
A Semantic-Oriented Description
Framework and Broker Architecture for

Publication and Discovery in Cloud Based
Conferencing

Jerry George

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science : “Software Engineering” at

Concordia University

Montréal, Québec, Canada

July 2013

© Concordia University, 2013

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis is prepared

By: Jerry George

Entitled: “A Semantic-Oriented Description Framework and Broker Architecture for

Publication and Discovery in Cloud Based Conferencing”

Submitted in partial fulfillment of the requirements for the degree of

“Master of Applied Science”

Complies with the regulations of the University and meets the accepted standards with respect to
originality and quality.

Signed by the final Examining Committee:

___ Chair
 Dr. G. Butler

___ Examiner
 Dr. D. Goswami

___ Examiner
 Dr. N. Tsantalis

___ Supervisor
 Dr. R. Glitho

 Approved by: __
 Dr. W. E. Lynch, Chair

 Department of Electrical and Computer Engineering

_________20_____ _____________________________________
 Dr. Robin A. L. Drew
 Dean, Faculty of Engineering and Computer Science

(iii)

ABSTRACT

A Semantic-Oriented Description Framework and Broker Architecture for

Publication and Discovery in Cloud-Based Conferencing

Jerry George

Cloud computing is an emerging paradigm for provisioning network, storage, and computing

resources on demand using a pay-per-use model. Conferencing is the conversational exchange of

media between several parties. Cloud-based conferencing services can provide benefits such as

easy introduction of different types of conferences, resource usage efficiency and scalability.

A business model has been recently proposed in a position paper for cloud-based conferencing

with the following roles: conference substrate provider, conference infrastructure provider,

conference platform provider, conference service provider, and broker. Conference substrates are

generally atomic and served as elementary building blocks (e.g. signaling, mixing) of

conferencing applications. They can be virtualized and shared for resource efficiency purposes.

Multiple conferencing substrates can be combined to build a conferencing service (e.g. a dial-out

audio signaling conference service composed from dial-out signaling and audio mixer

substrates).

The focus of this thesis is to design a semantic-oriented description framework for conferencing

substrates and an architecture for their publication and discovery. The description framework is

made up of a description language and a cloud-based conference ontology. The conference

ontology is modeled on the basis of the interacting roles in the proposed cloud-based

(iv)

conferencing business model. The overall publication and discovery architecture for cloud-based

conference substrates is made up of three brokers and the related publication and discovery

interfaces. The publication and discovery interfaces are modelled using REpresentation State

Transfer (REST) interfaces. A prototype is built to demonstrate the feasibility of this

architecture. The effectiveness of the architecture is also proved using the performance

measurements.

(v)

ACKNOWLEDGEMENT

First, I offer my deepest gratitude and appreciation to my supervisor Dr. Roch Glitho for all his

support, assistance and guidance throughout the course of my research. This work would not

have been possible without his immense patience, continuous guidance, and countless drafts

reviewed. It was a pleasure working and learning from him throughout the period of research at

Concordia University.

I also offer my sincere gratitude to Dr. Fatna Belqasmi and Dr. Nadjia Kara for all her ideas,

continuous feedback and their effort and time put in. Their countless patience and enthusiasm

helped me a lot along the way for the successful completion of my research work.

I’m grateful to Dr. Goswami and Dr. Tsantalis for serving as members of my thesis committee

and for their valuable comments and ideas. I am also grateful to Dr. G. Butler for chairing the

thesis review.

I would like to take the opportunity to thank my colleague Flora Taheri for all her ideas, help and

countless drafts reviewed of the thesis work. I would also like to thank my colleagues and friends

at the Telecommunication Services Engineering Research Lab for their advices, ideas, and helps.

I would also like specially thank to Dr. Roch Glitho and Concordia University for their financial

support during the period of my research assistantship. Last but not least I would like to thank

and praise my dearest family, especially my wife and my son, for their invaluable patience and

confidence in me and supporting me during the completion of my degree.

(vi)

Table of Contents

List of Figures .. xi

List of Tables ... xiii

List of Acronyms and Abbreviations ... xiv

1 Introduction ... 1

1.1 Definitions .. 1

1.1.1 Conferencing ... 1

1.1.2 Cloud Computing .. 1

1.1.3 Cloud Conferencing Business Model ... 2

1.2 Motivations and Problem Statement .. 2

1.3 Thesis Contributions .. 3

1.4 Thesis Organization.. 4

2 Background ... 6

2.1 Cloud Computing Architecture .. 6

2.1.1 Definition and Key Benefits of Cloud Computing ... 6

2.1.2 Key Facets of Cloud Computing... 7

2.1.2.1 Infrastructure as a Service (IaaS) .. 8

2.1.2.2 Platform as a Service (PaaS) ... 9

2.1.2.3 Software as a Service (SaaS) ... 9

2.2 Conferencing .. 9

(vii)

2.2.1 A Brief Introduction to Conferencing ... 10

2.2.2 Key Technical Components of a Conference ... 10

2.2.3 Different Types of Conferences .. 12

2.2.4 Cloud-based Conferencing Business Model ... 13

2.3 Semantic Web .. 14

2.3.1 Brief Introduction to Semantic Web ... 15

2.3.2 Semantic Web Layers, Key Technologies and Specifications relevant to our
research 15

2.3.2.1 Data and Metadata Layer .. 16

2.3.2.2 Semantics Layer .. 18

2.3.2.3 Enabling Technology Layer .. 21

2.3.2.4 Environment Layer .. 23

2.4 Broker ... 23

2.4.1 Definition and Key Functionalities of a Broker .. 23

2.4.2 Semantic-oriented Broker ... 24

2.4.3 Typical Service Selection and Ranking Mechanism for a Broker 24

2.4.4 Multi-Criteria Decision-making (MCDM) for Ranking of Services 24

2.5 Chapter Summary ... 27

3 Scenarios, Requirements and State of the Art Evaluation .. 28

3.1 Scenarios for Publication and Discovery of Cloud-based Conferencing Substrates 28

3.1.1 Interaction between the Conference Substrate Provider, Conference Infrastructure
Provider, and Level 1 Broker .. 29

(viii)

3.1.2 Interaction between the Conference Infrastructure Provider, Conference Platform
Provider, Conference Service Provider, and Level 2 Broker.. 29

3.1.3 Interaction between the Conference Service Provider, Conference End-User, and
the Level 3 Broker ... 31

3.2 Requirements .. 31

3.2.1 Requirements of the Semantic-Oriented Description Framework 31

3.2.2 Requirements of the Broker Architecture ... 32

3.3 The State of the Art Review ... 33

3.3.1 Semantic-oriented Description Framework .. 34

3.3.2 Broker Architecture for Publication and Discovery of Substrates in Cloud-based
Conferencing ... 44

3.4 Chapter Summary ... 50

4 Proposed Architecture ... 52

4.1 Proposed Semantic-Oriented Description Framework ... 52

4.1.1 Overview of the Proposed Cloud Conferencing Ontology 52

4.1.2 Common Ontology.. 53

4.1.3 Level 1 and Level 2 Broker ontology ... 55

4.1.4 Level 3 Broker Ontology .. 57

4.2 Proposed Broker Architecture .. 59

4.2.1 Overview of the Broker Architecture ... 59

4.2.2 Components of the Broker Architecture ... 60

4.2.2.1 Categorization of Constituent Components of the Broker Architecture 60

(ix)

4.2.2.2 Validation and the Management of the Descriptions .. 61

4.2.2.3 Management of the Cloud-based Conferencing Ontology 64

4.2.2.4 Efficient Discovery of Substrates .. 66

4.3 End-To-End Publication and Discovery steps and specific Illustrative Scenario 71

4.3.1 End-To-End Publication and Discovery Steps ... 71

4.3.2 Illustrative Scenario .. 72

4.4 Chapter Summary ... 75

5 Validation .. 77

5.1 Overall Prototype Architecture for Publication and Discovery of Substrates in Cloud-
based Conferencing ... 77

5.1.1 Prototype Architecture .. 77

5.1.2 Software Tools .. 79

5.1.3 Implemented Scenario .. 84

5.2 Performance Evaluation ... 91

5.2.1 Benchmarking Tool .. 93

5.2.2 Performance Metrics ... 94

5.2.3 Performance Results ... 95

5.3 Chapter Summary ... 99

6 Conclusion and Future Work .. 100

6.1 Summary of Contributions ... 100

6.2 Future Work ... 102

6.2.1 Semantic-oriented Description Framework .. 102

(x)

6.2.2 Broker Architecture for Publication and Discovery of Substrates in Cloud-based
Conferencing ... 102

Appendix ... 104

Appendix A: Audio Mixer Substrate (S2) Description Published by CSP2 in Turtle
Serialization Format .. 104

Appendix B: Query (including SPARQL Ranking function) for discovering top 10 Audio
Mixer substrates with Canadian region... 114

Bibliography ... 117

(xi)

List of Figures

Figure 1: Cloud Computing Architecture [6] .. 8

Figure 2 : Conference Architecture ... 11

Figure 3: Cloud Conference Business Model ... 13

Figure 4: Semantic Web Layers[17] ... 16

Figure 5: RDF Statement Structure... 17

Figure 6: University Ontology – Axioms and Facts ... 20

Figure 8: WSDL-based Service Grounding for OWL-S [30] ... 35

Figure 9: Semantic Service Anatomy [41].. 37

Figure 9: WSMO-Lite Semantic Layering [32] .. 39

Figure 10: SAWSDL Mapping between WSDL and Ontologies [29] ... 40

Figure 11: Common Ontology .. 54

Figure 12: Level 1 and Level 2 Broker Ontology ... 55

Figure 13: Identified Substrate Features ... 57

Figure 14: Level 3 Broker Ontology ... 58

(xii)

Figure 15: Broker Architecture ... 60

Figure 16: Classification for Index based on Broker Level and Substrate Type 63

Figure 17: Query Optimization ... 67

Figure 18: End-To-End Publication and Discovery Steps .. 72

Figure 19: Sequence for Publication to Level 1 Broker ... 74

Figure 20: Sequence for Discovery of a Substrate from Level 1 Broker...................................... 75

Figure 21: Prototype Architecture .. 78

Figure 22: Jena Reasoner API [76] ... 81

Figure 23: Abstract Syntax for User-defined Rules [76] .. 83

Figure 24: Prototype Test-bed Set-up ... 92

Figure 25: Publication Delays Summary .. 97

Figure 26: Discovery Delays Summary for Simple Queries .. 97

Figure 27: Discovery Delays Summary for Complex Queries ... 98

(xiii)

List of Tables

Table 1: Summary of Evaluation of Semantic-Oriented Description Frameworks 44

Table 2: Summary of Evaluation of Broker Architectures ... 50

Table 3: Sample Custom Rules for Reasoner for Broker Level 1, 2 and 3................................... 82

Table 4: A Segment from Audio Mixer Substrate (S2) Description Published by CSP2 88

Table 5: SPARQL Query to Discover an Audio Mixer Substrate .. 90

Table 6: A Segment from a Dial-Out Audio Mixer Substrate (CS1) Description Published by

CIP1 .. 91

Table 7: Prototype Test-bed Configuration .. 92

Table 8: Benchmarking Tool Switches ... 94

Table 9: Publication Delays Summary ... 97

Table 10: Discovery Delays Summary for Simple Queries .. 97

Table 11: Discovery Delays Summary for Complex Queries .. 98

(xiv)

List of Acronyms and Abbreviations

3G Third Generation

3GPP Third Generation Partnership Project

AHP Analytical Hierarchical Process

API Application Programming Interface

ASCII American Standard Code for Information Interchange

BGP Basic Graph Pattern

BOSH Bidirectional-streams Over Synchronous HTTP

CIP Conference Infrastructure Provider

CLI Command Line Interface

CSMIC Cloud Service Measurement Index Consortium

CSP Conference Substrate Provider

CSV Comma Separated Values

DAML-S DARPA Agent Markup Language for Services

DARPA Defense Advanced Research Projects Agency

DC Dublin Core

DL Description Logics

ETSI European Telecommunications Standards Institute

FOAF Friend of a Friend

GUI Graphical User Interface

GUID Globally Unique Identifier

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

(xv)

IaaS Infrastructure as a Service

IDE Integrated Development Environment

IETF Internet Engineering Task Force

IMS IP Multimedia Subsystem

InfGraph Inference Graph

IOPE Input-Output-Preconditions-Effects

JAX-RS Java APIs for RESTful Web Services

JSON JavaScript Object Notation

JSON-LD JavaScript Object Notation - Linked Data

kbps Kilo Bits Per Second

LAMP Linux, Apache Web Server, MySQL database and PHP

Linked USDL Linked Unified Service Description Language

MCDM Multi-Criteria Decision-Making

MEP Message Exchange Pattern

MSM Minimal Service Model

N3 Notation 3

NIST National Institute of Standards and Technology

OntoQL Ontology Query Language

OWL Web Ontology Language

OWL-S Web Ontology Language for Services

PaaS Platform as a Service

PSL Process Specification Language

QoS Quality Of Service

RAM Random Access Memory

(xvi)

RAM Random Access Memory

RDBMS Relational Database Management System

RDF Resource Description Framework

RDFa Resource Description Framework in Attributes

RDFS Resource Description Framework Schema

REST Representational State Transfer

RFC Request for Comments

RSS Really Simple Syndication

RTCP Real Time Control Protocol

SaaS Software as a Service

SA-REST Semantic Annotations for REST

SA-WSDL Semantically Annotated Web Service Description Language

SD Substrate Description

SESA Semantically Enabled Service Oriented Architectures

SIP Session Initiation Protocol

SLA Service Level Agreement

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SPARQL SPARQL RDF Query Language

STI Semantic Technology Institute

SWS Semantic Web Services

UDDI Universal Description, Discovery and Integration

URI Uniform Resource Identifier

USDL Unified Service Description Language

(xvii)

W3C World Wide Web Consortium

WADL Web Application Description Language

WSDL Web Service Description Language

WSM Weighted Sum Model

WSML Web Service Modeling Language

WSMO Web Service Modeling Ontology

WSMX Web Service Modeling eXecution environment

XHTML Extensible HyperText Markup Language

XML Extensible Markup Language

1

Chapter 1

1 Introduction

This chapter provides an introduction to the key research areas and an overview of the related

concepts. It discusses the motivation, the problem statement, and the salient contributions of this

thesis. Finally, it gives an outline of how this thesis document is organized.

1.1 Definitions

1.1.1 Conferencing

Conferencing is the real-time multi-party exchange of media (voice, video, and text). Multi-party

conferencing is ubiquitous nowadays and enables real-time collaboration between conference

participants. Conferencing presents itself as a significant component of several applications such

as large scale enterprise applications, gaming, social networking applications, etc.

1.1.2 Cloud Computing

According to National Institute of Standards and Technology (NIST) [1] cloud computing is an

emerging and transformational paradigm for provisioning of network, storage, and computing on

demand as a commodity using a pay-per-use model. Cloud computing has several inherent

benefits such as scalability, efficiency of resource utilization, reliability, easier management, and

a coherent and flexible pricing model. According to one of the popular and widely-accepted

definitions of cloud computing [1], it encompasses three key facets: Infrastructure as a Service

(IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS). IaaS provides the

2

infrastructure for computation, storage and networking using virtualized hardware resources.

PaaS provides the software environments to design, develop, test, deploy and maintain

applications. SaaS provides software applications and composite services to end-users or other

applications.

1.1.3 Cloud Conferencing Business Model

Due to the benefits of cloud computing, there is a growing trend towards the migration of

different types of applications to the cloud computing landscape. However, to the best of our

knowledge, there are currently no full-fledged environments that allow the development,

deployment and management of cloud-based conferencing applications [2]. In this vein, a

business model was proposed for cloud-based conferencing [3]. The following are the roles in

the proposed business model: connectivity provider, broker, conferencing substrate provider,

conferencing infrastructure provider, conferencing platform provider, and conferencing service

provider. Virtualized conference substrates (e.g. dial-out signaling, audio mixing) are sharable

fine-grained building blocks of conferencing provided by the conference substrate provider.

These virtualized conference substrates can be composed to create full-fledged conferencing

applications (e.g. dial-out audio conference)

1.2 Motivations and Problem Statement

Cloud-based conferencing services present a promising use-case for conferencing applications

with significant benefits such as easy introduction of different types of conferences, as well as

benefits inherited from cloud computing such as resource efficiency, and scalability.

3

For the realization of cloud-based conferencing, it is critical to identify a mechanism for

describing virtualized conference substrates and design an architecture for efficient publication

and discovery of the conference substrates in a cloud setting. In this architecture, a key role is

played by the conference substrate providers. Conference substrate providers publish the re-usable

and sharable virtualized conference substrates to a broker. The conference infrastructure provider

discovers these conference substrates from the broker and may re-publish them as they are, or the

conference infrastructure provider may alternatively choose to combine them with other substrates

and then publish the resulting substrates. The conference service provider uses the conference

platform provider to discover the conference substrates provided by the conference infrastructure

provider and assemble these conference substrates to build different types of conference

applications on the fly and publish them to a broker. Later, the conference end-users discover

these conferencing applications created by the conference service provider. This architecture

permits the interaction between all the roles in the proposed cloud-based conferencing business

model for the purpose of publication and discovery of conference substrates.

1.3 Thesis Contributions

The thesis contributions are as follows:

• Requirements for a semantic-oriented description framework and a broker architecture

that enables the interactions between the roles in the proposed cloud conferencing

business model.

• Analysis of the state of the art with an evaluation summary based on our requirements.

4

• An overall architecture for publication and discovery of cloud-based conferencing

substrates based on the business model.

• Implementation architecture, a proof of concept prototype, and performance evaluation.

1.4 Thesis Organization

The remaining sections are divided into six chapters as follows:

Chapter 2 presents the background concepts and definitions related to the research domain in

more detail. Concepts such as conferencing, cloud computing, semantic web, and brokers are

explained.

Chapter 3 presents the requirements and evaluation of the state of the art related to semantic

description framework and broker architecture for publication and discovery in cloud-based

conferencing.

Chapter 4 presents the proposed architecture for publication and discovery in cloud-based

conferencing. It describes the proposed semantic-oriented description framework for conference

substrates. It also describes architecture for the broker and explains its components in detail.

Chapter 5 describes the implementation architecture and technologies used for the proof-of-

concept prototype. Also, it provides information regarding the developed benchmarking tool for

measurements. At the end of this chapter, the observed performance measurements are

presented.

5

Chapter 6 concludes the thesis by giving a summary of the overall contributions and future

research directions.

6

Chapter 2

2 Background

This chapter describes background concepts related to the research domain. The following

concepts are explained: cloud computing architecture, conferencing, semantic web, and broker.

2.1 Cloud Computing Architecture

In this section we start by giving a definition of cloud computing and its key benefits. After that,

we explain the key facets of cloud computing.

2.1.1 Definition and Key Benefits of Cloud Computing

According to the NIST, cloud computing is an emerging and transformational paradigm for

provisioning of network, storage, and computing on demand as a commodity (using a pay-per-

use model) [1]. Cloud computing focuses on shifting the allocation of resources (e.g.

infrastructure, platform and software) to a transparent network to reduce the cost associated with

purchasing dedicated hardware and software solutions [4].

Some of the key benefits [5], [6] of cloud computing are as follows:

• Scalability

• Resource efficiency

• Reliability

• Resource pooling

7

• Easier management of resources

• Coherent and flexible price model (on-demand or pay-as-you-go)

2.1.2 Key Facets of Cloud Computing

Cloud Computing consists of the following key facets [4]:

• Infrastructure as a Service (IaaS) providing an infrastructure to compute, store, and

network using virtualized hardware abstractions.

• Platform as a Service (PaaS) providing software environments to design, build, test,

deploy, host, and maintain applications and services.

• Software as a Service (SaaS) providing full-fledged applications and services to end-

users and other applications using APIs.

Figure 1 illustrates the three key facets of cloud computing architecture with some examples. In

this sub-section we will explain each of these three key facets of cloud computing in detail.

8

Figure 1: Cloud Computing Architecture [6]

2.1.2.1 Infrastructure as a Service (IaaS)

IaaS includes a dynamic pool of virtualized computing, storage, and network resources.

Virtualization technology enables the co-existence of multiple heterogeneous resources including

network, storage, and computing. Hence, it provides us benefits such as greater cost efficiency

through less hardware requirements. A software tool called Hypervisor or Virtual Machine

Manager is used to make best use of the hardware resources by maintaining and monitoring the

virtualized resources. In the traditional scenario, resources would have been managed by

hardware engineers and system administrators involving a huge investment from enterprises.

Examples of infrastructure providers include Amazon, Elastic Cloud 2 (EC2), Google Compute

Engine, and Rackspace Cloud.

9

2.1.2.2 Platform as a Service (PaaS)

PaaS includes the platform for service providers for designing, implementing, testing, hosting,

deploying, and maintaining the applications and services. It includes components such as

Application Virtual Machines or runtime environments such as Java Virtual Machine (JVM),

Linux, Apache Web Server, MySQL database and PHP (LAMP) to enable the development and

deployment of applications. Examples of PaaS providers include Google App Engine, Engine

Yard, Couchbase, and Windows Azure App Fabric.

2.1.2.3 Software as a Service (SaaS)

SaaS includes applications provided by service providers to end-users directly or to other third-

party applications via APIs. Service providers charge end-users using pay-per-use models. One

of the key advantages from the perspective of end-users is the absence of capital expenditure for

resources (hardware, software licensing). Examples of SaaS providers include Tropo,

Salesforce.com, DocuSign, and oDesk.

2.2 Conferencing

In this section, we give a brief introduction to conferencing, key technical components of a

conference, and different types of conferences. Later, we discuss the Cloud-based conferencing

business model [3].

10

2.2.1 A Brief Introduction to Conferencing

Conferencing is the real-time multi-party exchange of media (voice, video, and text) which

enables real-time collaboration with varying degrees of interactivity among the conference

participants. Conferencing is ubiquitous nowadays and presents itself as a significant component

of several applications such as large-scale enterprise applications, gaming applications and social

networking applications. Conference services are resource-intensive and require efficient real-

time processing capabilities, as they could involve several hundred users around the globe with

different types of devices.

Conferencing has been extensively studied by standard bodies such as Internet Engineering Task

Force (IETF), Third Generation Partnership Project (3GPP), and European Telecommunications

Standards Institute (ETSI). The IETF XCON working group has published a framework for

conferencing [7] , a floor control protocol [8], and has developed an information data model for

conferencing [9]. 3GPP defines a specification for IP Multimedia Subsystem (IMS), which

provides multimedia services to end-users in a 3G Network. In part, this specification provides

an architecture [10] and APIs [11] for multimedia conferencing.

2.2.2 Key Technical Components of a Conference

A typical conference consists of the following key technical components (depicted in Figure 2)

[3][7],

11

Figure 2 : Conference Architecture

• Signaling –The signaling component handles operations such as session set-up,

capability negotiation, and session tear down. Signaling protocols such as Session

Initiation Protocol (SIP) and Jabber are usually used.

• Media Handling – The media handling component manages media aspects such as

transmission, mixing and transcoding. The mixer is an entity combining multiple input

audio/video streams into a single output stream. The mixer generates multiple output

streams for each participant to ensure that participants receive only the streams from the

other participants present in a conference, and not the stream from themselves.

Transcoding is the process of encoding and decoding between different media formats.

Depending on the transcoding capability of the media handling component, the

conference application may or may not support a specific device type.

• Conference Control – Conference control provides advanced functionalities such as

floor control and policy control [3]. Conference control is an optional component in the

conference architecture.

o Policy Control – The policy control component handles conference policy

aspects such as conference and participant management, admission control, etc.

12

o Floor Control – The floor control component allows joint or exclusive access to

specific resources provisioned as part of a conference.

For any type of conference application, signaling and media handling form the most critical

parts. For instance, a simple dial-out audio conference consists of dial-out signaling and audio

mixer media handling components.

2.2.3 Different Types of Conferences

RFC 4353 standard specification “A Framework for Conferencing with the Session Initiation

Protocol” [12] defines three major types of conferencing. They are defined as follows:

• Tightly-coupled Conference – Tightly coupled conference is a conference in which

there is an entity called focus that hosts a conference and maintains the signaling

relationships with all the participants. The focus plays the key role of the centralized

manager of the conference, and is addressed by a conference URI.

• Fully-distributed Conference - Fully distributed conference is a conference where each

participant maintains a signaling relationship with all of the other participants. Similar to

the loosely coupled conference, distributed conference also does not have a centralized

manager; management is completely distributed amongst its participants.

• Loosely-coupled Conference – Loosely-coupled Conference is a conference without a

signaling relationship between every participant in conference. The participants learn

about each other through multicast protocols using the Real Time Control Protocol

(RTCP).

13

2.2.4 Cloud-based Conferencing Business Model

A cloud-based conferencing business model [3] was recently proposed with a vision for

provisioning (planning, implementing, deploying, executing, managing, and monitoring)

complex conference applications in the cloud setting. This model allows easy introduction of

different types of conferences and flexibility of provider selection (preventing vendor lock-ins)

in addition to taking full advantage of benefits of cloud computing. Figure 3 depicts the business

model in detail with the key actors.

Figure 3: Cloud Conference Business Model

The key actors in the proposed business model are as follows:

• Connectivity Provider – The connectivity provider acts as communication channel for

interactions between the different providers and requesters in the model.

• Broker – The broker provides a publication and discovery intermediary in different

levels for substrates and conference applications. It also provides algorithms for the

selection of the most appropriate substrate or conference application.

14

• Conference Substrate Provider – The substrate provider provides virtualized fine-

grained conference substrates which constitute the main building blocks of conference

applications.

• Conference Infrastructure Provider – The infrastructure provider discovers the

substrates provided by the substrate provider via the broker. Alternatively, it may also

combine its own substrates and publish them to the broker for discovery by the

conference platform provider tools.

• Conference Platform Provider – The platform provider provides a set of tools for

creation, composition, and execution of conference services by providing software

frameworks and service logic execution environments for conference applications. It

discovers the substrates provided by the infrastructure provider via the broker to be used

in conference applications.

• Conference Service Provider – The service provider utilizes the exposed platform tools

provided by the platform provider in order to design and build conference applications.

Once the conference applications are created, the application is published to the broker.

• Conference End User – The conference end user discovers the conference applications

of interest from the broker and subscribes to them using pay-per-use model.

2.3 Semantic Web

According to the W3C , the Semantic Web provides a common framework that contains a set of

technologies and specifications that allow data to be shared and reused across applications,

enterprises, and community boundaries [13]. Semantic Web with its constituent technologies

and specifications can be classified into four layers. In this section we give a brief introduction to

15

Semantic Web. Next, we introduce the Semantic Web Layers and the key technologies and

specifications (at each layer) that are pertinent to our research.

2.3.1 Brief Introduction to Semantic Web

Semantic Web is an extension of the World Wide Web. Tim Berners Lee coined the term

Semantic Web in 2001 with two important goals: 1) To turn the Web into a collaborative

medium to both share and aggregate data and services from heterogeneous sources [14] and 2)

To make inter-operability of machines possible based on data and services. To realize these

goals, we require a standard description infrastructure to semantically describe both data and

services [15]. The data and services are often referred to as resources.

We use the concept of semantic annotations to provide additional descriptions to the data and

services. The semantic annotations are backed by a formal description of the concepts of a

particular domain. Such a structural representation of the concepts within a specific domain and

the semantic relationship between the concepts is called an ontology [16]. Ontology languages

such as OWL allow us model such concepts and semantic relationships.

2.3.2 Semantic Web Layers, Key Technologies and Specifications relevant to our research

The Semantic Web can be broadly classified into four layers as follows,

• Data and Metadata Layer

• Semantics Layer

• Enabling Technology Layer

• Environment Layer

16

Such a classification was initially proposed by K Breitman et al. [17]. There are several key

technologies and specification that enable the realization of the goals of Semantic Web [17].

These technologies and specifications lay the foundation to the Semantic Web. The Figure 4

illustrates the Semantic Web Layers and the key constituent technologies and specifications that

are relevant to our research. In the following sub-sections we briefly introduce these key

technologies and specifications.

Figure 4: Semantic Web Layers[17]

2.3.2.1 Data and Metadata Layer

The data and metadata layer is the bottom-most layer providing the foundational elements to

describe Web resources. The key elements of this layer are as follows:

17

• Uniform Resource Identifier (URI) is the de facto standard for uniquely identifying an

abstract or physical resource. It is a string of characters conforming to US-ASCII (ASCII)

encoding.

• Resource Description Framework (RDF) [18] is a standard description model for

structuring information published on the Web. It is a fundamental building block of the

Semantic Web. RDF allows us to define simple statements about the Web resources using

triple (subject-predicate-object) as depicted below in Figure 5.

Figure 5: RDF Statement Structure

Assuming that we have university ontology with namespace prefix of “univ”, we can

define that Concordia University is a type of university. Each element of triple, except the

object, always represents Web resources identified by a URI. An object can be either a

Web resource or a literal value such as an integer or a string.

• Extensible Markup Language (XML) and Turtle are W3C-recommended

serializations for describing structured data in RDF. Among these two, Turtle offers a

human-readable format.

18

• RDFa is W3C recommendation for annotation of human-readable Web Pages for adding

structured information. It allows HTML/XHTML documents to contain markups with

mapping to specific RDF-based vocabulary by using standard attributes. Being XHTML-

based, it allows both human (using browsers) and machine readability of structured data.

Unlike most other mechanisms, it re-uses the statement structure created for RDF i.e.

subject-predicate-object, and hence it provides a natural mapping between RDF and

human-readable Web Pages.

• Microformat provides a similar mechanism as that of RDFa to annotate human-readable

Web Pages. However, Microformat proposes a different set of attributes to annotate

HTML/XHTML documents and is currently not accepted as a standard. There are also

other syntaxes provided by W3C such as JSON-LD [19] which are used to represent

structured data and provide translations to RDF.

• RDF Scheme or RDF(S) builds on top of RDF specifications and provides a set of

classes and properties. RDFS provides a mechanism to relate properties to classes and

define the domain and range by using properties. The domain of a property indicates for

what type of classes the property is defined for. Whereas, the range of a property

indicates the type of values (type of classes) that the property can assume.

2.3.2.2 Semantics Layer

The semantics layer is built on top of the data and metadata layer. It adds semantics to the

resource representations using a set of specifications and technologies. Semantics layer enables

machine interpretation, validation, reasoning, inference, and querying. Such specifications and

19

technologies facilitate a machine to make autonomous decisions. The followings are some of the

specifications and technologies at the semantics layer,

• Web Ontology Language (OWL) - Web Ontology Language (OWL) [20] is a logic-

based ontology language proposed to help improve the interpretability of information by

machines. OWL offers better and richer expressivity by providing additional vocabulary

to the data and metadata layer specifications, namely RDF and RDF(S) [21]. The

foundation for the logic in OWL comes from the Description Logics (DL) formalisms.

DL is a set of formalisms for knowledge representation. DL provides knowledge in the

form of three key characteristics: concepts (or classes), roles (or properties), and

individuals (or instances). OWL provides formal semantics for describing ontology.

Technically, ontology consists of a set of axioms and facts. Axioms allow us to create a

formal definition for the classes and properties, whereas facts are instances based on the

formal definitions. Classes are used define a collection of Web resources, whereas

properties are used to provide relationships or define attributes on these Web resources.

Illustrative Example of Axioms and Facts

Figure 6 illustrates a set of class axioms such as Student, Employee,

Professor, Assistant, TeachingAssistant, ResearchAssistant,

and Dissertation. It also illustrates the property axioms such as hasAdvisor, and

writesDissertation. writesDissertation has a domain of

ResearchAssistant and a range of Dissertation. Based on these class axioms

20

and property axioms, we define a set of facts or individuals on the right-hand side.

Conceptually, the set of RDF triples forms a directed labeled graph as displayed in Figure

6. Hence, they represent structured data. Having such directed labeled graphs makes it

more suitable for representation and interlinking of data and services [22].

Figure 6: University Ontology – Axioms and Facts

Depending on the level of expressivity of OWL, three different sub languages of OWL

v1.1 are defined: OWL Lite, OWL DL, and OWL Full. For a more detailed explanation

of their comparison please refer to reference [20]. The flip-side of offering richer

expressivity is the computational complexity required for reasoning and inference tasks.

• Ontology-based Reasoning and Validation – Reasoning and validation ensure that the

facts or the instance of information are a logical consequence of the schema or ontology.

The reasoning tools have an implicit sense of intelligence for generating new facts from

existing facts. In Figure 6 the instance classes :RochGlitho and :JohnDoe can be

21

inferred as employees through a transitive relationship even though they are not explicitly

stated as part of the facts. Both of these instance classes belong to a subclass of

univ:Employee. For performing such reasoning, there are several libraries and tools

such as Jena, FaCT++, Pellet, HermiT, and RacerPro. A detailed comparison is available

in reference [23].

• SPARQL [24] is a highly-expressive language for querying diverse RDF-based data

sources. It is highly expressive and powerful because it allows for various types of

logical, relational, and textual filtering operations. Depending on the type of the query,

the results of an SPARQL query are given by SPARQL-specific result sets or by RDF

graphs.

2.3.2.3 Enabling Technology Layer

The third layer which is Enabling Technology Layer presents the specifications and technologies

to facilitate and enable the development of applications for end-users on the basis of the

ontologies defined using the semantics layer. Services are one of the key enabling technologies.

Service are described in this section. From the perspective of our research, the broker is also

another enabling technology which is discussed in greater detail in section 2.4.

Services

Services are self-contained, reusable, and loosely-coupled distributed software components. As

part of the W3C Web Services Architecture Specification [25], an XML-based service

description language called WSDL is defined. Services described using WSDL does not provide

machine interpretable semantics and this motivated efforts to develop formal descriptions for

22

web services [26]. Service Oriented Architecture (SOA) is an architectural style focusing on

building large scale applications using services. In this vein, Semantically Enabled Service

Oriented Architectures (SESA) [27] was proposed to develop a comprehensive architecture for

integrating the Semantic Web Services (SWS) infrastructures with SOA. SESA effort was

targeted towards enhancing and automating service discovery, composition, publishing and

monitoring [28]. Services based on SESA are described using semantic-oriented description

frameworks.

The semantic-oriented description framework is made up of a description language and

associated ontologies. Several standard bodies such as W3C and Semantic Technology Institute

(STI) International have published semantic-oriented description frameworks such as W3C

Semantically Annotated Web Service Description Language (SA-WSDL) [29], Web Ontology

Language for Services (OWL-S) [30], and Web Service Modelling Framework (WSMF) [31].

The main characteristics of the semantic-oriented description frameworks [32] are as follows:

•••• Informational/Data Semantics define input and output messages involved for the

technical service interfaces.

•••• Functional Semantics define the service’s capabilities using a collection of service

interfaces, which can be invoked.

•••• Non-Functional Semantics define non-functional aspects related to the implementation

and execution of services (e.g. constraints such as capacity, availability).

•••• Technical Semantics define the supported technical interface protocols, service end-

points, and supported serialization formats.

23

2.3.2.4 Environment Layer

The environment layer enables the execution of semantic web-based applications by providing

the essential environment and infrastructure required for execution. It also provides methods to

ensure standards and quality expectations for the key enabling layer technology such as services.

Environment Layer also takes into account the operating environment for these semantic web-

based applications and provides interoperability between different domains. Some of the key

technologies and specifications in this layer are application integration and standardization.

2.4 Broker

In this section we give the definition of a broker and explain its key functionalities. Next, we

introduce the semantic-oriented broker. Later, we discuss the typical service selection and

ranking mechanism for a broker. Finally, we introduce a popular technique for decision-making

algorithm used for ranking of services called Multi-Criteria Decision-Making.

2.4.1 Definition and Key Functionalities of a Broker

A broker is an entity that enables the interaction between service clients and service providers by

supporting publication, discovery, and binding mechanisms. Publication operations involve

service registration and storage of the services. These operations are performed by the service

providers in order to advertise their service capabilities to the broker. Discovery operations

involve finding the most appropriate service (candidate services) based on the criteria provided

by the service client. Binding operations are analogous to invocation operations, which involve

the direct interaction between the service client and service provider.

24

2.4.2 Semantic-oriented Broker

Traditional brokers often lack the expressivity for the stored service descriptions given by the

service provider at the time of publishing. To overcome this challenge, semantic-oriented brokers

have been proposed to support semantic-oriented description frameworks that contain semantics.

This enables efficient service selection and ranking.

2.4.3 Typical Service Selection and Ranking Mechanism for a Broker

The service selection involves the filtering of services based on some concrete criteria. The

filtering algorithm for generating a list of candidate services depends on the criteria provided by

the client. Service ranking involves the generation of an ordered list of candidate services based

on non-functional characteristics (e.g. capacity, availability, performance, cost) of services. This

is especially important when the service selection returns several results. In such a case, the

service ranking helps to sort the service results based on additional characteristics which are

important to the service client (usually based on previous agreements). In a more advanced

scenario, the selected services may even be dynamically ranked based on the environmental

aspects of the discovery request (service client’s geo-location, distance to the service location,

reputation of service using previous ratings from the other clients, etc.).

2.4.4 Multi-Criteria Decision-making (MCDM) for Ranking of Services

There are several Multi-Criteria Decision Making (MCDM) algorithms available for making

decisions when there are multiple conflicting criteria with varying weightages. These weightages

are assigned based on the service client’s preferences. Based on the weightages assigned to non-

25

functional characteristics of the candidate services, a score is calculated. The score could be, for

instance, a result of pair-wise comparison or an aggregate score indicating a ranking value for a

service. The score calculation takes into consideration the type of the non-functional

characteristic being evaluated and the MCDM type used. The non-functional characteristics can

have either positive tendency (such as availability, security) or a negative tendency (response

time, latency or delay). MCDM analysis involves three key steps, [33]

1. Determining the relevant criteria and alternatives

2. Attaching nominal values of relative importance for the criteria and to the impacts of

alternatives

3. Processing of the nominal values to determine the ranking value

Following are a list of the popular MCDM algorithms with respect to web service ranking,

• Weighted Sum Model (WSM) [34] –WSM solves single dimensional problems, where

we have a set of alternatives and a corresponding set of criteria for each alternative. It is

one of the oldest MCDM algorithms. The ranking value for each alternative is calculated

as sum of the product of the value of the criteria and the nominal value (of importance)

of the criteria. The alternative with the highest ranking value is seen as the best choice.

[34]

26

• Weighted Product Model (WPM) [34] – Another similar method to that of WSM is

WPM, where instead of the sum, the product of the ratio of the criteria is calculated and

raised to the power of the relative nominal value of the corresponding criterion. Being

ratio-based, we make pair-wise comparisons of various alternatives. If the ratio is greater

than one, then alternative corresponding to the numerator is ranked higher than

alternative corresponding to the denominator. Hence, here we make pair-wise

comparisons of the alternatives.

[34]

• Analytical Hierarchical Process (AHP) – AHP is another popularly used MCDM

algorithm for classifying several unstructured alternatives in hierarchical model and

making pair-wise comparisons at each level of the hierarchy. Hierarchy is ordered in

such a manner that the goal of making a decision (such as getting a specific type of

service) is the root of the hierarchy. The intermediate level consists of a set of criteria.

Finally, the alternatives are the bottom of the hierarchy. In AHP, the pair-wise

comparisons are made using a standard preference table (e.g. “Equally preferred”,

“Extremely preferred”, etc.)

AHP algorithm involves four steps in order for the decision making process [34],

1. Structuring of several alternatives into a hierarchical model

2. Calculation of the weights for each criteria

27

3. Calculation of the score of each alternative for each criteria based on the weights

assigned

4. Calculation of the overall score for each alternative

2.5 Chapter Summary

In this chapter we discussed the background concepts that are related to this thesis. First, we

introduced the concept of cloud computing, its benefits and its key facets. Later, we presented

conferencing, its key technical components and typical types of conference applications. Then,

we discussed the proposed cloud-based conferencing business model.

We followed by introducing Semantic Web, the Semantic Web Layers, and also the

specifications and technologies that are relevant to our research. Finally, we discussed the broker

as a critical enabling technology for the publication and discovery of services. In this section, we

also discussed the relevant sub-tasks for the discovery of services such as service selection and

ranking techniques.

28

Chapter 3

3 Scenarios, Requirements and State of the Art Evaluation

This chapter encompasses four sections. First, we present a set of scenarios that illustrate the use

of publication and discovery of substrates in cloud-based conferencing. These scenarios are

based on the Cloud-based conferencing business model [3] presented in the previous chapter.

Second, we derive a set of requirements for a semantic-oriented description framework and

broker architecture for the publication and discovery based on the scenarios. Our proposed

semantic-oriented description framework is used to describe the technical and business aspects of

cloud-based conference substrates. This semantic-oriented description framework consists of two

components: cloud conference ontology and description language. Third, we review the state of

the art and evaluate it based on our requirements. Finally, we summarize the chapter.

3.1 Scenarios for Publication and Discovery of Cloud-based Conferencing Substrates

In this sub-section we present three separate scenarios based on the interacting roles in the cloud-

based conferencing business model. To provide clarity for the scenarios, we assume three levels

of brokers for supporting publication and discovery, based on the interacting roles in the cloud-

based conferencing business model. The three levels of brokers are given by level 1 (between

conference infrastructure provider and conference substrate provider), level 2 (between

conference platform provider and conference infrastructure provider), and level 3 broker

(between end users and conference service providers). The first scenario illustrates the

interaction between the conference substrate provider, conference infrastructure provider and the

level 1 broker. The second scenario illustrates the interaction between the conference

29

infrastructure provider, conference platform provider, conference service provider, and the level

2 broker. The third scenario illustrates the interaction between the conference service provider,

conference service end-user and the level 3 broker. The three scenarios form an end-to-end

scenario illustrating the flow of publication and discovery interactions from the conference

substrate provider to the conference end-user.

3.1.1 Interaction between the Conference Substrate Provider, Conference Infrastructure

Provider, and Level 1 Broker

As a first scenario, let us assume that we have two conference substrate providers (CSP1 and

CSP2) providing dial-out signaling substrate (S1) with a signaling capacity of 150 users and an

audio mixer substrate (S2) with an audio bitrate profile of 128 kbps, latency of 1000 ms, and

mixing capacity of 160 users respectively. Both substrate providers publish their substrate

offerings to the level 1 broker. The conference infrastructure provider may now issue a request

with the following search criteria:

�Substrate	provider = CSP1 ∪ Substrate	provider = CSP2� ∩ (maximum	substrate	capacity	

≥ 150) ∩ �type = DialOut	Signaling ∪ type = AudioMixer�

Note: Search criteria are denoted using basic algebraic notations for clarity of expression.

By issuing such a request to the broker, the conference infrastructure provider discovers the dial-

out signaling and audio mixer substrates published by CSP1 and CSP2 respectively.

3.1.2 Interaction between the Conference Infrastructure Provider, Conference Platform

Provider, Conference Service Provider, and Level 2 Broker

As a second scenario, the conference infrastructure provider publishes the substrates which were

discovered from level 1 broker to the level 2 broker. Alternatively, the conference infrastructure

provider may also combine these two substrates to create a dial-out audio conference substrate,

30

also termed as a composite substrate. In this case, the conference infrastructure provider may

publish the dial-out audio conference substrate to the level 2 broker. For the sake of conciseness

and continuity of the scenario, let us assume that the conference infrastructure provider publishes

the dial-out signaling and audio mixer substrates separately to the level 2 broker. Since the

substrate description (SD) designed for the higher-level broker (the level 2 broker) will hide

some information such as the provider information, conference infrastructure provider alters the

substrate description before publication to level 2 broker. After transforming the necessary

information, the conference infrastructure provider will publish the two substrate descriptions to

the level 2 broker. Now assume that a conference service provider wishes to create a dial-out

audio conference application with standard quality and a maximum conference user capacity

greater than 100. Assume that a typical audio mixer may support multiple audio quality profiles

(e.g. low, standard, and high). The conference service provider will now use the conference

platform to discover the constituent substrates for the desired conference type, by issuing a

request. The conference platform provider will then issue discovery request to the level 2 broker,

on behalf of the conference service provider. The search criteria for the request are as follows:

(maximum	substrate	capacity	 ≥ 100)		∩ 	 �type = DialOut	Signaling ∪ type = AudioMixer� ∩ (quality =

Standard)

Given such a query, the conference platform provider will discover the substrates for dial-out

signaling and audio mixing with standard quality and maximum substrate capacity of 100 (each

substrate). Upon discovery of the these substrates from the level 2 broker, the conference

platform provider will create a dial-out audio conference application for the conference service

provider using these substrates. After the creation, one of the outputs is the composite service

31

workflow file which is stored locally in the conference platform and another output is the

description of the composite conference service returned to conference service provider.

3.1.3 Interaction between the Conference Service Provider, Conference End-User, and

the

Level 3 Broker

In the third scenario, after the creation of the conference service explained in the previous

scenario, the conference service provider will publish the description of the conference service to

the level 3 broker. Later, the conference end-users who wish to use a dial-out audio conference

application discover this conference service description from this broker. The conference end-

user may choose to view this conference service description using a browser since the conference

end-user can be either an application or a system user.

3.2 Requirements

This section contains the requirements for the semantic-oriented description framework and the

broker architecture. The first sub-section outlines the requirements pertaining to the semantic-

oriented description framework. The next sub-section lays out the requirements of the broker

architecture for publication and discovery in cloud-based conferencing. We draw out these

requirements in two sub-sections based on the cloud-based conferencing business model.

3.2.1 Requirements of the Semantic-Oriented Description Framework

In this sub-section, first we derive the requirements related to the semantic-oriented description

framework in general and later we derive the requirements specific to the two components of the

semantic-oriented description framework. The semantic-oriented description framework entails

the following requirements for describing fine-grained conference substrates and composite

conference substrates. First, the description framework should be standard-based in order to

32

enable easy interoperability and reuse of existing standard tools. It will also allow easier

compliance and will lower the barrier to entry for the providers.

Second, it should support both machine-readable and human-readable representations to enable

publication and discovery at all three levels of brokers. For instance, discovery at the level 1 and

level 2 brokers are performed by machines. Whereas, the discovery requests at the level 3 broker

are performed by end-users or applications, and hence we require human-readability in addition

to the machine readability.

Third, the description framework should hide the heterogeneity of the conference

substrates/composite conference substrates and provide the substrate interfaces in a uniform

manner to facilitate easy interoperability.

Fourth, the description language and cloud conference ontology should accommodate both

technical and business aspects. This will allow the infrastructure providers, platform providers,

and end users to effectively discover the conference substrates accurately.

Fifth, the chosen description language should be flexible to support a wide range of data formats

at substrate interfaces in order to accommodate the needs of different providers and requesters.

3.2.2 Requirements of the Broker Architecture

There are mainly six requirements that should be met in order to enable the usage of the broker

by providers and requesters. First, the broker interface for publication and discovery should be

independent of the substrates that get stored in the broker. This will make the broker accessible

via a unified interface, while hiding the heterogeneity of the conference substrates.

33

Second, the interfaces should be based on existing standard technologies (protocols/APIs) to

enable easy interoperability and reuse of existing standard tools.

Third, the architecture should support easy interoperability. The interface should be flexible in

terms of the supported serialization formats for description. This allows the providers to publish

and retrieve the description of conference substrates and composite conference substrates using

several serialization formats such as XML, JavaScript Object Notation (JSON), and plain text.

Additionally, it should also support transformation to a human-readable format (such as

HTML/XHTML) to enable discovery from broker by end-users using tools such a Web browser.

Fourth, the discovery interface should consider both technical and business aspects. This helps

the conference infrastructure providers, conference platform providers, and conference end-users

to perform easy and accurate discovery operations on the brokers.

Fifth, the broker should provide an extensible architecture to support substrate description

defined using an existing framework chosen or provide an explicit support for new semantic-

oriented description frameworks.

Sixth, the broker should be able to select and rank the conference substrate(s) based on aspects

such as the constraints defined inside the substrate description. This ensures the discovery of the

most appropriate results based on several criteria (e.g. cost, latency, capacity).

3.3 The State of the Art Review

In this section, we organize the state of the art into two categories. In the first sub-section we

discuss the state of the art for semantic-oriented description framework and in the second sub-

34

section we discuss the state of the art for the broker architecture for the publication and discovery

of substrates in cloud-based conferencing.

3.3.1 Semantic-oriented Description Framework

Standardization organizations such as W3C, IETF, and STI are involved in the development and

maintenance of proposals for semantic-oriented description frameworks. The most prominent

initiatives for semantic-oriented description frameworks include Web Ontology Language for

Services (OWL-S) [30], Web Service Modelling Ontology (WSMO) [35], WSMO-Lite [32],

SAWSDL [29], and Linked Unified Service Description Language (Linked USDL) [36]. In the

following sub-sections, we start by discussing each of these semantic-oriented description

frameworks and their associated components: ontology and language. Later, we discuss the

components of each semantic-oriented description framework separately. Finally, we evaluate

the state of art for semantic-oriented description framework and its constituent components in the

light of the requirements stated in section 3.2.1.

3.3.1.1 Semantic Web Ontology Language (OWL-S)

W3C OWL-S (formerly DAML-S[37]) is a semantic-oriented description framework for

services. The framework consists a set of three key sub-ontologies for describing service

concepts and OWL [38] as a description language. The three key sub-ontologies are defined as

follows [38]:

• Service Profile provides information about the high-level functional capabilities of the

service, service category, input-output-preconditions-effects (IOPE), and provider

35

information. The service profile also describes non-functional properties of the service

(e.g. cost, quality). This information is used for the discovery of the service.

• Service Model provides information about how to use a service. It views and models a

service as a process using standards in process modeling and workflow technology such

as NIST’s Process Specification Language (PSL) and Workflow Management Coalition

Effort[39].

• Service Grounding provides information about how to access service end-points (i.e.

data formats, protocols supported by the service end-points defined in service model).

The term “service grounding” is commonly utilized in Semantic Web vocabulary to

indicate the technical aspects of the semantic-oriented services (such as service end-

points, interfaces, input, and output). OWL-S does not describe a specific service

grounding mechanism to be used. However, only a Web Service Description Language

(WSDL)-based ground mechanism is specified as part of the original specification [40] as

illustrated in Figure 7. WSDL contains the technical aspects of the service (i.e. input,

output, fault types, service interfaces, protocol bindings, and service end-points).

Figure 7: WSDL-based Service Grounding for OWL-S [30]

36

3.3.1.2 Web Service Modeling Ontology (WSMO)

Web Service Modeling Ontology (WSMO) [35] is an initiative by the STI WSMO Working

Group with the main goal of providing a conceptual model for semantic-oriented services. Later

in 2005, it was accepted as a W3C submission. WSMO consists of ontologies for describing

Web services (based upon Web Service Modeling Framework [31]) and the Web Service

Modeling Language (WSML) as the description language. WSMO provides ontologies for four

core elements. The core elements are as follows [31]:

• Domain Ontologies represent the concepts and relations, which are relevant to the

specific domain of the target service implementation (e.g. telecom, retail, biomedical).

• Web Services represent technical aspects such as interfaces, inputs, and outputs for the

Web service. It also describes some behavioral capabilities of services in terms

preconditions, assumptions, post conditions, and effects.

• Goals represent the outcome desired by the service requester upon the successful

execution of the service (e.g. participant getting connected to a specific conference

session).

• Mediators represent a set of concepts that help to provide inter-operability between the

core elements.

37

Figure 8: Semantic Service Anatomy [41]

The language choice WSML consists of several variants depending on expressivity of the

statements, much similar to OWL variants. WSML is based on knowledge representation

techniques such as description logic, first-order logic and logic programming. Similar to OWL-S,

in WSML the technical realization of services is described using WSDL files as illustrated in

Figure 8 above. Though WSMO is independent from the service grounding description’s

serialization format, only WSDL-based service grounding is officially specified.

3.3.1.3 Linked USDL

Linked USDL [36] was proposed by the W3C USDL Incubator Group, which is a joint effort

between SAP Research Labs and Knowledge Media Institute of The Open University. Linked

USDL draws its specifications based on W3C Unified Service Description Language [42].

Linked USDL consists of a set of three key sub-ontologies: USDL-Core, USDL-Pricing, and

USDL-SLA. The sub-ontologies reuse standardized or widely accepted upper ontologies such as

38

Friend of a Friend (FOAF) [43], Dublin Core [44], and Good Relations [45]. Linked USDL uses

OWL as description language choice.

The following are the three key sub-ontologies of Linked USDL:

• USDL-Core represents the concepts and relationships for modeling the technical aspects

of the services. Services are modeled as resources to indicate a concrete object with

underlying implementations. These resources provide composability of services.

Composability of services allows complex services to be composed of multiple atomic

services with fine-grained functionalities. Technical aspects are represented using the

Minimal Service Model (MSM) vocabulary [46] rather than WSDL. MSM is a simple

and light-weight RDF-based service description meta-model designed account for the

essential aspects of service invocation like service end-points, operations, inputs, outputs,

and exception handling.

• USDL-Pricing represents a pricing model for services based on the GoodRelations

ontology.

• USDL-SLA represents vocabulary used to specify qualitative aspects and agreements

between the service provider and the service requestor. The Service Level Agreement

(SLA) represents a contractual agreement between the service provider and service

requester. It provides specific conditions under which the services are expected to be

delivered.

39

3.3.1.4 WSMO-Lite

WSMO-Lite [32] is a light-weight semantic-oriented description framework that draws its

specifications closely from its parent - WSMO Framework. WSMO-Lite provides a minimal

ontology to describe the service’s classification (i.e. service category), and non-functional

parameters (such as quality of service or policies). WSMO-Lite provides only the relevant

ontologies which are agnostic of the underlying language component (Figure 9). As part of the

specification, it consists of WSDL or non-standard hRESTS as service description language [47].

Figure 9: WSMO-Lite Semantic Layering [32]

The mapping between WSDL service description and WSMO-Lite is enabled by using Semantic

Annotations for WSDL and XML Schema (SAWSDL) [29] as illustrated in Figure 10. SAWSDL

is a W3C-recommended XML schema specification for annotating WSDL-based services.

SAWSDL XML schema specification extends the original W3C WSDL specification with

attributes such as modelReferences that help to attach semantic concepts and relations to the

WSDL. The mapping between hRESTS and WSMO-Lite is enabled by using MicroWSMO [48].

40

MicroWSMO is a non-standard annotation mechanism to enable service annotation for

representation formats such as HTML/XHTML.

Figure 10: SAWSDL Mapping between WSDL and Ontologies [29]

3.3.1.5 Components of the Semantic-oriented Description Framework

In this sub-sub-section, we discuss the state of the art related to the components of the semantic-

oriented description framework. We start by discussing the related description languages. Later,

we discuss the related ontologies for cloud computing and conferencing.

3.3.1.5.1 Related Description Languages

Besides the semantic-oriented description frameworks, it is worth reviewing the existing service

description languages. Machine-readable service description languages, such as W3C WSDL,

provide mechanisms for describing the technical aspects of both SOAP-based and HTTP-based

41

services (e.g. RESTful Web services). In contrast, W3C WADL supports the description of

RESTful Web services alone. They are both syntactic-oriented approaches and do not offer a

mechanism for describing the semantics.

3.3.1.5.2 Related Ontologies for Cloud Computing and Conferencing

Some ontologies related to cloud computing and conferencing have been proposed which are

relevant to our research. For example, in reference [49], the authors propose ontologies for

describing services in converged telecom networks. IETF has proposed an XML-based

conference information data model for centralized conferencing [9]. It provides a mechanism to

specify fundamental aspects of a centralized conference such as conference description,

participant’s information, and conference state. In reference [50], Aakif et al. proposed a

telecommunication ontology by extending WSMO-based ontologies. These approaches fail to

describe the business aspects such as provider information, constraints, and price model (e.g.

based on volume, number of users, etc.).

There are other ontologies relating specifically to cloud computing such as ontologies described

in references [51], [52], and [53]. Reference [51] proposes a mediation ontology to specify

infrastructure-level resources of the disparate cloud providers. Reference [52] proposes a similar

mediation ontology for the platform-level concepts such as programming language, software

framework, and application software security. Mediation ontology helps to provide standard

interoperability between disparate systems or providers. Reference [53] proposes an ontology for

describing the constraints for cloud-based services such as performance, availability, and

42

efficiency. However, none of them have ontologies to describe cloud-based telecommunication

services such as conferencing.

3.3.1.6 Evaluation of the State of the Art in the Light of the Requirements

We have done a review of prominent semantic-oriented description frameworks such OWL-S,

WSMO, Linked USDL, and WSMO-Lite. Furthermore, we have also reviewed the constituent

description languages, and also the relevant ontologies for cloud computing and conferencing

separately. As far as the first requirement (which is a standard-based semantic description

framework) is concerned, the description frameworks discussed are accepted as a W3C

submission.

The second requirement dictates the support for both human and machine readability. Apart from

WSMO-Lite, the other description frameworks fail to explore the possibility of human-readable

description such as hRESTS. The primary reason for this is that the main goal for the

development of frameworks such as WSMO-Lite is to serve an annotation mechanism to existing

languages such as HTML, whereas the main goal of the other semantic-oriented description

frameworks discussed is to provide a standalone machine-readable service description

mechanism.

From the perspective of the third requirement, reviewed semantic-oriented description

frameworks could support uniform interfaces using technologies like RESTful web services.

For the fourth requirement, to the best of our knowledge, the reviewed semantic-oriented

description frameworks do not have specific ontologies to describe the business and technical

43

aspects of cloud-based conference substrates. OWL-S and WSMO do not use well-established

ontologies to describe business aspects and choose to define their own set of ontologies. WSMO-

Lite does not provide ontologies to support or describe business aspects and hence it depends on

developers to create their own ontologies. Linked USDL framework exploits the use of well-

established ontologies such as GoodRelations to describe the business aspects (e.g. cost,

constraints). However, even Linked USDL does not provide specific ontologies to describe

business and technical aspects of cloud-based conferencing specifics. Besides none of the

reviewed semantic-oriented description frameworks provide support for conference specific

technical aspects such as asynchronous communication (e.g. Prompt and Switch feature for dial-

in conferencing [54]).

From the perspective of the fifth requirement, none of the reviewed semantic-oriented

description frameworks discuss a specific vocabulary to define multiple data formats for the

service interfaces.

After considering all the limitations of the existing semantic-oriented description frameworks

explained above, we conclude that they do not fully satisfy all the requirements (stated in the

section 3.2.1) for describing the substrates in cloud-based conferencing.

In the following Table 1, we summarize our evaluation of the semantic-oriented description

frameworks.

44

 Frameworks

 Requirements

OWL-S WSMO
Linked
USDL

WSMO
Lite

Standards-based Satisfied Satisfied Satisfied Satisfied

Machine and human readability

Not
discussed

Not
discussed

Not
discussed

Satisfied

Reduce the heterogenity of

substrates
Satisfied Satisfied Satisfied Satisfied

Accommodate the technical and

business aspects of the

conference substrates

Not
Applicable

Not
Applicable

Partially
Satisfied

Not
Satisfied

Support for multiple data

formats for service interfaces

Not
Satisfied

Not
Satisfied

Not
discussed

Not
Satisfied

Table 1: Summary of Evaluation of Semantic-Oriented Description Frameworks

3.3.2 Broker Architecture for Publication and Discovery of Substrates in Cloud-based

Conferencing

Several broker architectures have been proposed. The most prominent broker architectures are:

Universal Description, Discovery and Integration [55], FUSION Semantic Registry [56],

Semantic Repository for Adaptive Services [57], Cloud Infrastructure Service Broker [53], Web

Service Modelling eXecution environment (WSMX)-based Broker [50], AtomServ [58], and

iServe [46]. In the following sub-sections, we discuss each of these broker architectures. Finally,

we evaluate the state of the art for broker architectures in the light of the requirements stated in

section 3.2.2.

3.3.2.1 Universal Description, Discovery and Integration (UDDI)

The best-known broker architecture for publication and discovery of web services is Universal

Description, Discovery and Integration [55] (UDDI). UDDI is an XML-based registry with a

well-defined structure for defining technical aspects (described using WSDL) and business

aspects (as part of the UDDI schema). It provides standard interfaces for publication and

45

discovery using publishing and inquiry APIs, respectively. The discovery operations for service

descriptions can be done using a text-based search using the keywords contained in service

names [56].

3.3.2.2 FUSION Semantic Registry

The FUSION Semantic Registry project [56] is a reference architecture with the goal of

semantically augmenting the UDDI architecture and therefore providing an accurate discovery

mechanism. FUSION semantic registry consists of a publication manager for managing

publication from service providers based on SAWSDL based descriptions. Besides, it consists of

a discovery manager with OWL ontology processing and OWL-DL reasoning capabilities for

automated discovery [56].

3.3.2.3 Semantic Repository for Adaptive Services

Semantic Repository for Adaptive Services [57], proposes a semantic repository supporting

service description languages such as WSDL and composition description languages such as

BPEL, with semantic-oriented indexes to describe the non-functional properties (e.g price,

capacity) for the descriptions. Since the indexes are maintained separately, there is clear

distinction of semantic-oriented information and implementation information described using

description languages (e.g. WSDL and BPEL). Due to this distinction, the proposed architecture

can support additional description languages. It also proposes a query language OntoQL for

discovery of services by exploiting the semantic-oriented indexes [57].

46

3.3.2.4 Cloud Infrastructure Services Broker

The Cloud Service Measurement Index Consortium (CSMIC) [53] proposes a cloud-based

broker, which allows classifying of services based on the Cloud Service Measurement Index.

Cloud Service Measurement Index is a set of key constraints for cloud infrastructure services

(i.e. services provided by the IaaS). The proposed constraint definitions are based an elaborate

QoS (Quality of Service) Ontology [59] for web services, which have been proposed earlier. The

broker architecture allows ranking of services based on set of infrastructure-level constraints

(such as disk quota, main memory, processors). Ranking and selection of services is done using

Analytical Hierarchical Process (AHP) [60], which is a type of Multi Criteria Decision Making

(MCDM) technique.

3.3.2.5 Web Service Modelling eXecution environment (WSMX)-based Broker

In reference [50], Aakif et al. proposes a WSMX-based semantic-oriented broker architecture for

automated discovery and execution of telecom-based semantic web services (for billing

applications). WSMX [61] is the reference implementation for automating publication and

discovery using WSMO. As part of the reference, a semantic-oriented framework is proposed to

support automated discovery of heterogeneous and homogeneous services in the

telecommunication industry. The WSMX architecture follows a goal-based discovery for

services. The goal- based descriptions are originally specified using a WSML [62] and later

converted to a native XML-based format. This XML-based format is sent as content of a SOAP-

based discovery request [63].

47

3.3.2.6 AtomServ – Atom-based Service Discovery Architecture

AtomServ [58] proposes a service discovery architecture based on IETF Atom syndication

format (RFC 4287 [9]) and Atom Publication/Subscription Protocol [64]. It uses internal

transformation tools to convert WSDL files to Atom feeds. One of the key goals of the broker

architecture is usability. AtomServ’s usability is improved by providing a simple service

discovery mechanism for end users. For example, the end users are able to find, subscribe, and

invoke web services using just the widely available tools such as a browser. AtomServ supports

two types of discovery mechanisms: keyword-based and concept-based (using semantic-oriented

approach) mechanisms. Out of the two discovery mechanisms, only keyword-based discovery is

discussed in detail as part of the reference.

3.3.2.7 iServe Semantic-oriented Broker Architecture

iServe [46] provides a novel and extensible broker architecture that allows the publication and

discovery with support for multiple semantic-oriented descriptions. It provides simple, uniform

interfaces (via RESTful APIs) with flexibility of serialization formats for the semantic-oriented

service descriptions and an accurate discovery mechanism using the W3C SPARQL

specification. iServe has a transformation engine that converts all the published semantic-

oriented services into Minimal Service Model (MSM) service ontology.

3.3.2.8 Evaluation of the State of the Art in the Light of the Requirements

We have done an extensive review of most prominent broker architectures such as UDDI,

FUSION Semantic Registry, Semantic Repository for Adaptive Services, Cloud Infrastructure

48

Service Broker, Web Service Modelling eXecution environment-based Broker, AtomServ

Broker, and iServe architecture. As far as the first requirement is concerned, all the reviewed

broker architectures except Cloud Infrastructure Service Broker provide interfaces independent

of the stored conference substrates. Cloud Infrastructure Service Broker does not discuss the

interfaces for publication and discovery.

For the second requirement, the UDDI, FUSION semantic registry, and WSMX-based broker

build publication and discovery interfaces on SOAP-based APIs. As stated earlier, Cloud

Infrastructure Services Broker does not discuss the details of how the interfaces for publication

and discovery are implemented. AtomServ utilizes the Atom Publishing Protocol [58] to support

both publication and discovery using standard HTTP-based operations, which are exposed as

REST-based API. iServe supports publication and discovery using REST-based API.

For the third requirement regarding serialization formats, UDDI and FUSION semantic registry

support only XML-based serialization formats. The AtomServ architecture is strictly based on

Atom feeds which are restricted to XML-based serialization format Cloud Infrastructure Services

broker and WMSX-based broker, does not discuss specific serialization formats supported.

iServe is the only architecture capable of supporting for multiple serialization formats (e.g.

XML, Turtle, N3 [25], and JSON [65]) to the best of our knowledge.

From the perspective of fourth requirement, it is necessary to specify both business and technical

aspects using standard technologies. The existing query/discovery interface in UDDI is non-

expressive, because of the absence of machine-processable semantics [66] [67]. This inhibits

accuracy of the discovery operations [56]. FUSION semantic registry [56] aims to provide better

49

expressivity than UDDI by including semantic information about the services. However, the

reference [56] does not discuss the details of discovery query specification using any standard

discovery query specification technology. In Semantic Repository for Adaptive Services, the

discovery mechanism uses a non-standard specification language called OntoQL to specify

business and technical aspects of the services. WSMX uses WSML (W3C Submission [68]) to

specify both business and technical aspects. AtomServ only discusses keyword-based discovery

mechanism which lacks the capability to describe specific business and technical aspects as part

of a discovery request (e.g. cost per month less than 10 dollars). On the other hand, iServe allows

standards-based powerful query specification using W3C SPARQL [24] in order to describe both

business and technical aspects in a concise manner.

From the perspective of the fifth requirement, UDDI, FUSION semantic registry, and WSMX-

based broker focus on providing support for specific service descriptions (e.g. WSDL,

SAWSDL, and WSMO). Cloud Infrastructure Services broker does not discuss supported service

descriptions. Semantic repository for adaptive services provides an extensible architecture due to

the separation of semantic-oriented indexes and the service description. iServe also provides an

extensible architecture which is capable of supporting additional service descriptions.

From the perspective of sixth requirement, regarding ranking and selection mechanism, UDDI,

FUSION Semantic Registry, Semantic Repository for Adaptive Services, WSMX-based broker,

AtomServ, and iServe [46] does not discuss specific ranking algorithms utilized for selection and

ranking during discovery. Cloud Infrastructure Service Broker [53] uses AHP-based ranking

algorithm to enable efficient discovery of services.

50

Based on our review of prominent broker architectures, we found that iServe is only broker

architecture that satisfies our requirements 1 to 5 (stated in section 3.2.2). However, iServe still

does not provide a selection and ranking mechanism based on constraints (e.g. price, capacity,

latency), according to our sixth requirement.

In the following Table 2, we summarize our evaluation of the broker architectures.

Broker

Architectures

 Requirements

UDDI FUSION *

Repository
for

Adaptive
Services *

Cloud
Services
Broker

WSMX-
based

AtomServ iServe *

Interfaces should be

independent of

substrates

Satisfied Satisfied Satisfied Satisfied Satisfied Satisfied Satisfied

Interfaces should be

based on existing

standard

protocols/APIs

Satisfied Satisfied
Not

discussed
Not

discussed
Satisfied Satisfied Satisfied

Support several

serialization formats

(JSON, XML, HTML)

Not Satisfied Not Satisfied
Not

discussed
Not

discussed
Not

discussed
Not

Satisfied
Satisfied

Discovery specification

with both technical and

business aspects

(together) using

standard technologies

Not Satisfied Satisfied Not Satisfied
Not

discussed
Satisfied

Not
discussed

Not
discussed

Support for an

extensible architecture
Not Satisfied Not Satisfied Satisfied

Not
discussed

Not
discussed

Not
discussed

Satisfied

Selection and Ranking

based on conference

specific constraints

Not
discussed

Not
discussed

Not
discussed

Satisfied
Not

discussed
Not

discussed
Not

Satisfied

Table 2: Summary of Evaluation of Broker Architectures

3.4 Chapter Summary

In this chapter we presented three scenarios that illustrate the publication and discovery of

substrates in cloud-based conferencing. Then, the requirements were drawn based on these

51

specific scenarios and classified into two sub-sections: semantic-oriented description frameworks

and broker architecture. The first sub-section outlined the requirements related to the description

of conferencing substrates. The second sub-section outlined the requirements for the broker

architecture to enable the publication and discovery of substrates in cloud-based conferencing.

Finally, we presented the state of the art for semantic-oriented description frameworks and

broker architecture. We also discussed the limitations of reviewed semantic-oriented description

frameworks and broker architectures on the basis of the outlined requirements.

52

Chapter 4

4 Proposed Architecture

This chapter starts by discussing the proposed semantic-oriented description framework in detail.

Later, it describes the proposed broker architecture for the publication and discovery of

conference substrates. Soon after, it provides an end-to-end publication and discovery steps and

an illustrative scenario for publication and discovery of substrates. Finally, we summarize this

chapter.

4.1 Proposed Semantic-Oriented Description Framework

The proposed semantic-oriented description framework defines a new cloud-based conferencing

ontology and uses OWL as the description language. The cloud-based conferencing ontology

consists of three key constituent sub-ontologies: common ontology, Level 1 and Level 2 broker

ontology, and Level 3 broker ontology. In this section, we start by providing an overview of the

proposed semantic-oriented description framework. Next, we discuss the constituent sub-

ontologies of cloud-based conferencing ontology in detail.

4.1.1 Overview of the Proposed Cloud Conferencing Ontology

Among the description frameworks reviewed, we propose reusing Linked USDL [36], which is a

good candidate for a semantic-oriented description framework. In addition, we propose the

following extensions:

53

• Creation of cloud-based conferencing ontology to support both business and technical

aspects of the cloud-conferencing specifics.

• Using the W3C SA-REST as service ontology instead of MSM, due to its support for

light-weight and uniform interfaces of the conference substrates. The existing MSM

service ontology (Linked USDL service ontology) fails to address the support for

asynchronous communication (e.g. Prompt and Switch feature for dial-in conferencing

[54]).

It reuses existing upper ontology concepts (e.g. Dublin Core [44], GoodRelations [45]) and

extends them to meet cloud-based conferencing specifics.

4.1.2 Common Ontology

The common ontology illustrated in Figure 11 describes technical aspects of interface that are

common across conferencing substrates (e.g. dial-out signaling, dial-out audio mixer substrate).

The interfaces are described through the set of operations they encompass, along with the inputs

and outputs of each operation. The operations are described using the SA-REST, which we

extend as part of our proposed ontology in order to support asynchronous operations. SA-REST

provides a light weight service ontology to define the operations, inputs, and outputs. We

extended it by adding a collection of seven properties to define an asynchronous callback

endpoint and supported data formats for the service interfaces. When calling an asynchronous

operation (e.g. inviting a participant to join a conference), the client receives an intermediate

response informing that the request is being processed. The intermediate response is sent while

the actual operation is not yet completed (e.g. the requested participant has not yet joined the

54

conference). The client uses the operation properties to specify the callback endpoint reference,

where to asynchronously notify the requester, and when the operation is actually completed (e.g.

target participant has successfully joined the conference). The proposed mechanism includes the

callback URI and parameters (e.g. the callback body parameters and URI parameters).

Figure 11: Common Ontology

The operation parameters can be specified as either URI or body parameters, depending on the

parameter value’s size. Big parameters should be enclosed within the operation message body,

whereas short parameters might be appended to the message URI. In addition, we also define the

vocabulary to specify the data formats supported by each operation. Hence, each operation may

render the response in different data formats. The supported data formats are described using the

supportsDataformat and hasCallBackDataformat properties.

55

4.1.3 Level 1 and Level 2 Broker ontology

The Level 1 and Level 2 broker ontology in Figure 12 describes the business aspects of the

associated providers: substrate provider, infrastructure provider, and platform provider. The

lower level provider publishes to the broker (Substrate Provider to level 1 Broker and

Infrastructure Provider to level 2 Broker) and a higher layer provider discovers from the broker

(Infrastructure Provider from level 1 Broker and Platform Provider from level 2 Broker).

Business aspects include information such as the provider’s information and subscription

information that bind the providers and consumers (i.e. which infrastructure provider is

subscribed to which substrate). Providers in the cloud-based conferencing business model [3]

provide their substrates in terms of offerings. An offering may include either an atomic substrate

or a composite substrate. The offerings are modeled in the ontology using the USDL Offering

class.

Figure 12: Level 1 and Level 2 Broker Ontology

56

In the ontology, the substrates are modeled as Linked USDL Services, thereby allowing the reuse

of the Linked USDL Pricing model to define the pricing (e.g. per user, per month, discounts,

etc.). Furthermore, the Linked USDL SLA is reused to describe other constraints information

(e.g capacity, availability) apart from pricing. In the ontology, composite substrates are modeled

as Linked USDL CompositeServices. Such modeling allows constraint specification for atomic

substrates and composite substrates. The semantic-oriented description framework is also

capable of handling a variety of constraint types such as numeric (e.g. latency), vectors, numeric

ranges, boolean values, and string values (e.g. audio/video codecs).

Conference substrate providers who publish to the level 1 broker provide the fine-grained

substrates. Conference infrastructure providers who publish to the level 2 broker provide either

atomic substrates or composite substrates. Hence, it is necessary to differentiate between them by

indicating the type of functional feature(s) (e.g. audio mixing or/and signaling) supported by

these substrates. Atomic substrates have a single functional feature (denoted by

SubstrateFeature) described using the exposed property. In contrast to atomic substrates,

composite substrates have multiple functional features (denoted by SubstrateFeatureCollection)

described using the exposed property as an RDF List. So, SubstrateFeatureCollection allows us

to define a standard RDF container consisting of multiple functional features of the conference

substrate. For simplicity, the ontology (Figure 12) only describes the high-level functional

features of conference substrates (such as signaling, mixing, and advanced conference control

features such as floor control and policy management). A more detailed look at the substrate’s

functional features is illustrated in Figure 13.

57

Figure 13: Identified Substrate Features

4.1.4 Level 3 Broker Ontology

The Level 3 broker ontology in Figure 14 describes the business aspects of the associated

providers and consumers namely: service provider (ServiceProvider) and end user

(ConferenceEndUser). Since the level 3 broker provides conference services, the ontology

provides in-depth information about the conference and its participants. A conference service is

depicted as a specific type of composite substrate. A dial-out audio conference, for instance, can

be described as a composition of a dial-out signaling and audio mixer substrates. In the ontology,

a conference is also defined as a Linked USDL resource to capture the fact that it is the concrete

object that implements the conference service.

58

Figure 14: Level 3 Broker Ontology

The participants are described using three important descriptors – signaling, media, and

preference descriptors.

• Signaling descriptor includes signaling information such as the participant identifier and

signaling session description information.

• Media descriptor gives the media characteristics of the participant’s ongoing media

session such as the media transport address, and port number.

• Preference descriptor details the participant preferences such as the media codec’s

priority and presence information of the participant.

To describe the conference substrates in an unambiguous manner, the semantic-oriented

description framework uses W3C-recommended OWL as the language choice. This provides the

59

extensibility and serialization format flexibility (because of RDF-based serialization) required for

our description framework.

4.2 Proposed Broker Architecture

In this sub-section we will start by providing an overview of the broker architecture. Next, we

categorize and discuss the constituent components of the broker architecture in detail.

4.2.1 Overview of the Broker Architecture

Figure 15 illustrates the broker architecture for publication and discovery in cloud-based

conferencing. The broker architecture reuses some of the components from iServe architecture

[46] viz, publication and discovery interfaces and semantic data store interfaces. The providers

and consumers communicate with the broker via a REST API. We chose REST because it offers

a uniform interface and it is flexible in terms of the supported serialization formats for

description of substrates and data formats in the service interfaces. The discovery requests are

described using SPARQL specification, and they are transferred as content of REST requests.

We selected SPARQL because it is standard, semantic-oriented, and can be used to express rich

and expressive queries across diverse data sources. The broker uses a semantic data store to save

the descriptions of substrates. During publication of the description document, the cloud-based

conferencing ontology serves as reference ontology for the validation.

60

Figure 15: Broker Architecture

4.2.2 Components of the Broker Architecture

In the sub-section, first we classify the different components of the broker into three categories

based on their functionality. Later, we discuss each of categories along with their constituent

components.

4.2.2.1 Categorization of Constituent Components of the Broker Architecture

The broker includes a set of supporting components to access, validate, and manage the

description documents and the cloud-based conferencing ontology. These components can be

classified into following three categories,

• The first category supports the validation and the management of the descriptions, and it

includes the document validator and the classifier.

61

• The second category is used for the management of the cloud-based conferencing

ontology and it consists of the ontology manager and the semantic ontology crawler.

• The third category enables efficient discovery of substrates and it contains the query and

the ranking engines.

The transformation engine is a common supporting component used across all of the categories.

The description document(s) for the selected result(s) is reformatted – if needed – according to

the data format (e.g. XML, JSON, HTML+RDFa) supported by the requester. The level 1 and

level 2 brokers require a machine interpretable description language, whereas the level 3 broker

requires a human-readable description language for discovery by end-users. This transformation

from/to a machine-readable format (e.g. JSON, XML) or a human-readable format (e.g.

HTML+RDFa) is performed by the transformation engine.

4.2.2.2 Validation and the Management of the Descriptions

Descriptions are validated by the substrate document validator and managed by the classifier.

These two components are explained in detail in the following sub-sections.

4.2.2.2.1 Substrate Document Validator

The substrate provider, infrastructure provider, or service provider may choose to publish the

description document in any of the supported RDF serialization formats. Prior to storing a

published document, the broker converts the document into XML format using the

transformation engine. Then it checks the document validity against the cloud-based

conferencing ontology and the external ontologies (such as Dublin Core[44] and

62

GoodRelations[69]). This function is handled by the substrate document validator, which seeks

the help from ontology manager to retrieve the latest version of the relevant ontologies from the

semantic data store based on the ontology references.

Once the validation is completed, the description document is stored in the semantic data store.

Each description document is assigned a Globally Unique Identifier (GUID) that allows the

broker to create a description under a named graph. Named graphs are addressed by a context

URI and it allows the broker components (e.g. query engine) to retrieve the description

documents from semantic data store in an easier manner. Algorithm 1 listed below illustrates the

basic steps performed during the publication of a description document.

4.2.2.2.2 Classifier

The classifier performs indexing of the conference substrates based on certain properties in order

to improve the performance and efficiency of the discovery operation. At regular time intervals,

the classifier runs a background service that indexes the published documents based on certain

properties. These index properties could be simple constraints such as codec types (e.g. H264,

G711), geographical location (e.g. America, Asia, Europe), and substrate features (e.g. signaling,

mixing). For instance, a Level 1 broker running the classifier can infer the type of substrates

63

based on the substrate features it exposes and it can create an index based on the atomic

substrate types. A level 2 broker running the classifier can infer type of substrates based on the

composite substrates’ features they expose and create an index based on composite substrate

types. An example of the classifier function and index creation in level 1 and level 2 brokers is

illustrated in Figure 16. For the inferring facts, an OWL-based reasoner can be used within the

classifier component.

The reasoner uses the ontology manager (discussed in the next section) to retrieve the relevant

ontologies and rules based on the broker level. In this manner, the classifier component will

generate new fact(s) and insert them into appropriate indexes. The inferred facts are later utilized

during the discovery requests to the broker, they also help to reduce the response time for

requests which will be discussed in detail in section 4.2.2.4. The #id indicates the named graph

URI (context URI) assigned to the description document soon after the validation phase.

Figure 16: Classification for Index based on Broker Level and Substrate Type

64

We chose to index periodically instead of after each publication to optimize the broker’s resource

usage and uptime. For instance, the indexing may be scheduled for periods where traffic is low,

allowing the broker's full capacity to answer the users’ requests during busier periods. Algorithm

2 listed below illustrates how the classifier background service is implemented.

Algorithm 3 illustrates how the inference rules are loaded based on the description document’s

type and granularity. It calculates the granularity of the description and executes the inference

operation. Granularity indicates the number of substrates present in the substrate document. For

example, a composite substrate containing two features (e.g. dial-out signaling and mixing) has a

granularity (Gd
) of two. The loaded inference rules are later used to generate new fact(s), which

are added to the index file.

4.2.2.3 Management of the Cloud-based Conferencing Ontology

Ontologies are managed using the ontology manager and ontology crawler. These two

components are explained in detail in the following sub-sections.

65

4.2.2.3.1 Ontology Manager

Ontology manager is used to validate the concepts described in the substrate description

document. The ontology manager provides an intuitive interface for adding, removing, updating

and retrieving the cloud-based conferencing ontology and other relevant ontologies from the

semantic data store. These ontologies are relevant for the efficient validation of description

documents by substrate document validator. Besides validation, the ontology manager is also

important for the proper inference of new triples by the classifier component. For this reason, the

ontology manager maintains a set of inference rules (e.g. a dial-out signaling substrate and an

audio mixer substrate make a dial-out audio conference application for a broker level 3), which

can be used by the classifier while generating indexes.

4.2.2.3.2 Ontology Crawler

Ontology Crawler is a component responsible for crawling pages to download new ontologies

based on the ontology references in the description document. When a description document is

published, the ontology references are checked against the ontology manager for validation. In

certain cases the description document could reference new upper ontologies that may not

already exist in the semantic data store. However, they should also be considered in order to

efficiently validate the description document (i.e. checking against native RDF and OWL data

types [70] such as literals or integers). The ontology crawler downloads these additional

ontologies in order to consider them during validation. Once downloaded, the ontology crawler

uses the ontology manager to add these new ontologies into the semantic data store.

66

4.2.2.4 Efficient Discovery of Substrates

The Query and Ranking engine is responsible for efficient discovery of the substrates. These two

components are explained in detail in the following sub-sections.

4.2.2.4.1 Query Engine

The infrastructure provider, platform provider, or conference end-user can look for a substrate by

providing the criteria required as content of the REST request. The criteria are specified using

the SPARQL specification. Upon receiving the request, the broker uses the query engine to parse

the SPARQL query and ensures the request is coherent with the described ontologies. Typical

SPARQL consists of a set of basic graph patterns (BGPs) expressed as RDF triples. These RDF

triples are then matched against the semantic data store.

Most existing semantic data stores support two modes of storage, query and manipulation of

semantic-oriented data: main memory (RAM) and on-disk (e.g. RDBMS). Evidently, the main

memory mode for storage, query and manipulation is much faster. We use a main memory mode

for treating queries based on the properties that were indexed by the classifier component. The

indexes are magnitudes smaller when comparing to an entire semantic data store of description

documents. The comparison can be illustrated by considering a sample semantic data store of

200 substrates and 100 substrate providers. In such a situation, the semantic data store will

contain approximately 42,000 triples, whereas an index based on particular conference substrate

property such as substrate type will contain only 200 triples. Consequently, the un-optimized

query will choose to search over a semantic data store of 42,000 triples, the optimized query will

search a specific named graph of only 200 triples. In this manner, the query engine is used to

67

optimize the query using SPARQL rewriting rules for BGPs based on these main memory

indexes [71] [72]. The cost of execution (by selectivity) is reduced by querying the main memory

indexes rather than the entire data store.

The Figure 17 illustrates how a basic query for a substrate type is translated into an optimized

query based on the indexes generated by the classifier. Besides such query re-writing techniques,

the indexes (based on properties such as substrate type) are stored in main memory to deliver

further performance increase. Storing these indexes in the main memory is not a concern due the

relative size of each of the indexes in comparison to the entire repository. Currently, our

proposed query optimizations only cater to discovery requests (containing basic queries as listed

in Figure 17) and do not cater to discovery requests that require ranking.

Figure 17: Query Optimization

4.2.2.4.2 Ranking Engine

The infrastructure provider, platform provider, or conference end-user may wish to limit the

number of substrates in the response. For example, an infrastructure provider would want to find

the best dial-out signaling substrate giving a set of constraints. In this case the ranking engine

68

uses a ranking algorithm to prioritize the results. As discussed, the ranking engine is not used in

conjunction with the query rewriting technique and is mutually exclusive. Weighted Sum

Method (WSM) is a Multi Criteria Decision Making (MCDM) technique that is commonly used

for ranking the results based on the multiple constraints (e.g. conference participant capacity,

delay, bitrate profile, pricing). Of the other MCDM algorithms discussed in section 2.4.4, WSM

offered the best alternative with respect to the proposed description mechanism for specifying

constraints (e.g. pricing, capacity, availability) pertaining to the conference substrates. For the

sake of the simplicity when explaining the function of the ranking algorithm, we are mainly

considering numeric constraints.

Consider that the query engine generates an intermediate result set of description documents �� 	
where i ∈	[0..n] and n is the number of description documents present in the intermediate result

set. WSM Ranking algorithms [73] are applied in two steps viz. 1) Scaling and 2) Calculation of

the rank value,

• Scaling – The first step of the ranking algorithm is to normalize the values for the

constraints using a scaling mechanism. The scaling is required to create a set of

normalized values for a dynamic range of values. This is an important pre-requisite for

prioritization, since the range of numerical values for the constraints (e.g. latency,

response time) is not known beforehand. The scaling should also consider that

constraints may show either positive or negative tendencies. Some values such

capacity, number of codecs supported, bitrates, and availability indicate better quality

for higher values hence displaying a positive tendency. Whereas, values such as price,

69

latency, and response time indicate better quality for lower values, hence displaying a

negative tendency.

Consider that the description documents consist of a set of constraints �� 	where j ∈

	[0..m] and m is total number of constraints present in a description document d.

Scaling is implemented typically using the formula for the value of the constraint ��
and a description document d,

For positive tendency,

������	���	�	�� = 	

�
�
�

�� − 	����

���� − 	����

	��	���� − 	���� ≠ 0	

	1																			��	���� − 	���� = 0	
 (1)

For negative tendency,

������	���	�	�� = 	

�
�
�

���� − 	��
���� − 	����

	��	���� − 	���� ≠ 0	

	1																			��	���� − 	���� = 0	
 (2)

���� Indicates the maximum value for a particular constraint

���� Indicates the minimum value for a particular constraint

• Calculation of the rank value – The second step of the ranking algorithm is to

calculate the rank value based on the weightages or nominal values assigned to the

constraints by the requester. Each requester is assumed to have assigned the

constraint’s weightages beforehand, using a basic questionnaire.

70

An example vector of weightages assigned can be as follows,

������	 = 	0.6, �	
���� = 	0.2, 	
	��	����
�	 = 	0.1�

According to this vector and the weights are given to the constraints. Sum of the

weightages is always one. The order of the constraints based on their importance from

the perspective of requester is: first the price (by a 0.6 share from total), then latency

(by a 0.2 share from total) and then the availability (by a 0.1 share from total).

We present the mathematical formula for the calculation of the rank value for the

description document representing substrates. The weightage is crucial to the

calculation of the rank value and is given by ��	where k ∈	[0..r] and r is number of

constraints relevant to the requester of discovery. The sum of all the weightages is

given by the formula (3) below,

 ∑ �� 		�
��� and

�� ∈ [0. .1]

(3)

The following formula (4) calculates the rank value (also referred to as a score) for a

description document �� given the constraint’s weightages and scaled values for this

document. The constraints’ weightages are given by �� and the scaled values are given

by ���, where i is the ordinal of description document in the intermediate result set and

k is the ordinal of constraints relevant to the requester.

71

����	��	
�	�� = 	
(���
�

���

∗ ��) (4)

Once the ranks have been calculated according to formula (4) for each of the

description documents, we sort description documents in decreasing order of the rank

values. This generates an ordered set of description documents according to the

requester’s importance.

4.3 End-To-End Publication and Discovery Steps and Specific Illustrative Scenario

In this section, first we will present end-to-end publication and discovery steps to illustrate all the

interactions between the different providers and finally the conference end-users. Later, we

present a specific illustrative scenario to provide specifics of a single publication and discovery

operation.

4.3.1 End-To-End Publication and Discovery Steps

There are a set of seven steps depicted in the Figure 18, for illustrating the end-to-end

publication and discovery operations. Steps 1, 3, and 6 denote publication by the substrate

providers, infrastructure providers, and service providers, respectively. Steps 2, 5, and 7 denote

discovery by the infrastructure provider, platform provider, and end-users, respectively. Step 4

denotes the usage of platform provider’s tools by service provider to create a conferencing

service. After the creation of the conferencing service, the conference service description is

published to level 3 broker by the service provider in the step 6. During publication at each

broker level, the providers will alter information in the description before publishing the

72

description to the higher level broker. This publication flow provides flexibility for the providers

to add or manipulate functionality or constraints. For example, after discovery from the level 1

broker, the infrastructure provider will alter the offered information such as infrastructure

provider information, cost model, etc. before publication to the level 2 broker. Additionally the

infrastructure providers may combine multiple substrates before publishing them to the higher-

level broker. For example, the infrastructure provider may combine multiple substrates to create

a composite substrate before publication to the level 2 broker.

Figure 18: End-To-End Publication and Discovery Steps

4.3.2 Illustrative Scenario

In this section, we will present a specific illustrative scenario for publication and discovery

to/from level 1 broker (Steps 1 and 2 in the Figure 18). We will discuss this scenario in detail

with respect to the broker components.

73

The conference substrate providers CSP1 and CSP2, publish the dial-out signaling and audio

mixer substrate descriptions to the level 1 broker using RDF XML and RDF N3 serialization

formats respectively. The publication is done by sending an HTTP POST request to the broker,

where the substrate description is sent as the content of the request. These substrates are

described using the proposed semantic-oriented description framework. The substrate providers

use the concepts from Level 1 and Level 2 ontology along with the common ontology in order to

represent the dial-out signaling substrate and audio mixer substrate. The representation language

used to describe these substrates is OWL. Consider that the substrates have the following

constraints:

• Dial-out signaling has a price of 9.9 Canadian dollars/month, maximum capacity of

150 participants and latency of 1200 ms

• Audio mixer has a price 19.9 Canadian dollars/month, maximum capacity of 175

participants, latency of 1400 ms, bitrate profile of 128 kbps, and supports codecs-G711

and Speex.

Figure 19 depicts the publication of substrates to the level 1 broker. The dial-out signaling

substrate description is directly forwarded to the substrate document validator, because it is

already in RDF/XML format, whereas the audio mixer description is first transformed to RDF

XML format by the transformation engine. The substrate document validator uses the ontology

manager to ensure that the descriptions are valid and conforms to the latest cloud-based

conferencing ontology before storing descriptions into the semantic data store.

74

Figure 19: Sequence for Publication to Level 1 Broker

Later, the conference infrastructure provider issues two requests to discover a dial-out signaling

substrate and an audio mixer substrate in RDF N3 format (illustrated by Figure 20). Let us

assume for the sake of the scenario that the infrastructure provider requires ranked discovery

results. The discovery requests are expressed in SPARQL and sent as the content of an HTTP

GET request. If we assume that the infrastructure provider is more concerned with the price of

the substrate and the substrate providers mentioned earlier provide the best pricing model. A

sample vector of weightages for the requesting infrastructure provider is assumed to be

{price=0.7, latency=0.2, substrate capacity=0.1}. So, according this vector the infrastructure

provider is primarily interested in the price of the substrate. Since the query requires ranking, the

query engine forwards the requests to the semantic data store and then to the ranking engine. The

semantic data store returns the relevant results based on criteria of the SPARQL query. Later, the

query engine forwards the request with intermediate set of results to the ranking engine.

75

Figure 20: Sequence for Discovery of a Substrate from Level 1 Broker

Soon after, the ranking engine orders the results according to the formula (4) and chooses the top

result for each substrate type (i.e. separate results for the dial-out signaling substrate and audio

mixer substrate). Finally, the transformation engine transforms the XML substrate descriptions

into RDF N3 format and the result is sent to infrastructure provider.

4.4 Chapter Summary

In this chapter we presented the overall architecture with roles and provided an overview of

publication and discovery steps by various providers and consumers. We described the proposed

semantic-oriented description framework along with the constituent cloud-based conferencing

ontology that is part of the framework. The sub-ontologies of the cloud-based conferencing

ontology were also explained in detail. Broker architecture was proposed, its components and

their functions were explained in detail. These components, not only allow the efficient

discovery and publication of conference substrates using standard technologies, but they also

provide an extensive architecture supporting multiple description document serialization formats.

76

We also discussed the end-to-end steps for the publication and discovery operations in cloud-

based conferencing. Later, we explained a specific illustrative scenario in detail.

77

Chapter 5

5 Validation

This chapter validates the proposed architecture; it starts by explaining the overall prototype

architecture for publication and discovery of substrates in cloud-based conferencing. Next, we

discuss the performance evaluation on the prototype using a benchmarking tool. Benchmarking

tool is used for testing and measuring the effectiveness of prototype architecture. Finally, we

summarize this chapter.

5.1 Overall Prototype Architecture for Publication and Discovery of Substrates in

Cloud-based Conferencing

In this section, we will start by presenting the prototype architecture. Next, we will discuss the

software tools used to implement the prototype. Later, we discuss the implemented scenario.

5.1.1 Prototype Architecture

The prototype architecture is depicted in Figure 21 is on the basis of the proposed semantic-

oriented description framework and the broker architecture for the publication and discovery of

substrates in cloud-based conferencing. As part of the semantic-oriented description framework,

we describe conference substrate descriptions using the cloud-based conferencing ontology. As

part of the broker, we implemented all the components (Section 4.3), except the Semantic

Ontology Crawler.

78

As depicted in the Figure 21, the requesters interact with the broker using these REST APIs. The

REST APIs for publication and discovery interfaces are implemented using Jersey JAX-RS

server. The broker uses a Sesame-based [74] semantic data store in order to store the conference

substrate descriptions, cloud conferencing ontology, indexes, and rules. Classifier component

uses the Jena reasoner and rules from the Sesame-based semantic data store for adding inference

capabilities during the creation of indexes. Sesame-based semantic data store is accessed by the

other broker components using REST APIs. These REST APIs are implemented using Jersey

JAX-RS client.

Figure 21: Prototype Architecture

79

Substrate Document Validator, Ontology Manager, Query Engine, and Ranking Engine

components for the management of substrate descriptions, ontologies, querying and ranking

operations are implemented using the Sesame framework. The Transformation Engine primarily

uses two tools viz. Any23 Toolkit and Tika Format Detector. Substrate Document Validator,

Ontology Manager, and Query Engine additionally use RDF2Go Framework for easier access of

the semantic data store. Java is used as the primary programming language to implement this

prototype. Eclipse is used as the Integrated Development Environment (IDE) for the

development of the prototype.

5.1.2 Software Tools

In this sub-section, we discuss the different software tools used to implement the prototype viz.

Jersey [75], Sesame Framework [74], Jena Reasoner [76], Any23 Toolkit [77], RDF2Go

Framework [78] and Tika Format Detector [79].

5.1.2.1 Jersey

Jersey [75] provides an open source framework for RESTful web services. It provides support

for Java APIs for RESTful Services (JAX-RS). Jersey libraries contain implementation for

supporting both RESTful web service client and server. From the perspective of the prototype,

we use Jersey server implementation for the publication and discovery interfaces of the broker

depicted in the proposed architecture. JAX-RS is a standard specification (JSR 311) for RESTful

web services from the Java Community. Besides, we also use Jersey client for accessing the

Sesame semantic data store.

80

5.1.2.2 Sesame Framework

Sesame Framework [74] offers a collection of APIs for parsing and validation, storage, and

querying of RDF data based on Java programming language. We use these APIs for the

implementation of Substrate Document Validator, Ontology Manager, Query Engine, and

Ranking Engine components from the proposed architecture.

 Substrate Document Validator uses the Sesame RDF I/O (RIO) for parsing and validation of the

substrate descriptions. For the prototype, a custom RDF parser is created to validate against

cloud-based conference ontology. It allows parsing and validation of the RDF file. Repository

API is used to store RDF data in the semantic data store by Ontology Manager component.

Sesame framework provides querying support using the standard-based query languages such

W3C SPARQL. For the prototype, the Query Engine uses Sesame custom query optimization

API to re-write and optimize the simple queries. Besides, we developed a custom SPARQL

function for ranking of the substrates for the Ranking Engine. The parameters to the SPARQL

function include the values to be considered while ranking a substrate (e.g. price, latency,

availability).

5.1.2.3 Jena Reasoner

Jena Reasoner [76] is a reasoning engine used to derive additional facts from OWL or RDFS

description based on a set of rules. We use Jena Reasoner for implementing the Classifier

component of the proposed architecture. Jena reasoner API provides support for transitive

dependencies and user defined rules. Transitive dependencies are required for the cloud-based

81

conferencing ontology. Consider a relationship that Signaling is a type of Substrate and

DialOutSignaling is a type of Signaling. So, DialOutSignaling is also a type of Substrate.

Figure 22: Jena Reasoner API [76]

The Jena reasoner’s API (Figure 22) also allows us to derive additional facts based on the cloud-

based conferencing ontology, substrate description, and a set of user custom rules. It allows us to

bind cloud-based conferencing ontologies using bindSchema function and it allows us to bind the

instance data i.e. substrate descriptions via the bind function. User defined rules in Jena inference

sub-system, allow us to define rules in two modes of execution viz. forward chaining and

backward chaining. We use the forward chaining mode in our prototype. The following abstract

syntax [76] (illustrated in Figure 23) is used to define concrete rules in order to inference the

conference specifics. In Table 3 below, we list some of the concrete rules defined for the cloud-

based conferencing. Such rules are extensively used by the Classifier component.

82

Broker Level Type Rule Associated Axiomatic Triples

Broker Level
1

Dial-Out Signaling
Substrate

[dialOutSignalingSubstrateRule: (?SD rdf:type subs:SubstrateDescription)
(?SD usdl:offers ?OF) (?OF usdl:includes ?S) (?S rdf:type subs:Substrate) (?S
usdl:exposes ?SF) ?SF rdf:type subs:DialOutSignaling
 -> (?SD subs:hasSubstrateType subs:DialOutSignaling)]

subs:hasSubstrateType rdf:type owl: ObjectProperty .
subs:hasSubstrateType rdfs:domain subs:SubstrateDescription .
subs:hasSubstrateType rdfs:range subs:Substrate .

Broker Level
2

Dial-Out Audio
Mixer Substrate

[dialOutAudioSubstrateRule: (?SD rdf:type
subs:PlatformSubstrateDescription) (?SD usdl:offers ?OF)
 (?OF usdl:includes ?CS) (?CS rdf:type subs:CompositeSubstrate) (?CS
usdl:exposes ?SL) listLength(?SL, ?len) equal(?len,2) listContains(?SL,
subs:DialOutSignaling)
 listContains(?SL, subs:AudioMixer) -> (?SD subs:
hasCompositeSubstrateType subs:DialOutAudioSubstrate)]

conf:DialOutAudioSubstrate rdfs:subClassOf
subs:CompositeSubstrate .
subs:hasCompositeSubstrateType rdfs:subPropertyOf
subs:hasSubstrateType .
subs:hasCompositeSubstrateType rdfs:domain
subs:PlatformSubstrateDescription .
subs:hasCompositeSubstrateType rdfs:range
conf:CompositeSubstrate .

Broker Level

3

Dial-Out Audio

Conference with

Moderator

Support

[dialOutAudioConferenceWithModeratorRule: (?SD rdf:type
subs:ServiceDescription) (?SD usdl:offers ?OF)
 (?OF usdl:includes ?CS) (?CS rdf:type subs:CompositeSubstrate) (?CS
usdl:exposes ?SL) listLength(?SL, ?len) equal(?len,3) listContains(?SL,
subs:DialOutSignaling) listContains(?SL, subs:AudioMixer) listContains(?SL,
subs:FloorControl) -> (?SD conf: hasConferenceType
conf:DialOutAudioMixerWithModeratorConference)]

conf:DialOutAudioMixerWithModeratorConference
rdfs:subClassOf conf:Conference .
conf:hasConferenceType rdfs:subPropertyOf
subs:hasCompositeSubstrateType .
conf:hasConferenceType rdfs:domain subs:ServiceDescription .
conf:hasConferenceType rdfs:range conf:Conference .

 Table 3: Sample Custom Rules for Reasoner for Broker Level 1, 2 and 3

83

Figure 23: Abstract Syntax for User-defined Rules [76]

5.1.2.4 Any23 Toolkit

Apache Any23 Toolkit [77] is a toolkit which allows conversion between popular semantic-

oriented serializations formats such RDF/XML, RDF/N3, RDF/JSON, RDFa, Microformats, and

also common formats such as Comma Separated Values (CSV). The toolkit contains a library,

REST-based Web Service [77] and a command line tool. For the purpose of the prototype, we

are using the Any23 toolkit as part of the Transformation Engine component of the proposed

architecture to allow conversion of popular formats to RDF/XML. This allows the providers to

publish and allows the requesters to discover the description document(s) in the format that is

compatible with their existing tools.

5.1.2.5 RDF2Go Framework

RDF2Go [78] provides a Java-based semantic framework for abstraction over triple store such as

Sesame [80]. It allows developers to create programs agnostic of the underlying semantic data

84

store. Besides, it also offers easier management of the named RDF graphs and querying within a

graph. RDF2Go is extensively used by the Ontology Manager, Substrate Document Validator,

and Query Engine components of the proposed architecture.

5.1.2.6 Tika Format Detector

Apache Tika Format Detector [79] is a collection of libraries that enable extraction of metadata

and structured textual information from various file types. It is used primarily during publication

phase to detect the format of the submitted conference substrate description. By doing so, it aids

the Transformation Engine to decide the type of transformer to use (e.g. N3 to RDF/XML

Transformer, Turtle to RDF/XML Transformer).

5.1.3 Implemented Scenario

In our implemented scenario, the conference substrate providers publish the substrates to the

level 1 broker and an infrastructure provider discovers the substrates from the level 1 broker. In

addition, the infrastructure provider composes these conference substrates and publishes the

composed conference substrate to the level 2 broker. In this section, we discuss our implemented

scenarios in three steps. First, we discuss the publication of a dial-out signaling and audio mixer

substrate to level 1 broker by conference substrate providers. Second, we discuss the discovery

of these conference substrates from level 1 broker by a conference infrastructure provider. Third,

we discuss a conference infrastructure provider that composes these conference substrates as a

dial-out audio mixer substrate and publishes it to the level 2 broker.

85

5.1.3.1 Publication of Conference Substrates to Level 1 Broker by Conference Substrate

Providers

Conference substrate providers CSP1 and CSP2 publish dial-out signaling substrate (S1) and

audio mixer substrate (S2) to the level 1 broker. We send these publication requests using REST.

These substrates are described using the proposed semantic-oriented description framework and

send as the content of HTTP POST requests. In the Table 4, we give a segment of the audio

mixer substrate (S2) description using the RDF/Turtle serialization format. In this segment, we

give the CSP2’s information, substrate offerings, audio mixer functional feature, substrate

interfaces and interaction protocol, constraints, and price plan specification. A more detailed

version for audio mixer substrate description can be found in appendix 1.

A Segment of an Audio Mixer Substrate (S2)Description Published by CSP2

Provider Information

<http://www.csp2.com/substrates/77554389-935a-4f74-8a59-54fc9d410321/description/>

rdf:type subs:SubstrateDescription ;

 dcterms:title "Audio Mixer Substrate Description";

 dcterms:creator :CSP2 ;

 usdl:hasProvider :CSP2;

:CSP2 a cloud:SubstrateProvider ;

 gr:legalName "CSP2 Communications Inc." ;

 foaf:page <http://www.csp2.com/> ;

 org:address [a org:PostalAddress ;

 org:streetAddress "1000 Rue Berri" ;

 org:postalCode "H7N 4G9" ;

 org:addressLocality "Montreal, Canada"] ;

 org:telephone "+1(514)-537-5037" ;

 org:faxNumber "+1(514)-537-5038" ;

 org:email "contact@csp2.com" .

86

CSP2 Substrate

Offering

:AudioMixerSubstrateOffering a usdl:ServiceOffering;

 usdl:includes :S2;

 usdl:hasPricePlan :CSP2StandardPlan;

 usdl:validFrom "2012-05-19T19:08:24.798Z"^^xsd:dateTime;

 usdl:validThrough "2015-05-19T19:08:24.798Z"^^xsd:dateTime;

 sla:hasServiceLevelProfile :AudioMixerSubstrateProfile .

Audio Mixer

Functional Feature

:S2 a subs:Substrate;

 usdl:exposes subs:AudioMixer ;

 usdl:hasProvider :CSP2 ;

 usdl:hasInteractionProtocol :AudioMixerInteractionProtocol ;

 usdl:hasServiceModel :AudioMixerSubstrateModel .

Interfaces and

Interaction Protocol

(REST-based Substrate

Interfaces)

:AudioMixerInterface a usdl:Interaction ;

 dcterms:title "REST-based Interactions" ;

 dcterms:description "End Point details for REST-based Interactions" ;

 usdl:hasInterfaceOperation :ReserveMix ;

 usdl:hasInterfaceOperation :GetMixInfo ;

 usdl:hasInterfaceOperation :RemoveMix ;

 usdl:hasInterfaceOperation :ReserveParticipantMix ;

 usdl:hasInterfaceOperation :GetParticipantMixInfo ;

 usdl:hasInterfaceOperation :StartStopParticipantMedia ;

 usdl:hasInterfaceOperation :DeleteParticipantMix ;

 usdl:hasInterfaceOperation :ChangeParticipantMix .

Get Participant’s Mix

Media Information

Interface

:GetParticipantMixInfo a sarest:Operation ;

 dcterms:title "Get a particular participant's mix info" ;

 dc:description "Get a particular participant's mix info, specifically current media

session information." ;

 sarest:hasAddress "Mix/{MixId}/Participant/{ParticipantId}"^^sarest:URITemplate ;

 subs:supportsDataFormats "application/json, application/xml,

text/plain"^^rdf:literal ;

 subs:hasRequestUriParameter <http://purl.org/ontology/conference#MixId> ;

87

 subs:hasRequestUriParameter

<http://purl.org/ontology/conference#ParticipantId> ;

 subs:affectedResources <http://purl.org/ontology/conference#Mix> ;

 sarest:hasMethod "GET"^^sarest:HTTPMethod ;

 subs:hasResponseCode "200 OK"^^http:StatusCode ;

 subs:hasResponseBody <http://purl.org/ontology/conference#MediaDescriptor> .

Constraints

:MixingCapacity

 a sla:Variable;

 rdfs:label "Maximum Mixing Capacity";

 sla:hasDefault [a gr:QuantitativeValueInteger ;

 gr:hasValue “160"^^xsd:integer ;

 gr:unitOfMeasurement "users"] .

:MixerSupportedAudioCodecs

 a sla:Variable;

 rdfs:label "Audio Codecs";

 sla:hasDefault [a gr:QualitativeValue ;

 gr:hasValue "G711,Speex"] .

Price Plan

:CSP2StandardPlan a usdl-price:PricePlan;

 dcterms:title "Standard Plan";

 dcterms:description "Standard Plan that fits most business users." ;

 usdl-price:hasPriceCap [a gr:PriceSpecification;

 gr:hasCurrency "CAD";

 gr:hasCurrencyValue "29.99"^^xsd:float;

 gr:unitOfMeasurement "per/month"];

 usdl-price:hasPriceFloor [a gr:PriceSpecification;

 gr:hasCurrency "CAD";

 gr:hasValueFloat "9.99"^^xsd:float;

 gr:unitOfMeasurement "per/month"];

 usdl-price:hasPriceComponent [a usdl-price:PriceComponent;

 dcterms:title "Monthly rate";

88

 dcterms:description "Monthly fee to pay for the substrate.";

 gr:hasCurrency "CAD";

 gr:hasCurrencyValue "0.25"^^xsd:float;

 gr:unitOfMeasurement "per month per user"

];

 usdl-price:hasTax [a usdl-price:PriceComponent;

 dcterms:title "Total Tax";

 dcterms:description "Provincial and Federal tax component";

 gr:hasValueFloat "15.0"^^xsd:float;

 gr:unitOfMeasurement "percent"

] .

Table 4: A Segment from Audio Mixer Substrate (S2) Description Published by CSP2

5.1.3.2 Discovery of Conference Substrates from to Level 1 Broker by Conference

Infrastructure Provider

After publication, conference infrastructure provider CIP1 discovers both dial-out signaling

substrate and audio mixer substrate (having a maximum capacity of 150 users) using two

discovery requests. We restrict the discovery result to the earlier published substrates (S1 and

S2) by giving substrate providers’ name (CSP1 and CSP2), substrates’ functional features,

constraint (i.e. maximum capacity) in the discovery requests. We send these discovery requests

using REST. The discovery queries for a dial-out signaling substrate (Q1) and an audio mixer

substrate (Q2) are expressed using SPARQL, and sent as the content of HTTP GET requests.

Upon sending discovery requests, conference infrastructure provider receives the descriptions

representing dial-out signaling (S1) and audio mixer substrates (S2), respectively from the level

1 broker.

89

In the Table 5, we give the SPARQL query Q2 for discovering an audio mixer substrate with

maximum capacity greater than 150 users which is provided by CSP2. In this query, we give the

namespaces and the selection clause. SPARQL query consists of set of triple patterns called

basic graph pattern. SPARQL triple patterns are 3-tuples that could contain variables in the place

of subject, predicate, or object. SPARQL variables are indicated by a preceding question mark

symbol (?). Every complete triple pattern contains a dot (.) at the end. Triple patterns reusing the

subject are specified by a semi-colon (;).

SPARQL Query Q2 for discovery of an Audio Mixer Substrate with maximum capacity 150 which is provided by

CSP2

Namespaces

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

PREFIX usdl:<http://www.linked-usdl.org/ns/usdl-core#>

PREFIX subs:<http://purl.org/ontology/substrate-description#>

PREFIX usdl-sla:<http://www.linked-usdl.org/ns/usdl-servicelevel#>

PREFIX usdl-price:<http://www.linked-usdl.org/ns/usdl-pricing#>

PREFIX dc:<http://purl.org/dc/elements/1.1/>

PREFIX gr:<http://purl.org/goodrelations/v1#>

SELECT clause

SELECT DISTINCT ?source WHERE {

 ?sd rdf:type subs:SubstrateDescription ;

 dc:source ?source ;

 usdl:offers ?o .

 ?o rdf:type usdl:ServiceOffering ;

 usdl-sla:hasServiceLevelProfile ?sf ;

 usdl:hasPricePlan> ?pp ;

 usdl:includes ?subs .

 ?sf rdf:type usdl-sla:ServiceLevelProfile ;

 usdl-sla:hasServiceLevel ?sl ;

90

 usdl:hasProvider :CSP2 .

?subs usdl:exposes subs:AudioMixer .

?sl dc:title ?slvtitle .

 FILTER regex(?slvtitle, "Capacity") .

 ?sl rdf:type usdl-sla:GuaranteedState ;

 usdl-sla:serviceLevelExpression ?sle .

 ?sle rdf:type usdl-sla:ServiceLevelExpression ;

 usdl-sla:hasVariable ?slv .

 ?slv usdl-sla:hasDefault ?valueexpr .

 ?valueexpr gr:hasValue ?capacityvalue .

FILTER (xsd:integer(?capacityvalue) > 150) .

Table 5: SPARQL Query to Discover an Audio Mixer Substrate

5.1.3.3 Publication of Conference Substrate Description to Level 2 Broker

After conference Infrastructure Provider CIP1 discovers the dial-out signaling (S1) and audio

mixer (S2) substrates from level 1 broker, it composes the substrate descriptions and creates a

dial-out audio mixer substrate (CS1) before publishing it to the level 2 broker. In Table 6, we

capture a segment of the CS1 description using the RDF/Turtle serialization format. In this

segment, we express the dial-out audio mixer substrate’s functional feature collection

(:DialOutAudioMixerFeatures) as a list of functional features from dial-out signaling substrate

(S1) and audio mixer substrate (S2).

A Segment of a Dial-Out Audio Mixer Substrate (CS1) Description Published by CIP1

Provider Information

<http://cip1.com/substrates/b077dc4b-fa46-4c15-8170-ff85f9a0649d/description/> rdf:type

subs:PlatformSubstrateDescription ;

 dcterms:title "Dial-Out Audio Mixer Substrate Description";

 dcterms:creator :CIP1;

91

 usdl:hasProvider :CIP1;

:CIP1a cloud:SubstrateProvider ;

 gr:legalName "CIP1 Inc." ;

 foaf:page <http://www.CIP1.com/> ;

 org:address [a org:PostalAddress ;

 org:streetAddress "1070 Noble Street" ;

 org:postalCode "J2D-8P7" ;

 org:addressLocality "Quebec, Canada"] ;

 org:telephone "+1(514)-342-2543" ;

 org:faxNumber "+1(514)-342-2343" ;

 org:email "contact@cip1.com" .

Dial-Out Audio Mixer

Functional Feature

Collection

:CS1 a subs:CompositeSubstrate;

 usdl:exposes :DialOutAudioFeatures ;

 usdl:hasProvider :CIP1 ;

 usdl:hasInteractionProtocol :DialOutAudioInteractionProtocol ;

 usdl:hasServiceModel : DialOutAudioSubstrateModel .

:DialOutAudioMixerFeatures a subs:SubstrateFeatureCollection ;

 rdf:first subs:DialOutSignaling ;

 rdf:rest :RestOfListDialOutAudioMixerFeature .

: RestOfListDialOutAudioMixerFeature rdf:first subs:AudioMixer;

 rdf:rest rdf:nil .

Table 6: A Segment from a Dial-Out Audio Mixer Substrate (CS1) Description Published by CIP1

5.2 Performance Evaluation

As part of the performance evaluation, two laptops were used to run the prototype. The first one

is used to run the benchmarking tool for publication and discovery, while the second one is used

to run the broker. The setup of the prototype test-bed is illustrated by the Figure 24. The detailed

configuration of the laptops used for prototype test-bed is listed in Table 7.

92

Laptop 1: Benchmarking tool

Processor Intel Core 2 Duo 1.8 Ghz

Operating System Ubuntu 12.10 x64

Main Memory 4GB DDR2 RAM

Java SDK Java EE 6

Laptop 2: Broker

Processor Intel Core i7 – 2670QM 2.2 Ghz

Operating System Windows 7 x64

Main Memory 8GB DDR3 RAM

Java SDK Java EE 7

Web Server & Servlet Container Tomcat v7

Table 7: Prototype Test-bed Configuration

Figure 24: Prototype Test-bed Set-up

93

In the following sub-sections, we define the benchmarking tool used for testing and measuring

the effectiveness of prototype architecture. Later, we discuss the performance metrics and results

obtained using the prototype test-bed configuration.

5.2.1 Benchmarking Tool

To have a near realistic view of proposed broker’s publication and discovery operations, we

needed a test bed set-up with several dozens of substrates belonging to different providers and

having various constraints types (e.g. performance type: latency and response time, capacity

type: maximum signaling capacity and mixing capacity, quality type: supported codecs and

bitrate profile). We also needed several infrastructure providers to issue a mix of queries of

varying complexity levels. It is worth mentioning that there are some existing benchmarking

tools for RDF-based repositories, but they did not meet the requirements for our prototype. The

Berlin SPARQL Benchmark [81] for instance, allows the benchmarking of only pre-defined use

cases.

However, we required to generate random traffic for publication and discovery of conference

substrates. We therefore implemented a benchmarking tool including a test data generator and

query generator. Test data generator simulates conference substrate providers by generating

several conference substrate descriptions and publishing them to the broker. While, the query

generator simulates a conference infrastructure provider by generating multiple random

discovery requests and issues them to the broker. Both generators are implemented as a

command line interfaces (CLI) using Java concurrency API and is capable of issuing varying

94

numbers of parallel requests to the broker. The benchmarking tool supports several switches

(options) (Table 8).

Switch Name Switch Value Type

Broker end-point endpoint String (URL)

Number of Users users Integer

Number of Parallel Requests parallelrequests Integer

Optimize Discovery Query optimize Boolean

Run in Batch mode batchmode Boolean

No of Batch Runs runs Integer

Average-out Batch Run Time avgtime Boolean

Discovery Mode discover Boolean

Publication Mode publish Boolean

Query mix directory querymix String (Directory Name)

Table 8: Benchmarking Tool Switches

5.2.2 Performance Metrics

The performance of our prototype is assessed in terms of time delays for both publication and

discovery on level 1 broker. The publication (discovery) delay is the time difference between

when the substrate (infrastructure) provider sends a publication (discovery) request to the broker

and when it receives the response. The delays are measured in milliseconds. The publication

delay measurements were taken for different numbers of substrate providers, different number of

simultaneous requests, and for the cases where different numbers of substrates were published

95

prior to the time of measurements. The discovery delays were measured for two types of queries:

simple and complex queries.

Simple queries are, for instance, those ones based only on the substrate type. An example of

simply query is to find the list of available audio mixer substrates. Complex queries may include

multiple relational criteria (e.g. capacity>=100 and latency<=1000ms), textual operations (e.g.

textual search for a specific provider or substrate within a specific region), or ranking criteria

(e.g. get an ordered list of the first 10 recommended audio mixers in Canada). We also compared

the discovery delays of simple queries with and without optimization to show the added value of

the used optimization algorithms. The optimization algorithms are performed based on the query

re-rewriting techniques discussed in section 4.3.2.4.1.

5.2.3 Performance Results

Figure 25, Figure 26, and Figure 27 illustrates the measured results. Corresponding to each of

these measured results, Table 9, Table 10, and Table 11 lists the recorded time in milliseconds.

Each of these measurements is calculated as an average of 15 experiments. Figure 25 displays

the measurements for publishing up to 32 substrates simultaneously by varying the number of

existing substrates in the semantic data store. As expected, the delays increase with the number

of simultaneous publications as well as the number of substrates already in the registry.

Nevertheless, the delays remain acceptable considering that the publication is a one-time

operation performed by the substrate providers. The discovery delay measurements were

performed on a broker containing 100 substrates. The discovery requests are randomly generated

by the benchmarking tool, according to the chosen request complexity (i.e. simple or complex).

96

Figure 26 compares the discovery delays for optimized and non-optimized simple queries. The

results show that the optimization reduces the delays by about 7%, and this percentage can be

further increased by creating additional indexes for frequently used basic graph patterns, such as

substrate provider region. Complex discovery queries require more processing time and induce

much larger delays compared to the simple queries (Figure 27).

97

 Delays (milliseconds)

Parallel
Requests

No. of
existing SDs
in repository

0

No. of
existing SDs
in repository

50

No. of
existing SDs
in repository

100

No. of
existing SDs
in repository

150

No. of
existing SDs
in repository

200

2 860 1880 2822 3809 4667

4 925 2444 4291 6286 8078

8 1419 4825 8699 12471 16299

16 2464 10240 17776 25555 33154

32 7860 23608 38590 53814 69179

Table 9: Publication Delays Summary Figure 25: Publication Delays Summary

Delays (milliseconds)

Parallel
Requests

No. of existing SDs in repository

100

Non-Optimized Query Optimized Query

2 114 106

4 170 160

8 240 218

16 357 335

32 468 450

Table 10: Discovery Delays Summary for Simple Queries Figure 26: Discovery Delays Summary for Simple Queries

98

 Delays (milliseconds)

Parallel
Requests

No. of existing SDs in repository

100

2 2152

4 3348

8 5347

16 8413

32 16283

Table 11: Discovery Delays Summary for Complex Queries Figure 27: Discovery Delays Summary for Complex Queries

99

5.3 Chapter Summary

In this chapter we presented the overall prototype architecture for publication and discovery of

conference substrates. The prototype architecture contains a broker that enabled the efficient

publication and discovery of the cloud-based conference substrates using the constituent

software tools. We explained the six constituent software tools in detail. We also discussed

regarding the implemented scenario in three steps and provided sample publication and

discovery requests. Finally, we presented the performance evaluation using the benchmarking

tool with various experimental scenarios. The experimental scenarios varied by having different

number of publication and discovery requests, and having various numbers of existing substrates

in the semantic data store. Measurements showed that that delay increases with the number of

existing substrates in the semantic data store. Also, our measurements on discovery requests

showed that the optimized queries display a better performance in comparison with non-

optimized queries.

100

Chapter 6

6 Conclusion and Future Work

This chapter concludes the thesis by providing a summary of contributions and also providing

the directions for the future research work.

6.1 Summary of Contributions

Cloud-based conferencing services can provide potential benefits such as the easy introduction of

different types of conferences, resource usage efficiency and scalability. A novel business model

[3] for cloud-based conferencing was proposed recently. A key role in this model is played by

the conference substrate providers. Conference substrates are virtualized and act as elementary

building blocks (e.g. dial-out signaling, audio mixing) of conferencing applications. These

conference substrates can be shared for resource efficiency purposes. To enable cloud

conferencing and usage of conference substrates, substrate providers should describe their

conference substrates and make them known by publishing them to a broker so that the

consumers/requesters may later discover the conference substrates accurately using specific

business and technical aspects.

As part of the contributions to this thesis, we have identified the requirements for a semantic-

oriented description framework to describe conference substrates. We have also identified the

requirements for a broker architecture in order to enable the publication and discovery of

substrates in cloud-based conferencing. Our semantic-oriented description framework consists of

two components: cloud conferencing ontology and a description language. Several semantic-

101

oriented description frameworks were evaluated based on our requirements for describing cloud-

based conferencing substrates. Besides, we have also evaluated the available service description

languages and related ontologies (cloud computing and conferencing ontologies) separately.

However, to the best of our knowledge, none of the existing frameworks were capable of

meeting all of our requirements. We have also evaluated several prominent broker architectures

for publication and discovery based on our requirements and observed that none of them satisfy

all of our requirements.

This thesis proposed a semantic-oriented description framework which includes a cloud-based

conferencing ontology using OWL as the description language. It enables the specification of

both technical and business aspects of conferencing substrates. Furthermore, we designed a

broker architecture for publication and discovery of substrates in cloud-based conferencing. The

providers and requesters communicate with the broker via the REST API.

A proof of concept prototype was implemented based on the proposed semantic-oriented

description framework, and a broker architecture for the publication and discovery of substrates

in cloud-based conferencing. To validate our prototype we used a benchmarking tool, which was

specifically created for the purpose of testing the performance of publication and discovery of

conference substrates by generating random traffic to the broker and measuring the key

parameters such as publication and discovery delays. For both publication and discovery, the

performance results showed that the delay increases with the number of existing conference

substrate descriptions in the semantic data store. The performance results showed satisfactory

results for publication even considering the additional validation steps that were performed.

102

Furthermore, the performance results showed that the query engine optimizations reduced the

delays for certain discovery requests (when using simple queries) by about 7%.

6.2 Future Work

We have identified some research items to be considered. We start by discussing the future

research directions relating to the proposed semantic-oriented description framework and later

discussing the future research directions relating to the broker architecture for publication and

discovery of substrates in cloud-based conferencing.

6.2.1 Semantic-oriented Description Framework

For the semantic-oriented description framework, we have identified two key research directions;

one relates to integration of substrate descriptions with composition language and the other

relates to description of complex substrate features. For enabling the orchestration and

choreography of constituent substrates of conferencing application, one of the major challenges

is the integration of the existing composition languages (such as jOpera) with the conference

substrate descriptions as input. Another challenge relates to identifying the description of

complex conference substrate features such as transcoding, virtual network computing (or

desktop sharing) based on the proposed semantic-oriented description framework.

6.2.2 Broker Architecture for Publication and Discovery of Substrates in Cloud-based

Conferencing

For the broker architecture, we have identified three key research directions; one relates to query

optimization, next relates to performance of the semantic data store and last relates to the

103

distributed broker architectures. The proposed broker architecture consists of a query engine

component that supports query optimizations for simple queries. Query optimizations for

complex queries needs to be further investigated to improve the overall discovery delays. The

proposed broker architecture uses semantic data store for the storage of conference substrate

descriptions (as triples). Further investigation is required for evaluating the performance of the

semantic data store for larger repository sizes (of magnitude greater than 1 million triples) using

alternatives such as NoSQL catering specifically to larger datasets. Finally, further research is

needed to allow discovery of conference substrates from multiple distributed brokers.

Furthermore, individual broker components (such as semantic data store) can be distributed for

achieving scalability and efficiency of resources. By exploiting the nature of RDF and SPARQL,

we can query multiple diverse and distributed semantic data store components. However, there

are challenges such as synchrony of parallel read-write operations and locking of specific named

graphs for manipulation.

104

Appendix

Appendix A: Audio Mixer Substrate (S2) Description Published by CSP2 in Turtle

Serialization Format

Audio Mixer Substrate (S2) Description Published by Conference Substrate Provider - CSP2

Initial Prefix Information

@prefix : <http://www.[companynamewebsite]/substrates/[uuid1]/description/> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix subs: <http://purl.org/ontology/substrate-description#> .

@prefix cloud: <http://purl.org/ontology/cloud-conference-infrastructure#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix sawsdl: <http://www.w3.org/ns/sawsdl#> .

@prefix gr: <http://purl.org/goodrelations/v1#> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix org: <http://schema.org/Organization#> .

@prefix ctag: <http://commontag.org/ns#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix http: <http://www.w3.org/2011/http#> .

@prefix dcterms: <http://purl.org/dc/terms/> .

@prefix usdl: <http://www.linked-usdl.org/ns/usdl-core#> .

@prefix usdl-price: <http://www.linked-usdl.org/ns/usdl-pricing#> .

@prefix sarest: <http://www.knoesis.org/research/srl/standards/sa-rest/#> .

105

@prefix usdl-sla: <http://www.linked-usdl.org/ns/usdl-servicelevel#> .

@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

@prefix conf: <http://purl.org/ontology/conference#> .

Substrate Description Starts

<http://www.csp2.com/substrates/77554389-935a-4f74-8a59-54fc9d410321/description/> rdf:type

subs:SubstrateDescription ;

 dcterms:title "Audio Mixer Substrate Description";

 dcterms:creator :CSP2 ;

 usdl:hasProvider :CSP2;

:CSP2 a cloud:SubstrateProvider ;

 gr:legalName "CSP2 Communications Inc." ;

 foaf:page <http://www.csp2.com/> ;

 org:address [a org:PostalAddress ;

 org:streetAddress "1000 Rue Berri" ;

 org:postalCode "H7N 4G9" ;

 org:addressLocality "Montreal, Canada"] ;

 org:telephone "+1(514)-537-5037" ;

 org:faxNumber "+1(514)-537-5038" ;

 org:email "contact@csp2.com" .

:S2 a subs:Substrate;

 usdl:exposes subs:AudioMixer ;

 usdl:hasProvider :CSP2 ;

 usdl:hasInteractionProtocol :AudioMixerInteractionProtocol ;

 usdl:hasServiceModel :AudioMixerSubstrateModel .

106

Audio Mixer Substrate Interactions

:AudioMixerInteractionProtocol a usdl:InteractionProtocol;

 dcterms:title "Technical Interactions";

 dcterms:description "Details the basic set of operations available for this substrate.";

 usdl:hasInteraction :AudioMixerInterfaces .

Audio Mixer Substrate REST-based Operations

:AudioMixerInterfaces a usdl:Interaction ;

 dcterms:title "REST-based Interactions" ;

 dcterms:description "End Point details for REST-based Interactions" ;

 usdl:hasInterfaceOperation :ReserveMix ;

 usdl:hasInterfaceOperation :GetMixInfo ;

 usdl:hasInterfaceOperation :RemoveMix ;

 usdl:hasInterfaceOperation :ReserveParticipantMix ;

 usdl:hasInterfaceOperation :GetParticipantMixInfo ;

 usdl:hasInterfaceOperation :StartStopParticipantMedia ;

 usdl:hasInterfaceOperation :DeleteParticipantMix ;

 usdl:hasInterfaceOperation :ChangeParticipantMix .

:GetParticipantMixInfo a sarest:Operation ;

 dcterms:title "Get a particular participant's mix info" ;

 dc:description "Get a particular participant's mix info, specifically current media session information." ;

 sarest:hasAddress "Mix/{MixId}/Participant/{ParticipantId}"^^sarest:URITemplate ;

 subs:supportsDataFormats "application/json, application/xml, text/plain"^^rdf:literal ;

 subs:hasRequestUriParameter <http://purl.org/ontology/conference#MixId> ;

 subs:hasRequestUriParameter <http://purl.org/ontology/conference#ParticipantId> ;

 subs:affectedResources <http://purl.org/ontology/conference#Mix> ;

107

 sarest:hasMethod "GET"^^sarest:HTTPMethod ;

 subs:hasResponseCode "200 OK"^^http:StatusCode ;

 subs:hasResponseBody <http://purl.org/ontology/conference#MediaDescriptor> .

:ReserveMix a sarest:Operation ;

 dcterms:title "Reserve Mix " ;

 dc:description "Register the Conference record in the substrate" ;

 sarest:hasAddress "Mix/" ;

 subs:supportsDataFormats "application/json";

 subs:supportsDataFormats "application/xml";

 subs:supportsDataFormats "text/plain";

 subs:hasRequestBodyParameter <http://purl.org/ontology/conference#Conference> ;

 sarest:hasMethod "POST"^^sarest:HTTPMethod ;

 subs:hasResponseCode "201 Created" .

:GetMixInfo a sarest:Operation ;

 dcterms:title "Get mix " ;

 dc:description "Gets the information about the Mix. This equivalent to a Conference with all the participant

information." ;

 sarest:hasAddress "Mix/{MixId}" ;

 subs:supportsDataFormats "application/json";

 subs:supportsDataFormats "application/xml";

 subs:supportsDataFormats "text/plain";

 subs:hasRequestUriParameter <http://purl.org/ontology/conference#MixId> ;

 sarest:hasMethod "GET"^^sarest:HTTPMethod ;

 subs:hasResponseCode "200 OK" ;

 subs:hasResponseBody <http://purl.org/ontology/conference#Conference> .

:RemoveMix a sarest:Operation ;

 dcterms:title "Removes mix" ;

 dc:description "Removes the information about the mix from the substrates" ;

 sarest:hasAddress "Mix/{MixId}" ;

 subs:supportsDataFormats "application/json";

108

 subs:supportsDataFormats "application/xml";

 subs:supportsDataFormats "text/plain";

 subs:hasRequestUriParameter <http://purl.org/ontology/conference#MixId> ;

 sarest:hasMethod "DELETE"^^sarest:HTTPMethod ;

 subs:hasResponseCode "200 OK" .

:ReserveParticipantMix a sarest:Operation ;

 dcterms:title "Create Participant " ;

 dc:description "Connect the Participant's Media Session" ;

 sarest:hasAddress "Mix/{MixId}/Participant/" ;

 subs:supportsDataFormats "application/json";

 subs:supportsDataFormats "application/xml";

 subs:supportsDataFormats "text/plain";

 subs:hasRequestBodyParameter <http://purl.org/ontology/conference#Participant> ;

 sarest:hasMethod "POST"^^sarest:HTTPMethod ;

 subs:hasResponseCode "201 Created" ;

 subs:hasResponseBody <http://purl.org/ontology/conference#MediaDescriptor> .

:GetParticipantMixInfo a sarest:Operation ;

 dcterms:title "Get a particular participant's mix" ;

 dc:description "Get a particular participant's mix info, specifically current media session information." ;

 sarest:hasAddress "Mix/{MixId}/Participant/{ParticipantId}" ;

 subs:supportsDataFormats "application/json";

 subs:supportsDataFormats "application/xml";

 subs:supportsDataFormats "text/plain";

 subs:hasRequestUriParameter <http://purl.org/ontology/conference#MixId> ;

 subs:hasRequestUriParameter <http://purl.org/ontology/conference#ParticipantId> ;

 sarest:hasMethod "GET"^^sarest:HTTPMethod ;

 subs:hasResponseCode "200 OK" ;

 subs:hasResponseBody <http://purl.org/ontology/conference#MediaDescriptor> .

:UpdateParticipantMedia a sarest:Operation ;

109

 dcterms:title "Start Participant media" ;

 dc:description "Start sending participant the mixed packets" ;

 sarest:hasAddress "Mix/{MixId}/Participant/{ParticipantId}/MediaDescriptor/{MediaDescriptorId}" ;

 subs:supportsDataFormats "application/json";

 subs:supportsDataFormats "application/xml";

 subs:supportsDataFormats "text/plain";

 subs:hasRequestUriParameter <http://purl.org/ontology/conference#MixId> ;

 subs:hasRequestUriParameter <http://purl.org/ontology/conference#ParticipantId> ;

 subs:hasRequestUriParameter <http://purl.org/ontology/conference#MediaDescriptorId> ;

 subs:hasRequestBodyParameter <http://purl.org/ontology/conference#MediaDescriptor> ;

 sarest:hasMethod "PUT"^^sarest:HTTPMethod ;

 subs:hasResponseCode "202 Accepted" ;

 subs:isAsynchronous "true"^^xsd:boolean ;

 subs:hasCallBackUri :CallBackUri ;

 subs:hasCallBackMethod :CallBackMethod ;

 subs:hasCallBackResponseCode :CallBackExpectedResponseCode ;

 subs:hasCallBackBodyParameter <http://purl.org/ontology/conference#MediaDescriptor> .

:DeleteParticipantMix a sarest:Operation ;

 dcterms:title "Delete Participant from a mix" ;

 dc:description "Delete the Participant's Media mix information" ;

 sarest:hasAddress "Mix/{MixId}/Participant/{ParticipantId}" ;

 subs:supportsDataFormats "application/json";

 subs:supportsDataFormats "application/xml";

 subs:supportsDataFormats "text/plain";

 subs:hasRequestUriParameter <http://purl.org/ontology/conference#MixId> ;

 subs:hasRequestUriParameter <http://purl.org/ontology/conference#ParticipantId> ;

 sarest:hasMethod "DELETE"^^sarest:HTTPMethod ;

 subs:hasResponseCode "200 OK" .

110

Price Plan (Cost Information)

:CSP2StandardPlan a usdl-price:PricePlan;

 dcterms:title "Standard Plan";

 dcterms:description "Standard Plan that fits most business users." ;

 usdl-price:hasPriceCap [a gr:PriceSpecification;

 gr:hasCurrency "CAD";

 gr:hasCurrencyValue "29.99"^^xsd:float;

 gr:unitOfMeasurement "per/month"];

 usdl-price:hasPriceFloor [a gr:PriceSpecification;

 gr:hasCurrency "CAD";

 gr:hasValueFloat "9.99"^^xsd:float;

 gr:unitOfMeasurement "per/month"];

 usdl-price:hasPriceComponent [a usdl-price:PriceComponent;

 dcterms:title "Monthly rate";

 dcterms:description "Monthly fee to pay for the substrate.";

 gr:hasCurrency "CAD";

 gr:hasCurrencyValue "0.25"^^xsd:float;

 gr:unitOfMeasurement "per month per user"

];

 usdl-price:hasTax [a usdl-price:PriceComponent;

 dcterms:title "Total Tax";

 dcterms:description "Provincial and Federal tax component";

 gr:hasValueFloat "15.0"^^xsd:float;

 gr:unitOfMeasurement "percent"

] .

:AudioMixerSubstrateOffering a usdl:ServiceOffering;

 usdl:includes :S2;

 usdl:hasPricePlan :CSP2StandardPlan;

 usdl:validFrom "2012-05-19T19:08:24.798Z"^^xsd:dateTime;

 usdl:validThrough "2015-05-19T19:08:24.798Z"^^xsd:dateTime;

111

 sla:hasServiceLevelProfile :AudioMixerSubstrateProfile .

:AudioMixerSubstrateModel a usdl:ServiceModel;

 usdl:hasNature usdl:Automated;

 usdl:versionInfo "1.0";

 usdl:hasClassification [a skos:ConceptScheme;

 skos:hasTopConcept subs:AudioMixer ;

 rdfs:label "Audio Mixer"];

 dcterms:modified "2011-05-19T19:08:24.798Z"^^xsd:dateTime;

 dcterms:created "2011-05-19T19:08:24.798Z"^^xsd:dateTime;

 dcterms:title "Audio Mixer Solution";

 usdl:shortDescription "Audio Mixer Solution for Conferencing";

 usdl:longDescription "CSP-2 Cloud-based Audio Mixer Substrate for Conferencing" .

Constraints

:AudioMixerSubstrateProfile a sla:ServiceLevelProfile;

 dcterms:title "Standard Service Profile";

 sla:hasServiceLevel [

 a sla:GuaranteedState;

 dcterms:title "Capacity";

 sla:serviceLevelExpression [

 a sla:ServiceLevelExpression;

 dcterms:description "[MixingCapacity] Maximum number for the mixes.";

 sla:hasVariable :MixingCapacity, :BitrateProfileLow, :BitrateProfileMed, :BitrateProfileHigh] ;

 sla:obligatedParty usdl:Provider

],

 [

 a sla:GuaranteedState;

 dcterms:title "Performance";

 sla:serviceLevelExpression [

 a sla:ServiceLevelExpression;

112

 dcterms:description "";

 sla:hasVariable :ResponseTime, :Latency] ;

 sla:obligatedParty usdl:Provider

],

 [a sla:GuaranteedState;

 dcterms:title "Interoperability";

 sla:serviceLevelExpression [

 a sla:ServiceLevelExpression;

 dcterms:description "Codecs supported by the Mixer Substrate";

 sla:hasVariable :MixerSupportedAudioCodecs] ;

 sla:obligatedParty usdl:Provider

] .

:MixingCapacity

 a sla:Variable;

 rdfs:label "Maximum Mixing Capacity";

 sla:hasDefault [a gr:QuantitativeValueInteger ;

 gr:hasValue “160"^^xsd:integer ;

 gr:unitOfMeasurement "users"] .

:MixerSupportedAudioCodecs

 a sla:Variable;

 rdfs:label "Supported Audio Mixer Codecs";

 sla:hasDefault [a gr:QualitativeValue ;

 gr:hasValue "G711,Speex"] .

:ResponseTime

 a sla:Variable;

 rdfs:label "ResponseTime";

 sla:hasDefault [a gr:QuantitativeValueInteger;

 gr:hasValue "2500"^^xsd:integer;

 gr:unitOfMeasurement "milli seconds"] .

:Latency

 a sla:Variable;

113

 rdfs:label "Latency";

 dcterms:description "Latency for Audio Mixer Substrate" ;

 sla:hasDefault [a gr:QuantitativeValueInteger;

 gr:hasValue "1000"^^xsd:integer;

 gr:unitOfMeasurement "milli seconds"] .

:BitrateProfileLow

 a sla:Variable;

 rdfs:label "BitrateProfileLow";

 sla:hasDefault [a gr:QuantitativeValueInteger ;

 gr:hasValue "64"^^xsd:integer ;

 gr:unitOfMeasurement "kbps"] .

:BitrateProfileMed

 a sla:Variable;

 rdfs:label "BitrateProfileMed";

 sla:hasDefault [a gr:QuantitativeValueInteger ;

 gr:hasValue "128"^^xsd:integer ;

 gr:unitOfMeasurement "kbps"] .

:BitrateProfileHigh

 a sla:Variable;

 rdfs:label "BitrateProfileHigh";

 sla:hasDefault [a gr:QuantitativeValueInteger ;

 gr:hasValue "384"^^xsd:integer ;

 gr:unitOfMeasurement "kbps"] .

114

Appendix B: Query (including SPARQL Ranking function) for discovering top 10

Audio Mixer substrates with Canadian region

Considers three constraints for Ranking – Price, Latency, and Availability

All values are normalized based on the entire SDs in semantic data store

Availability is calculated on the fly using aggregate function on number of mirror properties for a substrates

SELECT DISTINCT ?prName ?region ?source ?subsf ?price ?nprice ?latency ?nlatency (COUNT(?mirror) AS ?availability)

?navailability ?capacity ?ncapacity

(subs:substrateRank(?nprice, ?nlatency, ?navailability, ?ncapacity, ?region, "132.205.164.209") AS ?rank) WHERE {

 {

 ?sd rdf:type subs:SubstrateDescription ;

 usdl:offers ?o ;

 <http://purl.org/dc/elements/1.1/source> ?source ;

 usdl:hasProvider ?provider .

?source subs:normalizedPrice ?nprice ;

 subs:normalizedLatency ?nlatency ;

 subs:normalizedAvailability ?navailability ;

 subs:normalizedCapacity ?ncapacity .

{

?provider gr:legalName ?prName ;

 <http://xmlns.com/foaf/0.1/page> ?website ;

 <http://schema.org/Organization#address> ?paddress ;

 ?paddress <http://schema.org/Organization#streetAddress> ?saddresss ;

 <http://schema.org/Organization#postalCode> ?postalCode ;

 <http://schema.org/Organization#addressLocality> ?region .

 FILTER regex(?region, "Canada") .

}

115

 ?o rdf:type usdl:ServiceOffering ;

 usdl-sla:hasServiceLevelProfile ?sf ;

 usdl:hasPricePlan ?pp ;

 usdl:includes ?subs .

 ?subs subs:mirrors ?mirror .

 ?subs usdl:exposes subs:AudioMixer .

{

 ?sf rdf:type usdl-sla:ServiceLevelProfile ;

 usdl-sla:hasServiceLevel ?sl .

 ?sl <http://purl.org/dc/terms/title> ?slvtitle .

 FILTER regex(?slvtitle, "Performance") .

 ?sl rdf:type usdl-sla:GuaranteedState ;

 usdl-sla:serviceLevelExpression ?sle .

 ?sle rdf:type usdl-sla:ServiceLevelExpression ;

 usdl-sla:hasVariable ?slv .

 ?slv rdfs:label ?vlab .

 FILTER regex(?vlab, "Latency") .

 ?slv usdl-sla:hasDefault ?valueexpr .

 ?valueexpr gr:hasValue ?latency .

}

 {

 ?sf rdf:type usdl-sla:ServiceLevelProfile ;

 usdl-sla:hasServiceLevel ?sl2 .

 ?sl2 <http://purl.org/dc/terms/title> ?slvtitle2 .

 FILTER regex(?slvtitle2, "Capacity") .

 ?sl2 rdf:type usdl-sla:GuaranteedState ;

 usdl-sla:serviceLevelExpression ?sle2 .

 ?sle2 rdf:type usdl-sla:ServiceLevelExpression ;

 usdl-sla:hasVariable ?slv2 .

 ?slv2 rdfs:label ?vlab2 .

 FILTER regex(?vlab2, "Capacity") .

 ?slv2 usdl-sla:hasDefault ?valueexpr2 .

116

 ?valueexpr2 gr:hasValue ?capacity .

 }

{

?pp usdl-price:hasPriceCap ?pcap .

 ?pcap gr:hasCurrency "CAD" ;

 gr:hasCurrencyValue ?price .

}

OPTIONAL { ?sd rdfs:label ?slab . }

}}

GROUP BY ?prName ?region ?source ?subsf ?price ?latency ?nprice ?nlatency ?navailability ?ncapacity ?capacity

ORDER BY DESC (?rank)

LIMIT 10

117

Bibliography

[1] S. NIST, 800-145: The NIST definition of cloud computing. 2012.

[2] J. Li, R. Guo, and X. Zhang, ‘Study on service-oriented Cloud conferencing’, in Computer

Science and Information Technology (ICCSIT), 2010 3rd IEEE International Conference

on, 2010, vol. 6, pp. 21–25.

[3] R. H. Glitho, ‘Cloud-based Multimedia Conferencing: Business Model, Research Agenda,
State-of-the-Art’, in 2011 IEEE 13th Conference on Commerce and Enterprise Computing

(CEC), 2011, pp. 226 –230.

[4] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, ‘A break in the clouds:
towards a cloud definition’, ACM SIGCOMM Comput. Commun. Rev., vol. 39, no. 1, pp.
50–55, 2008.

[5] S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, and A. Ghalsasi, ‘Cloud computing — The
business perspective’, Decis. Support Syst., vol. 51, no. 1, pp. 176–189, Apr. 2011.

[6] Q. Zhang, L. Cheng, and R. Boutaba, ‘Cloud computing: state-of-the-art and research
challenges’, J. Internet Serv. Appl., vol. 1, no. 1, pp. 7–18, 2010.

[7] M. Barnes and C. Boulton, ‘A Framework for Centralized Conferencing - RFC 5239’, RFC
5239, June, Jun. 2008.

[8] G. Camarillo, K. Drage, and J. Ott, ‘Binary Floor Control Protocol (BFCP) - RFC 4582’,
2006.

[9] O. Novo, G. Camarillo, and D. Morgan, ‘Conference Information Data Model for
Centralized Conferencing (XCON) - RFC 6501’, RFC 6501, March, 2012.

[10] ‘3GPP TS 24.147, Conferencing Using the IP Multimedia (IM) Core Network (CN), Stage
3, Release 11’, Mar-2008. [Online]. Available: http://www.3gpp.org/ftp/Specs/html-
info/24147.htm. [Accessed: 13-Jun-2013].

[11] ‘3GPP TS 29.199-12, Open Service Access (OSA), Parlay-X Web Services – Part 12:
Multimedia Conference (Release 9)’. [Online]. Available:
http://www.3gpp.org/ftp/Specs/html-info/29199-12.htm. [Accessed: 13-Jun-2013].

[12] ‘RFC 4353 - A Framework for Conferencing with the Session Initiation Protocol (SIP)’.
[Online]. Available: http://tools.ietf.org/html/rfc4353. [Accessed: 25-Jun-2013].

118

[13] ‘W3C Semantic Web Activity’. [Online]. Available: http://www.w3.org/2001/sw/.
[Accessed: 28-Jun-2013].

[14] V. Sugumaran and J. A. Gulla, Applied semantic web technologies. Auerbach Pub, 2012.

[15] ‘Introduction to Semantic Web Technologies’, 02-Jun-2010. [Online]. Available:
http://www.w3.org/2010/Talks/0622-SemTech-IH/. [Accessed: 30-May-2013].

[16] A. Maedche and S. Staab, ‘Ontology learning for the Semantic Web’, IEEE Intell. Syst.,
vol. 16, no. 2, pp. 72 – 79, Apr. 2001.

[17] K. Breitman, M. A. Casanova, and W. Truszkowski, Semantic web: concepts, technologies

and applications. Springer, 2007.

[18] G. Klyne, J. J. Carroll, and B. McBride, ‘Resource description framework (RDF): Concepts
and abstract syntax’, W3C Recomm., vol. 10, 2004.

[19] Manu Sporny, Gregg Kellogg, and Markus Lanthaler, ‘W3C JSON-LD Syntax 1.0’.
[Online]. Available: https://dvcs.w3.org/hg/json-ld/raw-file/b53e28df4bfd/spec/WD/json-
ld-syntax/20120712/index.html. [Accessed: 10-Jan-2013].

[20] D. L. McGuinness and F. Van Harmelen, ‘OWL web ontology language overview’, W3C

Recomm., vol. 10, no. 2004–03, p. 10, 2004.

[21] F. Manola, E. Miller, and B. McBride, ‘RDF Primer. W3C Recommendation (2004)’,
World Wide Web Consort. W3C Httpwww W3 OrgTR2004REC-Rdf-Prim.-20040210Last

Access Date 30 Aug 2004, 2004.

[22] ‘Resource Description Framework - Wikipedia, the free encyclopedia’. [Online]. Available:
http://en.wikipedia.org/wiki/Resource_Description_Framework. [Accessed: 30-May-2013].

[23] K. Dentler, R. Cornet, A. ten Teije, and N. de Keizer, ‘Comparison of reasoners for large
ontologies in the OWL 2 EL profile’, Semantic Web, vol. 2, no. 2, pp. 71–87, 2011.

[24] ‘SPARQL Query Language for RDF’. [Online]. Available: http://www.w3.org/TR/rdf-
sparql-query/. [Accessed: 30-May-2013].

[25] ‘Web Services Architecture’. [Online]. Available: http://www.w3.org/TR/ws-arch/.
[Accessed: 24-Jul-2013].

[26] N. Loutas, V. Peristeras, and K. Tarabanis, ‘Towards a reference service model for the Web
of Services’, Data Knowl. Eng., vol. 70, no. 9, pp. 753–774, 2011.

119

[27] D. Anicic, M. Brodie, J. de Bruijn, D. Fensel, T. Haselwanter, M. Hepp, S. Heymans, J.
Hoffmann, M. Kerrigan, and J. Kopecky, ‘A semantically enabled service oriented
architecture’, in Web Intelligence Meets Brain Informatics, Springer, 2007, pp. 367–381.

[28] D. Martin and J. Domingue, ‘Semantic web services, part 1’, Intell. Syst. IEEE, vol. 22, no.
5, 2007.

[29] J. Kopecky, T. Vitvar, C. Bournez, and J. Farrell, ‘Sawsdl: Semantic annotations for wsdl
and xml schema’, Internet Comput. IEEE, vol. 11, no. 6, pp. 60–67, 2007.

[30] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith, S. Narayanan,
M. Paolucci, B. Parsia, and T. Payne, ‘OWL-S: Semantic markup for web services’, W3C

Memb. Submiss., vol. 22, pp. 2007–04, 2004.

[31] D. Fensel and C. Bussler, ‘The web service modeling framework WSMF’, Electron.

Commer. Res. Appl., vol. 1, no. 2, pp. 113–137, 2002.

[32] T. Vitvar, J. Kopecky, M. Zaremba, and D. Fensel, ‘WSMO-Lite: lightweight semantic
descriptions for services on the web’, in Fifth European Conference on Web Services, 2007.

ECOWS ’07, 2007, pp. 77 –86.

[33] E. Triantaphyllou, B. Shu, S. N. Sanchez, and T. Ray, ‘Multi-criteria decision making: an
operations research approach’, Encycl. Electr. Electron. Eng., vol. 15, pp. 175–186, 1998.

[34] J. R. S. C. Mateo, ‘Weighted Sum Method and Weighted Product Method’, in Multi

Criteria Analysis in the Renewable Energy Industry, Springer London, 2012, pp. 19–22.

[35] H. H. Wang, N. Gibbins, T. Payne, A. Saleh, and J. Sun, ‘A Formal Semantic Model of the
Semantic Web Service Ontology (WSMO)’, in 12th IEEE International Conference on

Engineering Complex Computer Systems, 2007, 2007, pp. 74 –86.

[36] ‘Linked USDL’. [Online]. Available: http://www.linked-usdl.org/. [Accessed: 30-Jun-
2013].

[37] A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila, D. Martin, D. McDermott, S. A.
McIlraith, S. Narayanan, M. Paolucci, and T. Payne, ‘DAML-S: Web service description
for the semantic web’, in The Semantic Web—ISWC 2002, Springer, 2002, pp. 348–363.

[38] D. L. McGuinness and F. Van Harmelen, ‘OWL Web Ontology Language - Overview’,
W3C Recomm., vol. 10, no. 2004–03, p. 10, 2004.

[39] ‘Workflow Management Coalition’. [Online]. Available: http://www.wfmc.org/. [Accessed:
20-Jul-2013].

120

[40] R. Lara, D. Roman, A. Polleres, and D. Fensel, ‘A conceptual comparison of WSMO and
OWL-S’, in Web services, Springer, 2004, pp. 254–269.

[41] ‘D24.2v0.1. WSMO Grounding’. [Online]. Available: http://wsmo.org/TR/d24/d24.2/v0.1/.
[Accessed: 16-Jun-2013].

[42] K. Kadner and D. Oberle, ‘Unified Service Description Language XG Final Report’.
[Online]. Available: http://www.w3.org/2005/Incubator/usdl/XGR-usdl-20111027/.
[Accessed: 27-May-2013].

[43] D. Brickley and L. Miller, ‘FOAF vocabulary specification 0.98’, Namespace Doc., vol. 9,
2010.

[44] S. Weibel, ‘The Dublin Core: a simple content description model for electronic resources’,
Bull. Am. Soc. Inf. Sci. Technol., vol. 24, no. 1, pp. 9–11, 2005.

[45] M. Hepp, ‘Goodrelations: An ontology for describing products and services offers on the
web’, Knowl. Eng. Pr. Patterns, pp. 329–346, 2008.

[46] C. Pedrinaci, D. Liu, M. Maleshkova, D. Lambert, J. Kopecky, and J. Domingue, ‘iServe: a
linked services publishing platform’, in CEUR Workshop Proceedings, 2010, vol. 596.

[47] J. Kopecky, K. Gomadam, and T. Vitvar, ‘hRESTS: An HTML Microformat for Describing
RESTful Web Services’, 2008, vol. 1, pp. 619 –625.

[48] M. Maleshkova, J. Kopecký, and C. Pedrinaci, ‘Adapting SAWSDL for Semantic
Annotations of RESTful Services’, in On the Move to Meaningful Internet Systems: OTM

2009 Workshops, R. Meersman, P. Herrero, and T. Dillon, Eds. Springer Berlin Heidelberg,
2009, pp. 917–926.

[49] J. Li and F. Yang, ‘Resource-Oriented converged network service modeling’, in
Communications Technology and Applications, 2009. ICCTA’09. IEEE International

Conference on, 2009, pp. 895–899.

[50] A. N. Khan, S. Asghar, and S. Fong, ‘Framework of integrated Semantic Web Services and
Ontology Development for Telecommunication Industry’, J. Emerg. Technol. Web Intell.,
vol. 3, no. 2, pp. 110–119, 2011.

[51] D. Bernstein and D. Vij, ‘Using semantic web ontology for intercloud directories and
exchanges’, Proc. ICOMP, vol. 10, 2010.

[52] N. Loutas, E. Kamateri, and K. Tarabanis, ‘A Semantic Interoperability Framework for
Cloud Platform as a Service’, in Cloud Computing Technology and Science (CloudCom),

2011 IEEE Third International Conference on, 2011, pp. 280–287.

121

[53] S. K. Garg, S. Versteeg, and R. Buyya, ‘SMICloud: a framework for comparing and
ranking cloud services’, in Utility and Cloud Computing (UCC), 2011 Fourth IEEE

International Conference on, 2011, pp. 210–218.

[54] T. M. Smith, ‘Reusable features for VoIP service realization’, in Principles, Systems and

Applications of IP Telecommunications, 2010, pp. 42–47.

[55] ‘OASIS UDDI Specification TC | OASIS’. [Online]. Available: https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=uddi-spec. [Accessed: 09-Jan-2013].

[56] D. Kourtesis and I. Paraskakis, ‘Combining SAWSDL, OWL-DL and UDDI for
semantically enhanced web service discovery’, Semantic Web Res. Appl., pp. 614–628,
2008.

[57] Y. Ait-Ameur, ‘A Semantic Repository for Adaptive Services’, in 2009 World Conference

on Services - I, 2009, pp. 211 –218.

[58] C. Wu and E. Chang, ‘Aligning with the web: an atom-based architecture for web services
discovery’, Serv. Oriented Comput. Appl., vol. 1, no. 2, pp. 97–116, 2007.

[59] V. X. Tran, H. Tsuji, and R. Masuda, ‘A new QoS ontology and its QoS-based ranking
algorithm for Web services’, Simul. Model. Pr. Theory, vol. 17, no. 8, pp. 1378–1398,
2009.

[60] T. L. Saaty, ‘The analytical hierarchical process’, J Wiley New York, 1980.

[61] T. Haselwanter, P. Kotinurmi, M. Moran, T. Vitvar, and M. Zaremba, ‘WSMX: A Semantic
Service Oriented Middleware for B2B Integration’, in Service-Oriented Computing –

ICSOC 2006, A. Dan and W. Lamersdorf, Eds. Springer Berlin Heidelberg, 2006, pp. 477–
483.

[62] J. De Bruijn, H. Lausen, A. Polleres, and D. Fensel, ‘Web Service Modeling Language
WSML: An Overview’, in The Semantic Web: Research and Applications, Springer, 2006,
pp. 590–604.

[63] I. Toma, T. Bürger, O. Shafiq, and D. Döegl, ‘GRISINO - An Integrated Infrastructure for
Semantic Web Services, Grid Computing and Intelligent Objects’, in The Semantic Web:

Research and Applications, S. Bechhofer, M. Hauswirth, J. Hoffmann, and M. Koubarakis,
Eds. Springer Berlin Heidelberg, 2008, pp. 869–873.

[64] B. de hOra and J. Gregorio, ‘The Atom Publishing Protocol’, 2007.

[65] ‘Serializing SPARQL Query Results in JSON’. [Online]. Available:
http://www.w3.org/TR/rdf-sparql-json-res/. [Accessed: 18-Mar-2013].

122

[66] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara, ‘Importing the semantic web in
UDDI’, Web Serv. E-Bus. Semantic Web, pp. 815–821, 2002.

[67] A. Duke, S. Stincic, J. Davies, G. Álvaro Rey, C. Pedrinaci, M. Maleshkova, J. Domingue,
D. Liu, F. Lecue, and N. Mehandjiev, ‘Telecommunication mashups using RESTful
services’, Serv.-Based Internet, pp. 124–135, 2010.

[68] Jos de Bruijn and Dieter Fensel, ‘Web Service Modeling Language (WSML) - W3C
Submission’. [Online]. Available: http://www.w3.org/Submission/WSML/. [Accessed: 18-
Jan-2013].

[69] N. Baklouti, B. Gargouri, and M. Jmaiel, ‘An ontology-based approach for Linguistic Web
Service description’, in Enabling Technologies: Infrastructure for Collaborative

Enterprises (WETICE), 2012 IEEE 21st International Workshop on, 2012, pp. 450–455.

[70] ‘XML Schema Datatypes in RDF and OWL’. [Online]. Available:
http://www.w3.org/TR/swbp-xsch-datatypes/. [Accessed: 02-Jul-2013].

[71] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and D. Reynolds, ‘SPARQL basic graph
pattern optimization using selectivity estimation’, in Proceedings of the 17th international

conference on World Wide Web, 2008, pp. 595–604.

[72] R. Castillo, C. Rothe, and U. Leser, ‘RDFMatView: Indexing RDF Data using Materialized
SPARQL queries’, in The 6th International Workshop on Scalable Semantic Web

Knowledge Base Systems (SSWS2010), 2010, p. 80.

[73] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang, ‘QoS-
aware middleware for web services composition’, Softw. Eng. IEEE Trans., vol. 30, no. 5,
pp. 311–327, 2004.

[74] ‘Sesame Framework’. [Online]. Available: http://www.openrdf.org/index.jsp. [Accessed:
13-Jul-2013].

[75] ‘Jersey Web Service Framework’. [Online]. Available: https://jersey.java.net/. [Accessed:
23-Jun-2013].

[76] ‘Apache Jena - Reasoners and rule engines: Jena inference support’. [Online]. Available:
http://jena.apache.org/documentation/inference/. [Accessed: 23-Jun-2013].

[77] ‘Apache Any23 Library’. [Online]. Available: http://any23.apache.org/. [Accessed: 12-Jul-
2013].

[78] ‘RDF2Go Library for RDF Store Abstraction’. [Online]. Available:
http://semanticweb.org/wiki/RDF2Go. [Accessed: 12-Jul-2013].

123

[79] ‘Apache Tika Library for Content Analysis’. [Online]. Available: http://tika.apache.org/.
[Accessed: 12-Jul-2013].

[80] ‘RDF2Go - semanticweb.org’. [Online]. Available: http://semanticweb.org/wiki/RDF2Go.
[Accessed: 26-Jun-2013].

[81] ‘Berlin SPARQL Benchmark’. [Online]. Available: http://wifo5-03.informatik.uni-
mannheim.de/bizer/berlinsparqlbenchmark/. [Accessed: 12-Jul-2013].

