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Abstract

Intensional Cyberforensics

Serguei A. Mokhov, Ph.D.

Concordia University, 2013

This work focuses on the application of intensional logic to cyberforensic analysis and its

benefits and difficulties are compared with the finite-state-automata approach. This work

extends the use of the intensional programming paradigm to the modeling and implemen-

tation of a cyberforensics investigation process with backtracing of event reconstruction, in

which evidence is modeled by multidimensional hierarchical contexts, and proofs or disproofs

of claims are undertaken in an eductive manner of evaluation. This approach is a practical,

context-aware improvement over the finite state automata (FSA) approach we have seen in

previous work. As a base implementation language model, we use in this approach a new di-

alect of the Lucid programming language, called Forensic Lucid, and we focus on defining

hierarchical contexts based on intensional logic for the distributed evaluation of cyberforensic

expressions. We also augment the work with credibility factors surrounding digital evidence

and witness accounts, which have not been previously modeled.

The Forensic Lucid programming language, used for this intensional cyberforensic

analysis, formally presented through its syntax and operational semantics. In large part, the

language is based on its predecessor and codecessor Lucid dialects, such as GIPL, Index-

ical Lucid, Lucx, Objective Lucid, MARFL and JOOIP bound by the underlying

intensional programming paradigm.
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Chapter 1

Introduction

Cyberforensics , or digital forensics , is the overarching term for digital crime investigations

concerning (among other aspects) digital data recorded on various computing devices and ser-

vices as evidence for the purposes of analysis, event reconstruction, attribution, and eventual

prosecution or exoneration of suspects. Unlike in traditional forensics, cyberforensic pro-

cesses (see Chapter 2) face a number of extra multifaceted challenges for their methods and

results to be usable in a court of law and in information security practice. This thesis presents

an endeavor that extends the use of the intensional programming paradigm [129, 348] and

the science behind it to formally model and implement a cyberforensics investigation process

with backtracing of event reconstruction, formalizing and modeling the evidence as multi-

dimensional hierarchical contexts, and proving or disproving the claims in an intensional

manner of expression and eductive evaluation [303, 305] based on Kripke’s possible-world

semantics [505]. Our proposed solution (Section 1.4) is designed to be a practical, context-

aware improvement on the raw finite-state-automata (FSA/LISP) approach we have seen

in [81, 133, 134, 135]. The core contribution of this thesis, Forensic Lucid, is in Chap-

ter 7, with its most advanced application described in Section 9.5, page 257. What follows

are executive summary details of the overall research and approach.

We apply intensional logic to automated cyberforensic analysis, reasoning, and event

reconstruction. We explore the benefits and difficulties in comparing the work with the

aforementioned finite-state automata/Common Lisp approach. Intensional logic, as a mul-

tidimensional generalization of temporal logic, makes the evaluation of regular mathematical

and logic expressions context-aware, where the context of evaluation (an arbitrary part of

interest in the “possible world”) is a first-class value and can be manipulated in logical ex-

pressions via context operators. The fundamental context consists of dimension-value pairs.
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To help the study, the foundation of the new Forensic Lucid language is presented along

with its forensic context operators to navigate evidential statements and crime scene specifi-

cations [303]. Our approach additionally introduces the notion of credibility and trustworthi-

ness of evidence and witnesses, which FSA/LISP lacked—via the Dempster–Shafer theory of

mathematical evidence to address the problem that some evidence or witness accounts may

not be 100% credible, potentially affecting the overall reasoning about a case.

The Forensic Lucid compiler and run-time system are being designed within the Gen-

eral Intensional Programming System (GIPSY) [159, 262, 360, 368]. As an added benefit

arising from the use of Lucid and its GIPSY implementation, the cyberforensics investi-

gation cases may be conducted using a scalable distributed/parallel intensional approach for

event reconstruction computation. This work is a natural evolution of and refinement of

related works written or cowritten by the author [265, 267, 274, 298, 302, 303, 305, 310, 319].

Lucid and intensional logic are good candidates, proven over time, for knowledge rep-

resentation and computable context-aware evaluation [169]. The Forensic Lucid instance

presented in this thesis is arguably the first formally specified and developed language allow-

ing scalable encoding of forensic knowledge of a case, the building of the case’s operational

description, and the evaluation of claims against them with event reconstruction locally or on

a cluster for large volumes of digital evidence. The first ideas of Forensic Lucid appeared

in [265] in 2007.

As a result, this thesis can be said to be a cross-disciplinary work that touches the breadth

of the research in digital forensics, formal methods, intensional logic and programming, soft-

ware engineering, distributed and parallel computing, soft computing and expert systems,

automated reasoning, law, mathematics, pattern recognition and data mining, and graphi-

cal visualization. Thus, armed with all these tools and techniques we approach the digital

investigation process.

In this chapter subsequently we gradually provide in increasing level of detail, after a more

comprehensive overview (Section 1.1) of the research along with the principal motivations for

it, we detail a set of problems and gaps in Section 1.3 requiring addressing and the proposed

solutions to them in Section 1.4. Further we define the scope of this thesis in Section 1.5

and the overall summary of the research and contributions as well as organization of the

remainder of this thesis in Section 1.6.
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1.1 Overview

Forensic Lucid, a functional-intensional forensic case programming/specification language

is at the core of the Intensional Cyberforensics project. It has undergone extensive design

and development including its syntax, semantics, the corresponding compiler, run-time

environment, and interactive development environments [264, 265] provided by the General

Intensional Programming System (GIPSY) [460]. This work further extends our previous

developments in the related work [261, 264, 265, 298, 302].

Forensic Lucid, serving as the base declarative specification language model that we

use in this approach, is in fact a new dialect of the Lucid intensional-logic-based program-

ming language [24, 25, 26, 27, 506]. As a part of this thesis, we define hierarchical contexts in

Forensic Lucid (Section 7.2.2) based on intensional logic for the evaluation of cyberforensic

expressions, first for modeling example case investigations from the related FSA/LISP work

in order to do comparative studies of the old and new approaches [305]. The cases involved

disputes between parties surrounding some kind of computer-related equipment. In particu-

lar, in this work we model the blackmail and ACME (a fictitious company name) “printing

case incident” and make their specification in Forensic Lucid for follow-up cyberforensic

analysis and event reconstruction. Our approach is based on the said cases, modeled by

encoding concepts such as evidence and the related witness accounts as an evidential state-

ment context in a Forensic Lucid “program”. The evidential statement is an input to the

transition function that models the possible “feed-forward” deductions in the case. We then

invoke the transition function (actually its reverse, “backtracking”) with the evidential state-

ment context, to see if the evidence we encoded agrees with one’s claims and then attempt to

reconstruct the sequence of events that may explain the claim or disprove it [310]. Following

the simple cases, we model more realistic cases and place some of the resulting practical arti-

facts to work in the actual network and system operations (Section 9.5). Additionally, in the

ongoing theoretical and practical work, Forensic Lucid is augmented with the Dempster–

Shafer theory of mathematical evidence to include credibility factors and similar concepts

that are lacking in Gladyshev’s model [308]. Specifically, this thesis further refines the theo-

retical structure and formal model of the observation tuple with credibility weight and other

factors for cyberforensic analysis and event reconstruction [308] by extending the first itera-

tion of Forensic Lucid that was originally following Gladyshev’s approach [133, 134, 135]

to only formalize the evidence and the case in question without taking into account witness

credibility [298, 302, 308].

As an intensional dialect, Forensic Lucid’s toolset is practically being designed within
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the General Intensional Programming System (GIPSY) and the probabilistic model-checking

tool PRISM as a backend to compile the Forensic Lucid model into PRISM code syntax

and check the compiled case model with the PRISM tool at run-time [308]. As briefly men-

tioned earlier, GIPSY is the middleware platform in this study that performs the Forensic

Lucid computations. The GIPSY project is an ongoing effort aiming at providing a flexible

platform for the investigation of the intensional programming model as realized by the lat-

est instances of the Lucid programming language [24, 25, 26, 27, 506] (a multidimensional

context-aware language whose semantics is based on possible-worlds semantics [216, 217]).

GIPSY provides an integrated framework for compiling programs written in theoretically all

variants of Lucid, and even any language of intensional nature that can be translated into

some kind of “generic Lucid” [300] (e.g., in our case GIPL [359, 363, 470, 510]).

1.2 Motivation and Applications

Motivations

A formal approach to cyberforensic analysis is necessary for the artifacts produced to be a

credible tool to use in law enforcement and to be viable in courts if challenged. Pavel Glady-

shev in his PhD thesis [133] dedicated the entire Chapter 4 to that effect. He subsequently

provided formalisms in event reconstruction in digital investigations. Likewise, in order for

Forensic Lucid (and its surrounding theory and practice) to be a credible tool to use in

a court of law (including the implementation of relevant tools for the argumentation), the

language ought to have a solid scientific basis, a part of which is formalizing the semantics

of the language and proving correctness of the programs written in it.

We move one step further motivated by the fact that truth and credibility can be fuzzy

(that is with elements of uncertainty or taintedness of evidence and witness accounts) and

not just being completely true or false. Thus, it is natural to want to be able to represent

such knowledge, and reason with its presence to discount low credibility claims and give

higher-credibility claims higher weight.

The concrete realization of the formal approach also has to be usable by a wider investiga-

tive audience, who should be able to represent and visualize the voluminous case knowledge

and reason about it efficiently. Thus, it is imperative to have usable scripting and visual aid

tools to compose the case and import the digital evidence by human investigators. Addi-

tionally, the knowledge representation, case building and management should be friendlier
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to human investigators and take contextual meaning into the account. The subsequent case

evaluation should be scalable and efficient at the same time, given the likely possibility of

the need to process a large amount of digital evidential data.

Furthermore, a concrete operational need exists to automate the reasoning about truly

offending or false-positive cases in the actual operational environment on a Faculty network to

reduce the burden of the very few human analysts manually doing the related investigations

while attending to many other duties (cf. Section 9.5).

Applications

Due to the inherent interdisciplinary nature of this research (cf. page 2), its possible ap-

plications and implications can go significantly further beyond the very specific computer

and network security investigations mentioned in this thesis and even beyond the cybercrime

domain itself.

One possible application of the theoretical framework and formal model of the observation

tuple with credibility weight and other factors for cyberforensic analysis is intrusion-detection

system (IDS) data and their corresponding event reconstruction [308]. This work may also

help with further generalization of the testing methodology of IDSs [353] themselves [308].

In particular, encoding and modeling large volumes of network and other data related to

intrusion detection is an important step in incident analysis and response. The data are

formalized in Forensic Lucid for the purposes of event correlation and reconstruction

along with trustworthiness factors (e.g., the likelihood of logs being altered by an intruder)

in a common specification of the evidential statement context and a digital crime scene. A

possible goal here is to able to collect the intrusion-related evidence as the Forensic Lucid’s

evidential statement from diverse sources like Snort [254, 396, 435], netflows, pcap’s data,

etc., to do the follow-up investigation and event reconstruction. Another goal is to either

be interactive with an investigator present, or fully automated in an autonomous IDS with

self-forensics [319] capability [308].

The proposed practical approach in the cyberforensics field can also be used in a normal

investigation process involving crimes not necessarily associated with information technology.

Combined with an expert system (e.g., implemented in CLIPS [398]), the approach can also

be used in training new staff in investigation techniques to help to prevent incomplete analysis

that conventional ad-hoc techniques are prone to.

Venturing completely outside of crime investigation (digital or not), the Forensic Lucid

approach was proposed to be adapted to applications beyond its intended purpose described
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in this thesis. On one hand, such a cross-disciplinary area of application is archeology for

event reconstruction in historical context of the evidence one digs up from the archaeological

sites trying to describe and arrange mentally all the evidence and describe what may have

happened long ago given all the finds and validate various hypotheses put forward in that

context. Extrapolating from that, any application where event reconstruction is needed in

the presence of uncertainty, can be approached with Forensic Lucid. Another application

area comes from even further away—the artistic side and the entertainment industry, such

as validating logical consistency of scripts, plots, and strategies for feature films and games

of relative complexity (especially if such works have themselves to do with investigations!).

1.3 Problem Statement and Gap Analysis

The arguably very first formal approach for evidential statement consistency verification and

event reconstruction in cyberforensic investigative analysis appeared in the previously men-

tioned works [133, 134, 135] by Gladyshev et al . That approach (described and recited in

detail in Chapter 2) relies on the finite-state automata (FSA) and their transformation and

operation to model evidence, witnesses, stories told by witnesses, and their possible evalu-

ation for the purposes of claim validation and event reconstruction (other formalisms were

studied in [21, 22], see Section 2.2). There the authors provide a Common Lisp sample

implementation. The examples the works present are the initial use-cases for the proposed

technique in this thesis—Blackmail Investigation (Section 2.2.5.2) and ACME Printing (Sec-

tion 2.2.5.1) cases. Their approach, however, is unduly complex to use and to understand for

non-theoretical-computer science or equivalently minded investigators. While the formaliza-

tion and implementation of the FSA/LISP approach was very valuable to the community,

it is not as elegant as it could have been [81] nor it is very usable by the majority of the

less-formal-tech-savvy investigators.

At the origins of Intensional Programming (IP) is the Lucid functional intensional pro-

gramming language, dating back to 1974 [27]. After more than 35 years of development,

history has proven that it is a programming paradigm whose languages are diversified and

are in constant evolution. However, Intensional Programming [129, 348] is an off-main-stream

programming paradigm [523] whose concrete applicability still needs to be proven in order to

be widely accepted. A lot of intensional dialects have been spawned from the 35+-year-old

Lucid [5, 24, 25, 26, 27, 91, 120, 124, 359, 362, 506, 511, 538]. Lucid (see Section 4.1) itself

was originally invented with a goal for program correctness verification [23, 25, 26, 242, 530].
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Overall, there are a number of unaddressed problems and gaps with theories, techniques,

and technologies used, which we summarize below and then elaborate in some detail on the

specific points.

1. The FSA/LISP approach to formal cyberforensic analysis:

(a) does not scale humanly (comprehension, scalability) and computationally (usabil-

ity)

(b) has no credibility factors to annotate evidence and testimonies (probabilities and

PRISM are subsequently needed)

(c) has no visualization of the knowledge base and the case management

(d) requires more realistic cases to test in the actual operational work

(e) no automatic encoders of the evidence into Common Lisp or FSA

2. The Lucid language:

(a) needs hierarchical contexts to represent nested/hierarchical knowledge as streamed

arguments and results

(b) requires object members access and other APIs for arbitrary nesting

(c) needs the use of formal methods and verification

(d) needs better usability of the Lucid development and run-time tools for a wider

community

(e) requires an update to the theoretical foundations:

i. needs a common format for knowledge representation and reasoning

ii. needs a augmented theoretical logical framework (HOIL and HOIFL, see Sec-

tion 1.6.1.1, page 13) support for reasoning

3. The GIPSY system:

(a) needs augmentation to support Forensic Lucid

(b) requires cross-language data types

(c) needs a compiler for Forensic Lucid

(d) the evaluation engine/run-time systems needs:

i. multi-tier architecture to address scalability better
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ii. refactoring the framework for optimized problem-specific handling

iii. reasoning engines for backtracking and probabilities

(e) configuration management and automation

(f) requires development/configuration environment with graphical support for the

better usability

1.4 Proposed Solution

This work focuses on the refinement of application of the intensional logic to cyberforensic

analysis and its benefits are compared to the pure finite-state automata approach [305]. At

the same time we increase the visibility of the Intensional Programming paradigm within the

formal methods and cyberforensic analysis communities as the right tool to use in such an

approach.

The large part of the solution is the creation of the introduced Forensic Lucid dialect

of Lucid to foster the research on the intensional cyberforensics [298] (see Section 1.6.1.2).

To summarize in a few words, this thesis presents multidimensional context-oriented cyber-

forensic specification and analysis. In a large part, Forensic Lucid is a union of the syntax

and operational semantics inference rules from the comprising intensional languages with its

own forensic extensions based on the cited finite-state automata approach [133, 134, 135].

In order to be a credible tool to use, for example, in court, to implement relevant tools for

the argumentation, the language ought to have a solid scientific base, a part of which is a

complete formalization of the syntax and semantics of the language [302].

Thus, the approach this thesis follows is tailored to addressing a decent subset of problems

and gaps outlined in the previous section. Specifically:

1. Addressing the FSA/LISP approach gaps.

The goal of this work is to lay a foundation to lead to a solution that remedies these two

major drawbacks of the FSA approach by introducing credibility factors and improving

usability. Additionally, we benefit from the parallel demand-driven context-aware eval-

uation in terms of the implementing system, which the original Common Lisp-based

implementation [135] approach lacks [303].

As to the test cases, the two actual illustratory examples Gladyshev’s works presented

are the mentioned first use-cases for the proposed technique in this thesis—the ACME

8



printer and blackmail case investigations (see Section 2.2.5.1 and Section 2.2.5.2 re-

spectively). These works [134, 135] detail the corresponding formalization using the

FSA and the proof-of-concept (PoC) Common Lisp implementation for the printer

case [135]. We first aim at the same cases to model and implement them using the

new approach, which paves a way to be more friendly and usable in the actual in-

vestigator’s work and serve as a basis to further development in the areas of forensic

computing and intensional programming using Forensic Lucid [305, 310] (see Sec-

tion 9.3 and Section 9.4 respectively). We then move onto more realistic cases, such as,

e.g., MAC spoofer report investigations (see Section 9.5).

Thus, a Lucid approach is a major solution to these problems.

2. Addressing the Lucid gaps.

The Lucid family of languages thrived around intensional logic that makes the notion

of context explicit and central, and recently, a first class value [470, 510, 512] that

can be passed around as function parameters or as return values and have a set of

operators defined upon. We greatly draw on this notion by formalizing our evidence

and the stories as a contextual specification of the incident to be tested for consistency

against the incident model specification. In our specification model, we require more

than just atomic context values—we need a higher-order context hierarchy to specify

different level of detail of the incident and being able to navigate into the “depth” of

such a context. Luckily, such a proposition has already been made [270] and needs

some modifications to the expressions of the cyberforensic context.

In terms of syntax and semantics for Forensic Lucid we benefit in large part, as

the language is based on its predecessor and codecessor Lucid dialects, such as GIPL,

Indexical Lucid, Lucx, Objective Lucid, and JOOIP bound by the higher-order

intensional logic (HOIL) that is behind them. This work continues to formally specify

the operational semantics of the Forensic Lucid language extending the previous

related work [298, 302].

We further define the specification of hierarchical evidential context expressions and the

operators on them when modeling the examples while illustrating related fundamental

concepts, operators, and application of context-oriented case modeling and evaluation.

Common Lisp, unlike Lucid, entirely lacks contexts built into its logic, syntax, and

semantics, thereby making the implementation of the cases more clumsy and inefficient

(i.e., highly sequential) [135]. Our GIPSY system [189, 262, 360, 364, 368] offers a
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distributed demand-driven evaluation of Lucid programs in a more efficient way and is

more general than the LISP’s compiler and run-time environment [305, 310].

Thus, HOIL, GIPSY are the solutions here.

3. Addressing the GIPSY gaps.

To enhance the scalability of GIPSY a number of APIs needed to be updated, re-

designed, or designed from scratch to accommodate new middleware technologies, com-

pilers, and the run-time evaluation system. We designed components and amended ex-

isting components of the distributed evaluation engine within the General Intensional

Programming System (GIPSY) enabling measurements of a wide array of run-time pa-

rameters for the purposes of scalability studies, its configuration management, schedul-

ing, and administration with the General Manager Tier (Section 6.2.2.1) component

of the GIPSY’s multi-tier architecture [159]. We made advances in the software engi-

neering design and implementation of the multi-tier run-time system for the General

Intensional Programming System (GIPSY) by further unifying the distributed tech-

nologies used to implement the Demand Migration Framework (DMF, Section 6.1.3)

in order to streamline distributed execution of hybrid intensional-imperative programs

using Java [159]. The bulk of multi-tier implementation and scalability studies follow-

ing the redesign of the APIs were carried out by Han [158] and Ji [189], and graphical

configuration management by Rabah et al . [391].

The compiler API support has been further enhanced to allow JOOIP (Section 4.3.2.3)

compilation, the semantics and PoC implementation of which was subsequently carried

out by Wu [525].

The author Mokhov supported the design and unification of these APIs and the inte-

gration effort within GIPSY following up with his own extensions to support multiple

GEE (Section 6.2.2) backends and a compiler to support Forensic Lucid, including

the complete GIPSY Type System and Theory (see Appendix B). All this work resulted

in a number of contributions to GIPSY and its frameworks detailed in Chapter 8.

As a part of the proposed near-future work to improve scalability of information man-

agement and presentation and with the ongoing advances in the interaction design [402],

the visualization project was proposed to further enhance usability of the discussed

language and system and the related tools. Lucid programs are dataflow programs

and can be visually represented as data flow graphs (DFGs) and composed visually.

Forensic Lucid includes the encoding of the evidence (representing the context of
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evaluation) and the crime scene modeling in order to validate claims against the model

and perform event reconstruction, potentially within large swaths of digital evidence.

To aid investigators to model the scene and evaluate it, instead of typing a Forensic

Lucid program, we propose to expand the design and implementation of the Lucid

DFG programming onto Forensic Lucid case modeling and specification to enhance

the usability of the language and the system and its behavior in 3D. We briefly dis-

cuss the related work on visual programming and DFG modeling in an attempt to

define and select one approach or a composition of approaches for Forensic Lucid

based on various criteria such as previous implementation, wide use, formal backing in

terms of semantics and translation [309] (see Chapter E). Reaching out into a differ-

ent disciplinary areas of specific interest here—a recent novel concept of documentary

knowledge visual representation in illimitable space introduced by Song in [434]. That

work may scale when properly re-engineered and enhanced to act as an interactive 3D

window into the evidential knowledge grouped into the semantically linked “bubbles”

visually representing the documented evidence and by moving such a contextual win-

dow, or rather, navigating within theoretically illimitable space and investigator can

sort out and re-organize the knowledge items as needed prior launching the reasoning

computation. The interaction aspect would be of a particular usefulness to open up

the documented case knowledge and link the relevant witness accounts. This is a pro-

posed solution to the large scale visualization problem of large volumes of “scrollable”

evidence that does not need to be all visualized at one, but be like in a storage depot.

(However, the actual realization of this solution is deferred to later time.)

What follows are the details of our solution along with the related work [272, 311].

1.5 Scope

Out of the problems and gaps detailed in the previous sections, we summarize the more

concrete objectives within the actual scope of this thesis in Section 1.5.1 and the items that

are outside the scope of the thesis and more destined for the immediate future work in

Section 1.5.2.

11



1.5.1 Thesis Objectives

The primary objectives are to design the introduced Forensic Lucid incident specifica-

tion/scripting language in terms of formal syntax and semantics and show their use through

several case studies. Specifically, in the point form the objectives are to produce:

1. Forensic Lucid (Chapter 7)

(a) Forensic Lucid syntax (Section 7.3)

(b) Forensic Lucid operational semantics (Section 7.4)

(c) Hierarchical higher-order context specification (Section 7.2.2)

(d) Operators and “transition functions” (Section 7.3.4)

(e) Observation specification with credibility (Section 7.4.2)

2. Forensic Lucid parser (Section 8.1)

3. Run-time evaluation environment (engine) design (Section 8.2)

4. Example cases (see Chapter 9)

1.5.2 Out of Scope

• Large scale visualization of the case and systems

• IDS integration and inter-operation

• Other future work items detailed in Section 10.4

1.6 Summary

To summarize, we believe and show that the intensional approach with a Lucid-based dialect

to the problem is an asset in the fields of cyberforensics and intensional logic and programming

as it is promising to be more practical and usable than the plain FSA/LISP in the end [303,

305, 310]. Since Lucid was originally designed and used to prove correctness of programs [24,

25, 26, 506], and is based on the temporal logic functional and data-flow languages, we can

relatively easily adopt its computational machinery to backtracking in proving or disproving

the evidential statements and claims in the investigation process as simply an evaluation of
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a forensic expression that either translates to sets of true or false given all the facts in the

formally specified context [310] providing a set of event reconstruction traces (backtraces).

For that we defined the novel Lucid dialect with a new set of primitives predefined for

forensic tasks. Unlike the LISP-based system implementing the finite state automata, we

still retain the flexibility of parallel evaluation of several claims or several components of one

claim at the same time by relying on the GIPSY’s demand-driven general eduction engine

(GEE) whose backend is powered by various distributed systems technologies such as the

DMS [240, 381, 382, 383, 495, 496, 498] and multi-tier architecture [158, 159, 189, 360]. We

also retain the generality of the approach [303, 305, 310].

1.6.1 Science and Technology

Here we summarize the science and technology aspects behind this work that we use and rely

on as tools and techniques that support the multifaceted nature of this thesis in a variety of

ways. The detailed description of these aspects follows in the background chapters in Part I.

The specific scientific contributions and the related work done by others and some by the

author come from the Intensional Logic and its extensions for formalization (Section 1.6.1.1),

cyberforensic analysis (Section 1.6.1.2), and GIPSY (Section 1.6.1.4).

1.6.1.1 Intensional Logic and Soft Computing

From the logic perspective, it was shown one can model computations (a computation is also

a basic formal unit in the finite state machines in [134, 135]) as logic [220]. When armed

with contexts [505] as first-class values and a demand-driven run-time model adopted in the

implementation of the Lucid-family of languages [360, 363, 368, 377, 394, 470, 512] that

constrains the scope of evaluation in a given set of dimensions, we come to the intensional

logic and the corresponding programming artifact. In a nutshell, we model our forensic

computation unit in intensional logic and implement it in practice within an intensional

programming platform—the General Intensional Programming System (GIPSY) [262, 360,

364, 368]. We project a lot of potential for the results of this work to be successful, beneficial,

and usable for cyberforensics investigation as well as simulation and intensional programming

communities [305, 310].

From the intensional logic we move up to the concept of higher-order intensional logic

(HOIL) [299, 300] since Forensic Lucid’s constructs are that of a function al language. To

accommodate the notion of credibility in our formalism [272, 311], we then move to something
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we define as the higher-order intensional fuzzy logic (HOIFL), which is HOIL+Dempster–

Shafer mathematical evidence theory since we are dealing with possibly inexact reasoning

present in intelligent soft computing systems [202]. For the latter we use the mentioned

PRISM tool [464] to check our models. This affects the stated earlier objectives 1a, 1b, and

1e.

For in-depth background on intensional logic and Dempster–Shafer theory see Section 3.2

and Section 3.3.2 respectively.

1.6.1.2 Cyberforensic Analysis

Cyberforensic analysis has to do with automated or semi-automated processing of, and rea-

soning about, digital evidence, witness accounts, and other details from cybercrime incidents

(involving computers, but not limited to them). Analysis is one of the phases in cyber-

crime investigation (while the other phases focus on evidence collection, preservation, chain

of custody, information extraction that precede the analysis) [82]. The phases that follow

the analysis are formulation of a report and potential prosecution or exoneration, typically

involving expert witnesses [81, 298, 309].

There are quite a few techniques, tools (hardware and software), and methodologies that

have been developed for the mentioned phases of the cybercrime investigation. A lot of

attention has been paid to tool development for evidence collection and preservation; a few

tools have been developed to aid data “browsing” on the confiscated storage media, log files

(e.g., Splunk [436]), memory, and so on. Fewer tools have been developed for case analysis of

the data (e.g., Sleuthkit [59]), and the existing commercial packages (e.g., EnCase [52, 147]

or FTK [2]) are very expensive. Even less so there are case management, event modeling,

and event reconstruction, especially with a solid formal theoretical base [298, 309]. More

in-depth background on cyberforensics is found in Chapter 2.

Forensic Lucid’s design and implementation, its theoretical base are being established

in this work (see Chapter 7). In the cyberforensic analysis, Forensic Lucid is designed

to be able to express in a program form the encoding of the evidence, witness stories, and

evidential statements, that can be tested against claims to see if there is a possible sequence

or multiple sequences of events that explain a given “story”. As with the Gladyshev’s ap-

proach, it is designed to aid investigators to avoid ad-hoc conclusions and have them look at

the possible explanations the Forensic Lucid program “execution” would yield and refine

the investigation, as was Gladyshev has previously shown [133, 134, 135] where hypothetical
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investigators failed to analyze all the “stories” and their plausibility before drawing conclu-

sions in the cases under investigation [298, 309]. This works improves on Gladyshev’s work

by being more usable, scalable, expressive, and concise, while dealing with credibility and

incorporating the good ideas from Gladyshev.

1.6.1.3 Context-Orientation

Context-oriented computing and reasoning emerged as a domain with a lot of research go-

ing into it from various aspects as context is something that provides us with meaning.

This includes mobile computing, semantic web [534] and related technologies for natural lan-

guage understanding [411, 412, 519], intelligent agent computing and distributed systems [41,

412, 451], description logic and ontologies [537, 537], web services and service-oriented ar-

chitectures [64, 101, 429, 531, 532], human-computer interaction [100], security [537] and

environment for requirements engineering in software engineering [252, 399, 411, 479, 519],

data mining and pattern recognition [61, 411] among others. Context also helps to deal with

an uncertainty sometimes humans have to deal with in an unknown situation using some

form of a dialectic approach based on incomplete information [48].

Figure 1: Boyd’s OODA loop [49]

Context specification and evaluation is also at the core of the Isabelle/HOL interactive

theorem proving framework within its ML implementation [515].

Context helps making decisions about a situation or investigation pertinent to the envi-

ronment where the situation is taking place. Boyd came up with the notion of the Observe-

Orient-Decide-Act (OODA) loop (see Figure 11) when describing fighter pilots in a combat

1The image is by P. E. Moran, reproduction at the CC BY 3.0 license of the Boyd’s OODA loop is sourced
from the Wikipedia’s http://en.wikipedia.org/wiki/OODA_loop page.
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situation [49] learning the context of their environment, reading out flight parameters, receiv-

ing information from the mission control about the known information about the enemy to

plan for the battle style, and then, when engaging, the process continues, albeit, much more

rapidly. Observations give the evidential parameters as an input of raw observed properties,

that formulate the initial context of the situation. The Orient step can be termed as the set

of context operations, the most important part of the loop, where contextual knowledge is

applied to filter out less relevant data about the environment, enemy, and own tools, through

the available constraints before arriving at a Decision of how to Act next to alter the environ-

ment and situation further to own advantage and respond to the changes introduced by the

enemy for each iteration via the feedback loops. Boyd’s military approach of the OODA loop

was further expanded to a more complex multi-perspective view of the business world [474]

for decision making. (In both cases the approach was to try to run through own loop faster

than the opponent’s to gain advantage.)

Context-orientation in security and investigation very similarly go through a similar pro-

cess, but on a different scale. Context navigation is done with appropriate operators from the

existing evidence before arriving at a conclusion, and a possible enforcement action (e.g., en-

abling firewall restriction, bringing network port down, or intensive follow-up investigation),

or a production of a new context to explore further possibilities, options, and hypotheses.

This approach in part is also taken by, e.g., Rapid7, the makers of the Metasploit penetration

testing suite and their related systems.

A number of approaches have been created to represent contextual knowledge and reason

about it. The common mainstream popular way appears to be with ontologies and Web On-

tology Language (OWL) [149] and using description logics [518, Chapters 10, 19]. Physically,

it is typically a kind of XML-based specification. Aspect-oriented programming (AOP) in

away also introduced the notion of context (see Section 8.2.1, page 213). Intensional logic (see

Section 1.6.1.1, page 13) has been built around the notion of context nearly from the start

and can encompass all the mentioned concepts, logics, and it has a nice executable formalism

to go along. We stick with the intensional approach as arguably the oldest sound approach

in the scene with solid foundations for formal representation of contextual knowledge and

reasoning about it in one concept, instantiated in Lucid. For further in-depth discussion

please refer to Section 6.1.4 and Section 3.2.

16



Figure 2: The GIPSY logo representing the distributed nature of GIPSY

1.6.1.4 The General Intensional Programming System (GIPSY)

The General Intensional Programming System (GIPSY) has been built around the men-

tioned Lucid family of intensional programming languages that rely on the higher-order

intensional logic (HOIL) to provide context-oriented multidimensional reasoning of inten-

sional expressions. HOIL combines functional programming with various intensional logics

(Section 1.6.1.1) to allow explicit context expressions to be evaluated as first-class values that

can be passed as parameters to functions and return as results with an appropriate set of

operators defined on contexts. GIPSY’s frameworks are implemented in Java as a collection

of replaceable components for the compilers of various Lucid dialects and the demand-driven

eductive evaluation engine that can run distributively (Figure 22). GIPSY provides support

for hybrid programming models that couple intensional and imperative languages for a va-

riety of needs. Explicit context expressions limit the scope of evaluation of mathematical

expressions (effectively a Lucid program is a mathematics or physics expression constrained

by the context) in tensor physics, regular mathematics in multiple dimensions, etc., and for

cyberforensic reasoning as one of the specific use-cases of interest of this thesis. In return,

some of this thesis’ work also provides GIPSY with more application scenarios to prove its

applicability to solve different kinds of problems. Thus, GIPSY is a support testbed for

HOIL-based languages some of which enable such reasoning, as in formal cyberforensic case

analysis with event reconstruction. In this thesis we discuss in detail the GIPSY architecture,

its evaluation engine and example use-cases [300] in Chapter 6 and Chapter 8 respectively.

2Paquet, 2005
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1.6.2 Research Approach Overview

As it is becoming evident, the research approach presented in this thesis is multifaceted

drawing on a number of aspects. These are visually presented in Figure 3 summarizing the

overall research. This figure is drawn up from an inspiration of the multi-tier architecture

of GIPSY depicted in Figure 2, with the faces augmented and extend from the logotype

of the book by Jordan and Alaghband [194], and lately in part on the context-orientation

in the OODA loop in Figure 1. The Figure 3 depicts at the center the core contribution

of this thesis—Forensic Lucid surrounded by all the supporting tools, techniques, and

methodologies from logic programming, to algorithms, to programming languages, to the

compile- and run-time middleware systems architecture, and to the data sources used for

case evaluations.

Figure 3: Overall multifaceted research summary
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1.6.3 Thesis Organization

Due to the multifaceted nature of this thesis, it’s organized in parts covering the different

facets to make it easier for the reader to navigate and read the relevant parts of the material

easier, including the chapter, page, section, figure, etc. hyperlinks provided in the electronic

version. A lot of it is dedicated to the background work primarily by others and the author

himself to provide the necessary setting, but the background chapters are not required to be

read in a strict sequence and the readers may pick and choose the chapters of interest to read

based on a particular topic or discussion found in this chapter or in the core methodology

part. Some chapters are short that were not fitting into any other chapters, while other

chapters are significantly more comprehensive depending on its material’s importance for

this thesis.

We begin by reviewing the relevant background knowledge (Part I) on cyberforensics

(Chapter 2), mathematical and logic foundations (Chapter 3) where we review the notion

of intensional logic and programming for the unaware reader, the Lucid programming lan-

guage (Chapter 4), data mining and pattern recognition aspects (Chapter 5), the General

Intensional Programming System (Chapter 6). We subsequently present the refined syntax

and the semantics specification of the Forensic Lucid language properly attributing the

inherited language constructs and rules, and the new extensions followed by the supporting

components and systems design and implementation in Part II. We then proceed with the

evaluation of the approach using a number of case studies followed by concluding remarks

in Part III. After the Bibliography, appendices provide additional details about the the-

ory, design, and implementation aspects supporting the core concepts presented in the main

chapters.

1.6.4 Publications and Contributions

Here are several works that are directly related to or supporting this research as far as publica-

tion aspect concerned. This section lists the select related publications on Forensic Lucid

(Section 1.6.4.1); GIPSY (Section 1.6.4.2); other aspects related to data mining, pattern

recognition, networking and security (Section 1.6.4.3); and self-forensics (Section 1.6.4.4).

These contributions provides some initial solutions addressing some of the the earlier states

gaps and thesis objectives.
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constructs of Forensic Lucid. In O. Göbel, S. Frings, D. Günther, J. Nedon, and D. Schadt, editors, Pro-

ceedings of the IT Incident Management and IT Forensics (IMF’08), LNI140, pages 197–216. GI, Sept.

2008. Online at http://subs.emis.de/LNI/Proceedings/Proceedings140/gi-proc-140-014.pdf

• S. A. Mokhov, J. Paquet, and M. Debbabi. On the need for data flow graph visualization of Forensic

Lucid programs and forensic evidence, and their evaluation by GIPSY. In Proceedings of the Ninth

Annual International Conference on Privacy, Security and Trust (PST), 2011, pages 120–123. IEEE

Computer Society, July 2011. Short paper; full version online at http://arxiv.org/abs/1009.5423

• S. A. Mokhov, J. Paquet, and M. Debbabi. Towards automatic deduction and event reconstruc-

tion using Forensic Lucid and probabilities to encode the IDS evidence. In S. Jha, R. Sommer, and

C. Kreibich, editors, Proceedings of RAID’10, LNCS 6307, pages 508–509. Springer, Sept. 2010

• S. A. Mokhov. Enhancing the formal cyberforensic approach with observation modeling with credibility

factors and mathematical theory of evidence. [online], also in ;login: vol. 34, no. 6, p. 101, Dec. 2009.

Presented at WIPS at USENIX Security’09, http://www.usenix.org/events/sec09/wips.html

1.6.4.2 GIPSY

• S. A. Mokhov and J. Paquet. Using the General Intensional Programming System (GIPSY) for

evaluation of higher-order intensional logic (HOIL) expressions. In Proceedings of SERA 2010, pages

101–109. IEEE Computer Society, May 2010. Online at http://arxiv.org/abs/0906.3911

• S. A. Mokhov and J. Paquet. A type system for higher-order intensional logic support for variable

bindings in hybrid intensional-imperative programs in GIPSY. In T. Matsuo, N. Ishii, and R. Lee,

20



editors, 9th IEEE/ACIS International Conference on Computer and Information Science, IEEE/ACIS

ICIS 2010, pages 921–928. IEEE Computer Society, May 2010. Presented at SERA 2010; online at

http://arxiv.org/abs/0906.3919

• S. A. Mokhov, J. Paquet, and X. Tong. A type system for hybrid intensional-imperative programming

support in GIPSY. In Proceedings of C3S2E’09, pages 101–107, New York, NY, USA, May 2009. ACM

• B. Han, S. A. Mokhov, and J. Paquet. Advances in the design and implementation of a multi-tier

architecture in the GIPSY environment with Java. In Proceedings of SERA 2010, pages 259–266. IEEE

Computer Society, 2010. Online at http://arxiv.org/abs/0906.4837

• A.Wu, J. Paquet, and S. A. Mokhov. Object-oriented intensional programming: Intensional Java/Lucid

classes. In Proceedings of SERA 2010, pages 158–167. IEEE Computer Society, 2010. Online at:

http://arxiv.org/abs/0909.0764

• J. Paquet, S. A. Mokhov, and X. Tong. Design and implementation of context calculus in the GIPSY

environment. In Proceedings of the 32nd Annual IEEE International Computer Software and Ap-

plications Conference (COMPSAC), pages 1278–1283, Turku, Finland, July 2008. IEEE Computer

Society

1.6.4.3 Data Mining, Pattern Recognition, and Security

• A. Boukhtouta, N.-E. Lakhdari, S. A. Mokhov, and M. Debbabi. Towards fingerprinting malicious

traffic. In Proceedings of ANT’13, volume 19, pages 548–555. Elsevier, June 2013

• E. Vassev and S. A. Mokhov. Developing autonomic properties for distributed pattern-recognition

systems with ASSL: A Distributed MARF case study. LNCS Transactions on Computational Science,

Special Issue on Advances in Autonomic Computing: Formal Engineering Methods for Nature-Inspired

Computing Systems, XV(7050):130–157, 2012. Accepted in 2010; appeared February 2012

• S. A. Mokhov, J. Paquet, M. Debbabi, and Y. Sun. MARFCAT: Transitioning to binary and larger

data sets of SATE IV. [online], May 2012. Submitted for publication to JSS; online at http://arxiv.

org/abs/1207.3718

• S. A. Mokhov. The use of machine learning with signal- and NLP processing of source code to

fingerprint, detect, and classify vulnerabilities and weaknesses with MARFCAT. Technical Report

NIST SP 500-283, NIST, Oct. 2011. Report: http://www.nist.gov/manuscript-publication-

search.cfm?pub_id=909407, online e-print at http://arxiv.org/abs/1010.2511

• S. A. Mokhov and M. Debbabi. File type analysis using signal processing techniques and machine

learning vs. file unix utility for forensic analysis. In O. Goebel, S. Frings, D. Guenther, J. Nedon, and

D. Schadt, editors, Proceedings of the IT Incident Management and IT Forensics (IMF’08), LNI140,

pages 73–85. GI, Sept. 2008

21



• S. A. Mokhov. Towards syntax and semantics of hierarchical contexts in multimedia processing appli-

cations using MARFL. In Proceedings of the 32nd Annual IEEE International Computer Software and

Applications Conference (COMPSAC), pages 1288–1294, Turku, Finland, July 2008. IEEE Computer

Society

• M. J. Assels, D. Echtner, M. Spanner, S. A. Mokhov, F. Carrière, and M. Taveroff. Multifaceted

faculty network design and management: Practice and experience. In B. C. Desai, A. Abran, and

S. Mudur, editors, Proceedings of C3S2E’11, pages 151–155, New York, USA, May 2010–2011. ACM.

Short paper; full version online at http://www.arxiv.org/abs/1103.5433

• S. A. Mokhov. Towards security hardening of scientific distributed demand-driven and pipelined

computing systems. In Proceedings of the 7th International Symposium on Parallel and Distributed

Computing (ISPDC’08), pages 375–382. IEEE Computer Society, July 2008

1.6.4.4 Self-Forensics

• S. A. Mokhov, E. Vassev, J. Paquet, and M. Debbabi. Towards a self-forensics property in the ASSL

toolset. In Proceedings of C3S2E’10, pages 108–113. ACM, May 2010

• S. A. Mokhov. The role of self-forensics modeling for vehicle crash investigations and event recon-

struction simulation. In J. S. Gauthier, editor, Proceedings of the Huntsville Simulation Conference

(HSC’09), pages 342–349. SCS, Oct. 2009. Online at http://arxiv.org/abs/0905.2449

• S. A. Mokhov and E. Vassev. Self-forensics through case studies of small to medium software systems.

In Proceedings of IMF’09, pages 128–141. IEEE Computer Society, Sept. 2009

• S. A. Mokhov. Towards improving validation, verification, crash investigations, and event recon-

struction of flight-critical systems with self-forensics. [online], June 2009. A white paper submit-

ted in response to NASA’s RFI NNH09ZEA001L, http://arxiv.org/abs/0906.1845, mentioned in

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100025593_2010028056.pdf

• S. A. Mokhov, J. Paquet, and M. Debbabi. Towards formal requirements specification of self-forensics

for autonomous systems. Submitted for review to J. Req. Eng., 2009–2013

22



Part I

Background
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Chapter 2

Cyberforensics

In this chapter we review the background work in the domain of digital crime investigations.

The bulk of the related literature pertinent to this thesis has been summarized here in detail

for the readers who want to remind themselves of the core literature that is used in this

research (most prominently the FSA formal approach to digital investigations and other

formal approaches in cyberforensics). The major literature cited is the one that is either the

most fundamental and inspiring work for this thesis and/or of some supplemental relevance

and support of this work as this thesis was gradually developed over the years. It is not meant

to be a comprehensive survey of the “cutting edge” of the state of the art on the matter.

More specifically we review the general aspects of Forensic Computing in Section 2.1, the core

formal FSA approach by Gladyshev to evidence representation and event reconstruction with

examples in Section 2.2, some more recent related approaches are discussed in Section 2.3,

and concluding remarks are in Section 2.4.

2.1 Forensic Computing

Gathering and analyzing data in a manner as free from distortion or bias as

possible to reconstruct data or what happened in the past on a system [or a

network] —Dan Farmer, Wietse Venema (1999) [250]

Many ideas in this work come from computer forensics and forensic computing [136,

137, 522]. Both have traditionally been associated with computer crime investigations (cf.,
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Section 1.6.1.2) to seize the evidence, live or “dead”, memory contents, disk contents, log

files off any storage and computing devices, followed by, among other things, information

extraction and analysis [306, 320]. There is a wide scope of research done in forensic com-

puting, including formal and practical approaches, methodologies, and the use associated

tools [21, 22, 83, 134, 135, 150, 355] (see Section 2.1.3) [320] and the annual Digital Forensic

Research Workshop (DFRWS) was established [355] to track progress in the field along with

other venues, such as IMF [136, 137], ADFSL, etc.

Digital forensics is also a prominently growing art in court of law with practitioners

including attorneys, such as Craig Ball [37], who become more proficient in the digital in-

vestigation and the tools, but who are not as widely available as attorneys for other law

disciplines because due to very detailed technical aspects of the digital investigation practice

that is usually restricted to technical expert witnesses found in law enforcement and similar

agencies.

Forensic computing relies mostly on similar approaches in the evidence gathering and

usage as the traditional way, summarized below by Lee [229] (where “substance” in item 8

in our case are digital data):

Following are the objectives of utilization of forensic evidence found at a crime

scene in any [investigation];

1. Information on the corpus delicti;

2. Information on the modus operandi;

3. Linkage of persons to other persons, objects, or scenes;

4. Linkage of evidence to persons, objects or locations;

5. Determining or eliminating the events and actions that occurred;

6. Disproving or supporting witness statements or testimony;

7. Identification or elimination of a suspect;

8. Identification of unknown substance;

9. Reconstruction of a crime;

10. Providing investigative leads.
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H.C. Lee [229]

Forensic computing is broadly separated into two aspects: “dead” analysis and “live”

analysis. The former is more traditional (working on data off a disk or log files some time

after the incident occurred and the computing equipment was powered off) and the latter

emerged and gained popularity to capture any live volatile data that may provide more insight

on the incident while it is still available (such as memory content that may have unencrypted

data and other live data structures, process list, current network connections and traffic flows,

current open files, etc., possibly gathering the live data while the incident is unfolding) [57,

250, 371]. Live forensics according to McDougal [250] often actually constitutes Incident

Response [245] while volatile evidence is “hot” and may still be available. Live forensics is

also common in active “honeypots” deployed [170, 461] as a honeypot to lure in attackers

to weakened virtual hosts networks and observe their activity to learn and know what and

how they attack; the most prominent example is the HoneyNet project [170]. Despite its

growing attractiveness, live forensics has also been criticized for potential risks that it may

introduce [57], e.g., when an attacker deliberately tries to actively circumvent or feed/leave

bogus and noisy data around in disguise for real data making live data findings sometimes less

reliable and untrustworthy as evidence (unless the attacker is not in a position to poison the

real data or prevent the live analysis tools running on the system under investigation [57]).

In practice both live and dead analyses are often used together (e.g., as done by one of our

operational case studies in Section 9.5). A combination of live forensics and dead analysis in

autonomic environment is termed as self-forensic computing (detailed in Appendix D.2.1).

2.1.1 Tracing for Event Reconstruction

A lot of aspects in forensic computing have to do with tracing of states, activity, and events

via (sys)logging. As a part of the related work on what we call self-forensics (see Appendix D

for an in-depth discussion) there has been some preliminary work done in the past that was

not identified as belonging to that notion. For example, a state-tracing Linux kernel [148]

exhibits some elements of self-forensics by tracing its own state for the purposes of forensic

analysis [320]. AspectJ [29]’s (see Section 8.2.1, page 213 for in-depth discussion) tracing
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capability of Java programs provides a way of tracing by the observing aspects collecting

the forensic data (e.g., data structures content) during the forward tracing of the normal

execution flow. (From the self-forensics standpoint this is useful given a large number of web-

based applications and distributed systems deployed today are written in Java, the use of

AspectJ, which isn’t coupled with the applications’ source code and can observe application

objects independently, provides a good basis for a self-forensics middleware [320].)

2.1.2 Computer Anti-Forensics

There are opposing forces to the forensic analysis (computer forensics—CF) and investi-

gation that stand in the way and are also a part of (anti-)forensic computing (computer

anti-forensics—CAF). Such forces aim at attacking forensic tools or techniques.

As an example, Dahbur and Mohammad introduced [74] the anti-forensics challenges

in a brief survey of tools and techniques in the field of anti-forensics together with their

classification [286] (excluding network anti-forensics aspects) [286]. In doing so, the authors

took the white-hat position on the problem to combat anti-forensics (i.e., the implied “anti-

anti-forensics”) for successful investigation. They lay a foundation for the terminology of

the anti- side [286]. Then follows the problem space definition as a context in the geopo-

litical spread of data usage on the Internet worldwide [468] including the definition of the

relevant and introductory terminology and literature [286]. That allows the authors to raise

several sets of classification categories from the surveyed literature based on attack targets,

(non-)traditional techniques, functionality, and distinguishing between anti-forensics (forensic

analysis prevention by data hiding via cryptographic or steganographic tools) and counter-

forensics (direct attack on forensic tools) [286]. They examine the problem from the point

of view of constraints found in CF: temporal, financial, and other environmental aspects.

This prompts to explore more deeply the challenges posed by CAF to the investigator by de-

scribing the evolution of the privacy technologies available to users, encryption, compression

bombs, cloud computing, steganography, etc.—overall the nature of the digital evidence and

where CAF attacks may come from in the attempt to delay or halt the investigation [286].

On a related topic, Dahbur and Mohammad overlooked some of the related work that

can help addressing some of the challenges posed by CAF, specifically on spectral file type
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analysis via machine learning instead of magic signatures, which can detect file types with

relatively good precision when the magic numbers are altered ([288], Section 5.3, page 107).

They also overlook standard Unix utilities that have existed for ages and that can change

timestamps, for example, touch [407] and what possible attacks on such tools may be [286].

The machine learning approach (Chapter 5) has been shown to work well as well for network

forensics quite reliably [47] that in part can address the CAF problem at the network layer.

2.1.3 Forensic Tools, Techniques, and Methodologies

Dan Farmer and Wietse Venema are generally credited (1999) with the creation

of computer forensics as we know it today. They are also the author of one of

the [first] freeware tools for doing forensics named The Coroner’s Toolkit (TCT).

While this tool suit has generally been expanded and enhanced by many others,

it certainly is the basis of modern computer forensics at least within the *NIX

world. —Monty McDougal [250]

This section briefly summarizes the tools and techniques surveyed during this work. The

reader is assumed to have some familiarity with or exposure to the languages, tools, tech-

niques, and the concepts listed here. If it is not the case, please refer to the references cited

on the subjects in question.

Digital forensic investigation tools have to do with various computing aspects, such as

most commonly memory, log, and disk analysis in search for all kinds of evidence, cataloging

it properly, and presenting the results. Other aspects in digital investigation touch various

operating systems, especially after a compromise due to bad security controls or a misuse [19,

431], including in virtual machines security [354] since virtualization and cloud computing

are gaining a lot of prominence lately. Related forensic computing tools also have to do

with malware analysis [183, 233, 430] and fingerprinting of malware and its traffic [47, 287,

312]. These activities are becoming a norm for certified computer and network security

professionals [52, 95, 441].

There are several forensic toolkits in the open-source, academic, and commercial worlds.

Dead/live analysis tools include Sleuthkit along with the chain of custody support, Helix [372]
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with common tools for most OSes such as TCT [458], Sleuthkit and its Autopsy Browser [58,

59], Windows Forensics Toolkit (WFT) [250], EnCase [147], FTK [2], and others.

We project to have our work included into one or more of those either as a plug-in if the

host environment is in Java like Forensic Toolkit as JPF Plug-ins [21, 22, 83], Ftklipse [223,

224, 225], or others [247], or as a standalone tool by itself for inclusion into more general

forensic toolsets for binary data analysis extracted from files for preliminary classification

file data alongside stegdetect [384] and many others. We are considering to make it work

with the Linux Sleuthkit [58, 59] and commercial tools, such as FTK [2], EnCase [52, 147]

and inclusion in the relevant Linux distributions as a part of our future work [288] (see

Section 10.4).

2.1.4 Formal Cyberforensic Analysis

An increasingly important aspect of forensic computing has to do with formalisms recently

developed or being developed to the process of conceiving and applying scientific methodology

to cyberforensic investigations. This aspect is a primary interest and pursuit of this thesis.

The first more prominent work in that direction discussed is that of Gladyshev et al . [81, 134,

135], followed by that of Debbabi et al . from the Computer Security Laboratory, Concordia

University, from [21, 22, 83] (subsequent discussed in Section 2.3), and more specifically of

the author Mokhov et al . [267, 272, 298, 302, 305, 308], which comprise the contributions of

this thesis. Thus, this chapter’s primary remaining focus is on such a formal methodology

detailed further in Section 2.2 that serves the as one of the core founding principles of the

Forensic Lucid foundations described in Chapter 7.

2.2 Gladyshev’s Formal Approach to Cyberforensic In-

vestigation and Event Reconstruction

For the readers to further understand better the methodology and contribution of this thesis

(presented further in Chapter 7), we review in depth the details of the Gladyshev’s solution

to forensic formalization here along with the two example cases. These formalisms of the
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FSA approach are recited from the related works of Gladyshev et al . [133, 134, 135].

2.2.1 Overview

This section reviews in-depth the earlier (Section 1.6.1.2) mentioned first formal approach to

cyberforensic analysis that appeared in the works [133, 134, 135] by Gladyshev et al . To reca-

pitulate, Gladyshev [133] relies on finite state automata (FSA) and their transformation and

operation to model evidence and witnesses accounts, and the subsequent evaluation of their

possible explanations (meanings). These are specifically recited in Section 2.2.2 (FSA and

terminology definitions), Section 2.2.3 (approach to backtracing for event reconstruction),

and Section 2.2.4 (evidence formalization, the core Gladyshev’s contribution [133]). Addi-

tionally, his works present two example use-cases: the ACME Printing Case and Blackmail

Case investigations, reviewed subsequently in Section 2.2.5.

2.2.2 Definitions

In Gladyshev’s formalization [133], a finite state machine is a sequence of four elements

T = (Q, I, ψ, q), where:

• Q is a finite set of all possible states

• I is a finite set of all possible events

• ψ : I×Q→ Q is a transition function that determines the next state for every possible

combination of each state and event

• q ∈ Q is the current system state

A transition is the process of state change [81, 133]. Transitions are instantaneous (no

duration). A finite computation is a non-empty finite sequence of steps c = (c0, c1, . . . , c|c|−1)

where each step is a pair cj = (clj, c
q
j), in which clj ∈ I is an event, cqj ∈ Q is a state, and

any two steps ck and ck−1 are related via a transition function: ∀k, such that 1 ≤ k < |c|,

cqk = ψ(clk−1, c
q
k−1). The set of all finite computations of the finite state machine T is denoted

CT [81, 133].
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Figure 4: Run of a computation c [133]

A run is a sequence of computations r ∈ (CT )
|r|, such that if r is non-empty, its first element

is a computation r0 ∈ CT , and for all 1 ≤ i < |r|, ri = ψ(ri−1), where function ψ discards the

first element of the given computation [81, 133]. For two computations x ∈ CT and y ∈ CT ,

a relationship y = ψ(x) exists, if and only if x = x0.y. The set of all runs of the finite state

machine T is denoted RT . The run of computation c is a run, whose first computation is

c [81, 133]. Any run r is completely determined by its length and its first computation: a

computation is a sequence, a run is a computation plus length; the run defines a progress

within a computation (see Figure 4). Gladyshev uses runs as an explanation model of an

observation [81, 133].

A partitioned run is a finite sequence of runs pr ∈ (RT )
|pr|, such that concatenation of its

elements in the order of listing is also a run [81, 133]:

(pr0.pr1.pr2. · · · .pr|pr|−1) ∈ RT (2.2.2.1)

A set of all partitioned runs is denoted PRT [81, 133]. A partitioning of run r ∈ RT is a

partitioned run denoted prr, such that concatenation of its elements produces r:

(prr0.prr1.prr2. · · · .prr|pr|−1) = r (2.2.2.2)

31



A partitioned run is used as an explanation model of an observation sequence [81, 133]. The

condition on the concatenation is to reflect the fact that observations happened after each

other, without gaps in time. A partitioned run is determined by a sequence of pairs where

the first element of a pair is a computation and the second element is a length [81, 133].

2.2.3 Back-tracing

Further, Gladyshev defines the inverse of ψ—a function ψ−1 : CT → 2CT . For any computa-

tion y ∈ CT , it identifies a subset of computations, whose tails are y : ∀x ∈ ψ−1(y), y = ψ(x).

In other words, ψ−1 back-traces the given computation [81, 133]. Subsequently, a modified

function Ψ−1 : 2CT → 2CT is defined as: for Y ⊆ CT ,Ψ
−1(Y ) =

∀y∈Y ψ−1(y). This def-

inition, in addition to uniformity, allows for easier implementation [81, 133]. Both inverse

functions are illustrated in Figure 5.

Figure 5: Backtracking example in ψ−1(y) and Ψ−1(Y ) [133]

2.2.4 Formalization of Evidence

Gladyshev formalizes the evidence (observations) from the observed event flow understanding

and storytelling [133]. Every piece of evidence tells its own “story” of the incident. The goal of

event reconstruction can be seen as a combination of stories told by witnesses and by various
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pieces of evidence to make the description of the incident as precise as possible [81, 133].

An observation is a statement that system behavior exhibited some property P continuously

for some time. Formally, it is defined as a triple o = (P,min, opt), where P is the set of all

computations in T that possess the observed property, min and opt are non-negative integers

that specify the duration of an observation [81, 133]. An explanation of observation o is a

run r ∈ RT such that every element of the run r possesses the observed property: for all

0 ≤ i < |r|, ri ∈ P , and the length of the run r satisfiesmin and opt: min ≤ |r| ≤ (min+opt).

The meaning of observation o is the set Ro ⊆ RT of all runs that explain o [81, 133].

The duration is modeled as lengths of computations. A run explains an observation if

the length of the run satisfies the min and opt requirements, and, each element of the run ri

should possess the property P , i.e., the computation ri ∈ P [81, 133].

2.2.4.1 Types of Observations

Gladyshev divides observations into several types [81, 133]:

• A fixed-length observation is an observation of the form of (P, x, 0). Any run explaining

it has a length of x.

• A zero-observation is an observation of the form of (P, 0, 0). The only run explaining

it is an empty sequence.

• A no-observation is an observation $ = (CT , 0, infinitum) that puts no restrictions on

computations. The infinitum is an integer constant that is greater than the length of

any computation that may have happened (all runs satisfy this observation).

• A generic observation is an observation with variable length, i.e., y > 0 in (P, x, y).

See Section 2.2.4.5 for more details.

2.2.4.2 Observation Sequence

An observation sequence, per Gladyshev [133], is a non-empty sequence of observations listed

in chronological order:

os = (observationA, observationB, observationC , . . .) (2.2.4.1)
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An observation sequence represents an uninterrupted “eyewitness” (without gaps) story. The

next observation in the sequence begins immediately when the previous observation fin-

ishes [81, 133]. Gaps in the story are represented by no-observations [81, 133], i.e.:

$ = (CT , 0, infinitum)

An explanation of observation sequence os is a partitioned run pr such that the length of pr

is equal to the length of os: |pr| = |os|, and each element of pr explains the corresponding

observation of os [81, 133]:

∀i : 0 ≤ i ≤ |os|, pri ∈ Rosi (2.2.4.2)

os = ( o1 . o2 . · · · . on )

pr = ( pr1 . pr2 . · · · . prn )

where each pri is a run that is an explanation of oi [81, 133]. The meaning of observation

sequence os is a set PRos ⊆ 2(RT )|os| of all partitioned runs that explain os. A run r satisfies an

observation sequence os if and only if there exists a partitioning of r that explains os [81, 133].

There may be more than one partitioning of r that explains os as shown in Figure 6. A

computation c satisfies an observation sequence os if and only if there is a run r that satisfies

os and r0 = c [81, 133].

2.2.4.3 Evidential Statement

An evidential statement is a non-empty sequence of observation sequences:

es = (osA, osB, osC , . . .) (2.2.4.3)

where ordering of the observation sequences is not important [81, 133]. Each observation

sequence is a version of the story. Each principal (i.e., witness) will have their own version

(i.e., observation sequence) [81, 133]. An explanation of an evidential statement es is a
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os = ((P1, 1, infinitum), (P2, 1, infinitum))

P1 = { S1 , S2 , S3 }

P2 = { S3 , S4 , S5 }

r = S1 → S2 → S3 → S4 → S5

prA1 = S1 → S2 → S3

prA2 = S4 → S5

prB1 = S1 → S2

prB2 = S3 → S4 → S5

explanationA = ( S1 → S2 → S3 , S4 → S5 )

explanationB = ( S1 → S2 , S3 → S4 → S5 )

where r is a run, pri are various partitions of r (which are also runs), and each explanation is a

partitioned run.
Figure 6: Explanations as partitioned runs of an observation sequence [133]

sequence of partitioned runs spr, such that all elements of spr are partitionings of the same

run:

spr0,0 · spr0,1 · . . . · spr0,|spr0|−1 =

spr1,0 · spr1,1 · . . . · spr1,|spr1|−1 =

. . .

spr|es|−1,0 · spr|es|−1,1 · . . . · spr|es|−1,|spr|es|−1|−1 = r

In other words, it should be a story that explains all the versions and each element of spr

explains the corresponding observation sequence in es, more specifically: for all 0 ≤ i <

|es|, spri ∈ PResi [81, 133].
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Figure 7: Meaning and explanation hierarchy [133]

The meaning of evidential statement es is a set of all sequences of partitioned runs

SPRes ⊆ (PRes0 × PRes1 × . . .× PRes|es|−1
) that explains es [81, 133]. An evidential state-

ment is inconsistent if it has an empty set of explanations. The summary of all explanations

is in Figure 7 [81, 133].

2.2.4.4 Event Reconstruction Algorithm

Gladyshev’s defined event reconstruction algorithm (ERA) involves computing the meaning of

the given evidential statement with respect to the given state machine [81, 133]. There are two

types of observation sequences: fixed-length observation sequences and generic observation

sequences (described in the next section). The meanings of individual observation sequences

are combined in order to yield the meaning of the evidential statement [81, 133].

2.2.4.4.1 Fixed-Length Observation Sequences. Here we review Gladyshev’s way

to compute the meaning of fixed-length observation sequences [133]. The function Ψ−1 pro-

vides basic operations to automate back-tracing and proceeds as follows. First, take the set

of all computations CT as the starting point and iteratively back-trace it into the past using
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Figure 8: Fixed-length event reconstruction [133]

Ψ−1 [81, 133]. At each step, computations that do not possess observed property P are dis-

carded. This is achieved by intersecting the set of back-tracings with the set of computations

that possess the property observed at the current step [81, 133]. The result of the intersection

is then used as an input for the next invocation of Ψ−1. The process continues until either

all observations are explained, or the set of computations becomes empty. An illustration of

the fixed-length event reconstruction is in Figure 8 [81, 133].
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Figure 9: Example computation event sequences

2.2.4.4.2 Example. As an example, Gladyshev calculates the meaning of the following

fixed-length observation sequence [81, 133]:

osAB = (A, 3, 0)(B, 2, 0)

Knowing that:

A = {c6, c8, c10, c12}

B = {c1, c2, c3, c4}

CT = {c1, . . . , c13}

such that the relationship of the events is as shown in Figure 9. There is an arrow from cx

to cy if ψ(cx) = cy [81, 133].

2.2.4.4.3 Meaning Computation. The observation osAB is equivalent to a sequence

AAABB. The meaning of osAB can then be computed as follows [81, 133]:
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• 2B intersections:

B ∩ CT = B

Ψ−1(B ∩ CT ) = Ψ−1(B) = {c4, c3, c5, c7, c8, c6}

B ∩Ψ−1(B ∩ CT ) = {c3, c4}

Ψ−1(B ∩Ψ−1(B ∩ CT )) = {c6, c7, c8}

• 3A intersections:

A ∩ (Ψ−1(B ∩Ψ−1(B ∩ CT ))) = {c6, c8}

Ψ−1(A ∩ (Ψ−1(B ∩Ψ−1(B ∩ CT )))) = {c10, c12}

A ∩ (Ψ−1(A ∩ (Ψ−1(B ∩Ψ−1(B ∩ CT ))))) = {c10, c12}

Ψ−1(A ∩ (Ψ−1(A ∩ (Ψ−1(B ∩Ψ−1(B ∩ CT )))))) = {c10, c12}

A ∩ (Ψ−1(A ∩ (Ψ−1(A ∩ (Ψ−1(B ∩Ψ−1(B ∩ CT ))))))) = {c10, c12}

2.2.4.4.4 Map of Partitioned Runs. To calculate the meaning of an observation

sequence Gladyshev [133] uses a set of partitioned runs. A map of partitioned runs (MPR)

is a representation for a set of partitioned runs. It is a pair pm = (len, C) where C is the

set of computations, and len is a sequence of their lengths. An MPR could represent the

set of all partitioned runs whose initial computations are in C, and whose partitions have

lengths: len0, len1, . . . , len|len|−1 [81, 133]. Gladyshev states that the meaning of a fixed-length

observation sequence can be expressed by a single MPR. Let C = {c1, c2, . . . , cn} and len =

⟨l1, l2, . . . , lm⟩. Let MPR = (C, len), then its possible illustration is in Figure 10 [81, 133].

2.2.4.5 Generic Observation Sequences

For a generic observation, whose opt ̸= 0, the length of the explaining run is not fixed, but

is bounded between min and min + opt [81, 133]. A single observation sequence represents

many permutations of linking observed properties, see Equation 2.2.4.4 and Figure 11 for an
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Figure 10: Example of construction of MPR [81]

example [81, 133].

osAB2 = ((A, 1, 3), (B, 1, 2)) (2.2.4.4)

AB ABB ABBB
AAB AABB AABBB

AAAB AAABB AAABBB
AAAAB AAAABB AAAABBB

Figure 11: Generic observation sequence permutations example

As can be seen, there are twelve possible variants of linking properties, which is essentially

a cross-product of the lengths [81, 133]. Every permutation can be represented by a fixed

length observation sequence. The meaning of osAB2 is, then, the union of the meanings of

each variant [81, 133].

(A, 1, 3) = U = {(A, 1, 0), (A, 2, 0), (A, 3, 0), (A, 4, 0)}

(B, 1, 2) = V = {(B, 1, 0), (B, 2, 0), (B, 3, 0)}

⟨(A, 1, 3)(B, 1, 2)⟩ = U × V
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For instance, (A, 2, 0)(B, 3, 0) ∈ U × V is written as AABBB, i.e., an observation se-

quence that has the A-property for two steps followed by three steps that have the B-

property [81, 133]. Gladyshev has shown how to calculate the meaning of a fixed-length

observation sequence (see Section 2.2.4.4.4). In order to calculate the meaning of a variable

length observation sequence, one computes the union of the meanings of each fixed-length

observation sequence. This can be modeled as a set of MPRs. Each MPR is the meaning of

a fixed-length observation sequence [81, 133].

2.2.4.6 Meaning of an Evidential Statement

First, the meanings of individual observation sequences are computed as described earlier.

Second, Gladyshev combines the meanings of observation sequences into the meaning of the

entire evidential statement. To satisfy the evidential statement, a run must satisfy all of its

observation sequences [81, 133]. Then Gladyshev states a problem of identifying the subset

of runs whose partitionings are present in the meanings of all observation sequences [81, 133].

2.2.4.6.1 Towards the Meaning of an Evidential Statement. To recapitulate,

the meaning of an observation sequence is a set of MPRs. Subsequently, each MPR is the

meaning of a fixed-length observation sequence. Further, an evidential statement is a set

of observation sequences [81, 133]. Therefore, per Gladyshev, the meaning of an evidential

statement is the combination of the sequence of MPRs with each MPR being the meaning

of a particular fixed-length observation sequence of the evidential statement. Accordingly,

the meaning of an evidential statement computation reduces to a problem of how to combine

two MPRs [81, 133].

Let pma = (lena, Ca) and pmb = (lenb, Cb) be two MPRs. A run r can be partitioned by

both pma and pmb if and only if two conditions hold [81, 133]:

1. The initial computation of run r belongs to initial computation sets of both MPRs:

r0 ∈ Ca and r0 ∈ Cb [81, 133].

2. Both MPRs have equal total number of computation steps:

lena =


lenb. If

lena ̸=

lenb, then the two MPRs have no common runs. Otherwise, the common

runs are determined by the common set of initial computations Ca ∩ Cb [81, 133].
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2.2.4.6.2 Map of Sequence of Partitioned Runs. Ascending further per Glady-

shev [133], a map of a sequence of partitioned runs (MSPR), written out as:

mspr = ((len0, len1, . . . , lenn), C)

is a representation for a set of sequences of partitioned runs [81, 133]. C is the set of initial

computations, and len0, len1, . . . , lenn are lists of lengths that describe how to partition runs

generated from the elements of C. An MSPR is proper if and only if

len0 =


len1 =

... =

lenn. The combination of two MPRs is defined by function comb() that takes two

MPRs and returns a proper MSPR [81, 133]:

comb(pmx, pmy) =

 ∅ if

lenx ̸=


leny or Cx ∩ Cy = ∅

((lenx, leny), Cx ∩ Cy) otherwise

(2.2.4.5)

2.2.4.6.3 Use of Combination. Gladyshev gives a typical usage example of the com-

bination (Equation 2.2.4.5) in the example that follows [133]. Suppose that the meanings of

two observation sequences osa and osb are represented by two sets of MPRs called PMa and

PMb respectively. The meaning of the evidential statement es = (osa, osb) is expressed by

the set of proper MSPRs, which is obtained by combining every MPR from PMa with every

MPR from PMb [81, 133]:

∀x ∈ PMa,∀y ∈ PMb, SPMes =


comb(x, y) (2.2.4.6)

This procedure can be extended to an arbitrary number of observation sequences, thus pro-

viding a way to calculate the meaning of an arbitrary evidential statement [81, 133]. As a

result, the below is the representation of the previously calculated meaning as an MPR in

Section 2.2.4.4.3:

MPR(osAB) = (⟨2, 2⟩, {c10, c12})
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2.2.4.6.4 Computing Combinations of MPRs. More examples are illustrated fur-

ther in the consideration of the following MPRs [81, 133]:

MPR1 = (⟨2, 1, 4⟩, {c1, c2, c3})

MPR2 = (⟨3, 4⟩, {c4, c5, c6})

MPR3 = (⟨4, 4⟩, {c1, c2, c3, c4})

MPR4 = (⟨5, 2, 1⟩, {c2, c3, c5})

comb(MPR4,MPR3) = ((⟨4, 4⟩, ⟨5, 2, 1⟩), {c2, c3})

comb(MPR1,MPR2) = ∅

2.2.5 Investigation Cases Examples Using the FSA Approach

Further in this section, what follows is the summary of the FSA approach from [134, 135]

applied to two case studies to show its inner workings [303]. Gladyshev’s printing case review

is in Section 2.2.5.1 and the blackmail case review is in Section 2.2.5.2 accordingly.

We extract the parameters and terms defined in the mentioned works, such as the for-

malization of the various pieces of evidence and witnesses telling their stories of a particular

incident. The goal is to put such statements together to make the description of the incident

as precise as possible and focus on the modeling of the core aspect of the case under the

investigation. As a result, to establish that a certain claim may be true, the investigator

has to demonstrate that there are some meaningful explanations of the evidence that agree

with the claim. Conversely, to disprove the claim, the investigator has to show there are no

explanations of evidence that agree with that claim [81, 134].

Gladyshev did initial proof-of-concept realization of the algorithms’ implementation in

CMU Common Lisp [135] that we improve by re-writing it in Forensic Lucid [303]. We

subsequently re-model these cases using the new approach in Section 9.3 and Section 9.4, to

show for it to be more usable in the actual investigator’s work and serve as a basis to further

development in the area [303] (such as a GUI front end based on data-flow graphs [87, 307]).
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Figure 12: Printer Case state machine [133]

2.2.5.1 ACME Printer Case in FSA

This one is the first of the cases we re-examine from Gladyshev’s FSA/LISP approach [135].

The local area network at some company called ACME Manufacturing consists of

two personal computers and a networked printer. The cost of running the network

is shared by its two users Alice (A) and Bob (B). Alice, however, claims that she

never uses the printer and should not be paying for the printer consumables.

Bob disagrees, he says that he saw Alice collecting printouts. According to the

manufacturer, the printer works as follows [135]:

1. When a print job is received from the user, it is stored in the first unallocated

directory entry of the print job directory.

2. The printing mechanism scans the print job directory from the beginning

and picks the first active job.

3. After the job is printed, the corresponding directory entry is marked as

“deleted”, but the name of the job owner is preserved.
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4. The printer can accept only one print job from each user at a time.

5. Initially, all directory entries are empty.

The investigator finds the current state of the printer’s buffer as:

1. Job From B Deleted

2. Job From B Deleted

3. Empty

4. Empty

5. ...

2.2.5.1.1 Investigative Analysis. If Alice never printed anything, only one directory

entry must have been used, because the printer accepts only one print job from each user

at a time [135]. However, two directory entries have been used and there are no other users

except Alice and Bob. Therefore, it must be the case that both Alice and Bob submitted

their print jobs in the same time frame. The trace of Alice’s print job was overwritten by

Bob’s subsequent print jobs. As a result, a finite state machine is constructed to model the

situations as in the FSA [135] in Figure 12 to indicate the initial state and other possible

states and how to arrive to them when Alice or Bob would have submitted a job and a

job would be deleted [81, 135]. (Each state has two print job directory entries, where e is

empty, A—print job from Alice, B—print job from Bob, AX—deleted print job from Alice,

BX—deleted print job from Bob. The edges denote events of +A or +B corresponding to the

addition of the print jobs from Alice or Bob respectively, whereas X corresponds to taking

the job for printing by the printer). The FSM presented in [135] covers the entire case with

all possible events and transitions resulted due to those events. The FSM is modeled based

on the properties of the investigation, in this case the printer queue’s state according to the

manufacturer specifications and the two potential users. The modeling is assumed to be

done by the investigator in the case in order to perform a thorough analysis. It also doesn’t

really matter how actually it so happened that the Alice’s print job was overwritten by Bob’s

subsequent jobs as is not a concern for this case any further. Assume, this behavior is derived
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from the manufacturer’s specification and the evidence found. The investigator will have to

make similar assumptions in the real case [135].

The authors of [135] provided a proof-of-concept implementation of this case in Common

Lisp (the code is not recited in here) which takes about 6–12 pages of printout depending on

the printing options set and column format. Using our proposed solution in Section 9.3, we

rewrite the example in Forensic Lucid and show the advantages of a much finer conciseness

and added benefit of the implicit context-driven expression and evaluation, and parallel

evaluation that the Common Lisp implementation lacks entirely [303, 310].

2.2.5.1.2 Formalization of System Functionality. Gladyshev’s formalization of the

Printing Case has to do with the definition of a number of problem domain elements [81, 135].

This formalization comes from [135] as does most of this section. Here we summarize the

formal approach notation and definitions applied to this case from Section 2.2.4.

• Q represents a finite set of all possible states of the Printing Case FSM

• CT represents a final set of finite computations within Printing Case FSM T

• I represents a final set of all possible events that occur in the system (said to be

computations)

• o = (P,min, opt) is an observation of a property P for the duration of time between

[min,min+ opt]

• os = (o1, . . . , on) = ((P1,min1, opt1), . . . , (Pn,minn, optN)) is an observation sequence

that constitutes an uninterrupted story told by a witness or a piece of evidence

• es = (os1, . . . , osn) is an evidential statement that is composed of all stories that the

investigator put together. es need not to be ordered, but is used as a part of explanation

and event reconstruction algorithm [81, 135]

• DIR is a case-specific set of states of the printer queue slot that the investigator is

interested in

Thus, concretely for the Printing Case problem [81, 135] the investigator defines:
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• States:

DIR = {A,B,A Deleted,B Deleted, empty}, (2.2.5.1)

Q = DIR×DIR (2.2.5.2)

• Events:

I = {add A, add B, take} (2.2.5.3)

• Formalization of the evidence [81, 135]:

– The initial state of the print job directory:

osmanufacturer = ((Pempty, 1, 0), (CT , 0, infinitum)) (2.2.5.4)

Pempty = {c | c ∈ CT , c
q
0 = (empty, empty)} (2.2.5.5)

– The final state:

PB Deleted = {c | c ∈ CT , c
q
0 = (B Deleted,B Deleted)} (2.2.5.6)

osfinal = ((CT , 0, infinitum), (PB Deleted, 1, 0)) (2.2.5.7)

– The complete collection of stories [81, 135]:

esACME = (osfinal, osmanufacturer) (2.2.5.8)

2.2.5.1.3 Testing Investigative Hypothesis.

Claim of Alice. Alice’s claim is that Alice did not print anything until the investigator

examined the printer [81, 135]:

PAlice = {c | c ∈ CT , c
l
i ̸= add A} (2.2.5.9)

osAlice = ((PAlice, 0, infinitum), (PB Deleted, 1, 0)) (2.2.5.10)
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In order to verify Alice’s claim, Gladyshev includes it in the final evidential statement in

order to try to find an explanation for it.

es′ = (osAlice, osfinal, osmanufacturer) (2.2.5.11)

There is no explanation for it [81, 135] as shown through the meaning computations.

Meaning of the Final State. The meaning of

osfinal = ((CT , 0, infinitum), (PB Deleted, 1, 0)) = (PB Deleted, 1, 0) (2.2.5.12)

is the final state itself as observed by the investigator [81, 135]. The meaning also in-

cludes all the paths in the graph in Figure 12 that lead to (B Deleted,B Deleted) (i.e.

(CT , 0, infinitum)) [81, 135].

Mfinal = {MPRf,1,MPRf,2, . . . ,MPRf,infinitum} (2.2.5.13)

MPRf,1 = (lenf,1, Cf,1)

lenf,1 = ⟨1⟩

Cf,1 = {all paths arriving at (empty, empty) with the length of 1}

= {(∗, (B Deleted,B Deleted))}

(2.2.5.14)

MPRf,2 = (lenf,2, Cf,2)

lenf,2 = ⟨1, 1⟩

Cf,2 = {all paths arriving at (empty, empty) with the length of 2}

= {((take, (B Deleted,B)), (∗, (B Deleted,B Deleted))),

((take, (B,B Deleted)), (∗, (B Deleted,B Deleted)))}

(2.2.5.15)
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MPRf,3 = (lenf,3, Cf,3)

lenf,3 = ⟨2, 1⟩

Cf,3 = {all paths leading to (B Deleted,B Deleted) with the length of 3}

= {((add B, (empty,B Deleted)),

(take, (B,B Deleted)),

(∗, (B Deleted,B Deleted))),

((take, (B,B)), (take, (B Deleted,B)), (∗, (B Deleted,B Deleted)))}
(2.2.5.16)

where:

• Mfinal is the meaning of the final state represented by an infinite collection of associated

MPRs for all possible lengths [81, 135].

• MPRf,x represents a map of partitioned runs for the final state f of lengths of x.

(Please refer to Section 2.2.4.4.4 for the complete definition of an MPR [81, 135].)

• lenf,x represents the set of observed path lengths property for the maximum length of

x for the final state f . The notation ⟨2, 1⟩ means ⟨min, opt⟩, i.e., the lengths of paths

between 2 and 2 + 1 = 3 [81, 135].

In the analysis above and further in the example, the maximum length of 3 is used because it

covers paths long enough to reach from the (empty, empty) state to (B Deleted,B Deleted)

or back. Otherwise, the problem would be unfeasible to compute for all infinitely possible

MPRs [81, 135].

Meaning of the Manufacturer’s Specifications. The meaning of the observation se-

quence corresponding to the manufacturer

osmanufacturer = ((Pempty, 1, 0), (CT , 0, infinitum)) (2.2.5.17)

is comprised of a meaning of the observations of (Pempty, 1, 0) and (CT , 0, infinitum). The

former corresponds to just the initial state (empty, empty), and the later to all the paths
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that originate from the initial state [81, 135].

Mmanufacturer = {MPRm,1,MPRm,2, . . . ,MPRm,infinitum} (2.2.5.18)

MPRm,1 = (lenm,1, Cm,1)

lenm,1 = ⟨1⟩

Cm,1 = {all paths initiating from (empty, empty) with the length of 1}

= {(∗, (empty, empty))}

(2.2.5.19)

MPRm,2 = (lenm,2, Cm,2)

lenm,2 = ⟨1, 1⟩

Cm,2 = {all paths initiating from (empty, empty) with the length of 2}

= {((add A, (empty, empty)), (∗, (A, empty))),

((add B, (empty, empty)), (∗, (B, empty)))}

(2.2.5.20)

MPRm,3 = (lenm,3, Cm,3)

lenm,3 = ⟨1, 2⟩

Cm,3 = {all paths initiating from (empty, empty) with the length of 3}

= {((add A, (empty, empty)), (take, (A, empty)), (∗, (A Deleted, empty))),

((add A, (empty, empty)), (add B, (A, empty)), (∗, (A,B))),

((add B, (empty, empty)), (take, (B, empty)), (∗, (B Deleted, empty))),

((add B, (empty, empty)), (add A, (B, empty)), (∗, (B,A)))}
(2.2.5.21)

Meaning of the Incident. Gladyshev obtains the meaning of the evidential statement

esACME = (osfinal, osmanufacturer) (2.2.5.22)

by combining every MPR from Mfinal with every MPR from Mmanufacturer [81, 135]:

∀x ∈Mfinal,∀y ∈Mmanufacturer : SPMACME =


comb(x, y) (2.2.5.23)
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The comb() operator combines the computations from each MPR with every other MPR

and is fully defined in Section 2.2.4.6.2. Since the combination may produce unnecessary

duplicates, they are removed using the union of the combination, which is also a minimal set

of representing the meaning of the incident as recorded based on the evidence in the form of

the final state and a story of the manufacturer as a credible expert witness of how printer

operates according to its specification [303].

Meaning of the Alice’s Claim. The meaning of the observation sequence as stated

by the Alice’s claim in the osAlice = ((PAlice, 0, infinitum), (PB Deleted, 1, 0)) is comprised of

the meanings of the parts (PAlice, 0, infinitum) and (PB Deleted, 1, 0), where the latter simply

indicates the printer state as found by the investigator, and the former represents all the

paths leading to (B Deleted,B Deleted) that do no involve any add A event [81, 135].

Conclusion. None of the paths in Alice’s story originate in (empty, empty) thereby making

Alice’s story questionable at the very least as shown in Figure 13 [81, 135].

Figure 13: Paths leading to (BX , BX)

2.2.5.2 Initial Blackmail Case Modeling

The following case description in this section is cited from Gladyshev’s [134]. It’s subsequent

realization in Forensic Lucid is in Section 9.4.
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A managing director of some company, Mr. C, was blackmailed. He contacted

the police and handed them evidence in the form of a floppy disk that contained

a letter with a number of allegations, threats, and demands.

The message was known to have come from his friend Mr. A. The police offi-

cers went to interview Mr. A and found that he was on [holidays] abroad. They

seized the computer of Mr. A and interviewed him as soon as he returned into the

country. Mr. A admitted that he wrote the letter, but denied making threats and

demands. He explained that, while he was on [holidays], Mr. C had access to his

computer. Thus, it was possible that Mr. C added the threats and demands into

the letter himself to discredit Mr. A. One of the blackmail fragments was found

in the slack space of another letter unconnected with the incident. When the

police interviewed the person to whom that letter was addressed, he confirmed

that he had received the letter on the day that Mr. A had gone abroad on [hol-

idays]. It was concluded that Mr. A must have added the threats and demands

into the letter before going on [holidays], and that Mr. C could not have been

involved [134].

In Figure 14 is the initial view of the incident as a diagram illustrating cluster data of

the blackmail and unconnected letters [134, 305] since the investigation centers around that

particular disk space.

2.2.5.2.1 Modeling the Investigation. In the blackmail example, the functionality of

the last cluster of a file was used to determine the sequence of events and, hence, to disprove

Mr. A’s alibi [81, 134]. Thus, the scope of the model is restricted to the functionality of

the last cluster in the unrelated file (see Figure 14). The last cluster model can store data

objects of only three possible lengths: L = {0, 1, 2}. Zero length means that the cluster is

unallocated. The length of 1 means that the cluster contains the object of the size of the

unrelated letter tip. The length of 2 means that the cluster contains the object of the size

of the data block with the threats. In Figure 15 is, therefore, the simplified model of the

investigation [81, 134].
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Figure 14: Cluster data with Blackmail fragments

Simplified cluster model:

possible data lengths: 0 1 2
PL—left part PR—right part

possible data values: u—unrelated
t1—threats-obscured part t2—threats in slack
o1—other data left part o2—other data right part

Observed final state:
L = 1 (u) unrelated (t2) threats in slack
PL = {u, t1, o1}
PR = {t2, o2}
Q = L× PL × PR

Figure 15: Simplified view of the cluster model [134]

2.2.5.2.2 Modeling Events. The state of the last cluster can be changed by three

types of events [81, 134]:

1. Ordinary writes into the cluster:

W = {(u), (t1), (o1), (u, t2), (u, o2), (t1, t2), (t1, o2), (o1, t2), (o1, o2)} (2.2.5.24)

2. Direct writes into the file to which the cluster is allocated (bypassing the OS):

Wd = {d(u, t2), d(u, o2), d(o1), d(t1, t2), d(t1, o2), d(o1, t2), d(o1, o2)} (2.2.5.25)
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3. Deletion of the file D sets the length of the file to zero. Therefore, all writes and the

deletion comprise I:

I = W


Wd


D (2.2.5.26)

Formalization of the Evidence. The final state observed by the investigators is (1, u, t2)

[81, 134]. Gladyshev lets Ofinal denote the observation of this state. The entire final sequence

of observations is then [81, 134]:

osfinal = ($, Ofinal). (2.2.5.27)

The observation sequence osunrelated specifies that the unrelated letter was created at some

time in the past, and that it was received by the person to whom it was addressed is:

osunrelated = ($, Ounrelated, $, (CT , 0, 0), $) (2.2.5.28)

where Ounrelated denotes the observation that the “unrelated” letter tip (u) is being written

into the cluster. The evidential statement is then the composition of the two stories [81, 134]:

esblackmail = {osfinal, osunrelated}

esblackmail = {osfinal, osunrelated} (2.2.5.29)

Modeling an Explanation of Mr. A’s Theory. Mr. A’s theory, encoded using the

proposed notation, is:

osMr. A = ($, Ounrelated−clean, $, Oblackmail, $) (2.2.5.30)

where Ounrelated−clean denotes the observation that the “unrelated” letter (u) is being written

into the cluster and, at the same time, the cluster does not contain the blackmail fragment;

Oblackmail denotes the observation that the right part of the model now contains the blackmail

fragment (t2) [81, 134].
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Modeling Complete Explanations. There are two most logically possible explanations

that can be represented by a state machine [134]. See the corresponding state diagram for

the blackmail case in Figure 16 [81, 134].

Figure 16: Blackmail Case state machine [305]

1. The first explanation [134]:

. . .
(u)−→ (1, u, o2)

(u,t2)−−−→ (2, u, t2)
(u)−→ (1, u, t2) (2.2.5.31)

• Finding the unrelated letter, which was written by Mr. A earlier;

• Adding threats into the last cluster of that letter by editing it “in-place” with a

suitable text editor (such as ViM [323]);

• Restoring the unrelated letter to its original content by editing it “in-place”

again [81, 134]:

“To understand this sequence of events, observe that certain text editors

(e.g., ViM [323]) can be configured to edit text “in-place”. In this mode

of operation, the modified file is written back into the same disk blocks

that were allocated to the original file. As a result, the user can forge

the file’s slack space by (1) appending the desired slack space content to

the end of the file, (2) saving it, (3) reverting the file back to the original

content, (4) saving it again.” [134]

2. The second explanation [134]:

. . .
(u)−→ (1, u, o2)

d(u,t2)−−−−→ (1, u, t2) (2.2.5.32)
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• The threats are added into the slack space of the unrelated letter by writing

directly into the last cluster using, for example, a low-level disk editor [134].

2.3 Other Formal Approaches

There are other notable formal approaches to the cyberforensic analysis. For example,

Arasteh and Debbabi [21] use control-flow graphs (CFGs), push down systems (PDS), and

the ADM process logic [4] (a logic having dynamic, linear, temporal, and modal character-

istics originally designed for evaluation of security protocols) to construct code models from

the executable in-memory code and call-stack residues (like leftover slack space similar to the

Gladyshev’s blackmail case study earlier).

Arasteh et al. [22] subsequently extend their formal approach to log analysis along with

a tree of labeled terms of


-algebra and a tableau-based proof system for the ADM logic

arriving at a case study of a SYN attack detection from various log sources.

Clear parallels and relationships can be made between these approaches, the intensional

logic (Section 3.2), and Cartesian programming [376] as formalization tools.

2.4 Summary

We reviewed the notion of cyberforensics and more specifically, the background on the formal

approach to the digital evidence analysis, which is central to this thesis. We reviewed the

Gladyshev’s arguably the first comprehensive formal approach to evidence modeling and

event reconstruction as well as two sample case studies we further use to test our approach

in Chapter 7.
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Chapter 3

Intensional Logic, Programming,

Reasoning, Uncertainty and

Credibility

This chapter reviews the background and related work necessary for formal methods, formal

logic-based [193, 251, 414] specification and context-orientation, dealing with uncertainty

and credibility aspects that are relevant to cyberforensic investigations, reasoning, and event

reconstruction in developing soft-computing intelligent systems [202], autonomic self-forensic

units (Appendix D), and expert systems [184].

The logic-based formal specifications are used for requirements specification [255, 479,

518] of critical components and systems, knowledge representation and derivation (keeping

a knowledge base of a case), validation and verification, and testing hypotheses. As a formal

system, logic can be used in the court of law as a part of an expert witness testimony when

challenged about the validity and verifiability of the system and system-based argumentation.

Consequently, this chapter summarizes the related background in intensional logic, un-

certainty, hierarchical credibility, and so on as these concepts are fundamental in establishing

theoretical setting for the intensional programming realized by the GIPSY (Chapter 6) and

the formalization of Forensic Lucid (Chapter 7). The reader is assumed to have some

familiarity with or exposure to the concepts introduced here. Nevertheless, we attempt to

summarize the relevant content in a coherent manner in referencing the material actually
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used subsequently in this thesis. As a result, we survey the related works and then review

their fusion.

3.1 Overview

The surveyed literature explores a connection between multidimensional logics, such as inten-

sional logics with the theory of mathematical evidence. These are being used (or considered

for use) in a variety of application domains for automated reasoning in context-oriented en-

vironments where the knowledge may be imprecise and incomplete and credibility is a factor

(e.g., formal digital crime investigations). Some of these logical systems (e.g., intensional

logics) and probabilistic reasoning systems were not given enough attention, especially when

viewed together and parallels are drawn to finite state machines and the set theory [117, 235].

Thus, more specifically, we review various relatively recent literature on intensional logics of

multidimensional nature where context can be formalized, combined with with the Dempster–

Shafer theory of mathematical evidence along with hierarchical credibility and possible con-

nection to the multidimensional description logics (DLs by themselves are presently more

studied and understood in literature and popular in ontological frameworks, but (the author

conjectures) can be formalized in intensional logics). We also review the evolution of the

intensional logics research into Cartesian programming and intensionality in mathematics

(e.g., see a recent workshop of that title held in May 2013 [389]) including a number of ref-

erences from there of interest discussing Fregean abstract objects; soundness, reflection and

intensionality; mathematical intensions and intensionality in mathematics; intensional side of

the the algebraic topological theorems; knowledge acquisition of numbers by children; formal

mathematical sense of mathematical intensions; and others [44, 80, 113, 123, 164, 335, 410].

This chapter is structured as follows: the notion of intensional logics and programming

are explored in Section 3.2, uncertainty and mathematical evidence modeling are discussed

in Section 3.3, where specifically the Dempster–Shafer theory is further reviewed in Sec-

tion 3.3.2 with its connection to the research described. We summarize our overall findings

in Section 3.4 with the use of material presented here and a conjecture.
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3.2 Intensional Logics and Programming

Why Intensional Logic? It can be traced all the way back to Aristotle [505] to represent sense

(meaning) and its change between different possibilities (possible worlds, or contexts) having

true statements available there. Concrete realization of the intensional logic ideas resulted

in Intensional Programming. What follows is the justification and some historical remarks

for both.

Many problem domains are intensional in nature and aspects that surround us, e.g.,

natural language understanding and learning [410], particle in cell simulation [374], World

Wide Web [507, 509], computation of differential and tensor equations [359], versioning [244],

temporal computation and temporal databases [358, 450], multidimensional signal process-

ing [5, 270], context-driven computing [511], constraint programming [122, 510], negotiation

protocols [510], automated reasoning in cyberforensics discussed in this thesis [267, 298, 302],

multimedia and pattern recognition [270] among others [362]. The current mainstream pro-

gramming languages are not well adapted for the natural expression of the intensional aspects

of such problems, requiring the expression of the intensional nature of the problem statement

into a procedural (and therefore sequential) approach in order to provide a computational

solution [300].

What follows is a brief history of Intensional Logic synthesized from [110, 505] for the

curious reader.

In essence, the intensional concepts in times of Aristotle appeared in response to the need

to separate conceptual senses (e.g., the “Prime Minister of Canada”) from their concrete

context-dependent instantiations (i.e., extensions, e.g., at the time of this writing in July

2013 “Prime Minister of Canada” evaluates to the extension “Stephen Harper”) and modal

logic. Fast-forward to Gottlob Frege who was making distinctions between “senses” and

their “denotations” along the same lines. Fast forward again to Carnap [55] who introduced

the word “intensional” in 1930s [505] to refer to Frege’s “senses”. Around the same time

(1930s) Lewis et al . were reviving the modal logic (that fell out of popularity sometime

before that) [505] from the extensional propositional logic by adding ≺ connective to mean

“strict implication” to avoid some paradoxes associated with regular → implication [505].
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Then they realized the now standard modal operators ✸ (“possible”) and ✷ (“necessary”)

are easier to work with and redefined (P ≺ Q) as ¬✸(P∧¬Q) meaning P impliesQ if and only

if it’s impossible for P to be true and Q be false simultaneously [505]. Likewise, Aristotle’s

notion of “everything necessary is possible” is formalized as ✷P → ✸P . Then, everything

necessary is true (✷P → P ) and everything that is true is possible (P → ✸P ) [505].

Fast forward another 20 years or so (per Montague [322] and Melvin [110]), Church

had a go at the intensionality with his work on the simple theory of types circa 1951 in

A Formulation of the Logic of Sense and Denotation subsequently inter-influencing further

developments in the area with Carnap [110]. Saul Kripke subsequently in the 60s [216, 217]

formalized semantics for modal logic. His core idea is that of the possible world semantics ;

that is statements can be true in certain worlds, but not necessarily in all of them [505]. The

world w does not need to be fully defined, but serve as indices into possible interpretations [51]

of each statement, e.g., ✷P is true at a particular world w if P is true in some worlds w′

accessible from w [505]. As William W. Wadge puts it, “Kripke models were a turning

point in development of the intensional logic.” [505]. That enabled simple temporal logic,

e.g., where ✸ would mean sometimes and ✷ would mean always, etc. [505]. Temporal logic

made use of those operators, but had only a single dimension of time points. Making it

multi-dimensional later with intensional operators made it what is its today as intensional

temporal logic (see page 62 for an informal example).

Many other later formalism followed (70s-80s), such as that of Marcus then on to code-

cessor works of Montague, Tichý, Bressan, and Gallin [125] exploring various intensional

logic aspects [110, 477]. Richard Montague deliberated on the pragmatics and intensional

logic in 1970 [89, 322] with a critical discussion and raising problems of interest. Hobbs and

Rosenschein subsequently published an approach to make computational sense of Montague’s

Intensional Logic [169] in 1978. Finally, Dana Scott’s 1969 work (as Wadge suggested [505],

“perhaps mistitled”) Advice on Modal Logic laid down more formalisms by extending Kripke’s

possible worlds with Carnap’s distinction between extension and intension (later known as

the Scott-Montague model) defining a non-empty set I of points of reference (possible worlds)

without requirements on accessibility relations [505]. Then φ in each world has an extension

(the truth value) and an intension (the mapping of w to the extension of φ at w, making it an
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element of the power set 2I [505]. Scott maps (via a unary operator) of intensions to others

as 2I → 2I either as an accessibility or any other similar relation and Scott’s models are

not restricted to propositional logic, and can specify worlds at any hierarchical level of types

(strings, numbers, people, organizations, etc.) [505]. Scott calls such individuals as virtual in-

dividuals (intensional objects) grouped in a collection D, and these individuals DI can denote

different extensions in different worlds [505]. This approach inspired Wadge and Ashcroft to

create Lucid in 1974 and the notion of intensional programming has emerged [25].

William W. Wadge placed a beautifully succinct introduction to Intensional Logic in

context in a tutorial in 1999 [505], most of which is still valid and is a highly recommended

reading. A lot of background history is also provided in the special issue articles in 2008 by

Blanca Mancilla and John Plaice bringing the historical record more up-to-date with possible

world versioning and Cartesian programming [244, 376]. Subsequently, Melvin Fitting in his

updated 2012 entry [110] provided another broad encyclopedic account on Intensional Logic.

All are very recommended readings.

Both Intensional Programming volumes (I and II) from 1995 [348] and 1999 [129] also

detail a series of articles on various temporal logic aspects applied to program verification,

constraint logic and its semantics, flexible agent grouping, temporal meaning representation

and reasoning [18, 212, 242, 356, 392] as well as a proposal of an asynchronous calculus based

on absence of actions [218] followed by the more recent 2008 work by Orgun et al . [350]

on knowledge representation and reasoning with diverse granularity clocks. Fitting in 2005

provided axiomatization of the first-order intensional logic (FOIL) [111]. Intensional logic is

used in the present day to describe various natural language phenomena and beyond, e.g.,

as in the recent (2010) work by Duž́ı et al . [96] on procedural semantics of Hyperintensional

Logic as a survey of the foundations and applications of Transparent Intensional Logic of

Pavel Tichý.

Thus, what is intensional logic, again? Wadge summarized the definition of it as: “...

intensional logic—possible worlds and intensional operators...” [505].
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3.2.1 Multidimensional Logics and Programming

Here we mention two major multidimensional branches of modal logic and pick the one

of prime use and interest to us. The earlier kind, that began development as such in the

1940-50s is the Intensional Logic informally described in the previous section; the later kind

that appeared in 1980s [521] is the Description Logic, both are being actually families of

logics for knowledge representation and reasoning incorporating natural language constructs

of possibility, necessity, belief, and others. We further concentrate in some more detail the

multidimensional intensional logic as the most fundamental and intuitive to use. From the

modal to temporal uni-dimensional logic, multidimensional logic, knowledge representation,

and programming paradigms emerged. Back to the Scott’s 1969 tuple [505] i ∈ I included:

i = (w, p, t, a) (3.2.1.1)

the notion of the possible world extension w (however big or small, does not need

to be fully defined), p is a context point in space, e.g., dimensions of (x, y, z), a

being the agent, and t is time, and i is an index into all these coordinates [505].

Fast forward from 1969 to 1991–1993, Faustini and Jagannathan described multidimensional

problem solving in Indexical Lucid [107]. Ashcroft et al ., subsequently summarized the

concepts of multidimensional programming in their book with the same title [24]. Baader and

Ohlbach present a multi-dimensional terminological knowledge representation language [34]

in 1995. Ashcroft discussed multidimensional program verification in terms of reasoning

about programs that deal with multidimensional objects [23], also in 1995. Orgun and

Du described theoretical foundations of multi-dimensional logic programming in 1997 [349].

Wolter and Zakharyaschev in 1999 [521] discuss multi-dimensional description logics.

Temporal Intensional Logic Example

Temporal intensional logic is an extension of temporal logic that allows to specify the time

in the future or in the past [359]. What follows is an informal example.

Let’s take E1 from Figure 17. The context is a collection of the dimensions (e.g., as in

E1’s place and time) paired with the corresponding tags (here and today respectively).
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1. E1 := it is raining here today

Context: {place:here, time:today}

2. E2 := it was raining here before(today) = yesterday

3. E3 := it is going to rain at (altitude here + 500 m) after(today) = tomorrow

Figure 17: Natural-language contextual expression [359, 378]

Then let us fix here to Montreal and assume it is a constant. In the month of April 2013,

with a granularity of one day, for every day, we can evaluate E1 to either true or false, as

shown in Figure 18 [298, 302, 310].

Tags days in April: 1 2 3 4 5 6 7 8 9 ...

Values (raining?): F F T T T F F F T ...

Figure 18: 1D example of tag-value contextual pairs [359, 378]

If one starts varying the here dimension (which could even be broken down into finer

X, Y, Z), one gets a two-dimensional (or at higher level of detail 4D: (X, Y, Z, t) respectively)

evaluation of E1, as shown in Figure 19 [300, 310].

Place/Time 1 2 3 4 5 6 7 8 9 ...

Montreal T F T F T F T F T ...

Quebec F F T T T F F F T ...

Ottawa F T T T T T F F F ...

New York F F F F T T T F F ...

Toronto F T T T T T F F F ...

Sydney F F T T T F F F T ...

Moscow F F F F T T T F F ...

Figure 19: 2D example of tag-value contextual pairs [262, 280]

Even with these toy examples we can immediately illustrate the hierarchical notion of the

dimensions in the context: so far the place and time we treated as atomic values fixed at

days and cities. In some cases, we need finer subdivisions of the context evaluation, where,

e.g., time can become fixed at hour, minute, second and finer values, and so is the place

broken down into boroughs, regions, streets, etc. and finally the X, Y, Z coordinates in the

Euclidean space with the values of millimeters or finer. This notion becomes more apparent

and important, e.g., in Forensic Lucid, where the temporal components can be, e.g., log
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entries and other registered events and observations from multiple sources [300, 310].

3.2.2 Intensional Programming

Intensional programming (IP) is based on multidimensional intensional logics [169], which,

in turn, are based on Natural Language Understanding aspects (such as time, situation,

direction, etc.) mentioned earlier. IP brings in dimensions and context to programs (e.g.,

space and time). Since intensional logic adds dimensions to logical expressions, a non-

intensional logic can be seen as a constant or a snapshot in all possible dimensions. To

paraphrase, intensions are certain statements, whose extensions in possible worlds are true

or false (or have some other than Boolean values). Intensional operators are operators that

allow us to navigate within these contextual dimensions [359]. Higher-order Intensional Logic

(HOIL) [298, 300, 403] is behind functional programming of Lucid with multidimensional

dataflows which intensional programs can query and alter through an explicit notion of

contexts as first-class values [298, 300, 302, 310, 363, 510].

From another side, intensional programming [129, 348, 378], in the sense of the latest

evolutions of Lucid (Chapter 4), is a programming language paradigm based on the notion

of declarative programming where the declarations are evaluated in an inherent multidi-

mensional context space. The context space being in the general case infinite, intensional

programs are evaluated using a lazy demand-driven model of execution—eduction [108, 378],

the precept of which is the referential transparency enabling scalable caching at the imple-

mentation level. There the program identifiers are evaluated in a restricted context space,

in fact, a point in space, where each demand is generated, propagated, computed and stored

as an identifier-context pair [239, 300]. The subsequent demands for the same context, can

simply be satisfied by fetching the previously computed value from the store. Plaice and

Paquet provided a lucid (no pun intended) explanation of Intensional Programming in a tu-

torial [378] in 1995, that still holds today. At ISLIP (after several iterations), in 1995 [348]

is where per Wadge [505] the intensional logic, the Advice on Modal Logic of Scott emerged

together to have a broader community actively developing practical languages and systems

based on these formalism. Wadge and Ashcroft, based to Scott’s models then defined the Lu-

cid language with intensional operators first, next, fby in 1974, with next, e.g., denoting
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from DI → DI (page 60), such that next(X) = λn.X(X + 1) [505].

Intensional programming can be used to solve widely diversified problems mentioned in

this chapter as well as in Chapter 4, which can be expressed using diversified languages of

intensional nature. There also has been a wide array of flavors of Lucid languages developed

over the years. Yet, very few of these languages have made it to the pragmatic implementation

level. The GIPSY project (Chapter 6) aims at the creation of a programming environment

encompassing compiler generation for all flavors of Lucid, and a generic run-time system

enabling the execution of programs written in all flavors of Lucid. Its goal is to provide

a flexible platform for the investigation on programming languages of intensional nature, in

order to prove the applicability of intensional programming to solve important problems [300].

We continue this trend in this work with Forensic Lucid (Chapter 7).

3.3 Uncertainty, Evidence, and Credibility

The works reviewed in this section contribute to the enhancement of the cyberforensic analysis

with options to automatically reason in the presence of uncertainty and non-binary degrees

of belief, credibility (reliability of witnesses) of each witness story and a piece of evidence

as an additional artifact of the proposed Forensic Lucid system. We subsequently briefly

review the related literature in this category involving in particular the Mathematical Theory

of Evidence by Dempster–Shafer [420] Probabilistic Argumentation Systems by Haenni et

al . [151] and some related probabilistic logic work [85], and the links to intensional logic.

(Such probabilistic reasoning provides additional foundations for a future elaborate expert

system to train the investigator personnel in presence of uncertainty.)

3.3.1 Probabilistic Logics

It is worthwhile to mention some logical foundations to probabilistic reasoning to represent

uncertainty, including in modal and intensional aspects [85]. Previously mentioned Carnap

himself in 1950 wrote on Logical Foundations of Probabilities [85] while working on all aspects

of logic including his work on intensional aspects. Roughly, there are two main approaches
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in probabilistic logic [85] to represent probabilistic uncertainty: qualitative and quantita-

tive [85]. After Hamblin in 1959, Gärdenfors (along with Segerberg) in 1975 proposed treat-

ing qualitative probability as an Intensional Logic [128] as we have seen the intensional logic

provided the the notion of “possible”. Quantitative approaches included treading numerical

values of probability spaces. Modal probability logics [85, Section 4] subsequently were in-

troduced bringing back the Kripke possible world semantics that was not possible for some

initial probability logic works. That included Fagin and Harpen’s work on this in 1988 and

1994 later [85]; indexing and interpretation were introduced for the possible world states with

probabilities. Combining qualitative and quantitative [85] then seemed like a natural pro-

gression. As an example, quoting Demey et al . [85]: ¬✷h∧(¬✷P (h) = 1/2)∧(✸P (h) = 1/2)

would read as “it is not known that h is true, and it is not known that the probability of h is

1/2, but it is possible that the probability of h is 1/2”. More recently, in 2006, Halpern and

Pucella presented a logic for reasoning about evidence [156] following earlier works about

reasoning about uncertainty and knowledge [104, 154, 155]. Most recently (2011), Haenni et

al . [153], explored the notion probabilistic logics and probabilistic networks.

3.3.2 Dempster–Shafer Theory of Evidence and Probabilistic Rea-

soning Systems

Semantics and interpretation of truth were always of interest to reasoning in any logical

system [51]. This includes uncertain knowledge representation and manipulation [154, 422].

This section subsequently reviews the Dempster–Shafer theory that helps us to reason with

the presence of uncertainty in beliefs about the system’s state. The theory has been exten-

sively discussed and extended; the presentation of which is found in Expert Systems [184] as

well as the work by Haenni et al. [151, 152] about probabilistic argumentation.

3.3.2.1 Dempster-Shafer Theory of Mathematical Evidence

The Dempster–Shafer theory as a mathematical theory of evidence (DSTME) is there to

give machinery to combine evidence from different sources to come up with a degree of belief

(represented by a belief function [421]) that takes into account all the available evidence.
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The initial theory was a product of the work by Arthur P. Dempster [86] in 1968 on his rule

of combination and Glenn Shafer’s mathematical evidence theory [420] of 1976. Since then

DSTME was applied to different application domains altering sometimes the Dempster’s rule

of combination (Section 3.3.2.1.3, page 72) to produce better (more intuitive, correct) results

in that domain or situation.

Quoting Shafer 1:

The Dempster-Shafer theory, also known as the theory of belief functions, is a gen-

eralization of the Bayesian theory of subjective probability. Whereas the Bayesian

theory requires probabilities for each question of interest, belief functions allow

us to base degrees of belief for one question on probabilities for a related ques-

tion. These degrees of belief may or may not have the mathematical properties of

probabilities; how much they differ from probabilities will depend on how closely

the two questions are related.

. . .

The Dempster-Shafer theory is based on two ideas: the idea of obtaining degrees

of belief for one question from subjective probabilities for a related question, and

Dempster’s rule for combining such degrees of belief when they are based on

independent items of evidence.–G. Shaffer, 2002

Thus, we review these aspects further.

3.3.2.1.1 Formal Definition. Below we quote [86, 420] the formal definition with the

symbols adapted to match our needs:

• Q is the universal set representing all possible states q of a system under consideration.

• 2Q is the power set of all subsets of Q (including the empty set ∅). The elements of 2Q

represent propositions concerning the actual state of the system, by containing all and

only the states, in which the propositions are true.

1http://www.glennshafer.com/assets/downloads/articles/article48.pdf
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• m is a function denoting DSTME’s assignment of a belief mass to each element of 2Q

(called a basic belief assignment (BBA)).

m : 2Q → [0, 1] (3.3.2.1)

It has two properties:

– the mass of the empty set is zero: m(∅) = 0

– the masses of the remaining members add up to a total of 1:


A∈2X m(A) = 1

The mass m(A) of A ⊂ 2Q denotes the fraction of all relevant available evidence sup-

porting the claim that the actual state q belongs to A (q ∈ A). The value of m(A)

corresponds only to the set A itself.

• bel(A) and pl(A) are belief and plausibility denoting the upper and lower bounds of

the probability interval that contains the precise probability of a set of interest, and is

bounded by two non-additive continuous bel(A) and pl(A):

bel(A) ≤ P (A) ≤ pl(A) (3.3.2.2)

The belief bel(A) is the sum of all the masses in A of subsets of the set of interest A:

bel(A) =


B|B⊆A

m(B) (3.3.2.3)

The plausibility pl(A) is the sum of all the masses of the sets B that intersect A:

pl(A) =


B|B∩A ̸=∅

m(B) (3.3.2.4)

Belief and plausibility are related as follows:

pl(A) = 1− bel(A) (3.3.2.5)

Conversely, for a finite A, given the belief bel(B) for all subsets B of A, one can find
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the masses m(A) with the following inverse function:

m(A) =


B|B⊆A

(−1)|A−B| bel(B) (3.3.2.6)

where |A − B| is the difference of the cardinalities of the two sets [419], From Equa-

tion 3.3.2.5 and Equation 3.3.2.6, for a finite set Q, one needs to know only one of

the mass, belief, or plausibility to deduce the other two. In the case of an infinite

Q, there can be well-defined belief and plausibility functions but no well-defined mass

function [154], but in our cyberforensic investigations Q is always finite.

3.3.2.1.2 Examples. The Wikipedia page on the theory [517] as well as the quoted

reference above from Shafer give a good number of examples where the theory would be

applicable and how it works.

To illustrate the idea of obtaining degrees of belief for one question from subjective

probabilities for another, suppose I have subjective probabilities for the reliability of

my friend Betty. My probability that she is reliable is 0.9, and my probability that she

is unreliable is 0.1. Suppose she tells me a limb fell on my car. This statement, which

must true if she is reliable, is not necessarily false if she is unreliable. So her testimony

alone justifies a 0.9 degree of belief that a limb fell on my car, but only a zero degree of

belief (not a 0.1 degree of belief) that no limb fell on my car. This zero does not mean

that I am sure that no limb fell on my car, as a zero probability would; it merely means

that Betty’s testimony gives me no reason to believe that no limb fell on my car. The

0.9 and the zero together constitute a belief function.

To illustrate Dempster’s rule for combining degrees of belief, suppose I also have a

0.9 subjective probability for the reliability of Sally, and suppose she too testifies, in-

dependently of Betty, that a limb fell on my car. The event that Betty is reliable is

independent of the event that Sally is reliable, and we may multiply the probabilities of

these events; the probability that both are reliable is 0.9 × 0.9 = 0.81, the probability

that neither is reliable is 0.1×0.1 = 0.01, and the probability that at least one is reliable
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is 1 − 0.01 = 0.99. Since they both said that a limb fell on my car, at least [one] of

them being reliable implies that a limb did fall on my car, and hence I may assign this

event a degree of belief of 0.99.

Suppose, on the other hand, that Betty and Sally contradict each other—Betty says

that a limb fell on my car, and Sally says no limb fell on my car. In this case, they

cannot both be right and hence cannot both be reliable—only one is reliable, or neither

is reliable. The prior probabilities that only Betty is reliable, only Sally is reliable,

and that neither is reliable are 0.09, 0.09, and 0.01, respectively, and the posterior

probabilities (given that not both are reliable) are 9/19, 9/19, and 1/19, respectively.

Hence we have a 9/19 degree of belief that a limb did fall on my car (because Betty is

reliable) and a 9/19 degree of belief that no limb fell on my car (because Sally is reliable).

In summary, we obtain degrees of belief for one question (Did a limb fall on my car?)

from probabilities for another question (Is the witness reliable?). Dempster’s rule begins

with the assumption that the questions for which we have probabilities are indepen-

dent with respect to our subjective probability judgments, but this independence is

only a priori; it disappears when conflict is discerned between the different items of

evidence.–G. Shaffer, 2002

We adapt one of the examples to re-state one of Gladyshev’s examples (Section 2.2.5.1,

page 44): “Did Alice print anything?” from the questions “Is Alice a reliable witness?”,

“Is Bob a reliable witness?” and “Is the printer manufacturer a reliable witness?” follow-

ing the belief mass assignments and the rule of combination. Suppose the investigator has

a subjective probability the manufacturer is 0.9 reliable and 0.1 unreliable in their printer

mechanism work specification. Since both Alice and Bob are roughly under the same in-

vestigation questions, assume the investigator’s subjective probability of their reliability is

0.5 that is no preference is given to either Alice or Bob, or either could be truthful or lying

in their testimony, whereas the printer manufacturer is treated as an expert witness. Since

Alice and Bob are strictly not independent, their testimony have a degree of conflict, the in-

troduction of the manufacturer’s testimony is necessary since both Bob and Alice are equally
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(un)reliable before the incident, so either one of them can be true (or neither), but not both.

These belief assignments of course do not resolve alone the case in question; for that we need

the combined approach with the intensional logic presented earlier for event reconstruction

from multiple observations in witness accounts. We will review that further in Chapter 7.

We solve a similar operational question in Section 9.5 for the MAC Spoofer Investigation

case using the question “Is there a real MAC spoofer?” given different witness accounts

from logs and probes and their reliability that is when a log entry is observed it is assumed

to be 1.0 reliable, when log is empty for some reason or a probe fails (e.g., due to firewall

restrictions on the probed host), its witness reliability is 0.0; when observed information is

partial that is also reflected in the reliability aspects.

Another quoted example is from signal processing of different color sensors from a distant

light source where the light color can be colored in any of the three read, green, or blue.

Assigning their masses as given:

Hypothesis Mass Belief Plausibility

Null (neither) 0.00 0.00 0.00

Red 0.35 0.35 0.56

Yellow 0.25 0.25 0.45

Green 0.15 0.15 0.34

Red or Yellow 0.06 0.66 0.85

Red or Green 0.05 0.55 0.75

Yellow or Green 0.04 0.44 0.65

Any 0.10 1.00 1.00

allows to compute belief and plausibility. Any denotes Red or Yellow or Green is a catch-all

case basically saying there is some evidence “there is a light”, but the color is uncertain.

Null-hypothesis (“no light”, but for completeness) is always given 0 mass. This can be

used to model various situations (e.g., the evidence received from a color-blind person or

a malfunctioning CCD). Below are two examples of computing belief and plausibility given

mass:
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bel(Red or Y ellow) = m(null) +m(Red) +m(Y ellow) +m(Red or Y ellow)

= 0 + 0.35 + 0.25 + 0.06 = 0.66

pl(Red or Y ellow) = 1− bel(¬(Red or Y ellow))

= 1− bel(Green)

= 1−m(null)−m(Green)

= 1− 0− 0.15 = 0.85

3.3.2.1.3 Dempster’s Rule of Combination. Once evidential data are in from mul-

tiple sources, they need to be combined somehow [419]. Dempster created such a rule as a

part of his work on the generalization of the Bayesian inference in 1968 [86]. When viewed

under this interpretation, the priors and conditionals are not required to be specified (as

opposed to traditional Bayesian, e.g., assigning 0.5 probabilities to values, for which no prior

information is available). The rule ignores any such information unless it can be obtained

during the overall computation. This can be seen as allowing DSTME to formulate a degree

of ignorance vs. the absolute necessity to provide prior probabilities [198, 419].

Thus, we need to combine independent sets of probability mass assignments. Specifically,

the combination (called as joint mass) is calculated from the two mass setsm1(B) andm2(C)

(where A = B ∩ C) as follows:

m1,2(∅) = 0 (3.3.2.7)

m1,2(A) = (m1 ⊕m2)(A) =
1

1−K


A=B∩C ̸=∅

m1(B)m2(C) (3.3.2.8)

K =


B∩C=∅

m1(B)m2(C) (3.3.2.9)

where K is a measure of the amount of conflict between the two mass sets [420].

This rule was criticized for some scenarios by Zadeh [535] (the recognized father of Fuzzy

Logic [536]) and others where it produced counter-intuitive results in some cases of high or

low conflict, especially when the sources are not independent enough. (See Zadeh’s examples
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of Alice and Bob deciding to pick a move vs. two doctors diagnosing brain tumor in a

patient, or a toy murder trial suspect case [198].) Many researchers subsequently proposed

various way of combining (fusing) beliefs that suit a particular situation or application (sensor

fusion, opinion fusion, etc.) better using the appropriate fusion operators by Jøsang and

others [196, 197, 198].

3.3.2.2 Probabilistic Argumentation Systems

In the recent work, a lot of attention was devoted to various probabilistic argumentation

systems. Notably, Haenni et al . consistently discussed the topic [151, 152] in 1999–2003 as

well as probabilistic logics and probabilistic networks [153] in 2011. Halpern and Pucella in

2006 provided a logic to reason about evidence as well [156] in 2006. Jøsang in 2012 did

a thorough review of different ways to apply the combination rule [198] and provided the

relevant background proofs. Shi et al . [425] in 2011 provided a hybrid system combining

intuitionistic fuzzy description logics with intuitionistic fuzzy logic programs.

Xu et al . [172] in 2009 made a strong point for the necessity of attribute reduction

in ordered information systems with a possible solution. They exploited the relationship

between the Dempster–Shafer theory of mathematical evidence and the Pawlak’s rough set

theory as well as their plausibility and belief functions [284]. This is of relevance to this work

as well. Reduction of attributes can become an important step point to reduce state explosion

problem in evidence analysis and event reconstruction by applying Occam’s razor. Grünwald

and Halpern certainly agree with that in their 2004 work When ignorance is bliss [145]. This

is pertinent to us in the sense of irrelevant context reduction and elimination with a lot of

digital evidence to reduce the computational effort and/or reduce confusion, e.g., as filtering

is done in Forensic Lucid encoders in Section 9.5.7.2, page 266 later on.

3.4 Summary

This chapter provided a quick overview of the reasoning foundations and the corresponding

related work on intensional logics and the Dempster–Shafer theory of evidence. In this

research, we combine these reasoning tools. It serves the purpose to encode forensic knowledge
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with credibility and reason about forensic knowledge in a context-oriented manner in a formal

system for cyberforensic reasoning and event reconstruction in investigator’s work where rigor

and formality are a must to be used in the court of law, but the reasoning may include

incomplete, imprecise, or untrustworthy evidence.

The presented related work around Dempster–Shafer, has a strong correlation with inten-

sional logic [477] (Section 3.2, page 59) and the Lucid programming language (Chapter 4)

as well its derivative Lucx [510] where the ordered information system is a context of evalu-

ation, a context set of ⟨dimension : tag⟩ pairs, that has seen a number of applications (such

as iHTML [507], the contribution of this thesis—Forensic Lucid, and others). Forensic

Lucid [308] (Chapter 7) also blends the Dempster–Shafer theory, and intensional logic and

Lucid dialects for ordered evidential contexts [284], such as observation sequences.

Conjecture. Not in a mathematical or logic terms, but I would like to conjecture a philo-

sophical point for discussion: In the metalogical [56, 173]2 sense the (meta?) intensional

logic can be used to reason about logical systems governing them all. (We shall see how that

fits with Tichý’s work on TIL and his followers [96].)

Since intensional logic dealt with senses and semantics from the beginning, it makes sense

to describe other logics with it. Every logic L is a possible world w (however defined, nested,

complex, complete, sound, consistent or not). The philosophical aspects aside, the statements

of consistency can be true for w = L. There may or may not be accessibility transitions

between the possible logic worlds, but if there is one, then one logic can be represented

(translated to) into another in a whole or in part. Accepting the fact that some statements

may not retain their truth values in such a process, that is evaluating a proposition in one

logical world may yield one answer, another in another, or be undecidable or undefined in

the third.

The same can be applied to more concrete and restricted entities and instantiations the

logics may describe, such as the syntax and semantics of natural (w = LNL) or program-

ming languages (w = LPL). Linguistically, it is known people of different cultures can learn

multiple languages, while most NL concepts are universal and fully inter-translatable, but

2http://en.wikipedia.org/wiki/Metalogic

74

http://en.wikipedia.org/wiki/Metalogic


without learning fully the culture, one cannot translate all possible expressions, proverbial

or not, so not all statements can be translated between languages, or would have differ-

ent meanings when attempted. The same (though weaker) is true for the more restricted

programming languages (though the situation here is better due to the restricted nature of

PLs). While the most universal algebras and commands can be easily inter-translated via

a basic assembly form, not all assembly instances support all features of all architectures.

Not all high-language constructs can be translated to others (some kind of virtualization and

wrappers can be done to make statements from one PL available in another).

Thus, complete translation may not be possible between logics, just like between natural

or programming languages since some statements do not have universal meaning across these

logics (or languages). However, any two minimal inter-translatable logic systems describing

the the same model may represent indistinguishable possible logic world intensional individ-

uals [505]. This assertion is in part supported by Assels’s refutation of the logic of the global

conventionalism (GC) by showing GC’s inconsistency [30] in 1985.
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Chapter 4

The Lucid Programming Language

Family

In this chapter we review the background on the notion of the Lucid-family of languages

(which we often collectively refer to as “Lucid” instead of implying the specific “Original

Lucid” of Ashcroft and Wadge from 70s-90s) as instantiations of various HOIL realiza-

tions from the overview (Section 4.1), to the historical background and the related work

(Section 4.2), to the dialects spectrum (Section 4.3). We then summarize the findings in

Section 4.4. Lucid is central to this thesis for its lazy stream processing semantics and ease

of expression as well as its solid theoretical and mathematical research base make it ideal for

scalable knowledge representation and reasoning of any streamed data.

4.1 Lucid Overview

Lucid [24, 25, 26, 27, 506] is a dataflow intensional and functional programming language. In

fact, it is now a family of languages that are built upon intensional logic (which in turn can be

understood as a multidimensional generalization of temporal logic, cf. Section 3.2, page 59)

promoting context-aware demand-driven parallel computation model [302]. A program writ-

ten in some Lucid dialect is an expression that may have subexpressions that need to be

evaluated at a certain context . Given a set of dimensions DIM = {dimension i}, in which

an expression varies, and a corresponding set of indexes, or, tags, defined as placeholders

76



over each dimension, the context is represented as a set of ⟨dimension : tag⟩ mappings. Each

variable in Lucid, often called a stream, is evaluated in that defined context that may also

evolve using context operators [303, 305, 310, 363, 470, 510, 512]. The first generic version

of Lucid, the General Intensional Programming Language (GIPL) [359], defines two basic

operators @ and # to navigate (switch and query) in the context space [303, 305, 310]. The

GIPL is the first (with the second being Lucx [363, 470, 510, 512], and third is TransLu-

cid [377]) generic programming language of all intensional languages, defined by the means

of only two mentioned intensional operators—@ and # [303, 305, 310]. It has been proven

that other intensional programming languages of the Lucid family can be translated into

the GIPL [303, 305, 310, 359]. A recent similar notion to GIPL called TransLucid was

designed by Plaice and colleagues [88, 376, 377, 394]. Plaice and Paquet give a succinct yet

comprehensive introduction to Lucid and intensional programming in their tutorial [378] in

1995, which is still a recommended reading today. A more recent (2008) overview is by Plaice

and colleagues can be found in [244, 376].

4.1.1 Sample Syntax and Semantics

The fundamental syntax and semantics of Lucid are rather simple allowing easier compiler

implementation and human comprehension of Lucid programs. This also allows flexible

extension in various dialects for application domain specific purposes and use the core baseline

as a sound and complete building block. Similarly, as pioneered by GLU, Lucid is relatively

easy to marry to imperative programming languages to allow mutual advantage of eductive

evaluation and availability of rich libraries. These are the aspects that contributed to the

choice of this language to be extended in this thesis. What follows are examples of syntax

and semantics of the Lucid dialects relevant to us. For illustratory purposes, in the example

excerpts that follow we unify the definitions in a hypothetical language that we call a G≥,

which is the union of necessary features of the Lucid dialects we inherit from. (Further in this

thesis, we define Forensic Lucid in much more concrete terms and detail in Chapter 7). To

say it simply, G>= ≡ min

(GIPL, Indexical Lucid, Objective Lucid, JOOIP, MARFL) .

We briefly discuss these dialects in this chapter, and present their concrete features we borrow

in Chapter 7.
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4.1.1.1 Lucid Syntax

Example syntaxes of G≥ for expressions, definitions, and operators are presented in Figure 20

and Figure 21 for both GIPL and Indexical Lucid respectively to remind the reader of

their structure [303]. The concrete syntax of the GIPL in Figure 20 has been amended

to support the isoed operator of Indexical Lucid for completeness and is influenced by

the productions from Lucx [512] to allow contexts as first-class values while maintaining

backward compatibility to the GIPL language proposed by Paquet earlier [303, 359]. In

Figure 22 is a simple program illustrating a Lucid expression [303].

E ::= id
| E (E,...,E )
| E [E,...,E ](E,...,E )
| if E then E else E fi

| # E
| E @ [E :E ]
| E @ E
| E where Q end;
| [E :E,...,E :E ]
| iseod E ;

Q ::= dimension id,...,id;
| id = E ;
| id(id,....,id) = E ;
| id[id,...,id](id,....,id) = E ;
| QQ

Figure 20: Sample G≥ syntax expressions

4.1.1.2 Operational Semantics for Lucid

In the implementing system, GIPSY (see Chapter 6), GIPL is the generic counterpart of

all the Lucid programming languages. Like Indexical Lucid, which it is derived from,

it has only the two standard intensional operators: E @ C for evaluating an expression E

in context C, and #d for determining the position in dimension d of the current context

of evaluation in the context space [359]. SIPLs are Lucid dialects (Specific Intensional

Programming Languages) with their own attributes and objectives. Theoretically, all SIPLs

can be translated into the GIPL [359]. Here for convenience we provide the semantic rules

of GIPL and Indexical Lucid [359] and Lucx [510]. The operational semantics of GIPL

is presented in Figure 23. The excerpt of semantic rules of Lucx is then presented as a

78



op ::= intensional-op
| data-op

intensional-op ::= i-unary-op
| i-binary-op

i-unary-op ::= first | next | prev
i-binary-op ::= fby | wvr | asa | upon

data-op ::= unary-op
| binary-op

unary-op ::= ! | − | iseod
binary-op ::= arith-op

| rel-op
| log-op

arith-op ::= + | - | * | / | %
rel-op ::= < | > | <= | >= | == | !=
log-op ::= && | ||

Figure 21: Sample G≥ operators

N @.d 2

where

dimension d;

N = 42 fby.d (N + 1);

end

Figure 22: Classical natural-numbers example [359]

conservative extension to GIPL in Figure 24 [298, 302].

Following is the description of the GIPL semantic rules as presented in [359]:

D ⊢ E : v (4.1.1.1)

tells that under the definition environment D, expression E would evaluate to value v.

D,P ⊢ E : v (4.1.1.2)

specifies that in the definition environment D, and in the evaluation context P (sometimes

also referred to as a point in the context space), expression E evaluates to v. The definition

environment D retains the definitions of all of the identifiers that appear in a Lucid program,

as created with the semantic rules 4.1.1.16–4.1.1.19 in Figure 23. It is therefore a partial
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function

D : Id→ IdEntry (4.1.1.3)

where Id is the set of all possible identifiers and IdEntry, summarized in Table 1, has five

possible kinds of values, one for each of the kinds of identifier [298, 302]:

• Dimensions define the coordinate pairs, in which one can navigate with the # and @

operators. Their IdEntry is simply (dim) [359].

• Constants are external entities that provide a single value, regardless of the context of

evaluation. Examples are integers and Boolean values. Their IdEntry is (const, c),

where c is the value of the constant [359].

• Data operators are external entities that provide memoryless functions. Examples are

the arithmetic and Boolean functions. The constants and data operators are said to

define the basic algebra of the language. Their IdEntry is (op, f), where f is the

function itself [359].

• Variables carry the multidimensional streams. Their IdEntry is (var, E), where E is

the Lucid expression defining the variable. It should be noted that this semantics

makes the assumption that all variable names are unique. This constraint is easy to

overcome by performing compile-time renaming or using a nesting level environment

scope when needed [359].

• Functions are non-recursive user-defined functions. Their IdEntry is (func, idi, E),

where the idi are the formal parameters to the function and E is the body of the

function [359].

Table 1: Possible identifier types [359]

type form
dimension (dim)
constant (const, c)
operator (op, f)
variable (var, E)
function (func, idi, E)
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The evaluation context P , which is changed when the @ operator is evaluated, or a dimen-

sion is declared in a where clause, associates a tag (i.e., an index) to each relevant dimension.

It is, therefore, a partial function

P : Id→ N (4.1.1.4)

Each type of identifier can only be used in the appropriate situations. Identifiers of type op,

func, and dim evaluate to themselves (Figure 23, rules 4.1.1.6, 4.1.1.7, 4.1.1.8). Constant

identifiers (const) evaluate to the corresponding constant (Figure 23, rule 4.1.1.5). Function

calls, resolved by the Efct rule (Figure 23, rule 4.1.1.11), require the renaming of the formal

parameters into the actual parameters (as represented by E ′[idi ← Ei]). The function P ′ =

P † [id →→ v′′] specifies that P ′(x) is v′′ if x = id, and P(x) otherwise. The rule for the

where clause, Ew (Figure 23, rule 4.1.1.16), which corresponds to the syntactic expression

E where Q, evaluates E using the definitions Q therein. The additions to the definition

environment D and context of evaluation P made by the Q rules (Figure 23, rules 4.1.1.17,

4.1.1.18, 4.1.1.19) are local to the current where clause. This is represented by the fact that

the Ew rule returns neither D nor P . The Qdim rule adds a dimension to the definition

environment and, as a convention, adds this dimension to the context of evaluation with

the tag 0 (Figure 23, rule 4.1.1.17). The Qid and Qfid simply add variable and function

identifiers along with their definition to the definition environment (Figure 23, rules 4.1.1.18,

4.1.1.19) [298, 302, 359].

As a conservative extension to GIPL, Lucx’s semantics introduced the context as a first-

class value, as described by the rules in Figure 24. The semantic rule 4.1.1.22 (Figure 24)

creates a context as a semantic item and returns it as a context P that can then be used

by the rule 4.1.1.23 to navigate to this context by making it override the current context.

The semantic rule 4.1.1.21 expresses that the # symbol evaluates to the current context.

When used as a parameter to the context calculus operators, this allows for the generation

of contexts relative to the current context of evaluation [359, 510, 512]
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Ecid :
D(id) = (const, c)

D,P ⊢ id : c
(4.1.1.5)

Eopid :
D(id) = (op, f)

D,P ⊢ id : id
(4.1.1.6)

Edid :
D(id) = (dim)

D,P ⊢ id : id
(4.1.1.7)

Efid :
D(id) = (func, idi, E)

D,P ⊢ id : id
(4.1.1.8)

Evid :
D(id) = (var, E) D,P ⊢ E : v

D,P ⊢ id : v
(4.1.1.9)

Eop :
D,P ⊢ E : id D(id) = (op, f) D,P ⊢ Ei : vi

D,P ⊢ E(E1, . . . , En) : f(v1, . . . , vn)
(4.1.1.10)

Efct :
D,P ⊢ E : id D(id) = (func, idi, E

′) D,P ⊢ E′[idi ← Ei] : v

D,P ⊢ E(E1, . . . , En) : v
(4.1.1.11)

EcT :
D,P ⊢ E : true D,P ⊢ E′ : v′

D,P ⊢ if E then E′ else E′′ : v′
(4.1.1.12)

EcF :
D,P ⊢ E : false D,P ⊢ E′′ : v′′

D,P ⊢ if E then E′ else E′′ : v′′
(4.1.1.13)

Etag :
D,P ⊢ E : id D(id) = (dim)

D,P ⊢ #E : P(id)
(4.1.1.14)

Eat :
D,P ⊢ E′ : id D(id) = (dim) D,P ⊢ E′′ : v′′ D,P†[id →→ v′′] ⊢ E : v

D,P ⊢ E @E′ E′′ : v
(4.1.1.15)

Ew :
D,P ⊢ Q : D′,P ′ D′,P ′ ⊢ E : v

D,P ⊢ E where Q : v
(4.1.1.16)

Qdim :
D,P ⊢ dimension id : D†[id →→ (dim)],P†[id →→ 0]

(4.1.1.17)

Qid :
D,P ⊢ id = E : D†[id →→ (var, E)],P

(4.1.1.18)

Qfid :
D,P ⊢ id(id1, . . . , idn) = E : D†[id →→ (func, idi, E)],P

(4.1.1.19)

QQ :
D,P ⊢ Q : D′,P ′ D′,P ′ ⊢ Q′ : D′′,P ′′

D,P ⊢ Q Q′ : D′′,P ′′ (4.1.1.20)

Figure 23: Extract of operational semantics rules of GIPL [359]

4.1.2 Streaming and Basic Operators

The origins of Lucid date back to 1974 [359, 378]. At that time, Ashcroft and Wadge were

working on a purely declarative language, in which iterative algorithms could be expressed

naturally, which eventually resulted in non-procedural iterative Lucid [25, 26, 27]. Their

work further fit into the broad area of research into program semantics and verification.

Later it turned out that their work is also relevant to the dataflow networks and coroutines

of Kahn and MacQueen [200, 201]. In the original Lucid (whose operators are in this
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E#(cxt) :
D,P ⊢ # : P

(4.1.1.21)

Econstruction(cxt) :

D,P ⊢ Edj : idj D(idj) = (dim)

D,P ⊢ Eij : vj P ′ = P0†[id1 →→ v1]†. . .†[idn →→ vn]

D,P ⊢ [Ed1 : Ei1 , Ed2 : Ei2 , . . . , Edn : Ein ] : P ′ (4.1.1.22)

Eat(cxt) :
D,P ⊢ E′ : P ′ D,P†P ′ ⊢ E : v

D,P ⊢ E @ E′ : v
(4.1.1.23)

E. :
D,P ⊢ E2 : id2 D(id2) = (dim)

D,P ⊢ E1.E2 : tag(E1 ↓ {id2})
(4.1.1.24)

Etuple :
D,P ⊢ E : id D†[id →→ (dim)] P†[id →→ 0] D,P ⊢ Ei : vi

D,P ⊢ ⟨E1, E2, . . . , En⟩E : v1 fby.id v2 fby.id . . . vn fby.id eod
(4.1.1.25)

Eselect :
E = [d : v’] E′ = ⟨E1, . . . , En⟩d P ′ = P†[d →→ v′] D,P ′ ⊢ E′ : v

D,P ⊢ select(E,E′) : v
(4.1.1.26)

Eat(s) :
D,P ⊢ C : {P1, . . . ,P2} D,Pi:1...m ⊢ E : vi

D,P ⊢ E @C : {v1, . . . , vm}
(4.1.1.27)

Cbox :

D,P ⊢ Edi : idi D(idi) = (dim)
{E1, . . . , En} = dim(P1) = . . . = dim(Pm)
E′ = fp(tag(P1), . . . , tag(Pm)) D,P ⊢ E′ : true

D,P ⊢ Box [E1, . . . , En|E′] : {P1, . . . ,Pm}
(4.1.1.28)

Cset :
D,P ⊢ Ew:1...m : Pm

D,P ⊢ {E1, . . . , Em} : {P1, . . . ,Pw}
(4.1.1.29)

Cop :
D,P ⊢ E : id D(id) = (cop, f) D,P ⊢ Ci : vi

D,P ⊢ E(C1, . . . , Cn) : f(v1, . . . , vn)
(4.1.1.30)

Csop :
D,P ⊢ E : id D(id) = (sop, f) D,P ⊢ Ci : {vi1 , . . . , vik}
D,P ⊢ E(C1, . . . , Cn) : f({v11 , . . . , v1s}, . . . , {vn1 , . . . , vnm})

(4.1.1.31)

Figure 24: Extract of operational semantics of Lucx [470, 510]

font), streams were defined in a pipelined manner, with two separate definitions: one for

the initial element, and another one for the subsequent elements [359, 378]. For example, the

equations

first X = 0

next X = X + 1

define the variable X to be a stream, such that

x0 = 0

xi+1 = xi + 1
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In other words,

0 = (0, 0, 0, ..., 0, ...)

X = (x0, x1, . . . , xi, . . .) = (0, 1, . . . , i, . . .)

Similarly, the equations

first X = X

next Y = Y + next X

define variable Y to be the running sum of X, i.e.,

y0 = x0

yi+1 = yi + xi+1

That is,

Y = (y0, y1, . . . , yi, . . .) =

0, 1, . . . , i(i+1)

2
, . . .


According to Paquet, then it became clear that a “new” operator at the time, fby (followed

by) can be used to define such typical situations [359, 378] allowing the above two variables

be defined as follows:

X = 0 fby X + 1

Y = X fby Y + next X

As a result, Plaice and Paquet summarized the three basic operators of the original Lu-

cid [359, 378]:

Definition If X = (x0, x1, . . . , xi, . . .) and Y = (y0, y1, . . . , yi, . . .), then

(1) first X
def
= (x0, x0, . . . , x0, . . .)

(2) next X
def
= (x1, x2, . . . , xi+1, . . .)

(3) X fby Y
def
= (x0, y0, y1, . . . , yi−1, . . .)

Paquet and Plaice further drew parallels to the list operations of LISP dialects, where

first corresponds to head, next corresponds to tail, and fby corresponds to cons [359, 378].
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This is especially useful, when translating Gladyshev’s Common Lisp implementation (see

[135]) into Forensic Lucid (Section 9.3, page 250). They further state when these operators

are combined with Landin’s ISWIM [221] (If You See What I Mean), which is essentially

typed λ-calculus with some syntactic sugar, it becomes possible to define complete Lucid

programs [359, 378]. The following three derived operators have turned out to be very useful

(we will use them later in the text) [359, 378]:

Definition

(1) X wvr Y
def
= if first Y then X fby ( next X wvr next Y )

else ( next X wvr next Y )

(2) X asa Y
def
= first (X wvr Y )

(3) X upon Y
def
= X fby (if first Y then ( next X upon next Y )

else ( X upon next Y ))

Where wvr stands for whenever , asa stands for as soon as and upon stands for advances

upon.

4.1.3 Random Access to Streams

In the beginning, with the original Lucid operators, one could only define programs with

pipelined dataflows, i.e., in where the (i + 1)-th element in a stream is only computed once

the i-th element has been computed. This situation was deemed potentially wasteful, since

the i-th element might not necessarily be needed. More importantly, it only allows sequential

access into streams [359, 378].

In order to have random access into streams, an index # corresponding to the current

position, the current context of evaluation was created [359, 378]. This step made the infi-

nite extensions (streams), constrained intensions, defining computation according to a con-

text (originally a simple single integer) [359, 378]. Effectively, intensional programming was

born [359, 378]. As such, Paquet and Plaice redefined all original Lucid operators in terms

of the operators # and @ (and Paquet [359] established their equivalence):
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Definition

(1) #
def
= 0 fby (#+ 1)

(2) X @ Y
def
= if Y = 0 then first X

else ( next X) @ (Y − 1)

We re-examine again these and other operators in Forensic Lucid in Chapter 7.

4.1.4 Eductive Model of Computation

The first operational model for computing Lucid programs was designed independently by

Cargill at the University of Waterloo and May at the University of Warwick, based directly

on the formal semantics of Lucid, itself based on Kripke models and possible-worlds seman-

tics [216, 217]. This technique was later extended by Ostrum for the implementation of the

Luthid interpreter [352]. While Luthid was tangential to standard Lucid, its implementa-

tion model was later adopted as a basis for the design of the pLucid interpreter by Faustini

and Wadge [108]. This program evaluation model is now called eduction and opens doors for

distributed execution [300] of such programs [159, 269, 360, 449, 451, 452].

In Figure 25 [262] is the trace represented as an eduction tree during execution of the

Objective Lucid program in Figure 26. In this figure, the outermost boxes labeled {d:0}

etc. represent the current context of evaluation, gray rectangular boxes with expressions

represent demands for values to be computed under that context, and the red1 boxes with

the terminal bullets next to them represent the results of the computation of the expressions.

In our proposed solution, such eduction tree can be adapted to back-tracing in forensic

evaluation, e.g., when the inner-most results are traced back to the final result of the entire

computation [303].

The concept of eduction can be described as a “tagged-token demand-driven dataflow”

[500] computing paradigm (whereupon Lucid influenced a popular media platform and lan-

guage called PureData [386]). The central concept to this model of execution is the notion

of generation, propagation, and consumption of demands and their resulting values. Lucid

1“Red” in the color image; or dark gray in black-and-white image.

86



Figure 25: Eduction tree as a trace for the natural-numbers problem in Objective Lu-
cid [262]
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programs are declarative programs where every identifier is defined as a HOIL expression us-

ing other identifiers and an underlying algebra. An initial demand for the value of a certain

identifier is generated, and the eduction engine, using the defining expression of this identi-

fier, generates demands for the constituting identifiers of this expression, on which operators

are applied in their embedding expressions. These demands in turn generate other demands,

until some demands eventually evaluate to some values, which are then propagated back in

the chain of demands, operators are applied to compute expression values, until eventually

the value of the initial demand is computed and returned [300].

Lucid identifiers and expressions inherently vary in a multidimensional context space, i.e.,

any identifier or expression can be evaluated in a multidimensional context, thus leading

to have identifiers and expressions representing a set of values, one value for each possible

context in which the identifier or expression can be evaluated. This is brining the notion

of intensionality, where identifiers are defined by intensional expressions, i.e., expressions

whose evaluation varies in a multidimensional context space, which can then be constrained

by a particular multidimensional context specification. Note that Lucid variables and expres-

sions represent “dimensionally abstract” concepts, i.e., they do not explicitly mention their

dimensionality. For example, Newton’s Law of Universal Gravitation

F = (G ·m1 ·m2)/r · r (4.1.4.1)

can be written literally in Lucid as [300]:

F = (G * m1 * m2) / r * r;

and can then be evaluated in different dimensional manifolds (i.e., n-dimensional spaces),

keeping the same definition, but being evaluated in contexts varying in their dimensionality.

For example, F can be evaluated in a one-dimensional space, yielding a single scalar, or in a

three-dimensional manifold, yielding a three-dimensional vector. Note that a time dimension

could also be added where, for example, the masses (m1 and m2) and/or the distance between

them (r) can be defined as to vary in time. In this case, the expression will inherently vary

in the time dimension since some of its constituents vary in this dimension [300].
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4.1.5 Related Languages

Some other languages can be referred to as intensional even though they may not refer to

themselves as such, and were born after Lucid (Lucid began in 1974). Examples include

hardware-description languages (HDLs, appeared in 1977) where the notion of time (often

the only “dimension”, and usually progresses only forward), e.g., Verilog and VHDL [340].

Another branch of newer languages for the becoming popular is aspect-oriented programming

(AOP) languages (e.g., AspectJ [29] and SHL [226]), Web Service Description Language

(WSDL) [533], that can have a notion of context explicitly, but primarily focused on software

engineering aspect of software evolution and maintainability [298]. Yet another set of stream-

processing languages influenced by Lucid include Miller Puckette’s PureData [386] (open-

source) and its commercial equivalent Jitter in Max/MSP [72, 73].

4.2 Related Work

In this section we briefly review some of the related work on Lucid and its dialects and

developments. Some of that work is explained in detail further in Section 4.3 that we draw

on the most as well as in [362] where a list of publications, dialects, and related work is

being maintained and periodically updated. A lot of the related work was done earlier and

summarized in the ISLIP proceedings [129, 348] and some of this work was reviewed in the

preceding chapter and is still of relevance today.

Lucid was influenced by Landin’s ISWIM [221] in his work 700 programming languages,

producing in the end contexts, the where clause, etc. (ISWIM had influence elsewhere as well

like SQL, Z, and others). It was designed to model change that happens to various abstract

objects and phenomena [378].

A very good overview of Lucid, Indexical Lucid, etc., in the context of WWW as an

illustratory example is done in the tutorial by Plaice and Paquet in [378], including multi-

dimensional contexts, higher-order functions, and examples. Wadge discusses the Kripke’s

possible worlds semantics of Lucid in the OO context [504]. Wadge and Yoder further

reviewed the possible world semantics in their work Possible-World Wide Web [509].

One of the application domains Lucid was proposed for was for verification and reasoning
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about multidimensional programs by Ashcroft [23]. Ma and Orgun proposed MULTRAN

program verification with temporal logic [242]. Yamane proposed real-time OO specification

and verification techniques [530].

There were naturally a number of works on the hybrid intensional-imperative program-

ming. The two paradigms have a generally poor interface among each other: on the one hand

are conventional imperative programming languages that have no room for multidimensional-

ity or intensional or demand-driven evaluation; on the other hand, existing multidimensional

languages that cannot take advantage of imperative features and techniques. Developed

over years of research, the combination typically result in much better performance [523].

Liu and Staples proposed introduction of logic constructs into the imperative procedural lan-

guages [236] and Rondogiannis followed up with multidimensional additions to the procedural

languages [404]. Rondogiannis and Wadge also proposed a way to extend what they call the

intensionalization algorithm to a broader class of higher-order programs [406]. The GLU#

approach embeds a small multidimensional core in a mainstream object-oriented program-

ming language (C++) [357]. By this way, without changing the syntax and semantics of

the host language, multidimensionality can be supported. GLU# is a small subset of GLU

and it is implemented as a collection of C++ classes and class templates. All operators

in Lucid appear as C++ functions. GLU# does not support Lucid functions; however,

programmers are able to use lazy method templates in C++ to use C++’s functions in

GLU#. GLU# provided a bridge between Lucid and OO [523]. The concept about ob-

jects in Lucid first appeared in [120] in the early 1990s. In the later 1990s, Peter Kropf and

John Plaice talked about this topic in their paper “intensional objects” [219]. In this paper,

intensional objects are considered as openable boxes labeled by Lucid contexts. That work

focuses on intensional versioning whose task is to build a system from versioned components,

which are already sitting in the intensional value warehouse (a cache of the previously com-

puted results). This warehouse is different as the warehouse in intensional programming.

The latter is like a cache to improve the performance. The former contains the source of

everything, it is like a “catalog” or a “repository”, in which the boxes are put into. Each box

is of some contents and a tag that is context. Thus, in this approach, these labeled boxes are

called intensional objects, which are re-openable and re-packageable [523]. In [91], there is
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another discussion on issues about object-oriented implementation of intensional languages.

In this approach, each variable in a Lucid program is considered as a class and an object

of a class is a variable in a context. Each variable definition in a Lucid program is com-

piled into a C++ class definition that has the same name as the variable. This approach

focuses on the implementation-level by creating a class for each Lucid variable, it helps the

system to execute in a distributed manner. However, the objects introduced here does not

contain information from C++ variables [523]. Lu created similar identifier-context (IC)

classes in the multithreaded GEE PoC implementation [239]. Grogono proposed Onyx for

multidimensional lazy arrays [142].

On the scientific application side Plaice proposed particle in-cell simulations with Lu-

cid [374] and Paquet with his Scientific Intensional Programming work [359] proposed Ten-

sor Lucid for plasma physics simulations.

Paquet and Plaice proposed the use of Lucid constructs to handle fine amount records

in relational databases [358, 365].

Le proposed a notion of a Fuzzy Temporal Prolog. While we are not into Prolog in this

work, the fuzzy temporal aspect is of relevance to Forensic Lucid. Knowledge representa-

tion and temporal knowledge based simulation subsequently proposed by Liu and Orgun in

Chronolog is also a related work to Forensic Lucid. Panayiotopoulos also proposed tem-

poral reasoning with TRL [356]. At the same time. Androutsopoulos discussed the temporal

meaning representation in a natural language front-end [18].

Paquet and Plaice followed by Wan investigated the semantics of dimensions as val-

ues [366, 510]. For nested hierarchical contexts the related work includes the work by Schraefel

et al . [415, 508] on various hypertext representational and modeling issues.

Besnard et al . [41] proposed a design of a multi-formalism application and distribution

in a dataflow context via an example. Gagné and Plaice have further expanded on the topic

of real-time demand-driven computing [124].

Faustini established the equivalence of denotational and operational semantics in pure

dataflows [106], which can be useful when relying on the relevant denotational formalism

elsewhere (e.g., [529]) and most of the Lucid’s semantics was traditionally done in the

operational fashion. Uustalu and Vene in a more recent review go over the notion of dataflow
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programming [475].

On the compiler and toolset side, Swoboda and Wadge produced a set of intensionaliza-

tions tools like vmake, libintense [452], Mark did a basic PoC interpreter in Haskell [248].

4.3 Lucid Dialects

Here we briefly review some of the core influential dialects contributing to the construction

of Forensic Lucid in addition to the information provided in Section 4.1. A great deal is

devoted to the dialects and related publications in [362].

4.3.1 Lucx

Wan’s Lucx [510, 512] (which stands for Lucid enriched with context is a fundamental exten-

sion of GIPL and the Lucid family as a whole that promotes the contexts to the first-class

values thereby creating a “true” generic Lucid language. We recited its semantics in Fig-

ure 24 in Section 4.1, page 76. Wan [510, 512] defined a new collection of set operators (e.g.,

union, intersection, box, etc.) on the multidimensional contexts, which will help with the

multiple explanations of the evidential statements in forensic evaluation where the context

sets are often defined as cross products (boxes), intersections, and unions. Lucx’s further

specification, refinement, and implementation details were produced by Tong [363, 470] in

2007–2008 based on Wan’s design [300, 303].

4.3.2 JLucid, Objective Lucid, and JOOIP

4.3.2.1 JLucid

JLucid [143, 262] was the first attempt on intensional arrays and “free Java functions”

in the GIPSY environment. The approach used the Lucid language as the driving main

computation, where Java methods were peripheral and could be invoked from the Lucid

segment, but not the other way around. This was the first instance of hybrid intensional-

imperative programming within GIPSY. The semantics of this approach was not completely

defined, plus, it was only a single-sided view (Lucid-to-Java) of the problem. JLucid did
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not support objects of any kind, but introduced the wrapper class idea to contain the freely

appearing Java methods (in either GIPL or Indexical Lucid) and served as a precursor

to Objective Lucid [302, 310, 523].

4.3.2.2 Objective Lucid

Objective Lucid [260, 262] was a natural extension of the JLucid language mentioned in

the previous section that inherited all of the JLucid’s features and introduced Java objects

to be available for use by Lucid. Objective Lucid expanded the notion of the Java object

(a collection of members of different types) to the array (a collection of members of the

same type) and first introduced the dot-notation in the syntax and operational semantics in

GIPSY (Figure 27). Like in JLucid, Objective Lucid’s focus was on the Lucid part being

the “main” program and did not allow Java to call intensional functions or use intensional

constructs from within a Java class. Objective Lucid was the first in GIPSY to introduce

the more complete operational semantics of the hybrid OO intensional language [302, 310,

523]. Having the arrays and objects allows grouping of the related data items (of the same

type or different types) together and evaluate them under the same context. In Figure 26 is

the modified example of a demand-driven evaluation of a simple natural numbers problem

re-written in Objective Lucid [260, 262, 303]. In Figure 25 is the modified example of a

demand-driven evaluation of a similar natural numbers problem in Figure 26 re-written in

Objective Lucid [262]. In this work, such eduction tree can be adapted to back-tracing

in forensic evaluation, e.g., when the inner-most results are traced back to the final result of

the entire computation.

4.3.2.3 JOOIP

Wu’s JOOIP [523, 525] greatly complements Objective Lucid by allowing Java to call

the intensional language constructs closing the gap and making JOOIP a complete hybrid

OO intensional programming language within the GIPSY environment. JOOIP’s semantics

further refines in a greater detail the operational semantics rules of Lucid and Objective

Lucid in the attempt to make them complete [302, 310, 523]. JOOIP’s approach following
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#typedecl

Nat42;

#JAVA

class Nat42

{

private int n;

public Nat42()

{

n = 42;

}

public Nat42 inc()

{

n++;

return this;

}

public void print()

{

System.out.println("n = " + n);

}

}

#OBJECTIVELUCID

(N @.d 2).print[d]()

where

dimension d;

N = Nat42[d]() fby.d N.inc[d]();

end

Figure 26: The natural-numbers problem in Objective Lucid [303]

GLU# is natural since object-oriented languages are known by literally all computer scien-

tists and software engineers. Especially, Java is a very popular and widely used language

in today’s application domains. JOOIP increases the visibility of Intensional Program-

ming [129, 348] (see Section 3.2) is to make it more mainstream via a marriage between

Object-Oriented Programming and Intensional Programming paradigms, allowing a broader

audience to be exposed to the benefits of Intensional Programming [504, 523] within their

favorite OO language. To show the similarities and differences between JOOIP and GLU#,

Wu [525] provided the translation of some of the examples given in [357] into JOOIP for the

comparison reasons and to show its advantages. A similar embedding of multidimensional

characteristics in a conventional programming language has been proposed by Rondogian-

nis [405]. In his approach, Java is used as the host language and intensional languages are

embedded into Java as a form of definitional lazy multidimensional arrays. Integration of

94



Ec−vid :

D,P ⊢ E : id D,P ⊢ E′ : id′

D(id) = (class, cid, cdef) D(id′) = (classv, cid.cvid, vdef)
D,P ⊢<cid.cvid>: v

D,P ⊢ E.E′ : v
(4.3.2.1)

Ec−fct :

D,P ⊢ E : id D,P ⊢ E′ : id′ D,P ⊢ E1, . . . , En : v1, . . . , vn
D(id) = (class, cid, cdef) D(id′) = (classf, cid.cfid, fdef)

D,P ⊢<cid.cfid(v1, . . . , vn)>: v

D,P ⊢ E.E′(E1, . . . , En) : v
(4.3.2.2)

Effid :

D,P ⊢ E : id D,P ⊢ E1, . . . , En : v1, . . . , vn
D(id) = (freefun, ffid, ffdef)
D,P ⊢<ffid(v1, . . . , vn)>: v

D,P ⊢ E(E1, . . . , En) : v
(4.3.2.3)

#JAVAobjid :
cdef = Class cid {. . .}

D,P ⊢ cdef : D†[cid →→ (class, cid, cdef)], P
(4.3.2.4)

#JAVAobjvid :
cdef = Class cid {. . . vdef . . .} vdef = public type vid;

D,P ⊢ cdef : D†[cid.vid →→ (classv, cid.vid, vdef)],P
(4.3.2.5)

#JAVAobjfid :
cdef = Class cid {. . . fdef . . .} fdef = public frttype fid(fargtype1 fargid1 , . . . , fargtypen fargidn )

D,P ⊢ cdef : D†[cid.fid →→ (classf, cid.fid, fdef)],P
(4.3.2.6)

#JAVAffid :
ffdef = frttype ffid(fargtype1 fargid1 , . . . , fargtypen fargidn )

D,P ⊢ ffdef : D†[ffid →→ (freefun, ffid, ffdef)],P
(4.3.2.7)

Figure 27: Extract of operational semantics of Objective Lucid [302]

Forensic Lucid with JOOIP becomes more relevant when considered together for hybrid-

intensional-imperative programming in particular for self-forensics presented in Appendix D.

4.3.3 MARFL

MARF Language (MARFL) was conceived and designed to manage the MARF system’ run-

time (see Section 5.2) configuration as collections of nested name-value configuration option

pairs [270]. While not strictly of the Lucid family or GIPSY, MARFL [270] was nearly

entirely influenced by Lucid. It is based on the overloaded @ and # operators and allows

to navigate into the depth of the higher-order contextual space using the dot operator (see

Figure 28) [302]. The latter was indirectly (re-invented in part) influenced by iHTML and

libintense [449, 452]. For detailed discussion on MARFL and its semantics please refer to

Appendix C. Forensic Lucid adapts this idea of the hierarchical context navigation and

querying with the overloaded @ and # for evidential statements, observation sequences, and

individual observations.
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EE.did :
D(E.id) = (dim)

D,P ⊢ E.id : id.id
(4.3.3.1)

Figure 28: Higher-order context Dot operator of MARFL [302]

4.4 Summary

Since the Lucid family of languages thrived around intensional logic that makes the notion of

context explicit and central, and relatively recently in Lucx, a first class value [363, 470, 510,

512] (that can be passed around as function parameters or as return values and have a set

of operators defined upon), we greatly draw on this notion by formalizing our evidence and

the witness stories as a contextual specification of the incident to be tested for consistency

against the incident model specification. In our specification model we require more than

just atomic context values—we need a higher-order context hierarchy to specify different

level of detail of the incident and being able to navigate into the “depth” of such a context.

A similar provision has been made in [270] and earlier works of Swoboda and colleagues

in [449, 450, 451, 452] that needed some modifications to the expressions of the cyberforensic

context [298, 302].

To summarize, expressions written in virtually all Lucid dialects correspond to higher-

order intensional logic (HOIL) expressions with some dialect-specific instantiations. They

all can alter the context of their evaluation given a set of operators and in some cases types

of contexts, their rank, range, and so on. HOIL combines functional programming and

intensional logics, e.g., temporal intensional logic (Section 3.2, page 59). The contextual

expression can be passed as parameters and returned as results of a function and constitute

the multi-dimensional constraint on the Lucid expression being evaluated. The correspond-

ing context calculus [363, 470, 510] defines a comprehensive set of context operators, most

of which are set operators and the baseline operators are @ and # that allow to switch the

current context or query it, respectively. Other operators allow to define a context space and

a point in that context corresponding to the current context. The context can be arbitrary

large in its rank. The identified variables of the dimension type within the context can take

on any data type, e.g., an integer, or a string, during lazy binding of the resulting context to

a dimension identifier [300].
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Chapter 5

Data Mining and Pattern Recognition

This chapter discusses the relevant background on the data mining and pattern recognition

facet of this research to present some of the supporting related work in the area as well as a

detailed discussion of the devised tools and their results. This discussion is important and

relevant because the data mining techniques are used substantially in digital investigation

with imprecise or encrypted data in files or network packets (netflows) and the PoC tools

presented here are some of the sources of encoded fuzzy classification evidential data that can

be used in reasoning in digital investigation cases. The other motivation is the augmentation

of the tools themselves to support self-forensics (Appendix D) in autonomic environments.

In the detailed discussion we primarily focus on MARF, fileType, MARFCAT, and

MARFPCAT produced and maintained primarily by the author Mokhov. All these are de-

signed to export any of their classification findings and data structures in the declarative

Forensic Lucid format via their corresponding encoders to be a part of the witness testi-

monies aiding investigations of incidents such as involving vulnerable software (browsers, etc.)

or malicious software (Chapter 9), and self-forensic investigations (Appendix D). MARFCAT

and MARFPCAT also have problem-specific DGT and DWT in GIPSY (see Chapter 6) for

scalable demand-driven evaluation using GIPSY’s distributed middleware.

This chapter is organized as follows. The related work is referenced in Section 5.1. Brief

description of MARF is in Section 5.2, of MARFCAT in Section 5.4, and of MARFPCAT in

Section 5.5 respectively. Some example classification results for all approaches are presented

as well. Then follows a brief summaryconcluding remarks in Section 5.6.
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5.1 Related Work

There is a great number of related works in the area published over the last two decades or

so. We briefly focus on the subgenre of data mining and pattern recognition works related

to signal, audio, and NL processing, switching to the various aspects of the data mining

aspects applied to computer and network security and digital forensics. The classical works

of data mining, patter recognition, signal processing, NLP and the related disciplines are sub-

disciplines of AI [79, 180, 184, 199, 246, 351, 409]. In reference to the previous background

chapter on Lucid (Chapter 4), multidimensional intensional signal processing was proposed

by Agi using GLU in 1995 [5] and MARFL for MARF by the author Mokhov (Appendix C).

In typical pipelines when data are loaded and preprocessed (filtered, etc.), the next major

step is to do feature extraction of features of interest. This can be done automatically and/or

manually to improve the classification precision and recall metrics. For this to work, the best

features types have to be properly selected and a few proposals for feature selection and

extraction algorithms were put forward [138, 241] including continual feature selection [423].

The the classification stage comes into play in learning and classification using a variety of

proposed classifiers and their combinations [61, 127, 206].

Chen in 2006 [62] in his book summarized the issues about information sharing and data

mining as intelligence and security informatics disciplines.

5.1.1 Open-Source Tools

There are a number of open-source tools and frameworks primarily done in Java to do data

mining, pattern recognition, signal processing, etc. and that can also integrate with commer-

cial tools and toolboxes, such as that of MATLAB [416] and others. MARF that began in

2002 is detailed in the further sections. It started off as an audio recognition framework by

the author and colleagues, but went beyond that and was applied for image, text, code, data

analysis, and different classification applications, some of which are detailed further in Sec-

tion 5.3, Section 5.4, and Section 5.5. At around the same time frame, another open-source

system emerged, also done in Java, at CMU called CMU Sphinx [465], which focused on the

reliable and robust tasks for speech recognition (speech-to-text). On around 2006 Weka [466]
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was created and emerged; its source code base originally followed very much the MARF’s

architecture. This system has had a lot of developer support and maintenance and signif-

icantly grew in popularity since. The author Mokhov (while working on the MARFPCAT

branch of the project (detailed further in this chapter) as a part of a malware classification

based on packet-capture (pcap) data project [47]) developed initial MARF plug-in support

to allow Weka’s rich classifier set to be used in the MARF’s pipeline. GATE [459] is a tool

with rich customizable pipeline of processing resources (PRs) support written in Java orig-

inally developed as General Architecture for Text Engineering, more specifically to enable

NLP developers to create easier NLP applications. It has outgrown the text aspect of it

allowing various other technologies being added for other classification tasks and knowledge

representation such as Weka, ontologies, and others. MARF’s plug-in support for it was also

planned [279].

5.1.2 Network Forensics

There was a number of data mining, machine learning, and resulting classification approaches

used for forensic investigation and analysis of network traffic, especially the encrypted kind

over SSL/TLS, ssh, etc. to identify network-active applications and malware. For example,

Density Based Spacial Clustering of Application with Noise (DBSCAN) was proposed [528]

in 2008 to use clustering algorithms to identify various FTP clients, VLC media player, and

UltraVNC traffic over encrypted channels. That was followed by Alshammari et al . [15, 16]

to identify ssh and Skype encrypted traffic (without looking at payload, port numbers, and

IP addresses). Additionally, comparison of algorithms and approaches for network traffic

classification were proposed separately by Alshammari et al . [14] in 2008 and Okada et

al . [344] in 2011 surveying and comparing various machine learning algorithms for encrypted

traffic analysis. Prior to that, in 2000, Lee et al . [230] introduced the notion of adaptive

intrusion detection with data mining techniques, followed by Bloedorn [43] in 2001 of MITRE

with their technical report on data mining for network intrusion detection with data mining

as well. Livadas et al . [237] in 2006 used machine learning techniques to classify botnet

traffic followed by Binsalleeh et al . [42] in 2010 with the very detailed analysis of the Zeus

botnet crimeware toolkit. Simon et al . [427], likewise in 2006, proposed to detect non-obvious
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brute-force network scanning using a data mining approach as well. Finally, Boukhtouta et

al . (including the author) [47] proposed network malware identification by machine-learning

captured network malware traffic pcaps as well as benign traffic (regardless the fact if the

payload encrypted or not) via a select set of features and comparing it to the captured traffic

currently going through the network.

5.1.3 Malware Analysis and Classification for Investigations

Some of the malware and malicious code techniques described here are also used in the

network anomaly analysis described in the previous section especially for the network-enabled

malware that propagates, so some techniques described there are also applicable here. In

part our methodology has some similarities in common with the related work on automatic

classification of new, unknown malware and malware in general such as viruses, web malware,

worms, spyware, and others where AI pattern recognition and expert system techniques are

successfully used for automatic classification [288].

Schultz et al . [417] in 2001 proposed the data mining techniques to detect new malicious

executables as opposed to traditional signature-based approaches. Sung et al . [448] proposed

the static analysis of vicious executables (SAVE) framework in 2004. In 2007, Bailey, Nazario,

et al . [36] came up with automated analysis and classification of various Internet malware.

Provos et al . [385] in the same year did the web-based malware “ghost in the browser”

analysis. Suenaga proposed malware analysis through linguistics techniques by searching for

ethnic words [442] and Hnatiw et al . [168] proposed techniques for parsing malicious and

malformed executables as well, both in 2007. Rafique et al . [393] followed suit in 2008 and

proposed another approach for automatic adjudication of new malware as well.

In 2007, Hwang et al . [174] proposed an anti-malware expert system. Spectral techniques

are used for pattern scanning in malware detection by Eto et al . in [103] in 2009 where

they propose a malware distinction method based on scan patterns. Subsequently, Inoue et

al. [102, 181] proposed a general data mining system for incident analysis with data mining

engines called NICTER based on data mining techniques.

Classification results may be encoded as Forensic Lucid constructs as an evidence in
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investigations to support or disprove reasoning about investigative claims in incidents involv-

ing malware. Additionally, Forensic Lucid-based reasoners are planned to be integrated

into some of these tool as a part of the future work (Section 10.4).

5.1.4 Code Analysis for Investigations

Arguably, to the author’s knowledge MARFCAT (Section 5.4) in 2010 was the first time a

machine learning approach was attempted to static code analysis for vulnerable/weak code

classification with the first results demonstrated during the SATE2010 workshop [282, 283,

345]. In the same year, a somewhat similar approach independently was presented [50] for

vulnerability classification and prediction using machine learning and SVMs, but working

with a different set of data [312].

Additional related work (to various degree of relevance or use) can be found below (this

list is not exhaustive) [285, 312]: A taxonomy of Linux kernel vulnerability solutions in terms

of patches and source code as well as categories for both are found in [295]. The core ideas

and principles behind the MARF’s pipeline and testing methodology for various algorithms in

the pipeline adapted to this case are found in [268, 279] as well as in Section 5.2 as it was the

easiest implementation available to accomplish the task. There also one can find the majority

of the core options used to set the configuration for the pipeline in terms of algorithms used.

A binary analysis using machine a learning approach for quick scans for files of known types

in a large collection of files is described in [288] as well as the NLP and machine learning for

NLP tasks in DEFT2010 [277, 281] with the corresponding DEFT2010App and its predecessor

for hand-written image processing WriterIdentApp [316]. Tlili’s 2009 PhD thesis covers top-

ics on automatic detection of safety and security vulnerabilities in open source software [469].

Statistical analysis, ranking, approximation, dealing with uncertainty, and specification in-

ference in static code analysis are found in the works of Engler’s team [213, 214, 215]. Kong

et al . further advance static analysis (using parsing, etc.) and specifications to eliminate

human specification from the static code analysis in [211]. Hanna et al. describe a synergy

between static and dynamic analysis for the detection of software security vulnerabilities

in [161] paving the way to unify the two analysis methods. Other researchers propose the

MEDUSA system for metamorphic malware dynamic analysis using API signatures in [328].
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Some of the statistical NLP techniques we used are described at length in [246]. BitBlaze

(and its web counterpart, WebBlaze) are other recent tools that do fast static and dynamic

binary code analysis for vulnerabilities, developed at Berkeley [432, 433]. For wavelets, for

example, Li et al. [232] have shown wavelet transforms and k-means classification can be used

to identify communicating applications fast on a network and is relevant to the study of the

code in text or binary form [312].

5.2 MARF

MARF (Modular A* Recognition Framework) as a framework (and its instance as a library)

has been covered in a number of work since its inception in 2002 [258, 266, 268, 281, 288, 462]

for various classification tasks originally targeting audio applications, but eventually out-

growing that domain (hence the change from Audio to A* in the name). The research

into MARF has led to connections with other disciplines such as presented here intensional

programming with the design of MARFL, a MARF configuration specification and ma-

nipulation language (Appendix C), design of the code analysis and network packet anal-

ysis applications MARFCAT and MARFPCAT presented further, forensic analysis of file

types [288], and NLP aspects [279]. MARF was integrated in various capacities with GIPSY

(Chapter 6) since circa 2005, had a PoC design of the distributed [269, 294] and autonomic

versions [318, 491, 492, 493]. MARF’s data structure declarations (as well as that of other

middleware [320]) as well as its applications are a subject of encoding and export in Forensic

Lucid (Section 8.5.1.1) to serve as additional witness accounts in investigations.

5.2.1 MARF Overview

MARF is an open-source project that provides pattern recognition APIs with sample imple-

mentation for (un)supervised machine learning and classification, including biometric forensic

identification, written in Java [258, 266, 268, 462] by the author and collaborators in 2002.

As one of its roles, it serves as a testbed to verify common and novel algorithms for sam-

ple loading, preprocessing, feature extraction, training and classification stages. In this role

MARF provides researchers with a tool for the practical comparison of the algorithms in
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a uniform environment and allows for dynamic module selection via reflection [140] based

on a wide array of configuration options supplied by MARF applications. Within few years

MARF accumulated a fair number of implementations for each of the pipeline stages (cf. Fig-

ure 29, page 103) allowing comparative studies of algorithm combinations, studying their

behavior and other properties when used for various pattern recognition tasks. MARF, its

derivatives, and applications were also used beyond audio processing tasks, as in this work,

due to the generality of the design and implementation in [263, 269, 290] and several other

works [288, 317].

Figure 29: MARF’s pattern-recognition pipeline [270]

Some of the MARF’s architectural design influenced GIPSY ([262], Chapter 6) and

MARF’s utility modules are likewise in use by GIPSY. Both distributed version of MARF
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(DMARF) and GIPSY were together proposed case studies from the security [269] and self-

forensics [319] standpoints.

5.2.2 MARF Architecture

The Modular A* Recognition Framework (MARF) [258, 266, 268, 462] is a Java framework,

and an open-source research platform and a collection of pattern recognition, signal pro-

cessing, and natural language processing (NLP) algorithms written in Java and put into a

modular and extensible framework facilitating addition of new algorithms for use and ex-

perimentation by scientists. A MARF instance can run distributively [263] over a network,

run stand-alone, or may just act as a simple library in applications. MARF has a num-

ber of algorithms implemented for various pattern recognition and some signal processing

tasks [269, 320].

The backbone of MARF consists of pipeline stages that communicate with each other to

get the data they need in a chained manner. MARF’s pipeline of algorithm implementations

is illustrated in Figure 29, where the implemented algorithms are in white boxes, and the

stubs or in-progress algorithms are in gray. The pipeline consists of four basic stages: sample

loading, preprocessing, feature extraction, and training/classification [269, 320].

There are a number of applications that test MARF’s functionality and serve as exam-

ples of how to use or to test MARF’s modules. One of the most prominent applications

is SpeakerIdentApp—Text-Independent Speaker Identification (who, gender, accent, spo-

ken language, etc.) [315]. Its derivative, FileTypeIdentApp, was used to employ MARF’s

capabilities for forensic analysis of file types [288] as opposed to [269, 320] the Unix file

utility [75, 76].

5.2.3 Pattern Recognition Pipeline

The conceptual pattern recognition pipeline design presented in Figure 29 depicts the core

of the data flow and transformation between the stages in MARF [258, 462]. Generally, the

classical pattern recognition process starts by loading a sample (e.g., an audio recording, text,

image file, pcap, or virtually any regular file), preprocessing it somehow (e.g., normalization
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Figure 30: MARF’s pattern-recognition pipeline sequence diagram [288]
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and filtering out noisy and “silent” data), then extracting the most prominent features, and,

finally either training the system such that it learns a new set of features of a given subject

or actually classifies what/who the subject is [288].

The outcome of training is either a collection of some form of feature vectors or their mean

or median clusters [268], called training sets , which are stored per every learned subject. The

outcome of classification is an instance of the ResultSet data structure, which is a sorted

collection of IDs (int) and their corresponding outcome values (double); the sorting is done

from most likely outcome to least likely. The most likely one is the ultimate outcome to be

interpreted by the application. Some of the details of such processing of classification are

illustrated on the actual sequence of events and method calls within the main MARF module

is shown in Figure 30 [288].

5.2.4 Distributed MARF (DMARF)

DMARF [263] is based on the classical MARF whose pipeline stages were made into dis-

tributed nodes [320]. Specifically, the classical MARF presented earlier was extended [263]

to allow the stages of the pipeline to run as distributed nodes as well as their front-ends,

as shown in Figure 31 in a high-level overview. The basic stages and the front-ends were

designed to support, but implemented without backup recovery or hot-swappable capabili-

ties. They only support communication over Java RMI [520], CORBA [443], and XML-RPC

WebServices [294, 444]. Later, DMARF was further extended to allow management of its

nodes with SNMP [291] by implementing the proxy SNMPv2 [163] agents and translating

some of the management information to DMARF’s “native” operations. There is also an

undergoing project on the intensional configuration scripting language, MARFL [270] (see

Appendix C) to script MARF tasks and applications and allows them to be run distribu-

tively either using MARF’s own infrastructure or over a GIPSY network instance (Chapter 6).

Being distributed, DMARF has new data structures and data flow paths that are not covered

by the Forensic Lucid specification of the classical MARF, so we contribute an extension

in this work [320] in Section 8.5.1.1 and Appendix D.4.6.1.
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Figure 31: The distributed MARF pipeline

5.3 fileType

The Unix file utility determines file types of regular files by examining usually the first

512 bytes of the file that often contain some magic header information or typical header

information for binary files or common text file fragments; otherwise, it defers to the OS-

dependent stat() system call. It combines heuristics with the common file extensions to

give the final result of classification. While file is standard, fast and small, and its magic

database is “serviceable” by expert users, for it to recognize new file types, perhaps with much

finer granularity it requires code and/or magic database updates and a patch release from the

core developers to recognize new file types correctly. MARF-based fileType was proposed

in 2008 an alternative file-like utility in determining file types with much greater flexibility

that can learn new types on the user’s side and be integrated into forensic toolkits as a plug-

in that relies on the file-like utility and uses signal processing techniques to compute the

“spectral signatures” of file types. What follows is an overview of the design of such a tool

based on MARF’s collection of algorithms and the selection of the best combination and the

integration of the tool into a forensic toolkit to enhance the tool, called fileType with the

automatic machine learning capabilities of the new file types. Some of the advantages and
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disadvantages of this tool are compared with the file utility in terms of various metrics [288].

It also served as a predecessor to the MARF Forensic Data Sniffer case study. A similar

file type analysis has recently (2012) been included with Sourcefire’s SIM and FireSIGHT

into their toolset to report or block certain file types.

5.3.1 Overview

fileType follows an approach using the MARF’s collection of algorithms to determine file

types in various ways and compare them using signal processing and NLP techniques, both

supervised and unsupervised machine learning, and various file format loaders. MARF and its

application SpeakerIdentApp [315] were shown to be used as a proof-of-concept for biometric

forensic analysis of the phone-quality audio recordings to classify the identities of speakers ir-

respective of what speakers say on voice recordings, their gender, and spoken accent [266, 268].

fileType adapts MARF’s pattern recognition pipeline, the SpeakerIdentApp application,

and the magic database of file to be used together, in the resulting application called in

Java FileTypesIdentApp, with a shorthand invocation of fileType [288].

MARF conveniently has a class, ByteArrayFileReader that reads a file from a file system

or an URI (or any Reader or InputStream for that matter). fileType employs this class to

read the file data (either the first 512 bytes or the entire file as options) and the values of the

byte array become features for classification (spectral or otherwise). It then may optionally do

the regular signal pattern recognition techniques [268] of preprocessing and feature extraction

to remove all the unwanted noise and silence and extract more discriminating features [288].

The FileTypesIdentApp application, a.k.a fileType, is capable of understanding some

of the file’s options [75], and the work is under way to be able to experiment with file’s

magic database. fileType has its own database that it can augment throughout its lifetime

automatically using machine learning techniques. The statistics of the algorithm combina-

tions tried and their recognition accuracy performance along with the run-time are stored in

a comma-separated values (CSV) file, per each major technique [288].
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Table 2: File-type identification top 10 results, bigrams ([288])
Guess Rank Configuration GOOD BAD Precision, %

1st 1 -wav -raw -lpc -cheb 147 54 73.13
1st 1 -wav -silence -noise -raw -lpc -cheb 147 54 73.13
1st 1 -wav -noise -raw -lpc -cheb 147 54 73.13
1st 1 -wav -norm -lpc -cheb 147 54 73.13
1st 1 -wav -silence -raw -lpc -cheb 147 54 73.13
1st 2 -wav -silence -norm -fft -cheb 129 72 64.18
1st 3 -wav -bandstop -fft -cheb 125 76 62.19
1st 3 -wav -silence -noise -norm -fft -cheb 125 76 62.19
1st 3 -wav -silence -low -fft -cheb 125 76 62.19
1st 4 -wav -silence -norm -lpc -cheb 124 77 61.69

Table 3: File-type identification top 10 results, 2nd best, bigrams ([288])
Guess Rank Configuration GOOD BAD Precision, %

2nd 1 -wav -raw -lpc -cheb 166 35 82.59
2nd 1 -wav -silence -noise -raw -lpc -cheb 166 35 82.59
2nd 1 -wav -noise -raw -lpc -cheb 166 35 82.59
2nd 1 -wav -norm -lpc -cheb 166 35 82.59
2nd 1 -wav -silence -raw -lpc -cheb 166 35 82.59
2nd 2 -wav -silence -norm -fft -cheb 137 64 68.16
2nd 3 -wav -bandstop -fft -cheb 130 71 64.68
2nd 3 -wav -silence -noise -norm -fft -cheb 140 61 69.65
2nd 3 -wav -silence -low -fft -cheb 140 61 69.65
2nd 4 -wav -silence -norm -lpc -cheb 176 25 87.56

Table 4: File-type identification top 10 results, bigrams, per file type ([288])
Guess Rank File type GOOD BAD Precision, %
1st 1 Mach-O filetype=10 i386 64 0 100.00
1st 2 HTML document text 64 0 100.00
1st 3 TIFF image data; big-endian 64 0 100.00
1st 4 data 64 0 100.00
1st 5 ASCII c program text; with very long lines 64 0 100.00
1st 6 Rich Text Format data; version 1; Apple Macintosh 128 0 100.00
1st 7 ASCII English text 64 0 100.00
1st 8 a /sw/bin/ocamlrun script text executable 516 60 89.58
1st 9 perl script text executable 832 192 81.25
1st 10 NeXT/Apple typedstream data; big endian; version 4; system 1000 255 65 79.69

5.3.2 Sample Results

In [288], an experiment was conducted to use a MARF-based FileTypeIdentApp for bulk

forensic analysis of file types using signal processing techniques. Certain results were quite

encouraging precision/recall-wise for the first and second best top 10 statistics extracts in

Table 2 and Table 3, as well as statistics per file type in Table 4 [276].

5.3.3 Limitations and Drawbacks

In the current implementation of the fileType there are several drawbacks and limitations

(that were planned to be eliminated or reduced as a part of the future work) [288]. These

are listed in part as follows:

• The presented here technique of machine learning and the tool are more effective to use

with the regular files only, and are not suited for special files and devices that are file-

system specific. For those, the same approach as file does using the stat() system
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call [480] can be used (but this is no longer machine learning, effectively deferring such

tasks to file that does it better) [288].

• Training the system with noisy data samples can deteriorate the recognition accuracy

of the tool, which may lead to the problem of over-fitting [160]. This can be either

accidental (local) or malicious (system-wide, CAF) by supplying a file of one type

for training, but telling it is another. This is a general problem with any machine-

learning tools and applications. A way of dealing with this partly is to validate each of

the incoming training samples by classifying them first and comparing with the class

specified for training and in the case of mismatch, report to the user of a potential

problem; in the safe mode refuse to train in the case of mismatch. This will prevent

the accidental training on the wrong data for misclassification. The latter only partly

solves the problem, as the system can be cheated at the beginning when the new file

type being inserted for the first time and is mistrained on [288].

• To be seriously considered in a real investigation toolset and environment, legally, the

tool has to be proved to be correct in its design and implementation as well as compo-

nents it relies on, such as MARF, e.g., by using JML [53, 227, 228] and Isabelle [370]

for this task later in the project [288].

5.4 MARFCAT

We elaborate on the details of the methodology and the corresponding results of application

of the machine learning techniques along with signal processing and NLP alike to static

source and binary code analysis in search for and investigataion on program weaknesses

and vulnerabilities [285]. Here we review the tool, named MARFCAT, a MARF-based Code

Analysis Tool [283], first exhibited at the Static Analysis Tool Exposition (SATE) workshop

in 2010 [345] to machine-learn from the (Common Vulnerabilities and Exposures) CVE-based

vulnerable as well as synthetic CWE-based cases to verify the fixed versions as well as non-

CVE based cases from the projects written in various programming languages. The second

iteration of this work was prepared for SATE IV [346] and used its updated data set [312].
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5.4.1 Overview

We review our machine learning approach to static code analysis and fingerprinting for weak-

nesses related to security, software engineering, and others using the open-source MARF

framework and the MARFCAT application based on it for the NIST’s SATE 2010 and SATE

IV [346] static analysis tool exposition workshop’s data sets that include additional test

cases, including large synthetic cases [285, 312]. To aid detection of weak or vulnerable code,

including source or binary on different platforms the machine learning approach proved to

be fast and accurate for such tasks. We use signal and NLP processing techniques in our

approach to accomplish the identification and classification tasks. MARFCAT’s design from

the beginning in 2010 was made independent of the language being analyzed, be it source

code, bytecode, or binary. We evaluated also additional algorithms that were used to pro-

cess the data [312]. This work is imperative in digital investigations and that’s why MARF

itself and MARFCAT were designed to export evidence in the Forensic Lucid format

(Section 8.5.1.1, page 234, [312]).

In 2010, at the core of the workshop there were C/C++-language and Java language

tracks comprising CVE-selected cases as well as stand-alone cases. The CVE-selected cases

had a vulnerable version of a software in question with a list of CVEs attached to it, as well

as the most known fixed version within the minor revision number. One of the goals for

the CVE-based cases is to detect the known weaknesses outlined in CVEs using static code

analysis and also to verify if they were really fixed in the “fixed version” [285, 345].

The test cases at the time included CVE-selected: C: Wireshark 1.2.0 (vulnerable) and

Wireshark 1.2.9 (fixed); C++: Chrome 5.0.375.54 (vulnerable) and Chrome 5.0.375.70

(fixed); Java: Tomcat 5.5.13 (vulnerable) and Tomcat 5.5.29 (fixed), and non-CVE selected:

C: Dovecot; Java: Pebble 2.5-M2. They were later expanded to other cases and newer ver-

sions and a PHP test case was added (Wordpress). For more information on the data sets

see Section 9.1.1.1.1, page 245. The open-source MARFCAT tool itself [283] was developed

to machine-learn from the CVE-based vulnerable cases and verify the fixed versions as well

as non-CVE based cases from similar programming languages [285].

At the time, the presented machine learning approach was novel and highly beneficial

in static analysis and routine testing of any kind of code, including source code and binary
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deployments for its efficiency in terms of speed, relatively high precision, robustness, and

being a complementary tool to other approaches that do in-depth semantic analysis, etc., by

prioritizing those tools’ targets. All these techniques can be used in an automated manner

in diverse distributed and scalable demand-driven environments (e.g., GIPSY, Chapter 6) in

order to ensure the code safety, especially the mission critical software code in all kinds of

systems. It uses spectral, acoustic and language models to learn and classify such a code [312].

5.4.2 Core Principles

The core methodology principles include:

• Machine learning and dynamic programming

• Spectral and signal processing techniques

• NLP n-gram and smoothing techniques (add-δ, Witten-Bell, MLE, etc.)

MARFCAT uses signal processing techniques (i.e., no syntactic parsing or otherwise work at

the syntax and semantics levels). MARFCAT treats the source code as a “signal”, equivalent

to binary, where each n-gram (n = 2 presently, i.e., two consecutive characters or, more

generally, bytes) are used to construct a sample amplitude value in the signal. In the NLP

pipeline, it similarly treats the source code as “characters”, where each n-gram (n = 1..3) is

used to construct the language model [312].

The MARFCAT system is shown the examples of files with weaknesses and it learns

them by computing spectral signatures using signal processing techniques or various language

models (based on options) from CVE-selected test cases. When some of the mentioned

techniques are applied (e.g., filters, silence/noise removal, other preprocessing and feature

extraction techniques), the line number information is lost as a part of this process [312].

When testing, MARFCAT computes either how similar or distant each file is from the

known trained-on weakness-laden files or compares the trained language models with the un-

seen language fragments in the NLP pipeline. In part, the methodology can approximately

be seen as some fuzzy signature-based “antivirus” or IDS software systems detect bad signa-

ture, except that with a large number of machine learning and signal processing algorithms
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and fuzzy matching, we test to find out which combination gives the highest precision and

best run-time [312].

At the present, however, MARFCAT processes the whole files instead of parsing the finer-

grain details of patches and weak code fragments. This aspect lowers the precision, but is

relatively fast to scan all the code files [312].

5.4.3 CVEs and CWEs – the Knowledge Base

The CVE-selected test cases serve as a source of the knowledge base to gather information

of how known weak code “looks like” in the signal form [345], which are stored as spectral

signatures clustered per CVE or CWE (Common Weakness Enumeration). The introduction

by the SAMATE team of a large synthetic code base with CWEs, serves as a part of knowledge

base learning as well [312]. Thus, we:

• Teach the system from the CVE-based cases

• Test on the CVE-based cases

• Test on the non-CVE-based cases

For synthetic cases, similarly:

• Teach the system from the CWE-based synthetic cases

• Test on the CWE-based synthetic cases

• Test on the CVE and non-CVE-based cases for CWEs from synthetic cases

We created index files in XML in the format similar to that of SATE to index all the

file of the test case under study. The CVE-based cases after the initial index generation are

manually annotated from the NVD database before being fed to the system [312].

5.4.4 Categories for Machine Learning

The two primary groups of classes MARFCAT is trained and tested on include naturally

the CVEs [338, 339] and CWEs [481]. The advantages of CVEs is the precision and the
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associated meta knowledge from [338, 339] can be all aggregated and used to scan successive

versions of the the same software or derived products (e.g., WebKit in multiple browsers).

CVEs are also generally uniquely mapped to CWEs. The CWEs as a primary class, however,

offer broader categories, of kinds of weaknesses there may be, but are not yet well assigned

and associated with CVEs, so we observe the loss of precision. Since there is no syntactic

parsing, MARFCAT generally cannot deduce weakness types or even simple-looking aspects

like line numbers where the weak code may be, it resorts to the secondary categories, that

are usually tied into the first two, which we also machine-learn along, such as issue types

(sink, path, fix ) and line numbers [312].

5.4.5 Algorithms

In the methodology systematic tests and selection of the best (a tradeoff between speed and

accuracy) combination(s) of the algorithm implementations available is conducted. The sub-

sequent runs then use only the selected algorithms for subsequent testing. This methodology

includes the cases when the knowledge base for the same code type is learned from multiple

sources (e.g., several independent C test cases) [312].

5.4.5.1 Signal Pipeline

Algorithmically-speaking, the steps that are performed in the machine-learning signal based

analysis are in Figure 1. The specific algorithms come from the classical literature and other

sources and are detailed in [268], related works therein, and in Section 5.2. In the context

of MARFCAT the loading typically refers to the interpretation of the files being scanned in

terms of bytes forming amplitude values in a signal (as an example, 8kHz or 16kHz frequency)

using either uni-gram, bi-gram, or tri-gram approach. Then, the preprocessing allows to

be none at all (“raw”, or the fastest), normalization, traditional frequency domain filters,

wavelet-based filters, etc. Feature extraction involves reducing an arbitrary length signal to

a fixed length feature vector of what thought to be the most relevant features are in the signal

(e.g., spectral features in FFT, LPC), min-max amplitudes, etc. The classification stage is

then separated either to train by learning the incoming feature vectors (usually as k-means

clusters, median clusters, or plain feature vector collections, combined with, for example,
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neural network training) or testing them against the previously learned models [312] (cf.,

Section 5.2).

// Construct an index mapping CVEs to files and locations within files

1 Compile meta-XML index files from the CVE reports (line numbers, CVE, CWE, fragment size, etc.). Partly done by a
Perl script and partly annotated manually;

2 foreach source code base, binary code base do
// Presently in these experiments we use simple mean clusters of feature vectors or unigram language

models per default MARF specification [268, 462]

3 Train the system based on the meta index files to build the knowledge base (learn);
4 begin
5 Load (interpret as a wave signal or n− gram);
6 Preprocess (none, FFT-filters, wavelets, normalization, etc.);
7 Extract features (FFT, LPC, min-max, etc.);
8 Train (Similarity, Distance, Neural Network, etc.);

9 end
10 Test on the training data for the same case (e.g., Tomcat 5.5.13 on Tomcat 5.5.13) with the same annotations to

make sure the results make sense by being high and deduce the best algorithm combinations for the task;
11 begin
12 Load (same);
13 Preprocess (same);
14 Extract features (same);
15 Classify (compare to the trained k-means, or medians, or language models);
16 Report;

17 end
18 Similarly test on the testing data for the same case (e.g., Tomcat 5.5.13 on Tomcat 5.5.13) without the

annotations as a sanity check;
19 Test on the testing data for the fixed case of the same software (e.g., Tomcat 5.5.13 on Tomcat 5.5.33);
20 Test on the testing data for the general non-CVE case (e.g., Tomcat 5.5.13 on Pebble or synthetic);

21 end

Algorithm 1: Machine-learning-based static code analysis testing algorithm using the
signal pipeline [312]

5.4.5.2 NLP Pipeline

The steps that are performed in NLP and the machine-learning based analyses are presented

in Figure 2. The specific algorithms again come from the classical literature (e.g., [246])

and are detailed in [279] and the related works. To be more specific for this background

overview, the loading typically refers to the interpretation of the files being scanned in terms

of n-grams: uni-gram, bi-gram, or tri-gram approach and the associated statistical smoothing

algorithms, the results of which (a vector, 2D or 3D matrix) are stored [312].

5.4.6 Binary and Bytecode Analysis

MARFCAT also does preliminary Java bytecode and compiled C code static analysis and

produces results using the same signal processing, NLP, combined with machine learning and

data mining techniques. At this writing, the NIST SAMATE synthetic reference data set
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1 Compile meta-XML index files from the CVE reports (line numbers, CVE, CWE, fragment size, etc.). Partly done by a
Perl script and partly annotated manually;

2 foreach source code base, binary code base do
// Presently these experiments use simple unigram language models per default MARF

specification [279]

3 Train the system based on the meta index files to build the knowledge base (learn);
4 begin
5 Load (n-gram);
6 Train (statistical smoothing estimators);

7 end
8 Test on the training data for the same case (e.g., Tomcat 5.5.13 on Tomcat 5.5.13) with the same annotations to

make sure the results make sense by being high and deduce the best algorithm combinations for the task;
9 begin

10 Load (same);
11 Classify (compare to the trained language models);
12 Report;

13 end
14 Similarly test on the testing data for the same case (e.g., Tomcat 5.5.13 on Tomcat 5.5.13) without the

annotations as a sanity check;
15 Test on the testing data for the fixed case of the same software (e.g., Tomcat 5.5.13 on Tomcat 5.5.33);
16 Test on the testing data for the general non-CVE case (e.g., Tomcat 5.5.13 on Pebble or synthetic);

17 end

Algorithm 2:Machine-learning-based static code analysis testing algorithm using the NLP
pipeline [312]

for Java and C was used. The algorithms presented in Section 5.4.5 are used as-is in this

scenario with the modifications to the index files. The modifications include removal of the

line numbers, source code fragments, and lines-of-text counts (which are largely meaningless

and ignored. The byte counts may be recomputed and capturing a byte offset instead of a

line number was projected. The filenames of the index files were updated to include -bin in

them to differentiate from the original index files describing the source code [312].

5.4.7 Wavelets

During MARFCAT design and development as a part of a collaboration project wavelet-

based signal processing for the purposes of noise filtering is being introduced into MARF to

compare it to no-filtering or FFT-based classical filtering. It’s been also shown in [232] that

wavelet-aided filtering could be used as a fast preprocessing method for a network application

identification and traffic analysis [234] as well [312]. That implementation relies in part on

the the algorithm and methodology found in [1, 209, 210, 418], and at this point only a

separating 1D discrete wavelet transform (SDWT) has been tested [312].
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5.4.8 Demand-Driven Distributed Evaluation with GIPSY

To enhance the scalability of the approach, we convert the MARFCAT stand-alone appli-

cation to a distributed one using an eductive model of computation (demand-driven) im-

plemented in the General Intensional Programming System (GIPSY)’s multi-tier run-time

system [158, 189, 360, 498], which can be executed distributively using Jini (Apache River),

or JMS [191] (see Section 6) [312].

To adapt the application to the GIPSY’s multi-tier architecture, we create a problem-

specific generator and worker tiers (PS-DGT and PS-DWT respectively) for the MARFCAT

application. The generator(s) produce demands of what needs to be computed in the form

of a file (source code file or a compiled binary) to be evaluated and deposit such demands

into a store managed by the demand store tier (DST) as pending. Workers pickup pending

demands from the store, and them process then (all tiers run on multiple nodes) using a

traditional MARFCAT instance. Once the result (a Warning instance) is computed, the PS-

DWT deposit it back into the store with the status set to computed. The generator “harvests”

all computed results (warnings) and produces the final report for a test cases. Multiple test

cases can be evaluated simultaneously or a single case can be evaluated distributively. This

approach helps to cope with large amounts of data and avoid recomputing warnings that

have already been computed and cached in the DST [312]. Rabah also contribute a graphical

GMT [391], and MARFCAT configuration is rendered in Figure 38 as an example.

In this setup a demand represents a file (a path) to scan (actually an instance of the

FileItem object), which is deposited into the DST. The PS-DWT picks up that and checks

the file per training set that’s already there and returns a ResultSet object back into the

DST under the same demand signature that was used to deposit the path to scan. The result

set is sorted from the most likely to the list likely with a value corresponding to the distance

or similarity. The PS-DGT picks up the result sets and does the final output aggregation and

saves report in one of the desired report formats (see Section 5.4.9 picking up the top two

results from the result set and testing against a threshold to accept or reject the file (path)

as vulnerable or not. This effectively splits the monolithic MARFCAT application in two

halves in distributing the work to do where the classification half is arbitrary parallel [312].

Simplifying assumptions:
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• Test case data and training sets are present on each node (physical or virtual) in

advance (via a copy or a CIFS or NFS volume), so no demand driven training occurs,

only classification

• The demand assumes to contain only the file information to be examined (FileItem)

• PS-DWT assumes a single pre-defined configuration, i.e., the configuration for MARF-

CAT’s option is not a part of the demand

• PS-DWT assume CVE or CWE testing based on its local settings and not via the

configuration in a demand

5.4.9 Export and Encoding

5.4.9.1 SATE

By default MARFCAT produces the report data in the SATE XML format, according to the

SATE IV requirements. In this iteration other formats are being considered and realized.

To enable multiple format output, the MARFCAT report generation data structures were

adapted case-based output [312].

5.4.9.2 Forensic Lucid

MARFCAT began Forensic Lucid export support, the core topic of this thesis (Chapter 7).

Following the data export in Forensic Lucid in the preceding work [267, 302, 308] we

use it as a format for evidential processing of the results produced by MARFCAT. The

Chapter 7 provides details of the language; it will suffice to mention here that the report

generated by MARFCAT in Forensic Lucid is a collection of warnings as observations

with the hierarchical notion of nested context of warning and location information. These

will form an evidential statement in Forensic Lucid (see, e.g., [312, Appendix]). The

example scenario where such evidence compiled via a MARFCAT Forensic Lucid report

would be in web-based applications and web browser-based incident investigations of fraud,

XSS, buffer overflows, etc. linking CVE/CWE-based evidence analysis of the code (binary

or source) security bugs with the associated web-based malware propagation or attacks to
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provide possible events where specific attacks can be traced back to the specific security

vulnerabilities [312].

5.4.10 Sample Results

This section illustrates some sample classification results on a few sample test cases from the

SATE workshop.

5.4.10.1 Chrome 5.0.375.54

This version’s CVE testing result of Chrome 5.0.375.54 is in Table 5. The results are as good

as the training data given; if there are mistakes in the data selection then the results will

also have mistakes accordingly [285].

Table 5: Sample CVE classification stats for Chrome 5.0.375.54 [285]
guess run algorithms good bad %
1st 1 -nopreprep -raw -fft -eucl 10 1 90.91
1st 2 -nopreprep -raw -fft -cos 10 1 90.91
1st 3 -nopreprep -raw -fft -diff 10 1 90.91
1st 4 -nopreprep -raw -fft -cheb 10 1 90.91
1st 5 -nopreprep -raw -fft -mink 9 2 81.82
1st 6 -nopreprep -raw -fft -hamming 9 2 81.82
2nd 1 -nopreprep -raw -fft -eucl 11 0 100.00
2nd 2 -nopreprep -raw -fft -cos 11 0 100.00
2nd 3 -nopreprep -raw -fft -diff 11 0 100.00
2nd 4 -nopreprep -raw -fft -cheb 11 0 100.00
2nd 5 -nopreprep -raw -fft -mink 10 1 90.91
2nd 6 -nopreprep -raw -fft -hamming 10 1 90.91
guess run class good bad %
1st 1 CVE-2010-2301 6 0 100.00
1st 2 CVE-2010-2300 6 0 100.00
1st 3 CVE-2010-2299 6 0 100.00
1st 4 CVE-2010-2298 6 0 100.00
1st 5 CVE-2010-2297 6 0 100.00
1st 6 CVE-2010-2304 6 0 100.00
1st 7 CVE-2010-2303 6 0 100.00
1st 8 CVE-2010-2295 10 2 83.33
1st 9 CVE-2010-2302 6 6 50.00
2nd 1 CVE-2010-2301 6 0 100.00
2nd 2 CVE-2010-2300 6 0 100.00
2nd 3 CVE-2010-2299 6 0 100.00
2nd 4 CVE-2010-2298 6 0 100.00
2nd 5 CVE-2010-2297 6 0 100.00
2nd 6 CVE-2010-2304 6 0 100.00
2nd 7 CVE-2010-2303 6 0 100.00
2nd 8 CVE-2010-2295 10 2 83.33
2nd 9 CVE-2010-2302 12 0 100.00
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5.4.10.2 Tomcat 5.5.13

This example of a MARFCAT classification run represents CVE-based testing on training

for Tomcat 5.5.13. Classifiers corresponding to -cheb (Chebyshev distance) and -diff (Diff

distance) continue to dominate as in the other test cases [285]. These CVE-based results are

summarized in Table 6 [285].

Table 6: Sample CVE stats for Tomcat 5.5.13 [285]
1st 1 -nopreprep -raw -fft -diff 36 7 83.72
1st 2 -nopreprep -raw -fft -cheb 36 7 83.72
1st 3 -nopreprep -raw -fft -cos 37 9 80.43
1st 4 -nopreprep -raw -fft -eucl 34 9 79.07
1st 5 -nopreprep -raw -fft -mink 28 15 65.12
1st 6 -nopreprep -raw -fft -hamming 26 17 60.47
2nd 1 -nopreprep -raw -fft -diff 40 3 93.02
2nd 2 -nopreprep -raw -fft -cheb 40 3 93.02
2nd 3 -nopreprep -raw -fft -cos 40 6 86.96
2nd 4 -nopreprep -raw -fft -eucl 36 7 83.72
2nd 5 -nopreprep -raw -fft -mink 31 12 72.09
2nd 6 -nopreprep -raw -fft -hamming 29 14 67.44
guess run algorithms good bad %
1st 1 CVE-2006-7197 6 0 100.00
1st 2 CVE-2006-7196 6 0 100.00
1st 3 CVE-2006-7195 6 0 100.00
1st 4 CVE-2009-0033 6 0 100.00
1st 5 CVE-2007-3386 6 0 100.00
1st 6 CVE-2009-2901 3 0 100.00
1st 7 CVE-2007-3385 6 0 100.00
1st 8 CVE-2008-2938 6 0 100.00
1st 9 CVE-2007-3382 6 0 100.00
1st 10 CVE-2007-5461 6 0 100.00
1st 11 CVE-2007-6286 6 0 100.00
1st 12 CVE-2007-1858 6 0 100.00
1st 13 CVE-2008-0128 6 0 100.00
1st 14 CVE-2007-2450 6 0 100.00
1st 15 CVE-2009-3548 6 0 100.00
1st 16 CVE-2009-0580 6 0 100.00
1st 17 CVE-2007-1355 6 0 100.00
1st 18 CVE-2008-2370 6 0 100.00
1st 19 CVE-2008-4308 6 0 100.00
1st 20 CVE-2007-5342 6 0 100.00
1st 21 CVE-2008-5515 19 5 79.17
1st 22 CVE-2009-0783 11 4 73.33
1st 23 CVE-2008-1232 13 5 72.22
1st 24 CVE-2008-5519 6 6 50.00
1st 25 CVE-2007-5333 6 6 50.00
1st 26 CVE-2008-1947 6 6 50.00
1st 27 CVE-2009-0781 6 6 50.00
1st 28 CVE-2007-0450 5 7 41.67
1st 29 CVE-2007-2449 6 12 33.33
1st 30 CVE-2009-2693 2 6 25.00
1st 31 CVE-2009-2902 0 1 0.00
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http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0783
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1232
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5519
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5333
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1947
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0781
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0450
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2449
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2693
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2902


5.5 MARFPCAT

As a part of the fingerprinting network malware project [47] by analyzing the pcap traces

as a branch the MARFPCAT (MARF-based PCap Analysis Tool) [287] was created as an

extension of the latest revision of MARFCAT [312]. Specifically, to improve detection and

classification of the malware in the network traffic or otherwise we employ fast MARF-

based machine learning approach to static pcap analysis, fingerprinting, and subsequent

investigation. Similarly to the other tools, MARFPCAT is first trained on the known malware

pcap data and then measures the detection precision. Then we test it on the unseen data

during training, but known to the investigator, and we select the best available machine

learning algorithm combination to do so in subsequent investigations. MARFPCAT, like

MARFCAT has PS-DWT and -DGT backends to run over a GIPSY network and Forensic

Lucid export capability. In Section 10.4, page 284 it considered to be used as a evidence

feed tool for network forensics related investigations about malware and scanning.

5.5.1 Overview

The MARFPCAT work elaborates on the details of the earlier methodology and the cor-

responding results of application of the machine learning techniques along with signal pro-

cessing and NLP alike to network packet analysis in search for malicious code in the packet

capture (pcap) data. Most of the ideas in Section 5.4 [285] are still applicable here where

the same approach was used to machine-learn, detect, and classify vulnerable or weak code

fast and with relatively high precision.

We show the system the examples of pcap files with malware and MARFPCAT learns

them by computing spectral signatures using signal processing techniques. When we test,

we compute how similar or distant each file is from the known trained-on malware-laden

files. At the present, however, we are looking at the whole pcap files. This aspect lowers the

precision, but is fast to scan all the files.

MARFPCAT was first designed to use JNetPcap, a Java wrapper of libpcap as one of the

loaders to extract headers and other packet data structure items to refine the classification

precision when not using the whole-file training and classification. This work was further
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refined in [47] by Boukhtouta et al . For comparative studies with this work MARF added

wrapper plug-ins to allow Weka’s classifiers to be available to the MARF pipeline and MARF

applications.

5.5.2 The Knowledge Base

The GFI malware database with known malware, the reports, etc. serves as a knowledge

base to machine-learn from in this experiment. Thus, we primarily:

• Teach the system from the known cases of malware from their pcap data

• Test on the known cases

• Test on the unseen cases

5.5.3 Categories for Machine Learning

The primary category is the malware class, e.g., “Virus1”’, “Trojan2”, etc., which are inter-

nally enumerated. The known data is indexed via a Perl script creating an XML file and

MARFPCAT uses such files for training and testing.

5.5.4 Sample Results

Some classification results follow (Table 7, Table 9, and Table 11) using various algorithm

combinations including wavelets. The precision results are designed to be assigned to the

credibility (confidence) weights w encoded in Forensic Lucid observations.

5.6 Summary

Of particular interest to this thesis are the results that are supplied as an evidence encoded

in observations and observation sequences in Forensic Lucid with the precision/confidence

value assigned to the credibility value of each observation. We review the current results of

this experimental work, its current shortcomings, advantages, and practical implications.
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Table 7: Top 6 distance malware classifiers and 32 results, FFT feature vectors

guess run algorithms good bad %
1st 1 -dynaclass -binary -nopreprep -raw -fft -cos -flucid 67 154 30.32
1st 2 -dynaclass -binary -nopreprep -raw -fft -diff -flucid 55 166 24.89
1st 3 -dynaclass -binary -nopreprep -raw -fft -cheb -flucid 55 166 24.89
1st 4 -dynaclass -binary -nopreprep -raw -fft -eucl -flucid 50 171 22.62
1st 5 -dynaclass -binary -nopreprep -raw -fft -hamming -flucid 37 184 16.74
1st 6 -dynaclass -binary -nopreprep -raw -fft -mink -flucid 34 187 15.38
2nd 1 -dynaclass -binary -nopreprep -raw -fft -cos -flucid 92 129 41.63
2nd 2 -dynaclass -binary -nopreprep -raw -fft -diff -flucid 77 144 34.84
2nd 3 -dynaclass -binary -nopreprep -raw -fft -cheb -flucid 77 144 34.84
2nd 4 -dynaclass -binary -nopreprep -raw -fft -eucl -flucid 73 148 33.03
2nd 5 -dynaclass -binary -nopreprep -raw -fft -hamming -flucid 46 175 20.81
2nd 6 -dynaclass -binary -nopreprep -raw -fft -mink -flucid 47 174 21.27
guess run class good bad %
1st 1 VirTool.Win32.VBInject.gen.bp (v) 6 0 100.00
1st 2 Trojan.Win32.Agent.roei 6 0 100.00
1st 3 BehavesLike.Win32.Malware.dls (mx-v) 6 0 100.00
1st 4 Worm.Win32.AutoRun.dkch 6 0 100.00
1st 5 Trojan-FakeAV.Win32.Agent.det 6 0 100.00
1st 6 FraudTool.Win32.FakeRean 6 0 100.00
1st 7 VirTool:Win32/Obfuscator.WJ (suspicious) 6 0 100.00
1st 8 Trojan.Win32.Vilsel.ayyw 6 0 100.00
1st 9 Worm:Win32/Yeltminky.A!dll 6 0 100.00
1st 10 Trojan.Win32.Meredrop 6 0 100.00
1st 11 TrojanDownloader:Win32/Allsum 12 0 100.00
1st 12 Virtumonde 6 0 100.00
1st 13 Backdoor.Win32.Hupigon.nndu 6 0 100.00
1st 14 VirTool:WinNT/Protmin.gen!C [generic] 6 0 100.00
1st 15 PWS:Win32/Fareit.gen!C [generic] 6 0 100.00
1st 16 Trojan-Dropper.Win32.Injector.cxqb 6 0 100.00
1st 17 Trojan.Win32.Menti.mlgp 6 0 100.00
1st 18 Trojan.Win32.Buzus (v) 6 0 100.00
1st 19 Trojan.Win32.FakeAV.lcpt 12 0 100.00
1st 20 Trojan.Win32.Agent.rlot 6 0 100.00
1st 21 Trojan-Spy.Win32.SpyEyes.aecv 6 0 100.00
1st 22 Trojan:Win32/Swrort.A 11 1 91.67
1st 23 TrojanDownloader:Win32/Carberp.C 11 1 91.67
1st 24 PWS:Win32/Lolyda.BF 15 3 83.33
1st 25 Trojan.Win32.Yakes.qjn 8 4 66.67
1st 26 Trojan.Win32.Agent.rlnz 5 7 41.67
1st 27 Trojan.Win32.VBKrypt.fkvx 6 12 33.33
1st 28 VirTool:Win32/VBInject.OT 6 12 33.33
1st 29 HomeMalwareCleaner.FakeVimes 36 264 12.00
1st 30 Trojan.Win32.Generic!BT 56 598 8.56
1st 31 Trojan.FakeAlert 6 108 5.26
1st 32 Trojan.Win32.Generic.pak!cobra 0 18 0.00

5.6.1 Shortcomings

Following are the most prominent issues with the presented tools and approaches. Some of

them are more “permanent”, while others are solvable and intended to be addressed in the

future work [312].

Looking at a signal is less intuitive visually for code analysis by humans. (However, the

approach can produce an easily identifiable problematic spectrogram in some cases). For
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Table 9: Top 6 distance malware classifiers and 32 results, wavelet filter preprocessing

guess run algorithms good bad %
1st 1 -dynaclass -binary -nopreprep -sdwt -fft -cos -flucid 55 146 27.36
1st 2 -dynaclass -binary -nopreprep -sdwt -fft -diff -flucid 41 180 18.55
1st 3 -dynaclass -binary -nopreprep -sdwt -fft -mink -flucid 41 180 18.55
1st 4 -dynaclass -binary -nopreprep -sdwt -fft -cheb -flucid 41 180 18.55
1st 5 -dynaclass -binary -nopreprep -sdwt -fft -eucl -flucid 41 180 18.55
1st 6 -dynaclass -binary -nopreprep -sdwt -fft -hamming -flucid 30 191 13.57
2nd 1 -dynaclass -binary -nopreprep -sdwt -fft -cos -flucid 75 126 37.31
2nd 2 -dynaclass -binary -nopreprep -sdwt -fft -diff -flucid 56 165 25.34
2nd 3 -dynaclass -binary -nopreprep -sdwt -fft -mink -flucid 67 154 30.32
2nd 4 -dynaclass -binary -nopreprep -sdwt -fft -cheb -flucid 55 166 24.89
2nd 5 -dynaclass -binary -nopreprep -sdwt -fft -eucl -flucid 58 163 26.24
2nd 6 -dynaclass -binary -nopreprep -sdwt -fft -hamming -flucid 44 177 19.91
guess run class good bad %
1st 1 VirTool.Win32.VBInject.gen.bp (v) 6 0 100.00
1st 2 Trojan.Win32.Agent.roei 6 0 100.00
1st 3 BehavesLike.Win32.Malware.dls (mx-v) 6 0 100.00
1st 4 Worm.Win32.AutoRun.dkch 6 0 100.00
1st 5 Trojan-FakeAV.Win32.Agent.det 6 0 100.00
1st 6 FraudTool.Win32.FakeRean 6 0 100.00
1st 7 VirTool:Win32/Obfuscator.WJ (suspicious) 6 0 100.00
1st 8 Trojan.Win32.Vilsel.ayyw 6 0 100.00
1st 9 Worm:Win32/Yeltminky.A!dll 6 0 100.00
1st 10 Trojan.Win32.Meredrop 6 0 100.00
1st 11 Virtumonde 6 0 100.00
1st 12 Backdoor.Win32.Hupigon.nndu 6 0 100.00
1st 13 VirTool:WinNT/Protmin.gen!C [generic] 6 0 100.00
1st 14 PWS:Win32/Fareit.gen!C [generic] 6 0 100.00
1st 15 Trojan-Dropper.Win32.Injector.cxqb 6 0 100.00
1st 16 Trojan.Win32.Menti.mlgp 6 0 100.00
1st 17 Trojan.Win32.Buzus (v) 6 0 100.00
1st 18 Trojan.Win32.Agent.rlot 6 0 100.00
1st 19 Trojan-Spy.Win32.SpyEyes.aecv 6 0 100.00
1st 20 Trojan.Win32.FakeAV.lcpt 11 1 91.67
1st 21 TrojanDownloader:Win32/Allsum 10 2 83.33
1st 22 Trojan.Win32.Yakes.qjn 10 2 83.33
1st 23 Trojan.Win32.Agent.rlnz 9 3 75.00
1st 24 Trojan:Win32/Swrort.A 6 6 50.00
1st 25 TrojanDownloader:Win32/Carberp.C 6 6 50.00
1st 26 Trojan.Win32.VBKrypt.fkvx 5 11 31.25
1st 27 VirTool:Win32/VBInject.OT 5 11 31.25
1st 28 HomeMalwareCleaner.FakeVimes 46 250 15.54
1st 29 Trojan.FakeAlert 8 104 7.14
1st 30 Trojan.Win32.Generic.pak!cobra 1 17 5.56
1st 31 Trojan.Win32.Generic!BT 18 626 2.80
1st 32 PWS:Win32/Lolyda.BF 0 18 0.00

source code analysis, line numbers are a problem (easily “filtered out” as high-frequency

“noise”, etc.). As a result, a whole “relativistic” and machine learning methodology was

developed for the line numbers in [282] to compensate for that. Generally, when CVEs

are the primary class, by accurately identifying the CVE number one can get all the other

pertinent details from the CVE database, including patches and line numbers making this a

lesser issue. Accuracy depends on the quality of the knowledge base collected. Some of this
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Table 11: Top 6 distance malware classifiers and 32 results, low-pass filter preprocessing

guess run algorithms good bad %
1st 1 -dynaclass -binary -nopreprep -low -fft -cos -flucid 60 161 27.15
1st 2 -dynaclass -binary -nopreprep -low -fft -cheb -flucid 54 167 24.43
1st 3 -dynaclass -binary -nopreprep -low -fft -diff -flucid 54 167 24.43
1st 4 -dynaclass -binary -nopreprep -low -fft -eucl -flucid 46 175 20.81
1st 5 -dynaclass -binary -nopreprep -low -fft -hamming -flucid 35 186 15.84
1st 6 -dynaclass -binary -nopreprep -low -fft -mink -flucid 33 188 14.93
2nd 1 -dynaclass -binary -nopreprep -low -fft -cos -flucid 88 133 39.82
2nd 2 -dynaclass -binary -nopreprep -low -fft -cheb -flucid 74 147 33.48
2nd 3 -dynaclass -binary -nopreprep -low -fft -diff -flucid 74 147 33.48
2nd 4 -dynaclass -binary -nopreprep -low -fft -eucl -flucid 69 152 31.22
2nd 5 -dynaclass -binary -nopreprep -low -fft -hamming -flucid 49 172 22.17
2nd 6 -dynaclass -binary -nopreprep -low -fft -mink -flucid 48 173 21.72
guess run class good bad %
1st 1 Trojan:Win32/Swrort.A 12 0 100.00
1st 2 VirTool.Win32.VBInject.gen.bp (v) 6 0 100.00
1st 3 Trojan.Win32.Agent.roei 6 0 100.00
1st 4 BehavesLike.Win32.Malware.dls (mx-v) 6 0 100.00
1st 5 Worm.Win32.AutoRun.dkch 6 0 100.00
1st 6 Trojan-FakeAV.Win32.Agent.det 6 0 100.00
1st 7 FraudTool.Win32.FakeRean 6 0 100.00
1st 8 VirTool:Win32/Obfuscator.WJ (suspicious) 6 0 100.00
1st 9 Trojan.Win32.Vilsel.ayyw 6 0 100.00
1st 10 Worm:Win32/Yeltminky.A!dll 6 0 100.00
1st 11 Trojan.Win32.Meredrop 6 0 100.00
1st 12 Virtumonde 6 0 100.00
1st 13 Backdoor.Win32.Hupigon.nndu 6 0 100.00
1st 14 VirTool:WinNT/Protmin.gen!C [generic] 6 0 100.00
1st 15 PWS:Win32/Fareit.gen!C [generic] 6 0 100.00
1st 16 Trojan-Dropper.Win32.Injector.cxqb 6 0 100.00
1st 17 Trojan.Win32.Menti.mlgp 6 0 100.00
1st 18 Trojan.Win32.Buzus (v) 6 0 100.00
1st 19 Trojan.Win32.FakeAV.lcpt 12 0 100.00
1st 20 Trojan.Win32.Agent.rlot 6 0 100.00
1st 21 Trojan-Spy.Win32.SpyEyes.aecv 6 0 100.00
1st 22 TrojanDownloader:Win32/Allsum 11 1 91.67
1st 23 TrojanDownloader:Win32/Carberp.C 10 2 83.33
1st 24 PWS:Win32/Lolyda.BF 15 3 83.33
1st 25 Trojan.Win32.Yakes.qjn 8 4 66.67
1st 26 Trojan.Win32.Agent.rlnz 6 6 50.00
1st 27 Trojan.Win32.VBKrypt.fkvx 6 12 33.33
1st 28 VirTool:Win32/VBInject.OT 6 12 33.33
1st 29 HomeMalwareCleaner.FakeVimes 37 263 12.33
1st 30 Trojan.Win32.Generic.pak!cobra 2 16 11.11
1st 31 Trojan.FakeAlert 8 106 7.02
1st 32 Trojan.Win32.Generic!BT 35 619 5.35

collection and annotation is manually done to get the indexes right, and, hence, error prone.

Should there be mistakes and errors, the output quality will suffer. To detect more of the

useful CVE or CWE signatures in non-CVE and non-CWE cases requires large knowledge

bases (human-intensive to collect), which can perhaps be shared by different vendors via

a common format, such as Forensic Lucid. For MARFCAT, no path tracing (since no

parsing is present); no slicing, semantic annotations, context, locality of reference, etc. are
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presently possible. Therefore, the corresponding attribute “sink”, “path”, and “fix” results

found in the reports also have to be machine-learned. There is a significant number of

algorithms and their combinations to try (currently ≈ 1800 permutations) to get the best

top N precise result. This is, however, also an advantage of the approach as the underlying

framework can quickly allow for such testing. In most of the cases, only file-level training

vs. fragment-level training is done—presently the classes are trained based on the entire files

instead of the known file fragments of interest. The latter would be more fine-grained and

precise than whole-file classification, but slower. However, overall the file-level processing is

a man-hour limitation than a technological one.

These shortcomings may affect the credibility/confidence score in the data mining analysis

encoded into the observations in Forensic Lucid. The lower the score, the less likely the

evidence from this analysis is to be used to support or refute claims in the case at hand.

Thus, addressing these shortcomings is an important aspect to improve.

5.6.2 Advantages

There are some key advantages of the approaches and tools presented, which follow. The

approach is relatively fast (e.g., MARFCAT’s processing of Wireshark’s ≈ 2400 files to train

and test completes in about three minutes) on a now-commodity desktop or a laptop. As

signal processing tools, they are language- and protocol-independent (no syntactic parsing)—

given enough examples one can apply them to any data type (language, pcap, etc.), i.e., the

methodology is the same no matter C, C++, Java or any other source or binary languages

(PHP, C#, VB, Perl, bytecode, assembly, etc.) are used, or using other data types such as

images, pcaps, etc. As a machine-learning based approach, the tools can automatically learn

a large knowledge base to test on known and unknown cases as well as can learn, for example,

from previous SATE 2008–2013 reports that are publicly available [346]. We can also use

the tools to quickly pre-scan project data for further analysis by humans or other tools that

do in-depth parsing and semantic analyses as a means to prioritize large data sets for such

tools. We often get high (or good enough) precision and recall in CVE and CWE detection,

even at the file level and good enough precision at the whole-pcap processing. There are

many algorithms and their combinations to select the best for a particular classification task
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after initial test runs. The approach can cope with altered code or code clones used in other

projects (e.g., a lot of problems in Chrome were found it WebKit, used by several browsers).

The fast and relatively high precision results can guide any forensic investigation when

big data are involved faster to enable investigators to focus. The higher precision results can

prioritize the Forensic Lucid observations related to them in the process.

5.6.3 Practical Implications

We outline some practical implications of the presented approach [312]. MARFCAT can be

used on any target language without modifications to the methodology or knowing the syntax

of the language. Thus, it scales to any popular and new language analysis with a very small

amount of effort [312]. MARFPCAT can likewise scale for various data/code clones, malware,

or application identification. MARFCAT was easily adapted to the compiled binaries and

bytecode to be able detect vulnerable deployments and installations—akin to virus scanning

of binaries, but instead scanning for infected binaries, one would scan for security-weak

binaries on site deployments to alert system administrators to upgrade their packages [312].

It can likewise learn from binary signatures from other tools like Snort [435]. As a result

both tools are extendable to the embedded code and mission-critical code found in aircraft,

spacecraft, and various autonomous systems [312] for incident prevention or investigations.

Spectral signatures and machine learning techniques are very beneficial for file type analysis

as well, especially when there is a need to bulk-preprocess a large collection of files for

preliminary classification of “files of interest” on suspect’s hard drive [288] (e.g., with the

evidence in the form of audio and text files recovered from a suspect’s computer).

All the tools are designed in Java with the easier plug-in-like integration of the tools into

Java-based plug-in frameworks, such as JPF, Eclipse, and others [288] in mind. MARF,

MARFCAT, and MARFPCAT were already updated to export their results and data struc-

tures in the Forensic Lucid format in order to allow their inclusion into the existing

investigative cases.
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Chapter 6

The General Intensional Programming

System

This background chapter covers the General Intensional Programming System (GIPSY) [159,

239, 262, 300, 359, 360, 361, 364, 367, 368, 496, 526], which is is an open-source platform

implemented primarily in Java to investigate properties of the Lucid [25, 26, 27] (see Chap-

ter 4) family of intensional programming languages and beyond. GIPSY is being developed

and maintained by the GIPSY Research and Development Group at Concordia University,

Montreal, Canada. As a multi-tier distributed system, it evaluates Lucid programs following

a demand-driven distributed generator-worker architecture, and is designed as a modular col-

lection of frameworks where components related to the development (RIPE1), compilation

(GIPC2), and execution/evaluation (GEE3) of Lucid [27] programs are decoupled allow-

ing easy extension, addition, and replacement of the components and subcomponents. The

high-level general architecture of GIPSY is presented in Figure 32 as well as the high-level

structure of the GIPC framework is in Figure 33 [269, 302, 303, 305, 320].

This background chapter is compiled from a list of the related cited works by the GIPSY

Research and Development Group and the author Mokhov. In this chapter we present the

general GIPSY overview (Section 6.1, page 129) including the necessary historical notes of

its conception, evolution, and the subsequent extensions for the use in this thesis as well as

1Run-time Integrated Programming Environment, implemented in gipsy.RIPE
2General Intensional Programming Compiler, implemented in gipsy.GIPC
3General Eduction Engine, implemented in gipsy.GEE
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the unaware reader. We follow through with its key architectural design points (Section 6.2,

page 136) to provide an in-depth background overview to subsequent GIPSY contributions

in Part II.

6.1 Overview

GIPSY [239, 262, 280, 300, 361, 364, 367, 368, 496, 526] is a continued effort for the design

and development of a flexible and adaptable multi-lingual programming language develop-

ment framework aimed at the investigation on the Lucid family of intensional programming

(Section 3.2) languages [24, 25, 26, 352, 359, 362, 377, 394, 506]. Using this platform, pro-

grams written in various flavors of Lucid can be compiled and executed in a variety of

ways [159, 299, 300, 313]. The framework approach adopted is aimed at providing the pos-

sibility of easily developing compiler components for other languages of intensional nature,

and to execute them on a generally language-independent run-time system. With Lucid

being a functional “data-flow” language (cf. Chapter 4), its programs can be executed in

a distributed processing environment [313]. As a result, by being multi-lingual, GIPSY’s

design incorporates the mentioned flexible compilers framework and a run-time system to

allow processing of programs written in multiple dialects of Lucid as well as mixing them

with common imperative languages, such as Java, potentially all in the same source code

“program” or a source code file comprising a semantic unit of interrelated program fragments

written in multiple languages and interacting with each other. This is what makes GIPSY

different from being “just a Lucid dialect” into a complete programming system for multiple

languages though glued together by the type system (described in depth in Appendix B) and

the “meta” preprocessor language of various declarations to aid compilation [262, 280, 299].

6.1.1 Related Work

The ideas relevant to GIPSY are covered in a number of works from various research teams

about intensional and multidimensional programming, distributed, parallel as well as with

hybrid intensional/imperative paradigms. The most prominent is perhaps GLU [5, 186,
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187, 357] that prompted GIPSY’s existence. The GLU (Granular Lucid) system, devel-

oped at the Stanford Research Institute in the 1990s, was arguably the first large hybrid

intensional-procedural system to allow Indexical Lucid programs to use C or Fortran

data structures and procedures [186, 187]. GLU then relied on a distributed Generator-

Worker execution architecture to evaluate such programs. Due to the lack of flexibility in its

architectural design, GLU was not able to adapt to further evolutions of Lucid, or to inter-

face with object-oriented languages [359, 523] (at least not until later appearance of GLU#

in 2004 to interface with C++ [357]). In that context, GIPSY’s design started off with a

similar model as GLU’s, but with flexibility and adaptability in mind [361, 364, 368]. Using

a framework approach, the GIPSY has been used to develop compilers for different variants

of Lucid, which are allowed to coexist in the same program [262, 397, 524]. Moreover, its

design additionally permits Lucid programs to use procedures or methods defined in virtually

any procedural language [523] as long as a corresponding compiler plug-in is added to the

framework. A similar model is also successfully adopted by the prominent GNU Compiler

Collection (GCC) [482].

The distributed and parallel indexical and intensional program evaluation was studied

in several works, such as Du’s work in 1999 [90, 92] on indexical parallel programming and

Swoboda’s and Plaice’s work on distributed context computing [451] followed by formaliza-

tion of distributed intensional programming paradigm by Swoboda in his PhD thesis [449]

in 2004. A slightly more recent work on scheduling and evaluation of multidimensional pro-

grams in parallel/distributed environments was performed by Ben Hamed [157] in 2008. The

data-flow aspect of intensional programming was also explored in graph-based distributed

systems [54] back in 1995 by Cao et al . Subsequently, a number of formalisms appeared

including Bensnard et al . [41] presenting an example of a multi-formalism application design

and distribution in a data-flow context, Swoboda’s work [449, 451], and Fourtounis [116] in

2011 about formal specification and analysis of a parallel virtual machine for lazy functional

languages (that refers to some of the GIPSY and the mentioned related work). Fisher and

Kakoudakis did flexible agent grouping in executable temporal logic [109] and Gagné and

Plaice looked at the demand-driven real-time computing [124]. Ranganathan and Camp-

bell in 2003 also proposed a middleware for context-aware agents in ubiquitous computing
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environments [395]. Peralta et al . proposed an approach similar to GIPSY for automatic

synthesis and deployment of intensional Kahn process networks [373].

The hybridification (mixing intensional/logic programming with imperative languages)

aspects were discussed in several works: Liu and Stables [236] proposed inclusion of logic

expressions into the procedural programming languages in 1995; in 1999 Rondogiannis sub-

sequently proposed adding multidimensionality to imperative programming languages [404];

while Swoboda and Wadge proposed tools to intensionalize software systems in general [452].

As time passed, Ditu and Plaice proposed the general TransLucid [88] language with

elaborate typing system and intent to support multicore processors, Cartesian programming

model [375] and some of its PoC eager [376, 377] and multithreaded [394] implementation by

Rahilly in 2007–2008.

In relationship to the aspect-oriented programming (AOP), Du pondered of the links

between AOP and the intensional programming models [93] by drawing parallels between

the notion of context in two paradigms.

All of this work and related contributions are accumulated and summarized in [362],

which is being regularly updated as a reference resource. The GIPSY’s software architecture

is able to constantly change and accept new ideas from the GIPSY members as well as the

cited works of others above for comparative studies and evaluation.

6.1.2 Historical Notes

Historically, the concept of GIPSY was conceived as a very modular collection of frameworks

and artifacts geared towards sustainable support for the intensional programming languages

and embracing continuous iterative revision and development overcoming issues of the earlier

GLU system [5, 186, 187] that did not survive for very long due to its inflexibility to extend

to the newer dialects, and its unmaintainability defects [159, 300, 359, 360, 361, 368].

The initial GIPSY and GIPL ideas were featured in Paquet’s PhD thesis [359] in 1999.

Then those ideas were architecturally expanded by Paquet and Kropf in 2000 [361]. Subse-

quently, the project moved to Concordia where it resides at the present day. In the meantime,

Grogono defined GIPC increments [141] in 2002. Ren, also in 2002 [397], produced the first

Indexical Lucid and GIPL compilers as a part of the first PoC GIPC written in Java
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and JavaCC [503]. Wu in the same year provided the first version of the semantic analyzer

and translation rules to the Indexical Lucid and GIPL compilers [524]. Wu, Paquet, and

Grogono expanded further the detailed design of the GIPC framework in 2003 [527]. Alagar,

Paquet, and Wan described the notion of Intensional Programming for agent communication

in 2004 [7]. Lu, Grogono, and Paquet subsequently proposed and defined the initial GEE

Lucid interpreter in C++ subsequently rewritten in Java by Lu in multithreaded and dis-

tributed Java RMI (Remote Method Invocation) prototypes [239, 240]. In 2004, Grogono

proposed Onyx for lazy multidimensional arrays [142]. Then, in the same year, Paquet,

Wu, and Grogono expanded on the GIPC architecture further [367]. After that, also in

2004, Tao provided the first realization of the data warehousing and garbage collection in

the GEE [456]. Following that, Ding [87] provided a PoC implementation of the automated

translation between graphical and textual representations of intensional programs for In-

dexical Lucid and GIPL within GIPC. In the meantime, in 2005–2006 Wan developed a

full context theory for intensional programming and the corresponding artifact of the Lucx

language [510, 511, 512]. Vassev looked into the distributed aspects in his follow-up work

on the GEE by designing the Demand Migration Framework (DMF) and its concrete in-

stance of Jini DMS (Demand Migration System) to incorporate the demand store and the

distribution architecture middleware to work together [495, 496, 498]. Wu and Paquet re-

viewed the GIPSY architecture [368, 526] and began pondering about including intensional

expressions into Java. In 2003–2005, the author Mokhov (along with Paquet and Grogono),

re-integrated and retrofitted all the components with the original design by Paquet and de-

fined the Preprocessor and introduced the first instance of hybrid intensional-imperative

compilation frameworks of GIPC with JLucid and Objective Lucid (with sequential

threads and communication procedures as well as operational semantics) prototype compil-

ers, initial type system, and other aspects integrating all the components under a common

CVS [144] repository [143, 259, 260, 262] that led to a more general framework for greater

interoperability between intensional and imperative programming languages—GICF and a

web-based editor RIPE servlet front-end. In 2007–2008, Pourteymour et al . provided another

PoC instance of the DMS, implemented using JMS [381, 382, 383]. Around the same time

frame, Tong et al . implemented a Lucx compiler [363, 470, 471]. Also in 2007, the author
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Mokhov proposed the use of GIPSY as a platform for the Intensional Cyberforensics and

Forensic Lucid [264] eventually culminating in this thesis (see Section 6.1.4.3 and fur-

ther). The language MARFL is proposed by the author to manage the MARF’s (Modular

Audio Recognition Framework) configuration [270] with the hierarchical contexts in it further

in 2008. He also performed the first preliminary security evaluation of the earlier GICF’s

design and the distributed aspects of GIPSY [269]. Vassev in the same year 2008, moved on

to propose self-management properties of GIPSY with the design of the Autonomic GIPSY

(AGIPSY) [497]. Subsequently, in around 2007–2010 Paquet proposed a new multi-tier archi-

tecture for GEE [360] where Han et al . provided its initial implementation [158, 159], and Ji

and the author Mokhov completely unified the Jini and JMS DMS’es [191] and Ji did a scal-

ability study of the two [189]. Concurrently, in 2008–2009, Wu et al . completed design and

implementation of a compiler for JOOIP to embed Lucid expressions into Java [523, 525]

such that Java classes can instantiate intensional variables, and have the Lucid expressions

access the Java class properties (methods, variables (local, instance, class)). Meanwhile,

the author Mokhov investigated the GIPSY’s use for the HOIL support [300] and provided

a complete GIPSY Type System (Appendix B) specification [299, 313] alongside with Tong

and Paquet in the context of the multi-tier work and Lucx compiler implementation. The

author Mokhov et al . then moved on to the proposal of self-forensics aspects within GIPSY

and other systems [319], which is also an ongoing work (see Appendix D). In 2011–2013,

the author Mokhov developed problem-specific generator and worker tiers for MARFCAT

(Section 5.4) and MARFPCAT [285, 287, 312] and for genome sequencing as a case study

with Rabah [391]. At the same time, in 2011–2012, Rabah designed the first prototype of

a graph-based RIPE component to manage distributed GIPSY networks [391]. The author

Mokhov (along with Rabah’s help) built the GIPSY cluster lab environment (detailed in

Section 8.6, page 238) for higher-performance and scalability evaluations. Subsequently, the

author Mokhov expanded the compiler and run-time support onto the Forensic Lucid

language as a part of this thesis.

As previously mentioned, the GIPSY’s design is centered around the compiler framework

(GIPC) following good principles of compiler design [238], the eduction execution engine

(GEE), i.e., the run-time execution environment (akin to a virtual machine for execution of
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the intensional logic expressions), and the programming environment (RIPE). The former of

the three is responsible to support multiple compilers in a similar compiler framework that all

produce a consistent, well-agreed on binary format, essentially a compiled GIPSY program, as

a binary output. The second performs lazy demand-driven (potentially parallel/distributed)

evaluation of the compiled Lucid programs, or as we call them, GIPSY programs [300].

This idea of the GIPSY’s framework approach is to provide an infrastructure to develop

compiler and run-time components for other languages of intensional nature easier as well as

to execute them on a relatively language-independent run-time system [313]. As discussed

earlier, Lucid programs in general can be naturally executed in a distributed processing

environment because its constructs and expressions do not impose sequentiality. However,

the standard Lucid algebra (i.e., types and operators) is extremely fine-grained and can

hardly benefit from distributed evaluation of the operands. Adding granularity to the data

elements manipulated by Lucid comes through the addition of coarser-grained data types

and their corresponding operators [313] (Appendix B.4). With Lucid semantics being defined

as typeless, a solution to the granularity problem consists in adding a hybrid counterpart

to Lucid to allow an external language to define an algebra of coarser-grained types and

operators [299, 313].

6.1.3 From Sequentiality to Concurrency with DMS and Multi-

Tier Architecture

The eventual availability of the Demand Migration Framework and System (DMF and

DMS) [382, 383, 495, 496] turned the GIPSY’s PoC RMI implementation [239] into a true

distributed system [269]. These developments prompted a number of related research subdi-

rections some of which are still active today. Specifically, in [262] when a notion of prototype

JLucid and Objective Lucid languages was conceived, it led to a more general framework

for greater interoperability between intensional and imperative programming languages—

GICF [269]. However, with that greater flexibility that the languages, GICF, and DMS

brought, there came to be the issues of security of the embedded code, and demand moni-

toring, etc. [269].
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The subsequent evolution presented in [159, 189, 191] furthered the original architecture

for the run-time system of the GIPSY (as hinted in [359], and elaborated in [300, 360, 361,

368]). The architecture proposed in these works was itself developed following the generator-

worker architecture adopted successfully by GLU [186, 187], as mentioned earlier, where

its run-time system was not as scalable and flexible [159] as the solutions presented in the

cited GIPSY works. In addition, the communication procedures of the distributed run-time

system implemented in GLU were implemented using RPC only [159]. The GIPSY solution

proposed a much more flexible approach by integrating demand migration and storage by

using the DMF, which can be concretely instantiated using various middleware technolo-

gies, such as Jini [495, 496] and JMS [382, 383] and others as they become available and

integrated allowing for even heterogeneous mixed use of such technologies simultaneously

fulfilling different communication requirements and availability [159, 189, 191]. Further de-

sign and development has GIPSY planned to try other/new architectures (e.g., Hadoop,

PlanetLab [463], and others) and prompted an establishment of a dedicated cluster setup

(see Section 8.6, page 238). The distributed and scalable evaluation becomes very important

in large scale reasoning and evaluation of large amounts of digital evidence in Forensic

Lucid case evaluations.

6.1.4 Context-Oriented Reasoning with Lucid in GIPSY

The reasoning aspect of GIPSY is a particularity of a Lucid dialect (Chapter 4) rather than

its entire architecture. The architecture is general enough to go beyond pure an evaluation of

intensional logic expressions. If those expressions form a language dialect that helps us with

reasoning (such as Forensic Lucid to reason about cybercrime incidents and claims).

6.1.4.1 Reasoning in Hybrid OO Environment

Object-orientation came to GIPSY with the concept of Objective Lucid [262, 280] that

allowed for rudimentary support of Lucid programs to manipulate Java objects as first class

values. Its generalization resulted in JOOIP [523, 525] offering Lucid fragments within Java

code and allowing the Lucid code to reference to Java methods and variables, along with the

corresponding type system extensions and providing context-aware Java objects [300] (see
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Section 4.3.2, page 92).

6.1.4.2 Reasoning in Autonomic Environment

This aspect is important for the project on self-forensics described in Appendix D. Vassev

and Paquet designed an Autonomic GIPSY [497] (AGIPSY) version of the platform with

the corresponding ASSL toolset [483, 490, 499] as a research case study where GIPSY is

turned into an autonomic system via an ASSL specification to allow it running unattended

with self-healing, self-protecting, self-configuring, and self-optimizing autonomic properties.

Unattended reasoning environment is essential for long-running problem solving programs

with minimal intervention and maintenance [300].

6.1.4.3 Forensic Lucid Compilation and Evaluation Platform

GIPSY is the proposed testing and investigation platform for the compilation and distributed

cyberforensics evaluation of the Forensic Lucid programs [298, 302] (introduced later in

Chapter 7) [269, 302, 303, 305, 320]. GEE is the component where the distributed demand-

driven evaluation takes place, subtasked to different evaluation engines implemeting the GEE

framework (see Figure 58 and Chapter 8). We rely on the GIPSY’s compilers for the inten-

sional languages like GIPL [359], Lucx [510], Objective Lucid [262], and JOOIP [523].

We reach out to the syntax and operational semantics of those languages implemented in

GIPSY and draw from them some ideas for the simple context specification of dimensions

and tags, the navigational operators @ and #, and the “dot-notation” for object properties

and apply it to context spaces. The dialects referred to cover by themselves a large scope

of issues Forensic Lucid capitalizes on. This is what this thesis is about, in particular

Chapter 7, Chapter 8, and Chapter 9 which we defer to the reader about.

6.2 GIPSY’s Architecture

Intensional programming (see Section 3.2, [129, 348]), in the context of the Lucid program-

ming language, implies a declarative programming paradigm. The declarations are evaluated

in an inherent multi-dimensional context space [159, 470]. GIPSY evolved from a modular
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Figure 32: High-level structure of GIPSY’s GEER flow overview [313]

collection of frameworks for local execution into a multi-tier architecture [159, 360]. Back in

the early days, with the bright but short-lived story of GLU in mind, efforts were made to

design a system with similar capacities, but significantly more flexible in order to cope with

the fast evolution and diversity of the Lucid family of languages, thus necessitating a flexible

compiler architecture, and a language-independent run-time system for the execution of Lu-

cid programs. As a result, the GIPSY project’s architecture [239, 262, 280, 300, 368] aims at

providing such a flexible platform for the investigation on intensional and hybrid intensional-

imperative programming [159]. The architecture of the General Intensional Programming

Compiler (GIPC) is framework-based, allowing the modular development of compiler com-

ponents (e.g., parser, semantic analyzer, and translator). It is based on the notion of the

Generic Intensional Programming Language (GIPL) [359, 363], which is the core run-time

language into which all other flavors of the Lucid (a family of intensional programming

languages) language can be translated to [300]. The notion of a generic language also solved

the problem of language-independence of the run-time system by allowing a common repre-

sentation for all compiled programs, the Generic Eduction Engine Resources (GEER), which

is a dictionary of run-time resources compiled from a GIPL program, that had been pre-

viously generated from the original program using semantic translation rules defining how

the original Lucid program can be translated into the GIPL [159, 300]. The design of the

GIPSY compiler framework went through several iterations [262, 280, 367, 397, 524]. The

architecture necessitates the presence of the intensional-imperative type system and support
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Figure 33: High-level structure of the GIPC framework [313]

links to imperative languages [299, 300, 313]. A generic distributed run-time system has been

proposed in [159, 360].

GIPSY has a collection of compilers under the (GIPC, see Figure 33) framework and the

corresponding run-time environment under the eduction execution engine (GEE) among other

things that communicate through the GEE Resources (GEER) (see the high-level architecture

in Figure 32). These two modules are the major primary components for compilation and

execution of intensional programs, which require amendments for the changes proposed in
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this work of intensional forensics [269, 303, 320].

6.2.1 General Intensional Program Compiler (GIPC)

The more detailed architecture of GIPC is conceptually represented at the higher level in Fig-

ure 33. It hosts the type abstractions and implementations that are located in the gipsy.lang

package and serve as a glue between the compiler (the GIPC—a General Intensional Program

Compiler) and the run-time system (known as the GEE—a General Eduction Engine) to do

the static and dynamic semantic analyses and evaluation respectively. Since GIPSY is a mod-

ular system, the majority of its components can be replaced as long as they comply with some

general architectural interface/API. One of such API interfaces is the GIPSYProgram (concep-

tually represented as a GEER—the GEE Resource—a dictionary of run-time resources) that

contains among other things, the type annotations that can be statically inferred during com-

pilation. At run-time, the engine does its own type checking and evaluation when traversing

the abstract syntax tree (AST) stored in the GEER and evaluating expressions represented

in the tree. Since both the GIPC and the GEE use the same type system to do their analysis,

they consistently apply the semantics and rules of the type system with the only difference

that the GEE, in addition to the type checks, does the actual evaluation [300, 313].

6.2.1.1 GIPC Preprocessor

The Preprocessor [262, 280] is a component that is invoked first by the GIPC (see Figure 33)

on incoming GIPSY program’s source code stream. The Preprocessor’s role is to do prelim-

inary program analysis, processing, and splitting the source GIPSY program into “chunks”,

each potentially written in a different language and identified by a language tag. In a very

general view, a GIPSY program is a hybrid program written in different language variants

in one or more source file. Consequently, there has to be an interface to glue all these code

segments together to ensure proper evaluation. Thus, the Preprocessor after some initial

parsing (using its own preprocessor syntax) and producing the initial parse tree, constructs a

preliminary dictionary of symbols used throughout all parts of the program. This is the basis

for type matching and semantic analysis applied later on. This is also where the first step

of type assignment occurs, especially on the boundary between typed and typeless parts of
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the program, e.g., Java (typed) and a specific Lucid dialect (typeless). The Preprocessor

then splits the code segments of the GIPSY program into chunks preparing them to be fed

to the respective concrete compilers for those chunks. The chunks are represented through

the CodeSegment class, instances of which the GIPC collects [300, 313].

GIPSY Program Segments. There are four baseline types of segments defined in a

GIPSY program [313]. These are:

• #funcdecl (in a way similar to C’s extern) declares function prototypes written as

imperative language functions defined later or externally from this program to be used

by the intensional language part. The syntactical form of these prototypes is particular

to GIPSY programs and need not resemble the actual function prototype declaration

they describe in their particular programming language. They serve as a basis for static

and dynamic type assignment and checking within the GIPSY type system with regards

to procedural functions called by other parts of the GIPSY program, e.g., the Lucid

code segments [313].

• #typedecl lists all user-defined data types that can potentially be used by the in-

tensional part, e.g., classes. These are the types that do not explicitly appear in the

matching table (in Table 17, Appendix B) describing the basic data types allowed in

GIPSY programs [313].

• #<IMPERATIVELANG> declares that this is a code segment written in whatever IMPER-

ATIVELANG may be, e.g., #JAVA for Java, #CPP for C++, #FORTRAN for Fortran,

#PERL for Perl, and #PYTHON for Python, etc. [313].

• #<INTENSIONALLANG> declares that what follows is a code segment written in whatever

INTENSIONALLANG may be, for example #GIPL, #LUCX, #JOOIP, #INDEXICALLUCID,

#JLUCID, #OBJECTIVELUCID, #TENSORLUCID, #TRANSLUCID, #FORENSICLUCID [298], and

#ONYX [142], etc., as specified by the available GIPSY implementations and stubs. An

example of a hybrid program is presented in Listing 6.1. The preamble of the program

with the type and function declaration segments are the main source of type information
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that is used at compile time to annotate the nodes in the tree to help both static and

semantic analyses [313].

#typedecl

myclass;

#funcdecl

myclass foo(int ,double);

float bar(int ,int):"ftp:// localhost/cool.class":baz;

int f1();

#JAVA

myclass foo(int a, double b) {

return new myclass(new Integer ((int)(b + a)));

}

class myclass {

public myclass(Integer a) {

System.out.println(a);

}

}

#CPP

#include <iostream >

int f1(void) {

cout << "hello";

return 0;

}

#OBJECTIVELUCID

A + bar(B, C)

where

A = foo(B, C).intValue ();

B = f1();

C = 2.0;

end;

Listing 6.1: Example of a hybrid GIPSY program

6.2.1.2 GICF Overview

The General Imperative Compiler Framework (GICF) [259] is the particular GIPSY’s com-

piler framework that allows for a generalized way of inclusion of any imperative languages into

intensional variants within the GIPSY environment and allowing the syntactical co-existence

of the intensional and imperative languages in one source file by providing a Preprocessor

that splits the intensional and imperative code chunks that are fed to their respective compil-

ers, and then the results are gathered and linked together to form a compiled hybrid program

as an instance of GEER [523].

GLU [186, 187], JLucid, and Objective Lucid [262] prompted the development of

GICF. The framework targets the integration of different imperative languages into GIPSY

programs for I/O, portability, extensibility, and flexibility reasons [269]. GLU promoted C
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and Fortran functions within; JLucid/Objective Lucid/JOOIP promoted embedded

Java. Since GIPSY targets to unite most intensional paradigms in one research system, it

makes an effort to be as general as possible and as compatible as possible and pragmatic at

the same time [269].

The GICF is there if we need to be able to run, for example,GLU programs with minimum

modifications to the code base. GIPSY’s GIPC would be extended with a compiler module in

this case to support C and Fortran functions as it does for Java. GICF is made extensible

such that later on the language support for C++, Perl, Python, shell scripts, and so

on can be relatively easily added. With GICF it is also possible to have a multi-segment

multi-language GIPSY program with embedded code [269].

6.2.2 General Eduction Engine (GEE)

The primary purpose of the GEE is to evaluate compiled Lucid programs following their

operational semantics (see Section 4.1.1.2) either locally or distributively using the lazy

demand-driven model (i.e., eduction). The research in this area covers various extensions

and applications as well as comparative studies of various middleware technologies.

To address run-time scalability concerns, GEE is the component where the distributed

demand-driven evaluation takes place by relying on the Demand Migration System (DMS)

[381, 498] and on the multi-tier architecture overall [159, 269, 320, 360]. The distributed

system [71, 131] design architecture adopted for the run-time system is a distributed multi-

tier architecture, where each tier can have any number of instances [300]. The architecture

bears resemblance with a peer-to-peer architecture [159, 360], where [300]:

• Demands are propagated without knowing where they will be processed or stored.

• Any tier or node can fail without the system to be fatally affected.

• Nodes and tiers can seamlessly be added or removed on the fly as computation is

happening.

• Nodes and tiers can be affected at run-time to the execution of any GIPSY program,

i.e., a specific node or tier could be computing demands for different programs.
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The founding works cited earlier [159, 262, 360, 364, 381, 382, 383, 495, 496, 498] cover

the initial design, and proof-of-concept implementations of the DMF—Jini- and JMS—based

as well as the surrounding integration effort of them in to the GEE [190].

6.2.2.1 Multi-Tier Demand Migration System

The Demand Migration System (DMS) is an implementation of the Demand Migration

Framework (DMF) introduced first by Vassev and then extended by Pourteymour in [381,

382, 383, 496, 498]. The initial version of the DMS relied solely on Jini [192] (now known as

Apache River [20]) for transport and storage of the demands and the results with a JavaS-

paces [243] repository acting as a data warehouse cache for the most frequently demanded

computations and their results (i.e., the demand store). The DMF is an architecture that

is centered around the demand store with transport agents (TAs) that implement a partic-

ular protocol (as a proof-of-concept Jini and JMS [446] TAs are used [382, 383]) to deliver

demands between the demand store, workers (that do the actual computation primarily for

procedural demands), and generators (that request the computation to be done and collect

results) [269, 320]. Thus, GIPSY has some implementation of RMI [520], Jini [192], and

JMS [446] and the one that relies on the DMS for its transport needs [269, 320].

6.2.2.1.1 Multi-Tier Unification of Jini and JMS DMS. Initially, when Vassev

and Pourteymour provided the Jini and JMS implementations respectively, they were rather

disparate and did not integrate fully well with the updated multi-tier architecture put forward

by Paquet at the design and implementation level. However, it was important to bring

them under the same frameworked rooftop for comparative studies as well as concurrent use

in order to be able to gain insights and recommend a particular architecture for a given

GIPSY network setup. Pourteymour [381] initially researched the JMS and its properties

in comparison with Jini in the published literature and tutorials [11, 20, 63, 99, 112, 162,

195]. Ji and the author Mokhov subsequently did a design update and refactoring to enable

smooth scripted selection of either Jini- or JMS-based tiers (or both middleware technologies

used simultaneously) to participate in a single GIPSY computation network [190, 191]. Ji

afterward did an in-depth scalability study of the two [189] in the integrated environment.
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6.2.2.1.2 Generic Eduction Engine Resources. One of the central concepts of the

GIPSY’s’ solution is language independence of the run-time system. In order to achieve that,

the design relies on an intermediate representation that is generated by the compiler: the

Generic Eduction Engine Resources (GEER). The GIPC compiles a program into an instance

of the GEER(s), including a dictionary of identifiers extracted from the program [262, 280,

367]. Since the compiler framework provides with the potential to allow additions of any

flavor of the Lucid language to be added through automated compiler generation taking

semantic translation rules in input [524], the compiler authors need to provide a parser and

a set of rules to compile and link a GEER, often by translating a specific Lucid dialect to

GIPL first [300].

As the name suggests, the GEER structure is generic, in the sense that the data structure

and semantics of the GEER are independent of the source language. This is necessitated by

the fact that the engine was designed to be “source-language independent”, an important

feature made possible by the presence of the Generic Intensional Programming Language

(GIPL) as a generic language in the Lucid family of languages [159, 300, 360]. Thus, the

compiler first translates the source program (written in any flavor of Lucid) into the “generic

Lucid” [362], then generates the GEER run-time resources for this program, which are

then made available at run-time to the various tiers upon demand. The GEER contains,

for all Lucid identifiers in a given program, typing information, rank (i.e., dimensionality

information), as well as an abstract syntax tree (AST) representation of the declarative

definition of each identifier [159, 300, 360]. It is this latter tree that is traversed later on

by the demand generator tier in order to proceed with demand generation. In the case of

hybrid Lucid programs, the GEER also contains a dictionary of procedures called by the

Lucid program, known as Sequential Procedure Classes, as they in fact are wrapper classes

wrapping procedures inside a Java class in cases where the functions being called are not

written in Java [262, 280, 300] using JNI [439].

6.2.2.1.3 GIPSY Tier. The architecture adopted for the most recent evolution of the

GIPSY is a multi-tier architecture where the execution of GIPSY programs is divided in three

different tasks assigned to separate tiers [159, 360]. Each GIPSY tier is a separate process that
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communicates with other tiers using demands, i.e., the GIPSY Multi-Tier Architecture oper-

ational mode is fully demand-driven. The demands are generated by the tiers and migrated

to other tiers using the Demand Store Tier. We refer to a tier as an abstract and generic

entity that represents a computational unit independent of other tiers and that collaborates

with other tiers to achieve program execution as a group (GIPSY network) [159, 300, 360].

The author Mokhov made the tier architecture extensible to the application-specific domains

as well allowing problem-specific tier instances to use the architecture (e.g., see Section 8.3

and Section 5.4). In Figure 34 is the context use case diagram describing user interaction

Figure 34: GMT context use case diagram

with the nodes and tiers to get them started to form a GIPSY software network. The user

interaction is done either via command line or GUI support in the RIPE package interfacing

the GMT [391].

6.2.2.1.4 GIPSY Node. Abstractly, a GIPSY Node is a computer (physical or virtual)

that has registered for the hosting of one or more GIPSY Tiers. GIPSY Nodes are registered

through a GIPSY Manager Tier (GMT) instance. Technically, a GIPSY Node is a controller

that wraps GIPSY Tier instances, and that is remotely reporting and being controlled by
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a GIPSY Manager Tier [159, 360]. Operationally, a GIPSY Node hosts one tier controller

for each kind of Tier (see Figure 35). The Tier Controller acts as a factory that will, upon

necessity, create instances of this Tier, which provide the concrete operational features of the

Tier in question. This model permits scalability of computation by allowing the creation of

new Tier instances as existing tier instances get overloaded or lost [159, 300, 360].

Figure 35: Design of the GIPSY node [159, 360]

6.2.2.1.5 GIPSY Instance. A GIPSY Instance is a set of interconnected GIPSY Tiers

deployed on GIPSY Nodes executing GIPSY programs by sharing their respective GEER

instances. A GIPSY Instance can be executing across different GIPSY Nodes, and the same

GIPSY Node may host GIPSY Tiers that are members of separate GIPSY Instances [159,

300, 360]. In Figure 35 is Paquet’s rending of the described design [360]. GIPSY Instances

form so called GIPSY software networks, similar in a way to software-defined networks [115].

6.2.2.1.6 Demand Generator Tier. The Demand Generator Tier (DGT) generates

demands according to the program declarations and definitions stored in one of the instances

of GEER that it hosts. The demands generated by the Demand Generator Tier instance can

be further processed by other Demand Generator Tier instances (in the case of intensional

demands) or Demand Worker Tier instances (in the case of procedural demands), the de-

mands being migrated across tier instances through a Demand Store Tier instance. Each

DGT instance hosts a set of GEER instances that corresponds to the Lucid programs it

can process demands for. A demand-driven mechanism allows the Demand Generator Tier
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to issue system demands requesting for additional GEER instances to be added to its GEER

Pool (a local collection of cached GEERs it has learned), thus enabling DST instances to

process demands for additional programs in execution on the GIPSY networks they belong

to [159, 300, 360]. The author Mokhov additionally introduced the notion of problem-specific

DGTs (e.g., MARFCATDGT discussed later) to show the wide array of applications that are pos-

sible using the multi-tier architecture as a middleware platform.

6.2.2.1.7 Demand Store Tier. The Demand Store Tier (DST) acts as a tier mid-

dleware in order to migrate demands between tiers. In addition to the migration of the

demands and values across different tiers, the Demand Store Tiers provide persistent storage

of demands and their resulting values, thus achieving better processing performances by not

having to re-compute the value of every demand every time it is re-generated after having

been processed. From this latter perspective, it is equivalent to the historical notion of an

intensional value warehouse [361, 456] in the eductive model of computation (Section 4.1.4,

page 86). A centralized communication point or warehouse is likely to become an execution

bottleneck for large long-running computations. In order to avoid that, the Demand Store

Tier is designed to incorporate a peer-to-peer architecture as needed and a mechanism to

connect all Demand Store Tier instances in a given GIPSY network instance. This allows

any demand or its resulting value to be stored on any available DST instance, but yet allows

abstract querying for a specific demand value on any of the DST instances. If the demanded

value is not found in the DST instance receiving the demand, it will contact its DST peers

using a peer-to-peer mechanism. This mechanism allows to see the Demand Store abstractly

as a single store that is, behind the scenes, a distributed one [159, 300, 360].

6.2.2.1.8 Demand Worker Tier. The Demand Worker Tier (DWT) processes pri-

marily procedural demands, i.e., demands for the execution of functions or methods defined

in a procedural language, which are only present in the case where hybrid intensional pro-

grams are being executed. The DGT and DWT duo is an evolution of the generator-worker

architecture adopted in GLU [5, 186, 187]. It is through the operation of the DWT that the

increased granularity of computation is achieved. Similarly to the DGT, each DWT instance

147



hosts a set of compiled resident procedures (sequential thread procedure classes) that corre-

sponds to the procedural demands it can process pooled locally. A demand-driven mechanism

allows the Demand Worker Tier to issue system demands requesting for additional GEERs

to be added to its GEER pool, thus achieving increased processing knowledge capacity over

time, eductively [159, 300, 360].

6.2.2.1.9 General Manager Tier. A General Manager Tier (GMT) is a component

that enables the registration of GIPSY Nodes and Tiers, and to allocate them to the GIPSY

network instances that it manages. The General Manager Tier interacts with the allocated

tiers in order to determine if new tiers and/or nodes are necessary to be created, and issue

system demands to GIPSY Nodes to spawn new tier instances as needed. In order to ease

the node registration, the General Manager Tier can be implemented using a web interface

and/or a stand-alone graph-based UI [391], so that users can register nodes using a standard

web browser, rather than requiring a client. As with DSTs, multiple GMTs are designed

to be peer-to-peer components, i.e., users can register a node through any GMT, which will

then inform all the others of the presence of the new node, which will then be available for

hosting new GIPSY Tiers at the request of any of the GMT currently running. The GMT

uses system demands to communicate with Nodes and Tiers [159, 300, 360], in a way similar

to SNMP get and set requests [163, 249, 437]. In Figure 36 is a more detailed GMT-oriented

use case diagram of Figure 34 (where other tiers are implied with the focus on the GMT).

Once started, the GMT acts as a service using the DMS, which is designed to play an active

role in managing the GIPSY software network instance along with the interacting user.

6.2.2.2 Scalability

The GIPSY multi-tier architecture after extensive design revision, implementation and refac-

toring [158, 159, 189, 191] was put to scalability tests by Ji [189]. The need for such is also

emphasized in in the recent work by Fourtounis et al . [116] where eduction and massive par-

allelism of intensional evaluation are discussed in a formal model and PoC implementation

for analysis.

Scalability is an important attribute of any computing system as it represents the ability
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Figure 36: Detailed GMT context use case diagram

to achieve long-term success when the system is facing growing demands load. The multi-tier

architecture was adopted for the GIPSY runtime system for research goals such as scalabil-

ity [159, 360]; therefore, upon implementation of the PoC Jini and JMS DMS, the scalability

of the GIPSY runtime system needed to be assessed for the validation of the implementation,

which Ji has done in his mater’s thesis in 2011 [189, 190].

While scalability is an important term, Ji discovered during his research that although

the term scalability is widely used and treated as an important attribute in the computing

community, there was no commonly accepted definition of scalability available [94]. Without

a standardized definition, researchers used scalability to denote the capability for the long-

term success of a system in different aspects, such as the ability of a system to hold increasing

amount of data, to handle increasing workload gracefully, and/or to be enlarged easily [45,

189, 190]. Ji did test under which circumstances Jini DMS was better or worse over the JMS

circumstances in terms of scaling out of GIPSY Nodes onto more physical computers and

their available CPUs for the tiers, then the amount of memory used on the nodes before DSTs

run out of memory, amount of demands they could handle, network delays and turnaround

time, and other characteristics [189].
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The scalability aspect is very important to this work as there is always a possibility of

a need to do heavy-weight data mining and process vast amounts of digital evidence in an

investigation efficiently, robustly, and effectively, a problem akin to a human genome sequence

alignment and reconstruction [98].

6.2.3 Run-time Interactive Programming Environment—(RIPE)

RIPE’s place in the GIPSY’s architecture [262, 361] has to do with the user interaction

aspect of the system. While presently it is the most underdeveloped aspect, it has had some

valuable contributions made to it. The first of them is the PoC realization of the bidirectional

translation of Indexical Lucid and GIPL into visual Graphviz-based data-flow graphs [87]

based on the corresponding earlier assertion by Paquet [359] that such multidimensional

translation is possible (see Chapter E). In Figure 37 is the context use case diagram for RIPE

illustrating user goal-level activities the user needs. The latest one of the contributions is

Figure 37: RIPE context use case diagram

the graph-based visual GMT (GGMT) integration by Rabah [391]. Its purpose is to allow

start up and configuration management of the GIPSY network instances initially developed
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Figure 38: MARFCAT GIPSY network graph

mostly with the command-line interface (CLI) by Ji and a simple Simulator GUI by Vassev.

This more flexible approach made it significantly more usable to operate GIPSY networks.

See for examples its connectivity for the MARFCAT test case with the corresponding graph

in Figure 38.

The author Mokhov additionally contributed to the general refactoring and standardiza-

tion of the RIPE package hierarchy as well as contributing a servlet-based web front-end

to launch the compilation and execution process via a browser on a server side [262] (see

Figure 39). CLI is also supported for RIPE primarily for invocation by various scripts. The

MAC Spoofer Analyzer case relies on this in particular (see Section 9.5) to start the analysis

process.

6.3 Summary

To summarize we have motivated the discussion and necessity of the General Intensional

Programming System (GIPSY) and its core GIPC, GEE, and RIPE components and reviewed
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Figure 39: GIPSY WebEditor interface [262]

its existence in the historical context of GLU as well as follow-up design and development

iterations. Particular level of detail was given to the GIPC and GEE frameworks with the

goal of flexibility (data types, languages, replaceable components) and scalability (multi-tier

DMS) in mind, important for the Forensic Lucid project presented in this thesis, especially

its compiler and extended run-time system design and development described in Chapter 8.
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Part II

Methodology
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Chapter 7

Forensic Lucid Design and

Specification

This chapter discusses the core contribution of the thesis—the Forensic Lucid language.

This includes the methodology on the formalization of the necessary forensic constructs,

the syntax, semantics, and augmentation in dereference to the background work in Part I.

This chapter is an extended compilation of a number of the published and unpublished

works [267, 288, 298, 302, 305, 310] detailing various aspects of Forensic Lucid construction

and case studies including a number of supporting works.

Forensic Lucid [267, 298, 302, 307, 308] is a forensic case specification language for

automatic deduction and event reconstruction in digital crime incidents. The language itself

is general enough to specify any events (in terms of their properties and description), duration,

as well as the context-oriented system model [275, 306, 319]. Forensic Lucid is based on

Lucid [24, 25, 26, 377, 506] and its various dialects that allow natural expression of various

phenomena, inherently parallel, and most importantly, context-aware, i.e., the notion of

context is specified as a first-class value [363, 470, 510]. Forensic Lucid is also significantly

influenced by and is meant to be a more usable improvement of the work of Gladyshev et

al . on formal forensic analysis and event reconstruction using finite state automate (FSA)

to model incidents and reason about them [134, 135] by also including trustworthiness and

credibility factors into the equation using the Dempster–Shafer theory [275, 306, 319].
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As previously mentioned (Chapter 1), the first formal approach to cybercrime investiga-

tion was the finite-state automata (FSA) approach by Gladyshev et al . [134, 135] (Section 2.2,

page 29). Their approach, however, is unduly complex to use and to understand for non-

theoretical-computer science or equivalently minded investigators [298, 309]. The aim of

Forensic Lucid is to alleviate those difficulties, expressive and usable, and to be able to

specify credibility.

Thus, this chapter presents the summary of the requirements, design, and formaliza-

tion of the syntax and semantics of our proposed language. That includes an overview

(Section 7.1), design and requirements considerations of the Forensic Lucid language (Sec-

tion 7.2), including higher-order contexts (Section 7.2.2), syntax (Section 7.3) and semantics

(Section 7.4), and discussion on related topics in Section 7.5, such as mapping of the Foren-

sic Lucid concepts to the background work on intensional logic (cf. Section 3.2, page 59),

Gladyshev’s formalisms (cf. Section 2.4, page 56), and the Dempster–Shafer evidence theory

(cf. Section 3.3.2, page 66) in Section 7.5.1.

7.1 Approach Overview

As the reader may recall, Gladyshev created a finite-state-automata (FSA) model [134, 135]

to encode the evidence and witness accounts (Section 2.2, page 29) in order to combine

them into an evidential statement, then model the FSA of a particular case, and given the

FSA verify if a certain claim agrees with the evidential statement or not (via backtracing

and the event reconstruction algorithm) and if it does what were possible event sequences

that explain that claim [272, 311]. Based on the formal parameters and terms defined in

that work [133, 134, 135], we likewise model various pieces of evidence and witnesses telling

their own stories of an incident. The goal is to put them together to make the description

of the incident as precise as possible [305, 310]. To demonstrate that a certain claim may

be true, an investigator has to show that there are some explanations of the evidence that

agree with the claim. To disprove the claim, the investigator has to show there are no

explanations of evidence that agree with the claim [134, 135]. On the other hand, the

work by Dempster–Shafer and others [151, 420] defined a mathematical theory of evidence
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(Section 3.3.2, page 66), where factors like credibility and trustworthiness play a role in the

evaluation of mathematical expressions [272, 311]. Thirdly, a body of work on intensional

logics and programming (Section 3.2, page 59) provided a formal model that throughout

years of development placed the context as a first-class value in logical and programming

expressions in the Lucid family (Chapter 4) of languages [272, 311].

Thus, in this work we augment Gladyshev’s formalization with the credibility weight

and other properties derived from the mathematical theory of evidence and we encode it

as an evidential context in the Forensic Lucid language for forensic case management,

evaluation, and event reconstruction.

7.2 The Forensic Lucid Language Requirements and

Design Considerations

This section presents concepts and considerations in the design of the Forensic Lucid lan-

guage. The end goal is to define our Forensic Lucid language where its syntactic constructs

and expressions concisely model cyberforensic evidence and stories told by witnesses as a con-

text of evaluations, which normally correspond to the initial state of the case (e.g., initial

printer state when purchased from the manufacturer, as in [135], see further Section 9.3), to-

wards what we have actually observed (as corresponding to the final state in the Gladyshev’s

FSM, e.g., when an investigator finds the printer with two queue entries (Bdeleted, Bdeleted) in

Section 2.2.5.1, page 44). The implementing system (i.e., GIPSY [364], Chapter 6, page 128)

is designed to backtrace intermediate results in order to provide the corresponding event

reconstruction path, if it exists. The fundamental result of a Forensic Lucid expression

in its basic form is either true or false, i.e., “guilty” or “not guilty” given the evidential

evaluation context per explanation with the backtrace(s). There can be multiple backtraces,

that correspond to the explanation of the evidence (or lack thereof) [298, 302, 303, 310].
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7.2.1 Core Language Properties, Features, and Requirements

We define and use Forensic Lucid to model the evidential statements and other expressions

representing the evidence and observations as a higher-order hierarchical context of evalua-

tion [302, 305, 310]. One of the goals is to be able to “script” the evidence and the stories

as expressions and run that “script” through an evaluation system that provides the results

of such an evaluation [303]. An execution trace of a running Forensic Lucid program is

designed to expose the possibility of the proposed claim to be true with the reconstructed

event sequence backtrace between the final observed event to the beginning of the events.

Intensionally, this means the initial possible world q0 is accessible from the final possible

world qfinal via one or more accessibility relations and possibly other worlds (states) (cf. Sec-

tion 3.2, page 59). Forensic Lucid capitalizes in its design by aggregating the features and

semantics of multiple Lucid dialects mentioned in Chapter 4 needed for these tasks along

with its own extensions [298, 302, 303, 310].

Lucx’s context calculus with contexts as first-class values [510] and operators on simple

contexts and context sets (union, intersection, etc., defined further) are augmented to

manipulate hierarchical contexts in Forensic Lucid (Section 7.3.3, page 183). Additionally,

Forensic Lucid inherits the properties (described subsequently in detail in this chapter) of

MARFL (see Appendix C), Objective Lucid and JOOIP (see Section 4.3.2, page 92) and

their comprising dialects for the arrays and structural representation of data for modeling

the case data structures such as events, observations, and groupings and correlation of the

related data [298, 302, 303]. Hierarchical contexts in Forensic Lucid follow the example

of MARFL [270] using a dot operator and by overloading both @ and # (defined further in

Section 7.3, page 166) to accept different types as their left and right arguments [298, 302,

305, 310] (cf. Table 15, page 203).

One of the basic requirements in Forensic Lucid design is that the final language is

a conservative extension of the previous Lucid dialects (valid programs in those languages

are valid programs in Forensic Lucid). This is helpful when complying with the compiler

(GIPC) and the run-time subsystem (GEE) frameworks within the implementing system, the

General Intensional Programming System (GIPSY) (cf., Section 6.1) [302, 305, 310, 364, 368].

The partial translation rules (Section 7.3.2.2) provided when implementing the language
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compiler within GIPSY, such that the run-time environment (General Eduction Engine, or

GEE) can execute it with minimal changes to GEE’s implementation [303, 310].

7.2.2 Higher Order Context

Higher-order contexts (HOCs) represent essentially nested contexts, e.g., as conceptually

shown in Figure 40 modeling evidential statement for forensic specification evaluation. Using

the ⟨dimension : tag⟩ representation, a HOC looks like:

{es : {os1 : {o1 : (P1, min, max), o2 : (P2, min, max), o2 : (P3, min, max)}, os2 : {...}, os3 : {...}}

The early notion and specification of nested contexts first appeared Swoboda’s works [449,

451, 452], but there the evaluation has taken place only at the leaf context nodes. Another,

more recent work on the configuration specification as a context in the intensional manner

was the MARFL language (Appendix C) of the author [267, 270], allowing evaluation at

arbitrary nesting of the configuration context with some defaults in the intermediate and leaf

context nodes [300].

Figure 40: Nested context hierarchy example for cyberforensic investigation [298, 302]

Forensic Lucid is context-oriented where a crime scene model comprises a state ma-

chine of evaluation and the forensic evidence and witness accounts comprise the context for

its possible worlds. Formally, the basic context entities comprise an observation o (in Equa-

tion 7.2.2.1), observation sequence os (in Equation 7.2.2.2), and the evidential statement (in

Equation 7.2.2.3). These terms are inherited from Gladyshev’s work [134, 135] (Section 2.1.4,

page 29) and represent the forensic context of evaluation in Forensic Lucid. An obser-

vation of a property P has a duration between [min,min+max] per Section 2.1.4, page 29.
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This original definition of o is extended with w to amend each observation with weight factor

(to indicate probability, credibility, or belief mass) to model trustworthiness of observations,

evidence, and witness accounts in accordance with the Dempster–Shafer mathematical the-

ory of evidence [420]. t is an optional timestamp as in a forensic log for that property used

to refine event co-relation in time for temporal data [275, 306, 319].

An observation sequence os represents a partial description of an incident told by evi-

dence or a witness account (electronic or human). It is formally a chronologically ordered

collection of observations representing a story witnessed by someone or something (e.g., a

human witness, a sensor, or a logger). It may also encode a description of any digital or

physical evidence found. All these “stories” (observation sequences) all together represent an

evidential statement about an incident (its knowledge base). The evidential statement es is

an unordered collection of observation sequences. The property P itself can encode anything

of interest—an element of any data type or even another Forensic Lucid expression, a

nested object instance hierarchy, or an event [275, 306, 319].

o = (P,min,max, w, t) (7.2.2.1)

os = {o1, . . . , on} (7.2.2.2)

es = {os1, . . . , osm} (7.2.2.3)

Having constructed the context in the form of the evidential statement, one needs to build

a transition function ψ and its inverse Ψ−1 to describe the “crime scene” at the center of

the incident (or the incident scene to generalize the term a little bit to include accidents,

malfunctions, etc. that are not necessarily criminal or malicious in nature).

7.2.3 Formal Syntax and Semantics

The Forensic Lucid system incorporates the necessary syntax and semantics constructs

[311] as detailed in the following sections.
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7.2.3.1 Definitions and Terms

This section defines common terminology used subsequently in the chapter throughout the

formal definition of Forensic Lucid syntax and semantics and their description.

7.2.3.1.1 Structural Operational Semantics. We use structural operational seman-

tics (see examples in Chapter 4) to describe the semantics of Forensic Lucid. We justify

this choice for a number of reasons.

• Plotkin proposed the notion in 1981 [379]. While in 1979–1982 Ashcroft and Wadge

argued for prescriptive denotational semantics for their language [28], Faustini in his

thesis the same year established the equivalence of a denotational and an operational

semantics of pure dataflows [106] (refer to Section 4.1.2, page 82 for information on

dataflows).

• Mosses in 2001 [324] discussed the differences between denotational and operational

semantics (among others). In the same year, Degano and Priami argued operational

semantics is close to intuition, mathematically simple, and allows easy and early pro-

totyping [84].

• Paquet [359] in 1999 has given a structural operational semantics of GIPL in 1999

(recited earlier in Figure 23, page 82). The subsequently produced work on Lucx [470,

510], JOOIP [525], and previous material by the author Mokhov used this semantics

style consistently ever since.

• A lot of Java-related publications use structured operational semantics. GIPSY (Chap-

ter 6) is implemented in Java and it is easier to relate to Java semantics. GEE’s main

interpreter follows this style for GIPL programs. Not to mention the hybrid Lucid-

Java approaches such that of Objective Lucid and JOOIP mentioned earlier that

need to specify joint semantics.

• PRISM’s language semantics is also described in the structural operational semantics

style ([188], Section 8.2.2.1, page 215).
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The basic operational semantics description has rules in the form of Premises
Conclusions

with

Premises defined as possible computations, which, if take place, Conclusions will also take

place [84, 510].

Following the steps presented in Section 4.1.1.2, page 78, [359, 510] we thus define the

following:

Table 13: Forensic Lucid identifier types in D
type form
dimension (dim)
constant (const, c)
operator (op, f)
variable (var, E)
function (func, idi, E)
class (class, cid, cdef)
member variable (classV, cid.cvid, vdef)
member method (classF, cid.cfid, fdef)
free procedure (freefun, ffid, ffdef)
context operator (cop, f)
context set operator (sop, f)
observation (odim, E,min,max, w, t)
observation sequence (osdim, ordered odimi)
evidential statement (esdim, unordered osdimi)
forensic operator (fop, f)

Definition environment: The definition environment D stores the definitions of all of the

identifiers that appear in a Forensic Lucid program. As in Equation 4.1.1.3, it is a

partial function

D : Id→ IdEntry (7.2.3.1)

where Id is the set of all possible identifiers and IdEntry, summarized in Table 13,

has possible kinds of values for each identified kind. (This table is an extended version

of Table 1 with additional entries we define further.) Per Equation 4.1.1.1, D ⊢ E : v

means the expression E evaluates to the value v under D [359].

Evaluation context: The current evaluation context P (sometimes also referred to as a

point in the context space) is an additional constraint put on evaluation, so per Equa-

tion 4.1.1.2, D,P ⊢ E : v specifies that given D, and in P , expression E evaluates

to v [359].
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Identifier kinds: The following identifier kinds can be found in D:

1. Dimensions define simple coordinate pairs, which one can query and navigate with

the # and @ operators. Their IdEntry is simply (dim) [359].

2. Constants (IdEntry = (const, c), where c is the value of the constant) are exter-

nal entities that provide a single value independent of the context of evaluation.

Examples are integers, strings, and Boolean values, etc. [359].

3. Data operators are external entities that provide memoryless functions. Examples

are the arithmetic and Boolean functions. The constants and data operators are

said to define the basic algebra of the language. Their IdEntry is (op, f), where

f is the function itself [359].

4. Variables carry the multidimensional streams (described in Section 4.1.2, page 82).

Their IdEntry is (var, E), where E is the Forensic Lucid expression defining

the variable. Variable names are unique [359]. Finite variable streams can be

bound by the special beginning-of-data (bod) and end-of-data (eod) markers (eod

was introduced in [358]). Scoping and nesting is resolved by renaming and via the

dot “.” operator.

5. Functions (func, idi, E) are Forensic Lucid user-defined functions, where the idi

are the formal parameters to the function and E is the body of the function [359].

6. Classes (class, cid, cdef) in our work are user-defined Java classes, mem-

bers of which can be accessed from Forensic Lucid (come from Objective

Lucid and JOOIP) to support Java-Lucid hybrid intensional-imperative pro-

gramming [262, 525]. This integration is needed, e.g., for the self-forensics project

(Appendix D). The same applies to member variables and methods described fur-

ther. In general, the Classes entry does not need to be restricted to Java classes,

but can be expanded to be defined in any language that supports the notion and

the run-time supports hybridification. cid is the class identifier, and cdef is a class

definition in the imperative language (Java in our case, so cdef = JavaCDef).

7. Member variables (classV, cid.cvid, vdef) are user-defined Java data mem-

bers which can be accessed from Forensic Lucid (are originally fromObjective
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Lucid and JOOIP) to support Java-Lucid hybrid intensional-imperative pro-

gramming [262, 525]. cid.cvid is the variable identifier in the class cid, and vdef

is a member variable definition in the imperative language (Java in our case, so

vdef = JavaVDef).

8. Member methods (classF, cid.cfid, fdef) are user-defined Java methods (are

originally from Objective Lucid and JOOIP) to support Java-Lucid hybrid

intensional-imperative programming [262, 525]. cid.cfid is the method identi-

fier in the class cid, and fdef is a member method definition in the imperative

language (Java in our case, so fdef = JavaFDef).

9. Free procedures (also known as free functions in the previous work [262, 525])

(freefun, ffid, ffdef) are user-defined Javamethods written “freely” without

an explicit container class directly in a Forensic Lucid program (the notion

comes from JLucid) [262]. (It is a responsibility of the compiler to generate a

wrapper class containing any such procedures [262].)

10. Context operators (cop, f) is a Lucx-style simple context operator type [470, 510].

These operators help us to manipulate context components in set-like operations,

such as union, intersection, difference, and the like. Both simple context and

context set operators are defined further.

11. Context set operators (sop, f) is a Lucx-style context set operator type [470, 510].

Both simple context and context set operators are defined further.

12. Observations (odim, E,min,max, w, t) are Forensic Lucid dimensions each en-

coding an observation of a property defined by a Forensic Lucid expression

E, duration [min,min+max], basic belief mass assignment w, and a wall-clock

timestamp t. This is a basic unit of a forensic context. One can manipulate these

with the context operators.

13. Observation sequences (osdim, odimi) are Forensic Lucid dimensions encoding

each observation sequence, as an ordered collection of observations odimi. This is

a part of a forensic context. One can manipulate these with the context operators.

14. Evidential statements (esdim, osdimi) are Forensic Lucid dimensions encoding
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an unordered collection of observation sequences osdimi. This is a part of a forensic

context. One can manipulate these with the context operators.

15. Forensic operators (fop, f) are Forensic Lucid context operators [470, 510]

defined further in Section 7.3.4, page 191.

7.2.3.1.2 Context Types. A general definition of context is [470, 510]:

Definition 1. Context: A context c is a finite subset of the relation: c ⊂ {(d, x)|d ∈ DIM ∧

x ∈ T}, where DIM is the set of all possible dimensions, and T is the set of all possible

tags [470, 510].

Definition 2. Tag: Tags are the indices to mark positions in dimensions [470, 510].

Definition 3. Simple context: A simple context is a collection of ⟨dimension : tag⟩ pairs,

where there are no two such pairs having the same dimension component. Conceptually,

a simple context represents a point in the context space, i.e., this is the traditional GIPL

context P. A simple context having only one ⟨dimension : tag⟩ pair is called a micro context.

It is the building block for all the context types [470, 510].

Syntactically, simple context is [E : E, ..., E : E] [470, 510], i.e., [Ed1 : Et1 , ..., Edn : Etn ]

where Edi evaluate to dimensions and Eti evaluate to tags.

Definition 4. Context set: A context set (also known as “non-simple context”) is a set of

simple contexts. Context sets represent regions of the context space, which can be seen as a

set of points, considering that the context space is discrete. Formally speaking, context set is

a set of ⟨dimension : tag⟩ mappings that are not defined by a function [470, 510].

Syntactically, context set is {E, ..., E}, where E → [E : E, ..., E : E].

7.2.3.1.3 Forensic Context.

Definition 5. Forensic context: Forensic context represents an evidential statement of a

case under consideration. It’s a hierarchical encoding of evidence in terms of the evidential

statement, observation sequence, and observation constructs.

Forensic contexts form the basis of cyberforensic reasoning in Forensic Lucid and are

elaborated further in detail in terms of syntax and semantics.
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7.2.3.1.4 Context Calculus.

Definition 6. Context calculus: Context calculus is a calculus defining representation and

types of contexts and operators on them [470, 510].

In Lucx terms, context calculus defines a set of context operators on simple contexts

and context sets [510] presented earlier. In Forensic Lucid terms, the context calculus is

extened to support forensic contexts and additional operators and lifting of Lucx contexts

into forensic contexts. All the new constructs are defined in the sections that follow.

7.2.3.1.5 Tag Set Types.

Definition 7. Tag set: A tag set T is a collection of all possible tags attached to a dimen-

sion [470].

Traditionally, in many earlier Lucid dialects T was always an infinite ordered set of

natural numbers N. However, it is not always convenient in some application domains [470],

such as forensic computing. In Lucx’s compiler implementation by Tong [470] flexible tag

set types were designed to allow more application domains. Tags, therefore, can be of any

given desired type. It is up to the particular semantic analyzer to determine validity of tag

types [470]. By default each dimension’s tag set is both ordered and infinite, to maintain

backward compatibility [470].

Definition 8. Ordered Tag Set: A tag set on which a relation R satisfies the following three

properties [235, 235, 470]:

1. Reflexive: For any a ∈ S, we have aRa

2. Antisymmetric: If aRb and bRa, then a = b

3. Transitive: If aRb and bRc, then aRc

which is essentially a partial order set (post) [428, Chapter 4]. Ordered tag set can be either

finite or infinite [470].

Definition 9. Unordered Tag Set: A tag set which is not ordered is called an unordered set.

Unordered tag set can be either finite or infinite [470].
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Definition 10. Finite Tag Set: A tag set I is called finite and more strictly, inductive, if

there exists a positive integer n such that I contains just n members. Finite tag set can be

either ordered or unordered [470].

Definition 11. Infinite Tag Set: A tag set, which is not finite is called an infinite set. Infinite

tag set can be either ordered or unordered [470].

Definition 12. Periodic Tag Set: A tag set where its ordered subset represents a period

repeated in a pattern two or more times. Can be combined with the (un)ordered, finite, and

infinite types [470].

Definition 13. Non-periodic Tag Set: A tag set that is not periodic. Can be combined with

the (un)ordered, finite, and infinite types [470].

Syntactically, ordered, unordered, finite, infinite, periodic, and nonperiodic are

defined in the language to declare a desired permutation of a tag set type declared alongside

dimension [470]. Forensic Lucid inherits these definitions from Lucx. Certain combi-

nations are of not much practical use (e.g., unordered infinite tag set types), but they

are provided for completeness by Tong [470]. In Forensic Lucid, ordered and unordered

finite tag sets are the most common in usage.

Following the above fundamental definitions, Section 7.3 is devoted to the complete syn-

tax specification and Section 7.4 is devoted to the operational semantics specification of

Forensic Lucid.

7.3 Concrete Forensic Lucid Syntax

The concrete syntax of the Forensic Lucid language is summarized in several figures. It

is influenced by the productions from Lucx [510, 512] (see Section 4.3.1, page 92), JLucid

and Objective Lucid [262], GIPL and Indexical Lucid [359] (see Section 4.1, page 76),

and the hierarchical contexts from MARFL [270] (see Appendix C for details).

In Figure 41 are common top-level syntax expressions E of the language from identifiers,

to function calls, operators, arrays, the where clause, dot-notation, and so on. In Figure 42

are the Q where productions containing various types of declarations, including the common
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Lucx dimensions and their tag sets as well as the new constructs for forensic dimension

types. In Figure 43 we elaborate on the syntactical details on the hierarchical forensic

context specification of the observations, observation sequences, and evidential statements

including different observation types. In Figure 44 is a syntax specification of different types

of operators, such as arithmetic, logic, and intensional operators, in their unary and binary

forms.

The embed operator, the notion of which is inherited from JLucid (Section 4.3.2.1,

page 92), is adapted in Forensic Lucid primarily to include large evidential specifications

from external to the main program sources, such as encoded log files.

7.3.1 Syntactical Extension for Observations

The syntactical notation of the unit of observation in Forensic Lucid extends the obser-

vation context definition with the optional w and t components. w is always defined and

by default is 1, and t can be left undefined (set to eod) as it is not always needed. When

defined, t is a wall-clock timestamp of the beginning of the observation, which can be used

to be mapped to from log files or other real-time sensitive data and to present in the event

reconstruction reports. t can also be used in reactive systems with clocks and self-forensics,

but this aspect is not discussed here. Thus, the following would be an actual expression in

the language given all the symbols are defined [311] and expressions declared.

observation o = (P, min, max, w, t);

or more concretely:

observation o = ("A printed", 1, 0, 0.85);

where t is omitted, w = 85% confidence/belief, and the rest as in the original definition by

Gladyshev (cf., Section 2.2). Next,

observation o = P;

P = "A printed";

is equivalent to
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E ::= id (7.3.0.2)

| E(E, ..., E) (7.3.0.3)

| E[E, ..., E](E, ..., E) (7.3.0.4)

| if E then E else E fi (7.3.0.5)

| # E (7.3.0.6)

| E @ E (7.3.0.7)

| E⟨E, . . . , E⟩ (7.3.0.8)

| select(E,E) (7.3.0.9)

| Box[E, . . . , E|E] (7.3.0.10)

| E where Q end; (see Figure 42) (7.3.0.11)

| [E : E, ..., E : E] (7.3.0.12)

| E bin-op E (7.3.0.13)

| un-op E (7.3.0.14)

| E i-bin-op E | E i-bin-opw E (7.3.0.15)

| i-un-op E | i-un-opw E (7.3.0.16)

| E cxtop E (7.3.0.17)

| bounds (7.3.0.18)

| embed(URI,METHOD,E,E, ...) (7.3.0.19)

| E[E, ..., E] (7.3.0.20)

| [E, ..., E] (7.3.0.21)

| E.E (7.3.0.22)

| E.E(E, ..., E) (7.3.0.23)

bounds ::= eod | bod | +INF | -INF (7.3.0.24)

Figure 41: Concrete Forensic Lucid syntax (E) [302, 303]

observation o = (P, 1, 0, 1.0);

P in the example can be any Forensic Lucid expression. If the wall-clock timestamp is

desired, it can be produced as a string or an integer in one of the standard date/time formats,

e.g., “Mon Jul 29 11:58:16 EDT 2013” or 16581129611312091 (as a number of seconds from

the epoch). Internally, they are uniformly represented. These can be supplied by human
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Q ::= dimension id, ..., id; (7.3.0.25)

| dimension id : ordered finite [periodic | nonperiodic] {E, . . . , E } (7.3.0.26)

| dimension id : ordered finite [periodic | nonperiodic] {E to E [step E] }
(7.3.0.27)

| dimension id : ordered infinite [periodic | nonperiodic] {E to E [step E] }
(7.3.0.28)

| dimension id : ordered infinite = E (7.3.0.29)

| dimension id : unordered finite [periodic | nonperiodic] {E, . . . , E }
(7.3.0.30)

| dimension id : unordered infinite = E (7.3.0.31)

| evidential statement [unordered [finite]] id [= ES]; (7.3.0.32)

| observation sequence [ordered [finite]] id [= OS]; (7.3.0.33)

| observation id [= O]; (7.3.0.34)

| id = E; (7.3.0.35)

| id(id, ...., id) = E; (7.3.0.36)

| E.id = E; (7.3.0.37)

| QQ (7.3.0.38)

Figure 42: Concrete Forensic Lucid syntax (Q) [302, 303]

investigators, but more often by Forensic Lucid-generating logging facilities, such as that

of MAC Spoofer Investigation (Section 9.5, page 257). In the cases, when the wall-clock

timestamp is not needed, it is null.

observation o = ("A printed", 1, 0, 0.85, "Mon Jul 29 11:58:16 EDT 2013");

See Section 7.4 for the discussion on the semantic aspects of these declarations.

7.3.2 Core Operators

The basic set of the classic intensional operators [359] is extended with the similar opera-

tors, but inverted in one of their aspects: either negation of truth or reversal of direction

of navigation (or both). While some of such operators can be defined using the existing

operators, just as we define them further, their introduction as a syntactical sugar allows for
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ES ::= {OS, ..., OS} // evidential statement (7.3.0.39)

| OS (7.3.0.40)

| E (7.3.0.41)

OS ::= {O, ..., O} // observation sequence (7.3.0.42)

| O (7.3.0.43)

| E (7.3.0.44)

O ::= (E,E,E,E,E) // observation (P, min, max, w, t) (7.3.0.45)

| (E,E,E,E) // (P, min, max, w) (7.3.0.46)

| (E,E,E) // (P, min, max) (7.3.0.47)

| (E,E) // (P, min) (7.3.0.48)

| E // P (7.3.0.49)

| $ // no-observation (Ct, 0, INF+) (7.3.0.50)

| \0(E) // zero-observation (P, 0, 0) (7.3.0.51)

Figure 43: Concrete Forensic Lucid syntax (ES,OS,O) [302, 303]

better expressibility. First, we provide a definition of these new operators alongside with the

classical ones to familiarize the reader what they do.

7.3.2.1 Definitions of Core Operators

The operators are defined below to give a more complete picture. The classical operators

first, next, fby, wvr, upon, and asa were previously defined in [359] and earlier works

(see [129, 348] and papers and references therein). The other complimentary, inverse, and

negation operators are added in this work (while most of the these seem obvious to have in

any Lucid dialect), so they were defined and revised from [301, 302]. In this list of operators,

especially the reverse ones, we make an assumption that the streams we are working with

are finite, which is sufficient for our tasks. Thus, our streams of tags (context values) can be

bounded between bod and eod constructs (similarly as in intensional databases [358, 365])

and be of a finite tag set type. For the summary of the application of the defined further
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bin-op ::= arith-op | logical-op | bitwise-op (7.3.0.52)

un-op ::= + | - (7.3.0.53)

arith-op ::= + | - | * | / | % | ^ (7.3.0.54)

logical-op ::= < | > | >= | <= | == | in | && | || | ! (7.3.0.55)

bitwise-op ::= | | & | ~ | !| | !& (7.3.0.56)

i-bin-op | i-bin-opw ::= @ | i-bin-op-forw | i-bin-op-back (7.3.0.57)

| i-logic-bitwise-op | i-forensic-op (7.3.0.58)

i-bin-op-forw ::= fby | upon | asa | wvr (7.3.0.59)

| nfby | nupon | nasa | nwvr (7.3.0.60)

i-bin-op-back ::= pby | rupon | ala | rwvr (7.3.0.61)

| npby | nrupon | nala | nrwvr (7.3.0.62)

i-logic-bitwise-op ::= and | or | xor (7.3.0.63)

| nand | nor | nxor (7.3.0.64)

| band | bor | bxor (7.3.0.65)

i-un-op | i-un-opw ::= # | i-bin-un-forw | i-bin-un-back (7.3.0.66)

i-bin-un-forw ::= first | next | iseod (7.3.0.67)

| second | nnext | neg | not (7.3.0.68)

i-bin-un-back ::= last | prev | isbod (7.3.0.69)

| prelast | nprev (7.3.0.70)

cxtop ::= \isSubContext | \difference (7.3.0.71)

| \intersection | \projection (7.3.0.72)

| \hiding | \override | \union | \in (7.3.0.73)

i-forensic-op ::= combine | product | bel | pl (7.3.0.74)

Figure 44: Concrete Forensic Lucid syntax (operators) [302, 303]
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operators’ examples [298, 303], please refer to Section 7.3.2.3, page 183.

A less mundane version of the core intensional operators is added to account for the belief

mass assignments w in observations (denoted as opw in the examples, but syntactically they

are expressed identically to the classical versions in a Forensic Lucid program). These

augmented operator versions act just as normal operators would, but with the additional

requirement w ≥ 1/2. Such behavior is only defined over the forensic contexts when a run-

time determination is made over the context type used. When w < 1/2, eod is returned.

When w = 1, such operators behave using their classical sense. It is possible to mix forensic

and non-forensic contexts, in such a case the non-forensic contexts are lifted to forensics

contexts (see the semantics in Section 7.4) before the application of the operator.

Definition 14. Let X be a Forensic Lucid stream of natural numbers (Section 4.1.2,

page 82) and OX is a stream of observations of X (effectively, lifting every element of X to

an observation; additionally a stream of observations is in effect an observation sequence as

we shall see), where min = 1,max = 0, w = 1.0. Let Y be another stream of Boolean values;

true is cast to 1 and false to 0 when used together with X in one stream. OY is a stream of

observations of Y .

X = (x0, x1, . . . , xi, . . .)

= (0, 1, . . . , i, . . .)

Y = (y0, y1, . . . , yi, . . .)

= (true, false, . . . , true, . . .)

OX = (o0(x0, 1, 0, 1.0), o1(x1, 1, 0, 1.0), . . . , oi(xi, 1, 0, 1.0), . . .)

= (o0(0, 1, 0, 1.0), o1(1, 1, 0, 1.0), . . . , oi(i, 1, 0, 1.0), . . .)

OY = (o0(y0, 1, 0, 1.0), o1(y1, 1, 0, 1.0), . . . , oi(yi, 1, 0, 1.0), . . .)

Definition 15. first: a stream of the first element of the argument stream.

first X = (x0, x0, . . . , x0, . . .)

firstw OX = first OX && o0.w ≥ 1/2 = (o0, o0, . . . , o0, . . .)
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Definition 16. second: a stream of the second element of the argument stream.

second X = (x1, x1, . . . , x1, . . .)

secondw OX = second OX && o1.w ≥ 1/2 = (o1, o1, . . . , o1, . . .)

Definition 17. last: a stream of the last element of the argument stream.

last X = (xn, xn, . . . , xn, . . .)

lastw OX = (on, on, . . . , on, . . .)

This informal definition of the last operator relies on the earlier stated assumption that a

lot of our streams can be explicitly finite for the language we designed. This affects some of

the follow-up operators that rely in that fact just as well. last works with finite tag sets.

Definition 18. prelast: a stream of elements one before the last one of the argument

stream.

prelast X = (xn−1, xn−1, . . . , xn−1, . . .)

prelastw OX = (on−1, on−1, . . . , on−1, . . .)

Definition 19. next: a stream of elements of the argument stream after the first.

next X = (x1, x2, . . . , xi+1, . . .)

second X = first next X

nextw OX = second OX && oi.w ≥ 1/2 = (o1, o2, . . . , on, . . .)

secondw OX = firstw nextw OX
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Definition 20. prev: a stream of elements of the argument stream before the last.

prev X = (xn−1, . . . , xi+1, xi, xi−1, . . .)

prelast X = first prev X

prevw OX = (on−1, . . . , oi+1, oi, oi−1, . . .)

prelastw OX = firstw prevw OX

Definition 21. fby: the first element of the first argument stream followed by all of the

second argument stream.

X fby Y = (x0, y0, y1, . . . , yi−1, . . .)

OX fbyw Y = OX fby (oi(Y, 1, 0, 1.0))

OX fbyw OY = OX fby (OY wvr OY .w ≥ 1/2)

X fbyw OY = (o0(X, 1, 0, 1.0)) fby (OY .P wvr OY .w ≥ 1/2)

In the definitions above mixing OX and Y shows lifting of Y to a default observation di-

mension per semantics described in Section 7.4, page 192. A similar technique applies to all

Forensic Lucid intensional operators, so we omit the repetition in subsequent definitions.

Definition 22. pby: the first element of the first argument preceded by all of the second.

X pby Y = (y0, y1, ..., yi−1, ..., yn, x0)

OX pbyw OY = OX pby (OY .P wvr OY .w ≥ 1/2)

. . . = . . .

Definition 23. neg: a stream of negated arithmetic values of the argument.

neg X = (-x0, -x1, -x2, ..., -xi+1, ...)
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Definition 24. not: a stream of inverted truth values of the argument.

not X = (!x0, !x1, !x2, ..., !xi+1, ...)

Definition 25. and: a logical AND stream of truth values of its arguments.

X and Y = (x0 && y0, x1 && y1, x2 && y2, . . . , xi+1 && yi+1, . . .)

Definition 26. or: a logical OR stream of truth values of its arguments.

X or Y = (x0 || y0, x1 || y1, x2 || y2, . . . , xi+1 || yi+1, . . .)

Definition 27. xor: a logical XOR stream of truth values of its arguments.

X xor Y = (x0 ⊕ y0, x1 ⊕ y1, x2 ⊕ y2, . . . , xi+1 ⊕ yi+1, . . .)

Definition 28. wvr (stands for whenever): wvr chooses from its left-hand-side operand only

values in the current dimension where the right-hand-side evaluates to true.

X wvr Y =

if first Y ̸= 0

then X fby (next X wvr next Y )

else (next X wvr next Y )

OX wvrw OY = OX wvr (OY .P && OY .w ≥ 1/2)

. . . = . . .

Definition 29. rwvr (stands for retreat whenever): rwvr chooses from its left-hand-side

operand backwards only values in the current dimension where the right-hand-side evaluates

to true.
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X rwvr Y =

if last Y ̸= 0

then X pby (prev X rwvr prev Y )

else (prev X rwvr prev Y )

OX rwvrw OY = OX rwvr (OY .P && OY .w ≥ 1/2)

. . . = . . .

Definition 30. nwvr (stands for not whenever): nwvr chooses from its left-hand-side operand

only values in the current dimension where the right-hand-side evaluates to false.

X nwvr Y = X wvr not Y =

if first Y == 0

then X fby (next X nwvr next Y )

else (next X nwvr next Y )

OX nwvrw OY = OX nwvr (OY .P && OY .w ≥ 1/2)

. . . = . . .

Definition 31. nrwvr (stands for not to retreat whenever): nrwvr chooses from its left-

hand-side operand backwards only values in the current dimension where the right-hand-side

evaluates to false.

X nrwvr Y = X rwvr not Y =

if last Y == 0

then X pby (prev X nrwvr prev Y )

else (prev X nrwvr prev Y )

OX nrwvrw OY = OX nrwvr (OY .P && OY .w ≥ 1/2)

. . . = . . .
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Definition 32. asa (stands for as soon as): asa returns the value of its left-hand-side as a

first point in that stream as soon as the right-hand-side evaluates to true.

X asa Y = first (X wvr Y )

OX asaw OY = firstw (OX wvrw OY )

. . . = . . .

Definition 33. ala (stands for as late as (or reverse of as soon as)): ala returns the value

of its left-hand-side as the last point in that stream when the right-hand-side evaluates to true

for the last time.

X ala Y = last (X wvr Y )

OX alaw OY = lastw (OX wvrw OY )

. . . = . . .

Definition 34. nasa (stands for not as soon as): nasa returns the value of its left-hand-side

as a first point in that stream as soon as the right-hand-side evaluates to false.

X nasa Y = first (X nwvr Y )

OX nasaw OY = firstw (OX nwvrw OY )

. . . = . . .

Definition 35. nala (stands for not as late as (or reverse of not a soon as)): nala

returns the value of its left-hand-side as the last point in that stream when the right-hand-

side evaluates to false for the last time.

X nala Y = last (X nwvr Y )

OX nalaw Y = lastw (OX nwvrw OY )

. . . = . . .
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Definition 36. upon (stands for advances upon): unlike asa, upon switches context of its

left-hand-side operand if the right-hand side is true.

X upon Y = X fby (

if first Y ̸= 0

then (next X upon next Y )

else (X upon next Y ))

OX uponw OY = OX upon (OY .P && OY .w ≥ 1/2)

. . . = . . .

Definition 37. rupon (stands for retreats upon): rupon switches context backwards of its

left-hand-side operand if the right-hand side is true.

X rupon Y = X pby (

if last Y ̸= 0

then (prev X rupon prev Y )

else (X rupon prev Y ))

OX ruponw OY = OX rupon (OY .P && OY .w ≥ 1/2)

. . . = . . .

Definition 38. nupon (stands for not advances upon, or, rather advances otherwise): nupon

switches context of its left-hand-side operand if the right-hand side is false.

X nupon Y = X upon not Y = X fby (

if first Y == 0

then (next X nupon next Y )

else (X nupon next Y ))

OX nuponw OY = OX nupon (OY .P && OY .w ≥ 1/2)

. . . = . . .
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Definition 39. nrupon (stands for not retreats upon): nrupon switches context backwards

of its left-hand-side operand if the right-hand side is false.

X nrupon Y = X rupon not Y = X pby (

if last Y == 0

then (prev X nrupon prev Y )

else (X nrupon prev Y ))

OX nruponw OY = OX nrupon (OY .P && OY .w ≥ 1/2)

. . . = . . .

Definition 40. “.” (dot): is a scope membership navigation operator.

The “.” operator is employed in multiple uses, so we include it into our syntax and

semantics.

• From indexical expressions [349, 359] with the operators defined in the preceding and

following sections it facilitates operations on parts of the evaluation context to denote

the specific dimensions of interest to work with.

• From JOOIP/Objective Lucid expressions, . allows nested class/object member-

ship access.

• Additional use in Forensic Lucid (inspired from MARFL) is the contextual depth

navigation, similar in a way to the OO membership navigation, such as ES.OS.O.P

(see summary in Table 15).

Definition 41. #: queries the current context of evaluation.

Traditionally ([359], Section 4.1.3, page 85) # is defined as:

# = 0 fby (#+ 1)
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for N tag set, that were infinite and ordered, essentially being akin to array indices into the

current dimension X, and #X returned the current implicit index within X. Subsequently,

#.E = 0 fby.E(#+ 1)

#C = C

#S = S

#F = F

#.F = 0 fby.F.(#+ 1)

#w ≡ #

#.E was introduced to allow querying any part of the current multidimensional context where

E evaluates to a dimension, a part of the context. C and S are Lucx simple contexts and

context sets.

Since the tag set types were first augmented in Lucx to contain arbitrary enumerable tag

set values (cf. Section 7.2.3.1.5, page 165, [470]), such as strings, or non-numerically ordered

sequences, # is augmented to support such tag sets by returning the current tag of any type in

the current dimension indexing them in the order of their declaration in a Forensic Lucid

program.

In Forensic Lucid, # is augmented to support querying hierarchical forensic contexts

F . The indexing mechanism is same as in Lucx Thus, for an evidential statement ES, # ES

returns the current observation sequence OS, which is a tag in ES; likewise # OS returns the

current observation O, which is a tag in OS; # O returns the current tuple ⟨P,min,max, w, t⟩.

When combined with the Forensic Lucid dot . operator: ES.# returns the current OS,

ES.#.# returns the current O, ES.#.#.P returns the current O.P , and so on. #w is equivalent

to # as it is a query and not a navigation operator, so it does not take w into account when

querying the current context.
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Definition 42. @ : switches the current context of evaluation.

Traditionally ([359], Section 4.1.3, page 85) @ is defined as:

X @ Y =if Y = 0 then first X

else ( next X) @ (Y − 1)

for N tag set in a single dimension. Subsequently,

X @ .dE

X @ C

X @ S

X @w F

X @w F.F

are also provided. X @ .dE is the indexical way to work with parts of the context [359]; C

and S are the simple contexts and context sets [510], and F are forensic contexts.

Augmentation to Lucx’s implementation extension of the tag sets [470] has the same

underlying principles as # in the preceding section: the order of declaration of the tags in

a tag set becomes and implicit index in that tag collection, and a corresponding mapping

of custom tags produces the desired effect with @ . For example, if an unordered finite tag

set of a dimension color has three strings it ranges over, {”red”, ”green”, ”blue”}, it is

legal to say, e.g., c@[color : ”green”], where internally, ”green” is indexed 1 in the order

of declaration in the tag set, and a mapping exists ”green”↔ 1. “Unordered” in this sense

simply means the order in which the tags are declared is not important, but such a mapping

is necessary for operators defined earlier (first, next, fby, etc.) to work intuitively and

consistently with the classical N ones. (As an analogy, this is similar to the SQL standard and

the way results are returned in a SELECT query without the ORDER BY clause for subsequent

processing by the application.)
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@ is likewise adapted to work with forensic contexts yielding different types of forensic

contexts depending on its types of arguments, as, e.g., illustrated in Table 15. Unlike #w,

@w is does take w into the account when switching forensic contexts:

X @w O = X @ (O && O.w ≥ 1/2),

similarly to the previously presented operators. For observation sequences and evidential

statements, @w is more elaborate:

X @w OS = X @ (OS && bel OS ≥ 1/2)

X @w ES = X @ (ES && bel ES ≥ 1/2)

where the belief bel is defined in Section 7.3.4, page 191.

7.3.2.2 Definition of Core Operators by Means of @ and #

This step follows the same tradition as the most of the SIPLs in GIPSY (Chapter 6), which

are translated into GIPL (Section 4.1.1.2, page 78). The existing rewrite rules as well as

the new rules are applied here for the majority of our operators to benefit from the existing

interpretation available in GEE (Section 6.2.2, page 142) for evaluation purposes. This trans-

lation may also be helpful to the developers of similar systems other than GIPSY. Following

the steps similar to Paquet’s [359], we further represent the definition of the operators via @

and # (this includes the @w and #w interpretations of the operators). Again, there is a mix

of classical operators that were previously defined in [348, 359], such as first, next, fby,

wvr, upon, and asa as well as the new operators from this work [302]. The collection of the

translated operators is summarized in Figure 45.

For the same reasons of (im)practicality as in the PoC implementation of Lucx’s parser

and semantic analyzer [470], we don’t translate some Forensic Lucid constructs however.

Additionally, not all translations are currently possible, such as those dealing with the credi-

bility factors. Therefore, for these we define a new set of operational semantic rules presented

further in Section 7.4, page 192. Instead, dedicated interpreter plug-ins are designed to work

182



directly with the untranslated constructs, such as the forensic contexts and their operators.

This is useful, e.g., for various interpretation backends, such as eductive vs. PRISM, and so

on (Chapter 8).

The primitive operators are founding blocks to construct more complex case-specific func-

tions that represent a particular investigation case as well as more elaborate forensic opera-

tors [298].

7.3.2.3 Summary of the Core Operators’ Examples

Here we illustrate a few basic examples of application of the Forensic Lucid operators

(both, classical Lucid and the newly introduced operators). Assume we have two bounded

(between bod and eod) streams X and Y of ten elements. The X stream is just an ordered

sequence of natural numbers between 1 and 10. If queried for values below 1 an beginning-of-

data (bod) marker would be returned; similarly if queried beyond 10, the end-of-data marker

(eod) is returned. The Y stream is a sequence of ten truths values (can be replaced with 0

for “false” and 1 for “true”). The operators applied to these streams may return bounded

or unbounded streams of the same or different length than the original depending on the

definition of a particular operator. Also assume the current tag is 0 (#X = 0,#Y = 0).

The resulting table showing the application of the classical and the new operators is in

Table 14 [298, 303].

7.3.3 Context Calculus Operators

What follows are the definitions of the core context calculus operators: \isSubContext,

\difference, \intersection, \projection, \hiding, \override, and \union based on

Lucx and its compiler implementation [470, 510] and expanded to include forensic contexts

and tag sets through lifting. The context and context set operations defined below are

the Lucx original definitions [470, 510] provided for completeness. Their forensic context

and tag set versions are newly defined. While the concept of tag sets (Section 7.2.3.1.5,

page 165) is explored in detail at the implementation level by Tong [470], the operators on

this section were never defined on them. We define these operators to compose a complete

picture. This is achieved through the concept of lifting introduced by Guha [146] applied to
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Table 14: Example of application of Forensic Lucid operators to bounded streams [303]

stream/index -1 0 1 2 3 4 5 6 7 8 9 10 11

X bod 1 2 3 4 5 6 7 8 9 10 eod eod
Y bod T F F T F F T T F T eod eod

first X 1 1 1 1 1 1 1 1 1 1
last X 10 10 10 10 10 10 10 10 10 10
next X 2 3 4 5 6 7 8 9 10 eod eod
prev X bod

X fby Y 1 T F F T F F T T F T eod
X pby Y T F F T F F T T F T 1 eod

X wvr Y 1 4 7 8 10
X rwvr Y 10 8 7 4 1
X nwvr Y 2 3 5 6 9
X nrwvr Y 9 6 5 3 2

X asa Y 1 1 1 1 1 1 1 1 1 1
X nasa Y 2 2 2 2 2 2 2 2 2 2
X ala Y 10 10 10 10 10 10 10 10 10 10
X nala Y 9 9 9 9 9 9 9 9 9 9

X upon Y 1 2 2 2 3 3 3 4 5 5 eod
X rupon Y 10 9 9 8 7 7 7 6 6 6 bod
X nupon Y 1 1 2 3 3 4 5 5 5 6 6 eod
X nrupon Y 10 10 9 9 9 8 7 7 6 5 5 bod

neg X -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 eod eod
not Y F T T F T T F F T F eod eod

X and Y 1 0 0 1 0 0 1 1 0 1 eod eod
X or Y 1 2 3 5 5 6 7 9 9 11 eod eod
X xor Y 0 2 3 5 5 6 6 9 9 11 eod eod

contextual knowledge to allow the use of known formulas from one context type or its portion

to another. We also add the convenient \in operator. Through lifting simple contexts are

converted to observations and context sets to observation sequences when required.

Definition 43. \isSubContext

• If C1 and C2 are simple contexts and every micro context of C1 is also a micro context

of C2, then C1 \isSubContext C2 returns true. An empty simple context is the sub-

context of any simple context [470]. As in the concept of subset in set theory, C1 ⊆

C2 [470].

• If S1 and S2 are context sets, then S1 \isSubContext S2 returns true if every simple
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context of S1 is also a simple context of S2. An empty context set is the sub-context of

any context set [470]. Likewise, S1 ⊆ S2.

• If F1 and F2 are forensic contexts, then F1 \isSubContext F2 returns true if every

nested context of F1 is also a nested context of F2.

Definition 44. \difference

• If C1 and C2 are simple contexts, then C1 \difference C2 returns a simple context

that is a collection of all micro contexts that are members of C1, but not members of

C2: C1 \difference C2 = {mi | mi ∈ C1 ∧mi /∈ C2} [470]. If C1 \isSubContext C2

is true, then the returned simple context is empty. \difference is also valid if two

simple contexts have no common micro context; the returned simple context is simply

C1 [470].

• If S1 and S2 are context sets, \difference returns a context set S, where every simple

context C ∈ S is computed as C1 \difference C2 : S = S1 \difference S2 = {C |

C = C1 \difference C2 ∧ C ̸= ∅ ∧ C1 ∈ S1 ∧ C2 ∈ S2} ∨ S = ∅ [470]. If for every

C1 and C2, C1 \difference C2 = ∅, then S1 \difference S2 = ∅ [470]. However, if

there’s at least one pair of C1 and C2 where C1 \difference C2 ̸= ∅, then the result

is not empty [470].

• If T1 and T2 are finite tag sets, then T1 \difference T2 returns a tag set that is a collec-

tion of all tags that are members of T1, but not members of T2: T1 \difference T2 =

{ti | ti ∈ T1 ∧ ti /∈ T2}. If T1 \in T2 is true (\in is defined further on page 190),

then the returned tag set is empty. \difference is also valid if two tag sets have no

common tag; the returned tag set is then T1.

• If F1 and F2 are forensic contexts, \difference returns F , where every nested context

C ∈ F is computed as C1 \difference C2 : F = F1 \difference F2 = {C | C =

C1 \difference C2 ∧ C ̸= ∅ ∧ C1 ∈ F1 ∧ C2 ∈ F2} ∨ F = ∅.

185



first X = X@0 (7.3.2.1)

last X = X@(#@(#iseod(#)− 1)) (7.3.2.2)

next X = X@(#+ 1) (7.3.2.3)

prev X = X@(#− 1) (7.3.2.4)

X fby Y = if # = 0 then X else Y@(#− 1) (7.3.2.5)

X pby Y = if iseod # then X else Y@(#+ 1) (7.3.2.6)

X wvr Y = X@T where (7.3.2.7)

T = U fby U@(T + 1)

U = if Y then # else next U

end

X rwvr Y = X@T where (7.3.2.8)

T = U pby U@(T − 1)

U = if Y then # else prev U

end

X nwvr Y = X@T where (7.3.2.9)

T = U fby U@(T + 1)

U = if Y == 0 then # else next U

end

X rnwvr Y = X@T where (7.3.2.10)

T = U pby U@(T − 1)

U = if Y == 0 then # else prev U

end

X asa Y = first (X wvr Y ) (7.3.2.11)

X nasa Y = first (X nwvr Y ) (7.3.2.12)

X ala Y = last (X rwvr Y ) (7.3.2.13)

X nala Y = last (X nrwvr Y ) (7.3.2.14)

X upon Y = X@W where (7.3.2.15)

W = 0 fby (if Y then (W + 1) else W )

end

X rupon Y = X@W where (7.3.2.16)

W = 0 pby (if Y then (W − 1) else W )

end

X nupon Y = X@W where (7.3.2.17)

W = 0 fby (if Y == 0 then (W + 1) else W )

end

X nrupon Y = X@W where (7.3.2.18)

W = 0 pby (if Y == 0 then (W − 1) else W )

end

neg X = −X (7.3.2.19)

not X = if X then !X else X (7.3.2.20)

X and Y = X&&Y (7.3.2.21)

X or Y = X||Y (7.3.2.22)

X xor Y = not((X and Y ) or not (X or Y )) (7.3.2.23)

Figure 45: Operators translated to GIPL-compatible definitions [302, 303]
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Definition 45. \intersection

• If C1 and C2 are simple contexts, then C1 \intersection C2 returns a new simple

context, which is the collection of those micro contexts that belong to both C1 and C2:

C1 \intersection C2 = {mi | mi ∈ C1 ∧mi ∈ C2}. If C1 and C2 have no common

micro context, the result is an empty simple context [470].

• If S1 and S2 are context sets, then the resulting intersection context set is defined as

S = S1 \intersection S2 = {C | C = C1 \intersection C2 ∧ C ̸= ∅ ∧ C1 ∈

S1 ∧ C2 ∈ S2} ∨ S = ∅. If for every C1 and C2, C1 \intersection C2 = ∅, then

S1 \intersection S2 = ∅. However, if there’s at least one pair of C1 and C2 where

C1 \intersection C2 ̸= ∅, the result is not empty [470].

• If T1 and T2 are finite tag sets, then T1 \intersection T2 returns a new unordered tag

set, which is the collection of tags that belong to both T1 and T2: T1 \intersection T2 =

{ti | ti ∈ T1 ∧ ti ∈ T2}. If T1 and T2 have no common tag, the result is an empty tag

set.

• If F1 and F2 are forensic contexts, then the resulting intersection of the nested contexts

F = F1 \intersection F2 = {C | C = C1 \intersection C2∧F ̸= ∅∧C1 ∈ F1∧C2 ∈

F2} ∨ F = ∅.

Definition 46. \projection

• If C is a simple context and D is a set of dimensions, this operator filters only those

micro contexts in C that have their dimensions in set D : C \projection D = {m |

m ∈ C ∧ dim(m) ∈ D}. The result is empty, if there’s no micro context having the

same dimension as in the dimension set. dim(m) returns the dimension of micro context

m [470].

• The projection of a dimension set onto a context set is a context set, which is a col-

lection of all simple contexts having a \projection on the dimension set [470]. If

S is a context set, D is a dimension set; S ′ = S \projection D = {n | n =

C \projection D ∧ n ̸= ∅ ∧ C ∈ S} ∨ S ′ = ∅.
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• If C is a simple context and T is a finite set of tags, this operator filters only those

micro contexts in C that have their tags in set T : C \projection T = {m | m ∈

C ∧ tag(m) ∈ T}. The result is empty, if there’s no micro context having the same tag

as in the tag set. tag(m) returns the tag of micro context m. The projection of a tag set

onto a context set is a context set, which is a collection of all simple contexts having a

\projection on the tag set. If S is a context set, S ′ = S \projection T = {n | n =

C \projection T ∧ n ̸= ∅ ∧ C ∈ S} ∨ S ′ = ∅.

• Projection of a dimension set onto a forensic context is a forensic context containing all

nested contexts filtered through the \projection on the dimension set. If F is a forensic

context, D is a dimension set; F ′ = F \projection D = {n | n = C \projection D∧

n ̸= ∅ ∧ C ∈ F} ∨ F ′ = ∅.

Definition 47. \hiding

• If C is a simple context and D is a dimension set, this operator removes all the micro

contexts in C whose dimensions are in D: C \hiding D = {m | m ∈ C∧dim(m) /∈ D}.

If D contains all the dimensions appeared in C, the result is an empty simple context.

Additionally, C \projection D

C \hiding D = C [470].

• For context set S, and dimension set D, the \hiding operator constructs a context set

S ′ where S ′ is obtained by \hiding each simple context in S on the dimension set D:

S ′ = S \hiding D = {n | n = C \hiding D ∧ n ̸= ∅ ∧ C ∈ S} ∨ S ′ = ∅.

• If C is a simple context and T is a finite tag set, this operator removes all the micro

contexts in C whose tags are in T : C \hiding T = {m | m ∈ C ∧ tag(m) /∈ T}.

If T contains all the tags appearing in C, the result is an empty simple context. For

context set S, the \hiding operator constructs a context set S ′ where S ′ is obtained by

\hiding each simple context in S on the tag set T : S ′ = S \hiding T = {n | n =

C \hiding T ∧ n ̸= ∅ ∧ C ∈ S} ∨ S ′ = ∅.

• For forensic context F and dimension set D, \hiding constructs a forensic context F ′

by hiding each nested context in F on dimension set D: F ′ = F \hiding D = {n |

n = C \hiding D ∧ n ̸= ∅ ∧ C ∈ F} ∨ F ′ = ∅.
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Definition 48. \override

• If C1 and C2 are simple contexts, then C1 \override C2 returns a new simple context

C, which is the result of the conflict-free union of C1 and C2, as defined as follows:

C = C1 \override C2 = {m | (m ∈ C1 ∧ dim(m) /∈ dim(C2)) ∨m ∈ C2} [470].

• For every pair of context sets S1, S2, \override returns a set of contexts S, such that

every context C ∈ S is computed as C1 \override C2; C1 ∈ S1, C2 ∈ S2 : S =

S1 \override S2 = {C | C = C1 \override C2 | C1 ∈ S1 ∧ C2 ∈ S2 ∧ C ̸= ∅} ∨ S =

∅ [470].

• For every pair of forensic contexts F1, F2, \override returns a nested context F : C1 ∈

F1, C2 ∈ F2 : F = F1 \override F2 = {C | C = C1 \override C2 | C1 ∈ F1 ∧ C2 ∈

F2 ∧ C ̸= ∅} ∨ F = ∅.

Definition 49. \union

• If C1 and C2 are simple contexts, then C1 \union C2 returns a new simple context C,

for every micro context m in C: m is an element of C1 or m is an element of C2:

C1 \union C2 = {m | m ∈ C1 ∨ (m ∈ C2 ∧ m /∈ C1)} [470]. If there is at least one

pair of micro contexts in C1 and C2 sharing the same dimension and these two micro

contexts are not equal then the result is a non-simple context translated into a context

set: for a non-simple context C, construct the set Y = {yd = C \projection {d} |

d ∈ dim(C)}. Denoting the elements of set Y as y1, . . . , yp, construct the set S(C)

of simple contexts: S(C) = {m1 \override m2 \override . . . \override mp | m1 ∈

y1 ∧ m2 ∈ y2 ∧ . . .mp ∈ yp}, The non-simple context is viewed as the set S(C), such

that S(C) = {s ∈ S | dim(s) = dim(C) ∧ s ⊂ C} [470].

• If C1 and C2 are context sets, then C = C1 \union C2 is computed as follows [470]:

1. D1 = {dim(m) ∧m ∈ C1}, D2 = {dim(m) ∧m ∈ C2}, D3 = D1


D2

2. Compute X1 : X1 = {mi


(mj \hiding D3) ∧mi ∈ C1 ∧mj ∈ C2}

3. Compute X2 : X2 = {mj


(mi \hiding D3) ∧mi ∈ C1 ∧mj ∈ C2}
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4. Finally: C = X1


X2

This procedure ensures contexts sets always have the same well-defined context struc-

ture [470, 510].

• If T1 and T2 are finite tag sets of tags of the same type, T is their non-order-preserving

union: T = T1 \union T2 = {t | t ∈ T1 ∨ (t ∈ T2 ∧ t /∈ T1)}.

• If forensic contexts are observations O1 and O2 their union is an observation se-

quence OS if the observations are ordered in wall-clock time: OS = O1 \union O2 =

{O1.t, O2.t | {O1, O2}∧O1.t < O2.t}. If the observations are conflicting in time (equal,

or undefined), the are lifted to an evidential statement containing two constructed ob-

servation sequences that have one observation each: ES = O1 \union O2 = {O1 ∈

OS1, O2 ∈ OS2}. If forensic contexts are observation sequences OS1 and OS2, their

union is OS = OS1 \union OS2, i.e., a fusion merge of the two observation sequences,

if OS1 and OS2 contain non-conflicting observations Oi, ordered chronologically by Oi.t

not sharing a common t. If observations are conflicting or Oi.t are undefined in any of

OS1 or OS2, then the union of such observation sequences is an evidential statement

ES = OS1 \union OS2 = {OS1, OS2}. If forensic contexts are evidential statements

ES1 and ES2, is a simple union of all observation sequences from both statements

ES = ES1 \union ES2 = {os | os ∈ ES1 ∨ (os ∈ ES2 ∧ os /∈ ES1)}. We admit

conflicting observation sequences as they do happen in real-life investigations.

Definition 50. \in

• If C1 and C2 are simple contexts, then C1 \in C2 = C1 \isSubContext C2.

• If S1 and S2 are context sets, then S1 \in S2 = S1 \isSubContext S2.

• If F1 and F2 are forensic contexts, then F1 \in F2 = F1 \isSubContext F2.

• If D1 ⊂ DIM and D2 ⊂ DIM are dimension sets, then the operator D1 \in D2 returns

true if D1 ⊂ D2.
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• If T1 and T2 are finite tag sets, then the operator T1 \in T2 returns true if T1 ⊆ T2.

If T1 is infinite and T2 is finite, \in always returns false. If T2 is infinite and T1 is

either finite or infinite, the set membership can be determined by a function. This last

case is of little interest to us any further.

While this operator hasn’t appeared at the syntax level for any context types or their

parts, at the implementation level Tong provided isInTagSet() while developing Lucx

parser and semantic analyzer [470].

7.3.4 Forensic Context Operators

While the operators presented so far in the preceding sections are designed to support foren-

sics context in addition to their traditional behavior, the operators presented here were

designed to work originally with the forensic contexts only specific to Forensic Lucid and

lift any non-forensic contexts if used.

The operators presented here are based on the discussion of the combination [135] function

and others to support the required case implementation [302]. The discussed earlier (see

Section 2.2.4.6.2, page 42) Gladyshev’s comb() operator [134, 135] needs to be realized in

the general manner in Forensic Lucid for combining our analogies of multiple partitioned

runs (MPRs) [134, 135], which in our case are higher-level contexts and context sets, in the

new dimension types [298, 302, 303, 310] (see Table 13).

Definition 51. combine corresponds to the comb function as originally described by Glady-

shev ([135], Section 2.2.4.6.2, page 42).

Definition 52. product corresponds to the cross-product [135] of contexts.

Belief and plausibility operators bel and pl are introduced to deal with the evidence

evaluation in the Dempster–Shafer terms (Section 3.3.2, page 66). The basic argument to

these operators is an observation o; in this case they simply evaluate into the o.w component

of o. bel and pl and be computed of any two observations o1 and o2 of the same property

(o1.P = o2.P ) can be made according o1.w and o2.w. The latter is a founding block to

compute bel and pl of any number of observations relating to that property.
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Definition 53. bel corresponds to belief computation based on DSTME (Section 3.3.2,

page 66) adapted to forensic contexts as follows: given an observation O, bel O = O.w;

if O = $, bel $ = 1; if O = \0, bel \0 = 0; if C is a simple context or S is a con-

text set, bel C = bel S = 1; given an observation sequence OS and its observations Oi,

bel OS = {Oi ∈ OS |


iOi.w/i}; given an evidential statement ES and its subset of

interest of observation sequences ESB, bel ES =


ESB |ESB⊆ES w(ESB).

Thus, the credibility values of OS and ES are derived from the beliefs assigned to the

contained observations.

Definition 54. pl corresponds to plausibility computation based on DSTME adapted to

forensic contexts as follows: given an observation O, pl O = bel O; given an observation se-

quence OS and its observations Oi, pl OS = bel OS; given an evidential statement ES and

its subset of interest of observation sequences ESB, bel ES =


ESB |ESB∩ES ̸=∅w(ESB) =

1− bel(ES).

7.4 Operational Semantics

Like the syntax, the operational semantics of Forensic Lucid capitalizes on the semantic

rules of GIPL [359] (Section 4.1.1.2, page 78), Indexical Lucid [107], Objective Lu-

cid [262], and Lucx [510], JOOIP [525], and an inspiration from MARFL (Figure 84,

page 357) augmented with with the new operators, probabilities, and definitions [298, 302,

310]. We specify resulting semantic definitions in Forensic Lucid along with the explana-

tion of the rules and the notation. The new rules of the operational semantics of Forensic

Lucid cover the operators primarily, including the reverse and logical stream operators as

well as forensic-specific operators [298, 302, 303]. We use the same notation as the referenced

languages to maintain consistency in defining our rules [298, 302].

7.4.1 General Semantic Rules

The rules are grouped in several figures: the basic core rules are in Figure 46, the core

context-related rules are in Figure 47, the hybrid Forensic Lucid-Java interaction rules

192



are in Figure 48, the rules related to observations, observation sequences, and evidential

statements are in Figure 49, Figure 51, Figure 52, Figure 53, and in Table 15 respectively.

What follows are notes on the additional details of rules of interest.

1. The evaluation context environment P defines a point in the multidimensional context

space at which an expression E is to be evaluated [359, 523]. P changes when the

@ operator is evaluated, or a dimension is declared in a where clause. It is a set of

⟨dimension : tag⟩ mappings, associating each dimension with a tag index over this

dimension. P is thus a partial function:

P : EI → T (7.4.1.1)

where EI is a set of possible dimension identifiers, declared statically or computed

dynamically. T is a tag set.

In traditional Lucid semantics EI = Id ([359, 510], Section 4.1.1.2, page 78). In our

case, the extended EI includes Id and E.Id, where the latter form allows nested OO-

like identifiers, both declared explicitly or be a result of evaluation of E into a dynamic

identifier allowing for intuitive representation of context hierarchies.

In traditional Lucid semantics, the tag set T = N, i.e., a set of natural numbers [359].

In Lucx’s extension, T = U is any enumerable tag set [510], that may include var-

ious orderings of numerical or string tag sets, both finite and infinite ([470], cf. Sec-

tion 7.2.3.1.5, page 165). In Forensic Lucid, T = Uf that includes N,U, as well as

tag values associated with observations, their sequences, and evidential statements.

2. The initial definition environment D0 includes the predefined operators, the constants,

and P0 defines the initial context of evaluation [359, 510]. Thus, D0,P0 ⊢ E : v

represents the computation of any Forensic Lucid expression E resulting in value v.

3. The semantic operator † represents the addition of a mapping in the definition en-

vironment D, associating an identifier with its corresponding semantic record, here

represented as a tuple [359, 525].
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4. Each type of identifier (cf. Table 13, page 161) can only be used in the appropriate

situations. Identifiers of type op, func, and dim evaluate to themselves (Figure 46,

rules 7.4.1.3, 7.4.1.19, 7.4.1.4).

5. Constant identifiers (const) evaluate to the corresponding constant (Figure 46, rule

7.4.1.2).

6. Function calls, resolved by the Efct rule (Figure 46, rule 7.4.1.14), require the renaming

of the formal parameters into the actual parameters (as represented by E ′[idi ← Ei]).

7. Arrays are resolved by the Earray rule (Figure 46, rule 7.4.1.6), which is a collection

of expressions Ei evaluating into their values vi under the current context. Evaluating

an array @ certain context evaluates each element of the array at that context. When

needed, an array can be lifted to a tuple (the described further Etuple rule).

8. The function P ′ = P†[id →→ v′′] specifies that P ′(x) is v′′ if x = id, and P(x) otherwise.

9. The rule for the where clause, Ew (Figure 46, rule 7.4.1.15), which corresponds to the

syntactic expression E where Q, evaluates E using the definitions Q therein.

10. The additions to the definition environment D and context of evaluation P made by

the Q rules (Figure 47, rule 7.4.1.29; Figure 46, rules 7.4.1.16, 7.4.1.17) are local to the

current where clause. This is represented by the fact that the Ew rule returns neither

D nor P .

11. TheQdim rule adds a dimension to the definition environment and (as a default conven-

tion for N tags maintained for GIPL compatibility), adds this dimension to the context

of evaluation with the tag 0 (Figure 47, rule 7.4.1.29). This allows us to maintain com-

patibility with the predecessor dialects. For the tag set types other than N where the

first tag is either non-zero or not a number, that first tag is added to the context of

evaluation with its underlying collection index of 0 (cf. Definition 42, page 181) (where

the collections at the implementation level is marf.util.FreeVector in our case).

12. TheQid andQfid simply add variable and function identifiers along with their definition

to the definition environment (Figure 46, rules 7.4.1.16, 7.4.1.17) [298, 302, 359].
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13. The semantic rule Etuple (7.4.1.26) evaluates a tuple as a finite stream whose dimension

is explicitly indicated as E in the corresponding syntax rule ⟨E1, . . . , En⟩id. Accord-

ingly, the semantic rule Eselect (7.4.1.27) picks up one element indexed by E from the

tuple E ′ [510].

14. The evaluation rule for the navigation operator @ , Eat(cxt) (7.4.1.24), which corre-

sponds to the syntactic expression E @ E ′, evaluates E in context E ′ [510].

15. The evaluation rule for the set navigation operator @ , Eat(set) (7.4.1.28), which corre-

sponds to the syntactic expression E @ E ′, evaluates E in a set of contexts C. Therefore,

the evaluation result is a collection of results of evaluating E at each element of C [510].

16. The semantic rule Econstruction(cxt) (7.4.1.23, Figure 47) evaluates [Ed1 : Ei1 , . . . , Edn :

Ein ] to a simple context [510]. It specifically creates a context as a semantic item and

returns it as a context P that can then be used by the rule 7.4.1.24 to navigate to this

context by making it override the current context.

17. The semantic rule Econstruction(set) (7.4.1.31) correspondingly constructs {E1, . . . , Em}

as a context set [510].

18. The semantic rule 7.4.1.13 is valid for the definition of the context operators, where the

actual parameters evaluate to values vi that are contexts Pi.

19. The semantic rule 7.4.1.22 expresses that the # symbol evaluates to the current context.

When used as a parameter to the context calculus operators, this allows for the gener-

ation of contexts relative to the current context of evaluation [298, 302, 359, 510, 512].

20. When intensional operators are used and one of their arguments happens to be of types

(odim), (osdim), or (esdim), their opw version is assumed (taking w into the account

as exemplified in Section 7.3.2, page 169. When binary intensional operators are used

and one of the arguments is of a forensic context type and another is a Lucx context

type, the latter is lifted (similar to type casting in classical imperative languages) to

the forensic context as described in Section 7.4.2, page 197 and in subsequent sections.
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21. TG(E) corresponds to mapping of Forensic Lucid and Java data types by the GIPSY

Type System (Appendix B).

22. For hybrid intensional-imperative glue for Forensic Lucid and Java we define the

rules in Figure 48. This set of rules enables Forensic Lucid to interact with Java

(and vice versa), for example, to enable the use of Forensic Lucid in JOOIP for

purposes of self-forensics (Appendix D).

JCDef semantically identifies a Java class associates this class declaration to the iden-

tifier cid, and stores it in the definition environment D. A class can contain member

variables (JavaVDef) and member functions (JavaFDef). These are processed in a sim-

ilar manner by the two following semantic rules [523, 525]. And the rules that follow

define the semantics of the evaluation of those.

23. JVDef specifies a Java member variable in a Java class JavaCDef by the syntacti-

cal specification: public type vid ... inside the class’ declaration. The specification

(classV, cid.vid, JavaVDef) is used to represent a Java class data member vid de-

clared inside a class declaration JavaVDef for the class cid [523, 525].

24. JFDef specifies a Java member method in a Java class JavaCDef from the syntactic

specification: public ft fid(fpt1 fp1, . . . , fptn fpn){. . .}. Likewise, the specification

(classF, cid.fid, JavaFDef) is used to represent a Java member method fid declared

inside a class declaration JavaCDef for the class cid [523, 525].

25. JFFDef specifies the JLucid notion of “free Java function”, which is a method not

explicitly defined in a given class by a Forensic Lucid programmer. Its syntacti-

cal specification is: ft ffid(fpt1 fp1, . . . , fptn fpn){. . .}. The semantic specification

(freefun, ffid, JavaFreeFDef) represents the “free Java function” ffid, i.e., a func-

tion that is directly available in the Forensic Lucid program, and that is not a

member of any class [523]. Since free functions are not allowed in standard Java, in

terms of implementation, these “free functions” are all put inside a generated wrapper

class by the compiler to be part of the GEER of the execution engine as originally

defined in [262].
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26. LobjV specifies the semantics of the evaluation of a reference to a class data member by

a Forensic Lucid expression using the object-oriented dot operator (Section 7.3.2,

page 169, page 179). The rule’s premises insure that, in E.vid: (1) the Forensic

Lucid expression E evaluates to a value v that is an object of type cid, as being

associated in the definition environment D to the tuple (class, cid, JavaCDef); (2) the

variable vid is a public member of the class cid. Once this is established as holding,

the Java Virtual Machine can be called upon to evaluate v.vid (noted as JVM[[v .vid ]]),

to yield a value vr [523, 525].

27. LobjF specifies of the evaluation of a reference to a class member method by a Foren-

sic Lucid expression using the dot operator. The rule’s premises insure that in

E.fid(E1, . . . , En): (1) the Forensic Lucid expression E evaluates to a value v

that is an object of type cid, as being associated in the definition environment D

to the tuple (class, cid, JavaCDef); (2) the method fid is a public member of the

class cid. Once this is established as holding, all actual parameters are evaluated to

values v1, . . . , vn, the JVM can be called upon to evaluate v.fid(v1, . . . , vn) (denoted as

JVM[[v .fid(v1 , . . . , vn)]]), to yield a value vr [523, 525].

28. LFF speficies the evaluation of free Java functions. The rule is a simpler version

of LobjF with no class type identifiers present, and no object to compute upon. As

mentioned earlier, Java does not have free functions, so all free functions are wrapped

in a “free function wrapper” class at compilation, with all free functions inserted in it

as static functions [143, 262], which are then processed by the JVM [523, 525]. The

JFFDef rule is inserting all the free functions in this wrapper class, which we called

ffw. Then, upon calling such “free functions”, this rule is called and assumes that the

“free functions” have been wrapped as static functions into the ffw class, then call the

appropriate function [523, 525].

7.4.2 Extended Observation

We augment the notion of observation based on Equation 7.2.2.1 to formalize it as illustrated

in Figure 49. In general, all components of an observation are stored with the assumption
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Ecid :
D(id) = (const, c)

D,P ⊢ id : c
(7.4.1.2)

Eopid :
D(id) = (op, f)

D,P ⊢ id : id
(7.4.1.3)

Efid :
D(id) = (func, idi, E)

D,P ⊢ id : id
(7.4.1.4)

Evid :
D(id) = (var, E) D,P ⊢ E : v

D,P ⊢ id : v
(7.4.1.5)

Earray :
D,P ⊢ E : [E1, . . . , Em] D,P ⊢ Ei : vi

D,P ⊢ [E1, . . . , Em] : [v1, . . . , vm]
(7.4.1.6)

EcT :
D,P ⊢ E : true D,P ⊢ E′ : v′

D,P ⊢ if E then E′ else E′′ : v′
(7.4.1.7)

EcF :
D,P ⊢ E : false D,P ⊢ E′′ : v′′

D,P ⊢ if E then E′ else E′′ : v′′
(7.4.1.8)

E∞+ :
D,P ⊢ E : INF+

D,P ⊢ INF+ : TG(Long.MAX VALUE)
(7.4.1.9)

E∞− :
D,P ⊢ E : INF-

D,P ⊢ INF- : TG(Long.MIN VALUE)
(7.4.1.10)

Eeod :
D,P ⊢ E : eod

D,P ⊢ eod : null
(7.4.1.11)

Ebod :
D,P ⊢ E : bod

D,P ⊢ bod : null
(7.4.1.12)

Eop :
D,P ⊢ E : id D(id) = (op, f) D,P ⊢ Ei : vi

D,P ⊢ E(E1, . . . , En) : f(v1, . . . , vn)
(7.4.1.13)

Efct :
D,P ⊢ E : id D(id) = (func, idi, E

′) D,P ⊢ E′[idi ← Ei] : v

D,P ⊢ E(E1, . . . , En) : v
(7.4.1.14)

Ew :
D,P ⊢ Q : D′,P ′ D′,P ′ ⊢ E : v

D,P ⊢ E where Q : v
(7.4.1.15)

Qid :
D,P ⊢ id = E : D†[id →→ (var, E)],P

(7.4.1.16)

Qfid :
D,P ⊢ id(id1, . . . , idn) = E : D†[id →→ (func, idi, E)],P

(7.4.1.17)

QQ :
D,P ⊢ Q : D′,P ′ D′,P ′ ⊢ Q′ : D′′,P ′′

D,P ⊢ Q Q′ : D′′,P ′′ (7.4.1.18)

Figure 46: Operational semantics rules of Forensic Lucid: E and Q Core

of default values when not all of the comprising components were specified, similarly to the

allowed syntactical constructs in Figure 43 where P = E with the w being the credibility or

trustworthiness weight of that observation, and the t being an optional wall-clock timestamp.

With w = 1 the o is equivalent to the original model proposed by Gladyshev [311].

The simple contexts and context sets are lifted (cf. Section 7.3.3, page 183) to observations

via P as illustrated by the rule Cop(flift) (7.4.2.13, in Figure 50), (with the defaults assigned
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Edid :
D(id) = (dim)

D,P ⊢ id : id
(7.4.1.19)

EE.did :
D(E.id) = (dim)

D,P ⊢ E.id : id.id
(7.4.1.20)

Etag :
D,P ⊢ E : id D(id) = (dim)

D,P ⊢ #E : P(id)
(7.4.1.21)

E#(cxt) :
D,P ⊢ # : P

(7.4.1.22)

Econstruction(cxt) :

D,P ⊢ Edj : idj D(idj) = (dim)

D,P ⊢ Eij : vj P ′ = P0†[id1 →→ v1]†. . .†[idn →→ vn]

D,P ⊢ [Ed1 : Ei1 , Ed2 : Ei2 , . . . , Edn : Ein ] : P ′ (7.4.1.23)

Eat(cxt) :
D,P ⊢ E′ : P ′ D,P†P ′ ⊢ E : v

D,P ⊢ E @ E′ : v
(7.4.1.24)

Edot :
D,P ⊢ E2 : id2 D(id2) = (dim)

D,P ⊢ E1.E2 : tag(E1 ↓ {id2})
(7.4.1.25)

Etuple :
D,P ⊢ E : id D†[id →→ (dim)] P†[id →→ 0] D,P ⊢ Ei : vi

D,P ⊢ ⟨E1, E2, . . . , En⟩E : v1 fby.id v2 fby.id . . . vn fby.id eod
(7.4.1.26)

Eselect :
E = [d : v’] E′ = ⟨E1, . . . , En⟩d P ′ = P†[d →→ v′] D,P ′ ⊢ E′ : v

D,P ⊢ select(E,E′) : v
(7.4.1.27)

Eat(set) :
D,P ⊢ C : {P1, . . . ,P2} D,Pi:1...m ⊢ E : vi

D,P ⊢ E @C : {v1, . . . , vm}
(7.4.1.28)

Qdim :
D,P ⊢ dimension id : D†[id →→ (dim)],P†[id →→ 0]

(7.4.1.29)

Cconstruction(box) :

D,P ⊢ Edi : idi D(idi) = (dim)
{E1, . . . , En} = dim(P1) = . . . = dim(Pm)
E′ = fp(tag(P1), . . . , tag(Pm)) D,P ⊢ E′ : true

D,P ⊢ Box [E1, . . . , En|E′] : {P1, . . . ,Pm}
(7.4.1.30)

Cconstruction(set) :
D,P ⊢ Ew:1...m : Pm

D,P ⊢ {E1, . . . , Em} : {P1, . . . ,Pw}
(7.4.1.31)

Cop(cxt) :
D,P ⊢ E : id D(id) = (cop, f) D,P ⊢ Ci : vi

D,P ⊢ E(C1, . . . , Cn) : f(v1, . . . , vn)
(7.4.1.32)

Csop(set) :
D,P ⊢ E : id D(id) = (sop, f) D,P ⊢ Ci : {vi1 , . . . , vik}
D,P ⊢ E(C1, . . . , Cn) : f({v11 , . . . , v1s}, . . . , {vn1 , . . . , vnm})

(7.4.1.33)

Figure 47: Operational semantics rules of Forensic Lucid: E and Q Core Context

to min,max, w, t per the rules in Figure 49).

7.4.3 Observation Sequence

An observation sequence is an ordered collection of observations; the related semantic rules

are in Figure 51. The rule 7.4.3.3 corresponds to the most common case of declaration

of a witness account. The rule 7.4.3.4 serves to initialize the empty observation sequence

dimension; such a sequence will need to be populated at the program execution time via
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LobjV :

D,P ⊢ E : v TG(v) = D(cid) = (class, cid, JavaCDef)
D,P ⊢ vid : vid D(cid.vid) = (classV, cid.vid, JavaVDef)
D,P ⊢ JVM[[v .vid ]] : vr

D,P ⊢ E.vid : vr
(7.4.1.34)

LobjF :

D,P ⊢ E : v TG(v) = D(cid) = (class, cid, JavaCDef)
D,P ⊢ fid : fid D(cid.fid) = (classF, cid.fid, JavaFDef)
D,P ⊢ E1, . . . , En : v1, . . . , vn
D,P ⊢ JVM[[v .fid(v1 , . . . , vn )]] : vr

D,P ⊢ E.fid(E1, . . . , En) : vr
(7.4.1.35)

LFF :

D(ffid) = (freefun, ffid, JavaFFDef)
D,P ⊢ E1, . . . , En : v1, . . . , vn
D,P ⊢ JVM[[ffw .ffid(v1 , . . . , vn )]] : vr

D,P ⊢ ffid(E1 , . . . ,En ) : vr
(7.4.1.36)

JCDef :
JavaCDef = class cid {. . .}

D,P ⊢ JavaCDef : D†[cid →→ (class, cid, JavaCDef)], P
(7.4.1.37)

JVDef :

JavaCDef = class cid {. . . JavaVDef . . .}
JavaVDef = public type vid . . . ;

D,P ⊢ JavaVDef : D†[cid.vid →→ (classV, cid.vid, JavaVDef)], P
(7.4.1.38)

JFDef :

JavaCDef = class cid {. . . JavaFDef . . .}
JavaFDef = public ft fid(fpt1 fp1, . . . , fptn fpn){. . .}

D,P ⊢ JavaFDef : D†[cid.fid →→ (classF, cid.fid, JavaFDef)], P
(7.4.1.39)

JFFDef :

JavaFFWCDef = class ffw {. . . JavaFFDef . . .}
JavaFFDef = ft ffid(fpt1 fp1, . . . , fptn fpn){. . .}

D,P ⊢ JavaFFDef : D†[ffid →→ (freefun, ffid, JavaFFDef)], P
(7.4.1.40)

Figure 48: Operational semantics of Forensic Lucid (OO)

declaration of observations or observation expressions using context operators. The other

rules are defined as per usual. As described in Section 7.3.3, page 183 a context set is lifted

to an observation sequence (rule 7.4.2.14 in Figure 50), where each set element is lifted to an

observation as per preceding section.

7.4.4 Evidential Statement

Evidential statement is a collection of observation sequences where, unlike with observation

sequences, ordering is not important. Its semantics is in Figure 52. The expression and

declarations rules defined as per usual including common declaration and empty evidential

statements. The rule Qesdim(×) in particular is designed to handle the generic observation

sequences promoting them to an evidential statement forensic context type (Section 7.2.3.1.3,

page 164) when any of their contained observations have their max > 0.

Furthermore, in Table 15 are results of application of different arguments to @, #, and “.”

(dot) starting from the evidential statement all the way down to the observation components

200



Eodid :
D(id) = (odim)

D,P ⊢ id : id
(7.4.2.1)

Eovid :
D(id) = (odim, E,min,max, w, t) D,P ⊢ E : ov

D,P ⊢ id : ov
(7.4.2.2)

Qodim1 :
(odim, E,min,max, w, t) D,P ⊢ E : ov

D,P ⊢ observation id = (E,min,max, w, t) :



D†[id →→ (odim)],

P†[id.P →→ ov ,

id.min →→ min,

id.max →→ max,

id.w →→ w,

id.t →→ t]



(7.4.2.3)

Qodim2 :
(odim, E,min,max, w) D,P ⊢ E : ov

D,P ⊢ observation id = (E,min,max, w) :



D†[id →→ (odim)],

P†[id.P →→ ov ,

id.min →→ min,

id.max →→ max,

id.w →→ w,

id.t →→ eod]



(7.4.2.4)

Qodim3 :
(odim, E,min,max) D,P ⊢ E : ov

D,P ⊢ observation id = (E,min,max) :



D†[id →→ (odim)],

P†[id.P →→ ov ,

id.min →→ min,

id.max →→ max,

id.w →→ 1.0,

id.t →→ eod]



(7.4.2.5)

Qodim4 :
(odim, E,min) D,P ⊢ E : ov

D,P ⊢ observation id = (E,min) :



D†[id →→ (odim)],

P†[id.P →→ ov ,

id.min →→ min,

id.max →→ 0,

id.w →→ 1.0,

id.t →→ eod]



(7.4.2.6)

Qodim5 :
(odim, E) D,P ⊢ E : ov

D,P ⊢ observation id = E :



D†[id →→ (odim)],

P†[id.P →→ ov ,

id.min →→ 1,

id.max →→ 0,

id.w →→ 1.0,

id.t →→ eod]



(7.4.2.7)

Figure 49: Operational semantics of Forensic Lucid: an observation
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Eat(o) :
D,P ⊢ E′ : O D,P†O ⊢ E : ov

D,P ⊢ E @ E′ : ov .⟨P,min,max, w, t⟩
(7.4.2.8)

Eat(os) :
D,P ⊢ OS : {O1, . . . ,Om} D,Oi:1...m ⊢ E : ovi

D,P ⊢ E @ OS : ordered {ov1 , . . . , ovm}
(7.4.2.9)

Eat(es) :
D,P ⊢ ES : {OSm, . . . ,OSm} D,OSi:1...m ⊢ E : osvi

D,P ⊢ E @ ES : {osv1 , . . . , osvm}
(7.4.2.10)

Cfop(os) :
D,P ⊢ E : id D(id) = (fop, f) D,P ⊢ Oi : ovi

D,P ⊢ E(O1, . . . , On) : f(ov1 , . . . , ovn )
(7.4.2.11)

Cfop(es) :
D,P ⊢ E : id D(id) = (fop, f) D,P ⊢ OSi : {ovi1 , . . . , ovik }
D,P ⊢ E(OS1, . . . , OSn) : f({ov11 , . . . , ov1s }, . . . , {ovn1

, . . . , ovnm
})

(7.4.2.12)

Cop(flift) :
D,P ⊢ E : id D(id) = (cop, f) D,P ⊢ C : v D,P ⊢ O : ov

D,P ⊢ E(O) : f(ov .P = v)
(7.4.2.13)

Csop(flift) :
D,P ⊢ E : id D(id) = (sop, f) D,P ⊢ Ci : {vi1 , . . . , vik} D,P ⊢ OS : {ovi}
D,P ⊢ E(O1, . . . , On) : f(ov1 .P = {v11 , . . . , v1s}, . . . , ovn .P = {vn1 , . . . , vnm})

(7.4.2.14)

Figure 50: Operational semantics of Forensic Lucid: forensic operators and lifting

Eosdid :
D(id) = (osdim)

D,P ⊢ id : id
(7.4.3.1)

Eosvid :
D(id) = (osdim) D,P ⊢ E : osv

D,P ⊢ id : osv
(7.4.3.2)

Qosdim :
(osdim, E1, . . . , En) D,P ⊢ Ei : oi D,P ⊢ E : osv

D,P ⊢ observation sequence id = {E1, . . . , En} :

D†[id →→ (osdim)],

P†[id →→ ordered⟨id.ov1 , . . . , id.ovn ⟩]


(7.4.3.3)

Qosdim(∅) :
(osdim) D,P ⊢ E : osv

D,P ⊢ observation sequence id :

D†[id →→ (osdim)],

P†[id →→ ∅]

 (7.4.3.4)

Figure 51: Operational semantics of Forensic Lucid: an observation sequence

following the definitions in Section 7.3.2, page 169. In case #ES and #OS angle brackets

⟨. . .⟩ simply denote the tuple of either observation sequences or observations of which the

current one is actually returned, of type OS or O respectively. While observation sequences

in ES are not strictly speaking ordered as mentioned, the order of declaration and updates

by context operators is used in the underlying implementation.

7.4.5 Belief and Plausibility

The semantics of the bel and pl forensic operators is in Figure 53. The semantics follows the

details explained in the operator definitions in Section 7.3.4, page 191. Belief and plausibility
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Eesdid :
D(id) = (esdim)

D,P ⊢ id : id
(7.4.4.1)

Eesvid :
D(id) = (esdim) D,P ⊢ E : esv

D,P ⊢ id : esv
(7.4.4.2)

Qesdim :
(esdim, E1, . . . , En) D,P ⊢ Ei : osi D,P ⊢ E : esv

D,P ⊢ evidential statement id = {E1, . . . , En} :

D†[id →→ (esdim)],

P†[id →→ ⟨id.osv1 , . . . , id.osvn ⟩]


(7.4.4.3)

Qesdim(∅) :
(esdim) D,P ⊢ E : esv

D,P ⊢ evidential statement id :

D†[id →→ (esdim)],

P†[id →→ ∅]

 (7.4.4.4)

Qesdim(×) :
(esdim, E1, . . . , En) D,P ⊢ Ei : osi ∃D,P ⊢ Ei : osi.oi.max > 0 D,P ⊢ E : esv

D,P ⊢ evidential statement id = {E1, . . . , En} :

D†[id →→ (esdim)],

P†[id →→ ⟨id.osv1 × id.osvi ⟩]

 (7.4.4.5)

Figure 52: Operational semantics of Forensic Lucid: an evidential statement

Table 15: Types of context operators’ arguments and resulting types
Left Type operator Right Type → Resulting Type

O @ OS → O
O @ ES → O

OS combine OS → OS
OS combine ES → ES
ES combine ES → ES
OS product OS → ES

# ES → ⟨os1, . . . , osn⟩
# OS → ⟨o1, . . . , on⟩
# O → (P,min,max, w, t)
# O.P → E
# O.w → FLOAT
# O.min → INTEGER

ES . OS → OS
OS . O → O
O fby O → OS
O stream-op O → OS

of no-observations $ basically say everything is believable and plausible (like the Any catch-

all case in the DSTME examples). Belief and plausibility of zero-observations \0, therefore,

correspond to the null-hypothesis, so they are set to 0.0.

7.5 Discussion

This section provides an additional insight into the just defined syntax and semantics and

how it all fits together with the material presented in the background (Part I).
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Ebel :

D,P ⊢ E : id D(id) = (fop, bel)
D,P ⊢ E′ : id′ D,P ⊢ E′ : ov
D†[id′ →→ (odim)] P†[id′ →→ id′.w]

D,P ⊢ bel(E′) : ov .w
(7.4.5.1)

Ebel($) :

D,P ⊢ E : id D(id) = (fop, bel)
D,P ⊢ E′ : id′ D,P ⊢ E′ : $
D†[id′ →→ (odim)]

D,P ⊢ bel(E′) : 1.0
(7.4.5.2)

Ebel(\0) :

D,P ⊢ E : id D(id) = (fop, bel)
D,P ⊢ E′ : id′ D,P ⊢ E′ : \0
D†[id′ →→ (odim)]

D,P ⊢ bel(E′) : 0.0
(7.4.5.3)

Ebel(EE) :

D,P ⊢ E : id D(id) = (fop, bel)
D,P ⊢ E′ : id′ D,P ⊢ E′ : o′v
D,P ⊢ E′′ : id′ D,P ⊢ E′′ : o′′v
D†[id′ →→ (odim)] P†[id′ →→ id′.w]
D†[id′′ →→ (odim)] P†[id′′ →→ id′′.w]
D,P ⊢ E′ : o′v .P = D,P ⊢ E′′ : o′′v .P

D,P ⊢ bel(E′, E′′) : o′v .w + o′′v .w
(7.4.5.4)

Epl($) :

D,P ⊢ E : id D(id) = (fop, pl)
D,P ⊢ E′ : id′ D,P ⊢ E′ : $
D†[id′ →→ (odim)]

D,P ⊢ pl(E′) : 1.0
(7.4.5.5)

Epl(\0) :

D,P ⊢ E : id D(id) = (fop, pl)
D,P ⊢ E′ : id′ D,P ⊢ E′ : \0
D†[id′ →→ (odim)]

D,P ⊢ pl(E′) : 0.0
(7.4.5.6)

Figure 53: Operational semantics of Forensic Lucid: belief and plausibility

7.5.1 Mapping Forensic Lucid, Gladyshev and Dempster–Shafer

Theories

We illustrate how the Forensic Lucid computations fit in the context of formalization

introduced by Gladyshev (Section 2.2.2, page 30) as well as the use of the Dempster–Shafer

theory (Section 3.3.2, page 66).

1. Gladyshev’s finite collection of all possible events I (see Section 2.2.2) forms a tag set

to denote all possible computations c.

2. Every q in Gladyshev’s state machine Q is a possible world in our view. q is the current

contextual point in space P .

In the case of the Printer Case (Section 2.2.5.1.3, page 48) the notion of the printer is

the intension, its various possible world extensions include the states q of the printer
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queue, where following the events I make transitions from world to world. Likewise,

in the Blackmail Case (Section 2.2.5.2, page 51) the intension of the disk cluster is

instantiated in different extensions of the letter fragment states.

3. Gladyshev’s runs and their partitionings have a length. Since Lucid streams are gen-

erally infinite we do not have a length, we denote finite streams end with the eod

(end-of-data) and bod (beginning-of-data) stream markers as well as the query oper-

ators such as iseod and isbod (see the corresponding syntax productions: 7.3.0.24,

7.3.0.67, and 7.3.0.69).

4. For convenience and consistency of expression we define

max ≡ opt

and

infinitum ≡ INF+

in Gladyshev’s formalization of observation (Section 2.2.4, page 32).

5. os = o simply means an observation sequence os containing simply a single observation

o as in os = {o}.

6. The no-observation in Section 2.2.4, $ = (CT , 0, infinitum) is like a catch-all case

in the Dempster–Shafer in Section 3.3.2 to complement belief mass assignment. CT

is a finite tag set, and infinitum (a constant longer than the longest run in Glady-

shev’s formalism) is INF+ in our case, which maps to Java Long.MAX VALUE within the

GIPSYInteger type in the GIPSY Type System.

7. In general, o = (E1, E2, E3, E4, E5), in practice, min = E2 and max = E3 evaluate

to integers, w = E4 to a floating point number [0 . . . 1], and t = E5 is an optional

date/time expression when an activity began (consistently align to some epoch, e.g.,

a Unix timestamp, which is a number of seconds since the epoch, so it is technically

an integer as well, but standard string timestamps are also syntactically accepted to

facilitate encoding of log data).
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8. We use fbyw for probabilistic fby where the syntax is the same as the regular fby,

but o’s w is taken into account, when w = 1, fbyw behaves like regular fby. The

same for wvr, X is whenever Y ’s w is sufficiently high (Y.w > 1/2) and similarly for

other operators defined in Section 7.3.2, page 169. w puts an additional constraint

on the transitions that use it to avoid taking unreliable evidence into the account.

Having a low w effectively may force an eod in a stream of observations earlier than

the actual end of stream discarding the evidence after a low-credibility observation as

non-reliable and therefore non-admissible. It is certainly possible for a given observation

sequence (testimony) to contain alternating sub-sequences of high- and low-credibility

observations; therefore, a full-stop at the first encounter of o.w < 1/2 may not be

desirable. In this case the investigator has to review the observation sequence and

break it up into individual sequences containing series of credible and non-credible

observations. The manual aspect can be automated if the observation sequences come

from software tools, logs, services, or monitoring agents, or as a preprocessing tool or

script before running the Forensic Lucid program.

7.5.2 Forward Tracing vs. Back-tracing

Naturally, the GEE (Section 6.2.2, page 142) makes demands in the demand-driven evaluation

in the order the tree (AST) of an intentional program is traversed. Tracing of the demand

requests in this case will be “forward tracing” (e.g., see the first top half of the Figure 25,

page 87). Such tracing is useful in the debugging and visual verification but is less useful than

the mentioned back-tracing when demands are resolved, when dealing with the back-tracing

in forensic investigation in an attempt to reconstruct events from the final state observations

back to the initial state. Back-tracing is also naturally present when demands are computed

and return results, which would be the second half of Figure 25, page 87. The latter may

not be sufficient in the forensic evaluation, so a set of reverse operators to next, fby, asa,

etc. were needed.
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7.5.3 Constructing Forensic Context of Evaluation

We need to provide an ability to encode the “stories” told by the evidence and witnesses.

These constitute the primary context of evaluation that gives meaning to the case under

investigation. The more complete “return value” of the forensic expression evaluation is a

collection of backtraces (may be empty), which contain the “paths of fuzzy truth”. If a

given path trace contains values considered as true, it’s an explanation of a story. If there

is no such path (i.e., the trace is empty), there is not enough supporting evidence of the

entire claim to be true [298, 302, 303, 305, 310]. The backtraces are augmented with the

plausibility values using the Dempster–Shafer approach (Section 3.3.2, page 66) computed

from the belief mass assignments to the contained observations (in an equivalent Gladyshev’s

backtraces, the plausibility and belief are always 1.0).

The context spaces (Section 3.2.2, page 64) are finite and can be navigated through in

all directions of along the dimension indexes. The finiteness is not a stringent requirement

(as normal Lucid’s tag sets are infinite in nature), but in the cyberforensic investigation

there is always a finite number of elements in the stories told by witnesses and the evidence,

such that the investigator can process them in humanly reasonably time and arrive at some

conclusion [303].

We, therefore, defined streams of observations (i.e., observation sequences osi). In fact,

in Forensic Lucid we defined higher-order dimensions and lower-order dimensions [298,

302]. The highest-level one is the evidential statement es, which is a finite unordered

set of observation sequences os. The observation sequence os is a finite ordered set of

observations o. The observation o is an “eyewitness” of a particular property P along with the

duration of the said observation [298, 302]. We mentioned before (Section 7.3.2, page 181), we

admit navigating unordered tag sets with operators like next, prev, fby, @ and dependent

operators by using the underlying collection index in the order they were stored meaning the

order of declaration is not important, but it is sequential. The order may change when using

context calculus operators (Section 7.2.3.1.4, page 165), but this is done prior navigation.

This is a Forensic Lucid extension to the Lucx’s context types [470]. Thus, it is not

important in which order the investigators lists the observation sequences in the evidential

statement. It is important, however, within the observation sequences, the observations are
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strictly ordered.

7.5.4 Transition Function

A transition function (described in [134, 135], Section 2.2.2, page 30) derived from Glady-

shev et al . [133, 134, 135] determines how the context of evaluation changes during forensic

computation. It represents in part the case’s crime scene modeling as a possible world state.

A transition function ψ is investigation-case-specific (i.e., depends on a particular forensic

case being modeled, and, therefore, is not readily available). In general, it is to be provided

by the investigator, just like in Gladyshev’s Common Lisp implementation. In the FSA

approach, the transition function is the labeled graph itself ([135], Figure 12, page 44).

In general, we already have basic intensional operators to query and navigate from one

possible world state to another (see Chapter 4, page 76). These operators represent the basic

“built-in” transition functions in themselves (the intensional operators such as @, #, iseod,

first, next, fby, wvr, upon, and asa as well as their inverse operators [302] defined earlier).

However, a specific problem being modeled requires more specific transition function than

just plain intensional operators. In this case the transition function is a Forensic Lucid

function where the matching state transition is modeled through a sequence of invocation

of intensional operators [298, 302, 303, 305, 310]. That is each state is a possible world and

intensional operators enable transitions between the states.

See the ACME Printing Case and Blackmail Case remodeled in Forensic Lucid in

Section 9.3 and Section 9.4 respectively in Chapter 9. There we provide the first Forensic

Lucid implementation of ψ, Ψ−1, and the “main()” (program entry point) in Listing 9.5,

Listing 9.6, and Listing 9.4 respectively [301, 302] from Gladyshev’s cases.

7.5.5 Generic Observation Sequences

The generic observation sequence context contains observations whose properties’ duration is

not fixed to the min value alone (as in (P,min, 0), omitting w, t). The third position in the ob-

servation, max ̸= 0 in the generic observation, and, as a result, in the containing observation

sequence (e.g., os = (P1, 1, 2)(P2, 1, 1)). (Please refer to Section 2.2.4.5 and [133, 134, 135] for
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a more detailed example of a generic observation sequence [302, 303, 310].) We adopt a simple

way of modeling generic observation sequences [135] by lifting the observation sequence type

to an evidential statement type enumerating all variants in the min = min+max arguments

for all possible max in the original and setting in the generated set max = 0 via the semantic

rule Qesdim(×) in Figure 52, page 203.

7.5.6 Conservative Extension

We claim Forensic Lucid is a conservative extension [251] of GIPL and other comprising

Lucid dialects despite its comparatively large feature base. That is programs written in those

dialects are also valid programs (but not necessarily forensically interesting) in Forensic

Lucid, i.e., any virtual machine interpreting Forensic Lucid programs during evaluation

should be capable of interpreting GIPL, Indexical Lucid, JLucid, Objective Lucid,

Lucx, and JOOIP programs.

The extension covers three main aspects: the additional IdEntry’s in Table 13, syn-

tax, and semantics. However, the extensions do not alter the meaning of the programs in

predecessor Lucid systems.

1. Additional IdEntry’s:

Wan already established Lucx [510] is a conservative extension of GIPL with the

simple context operators and context set operators. The Java member extensions were

added by Objective Lucid et al ., again conservatively to GIPL and Indexical

Lucid (never explicitly told so, but we may as well do that here). The new forensic

entries covering the forensic contexts and operators are likewise additional entries.

2. Syntax extensions:

The reverse, forensic, probabilistic, and dot operators, as well as the observation, ob-

servation sequence, and evidential statement constructs are additional entities that did

not exist in the comprising dialects, as such they do not affect consistency of the original

programs.

3. Semantics extensions:
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We augment the semantics of intensional operators with the credibility weight factor

w as well as ability to navigate forensic hierarchical contexts. If w = 1, the operators

behave according to their nominal definitions. Any operations on the forensic contexts

is new to Forensic Lucid and does not affect the predecessor dialects.

Thus, we can conclude Forensic Lucid does not introduce additional inconsistencies to

the predecessor dialects.

7.6 Summary

Forensic Lucid is a contribution that fuses intensional programming and the DSTME.

It offers new formalization of observations and its impact on observation sequences, and

evidential statements. This formalization addresses the shortcoming in Gladyshev’s theory

by making a more realistic evidence representation with the credibility assessment [311] as

well as more scalable and accessible to a wider audience due to the simpler nature of Lucid-

based languages.

From the logic perspective, it was shown one can model computations as logic [220].

When armed with context and a demand-driven model adopted in the implementation of the

Lucid family of languages that limits the scope of evaluation in a given set of dimensions

and their tags, we come to the intensional programming artifact. In essence, we formalize

our forensic computation units in an intensional manner. We see a lot of potential for this

work to be successful and beneficial for cyberforensics as well as intensional programming

communities.

The authors of the FSA approach did a proof-of-concept implementation of the proposed

algorithms in CMU Common Lisp (cf. [135, Appendix]) that we improve the usability

of by re-writing in Forensic Lucid in Section 9.3, page 250 and Section 9.4, page 254.

Forensic Lucid’s software architecture design aspects within GIPSY are discussed further

in Chapter 8, page 211 and various use-cases and scenarios are discussed in Chapter 9,

page 244.
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Chapter 8

Software Architecture Design

This chapter discusses the proposed software design and implementation aspects behind

Forensic Lucid (presented in the preceding chapter). This includes specific contributions

to GIPSY in terms of its GIPC and GEE frameworks redesign to support the Forensic

Lucid compilation and run-time. The architectural design centers around the Forensic

Lucid parser and semantic analyzer, various re-design details of GEE to support AspectJ

and PRISM backends and the multi-evaluation-backend framework in general, as well as

production of various data-to-Forensic Lucid encoders. We also discuss the related back-

ground work where applicable. We present the necessary architectural design concepts,

frameworks, and some of their PoC implementation. While our main target evaluation plat-

form is GIPSY (Chapter 6, page 128), the design is meant to be general enough for any

Forensic Lucid-implementing system. We review related work where appropriate that

was not mentioned in earlier chapters that impacts the proposed design decisions in this

chapter as well as in Chapter 9.

8.1 Forensic Lucid Compiler

The general design approach (Section 6.2.1, page 139) for adding a new SIPL compiler

calls for implementing the IIntensionalCompiler interface augmented with a specific IPL

parser, semantic analyzer, and optionally a translator. Accordingly, we add the correspond-

ing new Forensic Lucid compiler framework to GIPC of GIPSY. One needs to create a
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JavaCC [503] grammar and Forensic Lucid-to-GIPL translation rules where applicable

(e.g., see Section 7.3.2.2, page 182) and a possible Java-based implementation of some of the

new operators [303] and constructs that were not translated, such that GEE can evaluate

them at run time. We likewise introduce the FORENSICLUCID FormatTag to handle Forensic

Lucid-specific constructs. These constitute annotations of the AST nodes (similarly to pre-

viously introduced ImperativeNodes in [262]) that allow GEE’s evaluation engines to deal

appropriately with them when an interpreter encounters such nodes. The FORENSICLUCID

annotation allows to invoke the appropriate operators from the GIPSY type system at run-

time.

8.1.1 Forensic Lucid Parser

Following the tradition of many GIPC’s parsers, Forensic Lucid’s grammar (in accordance

with its syntax presented in Section 7.3, page 166) is specified in a particular grammar format.

We use Java Compiler Compiler (JavaCC) [503] to generate the parser for Forensic Lucid.

The resulting current grammar specification is in GIPSY’s CVS repository [364].

8.1.2 Forensic Lucid Semantic Analyzer

Forensic Lucid’s semantic analyzer’s design calls for it to be primarily an extension of

the Lucx’s semantic analyzer [470], primarily because Lucx is not fully translated into

GIPL and because Forensic Lucid adds new constructs, such as forensic contexts and the

DSTME that don’t have yet any known translation algorithm intoGIPL. Thus, the program-

ming artifact ForensicLucidSemanticAnalyzer is created to account for the new node types

in AST corresponding to the extensions (primarily the forensic and Lucx context types and

context calculus operators presented in Section 7.2.3.1.3, page 164 and Section 7.3.3, page 183

respectively). ForensicLucidSemanticAnalyzer capitalizes on the earlier semantic analyz-

ers implemented by Tong [470] and Wu [524].

ForensicLucidSemanticAnalyzer’s responsibility is not ensure the static compiled AST

and the Dictionary of identifiers adhere to the declarative aspects of the Forensic Lucid

language’s operational semantics described in Section 7.4, page 192. The semantic analyzer
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traverses the AST that came out of the JJTree tool of JavaCC top-down/depth-first to do

the static type-checking, identifier scope and definition checks, initial rank analysis, and

other typical semantic analysis tasks [524]. The differences from the traditional GIPL- and

Indexical Lucid-based dialects, additional type checks are done for Lucx-derived simple

contexts, context sets, and specifically tag sets [470].

Since not all of the semantic checks can be done at the compile time, the run-time eval-

uation engines do the run-time checks during program execution. However, the majority of

the QQ rule’s declarations in Forensic Lucid (rule 7.4.1.18, Figure 46, page 198) that cor-

respond to the evidential context specification are usually all statically specified from either

log files or manually by the investigator.

8.2 Forensic Lucid Run-time System Design

In Forensic Lucid run-time GEE is instantiated to spawn concurrent threads of evaluation

of the same Forensic Lucid GEER by any or all designed backends by default as detailed

further. AspectJ (--aspectj, implies --flucid) is for forward tracing, potentially as an

optimization for just tracing the normal flow of execution ψ instead of backtracing. The

PRISM backend is invoked with --prism in addition to or to skip the normal backend. A

regular eductive ForensicLucidInterpreter for traditional GIPL-like evaluation is made

available via ForensicGEE (Figure 61, page 225). What follows is the detailed design de-

scription surrounding these components.

8.2.1 AspectJ Backend Design

Aspect-oriented programming (AOP) has ties with the intensional programming paradigm

when it comes to the notion of context [93]. Specifically, Du previously [93] proposed a

relationship between the two programming paradigms in 2005. The AspectJ language [29]

is the extension of the Java language to add AOP capabilities to Java programs. While

AOP’s implementation in AspectJ is mostly software engineering practices-oriented tool, it

can help resolving implementation issues with tracing the forensic evaluation process.

The AOP paradigm has also been applied to systematic security hardening aspects in
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software systems design patterns by Laverdi‘e by reproposing a related Security Hardening

Language (SHL) in 2007 [226].

8.2.1.1 Tracing Program Execution

The GEE (Section 6.2.2, page 142) of GIPSY is the intensional demand-driven evaluation

engine. When it executes a Lucid-dialect program, it is natural to trace it. The trace can

be of that of the intensional program itself as well as its hybrid components, e.g., written

in Java. The proposed design covers the implementation of an eductive system in Java

and AspectJ. The designed example of an execution trace of an Objective Lucid [262]

program is in Figure 25, page 87. Such a trace is, for example, very useful for the proposed

cyberforensic evaluation [265, 289].

8.2.1.2 AspectJ Run-time Environment

The GEE’s executor’s (gipsy.GEE.Executor) design is adjusted to produce the required

traces similarly to the debug mode. Additionally, the AspectJ’s joint points [29], like before

and after triggers are specifically of use, of which the GEE itself is unaware, and such an

execution trace can be used as the explanation of a story told by a the evidence and witnesses.

The exact place of putting such tracing is in the implementation of intensional operators. Due

to the GIPL engine’s fine granularity of the execution (only @ and # intensional operators

along with context set operators and classical operators are executed), another instance

(extension) of the engine has to be made, implemented in AspectJ, that is capable of doing

tracing on the higher-level forensic operators to provide a more meaningful trace. Its design

also accommodates for the new forensic context types [289, 303].

An AspectJ wrapper is applied to the GEE, specifically around the engine’s implemen-

tation of the run-time system’s core that does the actual evaluation. A problem was identified

with the outlined designed approach is that the GEE’s interpreter implementation either too

coarse-grained when it comes to procedural demands too fine grained when it comes to all

the intensional operators translated to @ and #. Therefore, the design of the new inten-

sional backend is undertaken for better tracing of forensic evaluation and its presentation.

However, the advantage of using AspectJ for this task is that an AspectJ wrapper of the
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engine can be written without much, if any, alteration of any current engine running.

8.2.2 Probabilistic Model Checking Backend Design

Model checking has to do with defining a model of a system or component or concept usually

as a state machine, and then stating a hypothesis or a claim to see if it agrees with the

model [35]. Model checking was applied in various areas, including specifically autonomic

computing [499], security metrics for network security [121, 454], and UML/SysML mod-

els [188]. Probabilistic model checking is an extension that takes into account probabilities

associated with the model and its transitions.

Ritchley was one of the first to use a model checker to analyze network vulnerabilities [400].

The network is modeled as a graph; along with goal states (representing the desired attack

target), initial conditions, and other necessary details defined. Then, an assumption is made

that there is no way an attacker can reach a goal state. If indeed there is no such a path, the

model checker would respond with true. If there is a path, the model checker in Ritchley’s

case would respond by giving a single path that an attacker can follow to get to the goal.

Subsequently, Sheyner et al.’s [424] methods improved Ritchley’s work by altering the model

checker such that instead of giving only a single counterexample, the model checker will give

all the paths leading to the goal. The main critique of these model-checking methods was the

eventual state explosion problem for large and complex problems (networks) and the methods

were “abandoned”. Forensic computing approach presented in Gladyshev’s work may suffer

from the same issues. The attack graph community in the above examples switched to use

DAGs and graph search techniques to avoid such problems. We believe the eductive context-

oriented manner of computation, however, can address some of these problems by computing

the paths that are only needed by the context specification in a demand-driven manner with

the resulting values cached in the scalable DST for later use even if the underlying problem

is complex. (This may bring the model-checking aspect back to the attack graph security

researchers as well).

8.2.2.1 PRISM

PRISM [464] is a probabilistic model checker with its simple input language syntax and

215



semantics. Internally it implements various modules for decision processes, such as, e.g.,

Markov Decision Process (MDP), and others. The basic core syntax of PRISM is in Figure 54,

which is in essence a series of declarations of variables and the associated actions and guards

(similar to the UML state diagrams) and the associated probabilities pi, and a reward/cost

specification [188]. In Figure 55, Figure 56, and Figure 57 are formal syntax and operational

semantics of PRISM recited from Jarraya’s specification [188].

Figure 54: PRISM input language basic syntax [188]

Figure 55: PRISM input language syntax (1) [188]

8.2.2.2 Model-Checking with PRISM

Once the probabilistic model in Forensic Lucid is built (evidential statement and transition

functions), to verify it (concurrently with the general evaluation) is to check the model with

the probabilistic model-checking tool PRISM [464]. As a result, the design of one of the

GIPSY evaluation engine backends of a Forensic Lucid program generates a translated

PRISM code, which is then passed on to the PRISM tool itself [311].

We considered and decided against another possibility of translating directly from the

Forensic Lucid specification to PRISM at compile time (i.e., in GIPC). That translation

does not necessarily retain the operational semantics and prohibits the traditional eductive

and parallel evaluation of Forensic Lucid programs that would normally be available in
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Figure 56: PRISM input language syntax (2) [188]

Figure 57: PRISM input language operational semantics [188]
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GEE [311]. It is also a factor that GEE deals with the core intensional operators (Sec-

tion 7.3.2, page 169) translated into @ w and #w (Section 7.3.2.3, page 183), which are

uniformly translatable to much simpler PRISM constructs.

The design of the PRISMWrapper backend includes interpretation of the Forensic Lucid

semantics in the compiled GEER while matching it to the PRISM input language operational

semantics (recited in Figure 57 as fully introduced and specified by Jarraya in [188]). As the

Forensic Lucid interpreter descends down the Forensic Lucid AST (that follows the

Forensic Lucid operational semantics), generate appropriate PRISM commands taking

into the account w of observations involved. This translation wouldn’t be much of use to

non-Forensic Lucid programs since it concerns only the forensic contexts that have the w

assigned to be used in the PRISM models.

8.3 Updates to GIPSY’s Frameworks’ Design

There were a number of design changes planned and carried out in various GIPSY frame-

works, including GIPC and GEE to support Forensic Lucid (among other systems, such

as MARFCAT). This includes the type system and algebras support (Appendix B), inten-

sional demands (Chapter 6), and substantial refactoring. GEE’s Lucid interpretation module

(Interpreter) had to be upgraded to be GIPSYContext-aware and use other GIPSY Type

System’s types consistently (as its previous iteration ([239]) was using arrays of integers to

represent the context of evaluation and did not support any of the new Lucx constructs).

Along with other GIPSY R&D team members, standardizing multi-tier behavioral aspects to

enable scalable Forensic Lucid evaluation, the type system, and developing the physical in-

frastructure and configuration (GIPSY cluster lab setup, Section 8.6) have been undertaken.

The author have been responsible for the major physical software architecture re-design and

core API specification and unification along with partial implementation of the mentioned

frameworks with Tong [470], Han [158], Ji [189] providing complete implementations of their

related parts on Lucx compiler and multi-tier DMS in their master’s theses and Wu inte-

grating the JOOIP work on syntax and semantic analysis in her PhD thesis [525].
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Figure 58: Forensic Lucid compilation and evaluation flow in GIPSY [320]
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In Figure 58 [320] is a general conceptual design overview of the Forensic Lucid com-

pilation and evaluation process involving various components and systems. Of main interest

to this work are the inputs to the compiler—the Forensic Lucid fragments (hierarchical

observation sequence context representing the encoded evidence and witness accounts) and

programs (descriptions of the crime scenes as transition functions) can come from different

sources as in input. The evidential knowledge of the case and the crime scene model are com-

bined to form a Forensic Lucid program. The complete specification is then processed by

the compiler depicted as GIPC on the image (the General Intensional Program Compiler)

through the invocation of the Forensic Lucid SIPL compiler that is aware of the Foren-

sic Lucid constructs, such as the forensic contexts, their properties along with credibility

weights, etc. and operators detailed in Section 7.3, page 166. The compiler produces an

intermediate version of the compiled program as an AST and a contextual dictionary of all

identifiers (e.g., observations among other things), encapsulated in a GEER that evaluation

engines (under the GEE component) understand. GEER linking is optionally needed if either

hybrid compilation of, e.g., JOOIP and Forensic Lucid takes place, or a multi-language

program is compiled where each compiled fragment has its own AST and they need to be

liked together as a single compiled program (see Section 6.2.1, page 139). GEER linking for

a pure Forensic Lucid program is a no-op. The compiled GEER and engine configuration

(either a default, or a custom file) are fed to GEE for processing by one or more evalua-

tion engines. The configuration tells GEE which engines and their run-time setting to use.

The said Forensic Lucid evaluation engines are designed to use the traditional eduction,

AspectJ-based tracing, and probabilistic model checking with PRISM [464] to cover the

comprehensive subset of computations and provide a backtrace of event reconstruction [309]

and can run concurrently processing the same GEER.

In Figure 59 is the updated high-level structure of GIPC (cf. Figure 33, page 138 in

Chapter 6). This design incorporates a new framework for semantic analyzers that may

behave differently for different SIPLs (Section 4.1.1.2, page 78). The modifications (detailed

further) comprise the fact that SIPLs may produce an AST that is not necessarily translated

(fully, or partially) into GIPL (as is the case of Lucx and Forensic Lucid) bypassing the

SIPLtoGIPLtranslator. For such cases, the specific semantic analyzers are created to work
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Figure 59: Updated high-level structure of the GIPC framework

specifically with such ASTs. The specific semantic analyzers are aware of any additional

types in the type system particular to the language in question and rely on its validating

methods, such as, e.g., statically declared tag set types, observation’s components are proper

types (credibility w is a float, min,max are integers, etc.). In figure, the semantic analyzers,

translators, and GEER linkers are conceptually represented as one class simply because these

modules work together closely. At the implementation level, they are separate Java classes.

At present, the Semantic Analyzers Framework is represented by the ISemanticAnalyzer
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Figure 60: Semantic analyzers framework

interface and has three concrete instances implementing it: SemanticAnalyzer, which is the

general analyzer that is originally capable of handling of classical GIPL, Indexical Lucid,

JLucid, Objective Lucid, and JOOIP programs (combined with the procedural code

linking for the hybrid dialects in ProcedureClassGenerator) contributed to by Wu [524,

525] and Mokhov [262]. Then follow LucxSemanticAnalyzer, produced by Tong [470], and

the ForensicLucidSemanticAnalyzer for the work presented here on Forensic Lucid

following the inheritance hierarchy for convenience and code re-use for many of the semantic

rules. All semantic analyzers adhere to the same API and produce a GEER, corresponding to

their syntactical and semantic annotations. In Figure 60 is the class diagram corresponding

to the just described framework. ForensicLucidSemanticAnalyzer primarily inherits from

LucxSemanticAnalyzer to work with tag set, simple context, and context set type checks

as well as context calculus operators. Additional checks are added to work with forensic

contexts and operators. Any class implementing ISemanticAnalyzer can now be added to

the GIPC framework as a plug-in should there be need in doing so for future extensions,

dialects, and experimentation.

8.3.1 Engine Redesign

Semantically speaking, the Lucid program interpretation happens at the generator com-

ponents, DGTs (Section 6.2.2.1.6, page 146), because this is where the eductive evaluation

engines reside. Then it can take various routes: be local, multi-threaded, or distributed via

the multi-tier DMS (Section 6.2.2.1, page 143). The aforementioned compiled GIPSYProgram
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(a GEER instance) containing the annotated AST as well as the Dictionary of identifiers

(corresponding to the initial D0), and definitions, is passed to GEE (Figure 58, page 219).

GEE then hands them over to an interpreter. Traditionally, there was only a single inter-

preter, with compiled GIPL as its only input language. Then this design morphed into a

more general architecture to allow more than one interpreter and demand generator types.

Thus, to add interpretation non-translated-to-GIPL dialects (e.g., Lucx and Forensic Lu-

cid), one first and foremost has to replace the Interpreter component in the DGT based

on the either a command-line option or the annotated node tag in the GEER’s AST (e.g.,

a FormatTag [262] of FORENSICLUCID in our case). In this process the DST, the primary

demand propagation machinery, does not change. However, the worker side of DWT may oc-

casionally change, depending on the type of procedural demands (Section 6.2.2.1.8, page 147)

to be processed (such as in the case of MARFCAT DWT).

A framework support for this was needed and was provided to allow multiple evalua-

tion engines interpreting new input language material. In the case of Forensic Lucid, we

override DGT’s Executor to be able to spawn one of the three evaluation engines, and the

eductive ForensicLucidInterpreter overrides Interpreter. As a side benefit, this also

includes support for so called “null”-languages of, e.g., applications (found in gipsy.apps)

such as MARFCAT (gipsy.apps.MARFCAT) and MARFPCAT (gipsy.apps.MARFPCAT) from

Chapter 5, OCTMARF [317] (gipsy.apps.OCTMARF), or genome sequence aligning application

(gipsy.apps.memocode.genome) that do not currently have a compilable Lucid-family lan-

guage front-end, but could still use the multi-tier DMS middleware of GEE for distributed

computation. For mentioned applications, problem-specific (PS) DGT and DWT were cre-

ated wrapping the functionality of the applications into the demand-driven model, e.g.,

MARFCATDGT, MARFCATDWT, and the like.

Thus, non-GIPL engine software layer differentiation became necessary for problem-

specific-tiers as well as non-GIPL languages to be able to take advantage of the the GEE’s

distributed middleware infrastructure by improving the GEE framework making it more

flexible.

That allows various programming language paradigms to be included into GIPSY that are

not necessarily compatible with GIPL or the translation effort to undertake is too great to be
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effective, error-free, or efficient [470]. This can allow, for example, pLucid, TransLucid,

and MARFL run-times. However, the specific interpreter run-times need to be inserted

into the GEE framework by implementing the documented interfaces and the operational

semantics of these languages.

8.3.1.1 Evaluation Engines’ Components

The following is the design related to various evaluation engine components. The invocation

of the desired evaluation can be configured or directly invoked by the user via the GMT or its

RIPE front-end allowing selection of the evaluation engines from the GUI or via command-

line options, of which currently the latter is implemented. In Figure 61 is the overall design

connecting various related GEE components.

• IEvaluationEngine—all run-time evaluation engines within the GEE framework are

to implement this API. It also allows for external plug-ins.

• IDemandGenerator is the interface annotating any component that can participate in

demand generation activity and DemandGenerator its generic implementation. All Lu-

cid interpreters are by default meant to generate demands for eductive execution (local

non-eductive implementations simply implement no-op demand generation functional-

ity). DemandGenerator also connects interpreters with the multi-tier DMS (discussed

further).

• Executor + LegacyInterpreter—compose the classical GIPL AST interpreter re-

fitted back into the new framework. LegacyEductiveInterpreter is an update to

LegacyInterpreter to actually benefit from the demand generation as the classical

LegacyInterpreter did everything locally.

• Interpreter is a classical interpreter rewritten to use directly the GIPSY Type System.

• ForensicLucidInterpreter is forensic-context and context-operators aware extension

of the Interpreter.

• ForensicGEE is simply an extension of the Executor designed to work by default with

the ForensicLucidInterpreter.
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• AspectGEE—a designed AOP extension stub of the Executors.

• PRISMWrapper—a designed non-eductive stub for evaluation of the GIPSYProgram such

that its “execution” yields a PRISM program that eventually is fed to the PRISM

itself [464].

Figure 61: Evaluation engines class diagram

Thus, the Forensic Lucid GIPSYProgram GEER, depending on the configuration, is

simultaneously passed to ForensicGEE and PRISMWrapper independent evaluation backends;

with AspectGEE optionally observing ForensicGEE for tracing purposes in our design.

8.3.1.2 Backtracing

The design of the backtracing in the ForensicGEE interpreting backend includes the execution

of the reverse Forensic Lucid operators, which is an extension of the classical Executor

backend (Figure 61).

8.3.1.3 Refactoring Demand Generators vs. Dispatchers within DGT

To enable the different evaluation engines and interpreters as presented in the previous sec-

tions in Figure 61 a refactoring re-design effort had to be undertaken [191] to allow Forensic
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Lucid computation (and as a by-product problem-specific application DGTs mentioned ear-

lier). The illustration of some of the concepts described in this section is in Figure 62. As

a part of the refactoring work, we discerned the relationship between and clearly defined

the roles of the demand generators and the middle-ware specific demand dispatchers within

the DGT. Since generators do not necessarily use the distributed DMS’s middleware (Jini

and JMS) in their interpreters, the dispatching logic was redefined to be invoked by the

generators when needed to make a demand by the interpreter. The notion of the dispatcher

was originally designed by Vassev [498] and had the roles of the dispatcher and generator

intertwined and reversed requiring decoupling of the generators from the knowledge of the

specific middleware technology used.

In accordance with this refined design, a Demand Generator in DGT maintains a local list

of demands, “My pending demands” for Forensic Lucid program identifiers. The demands

on that list are said to be generated (“issued”), but have not come back yet with results,

i.e., they preserve their PENDING state, in case this list ever to be re-issued to another DST.

Issuing of the demands is generally non-blocking, but is subject to the program semantics

incorporated into the GEER’s AST. An AYDY (are-you-done-yet) thread in the Generator

periodically checks if any results have come back for the demands on the local pending list

with the Dispatcher. They get removed from the list when the result comes back and returned

to the user.

The local demand list in the Generator is expected to be most frequently a size of one

(at a time) for a single Forensic Lucid program, i.e., the root node of the AST. This

may change, however, if the Generator picks up intensional demands (effectively subtrees) of

own or others’ programs that are in the associated store. It is technically also possible issue

demands for identifiers without data dependencies, e.g., a demand for B + C could have a

demand for B and a demand for C be in the pending demands list of the generator.

The Generator (ForensicLucidInterpreter in our case) is aware of the Forensic Lu-

cid program semantics and the AST structure, but is unaware of the transport agents (TAs),

DSTs, communication mechanisms, and other lower-level middleware technological aspects

(Section 6.2.2.1, page 143). The Dispatcher is unaware of the program’s overall structured and

semantics (except for any annotations pertinent to scheduling not described here), but knows
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Figure 62: Demand Generator and Dispatcher relationship

about TAs and communication protocols and scheduling strategies. The Generator runs at

the CPU speed; the Dispatcher runs at the communication speed including all the latencies,

marshaling/demarshaling costs. Thus, the Generator-Dispatcher pair of the evaluation en-

gine are analogues to the device driver-halves—the general upper half is device-independent

running at the CPU speed and known to all and the lower half is device-dependent, com-

munication driven by the events from the device. The two halves are synchronized via a

buffer. In this analogy replacing the device with the communication technology and strategy

selection and absorption of the inherent latency is handled by the Dispatcher, and upper
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half that concerns more with the semantics of the GIPSY program (e.g., a Forensic Lucid

application) is the Generator.

The Generator issues the demands to the Dispatcher via the Dispatcher’s API. The Dis-

patcher may be aware of some preliminary scheduling strategies and the associated commu-

nication TAs for the demand transfer to the DST. The Dispatcher always maintains a link

to the local DST via a Dummy TA [189, 498]. Additionally, it keeps its own “Local demand

pool” [158, 360], as a buffer, to which the PENDING demands from the Generator are deposited

via the Dispatcher’s API. The TAs are then, in their separate threads of execution, work with

that local pool buffer to deliver the demands lazily to a DST with an appropriate TA. The

pool is an input/output buffer, that also harvests the evaluation results from the DST before

the Generator’s AYDY thread picks it up for delivery to the main application.

If the Generator dies, its local pending demands list goes with the Generator. However,

assuming the demands were successfully dispatched, stored, computed and results deposited

in the DST, a subsequent restart of the Generator by the user for the same program would

just return the results cached in the DST. As a result of the Generator’s crash and the loss

of the Generator’s state is tolerable and makes the forensic computation more reliable. If the

Dispatcher thread dies and its local demand pool buffer goes with it, assuming everything else

is healthy, the AYDY thread in the Generator with a timeout will re-issue the Generator’s

pending demands again refilling the Dispatcher’s local demand pool, which will be filled in

with the results later from the DST the Dispatcher communicates via TAs. The local DST

store also harbors system demands for the Generator-Dispatcher unit within their DGT

container.

This design was a necessary refinement of Paquet’s conceptual multi-tier design and

Mokhov’s integration of that design into the actual code base with some implementation

followed by Han [158] and Ji [189] detailed implementation efforts and further refinement

of the multi-tier aspects of the design. Without it, the Forensic Lucid backends would

have to be unjustifiably aware of Jini, JMS, RMI, or any new communication middleware

technology added to GEE later. It also benefits non-Forensic Lucid backends as well.

The adoption of such an architecture for Forensic Lucid programs is particularly impor-

tant for scalable processing of large evidential statements, including avoiding computational
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processing any duplicate forensic context that may happen frequently in large logs.

8.3.2 Configuration Management

Following the ideas of marf.Configuration and MARFL, gipsy.Configuration was cre-

ated to contain name-value pairs of the currently running updatable nested configuration of

GEE. In Forensic Lucid run-time instance, the configuration tells the main GEE which

backends to start and any of their specific configuration details. This includes configuring the

multi-tier DMS (e.g., picking Jini or JMS middleware and their settings) to evaluate large

evidential data collections, configuration of the DST, an the overall GIPSY network the in-

vestigator anticipates is needed to evaluate the problem at hand efficiently. In Figure 58,

page 219, configuration is provided to GEE by the investigators (along with the compiled

GEER) according the their requirements and the size of the case problem to evaluate. There

are default settings that are otherwise used for local non-distributed evaluation.

• oConfigurationSettings is a Properties type of object encapsulated by the class.

It is properly synchronized and Serializable.

• Some of the Properties’ API is mirrored onto Configuration, so it can also be seri-

alized as a text name=value file or XML, conveniently provided by Java.

• Upon initialization it sets initial defaults for the root path of the classes for dynamic

discovery as well as policy configuration files for Jini and JMS.

• For Forensic Lucid, sets the ca.concordia.cse.gipsy.GEE.backends.flucid to

all by default causing the startup of the three evaluation backends presented. Options

aspectj, prism, and eductive are also individually available and can be specified via

comma-separated values. Thus, all is a shorthand for aspectj,prism,eductive in

our design.

Ji made later use of this design and elaborated its concrete implementation further as

required for his scalability study [189].
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Figure 63: Configuration UML class diagram

8.3.3 Compile-Time Annotations

Compile-time annotations were mentioned to annotate imperative nodes, Lucx nodes, or

Forensic Lucid nodes in the AST. Imperative nodes were originally introduced to denote

coarse-grained units of computation, such as Java methods (that become procedural de-

mands in GIPSY’s multi-tier DMS presented in Section 6.2.2.1, page 143). The author the

introduced the annotations framework’s design and the corresponding interface originally to

allow different scheduling strategies and metrics within the GEE run-time to implement the

ideas in Ben-Hamed’s thesis [157] for follow-up scalability investigations that are a part of the

future work (Section 10.4.3, page 289). The annotations became useful in Forensic Lucid

(and Lucx) run-time design to invoke the appropriate evaluation engine and type system
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components that are capable of processing untranslated (to GIPL) Forensic Lucid nodes.

• IAnnotation, in the package gipsy.interfaces

• NodeAnnotation (of the AST nodes), as per Figure 64

• An example annotation from [262] is the ImperativeNode, instances of which are pro-

cedural demand-related.

Figure 64: Annotations class diagram

8.3.4 Type System

Implementation-wise, Forensic Lucid relies on the GIPSY Type System (Appendix B) first

introduced in [262] and refined in [299, 313, 363, 470]. The new context types are encoded

correspondingly to the subclasses of GIPSYContext, Dimension, and TagSet types (defined

in [470]). These include the dimension types observation (Observation), observation

sequence (ObservationSequence), and evidential statement (EvidentialStatement)

that all extend Dimension. Likewise, GIPSYForensicContext is provided. The instances

of the type GIPSYOperator are designed to hold the definitions of the new operators [303],

including, e.g., bel and pl. While Appendix B discusses the GIPSY type system in detail, the

forensic extensions are illustrated in Figure 65. The package gipsy.lang.context.forensic

is added to contain the physical classes corresponding to the forensic contexts.

Lucx’s TagSet and its derivatives are updated to ise marf.util.FreeVector, which is an

extension of java.util.Vector that allows theoretically vectors of infinite length (bounded

by the memory available to the JVM), so it is possible to set or get an element of the vector

beyond its current physical bounds [262]. Getting an element beyond the boundaries returns

null, as if the object at that index was never set [262]. Setting an element beyond bounds
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Figure 65: Forensic extensions to the GIPSY Type System

automatically grows the vector to that element. In the GIPSY, marf.util.FreeVector

is used as a base for Dictionary [262] and as a collection of Dimensions with their tag

sets in GIPSYContext. It’s the index within an instance of this class is what determines

the behavior of getting next, previous, etc. elements of finite tag sets, regardless if declared

ordered or unordered in Forensic Lucid.

8.4 Forensic Lucid Component Testing

The testing framework design for Forensic Lucid largely follows the testing principles

used by the previous GIPSY-related projects of using modules to test-drive main code the

the tests package, including plain tests, source input files, and JUnit-based tests. We also

update the Regression application to automate some of the non-shell-scripting aspects of

testing. The following tests are designed for the Forensic Lucid compiler:

• Test all GIPL examples still parse

• Test all GIPL examples still pass semantic check

• Test all Lucx examples still parse
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• Test all Lucx examples still pass semantic check

• Test all Forensic Lucid examples still parse

• Test all Forensic Lucid examples still pass semantic check

Other tests are designed according to the examples presented for the operators that work

on bound streams, e.g., Table 14 is as an input for testing of any implementation.

8.5 Forensic Lucid Encoders

The purpose of such encoders is to extract evidential information from various sources and

encode it in Forensic Lucid to be ready for use in investigations.

Specifically, exporting and encoding is necessary to present the evidence in the common

format (Forensic Lucid) for the case when the systems are at least partially automated.

Some software systems can be taught to log their data structure states directly in Foren-

sic Lucid or after-the-fact transcribing log entries into Forensic Lucid format. This is

more evident in the Chapter 9’s MAC Spoofer Investigation when we generate and export a

collection of observation sequences from various sources. This particular section illustrates

some of the encoded evidence for the software systems mentioned to be exported during their

operation, should a fault, incident, bug, or a problem occur, the forensic log (encoded with

Forensic Lucid) can be used in a subsequent investigation. This is particularly useful in

Self-Forensics applications and application domains detailed in Appendix D.

Figure 66: Conceptual illustration of Forensic Lucid encoders
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There were a number of exporters proposed to encode the evidence data from various

data sources (some conceptualized in Figure 66) (Section 9.1.1, page 244) [267, 308, 319] as

well as in the mentioned MAC spoofer investigations in Section 9.5.

8.5.1 MARF

MARF is one of potent evidential data sources mentioned in Figure 66. Since MARF, as

a pattern recognition system, along with its applications described in Chapter 5, able to

provide classification data (vulnerable, malicious code, or biometric classification tasks) and

assign the confidence in reliability of its classification results. These data can complement

other evidence in investigator’s possession and automate some of the process.

8.5.1.1 Classical MARF’s Evidence

The evidence extracted from the classification analysis results of MARF comes from the sev-

eral internal data structures [267], namely Result, ResultSet, TrainingSet (stored trained-

on data), and MARF instance’s Configuration (Chapter 5). The Result consists of tuples

containing ⟨ID, outcome⟩, which are the properties of a single classification result. The result

set, ResultSet, is a collection of such tuples. Processed samples (e.g., utterances, text, im-

agery, code; stored feature vectors or clusters of doubles, see Chapter 5 for details), alongside

with the training file names and IDs comprise the training set data, and configuration is a

collection of processing settings that led to the current results given the training set [267]. We

used this way of modeling of the forensic context to extend it to our other case studies [320]

(Appendix D).

The property P is specified in the three main categories: configuration, training set, and

the result set in MARF. Its observed duration is set as a default of (1, 0), as the notion of

real duration varies per configuration details, but we are interested in how we arrive from

the given configuration and training set to the results [267] in this case. The finer-grained

details, including the actual duration may be specified inside P . observation o = P as

syntactically written, is therefore equivalent to o = (P, 1, 0) as mentioned in Chapter 7. The

observation sequence os is defined as a sequence of three observations, each observation per

category. The observations are ordered as (1) configuration configo, (2) training set tseto,
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and (3) the classification result resulto. The meaning of this observation sequence is that

given some MARF configuration settings and the existing training set, the system produces

the classification result. During the training, the observation sequence is slightly different,

but also has three observations: configuration, incoming sample, and the resulting train-

ing set, which are encoded accordingly as all the necessary primitives for that are already

defined [267]. The complete exportable Forensic Lucid expression is a 3-observation se-

quence as presented in Listing 67. With the simplifying assumption, the (1, 0) syntactical

constructs can be dropped, only keeping the P , which in this case is a higher-order context

specification, as shown in Figure 68 [267]. Such a contextual specification of MARF internals

Forensic Lucid inherited from the MARFL language [270, 320].

MARFos = { confo, tseto, resulto } =

{

([

sample loader : WAV [ channels: 2, bitrate: 16, encoding: PCM, f : 8000 ],

preprocessing : LOW_PASS_FFT_FILTER [ cutoff: 2024, windowsize: 2048 ],

feature extraction : LPC [ poles: 40, windowsize: 2048 ],

classification : MINKOWSKI_DISTANCE [ r : 6 ]

], 1, 0),

([data:{[5.2,3.5,7.5],[3.6,2.5,5.5,6.5]}, files:[‘‘/foo/bar.wav’’,‘‘/bar/foo.wav’’]], 1, 0),

([ID:5, outcome:1.5], 1, 0)

}

Figure 67: Example of a three-observation sequence context exported from MARF to Foren-
sic Lucid [320]

MARFos = { confo, tseto, resulto } =

{

[

sample loader : WAV [ channels: 2, bitrate: 16, encoding: PCM, f : 8000 ],

preprocessing : LOW_PASS_FFT_FILTER [ cutoff: 2024, windowsize: 2048 ],

feature extraction : LPC [ poles: 40, windowsize: 2048 ],

classification : MINKOWSKI_DISTANCE [ r : 6 ]

],

[data:{[5.2,3.5,7.5],[3.6,2.5,5.5,6.5]}, files:[‘‘/foo/bar.wav’’,‘‘/bar/foo.wav’’]],

[ID:5, outcome:1.5]

}

Figure 68: Example of a simplified three-observation sequence context exported from MARF
to Forensic Lucid [320]
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8.5.2 MARFCAT and MSA Encoders

Other encoder examples include MARFCAT (Section 5.4.1, page 111) shown in Listing 8.1

(see [312, Appendix] for an extensive example); MARFPCAT; and MAC Spoofer Analyzer

(MSA) modules (Section 9.5, page 257). In Listing 8.2, Listing 8.3, Listing 8.4 are examples

of the switch management, Argus netflows, and arp related evidence encoded in Forensic

Lucid as observation sequences.

// ...

weakness_25 @ [id:25, tool_specific_id :25, cweid:20, cwename:"Input Validation (CWE20)"]

where

dimension id, tool_specific_id , cweid , cwename;

observation sequence weakness_25 = (locations_wk_25 , 1, 0, 0.001495003320843141);

locations_wk_25 = locations @ [tool_specific_id :25, cweid:20, cwename:"Input Validation

(CWE20)"];

observation location_id_2012( [line => 89, path => "wireshark -1.2.0/ plugins/docsis/

packet -bpkmreq.c")

textoutput="";

observation grade = ([ severity => 1, tool_specific_rank => 668.8948352542972] , 1, 0,

0.001495003320843141);

end;

// ...

Listing 8.1: MARFCAT encoded evidence fragment example

While modi operandi of MSA are detailed in Section 9.5, page 257, we briefly describe

the encoding process used by its modules here. Effectively, there are two types of encoders in

MSA: the ones that work with the typical log data from services of interest (“dead forensics”)

and real-time probes (“live forensics”) (Section 2.1, page 24).

// ...

// ‘swm ’ evidence , encoded: Tue Jul 13 15:37:22 2013

observation sequence swm_os = o_swm_switch fby os_swm_entries;

observation o_swm_switch = ([ switch:"switch1"], 1, 0);

observation sequence os_swm_entries =

{

([port:"Fa0/1", port -state:"up/up", mac:"00:1b:63:b5:f8:0f", hostname:"flucid -44. encs.

concordia.ca"] => "STATIC 666 secured ,restrict ,pfast # [Auto]")

};

// end of ‘swm ’ evidence

// ...

Listing 8.2: swm encoded evidence example

The log-based encoders usually work with a relatively structured log files, which begin

with a timestamp, service, event logged, and details pertinent to each particular event, e.g.,

an IP address, a MAC address, a username, etc. These data are first filtered for the data

of potential interest (e.g., using grep and Perl regexp [401]). Each log line corresponds to

an observation o. The duration in such cases is commonly (min,max) = (1, 0) indicating
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presence of the the observer property P with reliability w = 1.0, and t being set to the

timestamp extracted from the log file. P is then a collection of ⟨dimension : tag⟩ pairs

encoding the details found on the log line. An observation sequence is an ordered finite

collection of such observations of log lines of interest from the same log file. Listing 8.3 is

an example of the log-based encoded evidence. In MSA there are several log files, so the

encoding is made uniform via the EncodingUtils module that formats and normalizes the

data that have more than one way of legitimate representation in use (most common examples

are timestamps, MAC addresses, and hostnames).

The live-probe encoders are more dynamic and challenging as they work with often less

structured data than that of log entries. The data are also time-sensitive due to the liveness

aspect and are subject to what the possible spoofer is doing right now on the network. As

a result the live probes can come up with different degree of output collected with each run.

A set of the most pertinent details was identified from the most complete experimental runs

by a human expert. Thus, each live-probe encoder type tries to extract as much evidence

as possible based on the set of criteria set by the expert. Depending on how complete the

extracted data are, the encoder places different values of the reliability weight w encoded in

its observations. Typically, each live-probe’s encoders collector’s line also corresponds to an

observation in Forensic Lucid terms, but that data can sometimes span more than one

line of text pertaining to a single observation. P is then encoded similarly to the log-based

encoders with the ⟨dimension : tag⟩ pairs with the data of potential interest. Listing 8.2 and

Listing 8.4 are examples of the live-probe encoded evidence.

No-observations ($) are also encoded when the log search or probe come up empty for

whatever reason. Partial observations also occur when only some of the data are available,

then often w is set to values less than 1.0, based on the expert human estimates.

The quality of the encoders follows good common design and development practices and

reviewed by more than one person.
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// ...

// Argus evidence , encoded: Tue Jul 13 15:37:21 2013

observation sequence argus_os =

{

netflow_o_1 ,

netflow_o_2 ,

netflow_o_3 ,

// ...

netflow_o_1019

};

observation netflow_o_1 = ([flow -start:"Tue Jul 13 11:24:53 2013", flow -end:"Tue Jul 13

11:24:53 2013", protocol:"tcp", src -mac:"02:5f:f8 :93:80:00", dst -mac:"02:29: bb:29:d9:1a"

, src -ipaddr:"aaa.aa.aa.aaa", src -port :136, direction:"->", dst -ipaddr:"132.205.44.252",

dst -port :252, packets:2, src -bytes :120, dst -bytes:0, state:"REQ"], 1, 0, 1.0, "Tue Jul

13 11:24:53 2013");

observation netflow_o_2 = ([flow -start:"Tue Jul 13 11:49:05 2013", flow -end:"Tue Jul 13

11:49:05 2013", protocol:"tcp", src -mac:"02:5f:f8 :93:80:00", dst -mac:"02:29: bb:29:d9:1a"

, src -ipaddr:"bb.bb.bb.bbb", src -port :212, direction:"->", dst -ipaddr:"132.205.44.252",

dst -port :252, packets:2, src -bytes :124, dst -bytes:0, state:"REQ"], 1, 0, 1.0, "Tue Jul

13 11:49:05 2013");

observation netflow_o_3 = ([flow -start:"Tue Jul 13 12:27:34 2013", flow -end:"Tue Jul 13

12:27:34 2013", protocol:"tcp", src -mac:"02:5f:f8 :93:80:00", dst -mac:"02:29: bb:29:d9:1a"

, src -ipaddr:"cc.ccc.ccc.ccc", src -port :152, direction:"->", dst -ipaddr:"132.205.44.252"

, dst -port :252, packets:2, src -bytes :120, dst -bytes:0, state:"REQ"], 1, 0, 1.0, "Tue Jul

13 12:27:34 2013");

// ...

Listing 8.3: Argus encoded evidence example

// ...

// arp log evidence , encoded: Tue Aug 13 15:37:13 2013

observation sequence arp_os =

{

arp_o_1

};

observation arp_o_1 = ([ ipaddr:"132.205.44.252", mac:"00:1b:63:b5:f8:0f"], 1, 0, 1.0);

// end of arp log evidence

// ...

Listing 8.4: arp encoded evidence example

8.6 GIPSY Cluster Lab Setup

8.6.1 Experimental Setup and Script Design

Here we design our initial experimental setup, modeling and simulation, and the testbed

environments.

We describe the GIPSY cluster environment design, hardware and software, to manage

and to run the experiments as well script our testing environment around GIPSY, MARF-

CAT, and related platforms.

238



8.6.1.1 Hardware

1. 16 hosts (Dell Precision 390), running a mix of Linux and Windows

2. 2 Cisco Catalyst 2950 switches

3. Local DNS server (following the principles of [31])

4. Local router/firewall

5. Local DHCP server

6. GIPSY run-time deployed across the hosts

8.6.1.2 Software

The software tools included in the GIPSY cluster design are listed below. iptables and

BIND are the most essential installed on the routers to manage the local DNS names and net-

work address translation between the physical GIPSY network (192.168.88.0/24, VLAN88)

and the ENCS network (132.205.8.224/28, VLAN629) to the outside world.

1. MRTG [343]

2. Argus [388]

3. iptables [387, 396]

4. BIND [8]

8.6.2 Topological Setup

The physical network design consists of 2 48-port Cisco Catalyst 2950 switches a machine

running DNS and DHCP servers, a machine running iptables for firewall and routing, a

monitoring machine running MRTG, Argus, Snort, and other tools of our own the uplink to

the Internet where all the clients would want to connect to. The purpose is to run scalable

computations running GIPSY networks for forensic and data mining computations. The

network schematic is in Figure 69, and the corresponding IP configuration is in Table 16.
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Table 16: GIPSY cluster IP assignment

Node DNS name IP

Sp storm.gipsy.private 192.168.88.1
S2p storm2.gipsy.private 192.168.88.2
Dp detroit.gipsy.private 192.168.88.250
Ep elsinore.gipsy.private 192.168.88.251

N newton.encs.concordia.ca 132.205.8.230
S storm.encs.concordia.ca 132.205.8.238

α alpha.gipsy.private 192.168.88.65
β beta.gipsy.private 192.168.88.66
γ gamma.gipsy.private 192.168.88.67
δ delta.gipsy.private 192.168.88.68
ϵ epsilon.gipsy.private 192.168.88.69
ζ zeta.gipsy.private 192.168.88.70
η eta.gipsy.private 192.168.88.71
θ theta.gipsy.private 192.168.88.72
ι iota.gipsy.private 192.168.88.73
κ kappa.gipsy.private 192.168.88.74
λ lambda.gipsy.private 192.168.88.75
µ mu.gipsy.private 192.168.88.76
ν nu.gipsy.private 192.168.88.77
ξ xi.gipsy.private 192.168.88.78
o omicron.gipsy.private 192.168.88.79

Additionally, we include the forensic and log-analysis tools with machine learning, data

mining, and statistical analysis capabilities. The GIPSY’s DSTs are designed to be typically

located at Storm and Storm2 as two powerful servers; however, when Storms are unavailable,

any node can have DSTs on them. Linux machines running Scientific Linux 5.x have an

additional VMWare virtual to support more hosts as well as the SATE experiment test bed

for MARFCAT code analysis described in Section 5.4, page 110. Each of the 390 node or its

virtual is typically a worker node DWT. A portion of the cluster was allocated to Rabah to

run XEN virtuals for virtual network experiments [390].
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Figure 69: GIPSY cluster network topology
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8.7 Summary

We described architectural design details for the evaluating system of GIPSY along with the

related work and PoC implementation aspects. This includes the necessary updates, modifi-

cations, and contributions to the design of the GIPSY Type System; compiler (GIPC) and

the semantic analyzers framework; the run-time system (GEE) and the additional engines for

Forensic Lucid: intensional/eductive backend (traditional evaluation), AspectJ (whose

primary role here is of tracing and human-readable trace presentation), and PRISM model-

checking backend to represent a probabilistic state machine similar to Gladyshev’s; and the

testing framework (to automate compilation and semantic analysis tests of the new Foren-

sic Lucid and old Lucx components and JUnit tests to make sure they remain valid within

the Forensic Lucid system). We provided examples of encoders that provide translation

of data structures (or log entries or probes in the case of MSA in Section 9.5, page 257) into

the Forensic Lucid format in order to do follow-up investigations either manually or auto-

matically (e.g., in self-forensics first briefly introduced in Section 1.2, page 4 and Section 2.1,

page 24 and detailed in Appendix D). The JavaCC grammar specification of the Forensic

Lucid parser ForensicLucid.jjt is in GIPSY’s source code repository. Its generated com-

piler sources are integrated in gipsy.GIPC.intensional.SIPL.ForensicLucid. Finally, we

described the GIPSY compute cluster physical design and network architecture to support

larger scale experiments.
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Chapter 9

Applications

This chapter presents example applications of Forensic Lucid based on the pertinent case

studies discussed prior (Section 2.2.5, page 43) and further. We first present an overview

(Section 9.1), including the background description of the data sources used (Section 9.1.1)

and the concept of misuse cases (use cases with hostile intent) in Section 9.1.2 followed by

various examples demonstrating the use of Forensic Lucid constructs. We then summarize

our findings in Section 9.6.

9.1 Overview

After the data and misuse case description we present the DSTME illustratory example en-

coded in Forensic Lucid in Section 9.2. We then rewrite Gladyshev’sCommon Lisp imple-

mentation of the ACME Printing Case and the Blackmail Investigation with the Forensic

Lucid programs presented in this chapter in Section 9.3, page 250 and Section 9.4, page 254.

Additional cases other than these classical two are also presented, including the design of the

elaborate live MAC spoofer analysis and investigation in Section 9.5, page 257.

9.1.1 Data Sources and Data Description

In this section we provide some background information on the data and data sources used

for some of the case-related experiments in this thesis. These data complement the research

carried out for the data mining-related aspects presented in Chapter 5 including aspects that
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have to do with the data gathering (such as the classification data from the classifiers, or

network and file data, or log data, or data taken with the live probes) and encoding it (such

as, e.g., from MARF and MARFCAT in Section 8.5.1.1, Section 9.5, Appendix D.4.6) into

Forensic Lucid for the purposes of subsequent analysis and automated reasoning, and

evaluation. Data are also something we make inferences from when representing knowledge

and what we visualize for comprehension and management properties (Appendix E).

9.1.1.1 Data Sets

9.1.1.1.1 MARFCAT. For the MARFCAT-based (Section 5.4, page 110) investiga-

tions, we use the SAMATE data set; this includes the source code samples and a number of

associated CVEs or CWEs [282, 285]. The SAMATE reference data set contains C/C++,

Java, and PHP language tracks comprising CVE-selected cases as well as stand-alone cases

and the large generated synthetic C and Java test cases (CWE-based, with a lot of variants

of different known weaknesses). SATE IV expanded some cases from SATE2010 by increasing

the version number, and dropped some other cases (e.g., Chrome) [312].

The C/C++ and Java test cases of various client and server OSS software are compilable

into the binary and object code, while the synthetic C and Java cases generated for various

CWE entries provided for greater scalability testing (also compilable). The CVE-selected

cases had a vulnerable version of a software in question with a list of CVEs attached to it, as

well as the most known fixed version within the minor revision number. One of the goals for

the CVE-based cases is to detect the known weaknesses outlined in CVEs using static code

analysis and also to verify if they were really fixed in the “fixed version” [346]. The cases

with known CVEs and CWEs were used as the training models described in the methodology.

The summary below is a union of the data sets from SATE2010 and SATE IV [312].

The initial list of the CVEs to locate in the test cases were collected from the NVD

[338, 346] for Wireshark 1.2.0, Dovecot, Tomcat 5.5.13, Jetty 6.1.16, and Wordpress 2.0 [312].

The specific test cases with versions and language included CVE-selected [312]:

• C: Wireshark 1.2.0 (vulnerable) and Wireshark 1.2.18 (fixed, up from Wireshark 1.2.9

in SATE2010)
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• C: Dovecot (vulnerable) and Dovecot (fixed)

• C++: Chrome 5.0.375.54 (vulnerable) and Chrome 5.0.375.70 (fixed)

• Java: Tomcat 5.5.13 (vulnerable) and Tomcat 5.5.33 (fixed, up from Tomcat 5.5.29 in

SATE2010)

• Java: Jetty 6.1.16 (vulnerable) and Jetty 6.1.26 (fixed)

• PHP: Wordpress 2.0 (vulnerable) and Wordpress 2.2.3 (fixed)

originally non-CVE selected in SATE2010 [312]:

• C: Dovecot

• Java: Pebble 2.5-M2

Synthetic CWE cases produced by the SAMATE team:

• C: Synthetic C covering 118 CWEs and ≈ 60K files

• Java: Synthetic Java covering ≈ 50 CWEs and ≈ 20K files

9.1.1.1.2 Other Data Sources. Some experimental, empirical, real and meta data are

used from the Faculty of ENCS network, some of which is described in detail in [31]. Various

other data sources for encoding and experiments include:

1. Netflows and Argus [388] logs for various network-based investigations.

2. For the MAC Spoofer Investigation (Section 9.5, page 257) case in particular the data

sources used in probes of the live hosts as well as central logs of host activity, switch

activity, services likes DHCP, as well that of monitoring tools [31] and Nessus [457]

scans.

3. Data sources include faculty-wide installations of Linux /encs/bin binary software.

The use of these data works in conjunction with the MARFCAT (Section 5.4, page 110)

data described earlier in pseudo-hypothetical scenario in vulnerable software investiga-

tions.
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4. The network-enabled malware investigations used in MARFPCAT (see Section 5.5,

page 121) including a very closely recent work [47] used the GFI SandBox [130] (since

March 2013 known as ThreatAnalyzer [467]. It supplies an extensive feed of malware

organized into a database and some preliminary analysis reports combined with pcap

data traces captured in the sandbox. The database at the time comprised more than

1.5 million malware samples that serve as a good source of machine learning in search

for insight and flag suspicious traffic. The malware was run in controlled environment

yielding ≈ 100000 pcap files labeled with hashes of malware [47].

5. ForensicDataSniffer -based investigations (the tool is an offshoot of the fileType (Sec-

tion 5.3, page 107) and MARFCAT applications) relies on the common data sets pro-

vided by NIST and others such as collections of publicly released government documents

to detect such documents and types on hard disk and encode the resulting findings as

the results to compose an evidential statement in Forensic Lucid. The rest of the

data sources in file type analysis come from typical and atypical OS installations to

make an addition input of data in an investigation.

9.1.2 Misuse Cases

Ian Alexander [9, 10, 518] in 2002 introduced the notion of Misuse Cases in software require-

ments specification [231, 479] extending the terms of Use Case (UC) diagrams to visualize

adversarial cases that threaten the normal functionality of the innocent use cases. The mis-

use cases make the non-functional requirements more apparent telling why and where they

occur and how and where they can be mitigated. We make use of the Misuse Case in our

UC context diagrams in the MAC Spoofer Investigation case study further in Section 9.5.
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9.2 Toy DSTME Examples in Forensic Lucid

[bel(es), pl(es)]

where

evidential statement es = { betty , sally };

observation sequence betty = { oBetty };

observation sequence sally = { oSally };

observation oBetty = ("limb on my car", 1, 0, 0.99);

observation oSally = ("limb on my car", 1, 0, 0.99);

end

Listing 9.1: Limb Example

Here for illustrative purposes we translate the previously presented DSTME example of

Shafer in Section 3.3.2.1.2, page 69 in Listing 9.1. The result of this program is an array of

two values containing the belief and plausibility of the Betty-Sally evidential statement.

In Listing 9.2 is a quick raining example written in Forensic Lucid roughly correspond-

ing to the raining example in Figure 19, page 63. It illustrates several Forensic Lucid

concepts, such as the use of Lucx simple contexts and tag sets combined with the forensic

contexts and lifting in the use of the \intersection operator. Forensic context illustrate

either full explicit specification of a raining observation or “plain” raining observation. The

observed property itself here is a simple context as well. The result of this program is an

entire observation.

In Listing 9.3 the same raining example is rewritten to make the use of the observation

w component to represent the raining or not fact. In that listing we dropped the optional

timestamp and keywords for the tag sets that are otherwise redundant to specify when it is

unambiguous what tag set type to use. This way of representing the “raining” condition can

be used to allow expressing rain uncertainty chances other than 0.0 or 1.0 in future weather

predictions (e.g., 50% rain chance would be 0.5) or certainty of the sensors that captured the

data in the past, or represent that it rained only for a part of the day that day when it did.

This representation can be used with belief and plausibility computations accordingly.
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raining @ [city:"Montreal", month:"Sep", day:4]

where

dimension city: unordered finite nonperiodic {"Montreal", "Ottawa", "Quebec"};

dimension day: ordered finite nonperiodic {1 to 31};

evidential statement es_raining = {os_montreal_raining , os_ottawa_raining ,

os_quebec_raining };

observation sequence os_montreal_raining =

{

([city:"Montreal", month:"Sep", day:1, raining:true], 1, 0, 1.0, "September

1, 2013"),

[city:"Montreal", month:"Sep", day:2, raining:false],

[city:"Montreal", month:"Sep", day:3, raining:true],

[city:"Montreal", month:"Sep", day:4, raining:false],

[city:"Montreal", month:"Sep", day:5, raining:true],

[city:"Montreal", month:"Sep", day:6, raining:false],

[city:"Montreal", month:"Sep", day:7, raining:true],

[city:"Montreal", month:"Sep", day:8, raining:false],

[city:"Montreal", month:"Sep", day:9, raining:true]

};

observation sequence os_quebec_raining =

{

([city:"Quebec", month:"Sep", day:1, raining:false], 1, 0, 1.0, "September

1, 2013"),

[city:"Quebec", month:"Sep", day:2, raining:false],

[city:"Quebec", month:"Sep", day:3, raining:true],

[city:"Quebec", month:"Sep", day:4, raining:true],

[city:"Quebec", month:"Sep", day:5, raining:true],

[city:"Quebec", month:"Sep", day:6, raining:false],

[city:"Quebec", month:"Sep", day:7, raining:false],

[city:"Quebec", month:"Sep", day:8, raining:false],

[city:"Quebec", month:"Sep", day:9, raining:true]

};

observation sequence os_ottawa_raining =

{

([city:"Ottawa", month:"Sep", day:1, raining:false], 1, 0, 1.0, "September

1, 2013"),

[city:"Ottawa", month:"Sep", day:2, raining:true],

[city:"Ottawa", month:"Sep", day:3, raining:true],

[city:"Ottawa", month:"Sep", day:4, raining:true],

[city:"Ottawa", month:"Sep", day:5, raining:true],

[city:"Ottawa", month:"Sep", day:6, raining:true],

[city:"Ottawa", month:"Sep", day:7, raining:false],

[city:"Ottawa", month:"Sep", day:8, raining:false],

[city:"Ottawa", month:"Sep", day:9, raining:false]

};

// The result is an observation "([ city :" Montreal", month :" Sep", day:4, raining:true

], 1, 0, 1.0)"

raining = ([city:#city ,month:#month ,day:#day] \intersection es_raining);

end

Listing 9.2: Raining Example
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raining @ [city:"Montreal", month:"Sep", day:4]

where

dimension city: {"Montreal", "Ottawa", "Quebec"};

dimension day: {1 to 31};

evidential statement es_raining = {os_montreal_raining , os_ottawa_raining ,

os_quebec_raining };

observation sequence os_montreal_raining =

{

([city:"Montreal", month:"Sep", day:1], 1, 0, 1.0),

([city:"Montreal", month:"Sep", day:2], 1, 0, 0.0),

([city:"Montreal", month:"Sep", day:3], 1, 0, 1.0),

([city:"Montreal", month:"Sep", day:4], 1, 0, 0.0),

([city:"Montreal", month:"Sep", day:5], 1, 0, 1.0),

([city:"Montreal", month:"Sep", day:6], 1, 0, 0.0),

([city:"Montreal", month:"Sep", day:7], 1, 0, 1.0),

([city:"Montreal", month:"Sep", day:8], 1, 0, 0.0),

([city:"Montreal", month:"Sep", day:9], 1, 0, 1.0)

};

observation sequence os_quebec_raining =

{

([city:"Quebec", month:"Sep", day:1], 1, 0, 0.0),

([city:"Quebec", month:"Sep", day:2], 1, 0, 0.0),

([city:"Quebec", month:"Sep", day:3], 1, 0, 1.0),

([city:"Quebec", month:"Sep", day:4], 1, 0, 1.0),

([city:"Quebec", month:"Sep", day:5], 1, 0, 1.0),

([city:"Quebec", month:"Sep", day:6], 1, 0, 0.0),

([city:"Quebec", month:"Sep", day:7], 1, 0, 0.0),

([city:"Quebec", month:"Sep", day:8], 1, 0, 0.0),

([city:"Quebec", month:"Sep", day:9], 1, 0, 1.0)

};

observation sequence os_ottawa_raining =

{

([city:"Ottawa", month:"Sep", day:1], 1, 0, 0.0),

([city:"Ottawa", month:"Sep", day:2], 1, 0, 1.0),

([city:"Ottawa", month:"Sep", day:3], 1, 0, 1.0),

([city:"Ottawa", month:"Sep", day:4], 1, 0, 1.0),

([city:"Ottawa", month:"Sep", day:5], 1, 0, 1.0),

([city:"Ottawa", month:"Sep", day:6], 1, 0, 1.0),

([city:"Ottawa", month:"Sep", day:7], 1, 0, 0.0),

([city:"Ottawa", month:"Sep", day:8], 1, 0, 0.0),

([city:"Ottawa", month:"Sep", day:9], 1, 0, 0.0)

};

// The result is an observation "([ city :" Montreal", month :" Sep", day :3], 1, 0, 1.0)"

raining = ([city:#city ,month:#month ,day:#day] \intersection es_raining);

end

Listing 9.3: DSTME Raining Example

9.3 ACME Printing Case in Forensic Lucid

9.3.1 Investigative Analysis

The investigative analysis follows the same principles used in Gladyshev’s FSA/LISP ap-

proach described in Section 2.2.5.1, page 44 (cf., the Common Lisp implementation in [135]).
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We remodel the case in Forensic Lucid as further illustrated in this section. Resulting

Forensic Lucid program fragments corresponding to this case are in Listing 9.5 modeling

ψ, Listing 9.6 modeling Ψ−1, and Listing 9.4 modeling the “main” program with all initial

evidential declarations.

9.3.2 Sample Forensic Lucid Specification

The simulated printer case is specified in Forensic Lucid as follows. ψ is implemented in

Listing 9.5. We then provide the implementation of Ψ−1 [302] in Listing 9.6. Finally, the

“main program” is modeled in Listing 9.4 that sets up the context hierarchy and the invokes

Ψ−1. This specification is the translation of the Common Lisp implementation by Gladyshev

described earlier [135] and described in Section 2.2.5.1 in semi-structured English [310].

alice_claim @ es

where

// Consistent evidential statement

evidential statement es = { printer , manuf };

observation sequence printer = F;

observation sequence manuf = {Oempty , $};

observation sequence alice = {Oalice , F};

observation F = ("B_deleted", 1, 0);

observation Oalice = (P_alice , 0, INF+);

observation Oempty = ("empty", 1, 0);

// No "add_A" event per claim from Alice

dimension P_alice : unordered finite nonperiodic {"add_B", "take"};

dimension S : unordered finite nonperiodic {"empty", "A_deleted", "B_deleted"};

alice_claim = invpsiacme[S](es \union alice);

// ... function declarations

end

Listing 9.4: Developing the Printing Case: “main” [302, 303, 310]

The “Main Program”

In Listing 9.4 is where the computation begins in our Forensic Lucid example. This is

an equivalent of main(), or the program entry point, in other (mainstream) languages like

Java, C, or C++. The goal of this fragment is to setup (declare) the context of evalu-

ation, which is core to the case—the evidential statement es. The es is the highest level
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dimension in Lucid parlance, and it is hierarchical. This is an unordered list (set) of sto-

ries and witness accounts of the incident (themselves known as observation sequences); their

ordering is arbitrary. The es is a context where in ⟨dimension : tag⟩ pairs dimensions are

denoted by their identifiers alice, printer, and manuf, and their tags are declared nested

values, i.e., expanding the declarations, we arrive at alice:{Oalice, F}, printer:{F}, and

manuf:{Oempty, $}. The relevant stories to the incident are that of Alice (alice), the ev-

idence of the printer’s final state as found by the investigator (printer), and the “expert

testimony” by the manufacturer of how the printer works. These observation sequences are

in turn defined as ordered collections of observations nesting one level deeper into the con-

text. The printer’s final state dimension F is the only observation for the printer found by

the investigator, which is an observation of the property of the printer’s queue “Bob’s job

deleted last” syntactically written as “B deleted” as inherited from Gladyshev’s notation. Its

duration ((..., 1, 0)) merely indicates that it was simply present. The manuf observation

sequence is dictated by the manufacturer’s specification that the printer’s queue state was

empty initially for an undetermined period of time ($) when the printer was delivered. These

are two observations, following sequentially in time. Alice’s timeline (also two observations)

is that from the beginning Alice did not perform any actions signified by the computation

properties P such as “add B” or “take” (implying the computation “add A” has never hap-

pened (0 duration for the “infinity”, i.e., until the investigator examined the printer). This

is effectively Alice’s claim. Thus, alice claim is a collection of Boolean results for possible

explanations or lack thereof for Alice’s claim in this case at the context of all the declared

evidence and as subsequently evaluated by invpsiacme (Ψ−1). If Alice’s claim were to vali-

date, their results would be “true” and “false” otherwise [310]. As we know, her claim was

not consistent with the evidential statement (Figure 13, page 51).

Modeling the Forward Transition Function ψ

In Listing 9.5 is ψ illustrating the normal forward flow of operations to model the scene. It

is also a translation from the Common Lisp implementation by Gladyshev [135] using the

Forensic Lucid syntax and operators described earlier ([302], Section 7.3, page 166). The

function is modeled per manufacturer specifications of the printer queue. “A” corresponds
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to “Alice” and “B” to “Bob” along with their prompted queue actions to add or delete print

jobs. The code is a rather straightforward translation of the FSA/LISP code from [135]. S

is a collection of computational all possible properties observed. c is a “computation” action

to add or take print jobs by the printer’s spooler [310].

acmepsi[S](c, s)

where

d1 = first s;

d2 = second s;

// Add a print job from Alice

if c == "add_A"

then

if d1 == "A" || d2 == "A" then s

else

// d1 in S

if (d1 \in S) then "A" fby d2

else

if (d2 \in S) then d1 fby "A"

else s fi;

fi;

fi;

// Add a print job from Bob

else if c == "add_B" then

if (d1 == "B") || (d2 == "B") then s

else

if (d1 \in S) then "B" fby d2

else

if (d2 \in S) then d1 fby "B"

else s fi;

// Printer takes the job per manufacturer specification

else if c == "take"

if d1 == "A" then "A_deleted" fby d2

else

if d1 == "B" then "B" fby d2

else

if d2 == "A" then d1 fby "A_deleted";

else

if d2 == "B" then d1 fby "B_deleted";

else s fi

// Done

else s fby eod fi;

end; // psi

Listing 9.5: Transition function ψ in Forensic Lucid for the ACME Printing Case

Modeling the Inverse Transition Function Ψ−1

In Listing 9.6 is the inverse Ψ−1 backtracking implementation with the purpose of event

reconstruction, also translated from Common Lisp to Forensic Lucid like the preceding

fragments using the Forensic Lucid operators. It is naturally more complex than ψ due

to a possibility of choices (non-determinism) when going back in time, so these possibilities
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have to be explored. This backtracking, if successful, for any claim, would provide the

Gladyshev’s “explanation” of that claim, i.e., the claim attains its meaning and is validated

within the provided evidential statement. Ψ−1 is based on the traversal from F to the initial

observation of the printer’s queue as defined in “main”. If such a path were to exist, then

Alice’s claim would have had an explanation. pby (preceded by) is the Forensic Lucid

inverse operator of classical Lucid’s fby (followed by). backtraces is an array of event

backtracing computations identified with variables; their number and definitions depend on

the crime scene and are derived from the state machine of Gladyshev [310].

The transition functions presented have to be written by the investigator. While they

are significantly shorter and more manageable than the Common Lisp implementation by

Gladyshev [135], the usability of the language can still be improved by allowing visual DFG

composition of these resorting to the normal ψ flow as a part of the future work (Appendix E).

Ψ−1 is defined by the investigator exploring known possibilities from the final state to the

possible preceding states; if the graph is available, following the transitions back from the

final state.

9.4 Blackmail Case in Forensic Lucid

The blackmail case example of the implementation steps (Section 2.2.5.2, page 51) modeled in

Forensic Lucid is in Listing 9.7. At the top of the example we construct the hierarchical

context representing the evidential statement and comprising observations. The syntax is

made to relate to the mathematical description of Gladyshev’s FSA, but with the semantics of

Forensic Lucid. Any event property can also be mapped to a human-readable description

via => that can be printed out in a trace. invtans corresponds to Ψ−1; given all states, the

evidential statement, and Mr. A’s claim as an argument it attempts to find possible backtrace

explanations within the disk cluster model. The function trans corresponds to ψ [305].
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invpsiacme[S](s)

where

backtraces = [A, B, C, D, E, F, G, H, I, J, K, L, M ];

d1 = first s;

d2 = second s;

A = if d1 == "A_deleted"

then d2 pby "A" pby "take" else bod fi;

B = if d1 == "B_deleted"

then d2 pby "B" pby "take" else bod fi;

C = if (d2 == "A_deleted") && (d1 != "A") && (d2 != "B")

then d1 pby "A" pby "take" else bod fi;

D = if (d2 == "B_deleted") && (d1 != "A") && (d2 != "B")

then d1 pby "B" pby "take" else bod fi;

// d1 in S and d2 in S

E = if (d1 \in S) && (d2 \in S)

then s pby "take" else bod fi;

F = if (d1 == "A") && (d2 != "A")

then

[ d2 pby "empty" pby "add_A",

d2 pby "A_deleted" pby "add_A",

d2 pby "B_deleted" pby "add_A" ]

else bod fi;

G = if (d1 == "B") && (d2 != "B")

then

[ d2 pby "empty" pby "add_B",

d2 pby "A_deleted" pby "add_B",

d2 pby "B_deleted" pby "add_B" ]

else bod fi;

H = if (d1 == "B") && (d2 == "A")

then

[ d1 pby "empty" pby "add_A",

d1 pby "A_deleted" pby "add_A",

d1 pby "B_deleted" pby "add_A" ]

else bod fi;

I = if (d1 == "A") && (d2 == "B")

then

[ d1 pby "empty" pby "add_B",

d1 pby "A_deleted" pby "add_B",

d1 pby "B_deleted" pby "add_B" ]

else bod fi;

J = if (d1 == "A") || (d2 == "A")

then s pby "add_A" else bod fi;

K = if (d1 == "A") && (d2 == "A")

then s pby.d "add_B" else bod fi;

L = if (d1 == "B") && (d2 == "A")

then s pby "add_A" else bod fi;

M = if (d1 == "B") || (d2 == "B")

then s pby "add_B" else bod fi;

end; // inv

Listing 9.6: Inverse transition function Ψ−1 in Forensic Lucid for the ACME Printing
Case
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os_mra @ es_blackmail

where

// Core context of evaluation

evidential statement es_blackmail = { os_final , os_unrelated };

// List of all possible dimension tags

dimension W : unordered finite nonperiodic

{

"(u)", "(t1)", "(o1)",

"(u,t2)", "(u,o2)",

"(t1 ,t2)", "(t1,o2)",

"(o1 ,t2)", "(o1,o2)"

};

dimension Wd : unordered finite nonperiodic

{

"d(u,t2)", "d(u,o2)", "d(o1)", "d(t1 ,t2)",

"d(t1,o2)", "d(o1,t2)", "d(o1 ,o2)"

};

I = W \union Wd;

// Mr. A’s story

observation sequence os_mra = { $, o_unrelated_clean , $, o_blackmail , $ };

// Crime scene description

observation sequence os_final = { $, o_final };

observation sequence os_unrelated = { $, o_unrelated , $, \0(I), $ };

observation o_final = ("(u,t2)" => "threats in slack of unrelated letter", 1);

observation o_unrelated_clean = ("(u,o1)", 1);

backtraces = invtrans[I]( es_blackmail \union os_mra);

trans[I](c, s)

where

if(c == "(u)" && s.#.# == ("(o1 ,o2)", 0))

then ("(u,o2)", 1) fby trans[next I](next s.#);

else if(c == "(u,t2)" && s.#.# == ("(u,o2)", 1))

then ("(u,t2)", 2) fby trans[next I](next s.#);

else if(c == "d(u,t2)" && s.#.# == ("(u,o2)", 1))

then ("(u,t2)", 1) fby eod;

else if(c == "(u)" && s.#.# == ("(u,t2)", 2))

then ("(u,t2)", 1) fby eod;

end;

invtrans[I](es)

where

backtraces = [ A, B ];

A = o_final pby [es.#, I:"(u)"]

("(u,t2)", 2) pby [es.#, I:"(u,t2)"]

("(u,o2)", 1) pby [es.#, I:"(u)"]

("(o1,o2)", 0);

B = o_final pby [es.#, I:"d(u,t2)"] ("(u,o2)", 1) pby [es.#, I:"(u)"] ("(o1,o2)", 0);

invtrans[next I](next es.#]);

end;

end

Listing 9.7: Blackmail Case modeling in Forensic Lucid
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9.5 MAC Spoofer Investigation

There are programs that can be used to spoof an address but to physically change

it is hard. The address is coded into the [network] device on the computer. If

you changed it to another one, there is a chance of conflict with a valid address

on some other device. Should you get a major hub device, you will be getting

a service disconnect as soon as they trace it. Depending on what you are doing

when detected, you may get visited by people driving plain looking cars, wearing

nice suits with bulges under the coats. —Yahoo! Answers user “Laid back”1

The case presented here is designed to work in an operational environment and covers a

significant number of the Forensic Lucid features in encoding the related evidence from the

realistic data. The author Mokhov designed this case and its resulting programming artifact

of gathering and encoding of the evidence as a part of his work in the Faculty network

administration group (NAG).

A Media Access Control (MAC) address [178]2 spoofer3 analysis and investigation has

to do with the automated processing and reasoning about the possible MAC spoofer alerts

on the Faculty of ENCS network [31]. It’s fairly easy to spoof a MAC address by changing

the network card settings on a PC or a laptop or via a virtual machine in most operating

systems, or most house-grade routers that allow setting an arbitrary MAC address for a

variety of legitimate needs [327]. However, on the analyst-managed subnets a MAC spoofer

presents a great security concern if a MAC address of a MAC-based port security setting of

a tightly secured desktop in a managed lab or office gets spoofed by a visiting laptop (which

the user is in full control of) as it may potentially gain unauthorized access to restricted

services/resources and/or increase the Faculty’s liability if, for example, the laptop is infested

with malware.

The existing MAC Spoofer Watcher tool, msw, presently does a lot of work in detecting

such possibilities and alerting the network group’s security RT (RT: Request Tracker [501]4)

queue (along with cellphone notifications) of a possible ongoing incident after a series of

1http://answers.yahoo.com/question/index?qid=20080322213119AAY8yUf
2http://en.wikipedia.org/wiki/MAC_address
3http://en.wikipedia.org/wiki/MAC_spoofing
4http://www.bestpractical.com/?rt=4.0.8
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probes and checks. It goes out of its way to filter out the likely false positives (identi-

fied commonly through several iterations of the deployed tool in daily network operations).

However, despite all the filtering, more often than not, a false positive report is generated.

Analysts have to manually (and sequentially) double-check if it is a real spoofer or a false

positive right after the alert is generated to the RT ticket as well as to the analysts’ cellphones

at any time of the day or night. A possible slew of such events can overwhelm the limited

human resources dealing with such events while attending to many other duties.

The msw’s processing is triggered by switch port events registered in the switchlog that

msw observes, when LINK-UP events occur at Layer 2 (of the OSI model [77]). If all of

its preliminary false-positiveness tests incrementally fail, msw generates the RT email alert

at the time. This email is designed to trigger a follow-up investigation by the MSA tool

presented in this section to automate the process and establish the likelihood of a genuine

spoofer or a false positive with high confidence to assist the network security crew in their

daily operations by supplying the results of the analysis and event reconstruction back to the

same RT ticket.

This follow-up investigation includes two types of digital forensics: live and “dead” (pas-

sive) [57, 250, 371], simultaneously (see also Section 2.1, page 24). The process re-examines

the evidence used by msw as well as performing additional live probes as explained further.

The live forensics includes re-examining the switch port status, ARP [380]5 cache, ping, and

finger replies, etc. In parallel, the past logs on the switch port link activity, user activity

syslog, DHCP logs, netflows surrounding the time of the incident are also examined. These

tools, daemons, and their logs are the witnesses and their witness accounts of the relevant

events are a part of the evidential statement in our case. All evidence is gathered in the com-

mon format of Forensic Lucid, and is fed to the “analysis engine” (i.e., GIPSY presented

earlier in Chapter 6).

It is possible that more than one RT ticket/alert is generated for the same host in a short

period of time—currently that means all “offences” will be processed possibly concurrently

with the gradually growing evidence with each offence. That means the current and the re-

cent past evidence will have a disadvantage of multiple handlings of logically the same case;

5http://en.wikipedia.org/wiki/Address_Resolution_Protocol
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the subsequent runs, however, would gather all the previous and the new evidence, thereby

potentially increasing the confidence in the subsequent analyses. Currently, there is no syn-

chronization between the multiple concurrently running investigations working independently

on the same logical case; however, the “phase 2” design calls to leverage GIPSY’s implemen-

tation of the eductive computation model (Chapter 6), where the already-computed event

reconstruction results at the same forensic contexts (Section 7.2.3.1.3, page 164) are cached

in the DST (Section 6.2.2.1.7, page 147) speading up later runs. This implies, a GIPSY

instance should be running on a standby waiting to process such things, whereas currently

we spawn a GIPSY instance.

9.5.1 MAC Spoofer RT Alert

In essence, when a MAC spoofer report/RT ticket (see, e.g., a shortened version in Figure 70)

arrives, it constitutes a primary claim “there is a MAC spoofer” with some initial facts and

evidence from the ticket (encoded in Forensic Lucid as exemplified in Listing 9.9). We

want to automatically verify its true- or false-positiveness to some degree of certainty by

gathering all the supporting evidence from various log files (e.g., switchlog, activity log,

argus/netflow data, etc.) in one common format of Forensic Lucid and reason about

it. Subsequently, we send a follow-up report message with the analysis and detail event

reconstruction results. In case of a likely true positive, other things are to be possibly

automatically verified/established, such as who is the likely perpetrator and their malignity,

whether NFS access was attempted, etc.

The proposed analyzer of such reports is designed to work complimentary to the men-

tioned MAC Spoofer Watcher (msw) tool [31].

9.5.2 Speculative Claim Evaluation of Possible

Here we present what we call a two-claim solution to the possible MAC spoofer analysis

problem. The automation assumes two main parallel routes of evaluation of a possible MAC

spoofer by evaluating two derived claims speculatively and simultaneously: (1) “there is a

MAC spoofer” and (2) “the spoofer claim is a false positive”. The expected outcomes to be
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From: NOBODY@encs.concordia.ca

Subject: [encs.concordia.ca #259835] Possible MAC spoofer: flucid.encs.concordia.ca (switch1 Fa0/16)

Date: Wed, 1 Aug 2012 07:07:07 -0400

Wed Aug 01 07:07:07 2012: Request 259835 was acted upon.

Transaction: Ticket created by NOBODY@encs.concordia.ca

Queue: EX-Security

Subject: Possible MAC spoofer: flucid.encs.concordia.ca (switch1 Fa0/16)

Owner: Nobody

Requestors: NOBODY@encs.concordia.ca

Status: new

123.45.67.89 flucid.encs.concordia.ca

Room: H123

Jack: 22

Switch Port: switch1 Fa0/16

PID of the testing macspoofwatch flucid.encs.concordia.ca [123.45.67.89] (switch1 Fa0/16): 22814

Test data:

result refused

Figure 70: Example RT ticket alerting of a possible MAC spoofing attempt

proved with the event reconstruction trace are either (a) “(1) is true and (2) is false”, or (b)

“(1) is false and (2) is true”. (a) or (b), if successful, are then said to be consistent, in essence,

cross-validating and supplementing each other. Such a parallel evaluation can also give

preliminary partial results faster and is novel in comparison to traditional approaches [133,

134, 135].

There are of course pathological cases of high conflict of (c) and (d) where both (1) and

(2) are either true or false respectively, leading to contradiction (the claim is true and it is

a false positive or the claim is false and it is not a false positive). This means either the

evidence is insufficient or the “crime scene” modeled is not correct. Both (1) and (2) work

with the same evidence (analogous to the cases built by the prosecution and defence in a

court of law scenario), but their starting claims are of opposing views.

9.5.3 Report Analysis by Human Experts

A human expert manually examining the evidence and doing an investigation traditionally

goes sequentially through some of the steps occasionally taking shortcuts by omitting some

of the steps if something is obvious or performing them to increase confidence in the analysis

results:

1. Check the switch port is still up
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2. Check the host responds to telnet with memory and hardware commands (the custom

commands are designed to return expected values)

3. Check switchlog for LINK-UP events regarding the switch port in question

4. Delete ARP entry for the host from the ARP cache with arp (for further checks)

5. Check the host responds to ping, finger (both should respond as expected, else the

firewall configuration is non-standard)

(a) If ping answers, check the TTL values for likely Linux (64) or Windows (128)

hosts 6, or someone plugged in a router (63 or 127, i.e., decremented by 1 at each

hop) [39, 453]

(b) No answer to ping nor ARP cache entry re-appears, likely machine no longer up

due to a quick reboot or ghosting; often leading to a false-positive

(c) No answer to ping, but ARP query returns successfully. A good indicator of a

likelihood of a real MAC spoofer (the machine acquired an IP, is up, but does not

reply as it should)

6. Check the host responds to nbtscan for Windows hosts (should return one of the known

strings)

7. Attempt to ssh to the host (should accept certain logins and respond appropriately)

8. Check activity log for boot and login events for the host

9. Optionally check for swpvios for this port in the recent past

10. Check argus/netflow logs for connections made from the host after the spoofer report

for potential illicit network activity

6http://www.kellyodonnell.com/content/determining-os-type-ping
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9.5.4 Augmented Parallel Algorithm

We propose to automate and enhance the manual process presented in the preceding section

with a parallel algorithm for MSA that does extra verification, evidence gathering, and

subsequent reporting, all in near-realtime.

The augmented checking/investigation algorithm for the automated solution is in Al-

gorithm 3. In the general case, it consists of both live- (probing and checking the active

MAC-spoofer-accused on the network) and dead-forensics (examining some of the logs after

the fact) techniques simultaneously. It should be noted while the algorithm is depicted in

the traditional sequential manner, many of steps related to both live and dead forensics data

gathering are designed to be done concurrently, which will commonly yield a performance

improvement compared to the human expert doing the same.

Additional evidence is gathered with an nmap scan to fingerprint the OS and ports. Then,

gather the DHCP requests made to see if the offending laptop by default (suddenly) queries

DHCP for the IP while not too long ago the legitimate host did its own DHCP requests (with

known intervals or, if rebooted frequently, with the additional log entries “booted successfully

in OS”). This will not work if the laptop has been intentionally configured with static IP,

but could provide additional confidence, if the DHCP was used (which is the default in many

cases). An additional query to nbtscan for additional evidence, à la msw is also made.

9.5.5 Use and Misuse Cases

The UML Use Case diagram in Figure 71 depicts most common use and misuse cases of the

ENCS network in the context of MAC spoofer investigations. Misuse cases are in gray. Fol-

lowing Alexander’s notion of Misuse Cases for requirements specification ([9], Section 9.1.2,

page 247) to visualize the threat and mitigation scenarios as well as the primary and support-

ing actors involved. A lot of investigative work is shared between the network administrator

and the MAC Spoofer Analyzer (MSA), where the latter automatically gathers all the evi-

dence in one place, encodes, invokes the analysis computation via GIPSY and then generates

two reports: the summarized evidence and designed upcoming automated reasoning report.

The MAC spoofer misuse cases illustrate the typical actions a person with a UM laptop would
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1 begin
2 Bootstrap by an RT alert notification of a possible MAC spoofer via a procmail handler;

// In the below live and dead forensics processings in the begin-end blocks is done parallel

processes, including the individual checks.

// Each check/evidence collector as a product, encodes its output in Forensic Lucid as an

observation sequence. All such sequences are later combined into an evidential statement for

further analysis.

// Live network MAC spoofer forensics

3 begin
4 Check the switch port is still up;

// SL5 and Windows 7 only should be there

5 Check host OS and ports open with nmap;
6 Check how the host responds to telnet with memory and hardware commands;

// Should respond as expected, else the firewall configuration is non-standard

7 Delete ARP entry for the host from the ARP cache with arp;
8 Check how the host responds to ping, finger;
9 begin

10 if ping answers then
11 Check the TTL values for likely Linux (64) or Windows (128) hosts, or someone plugged in a router

(63 or 127);

12 end
13 else
14 No answer to ping nor ARP cache entry re-appears, likely machine no longer up due to a quick

reboot or ghosting; often leading to a false-positive;

15 end
// May increase confidence in false-positiveness

16 begin
17 Reaffirm possible boot and patching in the activity log;
18 end
19 No answer to ping, but ARP query returns successfully. A good indicator of a likelihood of a real MAC

spoofer (the machine acquired an IP, is up, but does not reply as it should);

20 end
21 Check how the host responds to nbtscan;

// Should be allowed internally

22 Attempt to ssh to the host;

23 end
// ‘‘Dead’’ network MAC spoofer forensics

24 begin
25 Check switchlog for LINK-UP events regarding the switch port in question;
26 Check activity log for boot and login events for the host;
27 Optionally check for swpvios [31] for this port in the recent past;
28 Check argus/netflow logs for connections made from the host after the spoofer report for potential illicit

network activity;
29 Check the DHCP requests for the host;

30 end
// Analysis

31 begin
32 Gather evidence from all the checks and encode it in Forensic Lucid;
33 Invoke analysis engine;

34 end
35 Generate a report;

36 end

Algorithm 3: Augmented MAC spoofer checking/investigation algorithm

do to spoof a MAC address. While presently MSA is not downing the switch port, the design

includes this use case to be complete; this action depends on the result of the analysis and

confidence in it. In Section 9.5.8 is the description of the corresponding sequence diagram

(Figure 73).
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Figure 71: Use and Misuse Cases in MAC spoofer investigations

9.5.6 False Positives

The typical false positive spoofer detections include:

1. Unusually slow booting (and often patching right afterward and rebooting of) Windows

hosts.

2. Older outdated images of OS’s that were rarely booted to and unpatched/not re-imaged

for a long time.

3. Accidental user-managed (UM) host (with the UM image) on a trusted virtual LAN

(VLAN) [31, 68] (either mistaken OS image/IP address or switch port configuration
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settings).

4. Host in the middle of ghosting or in the ghosting console without a recognized NetBIOS

string on a trusted VLAN.

5. Exceptional printers on the trusted VLAN.

6. Malfunctioning host (hard drive or memory going bad).

While not all can be handled in an automated manner easily, the proposed MSA tool is

designed to be able to identify cases 1, 2, and 6 in its follow-up investigation.

9.5.7 Components

The MSA system’s design consists of the following components/modules acting together in

unison (sequentially or in parallel):

1. Procmail [478] handler

2. RT ticket email to Forensic Lucid encoder

3. Live and log data collector/Forensic Lucid encoder (activity, switchlog, argus [388],

DHCP, and others)

4. (under design consideration) Network database query component for previously known

information on the hosts, locations, switch ports, and MAC addresses

5. Forensic Lucid processor (GIPSY) invocator

6. Output/conclusion report generator

9.5.7.1 Procmail Handler

This component consists of two parts: the .procmailrc recipe for procmail [478]7 (see

Figure 72) looking for Possible MAC spoofer and From: matching a regular expression

.*(nobody|root(\+[a-z\d-]+)?|nag(db)?)@ [401] and handing over a copy of that RT

7http://en.wikipedia.org/wiki/Procmail
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ticket email to the handler (the variable $HOME is appropriately set to the installation direc-

tory); and the handler is a script that (1) parses the Subject: header for RT ticket number,

host, switch and port number, (2) checks in its internal storage if this ticket has already been

handled to avoid duplicate or useless handling of replies or comments to the ticket by people

in case the From: didn’t filter enough in (1), (3) if this is a new spoofer report claim, save

the RT email into a .rt file, which is a text file with the name of the RT ticket number

containing the RT email, e.g., 123456.rt (see Figure 70 for example), (4) ssh to primary

compute and control host and start the Collector/Encoder component there.

:0c:mac-spoofer-analyzer.lock

* ^Subject: .*Possible MAC spoofer

* ^From: .*(nobody|root(\+[a-z\d-]+)?|nag(db)?)@

| $HOME/bin/mac-spoofer-alert-handler | ...

Figure 72: Procmail handler trigger recipe (rule)

9.5.7.2 Collector/Encoder

The collector/encoder script consists of multiple modules and subcomponents that collect

information from various data sources (mostly logs or probes on different hosts) and convert

them into an evidential statement es context format encoded in Forensic Lucid. The

script, mac-spoofer-evidence-collector, is a multiprocess Perl application that calls

upon various modules (listed below) to gather the corresponding evidence available.

There are three primary API methods that the main collector/encoder dynamically dis-

covers and calls for each of the following modules are collect(), encode(), and getType().

The collect() method implements a specific data gathering mechanism (from a log file on

some host or a direct live probe around the initial contextual point of interest in meta-Lucid

terms8 as initial filtering criteria), and stores the gathered data (RT-number.collector-type).

The encode() methods selectively encode the collected data into Forensic Lucid with

some preprocessing and filtering following the Occam’s razor principles and normalization

(for easier co-relation of timestamps and other data items of the same type, such as MAC

8i.e., as a P (Section 7.2.3, page 159) analogy in mac-spoofer-evidence-collector in Perl

266

.rt
123456.rt


addresses). Something that is not encoded or not recognized by the encoder for a particu-

lar data log, is still preserved either as a simple observation in an observation sequence or

in a comment section of the corresponding Forensic Lucid fragment, such that a human

investigator can review and fine-tune it later. The getType() is simply a way for the main

collector/encoder to tell apart which module was called to use as an extension. All encoded

files have an additional extension of .ctx, that is context files (that have observation se-

quences of interest). The main script then check-sums all the collected and encoded data

with sha1sum.

1. RTForensicLucidEncoder is the module that is the very first to be invoked to parse

and encode the initial RT ticket into a claim (see Listing 9.9 as an example). In

particular, it extracts the date, hostname, IP, switch, and port context point data that

are used for subsequent lookups in the related logs, live data, and database entries that

follow to gather all relevant contextual evidence surrounding the initial RT report. The

other concrete collector/encoder modules search for data temporally near this context

point.

2. SwitchLogForensicLucidEncoder uses the date, switch, and port information to look

for related events in the switchlog and encode the events of interest such as link state

changes, swpvios, etc.

3. ActivityLogForensicLucidEncoder uses the date and host information to look for

host bootups, shutdowns, patching, and user logins/logouts.

4. MSWForensicLucidEncoder encodes log entries produced by msw. The older msw did

not produce non-STDERR log file entries, only errors and email notifications. To be

able to replay some of the data (that are normally real-time) from the past, we need an

event trace/decision log. This is especially relevant for development and testing on past

cases while no actual spoofing is going on. Thus as a part of this work, msw was itself

augmented to add extra logging functionality, and, while at it, making it in a more

Forensic Lucid-friendly manner to simplify extraction by logging sub-expressions

directly in the Forensic Lucid context format. This approach compensates somewhat
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for the fact that real-time data for nbtscan and other probes and the like are not

available in the offline playback. Furthermore, those data serve as additional evidential

observations to improve the confidence in the subsequent analysis.

5. DHCPLogForensicLucidEncoder uses the date and host information to look for the

host’s DHCP requests and the corresponding DHCP protocol exchange messages.

6. ARPPingForensicLucidEncoder uses arp and ping to gather the live host presence

evidence, which is especially useful in the presence of a firewall on the spoofing host.

7. NmapForensicLucidEncoder uses nmap to gather the live OS and open ports evidence.

8. FingerForensicLucidEncoder uses finger to gather the live OS and login evidence.

9. SSHForensicLucidEncoder uses ssh to gather the live “genuineness” test evidence.

10. ArgusForensicLucidEncoder uses Argus commands to gather netflow summaries,

etc., as evidence of network activity prior the report arrival time tar, such as at least

tar − tlinkup primarily because a number of probes are done between the LINK-UP

event [66, 68, 341, 342] and the ticket arrival time to weed out the majority of false

positives.

11. NbtscanForensicLucidEncoder uses nbtscan to gather the live NetBIOS evidence

(for Windows hosts) for work groups and the MAC address.

12. SWMForensicLucidEncoder uses the switch management swm [31] to check the live

current port status at the time of the check if it is up.

13. EncodingUtils module was developed as a helper module for many of the above to

uniformly encode data such as timestamps, MAC addresses, and hostnames, which

sometimes vary in their lexical representation in different logs or probes. It, therefore,

has timestampformat(), macformat(), and hostnameformat() methods. For exam-

ple, timestams formatted similar to "Jul 7 15:10:18", "2013-07-07 16:24 EDT",

"2013-07-07 13:10:55497751", or "201307020450", become formatted like "Tue Jul
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9 08:56:56 2013" in the human-readable form for reporting and as a long epoch inte-

ger internally. Likewise, MAC addresses have different legal lexical representations used

by different vendors, like 00bb335588ff in raw, 0:bb:33:55:88:ff in Argus (stripping

leading zeroes), 00-BB-33-55-88-FF by Microsoft, 00bb.3355.88ff by Cisco are folded

into the DCHP ethers format 00:bb:33:55:88:ff. Hosts are simply formatted into

fully-qualified domain names (FQDNs).

9.5.7.2.1 Encoding the RT Ticket Claim. The RT ticket claim’s evidence is pri-

marily the following:

• Ticket arrival timestamp tar, e.g., Wed, 1 Aug 2012 07:07:07 -0400, serves as a con-

textual point in time from which to move forward and backward to extract relevant

events in other evidential sources.

• ipaddr – possible spoofer’s IP address; filter for logs that use IP addresses only. This

works well if the spoofer uses the same IP address as the legitimate host, via DHCP or

statically. This partially breaks if the spoofer changes an IP address to be of another

host on the same subnet after checking, which IPs are unused. (Such behavior is a sign

of extreme deliberation and possibly malice of someone who knows what they are doing

as opposed to “scriptkiddie” tools for mere “Internet access” with a laptop.) This case

can still be caught via the other evidential sources and logs that do not use IPs, and

primarily host/switch/port based checks. The extra arp checks for the investigation

if the MAC address in DHCP matches the expected IP address talking on the port or

not, will confidently tell if the spoofer is genuine.

• hostname – possible spoofer’s DNS name; filter for logs that use hostnames.

• switch – uplink switch DNS name where the host is/was connected to.

• port – uplink port on the switch where the host is/was connected to.

• mac – the MAC address being spoofed; for lookups in DHCP, switch, database, and

other sources that have it.

269



// ...

observation msw_o = (Pspoofer , 1, 0, 1.0, t_ar);

observation sequence msw_claim = { $, msw_o };

// ...

observation sequence msw_counter_claim = { $, not(msw_o), $ };

Pspoofer =

{

[host:

{

[hostname:"flucid.encs.concordia.ca"],

[IP:"123.45.67.89"],

[mac:"00:aa:22:bb:44:cc"],

[room:"H123"],

[jack:"22"]

}

],

[switch:"switch1"],

[port:"Fa0 /16"],

[t_ar:"Wed , 1 Aug 2012 07:07:07 -0400"]

};

// ...

Listing 9.9: MAC Spoofer Analyzer’s RT evidential statement context encoding example

The secondary context, encoded hierarchically (primarily for reporting to humans and

possibly other uses) includes a room number, jack number on the wall, and (possibly in the

future) hardware/memory/OS information extracted.

The primary context point is used to construct the two-claim solution (see Section 9.5.2)

and gather the evidence from the log files surrounding that context filtered by tar ± 24hrs,

ipaddr, hostname, switch, port, and mac further. The RT two-claim is made indirectly by

msw, as a “prosecution witness”.

9.5.7.2.2 Encoding Log and Probe Evidence. Collection of other pertinent evidence

depends on the context of the initial report described in the preceding section. The modules

described earlier collect both live and dead evidence from probes and logs. Not everything

possible is collected to avoid unnecessary complexity in encoding and evaluation, so only

information is kept that is likely to be helful in the decision making. The data selection is

made by the typical criteria a human expert selects the data for the same task. Following

the examples presented earlier in Section 8.5.2, page 236, we illustrate some of the examples

of the encoded evidence in Forensic Lucid for the modules mentioned. Context calculus

operators (Section 7.3.3, page 183) help with additional filtering of deemed unnecessary data

during computation.
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In Listing 9.10 is the msw evidence encoding example. In Listing 9.11 is the empty

(no-observation) activity log example. In the regular cases, activity log features operating

system booted and users logged on. perp o in the presence of users can be set to the most

likely perpetrator in a follow-up investigation. finger and ssh live evidence suppliments

the activity log evidence with similar information on expected banners and possible users, if

available. No-observations are recorded similarly.

// ...

// msw evidence , encoded: Jul 22 09:17:31 2013

observation sequence msw_os =

{

msw_encsldpd_o_1 ,

msw_ghost_o_2 ,

msw_arp_o_3

};

observation msw_encsldpd_o_1 = ([ switch:"switch1",port:"FastEthernet0 /1",ipaddr:"

132.205.44.252",hostname:"flucid -44. encs.concordia.ca",encsldpd:false], 1, 0, 1.0, "Jul

13 14:33:37 2013");

observation msw_ghost_o_2 = ([ switch:"switch1",port:"FastEthernet0 /1",ipaddr:"132.205.44.252

",hostname:"flucid -44. encs.concordia.ca",ghost:false], 1, 0, 1.0, "Jul 13 14:33:38 2013"

);

observation msw_arp_o_3 = ([ switch:"switch1",port:"FastEthernet0 /1",ipaddr:"132.205.44.252",

hostname:"flucid -44. encs.concordia.ca",arp:true], 1, 0, 1.0, "Jul 13 14:33:39 2013");

// end of msw evidence

// ...

Listing 9.10: msw encoded evidence example

// ...

// activity log evidence , encoded: Jul 22 09:17:25 2013

observation perp_o = $;

observation sequence activity_os =

{

activity_o_1

};

observation activity_o_1 = $;

// end of activity log evidence

// ...

Listing 9.11: activity encoded no-observation evidence example

Live probes by nmap (and similarly complementary by nbtscan) give a list of open ports

and other aspects that are compared to the minimum expected ports and other values. In

Listing 9.12 is an example of captured and encoded nmap evidence. The samples of ignored

lines are in the comment section; they play no role in evaluation but recorded anyway in case

the investigator wants to include some of that data later on.

In Listing 9.13 is an example of the evidence encoded from the DHCP logs to suppliment

the investigation and provide visibility into the situation.
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// ...

// ‘nmap ’ evidence , encoded: Jul 14 21:09:23 2013

observation sequence nmap_os = os_nmap_entries;

observation sequence os_nmap_entries =

{

([ protocol_port :135, protocol:"tcp"], 1, 0),

([ protocol_port :139, protocol:"tcp"], 1, 0),

([ protocol_port :445, protocol:"tcp"], 1, 0),

([ protocol_port :49152 , protocol:"tcp"], 1, 0),

([ protocol_port :49157 , protocol:"tcp"], 1, 0),

([ protocol_port :6002, protocol:"tcp"], 1, 0),

([ protocol_port :49153 , protocol:"tcp"], 1, 0),

([ protocol_port :49154 , protocol:"tcp"], 1, 0),

([ protocol_port :49156 , protocol:"tcp"], 1, 0),

([ protocol_port :7001, protocol:"tcp"], 1, 0),

([ protocol_port :7002, protocol:"tcp"], 1, 0),

([ protocol_port :49155 , protocol:"tcp"], 1, 0),

([ protocol_port :135, protocol:"tcp"] => "open msrpc Microsoft Windows RPC", 1, 0),

([ protocol_port :139, protocol:"tcp"] => "open netbios -ssn", 1, 0),

([ protocol_port :445, protocol:"tcp"] => "open netbios -ssn", 1, 0),

([ protocol_port :6002, protocol:"tcp"] => "open http SafeNet Sentinel License

Monitor httpd 7.3", 1, 0),

([ protocol_port :7001, protocol:"tcp"] => "open tcpwrapped", 1, 0),

([ protocol_port :7002, protocol:"tcp"] => "open hbase -region Apache Hadoop Hbase 1.3.0 (

Java Console)", 1, 0),

([ protocol_port :49152 , protocol:"tcp"] => "open msrpc Microsoft Windows RPC", 1,

0),

([ protocol_port :49153 , protocol:"tcp"] => "open msrpc Microsoft Windows RPC", 1,

0),

([ protocol_port :49154 , protocol:"tcp"] => "open msrpc Microsoft Windows RPC", 1,

0),

([ protocol_port :49155 , protocol:"tcp"] => "open msrpc Microsoft Windows RPC", 1,

0),

([ protocol_port :49156 , protocol:"tcp"] => "open msrpc Microsoft Windows RPC", 1,

0),

([ protocol_port :49157 , protocol:"tcp"] => "open msrpc Microsoft Windows RPC", 1,

0),

([mac:"00:13:72: xx:xx:xx"] => "(Dell)", 1, 0),

([os:"Microsoft Windows 7|2008"], 1, 0),

([hops:1], 1, 0)

};

// Unencoded data

/*

Starting Nmap 6.25 ( http :// nmap.org ) at 2013 -07 -14 21:08 EDT

NSE: Loaded 106 scripts for scanning.

NSE: Script Pre -scanning.

Initiating ARP Ping Scan at 21:08

Scanning xxx.xxx.xx.xx [1 port]

Completed ARP Ping Scan at 21:08 , 0.00s elapsed (1 total hosts)

Initiating SYN Stealth Scan at 21:08

Scanning xxx.xxx.xx.xx [1000 ports]

*/

// end of ‘nmap ’ evidence

// ...

Listing 9.12: nmap encoded evidence example

9.5.7.2.3 Collection/Encoding Summary. All the encoded evidence, e.g., for the

ticket RT12345 is saved into the appropriate files: 12345.rt.ctx (e.g., as in Listing 9.9,
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// ...

// DHCP evidence , encoded: Jul 14 21:08:13 2013

observation sequence dhcpd_os =

{

dhcp_log_o_1 ,

dhcp_log_o_2 ,

dhcp_log_o_3 ,

dhcp_log_o_4 ,

dhcp_log_o_5

};

observation dhcp_log_o_1 = ([ dhcpmsg:"DHCPOFFER", direction1:"on", ipaddr:"xxx.xxx.xx.xx",

direction2:"to", mac:"xx:xx:xx:xx:xx:xx", via:"xxx.xxx.xx.x"], 1, 0, 1.0, "Jul 14

11:58:03 2013");

observation dhcp_log_o_2 = ([ dhcpmsg:"DHCPREQUEST", direction1:"for", ipaddr:"xxx.xxx.xx.xx"

, dhcpd:"xxx.xxx.xx.xxx", direction2:"from", mac:"xx:xx:xx:xx:xx:xx", via:"xxx.xxx.xx.x"

], 1, 0, 1.0, "Jul 14 11:58:03 2013");

observation dhcp_log_o_3 = ([ dhcpmsg:"DHCPACK", direction1:"on", ipaddr:"xxx.xxx.xx.xx",

direction2:"to", mac:"xx:xx:xx:xx:xx:xx", via:"xxx.xxx.xx.x"], 1, 0, 1.0, "Jul 14

11:58:03 2013");

observation dhcp_log_o_4 = ([ dhcpmsg:"DHCPINFORM", direction1:"from", ipaddr:"xxx.xxx.xx.xx"

, via:"xxx.xxx.xx.x"], 1, 0, 1.0, "Jul 14 11:58:07 2013");

observation dhcp_log_o_5 = ([ dhcpmsg:"DHCPACK", direction1:"to", ipaddr:"xxx.xxx.xx.xx", mac

:"xx:xx:xx:xx:xx:xx", via:"bond0"], 1, 0, 1.0, "Jul 14 11:58:07 2013");

// end of DHCP evidence

// ...

Listing 9.13: dhcp log encoded evidence example

12345.switchlog.ctx, 12345.activity.ctx, 12345.nmap.ctx, and others plus the inci-

dent modeling transition functions ψ (forward tracing) and Ψ−1 (optimized backtracing, see

Section 7.5.4 for their description and definition) in the file mac-spoofer-transition.ipl

for the case into the case file 12345.spoofer.ipl for the primary claim “there is a spoofer”

and 12345.notspoofer.ipl as “defence” claim that “this is a false positive” for parallel

evaluation.

In case of reasonable true-positiveness, the design calls for subclaims to be created and

evaluated as well: 12345.perp.ipl, 12345.nfs.ipl to determine who (attribution) and how

malicious they are based on the previously extracted evidence (e.g., via activity and Argus

logs).

At the end of its operation, Collector/Encoder (after checksumming everything) passes all

the collected and encoded data to the Forensic Lucid processor (see the following section)

to do the actual reasoning and event reconstruction computations. A GIPSY instance is

spawned per claim to be evaluated.
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9.5.7.3 Forensic Lucid Processor

The Forensic Lucid Processor presently includes the mac-spoofer-flucid-processor

script feeding the encoded evidence to GIPSY (see Section 6.1, page 129 and Chapter 8) that

has a Forensic Lucid parser and a distributed run-time system, implemented in Java.

This component is designed to do the heavy weight computation. The MSA design includes

a provision to act on the results of analysis if the confidence is high by, e.g., shutting down

the switch port or quarantining the IP address.

9.5.7.4 Output/Conclusion Generator

In MSA, this corresponds to the mac-spoofer-reporter to report the findings to system

administrators. Presently, 1 is already in production; 2 reports in the development environ-

ment.

• Decision tree, findings, conclusions; mail with the proper RT subject (under active

development).

• Multi-stage reporting mailings as data become available:

1. Gathered evidence first; grouped together in one place. (This is already in op-

eration and is of help earlier on to any active network security people watching

in.)

2. Analysis, that may computationally take a longer time, will be be delivered in a

follow-up analysis update.

9.5.8 Sequence Diagram

The UML sequence diagram shown in Figure 73 depicts the design of a series of synchronous

and asynchronous calls by the modules involved. It is based on the components mentioned

earlier in Section 9.5.7.2 and further, their API, and on Algorithm 3. All the encoders work

asynchronously as child processes (fork()) started by mac-spoofer-evidence-collector.

This is because there is no particular ordering for their execution required (except for the

RT ticket encoding as there is a data dependency on the context point from it used by
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the other modules as well as preferential start up of live forensics modules first to do their

probes sooner). All modules produce intermediate raw files and encoded timestamped files;

the latter are subsequently collected into one Forensic Lucid script when all the modules

return, which is then fed to GIPSY to compile and evaluate for reasoning purposes. When

GIPSY returns, the final analysis report is generated.

9.5.9 Challenges and Limitations

• Short-lived spoofer sessions, so not much live forensic data are available.

• Need to measure true negatives, false negatives, false positives.

• Sysadmin mistakes (assigning a managed VLAN or replacing the OS image from man-

aged to UM without updates to the VLAN), which is nearly impossible to tell apart

from genuine spoofing.

9.5.10 Related Work

There is hardly any related work of that nature. However, naturally sysadmins and security

community alike tend to produce tools for various degrees of automation.

On of such open-source tools is mac-san [3] from Andrew Adams at Pittsburgh Super-

computing Center designed to scan hosts on subnets and VLANs for vulnerabilities. It uses

both SNMP (to poll switches) and ICMP (via nmap) to determine active hosts on the network

and then rush at them with Nessus [457]. It uses a database to for historical security scans

as well as previous associations between MACs and IPs. It also has a notification machinery

if the scan fails for some reason in the last two scans or so. It also checks for MACs/IPs

tuple mismatches between scans. It is roughly equivalent to a combinations of the tools we

use from our scripset [31] as well, including Nessus with daily scans of last active hosts that

are recorded regularly into the database. Like us, they allow for scan exceptions for a given

MAC/IP address.

A commercial equivalent of what we are doing includes the recently emerged FireSIGHT

with a FireAMP agent from SourceFire that is normally installed on all client computers.
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Figure 73: MAC spoofer analyzer UML sequence diagram
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We are considering possible integration of FireAMP with our toolset to define an appropriate

security policy to mandate FireAMP’s presence on all machines, to cover the user-managed

land when connecting to our network, and deny connection if after a certain grace time period

FireAMP is not responsive from a given UM IP.

9.5.11 Ongoing and Future Work

MSA is already a part of the nagtools set [31] in production that is being actively designed,

developed, and maintained in iterative builds. This ongoing process includes the Forensic

Lucid reasoning aspects as well as immediate future plans that follow:

• Plan to provide a direct hook for msw to invoke the reasoner not via RT. In this case one

can group relevant .ctx, etc. files by the hostname, IP, or MAC addresses instead of

RT ticket numbers. Some adjustments will need to be made about duplicate handling

for the same host for possible prior investigations.

• Plan to provide a hook to swm to shutdown the switch port in question in case of a high

confidence in the detection of the spoofing activity.

• Plan to provide a hook to the account management in case of high severity and high

confidence, autoblock the account of the offender (long term future goal).
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9.6 Summary

We presented a few application examples of use of Forensic Lucid to show the use of some

of its intensional and probabilistic constructs.

The toy examples in the beginning encoding simple cases or statements follow by a more

concrete detailed case of the MAC Spoofer Investigation MSA tool design where numerous

evidence sources are encoded into Forensic Lucid format exhibiting both intensional and

probabilistic DSTME features.

Code size reduction from Common Lisp ([135]) to Forensic Lucid (Section 2.2.5.1.3,

page 48) is approximately 4-fold (545 lines of Common Lisp (not including DOT Graphviz

visualization output of event reconstruction) vs. 113 of Forensic Lucid). Forensic Lucid

code is arguably more readable and easier to maintain.

We briefly summarized the data sources used of various types data used in investigation

experiments and tests.

As of March 2013, the implementation in automatic gathering and alerting of the related

evidence in real-time in one place received positive feedback from NAG avoiding a lot of

manual lookups and data gathering outlined in Section 9.5.3.
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Chapter 10

Concluding Remarks and Future

Work

This thesis addresses a notion of digital forensics investigation of swaths of digital and non-

digital evidence, case and crime scene modeling, and event reconstruction of a crime scene

involving computing equipment incorporating credibility and trustworthiness factors of the

evidence and the witnesses into the equation. In crime investigation the investigators focus

on reconstructing what has possibly happened after arriving at the scene, gathering evidence,

and interviewing witnesses. Digital investigation bears some similarities with the traditional

process including proper handling of the evidence (storage, logs) reports, etc. However,

the problem with digital evidence is that there are too many devices and too much data

to humanly analyze to attempt to reconstruct what has happened, especially in a crime

involving computer and network equipment. Forensic Lucid is provided, along with a

proposed design of the evaluation GIPSY platform, to alleviate those difficulties based on

science and formal methods (to be credible in court of law), to represent the knowledge of

the case, including evidential description, witness accounts, assign credibility values to them,

all in a common shape and form and then validate hypotheses claims against that evidential

data.

We likewise presented in-depth background setting for this work in Part I to provide the

necessary historical context on the tools and techniques used, data sources, and where the

approach comes from as well as to acknowledge the work of predecessors and to provide
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a reasonable self-contained reference resource to the readers. We also included complete

definition of the syntax and semantics of Forensic Lucid and further explored relevant

case studies, design and implementation aspects.

10.1 Objectives Achieved

In dereference to the primary thesis objectives stated in Section 1.5.1 we have designed the

Forensic Lucid incident specification/scripting language, its formal syntax and semantics,

and related case studies. Specifically:

• Forensic Lucid (Chapter 7)

– Forensic Lucid syntax (Section 7.3, page 166)

– Forensic Lucid operational semantics (Section 7.4, page 192)

– Hierarchical higher-order context specification (Section 7.2.2, page 158)

– Operators and transition functions (Section 7.3.4, page 191)

– Observation specification with credibility (Section 7.4.2, page 197)

• Forensic Lucid parser and semantic analyzer (Section 8.1, page 211)

• Design of the run-time evaluation framework and Forensic Lucid encoders (Sec-

tion 8.2, page 213)

• Example cases (see Chapter 9, page 244)

10.2 Summary

Through the series of discussions, definitions of the syntax, operators, semantics, and some

examples of the Forensic Lucid applications we reached a milestone to show the benefits

of the intensional approach over the FSA. As far as the implementing system concerned,

it has advantages of parallelizing the computation and introduces the notion of context and

eduction that are absent in the FSA/LISP approach of Gladyshev et al . [133, 134, 135].
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Context and eduction allow a better expression of or constraints on the evidence as well

as its more optimized evaluation respectively. We took advantage of the existing concepts,

syntax and semantic rules and constructs from the intensional programming and the Lucid

family of languages [159, 302, 303, 360].

We presented the fundamentals of Forensic Lucid, its concepts, ideas, and dedicated

purpose—to model, specify, and evaluate digital forensics cases. The process of doing so is

simpler and more manageable than the previously proposed FSA model and its Common

Lisp realization (Section 9.6, page 278). We re-wrote in Forensic Lucid (Section 9.3,

page 250) one of the sample cases initially modeled by Gladyshev in the FSA and Com-

mon Lisp to show the specification is indeed more manageable and comprehensible than

the original [135, 310]. We likewise modeled a specification of the example blackmail case

Forensic Lucid (Section 9.4, page 254). The notions and notations used in Forensic

Lucid re-use some of those used by Gladyshev ([134], Section 2.2.5.2, page 51) achieving

uniformity and comparability of the approaches [305]. We have likewise written a few simple

DSTME-oriented examples illustrating a concrete use of various language constructs together

matching with the background-set examples in Section 9.2, page 248.

We implemented a number of encoders and encoding techniques to automatically represent

the evidence from various data sources in the Forensic Lucid format as a case knowledge

base for the designed case studies. The most complete of these is the MAC Spoofer Analyzer

case detailed in Section 9.5, page 257 and MARFCAT (Section 5.4, page 110).

Our language is based on more than 35 years of research on correctness and soundness

of programs [25] and the corresponding mathematical foundations of the Lucid language

(Chapter 4), which is a significant factor should a Forensic Lucid-based analysis be pre-

sented in court in the future. The logical formalisms behind Forensic Lucid date even

further back in time (see Chapter 3).

We likewise presented a modular intensional programming research platform, GIPSY, for

reasoning tasks of HOIL expressions. The concept of context as a first-class value is central

in the programming paradigms GIPSY is built to explore, such as the family of the Lucid

programming languages. At the time of this writing, GIPSY has various degree of support for

compilation of GIPL, Indexical Lucid, Lucx, JLucid, Objective Lucid, JOOIP, and
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now Forensic Lucid [300]. We augmented the GIPSY Type System to support forensic

contexts. We also refactored substantially its GIPC and GEE frameworks to support multiple

semantic analyzers and evaluation backends respectively and designed the API for the new

backends based on Forensic Lucid, PRISM, and AspectJ in Chapter 8.

10.3 Limitations

We realize by looking at the presented examples the usability aspect is still desired to be

improved upon further for easier adoption by investigators, especially when modeling ψ and

Ψ−1, prompting one of the future work items to address it further [310] using visualization

techniques (Appendix E).

In Section 3.3.2.1.3, page 72, we mentioned points of criticism of the Dempster’s rule

of combination as a belief fusion operator in the DSTME. That rule favors a shared belief

between observations of the same property and ignores the others in the evidential statement

from different observation sequences. We partially address this with the averaging fusion

operator within an observation sequence and cumulative fusion between any two observations.

This appears to be appropriate enough for our purposes, but more formal investigation is

needed into selection of the most appropriate fusion operator. Thus, we defined the total

credibility of an observation sequence as an average of all the weights in this observation

sequence ([311], Definition 53, page 192):

Wavg =


(wi)

n
(10.3.0.1)

A less naive way of calculating weights is using some pre-existing functions. What comes to

mind is the activation functions used in artificial neural networks (ANNs), e.g. [311]:

WANN =
 1

(1 + e−nwi)
(10.3.0.2)

The witness stories or evidence with higher scores of W have higher credibility. The lower
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scores, therefore, indicate less credibility or more tainted evidence [311]. Such a representa-

tion would coincide well with machine learning and data mining techniques when the cred-

ibility weights can be learned and updated throughout the investigative run automatically,

as done for ANNs.

Another potential limitation that has emerged is the hardcoded notion of ≥ 1/2 from [85]

meaning to us as “credible enough”, such as in use in the opw operator types. There may

be forensic applications and investigations that require higher thresholds, making 1/2 an

investigator settable parameter. A possible solution to this is to introduce the parameter,

e.g., reserved dimension type wDSTME by default evaluating D0,P0 ⊢ wDSTME : 1/2 that can

be altered at run-time to the desired value.

An issue of the credibility/belief weight assignment has inherent limitations in the relia-

bility of the investigators assigning them or the encoders of the tools assigning them based

on expert estimates. As a corollary, the Forensic Lucid language with any of its imple-

menting toolsets at this stage form a forensic assistant to an investigator or an expert, and

not an absolute proof system.

The credibility weight assignment also impacts the usability issues for an investigator

deciding between assigning, e.g., 93% or 97%. A possible solution to this is to add syn-

tactically pre-defined keywords available to investigators to be used consistently, e.g., as

presented in research by Kent at CIA in 1964 [204] by quantifying uncertainty with ranges,

e.g., almost certain (93% ± 6%), probable (75% ± 12%), even chances (50% ± 10%),

probably not (30%±10%), almost certainly not (30%±10%). The ranges can be adapted

to be handled with the observation’s min,max parameters in this case.

It is important to mention, per Section 10.1, page 280, we provide static syntax and se-

mantic analysis and the type system within the GIPSY system at this stage with the run-time

completion being a part of the near-future work. Likewise, complete formal mechanization

of the language in a proof assistant (started in [298]) is also beyond the scope of this thesis

and is also a part of the near-future work to establish a high degree of confidence in the

correctness of the semantics of Forensic Lucid.

Finally, we have not completed the complexity analysis and the resulting metrics and
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measurements for the presented work’s run-time and scalability. Such analysis and evalua-

tion are multifold. In the Lucid-family, one of such analyses is rank analysis (dimensionality

of expressions), which helps in run-time optimization and was performed by several research

publications in the past (see references in Chapter 4). The GIPSY’s scalability of the dis-

tributed run-time of GEE has been extensively studied by Ji and colleagues (see references

in Chapter 6). The event reconstruction (ERA, including ψ and Ψ−1) implementation within

the Forensic Lucid backend is the other major aspect. We began working on the metrics

framework within the GIPSY run-time (where Metric itself is designed as an annotation

type part of the GIPSY type system) to study such aspects as well as optimize run-time

scheduling of GIPSY networks. Thus, rank analysis, run-time scalability analysis, and the

ERA complexity analysis (including the individual context operators) form the various facets

of complexity analysis to be completed in the future work.

10.4 Future Work

Future work will focus on resolving the limitations presented in the preceding section as well

as will include ongoing related projects.

In general, the proposed practical approach in the cyberforensics field can also be used to

model and evaluate normal investigation process involving crimes not necessarily associated

with information technology or any other types of incident investigations [302, 305] as long

as there is a way to encode the evidence, hypotheses, and the incident scene. Combined with

an expert system (e.g., implemented in CLIPS [398]), it can also be used in training new

staff in investigation techniques [303, 305, 310].

There are, therefore, a number of topics of interest to investigate in subsequent research

endeavors. The R&D in digital forensics and forensic computing are more relevant and evi-

dent in the digital age and digital investigation. The need for standards and automation in

investigation processes to aid human investigators is paramount. There is a lot of research to

be done still before the formal concepts mature and become a standard practice in the field. A

particular aspect under consideration is the idea of self-forensics with the proposed Foren-

sic Lucid language standard for autonomic software and hardware systems in all kinds of
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vehicles, craft, and on the Internet (details of that project propositions are in Appendix D).

10.4.1 Tool Integration

There are a number of tools that the Forensic Lucid approach can be integrated with for

better incident investigation. While MSA (Section 9.5, page 257) is already integrated, there

are a number of others where it makes sense to integrate or develop plug-ins for:

• Augment common software packages and custom scripts to log centrally (e.g., via sys-

log) directly in the Forensic Lucid format as an option. This includes apache,

Tomcat, identd/authd, sshd, iptables, Event Log, etc. Additionally, a plug-in for

Splunk [436] to be Forensic Lucid-aware in its searches.

• A natural integration with the HIVE (an open infrastructure for malware collection

and analysis) [60] as well as with an incident analysis system NICTER and its engines

based on data mining techniques [102, 181].

• Forensic Lucid is also a knowledge representation language. Translation from other

knowledge representation languages, such as Vassev’s KnowLang is also envisioned for

the purposes of a common format for investigations.

• Forensic context specification with Forensic Lucid for case analysis, evaluation, and

event reconstruction in ubiquitous computing platforms.

• Integration with Ftklipse [223], GATE [459] and JPF ([21, 22, 83], Section 2.1.3,

page 28).

• Integration with JDSF ([269, 292], Section D.3.3, page 363).

• Design and implement the Forensic Data Flow Graph tool as an extension to RIPE

in GIPSY to improve the usability of the system. The activity of programming a

transition function, presented in Section 7.5.4, for non-computer programmer experts

may be tedious, but a Lucid program can be modeled as a data-flow graph. In GIPSY,

there was an implementation of a DFG tool [87] that allowed basic programming in

Indexical Lucid using graphical DFG representation, which provided bidirectional
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translation from a DFG to Indexical Lucid code and back. We propose to extend

the tool to include Forensic Lucid constructs and make it more convenient to use for

non-programmers. This would enable an easier construction of the transition functions

graphically by an investigator [303].

Appendix E is dedicated to further discussion and progress on this aspect.

10.4.2 More on Formalization

• Refine the semantics of Lucx’s context sets and their operators to be more sound,

including Box, so some of our formalisms can be based on it.

• not applied to a transition event e ∈ I (where I is a set of all events) would mean

not e⇔ I \ e, i.e., all the other events currently in I, except e for easier specification.

For example, if I = {“add A”, “add B”, “take”}, e = “add A”, then not e would mean

{“add B”, “take”} using \difference. I itself is fully specified in the program by the

investigator, but could be made to be learned dynamically as the Forensic Lucid

program executes.

• Complete an RFC1 on Forensic Lucid and release a full standard Forensic Lucid

specification (similar to that of Java [139]).

• Transition Function as an Operator Stream.

In order to model composite transition functions, we will define a stream of operators of

application in a scenario. Thus, each path in the graph is a finite stream of application

of Forensic Lucid operators. The operator streams can be derived from the cor-

responding DFGs modeled by the investigator. Since TransLucid [376] (mentioned

earlier in Section 4.1, page 76) does have notions of function streams and ranges, this

opens a possible area of collaboration.

• cluster operator.

Discrete statistical contextual points is of interest to define and navigate to represent

median and mean clusters (e.g., as in signal processing in MARF).

1http://www.ietf.org/rfc.html, http://www.rfc-editor.org/
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• HOIFL.

With the resulting combination of logics and theories presented here we may arrive

at something we call Higher-Order Intensional Fuzzy Logic (HOIFL). The founding

formalism we borrow are instantiated in Forensic Lucid (see Chapter 7). More

specifically, a HOIFL variant in this thesis combines intensionality an its concrete in-

stantiation in the GIPSY type system (Appendix B), Dempster–Shafer belief functions,

the joined and modified rules of weighted combination of computations in Gladyshev’s

approach, and intensional programming in Lucid.

While giving a complete rigorous treatment of HOIFL is beyond the scope of this thesis,

we can roughly sketch that HOIFL includes the necessary intensional logic constructs

presented earlier, belief mass assignment and probability operators, hierarchical con-

texts, first-order intensional logic (FOIL), and a type system, in addition to the stan-

dard higher-order extensional logic constructs. To visualize HOIFL as a conservative

minimal extension:

min( HOL FOIL Theory of Types HOIL+DSTME ) HOIFL

A sketch (including Figure 74) of the formalism thus would begin as:

– Model M = ⟨Q, I,R,D,DI ,m⟩.

– Q is the set of possible worlds (states).

– I are statements or events.

– D is a set of intensional objects ([505], Section 3.2, page 59); DI is the set of their

extensions.

– R is a set of accessibility relations DI → DI (such as transitions, or transition

functions, or operators, such as next , fby , ψ,Ψ,. . .∈ R) between states q ∈ Q.

– m is belief mass interpretation that is assigned to each object in the domain

w = m(I,Γ),Γ ∈ Q.

– V is a valuation function assigning propositions from m to each world q.

A complete formulation of axiomatization is to be done in the future work beyond this

thesis. We can capitalize on a number of earlier and recent referenced work [110]. For
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M,Γ |=w
v P (x1, . . .)⇔ V (< (v(x1), . . . ) >,Γ) = w (10.4.2.1)

M,Γ |=w
v X ∧ Y ⇔M,Γ |=w

v X and M,Γ |=w
v Y (10.4.2.2)

. . .⇔ . . .

M,Γ |=w
v ✷X ⇔M,Γ |=w

v X for every ∆ ∈ Q with ΓR∆ (10.4.2.3)

M,Γ |=w
v ✸X ⇔M,Γ |=w

v X for some ∆ ∈ G with ΓR∆ (10.4.2.4)

. . .⇔ . . .

M,Γ |=w
v next(X)⇔M,Γ |=w

v λn.X(X + 1) and w ≥ 1/2 (10.4.2.5)

. . .⇔ . . .

M,Γ |=w
v P (X) ≥ P (Y )⇔M,Γ |=w

v X at least as probable as Y (10.4.2.6)

M,Γ |=w
v P (X) ≥ ⊤ ⇔ X has a probability of 1.0 (10.4.2.7)

M,Γ |=w
v P (X) ≥ ¬P (X)⇔ X has a probability of at least 1/2 (10.4.2.8)

. . .⇔ . . .

M,Γ |=w
v bel(X)⇔M,Γ |=w

v X has a belief of


B|B⊆X

m(B) ≤ P (X) (10.4.2.9)

M,Γ |=w
v pl(X)⇔M,Γ |=w

v X has a plausibility of


B|B⊆X

m(B) ≤ P (X) (10.4.2.10)

. . .⇔ . . .

Figure 74: HOIFL initial sketch formulation

example, Muskens proposed intensional models for the Theory of Types [17, 326] in

2007. Our logic axiomatization will draw from the recent (2003–2011) existing axioma-

tizations and semantic formalizations of FOIL [111], probabilistic logics [85, 153], ADM

process logic [4], Halpern’s and Pucella’s logic for reasoning about evidence [156].

• Isabelle/HOL [337, 370, 515] is a proof assistant that works with Higher-Order Logics

(HOLs). The author is using it to assist with formalizing and proving Forensic Lucid

constructs, derived from the semantic rules, operators, and core language constructs.

The end goal of this exercise is to establish a solid formal provable base and avoid

mistakes of an equivalent manual exercise [298]. Thus, we will explore the theoretical

results, e.g., soundness, completeness of Forensic Lucid, by formally proving of the

correctness of the semantic rules of Forensic Lucid using Isabelle/HOL [370] and

their equivalence to the FSA approach through push-down systems. (As a side benefit,

if the proofs are done for core Forensic Lucid, they will automatically extend to
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GIPL, Indexical Lucid, Lucx, and others [303].) Additionally, the culmination of

this aspect is to publish the Forensic Lucid proof theory (ForensicLucid.thy-in-

progress along with other Lucid dialects) in the Archive of Formal Proofs [207].

10.4.3 Distributed Systems, Network and Security Research, and

Forensics

• Cf. Section 5.1.2, page 99, it is important to handle digital forensics of IPv6 traffic,

including evidence encoding and case analysis with Forensic Lucid. As IPv6 is

becoming more prominent, IPv6-based security investigations with a lot of unknowns

and recently identified security problems [118, 253] are necessary to cope with.

• Similarly to IPv6, the digital investigation, evidence modeling, and case specification

for wireless, mobile and ad-hoc networks is another major research area to follow up

on.

• Extend the work to digital evidence modeling and investigation in botnets.

• Similarly to the MSA tool, automate Faculty network scanning investigations, where

the network is undergoing port-scanning attacks.

• Ben Hamed [157] and Du proposed a scheduler and the corresponding heuristics, graph

annotation and analysis as well as their implementation under the scheduler for a dis-

tributed intensional evaluation engine. Paquet et al . proposed GEE on the other hand

within the GIPSY with the baseline language and a set of algebras in the engines. This

idea generalizes the notion of the Ben Hamed’s scheduler and proposes a compile-time

and run-time design within GIPSY to include the scheduler component for various op-

timization analyses, e.g., rank and graph analyses with the generic annotation support

that can be used for various dialects and their intermediate representations.
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Appendix A

Glossary

ACL — access control list

ACL2 — A Computational Logic for Applicative Common Lisp [203]

ADMARF — Autonomic DMARF

ADM — ADM (Adia–Debbabi–Mejri) process logic [4]

ACME — fictitious company name1

AGIPSY — Autonomic GIPSY [497]

AOP — aspect-oriented programming

API — application programming interface2

ARP — Address Resolution Protocol [380]3

AE — autonomic element

AS — autonomic system

AS-TRM — autonomic system-time reactive model [489, 494]

ASSL — Autonomic System Specification Language [499]

AST — abstract syntax tree

AYDY — are-you-done-yet polling

BIOS — Basic Input/Output System

BPEL — Business Process Execution Language [175, 208, 347]

CAD — computer-aided design

CAF — computer anti-forensics

CCD — charge-coupled device

CF — computer forensics

CFG — control-flow graph

1http://en.wikipedia.org/wiki/Acme_Corporation
2http://en.wikipedia.org/wiki/API
3http://en.wikipedia.org/wiki/Address_Resolution_Protocol
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Cisco IOS — originally Internetwork Operating System

CIFS — Common Internet File System

CLI — command-line interface

CLIPS — C Language Integrated Production System [398]

codecessor — A (technically) co-descendant notion or concept, but not necessarily a close
sibling to concepts alike emerged around the same timeframe from the same or similar
predecessor concept(s) [298, 302, 310]

CORBA — Common Object Requester Broker Architecture

CPU — central processing unit

CSV — comma-separated values

CVE — Common Vulnerabilities and Exposures

CVS — Concurrent Versions System [144]

CWE — Common Weakness Enumeration [481]

DAG — directed acyclic graph

DBMS — database management system

DBSCAN — Density Based Spacial Clustering of Application with Noise [528]

DFG — data-flow graph

DFRWS — Digital Forensics Research Workshop [355]

DGT — Demand Generator Tier

DIR — directory

DHCP — Dynamic Host Control Protocol

DL — description logic

DMARF — Distributed MARF

DMF — Demand Migration Framework

DMS — Demand Migration System

DNS — Domain Name Service

DSTME — Dempster–Shafer theory of mathematical evidence

DST — Demand Store Tier

DWT — Demand Worker Tier

EHR — Electronic Health Records [455]

ENCS — Faculty of Engineering and Computer Science, Concordia University

ERA — event reconstruction algorithm (Section 2.2.4.4)

FOIL — first-order intensional logic [111]

FFT — Fast Fourier Transform

FSA — finite-state automata

FTK — Forensic Toolkit [2]
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FTP — File Transfer Protocol

GATE — General Architecture for Text Engineering [459]

GC — Global Conventionalism [30]

GCC — GNU Compiler Collection [482]

GEE — General Eduction Engine

GEER — GEE Resources

GICF — General Imperative Compiler Framework [259]

GIPC — General Intensional Program Compiler, Figure 32, [368, 460]

GIPL — General Intensional Programming Language [359, 368, 460]

GIPSY — General Intensional Programming System [368, 460]

GLU — Granular Lucid [186, 187, 359]

GMT — General Manager Tier

GGMT — graphical (graph-based) GMT [391]

GUI — graphical user interface

HCI — human-computer interaction

HOIFL — higher-order intensional fuzzy logic

HOIL — higher-order intensional logic

HOL — higher-order logic

I/O — input/output

IC — identified-context (class) [239]

ICMP — Internet Control Message Protocol

ICT — information and communications technology

IDE — interactive development environment

IDS — intrusion detection system

iHTML — Intensional HTML [507, 508]

IME — interactive modeling environment

IRSNET — intelligent RSNET

IODEF — the Incident Object Description Exchange Format4

IP — depending on context of a particular chapter, may refer to

• Intensional Programming [129, 348] (Chapter 1, Section 3.2)

• Internet Protocol Layer-3 address [77, 78] (Section 9.5)

IPL — Intensional Programming Language (e.g., Forensic Lucid, GLU, Lucid, In-
dexical Lucid, JLucid, Tensor Lucid, Objective Lucid, Onyx [142], GIPL,
TransLucid)

4www.ietf.org/rfc/rfc5070.txt
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ISS — Illimitable Space System [434]

JavaCC — Java Compiler Compiler [503]

JDSF — Java Data Security Framework

JMS — Java Messaging Service

JOOIP — Java-based object-oriented intensional programming language

JPF — Java Plug-in Framework

JSON — JavaScript Object Notation

LAN — local area network

LOD — level of detail

LPC — linear predictive coding

MAC — Media Access Control address [178]5

MARF — Modular Audio Recognition Framework [462]

MARFCAT — MARF-based Code Analysis Tool [283, 285]

MARFL — MARF Language [270]

MARFPCAT — MARF-based PCap Analysis Tool

MRTG — the Multi Router Traffic Grapher [343]

NAG — Network Administration Group (of the Faculty of ENCS, Concordia)

NICTER — Network Incident analysis Center for Tactical Emergency Response [102]

MDP — Markov Decision Process

ME — managed element

MPR — map of partitioned runs (see Section 2.2.4.4.4)

MSPR — map of sequence of partitioned runs (see Section 2.2.4.6.2)

MSA — MAC Spoofer Analyzer (Section 9.5)

msw — MAC Spoof Watcher

NFS — Network File System [440, 476]

NLP — natural language processing

NVD — National Vulnerability Database [338]

OO — object-oriented

OODA — Observe-Orient-Decide-Act loop6

OpenGL — Open Graphics Library

OSI — Open Systems Interconnection model [77, 78]7

OSS — open source software

5http://en.wikipedia.org/wiki/MAC_address
6http://en.wikipedia.org/wiki/OODA_loop
7http://en.wikipedia.org/wiki/OSI_reference_model
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OWL — Web Ontology Language

PC — personal computer

PCM — pulse-code modulation

pcap — packet capture data

PDS — push down system

PA — Peano arithmetic

PID — process identifier [440, 476]

PL — programming language

PoC — proof-of-concept

PR — depending on context of a particular chapter, may refer to

• partitioned run (Section 2.2.2)

• processing resource (as in GATE, Chapter 5)

PRISM — probabilistic model checker [464]

PS — problem-specific

QoS — quality of service

R&D — research and development

RIPE — Run-time Intensional Programming Environment (“IDE”)

RMI — Remote Method Invocation

RPC — Remote Procedure Call

RSNET — road-side network

RT — RT: Request Tracker [501]8

SAMATE — Software Assurance Metrics And Tool Evaluation NIST project9

SATE — Static Analysis Tool Exposition 10

SAVE — Static Analysis of Vicious Executables framework [448]

SDWT — separating discrete wavelet transform

self-CHOP — self-(configuring, healing, optimizing, and protecting) properties

SFAP — self-forensics autonomic property (Appendix D)

SIPL — Specific IPL (e.g., Indexical Lucid, JLucid, Tensor Lucid, Objective Lu-
cid, Onyx)

SHL — Security Hardening Language [226]

S.M.A.R.T. — Self-Monitoring, Analysis, and Reporting Technology [12, 65, 516]

SNMP — Simple Network Management Protocol [437]

8http://www.bestpractical.com/?rt=4.0.8
9http://samate.nist.gov

10http://samate.nist.gov/SATE.html
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SMI — Structure of Management Information [182]11

SLO — service-level objective

SOA — service-oriented architecture

SSD — solid state drive

SSH — secure shell

SSL — secure socket layer

STDERR — standard error stream [440, 476]

STDIN — standard input stream [440, 476]

STDOUT — standard output stream [440, 476]

STGT — Simple Theory of GIPSY Types, an STT extension (Appendix B)

STT — Mendelson’s Simple Theory of Types [251]

swpvio — switch port violation (see Section 9.5)

SYN — “synchronize” packet

SysML — Systems Modeling Language

TA — transport agent

TIL — Transparent Intensional Logic [96]

TTL — time-to-live

TCT — The Coroner’s Toolkit [458]

TLS — transport layer security

UEFI — Unified Extensible Firmware Interface12

UC — Use Case

UM — user-managed

UML — Unified Modeling Language [46, 222, 479]

URI — Unified Resource Identifier

VANET — vehicular ad hoc network

VCN — vehicular network

ViM — Vi Improved [323]

VLAN — virtual LAN [31, 68]

WAV — wave audio file format

WFT — Windows Forensic Toolkit [250]

XML — Extensible Markup Language

11http://en.wikipedia.org/wiki/Structure_of_Management_Information
12http://en.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface
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Appendix B

A Type System Theory for
Higher-Order Intensional Logic
Support in Hybrid
Intensional-Imperative Programs in
GIPSY

We describe a type system and its theory the General Intensional Programming System
(GIPSY), designed to support intensional programming languages (built upon higher-order
intensional logic) and their imperative counter-parts for the eductive execution model. We
extend the Mendelson’s simple theory of types (STT) [17, 105, 251] by adding the inten-
sionality axiom to it. The intensionality principle covers language expressions that explicitly
take into the account a multidimensional context space of evaluation with the context being
a first-class value that serves a number of applications that need the notion of context to
proceed. The theory is complemented with the software engineering design and implementa-
tion study of the GIPSY type system [299]. In GIPSY, the type system glues the static and
dynamic typing between intensional and imperative languages in its compiler and run-time
environments to support the intensional expressions and their evaluation written in various
dialects of the intensional programming language Lucid. We, therefore, describe and discuss
the properties of such a type system and the related type theory as well as particularities of
the semantics, design and implementation of the GIPSY type system [313].

B.1 Overview

This work primarily a combination of the previous results describing the concrete GIPSY
types specification and implementation in [313] as well as theoretical foundations behind the
GIPSY Type System [299].

The General Intensional Programming System (GIPSY) (see Chapter 6 for an in-depth
background discussion) has been built around the Lucid family of intensional program-
ming languages (see Chapter 4) that rely on the higher-order intensional logic (HOIL, see
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Section 4.4) to provide context-oriented multidimensional reasoning about intensional ex-
pressions. HOIL combines functional programming with various intensional logics to allow
explicit context expressions to be evaluated as first-class values that can be passed as pa-
rameters to functions and return as results with an appropriate set of operators defined on
contexts [300]. GIPSY’s frameworks are implemented in Java as a collection of replaceable
components for the compilers of various Lucid dialects and the demand-driven eductive eval-
uation engine that can run distributively. GIPSY provides support for hybrid programming
models that couple intensional and imperative languages for a variety of needs. Explicit
context expressions limit the scope of evaluation of math expressions (effectively a Lucid
program is a mathematics or physics expression constrained by the context) in tensor physics,
regular math in multiple dimensions, etc., and for cyberforensic reasoning as one of the use-
cases of interest (Chapter 7). Thus, GIPSY is a support testbed for HOIL-based languages
some of which enable such reasoning, as in formal cyberforensic case analysis with event
reconstruction. Its type system is designed to support all these hybrid paradigms because
the standard Lucid algebra (i.e., types and operators) is extremely fine-grained and can
hardly benefit from parallel evaluation of their operands (cf., Chapter 4). Adding granular-
ity to the data elements manipulated by Lucid inevitably comes through the addition of
coarser-grained data types and their corresponding operators. Lucid semantics being de-
fined as typeless, a solution to this problem consists in adding a hybrid counterpart to Lucid
to allow an external language to define an algebra of coarser-grained types and operators.
In turn, this solution raises the need for an elaborated type system to bridge the implicit
types of Lucid semantics with the explicit types and operators (i.e., functions) defined in
the hybrid counterpart language [313]. This chapter, therefore, presents such a type system
used in GIPSY at compile time for static type checking, as well as at run-time for dynamic
type checking [299, 313].

B.1.1 Organization

After our problem statement and short presentation of our proposed solution, in Section B.1.2
follows the concise description of the GIPSY Type System subproject of the GIPSY research
and development effort in Section B.2.1. Having briefly covered this introductory material we
move onto the actual definition of the Simple Theory of GIPSY Types (STGT) as an extension
of the classical Simple Theory of Types (STT) in Section B.3. Further, we describe the
properties of our STGT via various categories of types and their applicability to our system
in Section B.5 to illustrate where STGT stands [299]. Then, we present the complete GIPSY
type system as used by the compiler (the General Intensional Programming Compiler—
GIPC, see Section 6.2.1) and the run-time system (the General Eduction Engine—GEE, see
Section 6.2.2) when producing and executing a binary GIPSY program [262, 280] (called
General Eduction Engine Resources—GEER) respectively [159, 299, 313, 360]. Finally, we
conclude in Section B.6 describing limitations and future work to address them [299]. (We
don’t overview the GIPSY project here as it and the related work are detailed in Chapter 6.)
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B.1.2 Summary of the Problem and the Proposed Solution

The beginnings of the GIPSY Type System were bootstrapped by a number of the related
works [262, 280, 299, 313] in GIPSY to support hybrid and object-oriented intensional pro-
gramming [523, 525], and Lucx’s context type extension known as context calculus imple-
mentation [363, 470] for contexts to act as first-class values [299].

Problem. Data types are implicit in Lucid (as well as in its dialects or many functional
languages). As such, the type declarations normally never appear in the Lucid programs
at the syntactical level. The data type of a value is inferred from the result of evaluation of
an expression. In most imperative languages, like Java, C++ and the like, the types are
explicit and the programmers must declare the types of the variables, function parameters
and return values before they are used in evaluation [313]. In GIPSY, we needed to allow
any Lucid dialect to be able to uniformly invoke functions/methods written in imperative
languages and the other way around and perform semantic analysis in the form of type
assignment and checking statically at compile time or dynamically at run time, perform any
type conversion if needed, and evaluate such hybrid HOIL expressions. At the same time,
we need to allow a programmer to specify, or declare, the types of variables, parameters, and
return values for both intensional and imperative functions as a binding contract between
inter-language invocations despite the fact that Lucid is not explicitly typed [313]. Thus,
we need a general type system, well specified and founded in a sound theory, designed and
implemented to support such scenarios [299, 313].

Proposed Solution. The unique particularity of the type system presented here is that
it is above a specific programming language model of either the Lucid family of languages
or imperative languages. It is designed to bridge programming language paradigms, the
two most general of them would be the intensional and imperative paradigms. GIPSY has
a collection of frameworks designed to support a common run-time environment and co-
existence of the intensional and imperative languages [313]. Thus, the type system is that of
a generic GIPSY program that can include code segments written in a theoretically arbitrary
number of intensional and imperative dialects supported by the system vs. being a type
system for a specific language [313]. What follows is the details of the proposed solution and
the specification of the simple GIPSY type system and its theory [299, 313].

B.2 The GIPSY Type System

B.2.1 Introduction to the GIPSY Type System

The introduction of JLucid, Objective Lucid, and the General Imperative Compiler
Framework (GICF) [262, 280] prompted the development of the GIPSY Type System as
implicitly understood by the Lucid language and its incarnation within GIPSY to handle
types in a more general manner as a glue between the imperative and intensional languages
within the system. Further evolution of different Lucid variants such as Lucx introducing
contexts as first-class values and JOOIP [523, 525] (Java Object-Oriented Intensional Pro-
gramming language) highlighted the need of the further development of the type system to
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accommodate the more general properties of the intensional and hybrid languages [299, 313].
The type system is also required to extend the higher-order intensional logic (HOIL) [300]

support onto the imperative dialects in the hybrid intensional-imperative programs. This in
particular includes the notion of context added to the imperative programs as well as dy-
namic variables binding and assignment upon intensional type discovery when done evaluat-
ing intensional expressions and, for example, assigning their result to a variable declared
in a Java class. The same applies to the function and method parameters as well as
their return results. This further necessitates the type matching rules between Lucid and
other languages, similar to the ones defined for example for Java in Table 17 per earlier
works [262, 280, 299, 313, 363, 523, 525].

B.2.2 Matching Lucid and Java Data Types

Here we present a case of interaction between Lucid and Java [139]. Allowing Lucid to call
Javamethods brings a set of issues related to the data types, especially when it comes to type
checks between Lucid and Java parts of a hybrid program. This is pertinent when Lucid
variables or expressions are used as parameters to Java methods and when a Java method
returns a result to be assigned to a Lucid variable or used in an intensional expression. The
sets of types in both cases are not exactly the same. The basic set of Lucid data types as
defined by Grogono [141] is int, bool, double, string, and dimension. Lucid’s int is of
the same size as Java’s long. GIPSY and Java double, boolean, and String are equivalent.
Lucid string and Java String are simply mapped internally through StringBuffer; thus,
one can think of the Lucid string as a reference when evaluated in the intensional program.
Based on this fact, the lengths of a Lucid string and Java String are the same. Java
String is also an object in Java; however, at this point, a Lucid program has no direct
access to any String’s properties (though internally we do and we may expose it later to the
programmers). We also distinguish the float data type for single-precision floating point
operations. The dimension index type is said to be an integer or string (as far as its dimension
tag values are concerned), but might be of other types eventually, as discussed in [363, 470].
Therefore, we perform data type matching as presented in Table 17. Additionally, we allow
the void Java return type, which will always be matched to a Boolean expression true in
Lucid as an expression has to always evaluate to something. As for now our types mapping
and restrictions are as per Table 17. This is the mapping table for the Java-to-IPL-to-Java
type adapter. Such a table would exist for mapping between any imperative-to-intensional
language and back, e.g., the C++-to-IPL-to-C++ type adapter [313].

B.2.3 Design and Implementation of the Type System

While the main language of GIPSY, Lucid, is polymorphic and does not have explicit types,
co-existing with other languages necessitates definition of GIPSY types and their mapping
to a particular language being embedded. In Figure 75 is the detailed design of the GIPSY
Type System [313].

Each class is prefixed with GIPSY to avoid possible confusion with similar definitions in
the java.lang package. The GIPSYVoid type always evaluates to the Boolean true, as
described earlier in Section B.2.2. The other types wrap around the corresponding Java
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Figure 75: The GIPSY type system [313]
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Table 17: Matching data types between Lucid and Java [299, 313]

Parameter Types Corresponding Internal

Used in Lucid Java Types GIPSY Types

string String GIPSYString

float float GIPSYFloat

double double GIPSYDouble

int int GIPSYInteger

dimension int, String Dimension

bool boolean GIPSYBoolean

class Object GIPSYObject

URI Object GIPSYEmbed

[] [] GIPSYArray

operator Method GIPSYOperator

function Method GIPSYFunction

Return Types Types of Internal

of Java Methods Lucid Expressions GIPSY Types

int, byte, long int, dimension GIPSYInteger

float float GIPSYFloat

double double GIPSYDouble

boolean bool GIPSYBoolean

char char GIPSYCharacter

String string, dimension GIPSYString

Method function GIPSYFunction

Object class GIPSYObject

Object URI GIPSYEmbed

void bool::true GIPSYVoid

object wrapper classes for the primitive types, such as Long, Float, etc. Every class keeps a
lexeme (a lexical representation) of the corresponding type in a GIPSY program and overrides
toString() to show the lexeme and the contained value. These types are extensively used
by the Preprocessor, imperative and intensional compilers, and SemanticAnalyzer for the
general type of GIPSY program processing, and by the GEE’s Executor [313].

The other special types that have been created are either experimental or do not corre-
spond to a wrapper of a primitive type. GIPSYIdentifier type case corresponds to a decla-
ration of some sort of an identifier in a GIPSY program to be put into the dictionary, be it a
variable or a function name with the reference to their definition. Constants and conditionals
may be anonymous and thereby not have a corresponding explicit identifier. GIPSYEmbed is
another special type that encapsulates embedded code via a URI parameter and later is ex-
ploded into multiple types corresponding to procedural demands (Java or any other language
methods or functions) [262]. GIPSYFunction and its descendant GIPSYOperator correspond
to the function types for regular operators and user-defined functions. A GIPSYFunction

can either encapsulate an ordinary Lucid function (which is immutable as in functional pro-
gramming) or a procedure (e.g., a Java method), which may often be mutable (i.e., with side
effects). These four types (identifier, embed, function, and operator) are not directly exposed
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to a GIPSY programmer and at this point are managed internally. An operation is usually
mapped by the actual operators like addition, subtraction, and others via the corresponding
algebras. GIPSYContext and Dimension are a new addition to the type system implementa-
tion since its first inception [262]. They represent context-as-first-class-values in the context
calculus defined by Wan in [510] and refined and implemented by Tong [470]. The rest of the
type system is exposed to the GIPSY programmers in the preamble of a GIPSY program,
i.e., the #funcdecl and #typedecl segments, which result in the embryo of the dictionary for
linking, semantic analysis, and execution. Once imperative compilers of procedural demands
return, the type data structures (return and parameter types) declared in the preamble are
matched against what was discovered by the compilers and if the match is successful, the link
is made. By capturing the types such as identifier, embed, function, operator and context,
dimension, the GIPSY type system lays down fundamentals the higher-order intensional logic
(HOIL) support that combines functional programming, intensional logic, context calculus,
and in some instances hybrid paradigm support, and the corresponding types [313].

We further describe various properties of the concrete GIPSY types and their more de-
tailed specification in Section B.4 and Section B.5. There we detail the inner workings of
each type in more detail [313] as well describe some of the properties through the notions of
existential, union, intersection, and linear types.

B.2.4 Use of the GIPSY Type System

Some of the types are in use only in the hybrid programs, that’s where they mostly appear
visible to a programmer. Another subset of types is internally used by the GIPSY in its com-
piler (GIPC) and run-time environment (GEE) frameworks primarily for dynamic discovery
and semantic checking of the types [313].

Relationship to GIPC. The GIPC uses the type system and classes defined for it in the
compilation process to do static type checking and type annotation of literal values in source
code programs as well as storing the type annotations with the parameter or return values in
hybrid dialects to indicate expected data types to be passed or returned when calling a Java
method from a Lucid dialect and back. Some of the static type declarations come from the
Preprocessor after parsing the the #funcdecl and #typedecl sections [313].

Relationship to GEE. The GEE uses the type system at run-time to do run-time dynamic
type checking as well as to perform the actual evaluation of arithmetic, context set, and object
operators. When the execution of a given GIPSY program reaches an ImperativeNode [262]
indicating a call to an imperative procedure, the type annotations and expressions are used
to validate the parameter and return types to check whether they match or not and indicate
an error if they don’t [262, 313].
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B.3 Simple Theory of GIPSY Types

B.3.1 Simple Theory of Types

Our simple theory of the GIPSY types (STGT) is based on the “Simple theory of types”
(STT) by Mendelson [251]. The theoretical and practical considerations are described in the
sections that follow. The STT partitions the qualification domain into an ascending hierarchy
of types with every individual value assigned a type. The type assignment is dynamic for the
intensional dialects as the resulting type of a value in an intensional expression may not be
known at compile time. The assignment of the types of constant literals is done at compile-
time, however. In the hybrid system, which is mostly statically typed at the code-segment
boundaries, the type assignment also occurs at compile-time. On the boundary between the
intensional programming languages (IPLs) and imperative languages, prior to an imperative
procedure being invoked, the type assignment to the procedure’s parameters from IPL’s
expression is computed dynamically and matched against a type mapping table similar to
that of Table 17. Subsequently, when the procedure call returns back to the IPL, the type of
the imperative expression is matched back through the table and assigned to the intensional
expression that expects it. The same table is used when the call is made by the procedure
to the IPL and back, but in the reverse order [299].

Further in STT, all quantified variables range over only one type making the first-order
logic applicable as the underlying logic for the theory. This also means the all elements in the
domain and all co-domains are of the same type. The STT states there is an atomic type that
has no member elements in it, and the members of the second-high from the basic atomic
type. Each type has a next higher type similarly to succ (≻) in Peano arithmetic (PA) and
the next operator in Lucid. This is also consistent to describe the composite types, such
as arrays and objects as they can be recursively decomposed (or “flattened”, see [262, 280])
into the primitive types to which the STT applies [299].

Symbolically, the STT uses primed and unprimed variables and the infix set notation of
∈. The formulas Φ(x) rely on the fact that the unprimed variables are all of the same type.
This is similar to the notion of a Lucid stream with the point-wise elements of the stream
having the same type. The primed variables (x′) in STT range over the next higher type.
There are two atomic formulas in STT of the form of identity, x = y, and set membership,
y ∈ x′ [299].

B.3.2 GIPSY Types Axioms

The STT [251] defines the four basic axioms for the variables and the types they can range
over: Identity, Extensionality, Comprehension, and Infinity. In STGT, we add the Intension-
ality on as the fifth axiom [299]. The variables in the definition of the Identity relationship
and in the Extensionality and Comprehension axioms typically range over the elements of
one of the two nearby types. In the set membership [117, 235], only the unprimed variables
that range over the lower type in the hierarchy can appear on the left of ∈; conversely, the
primed ones that range over higher types can only appear on the right of ∈ [251]. The axioms
are defined as:

1. Identity: x = y ↔ ∀z′[x ∈ z′ ↔ y ∈ z′]
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2. Extensionality: ∀x[x ∈ y′ ↔ x ∈ z′]→ y′ = z′

3. Comprehension: ∃z′∀x[x ∈ z′ ↔ Φ(x)]. This covers objects and arrays as any
collection of elements here may form an object of the next, higher type. The STT
states the comprehension axiom is schematic with respect to Φ(x) (which is a first-
order formula with x as a free variable) and the types [251]. Φ(x) works with type
hierarchies and is not arbitrary like Church’s [17], Russel’s, and other type theories
avoiding Russel’s paradox.

4. Infinity: ∀x, y[x ̸= y → [xRy

yRx]]. There exists a non-empty binary relationR over

the elements of the atomic type that is transitive, irreflexive, and strongly connected.

5. Intensionality: the intensional types and operators (cf. Table 13, page 161) are based
on the intensional logic (Section 3.2, page 59) and context calculus (Section 7.2.3.1.4,
page 165). These are extensively described in Chapter 3, Chapter 4, Chapter 6,
Chapter 7 and the previously cited works [111, 129, 348, 359, 363, 470, 510]. This
present type system accommodates the two in a common hybrid execution environ-
ment of the GIPSY. A context c is a finite subset of the relation (Section 7.2.3.1.4,
page 165, [470, 513]): c ⊂ {(d, x) | d ∈ DIM ∧ x ∈ T}, where DIM is the set of all
possible dimensions, and T is the set of all possible tags [299] (indices). Therefore,
∀x @ c[(x @ c) ∈ y′ ↔ (x @ c) ∈ z′]→ y′ = z′.

B.4 Concrete Specification of the GIPSY Types

The following sections describe the behavior, equivalence, implementation, valid range of
values, and supported operators of every type in the GIPSY system. We define the lexical
specification if applicable, its visibility to (explicit ability to use by) the programmers, and
the type implementation details in the GIPSY environment [313].

Integer.

• Lexeme: int

• Visibility to programmers: explicitly visible only in the hybrid GIPSY programs.

• The valid range of the type is the same as the corresponding value of the type long in
Java. That covers all the Java byte, int, and long types.

• Internal implementation: the GIPSYInteger class corresponds to this type. Internally,
the class encapsulates java.lang.Long thereby making all operations available to that
type in Java to GIPSY.

• Operators supported: arithmetic, logic, equality
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Single-Precision Floating Point Number.

• Lexeme: float

• Visibility to programmers: explicitly visible only in the hybrid GIPSY programs.

• The valid range of the type is the same as the corresponding value of the type float

of Java.

• Internal implementation: the GIPSYFloat class corresponds to this type. Internally,
the class encapsulates java.lang.Float thereby making all operations available to
that type in Java to GIPSY.

• Operators supported: arithmetic, logic, equality

Double-Precision Floating Point Number.

• Lexeme: double

• Visibility to programmers: explicitly visible only in the hybrid GIPSY programs.

• The valid range of the type is the same as the corresponding value of the type double
of Java.

• Internal implementation: the GIPSYDouble class corresponds to this type. Internally,
the class encapsulates java.lang.Double thereby making all operations available to
that type in Java to GIPSY.

• Operators supported: arithmetic, logic, equality

Character String.

• Lexeme: string

• Visibility to programmers: explicitly visible only in the hybrid GIPSY programs. Im-
plicitly defined in Lucid programs as enclosed into either single (’) or double (”)
quotation marks. In the case of single (’) quote, it has to be more than one character
to be considered a string, otherwise it is treated as a type Character.

• The valid range of the type is the same as the corresponding value of the type String
of Java.

• Internal implementation: the GIPSYString class corresponds to this type. Internally,
the class encapsulates an instance of java.lang.StringBuffer thereby making all
operations available to that type in Java to GIPSY.

• Operators supported: concatenation, substrings, subscript, dot, equality
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Character.

• Lexeme: char

• Visibility to programmers: explicitly visible only in the hybrid GIPSY programs. Im-
plicitly defined in Lucid programs as a single character enclosed into single (’) quo-
tation marks. It is assignable to the String type (in a way similar to integer being
assignable to a double) and can participate in the concatenation to form character
strings.

• The valid range of the type is the same as the corresponding value of the type char of
Java that is 2-byte UNICODE character set.

• Internal implementation: the GIPSYCharacter class type corresponds to this type.
Internally, the class encapsulates an instance of java.lang.Character thereby making
all operations available to that type in Java to GIPSY.

• Operators supported: concatenation, logic, equality

Void.

• Lexeme: void

• Visibility to programmers: explicitly visible only in the hybrid GIPSY programs when
declaring the procedure prototypes in the preamble of a GIPSY program’s source code.
Can only be a “return type”.

• The valid range of the type is a Boolean constant true as seen as a return value from
an intensional language.

• Internal implementation: the GIPSYVoid class that extends the GIPSYBoolean class
with the truth value always set to true.

• Operators supported: equality

Dimension.

• Lexeme: dimension

• Visibility to programmers: explicitly visible in intensional-only and hybrid GIPSY
programs when declaring the dimensions in a Lucid dialect program or listing the
dimension-type variables, function parameters or return types in the preamble of the
hybrid GIPSY programs. The dimension point-wise or set-wise ⟨dimension : tag⟩ map-
pings also appear in the intensional expressions setting up the context of evaluation
and are, as such, a part of the the GIPSYContext type.
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• The valid range of the type was traditionally the natural numbers [505]. In Lucx
and its context calculus [363, 470, 510] the dimension’s tag values internally can be
represented as integers or strings; thus, the dimension type implementation includes
a general opaque GIPSYType to contain the actual type of tags that this dimension
represents. This design keeps the door open for addition of other tag value types to
dimensions (e.g., floating-point or objects, but these dimension tag types have their set
of issues and are not discussed here).

• Internal implementation: the Dimension class.

• Operators supported: equality, switch, query

Context and Context Set.

• Lexeme: in the general case a set of ⟨dimension : tag⟩ mappings in the syntactical form
of {[d:v,...], ...}. For more details, see [363, 470, 510].

• Visibility to programmers: explicitly visible in intensional-only GIPSY programs in the
intensional expressions setting up the context of evaluation.

• The valid range of the type is determined by the constraints set forth by the underlying
tag set types specified in [470].

• Internal implementation: the GIPSYContext class (depends on Dimension and TagSet

types). According to the definitions of simple context and context set , we apply the
Composite design pattern [119, 126, 222] to organize the context class’ implementation.
The context calculus operators have been specified via the GIPSYContext’s public inter-
face. Due to the recursive nature of the composition, the definition of these operators
is also recursive in the case of context sets.

• Operators supported: simple context and context set operators (@, #, and others),
equality

Boolean.

• Lexeme: bool

• Visibility to programmers: explicitly visible only in the hybrid GIPSY programs.

• The valid range of the type is determined by the constants true and false.

• Internal implementation: the GIPSYBoolean class corresponds to this type. Internally,
the class encapsulates an instance of java.lang.Boolean thereby making all operations
available to that type in Java to GIPSY.

• Operators supported: logical, equality
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Array.

• Lexeme: []

• Visibility to programmers: explicitly visible in hybrid and pure intensional GIPSY
programs with array support via the [] notation.

• The valid range of the type is determined by the types of the elements of the array and
array’s length for the array’s index. Array is a collection of elements of the same type
and has a length.

• Internal implementation: the GIPSYArray class corresponds to this type. Internally,
the class extends GIPSYObject as stated in [262] the objects and arrays are treated
similarly with the exception that arrays are a collection of elements of the same type
vs. objects being a “collection” of elements potentially of different types.

• Operators supported: equality, dot, subscript, set

Object.

• Lexeme: class

• Visibility to programmers: explicitly visible in the hybrid GIPSY programs that sup-
port classes and class-like structures and types (e.g., struct in C).

• The valid range of the type is determined by the public operations defined on the
objects in their particular language.

• Internal implementation: the GIPSYObject class corresponds to this type. Internally,
the class encapsulates an instance of java.lang.Object to hold the value of the class.
The value does not need to be a Java object, but, for example, a serialized binary
version of a C++ class or its source code (to be lazily compiled on demand potentially
on another host and platform).

• Operators supported: equality, dot

Identifier.

• Lexeme: a non-reserved word user-defined identifier

• Visibility to programmers: explicitly visible in all GIPSY programs.

• The valid range of the type is the same as specified by a legal subset of lexically valid
character strings in GIPSY program identifiers. These are currently UNICODE enabled
strings that begin with a letter.

• Internal implementation: the GIPSYIndentifier class corresponds to this type. Inter-
nally, the class encapsulates the identifier lexeme as java.lang.String.

• Operators supported: assignment, equality
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Function.

• Lexeme: a non-reserved word user-defined identifier that syntactically corresponds to
the function prototype declaration or definition, plus the keyword immutable that refers
to a function definition that is free of side-effects.

• Visibility to programmers: explicitly visible in all GIPSY programs.

• The valid range of the type is the same as specified by a legal subset of lexically and
syntactically valid function definitions. Functions have types (range over “functional”
(as in functional programming) or “procedural” (sequential threads written in imper-
ative languages) and states (ranging over “immutable” and “volatile”). The states are
primarily for the “procedural” functions as the intensional functions are automatically
“immutable”.

• Internal implementation: the GIPSYFunction class corresponds to this type. Inter-
nally, the class encapsulates the state and the type mentioned earlier along with the
FunctionItem (transformed from [524]) class instance that represents the function en-
try in the dictionary and the AST and the dictionary of the compiled GIPSYProgram.
That, in turn, encapsulates function parameters, return types, and function identifier
thereby making all the available operations on those components.

• Operators supported: equality, evaluation

Operator.

• Lexeme: multiple; primarily the classical arithmetic, logic, bitwise, set, and intensional
depending on the types applied

• Visibility to programmers: explicitly visible in all GIPSY programs.

• The valid range of the type is the same as specified by a legal subset of lexically and
syntactically valid operator kinds definitions.

• Internal implementation: the GIPSYOperator class corresponds to this type. Internally,
the class extends GIPSYFunction. Operators internally are said to be immutable and
functional by default.

• Operators supported: equality, evaluation

Embedded Payload.

• Lexeme: embed() in JLucid and Objective Lucid [262] and a specific syntactically
declared function prototype with an URI, function identifier, and arguments in the
preamble of a hybrid GIPSY program [262], see Listing 6.1 for the example.

• Visibility to programmers: explicitly visible in JLucid andObjective Lucid (“stand-
alone”) and general hybrid GIPSY programs.
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• The valid range of the type is the same as specified by a legal subset of lexically and
syntactically valid URI and argument identifier definitions [40, 166, 445].

• Internal implementation: the GIPSYEmbed class corresponds to this type. Internally,
the class encapsulates java.lang.Object to hold any value of the embedded code and
data and its URI using java.net.URI.

• Operators supported: equality, evaluation

B.5 Describing Some GIPSY Types’ Properties

To demonstrate most of the pertinent properties of GIPSY types and to put it in perspective
for the readers to get a better and more complete understanding of the spectrum of their
behavior, we cover them in light of describing types of types and comparing to existential,
union, intersection, and linear types [299].

B.5.1 Types of Types

Types of types are generally referred to as kinds. Kinds provide categorization to the types
of similar nature. While some type systems provide kinds as first class entities available to
programmers, in GIPSY we do not expose this functionality in our type system at this point.
However, at the implementation level there are provisions to do so that we may later decide
to expose for the use of programmers. Internally, we define several broad kinds of types,
presented the the sections that follow [299].

B.5.1.1 Numeric Kind

The primitive types under this category are numerical values, which are represented by
GIPSYInteger, GIPSYFloat, and GIPSYDouble. They provide implementation of the common
arithmetic operators, such as addition, multiplication and so on, as well as logical comparison
operators of ordering and equality. Thus, for a numerical type T , the following common
operators are provided. The resulting type of any arithmetic operator is the largest of the
two operands in terms of length (the range of double of length say k covers the range
of int with the length say m and if both appear as arguments to the operator, then the
resulting value’s type is that of without loss of information, i.e., largest in length double).
The result of the logical comparison operators is always Boolean B regardless the length of
the left-hand-side and right-hand-side numerical types [299].

1. Tmax : T1 ≥ T2 → T1 | T1 < T2 → T2

2. Tmultiply : Tk × Tm → Tmax(k,m)

3. Tdivide : Tk/Tm → Tmax(k,m)

4. Tadd : Tk + Tm → Tmax(k,m)

5. Tsubtract : Tk − Tm → Tmax(k,m)
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6. Tmod : Tk%Tm → Tmax(k,m)

7. Tpow : Tk ˆTm → Tmax(k,m)

8. T> : T > T → B

9. T< : T < T → B

10. T≥ : T ≥ T → B

11. T≤ : T ≤ T → B

12. T= : T = T → B

Figure 76: Example of provider interfaces and comparators [299]

A generalized implementation of the arithmetic operators is done by realization of the in-
terface called IArithmeticOperatorsProvider and its concrete implementation developed in
the general delegate class GenericArithmeticOperatorsDelegate. This design and imple-
mentation allow not only further exposure of kinds-as-first-class values later on after several
iterations of refinement, but also will allow operator and type overloading or replacement of
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type handling implementation altogether if some researchers wish to do so. The implementa-
tion of the engine, GEE, is thus changed, to only refer to the interface type implementation
when dealing with these operators. Equivalently for the logic comparison operators we have

ILogicComparisonOperatorsProvider

and the
GenericLogicComparisonOperatorsDelegate

classes. The latter relies on the comparator implemented for the numerical kind, such as
NumericComparator. Using comparators (that is classes that implement the standard Java
Comparator interface) allows Java to use and to optimize built-in sorting and searching
algorithms for collections of user-defined types. In our case,

GenericLogicComparisonOperatorsDelegate

is the implementation of the delegate class that also relies on it. The example for the numeric
types for the described design is in Figure 76 [299].

It is important to mention, that grouping of the numeric kind of integers and floating-point
numbers does not violate the IEEE 754 standard [179], as these kinds implementation-wise
wrap the corresponding Java’s types (which are also grouped under numeric kind) and their
semantics including the implementation of IEEE 754 by Java in accordance with the Java
Language Specification [139, 299].

B.5.1.2 Logic Kind

Similarly to numeric types, the primitive type GIPSYBoolean fits the category of the types
that can be used in Boolean expressions. The operations the type provides expect the argu-
ments to be of the same type—Boolean. The following set of operators on the logic type B
we provide in the GIPSY type system [299]:

1. Band : B

B → B

2. Bor : B

B → B

3. Bnot : ¬B → B

4. Bxor : B


B → B

5. Bnand : ¬(B

B)→ B

6. Bnor : ¬(B

B)→ B

Note that the logical XOR operator (denoted as


) is distinct from the corresponding bitwise
XOR operator in Section B.5.1.3 in a way similar to the logical vs. bitwise AND and OR
are respectively distinct. Again, similarly to the generalized implementation of arithmetic
operators, logic operator providers implement the ILogicOperatorsProvider interface, with
the most general implementation of it in GenericLogicOperatorsDelegate [299].
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Figure 77: Composite types [299]

B.5.1.3 Bitwise Kind

Bitwise kind of types covers all the types that can support bitwise operations on the the
entire bit length of a particular type T . Types in this category include the numerical and
logic kinds described earlier in Section B.5.1.2 and Section B.5.1.1. The parameters on both
sides of the operators and the resulting type are always the same. There are no implicit
compatible type casts performed unlike for the numeric kind [299].

1. Tbit−and : T&T → T

2. Tbit−or : T |T → T

3. Tbit−not : !T → T

4. Tbit−xor : T


T → T

5. Tbit−nand : !(T&T )→ T

6. Tbit−nor : !(T |T )→ T

The implementation of this kind’s operators is done through the interface

IBitwiseOperatorsProvider,

which is in turn generically implemented in the

GenericBitwiseOperatorsDelegate

class [299].

346



B.5.1.4 Composite Kind

As the name suggests, the composite kind types consist of compositions of other types,
possibly basic types. The examples of this kind are arrays, structs, and abstract data types
and their realization such as objects and collections. In the studied type system these are
GIPSYObject, GIPSYArray, and GIPSYEmbed. This kind is characterized by the constructors,
dot operator to decide membership as well as to invoke member methods and define equality.
The design of these types, just like the entire type system, adheres to the Composite design
pattern [119, 126, 222]. The most prominent examples of this kind are in Figure 77, including
GIPSYContext which is composed of Dimensions and indirectly of the TagSets [299].

B.5.1.5 Intensional Kind

The intentional types kind primarily has to do with encapsulation dimensionality, context
information, and their operators. These are represented by the GIPSYContext, Dimension,
and TagSet1 types. The common operators on these types include the context switching
and querying operators @ and # as well as context calculus operators. Additional opera-
tors can be included depending on the intensional dialect used, but the mentioned opera-
tors are said to be the baseline operators that any intensional language can be translated
to use. Implementation-wise there is a IContextSetOperatorsProvider interface and its
general implementation in GenericContextSetOperatorsDelegate. The context calculus
operators on simple contexts include standard set operators, such as \union, \difference,
\intersection, \in, and Lucx-specific, such as \isSubContext, \projection, \hiding,
and \override [299, 363, 470, 510].

B.5.1.6 Function Kind

The function types represent either “functional” functions, imperative procedures, binary
and unary operators that, themselves, can be passed as parameters or returned as results. In
our type system these are represented by GIPSYFunction, GIPSYOperator, and GIPSYEmbed.
The common operators on these include equality and evaluation [299].

B.5.2 Existential Types

All of the presented GIPSY types are existential types because they represent and encapsulate
modules and abstract data types and separate their implementation from the public interface
specified by the abstract GIPSYType. These are defined as shown in Figure 78. They are
implemented concretely as shown in Figure 79 [299].

T = ∃GIPSYType{Object a; Object getEnclosedTypeObject(); Object getValue(); }

Figure 78: Abstract GIPSY existential types [299].

1Not mentioned here; please refer to [363, 470].
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boolT {Boolean a; Object getEnclosedTypeObject(); Boolean getValue(); }
intT {Long a; Object getEnclosedTypeObject(); Long getValue(); }
doubleT {Double a; Object getEnclosedTypeObject(); Double getValue(); }
functionT {FunctionItem a; Object getEnclosedTypeObject(); FunctionItem getValue(); }
...

Figure 79: Concrete GIPSY existential types [299].

All these correspond to be subtypes of the more abstract and general existential type
T . Assuming the value t ∈ T , then t.getEnclosedTypeObject() and t.getValue() are well
typed regardless the what the actual GIPSYType may be [299].

B.5.3 Union Types

A union of two types produces another type with the valid range of values that is valid in
either of the two; however, the operators defined on the union types must be those that
are valid for both of the types to remain type-safe. A classical example of that is in C or
C++ the range for the signed char is −128 . . . 127 and the range of the unsigned char is
0 . . . 255, thus:

signed char ∪ unsigned char = −128 . . . 255

In C and C++ there is a union type that roughly corresponds to this notion, but it does not
enforce the operations that are possible on the union type that must be possible in both left
and right types of the uniting operator. In the class hierarchy, such as in GIPSY, the union
type among the type and its parent is the parent class; thus, in our specific type system the
following holds [299]:

∀T ∈ G : T ∪ GIPSYType = GIPSYType

GIPSYArray ∪ GIPSYObject = GIPSYObject

GIPSYVoid ∪ GIPSYBoolean = GIPSYBoolean

GIPSYOperator ∪ GIPSYFunction = GIPSYFunction

where T is any concrete GIPSY type and G is a collection of types in the GIPSY type system
we are describing. Equivalently, the union of the two sibling types is their common parent
class in the inheritance hierarchy. Interestingly enough, while we do not explicitly expose
kinds of types, we still are able to have union type relationships defined based on the kind of
operators they provide as siblings under a common interface, as shown in Figure 80, where T is
any concrete GIPSY type and A is a collection of types that provide arithmetic operators, L—
logic operators providers, B—bitwise operators providers, C—context operators providers,
D—composite operator providers, and F—function operator providers. Thus, resulting in
types shown in Figure 81 [299]. Another particularity of the GIPSY type system is the
union of the string and integer types under dimension:

GIPSYInteger ∪ GIPSYString = Dimension
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∀T ∈ A : T ∪ IArithmeticOperatorProvider = IArithmeticOperatorProvider

∀T ∈ L : T ∪ ILogicOperatorProvider = ILogicOperatorProvider

∀T ∈ B : T ∪ IBitwiseOperatorProvider = IBitwiseOperatorProvider

∀T ∈ C : T ∪ IContextOperatorProvider = IContextOperatorProvider

∀T ∈ D : T ∪ ICompositeOperatorProvider = ICompositeOperatorProvider

∀T ∈ F : T ∪ IFunctionOperatorProvider = IFunctionOperatorProvider

Figure 80: Concrete GIPSY union types (providers) [299]

{GIPSYInteger, GIPSYFloat, GIPSYDouble} ∈ A

{GIPSYBoolean} ∈ L

{GIPSYInteger, GIPSYFloat, GIPSYDouble, GIPSYBoolean} ∈ B

{GIPSYContext, Dimension} ∈ C

{GIPSYObject, GIPSYArray, GIPSYEmbed}, GIPSYString} ∈ D

{GIPSYFunction, GIPSYOperator, GIPSYEmbed} ∈ F

Figure 81: Concrete GIPSY union types [299]

and this is because in our dimension tag values we allow them to be either integers or strings.
While not a very common union in the majority of type system, they do share a common set
of tag set operators defined in [363, 470] for ordered finite tag sets (e.g., next(), etc.) [299].

B.5.4 Intersection Types

An intersection type of given two types is a range where the sets of valid values overlap.
Such types are safe to pass to methods and functions that expect either of the types as the
intersection types are more restrictive and compatible in both original types. A classical
example of an intersection type if it were implemented in C or C++ would be:

signed char ∩ unsigned char = 0 . . . 127

The intersection types are also useful in describing the overloaded functions. Sometimes they
are called as refinement types. In a class hierarchy, the intersection between the parent and
child classes is the most derived type, and the intersection of the sibling classes is empty.
While the functionality offered by the intersection types is promising, it is not currently
explicitly or implicitly considered in the GIPSY type system, but planned for the future
work [299].
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B.5.5 Linear Types

Linear (or “uniqueness”) types are based on linear logic [132]. The main idea of these types
is that values assigned to them have one and only one reference to them throughout. These
types are useful to describe immutable values like strings or hybrid intensional-imperative
objects (see [523] for details). These are useful because most operations on such an object
“destroy” it and create a similar object with the new values, and, therefore, can be optimized
in the implementation for the in-place mutation. Implicit examples of such types in the
GIPSY type system are GIPSYString that internally relies on Java’s StringBuffer that
does something very similar as well as the immutable GIPSYObject is in JOOIP [523] and
immutable GIPSYFunction. Since we either copy or retain the values in the warehouse
(DST, see Section 6.2.2), and, therefore, one does not violate referential transparency or
create side effects in, and at the same time be more efficient as there is no need to worry
about synchronization overhead [299].

B.6 Summary

Through a series of discussions, specification, design, and implementation details we presented
a type system and its theory used by the GIPSY project for static and dynamic type checking
and evaluation of intensional and hybrid intensional-imperative HOIL expressions potentially
written in multiple languages. We highlighted the particularities of the system that does not
attribute to a particular specific language as traditionally most type systems do, but to an
entire set of languages and hybrid paradigms that are linked through the type system [313].
This is a necessary contribution to GIPSY-like systems to have a homogeneous environment
to statically and dynamically type-check and evaluate intensional and hybrid programs that
are based on a sound theory [299, 313].

The type system described in this chapter has been implemented to the large extent in the
GIPSY. However, our implementation still needs thorough testing using complex program
examples testing the limits of the type system. Additional endeavours, noted in the previous
sections, include [299, 313]:

• Exposing kinds as first class entities, allowing programs to have a more explicit manip-
ulation of types.

• Allowing custom user-defined types and extension of the existing operators and operator
overloading.

• Exposing more operators for composite types to Lucid code segments.

• Adding intersection types for more flexibility in the future development of the type
system, allowing more type casting possibilities at the programming level.
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Appendix C

MARFL

This edited chapter is primarily based on the corresponding article [270] presented at the
first SECASA workshop at COMPSAC 2008. We focus on defining context expressions in
terms of initial syntax and semantics for an intensional MARF (Modular Audio Recognition
Framework, see Section 5.2) Language, MARFL. It is there to allow scripting MARF-based
applications as context-aware, where the notion of context represents coarse-grained and
fine-grained configuration details of a given MARF instance and a set of overloaded context
operators borrowed from the Generic Intensional Programming Language (GIPL) @ and #

to help with the task. This is a preliminary research on MARFL that has considerable
practical implications on the usability of MARF’s resources and beyond. In this chapter we
focus exclusively on the context specification for multimedia pattern recognition tasks and
available MARF resources for its applications [270].

C.1 Overview

C.1.1 Motivation

The Modular Audio Recognition Framework (MARF, introduced in Section 5.2) has a good
potential for multimedia pattern recognition research and comparison of various pattern-
recognition algorithms. It can also serve as a re-usable library in applications that have to
do with audio, natural language text, image processing due to its generality. The existing
example applications include speaker, gender, accent, emotion, writer, language detection and
identification; authentication and others. While the designers of MARF made every effort
and example applications to be simpler and more accessible to a wider audience of users,
they still require relatively skilled Java developers and relatively good understanding of the
MARF’s design architecture. Often scientists who just need to run their experiments and
simulations do not fall into this category. Thus, to make it possible we state a requirement
to be able to “script” in a convenient manner applications like SpeakerIdentApp [315],
FileTypeIdentApp [288], WriterIdentApp [271, 316], MARFCATApp [283], etc., by specifying
parts or all of the configuration context parameters. The syntax of the scripting language
should be simpler and more natural than that of Java [270].
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C.1.2 Approach

We introduce syntactical and semantic constructs of context definitions for the configuration
into this new MARF language that inherits some properties for the intensional programming
languages, e.g., GIPL and Lucx (see Chapter 4) as well as their context operators, such as @
and # to switch and query the current context. Intensionality and Lucid-compatible or near-
similar syntax and semantics makes it more available to the scientific community and can
be easily implemented in the intensional evaluation platforms like GIPSY (see Chapter 6).
Through the examples of the syntactical expressions in MARFL, we build the initial syntax,
semantics, and a brief type system to express the MARF configuration-as-context in the
new language. We show how we deal with the resulting context-hierarchies occurring in our
solution from the level-of-detail (LOD) point of view. We further re-write one of the MARF
applications as how it would look in MARFL. We discuss the more general implications of
our design. We propose to either interpret the MARFL scripts directly or “compile” them
and generate an equivalent Java code (or even other language) of a MARF-based application.
This can well integrate with plug-in frameworks for application development and verification
like the Java Plug-in Framework (JPF), Eclipse [97], and existing cyberforensic toolkits (see
Section 2.1) [270].

C.2 Theoretical Framework

This is a theoretical framework with practical considerations for the existing system. The
said framework focuses very specifically on the initial syntactical and semantic specification
of the context in the MARFL language, the issues that come up with it, and how to address
them, followed by implications of the work on the future work in this and other areas, such
as common media pattern recognition applications and cyberforensics. We leave out other
aspects (such as storage, statistics gathering, input/output in general) of MARFL unless
they are absolutely necessary for illustrative purposes [270].

Dealing with MARF-specific contexts needs to be put into a perspective of the inner
workings of MARF and its applications (cf., Section 5.2). This gives the needed requirements
specification, syntax, and semantics of the contextual expressions. The rich parameterization
of the MARF contexts necessitates a context hierarchy, i.e., contexts, sub-contexts, and sub-
sub-contexts and so-on for the different levels of detail in the configuration settings. This
contextuality translates into a specific configuration instance with the needed settings. If
some dimensions are omitted in the scripted MARFL specification, they are filled in with
the values that would come from the specific module instance defaults backing the system.
The modules represent higher-order dimensions and can be added, updated, and removed as
the system evolves to support change [378]. We do not support user-defined variables and
identifiers in this case nor functions, so the corresponding rules have been excluded from
the syntax and semantics. All our present dimension identifiers are preset dictated by the
available modules of MARF as a precompiled dictionary. They make up reserved words of
MARFL [270] as a result.

We borrow two prime operators ofGIPL [359, 363], @ to switch the context and # to query
for the current context [359]. We treat them as functions, and we overload their definitions to
accept different types of arguments of their expressions and as a result return different types
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of dimension values. We add the dot operator for the dimensions allowing us to navigate into
the depth of the higher-order dimension objects [270].

We build our theory by examples to capture the desired properties of MARFL. A com-
prehensive example of a context for processing a WAV file in the MARF’s pipeline can be
modeled as shown in Figure 82. In that example we illustrate a complex hierarchical context
expression where several nested dimensions are explicitly specified. In general, MARFL’s
context follows the definition of a simple context in Lucx [363, 510], where it is defined as
a collection of ⟨dimension : tag⟩ pairs. What we do differently from Lucx (Section 4.3.1,
page 92) is that a single pair may not necessarily be an atomic micro context in Lucx termi-
nology, but may contain sub-contextual elements. The inner-most context is always simple
and atomic as in Lucx and typically has dimensions of primitive types, such as integer, IEEE
754 floating point value [179], or a string. The outer layers of context hierarchy are composite
objects. Thus, a [sample loader:WAV] denotes a dimension of type sample loader with
its higher-order tag value WAV. The WAV dimension value can further be decomposed to an
atomic simple context if needed, that contains three dimensions of primitive types [270].

In away, the described theory of higher-order context so far is similar to equivalent def-
initions described by Swoboda, Wadge, et al . in [449, 450, 451, 452, 508], where a tree of
contexts is defined for languages like iHTML [507] (with nested tags) and the depth for
LOD, functional intensional databases annotated with XML, and so on. While very simi-
lar in nature, the authors there suggest that they traverse their context tree all the way to
the “leaf” simple contexts before doing evaluation and do not an actual evaluation at the
higher-order contextual entities, which we allow here. We are also being very detailed of the
specification and its operators including semantics in this work [270].

[

sample loader : WAV [ channels: 2, bitrate: 16, encoding: PCM, f : 8000 ],

preprocessing : LOW-PASS-FFT-FILTER [ cutoff: 2024, windowsize: 1024 ],

feature extraction : LPC [ poles: 20, windowsize: 1024 ],

classification : MINKOWSKI-DISTANCE [ r : 5 ]

]

Figure 82: Example of hierarchical context specification for an evaluation configuration of
MARF [270]

The sample loader dimension can vary over tags WAV, SINE, MP3, MIDI, OGG, TXT, JPG,
TIFF, etc., each of which in turn can vary over channels, bitrate, sampling frequency (it
can even apply to the text (natural or programming) and images depending on the context
of interpretation). The channels dimension usually varies over 1 (mono) and 2 (stereo), but
theoretically can have other valid tags. Similarly, the bitrate is commonly 8 or 16 data
storage bits per frequency sample, and the frequency sampling rate f is typically 4, 8, 16,
44 kHz, but is not restricted to those values. The latter three are a finer-grained context
examples while WAV and others are coarse-grained. A MARFL-written application should be
able to alter any of these or switch between them. We should also be able to easily express
all that [270].

We need to extend the semantics of @ and # from GIPL to deal with the hierarchy of
contexts, i.e., being able to switch sub-contexts and query them arbitrarily. This implies the
argument types and the resulting type may not be necessarily the same. This is where we
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define the context operators overloading. In Table 18 is an incomplete collection of operator
overloading rule examples. The meaning of the mappings in that table is as follows: a file
type F or a data vector type V can be evaluated at the higher-order dimension of type sample
loader LD producing a “loaded sample” (that maps to an internal data structure). Evaluating
a directory with sample files D produces a collection of samples S. S can be evaluated at
dimension types preprocessing PR and feature extraction FE , per MARF’s specification,
though the latter usually means S has been preprocessed that is why the return types are
internally different in their content. The feature data vector V can be used for training
or classification resulting in either a new or updated training set TR or a result set RS
respectively. The subdivision of dimension types can go on further until the primitive tag
values are reached, e.g., the RS contains a collection of an integer ID and a double outcome
pairs and their index (not illustrated in the table). The unary operator # doesn’t have a left
argument, and the evaluation of the right argument is similar to that of @. The highest-order
dimension we define is MARF itself that if queried upon, returns the higher order collection
of the main processing dimensions, and we can go all the way down the configuration context
hierarchy. The dot operator provides a syntactical OO-like way of traversing the depth of
the higher-level dimensions to the lowest ones. Though this may look like we make up
OO dimensions, it is not presently so as we do not provide any true direct member access,
including method objects, plus behind a single dimension may not necessarily be a single
implementing class [270].

A few small examples: #MARF.sl would return WAV. Then #MARF.WAV.channels would re-
turn 2. WAV @ [channels:1]—switches WAV loader’s configuration dimension channels to
mono, essentially returning a loader with the new configuration setting. WAV @ [channels:1,

bitrate:8, f:4000]—would conceptually return (configure) a WAV sample loader object
ready and configured to load mono WAV samples, 8 bits per sample with the sampling fre-
quency 4000 Hz. ‘‘sample1.wav’’ @ WAV @ [channels:1, bitrate:8, f:4000] – would
load the specified sample given the configured loader object producing an interpreted (loaded
and decoded) double-stream of amplitude values, an array, encoded in the sample object [270].

The preprocessing dimension’s higher-order valid tag values can range over tags like
RAW-PREPROCESSING, DUMMY, FFT-LOW-PASS-FILTER, ENDPOINTING, and others, each of which
may have common sub-dimensions and algorithm-specific sub-dimensions. For example, most
FFT-based filters have a cutoff frequency dimension but endpointing doesn’t, so trying to
refer to the sub-context dimension of cutoff in endpointing would return an error as it is
not a part of its sub-context. The feature extraction dimension is currently allowed to
vary along the values FFT, LPC, MINMAX, RANDOM-FEATURE-EXTRACTION, RAW and others. The
classification dimension is allowed to vary along the abstracted classification modules
similarly to the preprocessing and others (see MARF pipeline in Section 5.2, page 102).
By labeling the dimension identifiers as being a part of the reserved keywords necessitates
making them a part of the syntax, which is illustrated in part in Figure 83. If the finer
details of the higher-level dimensions are omitted, they assume the defaults, defined by the
semantics of the implemented modules. For example, the default for LPC’s poles dimension
is 20 and windowsize is 128. Here we do not describe how the defaults are picked and what
they mean for every single module; for such details please refer to the related work [266, 268]
and Section 5.2 [270].

Valid dimension tag values are defined by the MARF’s currently implemented modules
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E ::= #E (1)
| [E : E, ..., E : E] (2)
| {E, ..., E} (3)
| E where Q (4)
| E@E (5)
| E.did (6)
| E cxtop E (7)

Q ::= sample loader SLid (8)
| preprocessing PRid (9)
| feature extraction FEid (10)
| classification CLid (11)
| did = E (12)
| QQ (13)

SLid ::= WAV (14)
| MP3 (15)
| SINE (16)
| MIDI (17)
| ... (18)
| TEXT (19)

PRid ::= FFT-LOW-PASS-FILTER (20)
| FFT-HIGH-PASS-FILTER (21)
| FFT-BAND-PASS-FILTER (22)
| FFT-BAND-STOP-FILTER (23)
| CFE-LOW-PASS-FILTER (24)
| ... (25)
| DUMMY-PREPROCESSING (26)
| RAW-PREPROCESSING (27)

FEid ::= FFT (28)
| LPC (29)
| MINMAX (30)
| ... (31)
| RANDOM-FEATURE-EXTRACTION (32)

CLid ::= CHEBYSHEV-DISTANCE (33)
| EUCLIDEAN-DISTANCE (34)
| MINKOWSKI-DISTANCE (35)
| DIFF-DISTAMCE (36)
| HAMMING-DISTAMCE (37)
| COSINE-SIMILARITY-MEASURE (38)
| ... (39)
| RANDOM-CLASSIFICAION (40)

cxtop ::= train (41)
| classify (42)

Figure 83: MARFL context syntax [270]

and the list can grow. Consequently, we need to be able to automatically accommodate
the growth if possible making MARFL more adaptable and sustainable. All modules in
MARF are plug-ins. When a new plug-in is registered, it can “deposit” the valid operational
characteristics of itself into the “pool” (D0) of valid dimension identifiers and their range. The
identifiers are largely predefined in this work that symbolize reserved words from MARF’s
resource collection and are not user-defined variables at this time [270].

Syntactically and semantically, we need to separate the operators for training and clas-
sification for the last stage as we need to know how to evaluate a feature vector V at the
classification module CL. V@CL is ambiguous as we do not know whether we want to train
CL on V or identify V . As a result, we create the train and classify operators to resolve
the @ ambiguity. The dimension type system is thus becoming more apparent: we have
object-like higher-level dimension types as well as primitive numerical types [270].

355



Table 18: Common example types of context operators’ arguments and resulting types [270]

Left Type operator Right Type → Resulting Type in D
F @ LD → S
V @ LD → S
D @ LD → [S, . . . , S]
S @ PR → S
S @ FE → V
V train(@) CL → TS
V classify(@) CL → RS

# MARF → [LD : TAG ,PR : TAG ,FE : TAG ,CL : TAG ]
# LD → [channels : TAG , bitrate : TAG , f : TAG ]
# channels → INTEGER
# LD .channels → INTEGER
# LD .f → FLOAT

MARF . LD → LD
MARF . PR → PR
MARF . FE → FE
MARF . CL → CL

LD . channels → INTEGER
CL . TS → TS
CL . RS → RS
RS . ID → INTEGER
RS . outcome → FLOAT

Semantically speaking for our context definitions we draw a lot from Lucx and GIPL
(Chapter 4), as shown in Figure 84. The definition environment, D, internally implemented
by the marf.Configuration and marf.MARF classes that encapsulate all the higher- and
lower-level configuration’s contextual information P in their data members. The seman-
tic rules other than (C.2.4) come from GIPL and Lucx and depict identifier definitions
of constants (C.2.1), operators (C.2.2), regular Lucid dimensions (C.2.3), then the opera-
tors themselves (C.2.5), dimension tag values (C.2.6), the classical operator @ (C.2.7), the
language where clause that we use for declarative configuration customization (C.2.8), the
current context query with # (C.2.9), a simple context (collection of ⟨dimension : tag⟩ pairs)
construction rule (C.2.10) and its navigation with @ (C.2.11), and re-definition of any di-
mension type in the syntactic where clause in (C.2.12). The rule (C.2.4) is introduced by
MARFL to allow object-like dot-notation for dimension identifiers. This is a preliminary
research semantics specification of MARFL. Notice also, we entirely omit the issues of stor-
age management of the intermediate training sets and the returning of the results other than
the sample loading aspect (and not even recording). MARF internally maintains a local
database or intermediate cache of the processed utterances stored as training sets and re-
turns the results (usually a some sort of measure and rank) as a result set. The training sets
internally can be just plain serializable Java objects, CSV text data, XML data, or relational
SQL data to a various degree depending on the options. None of this we cover in this work
at the present and defer it to the future work [270].
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Ecid :
D(id) = (const, c)

D,P ⊢ id : c
(C.2.1)

Eopid :
D(id) = (op, f)

D,P ⊢ id : id
(C.2.2)

Edid :
D(id) = (dim)

D,P ⊢ id : id
(C.2.3)

EE.did :
D(E.id) = (dim)

D,P ⊢ E.id : id.id
(C.2.4)

Eop :
D,P ⊢ E : id D(id) = (op, f) D,P ⊢ Ei : vi

D,P ⊢ E(E1, . . . , En) : f(v1, . . . , vn)
(C.2.5)

Etag :
D,P ⊢ E : id D(id) = (dim)

D,P ⊢ #E : P(id)
(C.2.6)

Eat :
D,P ⊢ E′ : id D(id) = (dim) D,P ⊢ E′′ : v′′ D,P†[id →→ v′′] ⊢ E : v

D,P ⊢ E @E′ E′′ : v

(C.2.7)

Ew :
D,P ⊢ Q : D′,P ′ D′,P ′ ⊢ E : v

D,P ⊢ E where Q : v
(C.2.8)

E#(cxt) :
D,P ⊢ # : P

(C.2.9)

Econstruction(cxt) :

D,P ⊢ Edj
: idj D(idj) = (dim)

D,P ⊢ Eij : vj P ′ = P0†[id1 →→ v1]†. . .†[idn →→ vn]

D,P ⊢ [Ed1
: Ei1 , Ed2

: Ei2 , . . . , Edn
: Ein ] : P ′ (C.2.10)

Eat(cxt) :
D,P ⊢ E′ : P ′ D,P†P ′ ⊢ E : v

D,P ⊢ E @ E′ : v
(C.2.11)

Qdim :
D,P ⊢ dimension id : D†[id →→ (dim)],P†[id →→ 0]

(C.2.12)

Figure 84: MARFL context semantic rules [270]

C.3 Applications

Generalization of MARFL and context-oriented intensional programming can be extended
to other similar pattern-recognition and multimedia processing systems, including mobile
applications. A possible PoC example of SpeakerIdentApp [315] rewritten in MARFL
is in Figure 85. It is much more concise and clear than its raw Java equivalent, which
is approximately 500 times longer (15 lines in MARFL vs. 1700 in Java modulo all the
omitted functionality and comments). Other possible applications include the aforementioned
cyberforensic analysis and others where nested context definitions are a case [270].
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[ train /var/training-samples && classify /var/testing-samples ] @ MARF [sl, pr, fe, cl]

where

// Our dimension types with the tag values we are interested to evaluate over

sample loader sl = WAV;

preprocessing pr = { FFT-LOW-PASS, FFT-BAND-STOP };

feature extraction fe = { FFT, LPC, MINMAX, RANDOM };

classification cl = { CHEBYSHEV-DISTANCE, MINKOWSKI-DISTANCE, NEURAL-NETWORK };

// Custom configuration for LPC and Minkowski distance

// other than the defaults

where

LPC = { poles:40, windowsize:256 };

MINKOWSKY-DISTANCE = { r:5 };

end;

end

Figure 85: Initial SpeakerIdentApp re-written in MARFL [270]

C.4 Summary

We presented initial context definition for the syntax and semantics of MARFL, the MARF
Language, which is bound around practical concerns to script MARF-based applications that
are context-aware. The context in MARF is a hierarchical configuration that we manipulate
using two intensional operators. We override the definitions of @ and # from GIPL and intro-
duce the object membership operator (dot-notation) to accept hierarchies of contexts. This
brings a lot more understandability to the MARF applications allowing non-programmers,
e.g., scientists, to benefit from the MARF-provided resources and make the application sig-
nificantly more re-usable and maintainable from the software engineering point of view [270].

In the presented application, all contexts are always finite. While the theoretical frame-
work could support potentially infinite contexts (e.g., very long continuous audio streams
coming from a recorder or microphone which is normally never turned off), it is generally
not very practical [270].
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Appendix D

Self-Forensics

This chapter introduces the concept of self-forensics in addition to the standard autonomic
self-* properties (also known as self-CHOP : self-configuration, self-healing, self-optimization,
and self-protection in autonomic computing [325, 369]) of self-managed systems, specified in
the Forensic Lucid language. We argue that self-forensics, with the digital forensics aspect
taken out of the cybercrime domain, is applicable to “self-dissection” of autonomous software
and hardware systems for automated incident and anomaly analysis and event reconstruction
for the benefit of the engineering teams in a variety of incident scenarios [275, 306].

We focus on the core concepts and fundamentals of self-forensics for ICT using Foren-
sic Lucid to specify the evidence. Self-forensics can be roughly understood as being the
application of autonomic or semi-autonomic self-diagnostics combined with reasoning. This
includes forensic logging by the software/hardware sensors, evidence encoding, and case mod-
eling. The process can be automated or interactive, “after-the-fact”, with the investigator
present. Thus, we take out the Forensic Lucid language from the cybercrime context
to apply to any autonomic software or hardware systems (e.g., vehicles or distributed soft-
ware systems) as an example of self-forensic case specification [275, 306, 319]. The earlier
presented properties in Chapter 7 make Forensic Lucid an interesting and appropriate
choice for self-forensic computing in self-managed systems to complement the existing self-*
properties [275, 306, 319].

This proposition in this chapter in large part is a synthesis of published and unpublished
works and proposals of the author of various self-forensic applications [267, 274, 275, 306,
319, 320] for the self-forensics concept as well as a work towards improving the safety and
incident investigation of autonomous systems with similar characteristics.

D.1 Overview

In this work we introduce a new concept and aggregate our previous findings in requirements
specification for autonomous systems, flight-critical integrated software and hardware sys-
tems, etc. to analyze themselves forensically as needed as well as keeping forensics data for
further automated analysis in cases of reports of anomalies, failures, and crashes. We insist
this should be a part of the protocol for each system, (even not only space missions or flight
systems), but any large and/or critical self-managed system [275, 306].
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We review some of the related work that these ideas are built upon prior describing the
requirements for self-forensics-enabled components. We subsequently describe the general
requirements as well as limitations and advantages [275].

The property of self-forensics [274, 275] was introduced to encompass and formally apply
to or be included in the design of not only autonomic hardware and/or software systems,
which are inherently complex and hard to analyze in general when incidents happen, but also
as an optional requirement for smaller-scale projects [320].

Self-forensics in a nutshell includes a dedicated module or modules observing the regular
modules in some way, logging the observations and events that led to them in a predefined
format suitable for automatic forensic processing and deduction, and event reconstruction in
case of incidents. The modules can optionally have a capability of automatically diagnose
themselves based on the collected evidence and make more complex and complete decisions
after the analysis than ad-hoc binary decisions. In a sense, the self-forensic modules can be
seen as smart “blackboxes” like in aircraft, but can be included in spacecraft, road vehicles,
large and small software systems, etc. that assist with the incident analysis. Human experts
can be also trained in investigation techniques based on the forensic data sets collected
during different incidents. In a traditional sense, one argues that any self-diagnostics, as well
as traditional logging, hardware or software, are necessary parts of self-forensics that have
been around for long time [320].

We compile examples of Forensic Lucid specifications for self-forensics of a few soft-
ware projects as case studies. The specifications are there to be built into the system for the
purpose of tracing and understanding complex relationships and events within some compo-
nents of the said systems, especially the distributed ones. In this work, we first reasonably
narrowly focus on “exporting” the states of the systems as data structures in chronological
encoded order as Forensic Lucid contexts using its syntax in accordance with the gram-
mar for compiling the cases [320] and try to generalize the concept to a wider application
spectrum.

We further proceed to describe the background and the related work, followed by the
example specifications of the core data structures and data flows in Forensic Lucid of the
case studies, such as the Distributed Modular Audio Recognition Framework (DMARF, Sec-
tion 5.2), General Intensional Programming System (GIPSY, Chapter 6), Java Data Security
Framework (JDSF, Section D.3.3), and Cryptolysis—an automated cryptanalysis framework
for classical ciphers. These are primarily academic/open-source systems with the first two
being distributed and a lot more complex than the last two. After their specification, we
generalize to other domains, such as cloud forensics, and we conclude and list a few near
future work items [320].

Additionally, this preliminary conceptual work discusses a notion of self-forensics as an au-
tonomic property to augment the Autonomic System Specification Language (ASSL) frame-
work of formal specification tools for autonomic systems. The core of the proposed method-
ology leverages existing designs, theoretical results, and implementing systems to enable
rapid completion of and validation of the experiments and their the results initiated in this
work. Specifically, we leverage the ASSL toolkit to add the self-forensics autonomic property
(SFAP) to enable generation of the Java-based Object-Oriented Intensional Programming
(JOOIP, Section 4.3.2.3, page 93) language code laced with traces of Forensic Lucid to
encode contextual forensic evidence and other expressions [320].
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The notion and definition of self-forensics was introduced by the author Mokhov in circa
2009 to encompass software and hardware capabilities for autonomic and other systems to
record their own states, events, and others encoded in a forensic form suitable for (potentially
automated) forensic analysis, evidence modeling and specification, and event reconstruction
for various system components. For self-forensics, “self-dissection” is possible for analysis
using a standard language and decision making if the system includes such a self-forensic
subsystem. The self-forensic evidence is encoded in a cyberforensic investigation case and
event reconstruction language, Forensic Lucid (Chapter 7). The encoding of the stories
depicted by the evidence comprise a context as a first-class value of a Forensic Lucid
“program”, after which an investigator models the case describing relationships between
various events and pieces of information. It is important to get the context right for the case
to have a meaning and the proper meaning computation, so we perform case studies of some
small-to-medium, distributed and not, primarily academic open-source software systems. In
this work, for the purpose of implementation of the small self-forensic modules for the data
structures and event flow, we specify the requirements of what the context should be for
those systems. The systems share in common the base programming language—Java, so
our self-forensic logging of the Java data structures and events as Forensic Lucid context
specification expressions is laid out ready for an investigator to examine and model the
case [320].

D.2 Motivation

We motivate this work through examples that include enhancement and help with the black-
boxes like in aircraft, or where self-forensics would have been helpful to analyze anomalies
say in the spacecraft, when Mars Exploration Rovers behaved strangely [333], or even with
one is doing a hard disk recovery, such as from the shuttle Columbia [114], or automati-
cally as well as interactively reasoning about events, possibly speeding up the analysis of the
anomalies in subsystems following sound methodology. Another example is when the Hubble
Space Telescope was switched from its “side A” of its instruments to the redundant “side
B”. The self-forensics units would help Hubble to analyze the problem and self-heal later.
Of course, the cost of such self-forensic units would not be negligible; however, the cost of
self-forensics units maybe well under than the costs of postponing missions, as, e.g., it was
happening with the Hubble Space Telescope Servicing Mission 4 (SM4) and the correspond-
ing shuttle processing delay and costs of moving shuttles around [329, 330, 331, 332, 413, 472]
and others [275, 306].

Furthermore, the concept of self-forensics would be even a greater enhancement and help
with flight-critical systems, the blackboxes in aircraft, etc. to help with crash investiga-
tions [70, 275]. Similar examples can made for a bus crash in California in 2009 [69] or
the Kepler spacecraft entering safe mode in 2010 [334]. Any large-scale software systems,
distributed or not, web services, operating systems, embedded systems are a natural envi-
ronment for self-forensics analysis, prevention, and reaction just as well. Thus, we insist that
self-forensics, if included earlier in the design and development of the spacecraft, craft or
vehicles, systems, not only helps during the validation and verification, but also a posteriori,
during the day-to-day operations incident investigation and instrumenting corrections by the
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system itself when it is unreachable by personnel or human investigators after the incident
if the system is not recoverable [275].

D.2.1 Self-Forensic Computing

Many ideas in this work come from computer forensics and forensic computing. Com-
puter forensics has traditionally been associated with computer crime investigations (see
Section 2.1). We show the approach is useful in autonomous systems [306]. Additionally,
the approach is useful as an aid in for validation and verification during design, testing, and
simulations of autonomous systems as well as during the actual operations and any kind of
incident investigations. We earlier argued (e.g., see [274, 306]) if the new technologies are
built with the self-forensics components and toolkits, it would even help software, air-space,
automotive industries or anything robotic and autonomous, and has large complex software
systems, including military [275].

Existing self-diagnostics, computer BIOS/UEFI-like reports with name:value attributes,
Cisco IOS states/log reports (e.g., see Section 9.5), and S.M.A.R.T. [12, 65, 516] reporting
for hard drives as well as many other devices are a good source for such data computing,
i.e., be more forensics-friendly and provide forensics interfaces for self-forensics analysis and
investigation as well as allowing engineering teams extracting, analyzing, and reconstructing
events using such data [275, 306, 320].

D.2.2 Problem and Proposed Solution

The novel concept of self-forensics and the idea of its proposed realization within ASSL
and GIPSY is described through their founding core works. These preliminary findings and
discussions are currently at the conceptual level, but the author provides the complete
requirements, design, and implementation of the concept described here by leveraging the
resources provided by the previous research work. To the author’s knowledge there is no
preceding work other than the author’s own that does attempt something similar to what is
described here [320].

First, we give a glimpse overview of the founding background work on ASSL and self-
forensics in Section D.3.6 and Section D.4.1. Then, we describe the core principles and ideas
of the methodology of realization of the self-forensics autonomic property (SFAP) within the
ASSL framework in Section D.4.5. We provide a quick notion of the syntactical notation of
SFAP and where it fits within the generating toolset of ASSL. We conclude in Section D.5
for the merits and the future endeavors for the developments in this direction [320].

D.3 Related Work

There are a number of inter-related works of relevance listed below.

D.3.1 Available Related Technologies and Tools

Some of these have been previously mentioned:
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• S.M.A.R.T. technologies [12, 65, 516]

• Recent Cisco netflow uplink modules running at the 10G speeds allowing collection of
the pcap netflow data. Forensic Lucid rules like ACLs in Cisco equipment would
run at line speed. Local data with SD storage until transmitted later to the control
and maintenance centers for analysis.

• Gigamon span-port splitters for sorting out the pcap netflow traffic

• Linux state tracing kernel [148]

• AspectJ [29] (Section 8.2.1) can be used to create forensics-relevant aspects for Java
programs

• Various software based logging mechanisms provided by operating systems and services
(syslog, Event Log, etc.).

D.3.2 Expert Systems

The AT&T early diagnosing expert system for troubleshooting their phone line networks
with a corresponding knowledge base is a good early example [184] of relevance to us.

D.3.3 Java Data Security Framework

JDSF [273, 292, 293, 297, 314] has been proposed to allow security researches working with
several types of data storage instances or databases in Java to evaluate different security
algorithms and methodologies in a consistent environment. The JDSF design aims at the
following aspects of data storage security: confidentiality (data are private), integrity (data
are not altered in transit), origin authentication (data are coming from a trusted source), and
SQL randomization (for relational databases only, not discussed here any further) [269, 320].

JDSF also provides an abstraction of the common essential cryptographic primitives. The
abstraction exposes a common API proxied to the common Java open-source implementations
of the cryptographic algorithms for encryption, hashing, digital signatures, etc. The higher-
level JDSF design summary is illustrated in several UML specification diagrams documented
in the related works [293, 297, 314]. The design presented in those works illustrates all the
necessary main subpackages of JDSF and its configuration, the design of security-enhanced
storage, the authentication subframework, privacy subframework, integrity subframework,
and the abstraction API over the concrete cryptographic primitives [269, 320].

JDSF is convenient to use in the scope of the presented research, and, like GIPSY and
DMARF, it is implemented in Java, and is open-source [269, 320].

D.3.4 Cryptolysis

Cryptolysis [296] is a small framework that includes a collection of automated attacks on
the classical ciphers using a set heuristics algorithm implementation in Java. The algo-
rithms primarily come from the related work on the same subject [67]. Cryptolysis also
features additional algorithms that are wrappers around classification and signal processing
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tasks of MARF [462] for additional imprecise and spectral reasoning. Cryptolysis, among
other things, also performs some NLP parsing that segments the deciphered whole-block text
and inserts spaces in-between the word boundaries automatically for the ease of readability.
Cryptolysis, like the others, is an open-source project [320].

D.3.5 Autonomic Computing and Self-Management Properties

The common aspects of self-managing systems, such as self-healing, self-protection, self-
optimization, and the like (self-CHOP) are now fairly well understood in the literature and
R&D [165, 176, 205, 325, 369, 473, 488, 497]. We formally augment that list with the
self-forensics autonomic property that we would like to be a part of the standard list of
autonomous systems requirements specification and design specification [275, 306].

The self-forensics property is meant to embody and formalize all existing and future
aspects of self-analysis, self-diagnostics, related data collection and storage, software and
hardware components (“sensors”) and automated decision making that were not formal-
ized as such and define a well-established category in the industry and academia [275, 306].
In that view, self-forensics encompasses self-diagnostics, blackbox-like recording, traditional
logs, web services, (Self-Monitoring, Analysis, and Reporting Technology) S.M.A.R.T. report-
ing [12, 65, 516], and encoding this information in analyzable standard form of Forensic
Lucid [302, 308] (or some other format if desired when the concept matures, but in this re-
search we stick with the Forensic Lucid language model) for later automated analysis and
event reconstruction using the corresponding expert system tool [275, 306]. Optional parallel
logging is done of the forensics events during the normal operation of the autonomous and
semi-autonomous systems, especially during the “blackout” periods (when a given remote
system is unreachable by operators) will further enhance the durability of the live forensics
data logged from the system to a nearby loghost (a remote logging facility), some sort of
receiving station, etc. [275, 306].

D.3.6 ASSL Formal Specification Toolset

The ASSL framework [483, 490, 499] takes as an input a specification of properties of au-
tonomic systems [6, 171, 176, 177, 205, 325, 369], does formal syntax and semantics checks
of the specifications, and if the checks pass, it generates a collection of Java classes and
interfaces corresponding to the specification. Subsequently, a developer has to fill in some
overridden interface methods corresponding to the desired autonomic policies in a proxy im-
plementation within the generated Java skeleton application or map them to the existing
legacy application [320, 483, 490, 499].

Similarly to GIPSY (Section 6.2, page 136), the ASSL framework [499] includes the au-
tonomic multi-tier system architecture (AS) including formal language constructs to specify
service-level objectives (SLOs), core self-CHOP (i.e. self-configuration, self-healing, self-
optimization, and self-protection) autonomic properties, corresponding architecture, allowed
actions, events, and metrics to aid the self-management aspect of the system. It also specifies
the interaction protocols between the AS’ managed autonomic elements, including specifi-
cation of of messages exchanged and how they are communicated. Finally, it provides for

364



specification of the autonomic element (AE) architecture, like for the whole system, each ele-
ment is a subject to the SLOs, self-CHOP policies, behavior, actions, metrics, and interaction
protocols, the summary of all of which is enumerated in Figure 86 [320].

I. Autonomic System (AS)

* AS Service-level Objectives

* AS Self-managing Policies

* AS Architecture

* AS Actions

* AS Events

* AS Metrics

II. AS Interaction Protocol (ASIP)

* AS Messages

* AS Communication Channels

* AS Communication Functions

III. Autonomic Element (AE)

* AE Service-level Objectives

* AE Self-managing Policies

* AE Friends

* AE Interaction Protocol (AEIP)

- AE Messages

- AE Communication Channels

- AE Communication Functions

- AE Managed Elements

* AE Recovery Protocol

* AE Behavior Models

* AE Outcomes

* AE Actions

* AE Events

* AE Metrics

Figure 86: ASSL multi-tier model [320]

ASSL formal modeling, specification, and model checking [486, 487] has been applied to
a number open-source, academic, and research software system specifications, e.g., such as
Voyager imagery processing [485]; the Distributed Modular Audio Recognition Framework
(DMARF) [318, 491, 492]; and the General Intensional Programming System (GIPSY) [497];
reliability of self-assessment, distributed, and other autonomic aspects of the autonomic
system-time reactive model (AS-TRM) [489, 494]; self-adapting properties of NASA swarm
missions [165, 473, 488] and others [320, 484].
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D.4 Self-Forensics Methodology Overview

D.4.1 Self-Forensics Concept

The study of self-forensics [274, 275, 319], is an additional property the author is investigat-
ing throughout this thesis with the contextual forensic logging with Forensic Lucid and
case specification [267, 298, 302, 304, 305]. As previously mentioned, Forensic Lucid is an
intensional context-oriented forensic case specification, modeling, and evaluation language
(see Chapter 7 for details). Forensic Lucid was initially proposed for specification and
automatic deduction and event reconstruction in the cybercrime domain of digital foren-
sics [355]. It has been proposed to extend its use onto other domains such as investigation
of incidents in various vehicle crash investigations, and autonomous software and hardware
systems. Its primary feature inherited from the Lucid family of languages is to be able to
specify and work with context [363, 470, 510] as a first-class value, and the context represents
the evidence and stories told by witnesses [320].

Forensic Lucid’s primary experimental platform for compilation (Forensic Lucid
compiler is a member of the General Intensional Programming Compiler (GIPC) framework,
Section 6.2.1, page 139) and evaluation is the General Intensional Programming System
(GIPSY, Chapter 6) [159, 300, 360]. GIPSY’s run-time system, the General Eduction Engine
(GEE, Section 6.2.2, page 142), is designed to be flexible to allow various modes of execution,
including the use of the evaluation by the PRISM- [464] and AspectJ-based [29] backends
as illustrated in Figure 32 [313] and Figure 58 [320] (Chapter 6 and Chapter 1).

D.4.2 Generalities

As we encode the observation sequences for our case study systems, we observe some general
tendencies. It is possible to have gaps in the evidence stories when some of the expected data
structures were not instantiated or some events did not occur. To recap, we model them as
no-observation [134, 135], $. A no-observation is an observation $ = (CT , 0, infinitum) that
puts no restrictions on computations (Section 2.2, page 29). The infinitum is an integer
constant that is greater than the length of any finite computation that may have happened
and C is a set of all possible computations in the system T [135, 319].

All systems’ high-level evidence follows a similar traditional blackbox evidential pattern:
given an instance of configuration followed by the initial “input” data followed by a one
or more computations on the data followed by a some sort of result or a result set. This
contextual pattern can be exploded in the context level to the very fine-grained details to
the bottom level of core data structures and variables. The computations can be arbitrarily
complex and nesting of the context expressions, as evidential logs, can be arbitrarily deep,
depending on the desired level-of-detail (LoD) [319].

Inherently parallel evaluation can also be captured as variable-length generic observa-
tions [134, 135] (Section 2.2.4.5, page 39, Section 7.5.5, page 208), forming a multidimensional
box [510] where each element can be evaluated in parallel, and all elements should complete
the evaluation prior transiting to the final result or result set observation [319].

Subsequently we describe a possible example applications of self-forensics and its require-
ments that must be made formal, in the industry, if the property to be used in a wider
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context and scope if the property to be used and included in the design of the systems early
on [275, 306, 319].

Given this initial discussion we further proceed with some of the contextual Forensic
Lucid specifications of our studied systems, specifically DMARF in Section D.4.6.1, GIPSY
in Section D.4.6.2, JDSF in Section D.4.6.3, and Cryptolysis in Section D.4.6.4 [319].

D.4.3 Requirements

Based on the previously cited work on different aspects of self-forensics we define the re-
quirements scope for the autonomic self-forensics property. This is a mix of mostly high-level
functional and some non-functional requirements, aggregated as the initial “check-list” to
be used in the real system requirements specification in a much more elaborate detail and
expected to be carried over into the design specification.

Here we define very rough high-level the requirements scope for the autonomic self-
forensics property:

• Should be optional if constrained by the severe budget cuts for less critical flight com-
ponents, but easily “pluggable”. Must not be optional for mission critical and safety-
critical systems and blackboxes [275, 306].

• Must be included in the design specification at all times using some formal method of
specification (e.g., ASSL, Forensic Lucid, or Isabelle) [275, 306].

• Must cover all types of the self-diagnostics events (e.g., S.M.A.R.T.-like capabilities
and others.) [275, 306].

• Must have a formal specification (that what it makes it different from various typical
self-diagnostics and otherwise various aspects of self-monitoring) [275, 306].

• Must have tools for automated reasoning and reporting about incident analysis match-
ing the specification, real-time or a posteriori during investigations. The tools may
accompany the system in question if resources allow, and also be remotely available for
independent parallel analysis and investigation [275, 306].

• Context should be specified in the terms of system specification involving the incidents,
e.g., parts and the software and hardware engineering design specification should be
formally encoded (e.g., in Forensic Lucid) in advance, during the design and man-
ufacturing. This are the static forensic data. The dynamic flight forensics data are
recorded in real-time during the vehicle operation [275, 306].

• Classically, preservation of forensic evidence must be atomic, reliable, robust, and
durable [275, 306].

• The forensic data must be able to include any or all related not-necessarily-forensic data
for analysis when needed in case it can be a source of a problem. Depending on the
system, e.g., the last image or application-specific data passing through reconnaissance
or science images for military, exploration, and scientific aircraft taken by a camera
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around the time of incident or measurements done around the incident by an instrument
and/or protocol states around the time of incident or even the entire trace of a lifetime
of a system or system components logged somewhere for automated analysis and event
reconstruction [275, 306].

• Levels of forensic logging and detail should be optionally configurable in collaboration
with other design requirements in order not to hog other activities’ resources, cre-
ate significant overhead, or fill in the network bandwidth of downlinks or to preserve
power [275, 306].

• Self-forensics components should optionally be duplicated in case they themselves also
fail [275].

• Event co-relation mechanisms optionally should be specified, e.g., as in time-reactive
models and systems [275, 306], or combined within Forensic Lucid.

• Probabilistic trustworthiness and credibility factors need be specified if corrupt and/or
unreliable (evidential) data is detected, so its credibility weight is reduced during self-
investigation to reduce the risk of “wrong” decisions.

• Some forensic analysis can be automatically done by the autonomous system itself
(provided having enough resources to do so), e.g., when it cannot communicate with
sysadmins, or with flight controllers, or the engineering crew (e.g., during solar con-
junction for a week or two the robotic spacecraft are left unattended) [275, 306].

D.4.4 Example Scenario

Below is a high-level description of the self-forensic process described as a scenario that is
to become a refined algorithm. Terminology: autonomous system is any software and/or
hardware system exhibiting self-management properties, e.g., distributed systems, operating
systems, cloud computing platforms, road-side networks (RSNETs), any time of autonomous
craft or vehicle. A sensor is a software or hardware component observing events of interest
and doing forensic logging. A functional unit is a software/hardware component or instru-
ment under observation.

1. Self-forensic “sensors” observe functional units (e.g., instruments and subsystems of
spacecraft, aircraft in flight, systems of IRSNET, subsystems of a cloud, or software
systems) [275, 306].

2. Every event of interest (engineering or scientific) is logged using Forensic Lucid [275].

3. Wach forensic sensor observes one or several components or instruments (hardware or
software).

4. Each sensor “composes” a “story” in the form of Forensic Lucid observational se-
quence os about a component, a subsystem or instrument it observes [275].
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5. A collection of “stories” (witness accounts) from multiple sensors, properly encoded,
represent the evidential statement, es forming the local knowledge base either during
the verification or actual operation [275].

6. If an incident (simulated or real) happens, systems and engineers define and encode
theories (or hypotheses) in Forensic Lucid about what happened. The theories are
also encoded as observation sequences os. When evaluated against the collected forensic
evidence in es, they are added to es. Then the evaluating expert system (e.g., based
on GIPSY with extensions in our case studies) can automatically verify their theory
against the context of the evidential statement es and if the theory T agrees with the
evidence, meaning this theory has an explanation within the given evidential context
(and the amount of evidence can be significantly large for “eyeballing” it by humans),
then likely the theory is a possible explanation of what has happened. It is possible
to have multiple explanations and multiple theories agreeing with the evidence. In the
latter case usually the “longer” (in the amount of reconstructed events and observations
involved) theory is preferred or the one that has a higher cumulative credibility weight
w. Given the previously collected and accumulated knowledge base of Forensic Lucid
facts, some of the analysis and events reconstructed can be done automatically. The
transition function and its inverse in this case have already been incorporated and
available from the time the system was designed so, its Forensic Lucid specification
is simply processed with the es that was received [275, 306].

7. The incident is also processed in a similar fashion by the autonomous system in question
if resources allow. It may have actions defined on what to do based on the results of
self-investigation. The specification of what the potential “claims” could be in this case
can be pre-defined in the hardware or software of expected incidents. The unexpected
incidents may be more difficult to deal with, but over time those can be either machine-
learned or added by the engineering team over time after simulations with the test
systems.

D.4.5 Self-Forensics Autonomic Property (SFAP) in ASSL

In the PoC ASSL specification of self-forensics we add a notion of a SELF FORENSICS policy
specification for AS tier and AE, just like it is done for the self-CHOP properties. The
proposed property introduction consists of two major parts: (1) adding the syntax and
semantic support to the lexical analyzer, parser, and semantic checker of ASSL as well as
(2) adding the appropriate code generator for JOOIP and Forensic Lucid to translate
forensic events. The JOOIP code is mostly Java with embedded fragments of Forensic
Lucid-encoded evidence [267, 319, 320].

We use ASSL’s managed-element (ME) specification of AE to encode any module or
subsystem of any software system under study to increase or reduce the amount of forensic
evidence logged as Forensic Lucid events depending on the criticality of faults (that can
be expressed as ASSL metrics) [320].

A very high-level example of the generic self-forensic specification is in Figure 87. Many
details are presently omitted due to the preliminary work on this novel concept and will be
provided in our subsequent future publications [320].
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Wu and the GIPSY R&D team came up with a hybrid intensional OO language, JOOIP
([523, 525], Section 4.3.2.3, page 93), to allow mixing Java and Lucid code by placing Lucid
fragments nearly anywhere within Java classes (as data members or within methods). As
a part of this conceptual research work, we propose that the ASSL toolset in this instance
be augmented with a code-generation plug-in that generates JOOIP [523, 525] code laced
with Forensic Lucid contextual expressions for forensic analysis. The evaluation of the
JOOIP+Forensic Lucid code further is to be performed by the GIPSY’s general eduction
engine (GEE), described in detail in [159, 300, 360] (see also Section 6.2.2, page 142) [320].

Furthermore, in this proposed prototype the EVENTS members would be the basic building
blocks of the contextual specification of the Forensic Lucid observation sequences. The
INITIATED BY and TERMINATED BY clauses would correspond to the beginning and end-of-
data-stream Lucid operators bod and eod. ASSL fluents would map to the Lucid streams
of the observation sequences where each stream is a witness account of systems behavior.
All fluents constitute an evidential statement. The mapping and actions correspond to the
handling of the anomalous states within the JOOIP’s Java code [320].

In the proposed design, once JOOIP code with Forensic Lucid fragments is generated
by the ASSL toolset, it is passed on to the hybrid compiler of GIPSY, the GIPC to properly
compile the JOOIP and Forensic Lucid specifications, link them together in a executable
code inside the GEE engine resources (GEER), which then would have three choices of
evaluation of it—the traditional eduction model of GEE, AspectJ-based eduction model,
and probabilistic model checking with the PRISM backend [320] (Chapter 8).

D.4.6 Example Applications

We illustrate some toy stub examples of a how Forensic Lucid specification of self-forensics
context will begin in a form of template for scripting. Then, we follow with some more
concrete examples in the subsequent subsections. Having Forensic Lucid helps scripting
the forensics events in the autonomous systems. The real blackboxes can contain the forensic
data encoded anyhow including forensics expressions, XML, or just compressed binary and
using external tool to convert it to a Forensic Lucid specification at a later time.

invtrans(T @ hubble_es)

where

evidential statement hubble_es = { ... };

// T is a theory or hypothesis of what has transpired

observation sequence T = { ... };

end

Default binary Forensic Lucid specification corresponds to a serialized AST (as in earlier
presented GEER) for more optimal evaluation and retrieval. The evidential statement es is
a dictionary of the evidential observation sequences. It may contain definitions that are not
necessarily used by the modeled case program. The following template can be remodeled
for example to fit network equipment, such as a switch, based on a lot more level of detail
exemplified in the MAC spoofer investigations (see Section 9.5).

invtrans(T @ switch_es)
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AS ADMARF {

TYPES { MonitoredElement }

ASSELF_MANAGEMENT {

SELF_FORENSICS {

FLUENT inIntensiveForensicLogging {

INITIATED_BY { EVENTS.anomalyDetected }

TERMINATED_BY {

EVENTS.anomalyResolved,

EVENTS.anomalyFailedToResolve

}

}

MAPPING {

CONDITIONS { inIntensiveForensicLogging }

DO_ACTIONS { ACTIONS.startForensicLogging }

}

}

}

ACTIONS {

ACTION startForensicLogging {

GUARDS { ASSELF_MANAGEMENT.SELF_FORENSICS.inIntensiveForensicLogging }

VARS { Boolean ... }

DOES {

...

FOREACH member in AES {

...

};

}

ONERR_DOES {

// if error then log it too

...

}

}

} // ACTIONS

EVENTS { // these events are used in the fluents specification

EVENT anomalyDetected {

ACTIVATION { SENT { ASIP.MESSAGES.... } }

}

...

} // EVENTS

METRICS {

METRIC thereIsInsecurePublicMessage {

METRIC_TYPE { CREDIBILITY }

DESCRIPTION { "sets event’s trustworthiness/credibility AE" }

VALUE { ... }

...

}

}

} // AS ADMARF

// ...

MANAGED_ELEMENTS

{

MANAGED_ELEMENT STAGE_ME

{

INTERFACE_FUNCTION logForensicEvent

{

PARAMETERS { ForensicLucidEvent poEvent }

RETURNS { Boolean }

}

}

}

Figure 87: The prototype syntactical specification of the SELF FORENSICS in ASSL for AD-
MARF [320]

where

evidential statement switch_es = { ... };

// T is a theory of what has happened, e.g. with a switch port

observation sequence T = { ... };

end

371



Such functions can be precompiled as “stored procedures” (using the DBMS terminology)
for very well known manufacturer specifications of components as well as validated software,
preferably with Petri nets or the sate machines a like [134, 135].

As the application examples, the following subsections illustrate some context encoding
examples in Forensic Lucid for small-to-medium software systems followed the IRSNETs
and cloud computing systems as larger scale project proposals where it is sensible to imple-
ment self-forensics.

D.4.6.1 DMARF

Distributed aspect of DMARF (Section 5.2, page 102), as opposed to the classical MARF,
makes gathering of more forensic data due to intrinsically more complex communication
between modules, and potentially remote ones. In addition to the earlier specification recited
in Figure 68, we need to capture the configuration data related to the connection settings,
protocols, and any other properties related to the distributed computing [319].

The main difference is that now given the same configuration it is possible to have mul-
tiple distributed/parallel training sets to be computed as well as multiple results produced
on different nodes and the configuration object “explosion” will include the communication
protocols and the related information. In Equation D.4.1 is a complete high-level specifi-
cation of a DMARF run of observations. dconfo is an observation of the initial DMARF
configuration, tsetoi is the observation of the X × Y training sets, where X and Y form
a box of all possible training sets that can be available in that run, and the resultoi is an
observation of possible corresponding results of the pipelines’ runs. There could be multiple
pipelines formed through the lifetime of a DMARF network of the computing stages and
nodes [319].

(dconfo, 1, 0), (tsetoi, X, Y ), . . . , (resultoi, X, Y ) (D.4.1)

A system instance that has not produced a result (e.g., due to a crash at the classification
stage) would still have a 3-observation sequence, with the last one being a no-observation, as
shown in Equation D.4.2.

(dconfo, 1, 0), (tsetoi, X, Y ), . . . , $ (D.4.2)

It is theoretically possible to have no-observations for the configuration or training set data
components say in case such real evidential data were lost or are not trustworthy due to
poor handling or improper chain of custody. In such a case only partial reasoning can be
performed on the evidence [319].

Note, at this point we do not cover the typical advanced distributed systems features such
as the replication, write-ahead-logging, and load balancing and their related data structures,
communication, etc. that deserve a separate large publication and for now focus only on the
normal “business” operation of the system [319].

D.4.6.2 GIPSY

In GIPSY (Chapter 6), the core data structure, connecting the compiler GIPC (Section 6.2.1,
page 139) and the execution engine GEE (Section 6.2.2, page 142) is the GEER, represented
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by the GIPSYProgram class. This is the initial observation as far as GEE concerned. It
causes the engine to produce a number of demands in the order of the abstract syntax tree
(AST) traversal, abstracted by the Demand class and the corresponding IDemand interface.
Demands live and die inside a some sort of a store (that acts like a cache) and are transported
by the transport agents (TAs) using various communication technologies mentioned earlier
in the previous section. IDemand is used for both demands and their results. When the
result of computation reaches the top of the tree resolution, the final result of the program
is computed—it is an instance of some subclass of the GIPSYType from the GIPSY Type
System [313] (Appendix B). Thus, the high-level observation sequence is encoded as [319]:

(p, 1, 0), (di, X, Y ), . . . , (r, 1, 0) (D.4.3)

where GIPSYProgram p—is the initial program (GEER), IDemand di—is a cross productX×Y
of all possible demands that may be observed, GIPSYType r—is the result of computation. X
and Y form a cross product of all possible demands that can be made throughout the program
execution, of whether they need to be computed or retrieved from a cache, an intensional
data warehouse. An example of the observation sequence expression is in Figure 88. The
AST corresponds to the abstract syntax tree of a compiled GIPSY program, followed by a
dictionary of identifiers and the format of the compiled language. Then, at run-time demands
are generated for the two identifiers at the dimension d : 1 as well as their sum with the +
operator yielding a resulting value r [319].

GIPSYos = { p, d1, d2, di, r } =

{

(

[

AST : ..., // abstract syntax tree

dictionary : [id1:’x’, id2:’y’],

formattag : COMPILED_GEER

], 1, 0

),

([identifier:id1, tag:d, tagval:1], 1, 0),

([identifier:id2, tag:d, tagval:1], 1, 0),

([identifier:+, tag:d, tagval:1], 1, 0),

([result:X], 1, 0)

}

Figure 88: Example of observations in GIPSY [319]

The high-level encoding does not constitute the compilation data structures used in the
GIPC compiler family (Section 6.2.1, page 139) at this point as we are more concerned
with the run-time execution at this point; however, one has to plan for certified compilation
eventually, which is becoming more important these days, and that’s what we will recommend
to the GIPSY designers and developers for the future work. Once certified compilation is
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in place, the corresponding compilation evidence can be encoded for further offline or run-
time analysis. Likewise, as in DMARF, we avoid talking about typical distributed system
properties that ensure availability of the services, replication, etc., but in the final self-
forensics modules design all the distributed middleware also needs to be covered [319].

D.4.6.3 JDSF

JDSF’s core data structures comprise secure beans amended with security information layered
as needed [273, 292, 293, 297, 314] (Section D.3.3, page 363). Thus, most of the observa-
tions comprise these data structures (the beans), and the observation sequence, using strict
ordering gives away the sequence, in which a given security information was applied, e.g.,
signing happened before encryption and so on. Another observation is the configuration
object instance that provides the details of all the module configuration parameters. The
final observation is the secure object after application of all the security levels. Thus, the
high-level sequence of events captures the observation context of given data and configuration
that result in a secured bean. Thus, the data structures covered by the Forensic Lucid
context include the base SecureBean object type, and its derivatives AuthenticatedObject,
EncryptedObject, IntegrityAddedObject. The basic forensic context structure is, there-
fore [319]:

bean: { value:X, security_info:Y }

The dimensions value (i.e., payload content) and security info comprise the concrete
security-enhanced payload data X and the details about the said security technique applied
Y . On top of the actual data beans, we have the corresponding configuration object that is
a part of the system’s context. The security Configuration object’s context varies in three
basic dimensions [319]:

configuration:

[

confidentiality:C,

integrity:I,

authentication:A

]

These dimension’s tag values evaluate to integers enumerating concrete algorithms used
for each of these stages. The context also determines in which order they were applied, which
may be an important factor, e.g., in the public key encryption schemes where the order of
signing and encryption is important. In Figure 89 is an example of the Forensic Lucid
context instance of a particular configuration [319].

D.4.6.4 Cryptolysis

Cryptolysis [278, 296] being a small system does not have a lot of deep contextual complexity.
It has no explicit configuration object at this point and it is uncertain if it’s going to have
one, but there are implicit configuration settings that impact the results of the runs of the
systems. There there are key several operational evidential context pieces: the cryptographic
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JDSFos = { config, data, bean } =

{

(

ordered [

confidentiality : RSA [ key:12345, keylength:1024 ],

integrity : MD5,

authentication : DSA [ key:23456, keylength:256 ]

], 1, 0

),

([1,2,3,4], 1, 0),

([value:[3,1,4,2], security_info:Y], 1, 0)

}

Figure 89: Example of observations in JDSF [319]

Key, the plain-text and cipher-text data, cipher algorithm type, cryptanalysis algorithm
type, statistics, and a result. The Key k in the forward encryption process is a part of input
configuration, along with the cipher algorithm to use r, and the input plain text data t, and
the result is the cipher text c. In the reverse process, which is the main mode of operation
for Cryptolysis, the configuration consists of the cryptanalysis algorithm type a, followed by
the input cipher text data c, and the primary result is the guessed encryption Key k and the
secondary result is the associated accuracy statistics s built along, and the plain text t, as
in Equation D.4.4 and Equation D.4.5. The two equations denote these two scenarios; the
latter is exemplified in Figure 90 [319].

(k, 1, 0), (r, 1, 0), (t, 1, 0), (c, 1, 0) (D.4.4)

(a, 1, 0), (c, 1, 0), (k, 1, 0), (s, 1, 0), (t, 1, 0) (D.4.5)

Cryptolysis_os = { a, c, k, s, t } =

{

([alogrithm:GENETIC_ALGORITHM], 1, 0),

([’k’,’h’,’o’,’o’,’r’], 1, 0)

([key:[xyzabc...], length:26], 1, 0),

([accuracy:0.95], 1, 0),

([’h’,’e’,’l’,’l’,’o’], 1, 0)

}

Figure 90: Example of observations for the second equation in Cryptolysis [319]

There is also a natural language processing (NLP) aspect of Cryptolysis [278] that we do
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not cover in our work here that deals with natural language word boundary detection in the
deciphered text that has no punctuation or spaces [319].

D.4.6.5 Hardware/Software Systems

Various types of craft (space or air) sport usually many instruments and sensors on board,
including high-end computers. All of these, or most important of these, “normal” operational
units can also have augment their design (hardware and software) to include additional
functional units to observe other instruments and components, both hardware and software,
for anomalies and log them appropriately for forensics purposes [275, 306]. Given enough
on-board processing resources for the forensic log data, the system can automatically perform
self-investigation of any related anomalies and institute corrective measures whenever possible
while a remote operator access in unavailable.

For example, in the event when a spacecraft is “safing” itself due to, say, a cosmic ray hit,
is critical and good moment to have some forensic data logged before and after and during
if possible to help quicker analysis of what happened and bring out the spacecraft out of
the safe mode sooner because presently the engineering teams spend a lot of effort to do the
investigation after getting the telemetry data (which is would be, e.g., impossible when a
craft is behind a planetary body or the Sun and is unreachable for a period of time) [306].

Similarly, investigation engines could run continuously in the aircraft and automotive
vehicles, employing remote secure logging while doing in-situ self-investigation for problems
and reporting to the pilots or drivers or taking a corrective action.

D.4.6.6 Complex, Distributed Software Systems and Services

This topic was explored in some detail [319] earlier covering example distributed software
systems as case studies, such as the Autonomic Distributed Modular Audio Recognition
Framework (ADMARF) [493] and the Autonomic General Intensional Programming Sys-
tem (AGIPSY) [497] among others. The principles and concepts are very similar to the ones
described in the preceding section except applied to the software components only and the
corresponding middleware technologies used for communications. The MAC Spoofer Inves-
tigation presented in Section 9.5 also fits this criteria.

D.4.6.7 Self-Forensics for Intelligent Roadside Networks

In [274] we have already discussed the idea of self-forensics for road vehicles (and similar
ideas proposed to NASA in a white paper for spacecraft and aircraft safety and autonomous
operation of distributed software systems [275, 319]), but there was almost next to none
mention of the backbone and other support on the roadside networks (RSNETs), which
was argued to aid the road safety and incident investigations. Self-forensics is important
for diagnosing in remote areas where human monitors and operators may not be available
on the highways. We’d like to include the term of self-forensics into the vocabulary of the
roadside networks. RSNETS are also the receiving end of the vehicle undergoing an accident,
it is therefore important to capture all the data for the investigation by expert systems and
human investigators with the intent of event reconstruction later on. Roadside networks
have to be autonomous (self-protection) in the modern age to sustain and self-manage to the
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extent maximally possible. As a result the corresponding equipment and intelligent software
support.

D.4.6.7.1 Main Objectives Main objectives of this proposal include:

• Standardize the terminology and requirements of roadside networks for intelligent self-
management and self-forensic support for roadside backbones specified for VCNs.

• Statement of the R&D activities in roadside networks for the future test fields for
self-forensics.

• Define and formalize self-monitoring and specification aspects for the design and de-
velopment of the roadside networks to monitor and re-act in case of intrusions, power
failures, incidents, and other faults with a blueprint of autonomous recovery strategies.

• Formalize context specification for the internetworking for VANETs and roadside net-
works, mobility, ubiquity, etc. reducing the management traffic overhead and improve
incident response.

• Relevant QoS and security aspects and related protocols as solutions to performance
and safety aspects of self-forensics in IRSNETs.

D.4.6.8 Self-Forensics for Cloud Computing

This represents another project proposal for the use of the self-forensics techniques previ-
ously proposed for both manual and autonomous security monitoring, event reconstruction,
incident response, and investigation in distributed software systems or information systems
in general onto cloud computing and its platforms. We argue that self-forensics, which is
applicable to “self-dissection” of autonomous software in clouds for automated incident and
anomaly analysis and event reconstruction including after-the-fact analysis by the investiga-
tors in a variety of incident scenarios. We thus propose to construct and analyze the relevant
formalizations, terminology, and standards to be included into the design of cloud computing
platforms and tools to facilitate their management and digital investigations due to such
systems being large and complex.

An idea presented in the preceding sections of self-forensics for autonomic operation of
distributed software systems [319]), multimedia information systems forensic specification
and ASSL-based specification [320] have been proposed before for self-protection and other
self-management aspects as well as forensics and incident investigations. With this work,
we’d like to include the term of self-forensics into the vocabulary of cloud computing.

This project is set to cover the following topics to a certain degree in the context of cloud
computing with self-forensics as a part of the self-management properties that cross-cover a
number of aspects and topics.

• Like for the other scenarios, standardize the terminology and requirements of cloud com-
puting platforms for intelligent self-management and self-forensic support, including
self-forensic sensors deployed in the cloud servers logging forensic contexts in Foren-
sic Lucid format.
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• Like for IRSNETs, define and formalize self-monitoring and specification aspects for
the design and development of clouds to monitor and react in case of intrusions, at-
tack spread, other kinds of cybercrime incidents, and other faults with a blueprint of
autonomous recovery strategies.

D.5 Summary

We introduced a novel concept of self-forensics with Forensic Lucid to aid validation and
verification of flight-critical systems during the design, manufacturing, and testing, as well
as its continuous use during the actual flight and operation of airborne vehicles [275].

We drafted some of the requirements for such property to be included into the design
as well as its potential most prolific limitations today [275]. Additionally, we laid out
some preliminary groundwork of requirements to implement formally the self-forensics auto-
nomic property within the ASSL toolset in order to allow any implementation of the self-
forensics property added to the legacy small-to-medium open-source and academic software
systems [320].

We argued that such a property of self-forensics formally grouping, self-monitoring, self-
analyzing, self-diagnosing systems along with a decision engine and a common forensics
logging data format can standardize the design and development not only airborne vehicles,
but also road vehicles and spacecraft, or even marine and submarine vehicles, to improve
safety and autonomicity of the ever-increasing complexity of the software and hardware
systems in such vehicles and further their analysis when incidents happen [275].

We outlined some of the background work, including the forensic case specification lan-
guage, Forensic Lucid, that we adapted from the cybercrime investigations domain to
aid the validation and verification of the autonomic subsystems design by proposing logging
the forensics data in the Forensic Lucid context format available for manual/interactive
analysis on the ground as well as real-time by a corresponding expert system [275].

After having specified the high-level evidential observation sequences, each self-forensic
module designer need to go and specify the “gory” details, as needed and deemed important.
Then, following the normal operation of the systems the self-forensic modules are turned
on and logging data in the Forensic Lucid format continuously (notice, the forensic logs
of course themselves must of high integrity and confidentiality, and there should be enough
external storage to accommodate them, but these problems are not specific to this research,
are addressed for other needs as well elsewhere like any type of logging or continuous data
collection). The format, assuming being a standard, would be processable by Forensic
Lucid-enabled expert systems, fully automatically (good for autonomic systems) or interac-
tively with the investigators making their case and analyzing the gathered evidence. Making a
step further, such approach can be generalized and put outside of the cybercrime domain into
the autonomous transport vehicle design and other robotic systems and spacecraft to help
investigating engineering teams to investigate and troubleshoot the systems and investigate
crashes and other incidents with the event reconstruction [319].

All in all, such a self-forensic specification is not only useful for cybercrime investigations,
incident analysis, and response, but also useful to train new (software and other) engineers
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on a team, flight controllers, and others involved, in data analysis, to avoid potentially over-
looking facts and relationships in the data and making incorrect ad-hoc decisions when per-
forming an investigation. In an Forensic Lucid-based expert system (see Section D.3.2) on
the “human-side” of investigation (that’s what was the original purpose of Forensic Lucid
in the first place in cybercrime investigations) one can accumulate a number of contextual
facts from the self-forensic evidence to form the knowledge base and the trainees can formally
construct their theories of what happened and see of their theories agree with the evidential
data. Over time, (unlike in most cybercrime investigations) it is possible to accumulate a
general enough contextual knowledge base of encoded facts that can be analyzed across cases,
deployed systems, flights, or missions, networks via sharing and firmware updates locally or
globally and on the deep web when multiple agencies and aircraft manufactures collaborate
for scalability [275, 306]. Such data can be shared across law enforcement, military, and
research institutions [319] similarly to the Security Information Exchange (SIE) project of
ISC (isc.org).

For the purposes of portability or model-checking, depending on the evaluating engine,
Forensic Lucid constructs comprising the context of the encoded self-forensic evidence can
be translated into XML specifications (that can be unsatisfiable [167] and less compact, but
maybe more portable) of a specification for embedded systems and the like or translated into
the PRISM probabilistic model checker’s language [464] for model validation [319].

We note that all studied systems are remarkably similar in their evidence structure sug-
gesting that a reusable model can be built to observe a large number of similar systems for
self-forensic evidence [319].

Using an AspectJ-based implementation and component- or even method-level external
observations can give very fine-grained as well as coarse-grained observation sequences and
allow to model not only the contexts in the form of observation sequences of data structures
and data flows, but also automatically build the state transition function ψ in Forensic
Lucid to be ready to be exported for the use by investigators to allow modeling the Ψ−1

for event reconstruction. This approach can be very well used for automated debugging of
complex systems allowing the developers and quality assurance teams trace the problem and
recreate the sequence of events back to what may have been the cause better than a mere
stack trace and the resulting core dump. Moreover, mobile devices these days increasingly
use Java, so the said forensic data can be created on-the-fly with AspectJ observation of
mobile device OS components [319].

D.5.1 Advantages

Forensic Lucid is context-enabled, built upon the intensional logic and the Lucid lan-
guage that existed in the literature and mathematics for more than 35+ years and served
the initial purpose of program verification [25, 26]. The related research is being completing
formalizing the language structures, and translation of the date into Forensic Lucid’s ev-
idential statements. Provides ability for event reconstruction upon validating claims against
the available evidence [306].
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D.5.2 Limitations

The self-forensics autonomic property is very good to have for automated analysis of simu-
lated (testing and verification) and real incidents the autonomous or semi-autonomous hard-
ware and software systems, (in, e.g., aircraft), but it can not be mandated as absolutely
required due to a number of limitations it creates. However, whenever the monetary and
time budgets allow, it should be included in the design and development of the autonomous
spacecraft, military equipment, or software systems [275, 306].

1. The cost of the overall autonomous systems will obviously increase [275, 306]. The cost
can be offloaded if the data are logged centrally and processed by central controllers.

2. If built into software, the design and development requires functional long-term storage
and CPU power [275, 306].

3. It will likely increase of bandwidth requirements (e.g., for scientific and exploratory
aircraft if the science data are doubled in the forensic stream. If the forensic data are
mirrored into the scientific one, more than twice bandwidth and storage used.) [275,
306].

4. An overall overhead if collecting forensics data continuously (e.g., can be offloaded
along with the usual science and control data down to the flight control towers or
centers periodically.) [275, 306].

5. The self-forensics logging and analyzing software ideally should be in ROM or similar
durable flash type of memory or an SSD; but should allow firmware and software
upgrades [275, 306].

6. We do not tackle other autonomic requirements of the system assuming their complete
coverage and presence in the system from the earlier developments and literature, such
as self-healing, protection, etc. [275, 306].

7. Transition function modeling the hardware and software specification has to be pro-
duced by the qualified engineering team throughout the design phase and encoded in
Forensic Lucid. To simplify the task, the data-flow graph (DFG) [87, 309] interactive
development environment (IDE), like a CAD application is to be available [306].

D.5.3 Future Directions

We have already proposed the self-forensics property to be specified in the ASSL toolset
[320]. To that, we are working on the additional PoC aspects.

As a part of the future work in this direction we plan to complete the implementation
of the self-forensics modules to generate evidence according to the specifications presented
earlier. Specifically, our priority is to implement the notion of self-forensics in the GIPSY
and DMARF systems. Then, we plan to gather performance and storage overhead statistics
when the self-forensics modules are turned on. We also need to improve the granularity of
the event collection, correlation, and encoding with AspectJ-based tracing on the level of
the method calls with the before and after triggers. Further, we want to explore events with
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probabilities, credibility, trustworthiness factors and the like using a probabilistic approach
when exact reasoning is not possible [319].

We also need to explore and specify on how malicious and determined attackers would
be dealt with by the self-forensics methods and techniques to retain valuable trustworthy
forensic evidence. (In the nutshell, the issue is similar to remove logging in the specified
format, perhaps offsite, maintaining a secure channel, but this deserves a separate complete
discussion; additionally an investigated concept, like self-protection for DMARF [318] can be
employed as one of the assurance techniques for self-forensics) [319].

D.5.3.1 Expected Outputs

Summarizing the expected output of this self-forensics project: a formal model, for validation
and verification, of self-forensics, mathematically sound and complete would be finalized.
Followed by the concrete implementation of it first in the two mentioned research distributed
agent systems such as GIPSY and DMARF. Then move on to larger scale commercial and
open-source software systems with the companies listed, extending it to the actual networked
devices further. This would allow gather overhead and other metrics and refine the model and
its scalability as well as user tools for analysis and investigation by the human investigators
(expert system with updatable forensic knowledge base). Then the outcomes would be robotic
and research craft prototypes—based on whatever we get access to or even build a mini
research nano-satellite (e.g., a part of the ServerSky.org project), have self-forensic modules
and sensors in a car and a plane.

D.5.3.2 Expected Outcomes

Standardized self-forensic hardware and software components in robotic devices, road ve-
hicles, aircraft, spacecraft, marine vessels, operating systems and distributed autonomous
software systems alike. The corresponding industries are the audience as well as law en-
forcement agencies and any type of human investigators involved in incident analysis, even
reconstruction, and response.
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Appendix E

Graph-based Representation and
Visualization

This chapter is formed from the previously published and unpublished discussions on the
need and ideas of a variety of visualization aspects, techniques, and tools, pertaining to
this research. The purpose is to determine how the findings can be applied to Forensic
Lucid and investigation case management. It is also natural to want a convenient and usable
evidence visualization, its semantic linkage and the reasoning machinery for it. We present
some of these deliberations as a future work item with the detailed related work review.

Visualization requirements in Forensic Lucid have to do with different levels of case
knowledge abstraction, representation, aggregation, as well as the operational aspects as the
final long-term goal of this proposal. It encompasses anything from the finer detailed repre-
sentation of hierarchical contexts (Section 7.2.2, page 158) to Forensic Lucid programs,
to the documented evidence and its management, its linkage to programs, to evaluation, and
to management of GIPSY software networks. This includes an ability to arbitrarily switch
between those views combined with usable multimodal interaction.

E.1 Related Work

There is a number of items and proposals in graph-based visualization and the corresponding
languages. In 1982 Faustini proved that any Indexical Lucid program can be represented
as a DFG [106]. In 1995, Jagannathan defined various graphical intensional and extensional
models for GLU programming—arguably one of the first practical graph-based visualization
proposals for Lucid programs [185]. Paquet subsequently in 1999 expanded on this for
multidimensional intensional programs as exemplified in Figure 91 [359]. Stankovic, Orgun,
et al . proposed the idea of visual parallel programming in 2002 [438].

The GIPSY R&D team’s own work in the area (Chapter 6) includes the theoretical foun-
dation and initial practical implementation of the DFGs by Ding [87, 359]. Ding provided
the first implementation of Paquet’s notion within the GIPSY project in 2004 [87] using
Graphviz’s lefty’s GUI and dot languages [32, 33] along with bi-directional translation
between GIPL’s or Indexical Lucid’s abstract syntax trees (ASTs) and dot’s [309]. Ad-
ditionally, an idea was proposed for visualization and control of communication patterns
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and load balancing by having a “3D editor” within RIPE [280]. The concept behind such
an editor is to render graphs in 3D space the current communication patterns of a GIPSY
program-in-execution or to replay it back and allow the user to visually redistribute demands
if the workload between workers becomes unbalanced. It is designed as a kind of a “virtual
3D remote control” with a mini-expert system, an input from which can be used to teach the
planning, caching, and load-balancing algorithms to perform more efficiently the next time a
similar GIPSY application is run. Related research work on visualization of load balancing,
configuration, formal systems for diagrammatic modeling and visual languages and the corre-
sponding graph systems was also presented by several authors in [13, 38, 256, 502, 539]. They
defined a number of key concepts that are relevant to our visualization mechanisms within
GIPSY [309] and its corresponding General Manager Tier (GMT) [189], for which Rabah
provided the initial PoC visualization and basic configuration management of the GIPSY
nodes and tiers with the graphical GMT [391] (e.g., Figure 38, page 151).

More recently (2012), another very interesting work of relevance was proposed by Tao et
al . on visual representation of event sequences, reasoning and visualization [455] (in their case
of the EHR data) and around the same timeWang et al . proposed a temporal search algorithm
for personal history event visualization [514]. Monore et al . note the challenges of specifying
intervals and absences in temporal queries and approach those with the use of a graphical
language [321]. This could be particular useful for no-observations (Section 7.5.1, page 204)
in our case. A recent novel HCI concept of documentary knowledge visual representation and
gesture and speech-based interaction in the Illimitable Space System (ISS) was introduced
by Song [434] in 2012. A multimodal case management interaction system was proposed for
the German police called Vispol Tangible Interface: An Interactive Scenario Visualization1.

We propose to build upon those works to represent the nested evidence, crime scene as
a 2D or even 3D DFG, and the reconstructed event flow upon evaluation. Such a feature
is designed to support the work on intensional forensic computing, evidence modeling and
encoding, and Forensic Lucid [302, 308, 310, 319, 320] (Chapter 7) and MARFL ([267,
270], Appendix C) in order to aid investigator’s tasks to build and evaluate digital forensic
cases [309].

E.2 Visualization Example Prototypes

From the related work, a conceptual example of a 2D DFG corresponding to a simple Lucid
program is in Figure 91 produced by Paquet [359]. The actual rendering of such graphs
currently in the GIPSY environment is exemplified in Figure 92 by Ding [87] in 2004 [309].

In Figure 40, page 158 is the conceptual model of hierarchical nesting of the evidential
statement es context elements, such as observation sequences os, their individual observa-
tions o (consisting of the properties being observed (P,min,max,w, t), details of which are
discussed in the referenced related works and in Chapter 7). These 2D conceptual visual-
izations are proposed to be renderable at least in 2D or in 3D via an interactive interface
to allow modeling complex crime scenes and multidimensional evidence on demand. The
end result is envsioned to look like either expanding or “cutting out” nodes or complex-type

1http://www.youtube.com/watch?v=_2DywsIPNDQ
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Figure 91: Canonical example of a 2D dataflow graph-based program [359]

results as exemplified in Figure 932 [309].

Figure 92: Example of an actual rendered 2D DFG-based program with Graphviz [87]

E.3 Visualization of Forensic Lucid

To aid investigators to model the scene and evaluate it, we propose to expand the design
and implementation of the Lucid DFG programming onto Forensic Lucid case modeling
and specification to enhance the usability of the language and the system and its behavior

2cutout image credit is that of Europa found on Wikipedia http://en.wikipedia.org/wiki/File:

PIA01130_Interior_of_Europa.jpg from NASA
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Figure 93: Modified conceptual example of a 2D DFG with 3D elements [309]

Figure 94: Conceptual example of linked 3D observation nodes [309]

in 3D. With the ongoing advances the visualization project was proposed to further enhance
usability of the discussed language and system and the related tools following the good
interaction design practices [402].

E.3.1 3 Dimensions

The need to represent visually forensic cases, evidence, and other specification components
is obvious for usability and other issues. Placing it in 3D helps to structure the “program”
(specification) and the case in 3D space can help arrange and structure the case in a virtual
environment better with the evidence items encapsulated in 3D spheres akin to Russian dolls,
and can be navigated in depth to any level of detail, e.g., via clicking (see Figure 94) [309].

The depth and complexity of operational semantics and demand-driven (eductive) exe-
cution model are better represented and comprehended visually in 3D especially when doing
event reconstruction. Ding’s implementation allows navigation from a graph to a subgraph
by expanding more complex nodes to their definitions, e.g., more elaborate operators such
whenever (wvr) or advances upon (upon), their reverse operators, forensic operators, and
others [309] found in Section 7.3, page 166.
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E.3.2 Requirements Summary

Based on the preceding discussion, some immediate requirements to realize the envisioned
DFG visualization of Forensic Lucid programs and their evaluation are summarized be-
low [309]:

• Visualization of the hierarchical evidential statements (potentially deeply nested con-
texts), see Figure 40, page 158 [309].

• Placement of hybrid intensional-imperative nodes into the DFGs such as mixing Java
and Lucid program fragments [309]. The GIPSY Research and Development group’s
previous research did not deal with aspects on how to augment the DFGAnalyzer and
DFGGenerator of Ding to support hybrid GIPSY programs. This can be addressed by
adding an “unexpandable” (one cannot click their way through its depth) imperative
DFG node to the graph. To make it more useful, i.e., expandable, and so it’s possible to
generate the GIPSY code off the DFG or reverse it back, it should possible to leverage
recent additions to Graphviz and GIPSY [309]. The newer versions of Graphviz support
additional features that are more usable for our needs at the present. Moreover, with the
advent of JOOIP ([525], Section 4.3.2.3, page 93), the Java 5 ASTs are made available
along with embedded Lucid fragments that can be tapped into when generating the
dot code’s AST [309].

• There has to be a Java-based wrapper for the DFG Editor of Ding [87] to enable its
native use within the Java-based GIPSY and plug-in IDE environments like Eclipse or
NetBeans [309].

• Leveraging visualization and control of communication patterns and load balancing for
the task in Euclidean space with the GGMT of Rabah [391].

• Ability to switch between different views (control, evidence, DFG, etc.).

E.3.3 Selection of the Visualization Languages and Tools

One of the goals of this work is to find the most optimal technique, with soundness and
completeness and formal specifications along with the ease of implementation and better
usability. We began by gathering insights and requirements in selecting a technique or a
combination of techniques with the most plausible outcome [309]. The current design allows
any of the implementation paths to be chosen [309].

E.3.3.1 Graphviz

First, the most obvious is Ding’s [87] basic DFG implementation within GIPSY as it is already
a part of the project and done for the two predecessor Lucid dialects: GIPL and Indexical
Lucid. Additionally, the modern version of Graphviz now has some integration done with
Eclipse [97], so GIPSY’s IDE—RIPE (Run-time Interactive Programming Environment)—
may very well be an Eclipse-based plug-in [309].
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E.3.3.2 PureData

Puckette came up with the PureData [386] language and its commercial offshoots (Jit-
ter/Max/MSP [72]), which also employ DFG-like programming with boxes and inlets and
outlets of any data types graphically placed and connected as “patches” and allowing for
sub-graphs and external implementations of inlets in procedural languages. Puckette’s orig-
inal design was targetting signal processing for electronic music and video processing and
production for interactive artistic and performative processes that has since outgrown that
notion. The PureData externals allow deeper media visualizations in OpenGL, video, etc.
thereby potentially enhancing the whole aspect of the process significantly [309]. Curiously,
Lucid as a dataflow language, is said to have influenced PureData3.

E.3.3.3 BPEL

The BPEL (Business Process Execution Language) and its visual realization within Net-
Beans [336, 447] for SOA (service-oriented architectures) and web services is another good
model for an inspiration [175, 208, 347] that has recently undergone a lot of research and
development, including flows, picking structures, faults, and parallel/asynchronous and se-
quential activities. More importantly, BPEL notations have a backing formalism modeled
based upon Petri nets. (See, e.g., visual BPEL graph in BPEL Designer (first came with
the NetBeans IDE) that illustrates two flows and three parallel activities in each flow as well
asynchrony and timeouts modeling.) BPEL specifications actually translate to executable
Java web services composition code [309].

E.3.3.4 Illimitable Space System

We explore an idea of a scalable management, visualization, and evaluation of digital ev-
idence with modifications to the interactive 3D documentary subsystem of the Illimitable
Space System (ISS) [434] to represent, semantically link, and provide a usable interface to
digital investigators. As we stated in Chapter 1, that work may scale when properly re-
engineered and enhanced to act as an interactive “3D window” into the evidential knowledge
base grouped into the semantically linked “bubbles” visually representing the documented
evidence. By moving such a contextual window, or rather, navigating within the theoreti-
cally illimitable space an investigator can sort out and re-organize the knowledge items as
needed prior launching the reasoning computation. The interaction design aspect would be
of a particular usefulness to open up the documented case knowledge and link the relevant
witness accounts and group the related knowledge together. This is a proposed solution to
the large scale visualization problem of large volumes of “scrollable” evidence that does not
need to be all visualized at once, but be like a snapshot of a storage depot.

Stills from the actual ISS installation hosting multimedia data (documentary videos) users
can call out by voice or gestures to examine the contents are in Figure 954. We propose to re-
organize the latter into more structured spaces linked together by the investigators grouping
the relevant evidence semantically instead of the data containing bubbles floating around
randomly.

3http://en.wikipedia.org/wiki/Lucid_(programming_language)
4http://vimeo.com/51329588
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Figure 95: Interactive documentary illimitable space visualization and management [434]

E.4 Summary

With the goal to have a visual DFG-based tool to model Forensic Lucid case specification,
we deliberate on the possible choice of the visualization languages and paradigms within
today’s technologies and their practicality and attempt to build upon previous sound work in
this area. Main choices so far identified include Ding-derived Graphviz-based implementation,
PureData-based, BPEL-like, or the ISS. All languages are more or less industry standards and
have some formal backing. The ones that are not, may require additional work to formally
specify their semantics and prove correctness and soundness of the translation to and from
Forensic Lucid [309].

The main problem with PureData and Graphviz’es dot is that their languages do not have
formal semantics specified only some semantic notes and lexical and grammatical structures
(e.g., see dot’s [32]). If we use any and all of these, we will have to provide translation rules
and their semantics and equivalence to the original Forensic Lucid specification similarly
as it is (e.g., was done by Jarraya between the UML 2.0/SysML state/activity diagrams
and probabilities in [188] when translating to PRISM) [309]. ISS seems the most scalable
approach that can aggregate all the others, but requires significant number of modifications.

Thus, this aspect of the work is at the active research stage. Given author’s some fa-
miliarity with the languages and systems mentioned, the final choice may result being an
intermediate form or a combination of inter-translatable forms [309] of those languages and
systems.
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