lebesgue properties and the theorems of this section. The Markov and
Chebyshev inequalities were previously proven by Hasan and Tahar [2009a] but
only for discrete random variables. Our formalization allows us to provide a proof
valid for both the discrete and continuous cases. Richter’s formalization [Richter
2004] only allows random variables defined on the whole universe of a certain type.
All of the mentioned formalizations do not include the definition of variance and
proofs of its properties and hence cannot be used to verify the WLLN.

7. SHANNON SOURCE CODING THEOREM

The source coding theorem establishes the limits of data compression. It states
that n independent and identically distributed (iid) random variables with entropy
H(X) can be expressed on the average by nH(X) bits without significant risk of
information loss, as n tends to infinity.

A proof of this result consists in proposing an encoding scheme for which the
average codeword length can be made arbitrarily close to nH(X) with negligible
probability of loss. We start by proving the Asymptotic Equipartition Property
(AEP) [Cover and Thomas 1991] and use it to define the typical set which will be
the basis of the encoding scheme.

7.1 Asymptotic Equipartition Property (AEP)

The Asymptotic Equipartition Property is the Information Theory analog of the
WLLN. It states that for a stochastic source X, if its time series X1, X2, . . . is a
sequence of iid random variables with entropy H(X), then − 1

n log(pX1...Xn) con-
verges in probability to H(X).
We define the entropy of a random source as H(X) = E[−log(pX)].

Theorem 17. (AEP): if X1, X2, . . . are iid then

− 1

n
log(pX1...Xn) −→ H(X) in probability

Proof. Let X1, X2, . . . be iid random variables and let Yi = −log(pXi). Then
Y1, Y2, . . . are iid random variables and ∀i, E[Yi] = H(X). Using Theorem 16, we
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have

lim
n→∞

P (| 1
n

n∑
i=1

Yi −H(X)| < ε) = 1

Furthermore,

1

n

n∑
i=1

Yi =
1

n

n∑
i=1

−log(pXi) = − 1

n
log(

n∏
i=1

pXi)

Using Theorem 12, since X1, . . . , Xn are mutually independent,

− 1

n
log(

n∏
i=1

pXi) = − 1

n
log(pX1...Xn)

Consequently,

lim
n→∞

P (| − 1

n
log(pX1...Xn)−H(X)| < ε) = 1 (11)

7.2 Typical Set

A consequence of the AEP is the fact that the set of observed sequences (x1, . . . , xn)
which joint probabilities p(x1, x2, . . . , xn) are close to 2−nH(X) has a total proba-
bility equal to 1. This set is called the typical set and such sequences are called the
typical sequences. In other words, out of all possible sequences, only a small num-
ber of sequences will actually be observed and those sequences are nearly equally
probable. The AEP guarantees that any property that is proved for the typical
sequences will then be true with high probability and will determine the average
behavior of a large sample.

Definition 15. The typical set Anε with respect to p(x) is the set of sequences
(x1, . . . , xn) satisfying

2−n(H(X)+ε) ≤ p(x1, . . . , xn) ≤ 2−n(H(X)−ε). (12)

We prove in HOL various properties of the typical set.

Theorem 18. if (x1, . . . , xn) ∈ Anε then

H(X)− ε ≤ − 1

n
log(p(x1, . . . , xn)) ≤ H(X) + ε (13)

This theorem is a direct consequence of Definition 15.

Theorem 19. ∀ε > 0, ∃N, ∀n ≥ N, p(Anε ) > 1− ε.

The proof of this theorem is derived from the formally verified AEP. The next two
theorems give upper and lower bounds for the number of typical sequences |Anε |.

Theorem 20. |Anε | ≤ 2n(H(X)+ε).

Proof. Let x = (x1, . . . , xn), then
∑
x∈Anε

p(x) ≤ 1. From Equation 12, ∀x ∈
Anε , 2−n(H(X)+ε) ≤ p(x). Hence

∑
x∈Anε

2−n(H(X)+ε) ≤
∑
x∈Anε

p(x) ≤ 1. Conse-

quently, 2−n(H(X)+ε)|Anε | ≤ 1 proving the theorem.
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Theorem 21. ∀ε > 0, ∃N.∀n ≥ N, (1− ε)2n(H(X)−ε) ≤ |Anε |.

Proof. Let x = (x1, . . . , xn). From Theorem 19, ∃N.∀n ≥ N, 1−ε <
∑
x∈Anε

p(x).

From Equation 12, ∀x ∈ Anε , p(x) ≤ 2−n(H(X)−ε). Hence, ∃N.∀n ≥ N, 1 −
ε <

∑
x∈Anε

p(x) ≤
∑
x∈Anε

2−n(H(X)−ε). Consequently, ∃N.∀n ≥ N, 1 − ε <

2−n(H(X)−ε)|Anε | proving the theorem.

7.3 Shannon Source Coding Theorem

The main idea behind the proof of the source coding theorem is that the average
codeword length for all sequences is close to the average codeword length considering
only the typical sequences. This is true because according to Theorem 19, for a
sufficiently large n, the typical set has a total probability close to 1. In other words,
for any ε > 0, and sufficiently large n, the probability of observing a non-typical
sequence is less than ε. Furthermore, according to Theorem 20, the number of
typical sequences is smaller than 2n(H(X)+ε) and hence no more than n(H(X)+ε)+1
bits are needed to represent all typical sequences. If we encode each typical sequence
by simply enumerating its position within an ordered list of typical sequences and
add 0 as a prefix, the total number of bits needed is no more than n(H(X) + ε) + 2.
We also encode each non-typical sequence by enumerating its position within an
ordered list of all possible sequences and prefix it by 1. The total number of bits
needed for the non-typical sequences is less than nlog(|Ω|) + 2. If we denote by
Y the random variable defined over all the possible sequences and returns the
corresponding codeword length. The expectation of the Y is equal to the average
codeword length L. Besides, ∀x ∈ Anε , Y (x) ≤ n(H(X) + ε) + 2 otherwise Y (x) ≤
nlog(|Ω|) + 2.

L = E[Y ] =
∑
x∈Anε

p(x)Y (x) +
∑
x∈Anε

p(x)Y (x) (14)

L ≤ p(Anε )(n(H(X) + ε) + 2) + (1− p(Anε ))(nlog(|Ω|) + 2) (15)

L ≤ p(Anε )n(H(X) + ε) + (1− p(Anε ))nlog(|Ω|) + 2 (16)

Using Theorem 19, ∃N, ∀n ≥ N, p(Anε ) > 1− ε. Hence,

L ≤ n(H(X) + ε) + εnlog(|Ω|) + 2 (17)

L ≤ n(H(X) + ε
′
) (18)

Where ε
′

= ε+ εlog(|Ω|) + 2
n .

Consequently, for any ε > 0 and n sufficiently large, the code rate L
n can be made

as close as needed to the entropy H(X) while maintaining a probability of error of
the encoder that is bounded by ε.

The coding scheme we used is one-to-one, as the first bit in the codeword indicates
its length and the remaining bits determine its position in the corresponding ordered
set. We formally verified that the average codeword length of this code can be made
arbitrarily close to nH(X) without significant loss of information.
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8. CONCLUSIONS

In this paper we have presented a comprehensive methodology to reason about
probabilistic systems in a theorem prover. We provided a formalization of the mea-
sure theory including the Borel sigma algebra defined for any topological space.
We then focused on real-valued measurable functions and proved their key prop-
erties. Using this formalization we defined a theory of probability in Higher-order
logic. Main concepts of probability in our formalization include random variables,
probability mass functions (pmf), joint pmf and independence of random variables.
To formalize statistical properties of random variables, we presented a Lebesgue
integration infrastructure including important properties such as the linearity and
monotonicity of the Lebesgue integral. We applied the Lebesgue integral properties
to the expectation operator and used the whole formalization to prove classical re-
sults from the theory of probability, namely, the Chebyshev and Markov inequalities
as well as the WLLN.

The proposed work paves the path for the usage of formal verification for analysing
probabilistic aspects in many critical domains, such as security protocols, trans-
portation and communication systems. We illustrated the effectiveness of our
formalization by proving a fundamental result in information theory, namely the
Asymptotic Equipartition Property, which we used to prove the classical source
coding theorem. The HOL codes corresponding to all the formalization and proofs,
presented in this paper, are available in [Mhamdi et al. 2010a] and can be built
upon to formally analyze other interesting applications.

Overall our formalization required more than 9000 lines of code. Only 700 lines
were required to verify the key properties of the application section. This shows the
significance of our work in terms of simplifying the formal analysis of probabilistic
systems. The main difficulties encountered were the multidisciplinary nature of
this work, requiring deep knowledge of measure and integration theories, topology,
set theory, real analysis and probability and information theories. Some of the
mathematical proofs also posed challenges to be implemented in HOL. Our future
plans include using the Lebesgue monotone convergence theorem and the Lebesgue
integral properties to prove the Radon Nikodym theorem [Bogachev 2006], paving
the way to defining the probability density functions for continuous random vari-
ables as well as the Kullback-Leibler divergence [Cover and Thomas 1991], which
is related to the mutual information, entropy and conditional entropy.
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