INTENSIONAL CYBERFORENSICS

SERGUEI A. MOKHOV

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
ForR THE DEGREE OF DOCTOR OF PHILOSOPHY (COMPUTER SCIENCE)
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

NOVEMBER 2013
(© SERGUEI A. MokKHOV, 2013

CONCORDIA UNIVERSITY
SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Serguei A. Mokhov

Entitled: Intensional Cyberforensics

and submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy (Computer Science)

complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

Dr. Deborah Dysart-Gale Chair

Dr. Weichang Du External Examiner
Dr. Amr Youssef External to Program
Dr. Peter Grogono Examiner

Dr. Terry Fancott Examiner

Dr. Joey Paquet and Dr. Mourad Debbabi Thesis Supervisor

Approved by

Chair of Department or Graduate Program Director

September 2013

Dean of Faculty

Abstract

Intensional Cyberforensics

Serguei A. Mokhov, Ph.D.
Concordia University, 2013

This work focuses on the application of intensional logic to cyberforensic analysis and its
benefits and difficulties are compared with the finite-state-automata approach. This work
extends the use of the intensional programming paradigm to the modeling and implemen-
tation of a cyberforensics investigation process with backtracing of event reconstruction, in
which evidence is modeled by multidimensional hierarchical contexts, and proofs or disproofs
of claims are undertaken in an eductive manner of evaluation. This approach is a practical,
context-aware improvement over the finite state automata (FSA) approach we have seen in
previous work. As a base implementation language model, we use in this approach a new di-
alect of the LucCID programming language, called FORENSIC LucID, and we focus on defining
hierarchical contexts based on intensional logic for the distributed evaluation of cyberforensic
expressions. We also augment the work with credibility factors surrounding digital evidence
and witness accounts, which have not been previously modeled.

The FORENSIC LUCID programming language, used for this intensional cyberforensic
analysis, formally presented through its syntax and operational semantics. In large part, the
language is based on its predecessor and codecessor Lucid dialects, such as GIPL, INDEX-
1cAL Lucip, Lucx, OBJECTIVE Lucib, MARFL and JOOIP bound by the underlying

intensional programming paradigm.

il

Acknowledgments

To my dear wife, Miao Song, and our little family, who make life worthwhile and

meaningful.

This thesis is also dedicated to those who made this thesis itself worthwhildl

!... and are acknowledged in detail in Section page

v

Contents

List of Figures
List of Tables
List of Algorithms and Listings

fix]
il
xivi
1 Introduction il
1.1 Overview L
1.2 Motivation and Applications [
1.3 Problem Statement and Gap Analysis
1.4 Proposed Solution [
1.5 Scope . ..o 11

12

1.6 Summary

I Background 23

2 Cyberforensics 24

2.1 Forensic Computing 24]
2.2 Gladyshev’s Formal Approach to Cyberforensic Investigation and Event Re-

construction Lo 29

2.3 Other Formal Approaches L0l

24 SUmMmary . o.o.o. ..o B0l

3 Intensional Logic, Programming, Reasoning, Uncertainty and Credibility 5T

3.1 Overview bY
3.2 Intensional Logics and Programming 29
3.3 Uncertainty, Evidence, and Credibility 65}
34 Summary ... [73]

4 The LuciD Programming Language Family [76]

4.1 Lucid Overview e [76l
4.2 Related Work o 891
4.3 Lucid Dialects 92}
4.4 Summary ... 96!
5 Data Mining and Pattern Recognition 97
5.1 Related Work 98]
5.2 MARF 02
5.3 fileType . . o o v v i 107
54 MARFCAT [L10I
55 MARFPCAT e 127
5.6 SUMMAry
6 The General Intensional Programming System 128
6.1 Overview. e 129
6.2 GIPSY’s Architecture 136
6.3 Summary 1511
II Methodology 153
7 Forensic Lucid Design and Specification 154
7.1 Approach Overview
7.2 The ForeNsic LuciD Language Requirements and Design Considerations . [150]
7.3 Concrete FORENSIC LUCID Syntax 160
7.4 Operational Semantics
7.5 Discussion
7.6 SUMMATY 210
8 Software Architecture Design 217]
8.1 Forensic Lucip Compiler 2111
8.2 Forensic LuciD Run-time System Design 213
8.3 Updates to GIPSY’s Frameworks’ Design 218
8.4 Forensic Lucib Component Testing
8.5 FORENSIC LuciD Encoders
8.6 GIPSY Cluster Lab Setup L. 238
8.7 Summary

vi

IIT Conclusion 243

9 Applications 244}
9.1 Overview e 244
9.2 Toy DSTME Examples in FORENSIC LUuciD
9.3 ACME Printing Case in FORENSIC LUCID 250
9.4 Blackmail Case in FORENSIC LUcIiD 2541
9.5 MAC Spoofer Investigation oo 25T
9.6 SUMMAry 78]

10 Concluding Remarks and Future Work 279!
10.1 Objectives Achieved 280
10.2 Summary 280
10.3 Limitations
10.4 Future Work L 284
10.5 Acknowledgments 290

Bibliography 293

IV Appendices 322
A Glossary 323

B A Type System Theory for Higher-Order Intensional Logic Support in

Hybrid Intensional-Imperative Programs in GIPSY
B.1l Overview e 329
B.2 The GIPSY Type System BRI
B.3 Simple Theory of GIPSY Types 330
B.4 Concrete Specification of the GIPSY Types. 337
B.5 Describing Some GIPSY Types’ Properties
B.6 Summary 350
C MARFL 3511
C.l OVerview o [B51]
C.2 Theoretical Framework oo
C.3 Applications 357
Cd Summary

vil

D Self-Forensics 359

D.1 Overview e 359
D.2 Motivation
D.3 Related Work
D.4 Self-Forensics Methodology Overview 366]
D.5 Summary B78
E Graph-based Representation and Visualization
E.1 Related Work
E.2 Visualization Example Prototypes
E.3 Visualization of FORENSIC LUCID 3841
E.4 Summary
Index

viil

List of Figures

1 Boyd’'s OODA loop [49]
2 The GIPSY logo representing the distributed nature of GIPSY 17
3 Overall multifaceted research summary 18
4 Runof a computation ¢ [I33]o 31
5 Backtracking example in ¢ "'(y) and U"NY) [I33]
6 Explanations as partitioned runs of an observation sequence [133] 33
7 Meaning and explanation hierarchy [I33] 30
8 Fixed-length event reconstruction [I33] 37
9 Example computation event sequences 38
10 Example of construction of MPR [8T] [40)
11 Generic observation sequence permutations example (40l
12 Printer Case state machine [I33] o0 4
13 Paths leading to (Bx, Bx) - -« « o o o o i 531
14 Cluster data with Blackmail fragments B3l
15 Simplified view of the cluster model [134] 53]
16 Blackmail Case state machine [305]
17 Natural-language contextual expression [359, 378 631
18 1D example of tag-value contextual pairs [359,B78] 63
19 2D example of tag-value contextual pairs [262,280] 63
20 Sample G> syntax expressions 78
21 Sample Gs operators L [79
22 Classical natural-numbers example [359])
23 Extract of operational semantics rules of GIPL [359] 82
24 Extract of operational semantics of Lucx [470,5610] 83
25 Eduction tree as a trace for the natural-numbers problem in OBJECTIVE LU-

CID [262] (¥
26 The natural-numbers problem in OBJECTIVE Lucip [303] 941

1X

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
20
o1
52
53
o4
25
26
57
o8
29
60

Extract of operational semantics of OBJECTIVE Lucip [302]
Higher-order context Dot operator of MARFL [302]

MARF’s pattern-recognition pipeline [270]

MARF’s pattern-recognition pipeline sequence diagram 288

The distributed MARF pipeline

High-level structure of GIPSY’s GEER flow overview [313]
High-level structure of the GIPC framework [313]

GMT context use case diagram
Design of the GIPSY node [159, 360] . . .
Detailed GMT context use case diagram .
RIPE context use case diagram
MARFCAT GIPSY network graph
GIPSY WebEditor interface [262]

Nested context hierarchy example for cyberforensic investigation [298], 302]

Concrete FORENSIC Lucip syntax (F) [302,803]

Concrete FORENSIC Lucip syntax (@) [302,B8303]
Concrete FORENSIC Lucip syntax (ES,0S,0) [302,303]
Concrete FORENSIC LUCID syntax (operators) [302, 303]
Operators translated to GIPL-compatible definitions [302, 303]
Operational semantics rules of FORENSIC LuciD: E and Q Core

Operational semantics rules of FORENSIC LuciD: E and) Core Context . .

Operational semantics of FORENSIC LucID

Operational semantics of FORENSIC LuUCID:
Operational semantics of FORENSIC LuUcCID:
Operational semantics of FORENSIC LUCID:
Operational semantics of FORENSIC LUcCID:

Operational semantics of FORENSIC LUCID:

PRISM input language basic syntax [18§] .
PRISM input language syntax (1) [188] . .
PRISM input language syntax (2) [I88] . .

(00)
an observation
forensic operators and lifting . .
an observation sequence

an evidential statement

belief and plausibility

PRISM input language operational semantics [I88]

FORENSIC LucCID compilation and evaluation flow in GIPSY [320]
Updated high-level structure of the GIPC framework

Semantic analyzers framework

1152
1o
1166
1169

61
62
63
64
65
66
67

68

69
70
71
72
73
74
75
76
7
78
79
80
81
82

83
84
85
86
87

38
89
90

Evaluation engines class diagram
Demand Generator and Dispatcher relationship
Configuration UML class diagram
Annotations class diagram
Forensic extensions to the GIPSY Type System
Conceptual illustration of FORENSIC LUCID encoders
Example of a three-observation sequence context exported from MARF to
FOrReNsiC LuciD [320]
Example of a simplified three-observation sequence context exported from
MARF to Forensic Lucip [320] L.
GIPSY cluster network topology L
Example RT ticket alerting of a possible MAC spoofing attempt
Use and Misuse Cases in MAC spoofer investigations
Procmail handler trigger recipe (rule)o
MAC spoofer analyzer UML sequence diagram
HOIFL initial sketch formulation
The GIPSY type system [313]
Example of provider interfaces and comparators [299]
Composite types [299]o
Abstract GIPSY existential types [299].,
Concrete GIPSY existential types [299].

Concrete GIPSY union types (providers) [299]
Concrete GIPSY union types [299]

Example of hierarchical context specification for an evaluation configuration

of MARF [270] . . o oo oo
MARFL context syntax 270]
MARFL context semantic rules 270]
Initial SpeakerIdentApp re-written in MARFL [270]
ASSL multi-tier model [320] oo

The prototype syntactical specification of the SELF_FORENSICS in ASSL for

ADMARF [B20] . . o o o oo
Example of observations in GIPSY [319]
Example of observations in JDSF [319]

Example of observations for the second equation in Cryptolysis [319]

X1

91
92
93
94
95

Canonical example of a 2D dataflow graph-based program [359]
Example of an actual rendered 2D DFG-based program with Graphviz [87] .
Modified conceptual example of a 2D DFG with 3D elements [309]
Conceptual example of linked 3D observation nodes [309]

Interactive documentary illimitable space visualization and management [434]

patl

List of Tables

© I O Ot e W NN =

I o T S Sy S U Y
o J O Ot = W =

Possible identifier types [359]o oo R0
File-type identification top 10 results, bigrams ([288]) 1091
File-type identification top 10 results, 2nd best, bigrams ([288]) 109
File-type identification top 10 results, bigrams, per file type ([288]) 109
Sample CVE classification stats for Chrome 5.0.375.54 [285] 1K)
Sample CVE stats for Tomcat 5.5.13 [285] 1201
Top 6 distance malware classifiers and 32 results, FFT feature vectors [123]

Top 6 distance malware classifiers and 32 results, wavelet filter preprocessing [124]

Top 6 distance malware classifiers and 32 results, low-pass filter preprocessing

FoRrEgNsIC Lucip identifier typesin D 161
Example of application of FORENSIC LUCID operators to bounded streams [303|184]
Types of context operators’ arguments and resulting types
GIPSY cluster IP assignment 270
Matching data types between LuciD and JAava 299, B13] 334

Common example types of context operators’ arguments and resulting types [270]B50

xiil

List of Algorithms and Listings

6.1 Example of a hybrid GIPSY program 1411
8.1 MARFCAT encoded evidence fragment example 230
8.2 swm encoded evidence exampleo 230
8.3 Argus encoded evidence exampleo L 238
8.4 arp encoded evidence exampleo 238
9.1 Limb Example.
9.2 Raining Exampleo 249
9.3 DSTME Raining Example 250
9.4 Developing the Printing Case: “main” [302, 803, 310] 2511
9.5 Transition function ¢ in FORENSIC LuciD for the ACME Printing Case . . . [253]
9.6 Inverse transition function ¥~—! in FORENSIC Lucip for the ACME Printing

Case 255
9.7 Blackmail Case modeling in FORENSIC LuciD 2501
9.8 Augmented MAC spoofer checking/investigation algorithm 263]
9.9 MAC Spoofer Analyzer’s RT evidential statement context encoding example [270]
9.10 msw encoded evidence example L
9.11 activity encoded no-observation evidence example
9.12 nmap encoded evidence exampleo
9.13 dhcp log encoded evidence exampleo L 273

Xiv

Chapter 1

Introduction

Cyberforensics, or digital forensics, is the overarching term for digital crime investigations
concerning (among other aspects) digital data recorded on various computing devices and ser-
vices as evidence for the purposes of analysis, event reconstruction, attribution, and eventual
prosecution or exoneration of suspects. Unlike in traditional forensics, cyberforensic pro-
cesses (see Chapter [2]) face a number of extra multifaceted challenges for their methods and
results to be usable in a court of law and in information security practice. This thesis presents
an endeavor that extends the use of the intensional programming paradigm [129] [348] and
the science behind it to formally model and implement a cyberforensics investigation process
with backtracing of event reconstruction, formalizing and modeling the evidence as multi-
dimensional hierarchical contexts, and proving or disproving the claims in an intensional
manner of expression and eductive evaluation [303] 305] based on Kripke’s possible-world
semantics [505]. Our proposed solution (Section |1.4)) is designed to be a practical, context-
aware improvement on the raw finite-state-automata (FSA/LISP) approach we have seen
in [81, 133, 134, 135]. The core contribution of this thesis, FORENSIC LucCID, is in Chap-
ter [7], with its most advanced application described in Section [9.5 page What follows
are executive summary details of the overall research and approach.

We apply intensional logic to automated cyberforensic analysis, reasoning, and event
reconstruction. We explore the benefits and difficulties in comparing the work with the
aforementioned finite-state automata/COMMON LiSP approach. Intensional logic, as a mul-
tidimensional generalization of temporal logic, makes the evaluation of regular mathematical
and logic expressions context-aware, where the context of evaluation (an arbitrary part of
interest in the “possible world”) is a first-class value and can be manipulated in logical ex-

pressions via context operators. The fundamental context consists of dimension-value pairs.

To help the study, the foundation of the new FORENSIC LUCID language is presented along
with its forensic context operators to navigate evidential statements and crime scene specifi-
cations [303]. Our approach additionally introduces the notion of credibility and trustworthi-
ness of evidence and witnesses, which FSA /LISP lacked—via the Dempster—Shafer theory of
mathematical evidence to address the problem that some evidence or witness accounts may
not be 100% credible, potentially affecting the overall reasoning about a case.

The FOrRENSIC LuciD compiler and run-time system are being designed within the Gen-
eral Intensional Programming System (GIPSY) [159, 262] 360] B368]. As an added benefit
arising from the use of LUucID and its GIPSY implementation, the cyberforensics investi-
gation cases may be conducted using a scalable distributed/parallel intensional approach for
event reconstruction computation. This work is a natural evolution of and refinement of
related works written or cowritten by the author [265], 267, 274 298|, 302, 303, 305}, 310}, B19].

Lucip and intensional logic are good candidates, proven over time, for knowledge rep-
resentation and computable context-aware evaluation [169]. The FORENSIC LUcCID instance
presented in this thesis is arguably the first formally specified and developed language allow-
ing scalable encoding of forensic knowledge of a case, the building of the case’s operational
description, and the evaluation of claims against them with event reconstruction locally or on
a cluster for large volumes of digital evidence. The first ideas of FORENSIC LUCID appeared
in [265] in 2007.

As a result, this thesis can be said to be a cross-disciplinary work that touches the breadth
of the research in digital forensics, formal methods, intensional logic and programming, soft-
ware engineering, distributed and parallel computing, soft computing and expert systems,
automated reasoning, law, mathematics, pattern recognition and data mining, and graphi-
cal visualization. Thus, armed with all these tools and techniques we approach the digital
investigation process.

In this chapter subsequently we gradually provide in increasing level of detail, after a more
comprehensive overview (Section of the research along with the principal motivations for
it, we detail a set of problems and gaps in Section [1.3| requiring addressing and the proposed
solutions to them in Section [1.4] Further we define the scope of this thesis in Section [1.5
and the overall summary of the research and contributions as well as organization of the

remainder of this thesis in Section [L.6l

1.1 Overview

FORENSIC Lucip, a functional-intensional forensic case programming/specification language
is at the core of the Intensional Cyberforensics project. It has undergone extensive design
and development including its syntax, semantics, the corresponding compiler, run-time
environment, and interactive development environments [264], 265] provided by the General
Intensional Programming System (GIPSY) [460]. This work further extends our previous
developments in the related work [261], 264, 265] 298] [302].

ForeNsic LuciD, serving as the base declarative specification language model that we
use in this approach, is in fact a new dialect of the LUCID intensional-logic-based program-
ming language [24), 25] [26] 27, [506]. As a part of this thesis, we define hierarchical contexts in
ForeNsic LuciD (Section based on intensional logic for the evaluation of cyberforensic
expressions, first for modeling example case investigations from the related FSA/LISP work
in order to do comparative studies of the old and new approaches [305]. The cases involved
disputes between parties surrounding some kind of computer-related equipment. In particu-
lar, in this work we model the blackmail and ACME (a fictitious company name) “printing
case incident” and make their specification in FORENSIC LuciD for follow-up cyberforensic
analysis and event reconstruction. Our approach is based on the said cases, modeled by
encoding concepts such as evidence and the related witness accounts as an evidential state-
ment context in a FORENSIC LuUcIiD “program”. The evidential statement is an input to the
transition function that models the possible “feed-forward” deductions in the case. We then
invoke the transition function (actually its reverse, “backtracking”) with the evidential state-
ment context, to see if the evidence we encoded agrees with one’s claims and then attempt to
reconstruct the sequence of events that may explain the claim or disprove it [310]. Following
the simple cases, we model more realistic cases and place some of the resulting practical arti-
facts to work in the actual network and system operations (Section [0.5)). Additionally, in the
ongoing theoretical and practical work, FORENSIC LUCID is augmented with the Dempster—
Shafer theory of mathematical evidence to include credibility factors and similar concepts
that are lacking in Gladyshev’s model [308]. Specifically, this thesis further refines the theo-
retical structure and formal model of the observation tuple with credibility weight and other
factors for cyberforensic analysis and event reconstruction [308] by extending the first itera-
tion of FORENSIC LuUcCID that was originally following Gladyshev’s approach [133, 134, 135]
to only formalize the evidence and the case in question without taking into account witness
credibility [298], 302} B08].

As an intensional dialect, FORENSIC LUCID’s toolset is practically being designed within

the General Intensional Programming System (GIPSY) and the probabilistic model-checking
tool PRISM as a backend to compile the FORENSIC LuciD model into PRISM code syntax
and check the compiled case model with the PRISM tool at run-time [308]. As briefly men-
tioned earlier, GIPSY is the middleware platform in this study that performs the FORENSIC
Lucib computations. The GIPSY project is an ongoing effort aiming at providing a flexible
platform for the investigation of the intensional programming model as realized by the lat-
est instances of the LUCID programming language [24] 25, 26] 27, 506] (a multidimensional
context-aware language whose semantics is based on possible-worlds semantics [216], 217]).
GIPSY provides an integrated framework for compiling programs written in theoretically all
variants of LUCID, and even any language of intensional nature that can be translated into
some kind of “generic Lucid” [300] (e.g., in our case GIPL [359, 363, 470, [510]).

1.2 Motivation and Applications

Motivations

A formal approach to cyberforensic analysis is necessary for the artifacts produced to be a
credible tool to use in law enforcement and to be viable in courts if challenged. Pavel Glady-
shev in his PhD thesis [133] dedicated the entire Chapter 4 to that effect. He subsequently
provided formalisms in event reconstruction in digital investigations. Likewise, in order for
Forensic LuciDp (and its surrounding theory and practice) to be a credible tool to use in
a court of law (including the implementation of relevant tools for the argumentation), the
language ought to have a solid scientific basis, a part of which is formalizing the semantics
of the language and proving correctness of the programs written in it.

We move one step further motivated by the fact that truth and credibility can be fuzzy
(that is with elements of uncertainty or taintedness of evidence and witness accounts) and
not just being completely true or false. Thus, it is natural to want to be able to represent
such knowledge, and reason with its presence to discount low credibility claims and give
higher-credibility claims higher weight.

The concrete realization of the formal approach also has to be usable by a wider investiga-
tive audience, who should be able to represent and visualize the voluminous case knowledge
and reason about it efficiently. Thus, it is imperative to have usable scripting and visual aid
tools to compose the case and import the digital evidence by human investigators. Addi-

tionally, the knowledge representation, case building and management should be friendlier

to human investigators and take contextual meaning into the account. The subsequent case
evaluation should be scalable and efficient at the same time, given the likely possibility of
the need to process a large amount of digital evidential data.

Furthermore, a concrete operational need exists to automate the reasoning about truly
offending or false-positive cases in the actual operational environment on a Faculty network to
reduce the burden of the very few human analysts manually doing the related investigations
while attending to many other duties (cf. Section [9.5)).

Applications

Due to the inherent interdisciplinary nature of this research (cf. page [2), its possible ap-
plications and implications can go significantly further beyond the very specific computer
and network security investigations mentioned in this thesis and even beyond the cybercrime
domain itself.

One possible application of the theoretical framework and formal model of the observation
tuple with credibility weight and other factors for cyberforensic analysis is intrusion-detection
system (IDS) data and their corresponding event reconstruction [308]. This work may also
help with further generalization of the testing methodology of IDSs [353] themselves [308].
In particular, encoding and modeling large volumes of network and other data related to
intrusion detection is an important step in incident analysis and response. The data are
formalized in FORENSIC LuciD for the purposes of event correlation and reconstruction
along with trustworthiness factors (e.g., the likelihood of logs being altered by an intruder)
in a common specification of the evidential statement context and a digital crime scene. A
possible goal here is to able to collect the intrusion-related evidence as the FORENSIC LUCID’s
evidential statement from diverse sources like Snort [254, [396, [435], netflows, pcap’s data,
etc., to do the follow-up investigation and event reconstruction. Another goal is to either
be interactive with an investigator present, or fully automated in an autonomous IDS with
self-forensics [319] capability [308].

The proposed practical approach in the cyberforensics field can also be used in a normal
investigation process involving crimes not necessarily associated with information technology.
Combined with an expert system (e.g., implemented in CLIPS [398]), the approach can also
be used in training new staff in investigation techniques to help to prevent incomplete analysis
that conventional ad-hoc techniques are prone to.

Venturing completely outside of crime investigation (digital or not), the FORENSIC LucIiD

approach was proposed to be adapted to applications beyond its intended purpose described

in this thesis. On one hand, such a cross-disciplinary area of application is archeology for
event reconstruction in historical context of the evidence one digs up from the archaeological
sites trying to describe and arrange mentally all the evidence and describe what may have
happened long ago given all the finds and validate various hypotheses put forward in that
context. Extrapolating from that, any application where event reconstruction is needed in
the presence of uncertainty, can be approached with FORENSIC LUcCID. Another application
area comes from even further away—the artistic side and the entertainment industry, such
as validating logical consistency of scripts, plots, and strategies for feature films and games

of relative complexity (especially if such works have themselves to do with investigations!).

1.3 Problem Statement and Gap Analysis

The arguably very first formal approach for evidential statement consistency verification and
event reconstruction in cyberforensic investigative analysis appeared in the previously men-
tioned works [I33], 134], [I35] by Gladyshev et al. That approach (described and recited in
detail in Chapter [2)) relies on the finite-state automata (FSA) and their transformation and
operation to model evidence, witnesses, stories told by witnesses, and their possible evalu-
ation for the purposes of claim validation and event reconstruction (other formalisms were
studied in [21, 22], see Section [2.2). There the authors provide a COMMON LISP sample
implementation. The examples the works present are the initial use-cases for the proposed
technique in this thesis— Blackmail Investigation (Section and ACME Printing (Sec-
tion cases. Their approach, however, is unduly complex to use and to understand for
non-theoretical-computer science or equivalently minded investigators. While the formaliza-
tion and implementation of the FSA/LISP approach was very valuable to the community,
it is not as elegant as it could have been [81] nor it is very usable by the majority of the
less-formal-tech-savvy investigators.

At the origins of Intensional Programming (IP) is the LuciD functional intensional pro-
gramming language, dating back to 1974 [27]. After more than 35 years of development,
history has proven that it is a programming paradigm whose languages are diversified and
are in constant evolution. However, Intensional Programming [129,[348] is an off-main-stream
programming paradigm [523] whose concrete applicability still needs to be proven in order to
be widely accepted. A lot of intensional dialects have been spawned from the 35+-year-old
Lucip [5, 24} 25] 26, 27, 91, 120, 124, 359, 362, 506, 511, 538]. Lucid (see Section [4.1)) itself

was originally invented with a goal for program correctness verification [23, 25| 26, 242] [530].

Overall, there are a number of unaddressed problems and gaps with theories, techniques,
and technologies used, which we summarize below and then elaborate in some detail on the

specific points.
1. The FSA/LISP approach to formal cyberforensic analysis:

(a) does not scale humanly (comprehension, scalability) and computationally (usabil-
ity)

(b) has no credibility factors to annotate evidence and testimonies (probabilities and
PRISM are subsequently needed)

(c) has no visualization of the knowledge base and the case management
(d) requires more realistic cases to test in the actual operational work

(e) no automatic encoders of the evidence into COMMON Lisp or FSA

2. The Lucip language:
(a) needs hierarchical contexts to represent nested /hierarchical knowledge as streamed
arguments and results
(b) requires object members access and other APIs for arbitrary nesting
(c) needs the use of formal methods and verification

(d) needs better usability of the LuciD development and run-time tools for a wider

community
(e) requires an update to the theoretical foundations:

i. needs a common format for knowledge representation and reasoning

ii. needs a augmented theoretical logical framework (HOIL and HOIFL, see Sec-

tion [1.6.1.1] page support for reasoning

3. The GIPSY system:

a) needs augmentation to support FORENSIC LUCID

()

(b) requires cross-language data types

(¢) needs a compiler for FORENSIC LuciD
)

(d) the evaluation engine/run-time systems needs:

i. multi-tier architecture to address scalability better

7

ii. refactoring the framework for optimized problem-specific handling

iii. reasoning engines for backtracking and probabilities
(e) configuration management and automation

(f) requires development/configuration environment with graphical support for the

better usability

1.4 Proposed Solution

This work focuses on the refinement of application of the intensional logic to cyberforensic
analysis and its benefits are compared to the pure finite-state automata approach [305]. At
the same time we increase the visibility of the Intensional Programming paradigm within the
formal methods and cyberforensic analysis communities as the right tool to use in such an
approach.

The large part of the solution is the creation of the introduced FORENSIC LucID dialect
of LUCID to foster the research on the intensional cyberforensics 298] (see Section [1.6.1.2).
To summarize in a few words, this thesis presents multidimensional context-oriented cyber-
forensic specification and analysis. In a large part, FORENSIC LUCID is a union of the syntax
and operational semantics inference rules from the comprising intensional languages with its
own forensic extensions based on the cited finite-state automata approach [133] 134 135].
In order to be a credible tool to use, for example, in court, to implement relevant tools for
the argumentation, the language ought to have a solid scientific base, a part of which is a
complete formalization of the syntax and semantics of the language [302].

Thus, the approach this thesis follows is tailored to addressing a decent subset of problems

and gaps outlined in the previous section. Specifically:

1. Addressing the FSA /LISP approach gaps.

The goal of this work is to lay a foundation to lead to a solution that remedies these two
major drawbacks of the FSA approach by introducing credibility factors and improving
usability. Additionally, we benefit from the parallel demand-driven context-aware eval-
uation in terms of the implementing system, which the original CoMmMON Lisp-based

implementation [I135] approach lacks [303].

As to the test cases, the two actual illustratory examples Gladyshev’s works presented

are the mentioned first use-cases for the proposed technique in this thesis—the ACME

printer and blackmail case investigations (see Section [2.2.5.1| and Section [2.2.5.2f re-
spectively). These works [I34] 135] detail the corresponding formalization using the

FSA and the proof-of-concept (PoC) COMMON LISP implementation for the printer
case [135]. We first aim at the same cases to model and implement them using the
new approach, which paves a way to be more friendly and usable in the actual in-
vestigator’s work and serve as a basis to further development in the areas of forensic
computing and intensional programming using FORENSIC Lucip [305], BI0] (see Sec-
tion and Section respectively). We then move onto more realistic cases, such as,
e.g., MAC spoofer report investigations (see Section .

Thus, a LuciD approach is a major solution to these problems.

. Addressing the LuciD gaps.

The Lucip family of languages thrived around intensional logic that makes the notion
of context explicit and central, and recently, a first class value [470, 510, 512] that
can be passed around as function parameters or as return values and have a set of
operators defined upon. We greatly draw on this notion by formalizing our evidence
and the stories as a contextual specification of the incident to be tested for consistency
against the incident model specification. In our specification model, we require more
than just atomic context values—we need a higher-order context hierarchy to specify
different level of detail of the incident and being able to navigate into the “depth” of
such a context. Luckily, such a proposition has already been made [270] and needs

some modifications to the expressions of the cyberforensic context.

In terms of syntax and semantics for FORENSIC LUCID we benefit in large part, as
the language is based on its predecessor and codecessor Lucid dialects, such as GIPL,
INDEXICAL Lucip, Lucx, OBJECTIVE LuciD, and JOOIP bound by the higher-order
intensional logic (HOIL) that is behind them. This work continues to formally specify
the operational semantics of the FORENSIC LuciD language extending the previous
related work [298], 302].

We further define the specification of hierarchical evidential context expressions and the
operators on them when modeling the examples while illustrating related fundamental
concepts, operators, and application of context-oriented case modeling and evaluation.
ComMON Lisp, unlike LuciD, entirely lacks contexts built into its logic, syntax, and
semantics, thereby making the implementation of the cases more clumsy and inefficient
(i.e., highly sequential) [I35]. Our GIPSY system [I89, 262, 360} 364, 368 offers a

distributed demand-driven evaluation of Lucid programs in a more efficient way and is

more general than the LISP’s compiler and run-time environment [305, [310].

Thus, HOIL, GIPSY are the solutions here.

. Addressing the GIPSY gaps.

To enhance the scalability of GIPSY a number of APIs needed to be updated, re-
designed, or designed from scratch to accommodate new middleware technologies, com-
pilers, and the run-time evaluation system. We designed components and amended ex-
isting components of the distributed evaluation engine within the General Intensional
Programming System (GIPSY) enabling measurements of a wide array of run-time pa-
rameters for the purposes of scalability studies, its configuration management, schedul-
ing, and administration with the General Manager Tier (Section component
of the GIPSY’s multi-tier architecture [I59]. We made advances in the software engi-
neering design and implementation of the multi-tier run-time system for the General
Intensional Programming System (GIPSY) by further unifying the distributed tech-
nologies used to implement the Demand Migration Framework (DMF, Section |6.1.3))
in order to streamline distributed execution of hybrid intensional-imperative programs
using JAvA [159]. The bulk of multi-tier implementation and scalability studies follow-
ing the redesign of the APIs were carried out by Han [I58] and Ji [I89], and graphical
configuration management by Rabah et al. [391].

The compiler API support has been further enhanced to allow JOOIP (Section4.3.2.3)
compilation, the semantics and PoC implementation of which was subsequently carried
out by Wu [525].

The author Mokhov supported the design and unification of these APIs and the inte-
gration effort within GIPSY following up with his own extensions to support multiple
GEE (Section backends and a compiler to support FORENSIC LUCID, including
the complete GIPSY Type System and Theory (see Appendix. All this work resulted
in a number of contributions to GIPSY and its frameworks detailed in Chapter [

As a part of the proposed near-future work to improve scalability of information man-
agement and presentation and with the ongoing advances in the interaction design [402],
the visualization project was proposed to further enhance usability of the discussed
language and system and the related tools. Lucid programs are dataflow programs
and can be visually represented as data flow graphs (DFGs) and composed visually.

Forensic Lucip includes the encoding of the evidence (representing the context of

10

evaluation) and the crime scene modeling in order to validate claims against the model
and perform event reconstruction, potentially within large swaths of digital evidence.
To aid investigators to model the scene and evaluate it, instead of typing a FORENSIC
LuciDp program, we propose to expand the design and implementation of the Lucid
DFG programming onto FORENSIC LUCID case modeling and specification to enhance
the usability of the language and the system and its behavior in 3D. We briefly dis-
cuss the related work on visual programming and DFG modeling in an attempt to
define and select one approach or a composition of approaches for FORENSIC LUCID
based on various criteria such as previous implementation, wide use, formal backing in
terms of semantics and translation [309] (see Chapter [E]). Reaching out into a differ-
ent disciplinary areas of specific interest here—a recent novel concept of documentary
knowledge visual representation in illimitable space introduced by Song in [434]. That
work may scale when properly re-engineered and enhanced to act as an interactive 3D
window into the evidential knowledge grouped into the semantically linked “bubbles”
visually representing the documented evidence and by moving such a contextual win-
dow, or rather, navigating within theoretically illimitable space and investigator can
sort out and re-organize the knowledge items as needed prior launching the reasoning
computation. The interaction aspect would be of a particular usefulness to open up
the documented case knowledge and link the relevant witness accounts. This is a pro-
posed solution to the large scale visualization problem of large volumes of “scrollable”
evidence that does not need to be all visualized at one, but be like in a storage depot.

(However, the actual realization of this solution is deferred to later time.)

What follows are the details of our solution along with the related work [272, [311].

1.5 Scope

Out of the problems and gaps detailed in the previous sections, we summarize the more
concrete objectives within the actual scope of this thesis in Section and the items that

are outside the scope of the thesis and more destined for the immediate future work in

Section [[.5.2

11

1.5.1 Thesis Objectives

The primary objectives are to design the introduced FORENSIC LUCID incident specifica-
tion/scripting language in terms of formal syntax and semantics and show their use through

several case studies. Specifically, in the point form the objectives are to produce:

1. ForeNnsic Lucip (Chapter [7))

a) FORENsIC LucID syntax (Section [7.3)

(
(b) FORENSIC LUCID operational semantics (Section

(
(

)
)
c¢) Hierarchical higher-order context specification (Section
d) Operators and “transition functions” (Section

)

(e) Observation specification with credibility (Section [7.4.2)
2. FORENSIC LucID parser (Section
3. Run-time evaluation environment (engine) design (Section

4. Example cases (see Chapter [J))

1.5.2 Out of Scope

e Large scale visualization of the case and systems
e IDS integration and inter-operation

e Other future work items detailed in Section [10.4]

1.6 Summary

To summarize, we believe and show that the intensional approach with a Lucip-based dialect
to the problem is an asset in the fields of cyberforensics and intensional logic and programming
as it is promising to be more practical and usable than the plain FSA/LISP in the end [303],
308, [310]. Since LuciD was originally designed and used to prove correctness of programs [24]
25, 20, [506], and is based on the temporal logic functional and data-flow languages, we can
relatively easily adopt its computational machinery to backtracking in proving or disproving

the evidential statements and claims in the investigation process as simply an evaluation of

12

a forensic expression that either translates to sets of true or false given all the facts in the
formally specified context [310] providing a set of event reconstruction traces (backtraces).
For that we defined the novel LuciD dialect with a new set of primitives predefined for
forensic tasks. Unlike the LISP-based system implementing the finite state automata, we
still retain the flexibility of parallel evaluation of several claims or several components of one
claim at the same time by relying on the GIPSY’s demand-driven general eduction engine
(GEE) whose backend is powered by various distributed systems technologies such as the
DMS [240], 3811, [382], 383, 1495, [496], 498] and multi-tier architecture [158 159, 189 B60]. We
also retain the generality of the approach [303], 305] 310].

1.6.1 Science and Technology

Here we summarize the science and technology aspects behind this work that we use and rely
on as tools and techniques that support the multifaceted nature of this thesis in a variety of
ways. The detailed description of these aspects follows in the background chapters in Part [}
The specific scientific contributions and the related work done by others and some by the
author come from the Intensional Logic and its extensions for formalization (Section [1.6.1.1]),

cyberforensic analysis (Section [1.6.1.2]), and GIPSY (Section [1.6.1.4)).

1.6.1.1 Intensional Logic and Soft Computing

From the logic perspective, it was shown one can model computations (a computation is also
a basic formal unit in the finite state machines in [134] I35]) as logic [220]. When armed
with contexts [505] as first-class values and a demand-driven run-time model adopted in the
implementation of the LuciD-family of languages [360] 363, 368, 377, 894, 470, 512] that
constrains the scope of evaluation in a given set of dimensions, we come to the intensional
logic and the corresponding programming artifact. In a nutshell, we model our forensic
computation unit in intensional logic and implement it in practice within an intensional
programming platform—the General Intensional Programming System (GIPSY) [262] 360
364, 368]. We project a lot of potential for the results of this work to be successful, beneficial,
and usable for cyberforensics investigation as well as simulation and intensional programming
communities [305, B10].

From the intensional logic we move up to the concept of higher-order intensional logic
(HOIL) [299, 1300] since FORENSIC LUCID’s constructs are that of a function al language. To

accommodate the notion of credibility in our formalism [272), 311], we then move to something

13

we define as the higher-order intensional fuzzy logic (HOIFL), which is HOIL4Dempster—
Shafer mathematical evidence theory since we are dealing with possibly inexact reasoning
present in intelligent soft computing systems [202]. For the latter we use the mentioned
PRISM tool [464] to check our models. This affects the stated earlier objectives [La] [Lb] and
M

For in-depth background on intensional logic and Dempster—Shafer theory see Section (3.2

and Section [3.3.2] respectively.

1.6.1.2 Cyberforensic Analysis

Cyberforensic analysis has to do with automated or semi-automated processing of, and rea-
soning about, digital evidence, witness accounts, and other details from cybercrime incidents
(involving computers, but not limited to them). Analysis is one of the phases in cyber-
crime investigation (while the other phases focus on evidence collection, preservation, chain
of custody, information extraction that precede the analysis) [82]. The phases that follow
the analysis are formulation of a report and potential prosecution or exoneration, typically
involving expert witnesses [81, 298] 309].

There are quite a few techniques, tools (hardware and software), and methodologies that
have been developed for the mentioned phases of the cybercrime investigation. A lot of
attention has been paid to tool development for evidence collection and preservation; a few
tools have been developed to aid data “browsing” on the confiscated storage media, log files
(e.g., Splunk [436]), memory, and so on. Fewer tools have been developed for case analysis of
the data (e.g., Sleuthkit [59]), and the existing commercial packages (e.g., EnCase [52, [147]
or FTK [2]) are very expensive. Even less so there are case management, event modeling,
and event reconstruction, especially with a solid formal theoretical base [298, 809]. More
in-depth background on cyberforensics is found in Chapter 2]

Forensic LuciD’s design and implementation, its theoretical base are being established
in this work (see Chapter . In the cyberforensic analysis, FORENSIC LUCID is designed
to be able to express in a program form the encoding of the evidence, witness stories, and
evidential statements, that can be tested against claims to see if there is a possible sequence
or multiple sequences of events that explain a given “story”. As with the Gladyshev’s ap-
proach, it is designed to aid investigators to avoid ad-hoc conclusions and have them look at
the possible explanations the FORENSIC LUCID program “execution” would yield and refine

the investigation, as was Gladyshev has previously shown [133], [134] [135] where hypothetical

14

investigators failed to analyze all the “stories” and their plausibility before drawing conclu-
sions in the cases under investigation [298] 309]. This works improves on Gladyshev’s work
by being more usable, scalable, expressive, and concise, while dealing with credibility and

incorporating the good ideas from Gladyshev.

1.6.1.3 Context-Orientation

Context-oriented computing and reasoning emerged as a domain with a lot of research go-
ing into it from various aspects as context is something that provides us with meaning.
This includes mobile computing, semantic web [534] and related technologies for natural lan-
guage understanding [411] 412} [519], intelligent agent computing and distributed systems [41],
412, [451], description logic and ontologies [537, [537], web services and service-oriented ar-
chitectures [64], 10T, 429, 531, 532], human-computer interaction [100], security [537] and
environment for requirements engineering in software engineering [252], [399] 411] 479, 519],
data mining and pattern recognition [61], 411] among others. Context also helps to deal with
an uncertainty sometimes humans have to deal with in an unknown situation using some

form of a dialectic approach based on incomplete information [4§].

Observe Orient Decide Act
Implicit Implicit
Guidance uidance

& Control

& Control

Unfolding
Circumstances

\

Environment

Decision Feed Action
—> (Hypothesis) (Test)
Forward Forward
Outside
Information
Unfolding
Unfold ng Feedback Int%ai\tcr}lon
Interaction .
With Feedback Environment
Feedback |

John Boyd's OODA Loop

Figure 1: Boyd’s OODA loop [49]

Context specification and evaluation is also at the core of the Isabelle/HOL interactive
theorem proving framework within its ML implementation [515].

Context helps making decisions about a situation or investigation pertinent to the envi-
ronment where the situation is taking place. Boyd came up with the notion of the Observe-
Orient-Decide-Act (OODA) loop (see Figure Eﬂ) when describing fighter pilots in a combat

!The image is by P. E. Moran, reproduction at the CC BY 3.0 license of the Boyd’s OODA loop is sourced
from the Wikipedia’s http://en.wikipedia.org/wiki/00DA_loop| page.

15

http://en.wikipedia.org/wiki/OODA_loop

situation [49] learning the context of their environment, reading out flight parameters, receiv-
ing information from the mission control about the known information about the enemy to
plan for the battle style, and then, when engaging, the process continues, albeit, much more
rapidly. Observations give the evidential parameters as an input of raw observed properties,
that formulate the initial context of the situation. The Orient step can be termed as the set
of context operations, the most important part of the loop, where contextual knowledge is
applied to filter out less relevant data about the environment, enemy, and own tools, through
the available constraints before arriving at a Decision of how to Act next to alter the environ-
ment and situation further to own advantage and respond to the changes introduced by the
enemy for each iteration via the feedback loops. Boyd’s military approach of the OODA loop
was further expanded to a more complex multi-perspective view of the business world [474]
for decision making. (In both cases the approach was to try to run through own loop faster
than the opponent’s to gain advantage.)

Context-orientation in security and investigation very similarly go through a similar pro-
cess, but on a different scale. Context navigation is done with appropriate operators from the
existing evidence before arriving at a conclusion, and a possible enforcement action (e.g., en-
abling firewall restriction, bringing network port down, or intensive follow-up investigation),
or a production of a new context to explore further possibilities, options, and hypotheses.
This approach in part is also taken by, e.g., Rapid7, the makers of the Metasploit penetration
testing suite and their related systems.

A number of approaches have been created to represent contextual knowledge and reason
about it. The common mainstream popular way appears to be with ontologies and Web On-
tology Language (OWL) [149] and using description logics [518, Chapters 10, 19]. Physically,
it is typically a kind of XML-based specification. Aspect-oriented programming (AOP) in

away also introduced the notion of context (see Section [8.2.1] page[213)). Intensional logic (see
Section [1.6.1.1] page has been built around the notion of context nearly from the start

and can encompass all the mentioned concepts, logics, and it has a nice executable formalism

to go along. We stick with the intensional approach as arguably the oldest sound approach
in the scene with solid foundations for formal representation of contextual knowledge and
reasoning about it in one concept, instantiated in LUcID. For further in-depth discussion

please refer to Section [6.1.4] and Section [3.2]

16

O
o

Figure 2: The GIPSY logo representing the distributed nature of GIPSY

1.6.1.4 The General Intensional Programming System (GIPSY)

The General Intensional Programming System (GIPSY) has been built around the men-
tioned Lucid family of intensional programming languages that rely on the higher-order
intensional logic (HOIL) to provide context-oriented multidimensional reasoning of inten-
sional expressions. HOIL combines functional programming with various intensional logics
(Section to allow explicit context expressions to be evaluated as first-class values that
can be passed as parameters to functions and return as results with an appropriate set of
operators defined on contexts. GIPSY’s frameworks are implemented in JAVA as a collection
of replaceable components for the compilers of various LuciD dialects and the demand-driven
eductive evaluation engine that can run distributively (Figure Qﬂ) GIPSY provides support
for hybrid programming models that couple intensional and imperative languages for a va-
riety of needs. Explicit context expressions limit the scope of evaluation of mathematical
expressions (effectively a Lucid program is a mathematics or physics expression constrained
by the context) in tensor physics, regular mathematics in multiple dimensions, etc., and for
cyberforensic reasoning as one of the specific use-cases of interest of this thesis. In return,
some of this thesis” work also provides GIPSY with more application scenarios to prove its
applicability to solve different kinds of problems. Thus, GIPSY is a support testbed for
HOIL-based languages some of which enable such reasoning, as in formal cyberforensic case
analysis with event reconstruction. In this thesis we discuss in detail the GIPSY architecture,

its evaluation engine and example use-cases [300] in Chapter @ and Chapter [§ respectively.

2Paquet, 2005

17

1.6.2 Research Approach Overview

As it is becoming evident, the research approach presented in this thesis is multifaceted
drawing on a number of aspects. These are visually presented in Figure [3| summarizing the
overall research. This figure is drawn up from an inspiration of the multi-tier architecture
of GIPSY depicted in Figure 2| with the faces augmented and extend from the logotype
of the book by Jordan and Alaghband [194], and lately in part on the context-orientation
in the OODA loop in Figure [I[l The Figure [3] depicts at the center the core contribution
of this thesis—FORENSIC LuUcCID surrounded by all the supporting tools, techniques, and
methodologies from logic programming, to algorithms, to programming languages, to the
compile- and run-time middleware systems architecture, and to the data sources used for

case evaluations.

J
GIPL Indexical Lucid

Languages

Figure 3: Overall multifaceted research summary

18

1.6.3 Thesis Organization

Due to the multifaceted nature of this thesis, it’s organized in parts covering the different
facets to make it easier for the reader to navigate and read the relevant parts of the material
easier, including the chapter, page, section, figure, etc. hyperlinks provided in the electronic
version. A lot of it is dedicated to the background work primarily by others and the author
himself to provide the necessary setting, but the background chapters are not required to be
read in a strict sequence and the readers may pick and choose the chapters of interest to read
based on a particular topic or discussion found in this chapter or in the core methodology
part. Some chapters are short that were not fitting into any other chapters, while other
chapters are significantly more comprehensive depending on its material’s importance for
this thesis.

We begin by reviewing the relevant background knowledge (Part [I)) on cyberforensics
(Chapter [2)), mathematical and logic foundations (Chapter |3) where we review the notion
of intensional logic and programming for the unaware reader, the LUCID programming lan-
guage (Chapter , data mining and pattern recognition aspects (Chapter , the General
Intensional Programming System (Chapter @ We subsequently present the refined syntax
and the semantics specification of the FORENSIC LucID language properly attributing the
inherited language constructs and rules, and the new extensions followed by the supporting
components and systems design and implementation in Part [[Il. We then proceed with the
evaluation of the approach using a number of case studies followed by concluding remarks
in Part [[TI} After the Bibliography, appendices provide additional details about the the-
ory, design, and implementation aspects supporting the core concepts presented in the main

chapters.

1.6.4 Publications and Contributions

Here are several works that are directly related to or supporting this research as far as publica-

tion aspect concerned. This section lists the select related publications on FORENSIC LuUCID

(Section [1.6.4.1); GIPSY (Section [1.6.4.2)); other aspects related to data mining, pattern
recognition, networking and security (Section [1.6.4.3)); and self-forensics (Section [1.6.4.4]).

These contributions provides some initial solutions addressing some of the the earlier states

gaps and thesis objectives.

19

1.6.4.1 Forensic Lucip

e S. A. Mokhov, J. Paquet, and M. Debbabi. Reasoning about a simulated printer case investigation
with Forensic Lucid. In P. Gladyshev and M. K. Rogers, editors, Proceedings of ICDF2C"”11, number
0088 in LNICST, pages 282—296. Springer, Oct. 2011. Submitted in 2011, appeared in 2012; online at
http://arxiv.org/abs/0906.5181

e S. A. Mokhov, J. Paquet, and M. Debbabi. Towards automated deduction in blackmail case analysis
with Forensic Lucid. In J. S. Gauthier, editor, Proceedings of the Huntsville Simulation Conference

(HSC’09), pages 326-333. SCS, Oct. 2009. Online at http://arxiv.org/abs/0906.0049

e S. A. Mokhov. Encoding forensic multimedia evidence from MARF applications as Forensic Lucid
expressions. In T. Sobh, K. Elleithy, and A. Mahmood, editors, Novel Algorithms and Techniques in
Telecommunications and Networking, proceedings of CISSE’08, pages 413-416, University of Bridge-
port, CT, USA, Dec. 2008. Springer. Printed in January 2010

e S. A. Mokhov, J. Paquet, and M. Debbabi. Formally specifying operational semantics and language
constructs of Forensic Lucid. In O. Gobel, S. Frings, D. Guinther, J. Nedon, and D. Schadt, editors, Pro-
ceedings of the IT Incident Management and IT Forensics (IMF’08), LNI140, pages 197-216. GI, Sept.
2008. Online at http://subs.emis.de/LNI/Proceedings/Proceedings140/gi-proc-140-014.pdf

e S. A. Mokhov, J. Paquet, and M. Debbabi. On the need for data flow graph visualization of Forensic
Lucid programs and forensic evidence, and their evaluation by GIPSY. In Proceedings of the Ninth
Annual International Conference on Privacy, Security and Trust (PST), 2011, pages 120-123. IEEE
Computer Society, July 2011. Short paper; full version online at http://arxiv.org/abs/1009.5423

e S. A. Mokhov, J. Paquet, and M. Debbabi. Towards automatic deduction and event reconstruc-
tion using Forensic Lucid and probabilities to encode the IDS evidence. In S. Jha, R. Sommer, and

C. Kreibich, editors, Proceedings of RAID’10, LNCS 6307, pages 508-509. Springer, Sept. 2010

e S. A. Mokhov. Enhancing the formal cyberforensic approach with observation modeling with credibility
factors and mathematical theory of evidence. [online], also in ;login: vol. 34, no. 6, p. 101, Dec. 2009.

Presented at WIPS at USENIX Security’09, http://www.usenix.org/events/sec09/wips.html

1.6.4.2 GIPSY

e S. A. Mokhov and J. Paquet. Using the General Intensional Programming System (GIPSY) for
evaluation of higher-order intensional logic (HOIL) expressions. In Proceedings of SERA 2010, pages
101-109. IEEE Computer Society, May 2010. Online at http://arxiv.org/abs/0906.3911

e S. A. Mokhov and J. Paquet. A type system for higher-order intensional logic support for variable
bindings in hybrid intensional-imperative programs in GIPSY. In T. Matsuo, N. Ishii, and R. Lee,

20

editors, 9th IEEE/ACIS International Conference on Computer and Information Science, IEEE/ACIS
ICIS 2010, pages 921-928. IEEE Computer Society, May 2010. Presented at SERA 2010; online at
http://arxiv.org/abs/0906.3919

e S. A. Mokhov, J. Paquet, and X. Tong. A type system for hybrid intensional-imperative programming
support in GIPSY. In Proceedings of C3S2E°09, pages 101-107, New York, NY, USA, May 2009. ACM

e B. Han, S. A. Mokhov, and J. Paquet. Advances in the design and implementation of a multi-tier
architecture in the GIPSY environment with Java. In Proceedings of SERA 2010, pages 259-266. IEEE
Computer Society, 2010. Online at http://arxiv.org/abs/0906.4837

e A.Wu, J. Paquet, and S. A. Mokhov. Object-oriented intensional programming: Intensional Java/Lucid
classes. In Proceedings of SERA 2010, pages 158-167. IEEE Computer Society, 2010. Online at:
http://arxiv.org/abs/0909.0764

e J. Paquet, S. A. Mokhov, and X. Tong. Design and implementation of context calculus in the GIPSY
environment. In Proceedings of the 32nd Annual IEEE International Computer Software and Ap-
plications Conference (COMPSAC), pages 1278-1283, Turku, Finland, July 2008. IEEE Computer
Society

1.6.4.3 Data Mining, Pattern Recognition, and Security

e A. Boukhtouta, N.-E. Lakhdari, S. A. Mokhov, and M. Debbabi. Towards fingerprinting malicious
traffic. In Proceedings of ANT’13, volume 19, pages 548-555. Elsevier, June 2013

e E. Vassev and S. A. Mokhov. Developing autonomic properties for distributed pattern-recognition
systems with ASSL: A Distributed MARF case study. LNCS Transactions on Computational Science,
Special Issue on Advances in Autonomic Computing: Formal Engineering Methods for Nature-Inspired

Computing Systems, XV(7050):130-157, 2012. Accepted in 2010; appeared February 2012

e S. A. Mokhov, J. Paquet, M. Debbabi, and Y. Sun. MARFCAT: Transitioning to binary and larger
data sets of SATE IV. [online|, May 2012. Submitted for publication to JSS; online at http://arxiv.
org/abs/1207.3718

e S. A. Mokhov. The use of machine learning with signal- and NLP processing of source code to
fingerprint, detect, and classify vulnerabilities and weaknesses with MARFCAT. Technical Report
NIST SP 500-283, NIST, Oct. 2011. Report: http://www.nist.gov/manuscript-publication-
search.cfm?pub_id=909407, online e-print at http://arxiv.org/abs/1010.2511

e S. A. Mokhov and M. Debbabi. File type analysis using signal processing techniques and machine
learning vs. file unix utility for forensic analysis. In O. Goebel, S. Frings, D. Guenther, J. Nedon, and
D. Schadt, editors, Proceedings of the IT Incident Management and IT Forensics (IMF’08), LNI140,
pages 73-85. GI, Sept. 2008

21

e S. A. Mokhov. Towards syntax and semantics of hierarchical contexts in multimedia processing appli-
cations using MARFL. In Proceedings of the 32nd Annual IEEE International Computer Software and
Applications Conference (COMPSAC), pages 1288-1294, Turku, Finland, July 2008. IEEE Computer
Society

e M. J. Assels, D. Echtner, M. Spanner, S. A. Mokhov, F. Carriere, and M. Taveroff. Multifaceted
faculty network design and management: Practice and experience. In B. C. Desai, A. Abran, and
S. Mudur, editors, Proceedings of C3S?E’11, pages 151-155, New York, USA, May 2010-2011. ACM.

Short paper; full version online at http://www.arxiv.org/abs/1103.5433

e S. A. Mokhov. Towards security hardening of scientific distributed demand-driven and pipelined
computing systems. In Proceedings of the 7th International Symposium on Parallel and Distributed

Computing (ISPDC"08), pages 375-382. IEEE Computer Society, July 2008

1.6.4.4 Self-Forensics

e S. A. Mokhov, E. Vassev, J. Paquet, and M. Debbabi. Towards a self-forensics property in the ASSL
toolset. In Proceedings of C3S2E’10, pages 108-113. ACM, May 2010

e S. A. Mokhov. The role of self-forensics modeling for vehicle crash investigations and event recon-
struction simulation. In J. S. Gauthier, editor, Proceedings of the Huntsville Simulation Conference

(HSC’09), pages 342-349. SCS, Oct. 2009. Online at http://arxiv.org/abs/0905.2449

e S. A. Mokhov and E. Vassev. Self-forensics through case studies of small to medium software systems.

In Proceedings of IMF’09, pages 128-141. IEEE Computer Society, Sept. 2009

e S. A. Mokhov. Towards improving validation, verification, crash investigations, and event recon-
struction of flight-critical systems with self-forensics. [online], June 2009. A white paper submit-
ted in response to NASA’s RFI NNH09ZEAOQOLL, http://arxiv.org/abs/0906.1845, mentioned in
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100025593_2010028056.pdf

e S. A. Mokhov, J. Paquet, and M. Debbabi. Towards formal requirements specification of self-forensics

for autonomous systems. Submitted for review to J. Req. Eng., 2009-2013

22

Part 1

Background

23

Chapter 2

Cyberforensics

In this chapter we review the background work in the domain of digital crime investigations.
The bulk of the related literature pertinent to this thesis has been summarized here in detail
for the readers who want to remind themselves of the core literature that is used in this
research (most prominently the FSA formal approach to digital investigations and other
formal approaches in cyberforensics). The major literature cited is the one that is either the
most fundamental and inspiring work for this thesis and/or of some supplemental relevance
and support of this work as this thesis was gradually developed over the years. It is not meant
to be a comprehensive survey of the “cutting edge” of the state of the art on the matter.
More specifically we review the general aspects of Forensic Computing in Section [2.1] the core
formal FSA approach by Gladyshev to evidence representation and event reconstruction with
examples in Section [2.2] some more recent related approaches are discussed in Section [2.3]

and concluding remarks are in Section

2.1 Forensic Computing

Gathering and analyzing data in a manner as free from distortion or bias as
possible to reconstruct data or what happened in the past on a system [or a

network] —Dan Farmer, Wietse Venema (1999) [250]

Many ideas in this work come from computer forensics and forensic computing [136]

137, 522]. Both have traditionally been associated with computer crime investigations (cf.,

24

Section to seize the evidence, live or “dead”, memory contents, disk contents, log
files off any storage and computing devices, followed by, among other things, information
extraction and analysis [306], [320]. There is a wide scope of research done in forensic com-
puting, including formal and practical approaches, methodologies, and the use associated
tools [211, 22, ’3, 134, [135], 150L 355] (see Section [320] and the annual Digital Forensic
Research Workshop (DFRWS) was established [355] to track progress in the field along with
other venues, such as IMF [136, [137], ADFSL, etc.

Digital forensics is also a prominently growing art in court of law with practitioners
including attorneys, such as Craig Ball [37], who become more proficient in the digital in-
vestigation and the tools, but who are not as widely available as attorneys for other law
disciplines because due to very detailed technical aspects of the digital investigation practice
that is usually restricted to technical expert witnesses found in law enforcement and similar
agencies.

Forensic computing relies mostly on similar approaches in the evidence gathering and
usage as the traditional way, summarized below by Lee [229] (where “substance” in item

in our case are digital data):
Following are the objectives of utilization of forensic evidence found at a crime
scene in any [investigation];
1. Information on the corpus delicti;
2. Information on the modus operandi;
3. Linkage of persons to other persons, objects, or scenes;
4. Linkage of evidence to persons, objects or locations;
5. Determining or eliminating the events and actions that occurred;
6. Disproving or supporting witness statements or testimony:;
7. Identification or elimination of a suspect;
8. Identification of unknown substance;
9. Reconstruction of a crime;

10. Providing investigative leads.

25

H.C. Lee [229]

Forensic computing is broadly separated into two aspects: “dead” analysis and “live”
analysis. The former is more traditional (working on data off a disk or log files some time
after the incident occurred and the computing equipment was powered off) and the latter
emerged and gained popularity to capture any live volatile data that may provide more insight
on the incident while it is still available (such as memory content that may have unencrypted
data and other live data structures, process list, current network connections and traffic flows,
current open files, etc., possibly gathering the live data while the incident is unfolding) [57,
250), B71). Live forensics according to McDougal [250] often actually constitutes Incident
Response [245] while volatile evidence is “hot” and may still be available. Live forensics is
also common in active “honeypots” deployed [I70] 461] as a honeypot to lure in attackers
to weakened virtual hosts networks and observe their activity to learn and know what and
how they attack; the most prominent example is the HoneyNet project [I70]. Despite its
growing attractiveness, live forensics has also been criticized for potential risks that it may
introduce [57], e.g., when an attacker deliberately tries to actively circumvent or feed/leave
bogus and noisy data around in disguise for real data making live data findings sometimes less
reliable and untrustworthy as evidence (unless the attacker is not in a position to poison the
real data or prevent the live analysis tools running on the system under investigation [57]).
In practice both live and dead analyses are often used together (e.g., as done by one of our
operational case studies in Section [0.5]). A combination of live forensics and dead analysis in

autonomic environment is termed as self-forensic computing (detailed in Appendix [D.2.1]).

2.1.1 Tracing for Event Reconstruction

A lot of aspects in forensic computing have to do with tracing of states, activity, and events
via (sys)logging. As a part of the related work on what we call self-forensics (see Appendix@
for an in-depth discussion) there has been some preliminary work done in the past that was
not identified as belonging to that notion. For example, a state-tracing Linux kernel [I4§]

exhibits some elements of self-forensics by tracing its own state for the purposes of forensic

analysis [320]. AspecTJ [29]’s (see Section [8.2.1] page [213| for in-depth discussion) tracing

26

capability of Java programs provides a way of tracing by the observing aspects collecting
the forensic data (e.g., data structures content) during the forward tracing of the normal
execution flow. (From the self-forensics standpoint this is useful given a large number of web-
based applications and distributed systems deployed today are written in JAVA, the use of
AspeEcTJ, which isn’t coupled with the applications’ source code and can observe application

objects independently, provides a good basis for a self-forensics middleware [320)].)

2.1.2 Computer Anti-Forensics

There are opposing forces to the forensic analysis (computer forensics—CF) and investi-
gation that stand in the way and are also a part of (anti-)forensic computing (computer
anti-forensics—CAF). Such forces aim at attacking forensic tools or techniques.

As an example, Dahbur and Mohammad introduced [74] the anti-forensics challenges
in a brief survey of tools and techniques in the field of anti-forensics together with their
classification [286] (excluding network anti-forensics aspects) [286]. In doing so, the authors
took the white-hat position on the problem to combat anti-forensics (i.e., the implied “anti-
anti-forensics”) for successful investigation. They lay a foundation for the terminology of
the anti- side [286]. Then follows the problem space definition as a context in the geopo-
litical spread of data usage on the Internet worldwide [468] including the definition of the
relevant and introductory terminology and literature [286]. That allows the authors to raise
several sets of classification categories from the surveyed literature based on attack targets,
(non-)traditional techniques, functionality, and distinguishing between anti-forensics (forensic
analysis prevention by data hiding via cryptographic or steganographic tools) and counter-
forensics (direct attack on forensic tools) [286]. They examine the problem from the point
of view of constraints found in CF: temporal, financial, and other environmental aspects.
This prompts to explore more deeply the challenges posed by CAF to the investigator by de-
scribing the evolution of the privacy technologies available to users, encryption, compression
bombs, cloud computing, steganography, etc.—overall the nature of the digital evidence and
where CAF attacks may come from in the attempt to delay or halt the investigation [286].

On a related topic, Dahbur and Mohammad overlooked some of the related work that

can help addressing some of the challenges posed by CAF, specifically on spectral file type

27

analysis via machine learning instead of magic signatures, which can detect file types with
relatively good precision when the magic numbers are altered ([288], Section [5.3] page [107).
They also overlook standard Unix utilities that have existed for ages and that can change
timestamps, for example, touch [407] and what possible attacks on such tools may be [286].
The machine learning approach (Chapter [5) has been shown to work well as well for network

forensics quite reliably [47] that in part can address the CAF problem at the network layer.

2.1.3 Forensic Tools, Techniques, and Methodologies

Dan Farmer and Wietse Venema are generally credited (1999) with the creation
of computer forensics as we know it today. They are also the author of one of
the [first] freeware tools for doing forensics named The Coroner’s Toolkit (TCT).
While this tool suit has generally been expanded and enhanced by many others,
it certainly is the basis of modern computer forensics at least within the *NIX

world. —Monty McDougal [250]

This section briefly summarizes the tools and techniques surveyed during this work. The
reader is assumed to have some familiarity with or exposure to the languages, tools, tech-
niques, and the concepts listed here. If it is not the case, please refer to the references cited
on the subjects in question.

Digital forensic investigation tools have to do with various computing aspects, such as
most commonly memory, log, and disk analysis in search for all kinds of evidence, cataloging
it properly, and presenting the results. Other aspects in digital investigation touch various
operating systems, especially after a compromise due to bad security controls or a misuse [19]
431], including in virtual machines security [354] since virtualization and cloud computing
are gaining a lot of prominence lately. Related forensic computing tools also have to do
with malware analysis [I83], 233] 430] and fingerprinting of malware and its traffic [47, 287,
312]. These activities are becoming a norm for certified computer and network security
professionals [52], 95], [441].

There are several forensic toolkits in the open-source, academic, and commercial worlds.

Dead/live analysis tools include Sleuthkit along with the chain of custody support, Helix [372]

28

with common tools for most OSes such as TCT [458], Sleuthkit and its Autopsy Browser [58],
59], Windows Forensics Toolkit (WFT) [250], EnCase [147], FTK [2], and others.

We project to have our work included into one or more of those either as a plug-in if the
host environment is in JAVA like Forensic Toolkit as JPF Plug-ins |21} 22], 83], Ftklipse [223],
2241, 225], or others [247], or as a standalone tool by itself for inclusion into more general
forensic toolsets for binary data analysis extracted from files for preliminary classification
file data alongside stegdetect [384] and many others. We are considering to make it work
with the Linux Sleuthkit [58] 59] and commercial tools, such as FTK [2], EnCase [52] [147]

and inclusion in the relevant Linux distributions as a part of our future work [288] (see

Section [10.4)).

2.1.4 Formal Cyberforensic Analysis

An increasingly important aspect of forensic computing has to do with formalisms recently
developed or being developed to the process of conceiving and applying scientific methodology
to cyberforensic investigations. This aspect is a primary interest and pursuit of this thesis.
The first more prominent work in that direction discussed is that of Gladyshev et al. [8T], 134,
135], followed by that of Debbabi et al. from the Computer Security Laboratory, Concordia
University, from [211, 22] [83] (subsequent discussed in Section , and more specifically of
the author Mokhov et al. [267, 272, 298, [302} [305], B08], which comprise the contributions of
this thesis. Thus, this chapter’s primary remaining focus is on such a formal methodology
detailed further in Section that serves the as one of the core founding principles of the

ForeNnsic Lucip foundations described in Chapter

2.2 Gladyshev’s Formal Approach to Cyberforensic In-
vestigation and Event Reconstruction

For the readers to further understand better the methodology and contribution of this thesis
(presented further in Chapter , we review in depth the details of the Gladyshev’s solution

to forensic formalization here along with the two example cases. These formalisms of the

29

FSA approach are recited from the related works of Gladyshev et al. [133] [134] [135].

2.2.1 Overview

This section reviews in-depth the earlier (Section mentioned first formal approach to
cyberforensic analysis that appeared in the works [133] [134] [135] by Gladyshev et al. To reca-
pitulate, Gladyshev [I33] relies on finite state automata (FSA) and their transformation and
operation to model evidence and witnesses accounts, and the subsequent evaluation of their
possible explanations (meanings). These are specifically recited in Section (FSA and
terminology definitions), Section m (approach to backtracing for event reconstruction),
and Section [2.2.4] (evidence formalization, the core Gladyshev’s contribution [I33]). Addi-
tionally, his works present two example use-cases: the ACME Printing Case and Blackmail

Case investigations, reviewed subsequently in Section [2.2.5]

2.2.2 Definitions

In Gladyshev’s formalization [133], a finite state machine is a sequence of four elements

T =(Q,1,v,q), where:

@ is a finite set of all possible states

I is a finite set of all possible events

Y I xQ — @ is a transition function that determines the next state for every possible

combination of each state and event

q € @ is the current system state

A transition is the process of state change [81, 133]. Transitions are instantaneous (no
duration). A finite computation is a non-empty finite sequence of steps ¢ = (co, ¢1, . . ., €le|-1)
where each step is a pair ¢; = (cé-,c?), in which cé» € [is an event, c? € (@ is a state, and
any two steps ¢ and c¢,_; are related via a transition function: Vk, such that 1 < k < |¢|,

b =(c_y, ¢l). The set of all finite computations of the finite state machine 7" is denoted

Cr [B1, 133].

30

Computation ¢

initial state final state

9-0-0-0_

P | AR . \\\
.-~ Run of gomputation ¢
initial computation c.” ’ / \\ \\ final computation

4 .o) (!)

@@ -0 -0 @00
\ AN y,

Figure 4: Run of a computation ¢ [133]

7

A run is a sequence of computations r € (Cr)"l, such that if r is non-empty, its first element
is a computation rq € Cr, and for all 1 < i < |r|,r; = ¥(r;_1), where function ¢ discards the
first element of the given computation [R1, I33]. For two computations x € Cr and y € Cr,
a relationship y = ¢(x) exists, if and only if © = x¢.y. The set of all runs of the finite state
machine T is denoted Rr. The run of computation c is a run, whose first computation is
¢ [81, 133]. Any run r is completely determined by its length and its first computation: a
computation is a sequence, a run is a computation plus length; the run defines a progress
within a computation (see Figure {4). Gladyshev uses runs as an explanation model of an
observation [81], [133].

A partitioned run is a finite sequence of runs pr € (Rp)Pl, such that concatenation of its

elements in the order of listing is also a run [811, [133]:

(pro.pri.pra.- -+ .pripr-1) € Ry (2.2.2.1)

A set of all partitioned runs is denoted PRy [81] 133]. A partitioning of run r € Ry is a

partitioned run denoted pr,, such that concatenation of its elements produces r:

(Prro-DTr1-DTr2- -+ Dlplpr|—1) =T (2.2.2.2)

31

A partitioned run is used as an explanation model of an observation sequence [81],133]. The
condition on the concatenation is to reflect the fact that observations happened after each
other, without gaps in time. A partitioned run is determined by a sequence of pairs where

the first element of a pair is a computation and the second element is a length [81] [133].

2.2.3 Back-tracing

Further, Gladyshev defines the inverse of 1—a function ¢! : Cp — 297, For any computa-
tion y € Cr, it identifies a subset of computations, whose tails are y : Vo € ¥~ (y),y = ¥ (z).
In other words, 1! back-traces the given computation [81, [133]. Subsequently, a modified
function U1 : 207 — 207 ig defined as: for Y C Cp, U H(Y) = (J¥ ¢~ !(y). This def-
inition, in addition to uniformity, allows for easier implementation [81, 133]. Both inverse

functions are illustrated in Figure [5]
[

=
(on
v
o

—

e /"//111‘1
kL. & }1 ¢ ¥)
Figure 5: Backtracking example in 1~ (y) and U~1(Y") [133]

2.2.4 Formalization of Evidence

Gladyshev formalizes the evidence (observations) from the observed event flow understanding
and storytelling [I33]. Every piece of evidence tells its own “story” of the incident. The goal of

event reconstruction can be seen as a combination of stories told by witnesses and by various

32

pieces of evidence to make the description of the incident as precise as possible [81) 133].
An observation is a statement that system behavior exhibited some property P continuously
for some time. Formally, it is defined as a triple o = (P, min,opt), where P is the set of all
computations in 7" that possess the observed property, min and opt are non-negative integers
that specify the duration of an observation [81) 133]. An ezplanation of observation o is a
run r € Ry such that every element of the run r possesses the observed property: for all
0 <i<|r|,r € P,and the length of the run r satisfies min and opt: min < |r| < (min+opt).
The meaning of observation o is the set R, C Ry of all runs that explain o [81], 133].

The duration is modeled as lengths of computations. A run explains an observation if
the length of the run satisfies the min and opt requirements, and, each element of the run r;

should possess the property P, i.e., the computation r; € P [81], [133].

2.2.4.1 Types of Observations

Gladyshev divides observations into several types [81], 133]:

e A fized-length observation is an observation of the form of (P, z,0). Any run explaining

it has a length of x.

e A zero-observation is an observation of the form of (P,0,0). The only run explaining

it is an empty sequence.

e A no-observation is an observation $ = (Cr, 0, infinitum) that puts no restrictions on
computations. The in finitum is an integer constant that is greater than the length of

any computation that may have happened (all runs satisfy this observation).
e A generic observation is an observation with variable length, i.e., y > 0 in (P, z,y).
See Section 2.2.4.5] for more details.
2.2.4.2 Observation Sequence

An observation sequence, per Gladyshev [I33], is a non-empty sequence of observations listed

in chronological order:

0s = (observation 4, observationg, observationc, . . .) (2.2.4.1)

33

An observation sequence represents an uninterrupted “eyewitness” (without gaps) story. The
next observation in the sequence begins immediately when the previous observation fin-

ishes [81], [133]. Gaps in the story are represented by no-observations [81], [133], i.e.:

$ = (Cr, 0, infinitum)

An explanation of observation sequence os is a partitioned run pr such that the length of pr
is equal to the length of os: |pr| = |os|, and each element of pr explains the corresponding

observation of os [81] [133]:

Vi:0<i<|os|,pri € Ry, (2.2.4.2)
os = (01) 09 . .) O)
pr=(pri . pra . ce : Pra)

where each pr; is a run that is an explanation of o; [81], I33]. The meaning of observation
sequence os is aset PR,s C 2R of all partitioned runs that explain os. A run r satisfies an
observation sequence os if and only if there exists a partitioning of r that explains os [811 [133].
There may be more than one partitioning of r that explains os as shown in Figure [l A
computation c satisfies an observation sequence os if and only if there is a run r that satisfies

os and o = ¢ [81), 133].

2.2.4.3 Evidential Statement

An evidential statement is a non-empty sequence of observation sequences:
es = (0sa,08p,08c, .. .) (2.2.4.3)

where ordering of the observation sequences is not important [81, [133]. Each observation
sequence is a version of the story. Each principal (i.e., witness) will have their own version

(i.e., observation sequence) [81L 133]. An explanation of an evidential statement es is a

34

os = ((Py, 1, infinitum), (Py, 1, infinitum))

SR ETENIEN)
R ENENEY

r=[S1| =S| =S| —|Ss|—|5s]

e

prai=[51] > [S:| = [Sy]

pTA2=—>
pren=|S1] =[S

[Ss] = [Sa] = [S5]

PrB2

(51] = [S2] = [Sa} [Sa] = [S5]

explanation 4

explanationg = (’ Sp ‘ — ’ Sa || S3 ‘ — ’54 ‘ — ’55 ‘)

i

where 7 is a run, pr; are various partitions of r (which are also runs), and each explanation is a

partitioned run.
Figure 6: Explanations as partitioned runs of an observation sequence [133]

sequence of partitioned runs spr, such that all elements of spr are partitionings of the same

run:

SPro,0 * SPTo,1 - - - * SPT0,|spro|-1 =
Sprio - Sprig - .- Sprl,\spTﬂ—l =
SPTles|-1,0 * SPT|es|—1,1 -« - * Spr\es|—1,\spr|es|,1|—1 =r

In other words, it should be a story that explains all the versions and each element of spr
explains the corresponding observation sequence in es, more specifically: for all 0 < 7 <

les|, spr; € PR.s, |81, 133].

35

explains
pr4 SR o] Y 0S4 /,-Osngl
» . »

- '. !

e ! e !

’ 1 |

L \ . |

‘. .~ ‘~

o pr | o oS E
|

explains

r N M 04 N On |

g | e |
1

i | ’
! e
Pid | 4
\

o |
. T ‘l‘

explains :
min

)
o
Y
A%
N ¢
3-U \
3 |°
R

) A\

. C
.
P

[€4,81—>€5,S,—>» -

Figure 7: Meaning and explanation hierarchy [133]

The meaning of evidential statement es is a set of all sequences of partitioned runs
SPRes C (PResy X PRes, X ... X PReS\esH) that explains es [81] [133]. An evidential state-

ment is inconsistent if it has an empty set of explanations. The summary of all explanations
is in Figure [7] [81, 133].

2.2.4.4 Event Reconstruction Algorithm

Gladyshev’s defined event reconstruction algorithm (ERA) involves computing the meaning of
the given evidential statement with respect to the given state machine [811, [133]. There are two
types of observation sequences: fized-length observation sequences and generic observation
sequences (described in the next section). The meanings of individual observation sequences
are combined in order to yield the meaning of the evidential statement [81], 133].

2.2.4.4.1 Fixed-Length Observation Sequences. Here we review Gladyshev’s way

to compute the meaning of fixed-length observation sequences [133]. The function ¥~! pro-
vides basic operations to automate back-tracing and proceeds as follows. First, take the set

of all computations Cr as the starting point and iteratively back-trace it into the past using

36

- - - = - SN
/ \
e S Y l
| |
L 2. L 2 AN |
| |
\ /

\’________ - - -
/ \
, |
, |
| |
........ /

05w = ((A
=<

step 5 stép 4 steb 3 step2 step1
Reconstruction steps

Figure 8: Fixed-length event reconstruction [133]

U~ [R1], 133]. At each step, computations that do not possess observed property P are dis-
carded. This is achieved by intersecting the set of back-tracings with the set of computations
that possess the property observed at the current step |81} [133]. The result of the intersection
is then used as an input for the next invocation of ¥~!'. The process continues until either
all observations are explained, or the set of computations becomes empty. An illustration of

the fixed-length event reconstruction is in Figure |8 [81), 133].

37

Cio—> Cg —> C4, — C4

Ci1—>C; —> C3 > Cy

Ci2 — Cg /05 /

Figure 9: Example computation event sequences

2.2.4.4.2 Example. As an example, Gladyshev calculates the meaning of the following
fixed-length observation sequence [81, [133]:

osap = (4A,3,0)(B,2,0)

Knowing that:

A= {6670&0107012}
B — {01702763764}

CT = {Cl,...,Clg}

such that the relationship of the events is as shown in Figure [0} There is an arrow from c,

to ¢, if Y(c,) = ¢, [81), 133].

2.2.4.4.3 Meaning Computation. The observation os,p is equivalent to a sequence

AAABB. The meaning of 0ossp can then be computed as follows [81, 133]:

38

e 2B intersections:

BNnCr=B
\I}_1<B N CT) - \I}_1 - {64703,05707, 08706}
Bn ‘IJ_I(B N CT> == {03, 04}

\I/’l(B N \If’l(B NCr)) ={cs,c7,cs}

e 3A intersections:

AN HBNYHBNCOT))) = {cs, cs}
T HAN (T HBNY Y (BNCT)))) = {cw, cia}
AN (T YAN (T YBNTYBNCH))))) = {ci0, c12}
T HAN (T HAN (T HBNIY YBNCOT)))))) = {ci, c12}
AN (TTHAN(TTHAN(TTHBNYH(BNC))))))) = {ci0, ez}
2.2.4.4.4 Map of Partitioned Runs. To calculate the meaning of an observation

sequence Gladyshev [133] uses a set of partitioned runs. A map of partitioned runs (MPR)
is a representation for a set of partitioned runs. It is a pair pm = (len,C) where C' is the
set of computations, and len is a sequence of their lengths. An MPR could represent the
set of all partitioned runs whose initial computations are in ', and whose partitions have
lengths: leng, leny, ..., lenjen—1 [81,[133]. Gladyshev states that the meaning of a fized-length
observation sequence can be expressed by a single MPR. Let C' = {¢1,¢2,...,¢,} and len =

(li,lay ..., lm). Let MPR = (C,len), then its possible illustration is in Figure (10| [81], 133].

2.2.4.5 Generic Observation Sequences

For a generic observation, whose opt # 0, the length of the explaining run is not fixed, but
is bounded between min and min + opt [81], 133]. A single observation sequence represents

many permutations of linking observed properties, see Equation [2.2.4.4] and Figure [11] for an

39

Iy I < I 3
. run . run , . run \
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1
— —> —> —> —>» mmmm—————— —> —> —>
1 1, I,
run run run

Figure 10: Example of construction of MPR [81]

example [81], 133].
osap2 = ((4,1,3),(B,1,2)) (2.2.4.4)

AB ABB ABBB
AAB AABB AABBB
AAAB AAABB AAABBB
AAAAB AAAABB AAAABBB
Figure 11: Generic observation sequence permutations example

As can be seen, there are twelve possible variants of linking properties, which is essentially
a cross-product of the lengths [81], 133]. Every permutation can be represented by a fixed
length observation sequence. The meaning of 0spo is, then, the union of the meanings of

each variant [81) 133].

(A4,1,3) = U = {(A4,1,0), (4,2,0), (A,3,0), (A,4,0)}
(B,1,2) =V = {(B,1,0),(B,2,0),(B,3,0)}
(A,1,3)(B,1,2)) =U x V

40

For instance, (A,2,0)(B,3,0) € U x V is written as AABBB, i.e., an observation se-
quence that has the A-property for two steps followed by three steps that have the B-
property [81, 133]. Gladyshev has shown how to calculate the meaning of a fixed-length
observation sequence (see Section . In order to calculate the meaning of a variable
length observation sequence, one computes the union of the meanings of each fixed-length
observation sequence. This can be modeled as a set of MPRs. Each MPR is the meaning of

a fixed-length observation sequence [81], [133].

2.2.4.6 Meaning of an Evidential Statement

First, the meanings of individual observation sequences are computed as described earlier.
Second, Gladyshev combines the meanings of observation sequences into the meaning of the
entire evidential statement. To satisfy the evidential statement, a run must satisfy all of its
observation sequences [81] [133]. Then Gladyshev states a problem of identifying the subset

of runs whose partitionings are present in the meanings of all observation sequences [81], [133].

2.2.4.6.1 Towards the Meaning of an Evidential Statement. To recapitulate,
the meaning of an observation sequence is a set of MPRs. Subsequently, each MPR is the
meaning of a fixed-length observation sequence. Further, an evidential statement is a set
of observation sequences [81], [I33]. Therefore, per Gladyshev, the meaning of an evidential
statement is the combination of the sequence of MPRs with each MPR being the meaning
of a particular fixed-length observation sequence of the evidential statement. Accordingly,
the meaning of an evidential statement computation reduces to a problem of how to combine
two MPRs [81] [133].

Let pm, = (len,, C,) and pmy, = (leny, Cy) be two MPRs. A run r can be partitioned by
both pm, and pm, if and only if two conditions hold [81], T33]:

1. The initial computation of run r belongs to initial computation sets of both MPRs:

ro € C, and ro € C, [81], 133].

2. Both MPRs have equal total number of computation steps:) len, = Y len,. If
> len, # > leny, then the two MPRs have no common runs. Otherwise, the common

runs are determined by the common set of initial computations C, N C, [81], [133].

41

2.2.4.6.2 Map of Sequence of Partitioned Runs. Ascending further per Glady-

shev [I33], a map of a sequence of partitioned runs (MSPR), written out as:
mspr = ((leng, leny, ..., len,),C)

is a representation for a set of sequences of partitioned runs [R1, I33]. C' is the set of initial
computations, and leng, leny, .. ., len,, are lists of lengths that describe how to partition runs
generated from the elements of C. An MSPR is proper if and only if Y leng = > len; =
... = »_len,. The combination of two MPRs is defined by function comb() that takes two
MPRs and returns a proper MSPR [81], [133]:

0 if > len, # > len, or C,NC, =0

comb(pmy, pmy,) =
((leng, leny),Cy N Cy) otherwise

(2.2.4.5)

2.2.4.6.3 Use of Combination. Gladyshev gives a typical usage example of the com-
bination (Equation in the example that follows [I33]. Suppose that the meanings of
two observation sequences os, and o0s;, are represented by two sets of MPRs called PM, and
P M, respectively. The meaning of the evidential statement es = (0s,4,0s;) is expressed by
the set of proper MSPRs, which is obtained by combining every MPR from PM, with every
MPR from PM, [81) 133]:

Vo € PM,,Yy € PMy,, SPM.s = Ucomb(x, Y) (2.2.4.6)

This procedure can be extended to an arbitrary number of observation sequences, thus pro-
viding a way to calculate the meaning of an arbitrary evidential statement [81], [133]. As a

result, the below is the representation of the previously calculated meaning as an MPR in

Section 2.2.4.4.3t
MPR(OSAB) = (<27 2)7 {6107 012})

42

2.2.4.6.4 Computing Combinations of MPRs. More examples are illustrated fur-
ther in the consideration of the following MPRs [81], 133]:

MPR; = ((2,1,4), {c1, ¢2, ¢3})
MPRy = ((3,4), {cs, c5, 6 })
(4,4), {c1, c2, 3, c4})
(

(

MPR;s

MPR4 5 >7{CQ7C37C5})

comb(M PRy, MPRs) = (((4,4), (5,2,1)), {ca, c3})

(
(
(
comb(MPRy, MPRs) = {

2.2.5 Investigation Cases Examples Using the FSA Approach

Further in this section, what follows is the summary of the FSA approach from [134], 135]
applied to two case studies to show its inner workings [303]. Gladyshev’s printing case review
is in Section and the blackmail case review is in Section accordingly.

We extract the parameters and terms defined in the mentioned works, such as the for-
malization of the various pieces of evidence and witnesses telling their stories of a particular
incident. The goal is to put such statements together to make the description of the incident
as precise as possible and focus on the modeling of the core aspect of the case under the
investigation. As a result, to establish that a certain claim may be true, the investigator
has to demonstrate that there are some meaningful explanations of the evidence that agree
with the claim. Conversely, to disprove the claim, the investigator has to show there are no
explanations of evidence that agree with that claim [811, [134].

Gladyshev did initial proof-of-concept realization of the algorithms’ implementation in
CMU ComMON Lisp [135] that we improve by re-writing it in FORENSIC Lucip [303]. We
subsequently re-model these cases using the new approach in Section and Section to
show for it to be more usable in the actual investigator’s work and serve as a basis to further

development in the area [303] (such as a GUI front end based on data-flow graphs [87, [307]).

43

Figure 12: Printer Case state machine [133]

2.2.5.1 ACME Printer Case in FSA

This one is the first of the cases we re-examine from Gladyshev’s FSA /LISP approach [135].

The local area network at some company called ACME Manufacturing consists of
two personal computers and a networked printer. The cost of running the network
is shared by its two users Alice (A) and Bob (B). Alice, however, claims that she
never uses the printer and should not be paying for the printer consumables.
Bob disagrees, he says that he saw Alice collecting printouts. According to the

manufacturer, the printer works as follows [135]:

1. When a print job is received from the user, it is stored in the first unallocated

directory entry of the print job directory.

2. The printing mechanism scans the print job directory from the beginning

and picks the first active job.

3. After the job is printed, the corresponding directory entry is marked as

“deleted”, but the name of the job owner is preserved.

44

4. The printer can accept only one print job from each user at a time.

5. Initially, all directory entries are empty.
The investigator finds the current state of the printer’s buffer as:

1. Job From B Deleted

2. Job From B Deleted

W

. Empty

S

. Empty

2.2.5.1.1 Investigative Analysis. If Alice never printed anything, only one directory
entry must have been used, because the printer accepts only one print job from each user
at a time [I135]. However, two directory entries have been used and there are no other users
except Alice and Bob. Therefore, it must be the case that both Alice and Bob submitted
their print jobs in the same time frame. The trace of Alice’s print job was overwritten by
Bob’s subsequent print jobs. As a result, a finite state machine is constructed to model the
situations as in the FSA [I35] in Figure [12] to indicate the initial state and other possible
states and how to arrive to them when Alice or Bob would have submitted a job and a
job would be deleted [81], 135]. (Each state has two print job directory entries, where e is
empty, A—print job from Alice, B—print job from Bob, Ay-—deleted print job from Alice,
By—deleted print job from Bob. The edges denote events of +A or +B corresponding to the
addition of the print jobs from Alice or Bob respectively, whereas X corresponds to taking
the job for printing by the printer). The FSM presented in [135] covers the entire case with
all possible events and transitions resulted due to those events. The FSM is modeled based
on the properties of the investigation, in this case the printer queue’s state according to the
manufacturer specifications and the two potential users. The modeling is assumed to be
done by the investigator in the case in order to perform a thorough analysis. It also doesn’t
really matter how actually it so happened that the Alice’s print job was overwritten by Bob’s

subsequent jobs as is not a concern for this case any further. Assume, this behavior is derived

45

from the manufacturer’s specification and the evidence found. The investigator will have to
make similar assumptions in the real case [135].

The authors of [135] provided a proof-of-concept implementation of this case in COMMON
Lisp (the code is not recited in here) which takes about 6-12 pages of printout depending on
the printing options set and column format. Using our proposed solution in Section [9.3] we
rewrite the example in FORENSIC LUCID and show the advantages of a much finer conciseness
and added benefit of the implicit context-driven expression and evaluation, and parallel

evaluation that the COMMON LiSP implementation lacks entirely [303] [310].

2.2.5.1.2 Formalization of System Functionality. = Gladyshev’s formalization of the
Printing Case has to do with the definition of a number of problem domain elements [81], [135].
This formalization comes from [I35] as does most of this section. Here we summarize the

formal approach notation and definitions applied to this case from Section

e () represents a finite set of all possible states of the Printing Case FSM
e (7 represents a final set of finite computations within Printing Case FSM T

e [represents a final set of all possible events that occur in the system (said to be

computations)

e 0 = (P,min,opt) is an observation of a property P for the duration of time between

[min, min + opt]

e 0s = (01,...,0,) = ((P1,ming,opty),...,(P,, min,,opty)) is an observation sequence

that constitutes an uninterrupted story told by a witness or a piece of evidence

e ¢s = (0sy,...,08,) is an evidential statement that is composed of all stories that the
investigator put together. es need not to be ordered, but is used as a part of explanation

and event reconstruction algorithm [81), [135]

e DIR is a case-specific set of states of the printer queue slot that the investigator is

interested in

Thus, concretely for the Printing Case problem [81] [135] the investigator defines:

46

e States:
DIR = {A, B, A_Deleted, B_Deleted, empty},

Q= DIR x DIR

e Kvents:

I ={add_A,add_B,take}
e Formalization of the evidence [81], [135]:

— The initial state of the print job directory:

OSmanufacturer = ((Pempty7 17 0), (OT’ 07 Znﬁnltum»

Peppty = {c | ¢ € Cp, c§ = (empty, empty)}

— The final state:

Pg5 peietea = {¢ | ¢ € Cr, ¢} = (B_Deleted, B_Deleted)}

0S final = ((CT7 07 Zn.ﬁnZtum)v (PB,Deleteda 17 O))

— The complete collection of stories [81 [135]:

ESACME = (Osfinah Osmanufacturer)

2.2.5.1.3 Testing Investigative Hypothesis.

(2.2.5.1)

(2.2.5.2)

(2.2.5.3)

(2.2.5.4)

(2.2.5.5)

(2.2.5.6)

(2.2.5.7)

(2.2.5.8)

Claim of Alice. Alice’s claim is that Alice did not print anything until the investigator

examined the printer [8T] [135]:
Pujice = {C | cc CT, Cé 7& add,A}
OS Alice = ((PAlice7 07 ZnﬁnZtum)7 (PB,Deleted7 17 O))

47

(2.2.5.9)

(2.2.5.10)

In order to verify Alice’s claim, Gladyshev includes it in the final evidential statement in

order to try to find an explanation for it.

es' = (OSAlice7 0S final Osmanufacturer) (22511)
There is no explanation for it [R1 I35] as shown through the meaning computations.

Meaning of the Final State. The meaning of

OSfinal = ((CTy O, mﬁmtum), (PB,Deleteda 17 0)) = (PB,Deletedy 17 0) (22512)

is the final state itself as observed by the investigator [81], 135]. The meaning also in-
cludes all the paths in the graph in Figure [12] that lead to (B_Deleted, B_Deleted) (i.e.
(Cr, 0, infinitum)) [81 [135].

Mipina = {MPR;1,MPR;5. ..., MPR} i finium} (2.2.5.13)

MPRfJ = (lenf,la Cﬁl)

leng, = (1) (2.2.5.14)
Cr1 = {all paths arriving at (empty, empty) with the length of 1}
= {(x, (B_Deleted, B_Deleted))}
MPR;y = (lenga, Cyo)
lengo = (1,1)
Ct2 = {all paths arriving at (empty, empty) with the length of 2} (2.2.5.15)

= {((take, (B_Deleted, B)), (%, (B_Deleted, B_Deleted))),
((take, (B, B_Deleted)), (*, (B_Deleted, B_Deleted))) }

48

MPR;5 = (lengs, Cp3)
lengs = (2,1)
(5 = {all paths leading to (B_Deleted, B_Deleted) with the length of 3}
= {((add_B, (empty, B_Deleted)),
(take, (B, B_Deleted)),
(%, (B_Deleted, B_Deleted))),

((take, (B, B)), (take, (B_Deleted, B)), (x, (B_Deleted, B_Deleted)))}
(2.2.5.16)

where:

® Mfina is the meaning of the final state represented by an infinite collection of associated

MPRs for all possible lengths [81], 135].

o MPRy, represents a map of partitioned runs for the final state f of lengths of x.
(Please refer to Section [2.2.4.4.4] for the complete definition of an MPR [81] 135].)

e leny, represents the set of observed path lengths property for the maximum length of
x for the final state f. The notation (2,1) means (min,opt), i.e., the lengths of paths
between 2 and 2 + 1 = 3 [81], [135].

In the analysis above and further in the example, the maximum length of 3 is used because it
covers paths long enough to reach from the (empty, empty) state to (B_Deleted, B_Deleted)
or back. Otherwise, the problem would be unfeasible to compute for all infinitely possible

MPRs [81], [135)].

Meaning of the Manufacturer’s Specifications. The meaning of the observation se-

quence corresponding to the manufacturer
0Smanufacturer = ((Pempty, 1,0), (Cr, 0, infinitum)) (2.2.5.17)

is comprised of a meaning of the observations of (P.ppy,1,0) and (Cr, 0, infinitum). The

former corresponds to just the initial state (empty, empty), and the later to all the paths

49

that originate from the initial state [811 [135].

Mmanufacturer - {MPRm,la MPRm,2> R MPRm,inﬁmtum} (22518)

MPRmJ = (l€nm71, Cm,l)
leng,1 = (1)
(2.2.5.19)
Cim.1 = {all paths initiating from (empty, empty) with the length of 1}

= {(*, (empty, empty))}

MPR,, 2 = (leny, 2, Cr2)
leng» = (1,1)
Cim2 = {all paths initiating from (empty, empty) with the length of 2} (2.2.5.20)
= {((add_A, (empty, empty)), (x, (A, empty))),

((add_B, (empty, empty)), (*, (B, empty)))}

MPR,, 3 = (leny, 3, Cp 3)
leng, s = (1,2)
Cim.3 = {all paths initiating from (empty, empty) with the length of 3}
= {((add_A, (empty, empty)), (take, (A, empty)), (x, (A_Deleted, empty))),
((add-A, (empty, empty)), (add_B, (A, empty)), (x, (4, B))),
((add_B, (empty, empty)), (take, (B, empty)), (x, (B_Deleted, empty))),
(() (

((
add_B, (empty, empty)), (add_A, (B, empty)), (x, (B, A)))}
(2.2.5.21)

Meaning of the Incident. Gladyshev obtains the meaning of the evidential statement
ESACME = (Osfinala Osmanufacturer) (22522)
by combining every MPR from Mg, with every MPR from M, anufacturer |81, [135]:

Y € Mfmal,Vy (= Mmanufacturer : SPMACME = Ucomb(w,y) (2.2.5.23)

20

The comb() operator combines the computations from each MPR with every other MPR
and is fully defined in Section Since the combination may produce unnecessary
duplicates, they are removed using the union of the combination, which is also a minimal set
of representing the meaning of the incident as recorded based on the evidence in the form of
the final state and a story of the manufacturer as a credible expert witness of how printer

operates according to its specification [303].

Meaning of the Alice’s Claim. The meaning of the observation sequence as stated
by the Alice’s claim in the 0Sajice = ((Paiice, 0, infinitum), (Pp_peieted, 1,0)) is comprised of
the meanings of the parts (Pajice, 0, infinitum) and (Pp_peieted, 1,0), where the latter simply
indicates the printer state as found by the investigator, and the former represents all the

paths leading to (B_Deleted, B_Deleted) that do no involve any add_A event [81], 135].

Conclusion. None of the paths in Alice’s story originate in (empty, empty) thereby making
Alice’s story questionable at the very least as shown in Figure [13] [R1] [135].
AA,
+B
take
A, BX —> A B Ax, B

take
7/
Ae A.By 2% Ay,By

take

e,B —€Bx —>(B,By -tk

+B

Figure 13: Paths leading to (By, Bx)

2.2.5.2 Initial Blackmail Case Modeling

The following case description in this section is cited from Gladyshev’s [134]. It’s subsequent

realization in FORENSIC LUCID is in Section [9.4]

51

A managing director of some company, Mr. C, was blackmailed. He contacted
the police and handed them evidence in the form of a floppy disk that contained

a letter with a number of allegations, threats, and demands.

The message was known to have come from his friend Mr. A. The police offi-
cers went to interview Mr. A and found that he was on [holidays| abroad. They
seized the computer of Mr. A and interviewed him as soon as he returned into the
country. Mr. A admitted that he wrote the letter, but denied making threats and
demands. He explained that, while he was on [holidays], Mr. C had access to his
computer. Thus, it was possible that Mr. C' added the threats and demands into
the letter himself to discredit Mr. A. One of the blackmail fragments was found
in the slack space of another letter unconnected with the incident. When the
police interviewed the person to whom that letter was addressed, he confirmed
that he had received the letter on the day that Mr. A had gone abroad on [hol-
idays]. It was concluded that Mr. A must have added the threats and demands
into the letter before going on [holidays], and that Mr. C could not have been
involved [134).

In Figure [14] is the initial view of the incident as a diagram illustrating cluster data of
the blackmail and unconnected letters [134], B05)] since the investigation centers around that

particular disk space.

2.2.5.2.1 Modeling the Investigation. In the blackmail example, the functionality of
the last cluster of a file was used to determine the sequence of events and, hence, to disprove
Mr. A’s alibi [81], 134]. Thus, the scope of the model is restricted to the functionality of
the last cluster in the unrelated file (see Figure [14). The last cluster model can store data
objects of only three possible lengths: L = {0,1,2}. Zero length means that the cluster is
unallocated. The length of 1 means that the cluster contains the object of the size of the
unrelated letter tip. The length of 2 means that the cluster contains the object of the size
of the data block with the threats. In Figure is, therefore, the simplified model of the

investigation [8T], [134].

52

M
Data

X DELETE X X ALLOCATE TO \>
Data : > Data
X Slack

Data space

16383 16383 16383
Cluster Unallocated Cluster Last cluster
of file X (still has X data) of file Y

Figure 14: Cluster data with Blackmail fragments

Simplified cluster model:

possible data lengths: 0 1 2
‘ Pr—Ileft part ‘ Pr—right part ‘
possible data values: u—unrelated
t1—threats-obscured part to—threats in slack
o1—other data left part oo—other data right part

Observed final state:

L=1 | (u) unrelated | (t2) threats in slack |
P = {u,t1,01}
Pr = {t2, 02}

Q =L x PL X PR
Figure 15: Simplified view of the cluster model [134]

2.2.5.2.2 Modeling Events. The state of the last cluster can be changed by three

types of events [81], [134]:

1. Ordinary writes into the cluster:

W = {(u), (t1), (01), (u, t2), (u, 02), (t1, t2), (t1, 02), (01, %2), (01,02) } (2.2.5.24)

2. Direct writes into the file to which the cluster is allocated (bypassing the OS):

Wd = {d(u, t2)7 d(u, 02), d(Ol), d(tl, tg), d(tl, 02), d(Ol, tg), d(Ol, 02)} (22525)

93

3. Deletion of the file D sets the length of the file to zero. Therefore, all writes and the
deletion comprise I:

r=wlJwy|JD (2.2.5.26)

Formalization of the Evidence. The final state observed by the investigators is (1, u, t5)
[81),[134]. Gladyshev lets Oy;nq denote the observation of this state. The entire final sequence
of observations is then [811 [134]:

OSfmal = ($, Ofmal)- (2.2.5.27)

The observation sequence 0Synreiated Specifies that the unrelated letter was created at some

time in the past, and that it was received by the person to whom it was addressed is:
OSunrelated = ($7 Oum“elatedy $7 (CT7 07 0)7 $) (22528)

where Oypreiatea denotes the observation that the “unrelated” letter tip (u) is being written

into the cluster. The evidential statement is then the composition of the two stories [81], [134]:

€Sblackmail = {Osfinab Osunrelated}

€Sblackmail = {Osfinala Osunrelated} (22529)

Modeling an Explanation of Mr. A’s Theory. Mr. A’s theory, encoded using the

proposed notation, is:

OSMr. A = ($7 Ounrelatedfcleana $7 Oblackmaih $) (22530)

where Oypnrelated—clean denotes the observation that the “unrelated” letter (u) is being written
into the cluster and, at the same time, the cluster does not contain the blackmail fragment;
Obiackmair denotes the observation that the right part of the model now contains the blackmail

fragment (t2) [81], [134].

54

Modeling Complete Explanations. There are two most logically possible explanations

that can be represented by a state machine [I34]. See the corresponding state diagram for

the blackmail case in Figure [16] [ST] [134].

Figure 16: Blackmail Case state machine [305]

1. The first explanation [134]:
(u) (u,t2) (u)
S (1w 00) 2 (2,0, 8) D (1, u,ty) (2.2.5.31)

e Finding the unrelated letter, which was written by Mr. A earlier;

e Adding threats into the last cluster of that letter by editing it “in-place” with a
suitable text editor (such as ViM [323]);

e Restoring the unrelated letter to its original content by editing it “in-place”
again [8T, [134]:
“To understand this sequence of events, observe that certain text editors
(e.g., VIM [323]) can be configured to edit text “in-place”. In this mode
of operation, the modified file is written back into the same disk blocks
that were allocated to the original file. As a result, the user can forge
the file’s slack space by (1) appending the desired slack space content to
the end of the file, (2) saving it, (3) reverting the file back to the original

content, (4) saving it again.” [134]

2. The second explanation [134]:
(u) d(u,t2)
A (1w, 00) 28 (1,) (2.2.5.32)

95

e The threats are added into the slack space of the unrelated letter by writing

directly into the last cluster using, for example, a low-level disk editor [134].

2.3 Other Formal Approaches

There are other notable formal approaches to the cyberforensic analysis. For example,
Arasteh and Debbabi [21] use control-flow graphs (CFGs), push down systems (PDS), and
the ADM process logic [4] (a logic having dynamic, linear, temporal, and modal character-
istics originally designed for evaluation of security protocols) to construct code models from
the executable in-memory code and call-stack residues (like leftover slack space similar to the
Gladyshev’s blackmail case study earlier).

Arasteh et al. [22] subsequently extend their formal approach to log analysis along with
a tree of labeled terms of) -algebra and a tableau-based proof system for the ADM logic
arriving at a case study of a SYN attack detection from various log sources.

Clear parallels and relationships can be made between these approaches, the intensional

logic (Section , and Cartesian programming [370] as formalization tools.

2.4 Summary

We reviewed the notion of cyberforensics and more specifically, the background on the formal
approach to the digital evidence analysis, which is central to this thesis. We reviewed the
Gladyshev’s arguably the first comprehensive formal approach to evidence modeling and

event reconstruction as well as two sample case studies we further use to test our approach

in Chapter [7]

26

Chapter 3

Intensional Logic, Programming,

Reasoning, Uncertainty and

Credibility

This chapter reviews the background and related work necessary for formal methods, formal
logic-based [193], 251) 414] specification and context-orientation, dealing with uncertainty
and credibility aspects that are relevant to cyberforensic investigations, reasoning, and event
reconstruction in developing soft-computing intelligent systems [202], autonomic self-forensic
units (Appendix [D)), and expert systems [184].

The logic-based formal specifications are used for requirements specification [255], 479,
518] of critical components and systems, knowledge representation and derivation (keeping
a knowledge base of a case), validation and verification, and testing hypotheses. As a formal
system, logic can be used in the court of law as a part of an expert witness testimony when
challenged about the validity and verifiability of the system and system-based argumentation.

Consequently, this chapter summarizes the related background in intensional logic, un-
certainty, hierarchical credibility, and so on as these concepts are fundamental in establishing
theoretical setting for the intensional programming realized by the GIPSY (Chapter @ and
the formalization of FORENSIC LuciD (Chapter [7)). The reader is assumed to have some
familiarity with or exposure to the concepts introduced here. Nevertheless, we attempt to

summarize the relevant content in a coherent manner in referencing the material actually

o7

used subsequently in this thesis. As a result, we survey the related works and then review

their fusion.

3.1 Overview

The surveyed literature explores a connection between multidimensional logics, such as inten-
sional logics with the theory of mathematical evidence. These are being used (or considered
for use) in a variety of application domains for automated reasoning in context-oriented en-
vironments where the knowledge may be imprecise and incomplete and credibility is a factor
(e.g., formal digital crime investigations). Some of these logical systems (e.g., intensional
logics) and probabilistic reasoning systems were not given enough attention, especially when
viewed together and parallels are drawn to finite state machines and the set theory [117, 235].
Thus, more specifically, we review various relatively recent literature on intensional logics of
multidimensional nature where context can be formalized, combined with with the Dempster—
Shafer theory of mathematical evidence along with hierarchical credibility and possible con-
nection to the multidimensional description logics (DLs by themselves are presently more
studied and understood in literature and popular in ontological frameworks, but (the author
conjectures) can be formalized in intensional logics). We also review the evolution of the
intensional logics research into Cartesian programming and intensionality in mathematics
(e.g., see a recent workshop of that title held in May 2013 [389]) including a number of ref-
erences from there of interest discussing Fregean abstract objects; soundness, reflection and
intensionality; mathematical intensions and intensionality in mathematics; intensional side of
the the algebraic topological theorems; knowledge acquisition of numbers by children; formal
mathematical sense of mathematical intensions; and others [44], 80, 113| 123], 164], 335, [410].

This chapter is structured as follows: the notion of intensional logics and programming
are explored in Section [3.2 uncertainty and mathematical evidence modeling are discussed
in Section (3.3, where specifically the Dempster—Shafer theory is further reviewed in Sec-
tion [3.3.2| with its connection to the research described. We summarize our overall findings

in Section [3.4] with the use of material presented here and a conjecture.

o8

3.2 Intensional Logics and Programming

Why Intensional Logic? Tt can be traced all the way back to Aristotle [505] to represent sense
(meaning) and its change between different possibilities (possible worlds, or contexts) having
true statements available there. Concrete realization of the intensional logic ideas resulted
in Intensional Programming. What follows is the justification and some historical remarks
for both.

Many problem domains are intensional in nature and aspects that surround us, e.g.,
natural language understanding and learning [410], particle in cell simulation [374], World
Wide Web [507, 509], computation of differential and tensor equations [359], versioning [244],
temporal computation and temporal databases [358], [450], multidimensional signal process-
ing [5, 270], context-driven computing [511], constraint programming [122] [510], negotiation
protocols [510], automated reasoning in cyberforensics discussed in this thesis [267, 298] 302],
multimedia and pattern recognition [270] among others [362]. The current mainstream pro-
gramming languages are not well adapted for the natural expression of the intensional aspects
of such problems, requiring the expression of the intensional nature of the problem statement
into a procedural (and therefore sequential) approach in order to provide a computational
solution [300].

What follows is a brief history of Intensional Logic synthesized from [110, 505] for the
curious reader.

In essence, the intensional concepts in times of Aristotle appeared in response to the need
to separate conceptual senses (e.g., the “Prime Minister of Canada”) from their concrete
context-dependent instantiations (i.e., extensions, e.g., at the time of this writing in July
2013 “Prime Minister of Canada” evaluates to the extension “Stephen Harper”) and modal
logic. Fast-forward to Gottlob Frege who was making distinctions between “senses” and
their “denotations” along the same lines. Fast forward again to Carnap [55] who introduced
the word “intensional” in 1930s [505] to refer to Frege’s “senses”. Around the same time
(1930s) Lewis et al. were reviving the modal logic (that fell out of popularity sometime
before that) [505] from the extensional propositional logic by adding < connective to mean

“strict implication” to avoid some paradoxes associated with regular — implication [505].

29

Then they realized the now standard modal operators < (“possible”) and O (“necessary”)
are easier to work with and redefined (P < Q) as - (PA—Q) meaning P implies @ if and only
if it’s impossible for P to be true and @ be false simultaneously [505]. Likewise, Aristotle’s
notion of “everything necessary is possible” is formalized as OP — P. Then, everything
necessary is true (OP — P) and everything that is true is possible (P — <P) [505].

Fast forward another 20 years or so (per Montague [322] and Melvin [I10]), Church
had a go at the intensionality with his work on the simple theory of types circa 1951 in
A Formulation of the Logic of Sense and Denotation subsequently inter-influencing further
developments in the area with Carnap [I10]. Saul Kripke subsequently in the 60s [216, 217]
formalized semantics for modal logic. His core idea is that of the possible world semantics;
that is statements can be true in certain worlds, but not necessarily in all of them [505]. The
world w does not need to be fully defined, but serve as indices into possible interpretations [51]
of each statement, e.g., OP is true at a particular world w if P is true in some worlds w’
accessible from w [505]. As William W. Wadge puts it, “Kripke models were a turning
point in development of the intensional logic.” [505]. That enabled simple temporal logic,
e.g., where & would mean sometimes and O would mean always, etc. [505]. Temporal logic
made use of those operators, but had only a single dimension of time points. Making it
multi-dimensional later with intensional operators made it what is its today as intensional
temporal logic (see page |62 for an informal example).

Many other later formalism followed (70s-80s), such as that of Marcus then on to code-
cessor works of Montague, Tichy, Bressan, and Gallin [125] exploring various intensional
logic aspects [110, 477]. Richard Montague deliberated on the pragmatics and intensional
logic in 1970 [89, [322] with a critical discussion and raising problems of interest. Hobbs and
Rosenschein subsequently published an approach to make computational sense of Montague’s
Intensional Logic [169] in 1978. Finally, Dana Scott’s 1969 work (as Wadge suggested [505],
“perhaps mistitled”) Advice on Modal Logic laid down more formalisms by extending Kripke’s
possible worlds with Carnap’s distinction between extension and intension (later known as
the Scott-Montague model) defining a non-empty set I of points of reference (possible worlds)
without requirements on accessibility relations [505]. Then ¢ in each world has an extension

(the truth value) and an intension (the mapping of w to the extension of ¢ at w, making it an

60

element of the power set 27 [505]. Scott maps (via a unary operator) of intensions to others
as 2! — 27 either as an accessibility or any other similar relation and Scott’s models are
not restricted to propositional logic, and can specify worlds at any hierarchical level of types
(strings, numbers, people, organizations, etc.) [505]. Scott calls such individuals as virtual in-
dividuals (intensional objects) grouped in a collection D, and these individuals D can denote
different extensions in different worlds [505]. This approach inspired Wadge and Ashcroft to
create LUCID in 1974 and the notion of intensional programming has emerged [25].

William W. Wadge placed a beautifully succinct introduction to Intensional Logic in
context in a tutorial in 1999 [505], most of which is still valid and is a highly recommended
reading. A lot of background history is also provided in the special issue articles in 2008 by
Blanca Mancilla and John Plaice bringing the historical record more up-to-date with possible
world versioning and Cartesian programming [244], 376]. Subsequently, Melvin Fitting in his
updated 2012 entry [110] provided another broad encyclopedic account on Intensional Logic.
All are very recommended readings.

Both Intensional Programming volumes (I and II) from 1995 [348] and 1999 [129] also
detail a series of articles on various temporal logic aspects applied to program verification,
constraint logic and its semantics, flexible agent grouping, temporal meaning representation
and reasoning [18], 212], 242} [3506], 392] as well as a proposal of an asynchronous calculus based
on absence of actions [218] followed by the more recent 2008 work by Orgun et al. [350]
on knowledge representation and reasoning with diverse granularity clocks. Fitting in 2005
provided axiomatization of the first-order intensional logic (FOIL) [I11]. Intensional logic is
used in the present day to describe various natural language phenomena and beyond, e.g.,
as in the recent (2010) work by Duzi et al. [96] on procedural semantics of Hyperintensional
Logic as a survey of the foundations and applications of Transparent Intensional Logic of

Pavel Tichy.

Thus, what is intensional logic, again? Wadge summarized the definition of it as:

intensional logic—possible worlds and intensional operators...” [505].

61

3.2.1 Multidimensional Logics and Programming

Here we mention two major multidimensional branches of modal logic and pick the one
of prime use and interest to us. The earlier kind, that began development as such in the
1940-50s is the Intensional Logic informally described in the previous section; the later kind
that appeared in 1980s [521] is the Description Logic, both are being actually families of
logics for knowledge representation and reasoning incorporating natural language constructs
of possibility, necessity, belief, and others. We further concentrate in some more detail the
multidimensional intensional logic as the most fundamental and intuitive to use. From the
modal to temporal uni-dimensional logic, multidimensional logic, knowledge representation,

and programming paradigms emerged. Back to the Scott’s 1969 tuple [505] i € I included:

i = (w,p,t,a) (3.2.1.1)

the notion of the possible world extension w (however big or small, does not need
to be fully defined), p is a context point in space, e.g., dimensions of (x,y, 2), a

being the agent, and ¢ is time, and 7 is an index into all these coordinates [505].

Fast forward from 1969 to 1991-1993, Faustini and Jagannathan described multidimensional
problem solving in INDEXICAL Lucip [107]. Ashcroft et al., subsequently summarized the
concepts of multidimensional programming in their book with the same title [24]. Baader and
Ohlbach present a multi-dimensional terminological knowledge representation language [34]
in 1995. Ashcroft discussed multidimensional program verification in terms of reasoning
about programs that deal with multidimensional objects [23], also in 1995. Orgun and
Du described theoretical foundations of multi-dimensional logic programming in 1997 [349].

Wolter and Zakharyaschev in 1999 [521] discuss multi-dimensional description logics.

Temporal Intensional Logic Example

Temporal intensional logic is an extension of temporal logic that allows to specify the time
in the future or in the past [359]. What follows is an informal example.
Let’s take F; from Figure The context is a collection of the dimensions (e.g., as in

Ey’s place and time) paired with the corresponding tags (here and today respectively).

62

1. E; := it is raining here today

Context: {place:here, time:today}
2. E, := it was raining here before(today) = yesterday

3. Es3 := it is going to rain at (altitude here + 500 m) after(today) = tomorrow

Figure 17: Natural-language contextual expression [359, B7§]

Then let us fix here to Montreal and assume it is a constant. In the month of April 2013,

with a granularity of one day, for every day, we can evaluate E; to either true or false, as

shown in Figure (18 298, 302], 310].

Tags days in April: 123456789 ...
Values (raining?): FFTTTFFFT...

Figure 18: 1D example of tag-value contextual pairs [359] B78]

If one starts varying the here dimension (which could even be broken down into finer
X,Y, Z), one gets a two-dimensional (or at higher level of detail 4D: (XY, Z, t) respectively)
evaluation of Fy, as shown in Figure [19] [300, B310].

Place/Time 1 23 4567 89
Montreal TFTFTFTFT
Quebec FFTTTFFFT
Ottawa FTTTTTTPFFF
New York FFFFTTTFF
Toronto FTTTTTFTFF
Sydney FFTTTFFFT
Moscow FFFFTTTTFF

Figure 19: 2D example of tag-value contextual pairs [262], 280]

Even with these toy examples we can immediately illustrate the hierarchical notion of the
dimensions in the context: so far the place and time we treated as atomic values fixed at
days and cities. In some cases, we need finer subdivisions of the context evaluation, where,
e.g., time can become fixed at hour, minute, second and finer values, and so is the place
broken down into boroughs, regions, streets, etc. and finally the XY, Z coordinates in the
Euclidean space with the values of millimeters or finer. This notion becomes more apparent

and important, e.g., in FORENSIC LucID, where the temporal components can be, e.g., log

63

entries and other registered events and observations from multiple sources [300, [310].

3.2.2 Intensional Programming

Intensional programming (IP) is based on multidimensional intensional logics [169], which,
in turn, are based on Natural Language Understanding aspects (such as time, situation,
direction, etc.) mentioned earlier. IP brings in dimensions and context to programs (e.g.,
space and time). Since intensional logic adds dimensions to logical expressions, a non-
intensional logic can be seen as a constant or a snapshot in all possible dimensions. To
paraphrase, intensions are certain statements, whose extensions in possible worlds are true
or false (or have some other than Boolean values). Intensional operators are operators that
allow us to navigate within these contextual dimensions [359]. Higher-order Intensional Logic
(HOIL) [298, 1300, 403] is behind functional programming of Lucid with multidimensional
dataflows which intensional programs can query and alter through an explicit notion of
contexts as first-class values [298], 300, [302, 310}, 363, [510].

From another side, intensional programming [129] 348 378], in the sense of the latest
evolutions of LuciD (Chapter [4)), is a programming language paradigm based on the notion
of declarative programming where the declarations are evaluated in an inherent multidi-
mensional context space. The context space being in the general case infinite, intensional
programs are evaluated using a lazy demand-driven model of execution—eduction [108] 37§,
the precept of which is the referential transparency enabling scalable caching at the imple-
mentation level. There the program identifiers are evaluated in a restricted context space,
in fact, a point in space, where each demand is generated, propagated, computed and stored
as an identifier-context pair 239 B00]. The subsequent demands for the same context, can
simply be satisfied by fetching the previously computed value from the store. Plaice and
Paquet provided a lucid (no pun intended) explanation of Intensional Programming in a tu-
torial [378] in 1995, that still holds today. At ISLIP (after several iterations), in 1995 [348]
is where per Wadge [505] the intensional logic, the Advice on Modal Logic of Scott emerged
together to have a broader community actively developing practical languages and systems
based on these formalism. Wadge and Ashcroft, based to Scott’s models then defined the LU-

CID language with intensional operators FIRST, NEXT, FBY in 1974, with NEXT, e.g., denoting

64

from D! — D' (page [60), such that NEXT(X) = M. X (X + 1) [505].

Intensional programming can be used to solve widely diversified problems mentioned in
this chapter as well as in Chapter [4] which can be expressed using diversified languages of
intensional nature. There also has been a wide array of flavors of LucID languages developed
over the years. Yet, very few of these languages have made it to the pragmatic implementation
level. The GIPSY project (Chapter [6]) aims at the creation of a programming environment
encompassing compiler generation for all flavors of LUcCID, and a generic run-time system
enabling the execution of programs written in all flavors of LuciD. Its goal is to provide
a flexible platform for the investigation on programming languages of intensional nature, in
order to prove the applicability of intensional programming to solve important problems [300].

We continue this trend in this work with FORENsIC Lucip (Chapter [7)).

3.3 Uncertainty, Evidence, and Credibility

The works reviewed in this section contribute to the enhancement of the cyberforensic analysis
with options to automatically reason in the presence of uncertainty and non-binary degrees
of belief, credibility (reliability of witnesses) of each witness story and a piece of evidence
as an additional artifact of the proposed FORENSIC LUCID system. We subsequently briefly
review the related literature in this category involving in particular the Mathematical Theory
of Evidence by Dempster—Shafer [420] Probabilistic Argumentation Systems by Haenni et
al. [I51] and some related probabilistic logic work [85], and the links to intensional logic.
(Such probabilistic reasoning provides additional foundations for a future elaborate expert

system to train the investigator personnel in presence of uncertainty.)

3.3.1 Probabilistic Logics

It is worthwhile to mention some logical foundations to probabilistic reasoning to represent
uncertainty, including in modal and intensional aspects [85]. Previously mentioned Carnap
himself in 1950 wrote on Logical Foundations of Probabilities [85] while working on all aspects

of logic including his work on intensional aspects. Roughly, there are two main approaches

65

in probabilistic logic [85] to represent probabilistic uncertainty: qualitative and quantita-
tive [85]. After Hamblin in 1959, Gérdenfors (along with Segerberg) in 1975 proposed treat-
ing qualitative probability as an Intensional Logic [128] as we have seen the intensional logic
provided the the notion of “possible”. Quantitative approaches included treading numerical
values of probability spaces. Modal probability logics [85 Section 4] subsequently were in-
troduced bringing back the Kripke possible world semantics that was not possible for some
initial probability logic works. That included Fagin and Harpen’s work on this in 1988 and
1994 later [85]; indexing and interpretation were introduced for the possible world states with
probabilities. Combining qualitative and quantitative [85] then seemed like a natural pro-
gression. As an example, quoting Demey et al. [85]: =OhA(=OP(h) =1/2)A(CP(h) =1/2)
would read as “it is not known that h is true, and it is not known that the probability of h is
1/2, but it is possible that the probability of h is 1/2”. More recently, in 2006, Halpern and
Pucella presented a logic for reasoning about evidence [I56] following earlier works about
reasoning about uncertainty and knowledge [104} 154, [155]. Most recently (2011), Haenni et

al. [153], explored the notion probabilistic logics and probabilistic networks.

3.3.2 Dempster—Shafer Theory of Evidence and Probabilistic Rea-

soning Systems

Semantics and interpretation of truth were always of interest to reasoning in any logical
system [51]. This includes uncertain knowledge representation and manipulation [154, [422].
This section subsequently reviews the Dempster—Shafer theory that helps us to reason with
the presence of uncertainty in beliefs about the system’s state. The theory has been exten-
sively discussed and extended; the presentation of which is found in Expert Systems [184] as

well as the work by Haenni et al. [I51], [152] about probabilistic argumentation.

3.3.2.1 Dempster-Shafer Theory of Mathematical Evidence

The Dempster—Shafer theory as a mathematical theory of evidence (DSTME) is there to
give machinery to combine evidence from different sources to come up with a degree of belief

(represented by a belief function [421]) that takes into account all the available evidence.

66

The initial theory was a product of the work by Arthur P. Dempster [86] in 1968 on his rule
of combination and Glenn Shafer’s mathematical evidence theory [420] of 1976. Since then
DSTME was applied to different application domains altering sometimes the Dempster’s rule
of combination (Section [3.3.2.1.3] page to produce better (more intuitive, correct) results
in that domain or situation.

Quoting Shafer [T}

The Dempster-Shafer theory, also known as the theory of belief functions, is a gen-
eralization of the Bayesian theory of subjective probability. Whereas the Bayesian
theory requires probabilities for each question of interest, belief functions allow
us to base degrees of belief for one question on probabilities for a related ques-
tion. These degrees of belief may or may not have the mathematical properties of
probabilities; how much they differ from probabilities will depend on how closely

the two questions are related.

The Dempster-Shafer theory is based on two ideas: the idea of obtaining degrees
of belief for one question from subjective probabilities for a related question, and
Dempster’s rule for combining such degrees of belief when they are based on

independent items of evidence.—G. Shaffer, 2002

Thus, we review these aspects further.

3.3.2.1.1 Formal Definition. Below we quote [86] 420] the formal definition with the

symbols adapted to match our needs:

e () is the universal set representing all possible states g of a system under consideration.

e 29 is the power set of all subsets of @ (including the empty set (). The elements of 2%
represent propositions concerning the actual state of the system, by containing all and

only the states, in which the propositions are true.

"http://www.glennshafer.com/assets/downloads/articles/article48.pdf

67

http://www.glennshafer.com/assets/downloads/articles/article48.pdf

e m is a function denoting DSTME’s assignment of a belief mass to each element of 2%

(called a basic belief assignment (BBA)).
m: 29 — [0, 1] (3.3.2.1)

It has two properties:

— the mass of the empty set is zero: m(f)) =0

— the masses of the remaining members add up to a total of 1: } , ,x m(A4) =1

The mass m(A) of A C 29 denotes the fraction of all relevant available evidence sup-
porting the claim that the actual state ¢ belongs to A (¢ € A). The value of m(A)

corresponds only to the set A itself.

e bel(A) and pl(A) are belief and plausibility denoting the upper and lower bounds of
the probability interval that contains the precise probability of a set of interest, and is

bounded by two non-additive continuous bel(A) and pl(A):
bel(A) < P(A) < pl(A4) (3.3.2.2)
The belief bel(A) is the sum of all the masses in A of subsets of the set of interest A:

bel(A) = > m(B) (3.3.2.3)

B|BCA

The plausibility pl(A) is the sum of all the masses of the sets B that intersect A:

pl(A)= > m(B) (3.3.2.4)

B|BNA#)

Belief and plausibility are related as follows:
pl(A) = 1 — bel(A) (3.3.2.5)

Conversely, for a finite A, given the belief bel(B) for all subsets B of A, one can find

68

the masses m(A) with the following inverse function:

m(A) = > (=) Fbel(B) (3.3.2.6)

B|BCA
where |A — B is the difference of the cardinalities of the two sets [419], From Equa-
tion [3.3.2.5] and Equation [3.3.2.6] for a finite set (), one needs to know only one of
the mass, belief, or plausibility to deduce the other two. In the case of an infinite
@, there can be well-defined belief and plausibility functions but no well-defined mass

function [I54], but in our cyberforensic investigations @ is always finite.

3.3.2.1.2 Examples. @ The Wikipedia page on the theory [517] as well as the quoted
reference above from Shafer give a good number of examples where the theory would be

applicable and how it works.

To illustrate the idea of obtaining degrees of belief for one question from subjective
probabilities for another, suppose I have subjective probabilities for the reliability of
my friend Betty. My probability that she is reliable is 0.9, and my probability that she
is unreliable is 0.1. Suppose she tells me a limb fell on my car. This statement, which
must true if she is reliable, is not necessarily false if she is unreliable. So her testimony
alone justifies a 0.9 degree of belief that a limb fell on my car, but only a zero degree of
belief (not a 0.1 degree of belief) that no limb fell on my car. This zero does not mean
that I am sure that no limb fell on my car, as a zero probability would; it merely means
that Betty’s testimony gives me no reason to believe that no limb fell on my car. The

0.9 and the zero together constitute a belief function.

To illustrate Dempster’s rule for combining degrees of belief, suppose I also have a
0.9 subjective probability for the reliability of Sally, and suppose she too testifies, in-
dependently of Betty, that a limb fell on my car. The event that Betty is reliable is
independent of the event that Sally is reliable, and we may multiply the probabilities of
these events; the probability that both are reliable is 0.9 x 0.9 = 0.81, the probability

that neither is reliable is 0.1 x 0.1 = 0.01, and the probability that at least one is reliable

69

is 1 —0.01 = 0.99. Since they both said that a limb fell on my car, at least [one] of
them being reliable implies that a limb did fall on my car, and hence I may assign this

event a degree of belief of 0.99.

Suppose, on the other hand, that Betty and Sally contradict each other—Betty says
that a limb fell on my car, and Sally says no limb fell on my car. In this case, they
cannot both be right and hence cannot both be reliable—only one is reliable, or neither
is reliable. The prior probabilities that only Betty is reliable, only Sally is reliable,
and that neither is reliable are 0.09, 0.09, and 0.01, respectively, and the posterior
probabilities (given that not both are reliable) are 9/19, 9/19, and 1/19, respectively.
Hence we have a 9/19 degree of belief that a limb did fall on my car (because Betty is

reliable) and a 9/19 degree of belief that no limb fell on my car (because Sally is reliable).

In summary, we obtain degrees of belief for one question (Did a limb fall on my car?)
from probabilities for another question (Is the witness reliable?). Dempster’s rule begins
with the assumption that the questions for which we have probabilities are indepen-
dent with respect to our subjective probability judgments, but this independence is

only a priori; it disappears when conflict is discerned between the different items of

evidence.—G. Shaffer, 2002

We adapt one of the examples to re-state one of Gladyshev’s examples (Section [2.2.5.1

page [44): “Did Alice print anything?” from the questions “Is Alice a reliable witness?”,
“Is Bob a reliable witness?” and “Is the printer manufacturer a reliable witness?” follow-
ing the belief mass assignments and the rule of combination. Suppose the investigator has
a subjective probability the manufacturer is 0.9 reliable and 0.1 unreliable in their printer
mechanism work specification. Since both Alice and Bob are roughly under the same in-
vestigation questions, assume the investigator’s subjective probability of their reliability is
0.5 that is no preference is given to either Alice or Bob, or either could be truthful or lying
in their testimony, whereas the printer manufacturer is treated as an expert witness. Since
Alice and Bob are strictly not independent, their testimony have a degree of conflict, the in-

troduction of the manufacturer’s testimony is necessary since both Bob and Alice are equally

70

(un)reliable before the incident, so either one of them can be true (or neither), but not both.
These belief assignments of course do not resolve alone the case in question; for that we need
the combined approach with the intensional logic presented earlier for event reconstruction
from multiple observations in witness accounts. We will review that further in Chapter

We solve a similar operational question in Section for the MAC Spoofer Investigation
case using the question “Is there a real MAC spoofer?” given different witness accounts
from logs and probes and their reliability that is when a log entry is observed it is assumed
to be 1.0 reliable, when log is empty for some reason or a probe fails (e.g., due to firewall
restrictions on the probed host), its witness reliability is 0.0; when observed information is
partial that is also reflected in the reliability aspects.

Another quoted example is from signal processing of different color sensors from a distant
light source where the light color can be colored in any of the three read, green, or blue.

Assigning their masses as given:

Hypothesis Mass | Belief | Plausibility

Null (neither) 0.00 | 0.00 | 0.00

Red 0.35 | 0.35 0.56
Yellow 0.25 | 0.25 0.45
Green 0.15 | 0.15 0.34

Red or Yellow 0.06 | 0.66 | 0.85
Red or Green 0.05 | 0.55 0.75
Yellow or Green | 0.04 | 0.44 0.65

Any 0.10 | 1.00 | 1.00

allows to compute belief and plausibility. Any denotes Red or Yellow or Green is a catch-all
case basically saying there is some evidence “there is a light”, but the color is uncertain.
Null-hypothesis (“no light”, but for completeness) is always given 0 mass. This can be
used to model various situations (e.g., the evidence received from a color-blind person or
a malfunctioning CCD). Below are two examples of computing belief and plausibility given

mass:

71

bel(Red or Yellow) = m(null) + m(Red) + m(Yellow) + m(Red or Yellow)
=04 0.3540.25+ 0.06 = 0.66
pl(Red or Yellow) = 1 — bel(=(Red or Yellow))
=1 — bel(Green)
=1—m(null) — m(Green)

=1-0-0.15=0.85

3.3.2.1.3 Dempster’s Rule of Combination. Once evidential data are in from mul-
tiple sources, they need to be combined somehow [419]. Dempster created such a rule as a
part of his work on the generalization of the Bayesian inference in 1968 [86]. When viewed
under this interpretation, the priors and conditionals are not required to be specified (as
opposed to traditional Bayesian, e.g., assigning 0.5 probabilities to values, for which no prior
information is available). The rule ignores any such information unless it can be obtained
during the overall computation. This can be seen as allowing DSTME to formulate a degree
of ignorance vs. the absolute necessity to provide prior probabilities [198, 419].

Thus, we need to combine independent sets of probability mass assignments. Specifically,
the combination (called as joint mass) is calculated from the two mass sets m;(B) and mq(C')

(where A = BN () as follows:

mi(0) =0 (3.3.2.7)
m1a(A) = (my @ ma)(A) = ﬁ S (B)ma(C) (3.3.2.8)
A=BNC#0
K=) mi(B)m(C) (3.3.2.9)
BNC=0

where K is a measure of the amount of conflict between the two mass sets [420)].
This rule was criticized for some scenarios by Zadeh [535] (the recognized father of Fuzzy
Logic [536]) and others where it produced counter-intuitive results in some cases of high or

low conflict, especially when the sources are not independent enough. (See Zadeh’s examples

72

of Alice and Bob deciding to pick a move vs. two doctors diagnosing brain tumor in a
patient, or a toy murder trial suspect case [198].) Many researchers subsequently proposed
various way of combining (fusing) beliefs that suit a particular situation or application (sensor
fusion, opinion fusion, etc.) better using the appropriate fusion operators by Jpsang and

others [196, 197, [198].

3.3.2.2 Probabilistic Argumentation Systems

In the recent work, a lot of attention was devoted to various probabilistic argumentation
systems. Notably, Haenni et al. consistently discussed the topic [151) [152] in 1999-2003 as
well as probabilistic logics and probabilistic networks [I53] in 2011. Halpern and Pucella in
2006 provided a logic to reason about evidence as well [I56] in 2006. Jgsang in 2012 did
a thorough review of different ways to apply the combination rule [I98] and provided the
relevant background proofs. Shi et al. [425] in 2011 provided a hybrid system combining
intuitionistic fuzzy description logics with intuitionistic fuzzy logic programs.

Xu et al. [I72] in 2009 made a strong point for the necessity of attribute reduction
in ordered information systems with a possible solution. They exploited the relationship
between the Dempster—Shafer theory of mathematical evidence and the Pawlak’s rough set
theory as well as their plausibility and belief functions [284]. This is of relevance to this work
as well. Reduction of attributes can become an important step point to reduce state explosion
problem in evidence analysis and event reconstruction by applying Occam’s razor. Griinwald
and Halpern certainly agree with that in their 2004 work When ignorance is bliss [145]. This
is pertinent to us in the sense of irrelevant context reduction and elimination with a lot of
digital evidence to reduce the computational effort and/or reduce confusion, e.g., as filtering

is done in FORENSIC LUCID encoders in Section [9.5.7.2 page later on.

3.4 Summary

This chapter provided a quick overview of the reasoning foundations and the corresponding
related work on intensional logics and the Dempster—Shafer theory of evidence. In this

research, we combine these reasoning tools. It serves the purpose to encode forensic knowledge

73

with credibility and reason about forensic knowledge in a context-oriented manner in a formal
system for cyberforensic reasoning and event reconstruction in investigator’s work where rigor
and formality are a must to be used in the court of law, but the reasoning may include
incomplete, imprecise, or untrustworthy evidence.

The presented related work around Dempster—Shafer, has a strong correlation with inten-
sional logic [477] (Section page and the LUCID programming language (Chapter [))
as well its derivative Lucx [510] where the ordered information system is a context of evalu-
ation, a context set of (dimension : tag) pairs, that has seen a number of applications (such
as IHTML [507], the contribution of this thesis—FORENSIC Lucip, and others). FORENSIC
Lucip [308] (Chapter [7)) also blends the Dempster—Shafer theory, and intensional logic and

Lucip dialects for ordered evidential contexts [284], such as observation sequences.

Conjecture. Not in a mathematical or logic terms, but I would like to conjecture a philo-
sophical point for discussion: In the metalogical [50, [1 73ﬂ sense the (meta?) intensional
logic can be used to reason about logical systems governing them all. (We shall see how that
fits with Tichy’s work on TIL and his followers [96].)

Since intensional logic dealt with senses and semantics from the beginning, it makes sense
to describe other logics with it. Every logic L is a possible world w (however defined, nested,
complex, complete, sound, consistent or not). The philosophical aspects aside, the statements
of consistency can be true for w = L. There may or may not be accessibility transitions
between the possible logic worlds, but if there is one, then one logic can be represented
(translated to) into another in a whole or in part. Accepting the fact that some statements
may not retain their truth values in such a process, that is evaluating a proposition in one
logical world may yield one answer, another in another, or be undecidable or undefined in
the third.

The same can be applied to more concrete and restricted entities and instantiations the
logics may describe, such as the syntax and semantics of natural (w = Lyyp) or program-
ming languages (w = Lpy). Linguistically, it is known people of different cultures can learn

multiple languages, while most NL concepts are universal and fully inter-translatable, but

’http://en.wikipedia.org/wiki/Metalogic

74

http://en.wikipedia.org/wiki/Metalogic

without learning fully the culture, one cannot translate all possible expressions, proverbial
or not, so not all statements can be translated between languages, or would have differ-
ent meanings when attempted. The same (though weaker) is true for the more restricted
programming languages (though the situation here is better due to the restricted nature of
PLs). While the most universal algebras and commands can be easily inter-translated via
a basic assembly form, not all assembly instances support all features of all architectures.
Not all high-language constructs can be translated to others (some kind of virtualization and
wrappers can be done to make statements from one PL available in another).

Thus, complete translation may not be possible between logics, just like between natural
or programming languages since some statements do not have universal meaning across these
logics (or languages). However, any two minimal inter-translatable logic systems describing
the the same model may represent indistinguishable possible logic world intensional individ-
uals [505]. This assertion is in part supported by Assels’s refutation of the logic of the global
conventionalism (GC) by showing GC’s inconsistency [30] in 1985.

75

Chapter 4

The LuciD Programming Language

Family

In this chapter we review the background on the notion of the LuciD-family of languages
(which we often collectively refer to as “LuciD” instead of implying the specific “ORIGINAL
Lucip” of Ashcroft and Wadge from 70s-90s) as instantiations of various HOIL realiza-
tions from the overview (Section , to the historical background and the related work
(Section [4.2)), to the dialects spectrum (Section [£.3). We then summarize the findings in
Section [4.4] LucID is central to this thesis for its lazy stream processing semantics and ease
of expression as well as its solid theoretical and mathematical research base make it ideal for

scalable knowledge representation and reasoning of any streamed data.

4.1 Lucid Overview

Lucip [24, 25] 26, 27, 506] is a dataflow intensional and functional programming language. In
fact, it is now a family of languages that are built upon intensional logic (which in turn can be
understood as a multidimensional generalization of temporal logic, cf. Section , page
promoting context-aware demand-driven parallel computation model [302]. A program writ-
ten in some LUCID dialect is an expression that may have subexpressions that need to be
evaluated at a certain contert. Given a set of dimensions DIM = {dimension;}, in which

an expression varies, and a corresponding set of indexes, or, tags, defined as placeholders

76

over each dimension, the context is represented as a set of (dimension : tag) mappings. Each
variable in LUCID, often called a stream, is evaluated in that defined context that may also
evolve using context operators [303] 305, B10], 363 470, 510, 512]. The first generic version
of LuciD, the General Intensional Programming Language (GIPL) [359], defines two basic
operators @ and # to navigate (switch and query) in the context space [303] 305 B10]. The
GIPL is the first (with the second being Lucx [363, 470, 510, 512], and third is TRANSLU-
cID [377]) generic programming language of all intensional languages, defined by the means
of only two mentioned intensional operators—@ and # [303], 305 310]. It has been proven
that other intensional programming languages of the LuciD family can be translated into
the GIPL [303] 305, B10, B59]. A recent similar notion to GIPL called TRANSLUCID was
designed by Plaice and colleagues [88] [376], 377, 394]. Plaice and Paquet give a succinct yet
comprehensive introduction to LUCID and intensional programming in their tutorial [378] in
1995, which is still a recommended reading today. A more recent (2008) overview is by Plaice

and colleagues can be found in [244], 376].

4.1.1 Sample Syntax and Semantics

The fundamental syntax and semantics of LUCID are rather simple allowing easier compiler
implementation and human comprehension of LUCID programs. This also allows flexible
extension in various dialects for application domain specific purposes and use the core baseline
as a sound and complete building block. Similarly, as pioneered by GLU, LUCID is relatively
easy to marry to imperative programming languages to allow mutual advantage of eductive
evaluation and availability of rich libraries. These are the aspects that contributed to the
choice of this language to be extended in this thesis. What follows are examples of syntax
and semantics of the LuciD dialects relevant to us. For illustratory purposes, in the example
excerpts that follow we unify the definitions in a hypothetical language that we call a G,
which is the union of necessary features of the LUucCID dialects we inherit from. (Further in this

thesis, we define FORENSIC LUCID in much more concrete terms and detail in Chapter . To

say it simply, ’G>: = min |J(GIPL, INDEXICAL Lucip, OBJECTIVE Lucip, JOOIP, MARFL) ‘

We briefly discuss these dialects in this chapter, and present their concrete features we borrow

in Chapter [7]

7

4.1.1.1 Lucid Syntax

Example syntaxes of G for expressions, definitions, and operators are presented in Figure[20]
and Figure [21| for both GIPL and INDEXICAL LUCID respectively to remind the reader of
their structure [303]. The concrete syntax of the GIPL in Figure [20| has been amended
to support the isoed operator of INDEXICAL LucCID for completeness and is influenced by
the productions from Lucx [512] to allow contexts as first-class values while maintaining

backward compatibility to the GIPL language proposed by Paquet earlier [303], 359]. In

Figure [22] is a simple program illustrating a LUCID expression [303].
E == id
| FE(E,...E)
| FE|E,...,E|(E,..,FE)
| if E then F else F fi
| #F
| EQ[E:E]
| EQE
| E where @ end;
| [E:E,...,E:E|
| iseod E;
= dimension id,...,id;
| id=E;
| id(id,.....id) = E;
| idfid,....id](id,.....id) = B;
| QQ

Figure 20: Sample G> syntax expressions

Q

4.1.1.2 Operational Semantics for LuciD

In the implementing system, GIPSY (see Chapter [6)), GIPL is the generic counterpart of
all the LuciD programming languages. Like INDEXICAL LuciD, which it is derived from,
it has only the two standard intensional operators: E @ C for evaluating an expression E
in context C, and #d for determining the position in dimension d of the current context
of evaluation in the context space [359]. SIPLs are LuciDp dialects (Specific Intensional
Programming Languages) with their own attributes and objectives. Theoretically, all STPLs
can be translated into the GIPL [359]. Here for convenience we provide the semantic rules
of GIPL and INDEXICAL LuciD [359] and Lucx [510]. The operational semantics of GIPL

is presented in Figure 23| The excerpt of semantic rules of LUuCX is then presented as a

78

op == intensional-op
| data-op
intensional-op = i-unary-op
| d-binary-op
i-unary-op = first | next | prev
i-binary-op = fby | wvr | asa | upon
data-op = unary-op
| binary-op
unary-op == ! | —| iseod
binary-op = arith-op
| rel-op
| log-op
arith-op == +|=|*|/|%
relop = <|> | <=|>=| =] 1=
log-op == &&| ||

Figure 21: Sample G operators

N @.4d 2
where

dimension d;

N = 42 fby.d (N + 1);
end

Figure 22: Classical natural-numbers example [359]

conservative extension to GIPL in Figure [24] 298] 302].

Following is the description of the GIPL semantic rules as presented in [359):
DFE:v (4.1.1.1)
tells that under the definition environment D, expression E would evaluate to value v.

D, PFE:v (4.1.1.2)

specifies that in the definition environment D, and in the evaluation context P (sometimes
also referred to as a point in the context space), expression F evaluates to v. The definition

environment D retains the definitions of all of the identifiers that appear in a LUCID program,

as created with the semantic rules [L.1.T.T6H4.1.1.19 in Figure 23] It is therefore a partial

79

function

D :1d — IdEntry (4.1.1.3)

where Id is the set of all possible identifiers and IdEntry, summarized in Table [I has five
possible kinds of values, one for each of the kinds of identifier [298] 302]:

e Dimensions define the coordinate pairs, in which one can navigate with the # and @

operators. Their IdEntry is simply (dim) [359].

e (Constants are external entities that provide a single value, regardless of the context of
evaluation. Examples are integers and Boolean values. Their IdEntry is (const,¢),

where c is the value of the constant [359].

e Data operators are external entities that provide memoryless functions. Examples are
the arithmetic and Boolean functions. The constants and data operators are said to
define the basic algebra of the language. Their IdEntry is (op, f), where f is the
function itself [359].

e Variables carry the multidimensional streams. Their IdEntry is (var, F), where E is
the LucID expression defining the variable. It should be noted that this semantics
makes the assumption that all variable names are unique. This constraint is easy to
overcome by performing compile-time renaming or using a nesting level environment

scope when needed [359].

e Functions are non-recursive user-defined functions. Their IdEntry is (func,id;, E),
where the id; are the formal parameters to the function and E is the body of the

function [359].

Table 1: Possible identifier types [359]

type form
dimension | (dim)
constant | (const,c)
operator | (op, f)
variable (var, F)
function | (func,id;,)

80

The evaluation context P, which is changed when the @ operator is evaluated, or a dimen-
sion is declared in a where clause, associates a tag (i.e., an index) to each relevant dimension.
It is, therefore, a partial function

P:Id > N (4.1.1.4)

Each type of identifier can only be used in the appropriate situations. Identifiers of type op,
func, and dim evaluate to themselves (Figure rules [4.1.1.6, 4.1.1.7, 4.1.1.8). Constant
identifiers (const) evaluate to the corresponding constant (Figure[23] rule [4.1.1.5). Function
calls, resolved by the Eg rule (Figure , rule , require the renaming of the formal

parameters into the actual parameters (as represented by E’[id; +— E;]). The function P’ =
P1lid — v"] specifies that P'(z) is v” if x = id, and P(z) otherwise. The rule for the
where clause, Ey, (Figure rule , which corresponds to the syntactic expression
E where @), evaluates E using the definitions () therein. The additions to the definition
environment D and context of evaluation P made by the Q rules (Figure , rules
4.1.1.18] 4.1.1.19)) are local to the current where clause. This is represented by the fact that

the Ey, rule returns neither D nor P. The Qgim rule adds a dimension to the definition
environment and, as a convention, adds this dimension to the context of evaluation with
the tag 0 (Figure , rule . The Q;q and Qgq simply add variable and function
identifiers along with their definition to the definition environment (Figure , rules ,
4.1.1.19)) [298,, 8302, [359].

As a conservative extension to GIPL, LucX’s semantics introduced the context as a first-
class value, as described by the rules in Figure 24] The semantic rule (Figure
creates a context as a semantic item and returns it as a context P that can then be used
by the rule to navigate to this context by making it override the current context.
The semantic rule 4.1.1.21| expresses that the # symbol evaluates to the current context.
When used as a parameter to the context calculus operators, this allows for the generation

of contexts relative to the current context of evaluation [359, 510, [512]

81

D(id) = (comst,c)

Ecia D P i e (4.1.1.5)
D(id) = (op, f)
Forid 1 D pridiid (4110
D(id) = (dim)
Eaia D PEid-id (4.1.1.7)
D(id) = (func, id;, E)
Efa D,PFid: idz (4.1.1.8)
D(id) = (var, B D,PFHE:v
Eviq (id) = () P)H,d.v (4.1.1.9)
E D,PFE:id D(id) = (op, f) D,PFE;:v; (4.1.1.10)
P D,P+ E(E1,...,Epn): f(v,...,0n) o
D,P+E:id D(id) = (func,id;, E' D, P+ E'[id; < Ei] : v
Efet (D) 77(# B d)E e [id: i (4.1.1.11)
) s dn .
E D,Pt+ E: true D,P+E :v (4.1.1.12)
T D,Pt+ if E then F’ else B/ : v’ o
- D,Pt E: false D,P+E":v" (4.1.1.13)
°F D,PF if E then E’ else E' : v" o
D,P+E:id D(id) = (dim)
Etag D.Pr #E : Plid) (4.1.1.14)
D,P+E :id D(id) = (di D,P+E":v" D id— v F E :
E.. P i (id) = (dim) P v , Ptlid = v"] v (4.1.1.15)

D,P+-EQE"E" :v

D,P+Q : D,P D,P+E:
E, : 2PCQ:DLP P Y (4.1.1.16)
D, P E where Q : v

im - - - 4.1.1.17
Qu D, P I dimension id : Df[id — (dim)], Pt[id — 0] ()

' : 4.1.1.18
Qia D,Ptid=E : Dtlid— (var, E)], P |)

: 4.1.1.19
Qna D, P+ id(idy, ..., idn) = E : Df[id — (func, id;, E)], P ()

D,P [. Dl7lp/ 'D/,P/ l_ / . D”,PN
QQ : @ Q (4.1.1.20)
D,PFQQ : D', P

Figure 23: Extract of operational semantics rules of GIPL [359]

4.1.2 Streaming and Basic Operators

The origins of LuciD date back to 1974 [359, 378]. At that time, Ashcroft and Wadge were
working on a purely declarative language, in which iterative algorithms could be expressed
naturally, which eventually resulted in non-procedural iterative Lucip [25, 26, 27]. Their
work further fit into the broad area of research into program semantics and verification.
Later it turned out that their work is also relevant to the dataflow networks and coroutines

of Kahn and MacQueen [200, 201]. In the original LuciD (whose operators are in THIS

82

B (ext)

E

construction(cxt)

Eae (ext)

E.

Etuple

Eselect

Eat(s)

Cbox

Cset

Cop

Csop

Figure 24: Extract of operational semantics of Lucx [470] 510]

D,PF#:P

D,P+H Edj :id; D(idj) = (dim)

D,PFE; :vj P! = Potlidi — vi]t...t[idn — vn]
D,PF[EdlZEil,Edz:Eiz,...,EdnlEin]:Pl
D,P+E :P D,PtP' - E:v
D,PFEQE:v
D,Pt Es:id D(idg) = (dim)
D,Pt Ei.Es: tag(E1 | {id2})
D,P+HE:id Dt[id — (dim)] Pilid — 0] D,PFE;:v;

D,PF (E1,Ea,...,En)E :v1 fby.id va fby.id ...

E=[a:v’]

E'=(E1,....En)d P’ =Pt[d—]

vy fby.id eod

D,P'+-E:v

D, Pt select(E,E") : v

D,P+C:{P1,...,P2}

D,Pi1.m b E:v;

D,PHEQC:{vi,...,um}

D,P+ Eg, : id;

D(id;) = (dim)

{E1,...,En} = dim(P1) = ... = dim(Pm)

E' = f,(tag(P1),...,tag(Pm))

D, P+ E': true

D,PF Boz[E1,...,En|E']: {P1,..

D,PtF Ewi..m:Pm
D,P+HA{E1,....,Em}:{P1,...,Puw}

D,PrE:id D(id) = (cop, f)

< Prn}

D,PrFC;:v;

D, P+ E(Cy,...

D,P+E:id D(id) = (sop, f)

7Cn):f(v17~"7vn)
’D,PFCZ-:{vil,...,vik}

/D,/P}_E(Cl,...,Cn) : f({’l)ll,...71}15}7...,{’Unl,...,’Un,m})

(4.1.1.21)

(4.1.1.22)

(4.1.1.23)

(4.1.1.24)

(4.1.1.25)

(4.1.1.26)

(4.1.1.27)

(4.1.1.28)

(4.1.1.29)

(4.1.1.30)

(4.1.1.31)

FONT), streams were defined in a pipelined manner, with two separate definitions: one for

the initial element, and another one for the subsequent elements [359, 378]. For example, the

equations

FIRSTX = 0

NEXT X = X +1

define the variable X to be a stream, such that

Tiy1 = xp+1

83

In other words,
0 = (0,0,0,...,0,..)
X = (Jlo,xl,...,.ilii,...):<O,1,...,’i,...)

Similarly, the equations
FIRSTX = X

NEXTY = Y + nNExT X

define variable Y to be the running sum of X, i.e.,

Y = o

Yir1r = Yi+t T

That is,

Y:(y07y1;---7yi7---): <0,1,7Z(Z;rl),)

According to Paquet, then it became clear that a “new” operator at the time, fby (followed
by) can be used to define such typical situations [359, 378] allowing the above two variables

be defined as follows:
X = 0fFBY X +1

Y = XFBYY 4+ NEXT X

As a result, Plaice and Paquet summarized the three basic operators of the original LU-

cID 359 378|:

Definition If X = (zg,z1,...,2;,...) and Y = (yo,v1,---,¥i,--.), then

(1) FirsT X o (0, X0y - - s X0, - - -)

(2) NEXT X déf (I1,$27...,$i+1,...)
def

(3) XFBYY = ($O7y07y1a"'7yi—17"')

Paquet and Plaice further drew parallels to the list operations of LISP dialects, where

first corresponds to head, next corresponds to tail, and £by corresponds to cons [359] [37§].

84

This is especially useful, when translating Gladyshev’s COMMON LISP implementation (see
[135]) into FORENSIC LuciD (Section[9.3] page[250). They further state when these operators
are combined with Landin’s ISWIM [221] (If You See What I Mean), which is essentially
typed A-calculus with some syntactic sugar, it becomes possible to define complete LuciD
programs [359, B78]. The following three derived operators have turned out to be very useful

(we will use them later in the text) [359], B78]:

Definition

(1) XwvrY f if FIRSTY then X FBY (NEXT X WVR NEXT Y)
else (NEXT X WVR NEXT Y')

(2) X asaY ' FImsT (X wvrY)

(3) X uponY © X FBy (if FIRST Y then (NEXT X UPON NEXT Y)

else (X UPON NEXTY))

Where wvr stands for whenever, asa stands for as soon as and upon stands for advances

UPon.

4.1.3 Random Access to Streams

In the beginning, with the original LucCIiD operators, one could only define programs with
pipelined dataflows, i.e., in where the (i 4+ 1)-th element in a stream is only computed once
the i-th element has been computed. This situation was deemed potentially wasteful, since
the i-th element might not necessarily be needed. More importantly, it only allows sequential
access into streams [359, 37§].

In order to have random access into streams, an index # corresponding to the current
position, the current context of evaluation was created [359, B78]. This step made the infi-
nite extensions (streams), constrained intensions, defining computation according to a con-
text (originally a simple single integer) [359, [B7§]. Effectively, intensional programming was
born [359, B78]. As such, Paquet and Plaice redefined all or1cINAL Lucid operators in terms

of the operators # and @ (and Paquet [359] established their equivalence):

85

Definition
(1) # = OFBY (#+1)

(2) XeY = ifY =0 then FIRST X
else (NExT X) @ (Y — 1)

We re-examine again these and other operators in FORENSIC LuciD in Chapter [7]

4.1.4 Eductive Model of Computation

The first operational model for computing Lucid programs was designed independently by
Cargill at the University of Waterloo and May at the University of Warwick, based directly
on the formal semantics of LUCID, itself based on Kripke models and possible-worlds seman-
tics [216] 217]. This technique was later extended by Ostrum for the implementation of the
LuTHID interpreter [352]. While LUTHID was tangential to standard LUCID, its implementa-
tion model was later adopted as a basis for the design of the PLUCID interpreter by Faustini
and Wadge [108]. This program evaluation model is now called eduction and opens doors for
distributed execution [300] of such programs [159, 269] 360, 449, [451], 452].

In Figure 25| [262] is the trace represented as an eduction tree during execution of the
OBJECTIVE LuCID program in Figure [26] In this figure, the outermost boxes labeled {d:0}
etc. represent the current context of evaluation, gray rectangular boxes with expressions
represent demands for values to be computed under that context, and the redE] boxes with
the terminal bullets next to them represent the results of the computation of the expressions.
In our proposed solution, such eduction tree can be adapted to back-tracing in forensic
evaluation, e.g., when the inner-most results are traced back to the final result of the entire
computation [303].

The concept of eduction can be described as a “tagged-token demand-driven dataflow”
[500] computing paradigm (whereupon LUcID influenced a popular media platform and lan-
guage called PureData [386]). The central concept to this model of execution is the notion

of generation, propagation, and consumption of demands and their resulting values. Lucid

1“Red” in the color image; or dark gray in black-and-white image.

86

@@.d 2).print[d]() fe—{d:0}
d

2

>(Natd2[d]() foy.d N.inc[d]() < {d:2}
#d <=0
»#d

Lo M.inc(d]) @.d (#d- 1)
> d

[N.inc[d](-+ {d:1}
> Natd2[d]() fby.d N.inc[d]()
F#d <=0
> #d

| Do

M inc[d]) @ d (d- 1)
= d

=#d-1
> #d

L MM.incld]()
L Nat42[d]() fby.d M.ine[d])
L »4d==0

1d:0}

[y

[Matd2) dii i onstructor call n = 42

= . incd STealln=n+1
Lo
—* A inc) dili STcalln=n+1

Ly Matd2:n:44. print[d]()
e Matd2:n: 44 printldif) ST eall

L

Figure 25: Eduction tree as a trace for the natural-numbers problem in OBJECTIVE LU-

CID [262]

programs are declarative programs where every identifier is defined as a HOIL expression us-
ing other identifiers and an underlying algebra. An initial demand for the value of a certain
identifier is generated, and the eduction engine, using the defining expression of this identi-
fier, generates demands for the constituting identifiers of this expression, on which operators
are applied in their embedding expressions. These demands in turn generate other demands,
until some demands eventually evaluate to some values, which are then propagated back in
the chain of demands, operators are applied to compute expression values, until eventually
the value of the initial demand is computed and returned [300].

Lucid identifiers and expressions inherently vary in a multidimensional context space, i.e.,
any identifier or expression can be evaluated in a multidimensional context, thus leading
to have identifiers and expressions representing a set of values, one value for each possible
context in which the identifier or expression can be evaluated. This is brining the notion
of intensionality, where identifiers are defined by intensional expressions, i.e., expressions
whose evaluation varies in a multidimensional context space, which can then be constrained
by a particular multidimensional context specification. Note that Lucid variables and expres-
sions represent “dimensionally abstract” concepts, i.e., they do not explicitly mention their

dimensionality. For example, Newton’s Law of Universal Gravitation

F=(G-my-my)/r-r (4.1.4.1)

can be written literally in Lucip as [300]:

F=(G=>*ml *xm2) / r * r;

and can then be evaluated in different dimensional manifolds (i.e., n-dimensional spaces),
keeping the same definition, but being evaluated in contexts varying in their dimensionality.
For example, F can be evaluated in a one-dimensional space, yielding a single scalar, or in a
three-dimensional manifold, yielding a three-dimensional vector. Note that a time dimension
could also be added where, for example, the masses (m1 and m2) and/or the distance between
them (r) can be defined as to vary in time. In this case, the expression will inherently vary

in the time dimension since some of its constituents vary in this dimension [300].

88

4.1.5 Related Languages

Some other languages can be referred to as intensional even though they may not refer to
themselves as such, and were born after Lucip (LucID began in 1974). Examples include
hardware-description languages (HDLs, appeared in 1977) where the notion of time (often
the only “dimension”, and usually progresses only forward), e.g., Verilog and VHDL [340)].
Another branch of newer languages for the becoming popular is aspect-oriented programming
(AOP) languages (e.g., AspEcTJ [29] and SHL [226]), Web Service Description Language
(WSDL) [533], that can have a notion of context explicitly, but primarily focused on software
engineering aspect of software evolution and maintainability [298]. Yet another set of stream-
processing languages influenced by Lucip include Miller Puckette’s PureData [386] (open-

source) and its commercial equivalent Jitter in Max/MSP [72] [73].

4.2 Related Work

In this section we briefly review some of the related work on LuciD and its dialects and
developments. Some of that work is explained in detail further in Section that we draw
on the most as well as in [362] where a list of publications, dialects, and related work is
being maintained and periodically updated. A lot of the related work was done earlier and
summarized in the ISLIP proceedings [129, 348] and some of this work was reviewed in the
preceding chapter and is still of relevance today.

Lucip was influenced by Landin’s ISWIM [221] in his work 700 programming languages,
producing in the end contexts, the where clause, etc. (ISWIM had influence elsewhere as well
like SQL, Z, and others). It was designed to model change that happens to various abstract
objects and phenomena [378].

A very good overview of LUCID, INDEXICAL LUCID, etc., in the context of WWW as an
illustratory example is done in the tutorial by Plaice and Paquet in [37§], including multi-
dimensional contexts, higher-order functions, and examples. Wadge discusses the Kripke’s
possible worlds semantics of LuciD in the OO context [504]. Wadge and Yoder further
reviewed the possible world semantics in their work Possible-World Wide Web [509].

One of the application domains LUCID was proposed for was for verification and reasoning

89

about multidimensional programs by Ashcroft [23]. Ma and Orgun proposed MULTRAN
program verification with temporal logic [242]. Yamane proposed real-time OO specification
and verification techniques [530)].

There were naturally a number of works on the hybrid intensional-imperative program-
ming. The two paradigms have a generally poor interface among each other: on the one hand
are conventional imperative programming languages that have no room for multidimensional-
ity or intensional or demand-driven evaluation; on the other hand, existing multidimensional
languages that cannot take advantage of imperative features and techniques. Developed
over years of research, the combination typically result in much better performance [523].
Liu and Staples proposed introduction of logic constructs into the imperative procedural lan-
guages [236] and Rondogiannis followed up with multidimensional additions to the procedural
languages [404]. Rondogiannis and Wadge also proposed a way to extend what they call the
intensionalization algorithm to a broader class of higher-order programs [406]. The GLU#
approach embeds a small multidimensional core in a mainstream object-oriented program-
ming language (C++) [357]. By this way, without changing the syntax and semantics of
the host language, multidimensionality can be supported. GLU# is a small subset of GLU
and it is implemented as a collection of C++ classes and class templates. All operators
in LuciD appear as C++ functions. GLU# does not support Lucid functions; however,
programmers are able to use lazy method templates in C++4 to use C++’s functions in
GLU#. GLU# provided a bridge between LuciD and OO [523]. The concept about ob-
jects in Lucip first appeared in [120] in the early 1990s. In the later 1990s, Peter Kropf and
John Plaice talked about this topic in their paper “intensional objects” [219]. In this paper,
intensional objects are considered as openable boxes labeled by LUCID contexts. That work
focuses on intensional versioning whose task is to build a system from versioned components,
which are already sitting in the intensional value warehouse (a cache of the previously com-
puted results). This warehouse is different as the warehouse in intensional programming.
The latter is like a cache to improve the performance. The former contains the source of
everything, it is like a “catalog” or a “repository”, in which the boxes are put into. Each box
is of some contents and a tag that is context. Thus, in this approach, these labeled boxes are

called intensional objects, which are re-openable and re-packageable [523]. In [91], there is

90

another discussion on issues about object-oriented implementation of intensional languages.
In this approach, each variable in a Lucid program is considered as a class and an object
of a class is a variable in a context. Each variable definition in a Lucid program is com-
piled into a C++ class definition that has the same name as the variable. This approach
focuses on the implementation-level by creating a class for each Lucid variable, it helps the
system to execute in a distributed manner. However, the objects introduced here does not
contain information from C++ variables [523]. Lu created similar identifier-context (IC)
classes in the multithreaded GEE PoC implementation [239]. Grogono proposed ONYX for
multidimensional lazy arrays [142].

On the scientific application side Plaice proposed particle in-cell simulations with LuU-
ciD [374] and Paquet with his Scientific Intensional Programming work [359] proposed TEN-
SsOrR LuciD for plasma physics simulations.

Paquet and Plaice proposed the use of LUCID constructs to handle fine amount records
in relational databases [358], 365].

Le proposed a notion of a Fuzzy Temporal Prolog. While we are not into Prolog in this
work, the fuzzy temporal aspect is of relevance to FORENSIC LuciD. Knowledge representa-
tion and temporal knowledge based simulation subsequently proposed by Liu and Orgun in
Chronolog is also a related work to FORENSIC LuciD. Panayiotopoulos also proposed tem-
poral reasoning with TRL [356]. At the same time. Androutsopoulos discussed the temporal
meaning representation in a natural language front-end [18].

Paquet and Plaice followed by Wan investigated the semantics of dimensions as val-
ues [366, [510]. For nested hierarchical contexts the related work includes the work by Schraefel
et al. [415] 508] on various hypertext representational and modeling issues.

Besnard et al. [41] proposed a design of a multi-formalism application and distribution
in a dataflow context via an example. Gagné and Plaice have further expanded on the topic
of real-time demand-driven computing [124].

Faustini established the equivalence of denotational and operational semantics in pure
dataflows [I06], which can be useful when relying on the relevant denotational formalism
elsewhere (e.g., [529]) and most of the LUCID’s semantics was traditionally done in the

operational fashion. Uustalu and Vene in a more recent review go over the notion of dataflow

91

programming [475].
On the compiler and toolset side, Swoboda and Wadge produced a set of intensionaliza-

tions tools like vmake, libintense [452], Mark did a basic PoC interpreter in Haskell [248].

4.3 Lucid Dialects

Here we briefly review some of the core influential dialects contributing to the construction
of FORENSIC LuciD in addition to the information provided in Section [£.1] A great deal is

devoted to the dialects and related publications in [362].

4.3.1 Lucx

Wan’s Lucx [510, 512] (which stands for Lucid enriched with context is a fundamental exten-
sion of GIPL and the LuciD family as a whole that promotes the contexts to the first-class
values thereby creating a “true” generic LUCID language. We recited its semantics in Fig-
ure 24)in Section [4.1] page [76] Wan [510, 512] defined a new collection of set operators (e.g.,
union, intersection, box, etc.) on the multidimensional contexts, which will help with the
multiple explanations of the evidential statements in forensic evaluation where the context
sets are often defined as cross products (boxes), intersections, and unions. Lucx’s further
specification, refinement, and implementation details were produced by Tong [363, 470] in

2007-2008 based on Wan'’s design [300), 303].

4.3.2 JLucid, Objective Lucid, and JOOIP
4.3.2.1 JLucip

JLucip [143] 262] was the first attempt on intensional arrays and “free Java functions”
in the GIPSY environment. The approach used the LUCID language as the driving main
computation, where Java methods were peripheral and could be invoked from the Lucid
segment, but not the other way around. This was the first instance of hybrid intensional-
imperative programming within GIPSY. The semantics of this approach was not completely

defined, plus, it was only a single-sided view (LucID-to-JAVA) of the problem. JLucip did

92

not support objects of any kind, but introduced the wrapper class idea to contain the freely
appearing Java methods (in either GIPL or INDEXICAL LucID) and served as a precursor

to OBJECTIVE Lucip [302] 310} 523].

4.3.2.2 OBJECTIVE LucID

OBJECTIVE Lucip 260, 262] was a natural extension of the JLUCID language mentioned in
the previous section that inherited all of the JLUCID’s features and introduced Java objects
to be available for use by LuciD. OBJECTIVE LUCID expanded the notion of the Java object
(a collection of members of different types) to the array (a collection of members of the
same type) and first introduced the dot-notation in the syntax and operational semantics in
GIPSY (Figure[27)). Like in JLuciDp, OBJECTIVE LUCID’s focus was on the Lucid part being
the “main” program and did not allow JAVA to call intensional functions or use intensional
constructs from within a Java class. OBJECTIVE LucID was the first in GIPSY to introduce
the more complete operational semantics of the hybrid OO intensional language [302], 310
523]. Having the arrays and objects allows grouping of the related data items (of the same
type or different types) together and evaluate them under the same context. In Figure [26]is
the modified example of a demand-driven evaluation of a simple natural numbers problem
re-written in OBJECTIVE Lucip [260, 262 303]. In Figure [25]is the modified example of a
demand-driven evaluation of a similar natural numbers problem in Figure [26| re-written in
OBJECTIVE LuciD [262]. In this work, such eduction tree can be adapted to back-tracing
in forensic evaluation, e.g., when the inner-most results are traced back to the final result of

the entire computation.

4.3.2.3 JOOIP

Wu’s JOOIP [523] 525] greatly complements OBJECTIVE LuciD by allowing JAVA to call
the intensional language constructs closing the gap and making JOOIP a complete hybrid
OO intensional programming language within the GIPSY environment. JOOIP’s semantics
further refines in a greater detail the operational semantics rules of LuciD and OBJECTIVE

LuciD in the attempt to make them complete [302], 310, 523]. JOOIP’s approach following

93

#typedecl
Nat42;

#JAVA
class Nat42
{

private int n;

public Nat42()

{
n = 42;
}
public Nat42 inc()
{
n++;
return this;
}
public void print()
{
System.out.println("n = " + n);
}
}
#0BJECTIVELUCID

(N @.d 2).print[d] O
where

dimension d;

N = Nat42[d] () fby.d N.inc[d]Q);
end

Figure 26: The natural-numbers problem in OBJECTIVE Lucid [303]

GLU# is natural since object-oriented languages are known by literally all computer scien-
tists and software engineers. Especially, JAVA is a very popular and widely used language
in today’s application domains. JOOIP increases the visibility of Intensional Program-
ming [129] 348 (see Section is to make it more mainstream via a marriage between
Object-Oriented Programming and Intensional Programming paradigms, allowing a broader
audience to be exposed to the benefits of Intensional Programming [504], 523] within their
favorite OO language. To show the similarities and differences between JOOIP and GLU#,
Wu [525] provided the translation of some of the examples given in [357] into JOOIP for the
comparison reasons and to show its advantages. A similar embedding of multidimensional
characteristics in a conventional programming language has been proposed by Rondogian-
nis [405]. In his approach, JAVA is used as the host language and intensional languages are

embedded into JAVA as a form of definitional lazy multidimensional arrays. Integration of

94

D,P+E:id D,PFE :id
D(id) = (class, cid, cdef) D(id’') = (classv, cid.cvid, vdef)
D, P F<cid.cvid>: v
Ec_via : DPFEE v (4.3.2.1)

D,P+E:id D,P+ E :id D,P+-FE1,...,En:v1,...,0pn
D(id) = (class, cid, cdef) D(id') = (classf, cid.cfid, fdef)

o . D, P F<cid.cfid(vi,...,vn)>: v (4.3.2.2)
c—fet D,P+E.E'(E1,...,En):v o

D,PHE:id D,PFE1,...,En:v1,...,0n
D(id) = (freefun, ffid, ffdef)
D, P F<ffid(vi,...,0n)>: v

E 4.3.2.3
frid D,P+ E(E1,...,En):v ()
def =C1 id {...
#IAVAbjia gef = Class cid {. .} (4.3.2.4)
D, Pt cdef : Di[cid — (class, cid, cdef)], P
cdef = Class cid {...vdef ... vdef = public type vid;
#IAVA bjvid { - - i - - (4.3.2.5)
D,P I cdef : Dt[cid.vid — (classv, cid.vid, vdef)], P
cdef = Class cid {...fdef...} fdef = public fritype fid(fargtype; fargia,,-. ., fargtypen fargid,,)
#IAVA pifid - - '
D, Pt cdef : Di[cid.fid — (classf, cid.fid, fdef)],P
(4.3.2.6)
ffdef = fritype ££id(fargt R ;
LIAVAma fidef = fritype ffid(fargtypes fargia, fargtypen fargia,) (4.3.2.7)

D, P+ ffdef : Di[ffid — (freefun, ffid, ffdef)],P

Figure 27: Extract of operational semantics of OBJECTIVE Lucip [302]

Forensic LuciDd with JOOIP becomes more relevant when considered together for hybrid-

intensional-imperative programming in particular for self-forensics presented in Appendix [D]

4.3.3 MARFL

MARF Language (MARFL) was conceived and designed to manage the MARF system’ run-
time (see Section configuration as collections of nested name-value configuration option
pairs [270]. While not strictly of the Lucid family or GIPSY, MARFL [270] was nearly
entirely influenced by LuciD. It is based on the overloaded @ and # operators and allows
to navigate into the depth of the higher-order contextual space using the dot operator (see
Figure [302]. The latter was indirectly (re-invented in part) influenced by IHTML and
libintense [449] 452]. For detailed discussion on MARFL and its semantics please refer to
Appendix [C] FORENSIC LuciD adapts this idea of the hierarchical context navigation and
querying with the overloaded @ and # for evidential statements, observation sequences, and

individual observations.

95

D(E.id) = (dim)

—— (4.3.3.1)
D,Pt E.id: id.id

EE.dia

Figure 28: Higher-order context Dot operator of MARFL [302]

4.4 Summary

Since the LuciD family of languages thrived around intensional logic that makes the notion of
context explicit and central, and relatively recently in LUCX, a first class value [363, 470, 510,
512] (that can be passed around as function parameters or as return values and have a set
of operators defined upon), we greatly draw on this notion by formalizing our evidence and
the witness stories as a contextual specification of the incident to be tested for consistency
against the incident model specification. In our specification model we require more than
just atomic context values—we need a higher-order context hierarchy to specify different
level of detail of the incident and being able to navigate into the “depth” of such a context.
A similar provision has been made in [270] and earlier works of Swoboda and colleagues
in [449, [450, 4511, [452] that needed some modifications to the expressions of the cyberforensic
context [298], 302].

To summarize, expressions written in virtually all LuciD dialects correspond to higher-
order intensional logic (HOIL) expressions with some dialect-specific instantiations. They
all can alter the context of their evaluation given a set of operators and in some cases types
of contexts, their rank, range, and so on. HOIL combines functional programming and
intensional logics, e.g., temporal intensional logic (Section , page . The contextual
expression can be passed as parameters and returned as results of a function and constitute
the multi-dimensional constraint on the LUCID expression being evaluated. The correspond-
ing context calculus [363, 470, 510] defines a comprehensive set of context operators, most
of which are set operators and the baseline operators are @ and # that allow to switch the
current context or query it, respectively. Other operators allow to define a context space and
a point in that context corresponding to the current context. The context can be arbitrary
large in its rank. The identified variables of the dimension type within the context can take
on any data type, e.g., an integer, or a string, during lazy binding of the resulting context to

a dimension identifier [300].

96

Chapter 5

Data Mining and Pattern Recognition

This chapter discusses the relevant background on the data mining and pattern recognition
facet of this research to present some of the supporting related work in the area as well as a
detailed discussion of the devised tools and their results. This discussion is important and
relevant because the data mining techniques are used substantially in digital investigation
with imprecise or encrypted data in files or network packets (netflows) and the PoC tools
presented here are some of the sources of encoded fuzzy classification evidential data that can
be used in reasoning in digital investigation cases. The other motivation is the augmentation
of the tools themselves to support self-forensics (Appendix @ in autonomic environments.

In the detailed discussion we primarily focus on MARF, fileType, MARFCAT, and
MARFPCAT produced and maintained primarily by the author Mokhov. All these are de-
signed to export any of their classification findings and data structures in the declarative
Forensic LuciD format via their corresponding encoders to be a part of the witness testi-
monies aiding investigations of incidents such as involving vulnerable software (browsers, etc.)
or malicious software (Chapter [9)), and self-forensic investigations (Appendix D). MARFCAT
and MARFPCAT also have problem-specific DGT and DWT in GIPSY (see Chapter @ for
scalable demand-driven evaluation using GIPSY’s distributed middleware.

This chapter is organized as follows. The related work is referenced in Section [5.1] Brief
description of MARF is in Section [5.2] of MARFCAT in Section [5.4] and of MARFPCAT in
Section respectively. Some example classification results for all approaches are presented

as well. Then follows a brief summaryconcluding remarks in Section

97

5.1 Related Work

There is a great number of related works in the area published over the last two decades or
so. We briefly focus on the subgenre of data mining and pattern recognition works related
to signal, audio, and NL processing, switching to the various aspects of the data mining
aspects applied to computer and network security and digital forensics. The classical works
of data mining, patter recognition, signal processing, NLP and the related disciplines are sub-
disciplines of AI [79, [180] [184) 199 246, [351], [409]. In reference to the previous background
chapter on LuciD (Chapter [4), multidimensional intensional signal processing was proposed
by Agi using GLU in 1995 [5] and MARFL for MARF by the author Mokhov (Appendix|C)).

In typical pipelines when data are loaded and preprocessed (filtered, etc.), the next major
step is to do feature extraction of features of interest. This can be done automatically and/or
manually to improve the classification precision and recall metrics. For this to work, the best
features types have to be properly selected and a few proposals for feature selection and
extraction algorithms were put forward [138| 241] including continual feature selection [423].
The the classification stage comes into play in learning and classification using a variety of
proposed classifiers and their combinations [61, 127, 206].

Chen in 2006 [62] in his book summarized the issues about information sharing and data

mining as intelligence and security informatics disciplines.

5.1.1 Open-Source Tools

There are a number of open-source tools and frameworks primarily done in JAVA to do data
mining, pattern recognition, signal processing, etc. and that can also integrate with commer-
cial tools and toolboxes, such as that of MATLAB [416] and others. MARF that began in
2002 is detailed in the further sections. It started off as an audio recognition framework by
the author and colleagues, but went beyond that and was applied for image, text, code, data
analysis, and different classification applications, some of which are detailed further in Sec-
tion [5.3] Section [5.4] and Section [5.5 At around the same time frame, another open-source
system emerged, also done in JAVA, at CMU called CMU Sphinz [465], which focused on the
reliable and robust tasks for speech recognition (speech-to-text). On around 2006 Weka [460]

98

was created and emerged; its source code base originally followed very much the MARF’s
architecture. This system has had a lot of developer support and maintenance and signif-
icantly grew in popularity since. The author Mokhov (while working on the MARFPCAT
branch of the project (detailed further in this chapter) as a part of a malware classification
based on packet-capture (pcap) data project [47]) developed initial MARF plug-in support
to allow Weka’s rich classifier set to be used in the MARF’s pipeline. GATE [459] is a tool
with rich customizable pipeline of processing resources (PRs) support written in JAVA orig-
inally developed as General Architecture for Text Engineering, more specifically to enable
NLP developers to create easier NLP applications. It has outgrown the text aspect of it
allowing various other technologies being added for other classification tasks and knowledge
representation such as Weka, ontologies, and others. MARF’s plug-in support for it was also

planned [279].

5.1.2 Network Forensics

There was a number of data mining, machine learning, and resulting classification approaches
used for forensic investigation and analysis of network traffic, especially the encrypted kind
over SSL/TLS, ssh, etc. to identify network-active applications and malware. For example,
Density Based Spacial Clustering of Application with Noise (DBSCAN) was proposed [528]
in 2008 to use clustering algorithms to identify various FTP clients, VLC media player, and
UltraVNC traffic over encrypted channels. That was followed by Alshammari et al. [15, [16]
to identify ssh and Skype encrypted traffic (without looking at payload, port numbers, and
IP addresses). Additionally, comparison of algorithms and approaches for network traffic
classification were proposed separately by Alshammari et al. [I4] in 2008 and Okada et
al. [344] in 2011 surveying and comparing various machine learning algorithms for encrypted
traffic analysis. Prior to that, in 2000, Lee et al. [230] introduced the notion of adaptive
intrusion detection with data mining techniques, followed by Bloedorn [43] in 2001 of MITRE
with their technical report on data mining for network intrusion detection with data mining
as well. Livadas et al. [237] in 2006 used machine learning techniques to classify botnet
traffic followed by Binsalleeh et al. [42] in 2010 with the very detailed analysis of the Zeus

botnet crimeware toolkit. Simon et al. [427], likewise in 2006, proposed to detect non-obvious

99

brute-force network scanning using a data mining approach as well. Finally, Boukhtouta et
al. (including the author) [47] proposed network malware identification by machine-learning
captured network malware traffic pcaps as well as benign traffic (regardless the fact if the
payload encrypted or not) via a select set of features and comparing it to the captured traffic

currently going through the network.

5.1.3 Malware Analysis and Classification for Investigations

Some of the malware and malicious code techniques described here are also used in the
network anomaly analysis described in the previous section especially for the network-enabled
malware that propagates, so some techniques described there are also applicable here. In
part our methodology has some similarities in common with the related work on automatic
classification of new, unknown malware and malware in general such as viruses, web malware,
worms, spyware, and others where Al pattern recognition and expert system techniques are
successfully used for automatic classification [288].

Schultz et al. [417] in 2001 proposed the data mining techniques to detect new malicious
executables as opposed to traditional signature-based approaches. Sung et al. [448] proposed
the static analysis of vicious executables (SAVE) framework in 2004. In 2007, Bailey, Nazario,
et al. [36] came up with automated analysis and classification of various Internet malware.
Provos et al. [385] in the same year did the web-based malware “ghost in the browser”
analysis. Suenaga proposed malware analysis through linguistics techniques by searching for
ethnic words [442] and Hnatiw et al. [I68] proposed techniques for parsing malicious and
malformed executables as well, both in 2007. Rafique et al. [393] followed suit in 2008 and
proposed another approach for automatic adjudication of new malware as well.

In 2007, Hwang et al. [174] proposed an anti-malware expert system. Spectral techniques
are used for pattern scanning in malware detection by Eto et al. in [I03] in 2009 where
they propose a malware distinction method based on scan patterns. Subsequently, Inoue et
al. [102, [I8T] proposed a general data mining system for incident analysis with data mining
engines called NICTER based on data mining techniques.

Classification results may be encoded as FORENSIC LUCID constructs as an evidence in

100

investigations to support or disprove reasoning about investigative claims in incidents involv-
ing malware. Additionally, FORENSIC LucIiD-based reasoners are planned to be integrated

into some of these tool as a part of the future work (Section [10.4)).

5.1.4 Code Analysis for Investigations

Arguably, to the author’s knowledge MARFCAT (Section in 2010 was the first time a
machine learning approach was attempted to static code analysis for vulnerable/weak code
classification with the first results demonstrated during the SATE2010 workshop [282] 283],
345]. In the same year, a somewhat similar approach independently was presented [50] for
vulnerability classification and prediction using machine learning and SVMs, but working
with a different set of data [312].

Additional related work (to various degree of relevance or use) can be found below (this
list is not exhaustive) [285] [312]: A taxonomy of Linux kernel vulnerability solutions in terms
of patches and source code as well as categories for both are found in [295]. The core ideas
and principles behind the MARF’s pipeline and testing methodology for various algorithms in
the pipeline adapted to this case are found in [268] 279] as well as in Section as it was the
easiest implementation available to accomplish the task. There also one can find the majority
of the core options used to set the configuration for the pipeline in terms of algorithms used.
A binary analysis using machine a learning approach for quick scans for files of known types
in a large collection of files is described in [288] as well as the NLP and machine learning for
NLP tasks in DEFT2010 [277, 281] with the corresponding DEFT2010App and its predecessor
for hand-written image processing WriterIdentApp [316]. Tlili's 2009 PhD thesis covers top-
ics on automatic detection of safety and security vulnerabilities in open source software [469).
Statistical analysis, ranking, approximation, dealing with uncertainty, and specification in-
ference in static code analysis are found in the works of Engler’s team [213] 214], 215]. Kong
et al. further advance static analysis (using parsing, etc.) and specifications to eliminate
human specification from the static code analysis in [211]. Hanna et al. describe a synergy
between static and dynamic analysis for the detection of software security vulnerabilities
in [161] paving the way to unify the two analysis methods. Other researchers propose the

MEDUSA system for metamorphic malware dynamic analysis using APT signatures in [32§].

101

Some of the statistical NLP techniques we used are described at length in [246]. BitBlaze
(and its web counterpart, WebBlaze) are other recent tools that do fast static and dynamic
binary code analysis for vulnerabilities, developed at Berkeley [432, 433]. For wavelets, for
example, Li et al. [232] have shown wavelet transforms and k-means classification can be used
to identify communicating applications fast on a network and is relevant to the study of the

code in text or binary form [312].

5.2 MARF

MARF (Modular A* Recognition Framework) as a framework (and its instance as a library)
has been covered in a number of work since its inception in 2002 [258, 266, 268, 281, 288 [462]
for various classification tasks originally targeting audio applications, but eventually out-
growing that domain (hence the change from Audio to A* in the name). The research
into MARF has led to connections with other disciplines such as presented here intensional
programming with the design of MARFL, a MARF configuration specification and ma-
nipulation language (Appendix , design of the code analysis and network packet anal-
ysis applications MARFCAT and MARFPCAT presented further, forensic analysis of file
types [288], and NLP aspects [279]. MARF was integrated in various capacities with GIPSY
(Chapter [6)) since circa 2005, had a PoC design of the distributed [269, 294] and autonomic
versions [318], 4911 492 493]. MARF’s data structure declarations (as well as that of other
middleware [320]) as well as its applications are a subject of encoding and export in FORENSIC

LuciD (Section [8.5.1.1)) to serve as additional witness accounts in investigations.

5.2.1 MARF Overview

MARF is an open-source project that provides pattern recognition APIs with sample imple-
mentation for (un)supervised machine learning and classification, including biometric forensic
identification, written in JAvA [258] 266], 268| [462] by the author and collaborators in 2002.
As one of its roles, it serves as a testbed to verify common and novel algorithms for sam-
ple loading, preprocessing, feature extraction, training and classification stages. In this role

MARF provides researchers with a tool for the practical comparison of the algorithms in

102

a uniform environment and allows for dynamic module selection via reflection [140] based

on a wide array of configuration options supplied by MARF applications. Within few years

MARF accumulated a fair number of implementations for each of the pipeline stages (cf. Fig-

ure [29] page [103]) allowing comparative studies of algorithm combinations, studying their

behavior and other properties when used for various pattern recognition tasks. MARF, its

derivatives, and applications were also used beyond audio processing tasks, as in this work,

due to the generality of the design and implementation in [263, 269, 290] and several other

works [288], 317].

Loading
Stage

-

Preprocessing

Stage

Feature
Extraction Stage

WAVLoader
MP3Loader
sample SINELoader
MP3Loader

SNDLoader

Classification
Stage

-

Chebyshev

Mahalanobis

~

MIDILoader

AULoader

AlIFFLoader

AIFFCLoader

TEXTLoader

G

N

/

traip Markov
’W‘ Neural Network
W-
i 4 FFT ‘ Stochastic |
. wc | | Ziflaw |
’T—Stop‘ ’ Min/Max ‘ lasgify ‘ Random |
‘ normalize ‘ ’W‘ \ﬂ‘ \
\ ’m‘ ’ Fo ‘ Chebyshev
Endpoint | Segmentation | | Euclidean |
/Tmy\ ’ Random ‘ ‘ Minkowski | N
Ra | Aggregator | | Diff | result set
V)
Mahalanobis

NI

Hamming
FT
Markov
FFT

Stochastic

ZipfLaw

/

Figure 29: MARF’s pattern-recognition pipeline [270]

Some of the MARF’s architectural design influenced GIPSY ([262], Chapter [6) and
MARF’s utility modules are likewise in use by GIPSY. Both distributed version of MARF

103

(DMARF) and GIPSY were together proposed case studies from the security [269] and self-

forensics [319] standpoints.

5.2.2 MARF Architecture

The Modular A* Recognition Framework (MARF) [258, 260, 268, 462] is a JAVA framework,
and an open-source research platform and a collection of pattern recognition, signal pro-
cessing, and natural language processing (NLP) algorithms written in JAVA and put into a
modular and extensible framework facilitating addition of new algorithms for use and ex-
perimentation by scientists. A MARF instance can run distributively [263] over a network,
run stand-alone, or may just act as a simple library in applications. MARF has a num-
ber of algorithms implemented for various pattern recognition and some signal processing
tasks [269] 320].

The backbone of MARF consists of pipeline stages that communicate with each other to
get the data they need in a chained manner. MARF’s pipeline of algorithm implementations
is illustrated in Figure 29 where the implemented algorithms are in white boxes, and the
stubs or in-progress algorithms are in gray. The pipeline consists of four basic stages: sample
loading, preprocessing, feature extraction, and training/classification [269} 320].

There are a number of applications that test MARF’s functionality and serve as exam-
ples of how to use or to test MARF’s modules. One of the most prominent applications
is SpeakerIdentApp—Text-Independent Speaker Identification (who, gender, accent, spo-
ken language, etc.) [315]. Its derivative, FileTypeIdentApp, was used to employ MARF’s
capabilities for forensic analysis of file types [288] as opposed to [269, [320] the Unix file
utility [75] [76].

5.2.3 Pattern Recognition Pipeline

The conceptual pattern recognition pipeline design presented in Figure [29| depicts the core
of the data flow and transformation between the stages in MARF [258] 1462]. Generally, the
classical pattern recognition process starts by loading a sample (e.g., an audio recording, text,

image file, pcap, or virtually any regular file), preprocessing it somehow (e.g., normalization

104

. Result

. MARF

. Sample

‘ ‘ Samplé_Loader

‘ ‘ Preprocessing

‘ . Classification

FeatureExtraction

Speakeﬁentﬁ\pg

recoghizel)

startRecognitionPipeline()

PR

loadSarmpleFile) |

MARF Recognition Pipeline Iﬁ

Concrete:F‘reprocessing(SaimpIe)

gé‘atSampIeArray()

preprocess()

narmalizel)

Pe—

iFeatureExtractior%(F'reprocessing) :

generate preprocessed sample

e—

extractFe;'atures()

getSample()

generate feature vector:

getResult()

= :
CIaslsiﬁcation(FeatureExtradion) L]
classify() :
: getFeaturesArray()
; ; D determine 1D
: : : f——
: : : Result()
getResuIt()i L
getiD()

Figure 30: MARF’s pattern-recognition pipeline sequence diagram [28§]

105

and filtering out noisy and “silent” data), then extracting the most prominent features, and,
finally either training the system such that it learns a new set of features of a given subject
or actually classifies what/who the subject is [288].

The outcome of training is either a collection of some form of feature vectors or their mean
or median clusters [268], called training sets, which are stored per every learned subject. The
outcome of classification is an instance of the ResultSet data structure, which is a sorted
collection of IDs (int) and their corresponding outcome values (double); the sorting is done
from most likely outcome to least likely. The most likely one is the ultimate outcome to be
interpreted by the application. Some of the details of such processing of classification are
illustrated on the actual sequence of events and method calls within the main MARF module

is shown in Figure (30| [28§].

5.2.4 Distributed MARF (DMARF)

DMARF [263] is based on the classical MARF whose pipeline stages were made into dis-
tributed nodes [320]. Specifically, the classical MARF presented earlier was extended [263]
to allow the stages of the pipeline to run as distributed nodes as well as their front-ends,
as shown in Figure in a high-level overview. The basic stages and the front-ends were
designed to support, but implemented without backup recovery or hot-swappable capabili-
ties. They only support communication over Java RMI [520], CORBA [443], and XML-RPC
WebServices [294], [444]. Later, DMARF was further extended to allow management of its
nodes with SNMP [291] by implementing the proxy SNMPv2 [163] agents and translating
some of the management information to DMARF’s “native” operations. There is also an
undergoing project on the intensional configuration scripting language, MARFL [270] (see
Appendix to script MARF tasks and applications and allows them to be run distribu-
tively either using MARF’s own infrastructure or over a GIPSY network instance (Chapter|6]).
Being distributed, DMARF has new data structures and data flow paths that are not covered

by the FORENSIC LuUcCID specification of the classical MARF, so we contribute an extension

in this work [320] in Section [8.5.1.1) and Appendix [D.4.6.1]

106

Front-end Modules m
Thin _ | Speakerident Persistence || Recovery || Livmess
Application Client v FE Sevice Service || Monitor
Thicker | MARF [
Application Client T OEE
o — =
Thicker .| SampleLoading NN Backup
soplicaonClert [T~ FE (€| P 7] R
bl =
' I
Thicker Freprocessing PR Backp.
> el S
soicaoncient [T~ & [|| P~ PR ||
to L =
I
Thickar FeatureBxtraction FE Backup
e 1 iy .
Appiication Client [FE | P FERM
- =
Thicker o Classification | , 1] L Backup
Application Cliert il RM CLRM

Figure 31: The distributed MARF pipeline

5.3 fileType

The Unix file utility determines file types of regular files by examining usually the first
512 bytes of the file that often contain some magic header information or typical header
information for binary files or common text file fragments; otherwise, it defers to the OS-
dependent stat() system call. It combines heuristics with the common file extensions to
give the final result of classification. While file is standard, fast and small, and its magic
database is “serviceable” by expert users, for it to recognize new file types, perhaps with much
finer granularity it requires code and/or magic database updates and a patch release from the
core developers to recognize new file types correctly. MARF-based fileType was proposed
in 2008 an alternative file-like utility in determining file types with much greater flexibility
that can learn new types on the user’s side and be integrated into forensic toolkits as a plug-
in that relies on the file-like utility and uses signal processing techniques to compute the
“spectral signatures” of file types. What follows is an overview of the design of such a tool
based on MARF’s collection of algorithms and the selection of the best combination and the
integration of the tool into a forensic toolkit to enhance the tool, called fileType with the

automatic machine learning capabilities of the new file types. Some of the advantages and

107

disadvantages of this tool are compared with the file utility in terms of various metrics [288].
It also served as a predecessor to the MARF Forensic Data Sniffer case study. A similar
file type analysis has recently (2012) been included with Sourcefire’s SIM and FireSIGHT

into their toolset to report or block certain file types.

5.3.1 Overview

fileType follows an approach using the MARF’s collection of algorithms to determine file
types in various ways and compare them using signal processing and NLP techniques, both
supervised and unsupervised machine learning, and various file format loaders. MARF and its
application SpeakerIdentApp [315] were shown to be used as a proof-of-concept for biometric
forensic analysis of the phone-quality audio recordings to classify the identities of speakers ir-
respective of what speakers say on voice recordings, their gender, and spoken accent [266), 268].
fileType adapts MARF’s pattern recognition pipeline, the SpeakerIdentApp application,
and the magic database of file to be used together, in the resulting application called in
JAVA FileTypesIdentApp, with a shorthand invocation of fileType [288].

MAREF conveniently has a class, ByteArrayFileReader that reads a file from a file system
or an URI (or any Reader or InputStream for that matter). £ileType employs this class to
read the file data (either the first 512 bytes or the entire file as options) and the values of the
byte array become features for classification (spectral or otherwise). It then may optionally do
the regular signal pattern recognition techniques [268] of preprocessing and feature extraction
to remove all the unwanted noise and silence and extract more discriminating features [288].

The FileTypesIdentApp application, a.k.a fileType, is capable of understanding some
of the file’s options [75], and the work is under way to be able to experiment with file’s
magic database. fileType has its own database that it can augment throughout its lifetime
automatically using machine learning techniques. The statistics of the algorithm combina-
tions tried and their recognition accuracy performance along with the run-time are stored in

a comma-separated values (CSV) file, per each major technique [288].

108

Table 2: File-type identification top 10 results, bigrams ([288])

[Guess [Rank [Configuration [GOOD [BAD [Precision, %]
1st 1 -wav -raw -lpc -cheb 147 54 73.13
1st 1 -wav -silence -noise -raw -lpc -cheb 147 54 73.13
1st 1 -wav -noise -raw -Ipc -cheb 147 54 73.13
1st 1 -wav -norm -lpc -cheb 147 54 73.13
1st 1 -wav -silence -raw -lpc -cheb 147 54 73.13
1st 2 -wav -silence -norm -fft -cheb 129 72 64.18
1st 3 -wav -bandstop -fft -cheb 125 76 62.19
1st 3 -wav -silence -noise -norm -fft -cheb 125 76 62.19
1st 3 -wav -silence -low -fft -cheb 125 76 62.19
1st 4 -wav -silence -norm -Ipc -cheb 124 77 61.69

Table 3: File-type identification top 10 results, 2nd best, bigrams ([288])

[Guess [Rank [Configuration [GOOD [BAD [Precision, %]
2nd 1 -wav -raw -lpc -cheb 166 35 82.59
2nd 1 -wav -silence -noise -raw -lpc -cheb 166 35 82.59
2nd 1 -wav -noise -raw -lpc -cheb 166 35 82.59
2nd 1 -wav -norm -lpc -cheb 166 35 82.59
2nd 1 -wav -silence -raw -lpc -cheb 166 35 82.59
2nd 2 -wav -silence -norm -fft -cheb 137 64 68.16
2nd 3 -wav -bandstop -fft -cheb 130 71 64.68
2nd 3 -wav -silence -noise -norm -fft -cheb 140 61 69.65
2nd 3 -wav -silence -low -fft -cheb 140 61 69.65
2nd 4 -wav -silence -norm -lpc -cheb 176 25 87.56

Table 4: File-type identification top 10 results, bigrams, per file type ([288])

Guess Rank File type GOOD BAD Precision, %
1st 1 Mach-O filetype=10 i386 64 0 100.00
1st 2 HTML document text 64 0 100.00
1st 3 TIFF image data; big-endian 64 0 100.00
1st 4 data 64 0 100.00
1st 5 ASCII ¢ program text; with very long lines 64 0 100.00
1st 6 Rich Text Format data; version 1; Apple Macintosh 128 0 100.00
1st 7 ASCII English text 64 0 100.00
1st 8 a /sw/bin/ocamlrun script text executable 516 60 89.58
1st 9 perl script text executable 832 192 81.25
1st 10 NeXT/Apple typedstream data; big endian; version 4; system 1000 255 65 79.69

5.3.2 Sample Results

In [288], an experiment was conducted to use a MARF-based FileTypeIdentApp for bulk
forensic analysis of file types using signal processing techniques. Certain results were quite
encouraging precision /recall-wise for the first and second best top 10 statistics extracts in

Table [2 and Table [3, as well as statistics per file type in Table [4] [276].

5.3.3 Limitations and Drawbacks

In the current implementation of the fileType there are several drawbacks and limitations
(that were planned to be eliminated or reduced as a part of the future work) [288]. These

are listed in part as follows:

e The presented here technique of machine learning and the tool are more effective to use
with the regular files only, and are not suited for special files and devices that are file-

system specific. For those, the same approach as file does using the stat() system

109

call [480] can be used (but this is no longer machine learning, effectively deferring such

tasks to file that does it better) [288].

Training the system with noisy data samples can deteriorate the recognition accuracy
of the tool, which may lead to the problem of over-fitting [I60]. This can be either
accidental (local) or malicious (system-wide, CAF) by supplying a file of one type
for training, but telling it is another. This is a general problem with any machine-
learning tools and applications. A way of dealing with this partly is to validate each of
the incoming training samples by classifying them first and comparing with the class
specified for training and in the case of mismatch, report to the user of a potential
problem; in the safe mode refuse to train in the case of mismatch. This will prevent
the accidental training on the wrong data for misclassification. The latter only partly
solves the problem, as the system can be cheated at the beginning when the new file

type being inserted for the first time and is mistrained on [28§].

To be seriously considered in a real investigation toolset and environment, legally, the
tool has to be proved to be correct in its design and implementation as well as compo-
nents it relies on, such as MARF, e.g., by using JML [53, 227, 228] and Isabelle [370]
for this task later in the project [28§].

5.4 MARFCAT

We elaborate on the details of the methodology and the corresponding results of application

of the machine learning techniques along with signal processing and NLP alike to static

source and binary code analysis in search for and investigataion on program weaknesses
and vulnerabilities [285]. Here we review the tool, named MARFCAT, a MARF-based Code
Analysis Tool [283], first exhibited at the Static Analysis Tool Exposition (SATE) workshop

in 2010 [345] to machine-learn from the (Common Vulnerabilities and Exposures) CVE-based

vulnerable as well as synthetic CWE-based cases to verify the fixed versions as well as non-

CVE based cases from the projects written in various programming languages. The second

iteration of this work was prepared for SATE IV [346] and used its updated data set [312].

110

5.4.1 Overview

We review our machine learning approach to static code analysis and fingerprinting for weak-
nesses related to security, software engineering, and others using the open-source MARF
framework and the MARFCAT application based on it for the NIST’s SATE 2010 and SATE
IV [346] static analysis tool exposition workshop’s data sets that include additional test
cases, including large synthetic cases [285], 312]. To aid detection of weak or vulnerable code,
including source or binary on different platforms the machine learning approach proved to
be fast and accurate for such tasks. We use signal and NLP processing techniques in our
approach to accomplish the identification and classification tasks. MARFCAT’s design from
the beginning in 2010 was made independent of the language being analyzed, be it source
code, bytecode, or binary. We evaluated also additional algorithms that were used to pro-
cess the data [312]. This work is imperative in digital investigations and that’s why MARF
itself and MARFCAT were designed to export evidence in the FORENSIC LuciD format
(Section page [234] [312]).

In 2010, at the core of the workshop there were C/C+-+-language and JAVA language
tracks comprising CVE-selected cases as well as stand-alone cases. The CVE-selected cases
had a vulnerable version of a software in question with a list of CVEs attached to it, as well
as the most known fixed version within the minor revision number. One of the goals for
the CVE-based cases is to detect the known weaknesses outlined in CVEs using static code
analysis and also to verify if they were really fixed in the “fixed version” [285, [345].

The test cases at the time included CVE-selected: C: Wireshark 1.2.0 (vulnerable) and
Wireshark 1.2.9 (fixed); C+-+: Chrome 5.0.375.54 (vulnerable) and Chrome 5.0.375.70
(fixed); JAVA: Tomcat 5.5.13 (vulnerable) and Tomcat 5.5.29 (fixed), and non-CVE selected:
C: Dovecot; JAVA: Pebble 2.5-M2. They were later expanded to other cases and newer ver-
sions and a PHP test case was added (Wordpress). For more information on the data sets
see Section , page . The open-source MARFCAT tool itself [283] was developed
to machine-learn from the CVE-based vulnerable cases and verify the fixed versions as well
as non-CVE based cases from similar programming languages [285].

At the time, the presented machine learning approach was novel and highly beneficial

in static analysis and routine testing of any kind of code, including source code and binary

111

deployments for its efficiency in terms of speed, relatively high precision, robustness, and
being a complementary tool to other approaches that do in-depth semantic analysis, etc., by
prioritizing those tools’ targets. All these techniques can be used in an automated manner
in diverse distributed and scalable demand-driven environments (e.g., GIPSY, Chapter @ in
order to ensure the code safety, especially the mission critical software code in all kinds of

systems. It uses spectral, acoustic and language models to learn and classify such a code [312].

5.4.2 Core Principles

The core methodology principles include:
e Machine learning and dynamic programming
e Spectral and signal processing techniques
e NLP n-gram and smoothing techniques (add-d, Witten-Bell, MLE, etc.)

MARFCAT uses signal processing techniques (i.e., no syntactic parsing or otherwise work at
the syntax and semantics levels). MARFCAT treats the source code as a “signal”, equivalent
to binary, where each n-gram (n = 2 presently, i.e., two consecutive characters or, more
generally, bytes) are used to construct a sample amplitude value in the signal. In the NLP
pipeline, it similarly treats the source code as “characters”, where each n-gram (n = 1..3) is
used to construct the language model [312].

The MARFCAT system is shown the examples of files with weaknesses and it learns
them by computing spectral signatures using signal processing techniques or various language
models (based on options) from CVE-selected test cases. When some of the mentioned
techniques are applied (e.g., filters, silence/noise removal, other preprocessing and feature
extraction techniques), the line number information is lost as a part of this process [312].

When testing, MARFCAT computes either how similar or distant each file is from the
known trained-on weakness-laden files or compares the trained language models with the un-
seen language fragments in the NLP pipeline. In part, the methodology can approximately
be seen as some fuzzy signature-based “antivirus” or IDS software systems detect bad signa-

ture, except that with a large number of machine learning and signal processing algorithms

112

and fuzzy matching, we test to find out which combination gives the highest precision and
best run-time [312].

At the present, however, MARFCAT processes the whole files instead of parsing the finer-
grain details of patches and weak code fragments. This aspect lowers the precision, but is

relatively fast to scan all the code files [312].

5.4.3 CVEs and CWEs — the Knowledge Base

The CVE-selected test cases serve as a source of the knowledge base to gather information
of how known weak code “looks like” in the signal form [345], which are stored as spectral
signatures clustered per CVE or CWE (Common Weakness Enumeration). The introduction
by the SAMATE team of a large synthetic code base with CWEs, serves as a part of knowledge

base learning as well [312]. Thus, we:
e Teach the system from the CVE-based cases
e Test on the CVE-based cases
e Test on the non-CVE-based cases
For synthetic cases, similarly:
e Teach the system from the CWE-based synthetic cases
e Test on the CWE-based synthetic cases
e Test on the CVE and non-CVE-based cases for CWEs from synthetic cases

We created index files in XML in the format similar to that of SATE to index all the
file of the test case under study. The CVE-based cases after the initial index generation are

manually annotated from the NVD database before being fed to the system [312].

5.4.4 Categories for Machine Learning

The two primary groups of classes MARFCAT is trained and tested on include naturally
the CVEs [338] 339] and CWEs [481]. The advantages of CVEs is the precision and the

113

associated meta knowledge from [338],[339] can be all aggregated and used to scan successive
versions of the the same software or derived products (e.g., WebKit in multiple browsers).
CVEs are also generally uniquely mapped to CWEs. The CWEs as a primary class, however,
offer broader categories, of kinds of weaknesses there may be, but are not yet well assigned
and associated with CVEs, so we observe the loss of precision. Since there is no syntactic
parsing, MARFCAT generally cannot deduce weakness types or even simple-looking aspects
like line numbers where the weak code may be, it resorts to the secondary categories, that
are usually tied into the first two, which we also machine-learn along, such as issue types

(sink, path, fix) and line numbers [312].

5.4.5 Algorithms

In the methodology systematic tests and selection of the best (a tradeoff between speed and
accuracy) combination(s) of the algorithm implementations available is conducted. The sub-
sequent runs then use only the selected algorithms for subsequent testing. This methodology
includes the cases when the knowledge base for the same code type is learned from multiple

sources (e.g., several independent C test cases) [312].

5.4.5.1 Signal Pipeline

Algorithmically-speaking, the steps that are performed in the machine-learning signal based
analysis are in Figure[I] The specific algorithms come from the classical literature and other
sources and are detailed in [268], related works therein, and in Section [5.2] In the context
of MARFCAT the loading typically refers to the interpretation of the files being scanned in
terms of bytes forming amplitude values in a signal (as an example, 8kHz or 16kHz frequency)
using either uni-gram, bi-gram, or tri-gram approach. Then, the preprocessing allows to
be none at all (“raw”, or the fastest), normalization, traditional frequency domain filters,
wavelet-based filters, etc. Feature extraction involves reducing an arbitrary length signal to
a fixed length feature vector of what thought to be the most relevant features are in the signal
(e.g., spectral features in FFT, LPC), min-max amplitudes, etc. The classification stage is
then separated either to train by learning the incoming feature vectors (usually as k-means

clusters, median clusters, or plain feature vector collections, combined with, for example,

114

neural network training) or testing them against the previously learned models [312] (cf.,

Section .

// Construct an index mapping CVEs to files and locations within files
1 Compile meta-XML index files from the CVE reports (line numbers, CVE, CWE, fragment size, etc.). Partly done by a
Perl script and partly annotated manually;
2 foreach source code base, binary code base do
// Presently in these experiments we use simple mean clusters of feature vectors or unigram language
models per default MARF specification [268], [462]]
Train the system based on the meta index files to build the knowledge base (learn);
begin
Load (interpret as a wave signal or n — gram);
Preprocess (none, FFT-filters, wavelets, normalization, etc.);
Extract features (FFT, LPC, min-max, etc.);
Train (Similarity, Distance, Neural Network, etc.);
end
Test on the training data for the same case (e.g., Tomcat 5.5.13 on Tomcat 5.5.13) with the same annotations to
make sure the results make sense by being high and deduce the best algorithm combinations for the task;
11 begin

SO XWIO U AW

[y

12 Load (same);

13 Preprocess (same);

14 Extract features (same);

15 Classify (compare to the trained k-means, or medians, or language models);

16 Report;

17 end

18 Similarly test on the testing data for the same case (e.g., Tomcat 5.5.13 on Tomcat 5.5.13) without the
annotations as a sanity check;

19 Test on the testing data for the fixed case of the same software (e.g., Tomcat 5.5.13 on Tomcat 5.5.33);

20 Test on the testing data for the general non-CVE case (e.g., Tomcat 5.5.13 on Pebble or synthetic);

21 end

Algorithm 1: Machine-learning-based static code analysis testing algorithm using the
signal pipeline [312]

5.4.5.2 NLP Pipeline

The steps that are performed in NLP and the machine-learning based analyses are presented
in Figure 2| The specific algorithms again come from the classical literature (e.g., [246])
and are detailed in [279] and the related works. To be more specific for this background
overview, the loading typically refers to the interpretation of the files being scanned in terms
of n-grams: uni-gram, bi-gram, or tri-gram approach and the associated statistical smoothing

algorithms, the results of which (a vector, 2D or 3D matrix) are stored [312].

5.4.6 Binary and Bytecode Analysis

MARFCAT also does preliminary JAVA bytecode and compiled C code static analysis and
produces results using the same signal processing, NLP, combined with machine learning and

data mining techniques. At this writing, the NIST SAMATE synthetic reference data set

115

1 Compile meta-XML index files from the CVE reports (line numbers, CVE, CWE, fragment size, etc.). Partly done by a
Perl script and partly annotated manually;

2 foreach source code base, binary code base do

// Presently these experiments use simple unigram language models per default MARF
specification [279]]

Train the system based on the meta index files to build the knowledge base (learn);

begin

Load (n-gram);

Train (statistical smoothing estimators);

end

Test on the training data for the same case (e.g., Tomcat 5.5.13 on Tomcat 5.5.13) with the same annotations to
make sure the results make sense by being high and deduce the best algorithm combinations for the task;

9 begin

10 Load (same);

11 Classify (compare to the trained language models);

12 Report;

13 end

14 Similarly test on the testing data for the same case (e.g., Tomcat 5.5.13 on Tomcat 5.5.13) without the
annotations as a sanity check;

15 Test on the testing data for the fixed case of the same software (e.g., Tomcat 5.5.13 on Tomcat 5.5.33);

16 Test on the testing data for the general non-CVE case (e.g., Tomcat 5.5.13 on Pebble or synthetic);

17 end

Algorithm 2: Machine-learning-based static code analysis testing algorithm using the NLP
pipeline [312]

for JAVA and C was used. The algorithms presented in Section [5.4.5| are used as-is in this
scenario with the modifications to the index files. The modifications include removal of the
line numbers, source code fragments, and lines-of-text counts (which are largely meaningless
and ignored. The byte counts may be recomputed and capturing a byte offset instead of a
line number was projected. The filenames of the index files were updated to include -bin in

them to differentiate from the original index files describing the source code [312].

5.4.7 Wavelets

During MARFCAT design and development as a part of a collaboration project wavelet-
based signal processing for the purposes of noise filtering is being introduced into MARF to
compare it to no-filtering or FFT-based classical filtering. It’s been also shown in [232] that
wavelet-aided filtering could be used as a fast preprocessing method for a network application
identification and traffic analysis [234] as well [312]. That implementation relies in part on
the the algorithm and methodology found in [I, 209, 210, 418], and at this point only a
separating 1D discrete wavelet transform (SDWT) has been tested [312].

116

5.4.8 Demand-Driven Distributed Evaluation with GIPSY

To enhance the scalability of the approach, we convert the MARFCAT stand-alone appli-
cation to a distributed one using an eductive model of computation (demand-driven) im-
plemented in the General Intensional Programming System (GIPSY)’s multi-tier run-time
system [158, 189 860, 498], which can be executed distributively using Jini (Apache River),
or JMS [191] (see Section [6)) [312].

To adapt the application to the GIPSY’s multi-tier architecture, we create a problem-
specific generator and worker tiers (PS-DGT and PS-DWT respectively) for the MARFCAT
application. The generator(s) produce demands of what needs to be computed in the form
of a file (source code file or a compiled binary) to be evaluated and deposit such demands
into a store managed by the demand store tier (DST) as pending. Workers pickup pending
demands from the store, and them process then (all tiers run on multiple nodes) using a
traditional MARFCAT instance. Once the result (a Warning instance) is computed, the PS-
DWT deposit it back into the store with the status set to computed. The generator “harvests”
all computed results (warnings) and produces the final report for a test cases. Multiple test
cases can be evaluated simultaneously or a single case can be evaluated distributively. This
approach helps to cope with large amounts of data and avoid recomputing warnings that
have already been computed and cached in the DST [312]. Rabah also contribute a graphical
GMT [391], and MARFCAT configuration is rendered in Figure [3§ as an example.

In this setup a demand represents a file (a path) to scan (actually an instance of the
FileItem object), which is deposited into the DST. The PS-DW'T picks up that and checks
the file per training set that’s already there and returns a ResultSet object back into the
DST under the same demand signature that was used to deposit the path to scan. The result
set is sorted from the most likely to the list likely with a value corresponding to the distance
or similarity. The PS-DGT picks up the result sets and does the final output aggregation and
saves report in one of the desired report formats (see Section picking up the top two
results from the result set and testing against a threshold to accept or reject the file (path)
as vulnerable or not. This effectively splits the monolithic MARFCAT application in two
halves in distributing the work to do where the classification half is arbitrary parallel [312].

Simplifying assumptions:

117

e Test case data and training sets are present on each node (physical or virtual) in
advance (via a copy or a CIFS or NFS volume), so no demand driven training occurs,

only classification
e The demand assumes to contain only the file information to be examined (FileItem)

e PS-DWT assumes a single pre-defined configuration, i.e., the configuration for MARF-
CAT’s option is not a part of the demand

e PS-DWT assume CVE or CWE testing based on its local settings and not via the

configuration in a demand

5.4.9 Export and Encoding
5.4.9.1 SATE

By default MARFCAT produces the report data in the SATE XML format, according to the
SATE IV requirements. In this iteration other formats are being considered and realized.
To enable multiple format output, the MARFCAT report generation data structures were
adapted case-based output [312].

5.4.9.2 FoRENSIC LuciD

MARFCAT began FORENSIC LUCID export support, the core topic of this thesis (Chapter|7)).
Following the data export in FORENSIC LUCID in the preceding work [267, 302, B08| we
use it as a format for evidential processing of the results produced by MARFCAT. The
Chapter [7| provides details of the language; it will suffice to mention here that the report
generated by MARFCAT in FORENSIC LUCID is a collection of warnings as observations
with the hierarchical notion of nested context of warning and location information. These
will form an evidential statement in FORENSIC LucCID (see, e.g., [312 Appendix]|). The
example scenario where such evidence compiled via a MARFCAT FORENSIC LUCID report
would be in web-based applications and web browser-based incident investigations of fraud,
XSS, buffer overflows, etc. linking CVE/CWE-based evidence analysis of the code (binary

or source) security bugs with the associated web-based malware propagation or attacks to

118

provide possible events where specific attacks can be traced back to the specific security

vulnerabilities [312].

5.4.10 Sample Results

This section illustrates some sample classification results on a few sample test cases from the

SATE workshop.

5.4.10.1 Chrome 5.0.375.54

This version’s CVE testing result of Chrome 5.0.375.54 is in Table[5] The results are as good

as the training data given; if there are mistakes in the data selection then the results will

also have mistakes accordingly [285].
Table 5: Sample CVE classification stats for Chrome 5.0.375.54 [285]

guess | run | algorithms good | bad %
1st 1 | -nopreprep -raw -fft -eucl 10 1 90.91
1st 2 | -nopreprep -raw -fft -cos 10 1 90.91
1st 3 | -nopreprep -raw -fft -diff 10 1 90.91
1st 4 | -nopreprep -raw -fft -cheb 10 1 90.91
1st 5 | -nopreprep -raw -fft -mink 9 2 81.82
1st 6 | -nopreprep -raw —-fft -hamming 9 2 81.82
2nd 1 | -nopreprep -raw -fft -eucl 11 0 100.00
2nd 2 | -nopreprep -raw -fft -cos 11 0 100.00
2nd 3 | -nopreprep -raw -fft -diff 11 0 100.00
2nd 4 | -nopreprep -raw -fft -cheb 11 0 100.00
2nd 5 | -nopreprep -raw -fft -mink 10 1 90.91
2nd 6 | -nopreprep -raw -fft -hamming 10 1 90.91
guess | run | class good | bad %
1st 1 | (CVE-2010-2301 6 0 100.00
1st 2 | (CVE-2010-2300 6 0 100.00
1st 3 | ICVE-2010-2299 6 0 100.00
1st 4 | |ICVE-2010-2298 6 0 100.00
1st 5 | (CVE-2010-2297 6 0 100.00
1st 6 | (CVE-2010-2304 6 0 100.00
1st 7 | (CVE-2010-2303 6 0 100.00
1st 8 | |ICVE-2010-2295 10 2 83.33
1st 9 | |ICVE-2010-2302 6 6 50.00
2nd 1 | CVE-2010-2301 6 0 100.00
2nd 2 | ICVE-2010-2300 6 0 100.00
2nd 3 | |ICVE-2010-2299 6 0 100.00
2nd 4 | |ICVE-2010-2298 6 0 100.00
2nd 5 | (CVE-2010-2297 6 0 100.00
2nd 6 | |(CVE-2010-2304 6 0 100.00
2nd 7 | (CVE-2010-2303 6 0 100.00
2nd 8 | |ICVE-2010-2295 10 2 83.33
2nd 9 | |ICVE-2010-2302 12 0 100.00

119

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2301
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2300
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2299
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2298
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2297
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2304
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2303
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2295
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2302
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2301
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2300
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2299
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2298
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2297
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2304
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2303
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2295
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2302

5.4.10.2 Tomcat 5.5.13

This example of a MARFCAT classification run represents CVE-based testing on training
for Tomcat 5.5.13. Classifiers corresponding to —cheb (Chebyshev distance) and -diff (Diff
distance) continue to dominate as in the other test cases [285]. These CVE-based results are

summarized in Table [6] [285].
Table 6: Sample CVE stats for Tomcat 5.5.13 [285]

1st 1 | -nopreprep -raw -fft -diff 36 7 83.72
1st 2 | -nopreprep -raw -fft -cheb 36 7 83.72
1st 3 | -nopreprep -raw -fft -cos 37 9 80.43
1st 4 | -nopreprep -raw -fft -eucl 34 9 79.07
1st 5 | —nopreprep -raw -fft -mink 28 15 65.12
1st 6 | -nopreprep -raw -fft -hamming 26 17 60.47
2nd 1 | -nopreprep -raw —-fft -diff 40 3 93.02
2nd 2 | -nopreprep -raw -fft -cheb 40 3 93.02
2nd 3 | -nopreprep -raw -fft -cos 40 6 86.96
2nd 4 | -nopreprep -raw -fft -eucl 36 7 83.72
2nd 5 | —nopreprep -raw -fft -mink 31 12 72.09
2nd 6 | -nopreprep -raw —-fft -hamming 29 14 67.44
guess | run | algorithms good | bad %
1st 1 | CVE-2006-7197 6 0 100.00
1st 2 | (CVE-2006-7196 6 0 100.00
1st 3 | |ICVE-2006-7195 6 0 100.00
1st 4 | |ICVE-2009-0033 6 0 100.00
1st 5 | (CVE-2007-3386 6 0 100.00
1st 6 | CVE-2009-2901 3 0 100.00
1st 7 | ICVE-2007-3385 6 0 100.00
1st 8 | |(CVE-2008-2938 6 0 100.00
1st 9 | |(CVE-2007-3382 6 0 100.00
1st 10 | CVE-2007-5461 6 0 100.00
1st 11 | (CVE-2007-6286 6 0 100.00
1st 12 | CVE-2007-1858 6 0 100.00
1st 13 | CVE-2008-0128 6 0 100.00
1st 14 | CVE-2007-2450 6 0 100.00
1st 15 | (CVE-2009-3548 6 0 100.00
1st 16 | CVE-2009-0580 6 0 100.00
1st 17 | (CVE-2007-1355 6 0 100.00
1st 18 | |(CVE-2008-2370 6 0 100.00
1st 19 | (CVE-2008-4308 6 0 100.00
1st 20 | |(CVE-2007-5342 6 0 100.00
1st 21 | |[CVE-2008-5515 19 5 79.17
1st 22 | |(CVE-2009-0783 11 4 73.33
1st 23 | ICVE-2008-1232 13 5 72.22
1st 24 | |ICVE-2008-5519 6 6 50.00
1st 25 | ICVE-2007-5333 6 6 50.00
1st 26 | (CVE-2008-1947 6 6 50.00
1st 27 | (CVE-2009-0781 6 6 50.00
1st 28 | (CVE-2007-0450 5 7 41.67
1st 29 | |(CVE-2007-2449 6 12 33.33
1st 30 | |ICVE-2009-2693 2 6 25.00
1st 31 | |ICVE-2009-2902 0 1 0.00

120

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-7197
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-7196
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-7195
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0033
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3386
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2901
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3385
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2938
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3382
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5461
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-6286
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1858
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0128
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2450
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3548
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0580
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1355
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2370
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4308
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5342
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5515
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0783
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1232
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5519
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5333
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1947
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0781
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0450
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2449
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2693
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2902

5.5 MARFPCAT

As a part of the fingerprinting network malware project [47] by analyzing the pcap traces
as a branch the MARFPCAT (MARF-based PCap Analysis Tool) [287] was created as an
extension of the latest revision of MARFCAT [312]. Specifically, to improve detection and
classification of the malware in the network traffic or otherwise we employ fast MARF-
based machine learning approach to static pcap analysis, fingerprinting, and subsequent
investigation. Similarly to the other tools, MARFPCAT is first trained on the known malware
pcap data and then measures the detection precision. Then we test it on the unseen data
during training, but known to the investigator, and we select the best available machine
learning algorithm combination to do so in subsequent investigations. MARFPCAT, like
MARFCAT has PS-DWT and -DGT backends to run over a GIPSY network and FORENSIC
LuciD export capability. In Section [10.4], page [284] it considered to be used as a evidence

feed tool for network forensics related investigations about malware and scanning.

5.5.1 Overview

The MARFPCAT work elaborates on the details of the earlier methodology and the cor-
responding results of application of the machine learning techniques along with signal pro-
cessing and NLP alike to network packet analysis in search for malicious code in the packet
capture (pcap) data. Most of the ideas in Section [285] are still applicable here where
the same approach was used to machine-learn, detect, and classify vulnerable or weak code
fast and with relatively high precision.

We show the system the examples of pcap files with malware and MARFPCAT learns
them by computing spectral signatures using signal processing techniques. When we test,
we compute how similar or distant each file is from the known trained-on malware-laden
files. At the present, however, we are looking at the whole pcap files. This aspect lowers the
precision, but is fast to scan all the files.

MARFPCAT was first designed to use JNetPcap, a Java wrapper of 1ibpcap as one of the
loaders to extract headers and other packet data structure items to refine the classification

precision when not using the whole-file training and classification. This work was further

121

refined in [47] by Boukhtouta et al. For comparative studies with this work MARF added
wrapper plug-ins to allow Weka'’s classifiers to be available to the MARF pipeline and MARF

applications.

5.5.2 The Knowledge Base

The GFI malware database with known malware, the reports, etc. serves as a knowledge

base to machine-learn from in this experiment. Thus, we primarily:
e Teach the system from the known cases of malware from their pcap data
e Test on the known cases

e Test on the unseen cases

5.5.3 Categories for Machine Learning

The primary category is the malware class, e.g., “Virusl”’, “Trojan2”, etc., which are inter-
nally enumerated. The known data is indexed via a PERL script creating an XML file and

MARFPCAT uses such files for training and testing.

5.5.4 Sample Results

Some classification results follow (Table [7, Table [9] and Table using various algorithm
combinations including wavelets. The precision results are designed to be assigned to the

credibility (confidence) weights w encoded in FORENSIC LUCID observations.

5.6 Summary

Of particular interest to this thesis are the results that are supplied as an evidence encoded
in observations and observation sequences in FORENSIC LucID with the precision/confidence
value assigned to the credibility value of each observation. We review the current results of

this experimental work, its current shortcomings, advantages, and practical implications.

122

Table 7: Top 6 distance malware classifiers and 32 results, FFT feature vectors

guess | run | algorithms good | bad %
1st 1 | -dynaclass -binary -nopreprep -raw -fft -cos -flucid 67 154 30.32
1st 2 | -dynaclass -binary -nopreprep -raw -fft -diff -flucid 55 166 24.89
1st 3 | -dynaclass -binary -nopreprep -raw -fft —cheb -flucid 55 166 24.89
1st 4 | -dynaclass -binary -nopreprep -raw -fft —eucl -flucid 50 171 22.62
1st 5 | -dynaclass -binary -nopreprep -raw -fft -hamming -flucid 37 184 16.74
1st 6 | -dynaclass -binary -nopreprep -raw -fft -mink -flucid 34 187 15.38
2nd 1 | -dynaclass -binary -nopreprep -raw —-fft -cos -flucid 92 129 41.63
2nd 2 | -dynaclass -binary -nopreprep -raw -fft -diff -flucid 7 144 34.84
2nd 3 | -dynaclass -binary -nopreprep -raw -fft -cheb -flucid 7 144 34.84
2nd 4 | -dynaclass -binary -nopreprep -raw -fft -eucl -flucid 73 148 33.03
2nd 5 | -dynaclass -binary -nopreprep -raw -fft -hamming -flucid 46 175 20.81
2nd 6 | -dynaclass -binary -nopreprep -raw -fft -mink -flucid 47 174 21.27
guess | run | class good | bad %
1st 1 | VirTool.Win32.VBInject.gen.bp (v) 6 0 100.00
1st 2 | Trojan.Win32.Agent.roei 6 0 100.00
1st 3 | BehavesLike.Win32.Malware.dls (mx-v) 6 0 100.00
1st 4 | Worm.Win32.AutoRun.dkch 6 0 100.00
1st 5 | Trojan-FakeAV.Win32.Agent.det 6 0 100.00
1st 6 | FraudTool. Win32.FakeRean 6 0 100.00
1st 7 | VirTool:Win32/Obfuscator.WJ (suspicious) 6 0 100.00
1st 8 | Trojan.Win32.Vilsel.ayyw 6 0 100.00
1st 9 | Worm:Win32/Yeltminky.Aldll 6 0 100.00
1st 10 | Trojan.Win32.Meredrop 6 0 100.00
1st 11 | TrojanDownloader:Win32/Allsum 12 0 100.00
1st 12 | Virtumonde 6 0 100.00
1st 13 | Backdoor.Win32.Hupigon.nndu 6 0 100.00
1st 14 | VirTool: WinNT /Protmin.gen!C [generic] 6 0 100.00
1st 15 | PWS:Win32/Fareit.gen!C [generic| 6 0 100.00
1st 16 | Trojan-Dropper.Win32.Injector.cxgb 6 0 100.00
1st 17 | Trojan.Win32.Menti.mlgp 6 0 100.00
1st 18 | Trojan.Win32.Buzus (v) 6 0 100.00
1st 19 | Trojan.Win32.FakeAV.lcpt 12 0 100.00
1st 20 | Trojan.Win32.Agent.rlot 6 0 100.00
1st 21 | Trojan-Spy.Win32.SpyEyes.aecv 6 0 100.00
1st 22 | Trojan:Win32/Swrort.A 11 1 91.67
1st 23 | TrojanDownloader:Win32/Carberp.C 11 1 91.67
1st 24 | PWS:Win32/Lolyda.BF 15 3 83.33
1st 25 | Trojan.Win32.Yakes.qjn 8 4 66.67
1st 26 | Trojan.Win32.Agent.rlnz 5 7 41.67
1st 27 | Trojan.Win32.VBKrypt.tkvx 6 12 33.33
1st 28 | VirTool:Win32/VBInject.OT 6 12 33.33
1st 29 | HomeMalwareCleaner.FakeVimes 36 264 12.00
1st 30 | Trojan.Win32.Generic!BT 56 598 8.56
1st 31 | Trojan.FakeAlert 6 108 5.26
1st 32 | Trojan.Win32.Generic.pak!cobra 0 18 0.00

5.6.1 Shortcomings

Following are the most prominent issues with the presented tools and approaches. Some of
them are more “permanent”, while others are solvable and intended to be addressed in the
future work [312].

Looking at a signal is less intuitive visually for code analysis by humans. (However, the

approach can produce an easily identifiable problematic spectrogram in some cases). For

123

Table 9: Top 6 distance malware classifiers and 32 results, wavelet filter preprocessing

guess | run | algorithms good | bad %
1st 1 | -dynaclass -binary -nopreprep -sdwt -fft -cos -flucid 55 146 27.36
1st 2 | -dynaclass -binary -nopreprep -sdwt -fft -diff -flucid 41 180 18.55
1st 3 | —-dynaclass -binary -nopreprep -sdwt -fft -mink -flucid 41 180 18.55
1st 4 | -dynaclass -binary -nopreprep -sdwt -fft -cheb -flucid 41 180 18.55
1st 5 | -dynaclass -binary -nopreprep -sdwt -fft -eucl -flucid 41 180 18.55
1st 6 | -dynaclass -binary -nopreprep -sdwt -fft -hamming -flucid 30 191 13.57
2nd 1 | -dynaclass -binary -nopreprep -sdwt -fft -cos -flucid 75 126 37.31
2nd 2 | -dynaclass -binary -nopreprep -sdwt -fft -diff -flucid 56 165 25.34
2nd 3 | -dynaclass -binary -nopreprep -sdwt -fft -mink -flucid 67 154 30.32
2nd 4 | -dynaclass -binary -nopreprep -sdwt -fft -cheb -flucid 55 166 24.89
2nd 5 | -dynaclass -binary -nopreprep -sdwt -fft -eucl -flucid 58 163 26.24
2nd 6 | -dynaclass -binary -nopreprep -sdwt -fft -hamming -flucid 44 177 19.91
guess | run | class good | bad %
1st 1 | VirTool. Win32.VBInject.gen.bp (v) 6 0 100.00
1st 2 | Trojan.Win32.Agent.roei 6 0 100.00
1st 3 | BehavesLike.Win32.Malware.dls (mx-v) 6 0 100.00
1st 4 | Worm.Win32.AutoRun.dkch 6 0 100.00
1st 5 | Trojan-FakeAV.Win32.Agent.det 6 0 100.00
1st 6 | FraudTool. Win32.FakeRean 6 0 100.00
1st 7 | VirTool:Win32/Obfuscator.WJ (suspicious) 6 0 100.00
1st 8 | Trojan.Win32.Vilsel.ayyw 6 0 100.00
1st 9 | Worm:Win32/Yeltminky.Aldll 6 0 100.00
1st 10 | Trojan.Win32.Meredrop 6 0 100.00
1st 11 | Virtumonde 6 0 100.00
1st 12 | Backdoor.Win32.Hupigon.nndu 6 0 100.00
1st 13 | VirTool: WinNT/Protmin.gen!C [generic] 6 0 100.00
1st 14 | PWS:Win32/Fareit.gen!C [generic] 6 0 100.00
1st 15 | Trojan-Dropper.Win32.Injector.cxqb 6 0 100.00
1st 16 | Trojan.Win32.Menti.mlgp 6 0 100.00
1st 17 | Trojan.Win32.Buzus (v) 6 0 100.00
1st 18 | Trojan.Win32.Agent.rlot 6 0 100.00
1st 19 | Trojan-Spy.Win32.SpyEyes.aecv 6 0 100.00
1st 20 | Trojan.Win32.FakeAV .lcpt 11 1 91.67
1st 21 | TrojanDownloader:Win32/Allsum 10 2 83.33
1st 22 | Trojan.Win32.Yakes.qjn 10 2 83.33
1st 23 | Trojan.Win32.Agent.rlnz 9 3 75.00
1st 24 | Trojan:Win32/Swrort. A 6 6 50.00
1st 25 | TrojanDownloader:Win32/Carberp.C 6 6 50.00
1st 26 | Trojan.Win32.VBKrypt.fkvx 5 11 31.25
1st 27 | VirTool:Win32/VBInject.OT 5 11 31.25
1st 28 | HomeMalwareCleaner.FakeVimes 46 250 15.54
1st 29 | Trojan.FakeAlert 8 104 7.14
1st 30 | Trojan.Win32.Generic.pak!cobra 1 17 5.56
1st 31 | Trojan.Win32.Generic!BT 18 626 2.80
1st 32 | PWS:Win32/Lolyda.BF 0 18 0.00

source code analysis, line numbers are a problem (easily “filtered out” as high-frequency
“noise”, etc.). As a result, a whole “relativistic” and machine learning methodology was
developed for the line numbers in [282] to compensate for that. Generally, when CVEs
are the primary class, by accurately identifying the CVE number one can get all the other
pertinent details from the CVE database, including patches and line numbers making this a

lesser issue. Accuracy depends on the quality of the knowledge base collected. Some of this

124

Table 11: Top 6 distance malware classifiers and 32 results, low-pass filter preprocessing

guess | run | algorithms good | bad %
Ist 1 | -dynaclass -binary -nopreprep -low -fft -cos -flucid 60 161 27.15
1st 2 | -dynaclass -binary -nopreprep -low -fft -cheb -flucid 54 167 24.43
1st 3 | -dynaclass -binary -nopreprep -low -fft -diff -flucid 54 167 24.43
1st 4 | -dynaclass -binary -nopreprep -low -fft —eucl -flucid 46 175 20.81
1st 5 | -dynaclass -binary -nopreprep -low -fft -hamming -flucid 35 186 15.84
1st 6 | -dynaclass -binary -nopreprep -low -fft -mink -flucid 33 188 14.93
2nd 1 | -dynaclass -binary -nopreprep -low -fft -cos -flucid 88 133 39.82
2nd 2 | -dynaclass -binary -nopreprep -low -fft -cheb -flucid 74 147 33.48
2nd 3 | -dynaclass -binary -nopreprep -low -fft -diff -flucid 74 147 33.48
2nd 4 | -dynaclass -binary -nopreprep -low -fft -eucl -flucid 69 152 31.22
2nd 5 | -dynaclass -binary -nopreprep -low -fft -hamming -flucid 49 172 22.17
2nd 6 | -dynaclass -binary -nopreprep -low -fft -mink -flucid 48 173 21.72
guess | run | class good | bad %
1st 1 | Trojan:Win32/Swrort.A 12 0 100.00
1st 2 | VirTool.Win32.VBInject.gen.bp (v) 6 0 100.00
1st 3 | Trojan.Win32.Agent.roei 6 0 100.00
1st 4 | BehavesLike.Win32.Malware.dls (mx-v) 6 0 100.00
1st 5 | Worm.Win32.AutoRun.dkch 6 0 100.00
1st 6 | Trojan-FakeAV.Win32.Agent.det 6 0 100.00
1st 7 | FraudTool. Win32.FakeRean 6 0 100.00
1st 8 | VirTool:Win32/Obfuscator.WJ (suspicious) 6 0 100.00
1st 9 | Trojan.Win32.Vilsel.ayyw 6 0 100.00
1st 10 | Worm:Win32/Yeltminky. Aldll 6 0 100.00
1st 11 | Trojan.Win32.Meredrop 6 0 100.00
1st 12 | Virtumonde 6 0 100.00
1st 13 | Backdoor.Win32.Hupigon.nndu 6 0 100.00
1st 14 | VirTool: WinNT /Protmin.gen!C [generic] 6 0 100.00
1st 15 | PWS:Win32/Fareit.gen!C [generic| 6 0 100.00
1st 16 | Trojan-Dropper.Win32.Injector.cxgb 6 0 100.00
1st 17 | Trojan.Win32.Menti.mlgp 6 0 100.00
1st 18 | Trojan.Win32.Buzus (v) 6 0 100.00
1st 19 | Trojan.Win32.FakeAV.lcpt 12 0 100.00
1st 20 | Trojan.Win32.Agent.rlot 6 0 100.00
1st 21 | Trojan-Spy.Win32.SpyEyes.aecv 6 0 100.00
1st 22 | TrojanDownloader:Win32/Allsum 11 1 91.67
1st 23 | TrojanDownloader:Win32/Carberp.C 10 2 83.33
1st 24 | PWS:Win32/Lolyda.BF 15 3 83.33
1st 25 | Trojan.Win32.Yakes.qjn 8 4 66.67
1st 26 | Trojan.Win32.Agent.rlnz 6 6 50.00
1st 27 | Trojan.Win32.VBKrypt.tkvx 6 12 33.33
1st 28 | VirTool:Win32/VBInject.OT 6 12 33.33
1st 29 | HomeMalwareCleaner.FakeVimes 37 263 12.33
1st 30 | Trojan.Win32.Generic.pak!cobra 2 16 11.11
1st 31 | Trojan.FakeAlert 8 106 7.02
1st 32 | Trojan.Win32.Generic!BT 35 619 5.35

collection and annotation is manually done to get the indexes right, and, hence, error prone.
Should there be mistakes and errors, the output quality will suffer. To detect more of the
useful CVE or CWE signatures in non-CVE and non-CWE cases requires large knowledge
bases (human-intensive to collect), which can perhaps be shared by different vendors via
a common format, such as FORENSIC Lucip. For MARFCAT, no path tracing (since no

parsing is present); no slicing, semantic annotations, context, locality of reference, etc. are

125

presently possible. Therefore, the corresponding attribute “sink”, “path”, and “fix” results
found in the reports also have to be machine-learned. There is a significant number of
algorithms and their combinations to try (currently ~ 1800 permutations) to get the best
top N precise result. This is, however, also an advantage of the approach as the underlying
framework can quickly allow for such testing. In most of the cases, only file-level training
vs. fragment-level training is done—presently the classes are trained based on the entire files
instead of the known file fragments of interest. The latter would be more fine-grained and
precise than whole-file classification, but slower. However, overall the file-level processing is
a man-hour limitation than a technological one.

These shortcomings may affect the credibility /confidence score in the data mining analysis
encoded into the observations in FORENSIC LUCID. The lower the score, the less likely the
evidence from this analysis is to be used to support or refute claims in the case at hand.

Thus, addressing these shortcomings is an important aspect to improve.

5.6.2 Advantages

There are some key advantages of the approaches and tools presented, which follow. The
approach is relatively fast (e.g., MARFCAT’s processing of Wireshark’s =~ 2400 files to train
and test completes in about three minutes) on a now-commodity desktop or a laptop. As
signal processing tools, they are language- and protocol-independent (no syntactic parsing)—
given enough examples one can apply them to any data type (language, pcap, etc.), i.e., the
methodology is the same no matter C, C++, JAVA or any other source or binary languages
(PHP, C#, VB, PERL, bytecode, assembly, etc.) are used, or using other data types such as
images, pcaps, etc. As a machine-learning based approach, the tools can automatically learn
a large knowledge base to test on known and unknown cases as well as can learn, for example,
from previous SATE 2008-2013 reports that are publicly available [346]. We can also use
the tools to quickly pre-scan project data for further analysis by humans or other tools that
do in-depth parsing and semantic analyses as a means to prioritize large data sets for such
tools. We often get high (or good enough) precision and recall in CVE and CWE detection,
even at the file level and good enough precision at the whole-pcap processing. There are

many algorithms and their combinations to select the best for a particular classification task

126

after initial test runs. The approach can cope with altered code or code clones used in other
projects (e.g., a lot of problems in Chrome were found it WebKit, used by several browsers).

The fast and relatively high precision results can guide any forensic investigation when
big data are involved faster to enable investigators to focus. The higher precision results can

prioritize the FORENSIC LUCID observations related to them in the process.

5.6.3 Practical Implications

We outline some practical implications of the presented approach [312]. MARFCAT can be
used on any target language without modifications to the methodology or knowing the syntax
of the language. Thus, it scales to any popular and new language analysis with a very small
amount of effort [312]. MARFPCAT can likewise scale for various data/code clones, malware,
or application identification. MARFCAT was easily adapted to the compiled binaries and
bytecode to be able detect vulnerable deployments and installations—akin to virus scanning
of binaries, but instead scanning for infected binaries, one would scan for security-weak
binaries on site deployments to alert system administrators to upgrade their packages [312].
It can likewise learn from binary signatures from other tools like Snort [435]. As a result
both tools are extendable to the embedded code and mission-critical code found in aircraft,
spacecraft, and various autonomous systems [312] for incident prevention or investigations.
Spectral signatures and machine learning techniques are very beneficial for file type analysis
as well, especially when there is a need to bulk-preprocess a large collection of files for
preliminary classification of “files of interest” on suspect’s hard drive [288] (e.g., with the
evidence in the form of audio and text files recovered from a suspect’s computer).

All the tools are designed in JAVA with the easier plug-in-like integration of the tools into
JAVA-based plug-in frameworks, such as JPF, Eclipse, and others [288] in mind. MARF,
MARFCAT, and MARFPCAT were already updated to export their results and data struc-
tures in the FORENSIC LuciD format in order to allow their inclusion into the existing

investigative cases.

127

Chapter 6

The General Intensional Programming

System

This background chapter covers the General Intensional Programming System (GIPSY) [159]
239, 262, 300, 359, 360, B61l, B64, B67, B68, 496, 526], which is is an open-source platform
implemented primarily in JAVA to investigate properties of the Lucip [25] 20, 27] (see Chap-
ter [4]) family of intensional programming languages and beyond. GIPSY is being developed
and maintained by the GIPSY Research and Development Group at Concordia University,
Montreal, Canada. As a multi-tier distributed system, it evaluates LUcCID programs following
a demand-driven distributed generator-worker architecture, and is designed as a modular col-
lection of frameworks where components related to the development (RIPEﬂ), compilation
(GIP(P), and execution/evaluation (GEF) of Lucip [27] programs are decoupled allow-
ing easy extension, addition, and replacement of the components and subcomponents. The
high-level general architecture of GIPSY is presented in Figure [32| as well as the high-level
structure of the GIPC framework is in Figure (33| [269] 302, 303, 305, 320].

This background chapter is compiled from a list of the related cited works by the GIPSY
Research and Development Group and the author Mokhov. In this chapter we present the
general GIPSY overview (Section page including the necessary historical notes of

its conception, evolution, and the subsequent extensions for the use in this thesis as well as

'Run-time Integrated Programming Environment, implemented in gipsy.RIPE
2General Intensional Programming Compiler, implemented in gipsy.GIPC
3General Eduction Engine, implemented in gipsy.GEE

128

the unaware reader. We follow through with its key architectural design points (Section
page [136) to provide an in-depth background overview to subsequent GIPSY contributions
in Part [l

6.1 Overview

GIPSY [239, 262, 280, 300, 361, 364, 367, 368, 496l 526] is a continued effort for the design
and development of a flexible and adaptable multi-lingual programming language develop-
ment framework aimed at the investigation on the LUCID family of intensional programming
(Section languages [24, 25], 26], 352, 359, [362], 377, 894 506]. Using this platform, pro-
grams written in various flavors of LUCID can be compiled and executed in a variety of
ways [159, 299, B00], B13]. The framework approach adopted is aimed at providing the pos-
sibility of easily developing compiler components for other languages of intensional nature,
and to execute them on a generally language-independent run-time system. With LuciD
being a functional “data-flow” language (cf. Chapter [4)), its programs can be executed in
a distributed processing environment [313]. As a result, by being multi-lingual, GIPSY’s
design incorporates the mentioned flexible compilers framework and a run-time system to
allow processing of programs written in multiple dialects of LUCID as well as mixing them
with common imperative languages, such as JAVA, potentially all in the same source code
“program” or a source code file comprising a semantic unit of interrelated program fragments
written in multiple languages and interacting with each other. This is what makes GIPSY
different from being “just a Lucid dialect” into a complete programming system for multiple
languages though glued together by the type system (described in depth in Appendix |B]) and

the “meta” preprocessor language of various declarations to aid compilation [262, 280} 299].

6.1.1 Related Work

The ideas relevant to GIPSY are covered in a number of works from various research teams
about intensional and multidimensional programming, distributed, parallel as well as with

hybrid intensional/imperative paradigms. The most prominent is perhaps GLU [5], [186],

129

187, B57] that prompted GIPSY’s existence. The GLU (Granular Lucid) system, devel-
oped at the Stanford Research Institute in the 1990s, was arguably the first large hybrid
intensional-procedural system to allow INDEXICAL LUCID programs to use C or FORTRAN
data structures and procedures [186] [187]. GLU then relied on a distributed Generator-
Worker execution architecture to evaluate such programs. Due to the lack of flexibility in its
architectural design, GLU was not able to adapt to further evolutions of LUCID, or to inter-
face with object-oriented languages [359, [523] (at least not until later appearance of GLU#
in 2004 to interface with C++ [357]). In that context, GIPSY’s design started off with a
similar model as GLU’s, but with flexibility and adaptability in mind [361], 364, [368]. Using
a framework approach, the GIPSY has been used to develop compilers for different variants
of LuciD, which are allowed to coexist in the same program [262, 397, 524]. Moreover, its
design additionally permits Lucid programs to use procedures or methods defined in virtually
any procedural language [523] as long as a corresponding compiler plug-in is added to the
framework. A similar model is also successfully adopted by the prominent GNU Compiler
Collection (GCC) [482].

The distributed and parallel indexical and intensional program evaluation was studied
in several works, such as Du’s work in 1999 [90} 92] on indexical parallel programming and
Swoboda’s and Plaice’s work on distributed context computing [451] followed by formaliza-
tion of distributed intensional programming paradigm by Swoboda in his PhD thesis [449)
in 2004. A slightly more recent work on scheduling and evaluation of multidimensional pro-
grams in parallel /distributed environments was performed by Ben Hamed [157] in 2008. The
data-flow aspect of intensional programming was also explored in graph-based distributed
systems [54] back in 1995 by Cao et al. Subsequently, a number of formalisms appeared
including Bensnard et al. [41] presenting an example of a multi-formalism application design
and distribution in a data-flow context, Swoboda’s work [449, 451], and Fourtounis [116] in
2011 about formal specification and analysis of a parallel virtual machine for lazy functional
languages (that refers to some of the GIPSY and the mentioned related work). Fisher and
Kakoudakis did flexible agent grouping in executable temporal logic [109] and Gagné and
Plaice looked at the demand-driven real-time computing [124]. Ranganathan and Camp-

bell in 2003 also proposed a middleware for context-aware agents in ubiquitous computing

130

environments [395]. Peralta et al. proposed an approach similar to GIPSY for automatic
synthesis and deployment of intensional Kahn process networks [373].

The hybridification (mixing intensional/logic programming with imperative languages)
aspects were discussed in several works: Liu and Stables [236] proposed inclusion of logic
expressions into the procedural programming languages in 1995; in 1999 Rondogiannis sub-
sequently proposed adding multidimensionality to imperative programming languages [404];
while Swoboda and Wadge proposed tools to intensionalize software systems in general [452].
As time passed, Ditu and Plaice proposed the general TRANSLuUcCID [88] language with
elaborate typing system and intent to support multicore processors, Cartesian programming
model [375] and some of its PoC eager [370, B77] and multithreaded [394] implementation by
Rahilly in 2007-2008.

In relationship to the aspect-oriented programming (AOP), Du pondered of the links
between AOP and the intensional programming models [93] by drawing parallels between
the notion of context in two paradigms.

All of this work and related contributions are accumulated and summarized in [362],
which is being regularly updated as a reference resource. The GIPSY’s software architecture
is able to constantly change and accept new ideas from the GIPSY members as well as the

cited works of others above for comparative studies and evaluation.

6.1.2 Historical Notes

Historically, the concept of GIPSY was conceived as a very modular collection of frameworks
and artifacts geared towards sustainable support for the intensional programming languages
and embracing continuous iterative revision and development overcoming issues of the earlier
GLU system [5] 186, [187] that did not survive for very long due to its inflexibility to extend
to the newer dialects, and its unmaintainability defects [159], B00, 359, 360], 361, B368].

The initial GIPSY and GIPL ideas were featured in Paquet’s PhD thesis [359] in 1999.
Then those ideas were architecturally expanded by Paquet and Kropf in 2000 [361]. Subse-
quently, the project moved to Concordia where it resides at the present day. In the meantime,
Grogono defined GIPC increments [141] in 2002. Ren, also in 2002 [397], produced the first

INDEXICAL LuciD and GIPL compilers as a part of the first PoC GIPC written in JAVA

131

and JavaCC [503]. Wu in the same year provided the first version of the semantic analyzer
and translation rules to the INDEXICAL LuciDp and GIPL compilers [524]. Wu, Paquet, and
Grogono expanded further the detailed design of the GIPC framework in 2003 [527]. Alagar,
Paquet, and Wan described the notion of Intensional Programming for agent communication
in 2004 [7]. Lu, Grogono, and Paquet subsequently proposed and defined the initial GEE
LuciD interpreter in C++4 subsequently rewritten in JAVA by Lu in multithreaded and dis-
tributed Java RMI (Remote Method Invocation) prototypes [239, 240]. In 2004, Grogono
proposed ONYX for lazy multidimensional arrays [142]. Then, in the same year, Paquet,
Wu, and Grogono expanded on the GIPC architecture further [367]. After that, also in
2004, Tao provided the first realization of the data warehousing and garbage collection in
the GEE [456]. Following that, Ding [87] provided a PoC implementation of the automated
translation between graphical and textual representations of intensional programs for IN-
DEXICAL LuciD and GIPL within GIPC. In the meantime, in 2005-2006 Wan developed a
full context theory for intensional programming and the corresponding artifact of the Lucx
language [510], B511], 512]. Vassev looked into the distributed aspects in his follow-up work
on the GEE by designing the Demand Migration Framework (DMF) and its concrete in-
stance of Jini DMS (Demand Migration System) to incorporate the demand store and the
distribution architecture middleware to work together [495] 496, 498]. Wu and Paquet re-
viewed the GIPSY architecture [368, 526] and began pondering about including intensional
expressions into JAVA. In 2003-2005, the author Mokhov (along with Paquet and Grogono),
re-integrated and retrofitted all the components with the original design by Paquet and de-
fined the Preprocessor and introduced the first instance of hybrid intensional-imperative
compilation frameworks of GIPC with JLucip and OBJECTIVE LuciD (with sequential
threads and communication procedures as well as operational semantics) prototype compil-
ers, initial type system, and other aspects integrating all the components under a common
CVS [144] repository [143], 259] 260, 262] that led to a more general framework for greater
interoperability between intensional and imperative programming languages—GICF and a
web-based editor RIPE servlet front-end. In 2007-2008, Pourteymour et al. provided another
PoC instance of the DMS, implemented using JMS [381] 382] [383]. Around the same time
frame, Tong et al. implemented a Lucx compiler [363, 470, 471]. Also in 2007, the author

132

Mokhov proposed the use of GIPSY as a platform for the Intensional Cyberforensics and
Forensic Lucip [264] eventually culminating in this thesis (see Section and fur-
ther). The language MARFL is proposed by the author to manage the MARF’s (Modular
Audio Recognition Framework) configuration [270] with the hierarchical contexts in it further
in 2008. He also performed the first preliminary security evaluation of the earlier GICF’s
design and the distributed aspects of GIPSY [269]. Vassev in the same year 2008, moved on
to propose self-management properties of GIPSY with the design of the Autonomic GIPSY
(AGIPSY) [497]. Subsequently, in around 2007-2010 Paquet proposed a new multi-tier archi-
tecture for GEE [360] where Han et al. provided its initial implementation [158, 159], and Ji
and the author Mokhov completely unified the Jini and JMS DMS’es [191] and Ji did a scal-
ability study of the two [189]. Concurrently, in 2008-2009, Wu et al. completed design and
implementation of a compiler for JOOIP to embed LUCID expressions into JAVA [523] [525]
such that JAVA classes can instantiate intensional variables, and have the LUCID expressions
access the JAVA class properties (methods, variables (local, instance, class)). Meanwhile,
the author Mokhov investigated the GIPSY’s use for the HOIL support [300] and provided
a complete GIPSY Type System (Appendix [B) specification [299] [313] alongside with Tong
and Paquet in the context of the multi-tier work and LucCX compiler implementation. The
author Mokhov et al. then moved on to the proposal of self-forensics aspects within GIPSY
and other systems [319], which is also an ongoing work (see Appendix [D]). In 20112013,
the author Mokhov developed problem-specific generator and worker tiers for MARFCAT
(Section [5.4) and MARFPCAT [285, 287, [312] and for genome sequencing as a case study
with Rabah [391]. At the same time, in 2011-2012, Rabah designed the first prototype of
a graph-based RIPE component to manage distributed GIPSY networks [391]. The author
Mokhov (along with Rabah’s help) built the GIPSY cluster lab environment (detailed in
Section , page for higher-performance and scalability evaluations. Subsequently, the
author Mokhov expanded the compiler and run-time support onto the FORENSIC LuUcCID
language as a part of this thesis.

As previously mentioned, the GIPSY’s design is centered around the compiler framework
(GIPC) following good principles of compiler design [238], the eduction execution engine

(GEE), i.e., the run-time execution environment (akin to a virtual machine for execution of

133

the intensional logic expressions), and the programming environment (RIPE). The former of
the three is responsible to support multiple compilers in a similar compiler framework that all
produce a consistent, well-agreed on binary format, essentially a compiled GIPSY program, as
a binary output. The second performs lazy demand-driven (potentially parallel /distributed)
evaluation of the compiled LUCID programs, or as we call them, GIPSY programs [300].
This idea of the GIPSY’s framework approach is to provide an infrastructure to develop
compiler and run-time components for other languages of intensional nature easier as well as
to execute them on a relatively language-independent run-time system [313]. As discussed
earlier, LUCID programs in general can be naturally executed in a distributed processing
environment because its constructs and expressions do not impose sequentiality. However,
the standard LuciD algebra (i.e., types and operators) is extremely fine-grained and can
hardly benefit from distributed evaluation of the operands. Adding granularity to the data
elements manipulated by LUCID comes through the addition of coarser-grained data types
and their corresponding operators [313] (Appendix. With Lucib semantics being defined
as typeless, a solution to the granularity problem consists in adding a hybrid counterpart
to LuciD to allow an external language to define an algebra of coarser-grained types and

operators [299, B13].

6.1.3 From Sequentiality to Concurrency with DMS and Multi-

Tier Architecture

The eventual availability of the Demand Migration Framework and System (DMF and
DMS) [382, 383, 495, 496] turned the GIPSY’s PoC RMI implementation [239] into a true
distributed system [269]. These developments prompted a number of related research subdi-
rections some of which are still active today. Specifically, in [262] when a notion of prototype
JLucIiD and OBJECTIVE LuUcCID languages was conceived, it led to a more general framework
for greater interoperability between intensional and imperative programming languages—
GICF [269]. However, with that greater flexibility that the languages, GICF, and DMS
brought, there came to be the issues of security of the embedded code, and demand moni-

toring, etc. [269].

134

The subsequent evolution presented in [159, [189) 191] furthered the original architecture
for the run-time system of the GIPSY (as hinted in [359], and elaborated in [300} 360, 361,
368]). The architecture proposed in these works was itself developed following the generator-
worker architecture adopted successfully by GLU [186, [187], as mentioned earlier, where
its run-time system was not as scalable and flexible [159] as the solutions presented in the
cited GIPSY works. In addition, the communication procedures of the distributed run-time
system implemented in GLU were implemented using RPC only [159]. The GIPSY solution
proposed a much more flexible approach by integrating demand migration and storage by
using the DMF, which can be concretely instantiated using various middleware technolo-
gies, such as Jini [495] [496] and JMS [382, 383] and others as they become available and
integrated allowing for even heterogeneous mixed use of such technologies simultaneously
fulfilling different communication requirements and availability [I59] 189, 191]. Further de-
sign and development has GIPSY planned to try other/new architectures (e.g., Hadoop,
PlanetLab [463], and others) and prompted an establishment of a dedicated cluster setup
(see Section , page . The distributed and scalable evaluation becomes very important
in large scale reasoning and evaluation of large amounts of digital evidence in FORENSIC

LucIiD case evaluations.

6.1.4 Context-Oriented Reasoning with LuciD in GIPSY

The reasoning aspect of GIPSY is a particularity of a LuciD dialect (Chapter [4)) rather than
its entire architecture. The architecture is general enough to go beyond pure an evaluation of
intensional logic expressions. If those expressions form a language dialect that helps us with

reasoning (such as FORENSIC LUCID to reason about cybercrime incidents and claims).

6.1.4.1 Reasoning in Hybrid OO Environment

Object-orientation came to GIPSY with the concept of OBJECTIVE Lucip [262], 280] that
allowed for rudimentary support of LUCID programs to manipulate JAVA objects as first class
values. Its generalization resulted in JOOIP [523]525] offering LuciD fragments within JAVA
code and allowing the Lucid code to reference to JAVA methods and variables, along with the

corresponding type system extensions and providing context-aware JAVA objects [300] (see

135

Section [4.3.2] page [92).

6.1.4.2 Reasoning in Autonomic Environment

This aspect is important for the project on self-forensics described in Appendix [D] Vassev
and Paquet designed an Autonomic GIPSY [497] (AGIPSY) version of the platform with
the corresponding ASSL toolset [483] 1490, 499] as a research case study where GIPSY is
turned into an autonomic system via an ASSL specification to allow it running unattended
with self-healing, self-protecting, self-configuring, and self-optimizing autonomic properties.
Unattended reasoning environment is essential for long-running problem solving programs

with minimal intervention and maintenance [300].

6.1.4.3 ForEeNsic Lucib Compilation and Evaluation Platform

GIPSY is the proposed testing and investigation platform for the compilation and distributed
cyberforensics evaluation of the FORENSIC LuciD programs [298] [302] (introduced later in
Chapter [7)) [269, 302, 303, 305, 320]. GEE is the component where the distributed demand-
driven evaluation takes place, subtasked to different evaluation engines implemeting the GEE
framework (see Figure [58 and Chapter . We rely on the GIPSY’s compilers for the inten-
sional languages like GIPL [359], Lucx [510], OBJECTIVE Lucip [262], and JOOIP [523].
We reach out to the syntax and operational semantics of those languages implemented in
GIPSY and draw from them some ideas for the simple context specification of dimensions
and tags, the navigational operators @ and #, and the “dot-notation” for object properties
and apply it to context spaces. The dialects referred to cover by themselves a large scope
of issues FORENSIC LUCID capitalizes on. This is what this thesis is about, in particular

Chapter [7} Chapter [§| and Chapter [] which we defer to the reader about.

6.2 GIPSY’s Architecture

Intensional programming (see Section [3.2] [129} 348]), in the context of the LUCID program-
ming language, implies a declarative programming paradigm. The declarations are evaluated

in an inherent multi-dimensional context space [159, [470]. GIPSY evolved from a modular

136

GIPC GEER GEE
|

LucidDeclarationsAST
GIPSYtypes *
- DemandGeneratorTier
Lucid dialects .
i] *

!

TypeSystem 1
,,,,,,,, DemandStoreTier
Ly GICF >
GEERDictionary

B !

»/
>

[DemandWorkerTier

ProcedureClass

imperative dialects

Figure 32: High-level structure of GIPSY’s GEER flow overview [313]

collection of frameworks for local execution into a multi-tier architecture [159, 360]. Back in
the early days, with the bright but short-lived story of GLU in mind, efforts were made to
design a system with similar capacities, but significantly more flexible in order to cope with
the fast evolution and diversity of the LuciD family of languages, thus necessitating a flexible
compiler architecture, and a language-independent run-time system for the execution of LU-
CID programs. As a result, the GIPSY project’s architecture [239, 262, 280, 300, 368] aims at
providing such a flexible platform for the investigation on intensional and hybrid intensional-
imperative programming [159]. The architecture of the General Intensional Programming
Compiler (GIPC) is framework-based, allowing the modular development of compiler com-
ponents (e.g., parser, semantic analyzer, and translator). It is based on the notion of the
Generic Intensional Programming Language (GIPL) [359, 363], which is the core run-time
language into which all other flavors of the Lucip (a family of intensional programming
languages) language can be translated to [300]. The notion of a generic language also solved
the problem of language-independence of the run-time system by allowing a common repre-
sentation for all compiled programs, the Generic Eduction Engine Resources (GEER), which
is a dictionary of run-time resources compiled from a GIPL program, that had been pre-
viously generated from the original program using semantic translation rules defining how
the original LUCID program can be translated into the GIPL [159] 300]. The design of the
GIPSY compiler framework went through several iterations [262], 280), 367, 397, 524]. The

architecture necessitates the presence of the intensional-imperative type system and support

137

GIPSY
code
segments

PreProcessor

Y

SIPL GIPL procedural
code code code
segments segments segments
SIPLparser GIPLparser ProcedureClassGenerator

SIPLtoGIPLtranslator h 4

./ GIPL
>\ _AST

TypeSystem SemanticAnalyzer/Translator
GIPSYtypes
1
GEER

Figure 33: High-level structure of the GIPC framework [313]

links to imperative languages [299, [300} 313]. A generic distributed run-time system has been
proposed in [159] 360].

GIPSY has a collection of compilers under the (GIPC, see Figure framework and the
corresponding run-time environment under the eduction execution engine (GEE) among other
things that communicate through the GEE Resources (GEER) (see the high-level architecture
in Figure [32)). These two modules are the major primary components for compilation and

execution of intensional programs, which require amendments for the changes proposed in

138

this work of intensional forensics [269, 303, 320].

6.2.1 General Intensional Program Compiler (GIPC)

The more detailed architecture of GIPC is conceptually represented at the higher level in Fig-
ure[33] It hosts the type abstractions and implementations that are located in the gipsy.lang
package and serve as a glue between the compiler (the GIPC—a General Intensional Program
Compiler) and the run-time system (known as the GEE—a General Eduction Engine) to do
the static and dynamic semantic analyses and evaluation respectively. Since GIPSY is a mod-
ular system, the majority of its components can be replaced as long as they comply with some
general architectural interface/API. One of such API interfaces is the GIPSYProgram (concep-
tually represented as a GEER—the GEE Resource—a dictionary of run-time resources) that
contains among other things, the type annotations that can be statically inferred during com-
pilation. At run-time, the engine does its own type checking and evaluation when traversing
the abstract syntax tree (AST) stored in the GEER and evaluating expressions represented
in the tree. Since both the GIPC and the GEE use the same type system to do their analysis,
they consistently apply the semantics and rules of the type system with the only difference
that the GEE, in addition to the type checks, does the actual evaluation [300, 313].

6.2.1.1 GIPC Preprocessor

The Preprocessor [262, [280)] is a component that is invoked first by the GIPC (see Figure [33)
on incoming GIPSY program’s source code stream. The Preprocessor’s role is to do prelim-
inary program analysis, processing, and splitting the source GIPSY program into “chunks”,
each potentially written in a different language and identified by a language tag. In a very
general view, a GIPSY program is a hybrid program written in different language variants
in one or more source file. Consequently, there has to be an interface to glue all these code
segments together to ensure proper evaluation. Thus, the Preprocessor after some initial
parsing (using its own preprocessor syntax) and producing the initial parse tree, constructs a
preliminary dictionary of symbols used throughout all parts of the program. This is the basis
for type matching and semantic analysis applied later on. This is also where the first step

of type assignment occurs, especially on the boundary between typed and typeless parts of

139

the program, e.g., JAVA (typed) and a specific LuciD dialect (typeless). The Preprocessor
then splits the code segments of the GIPSY program into chunks preparing them to be fed
to the respective concrete compilers for those chunks. The chunks are represented through

the CodeSegment class, instances of which the GIPC collects [300] B13].

GIPSY Program Segments. There are four baseline types of segments defined in a
GIPSY program [313]. These are:

e #funcdecl (in a way similar to C’s extern) declares function prototypes written as
imperative language functions defined later or externally from this program to be used
by the intensional language part. The syntactical form of these prototypes is particular
to GIPSY programs and need not resemble the actual function prototype declaration
they describe in their particular programming language. They serve as a basis for static
and dynamic type assignment and checking within the GIPSY type system with regards
to procedural functions called by other parts of the GIPSY program, e.g., the LuciD
code segments [313].

e #typedecl lists all user-defined data types that can potentially be used by the in-
tensional part, e.g., classes. These are the types that do not explicitly appear in the
matching table (in Table , Appendix describing the basic data types allowed in
GIPSY programs [313].

e #<IMPERATIVELANG> declares that this is a code segment written in whatever IMPER-
ATIVELANG may be, e.g., #JAVA for JAVA, #CPP for C++, #FORTRAN for FORTRAN,
#PERL for PERL, and #PYTHON for PYTHON, etc. [313].

e #<INTENSIONALLANG> declares that what follows is a code segment written in whatever
INTENSIONALLANG may be, for example #GIPL, #LUCX, #JO0IP, #INDEXICALLUCID,
#JLUCID, #0BJECTIVELUCID, #TENSORLUCID, #TRANSLUCID, #FORENSICLUCID [298], and
#ONYX [142], etc., as specified by the available GIPSY implementations and stubs. An
example of a hybrid program is presented in Listing 6.1} The preamble of the program

with the type and function declaration segments are the main source of type information

140

that is used at compile time to annotate the nodes in the tree to help both static and

semantic analyses [313].

#typedecl
myclass;

#funcdecl

myclass foo(int,double);

float bar(int,int):"ftp://localhost/cool.class":baz;
int £1();

#JAVA
myclass foo(int a, double b) {
return new myclass(new Integer ((int)(b + a)));
}
class myclass {
public myclass(Integer a) {
System.out.println(a);
}
}

#CPP
#include <iostream>
int f1(void) {
cout << "hello";
return O;

}

#0BJECTIVELUCID
A + bar(B, C)
where
A
B
C
end;

foo(B, C).intValue();
£10);
2.0;

Listing 6.1: Example of a hybrid GIPSY program

6.2.1.2 GICF Overview

The General Imperative Compiler Framework (GICF) [259] is the particular GIPSY’s com-
piler framework that allows for a generalized way of inclusion of any imperative languages into
intensional variants within the GIPSY environment and allowing the syntactical co-existence
of the intensional and imperative languages in one source file by providing a Preprocessor
that splits the intensional and imperative code chunks that are fed to their respective compil-
ers, and then the results are gathered and linked together to form a compiled hybrid program
as an instance of GEER [523].

GLU [18¢, [187], JLucip, and OBJECTIVE LuciD [262] prompted the development of
GICF. The framework targets the integration of different imperative languages into GIPSY
programs for I/O, portability, extensibility, and flexibility reasons [269]. GLU promoted C

141

and FORTRAN functions within; JLucip/OBJECTIVE Lucip/JOOIP promoted embedded
Java. Since GIPSY targets to unite most intensional paradigms in one research system, it
makes an effort to be as general as possible and as compatible as possible and pragmatic at
the same time [269).

The GICF is there if we need to be able to run, for example, GLU programs with minimum
modifications to the code base. GIPSY’s GIPC would be extended with a compiler module in
this case to support C and FORTRAN functions as it does for JAVA. GICF is made extensible
such that later on the language support for C+4, PERL, PYTHON, shell scripts, and so
on can be relatively easily added. With GICF it is also possible to have a multi-segment
multi-language GIPSY program with embedded code [269].

6.2.2 General Eduction Engine (GEE)

The primary purpose of the GEE is to evaluate compiled LuciD programs following their
operational semantics (see Section either locally or distributively using the lazy
demand-driven model (i.e., eduction). The research in this area covers various extensions
and applications as well as comparative studies of various middleware technologies.

To address run-time scalability concerns, GEE is the component where the distributed
demand-driven evaluation takes place by relying on the Demand Migration System (DMS)
[381], [498] and on the multi-tier architecture overall [159, 269, 320, 360]. The distributed
system [71) 131] design architecture adopted for the run-time system is a distributed multi-
tier architecture, where each tier can have any number of instances [300]. The architecture

bears resemblance with a peer-to-peer architecture [159 B60], where [300]:

e Demands are propagated without knowing where they will be processed or stored.
e Any tier or node can fail without the system to be fatally affected.

e Nodes and tiers can seamlessly be added or removed on the fly as computation is

happening.

e Nodes and tiers can be affected at run-time to the execution of any GIPSY program,

i.e., a specific node or tier could be computing demands for different programs.

142

The founding works cited earlier [159, 262} [360, 364, 381, [382], 383, 495, 1496| 498] cover
the initial design, and proof-of-concept implementations of the DMF—Jini- and JMS—based
as well as the surrounding integration effort of them in to the GEE [190].

6.2.2.1 Multi-Tier Demand Migration System

The Demand Migration System (DMS) is an implementation of the Demand Migration
Framework (DMF) introduced first by Vassev and then extended by Pourteymour in [381]
382}, 383, 496, [498]. The initial version of the DMS relied solely on Jini [192] (now known as
Apache River [20]) for transport and storage of the demands and the results with a JavaS-
paces [243] repository acting as a data warehouse cache for the most frequently demanded
computations and their results (i.e., the demand store). The DMF is an architecture that
is centered around the demand store with transport agents (TAs) that implement a partic-
ular protocol (as a proof-of-concept Jini and JMS [446] TAs are used [382 [383]) to deliver
demands between the demand store, workers (that do the actual computation primarily for
procedural demands), and generators (that request the computation to be done and collect
results) [269, [320]. Thus, GIPSY has some implementation of RMI [520], Jini [192], and
JMS [446] and the one that relies on the DMS for its transport needs [269], 320].

6.2.2.1.1 Multi-Tier Unification of Jini and JMS DMS. Initially, when Vassev
and Pourteymour provided the Jini and JMS implementations respectively, they were rather
disparate and did not integrate fully well with the updated multi-tier architecture put forward
by Paquet at the design and implementation level. However, it was important to bring
them under the same frameworked rooftop for comparative studies as well as concurrent use
in order to be able to gain insights and recommend a particular architecture for a given
GIPSY network setup. Pourteymour [381] initially researched the JMS and its properties
in comparison with Jini in the published literature and tutorials [I1], 20} 63, 99, 112} 162,
195]. Ji and the author Mokhov subsequently did a design update and refactoring to enable
smooth scripted selection of either Jini- or JMS-based tiers (or both middleware technologies
used simultaneously) to participate in a single GIPSY computation network [190} [191]. Ji
afterward did an in-depth scalability study of the two [I89] in the integrated environment.

143

6.2.2.1.2 Generic Eduction Engine Resources. One of the central concepts of the
GIPSY'’s’ solution is language independence of the run-time system. In order to achieve that,
the design relies on an intermediate representation that is generated by the compiler: the
Generic Eduction Engine Resources (GEER). The GIPC compiles a program into an instance
of the GEER(s), including a dictionary of identifiers extracted from the program [262] 280,
367]. Since the compiler framework provides with the potential to allow additions of any
flavor of the LucIiD language to be added through automated compiler generation taking
semantic translation rules in input [524], the compiler authors need to provide a parser and
a set of rules to compile and link a GEER, often by translating a specific LuciD dialect to
GIPL first [300].

As the name suggests, the GEER structure is generic, in the sense that the data structure
and semantics of the GEER are independent of the source language. This is necessitated by
the fact that the engine was designed to be “source-language independent”, an important
feature made possible by the presence of the Generic Intensional Programming Language
(GIPL) as a generic language in the Lucid family of languages [159] 300} [360]. Thus, the
compiler first translates the source program (written in any flavor of LUCID) into the “generic
Lucip” [362], then generates the GEER run-time resources for this program, which are
then made available at run-time to the various tiers upon demand. The GEER contains,
for all Lucid identifiers in a given program, typing information, rank (i.e., dimensionality
information), as well as an abstract syntax tree (AST) representation of the declarative
definition of each identifier [159, 300, B60]. It is this latter tree that is traversed later on
by the demand generator tier in order to proceed with demand generation. In the case of
hybrid LuciD programs, the GEER also contains a dictionary of procedures called by the
Lucip program, known as Sequential Procedure Classes, as they in fact are wrapper classes
wrapping procedures inside a JAVA class in cases where the functions being called are not

written in JAva [262] 280, 300] using JNI [439].

6.2.2.1.3 GIPSY Tier. The architecture adopted for the most recent evolution of the
GIPSY is a multi-tier architecture where the execution of GIPSY programs is divided in three
different tasks assigned to separate tiers [159,360]. Each GIPSY tier is a separate process that

144

communicates with other tiers using demands, i.e., the GIPSY Multi-Tier Architecture oper-
ational mode is fully demand-driven. The demands are generated by the tiers and migrated
to other tiers using the Demand Store Tier. We refer to a tier as an abstract and generic
entity that represents a computational unit independent of other tiers and that collaborates
with other tiers to achieve program execution as a group (GIPSY network) [159] 300} B360].
The author Mokhov made the tier architecture extensible to the application-specific domains
as well allowing problem-specific tier instances to use the architecture (e.g., see Section

and Section [5.4)). In Figure [34] is the context use case diagram describing user interaction

,% User

-

I
% Multitier DMS

Figure 34: GMT context use case diagram

with the nodes and tiers to get them started to form a GIPSY software network. The user
interaction is done either via command line or GUI support in the RIPE package interfacing

the [GMT| [391].

6.2.2.1.4 GIPSY Node. Abstractly, a GIPSY Node is a computer (physical or virtual)
that has registered for the hosting of one or more GIPSY Tiers. GIPSY Nodes are registered
through a GIPSY Manager Tier (GMT) instance. Technically, a GIPSY Node is a controller
that wraps GIPSY Tier instances, and that is remotely reporting and being controlled by

145

RIPE
GMT

a GIPSY Manager Tier [159, 360]. Operationally, a GIPSY Node hosts one tier controller
for each kind of Tier (see Figure . The Tier Controller acts as a factory that will, upon
necessity, create instances of this Tier, which provide the concrete operational features of the
Tier in question. This model permits scalability of computation by allowing the creation of

new Tier instances as existing tier instances get overloaded or lost [I59, 300, [360].

GIPSY Node

i DemandStoreTier DST Contraller DST instances

—

i DemandGeneratorTier DGT Controller DGT instances

—

i DemandWorkerTier DWT Controller DWT instances

Figure 35: Design of the GIPSY node [159, 360]

6.2.2.1.5 GIPSY Instance. A GIPSY Instance is a set of interconnected GIPSY Tiers
deployed on GIPSY Nodes executing GIPSY programs by sharing their respective GEER
instances. A GIPSY Instance can be executing across different GIPSY Nodes, and the same
GIPSY Node may host GIPSY Tiers that are members of separate GIPSY Instances [159,
300, [360]. In Figure |35]is Paquet’s rending of the described design [360]. GIPSY Instances

form so called GIPSY software networks, similar in a way to software-defined networks [115].

6.2.2.1.6 Demand Generator Tier. The Demand Generator Tier (DGT) generates
demands according to the program declarations and definitions stored in one of the instances
of GEER that it hosts. The demands generated by the Demand Generator Tier instance can
be further processed by other Demand Generator Tier instances (in the case of intensional
demands) or Demand Worker Tier instances (in the case of procedural demands), the de-
mands being migrated across tier instances through a Demand Store Tier instance. Each
DGT instance hosts a set of GEER instances that corresponds to the LUCID programs it

can process demands for. A demand-driven mechanism allows the Demand Generator Tier

146

to issue system demands requesting for additional GEER instances to be added to its GEER
Pool (a local collection of cached GEERs it has learned), thus enabling DST instances to
process demands for additional programs in execution on the GIPSY networks they belong
to [159, 300, B360]. The author Mokhov additionally introduced the notion of problem-specific
DGTs (e.g., MARFCATDGT discussed later) to show the wide array of applications that are pos-

sible using the multi-tier architecture as a middleware platform.

6.2.2.1.7 Demand Store Tier. = The Demand Store Tier (DST) acts as a tier mid-
dleware in order to migrate demands between tiers. In addition to the migration of the
demands and values across different tiers, the Demand Store Tiers provide persistent storage
of demands and their resulting values, thus achieving better processing performances by not
having to re-compute the value of every demand every time it is re-generated after having
been processed. From this latter perspective, it is equivalent to the historical notion of an
intensional value warehouse [361], 456] in the eductive model of computation (Section [4.1.4]
page . A centralized communication point or warehouse is likely to become an execution
bottleneck for large long-running computations. In order to avoid that, the Demand Store
Tier is designed to incorporate a peer-to-peer architecture as needed and a mechanism to
connect all Demand Store Tier instances in a given GIPSY network instance. This allows
any demand or its resulting value to be stored on any available DST instance, but yet allows
abstract querying for a specific demand value on any of the DST instances. If the demanded
value is not found in the DST instance receiving the demand, it will contact its DST peers
using a peer-to-peer mechanism. This mechanism allows to see the Demand Store abstractly

as a single store that is, behind the scenes, a distributed one [159] 300, 360].

6.2.2.1.8 Demand Worker Tier. The Demand Worker Tier (DWT) processes pri-
marily procedural demands, i.e., demands for the execution of functions or methods defined
in a procedural language, which are only present in the case where hybrid intensional pro-
grams are being executed. The DGT and DWT duo is an evolution of the generator-worker
architecture adopted in GLU [5] [186, [I87]. It is through the operation of the DWT that the

increased granularity of computation is achieved. Similarly to the DGT, each DW'T instance

147

hosts a set of compiled resident procedures (sequential thread procedure classes) that corre-
sponds to the procedural demands it can process pooled locally. A demand-driven mechanism
allows the Demand Worker Tier to issue system demands requesting for additional GEERs
to be added to its GEER pool, thus achieving increased processing knowledge capacity over

time, eductively [159] 300, 360].

6.2.2.1.9 General Manager Tier. A General Manager Tier (GMT) is a component
that enables the registration of GIPSY Nodes and Tiers, and to allocate them to the GIPSY
network instances that it manages. The General Manager Tier interacts with the allocated
tiers in order to determine if new tiers and/or nodes are necessary to be created, and issue
system demands to GIPSY Nodes to spawn new tier instances as needed. In order to ease
the node registration, the General Manager Tier can be implemented using a web interface
and/or a stand-alone graph-based UI [391], so that users can register nodes using a standard
web browser, rather than requiring a client. As with DSTs, multiple GMTs are designed
to be peer-to-peer components, i.e., users can register a node through any GMT, which will
then inform all the others of the presence of the new node, which will then be available for
hosting new GIPSY Tiers at the request of any of the GMT currently running. The GMT
uses system demands to communicate with Nodes and Tiers [159] 300, B60], in a way similar
to SNMP get and set requests [163], 249] [437]. In Figure [36|is a more detailed GMT-oriented
use case diagram of Figure (where other tiers are implied with the focus on the GMT).
Once started, the GMT acts as a service using the DMS, which is designed to play an active

role in managing the GIPSY software network instance along with the interacting user.

6.2.2.2 Scalability

The GIPSY multi-tier architecture after extensive design revision, implementation and refac-
toring [158, 159, 189, 191] was put to scalability tests by Ji [I89]. The need for such is also
emphasized in in the recent work by Fourtounis et al. [IT6] where eduction and massive par-
allelism of intensional evaluation are discussed in a formal model and PoC implementation
for analysis.

Scalability is an important attribute of any computing system as it represents the ability

148

EaGMT

2 Register Node

A\

GMT

Q
— %
(o T

= Monitor Tier

7
. .
«includey”
4

4

’
4
e 4
/
’

;9\ User 2 Start Node ,
«includey”
/
\ / 2 Discover Peers
»

I
1
I
I
1
I
I
1
I
1
1
/ I
1
I
I

«use»

1
1
1
1
1
1
1
1
1
1
1
1
1
1
v/
« » Q)
_________ 2 Start GMT A

% Multitier DMS

Figure 36: Detailed GMT context use case diagram

to achieve long-term success when the system is facing growing demands load. The multi-tier
architecture was adopted for the GIPSY runtime system for research goals such as scalabil-
ity [159] [360]; therefore, upon implementation of the PoC Jini and JMS DMS, the scalability
of the GIPSY runtime system needed to be assessed for the validation of the implementation,
which Ji has done in his mater’s thesis in 2011 [I89} 190].

While scalability is an important term, Ji discovered during his research that although
the term scalability is widely used and treated as an important attribute in the computing
community, there was no commonly accepted definition of scalability available [94]. Without
a standardized definition, researchers used scalability to denote the capability for the long-
term success of a system in different aspects, such as the ability of a system to hold increasing
amount of data, to handle increasing workload gracefully, and/or to be enlarged easily [45]
189, 190]. Ji did test under which circumstances Jini DMS was better or worse over the JMS
circumstances in terms of scaling out of GIPSY Nodes onto more physical computers and
their available CPUs for the tiers, then the amount of memory used on the nodes before DST's
run out of memory, amount of demands they could handle, network delays and turnaround

time, and other characteristics [189).

149

The scalability aspect is very important to this work as there is always a possibility of
a need to do heavy-weight data mining and process vast amounts of digital evidence in an
investigation efficiently, robustly, and effectively, a problem akin to a human genome sequence

alignment and reconstruction [9§].

6.2.3 Run-time Interactive Programming Environment—(RIPE)

RIPE’s place in the GIPSY’s architecture [262) 361] has to do with the user interaction
aspect of the system. While presently it is the most underdeveloped aspect, it has had some
valuable contributions made to it. The first of them is the PoC realization of the bidirectional
translation of INDEXICAL Lucip and GIPL into visual Graphviz-based data-flow graphs [87]
based on the corresponding earlier assertion by Paquet [359] that such multidimensional
translation is possible (see Chapter . In Figure[37|is the context use case diagram for RIPE

illustrating user goal-level activities the user needs. The latest one of the contributions is

The user may request £3 RIPE | import»
compile followed by
execution if no errors. -~ - =1 BGIC
.)) «yuse»
2 Compile Lucid Program -~ __ _
N ~~< <import»

I \ <
«include» : N - - - > B GEE

i
) Run Lucid Program
i

\ «use»
% User 2 Run Graphical GMT -

) Use WebEditor
e
7~
7~
7~
e
7
7~
e
”

Figure 37: RIPE context use case diagram

«use» -

-
-
-

-
-

«include»

—_—— - - A e m - - -

-

|
|
|
|
|
|
|
- |
|
|
|
|
|
|
J

the graph-based visual GMT (GGMT) integration by Rabah [391]. Its purpose is to allow

start up and configuration management of the GIPSY network instances initially developed

150

ile
»| @ Qs @
GMT Operator | Graph Editor

GIPSY Nodes List: (~]

0
a
x

GIPSY - Graph-Operated GMT

WORKER GLEAM MAINGMT MARFCAT DWT GLEANM

MARFCAT DWT COIL
MARFCAT DWT METO

MARFCAT DGT e
MAIN DST MAIy DST : MARFCAT DWT NETQ
MARFCAT DWT GLEAM
MAINGMT

(<] [B

Actions Log:

5 2,
o
& 0y
[:\ 5 S,
n = R Y
Nodes | Tiers| Tier Properties | GMT Console MARF O 1ARFCAT DWT COIL

Select a Tier to see its properties

(%]

Messages | Errors

loading Graph:
browse clicked
Openning : savedgraphs/marfcardSome config

Figure 38: MARFCAT GIPSY network graph

mostly with the command-line interface (CLI) by Ji and a simple Simulator GUI by Vassev.
This more flexible approach made it significantly more usable to operate GIPSY networks.
See for examples its connectivity for the MARFCAT test case with the corresponding graph
in Figure 38|

The author Mokhov additionally contributed to the general refactoring and standardiza-
tion of the RIPE package hierarchy as well as contributing a servlet-based web front-end
to launch the compilation and execution process via a browser on a server side [262] (see
Figure . CLI is also supported for RIPE primarily for invocation by various scripts. The
MAC Spoofer Analyzer case relies on this in particular (see Section to start the analysis

process.

6.3 Summary

To summarize we have motivated the discussion and necessity of the General Intensional

Programming System (GIPSY) and its core GIPC, GEE, and RIPE components and reviewed

151

~=1a]x|

¥)GIPSY WebEditor Portal $Revision: 1.25 § - Mozilla Firefox
Fle Edi Yew Go Bookmarks Tools Help

<@ i - & 0) [towiinenton.cs.concordia.cars0eawebEdtorservst webEdtar =l © e [GL

GIPSY WebEditor Portal

Concordia

Computer Science and

Prototype $Ravision: 1.25 %

Software Engineering

$Id: WebEditor java,v 1.25 2005/09/14 03:41:07 mokhov Exp $

UNIVERSITY

Intensional Dialect:
GIPSY -

Test Programs:
|teslsfg|psy¢‘:amnp ipl j
Load

Controls:
Parse
Run
Regression Tests
JUnit Tests

M debug mode

Start GEE Senvices

= oall

F Threaded (localy
= RMI

= Jini

7 DCOM+

7 CORBA

7 GIPSY Sockets

Download Worker

Register Worker
Method: POST
Request URI:
SwebEditor/serviet/WebEditor
Protocol: HTTR/1.1
PathInfo: null
Remote Address:
132.205.44.132
Remote Host:

Program Text:

INDEXICALLUCID
fib B.t §
where
dimension t:
fibh = 0 fhy.t o;
g =1 1fhy.t ifib + 1);
end

Output:

Interpreted dialect: GIPSY
Source:

#INDEXICALLUCID
fib B.t 5
where
dimension t;
fib = 0 fhy.t g:
g = 1 fby.t (fib + 1];
end

[--parse-only]

alfredo.cs.concordia.ca 1 -
P

4]
Figure 39: GIPSY WebEditor interface [262]

its existence in the historical context of GLU as well as follow-up design and development
iterations. Particular level of detail was given to the GIPC and GEE frameworks with the
goal of flexibility (data types, languages, replaceable components) and scalability (multi-tier
DMS) in mind, important for the FORENSIC LUCID project presented in this thesis, especially

its compiler and extended run-time system design and development described in Chapter [§|

152

Part 11

Methodology

153

Chapter 7

Forensic Lucid Design and

Specification

This chapter discusses the core contribution of the thesis—the FORENSIC LuUcCID language.
This includes the methodology on the formalization of the necessary forensic constructs,
the syntax, semantics, and augmentation in dereference to the background work in Part [}
This chapter is an extended compilation of a number of the published and unpublished
works [267], 288 298], [302], 305], 310] detailing various aspects of FORENSIC LUCID construction
and case studies including a number of supporting works.

Forensic Lucip [267, 298] [302), 307, B08] is a forensic case specification language for
automatic deduction and event reconstruction in digital crime incidents. The language itself
is general enough to specify any events (in terms of their properties and description), duration,
as well as the context-oriented system model [275] [306], [319]. FORENSIC LuciID is based on
Lucip [24] 25, 26, 377, 506] and its various dialects that allow natural expression of various
phenomena, inherently parallel, and most importantly, context-aware, i.e., the notion of
context is specified as a first-class value [363, [470],510]. FORENSIC LUCID is also significantly
influenced by and is meant to be a more usable improvement of the work of Gladyshev et
al. on formal forensic analysis and event reconstruction using finite state automate (FSA)
to model incidents and reason about them [134] [I35] by also including trustworthiness and

credibility factors into the equation using the Dempster—Shafer theory [275] 306, [319].

154

As previously mentioned (Chapter , the first formal approach to cybercrime investiga-
tion was the finite-state automata (FSA) approach by Gladyshev et al. [134] 135] (Section[2.2]
page . Their approach, however, is unduly complex to use and to understand for non-
theoretical-computer science or equivalently minded investigators [298, 309]. The aim of
ForeNsic LuciD is to alleviate those difficulties, expressive and usable, and to be able to
specify credibility.

Thus, this chapter presents the summary of the requirements, design, and formaliza-
tion of the syntax and semantics of our proposed language. That includes an overview
(Section, design and requirements considerations of the FORENSIC LucID language (Sec-
tion [7.2), including higher-order contexts (Section [7.2.2)), syntax (Section and semantics
(Section , and discussion on related topics in Section , such as mapping of the FOREN-
sic LuciDp concepts to the background work on intensional logic (cf. Section , page ,
Gladyshev’s formalisms (cf. Section , page , and the Dempster—Shafer evidence theory

(cf. Section [3.3.2] page [66) in Section[7.5.1]

7.1 Approach Overview

As the reader may recall, Gladyshev created a finite-state-automata (FSA) model [134] 135]
to encode the evidence and witness accounts (Section page [29) in order to combine
them into an ewvidential statement, then model the FSA of a particular case, and given the
FSA verify if a certain claim agrees with the evidential statement or not (via backtracing
and the event reconstruction algorithm) and if it does what were possible event sequences
that explain that claim [272, BTT]. Based on the formal parameters and terms defined in
that work [133], 134] [135], we likewise model various pieces of evidence and witnesses telling
their own stories of an incident. The goal is to put them together to make the description
of the incident as precise as possible [305, B10]. To demonstrate that a certain claim may
be true, an investigator has to show that there are some explanations of the evidence that
agree with the claim. To disprove the claim, the investigator has to show there are no
explanations of evidence that agree with the claim [I34 [I35]. On the other hand, the
work by Dempster—Shafer and others [I51], [420] defined a mathematical theory of evidence

155

(Section [3.3.2, page , where factors like credibility and trustworthiness play a role in the
evaluation of mathematical expressions [272), BT1]. Thirdly, a body of work on intensional
logics and programming (Section page provided a formal model that throughout
years of development placed the context as a first-class value in logical and programming
expressions in the Lucip family (Chapter [4) of languages [272], 311].

Thus, in this work we augment Gladyshev’s formalization with the credibility weight
and other properties derived from the mathematical theory of evidence and we encode it
as an evidential context in the FORENSIC LuciD language for forensic case management,

evaluation, and event reconstruction.

7.2 The FoRrENSIC LuciD Language Requirements and
Design Considerations

This section presents concepts and considerations in the design of the FORENSIC LUCID lan-
guage. The end goal is to define our FORENSIC LUCID language where its syntactic constructs
and expressions concisely model cyberforensic evidence and stories told by witnesses as a con-
text of evaluations, which normally correspond to the initial state of the case (e.g., initial
printer state when purchased from the manufacturer, as in [I35], see further Section [9.3)), to-
wards what we have actually observed (as corresponding to the final state in the Gladyshev’s
FSM, e.g., when an investigator finds the printer with two queue entries (Byeieted, Baeeted) 1
Section[2.2.5.1] page [44). The implementing system (i.e., GIPSY [364], Chapter [6] page [128)
is designed to backtrace intermediate results in order to provide the corresponding event
reconstruction path, if it exists. The fundamental result of a FORENSIC LUCID expression
in its basic form is either true or false, i.e., “guilty” or “not guilty” given the evidential
evaluation context per explanation with the backtrace(s). There can be multiple backtraces,

that correspond to the explanation of the evidence (or lack thereof) [298] 302] 303, B10].

156

7.2.1 Core Language Properties, Features, and Requirements

We define and use FORENSIC LUCID to model the evidential statements and other expressions
representing the evidence and observations as a higher-order hierarchical context of evalua-
tion [302] 305, 310]. One of the goals is to be able to “script” the evidence and the stories
as expressions and run that “script” through an evaluation system that provides the results
of such an evaluation [303]. An execution trace of a running FORENSIC LUCID program is
designed to expose the possibility of the proposed claim to be true with the reconstructed
event sequence backtrace between the final observed event to the beginning of the events.
Intensionally, this means the initial possible world ¢y is accessible from the final possible
world ¢finq; via one or more accessibility relations and possibly other worlds (states) (cf. Sec-
tion 3.2, page [59)). FORENSIC LUCID capitalizes in its design by aggregating the features and
semantics of multiple LuciD dialects mentioned in Chapter {4 needed for these tasks along
with its own extensions [298], 302, 303, 310].

Lucx’s context calculus with contexts as first-class values [510] and operators on simple
contexts and context sets (union, intersection, etc., defined further) are augmented to
manipulate hierarchical contexts in FORENSIC LucID (Section , page. Additionally,
FORENSIC LuciD inherits the properties (described subsequently in detail in this chapter) of
MARFL (see Appendix, OBJECTIVE LuciD and JOOIP (see Section page and
their comprising dialects for the arrays and structural representation of data for modeling
the case data structures such as events, observations, and groupings and correlation of the
related data [298, 802, 303]. Hierarchical contexts in FORENSIC LuciD follow the example
of MARFL [270] using a dot operator and by overloading both @ and # (defined further in
Section page to accept different types as their left and right arguments [298] [302],
305, BI0] (cf. Table [15], page [203).

One of the basic requirements in FORENSIC LUCID design is that the final language is
a conservative extension of the previous Lucip dialects (valid programs in those languages
are valid programs in FORENSIC LuciD). This is helpful when complying with the compiler
(GIPC) and the run-time subsystem (GEE) frameworks within the implementing system, the
General Intensional Programming System (GIPSY) (cf., Section [6.1)) [302, 305, 310, 364, [368].
The partial translation rules (Section provided when implementing the language

157

compiler within GIPSY, such that the run-time environment (General Eduction Engine, or

GEE) can execute it with minimal changes to GEE’s implementation [303] 310].

7.2.2 Higher Order Context

Higher-order contexts (HOCs) represent essentially nested contexts, e.g., as conceptually
shown in Figure [40] modeling evidential statement for forensic specification evaluation. Using

the (dimension : tag) representation, a HOC looks like:
{es:{osl: {ol: (P1,min,max), 02: (P2,min, max), 02 : (P3,min,max)}, os2:{...}, 0s3:{...}}

The early notion and specification of nested contexts first appeared Swoboda’s works [449]
4511, [452], but there the evaluation has taken place only at the leaf context nodes. Another,
more recent work on the configuration specification as a context in the intensional manner
was the MARFL language (Appendix |C)) of the author [267, 270], allowing evaluation at

arbitrary nesting of the configuration context with some defaults in the intermediate and leaf

context nodes [300].

Dhservation Sequence (0s) Dhservation Sequence (0s) Observation Secuence (0s)

Figure 40: Nested context hierarchy example for cyberforensic investigation [298, [302]

ForeNsiC LUCID is context-oriented where a crime scene model comprises a state ma-
chine of evaluation and the forensic evidence and witness accounts comprise the context for

its possible worlds. Formally, the basic context entities comprise an observation o (in Equa-

tion [7.2.2.1)), observation sequence os (in Equation [7.2.2.2)), and the evidential statement (in
Equation[7.2.2.3)). These terms are inherited from Gladyshev’s work [134} [135] (Section[2.1.4]

page [29) and represent the forensic context of evaluation in FORENSIC LucCID. An obser-

vation of a property P has a duration between [min, min + max| per Section page

158

This original definition of o is extended with w to amend each observation with weight factor
(to indicate probability, credibility, or belief mass) to model trustworthiness of observations,
evidence, and witness accounts in accordance with the Dempster—Shafer mathematical the-
ory of evidence [420]. t is an optional timestamp as in a forensic log for that property used
to refine event co-relation in time for temporal data [275] 306}, 319].

An observation sequence os represents a partial description of an incident told by evi-
dence or a witness account (electronic or human). It is formally a chronologically ordered
collection of observations representing a story witnessed by someone or something (e.g., a
human witness, a sensor, or a logger). It may also encode a description of any digital or
physical evidence found. All these “stories” (observation sequences) all together represent an
evidential statement about an incident (its knowledge base). The evidential statement es is
an unordered collection of observation sequences. The property P itself can encode anything
of interest—an element of any data type or even another FORENSIC LUCID expression, a

nested object instance hierarchy, or an event [275, [306] 319].

0 = (P, min, max, w, t) (7.2.2.1)
0s ={o1,...,0,} (7.2.2.2)
es ={0s1,...,08n} (7.2.2.3)

Having constructed the context in the form of the evidential statement, one needs to build
a transition function v and its inverse ¥~! to describe the “crime scene” at the center of
the incident (or the incident scene to generalize the term a little bit to include accidents,

malfunctions, etc. that are not necessarily criminal or malicious in nature).

7.2.3 Formal Syntax and Semantics

The FORENSIC LUCID system incorporates the necessary syntax and semantics constructs

[311] as detailed in the following sections.

159

7.2.3.1 Definitions and Terms

This section defines common terminology used subsequently in the chapter throughout the

formal definition of FORENSIC LUCID syntax and semantics and their description.

7.2.3.1.1 Structural Operational Semantics. = We use structural operational seman-
tics (see examples in Chapter [4)) to describe the semantics of FORENSIC Lucip. We justify

this choice for a number of reasons.

e Plotkin proposed the notion in 1981 [379]. While in 1979-1982 Ashcroft and Wadge
argued for prescriptive denotational semantics for their language [28], Faustini in his
thesis the same year established the equivalence of a denotational and an operational
semantics of pure dataflows [106] (refer to Section [1.1.2] page [82] for information on
dataflows).

e Mosses in 2001 [324] discussed the differences between denotational and operational
semantics (among others). In the same year, Degano and Priami argued operational
semantics is close to intuition, mathematically simple, and allows easy and early pro-

totyping [84].

e Paquet [359] in 1999 has given a structural operational semantics of GIPL in 1999
(recited earlier in Figure[23] page[82)). The subsequently produced work on Lucx [470,
510], JOOIP [525], and previous material by the author Mokhov used this semantics

style consistently ever since.

e A lot of JAVA-related publications use structured operational semantics. GIPSY (Chap-
ter @ is implemented in JAVA and it is easier to relate to JAVA semantics. GEE’s main
interpreter follows this style for GIPL programs. Not to mention the hybrid Lucip-
JAVA approaches such that of OBJECTIVE LuciD and JOOIP mentioned earlier that

need to specify joint semantics.

e PRISM’s language semantics is also described in the structural operational semantics

style ([188], Section [8.2.2.1} page [215)).

160

The basic operational semantics description has rules in the form of Lremises ijth
Conclusions

Premises defined as possible computations, which, if take place, Conclusions will also take
place [84], 510].
Following the steps presented in Section [4.1.1.2) page [78] [359, 510] we thus define the

following:

Table 13: FORENSIC LUcID identifier types in D
type form
dimension (dim)
constant (const, ¢)
operator (op, f)
variable (var, E)
function (func,id;, E)
class (class, cid, cdef)
member variable (classV, cid.cvid, vdef)
member method (classF, cid.cfid, fdef)
free procedure (freefun, ffid, ffdef)
context operator (cop, f)
context set operator (sop, f)
observation (odim, E, min, max, w, t)
observation sequence | (osdim, ordered odim;)
evidential statement | (esdim, unordered osdim;)
forensic operator (fop, f)

Definition environment: The definition environment D stores the definitions of all of the
identifiers that appear in a FORENSIC LUCID program. As in Equation [4.1.1.3] it is a
partial function

D :1d — IdEntry (7.2.3.1)

where Id is the set of all possible identifiers and IdEntry, summarized in Table [13]
has possible kinds of values for each identified kind. (This table is an extended version
of Table [1] with additional entries we define further.) Per Equation 4.1.1.1) DF E : v

means the expression E evaluates to the value v under D [359).

Evaluation context: The current evaluation context P (sometimes also referred to as a
point in the context space) is an additional constraint put on evaluation, so per Equa-
tion .1.1.2] D,P + E : v specifies that given D, and in P, expression E evaluates
to v [359].

161

Identifier kinds: The following identifier kinds can be found in D:

1. Dimensions define simple coordinate pairs, which one can query and navigate with

the # and @ operators. Their IdEntry is simply (dim) [359).

2. Constants (IdEntry = (const, ¢), where ¢ is the value of the constant) are exter-
nal entities that provide a single value independent of the context of evaluation.

Examples are integers, strings, and Boolean values, etc. [359).

3. Data operators are external entities that provide memoryless functions. Examples
are the arithmetic and Boolean functions. The constants and data operators are
said to define the basic algebra of the language. Their IdEntry is (op, f), where
f is the function itself [359].

4. Variables carry the multidimensional streams (described in Section m, page.
Their IdEntry is (var, F), where E is the FORENSIC LUcCID expression defining
the variable. Variable names are unique [359]. Finite variable streams can be
bound by the special beginning-of-data (bod) and end-of-data (eod) markers (eod
was introduced in [358]). Scoping and nesting is resolved by renaming and via the

dot “.” operator.

5. Functions (func,id;, F') are FORENSIC LUCID user-defined functions, where the id;

are the formal parameters to the function and F is the body of the function [359].

6. Classes (class, cid, cdef) in our work are user-defined JAVA classes, mem-
bers of which can be accessed from FORENSIC LucID (come from OBJECTIVE
Lucip and JOOIP) to support JAVA-LuCID hybrid intensional-imperative pro-
gramming [262, [525]. This integration is needed, e.g., for the self-forensics project
(Appendix @ The same applies to member variables and methods described fur-
ther. In general, the Classes entry does not need to be restricted to JAVA classes,
but can be expanded to be defined in any language that supports the notion and

the run-time supports hybridification. cid is the class identifier, and cdef is a class

definition in the imperative language (JAVA in our case, so cdef = JavaCDef).

7. Member variables (classV, cid.cvid, vdef) are user-defined JAVA data mem-

bers which can be accessed from FORENSIC LUCID (are originally from OBJECTIVE

162

10.

11.

12.

13.

14.

Lucip and JOOIP) to support JAVA-LuUCID hybrid intensional-imperative pro-
gramming [262], 525]. cid.cvid is the variable identifier in the class cid, and vdef
is a member variable definition in the imperative language (JAVA in our case, so

vdef = JavaVDef).

Member methods (classF, cid.cfid, fdef) are user-defined JAVA methods (are
originally from OBJECTIVE LuciD and JOOIP) to support JAVA-Lucip hybrid
intensional-imperative programming [262) [625]. cid.cfid is the method identi-
fier in the class cid, and fdef is a member method definition in the imperative

language (JAVA in our case, so fdef = JavaFDef).

Free procedures (also known as free functions in the previous work [262, 525])
(freefun, ffid, ffdef) are user-defined JAVA methods written “freely” without
an explicit container class directly in a FORENSIC LUCID program (the notion
comes from JLucID) [262]. (It is a responsibility of the compiler to generate a

wrapper class containing any such procedures [262].)

Context operators (cop, f) is a LucX-style simple context operator type [470} 510].
These operators help us to manipulate context components in set-like operations,
such as union, intersection, difference, and the like. Both simple context and

context set operators are defined further.

Context set operators (sop, f) is a Lucx-style context set operator type [470} 510].

Both simple context and context set operators are defined further.

Observations (odim, F, min, max, w,t) are FORENSIC LuUcCID dimensions each en-
coding an observation of a property defined by a FORENSIC LUCID expression
E, duration [min, min+ max], basic belief mass assignment w, and a wall-clock
timestamp t. This is a basic unit of a forensic context. One can manipulate these

with the context operators.

Observation sequences (osdim, odim;) are FORENSIC LucIiD dimensions encoding
each observation sequence, as an ordered collection of observations odim;. This is

a part of a forensic context. One can manipulate these with the context operators.

FEvidential statements (esdim, osdim;) are FORENSIC LUCID dimensions encoding

163

an unordered collection of observation sequences osdim,;. This is a part of a forensic

context. One can manipulate these with the context operators.

15. Forensic operators (fop, f) are FORENSIC LuUCID context operators [470), [510]
defined further in Section [7.3.4] page [191]

7.2.3.1.2 Context Types. A general definition of context is [470] 510]:

Definition 1. Context: A context c is a finite subset of the relation: ¢ C {(d,x)|d € DIM A
x € T}, where DIM s the set of all possible dimensions, and T is the set of all possible
tags [470, [510].

Definition 2. Tag: Tags are the indices to mark positions in dimensions [470, [510)].

Definition 3. Simple context: A simple context is a collection of (dimension : tag) pairs,
where there are no two such pairs having the same dimension component. Conceptually,
a simple context represents a point in the context space, i.e., this is the traditional GIPL
context P. A simple context having only one (dimension : tag) pair is called a micro context.

It is the building block for all the context types [470, [510).
Syntactically, simple context is [F : E, ..., E : E] [470, 510], i.e., [Eq : Ey, ..., Ea, : E,]
where g, evaluate to dimensions and £}, evaluate to tags.

Definition 4. Context set: A context set (also known as “non-simple context”) is a set of
simple contexts. Context sets represent regions of the context space, which can be seen as a
set of points, considering that the context space is discrete. Formally speaking, context set is

a set of (dimension : tag) mappings that are not defined by a function [{70, 510).

Syntactically, context set is {E, ..., E'}, where E — [E : E, ..., E : E].

7.2.3.1.3 Forensic Context.

Definition 5. Forensic context: Forensic context represents an evidential statement of a
case under consideration. It’s a hierarchical encoding of evidence in terms of the evidential

statement, observation sequence, and observation constructs.

Forensic contexts form the basis of cyberforensic reasoning in FORENSIC LUCID and are

elaborated further in detail in terms of syntax and semantics.

164

7.2.3.1.4 Context Calculus.

Definition 6. Context calculus: Context calculus is a calculus defining representation and

types of contexts and operators on them [470, [510)].

In Lucx terms, context calculus defines a set of context operators on simple contexts
and context sets [510] presented earlier. In FORENSIC LUCID terms, the context calculus is
extened to support forensic contexts and additional operators and lifting of LUCX contexts

into forensic contexts. All the new constructs are defined in the sections that follow.

7.2.3.1.5 Tag Set Types.

Definition 7. Tag set: A tag set T is a collection of all possible tags attached to a dimen-
sion [470)].

Traditionally, in many earlier LuciD dialects 7' was always an infinite ordered set of
natural numbers N. However, it is not always convenient in some application domains [470],
such as forensic computing. In Lucx’s compiler implementation by Tong [470] flexible tag
set types were designed to allow more application domains. Tags, therefore, can be of any
given desired type. It is up to the particular semantic analyzer to determine validity of tag
types [470]. By default each dimension’s tag set is both ordered and infinite, to maintain

backward compatibility [470].

Definition 8. Ordered Tag Set: A tag set on which a relation R satisfies the following three
properties [235, (235, [470):

1. Reflexive: For any a € S, we have aRa
2. Antisymmetric: If aRb and bRa, then a = b
3. Transitive: If aRb and bRc, then aRc

which is essentially a partial order set (post) [428, Chapter 4]. Ordered tag set can be either
finite or infinite [470)].

Definition 9. Unordered Tag Set: A tag set which is not ordered is called an unordered set.

Unordered tag set can be either finite or infinite [470].

165

Definition 10. Finite Tag Set: A tag set I is called finite and more strictly, inductive, if
there exists a positive integer n such that I contains just n members. Finite tag set can be

either ordered or unordered [{70)].

Definition 11. Infinite Tag Set: A tag set, which is not finite is called an infinite set. Infinite

tag set can be either ordered or unordered [{70)].

Definition 12. Periodic Tag Set: A tag set where its ordered subset represents a period
repeated in a pattern two or more times. Can be combined with the (un)ordered, finite, and

infinite types [470].

Definition 13. Non-periodic Tag Set: A tag set that is not periodic. Can be combined with
the (un)ordered, finite, and infinite types [470].

Syntactically, ordered, unordered, finite, infinite, periodic, and nonperiodic are
defined in the language to declare a desired permutation of a tag set type declared alongside
dimension [470]. FORENSIC LucCID inherits these definitions from LucX. Certain combi-
nations are of not much practical use (e.g., unordered infinite tag set types), but they
are provided for completeness by Tong [470]. In FORENSIC LuUcCID, ordered and unordered
finite tag sets are the most common in usage.

Following the above fundamental definitions, Section is devoted to the complete syn-
tax specification and Section is devoted to the operational semantics specification of

ForeNsic Lucip.

7.3 Concrete FORENSIC LUCID Syntax

The concrete syntax of the FORENSIC LUCID language is summarized in several figures. It
is influenced by the productions from Lucx [510, 512] (see Section [4.3.1] page [02), JLucIiD
and OBJECTIVE LuciD [262], GIPL and INDEXICAL LuciD [359] (see Section [4.1], page[76]),
and the hierarchical contexts from MARFL [270] (see Appendix |C| for details).

In Figure [41| are common top-level syntax expressions E of the language from identifiers,
to function calls, operators, arrays, the where clause, dot-notation, and so on. In Figure

are the) where productions containing various types of declarations, including the common

166

Lucx dimensions and their tag sets as well as the new constructs for forensic dimension
types. In Figure we elaborate on the syntactical details on the hierarchical forensic
context specification of the observations, observation sequences, and evidential statements
including different observation types. In Figure [44]is a syntax specification of different types
of operators, such as arithmetic, logic, and intensional operators, in their unary and binary
forms.

The embed operator, the notion of which is inherited from JLucCID (Section
page , is adapted in FORENSIC LuciD primarily to include large evidential specifications

from external to the main program sources, such as encoded log files.

7.3.1 Syntactical Extension for Observations

The syntactical notation of the unit of observation in FORENSIC LUCID extends the obser-
vation context definition with the optional w and ¢ components. w is always defined and
by default is 1, and ¢ can be left undefined (set to eod) as it is not always needed. When
defined, ¢ is a wall-clock timestamp of the beginning of the observation, which can be used
to be mapped to from log files or other real-time sensitive data and to present in the event
reconstruction reports. t can also be used in reactive systems with clocks and self-forensics,
but this aspect is not discussed here. Thus, the following would be an actual expression in

the language given all the symbols are defined [311] and expressions declared.

observation o (P, min, max, w, t);
or more concretely:

observation o = ("A printed", 1, 0, 0.85);

where t is omitted, w = 85% confidence/belief, and the rest as in the original definition by

Gladyshev (cf., Section [2.2). Next,

observation o = P;

P = "A printed";

is equivalent to

167

(

(

E[E, .., E|(E, ..., E) (

if F then F else E fi (
#E (7.3.0.6

(

(

(

2)
|)
|)
|)
|)
| EQE 7.3.0.7)
| E(E,... E) 7.3.0.8)
\ select(E, E) 7.3.0.9)
| Box[E,...,F|FE] (7.3.0.10)
| E where) end; (see Figure (7.3.0.11)
| [E:E,..E:E| (7.3.0.12)
| E bin-op E (7.3.0.13)
| un-op E (7.3.0.14)
| E i-bin-op E | E i-bin-op,, E (7.3.0.15)
| i-un-op E | i-un-op,, E (7.3.0.16)
| E cxtop E (7.3.0.17)
| bounds (7.3.0.18)
| embed(URI, METHOD, E, E, ...) (7.3.0.19)
| E[E, .., E] (7.3.0.20)
| E, ..., E] (7.3.0.21)
| E.E (7.3.0.22)
| E.E(E,..,E) (7.3.0.23)

bounds = eod | bod | +INF | -INF (7.3.0.24)

Figure 41: Concrete FORENSIC LucID syntax (£) [302, 303]

observation o = (P, 1, 0, 1.0);

P in the example can be any FORENSIC LUCID expression. If the wall-clock timestamp is
desired, it can be produced as a string or an integer in one of the standard date/time formats,
e.g., “Mon Jul 29 11:58:16 EDT 2013” or 16581129611312091 (as a number of seconds from
the epoch). Internally, they are uniformly represented. These can be supplied by human

168

@ := dimension id,...,d; (7.3.0.25)
| dimension id : ordered finite [periodic | nonperiodic| {F,...,E } (7.3.0.26)
| dimension id : ordered finite [periodic | nonperiodic| {E to E [step E] }

(7.3.0.27)
| dimension id : ordered infinite [periodic | nonperiodic| {F to E [step E| }

(7.3.0.28)
| dimension id : ordered infinite = FE (7.3.0.29)
| dimension id : unordered finite [periodic | nonperiodic] {E,..., E }

(7.3.0.30)
| dimension id : unordered infinite = E (7.3.0.31)
| evidential statement [unordered [finite]] id [= ES]; (7.3.0.32)
| observation sequence |[ordered [finite]| id [= OS]; (7.3.0.33)
| observation id [= OJ; (7.3.0.34)
| id=FE; (7.3.0.35)
| id(id,,id) = E; (7.3.0.36)
| E.id=E; (7.3.0.37)
| QQ (7.3.0.38)

Figure 42: Concrete FORENSIC LucID syntax (Q) [302] B03]

investigators, but more often by FORENSIC LUCID-generating logging facilities, such as that
of MAC Spoofer Investigation (Section , page [257). In the cases, when the wall-clock

timestamp is not needed, it is null.
observation o = ("A printed", 1, 0, 0.85, "Mon Jul 29 11:58:16 EDT 2013");

See Section for the discussion on the semantic aspects of these declarations.

7.3.2 Core Operators

The basic set of the classic intensional operators [359] is extended with the similar opera-
tors, but inverted in one of their aspects: either negation of truth or reversal of direction
of navigation (or both). While some of such operators can be defined using the existing

operators, just as we define them further, their introduction as a syntactical sugar allows for

169

ES = {05,...,05} // evidential statement (7.3.0.39)
| oS (7.3.0.40)
| E (7.3.0.41)

oS = {0, ...,0} // observation sequence (7.3.0.42)
| @) (7.3.0.43)
| E (7.3.0.44)

0 = (E,E,E,E,E) // observation (P, min, max, w, t) (7.3.0.45)
| (E,E,E,E) // (P, min, max, w) (7.3.0.46)
| (E,E,E) // (P, min, max) (7.3.0.47)
| (E,E) // (P, min) (7.3.0.48)
| E /P (7.3.0.49)
| $ // no-observation (Ct, 0, INF+) (7.3.0.50)
| \O(E) // zero-observation (P, 0, 0) (7.3.0.51)

Figure 43: Concrete FORENSIC Lucip syntax (ES,OS,O) [302] B03]

better expressibility. First, we provide a definition of these new operators alongside with the

classical ones to familiarize the reader what they do.

7.3.2.1 Definitions of Core Operators

The operators are defined below to give a more complete picture. The classical operators
first, next, fby, wvr, upon, and asa were previously defined in [359] and earlier works
(see [129, B48] and papers and references therein). The other complimentary, inverse, and
negation operators are added in this work (while most of the these seem obvious to have in
any Lucip dialect), so they were defined and revised from [301],[302]. In this list of operators,
especially the reverse ones, we make an assumption that the streams we are working with
are finite, which is sufficient for our tasks. Thus, our streams of tags (context values) can be
bounded between bod and eod constructs (similarly as in intensional databases [358], [365])

and be of a finite tag set type. For the summary of the application of the defined further

170

bin-op

UN-0p

arith-op

logical-op

bitwise-op

i-bin-op | i-bin-op,,

i-bin-op-forw

i-bin-op-back

i-logic-bitwise-op

i-un-op | i-un-op,,

i-bin-un-forw

i-bin-un-back

cxtop

i-forensic-op

arith-op | logical-op | bitwise-op

+| -

LA
<|[>]>=|<=|==|in|&& | || | !

Ll&]]|

@ | i-bin-op-forw | i-bin-op-back

i-logic-bitwise-op | i-forensic-op

fby | upon | asa | wvr

nfby | nupon | nasa | nwvr

pby | rupon | ala | rwvr

npby | nrupon | nala | nrwvr

and | or | xor
nand | nor | nxor

band | bor | bxor

| i-bin-un-forw | i-bin-un-back

first | next | iseod

second | nnext | neg | not

last | prev | isbod

prelast | nprev

\isSubContext | \difference
\intersection | \projection
\hiding | \override | \union | \in

combine | product | bel | pl

(7.3.0.52)
(7.3.0.53)

(7.3.0.54)
(7.3.0.55)
(7.3.0.56)

(7.3.0.57)
(7.3.0.58)

(7.3.0.59)
(7.3.0.60)

(7.3.0.61)
(7.3.0.62)

(7.3.0.63)
(7.3.0.64)
(7.3.0.65)

(7.3.0.66)

(7.3.0.67)
(7.3.0.68)

(7.3.0.69)
(7.3.0.70)

7.3.0.71
7.3.0.72
7.3.0.73
7.3.0.74

~~ o~~~
~— ~— ~— —

Figure 44: Concrete FORENSIC LUCID syntax (operators) [302] B03]

171

operators’ examples [298] [303], please refer to Section , page m

A less mundane version of the core intensional operators is added to account for the belief
mass assignments w in observations (denoted as op,, in the examples, but syntactically they
are expressed identically to the classical versions in a FORENSIC LuUcCID program). These
augmented operator versions act just as normal operators would, but with the additional
requirement w > 1/2. Such behavior is only defined over the forensic contexts when a run-
time determination is made over the context type used. When w < 1/2, eod is returned.
When w = 1, such operators behave using their classical sense. It is possible to mix forensic
and non-forensic contexts, in such a case the non-forensic contexts are lifted to forensics

contexts (see the semantics in Section [7.4) before the application of the operator.

Definition 14. Let X be a FORENSIC LUCID stream of natural numbers (Section
page and Ox is a stream of observations of X (effectively, lifting every element of X to
an observation; additionally a stream of observations is in effect an observation sequence as
we shall see), where min = 1, max = 0,w = 1.0. Let Y be another stream of Boolean values;
true is cast to 1 and false to 0 when used together with X in one stream. Oy is a stream of

observations of Y.

X = .To,ﬁl}'l,...,llj'i,...)
0.1,...,i,..)
Y = (Yo, Y1, Yiy---)

00(1’0,1 0 1. O) 01(513'1,1,0,1.0),...,Oi(ilj'i,l,o,l.(]),...)

(
=
(
(true, false, ... true,...)
(
= (00(0,1,0,1.0),0:(1,1,0,1.0),...,0:(3,1,0,1.0),...)
=

OO(yo,]_ 0 1. 0) 01<y1,1,0,1.0),...,01‘(:%‘,1,0,]_.O),...)

Definition 15. first: a stream of the first element of the argument stream.

first X = (zo,x0,...,%0,...)

first, Ox = first Ox && op.w > 1/2 = (09, 09, - .., 00, - - -)

172

Definition 16. second: a stream of the second element of the argument stream.

second X = (z1,x1,...,21,...)

second,, Oy = second Ox && o;.w > 1/2 = (01,01,...,01,...)

Definition 17. last: a stream of the last element of the argument stream.

last X = (Tp, Tpy ooy Ty -)

lasty, Ox = (0p,0n, -+, 0n,-..)

This informal definition of the last operator relies on the earlier stated assumption that a
lot of our streams can be explicitly finite for the language we designed. This affects some of

the follow-up operators that rely in that fact just as well. 1last works with finite tag sets.

Definition 18. prelast: a stream of elements one before the last one of the argument

stream.

prelast X = (T, 1, Tp_1,- -, Tn_1,...)

prelast, Ox = (0p—1,0n-1, .., 0n_1,...)

Definition 19. nezt: a stream of elements of the argument stream after the first.

next X = (x1,T2,...,%ix1,...)
second X = first next X
next,, Ox = second Ox && o;.w > 1/2 = (01,09,...,0p,...)

second,, Oy = first,, next,, Ox

173

Definition 20. prev: a stream of elements of the argument stream before the last.

prev X = (Tp 1, Tin1, iy Ti1,---)
prelast X = first prev X
prev, Ox = (0n-1,...,0i11,0i,0i-1, - . .)

prelast, Ox = first,, prev, Ox

Definition 21. fby: the first element of the first argument stream followed by all of the

second argument stream.

X tby Y = (20, Y0, Y1, -+ - Yio1,s---)
Ox fby, Y = Ox fby (0;(Y,1,0,1.0))
Ox fby, Oy = Ox fby (Oy wvr Oy.w > 1/2)
X fby,, Oy = (09(X,1,0,1.0)) £by (Oy.P wvr Oy.w > 1/2)

In the definitions above mixing Ox and Y shows lifting of Y to a default observation di-
mension per semantics described in Section [7.4] page [192] A similar technique applies to all

ForenNsic LuciD intensional operators, so we omit the repetition in subsequent definitions.

Definition 22. pby: the first element of the first argument preceded by all of the second.

X Pby Y = (y07y17 ey Yi—1, "'7yn7$0>
Ox pby,, Oy = Ox pby (Oy.P wvr Oy.w > 1/2)

Definition 23. neg: a stream of negated arithmetic values of the argument.

neg X = (=xo, =1, =2, ooy ~Tig1, --.)

174

Definition 24. not: a stream of inverted truth values of the argument.

not X = (xo, '@y, "o, ooy 1Ty, -.)

Definition 25. and: a logical AND stream of truth values of its arguments.

Xand Y = (LE(] && Yo, L1 && Y1, T2 && Yo, .-, Ljuq && Yit1, - -)

Definition 26. or: a logical OR stream of truth values of its arguments.

XorY = (wo Il yo, 21 Il yr, 22 11 92,0 @iq1 1] Yiga,. o)

Definition 27. zor: a logical XOR stream of truth values of its arquments.

X xorY = (20 D Yo, 01 Y1, T2 D Y2, -, Tig1 D Yig1,---)

Definition 28. wvr (stands for whenever): wur chooses from its left-hand-side operand only

values in the current dimension where the right-hand-side evaluates to true.

XwrY =
if first Y #0
then X fby (next X wvr next Y)
else (next X wvr next Y')

Ox wvr, Oy = Ox wvr (Oy.P && Oy .w > 1/2)

Definition 29. rwvr (stands for retreat whenever): rwvr chooses from its left-hand-side
operand backwards only values in the current dimension where the right-hand-side evaluates

to true.

175

X ruvr Y =
if last Y #0
then X pby (prev X rwvr prev Y)

else (prev X rwvr prev Y)

OX IrwvI,, Oy = OX Irwvr (OyP && Oy.w Z 1/2)

Definition 30. nwvr (stands for not whenever): nwur chooses from its left-hand-side operand

only values in the current dimension where the right-hand-side evaluates to false.

X nwvr Y = X wvr not ¥ =
if first Y ==0
then X fby (next X nwvr next Y)
else (next X nwvr next Y)

Ox nwvr,, Oy = Ox nuvr (Oy.P && Oy.w > 1/2)

Definition 31. nrwur (stands for not to retreat whenever): nrwvr chooses from its left-
hand-side operand backwards only values in the current dimension where the right-hand-side

evaluates to false.

X nrwvr Y = X rwvr not Y =
if last ¥V ==
then X pby (prev X nrwvr prev Y)
else (prev X nrwvr prev Y)

Ox nrwvr, Oy = Ox nruvr (Oy.P && Oy.w > 1/2)

176

Definition 32. asa (stands for as soon as): asa returns the value of its left-hand-side as a

first point in that stream as soon as the right-hand-side evaluates to true.

X asa Y =first (X wvrY)
Ox asa, Oy = first, (Ox wvr, Oy)

Definition 33. ala (stands for as late as (or reverse of as soon as)): ala returns the value
of its left-hand-side as the last point in that stream when the right-hand-side evaluates to true

for the last time.

X ala Y =1last (X wvrY)
Ox ala, Oy = last, (Ox wvr, Oy)

Definition 34. nasa (stands for not as soon as): nasa returns the value of its left-hand-side

as a first point in that stream as soon as the right-hand-side evaluates to false.

X nasa Y = first (X nwvr Y)
Ox nasa, Oy = first, (Ox nwvr, Oy)

Definition 35. nala (stands for not as late as (or reverse of not a soon as)): nala
returns the value of its left-hand-side as the last point in that stream when the right-hand-

side evaluates to false for the last time.

X nala Y = last (X nwvr Y)

Ox nala, Y = last, (Ox nwvr, Oy)

177

Definition 36. upon (stands for advances upon): unlike asa, upon switches context of its

left-hand-side operand if the right-hand side is true.

X upon Y = X fby (
if first Y #0
then (next X upon next Y)
else (X upon next Y))

Ox upon,, Oy = Ox upon (Oy.P && Oy.w > 1/2)

Definition 37. rupon (stands for retreats upon): rupon switches context backwards of its

left-hand-side operand if the right-hand side is true.

X rupon Y = X pby (
if last Y #0
then (prev X rupon prev Y)
else (X rupon prevY))

Ox rupon, Oy = Ox rupon (Oy.P && Oy.w > 1/2)

Definition 38. nupon (stands for not advances upon, or, rather advances otherwise): nupon

switches context of its left-hand-side operand if the right-hand side is false.

X nupon Y = X upon not Y = X fby (
if first ¥V ==
then (next X nupon next Y')
else (X nupon next Y))

Ox nupon, Oy = Ox nupon (Oy.P && Oy.w > 1/2)

178

Definition 39. nrupon (stands for not retreats upon): nrupon switches context backwards

of its left-hand-side operand if the right-hand side is false.

X nrupon Y = X rupon not Y = X pby (
if last Y ==0
then (prev X nrupon prev Y)
else (X nrupon prev Y))

Ox nrupon, Oy = Ox nrupon (Oy.P && Oy.w > 1/2)

Definition 40. “.” (dot): is a scope membership navigation operator.
The “.” operator is employed in multiple uses, so we include it into our syntax and
semantics.

e From indexical expressions [349, [359] with the operators defined in the preceding and
following sections it facilitates operations on parts of the evaluation context to denote

the specific dimensions of interest to work with.

e From JOOIP/OBJECTIVE LUCID expressions, . allows nested class/object member-

ship access.

e Additional use in FORENSIC LuciD (inspired from MARFL) is the contextual depth

navigation, similar in a way to the OO membership navigation, such as £S.0S.0.P

(see summary in Table [15]).

Definition 41. #: queries the current context of evaluation.

Traditionally ([359], Section page [85)) # is defined as:

#=0FBY (#+1)

179

for N tag set, that were infinite and ordered, essentially being akin to array indices into the

current dimension X, and #X returned the current implicit index within X. Subsequently,

#.FE=01fby.E(#+1)

#C'=C
#S =25
#F'=F

#.F =0 fby.F.(#+ 1)

#,=#

#.E was introduced to allow querying any part of the current multidimensional context where
E evaluates to a dimension, a part of the context. C' and S are Lucx simple contexts and
context sets.

Since the tag set types were first augmented in LUCX to contain arbitrary enumerable tag

set values (cf. Section [7.2.3.1.5 page [165] [470]), such as strings, or non-numerically ordered

sequences, # is augmented to support such tag sets by returning the current tag of any type in
the current dimension indexing them in the order of their declaration in a FORENSIC LuUcCID
program.

In FOrRENSIC LucCID, # is augmented to support querying hierarchical forensic contexts
F'. The indexing mechanism is same as in LucX Thus, for an evidential statement ES, # ES
returns the current observation sequence O.S, which is a tag in ES; likewise # OS returns the
current observation O, which is a tag in OS; # O returns the current tuple (P, min, max, w, t).
When combined with the FORENSIC LUCID dot . operator: ES.# returns the current OS,
ES.#.# returns the current O, ES.#.#. P returns the current O.P, and so on. #,, is equivalent
to # as it is a query and not a navigation operator, so it does not take w into account when

querying the current context.

180

Definition 42. @ : switches the current context of evaluation.

Traditionally ([359], Section page @ is defined as:

X0Y =if Y =0 then FIRST X

else (NEXxT X) @ (Y —1)
for N tag set in a single dimension. Subsequently,

X e.dE
XeC
XaeS
Xo,F

X o, F'F

are also provided. X @ .dFE is the indexical way to work with parts of the context [359]; C
and S are the simple contexts and context sets [510], and F' are forensic contexts.

Augmentation to Lucx’s implementation extension of the tag sets [470] has the same
underlying principles as # in the preceding section: the order of declaration of the tags in
a tag set becomes and implicit index in that tag collection, and a corresponding mapping
of custom tags produces the desired effect with @ . For example, if an unordered finite tag
set of a dimension color has three strings it ranges over, {"red”,”green”,”blue”}, it is
legal to say, e.g., c@[color : "green”], where internally, ”"green” is indexed 1 in the order
of declaration in the tag set, and a mapping exists "green” <> 1. “Unordered” in this sense
simply means the order in which the tags are declared is not important, but such a mapping
is necessary for operators defined earlier (first, next, fby, etc.) to work intuitively and
consistently with the classical N ones. (As an analogy, this is similar to the SQL standard and
the way results are returned in a SELECT query without the ORDER BY clause for subsequent
processing by the application.)

181

@ is likewise adapted to work with forensic contexts yielding different types of forensic
contexts depending on its types of arguments, as, e.g., illustrated in Table [I5] Unlike #,,

@, is does take w into the account when switching forensic contexts:
Xe,0=X0@(0 & Ow>1/2),

similarly to the previously presented operators. For observation sequences and evidential

statements, @, is more elaborate:

X @, 0S = X ¢ (0S && bel OS > 1/2)

X e, ES =X e (ES & bel ES >1/2)
where the belief bel is defined in Section [7.3.4] page [I91]

7.3.2.2 Definition of Core Operators by Means of @ and #

This step follows the same tradition as the most of the SIPLs in GIPSY (Chapter @, which
are translated into GIPL (Section 4.1.1.2] page . The existing rewrite rules as well as

the new rules are applied here for the majority of our operators to benefit from the existing

interpretation available in GEE (Section [6.2.2} page[142)) for evaluation purposes. This trans-

lation may also be helpful to the developers of similar systems other than GIPSY. Following
the steps similar to Paquet’s [359], we further represent the definition of the operators via @
and # (this includes the @, and #,, interpretations of the operators). Again, there is a mix
of classical operators that were previously defined in [348] [359], such as first, next, fby,
wvr, upon, and asa as well as the new operators from this work [302]. The collection of the
translated operators is summarized in Figure [45]

For the same reasons of (im)practicality as in the PoC implementation of Lucx’s parser
and semantic analyzer [470], we don’t translate some FORENSIC LUCID constructs however.
Additionally, not all translations are currently possible, such as those dealing with the credi-
bility factors. Therefore, for these we define a new set of operational semantic rules presented

further in Section [7.4] page[192 Instead, dedicated interpreter plug-ins are designed to work

182

directly with the untranslated constructs, such as the forensic contexts and their operators.
This is useful, e.g., for various interpretation backends, such as eductive vs. PRISM, and so
on (Chapter [§).

The primitive operators are founding blocks to construct more complex case-specific func-
tions that represent a particular investigation case as well as more elaborate forensic opera-

tors [298].

7.3.2.3 Summary of the Core Operators’ Examples

Here we illustrate a few basic examples of application of the FORENSIC LUCID operators
(both, classical LuciD and the newly introduced operators). Assume we have two bounded
(between bod and eod) streams X and Y of ten elements. The X stream is just an ordered
sequence of natural numbers between 1 and 10. If queried for values below 1 an beginning-of-
data (bod) marker would be returned; similarly if queried beyond 10, the end-of-data marker
(eod) is returned. The Y stream is a sequence of ten truths values (can be replaced with 0
for “false” and 1 for “true”). The operators applied to these streams may return bounded
or unbounded streams of the same or different length than the original depending on the
definition of a particular operator. Also assume the current tag is 0 (#X = 0,#Y = 0).
The resulting table showing the application of the classical and the new operators is in

Table [[4] [298, [303].

7.3.3 Context Calculus Operators

What follows are the definitions of the core context calculus operators: \isSubContext,
\difference, \intersection, \projection, \hiding, \override, and \union based on
Lucx and its compiler implementation [470, 510] and expanded to include forensic contexts
and tag sets through lifting. The context and context set operations defined below are
the Lucx original definitions [470), 510] provided for completeness. Their forensic context
and tag set versions are newly defined. While the concept of tag sets (Section
page is explored in detail at the implementation level by Tong [470], the operators on
this section were never defined on them. We define these operators to compose a complete

picture. This is achieved through the concept of lifting introduced by Guha [146] applied to

183

Table 14: Example of application of FORENSIC LucCID operators to bounded streams [303]
|stream/index | -1 | 0 [1[2[3]4]5]6]7[8[]9][10] 11|

X bod | 1 2131456789] 10]|eod]|eod
Y bod| T |F|F|T|F|F | T|T|F| T | eod]| eod
first X 1 171|111 |1]1]1 1
last X 10 |10 10 {10 | 10| 10|10 10| 10| 10
next X 2131456789 10]|eod]|eod
prev X bod
X fby Y 1 T F|F | T|F|F|T|T|F T | eod
X pby Y T F| | T|F|F|T|T|F|T 1 eod
XwvrY 1 4 718 10
Xruvr'Y 10 8 7| 4 1
Xnwvr Y 2|3 51 6 9
X nrwvr Y 916 5|3 2
XasayY 1 111]1]1]1 11 1
X nasa Y 2 212121212 2| 2 2
XalayY 10 |10 10 (10| 10| 10|10 10| 10| 10
XnalayY 9 9191979191999 9
X upon Y 1 212121313345] 5 |eod
X rupon Y 0191987 | 7| 7]6|6] 6 |bod
X nupon Y 1 1121313415556 6 | eod
X nrupon Y 10 110 919119 | 8| 7| 716 5 5 | bod
neg X -1 23|45]-6|-7T|-8|-9]-10] eod | eod
not Y F |T|T|F | T|T|F|F|T|F |eod]|eod
Xand Y 1 oOojoj1,0]0]1]1]0 1 | eod | eod
XorY 1 21355679911]eod]|eod
XxorY 0 213556169 9]|11]eod]|eod

contextual knowledge to allow the use of known formulas from one context type or its portion
to another. We also add the convenient \in operator. Through lifting simple contexts are

converted to observations and context sets to observation sequences when required.
Definition 43. \ isSubContext

o [fCy and Cy are simple contexts and every micro context of Cy is also a micro context
of Cs, then Cy \isSubContext Cy returns true. An empty simple context is the sub-
context of any simple context [{70]. As in the concept of subset in set theory, C; C
Cy [470].

e If Sy and Sy are context sets, then Sy \isSubContext Sy returns true if every simple

184

context of Sy is also a simple context of Sy. An empty context set is the sub-context of

any context set [{70]. Likewise, S; C Sy.

o [f F\ and F, are forensic contexts, then Fy \isSubContexzt F, returns true if every

nested context of Fy is also a nested context of F5.
Definition 44. \difference

o If Cy and Cy are simple contexts, then Cy \difference Cy returns a simple context
that is a collection of all micro contexts that are members of Cy, but not members of
Cy: Cy \difference Cy = {m; | m; € Cy Am; ¢ Co} [J70). If Cy \isSubContezt Co
is true, then the returned simple context is empty. \difference is also valid if two
simple contexts have no common micro context; the returned simple context is simply

e [f Sy and Sy are context sets, \ difference returns a context set S, where every simple
context C' € S is computed as Cy \difference Cy : S = Sy \difference Sy = {C |
C =C) \difference Co NC #ADNCy € SiANCy € So} Vv S =0 [70]. If for every
C1 and Cy, Cy \difference Cy =), then Sy \difference Sy =0 [470]. However, if
there’s at least one pair of Cy and Cy where Cy \difference Cy # 0, then the result

is not empty [470].

e [fT) and Ty are finite tag sets, then Ty \ difference Ty returns a tag set that is a collec-
tion of all tags that are members of Ty, but not members of To: T\ \difference Ty =
{ti | ti e i Nt; & To}. If Ty \in Ty is true (\in is defined further on page ,
then the returned tag set is empty. \difference is also valid if two tag sets have no

common tag; the returned tag set is then T}.

e [f Fy and Fy are forensic contexts, \ difference returns F', where every nested context
C € F is computed as Cy \difference Cy : F = F| \difference F, = {C' | C =
C1 \difference Co NAC #ODNC, € FyANCy € Fo} VE =0.

185

first
last
next
prev
X fby
X pby

X wvr

X rwvr

X nwvr

X rnwvr

X asa
X nasa
X ala
X nala
X upon

X rupon

X nupon

X nrupon

neg

not
X and
X or
X xor

MR X XX

ST

>~<

< e

X@o
X@(#6(#iseod(#) — 1))
XQ(# +1)
Xa(# - 1)
if # = 0 then X else YQ(# — 1)
if iseod # then X else YQ(# + 1)
X QT where
T=U fby UQ(T + 1)
U =if Y then # else next U

end
X QT where
T =U pby UQ(T — 1)
U = if Y then # else prev U
end
X QT where
T=Utby UQ(T +1)
U =if Y == 0 then # else next U
end
X QT where
T =Upby UQ(T — 1)
U =if Y == 0 then # else prev U
end

first (X wvrY)
first (X nwvrY)
last (X rwvr Y)
last (X nrwvr Y)
X QW where

W =0 fby (if Y then (W + 1) else W)

end
X QW where

W =0 pby (if Y then (W — 1) else W)

end

XQ@W where

W =0 fby (if Y == 0 then (W + 1) else W)

end
XQW where

W =0pby (if Y == 0 then (W — 1) else W)

end

—-X

if X then !X else X

X&&Y

X||lY

not((X and Y) or not (X or Y))

(7.3.2.8)

(7.3.2.9)

(7.3.2.10)

7.3.2.11
7.3.2.12
7.3.2.13
7.3.2.14
7.3.2.15

—~ o~~~
NN N NI

(7.3.2.16)
(7.3.2.17)
(7.3.2.18)

(7.3.2.19)
(7.3.2.20)
(7.3.2.21)
(7.3.2.22)
(7.3.2.23)

Figure 45: Operators translated to GIPL-compatible definitions [302, 303]

186

Definition 45. \intersection

o If Cy and Cy are simple contexts, then Cy \intersection Cy returns a new simple
context, which is the collection of those micro contexts that belong to both Cy and Cy:
Ch \intersection Cy = {m; | m; € C; Am; € Cy}. If Cy and Cy have no common

micro context, the result is an empty simple context [{70)].

o [f Sy and Sy are context sets, then the resulting intersection context set is defined as
S = S; \intersection Sy = {C | C = Cy \intersection Co ANC # O NC) €
S1ANCy € Sy} Vv S = 0. If for every Cy and Cy, Cy \intersection Cy = (), then
S1 \intersection Sy = (). However, if there’s at least one pair of Cy and Cy where

C1 \intersection Cy # (0, the result is not empty [470].

o [f Ty and Ty are finite tag sets, then T} \intersection Ty returns a new unordered tag
set, which is the collection of tags that belong to both T\ and Ty: T} \intersection Ty =
{ti | ti € Ty Nt; € To}. If Ty and Ty have no common tag, the result is an empty tag

set.

o If F\ and F5 are forensic contexts, then the resulting intersection of the nested contexts
F = F} \intersection Fy = {C | C = C} \intersection CoAF # ONC) € F1NCy €
R}V F=10.

Definition 46. \projection

e If C is a simple context and D is a set of dimensions, this operator filters only those
micro contexts in C' that have their dimensions in set D : C' \projection D = {m |
m € C ANdim(m) € D}. The result is empty, if there’s no micro context having the
same dimension as in the dimension set. dim(m) returns the dimension of micro context

m [470/

e The projection of a dimension set onto a context set is a context set, which is a col-
lection of all simple contexts having a \projection on the dimension set [{70]. If
S is a context set, D is a dimension set; S' = S \projection D = {n | n =

C \projection DAn#0OANC e S}V S =10.

187

o If C is a simple context and T is a finite set of tags, this operator filters only those
micro contexts in C that have their tags in set T : C' \projection T = {m | m €
C' Ntag(m) € T}. The result is empty, if there’s no micro context having the same tag
as in the tag set. tag(m) returns the tag of micro context m. The projection of a tag set
onto a context set is a context set, which is a collection of all simple contexts having a
\projection on the tag set. If S is a context set, 8" = S \projectionT = {n |n =
C \projection TAn#0OANC e S}V S =0.

e Projection of a dimension set onto a forensic context is a forensic context containing all
nested contexts filtered through the \projection on the dimension set. If F' is a forensic
context, D is a dimension set; F' = F \projection D = {n |n = C \projection DA
nZONCeF}VEF =0.

Definition 47. \hiding

o [f C is a simple context and D is a dimension set, this operator removes all the micro
contexts in C whose dimensions are in D: C' \hiding D = {m | m € CAdim(m) ¢ D}.
If D contains all the dimensions appeared in C, the result is an empty simple context.

Additionally, C' \projection D|JC \hiding D = C [J70)].

e [or context set S, and dimension set D, the \hiding operator constructs a context set

S" where S' is obtained by \hiding each simple context in S on the dimension set D:

S"= S \hiding D ={n|n=C \hiding DAn#0ANC e S}VvS =0.

o [f C is a simple context and T is a finite tag set, this operator removes all the micro
contexts in C whose tags are in T: C \hiding T = {m | m € C Atag(m) ¢ T}.
If T contains all the tags appearing in C, the result is an empty simple context. For
context set S, the \hiding operator constructs a context set S where S" is obtained by
\hiding each simple context in S on the tag set T: S" = S \hiding T = {n | n =
C \hiding TAn£ONC e S}V S =0.

e For forensic context F' and dimension set D, \hiding constructs a forensic context F'
by hiding each nested context in F' on dimension set D: F' = F \hiding D = {n |
n=C\hiding DAn£ONC e F}VEF =0.

188

Definition 48. \override

o IfCy and Cy are simple contexts, then Cy \override Cy returns a new simple context
C, which is the result of the conflict-free union of Cy and Cs, as defined as follows:
C = C; \override Cy = {m | (m € Cy Adim(m) ¢ dim(Cs)) VvV m € Cy} [70].

e For every pair of context sets Si,Ss, \override returns a set of contexts S, such that
every context C' € S is computed as Cy \override Cy; C7 € S1,Cy € Sy : S =
S; \override Sy = {C | C = C) \override Cy | C; € SiANCo € SoANC #D}V S =
0 [£70].

e [or every pair of forensic contexts Fy, Fy, \ override returns a nested context F: Cy €
F1,Cy € Fy : F = Fy \override I, = {C | C = C) \override Cy | C; € F; NC; €
FK,ANC#0}VF=0.

Definition 49. \union

o IfCy and Cy are simple contexts, then Cy \union Cy returns a new simple context C,
for every micro context m in C: m is an element of Cy or m is an element of Cy:
Ci \union Cy = {m | m € C1V (m € Co Am ¢ Cy)} [§70]. If there is at least one
pair of micro contexts in Cy and Cy sharing the same dimension and these two micro
contexts are not equal then the result is a non-simple context translated into a context
set: for a non-simple context C, construct the set Y = {yqs = C \projection {d} |
d € dim(C)}. Denoting the elements of set Y as yi,...,y,, construct the set S(C)
of simple contexts: S(C) = {my \override my \override...\override m, | m; €
y1 Amg € Ya A ...my, € Yo}, The non-simple context is viewed as the set S(C'), such
that S(C) = {s € S| dim(s) = dim(C) ANs C C} [470].

e [fCy and Cy are context sets, then C'= C; \union Cy is computed as follows [470):

1. D, = {d@m(m) Am &€ Cl},DQ = {dzm(m) Am & CQ}, Ds =D, ﬂDQ
2. Compute X1 : X1 = {m; J(m; \hiding Ds3) Am; € C; Am; € Cy}

3. Compute Xy : Xo = {m;|J(m; \hiding Ds3) Am; € C; Am; € Cy}

189

4. Finally: C = X, JX»

This procedure ensures contexts sets always have the same well-defined context struc-

ture [470, [510)].

o [f'T and Ty are finite tag sets of tags of the same type, T is their non-order-preserving

union: T =Ty \union To ={t |t Ty VvV (teTu Nt ¢ T1)}.

o [f forensic contexts are observations O; and Os their union is an observation se-
quence OS if the observations are ordered in wall-clock time: OS = O1 \union Oy =
{O01.t,05.t | {O1,03} NO1.t < Oy.t}. If the observations are conflicting in time (equal,
or undefined), the are lifted to an evidential statement containing two constructed ob-
servation sequences that have one observation each: ES = O \union Oy = {O; €
051,05 € OS5}, If forensic contexts are observation sequences OSy and OSs, their
union is OS = OS; \union OSs, i.e., a fusion merge of the two observation sequences,
if OSy and OSy contain non-conflicting observations O;, ordered chronologically by O;.t
not sharing a common t. If observations are conflicting or O;.t are undefined in any of
OS5, or OS,, then the union of such observation sequences is an evidential statement
ES = 0S8) \union OS; = {OS;,05,}. If forensic contexts are evidential statements
ESy and ESs, 1s a simple union of all observation sequences from both statements
ES = ES; \union ESy = {os | os € ES, V (0s € ESy Nos ¢ ESy)}. We admit

conflicting observation sequences as they do happen in real-life investigations.
Definition 50. \in
e If Cy and Cy are simple contexts, then Cy \in Cy = Cy \isSubContezt Cs.
e If Sy and Sy are context sets, then Sy \in Sy = S; \ isSubContext S,.
e [f Fy and Fy are forensic contexts, then Fy \in Fy = F| \isSubContezt Fy.

e [fDy C DIM and Dy C DIM are dimension sets, then the operator Dy \ in Dy returns
true if D1 C Ds.

190

o [fTy and Ty are finite tag sets, then the operator Ty \in Ty returns true if Ty C Ts.
If Ty is infinite and Ty is finite, \ in always returns false. If Ty is infinite and Ty is
either finite or infinite, the set membership can be determined by a function. This last

case is of little interest to us any further.

While this operator hasn’t appeared at the syntax level for any context types or their
parts, at the implementation level Tong provided isInTagSet() while developing Lucx

parser and semantic analyzer [470].

7.3.4 Forensic Context Operators

While the operators presented so far in the preceding sections are designed to support foren-
sics context in addition to their traditional behavior, the operators presented here were
designed to work originally with the forensic contexts only specific to FORENSIC LucID and
lift any non-forensic contexts if used.

The operators presented here are based on the discussion of the combination [I35] function
and others to support the required case implementation [302]. The discussed earlier (see
Section , page Gladyshev’s comb() operator [134, [135] needs to be realized in
the general manner in FORENSIC LUcCID for combining our analogies of multiple partitioned
runs (MPRs) [134], 135], which in our case are higher-level contexts and context sets, in the

new dimension types [298] [302, [303], 310] (see Table [13)).

Definition 51. combine corresponds to the comb function as originally described by Glady-

shev ([135], Section [2.2.4.6.9, page[{9).

Definition 52. product corresponds to the cross-product [135)] of contexts.

Belief and plausibility operators bel and pl are introduced to deal with the evidence
evaluation in the Dempster—Shafer terms (Section m, page . The basic argument to
these operators is an observation o; in this case they simply evaluate into the 0.w component
of 0. bel and pl and be computed of any two observations o, and o, of the same property
(01.P = 0y.P) can be made according o;.w and og.w. The latter is a founding block to

compute bel and pl of any number of observations relating to that property.

191

Definition 53. bel corresponds to belief computation based on DSTME (Section
page [66) adapted to forensic contexts as follows: given an observation O, bel O = O.w;
if O =8, bel $ =1, if O = \0, bel \0 = 0; if C is a simple context or S is a con-
text set, bel C = bel S = 1; given an observation sequence OS and its observations O;,
bel OS = {0, € OS | >, 0,.w/i}; given an evidential statement ES and its subset of

interest of observation sequences ESp, bel ES =3 pq 1 pe. cps W(ESE).

Thus, the credibility values of OS and ES are derived from the beliefs assigned to the

contained observations.

Definition 54. pl corresponds to plausibility computation based on DSTME adapted to
forensic contexts as follows: given an observation O, pl O = bel O; given an observation se-
quence OS and its observations O;, pl OS = bel OS; given an evidential statement ES and
its subset of interest of observation sequences ESg, bel ES = ZESBWSBOES#@ w(ESp) =

1 — bel(ES).

7.4 Operational Semantics

Like the syntax, the operational semantics of FORENSIC LUCID capitalizes on the semantic
rules of GIPL [359] (Section [4.1.1.2] page [78), INDEXICAL Lucip [107], OBJECTIVE LU-
cib [262], and Lucx [510], JOOIP [525], and an inspiration from MARFL (Figure
page augmented with with the new operators, probabilities, and definitions [298| [302,
310]. We specify resulting semantic definitions in FORENSIC LuciD along with the explana-
tion of the rules and the notation. The new rules of the operational semantics of FORENSIC
LuciD cover the operators primarily, including the reverse and logical stream operators as
well as forensic-specific operators [298] [302], 303]. We use the same notation as the referenced

languages to maintain consistency in defining our rules [298] 302].

7.4.1 General Semantic Rules

The rules are grouped in several figures: the basic core rules are in Figure 6] the core

context-related rules are in Figure the hybrid FORENSIC LUCID-JAVA interaction rules

192

are in Figure [48 the rules related to observations, observation sequences, and evidential
statements are in Figure 49, Figure |51}, Figure [52| Figure and in Table [15| respectively.

What follows are notes on the additional details of rules of interest.

1. The evaluation context environment P defines a point in the multidimensional context
space at which an expression E is to be evaluated [359, 623]. P changes when the
@ operator is evaluated, or a dimension is declared in a where clause. It is a set of
(dimension : tag) mappings, associating each dimension with a tag index over this

dimension. P is thus a partial function:
P:E—T (7.4.1.1)

where Ep is a set of possible dimension identifiers, declared statically or computed

dynamically. T is a tag set.

In traditional LuciD semantics Ey = Id ([359, 510], Section [4.1.1.2] page [78). In our
case, the extended Ej includes Id and E.Id, where the latter form allows nested OO-
like identifiers, both declared explicitly or be a result of evaluation of E into a dynamic

identifier allowing for intuitive representation of context hierarchies.

In traditional LUCID semantics, the tag set T = N, i.e., a set of natural numbers [359].
In Lucx’s extension, T = U is any enumerable tag set [510], that may include var-
ious orderings of numerical or string tag sets, both finite and infinite ([470], cf. Sec-
tion page . In Forensic LuciD, T = Uyg that includes N, U, as well as

tag values associated with observations, their sequences, and evidential statements.

2. The initial definition environment Dy includes the predefined operators, the constants,
and Py defines the initial context of evaluation [359, 510]. Thus, Dy, Py - E : v

represents the computation of any FORENSIC LUCID expression E resulting in value v.

3. The semantic operator T represents the addition of a mapping in the definition en-
vironment D, associating an identifier with its corresponding semantic record, here

represented as a tuple [359], 525].

193

10.

11.

12.

Each type of identifier (cf. Table page |161]) can only be used in the appropriate
situations. Identifiers of type op, func, and dim evaluate to themselves (Figure ,
rules (7.4.1.3 [7.4.1.19, [7.4.1.4]).

Constant identifiers (const) evaluate to the corresponding constant (Figure [46] rule

74.1.0).

. Function calls, resolved by the Eg rule (Figure , rule|7.4.1.14)), require the renaming

of the formal parameters into the actual parameters (as represented by E'[id; +— E;]).

Arrays are resolved by the Euppay rule (Figure rule |7.4.1.6)), which is a collection
of expressions E; evaluating into their values v; under the current context. Evaluating
an array @ certain context evaluates each element of the array at that context. When

needed, an array can be lifted to a tuple (the described further E¢ypie rule).

. The function P’ = Ptlid — v"] specifies that P’'(x) is v” if x = id, and P(x) otherwise.

. The rule for the where clause, Ey, (Figure , rule [7.4.1.15)), which corresponds to the

syntactic expression F where (), evaluates F using the definitions () therein.

The additions to the definition environment D and context of evaluation P made by

the Q rules (Figure [47] rule[7.4.1.29} Figure [46] rules[7.4.1.16] [7.4.1.17) are local to the

current where clause. This is represented by the fact that the E,, rule returns neither

D nor P.

The Qgim rule adds a dimension to the definition environment and (as a default conven-
tion for N tags maintained for GIPL compatibility), adds this dimension to the context
of evaluation with the tag 0 (Figure |47 rule[7.4.1.29)). This allows us to maintain com-
patibility with the predecessor dialects. For the tag set types other than N where the
first tag is either non-zero or not a number, that first tag is added to the context of
evaluation with its underlying collection index of 0 (cf. Definition , page (where

the collections at the implementation level is marf.util.FreeVector in our case).

The Q;q and Qgq simply add variable and function identifiers along with their definition
to the definition environment (Figure [46] rules [7.4.1.16] [7.4.1.17)) [298, [302, 1359).

194

13.

14.

15.

16.

17.

18.

19.

20.

The semantic rule Egypie evaluates a tuple as a finite stream whose dimension
is explicitly indicated as E in the corresponding syntax rule (Fy,..., E,)id. Accord-
ingly, the semantic rule Egeject picks up one element indexed by E from the
tuple E' [510].

The evaluation rule for the navigation operator @, Eatcxt) (7.4.1.24), which corre-

sponds to the syntactic expression E @ E’, evaluates F in context E’ [510].

The evaluation rule for the set navigation operator @, Ea¢(set) (7.4.1.28]), which corre-
sponds to the syntactic expression E' @ E’, evaluates F in a set of contexts C. Therefore,

the evaluation result is a collection of results of evaluating E at each element of C' [510].

n

The semantic rule Econstruction(ext) (7-4.1.23] Figure evaluates [Fq, : Fy,..., Eq
E;,] to a simple context [510]. It specifically creates a context as a semantic item and
returns it as a context P that can then be used by the rule to navigate to this

context by making it override the current context.

The semantic rule Econstruction(set) (7-4.1.31]) correspondingly constructs {E1,....,E.}

as a context set [510].

The semantic rule is valid for the definition of the context operators, where the

actual parameters evaluate to values v; that are contexts P;.

The semantic rule(7.4.1.22| expresses that the # symbol evaluates to the current context.
When used as a parameter to the context calculus operators, this allows for the gener-

ation of contexts relative to the current context of evaluation [298| 302 359, 510, 512].

When intensional operators are used and one of their arguments happens to be of types
(odim), (osdim), or (esdim), their op, version is assumed (taking w into the account
as exemplified in Section [7.3.2] page [[69] When binary intensional operators are used
and one of the arguments is of a forensic context type and another is a LUCX context
type, the latter is lifted (similar to type casting in classical imperative languages) to

the forensic context as described in Section [7.4.2] page [I97] and in subsequent sections.

195

21.

22.

23.

24.

25.

T (E) corresponds to mapping of FORENSIC LucID and JAVA data types by the GIPSY
Type System (Appendix [B).

For hybrid intensional-imperative glue for FORENSIC LuciD and JAVA we define the
rules in Figure 48] This set of rules enables FORENSIC LUCID to interact with JAVA
(and vice versa), for example, to enable the use of FORENSIC LuciD in JOOIP for

purposes of self-forensics (Appendix @[)

Jcoper semantically identifies a JAVA class associates this class declaration to the iden-
tifier cid, and stores it in the definition environment D. A class can contain member
variables (JavaVDef) and member functions (JavaFDef). These are processed in a sim-
ilar manner by the two following semantic rules [523] [525]. And the rules that follow

define the semantics of the evaluation of those.

Jvper specifies a JAVA member variable in a JAVA class JavaCDef by the syntacti-
cal specification: public type vid ... inside the class’ declaration. The specification
(classV, cid.vid, JavaVDef) is used to represent a JAVA class data member vid de-

clared inside a class declaration JavaVDef for the class cid [523, 525].

Jrper specifies a JAVA member method in a JAVA class JavaCDef from the syntactic
specification: public ft fid(fpty fps, ..., £pts Ipa){...}. Likewise, the specification
(classF, cid.fid, JavaFDef) is used to represent a JAVA member method fid declared

inside a class declaration JavaCDef for the class cid [523] 525].

Jrrper Specifies the JLUCID notion of “free JAVA function”, which is a method not
explicitly defined in a given class by a FORENSIC LUCID programmer. Its syntacti-
cal specification is: ft £fid(fpty fps, ..., £pts pa){...}. The semantic specification

(freefun, ffid, JavaFreeFDef) represents the “free JAvA function” ffid, i.e., a func-

tion that is directly available in the FORENSIC LuUCID program, and that is not a
member of any class [523]. Since free functions are not allowed in standard JAvA, in
terms of implementation, these “free functions” are all put inside a generated wrapper
class by the compiler to be part of the GEER of the execution engine as originally
defined in [262].

196

26. Lopjv specifies the semantics of the evaluation of a reference to a class data member by
a FORENSIC LucCID expression using the object-oriented dot operator (Section m,
page [169] page [179). The rule’s premises insure that, in E.vid: (1) the FORENSIC
LuciD expression E evaluates to a value v that is an object of type cid, as being
associated in the definition environment D to the tuple (class, cid, JavaCDef); (2) the
variable vid is a public member of the class cid. Once this is established as holding,
the Java Virtual Machine can be called upon to evaluate v.vid (noted as JVM[[v.vid]]),
to yield a value v, [523], [525].

27. Lobjr specifies of the evaluation of a reference to a class member method by a FOREN-
sic LuciD expression using the dot operator. The rule’s premises insure that in
E.fid(Ey,...,E,): (1) the FORENSIC LuCID expression E evaluates to a value v
that is an object of type cid, as being associated in the definition environment D
to the tuple (class,cid, JavaCDef); (2) the method fid is a public member of the
class cid. Once this is established as holding, all actual parameters are evaluated to
values vy, . .., v,, the JVM can be called upon to evaluate v. fid(vy, ..., v,) (denoted as

JVM][v.fid(vy, ..., v,)]]), to yield a value v, [523], 525].

28. Lgp speficies the evaluation of free JAVA functions. The rule is a simpler version
of Lobjr with no class type identifiers present, and no object to compute upon. As
mentioned earlier, JAVA does not have free functions, so all free functions are wrapped
in a “free function wrapper” class at compilation, with all free functions inserted in it
as static functions [143] 262], which are then processed by the JVM [523] [525]. The
Jrrper rule is inserting all the free functions in this wrapper class, which we called
ffw. Then, upon calling such “free functions”, this rule is called and assumes that the
“free functions” have been wrapped as static functions into the ffw class, then call the

appropriate function [523], [525].

7.4.2 Extended Observation

We augment the notion of observation based on Equation|7.2.2.1]to formalize it as illustrated

in Figure {9 In general, all components of an observation are stored with the assumption

197

D(id) = (const,c)
Eci S/ S A4 7.4.1.2
cid D,Prid:c ()
D(id) = (op, f)

E ... 7.4.1.3
opid D, Pt id: id ()
B D(id) = (func, id;, E) (7.4.1.4)

fid D, P id: id
E D(id) = (var, E) D,PFE:v (74.15)
vid D,Prid:v

D,PrE:|[Ei,...,En] D,Pt E;:v

E 7.4.1.6
DR (Bt Bl [or - 0] (7:4:1.6)
E D,Pt+ E: true D,P+E v (1.4.1.7)

°T D,Pt if E then E’ else E" : v’ T
B D,PtF E: false D,P+ E" 2" (T418)
°F D,Pt if E then E’ else £/ : v"’ T

D,P+ E :INF+

E . 7.4.1.9
oot D, P - INF+ : T¢;(Long.MAX_VALUE) ()
E ' D, P+ E : INF- (74.1.10)
7 ' D,PF INF-: Tg(Long.MIN_VALUE) o

D,PF E:eod

E s o 7.4.1.11

eod D, P F eod : null ()
D,PF E :bod

E P 7.4.1.12
bod D, P + bod : null ()
E D,P+E:id D(id) = (op,f) D,P+ E;:v (1.41.15)

P D,P+ E(E1,...,Epn): f(v1,...,00) e
E D,PrE:id D(id) = (func,id;, ') D,PF E'lid; « E;]: v (14.114)
fet D, P+ E(E1,...,En):v o
B) D,PFQ : D,P D,P'+-E:v (7.4.1.15)
v D,Pt EvwhereQ :v
o 7.4.1.16
Qia D,Prid=FE : Dt[id— (var, E)], P ()
7.4.1.17
Qna D,PF id(idy,. .., idn) = E : Df|idrs (func, id;, E)], P ()
) D,PFQ . D/,PI 'D/,P/FQ/ID//,PH
QQ DPFQQ D P (7.4.1.18)

Figure 46: Operational semantics rules of FORENSIC LuciD: E and) Core

of default values when not all of the comprising components were specified, similarly to the
allowed syntactical constructs in Figure 43| where P = E with the w being the credibility or
trustworthiness weight of that observation, and the ¢ being an optional wall-clock timestamp.
With w = 1 the o is equivalent to the original model proposed by Gladyshev [311].

The simple contexts and context sets are lifted (cf. Section , page to observations
via P as illustrated by the rule Cqpaig) , in Figure , (with the defaults assigned

198

D(id) = (dim)
Baa 55 d (7.4.1.19)
D(E.id) = (dim)
PBdid DD pd: idid (7:4:1:20
D,P+E:id D(id) = (dim)
Btag D, P+ #E : P(id) (7.4.1.21)
E4 (ext) PRI ED (7.4.1.22)
D,P - Edj : id]’ D(ld]) = (dim)
5 D,PFE;:v; P =Poilidi— vi]f...t[idn > va] (ra123)
construction(cxt) D,P - [Ecl1 . EilyEdg . Eizv . ~:Edn . Ezn} Y IRE 0
D,PHE:P D,PtP'FE:v
Eat (ext) D PTEa Ty (7.4.1.24)
E D, Pt Es:id D(idz) = (dim) (7 41 25)
dot D, P+ E1.Es : tag(E1 | {id2}) -
. D,PrE:id Di[id— (dim)] Pi[id 0] D,PF E; : v, (7.41.26)
tuple D,PF(E1,Ea,...,En)E :v1 fby.id va fby.id ... v, fby.id eod o
B E=[d:v’] E’' = (E1,...,Ep)d P =Pild—] D,P'"+-E v (7.4.1.27)
select D, P+ select(E,E') : v o
D,PEC:{P1,...,P2} D,Pi1.m b E:v;
Eat(set) DPFEGC: (o1, om} (7.4.1.28)
i : 7.4.1.29
Quim D, P I dimension id : Dt[id — (dim)], Pt[id — 0] ()
D,PH+H Edi s id; D(id;) = (dim)
{E1,...,Epn} = dim(P1) = ... = dim(Pm)
E' = fp(tag(P1), ..., tag(Pm)) D,Pt E’: true
CCOnS ruction oxX 7'4'1'30
truction(box) D,PF Bog[E1,...,En|E]: {P1,...,Pm} ()
D,Pt Ewi.m:Pm
Cconstruction(set) D,PF {EL L Em} . {Ply . ,Pw} (74131)
D,PFE:id D(id) = (cop,f) D,PFCi:uv
Cop(ex 7.4.1.32
op(ext) D, Pt E(C1,...,Cn): f(v1,...,vn) ()
C D,PFE:id D(id) = (sop, f) D,PtECi:{viy,...,viy} (7.4.1.33)
=op(set) D,PEE(C1,-.,Cn): f({t1,,- 101, -y {0nys e s Unm }) o

Figure 47: Operational semantics rules of FORENSIC LuciD: E and () Core Context

to min, max, w, t per the rules in Figure .

7.4.3 QObservation Sequence

An observation sequence is an ordered collection of observations; the related semantic rules
are in Figure [51] The rule [7.4.3.3] corresponds to the most common case of declaration
of a witness account. The rule [7.4.3.4] serves to initialize the empty observation sequence

dimension; such a sequence will need to be populated at the program execution time via

199

D,PFE:v Tg)=D(cid) = (class, cid, JavaCDef)
D, P Fwvid : vid D(cid.vid) = (classV, cid.vid, JavaVDef)
D, P+ IVM[v.vid]] : v

Lob; 7.4.1.34
objV D,PF Ewid: vy ()
D,PrE:v Tg()=D(cid) = (class, cid, JavaCDef)
D,Pt fid: fid D(cid.fid) = (classF, cid.fid, JavaFDef)
D,PFE1,....,Ep:v1,...,0n
D,PEJIVM|v.fid(vy,...,v B
LobjF (lv-fid(vs w)l): v (7.4.1.35)

D, P+ E.fid(E1,...,En) : vr

D(ffid) = (freefun, ffid, JavaFFDef)
D,PHE1,...,En:v1,...,0n

~ D,PFIVM[[ffw.ffid(vi,...,)]l : vr
bre D,Pr ffid(Ey,..., En) : vr (7.4.1.36)

JavaCDef = class cid {...}
D, P+ JavaCDef : Df[cid — (class, cid, JavaCDef)], P

Jeper (7.4.1.37)

JavaCDef = class cid {...JavaVDef ...}

;5 JavaVDef = public type vid ...; (7.4.1.38)
VDef - D, P I JavaVDef : Df[cid.vid — (classV, cid.vid, JavaVDef)], P o

JavaCDef = class cid {...JavaFDef...}

3 JavaFDef = public ft fid(fpt: £p1, ..., £ptn fpn){...} (7.4.1.39)
FDef * D Pt JavaFDef : Df[cid.fid — (classF, cid.fid, JavaFDef)], P o

JavaFFWCDef = class ffw {...JavaFFDef ...}
JavaFFDef = ft £ffid(fpti: fpi1, ..., £pta £pn){...}

D, P\ JavaFFDef : Di[ffid — (freefun, £fid, JavaFFDef)], P

JFFDef (7.4.1.40)

Figure 48: Operational semantics of FORENSIC Lucid (OO)

declaration of observations or observation expressions using context operators. The other
rules are defined as per usual. As described in Section [7.3.3] page a context set is lifted
to an observation sequence (rule(7.4.2.14)in Figure , where each set element is lifted to an

observation as per preceding section.

7.4.4 Evidential Statement

Evidential statement is a collection of observation sequences where, unlike with observation
sequences, ordering is not important. Its semantics is in Figure (2 The expression and
declarations rules defined as per usual including common declaration and empty evidential
statements. The rule Qesaim(X) in particular is designed to handle the generic observation
sequences promoting them to an evidential statement forensic context type (Section
page when any of their contained observations have their max > 0.

Furthermore, in Table [15are results of application of different arguments to @, #, and “.”

(dot) starting from the evidential statement all the way down to the observation components

200

Eodid

Eovid

Qodim1

Qodim2

Qodim3

Qodim4

Qodims

D(id) = (odim)
D,PFid:id

D(id) = (odim, E, min, max, w, t) D,Pt+

E : oy

D,Ptid: oy

(odim, E, min, max, w, t)

D, P I observation id = (E, min, max, w, t) :

(odim, F, min, max, w)

D,PFE:oy
[Di[id — (odim)],]

Pt[id.P — oy,
id.min — min,
id.max — max,

id.w — w,

id.t — 1]

D, P+ E:oy

D, P F observation id = (E, min, max,w) :

(odim, E, min, max)

Dtlid — (odim)],]
Pt[id.P — oy,

id.min — min,

id.max — max,

idaw — w,

id.t — eod]

D,PFE:oy,

D, P + observation id = (E, min, max) :

Dtlid — (odim)),]
Pitlid.P — o0y,
id.min +— min,

id.maz — max,

idaw — 1.0,
L id.t — eod]

(odim, E, min) D, P+ E:oy
[Dilid— (odim)),]

D, P + observation id = (E,min) :

%

(odim, E) D,PFE:oy

Pilid.P — oy,
id.min — min,
id.max +— 0,

id.w — 1.0,

d.t — eod]

D, P I observation id=F :

Ditlid — (odim)],]
Pt[id.P — 0y,
id.min +— 1,
id.max > 0,

idaw > 1.0,

id.t — eod]

(7.4.2.1)

(7.4.2.2)

(7.4.2.3)

(7.4.2.4)

(7.4.2.5)

(7.4.2.6)

(7.4.2.7)

Figure 49: Operational semantics of FORENSIC LUCID: an observation

201

D,PFE :0O D,P{OFE:o,

E 7.4.2.8
at(o) D,P+ E Q@ E’: 0,.(P, min, max, w, t) ()
E D,’P"OS{Ol,7om} ,D7Oi11...7n}_E:o’Ui (7429)
at(os) D,P+ E @QOS : ordered {0y;,-..,0u,,} o
E ~ D,PFES:{OSnm,...,08n} D,08;:1..m b E : 08y, (7.4.2.10)
at(es) - D,P+E @ ES : {00, ,...,050, } -
c D,P+FE:id D(id) = (fop, f) D,PtF O : oy, (7.4.2.11)
fop(es) D7P'_E(Olv"'7on):f(ovlv"'vo’l/n) S
D,PHE:id D(id) = (fop,f) D,PFOS;: {0 ,...,00 }
Ctop(es) : ! k (7.4.2.12)
D,Pt E(OS1,...,080) : f({ovy, 3001} s {0up 50y 0un,)
c D,PFE:id D(id) = (cop,f) D,PFC:v D,PFO:o0, (7.4.2.13)
op(flift) D,PF E(O): f(oy.P =) -
D,PFE:id D(id) = (sop,f) D,PrCi:{vi,...,v5,} D,PFOS:{oy;}
Csop(ift) ! k (7.4.2.14)

D,PF B(O1,..-.0n) : f(00, P = {1, 01, b1 200, P = {0y 0 })

Figure 50: Operational semantics of FORENSIC LUCID: forensic operators and lifting

D(id) = (osdim)

Fosat 7.4.3.1
osdid D,PFid: id ()
D(id) = (osdim) D, Pt E:osy
Eosvi 7.4.3.2
osvid D,PFid: ose ()
(osdim, E1,..., Ep) D,P+E;:o; D, P+ E:osy
Qosdim
. Dilid — (osdim)],
D, P I observation sequence id ={E1,...,En} :
Pilid — ordered(id.oy,, ..., 1d.oy,)]
(7.4.3.3)
osdim D,P+ E:os
Qosdim (9) () ¢ (7.4.3.4)

Dt[id — (osdim)],
Ptlid — 0]

D, P |- observation sequence id :

Figure 51: Operational semantics of FORENSIC LUCID: an observation sequence

following the definitions in Section page [169] In case #ES and #OS angle brackets
(...) simply denote the tuple of either observation sequences or observations of which the
current one is actually returned, of type O.S or O respectively. While observation sequences
in E'S are not strictly speaking ordered as mentioned, the order of declaration and updates

by context operators is used in the underlying implementation.

7.4.5 Belief and Plausibility

The semantics of the bel and pl forensic operators is in Figure[53] The semantics follows the

details explained in the operator definitions in Section[7.3.4, page|191] Belief and plausibility

202

D(id) = (esdim)
Eesdi _ 7.4.4.1
esdid D,PFid:id ()
D(id) = (esdim) D, P E:esy
Eecsvi 7.4.4.2
esvid D, P id: es, ()
(esdim, Eq, ..., Ey) D,Pt+ E;:o0s; D,PEE:esy
Qesdim
) Dtlid — (esdim)],
D,P I evidential statement id = {FE1,...,En} :
Pilid — (id.0Sy, .. .,1d.08y,)]
(7.4.4.3)
esdim D,PFE:es
Qesdim (0) () L (7.4.4.4)
) Dtlid — (esdim)],
D,P I~ evidential statement id :
Ptlid — 0]
dim, Er1,...,En) D,PF E;:0s; 3D,PF E;: 0s;.0;. 0 D,PFHE:
Queadinn (%) (esdim, Eq n) P i1 08; i 1 08;.0;.maxT > esy (7.4.4.5)
) Dtlid — (esdim)],
D, P+ evidential statement id = {F1,...,En} :
Pilid — (id.0sy; X id.0sy,)]

Figure 52: Operational semantics of FORENSIC LUCID: an evidential statement

Table 15: Types of context operators’ arguments and resulting types

[Left Type operator Right Type — Resulting Type]
[@) @ oS - O
O ¢} ES - O
oS combine oS — 0S
oS combine ES — ES
ES combine ES — ES
oS product oS — ES
ES — (0S1,...,08n)
oS — {01,...,0n)
) — (P, min, max, w, t)
O.P - FE
O.w — FLOAT
O.min — INTEGER
ES . oS - 0S8
oS . O - O
O fby O - 0S8
O stream-op O - O0S

of no-observations $ basically say everything is believable and plausible (like the Any catch-

all case in the DSTME examples). Belief and plausibility of zero-observations \0, therefore,

correspond to the null-hypothesis, so they are set to 0.0.

7.5 Discussion

This section provides an additional insight into the just defined syntax and semantics and

how it all fits together with the material presented in the background (Part .

203

D,PrE:id D(id) = (fop, bel)
D,P+E':id D,PFE:o0,
Dtlid +— (odim)] Pilid — id .w]
E : 7.4.5.1
bel D,Ptbel(E'): op.w ()

D,P+E:id D(id) = (fop, bel)
D,PHE :id D,P+E :$
Dilid ~ (odim)]

D,PFbel(E’): 1.0

Epel(s) (7.4.5.2)
D,PrE:id D(id) = (fop, bel)
D,PFE :id D,PFE :\0
Dilid + (odim)]

D, P bel(E’):0.0

Epe1(\0) (7.4.5.3)

D,PrE:id D(id) = (fop, bel)
D,P+E:id D,PrE :0)
D,P+E":id D,PrE":0o!
Dilid + (odim)] Pt[id > id .w]
Dilid’ — (odim)] Pi[id” — id’.w]
D,PrE :0,P=D,PFE":0l.P
D,P +bel(E/,E") : o}, .w—+ ol . w

Epcl(EE) (7.4.5.4)
D,PrE:id D(id) = (fop,pl)
D, P+E:id D,PrE:$
Dilid + (odim)]
D,PFpl(E):1.0

Epis) (7.4.5.5)
D,PrE:id D(id) = (fop,pl)
D,P+E :id D,PrE :\0
Di[id +— (odim)]

D,PFpl(E'): 0.0

Epi(\0) (7.4.5.6)

Figure 53: Operational semantics of FORENSIC LuUcCID: belief and plausibility

7.5.1 Mapping FORENSIC LuciD, Gladyshev and Dempster—Shafer

Theories

We illustrate how the FORENSIC LUCID computations fit in the context of formalization

introduced by Gladyshev (Section page as well as the use of the Dempster—Shafer
theory (Section [3.3.2] page [66)).

1. Gladyshev’s finite collection of all possible events I (see Section [2.2.2]) forms a tag set

to denote all possible computations c.

2. Every ¢ in Gladyshev’s state machine () is a possible world in our view. ¢ is the current

contextual point in space P.

In the case of the Printer Case (Section [2.2.5.1.3] page the notion of the printer is

the intension, its various possible world extensions include the states ¢ of the printer

204

queue, where following the events I make transitions from world to world. Likewise,
in the Blackmail Case (Section [2.2.5.2] page the intension of the disk cluster is

instantiated in different extensions of the letter fragment states.

. Gladyshev’s runs and their partitionings have a length. Since LUCID streams are gen-
erally infinite we do not have a length, we denote finite streams end with the eod
(end-of-data) and bod (beginning-of-data) stream markers as well as the query oper-

ators such as iseod and isbod (see the corresponding syntax productions: [7.3.0.24}

3067 and [F3000).

. For convenience and consistency of expression we define
max = opt

and

i finitum = INF+
in Gladyshev’s formalization of observation (Section [2.2.4] page [32)).

. 0s = o simply means an observation sequence os containing simply a single observation

o as in os = {o}.

. The no-observation in Section 2.2.4 § = (Cr,0,infinitum) is like a catch-all case
in the Dempster—Shafer in Section to complement belief mass assignment. C7p
is a finite tag set, and infinitum (a constant longer than the longest run in Glady-
shev’s formalism) is INF+ in our case, which maps to JAVA Long.MAX_VALUE within the

GIPSYInteger type in the GIPSY Type System.

. In general, o = (FE4, Es, E3, Ey, E5), in practice, min = FEy and max = Ej evaluate
to integers, w = E, to a floating point number [0...1], and ¢ = Ej5 is an optional
date/time expression when an activity began (consistently align to some epoch, e.g.,
a Unix timestamp, which is a number of seconds since the epoch, so it is technically
an integer as well, but standard string timestamps are also syntactically accepted to

facilitate encoding of log data).

205

8. We use fby, for probabilistic fby where the syntax is the same as the regular fby,
but o’s w is taken into account, when w = 1, fby, behaves like regular fby. The
same for wvr, X is whenever Y’s w is sufficiently high (Y.w > 1/2) and similarly for
other operators defined in Section [7.3.2] page [[69] w puts an additional constraint
on the transitions that use it to avoid taking unreliable evidence into the account.
Having a low w effectively may force an eod in a stream of observations earlier than
the actual end of stream discarding the evidence after a low-credibility observation as
non-reliable and therefore non-admissible. It is certainly possible for a given observation
sequence (testimony) to contain alternating sub-sequences of high- and low-credibility
observations; therefore, a full-stop at the first encounter of o.w < 1/2 may not be
desirable. In this case the investigator has to review the observation sequence and
break it up into individual sequences containing series of credible and non-credible
observations. The manual aspect can be automated if the observation sequences come
from software tools, logs, services, or monitoring agents, or as a preprocessing tool or

script before running the FORENSIC LUCID program.

7.5.2 Forward Tracing vs. Back-tracing

Naturally, the GEE (Section , page makes demands in the demand-driven evaluation
in the order the tree (AST) of an intentional program is traversed. Tracing of the demand
requests in this case will be “forward tracing” (e.g., see the first top half of the Figure
page . Such tracing is useful in the debugging and visual verification but is less useful than
the mentioned back-tracing when demands are resolved, when dealing with the back-tracing
in forensic investigation in an attempt to reconstruct events from the final state observations
back to the initial state. Back-tracing is also naturally present when demands are computed
and return results, which would be the second half of Figure 25 page [87 The latter may
not be sufficient in the forensic evaluation, so a set of reverse operators to next, fby, asa,

etc. were needed.

206

7.5.3 Constructing Forensic Context of Evaluation

We need to provide an ability to encode the “stories” told by the evidence and witnesses.
These constitute the primary context of evaluation that gives meaning to the case under
investigation. The more complete “return value” of the forensic expression evaluation is a
collection of backtraces (may be empty), which contain the “paths of fuzzy truth”. If a
given path trace contains values considered as true, it’s an explanation of a story. If there
is no such path (i.e., the trace is empty), there is not enough supporting evidence of the
entire claim to be true [298, 802, 303, 305, B10]. The backtraces are augmented with the
plausibility values using the Dempster—Shafer approach (Section [3.3.2] page [66) computed
from the belief mass assignments to the contained observations (in an equivalent Gladyshev’s
backtraces, the plausibility and belief are always 1.0).

The context spaces (Section , page are finite and can be navigated through in
all directions of along the dimension indexes. The finiteness is not a stringent requirement
(as normal LUCID’s tag sets are infinite in nature), but in the cyberforensic investigation
there is always a finite number of elements in the stories told by witnesses and the evidence,
such that the investigator can process them in humanly reasonably time and arrive at some
conclusion [303].

We, therefore, defined streams of observations (i.e., observation sequences os;). In fact,
in FORENSIC Lucip we defined higher-order dimensions and lower-order dimensions [298],
302]. The highest-level one is the evidential statement es, which is a finite unordered
set of observation sequences os. The observation sequence os is a finite ordered set of

observations o. The observation o is an “eyewitness” of a particular property P along with the

duration of the said observation [298, [302]. We mentioned before (Section [7.3.2} page[181)), we

admit navigating unordered tag sets with operators like next, prev, fby, @ and dependent
operators by using the underlying collection index in the order they were stored meaning the

order of declaration is not important, but it is sequential. The order may change when using

context calculus operators (Section [7.2.3.1.4] page [165)), but this is done prior navigation.

This is a FORENSIC LUCID extension to the LucX’s context types [470]. Thus, it is not
important in which order the investigators lists the observation sequences in the evidential

statement. It is important, however, within the observation sequences, the observations are

207

strictly ordered.

7.5.4 Transition Function

A transition function (described in [134] 135], Section page derived from Glady-
shev et al. [133] 134], 135] determines how the context of evaluation changes during forensic
computation. It represents in part the case’s crime scene modeling as a possible world state.
A transition function 1 is investigation-case-specific (i.e., depends on a particular forensic
case being modeled, and, therefore, is not readily available). In general, it is to be provided
by the investigator, just like in Gladyshev’s COMMON LISP implementation. In the FSA
approach, the transition function is the labeled graph itself ([135], Figure page .

In general, we already have basic intensional operators to query and navigate from one
possible world state to another (see Chapter , page[76]). These operators represent the basic
“built-in” transition functions in themselves (the intensional operators such as @, #, iseod,
first, next, fby, wvr, upon, and asa as well as their inverse operators [302] defined earlier).
However, a specific problem being modeled requires more specific transition function than
just plain intensional operators. In this case the transition function is a FORENSIC LuUCID
function where the matching state transition is modeled through a sequence of invocation
of intensional operators [298] [302], B03], 305, B10]. That is each state is a possible world and
intensional operators enable transitions between the states.

See the ACME Printing Case and Blackmail Case remodeled in FORENSIC LUCID in
Section [0.3] and Section [0.4] respectively in Chapter [9] There we provide the first FORENSIC
LuciD implementation of ¢, ¥~ and the “main()” (program entry point) in Listing [9.5]
Listing and Listing respectively [301], B02] from Gladyshev’s cases.

7.5.5 (Generic Observation Sequences

The generic observation sequence context contains observations whose properties’ duration is
not fixed to the min value alone (as in (P, min, 0), omitting w,). The third position in the ob-
servation, max # 0 in the generic observation, and, as a result, in the containing observation

sequence (e.g., 0s = (P, 1,2)(P,,1,1)). (Please refer to Section [2.2.4.5|and [133], 134], 135] for

208

a more detailed example of a generic observation sequence [302] 1303, 310].) We adopt a simple
way of modeling generic observation sequences [135] by lifting the observation sequence type
to an evidential statement type enumerating all variants in the min = min + max arguments

for all possible max in the original and setting in the generated set max = 0 via the semantic

rule Qesdim(x) in Figure 52 page 203

7.5.6 Conservative Extension

We claim FORENSIC LUCID is a conservative extension [251] of GIPL and other comprising
Lucip dialects despite its comparatively large feature base. That is programs written in those
dialects are also valid programs (but not necessarily forensically interesting) in FORENSIC
Lucip, i.e., any virtual machine interpreting FORENSIC LUCID programs during evaluation
should be capable of interpreting GIPL, INDEXICAL Lucip, JLuciD, OBJECTIVE LUCID,
Lucx, and JOOIP programs.

The extension covers three main aspects: the additional IdEntry’s in Table [13] syn-
tax, and semantics. However, the extensions do not alter the meaning of the programs in

predecessor LUCID systems.

1. Additional IdEntry’s:

Wan already established Lucx [510] is a conservative extension of GIPL with the
simple context operators and context set operators. The JAVA member extensions were
added by OBJECTIVE LUCID et al., again conservatively to GIPL and INDEXICAL
LuciD (never explicitly told so, but we may as well do that here). The new forensic

entries covering the forensic contexts and operators are likewise additional entries.

2. Syntax extensions:

The reverse, forensic, probabilistic, and dot operators, as well as the observation, ob-
servation sequence, and evidential statement constructs are additional entities that did
not exist in the comprising dialects, as such they do not affect consistency of the original

programs.
3. Semantics extensions:

209

We augment the semantics of intensional operators with the credibility weight factor
w as well as ability to navigate forensic hierarchical contexts. If w = 1, the operators
behave according to their nominal definitions. Any operations on the forensic contexts

is new to FORENSIC LuciD and does not affect the predecessor dialects.

Thus, we can conclude FORENSIC LUCID does not introduce additional inconsistencies to

the predecessor dialects.

7.6 Summary

Forensic LuciD is a contribution that fuses intensional programming and the DSTME.
It offers new formalization of observations and its impact on observation sequences, and
evidential statements. This formalization addresses the shortcoming in Gladyshev’s theory
by making a more realistic evidence representation with the credibility assessment [311] as
well as more scalable and accessible to a wider audience due to the simpler nature of LuciD-
based languages.

From the logic perspective, it was shown one can model computations as logic [220].
When armed with context and a demand-driven model adopted in the implementation of the
Lucip family of languages that limits the scope of evaluation in a given set of dimensions
and their tags, we come to the intensional programming artifact. In essence, we formalize
our forensic computation units in an intensional manner. We see a lot of potential for this
work to be successful and beneficial for cyberforensics as well as intensional programming
communities.

The authors of the FSA approach did a proof-of-concept implementation of the proposed
algorithms in CMU CoMMON Lisp (cf. [I35, Appendix]) that we improve the usability
of by re-writing in FORENSIC LUCID in Section [9.3] page [250] and Section (9.4 page [254]
Forensic LuciD’s software architecture design aspects within GIPSY are discussed further

in Chapter [page and various use-cases and scenarios are discussed in Chapter [9]

page [244]

210

Chapter 8

Software Architecture Design

This chapter discusses the proposed software design and implementation aspects behind
FoRrENSIC LuciD (presented in the preceding chapter). This includes specific contributions
to GIPSY in terms of its GIPC and GEE frameworks redesign to support the FORENSIC
Lucib compilation and run-time. The architectural design centers around the FORENSIC
LuciD parser and semantic analyzer, various re-design details of GEE to support ASPECTJ
and PRISM backends and the multi-evaluation-backend framework in general, as well as
production of various data-to-FORENSIC LUCID encoders. We also discuss the related back-
ground work where applicable. ~ We present the necessary architectural design concepts,
frameworks, and some of their PoC implementation. While our main target evaluation plat-
form is GIPSY (Chapter @, page , the design is meant to be general enough for any
Forensic LucipD-implementing system. We review related work where appropriate that
was not mentioned in earlier chapters that impacts the proposed design decisions in this

chapter as well as in Chapter [9

8.1 ForeNnsic Lucib Compiler

The general design approach (Section [6.2.1] page [139) for adding a new SIPL compiler
calls for implementing the IIntensionalCompiler interface augmented with a specific IPL
parser, semantic analyzer, and optionally a translator. Accordingly, we add the correspond-

ing new FORENSIC LuciD compiler framework to GIPC of GIPSY. One needs to create a

211

JavaCC [503] grammar and FORENSIC LuciD-to-GIPL translation rules where applicable
(e.g., see Section page and a possible JAVA-based implementation of some of the
new operators [303] and constructs that were not translated, such that GEE can evaluate
them at run time. We likewise introduce the FORENSICLUCID FormatTag to handle FORENSIC
Lucip-specific constructs. These constitute annotations of the AST nodes (similarly to pre-
viously introduced ImperativeNodes in [262]) that allow GEE’s evaluation engines to deal
appropriately with them when an interpreter encounters such nodes. The FORENSICLUCID
annotation allows to invoke the appropriate operators from the GIPSY type system at run-

time.

8.1.1 ForEeNsic Lucip Parser

Following the tradition of many GIPC’s parsers, FORENSIC LUCID’s grammar (in accordance
with its syntax presented in Section , page|166]) is specified in a particular grammar format.
We use Java Compiler Compiler (JavaCC) [503] to generate the parser for FORENSIC LUCID.

The resulting current grammar specification is in GIPSY’s CVS repository [364].

8.1.2 FoORENSIC LuciD Semantic Analyzer

ForeNsiCc LuciD’s semantic analyzer’s design calls for it to be primarily an extension of
the LucX’s semantic analyzer [470], primarily because LucX is not fully translated into
GIPL and because FORENSIC LuciD adds new constructs, such as forensic contexts and the
DSTME that don’t have yet any known translation algorithm into GIPL. Thus, the program-
ming artifact ForensicLucidSemanticAnalyzer is created to account for the new node types
in AST corresponding to the extensions (primarily the forensic and Lucx context types and

context calculus operators presented in Section[7.2.3.1.3] page[164]and Section[7.3.3] page[183

respectively). ForensicLucidSemanticAnalyzer capitalizes on the earlier semantic analyz-
ers implemented by Tong [470] and Wu [524].

ForensicLucidSemanticAnalyzer’s responsibility is not ensure the static compiled AST
and the Dictionary of identifiers adhere to the declarative aspects of the FORENSIC LuUcCiD

language’s operational semantics described in Section [7.4] page [[92] The semantic analyzer

212

traverses the AST that came out of the JJTree tool of JavaCC top-down/depth-first to do
the static type-checking, identifier scope and definition checks, initial rank analysis, and
other typical semantic analysis tasks [524]. The differences from the traditional GIPL- and
INDEXICAL LuciD-based dialects, additional type checks are done for Lucx-derived simple
contexts, context sets, and specifically tag sets [470].

Since not all of the semantic checks can be done at the compile time, the run-time eval-
uation engines do the run-time checks during program execution. However, the majority of
the QQ rule’s declarations in FORENSIC LuciD (rule , Figure , page that cor-
respond to the evidential context specification are usually all statically specified from either

log files or manually by the investigator.

8.2 FoRENSIC LuciD Run-time System Design

In FORENSIC LUCID run-time GEE is instantiated to spawn concurrent threads of evaluation
of the same FORENSIC LuciD GEER by any or all designed backends by default as detailed
further. AspEcTJ (--aspectj, implies ——flucid) is for forward tracing, potentially as an
optimization for just tracing the normal flow of execution 1 instead of backtracing. The
PRISM backend is invoked with —-prism in addition to or to skip the normal backend. A
regular eductive ForensicLucidInterpreter for traditional GIPL-like evaluation is made
available via ForensicGEE (Figure page [225). What follows is the detailed design de-

scription surrounding these components.

8.2.1 AspecTJ Backend Design

Aspect-oriented programming (AOP) has ties with the intensional programming paradigm
when it comes to the notion of context [93]. Specifically, Du previously [93] proposed a
relationship between the two programming paradigms in 2005. The AspecTJ language [29)
is the extension of the JAvA language to add AOP capabilities to JAVA programs. While
AOP’s implementation in ASPECTJ is mostly software engineering practices-oriented tool, it
can help resolving implementation issues with tracing the forensic evaluation process.

The AOP paradigm has also been applied to systematic security hardening aspects in

213

software systems design patterns by Laverdi‘e by reproposing a related Security Hardening

Language (SHL) in 2007 [226].

8.2.1.1 Tracing Program Execution

The GEE (Section m, page of GIPSY is the intensional demand-driven evaluation
engine. When it executes a LuciD-dialect program, it is natural to trace it. The trace can
be of that of the intensional program itself as well as its hybrid components, e.g., written
in JAVA. The proposed design covers the implementation of an eductive system in JAvVA
and ASPECTJ. The designed example of an execution trace of an OBJECTIVE LuciD [262]
program is in Figure [25] page [87] Such a trace is, for example, very useful for the proposed

cyberforensic evaluation [265, 289).

8.2.1.2 AsPECTJ Run-time Environment

The GEE’s executor’s (gipsy.GEE.Executor) design is adjusted to produce the required
traces similarly to the debug mode. Additionally, the ASPECTJ’s joint points [29], like before
and after triggers are specifically of use, of which the GEE itself is unaware, and such an
execution trace can be used as the explanation of a story told by a the evidence and witnesses.
The exact place of putting such tracing is in the implementation of intensional operators. Due
to the GIPL engine’s fine granularity of the execution (only @ and # intensional operators
along with context set operators and classical operators are executed), another instance
(extension) of the engine has to be made, implemented in ASPECTJ, that is capable of doing
tracing on the higher-level forensic operators to provide a more meaningful trace. Its design
also accommodates for the new forensic context types [289] B03].

An AspecTJ wrapper is applied to the GEE, specifically around the engine’s implemen-
tation of the run-time system’s core that does the actual evaluation. A problem was identified
with the outlined designed approach is that the GEE’s interpreter implementation either too
coarse-grained when it comes to procedural demands too fine grained when it comes to all
the intensional operators translated to @ and #. Therefore, the design of the new inten-
sional backend is undertaken for better tracing of forensic evaluation and its presentation.

However, the advantage of using ASPECTJ for this task is that an ASPECTJ wrapper of the

214

engine can be written without much, if any, alteration of any current engine running.

8.2.2 Probabilistic Model Checking Backend Design

Model checking has to do with defining a model of a system or component or concept usually
as a state machine, and then stating a hypothesis or a claim to see if it agrees with the
model [35]. Model checking was applied in various areas, including specifically autonomic
computing [499], security metrics for network security [121, 454], and UML/SysML mod-
els [I88]. Probabilistic model checking is an extension that takes into account probabilities
associated with the model and its transitions.

Ritchley was one of the first to use a model checker to analyze network vulnerabilities [400].
The network is modeled as a graph; along with goal states (representing the desired attack
target), initial conditions, and other necessary details defined. Then, an assumption is made
that there is no way an attacker can reach a goal state. If indeed there is no such a path, the
model checker would respond with true. If there is a path, the model checker in Ritchley’s
case would respond by giving a single path that an attacker can follow to get to the goal.
Subsequently, Sheyner et al.’s [424] methods improved Ritchley’s work by altering the model
checker such that instead of giving only a single counterexample, the model checker will give
all the paths leading to the goal. The main critique of these model-checking methods was the
eventual state explosion problem for large and complex problems (networks) and the methods
were “abandoned”. Forensic computing approach presented in Gladyshev’s work may suffer
from the same issues. The attack graph community in the above examples switched to use
DAGs and graph search techniques to avoid such problems. We believe the eductive context-
oriented manner of computation, however, can address some of these problems by computing
the paths that are only needed by the context specification in a demand-driven manner with
the resulting values cached in the scalable DST for later use even if the underlying problem
is complex. (This may bring the model-checking aspect back to the attack graph security

researchers as well).

8.2.2.1 PRISM
PRISM [464] is a probabilistic model checker with its simple input language syntax and

215

semantics. Internally it implements various modules for decision processes, such as, e.g.,
Markov Decision Process (MDP), and others. The basic core syntax of PRISM is in Figure |54}
which is in essence a series of declarations of variables and the associated actions and guards
(similar to the UML state diagrams) and the associated probabilities p;, and a reward/cost
specification [I88]. In Figure , Figure , and Figure [57] are formal syntax and operational

semantics of PRISM recited from Jarraya’s specification [188].

[action] guard — pi: wupdate; + - + p,: updale,;

rewards ‘‘rewardname’’
guard : reward;

[action] guard : reward;
endrewards

Figure 54: PRISM input language basic syntax [I8§]

prism_model = model_type
global_declaration (Global Declarations)
modiiles (Modules Specification)
modules = module module_name
localvar dec (Local Variables Declarations)
c (Commands)
endmodule
| modules || modules (Modules Composition)
global_declaration = const_dec (Constants Declarations)
Sformula_dec (Formulas Declarations)
globalvar dec (Global Variables Declarations)
model type == mdp
| ctme
| dtmc

Figure 55: PRISM input language syntax (1) [18§]

8.2.2.2 Model-Checking with PRISM

Once the probabilistic model in FORENSIC LUCID is built (evidential statement and transition
functions), to verify it (concurrently with the general evaluation) is to check the model with
the probabilistic model-checking tool PRISM [464]. As a result, the design of one of the
GIPSY evaluation engine backends of a FORENSIC LUCID program generates a translated
PRISM code, which is then passed on to the PRISM tool itself [311].

We considered and decided against another possibility of translating directly from the
FORENSIC LuciID specification to PRISM at compile time (i.e., in GIPC). That translation
does not necessarily retain the operational semantics and prohibits the traditional eductive

and parallel evaluation of FORENSIC LUCID programs that would normally be avail<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>