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Abstract

Instant Messaging Spam Detection in

Long Term Evolution Networks

Swagata Das

The lack of efficient spam detection modules for packet data communication is result-

ing to increased threat exposure for the telecommunication network users and the service

providers. In this thesis, we propose a novel approach to classify spam at the server side

by intercepting packet-data communication among instant messaging applications. Spam

detection is performed using machine learning techniques on packet headers and contents

(if unencrypted) in two different phases: offline training and online classification. The

contribution of this study is threefold. First, it identifies the scope of deploying a spam de-

tection module in a state-of-the-art telecommunication architecture. Secondly, it compares

the usefulness of various existing machine learning algorithms in order to intercept and

classify data packets in near real-time communication of the instant messengers. Finally,

it evaluates the accuracy and classification time of spam detection using our approach in

a simulated environment of continuous packet data communication. Our research results

are mainly generated by executing instances of a peer-to-peer instant messaging application

prototype within a simulated Long Term Evolution (LTE) telecommunication network en-

vironment. This prototype is modeled and executed using OPNET network modeling and

simulation tools. The research produces considerable knowledge on addressing unsolicited

packet monitoring in instant messaging and similar applications.
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Chapter 1

Introduction

The evolution of message exchange techniques is bringing newer security concerns to Inter-

net users and network managers. These concerns are largely stemming from the unsolicited

and malicious information being transmitted to the users. The resulting damage has been

seen in the form of excess data usage, network load imbalance, theft of privacy information,

denial-of-service attacks and other cyber-crimes. The increasing popularity of unsolicited

messages, commonly referred to spam, is due to the soaring business interest in reaching

potential customers through Internet-based data sharing. The spam detection is crucial

to Internet Service Providers (ISP) for their secured functioning, network load reduction

and customer satisfaction. In this regard, the subject is widely studied for emails. Several

content-based spam removal techniques are also commercially implemented and deployed.

However, applications of these detection techniques are very limited in faster interactive

communication, such as Instant Messaging (IM). In this thesis, we evaluate the suitabil-

ity and deployment of a spam detection module in telecommunication networks especially

applicable for messaging applications [41]. The proposed technique is based on machine

learning procedure and tested on packet data in a simulated environment of Long Term

Evolution (LTE) framework. The contributions of this dissertation are: (i) gap analysis

of the requirements and existing techniques; (ii) evaluation of applicable machine learning

algorithms; (iii) proposing architecture for an IM spam detection module in LTE; and (iv)

experimental validation of the execution of such module in a network simulator.
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1.1 Motivation

The detection and the removal of spams are subjected to well-known legal and technical

challenges. There exist various legislative efforts worldwide, such as European Union Pri-

vacy and Electronic Communications Directive, US CAN-SPAM Act, etc. Canada’s own

anti-spam legislation has also been passed in 2010 as Bill C-28 [1]. However, technological

complexity, remote location and caveats within the Internet often keep the spammers out of

organizational reach. We summarize the major difficulties in spam identification as follows:

• Lack of profound spam detection/classification techniques in user and server platforms.

• Difficulty of identifying and removing actual spam senders (spammers),

• Speed, volume of and inter-active nature of message communication,

• Use of automated programs (for example: spambot, chatbot) to send spam messages,

• Frequent changes of spam delivery strategies at the sender’s end,

• Lack of knowledge/attention from end-users against possible threats and exposures.

Spam removal is an important industrial and academic research issue in message communi-

cation. Removal of spam has been first addressed in emails. Renowned statistical reports [3]

indicate that, in 2011, approximately 3.1 billion active email accounts existed in Internet.

According to the Message Anti-Abuse Working Group (MAAWG), email-spam constituted

as 88-90% of the total email messages sent in 2011 first quarter [75]. Such a large volume of

email spam generates exorbitant financial loss by using Internet bandwidth unnecessarily

[26, 60]. In 2005, this loss was estimated as 50 billion of US currency [60]. Such an enormous

volume of spam and associated financial loss called for implementing robust mechanisms

for spam detection at industrial scale. In the last decade, ISPs and independent software

giants invested large amount of funds to ensure spam-free emailing services. On the other

hand, given the current growth of 11%, the number of IM user accounts are expected to

reach 3.5 billion by 2015. In 2004, Claburn statistically illustrated that almost 8% of all the

2



corporate instant messages are spam [68]. Furthermore, they informed that due to fast, in-

teractive and low-cost communication, IM is soon going to be an attractive platform for the

spammers to deliver commercial messages. Spammers are seen increasingly targeting near

real-time communication software to deliver messages. Recently, Facebook R© acknowledged

that more than 1 billion IM messages are being exchanged per day in its network [58]. Mul-

tiple independent reports are already published stating the requirements of efficient SPIM

detection mechanisms [68]. However, only a very few mechanism exists to reduce message

spam for IM services. In absence of such mechanisms, the spammers and cyber-attackers

are constantly exploiting this inadequacy. In 2002, MassMess, a Russia based company,

sent 10 million unsolicited commercial messages on Yahoo Messenger users [48]. In 2004,

New York police arrested a teenager in CAN-SPAM act for sending 1.5 million SPam over

Instant Messages (SPIM) on mortgage refinancing and adult pornography [74]. In 2005,

the IMlogic report indicated 1,693% increase of IM threats from the last year [19].

Securing IM environment requires elaborated research in various directions. In this the-

sis, we elaborate a new technique for SPIM detection from the packet flow inside telecom-

munication framework. The proposed detection module uses machine learning algorithm

to detect SPIM over different instant messaging communications. The detection time and

accuracy of the proposed module are successfully measured in a prototyped LTE frame-

work deployed on OPNET simulation environment. These results reveal sufficient detection

accuracy and small detection time for some machine learning algorithms. We expect that

our finding can be used to modulate packet flow among Internet users in order to achieve

overall user satisfaction and network load balance.

1.2 Overview of Message Spams

The need for messaging lies in the necessity of information sharing among distributed entities

that are engaged in collecting, processing, producing and storing information on heteroge-

neous platforms. Spams are seen in almost every areas of information sharing, such as email,

Voice over IP (VoIP), instant messaging, blog, newsgroup, forum, Short Messaging Services

3



Messaging Spam

Request-Response Spam

Web-Spam

Store & Forward Spam

E-mail Spam SMS Spam

Near Real-time Spam

SPIT SPIM

Figure 1: High-Level Taxonomy of Spam

(SMS), etc. Security research communities attributed different names to the spam based

on their area of activities [14]. While email-spam is widely known, spams are also called as

SPIT, SPIM, FSPAM, SPLOG in the area of VOIP, IM, forum and blog respectively1. In

this dissertation, we are mainly focused on detecting instant messaging spam (SPIM).

Message spams are intentionally created texts that are indiscriminately sent without the

consent of the recipients [55]. Different taxonomies exist on the message spams in the liter-

ature [22, 23, 55]. Figure 1 presents one such spam taxonomy from the data communication

perspective. We consider different message communication techniques namely: request-

response, store-forward and near real-time. We classify web-spam as request-response type.

E-mail and sms-spam are store-forward data communication while SPIM and SPIT are of

near real-time. In the literature, few articles also consider web-spam as message spam,

as it comes as a result of Internet user’s request. It includes different techniques such as

term spamming, link spamming, hiding, etc. as detailed by Gyngyi and Garcia-Molina [55].

Bookmark spam, comment spam, blog-spam (SPLOG) and social network spam are also

some examples of web-spam. These types of spamming are indirect and they do not really

require to establish sessions with victims. In contrary, the other two types of spam are

directly exchanged between spam-senders and receivers.

Most commonly, spams are sent through emails by writing text, adding unsolicited

attachments or putting links of the propagandas and malware. The unsolicited electronic

1see List of Abbreviations for more details
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content is often sent as a bulk to multiple recipients. There are different techniques involved

in email-spamming such as image attachment, blank email, backscattering, etc. A good

number of methodologies have also been established to classify the email-spam. The other

type of store and forward spam is called Short Message Service (SMS)-spam that refers

to the propagation of unsolicited texts usually containing advertisements through short

message service. The distinguished characteristics of these spams include their small size and

frequent use of non-dictionary words. SMS-spam is not as spread as its email counterpart.

Strict rules, restrictions, and monetary charges have been imposed worldwide over user

connection to set limits in such spam propagation. Both of these store and forward spams

travel through intermediate servers, that also keep a copy of the messages. Consequently,

these messages (including spam) can be delivered to the active, as well as, currently inactive

users after their next activation. Consequently, this type of spams can be classified through

reputation-based and content-based techniques [22] on the storages before or after delivery.

In contrast, instant messaging spams are generated through ubiquitous spamming tech-

niques with high potential danger. SPIM can be delivered only to a registered “online”

recipient though the instant messaging applications. The spam message comes through a

chat window and therefore bypasses almost all security settings through a pre-installed mes-

saging application in a user device. The window pops up advertisement, links to viruses and

spyware, etc. It is also able to deliver applications, such as Trojan Horse, that are capable to

install themselves inside the user device. recently, Security experts in Governments, corpo-

rations and ISPs have been continuously warning against SPIM because of its high intrusive

character owing to its design to pass local security settings. SPIT refers to similar unso-

licited “spam” calls using Voice over Internet Protocol (VoIP). Spammers use automated

calling application (bots) for the purpose of telemarketing, prank-call and other abuses. As

the VoIP is continuously changing the conventional telephony by low-cost communication,

spammers are increasingly targeting this platform to reach out to large group of callers.

SPIT is delivered by exploiting pitfalls in the underlying protocol, namely: Session Initi-

ation Protocol [53]. However, their detection is not easy due to real-time communication

and associated legal challenges concerning call privacy [28].
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The impact of spamming is threefold. First, it affects the privacy and security of the

spam recipients. Secondly, it creates vulnerabilities in the whole network that is hosting

these user devices. Thirdly, it has a larger effect on the corporate resources and infrastruc-

ture since a significant amount of corporate resource get wasted to serve these unsolicited

messages. More recently, spam sending bots are seen in attempting social engineering,

gathering intelligence, mounting phishing attacks, spreading malware and thereby threat-

ening the usability and security of the collaborative communication platforms. In the 3rd

Generation Partnership Project (3GPP), technical specification group quantified that ap-

proximately 250 GB of SPIT traffic per month can be generated from only one SPIT bot

[28]. In absence of effective filtering policies, SPIM is also seen generating significant poten-

tial revenue [68]. In 2005, Steve Roche reported in his book that 5% of the IM is SPIM [90].

In overall SPIM, 70% of messages carry links to pornographic websites, 12% contain “get

rich” schemes and 9% promotes product sales [90]. Therefore, high academic and industrial

interest are required to bridge up the gap.

1.3 Problem Statement

In this thesis, we primarily focus on understanding and identifying the scope of intercepting

IM data traffic at the LTE /IMS networks. We also investigate for a suitable technique to

classify SPIM from large LTE traffic with adequate accuracy and small classification time.

After a thorough analysis, we realized that a complex analytical solution with qualitative

or quantitative measurement of SPIM turns impractical to match the near real-time flow-

speed of huge incoming information. In this setting, machine-learning may offer a better

alternative to classify information based on predefined rules. These rules are often formed

by mining large-scale information and used in intelligent detection of matching patterns

on the incoming packets. Consequently, we evaluate different existing machine learning

algorithms and measure their performance to classify spam after training with small packets

(in contrary to email spam detection where the data content can be big). Finally, we stress

on accurate feature selection from packets such that the chosen algorithms can perform well
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also in presence of encrypted data content.

In practice, SPIM detection is extremely difficult because of various complexities asso-

ciated to IM applications, messaging architecture and protocols. First, instant messaging

applications are often peer-to-peer applications where the application server is only needed

for session binding. Secondly, IM is a near real-time communication with multiple services

(presence, messaging, content sharing, etc.). Therefore, online SPIM inspection is required

to be fast and accurate. Thirdly, few messaging protocols allows transferring of short and

symbolic texts along with voice and video messages through the same application that can

be hardly distinguished in the external network [27]. Finally, third-party IM applications

often do not follow industrial messaging standards and include additional data protection

by using proprietary protocols, encryption, etc.

Our proposed solution is very generic, however, throughout the thesis, we precisely

focus on identifying peer-to-peer IM communication. As the model of the data generating

process is too complex and partly unknown (as expected in our case), creation of a perfect

spam detection technique is impossible. Therefore, we expect a small amount of wrongful

attribution in classification of the incoming IM packets. We envision a possible use our

detection module in regulating the data flow from SPIM sending applications where the

removal of packet is not an acceptable solution due to technical and legal issues.

1.4 Objectives

In this thesis, we investigate for an effective and efficient SPIM detection approach in LTE

mobile framework. The objectives of this dissertation are as follows:

• Studying data communication in LTE and analyzing the scope of SPIM detection

within this telecommunication network.

• Finding the location and design of SPIM detection module in LTE.

• Analyzing the suitability and the complexities of different machine learning algorithms

for the proposed SPIM detection.
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• Selecting important features of SPIM classification from packet data.

• Designing and deploying the proposed module using an existing network simulator.

• Conducting experiments and presenting ‘online’ spam classification time and accuracy

among chosen machine learning techniques.

Our technique involves the use of machine learning algorithms on the packet features that are

mainly payload independent or associated to the packet headers. We use an online SPIM

detector at the Packet Data Network-Gateway inside an LTE component over downlink

packet stream. In this thesis, we evaluate four machine learning algorithms namely Naive

Bayes (NB), Support Vector Machine (SVM), AdaBoost, and J48. SPIM detector may

output a general insight about percentage of SPIM in the incoming traffic over specific time-

period. This insight can be later translated to regulate the packet-flow from various IPs.

The presented study mainly concerns about the feasibility of machine learning technique in

SPIM monitoring with respect to time and accuracy. We consciously ignore the details of

packet data processing or packet control in the mobile framework.

1.5 Thesis Organization

The rest of this thesis is organized in four more chapters. Chapter 2 introduces an overview

of the literature including remarkable previous research work in this field. It also covers the

state-of-the-art for existing infrastructure and a background study on instant messaging.

Furthermore, different messaging protocols are discussed in relevance to instant messaging

protocols. In Chapter 3, we describe our approach of SPIM detection and analyze the choices

for our machine learning algorithms. It also presents a set of features that are suitable

for SPIM detection from incoming network traffic using algorithms of machine-learning.

Chapter 4 elaborates on the validation of our approach by presenting and analyzing results

found from the simulation runs using a renowned network simulator [10]. Finally, Chapter 5

summarizes our contribution along with specific limitations of the approach. Consequently,

we also outline future steps that may enhance and consolidate this approach.
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Chapter 2

Background

In this chapter, we elaborate on the state-of-the-art. We start by presenting an overview

of necessity for SPIM detection in advanced telecommunication networks followed by a

short review of previous research work in this direction. Afterward, we illustrate the target

platform (LTE) and the specific message communication (IM) of our interest. We illustrate

necessary LTE telecommunications network components aiming to find a suitable location

for the SPIM detector. We also discuss IM-services along with different protocols. Finally,

we describe on various machine learning techniques in connection to our approach.

2.1 Overview

As the telecommunication is becoming more crucial for the information exchange, the de-

mand for faster data sharing is also rapidly growing in the industry. Spammers are taking

advantage of such exchanges to deliver the unsolicited messages or spams. Spams demand

a significant amount of corporate resources and attentions as they represent a potential

cause of various cyber-threats. However, keeping the telecommunications system spam-free

is probably impossible. In this thesis, we aim at finding a proper set of technologies and

algorithms to develop a module for on-line spam detection applicable to telecommunication

networks. We expect that our insight can be transformed into key decision input to re-

duce spam messages flow for Internet Service Providers (ISP). The detection mechanism is
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Figure 2: Forecast of Different Mobile Broadband Traffic

designed to function inside the LTE network from topological and functional perspectives.

Figure 2 renders the expected worldwide information sharing pattern for the near future.

The graph is produced by combining the statistical information published by Coda Research

Organization in 2009 [2]. In their published reports, the company estimated that almost

80% of the world’s three billion broadband subscriptions will turn to advanced mobile

telecommunications by 2013 and there will be huge increase in mobile data traffic especially

in LTE and 4G networks. The global smart phone sales will touch 2.5 billion over the period

starting from 2010 to 2015 as they assessed. As depicted in Figure 2, the traffic will also

increase from 44,487 terabytes per month in 2009 to approximately 1.8 Exabyte per month

in 2017. The graph also provides the trends of different type of traffic including audio,

video, peer-to-peer applications (such as instant messaging) and pure data sharing (such

as emails, browsing etc.). Recent surveys by Nielsen and eMarketer [24] also supported

similar predictions for United States. According to the report, 31% of mobile phone users

possessed smart phone in 2010 and it will reach to 43% by the end of 2015.
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2.2 Literature Review

In 2007, Park et al. published on a number of threats in 4G networks [81]. These threats in-

clude but not limited to malformed message attacks, denial of service, buffer overflows, etc.

In the case of instant messaging, network operators are highly concerned about the Theft of

Service (ToS) by automated program generated messages. A significant part of these mes-

sages is unwanted and exploits IM vulnerabilities to reach the end-users [33]. Unfortunately,

these operators cannot detect or stop the SPIM senders, which are mostly malicious soft-

ware (called as bot) residing remotely in the Internet. Therefore, an appropriate mechanism

to detect spam/SPIM messages is essential to the modern telecommunication networks.

The SPIM classification is a challenging task for the instant messaging application

providers in telecommunication systems due to its peer-to-peer architecture and use of

heterogeneous communication protocols. Aiming to solve the problem of SPIM classifica-

tion, researchers across the world stress on some of the key metrics in verifying security

of the telecommunication networks [81, 82]. Interoperability, usability, Quality of Service

(QoS) guarantee and cost-effectiveness of secured solutions are marked as important factors.

Secondly, researchers also suggest for continuous monitoring of various features and anoma-

lous events to detect new attacks [97]. Recent articles have proposed various multi-layered

architectures to block automated spammers to send messages to the networked users [82].

Symantec Corporation has implemented messaging gateway to protect network against the

SPIM threats [20]. This detection mechanism blocks SPIM message from infected exter-

nal users based on heuristic based rules. It uses SPIM signature and monitors uncommon

messaging activities [20]. The application is, however, successful in limited scenarios.

In the literature, many research initiatives can be found in tackling the problem of SPIM

filtering. Liu et al. proposed a new architecture for real-time SPIM defending and filtering in

a personalized setting of various IM gateways [68]. They tested a number filtering methods

that include Black/White list, collaborative feedback based filtering, content-based tech-

nique, challenge-response based filtering, IM sending rate, content based SPIM defending

techniques, fingerprint vector based filtering, text comparison filtering, Bayesian filtering,
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etc. [68]. After a number of experiments they claimed that the blacklisting spammers

based on user feedback produces most efficient blocking with least error rate. The work

also mentioned a challenge and response-based filtering technique in the same article. An-

other unique challenge generation technique has been patented by Satish, in 2005, that can

be implemented in network and/or user devices [94]. In his technique, the detection man-

ager sends a special message to the sender once it suspects an incoming instant message

as a SPIM. The detection manager then analyzes the response of that message to identify

SPIM. Mannan and Oorschot focused on using an encryption module on client chat applica-

tion for secured communication [70]. Inter-organizational collaborative feedback technique

also provides benefits to large-scale IM applications to handle SPIM [68]. Damiani et al.

addressed privacy-preservation and privacy guarantee for secure peer-to-peer IM [39].

Information security research communities have proposed SPIM removal by handling the

botnet and worms since these applications mostly use IM to deliver their campaign messages.

Change point detection [51], Virus Throttling [71] are some of the known techniques. In

2010, Maroof published a technique to distinguish bots from human users by mining user

characteristics [73]. The features in his collected dataset use word-length, message length,

URLs, Capital and small letters, etc. However, this work implements SPIM detection at

the user end. In [71], authors classified the chat BOTs into four different types: periodic,

random, responder and replay BOTs. However, detection or removal of remote bots from

Internet is challenging from the perspectives of ISPs in many ways. Therefore, in this thesis,

we decided to focus on packet filtering instead of sender identification.

Cormack et al. [36] worked on feature engineering for short messages where he found

interesting message characteristics by mining alphanumeric characters, words, and sequence

of words and letters in word. Sequence of letters in words over a specific size may generate

several attributes than the word itself. It has been found helpful in dealing with short

messages as well as in finding sequences of letters closely carrying the meaning of a word

[37]. The work elaborated higher classification accuracy using regression based and SVM

filters over large data of short messages. Yang and Pedersen [110] described some standard

tests to verify importance of the features in the context of text categorization. This work
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is useful in classification as it provides mathematical means to understand the importance

of various document features.

Given the limited memory and low computation power in currently available mobile

user equipments (UE), many of the aforementioned user-centric techniques cannot be well

implemented in the telecommunication user equipments to adequately deal with SPIM from

near real-time IM communication. On the other hand, network centric techniques are feasi-

ble for SPIM detection but require to handle huge amount of packet related characteristics.

In this trade-off, machine learning techniques are most useful to classify SPIM packets from

incoming packet streams. The choice mainly stems from the requirements of analyzing large

amount of observational traffic data in a very short time. Machine learning employs fast

rule-based prediction where the rules are typically generated off-line by elaborated training

on previous data. We assume that the incoming information is too complex for analytical

solution generation in near real time. In such case, machine-learning may be beneficial

appropriate detection technique by matching patterns from the data features.

2.3 LTE 4G Network

In 2007, the 3GPP proposed LTE as the standard specification of future all-IP mobile

broadband networks that will converge with WWAN technologies. LTE provides faster

web-browsing, rich Internet applications, real-time message communication along with ad-

vanced telecommunications of audio and video. In a short period of time, LTE has been

accepted worldwide [7]. Often times, LTE is considered as pre-4G telecommunication net-

work, however, according to the specifications, LTE is not a true 4G standard. It supports

lower data speed (300 Mbps downlink) in compare to the 4G requirements (1 Gbps down-

link). LTE specification is therefore expected to be enhanced to bridge the gap [101].

In LTE, communication technologies have been primarily optimized for efficient through-

put and higher-quality of services. They are designed to cope with all previous mobile com-

munication standards in heterogeneous network environments [101]. The use of advanced

antenna technology along with 2x2 and 4x4 channel configuration of Multiple Input and
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Multiple Output (MIMO) offers reduced packet latency and therefore provides faster data

communication. LTE is also known for its superior quality enhanced air interface, high

spectral efficiency, flexible radio planning and high data rate [104].

2.3.1 Evolution of LTE 4G Network

Aiming to support greater opportunities, quality of service and efficient real-time com-

munications with various user equipments, Universal Mobile Telecommunication Systems

(UMTS) have been upgraded and migrated from circuit switched network to packet data

core network. The transition for the technological enhancement has taken wireless network

through different generations. The wireless communications have been developed under

two different types of technologies: Wireless Local Area Network (WLAN), and Wireless

Wide Area Network (WWAN). WLAN has been serving as a de-facto wireless distribution

method to wirelessly connect supported devices to the wider wired networks and Internet.

The data communication rules are governed by Internet Protocol (IP). IEEE 802.11, pop-

ularly named as Wi-Fi, has turned out to be universally accepted wireless communication

standard. WWAN is another set of wireless communication techniques to serve in large

geographical area and therefore supports higher mobility to end users. Mobile telecom-

munication in cellular network uses this technology as standardized by the International

Telecommunications Union (ITU) [65]. The aim of WWAN was to move analog phone

system to IP-Based packet switching communication and to offer higher mobility and secu-

rity. The goal of the 4G advanced networking is set to converge WLAN and WWAN under

the same technology and to proceed ahead with unified wireless communication standard.

However, there exists another parallel improvement in technologies for Wireless Personal

Area Network (WPAN) [107]. WPAN is a typical ad-hoc technology designed to connect

devices within close proximity. Examples of WPAN technologies include Bluetooth network

devices, Infrared Data Association, etc. The WPAN maintains IEEE 802.15 standard [46].

Figure 3 presents a brief elaboration of WLAN evolution on the left side. WLAN

communication primarily offers multiple access points within small area coverage. In its

infrastructure a number of devices, having unique IP addresses, can use these access points
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Figure 3: Evolution of Wireless Networks

in a simultaneous coordinated manner in order to connect to a wired Ethernet connection

using network bridges. WLAN also offers ad-hoc peer-to-peer connection among these

devices. IEEE standard 802.11 protocols are used in WLAN for the physical and MAC

layers. Wi-Fi is the first set of standard technologies for WLAN. Depending on various

operating frequencies and throughput, IEEE 802.11 family is named as 802.11 a, b, g, n,

etc. WiMAX is a WLAN-successor wireless communications standard established in 2001

using IEEE 802.16 family of protocols. It has been designed to enhance the coverage of LAN

by extending it up to 50 kilometers [17]. WiMAX offers mobile broadband connectivity for

IP-enabled devices, VoIP, and similar services across cities. The latest development in the

wireless communication standard is the Wireless Regional Area Network (WRAN) based on

IEEE 802.22 family of standard protocols. WRAN has been designed with primary focus

on TV frequency and aims at providing broadband data communication in remote areas.

In physical layer, WRAN uses Orthogonal Frequency-Division Multiple Access (OFDMA)

whereas in MAC layer it exploits Cognitive Radio Technology (CRT). Furthermore, LTE/4G
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network has more similarities with WiMAX than with WRAN [88]. On the right side of

Figure 3, we elaborate on Mobile telecommunication technology evolution. This networking

is commonly mentioned as WWAN. There are two main types of WWAN technology: Global

System for Mobile Communications (GSM) and Code Division Multiple Access (CDMA)

[107]. GSM establishes multiple channels in frequency bands and offers them to multiple

users. CDMA digitalizes the calls one over other and uses sequence code to unpack them at

the back-end [4]. However, WWAN is a non-IP based communication that has been evolved

over multiple generations commonly named as 1G, 2G, 3G, etc.

The CDMA technology also evolved from first generation, followed by CDMAOne and

CDMA2000 technologies in second and third generations respectively. Evolution-Data

Optimized (EV-DO) was set as CDMA broadband wireless network standard in Third-

Generation Partnership Project 2 (3GPP2) that increased the uplink and downlink data

rate. The latest Revision of the EV-DO, namely EV-DO Rev A, is considered as the current

technology with uplink and downlink data rate up to 1.8Mbps and 3.1 Mbps, respectively.

GSM, on the other hand, is a 2G technology that was also evolved over time. Initially,

Wide band-CDMA technologies were accepted by GSM in the third generation. After-

ward, High-Speed Packet Access (HSPA) has been adopted to improve the performance

of the UMTS. HSPA is composed of High-Speed Downlink Packet Access (HSDPA) and

High-Speed Uplink Packet Access (HSUPA) telecommunications protocols that offer down-

link and uplink speed up to 14.4 Mbps and 5.76 Mbps, respectively. Currently available

technology is HSPA+ that provides enhanced speed (42Mbps and 22Mbps) using MIMO

technology and higher-order modulation in antenna [107].

2.3.2 LTE Network Components

To support greater spectrum efficiency and reduced latency, LTE uses Orthogonal FDMA

with downlink data rate of 300Mbps and Single Carrier FDMA (SC-FDMA) to offer 75

Mbps of uplink data rate using MIMO system. All-IP supported 4G/LTE network allows

communication with the other existing 3GPP, as well as, non-3GPP telecommunication

networks. Precisely, LTE network architecture pertains to the interconnection of different
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Figure 4: LTE Architecture for Instant Messaging [101, 104]

architectural components for enterprise-scale telecommunication networks. Term “LTE” is

used to represent a broader technological aspect in the world marketplace, while in accor-

dance to the developer’s term, it only means the radio access part of the whole network.

Figure 4 depicts the high-level architecture including LTE-IMS framework and the In-

ternet service network. LTE is also termed as Evolve Packet System (EPS). EPS contains

LTE access network and System Architecture Evolution (SAE). A variety of user equip-

ments (UE), ranging from simple handheld cell-phone to laptop computers associated with

mobile broadband adapter connect to the radio access network by LTE-Uu air interface.

A UE mainly acts as the end user which initiates, connects, controls and manages the call

and the session. The radio access network of LTE, also known as the Evolve-Universal

Terrestrial Radio Access Network ( E-UTRAN), mainly reduces latency for all air inter-

face operations. E-UTRAN is composed of advanced antennas and a set of evolved-NodeB

(eNodeB) to connect wireless devices. The eNodeBs are interconnected by X2 interfaces

to the EPC nodes by different S1 interfaces. The functionalities of these nodes are de-

centralized/flat. They are responsible for radio resource management such as scheduling

and allocating uplink and downlink resources, compression of IP header, encryption of user

data. They also play an important role during handover by coordinating with other eN-

odeBs [96]. E-UTRAN is connected to the Evolved Packet Core (EPC) system at one side

through IP-based connectivity whereas E-UTRAN relays data in radio connection to the
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other side. Thus, it can guarantee higher amount of packet flow to the UEs. The core part

of SAE, responsible for the rapid and efficient adaptation of mobile broadband, is called

Evolve Packet Core (EPC). EPC supports multi-service convergence and multiple access

technology. It supports both GSM and CDMA networks and represents the common core

network for fixed mobile network convergence. There exists four types of logical nodes in

EPC, as depicted in Figure 4, that are inter-connected by means of interfaces (S1-U/S11

etc). These nodes are identified as follows:

• Mobility Management Entity (MME): This node acts as a control node for the bearer

(IP packet flow with defined QoS from gateways to UE) establishment, maintenance

and release while ensuring at the same time session connection and security. The

underlying functional layer in UMTS protocol stack from this node to the core network

is named as Non-Access Stratum (NAS).

• Home Subscriber Server (HSS): It is a master database that stores SAE subscription

data of user addresses for connecting PDNs (as Access Point Name(APN)), holds

dynamic information such as the currently attached MME, physical location of users

and generates vectors for authentication and security keys. HSS provides registration

data, presence, roaming, buddy-list among multiple access networks to the IMS [43].

• Policy and Charging Control Function (PCRF): This node makes decision on charging

and control QoS based on policy rules from the technical details of Service Data Flow

(SDF) that will apply to services for the users. Then, it passes these rules to the

Policy Control Enforcement Function (PCEF) located in the Packet Data Network

Gateway for the enforcement purposes.

• Serving Gateway (S-GW): This type of nodes plays the role of the mobility anchor

during inter-eNodeB handover and other 3GPP technology handover. It helps in rout-

ing and forwarding all data packets. Among its other responsibilities, it remembers

information about the bearer during UE idle mode. It also temporarily buffers down-

link data while the Mobility Management Entity (MME) initiates paging of the UE

for bearer re-establishment, collects charging data in the visited networks, etc. [101].
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• Packet Data Network Gateway (PDN-Gateway or P-GW): This node offers UE con-

nectivity to the external packet data networks and also anchors the mobility between

3GPP and other non-3GPP technologies. However, in practice, multiple P-GWs may

exist for Internet or SIP-based instant messaging. One UE is also allowed to maintain

simultaneous connection with more than one P-GW [96]. It performs policy enforce-

ment, packet filtering for each user, packet screening, charging support and lawful

interception [77]. P-GW allocates an IP address for the UE and enforces the flow

based charges from PCRF. As the S-GW in LTE network acts as the handover an-

chor for inter-working with GSM and UMTS networks, P-GW takes the responsibility

for seamless handover to non-3GPP networks such as CDMA2000 or WiMAX by the

interfaces based on Proxy Mobile Internet Protocol (PMIP).

There exist other logical nodes in EPC network that are kept to support non-3GPP trusted

/ untrusted nodes such as: Evolve Packet Data Gateway (EPDG), 3GPP-Authentication,

Authorization, Accounting Server (AAA) etc. However, their detailed functionalities are

beyond the scope of interest in this thesis. We propose to deploy our SPIM detector in

P-GW to analyze incoming packets on downlink. The detector functionalities are discussed

in Section 3.

2.3.3 IP Multimedia Subsystem Network Architecture

To support real-time IP-based multimedia services such as: messages, video, audio and text,

from heterogeneous platforms, LTE framework includes IP Multimedia Subsystem (IMS)

network. IMS is the convergence platform of network, device and services for the estab-

lishment of peer-to-peer or peer-to-content connection between IP enabled devices. IMS

guarantees better QoS and account pricing (irrespective of the user location) including ad-

ditional services in relation to multi-media [31]. It is responsible for establishing, managing

and terminating sessions, and presence also. It supports standard interfaces for multiple

service developers for both wireless and wired network [31].

On the top of data access network (fixed-line, packet-switched, radio, etc.), IMS has
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three distinct functional layers according to 3GPP Release 5, namely Transport, Core-

Control and Service/Application Layers. These layers invoke different functions to perform

tasks for managing applications, mobility, and compliance constraints. The transport layer

is a combination of protocols including Real-time Transport Protocol (RTP) and Session

Initiation Protocol (SIP). It includes media gateways with Media Resource Function (MRF),

signaling gateways and media servers, which altogether facilitates registration of devices, in-

band signaling, and shared applications (voice mail, push-to-talk, interactive response sys-

tems etc.). MRF is functionally separated by Media Resource Function Controller (MRFC)

and Media Resource Function Processor (MRFP) [43].

Figure 4 also denotes logical components of IMS control layer. This layer connects to

a central user database server “HSS” through the session control severs. Session control is

performed using SIP. HSS routes the SIP messages, authenticate and distribute of IMS traffic

between transport and service layers [43]. Logically, IMS control layer consists of a Proxy

Call Session Control Function (P-CSCF), a Serving CSCF (S-CSCF) and an Interrogating-

CSCF (I-CSCF) with visible IP addresses in Domain Name Service (DNS). The IMS control

layer components are detailed as follows:

• Proxy Call Session Control Function (P-CSCF): P-CSCF is the first point of contact

for a UE within IMS. P-CSCF secures the media flows by accepting the SIP regis-

ter/invite methods and allocating resources for the purpose. Afterward, it determines

the next passing destination either to route the information to the right S-CSCF or

to the home network [109].

• Serving Call Session Control Function (S-CSCF): S-CSCF provides session states

control services for an ongoing session. It performs SIP registration by accepting user

requests and relays the SIP request and response between the sender and the receiver.

It also acts as a proxy server between users and other CSCFs or SIP servers [98].

• Interrogating Call Session Control Function (I-CSCF): I-CSCF is another contact

point for all connections that interrogates the location and the suitability of the S-

CSCF to the HSS within the network of operator. Consequently, it assigns S-CSCF
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address to the registering users if match is found. There may be multiple I-CSCFs in

a network of an operator. I-CSCF is also used to hide the internal structure of the

operator network from the external network [98].

Also behind the IP-Cloud, as shown in Figure 4, there exists an application server that

runs the IM application. The IM application can be shared by several users from different

LTE frameworks or Internet connected workstations (using legitimate proxy servers). The

authentication server verifies and validates the authenticated users of the IM application.

UEs mainly require the IM application server for connection establishment (connect, login,

logout functions), presence management, and session binding purposes. Up next, we are

expanding our research interest in the details of instant messaging services and protocol.

2.4 Instant Messaging

Messaging is a general form of asynchronous near real-time communication between two

or more users communicating using different peripherals in their respective networks. As

mentioned in Section 1.2, different types of messaging techniques exist in various commu-

nication applications ranging from e-mail to Short Message Services (SMS). Exchanged

messages are mostly text-based with possibilities to carry audio and video data. Instant

messengers are one of the most popular type of interactive application that communicate

packet data directly between known (and unknown) people. The procedure is grossly known

as chatting. However, chatting covers a more general concept than instant messaging (IM).

Chat often refers to communication between known and unknown people in a multi-party

platform while instant messaging is mainly performed between known people from their

contact lists. Chatting is commonly a Client-Server communication (example: yahoo mes-

senger, AOL messenger) while IM is mostly peer-to-peer communication (example: Skype).

However, some messengers do not follow peer-to peer instant messaging for their business

interest. A handful number of client-server based instant messaging applications exist also,

such as: Jabber. With the technological developments, these applications are integrated in

commercial and educational websites, email applications, mobile phone devices, etc.
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Mobile Instant Messaging (MIM) enabled devices are mostly equipped with proprietary

or carrier independent messenger. On the other hand, Wireless Instant Messaging (WIM)

users require internet to connect with other WIM users or fixed IM users ( AOL, MSN,

Yahoo! etc ). The spam detection in instant messaging requires a thorough understanding

of messaging procedure itself. In the following, we describe services and protocols associated

with the peer-to-peer instant messaging, especially in our context of LTE framework.

2.4.1 Services

Instant messengers offer three main services [69] namely presence service, messaging service

and content management. A brief description of these services is presented in the following.

• Presence Service: The presence service intends to accept, store, and distribute pres-

ence information among the IM clients [42]. The users of the presence services are

namely presentities and watchers. Presentities provide presence information to the

presence service at the server, while watchers request presence information about pre-

sentities from the presence service. A watcher can be subscriber, fetcher, or poller.

A subscriber sends a request for presence information of others such that the ser-

vice remembers the subscriber and its track of subscription. It also sends notification

of change in presence information for other subscribers of interest. A fetcher uses

request-response based communication to retrieve presentity information for one time.

A poller fetches presentity information multiple times possibly after periodic inter-

val [54]. The presence service is associated with two logical agent entities, namely:

Presence User Agent (PUA) and Presence Agent (PA). While the PUA is involved in

manipulation of presence information for presentity, PA works inside proxy to receive

and send subscribe and notify messages. The latter is implemented in SIP and has

the ability to retrieve and to process presence information as well in the server.

• Messaging Service: Messaging service is responsible for message delivery. It also helps

in access control, group usage, management, access control, etc. In IM applications,

this service is designed in many ways. In Section 2.4.2, we later discuss messaging
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for two standard protocol implementations, namely: eXtensible Messaging And Pres-

ence Protocol (XMPP) (IETF RFC-3921) and Session Initiation Protocol for Instant

Messaging and Presence Leveraging Extensions (SIMPLE) (IETF RFC-3428 [32]).

• Content Management : IM content is consistently managed by effective policies as

described in multiple RFCs (RFC 4745 [95], RFC 5025 [92], RFC 4825 [93]). Con-

tent management offers to minimize the risk of malware infection, virus, etc. from

the attachment files. It also hinders private and confidential information to be used

by software implementing institution. Finally, content management enforces in the

messaging application compliance to governmental laws and regulations.

In the next section, we present two application layer protocols for messaging session initia-

tion, presence notification, and message delivery.

2.4.2 Protocols

Architecturally, IM applications are of two main types: Client-Server (example: Google

Talk) and Peer-to-Peer (example: Skype). Enterprise messenger applications use propri-

etary and standard protocols for session initiation and data communication. In this thesis,

we focus on the two industrial open standard protocols: XMPP and SIMPLE.

XMPP is a robust, presence-aware, inter operable client-server protocol with XML-based

data-transport. It enforces message streaming through servers to meet potential business

interest. An example of such a service is Jabber [6]. The adherence to XML structure limits

the inclusion of voice and video through the same protocol and requires separate technology

such as: Jingle [18]. Corporations, like Google, HP, Sony, Hitachi have implemented the

concept. In XMPP, message delivery is implemented using two client types: senders and

instant boxes [54] according to the IETF model released in the RFC 2778. The sender

provides message data to a messaging service including information of an instant box. The

underlying service attempts to deliver the message to a target instant box.

SIMPLE, on the other hand, is a presence-aware, peer-to-peer text-based protocol on top

of SIP used by Microsoft, IBM, etc. Although there is no popular Internet scale application,
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SIMPLE is a promising protocol for high-speed LTE framework because of its ability in

voice, video, and content management in concise text-based format. In SIMPLE, there

exists two different modes namely: Pager and Session. In pager mode, instant messages

are sent over SIP using the MESSAGE method extension (RFC 3428 [32]). When using

session mode messaging, a session is established using SIP, after which the Message Session

Relay Protocol (MSRP) is used for exchanging instant messages within the session directly

between the users (RFC 4976 [61]). Table 1 shows a comparison of the aforementioned two

protocols with respect to their features and capabilities.

2.5 Machine Learning

In recent years, simultaneous sharing of enormous information via web, mobile devices,

satellite etc. necessitates automated processing of large amount of data while managing

high quality-of-service, data control, security and privacy. Consequently, the autonomous

learning and consolidate decision making techniques based on available sample data gained

enormous research interest. We intend to use classification based on machine learning

techniques to detect SPIM from instant messaging in LTE framework. A number of machine

learning techniques are available in literature. Most of them are actually originated from the

prior used off-the-shelf detection mechanisms in the industrial arena. The machine learning

algorithms are capable of recognizing the regularities in the data and predict an approximate

result. In a nutshell, machine learning techniques are used to study a large amount of

previously stored data and generate pattern-based output to train detection module. The

trained detector is later applied during execution in order to identify pattern(s) during the

testing phase from the incoming data. Machine learning techniques has been studied based

on different aspects of interest. Dredze [45] pointed out two main types of machine learning,

namely output-based and function-based, as depicted in Figure 5. The performance of the

applied technique depends on the characteristics of the data and the overall scope.

The output-based machine learning techniques are classified with respect to the types

of the output. The most popular technique in this regard is Classification. Classification
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Table 1: Comparative Study of XMPP and SIMPLE
Features XMPP SIMPLE

Architecture
and data
transport

Client-Server protocol with
XML-based

Peer-to-Peer protocol with text-based

Data transfer Streaming based Two modes: Paging and Session

Presence Presence-Aware Presence-Aware

Audio/Video
Support

Difficult to extend Easy to extend

Audit/Logging Easy to audit/log ongoing
communication

Difficult to log communication

Deployment Large-scale proven implemen-
tation available

Large-scale applications under development

Code Open-source code available Unknown

RFC IETF RFC 3921 IETF RFC 3428

Users Google, Hewlett-Packard,
Intel, Wireless Computing
Group, Sony and Hitachi

Microsoft, IBM, Yahoo, Sun Microsystems,
Oracle

Messaging
Example

<message
from=‘juliet@example.com/foo’
to=‘romeo@example.net’>
<body>Hello, How are you?
</body> </message>

<sip:...@example.net>
SIP/2.0 Via: SIP/2.0/TCP
x2s.example.com;branch=z9hG4bK776sgdkse
Max-Forwards: 70 From: Peter Saint-Andre
<sip:...@jabber.org>To:<sip:...@abc.net>
Call-ID: <Hr0z...@example.com> CSeq:
1 MESSAGE Content-Type: text/plain
Content-Length: 35 Hello, How are you?

Presence Ex-
ample

<presence
from=‘juliet@example.com/foo’
to=’romeo@montague.net/bar’/>

NOTIFY sip:192.0.2.2 SIP/2.0 Via:
SIP/2.0/TCP x2s.example.com;
branch=z9hG4bKna998sk From:Peter
Saint-Andre <stpe...@jabber.org>
To:<sip:...@example.net>;tag=yt66 Call-
ID:<j4s0...@example.com> Event: pres-
ence Subscription-State:active;expires=599
Max-Forwards: 70 CSeq: 157 NOTIFY
Contact:<sip:sipgate.example.com;transport=tcp>
Content-Type: application/pidf+xml
Content-Length: 192 <?xml ver-
sion=‘1.0’ encoding=‘UTF-8’?><presence
xmlns=‘urn:ietf:params:xml:ns:pidf’
entity=‘pres:<jul...@example.com>′><tuple
id=‘x’> <status><basic>open</basic>
</status></tuple></presence>
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Figure 5: Taxonomy of Machine Learning Techniques

predicts the association of input data to an output group. The prediction can be binary,

multi-class or even hierarchical. Loss of accuracy is a major concern in these techniques. An-

other output learning technique is Ranking [21]. In Ranking, classified groups are partially

ordered among themselves. The process of ordering the detailed measures into a sequence

of ordinal numbers helps in evaluating large volume information according to certain crite-

ria. Regression, (see Figure 5), is the third technique to formulate training output into an

equation or mathematical model that helps in predicting status of live input information.

The Structured learning is associated to build sequence, data structure, segmentation from

the output and classifies the live input data accordingly.

The taxonomy of machine learning can also be seen from a functional perspective. The

two main functionality-based categories are unsupervised and supervised. Unsupervised

machine learning does not involve training phase to build the model. It creates groups

for new information instance by finding hidden structure based on a given set of measure-

ments and observations from unlabeled data in order to differentiate the data. Association,

clustering, density estimation are few general examples of unsupervised machine learning.

The supervised learning technique works in two phases, namely training phase and testing
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or classification phase. In the training phase, a model is trained from the known exam-

ples with pre-labeled classes. In the testing phase, also known as the classification phase,

this trained model predicts categorical class labels for new data instances. The prediction

is usually nominal or discrete. In the case of continuous output prediction from trained

model, the procedure is called Reinforcement. Different algorithms exist in the literature to

train the inferred model function with labeled input data such as support vector machine,

boosting, k-nearest neighbor algorithm etc. Hybrid semi-supervised learning mechanisms

are also available in the literature. Furthermore, training of machine learning model can be

achieved through functionally distributed agents with/without multi-tasking abilities.

In the next chapter, we evaluate some of the promising machine learning algorithms with

established performance measurement metrics to justify our choices of the most profound

algorithms for spam detection in telecommunication networks.

2.6 Summary

Instant messaging applications are highly attractive to the spammers in order to commu-

nicate spam directly to the targeted users. The underlying technologies are much faster

in delivering message in compare to the emails and have intrinsic limitations in identifying

and separating spam messages. As a whole, they possess higher threats that range from

unsolicited data delivery to complex cyber-attacks. However, the advantage of the SPIM

detection in mobile communication network is that the IM packets always pass through the

mobile network establishment before reaching the user equipments. The contribution of this

chapter can be seen in a thorough review of the research background. In the aforementioned

study, we illustrate the need for SPIM detection in this high-speed mobile telecommunica-

tion network. We elaborate our target telecommunication network, illustrate the scope of

the SPIM detection module and discuss various machine learning techniques to identify the

SPIM. We also cover major previous research and development efforts toward this direction.
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Chapter 3

Proposed Approach

In this chapter, we propose a module to use machine learning techniques for spam classi-

fication from IM packets. First, we identify the location of this SPIM detection module

in LTE network architecture. Then, we present a high-level architecture of the detection

module followed by a description of the proposed technique. Afterward, we select a number

of machine learning algorithms from different categories. Their suitability in our context

are verified from theoretical perspectives and experimental verifications. Finally, we discuss

a set of IM packet features that can be used to classify the packets containing spam.

3.1 Location of SPIM Detector

As depicted in Figure 4, we propose the location for the SPIM detection module in PDN-

Gateway. The proposed detector in this gateway will classify incoming packets on the

downlink to find SPIM. The underlying reasons for choosing PDN-Gateway are as follows:

• PDN-Gateway has existing techniques for policy enforcement, lawful interception,

packet filtering and packet screening.

• Incoming IM packets in LTE telecommunication networks mostly pass through PDN-

Gateway and therefore can be intercepted, monitored and analyzed as per require-

ments.
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• PDN-Gateway may share information and knowledge with other third-party non 3-

GPP networks.

• It also supports a number of user charging mechanisms for additional services.

• The number of PDN-Gateway is far less than other types of LTE components in the

packet data flow. Therefore we expect to receive considerable amount of coherent

training data to prepare the classifier.

However, it should be understood that the LTE data load is very high on the PDN-Gateway.

Therefore, it requires very fast technique to analyze packet from this huge volume of traffic.

Machine learning is one of the most suitable techniques in this regard.

3.2 Proposed Technique

Many off-the-shelf packet sniffers and filters, such as: Snort[91], use combination of rules

during Deep Packet Inspection (DPI). They apply regular expression, efficient string search

algorithms (ex. Boyer-Moore), etc. We rely on stateless deep packet inspection techniques to

get comparatively faster inspection than its stateful counterpart especially in LTE network

[66]. However, we expect intelligent spammers to be situation-aware and adaptive. They

often bypass these rules by changing string and symbolic representations. In this respect,

adaptive machine learning algorithms offers significant advantages in SPIM detection.

Figure 6 depicts our proposed SPIM detection module. In offline, we prepare the ‘user

model’; a trained classifier for packet classification. We carefully differentiate between two

types of IM packets: small signaling packets (<100 bytes) and large data packets (An

absolute size limitation of TCP packet is 64K but IM uses much smaller packets usually

less than 1500 bytes). We first pre-process the SPIM and the legitimate datasets from

previously captured and labeled databases available offline. This preprocessing includes

selection of attributes/features and representing each packet of the message as a vector of

attributes. Selected learning algorithm can then be used to train the classifier for online

IM packet classification. Our classification objective involves binary determination of SPIM
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Figure 6: Component and Data Flow in SPIM Detection Unit

and provides network administrators with statistical information about packet senders. We

assume that the vectorized packet information is instantly prepared by an external DPI

plugin. Although strong encryption may result in failure to understand the packet payload

but packet flow, structure and message header related information can be mined. Zhang

et al. [111] discussed spam detection accuracy from message header. Using e-mail corpus,

they found that the classifiers using features from the message header alone may achieve

comparable or better performance than classifiers using features from message body. In the

next section, we investigate and compare some of the suitable machine learning techniques

for SPIM classification from theoretical perspectives and implementation standpoints.

3.3 Selection of Machine Learning Algorithms

The following discussion includes a selected number of machine learning algorithms from

three major perspectives of deployment. First, we focus on the spam detection accuracy.

Second, we analyze the offline training time of these supervised machine learning algorithms.

30



Finally, we compare their spam classification time to judge their appropriateness.

According to the existing research performed in this area, the supervised learning meth-

ods have shown a higher percentage of success compared to other techniques in the context

of spam filtering, particularly in email-spam detection and text categorization [44, 105]. In

the supervised learning technique, for example, a set of messages (stored in inbox) which is

divided into spams and legitimate, trains a classifier offline from one or more data sources

(also known as corpora). The training procedure starts learning priorly identified set of fea-

tures from the flow, packet header and packet content that are priorly pruned from the data.

It should be noted that the significance of feature selection varies greatly from a classifier

to another. In this research and development, we restrict our search among four commonly

used spam filtering algorithms, namely Naive Bayes (NB), J48 decision trees, Support Vec-

tor Machine (SVM) and AdaBoost (Ada). We also discuss two more algorithms, namely,

Maximum Entropy and K-Nearest Neighbor (K-NN). However, we do not select them to

implement in the simulation environment. The selection of these classification algorithms

are made based on their distinguishably different learning techniques and their suitability

for the targeted environment. Specifically, the focus is on the following criteria.

• Compliant with real-time tracking with low processing overhead;

• Deployable in the LTE/IMS architecture and cellular infrastructure;

• Highly accurate in prediction with small size packet content;

• Cost effective in terms of network hardware and software requirements.

• Applicable to different protocols;

The following sections describe each of these selected supervised machine learning mecha-

nisms and their various aspects in spam classification.

3.3.1 Naive Bayes

Naive Bayes (NB) is one of the most popular algorithms that is implemented in various

commercial and open-source anti-spam email filters [72]. According to Bayes’ theorem, the
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conditional and marginal probabilities of two events A and B are related as follows:

P (A|B) =
P (B|A)P (A)

P (B)
(1)

Eqn. 1 formulates the conditional probability of A, given the probability of B. The rule

can also be used to compute the probability of the class c ∈ {spam, legitimate} from a

document vector ~dj where ~dj can be seen as jth document with a collection of independent

features such that ~dj = {wj1, wj2, . . . , wj| ~dj |}. Let n be the size of ~dj , such that |~dj | = n. In

fact, each document feature is conditionally independent with other features and therefore

can be represented as Naive condition in the conditional probability:

P (~dj |c) = Πn
i=1P (wij |c) (2)

Hence, the Naive Bayes probability of document class can be expressed as:

P (c|~dj) =
P (c).Πn

i=1P (wij |c)∑
k∈{legitimate,spam} P (ck).Π

n
i=1P (wij |ck)

(3)

where
∑

k∈{legitimate,spam} P (ck).Π
n
i=1P (wij |ck) is a scaling factor, often termed as evidence.

In the training phase, the procedure helps to create an inferred function with a determined

output of the threshold t to recognize a spam from other incoming messages during the

classification stage. Several research articles have been published to enhance performance

of NB [76] using variants in conjunction to Bernoulli theorem, multinomial term frequency,

Gaussian distribution, etc. In this thesis, we consider only multinomial NB with Boolean

attributes (representing whether a feature is present or absent in a message) as this technique

is known for low computational complexity and comparatively high performance [76].
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3.3.2 K-Nearest-Neighbor

K-Nearest Neighbor (K-NN) is a non-parametric inductive learning algorithm that projects

every message instance in a well-defined space during the training session [49]. In the test-

ing phase, it computes “distance metric” of the given message sample with respect to its

nearest neighbors. The computation is also referred as voting of neighbors. The param-

eter k actually determines the number of neighbors to be considered in the computation

related to the classification process. From the basic functions, it is clear that K-NN needs

large memory, computationally intensive recall and it is highly susceptible to the curse of

dimensions phenomenon [25]. Moreover, the learning procedure is lazy [49] as the classifica-

tion procedure requires the actual computation of the distance metric to classify a message

instance to its nearest neighbor(s). Although the implementation is analytically tractable

and simple to implement, we do not consider this algorithm for our experimental purposes.

3.3.3 Maximum Entropy

The Maximum Entropy (MaxEnt) considers that if a probability distribution offers opti-

mum information entropy for a message then it is the actual probability distribution with

respect to that message classification [112]. In other words, the most uniform model that

can be generated from the labeled training data is assumed to be able to best predict

the class of a message during testing phase. Let us consider a set of training samples

T = {(x1, y1), (x2, y2), . . . , (xN , yN )}, where xi is a real-value feature vector and yi is the

target class. So, we hereby consider a set of testable information X = {x1, ...., xn}. For a

test/classification over a new message x, the first constraint may be defined as the sum of

probability of its classification to different class members which is equal to 1.

n∑
i=1

P (yi|x) = 1 (4)

Now, let f(x, y) be an arbitrary feature function with data variable x and class variable

y that we choose to model. The true value of this function provides an indication that a
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certain expectation is true for a given situation. Therefore, the empirical distribution P̃ (f)

of our interest may be described by the following equation:

P̃ (f) ≡
∑
x,y

P̃ (x, y).f(x, y)⇒ P (f) ≡
∑
x,y

P̃ (x)P (y|x).f(x, y) (5)

P̃ (x, y) is the expectation of x and y to occur simultaneously. The mathematical measure

of uniformity for conditional distribution P (y|x) is provided by log-likelihood H(P ) on the

training data, also known as entropy:

H(P ) = −
∑
x,y

P̃ (x)P (y|x).log p(y|x) (6)

The MaxEnt message classifier is a discriminative model that is trained to maximize

the (log) likelihood of the class labels conditioned on the features in the training examples.

Therefore, it is a primal constrained optimization problem to optimize the entropy:

arg Maxp∈CH(P ) = arg Maxp∈C(−
∑
x,y

P̃ (x)P (y|x).log p(y|x)) (7)

Zhang et. al. [111] described the use of MaxEnt classifier in text classification and men-

tioned its remarkable ability to freely incorporate features from diverse sources into a single

well-grounded statistical model. This work [111] shows a good success in using MaxEnt.

Improved iterative scaling algorithm [52] is often used for training the model. However, the

time complexity for training such a classifier is observed high [40, 52].

3.3.4 Support Vector Machine

Support Vector Machine (SVM) is a powerful binary classifier that follows supervised learn-

ing based on the structured risk minimization principle [111]. SVM is widely used for

classification and successfully performs binary spam detection since a message belongs
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to binary class: spam (+1) or legitimate (-1). We consider a set of training samples:

T = {(x1, y1), (x2, y2), . . . , (xN , yN )}, where xi is a real-value feature vector (xi ∈ Rn) and

yi is the target class (yi ∈ {+1,−1}). If φ be a function that maps training document vector

x to higher, possibly infinite, dimensional space, SVM finds one hyper plane in that high

dimensional space with maximum Euclidean distance to the closest training examples. This

distance is often termed as margin. The concept can be represented through a minimization

problem where optimal weight vector W is required to find the optimal linear separating

hyper plane (see Eq. 8). Mathematically, the problem can be represented as:

Minimize argmin
1

2
W T .W,

subject to : yi(W
Tφ(xi) + b) ≥ 1 for any (i = 1, ..., n) (8)

where W T is the transpose of the matrix W . b is used to capture the offset ( b
||W ||) of the

hyperplane from the origin. In practice, we always consider a soft margin by using a slack

variable ξi that allows for the existence of a non-separable training set by which training

error can be measured. The optimization problem can be refined as follows:

Minw,b,ξ argmin
1

2
W T .W + C

N∑
i=1

ξi,

subject to : yi(W
Tφ(xi) + b) ≥ 1− ξi for any (i = 1, ..., n) ∀c (9)

During the training session, the SVM solves a quadratic problem and therefore the training

time complexity is non-linear. However, given the context of spam detection, we envision to

use faster training of the classifier. A linear training technique is published by Joachims [62].

The implementation of this training technique is known as Sequential Minimal Optimization

(SMO) [83]. We intend to use SMO for our classification purpose.
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3.3.5 AdaBoost

AdaBoost or Adaptive Boost algorithm is introduced by Freund and Schapire in 1996 [50].

This learning framework efficiently constructs highly accurate classification rule by boosting

the accuracy of a weak rule of classification in multiple rounds. Assuming each rule has an

error rate less than 50%, the algorithm simulates a weak learner on multiple distributions

over the sample space of available data. By taking the majority vote on how the current set

of rules is classifying the training documents, the framework finally yields a strong multi-

class classifier in a fixed number of training rounds. For our purpose, we may consider a set

of training samples, T = {(x1, y1), (x2, y2), . . . , (xN , yN )}, where xi is a real-value feature

vector (xi ∈ Rn) and yi is the target class (yi ∈ {+1,−1}). We start at time t with a weak

hypothesis ht and distribution of weights Dt [78] , such that:

ht : X → {+1,−1} (10)

where, the correctness of the weak hypothesis can be measured inversely from the existing

error (et) which is defined as follows:

et =
∑

i:ht(xi)6=yi

Dt(i) =
∑
i

Dt(i)
1− yiht(xi)

2
(11)

In each round, the algorithm progresses as follows:

Dt+1(i) =
Dt(i)exp(−αtyiht(xi))

Zt
=
Dt(i)

Zt
×


e−αt , if ht(xi) = yi

eαt , if ht(xi) 6= yi

(12)

where, αt = 1
2 ln

1−et
et

and Zt is a normalization factor defined over
∑

iDt(i) exp(−αtyiht(xi)).
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After τ rounds, we find a strong classifier that can be determined as:

H(x) = sign(
τ∑
t=1

αtht(x)), (13)

where, sign is special function that generates -1 for any negative real number, 0 for

number 0 and +1 for any positive real number.

3.3.6 Decision Tree J48

J48 is a Java implementation of a decision-tree based learning algorithm that is often used

in classifying categorical data. The categorical data refers to non-numeric type of informa-

tion where the class for a group of information is classified through distinguished names

(example: professor, student, etc.). The research work on a tree-based learning algorithm

was pioneered by Hunt [59] and subsequently followed by Quinlan [85, 86, 87]. Quinlan

published the Iterative Dichotomiser 3 (ID3) algorithm, that uses a divide and conquer

method of classification through a suitable tree structure. The tree is designed based on

information entropy from the available data. In each round, the algorithm computes Infor-

mation Gain (IG) from every unused attribute of the dataset and selects an attribute with

smallest entropy value in the tree structure. Quinlan created a C program of an improved

ID3 algorithm, named as C4.5, that was later implemented in Java as J48 [87]. Given n

possible values of an attribute in dataset, S where fs(j) is the frequency of value j of the

same attribute, the entropy of the attribute is computed as:

E(S) = −
n∑
j=1

fs(j)log2fs(j) (14)

The log2 is associated to binary search in a tree traversal. The dataset with higher

entropy is usually split into smaller subset of information. A class of data with entropy

0 produces perfect classification. However, in practice, larger decision tree size is more

susceptible to classification over-fitting problem. Therefore, smaller appropriate size of
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decision tree is used for the classification purpose. In run-time, sample data get classified

through the traversal of a tree branch. The J48 classifier yields performance benefit to

classify categorical group of information, especially IP address and domain names. However,

J48 training is proved to be expensive while its classification time is short.

3.4 Comparative Study of Time Complexity

In this section, we present a comparison for the aforementioned algorithms and analyze their

suitability for our on-line SPIM detection. This analysis is verified from several documents

and modified as per our requirements. We evaluated the theoretical training and testing

time complexities of these algorithms and verified them through experiments. We also

compared the detection accuracy during the process.

For the theoretical evaluation, we assume that there exists a set of pre-labeled training

documents identified as D, where average length of each document is Lavg. If V represents

the set of total vocabularies, we are interested in all the |V | features. In average, each

document contains Mavg features from the vocabularies. At the end of the classification,

we determine class c of the document where c ∈ C and C = {spam, legitimate}. At the

classification, we test a particular document of size La containing Ma features.

3.4.1 NB Time Complexity

In case of Naive Bayes, the training time can be computed in two different parts [72], namely,

a) Document count and vocabulary deduction and b) Training algorithm. In the first part,

we assume that the lengths of the documents in D are l1, l2, ..l|D|. Considering average

length Lavg, the vocabulary detection requires a time complexity of O(|D|Lavg). For the

training part, the Naive Bayes algorithm should be applied to understand the probability

of each member class in C with respect to each feature in the vocabulary V . Thus the

time complexity of this part can be clearly deduced to O(|C||V |). Therefore, the total

time complexity is O(|D|Lavg) + O(|C||V |). However, |C||V | � |D|Lavg, so NB training

complexity is O(|D|Lavg) [72].
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Similarly, the classification/detection procedure has two parts: vocabulary detection

from the incoming document and the class identification. In case of feature detection from

document of size La, the time complexity is O(La). Likewise, the time complexity of main

classification is O(|C|Ma) where Ma is the number of available features in the test document.

Therefore, the total time complexity is O(La + |C|Ma) ≈ O(|C|Ma) [72].

3.4.2 K-Nearest Neighbor (K-NN) Time Complexity

K-NN is a distinguished classification algorithm that can be used with or without supervi-

sion. K-NN determines class of a document based on the voting from K neighbors. K-NN

training is used to select an optimal value for K, i.e. the number of neighbors to be selected

for voting. If K is a pre-selected value, the classifier does not require any training time

[72]. In order to determine the value of K, the preprocessing of the document has similar

complexity as of NB, i.e. ≈ O(|D|Lavg).

However, in the classification or testing phase, K-NN is considered costly in terms of

time. The computation of the nearest neighbors requires first to read classification document

of size La (processing time: ≈ O(La)) and then compute voting of Ma features with respect

to Mavg features from all training documents of size |D|. Simply, the total processing time

is therefore ≈ O(La) +O(|D|MavgMa) ≈ O(|D|MavgMa). In absence of training phase, we

are required to replace Mavg with Lavg as no prior featureization is performed before.

It should be noted, the K-NN testing time is independent from the number of classes

|C| [72]. In our case, the significance is less as our classification is binary, however, it can

be very useful for multi-class classification purposes.

3.4.3 Maximum Entropy Time Complexity

The MaxEnt learning is usually performed based on two main algorithms: Generalized

Iterative Scaling (GIS) [40] and Improved Iterative Scaling (IIS) [52]. Typically, it is a

discriminative model that is designed to find the class boundary rather than the entire

instance space. The training session begins by defining features templates, followed by

creating the feature set and finally finding the optimum feature weights via GIS or IIS. In
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practice, we follow the iteration for bounded number of rounds (T ) to obtain near optimal

value. In our complexity study, we consider IIS for its improved training time.

As mentioned before in describing MaxEnt, in the training, the scaling happens for each

of the existing features (Mavg on average) for |D| documents. As a whole, the training is

performed for |C| classes for |V | vocabulary elements. So, the training complexity of MaxEnt

in each round is ≈ O(|V ||D||C|Mavg). Given that T rounds of training happens to get exact

weight for each feature, the training complexity of the classifier is ≈ O(|V ||D||C|Mavg·T ).

On classification, however, MaxEnt is faster than others. Basically, the trained classifier is

tested over Ma features for |C| class types. It yields a testing complexity of ≈ O(|C|Ma).

3.4.4 SVM Time Complexity

SVM is a known binary classifier that finds the class boundary through solving an opti-

mization problem based on quadratic function. The standard formulation of an SVM is a

minimization problem. The complexity of solving a quadratic optimization problem, such

as SVM, is time cubic with respect to the size of the data set |D|. Kozlov et al. [72] proved

the approximate time complexity of ≈ O(|D|3). However, Joachims later proposed an effi-

cient training method for SVM with complexity ≈ O(|D|1.7) [62]. Such empirical training

complexity allows to train SVM linearly for near optimal result. The detailed explanation

of such a complex algorithm is beyond the scope of this work. We evaluated the total train-

ing complexity as ≈ O(|C||D|1.7Mavg). The trained SVM classifier creates a hyperplane to

classify a document. Given a document of Ma features for |C| class types, it offers a testing

complexity of ≈ O(|C|Ma).

3.4.5 AdaBoost Time Complexity

In boosting technique, each hypothesis is trained to offer a strong classifier from a weak

initial one. If the average number of features in a document is Mavg then for |D| documents,

the hypothesis is tested using an algorithm of time complexity of ≈ O(|D|Mavg). AdaBoost,

like MaxEnt, uses T rounds of training session to strengthen the classifier. Thus, the total

time complexity of training is ≈ O(|D|Mavg·T ). In case of testing, AdaBoost is reasonably
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fast. It only compares Ma features from the input document. In comparison with Eq. 13

in Section 3.3.5 , the classification complexity can be computed as ≈ O(Ma·T ).

3.4.6 J48 or C4.5 Time Complexity

A tree-based learning algorithm requires to build an information classification tree based

on entropy (as published by Quinlan [85, 86]). In [108], discussing C4.5-based machine

learning, the author mentioned the tree generation in three different sub-steps: building

a tree, sub-tree replacement and sub-tree raising. The tree is usually built up from Mavg

features from |D| documents using an algorithm of complexity ≈ O(Mavg|D|log|D|). The

sub-tree replacement cost is ≈ O(|D|). Each re-distribution of sub-tree costs ≈ O(log|D|)

on average and every instance may be needed redistribution at every node between its leaf

and the root. Thus, the necessary cost is ≈ O(|D|log|D|) [108]. So the total sub-tree

redistribution complexity is ≈ O(|D|(log|D|)2) and the total training time complexity is:

≈ O(Mavg|D|log|D|) +O(|D|(log|D|)2). The classification time complexity on average is ≈

O(log|Ma|), same as any tree traversal algorithm. However, the implementation procedure

may restrict on the tree level to overcome the problem of over-fitting. Table 2 summarizes

time complexity of the aforementioned algorithms.

Table 2: Training and Testing Time Complexities for Machine Learning Algorithms
Algorithm Training Classification

Naive Bayes O(|D|·Lavg + |C||V |) ≈ O(|D|·Lavg) O(La + |C|·Ma) ≈ O(|C|Ma)

Maximum Entropy O(|V |· |D|· |C|·Mavg·T ) O(|C|·Ma)

K-NN (With Training) O(|D|·Lavg) O(La + |D|·Mavg·Ma)

K-NN (No Training) O(1) O(La + |D|·Lavg·Ma)

Support Vector Machine O(|C|· |D|J ·Mavg) O(|C|·Ma)

AdaBoost O(|D|·T ·Mavg) O(Ma·T )

J48 or C4.5 O(Mavg· |D|· log2(|D|)) + O(|D|· (log2(|D|))2) O(log2(|Ma|))

3.5 Experimental Performance and Detection Accuracy

From the previous section, we decide to discard the K-NN classifier for its high test-

ing/classification time. Similarly, we also discard MaxEnt. classifier for excessively large

training time and absence of publicly available implementation. J48 training time is also
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very high for large dataset but we expect SPIM detection module to face repeated training

over small dataset of pre-classified packet information as the new SPIM sending patterns

will evolve dynamically with respect to time.

3.5.1 Setup

With the knowledge of time complexities for different algorithms, we verify and justify each

of these selected algorithms with a collected dataset of short messages. In the absence of

properly labeled SPIM dataset from packet data, we perform experiments on the accuracy

of the proposed machine learning techniques on a small pre-labeled dataset of SMS which is

available online [13]. Although the experiments are performed taking features from message

content, we assume that similar accuracy, time will be required for offline training and online

classification even with packet data. However, processing of captured packets to generate

feature vectors will incur additional delay. Therefore, our objective in these experiments is

to choose right algorithms that impose minimum delay in classification.

In the following, we detail the preprocessing steps and the experimental setup used

in order to predict the accuracy of spam classification and to analyze the performance of

different machine learning classifier models.

We employ data preprocessing features using a Java-based open source machine learning

tool, Weka, version 3.6.1 [16]. The preprocessing includes the following:

• Creation of intermediate attribute relation file format (“.arff” file) from datasets;

• Extraction of features from .arff file by selecting attributes and removing stop words;

• Addition of @attribute is spam ∈ {0, 1} to classify a file as per provided knowledge

on the sms/email-types.

We use a pre-existing list of stop words that are commonly used in sentences such as: a,

the, etc. During preprocessing, we randomize the categorical output in order to retain an

unknown distribution of input. In the classification stage, we consider NB, J48, SVM, and

AdaBoost algorithms for the SMS dataset. In order to avoid high training complexity of
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SVM, we use efficient sequential minimal optimization (SMO) algorithm. We use the 10-

fold cross validation to evaluate the classification accuracy. In this technique, 90% of the

total data is used for training of the algorithms and the rest 10% is used in classification.

Each test is repeated 10 times with different testing inputs and the average is considered.

The following system configuration is used for the experiments:

• CPU:Intel Core i7-2600 CPU 3.40 GHz

• RAM: 16GB memory

• Operating System: Microsoft Windows 7 (64 bits)

The following subsection analyzes the experimental results from the perspective of the spam

classification accuracy and performance for different machine learning classifiers.

Figure 7: Spam Classification: Accuracy Vs. Number of Features

3.5.2 Detection Accuracy

The detection accuracy is defined over the percentage of correctly classified spam and legit-

imate documents with respect to the total documents. The accurate detection represents

proper recognition of spam and legitimate data commonly represented as true positive and
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true negative respectively. The other two important quantifiers are false positive and false

negative. In our case, false positive rate determines the percentage of legitimate documents

wrongly identified as spam. False negative rate is the percentage of spam documents iden-

tified as legitimate. We intend to choose algorithms with low false positive rate, as large

false positive rate may adversely impact a legitimate instant messaging communication.

Figure 7 depicts the spam detection accuracy on the SMS dataset. The accuracy is judged

over an increased number of features up to 50 features. It is noteworthy to mention that

all the studied algorithms show high-level of accuracy even with small number of features.

The accuracy of AdaBoost algorithm is particularly interesting where the level of detection

accuracy is not affected by larger number of features used in the experiments. The detailed

SPIM packet features are discussed in the Section 3.6.

Figure 8: False Positive detection in classification over SMS Dataset

Figure 8 depicts a comparative study for the percentage of false positive found dur-

ing the experiments. As the experiments incorporate consider higher number of features

from the SMS dataset, the The false positive rate gradually decreases for all algorithms

except AdaBoost implementation. In general, SVM classifies with low false positive ratio

representing its gradual perfection in identifying legitimate messages correctly. NB and J48

follow higher percentages of false positive in this respect.
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Figure 9: Comparison of Classifier Training Time over SMS Dataset

3.5.3 Training Time

Figure 9 compares the training time of the classifiers on the SMS dataset. The training of the

classifier model is important in the process of machine learning. We expect SPIM detection

environment to be fairly dynamic since the spam senders practice a range of deceptive

techniques to establish connection and communication. Therefore, periodic incremental

training may be required for better performance in SPIM detection. According to the

experimental results ( see Figure 9), training time is comparable for AdaBoost, J48 and

NB in the small repository of SMS dataset. However, the training time of SVM (SMO

implementation) is remarkably high with inclusion of more features. We suspect that, in

practice, it will incur longer training process if SVM is used for SPIM detection.

3.5.4 Testing Time

Figure 10 presents a comparative study of online spam classification time. The classification

of SPIM detection is expected to be near real-time. Therefore, machine learning models

with very low testing time are critical for the SPIM detection purpose. Among all the

algorithms tested over SMS dataset, AdaBoost and J48 show very promising result as they

incur low detection time in compare to others.
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Figure 10: Comparison of classifiers: Testing Time over SMS Dataset

3.6 Feature Set Selection

An accurate selection of features is vital to detect SPIM by applying machine learning

technique in the LTE network. In general, spam features are often chosen from previously

stored offline message content especially in the detection of email-spam, blog spam, etc.

In this respect, content-based spam detection has been extensively studied in literature

[26, 111]. On the other hand, SPIM detection requires fast classification of network traffic

including packet data due to its near real-time data communication setup. Our proposed

location of SPIM detection module in PDN-Gateway is suitable to meet these requirements.

In this thesis, we concentrate on finding a general set of features for network traffic aiming

to identify SPIM packets from network traffic with acceptable classification/detection time

and accuracy. A list of features has been selected below after a thorough discussion.

Korczynski [64] illustrated various possibilities of network traffic classification for IM in

his thesis. The network traffic features can be important for traffic-based spam classification

as well. The features can be categorized as content dependent or independent. The content

based traffic data can be classified based on port and payload. Content-independent traffic

features generally include host-behavior, flow related features, etc. Packet payload offers
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usually unencrypted header data with protocols and other application information. How-

ever, message content in IM traffic is often encrypted and transformed to almost similar

size of data packets before sending. Besides, packet flow features include average packet

sizes, packet inter-arrival times, flow durations, etc. In the work on classifying modern IM

applications, Korczynski mentioned that single network feature-type does not help in clas-

sifying modern IM applications as these applications themselves try to bypass restrictive

firewalls by randomly changing features like port, payload signature, etc. In our purpose,

we emphasize on the payload independent features and header information of the payload.

Previous researches showed that payload independent features maintain properties through-

out a session as they are hard to be manipulated by spam senders [80]. On the other hand,

header related features with IM traffic characteristics may offer significant insight on the

class of IM packets if the classifier model is trained properly over such repositories [111].

In the following, we describe some payload-dependent network traffic features suitable for

data mining purposes. It should be noted that the features are chosen considering their

detection feasibility in the LTE downlink traffic.

• Protocol : The IM packet contains multiple packet headers in the network traffic. Our

needed protocol information resides at the TCP or UDP packet headers. Sometimes

IM packets use an additional HTTP header information to bypass firewall restrictions.

The network devices at PDN-gateway mainly inspect IP header but are also capable

to collect protocol information in TCP or UDP headers. This protocol information

influences a set of predictable behaviors for other packet features such as port, packet

size, etc. Protocol has been previously used in classifying packets [106, 38].

• Port : Port is a key attribute that reflects the intent of a packet. A legitimate packet

belonging to a specific messaging application connects to a predefined port while SPIM

packets may be directed to other ports aiming to exploit vulnerabilities. For example,

W32.Aplore.A@mm worm attacks the AOL messenger by starting an HTTP server

on port 8180 [57]. Along with destination port, the source port of the packet can also

be tested if it is an open port of a machine.
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• Packet Size: The packet size is a necessary feature that most of the IM services keep

under 1500 byte to pass through Ethernet. For example, SIMPLE protocol uses data

packets of up to 1300 bytes approximately [8]. An unusual large packet size can be

considered as a signature of SPIM trying to exploit a buffer overflow. Smaller packets

can be ignored as they are used for IM signaling [38, 64]. We recommend to use

average packet size and its variance in network flow as training features.

• Inter-Arrival Time: The packet inter-arrival time is a statistically important feature

to classify the nature of usually bursty traffic of IM communication. Machine learning

techniques are successfully applied using packet inter-arrival time in order to identify

packet characteristics from the network flow [99].

• Minimum Burst Duration: Suh et al. [100] investigated the importance of burst

duration in IM data flow over Skype traffic. The concept can be generalized for IM

applications. Interactive messenger application receives messages in bursts based on

sender’s messaging pattern. The minimum burst duration in human interaction is

expected to differ from auto-generated and targeted SPIM packets.

• Average Packets per Flow : Average number of packets per network flow is a good

indication for the nature of the IM packet traffic. Usually, TCP offers some congestion

control and IM applications also restrict number of packet delivery within a small

interval. SPIM bots very often create a large number of packets to send multiple

users for advertisement. They may also create denial of service attack by sending

large number of packets to one user such as: SYN-Flooding. Monitoring average

packets per flow in LTE downlink may help in identifying SPIM packets and forecast

attack scenarios. Several research articles recommended to count SYN packets, RST

packets and FIN packets in the IM traffic flow [67, 106].

• Packet Arrival Order: We consider packet arrival order as an important feature that

will not only help in classifying SPIM packet but also determine the amount of data
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required for the classifier training. Buonerba also explained in her thesis the signifi-

cance of packet arrival order to uniquely identify messaging application, protocol and

the medium in between. [29]. A legitimate message traffic originating from a valid

user will grossly differ in overall packet arrival order (within a small duration) from

auto-generated spam messages originating from many different malicious applications.

• Repetition on packet loss after TCP Repeat Window (RWIN): Usually, instant messen-

ger applications repeat a packet, if lost, after the RWIN threshold. RWIN determines

how many packets a user device can accept without notifying sender application.

SPIM message from bots are not expected to resend packets.

We have also investigated a group of spatio-temporal payload independent features originally

published by Hao et al. [56] to incorporate in the feature list. The expected values of these

attributes can be gathered in a stored data tables separately inside the detection module.

We claim that such an external verification will leverage the training of the classifier.

• Distance between sender and receiver : Once a packet is analyzed, the distance between

sender and receiver can be calculated from their different IP addresses using a lookup

table that contains relations among IP address and geographic location. Hao et al.

[56] have claimed that most of the legitimate messages are exchanged among friends

at nearby locations where as SPIM are sent from distant geographic locations.

• Packet source neighborhood density : The geographic locations of spam packets are ex-

pected to be close as the bots propagate through nearby computers. The distribution

of legitimate packet sources, if not sent by same user, is expected to be distant.

• Packet timestamps: The time at the source of a packet or a group of packets in a

network flow is also very important factor [56]. A bot is primarily a programmed

application. Therefore, it is expected to send packets at a particular time pattern to

a user as programmed. Furthermore, it is possible that multiple SPIM packets are

sent to different locations under same or different ISPs at a very close proximity of
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time. A common source of knowledge can be used and updated to identify the class

of packets from the packet time-stamp.

• Autonomous System Number : The unprotected ISPs are used by the SPIM senders.

Autonomous System Number (ASN) provides the originating ISP of the packets that

can be verified through a previously stored tables with IP addresses of the packet.

We have managed to capture various packets to analyze the aforementioned features using

packet capturing tool namely Wireshark [35] (as depicted in Figure 23 and Figure 24).

After a careful analysis of captured packets, it has been seen that a subset of aforementioned

features can always be used for mining purposes. In Appendix, Figure 23 depicts the excerpt

of data packets following Skype protocol. While the payload in this packet is typically

encrypted, Skype (peer-to-peer communication) reveals the source IP address of the packet

along with several other header information. On the other hand, Figure 24 elaborates an

excerpt of a packet data communicated between two Yahoo users. Like other client-server

based messaging architecture, packet source location is not clear from the packet as it is

originated from a Yahoo server. However, the message content is unencrypted and can be

used for content based machine learning. Therefore, we recommend to study the particular

instant messaging protocol before choosing a final set of features for SPIM mining for

specific applications. It should be noted that, in the PDN gateway, uplink packets pass

unfiltered. So network flow characteristics from uplink packet features are unavailable to

our classification purpose. Interestingly, we do not use IP address as a feature, because in

mobile network, IP address changes with the change of locations [56]. Spammer may create

packets with different IP address than his/her own. IPs are often dynamically assigned also.

A typical feature selection procedure attempts to choose a subset of available features

to be used by a particular machine learning procedure [99]. The performance of machine

learning algorithms vary from one feature set to others. The techniques of feature selection

are mainly classified as filter method and wrapper method [99]. In filter method, features are

selected based on statistical properties and metrics. It accounts to independent assessment

of multiple learning algorithms. The wrapper method predetermines the mining algorithm
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and chooses a particular set of data features that fit the algorithm [99]. The filter method

is faster with large dataset than wrapper method as the features are selected once. It also

incurs low cost. However, wrapper method is comparatively more accurate if not over-fitted.

We have clearly focused on the first method and evaluate performances of multiple machine

learning algorithms on spam dataset.

3.7 Summary

SPIM filtering is an area of active research. In this chapter, we addressed a selected group of

effective algorithms that can be used for SPIM filtering purposes. We evaluated the training

and testing time complexity for each of these algorithms. We proposed a high level design

of the SPIM detection module. Furthermore, we carried out a series of experiments with

pre-classified data to conclusively determine the most efficient classifier for our purpose.

The experimental results present the detection accuracy, training and testing time for each

of the algorithms. While a faster classification is required to adapt the classifier with

high volume of incoming information, the wrong detection of SPIM will penalize legitimate

message passing. According to our experiments, J48 and AdaBoost will perform time-

wise better than other algorithms with low false positive scores. With respect to SVM,

we investigated a better training technique using SMO [62] to train classifier in linear

time. AdaBoost is comparatively easy to train and test but has lower detection accuracy

and higher false positive value in compare to others. We also realized that the reactive

nature of the spammers is a major concern. Spammers bypass the filters by skewing the

message statistics or by preventing proper featureization of the message using split-words

or modifying message features. Placing extra spaces within a word may bypass a filter that

classifies spam based on full words. Message content is also sometimes obscured from a filter

by means of encoding. Then the detection has to be performed solely on packet header and

packet features. In this context, we discussed a number of alternative features that can be

used in classification algorithm. We constantly focused on packet and network flow features

that are difficult to change for the SPIM senders.
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Chapter 4

Simulation and Analysis

This chapter elaborates on the implementation of a proof-of-concept for SPIM detection

module in OPNET network simulator [10]. We detail our findings from the execution of

simulated scenarios and analyze the collected results. We hope that this elaborated insight

along with verified results will encourage mobile network and service providers to consider

for machine-learning based SPIM detection for large-scale SPIM detection.

4.1 Overview

We begin by modeling the simulation framework. The network modeling steps may also

serve as implementation guidelines for the actual system deployment. The underlying design

of the test-bed is achieved in four different phases, namely:

• Modeling LTE network along with IMS extension module, application server authen-

tication server and other necessary components.

• Generating and characterizing network infrastructure and user equipments with dif-

ferent traffic flow patterns and user roles by applying specific QoS configuration while

creating small-scale simulation environment.

• Designing scenarios based on core IM functionalities in mobile telecommunication

networks through sequence diagrams.
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• Implementing a proof-of-concept for packet data classification at a simulated LTE

network. The packet snipping delay function is modified for SPIM detection based on

packet features (such as: size, protocol, etc.), machine learning algorithm, classifica-

tion time and other characteristics as documented in Chapter 3.

We decide for OPNET simulator from various network simulation engines available off-the-

shelf in the software market. However, we acknowledge that the Network Simulator (NS),

QualNet, GloMoSim, NetSim are also appropriate for our purpose. OPNET [10] is a popular

network simulator with rich graphical user interface. It offers users a multitude of design,

deployment, simulation, and network management possibilities. A large number of compo-

nents, protocols are in-built in this software application. NS [11], on the other hand, is a

discrete event simulator created and maintained by the University of Southern California.

NS programs are specified in Tool Command Language (TCL) to run the simulation. Qual-

Net [12] is another commercial software application to run what-if scenarios on simulated

large complex wireless, wired and mixed platform network. The user interface is visual and

feature-rich. Global Mobile information systems Simulation laboratory (GloMoSim) [5] is

also a discrete event simulator but uses a separate compiler Parsec. The underlying network

system of GloMoSim is built on the OSI seven layer model and able to run a number of

simulations in parallel. NetSim [9] is an educational purpose software from TETCOS [15]

that is built on top of a real-time network monitoring tool: Net-Patrol. NetSim simulates

most of the basic protocols in connection to cellular technologies. Beside these software,

a range of network simulators are available in Internet. Some of them are free and open

source such as: OpenWNS, GTNetS, Cnet. Few are free for academic purposes such as:

OPNET, OMNeT++ while OptSim is complete commercial. We also analyze the possibility

of extending and using general purpose simulator tool such as: MatLab components for our

network simulation.

We select OPNET network simulator for its superior quality of discrete event simulation,

advanced Graphic User Interface (GUI), great performance, and license availability. In the

following section, we briefly illustrate OPNET capabilities for the purpose of our interest.

55



4.2 OPNET Simulator

OPNET simulation engine is a fast discrete event simulator industrially available. This net-

work simulator works in three different phases, namely: Modeling, simulation and analysis.

In the first phase, it offers a number of communication network modeling features through

its rich graphical user interface. The software application hosts many device configurations,

a large set of communication protocols and several other features. The model design is

hierarchical. It helps in designing large architecture and then offers to configure details for

each component. The modeling is object-oriented and C++ like code exists behind each of

these components. During simulation, the compiler creates the model from the design. This

process is automated. However, advanced user may change directly in the code and recom-

pile for desired modification. It can also run analytical and hybrid simulations, if needed.

The core kernel runs in parallel with grid computation support for distributed simulation

running. OPNET also offers unique data analysis interface with graphs and charts. This

interface allows viewing the graphs with different criteria of user interest and exporting

results in comma-separated values (.csv) format.

In our experiments, we use a separately licensed specialized LTE model from OPNET

that offers to incorporate LTE components in network design and promises adequate data

rates, improved system architectural performance and high spectrum utilization. The proof-

of-concept was also required to specify the traffic flow. In this regard, we employ OPNET

Application Characterization Environment (ACE) to design the traffic flow. The implemen-

tation work has been carried out to create a simple messaging application.Corresponding

packet traffic are configured in sequence diagrams.

4.3 Instant Messaging Application Design in LTE

As presented in Section 2.4.1, IM works through three core services. In this design, we

identify and summarize a core subset of functionalities from these services. Our design

mainly accommodates the messages and activities used in SIMPLE protocol but it can be

generalized for XMPP as well. We design our proposed application through six tasks in
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order to address the core activities. For the connection establishment and termination,

we include three tasks: connect, login and logout. Other two tasks register and subscribe

are designed to address presence of users. The register task registers and updates a user

to the application server using a REGISTER message. On the other side, a registered

user receives periodic updates on other users who s/he subscribed. The subscription is

performed through SUBSCRIBE message. We followed SIMPLE based messaging sequence

to design these two tasks. We also address the session binding and messaging activity

through a combined invite and messaging task. The session binding is typically performed

through an INVITE message between the application server and users. In peer-to-peer IM,

once a session is established, users communicate through near real-time messages directly

using their proxy(s). However, in client server architecture, messages pass through the

application server. Detailed IM functionalities and protocols are publicly available in RFCs

and literature [69].

Table 3: Description of SIP Request Methods
Request Name Description

INVITE Establishes a session

NOTIFY Notifies presentity to user agent about a particular event

PRACK Acknowledges the reception of a provisional response

PUBLISH Uploads information to a server

REGISTER Maps a public URI with current location of the user

SUBSCRIBE Requests to be notified about a particular event

MESSAGE Carries an Instant Message

UPDATE Modifies some characteristics of a session

In the process of session establishment, several SIP/SIMPLE requests are used. Table

3 describes a subset of relevant SIP requesting methods. In the following, we address the

proposed six activities at a high level for the mobile network.

4.3.1 Connect

Every UE in the mobile network first tries to connect to an instant messaging server through

its SIP servers [63]. During this process, the SIMPLE protocol creates session-related

messages using session signaling. The session signals help in binding connection with the

IMS core SIP network ( P-CSCF, S-CSCF etc) to the IM servers using SIP.
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4.3.2 Login

When a user performs login through a device using user ID and password, an encrypted

request is dispatched to the corresponding application server (AS) for secure login through

the operating router. The AS redirects this login request to the authentication server and

a dedicated TCP/IP connection starts for a communication session after a successful login.

During the login procedure, operator’s server checks both: the limit of session and the

status of the server (busy or idle). Afterward, it notifies the user about the availability of

the server. The authentication server sends the acceptance in encrypted and compressed

format. At the same time, it creates a cache of the connectivity information for logging

purposes and for maintaining the current session [89].

4.3.3 Register

In order to establish communication, secure profiling and preventing spoofing attacks [79],

senders are required to be registered through a SIP REGISTER request in IMS. A registered

user is named with a registered Public User Identity (PUI) in order to map its location. Reg-

istered users can subscribe to receive notifications on the up-to-date presence information

of a requested contact upon approval of the other user. Figure 11 describes the registration

procedure in IMS (see Page 341, [30]). The user logs in the IMS and sends register request

to S-CSCF (steps 1-5). Diameter User Authentication Request (UAR) command (step 3)

is prompted by I-CSCF to retrieve user information from HSS and to search for the address

of an appropriate assignable S-CSCF [103]. User Authentication Answer (UAA) is received

by the I-CSCF and forwarded as the registration request to an assigned S-CSCF. S-CSCF

performs the registration as a third-party registrar in the IMS. After getting REGISTER

request (step 11) from S-CSCF, AS generates a MESSAGE containing transcription of the

pending messages to the UE through S-CSCF and P-CSCF [30].
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Figure 11: Sequence Diagram of REGISTER for Instant Messaging [30]
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Figure 12: Sequence Diagram of SUBSCRIBE for IMS Presence Information [47]
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4.3.4 Subscribe

Figure 12 elaborates on the reception of a SUBSCRIPTION request for the presence in-

formation from UE. We assume that there are two distinct UEs available in the network

playing the role of two profiles UE-1 and UE-2 in the figure. P-CSCF-1 relays the UE-1

generated request to S-CSCF-1 along with necessary information stored during registration.

S-CSCF-1 consequently transfers the request to the I-CSCF-2 at the destination network.

Similar to the registration procedure, I-CSCF-2 sends query to the HSS to look up suitable

S-CSCF-2 address and forward the SUBSCRIBE request. This request is further transferred

to the Application Server (AS), which performs the final authorization. With a proper au-

thorization, the affirmative response (200 OK) is sent all the way back to UE (steps 7-10).

AS also sends a NOTIFY request (steps 11-13) just after. The UE-1 acknowledges the

NOTIFY request using an OK message (steps 14-16) that goes back to the AS. Once the

UE-2 publishes its presentity data using a PUBLISH message (steps 17-19) for necessary

authorization checks, it comes back with 200 OK response to UE-2 (steps 20-22). The pro-

cess thereafter notifies about the presentity to UE-1 by a NOTIFY message (steps 23-25)

and ends up finally by passing 200 OK response message (steps 26-28) to AS [47].

4.3.5 Invite and Messaging

We present a sequence diagram for the establishment of an IMS session between two UEs

in Figure 13 illustrating the use of invite and messaging requests. First, the SIP INVITE

message traverses the IMS nodes (steps 1-12) through P-CSCF, S-CSCF etc. as a part

of an active Session Description Protocol (SDP) for the instant messaging. These instant

messages are sent end-to-end via Message Session Relay Protocol (MSRP) (steps 13-14). It

is a text-based messaging session, hence, PRACK and UPDATE requests are omitted from

the session flow. MSRP session has its own congestion control and it is not regulated by the

size of the instant message [79]. MSRP is implemented in the IMS terminals, which resides

near the AS. Messaging also runs on the media plane. All the messages generated during

an IM session are related together in the context of its session [79]. A messaging session is
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Figure 13: Sequence Diagram of Invite and Messaging [79]
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maintained between users and can be terminated by either party. To terminate a session, a

BYE message is sent to the IMS followed by a 200 OK response message sent back to the

user.

4.3.6 Logout

The logout process ends all the activities between an instant messaging user with the server.

The server correspondingly terminates all active messaging sessions for the requesting user

and removes her/him from the current register list. Consequently, all the other users are

notified about the absence of the user until s/he reopens a new session.

4.4 OPNET Simulation Setup

The OPNET simulator setup is composed of IM application configuration, user profiles and

network components. In the following, we describe each of them with necessary details.

Most of our chosen packet features do not change rapidly with the local movement of user

equipments within short simulation run time therefore this setup omits to design the move-

ment for the mobile agent. Furthermore, SPIM sending machines are usually stationary.

We believe that such an omission will not cause a significant impact on the performance of

the SPIM detection module.

4.4.1 Application Setup

Figure 14 highlights the proposed instant messaging application setup using SIMPLE pro-

tocol in a mobile telecommunication network, where traffic volume and speed have been

configured according to LTE specification. In our simulation, we consider UE 1 and UE

2 as two IM client profile with messaging and presence service. We exclude the IM group

management service (messaging of one-to-many clients) for simplification. Here, UE 1 starts

communicating with a remote client UE 2. The IM communication is ultimately conducted

at two different tiers in the LTE network, namely the SIP/IP core (which is mainly the

IMS network) and IM/presence server in the packet-data network. For a successful session
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Figure 14: IM Architecture Using SIMPLE Protocol [63]

binding, a synchronous communication is performed with IMS Core network (step 1) using

SIP protocol and then forwarded to the IM server (step 2). Once the session signaling is set

successfully, peer-to-peer messaging occurs between two communicators using MSRP pro-

tocol. Furthermore, presence is updated and passed between presence server and presence

client (step 4 and 5) using SIP. The same procedure of session initiation and messaging is

repeated for all pairs of clients by randomly changing their profiles.

4.4.2 Profile Execution Setup

The procedure of setting IM applications inside the simulation execution is illustrated in

Figure 15. Simulation run is bounded by a time period where several UEs execute in parallel

while maintaining either UE 1 or UE 2 profile in any application instance with different

bearers (an IP packet flow with different QoS between the gateway and UE) . Each pro-

file serially runs instances for an IM application. Precisely, a client serially performs the

proposed six IM activities (connect to logout) and generates packet traffic within an active

application instance. Once the client/UE profile performs logout, the application instance

terminates. UE profile executes the same activities again in the subsequent application
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Figure 15: Simulation Configuration Setup [10]

interval. It might be argued whether application instances can run in parallel within same

profile. It is possible to design multiple communication sessions within same application

instance. However, we do not see significant impact of it on the desired outcome of the

classification time with different machine learning algorithms. We, therefore, keep it simple

for the modeling purposes by allowing one session for an application instance and globally

manage the traffic flow rate in the LTE architecture during simulation to verify the per-

formance for our proposed module. Figure 16 depicts the OPNET setup to represent the

simulation of profiles. We carefully configure repeatability of the applications and profiles

between start and end of a simulation run.

4.4.3 Network Component Setup

Table 4 summarizes the parameters for the LTE environmental entities in our simulation.

We characterize and implement instant messaging in LTE framework according to the 3GPP

IMS messaging session establishment concept for SIMPLE protocol [3GPP TS 23.228 V9.3.0

2010-03]. After the session establishment, we simulate peer-to-peer instant messaging among

the UEs through the proxy(s). We choose a small campus network of 2000 UEs, 10 eNodeBs

and 1 EPC for the mobile framework along with core IMS components, namely, P-CSCF,

S-CSCF, and I-CSCF. We simulate IM application server and authentication server behind
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Figure 16: OPNET Simulation Setup for a User Profile

Table 4: LTE Simulation Model Configuration
Name Count Link Link Type Bandwidth

UE 2000 UE < − > enodeB Radio 10 Mbps

eNodeB 10 enodeB < − > Gateway1 Ethernet 10 Gbps

Gateway1 4 Gateway1 < − > EPC Ethernet 10 Gbps

EPC 1 EPC < − > Gateway2 Ethernet 10 Gbps

Gateway2 1 Gateway2 < − > I − CSCF Ethernet 10 Gbps

Gateway2 1 Gateway2 < − > P − CSCF Ethernet 10 Gbps

Gateway2 1 Gateway2 < − > S − CSCF Ethernet 10 Gbps

Gateway2 1 Gateway2 < − > Internet PPP Sonet OC48 2500 Mbps

Internet 1 Internet < − > Gateway3 PPP Sonet OC48 2500 Mbps

Gateway3 1 Gateway3 < − > IM − Server Ethernet 10 Gbps

IM-Server 1 IM − Server < − > Auth.Server Ethernet 10 Gbps

IP cloud as depicted in Fig. 4 in Section 2.3.2.

4.4.4 Traffic Configuration

OPNET offers ACE Whiteboard utility to configure new application with visualization

of model design and application analysis. It helps to configure traffic rate, bandwidth

and other necessary details to setup IM activities. Figure 17 elaborates a composed view

of two diagrams where the top diagram depicts the sequences of traffic generation and

the bottom image represents the system view of such a packet data communication. We
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Figure 17: Simulation Traffic Setup Using ACE-White Board

present modeling of register, invite, and messaging functions in this figure. Furthermore,

an ensured traffic rate is also guaranteed by the EPS bearer in the discrete simulation

engine. A Guaranteed Bit-Rate (GBR) of 10 Mbps at uplink and downlink will always

offer a minimum traffic rate of 10 Mbps between client and higher layer of EPS during the

simulation run. The overall traffic distribution among the IM application instances in LTE

is kept exponential in the setup.

4.5 Experiments on Mobile Network

Figure 18 presents an user interface of the OPNET simulation process during an experiment

run. The graph provides an approximation of the events generated per second (speed) along

with the other information of “Elapse Time”, “Simulated Time”, “Number of Total Events”

etc. It is designed such that the event generation at each node of our designed network

follows an exponential distribution of traffic generation during the allotted simulation time.
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Figure 18: Example of OPNET Visualization for Simulation Events

More than 162 million events are generated with an average speed of 1040 events/second in

our experiment.

4.5.1 Simulation Results

Figure 19 depicts a comparative study of average TCP delay on Instant Messaging server

with and without use of SPIM detection module. These tests are performed while simulating

an overall exponential traffic flow in the LTE network. The average TCP delay represents

an average time for packets received by the TCP layers in the complete network for all

connections. It is measured as the time difference between data packet sent from the source

TCP layer to the time it is received by the TCP layer at the destination node. The red line

denotes the TCP delay (in seconds) occurred without applying any spam detection module

during the simulation run. The blue and green lines refer to the TCP delay for SPIM

detector using Naive Bayes and Support Vector Machine, algorithms respectively. Though

NB and SVM follow the red line, it is clear that both SVM and NB incur high TCP delay

according to our traffic configuration.
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Figure 19: Comparison - Testing Time for NB and SVM Algorithms

Figure 20: Comparison - Testing Time for J48 and AdaBoost Algorithms
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Figure 20 demonstrates another comparison of average TCP delay while using other two

algorithms, namely J48 and AdaBoost, with respect to no spam detection filter. The figure

clearly depicts that both algorithms perform fairly well with very low TCP delay in compare

to SVM and NB algorithms. In the next section, we analyze our experience to verify the

test performance while searching values of other key execution parameters in using J48 and

AdaBoost algorithms within the SPIM detector.

4.5.2 Analysis of Results

Figure 19 and Figure 20 indicate similar characteristics to our theoretical evaluation of the

classification time in Section 3. It confirms that both J48 and AdaBoost algorithms in

SPIM detector have lower SPIM classification time than the other two algorithms. Conse-

quently, we wanted to verify classification accuracy and the training time using these two

algorithms. However, the scope of verifying classification accuracy is limited in the simula-

tion environment due to lack of pre-labeled SPIM dataset. From our previous experiments

on other dataset (Figure 7) in Chapter 3, it is clear that J48 has higher classification accu-

racy than AdaBoost (more than 88% classification accuracy) for smaller packet size while

the latter possesses shorter training time than J48. However, given the scope and purpose

of our SPIM detection, we do not exclude the possibility of using boosting based detection

technique as it incurs vary small delay in classification and offers better training time for

continuous learning over updated SPIM dataset. AdaBoost classification accuracy is also

fairly high although it is least among our selected algorithms.

In order to further analyze the suitability of our experimental setup, we perform verifica-

tion of few key parameters during the execution. Figure 21 represents the average TCP load

(packets/sec) on Instant Messaging Server with and without a SPIM detection mechanism.

We test two algorithms: J48 and AdaBoost in the SPIM detector. TCP load represents an

average rate of traffic placed at the TCP layer by the application layer in the IM server node,

for all connections. Figure 21 indicates that the J48 algorithm creates slightly higher TCP

load on the IM server in compare to AdaBoost algorithm during the period of simulation.

The preparation and the initialization of the experimental setup take almost 90 seconds to
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Figure 21: Load Comparison on IM Server over deploying SPIM Using J48 and AdaBoost

initiate the load on the server. Huge flow of traffic requests can be noticed at the IM server

at the beginning. However, while the events are continuously generated in an exponential

distribution the load get steady after some time.

Figure 22 demonstrates another experiment on the global average response time for the

IM applications in our network. This is the average time taken to execute all the tasks

in a custom application to complete in every application run. The three different curves

denotes response time for two different algorithms (J48 and AdaBoost) with respect to no

detection module. The graph shows a sudden pick at the beginning of the simulation which

represents larger delay in initial response due to primary initialization at various nodes

in the telecommunication networks. Once the initialization is complete, the delay sharply

decreases and get steady over simulation time.
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Figure 22: Comparison - Global Application Response Time on Implementing J48 and
AdaBoost Algorithms

4.6 Summary

In this chapter, we elaborated our findings on running the proposed SPIM detection module

within a simulated LTE architecture designed in OPNET. We configured six core activities of

simple peer-to-peer instant messaging and presence services. This step-by-step configuration

of IM data flow offers necessary means to run the test on top of a mobile network inside

the simulation environment. Thus, we also elaborated the whole simulation setup of the

LTE/IMS network and offered a high-level guideline to design such a setup. We tested

selected machine-learning algorithms in the SPIM detection module, situated at the PDN-

Gateway inside LTE-IMS network. The results of these experiments has been compared to

choose suitable algorithms for classifying SPIM from large volume of communication traffic.

Our results demonstrate the suitability of specific machine learning techniques over others

in terms of classification time. The analysis of the result suggests that the use of tree-based

algorithms (J48 in particular) and boosting algorithms (AdaBoost, in particular) help in

faster detection of SPIM without significantly impacting the delay and server load for packet

data communication.
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Chapter 5

Conclusion

It is evident that the enormous potential of the palm-sized cellular devices is generating

rapid growth in the telecommunication markets. Their usability, portability and afford-

able cost are always identified as the prime factors to reach remote end-users around the

globe [34, 102]. In this flourishing of advanced mobile telecommunication, tracking spam

from real-time message exchange is essential to offer secure messaging services with effi-

cient use of network resources. However, along with the intense growth, the communication

technologies are exhibiting crucial limitations in guaranteeing spam-free communication en-

vironment. Amid these enormous challenges, we investigated to explore for an appropriate

machine-learning based technique in order to detect spam from near real-time IM traffic

having short classification time and consistent accuracy inside the current telecommunica-

tions infrastructure standard, namely LTE.

In this dissertation, we introduced an overview of the concept, mentioned the potential

dangers of spam message exchange in instant messaging and discussed the underlying diffi-

culties in detection. We analyzed an important research problem of message spam detection

from a large volume data traffic within the whole scope of our research. We proposed a

suitable SPIM detection module in PDN-Gateway of the LTE network, elaborated a detec-

tion approach and evaluated a number of machine learning algorithms through a simple and

efficient implementation inside the module. Furthermore, we designed a proof-of-concept
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LTE/IMS framework setup along with proposed detection module and documented our ex-

perimental findings by simulating small-scale scenarios using OPNET simulator. The major

contributions of this thesis include finding of an appropriate location for SPIM detection

module in LTE, evaluation of various machine learning algorithms for SPIM classification

and performance verification for the proposed setup in a simulated environment.

The extracted knowledge from this research and development is important in designing

an effective decision support system to manage LTE instant messaging traffic flow among

the end-users. Although the scope of our evaluation is limited to instant messaging, the

procedure, as discussed in this thesis, is generic enough to be used on any similar on-

line packet traffic with necessary alterations. In our experiments, we found AdaBoost and

J48 algorithms are more suitable than others in detecting SPIM using machine learning.

However, given the accuracy of AdaBoost and J48 algorithms in SPIM detection and its

possibility of detecting false positives, we recommend that fully correct SPIM detection and

removal thereof will be inappropriate using this algorithm. We suspect that it may remove

few legitimate packets due to false positive alerts. It is also possible that the removal of

packets in the lower communication layer may trigger resending of the same packets by the

sender that counter intuitively will increase network load. A more appropriate workaround

will be to control effective bandwidth for the SPIM senders and the receivers by exploiting

this acquired knowledge. Thus, the ISPs can significantly reduce the Internet bandwidth

and the speed if a sender is understood as a spammer.

During the period of researching the subject, we faced difficulties in finding appropriately

labeled (pre-classified) datasets (with SPIM information) of online IM traffic. To the best

of our knowledge, the availability of IM packet data is very limited in the free Internet

domain. We also understood that the fitting of this data into an off-the-shelf simulator

is also challenging. Therefore, we decided to create a simulation framework to explain

the effectiveness of the proposed machine learning algorithms. In case of availability of

such a dataset, a proper implementation framework could be developed to perform online

SPIM detection using machine learning algorithms on various traffic related attributes. A

number of network traffic and flow features have been discussed in Section 3.6. An actual
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implementation of the packet traffic flow management for instant messaging traffic in LTE

is expected to be complex and associated to a number of technical and legal implications.

We consciously kept such discussion out of the scope of our thesis.

5.1 Future Work

In this thesis, we laid the foundation of a novel procedure for SPIM detection. In future, we

intend to extend this study in two different directions. We wish to test the SPIM classifi-

cation accuracy and time in presence of combined data traffic of email, voice, video, etc. A

possible way of differentiating SPIM traffic can be achieved by identifying different packet

types based on their characteristics [84]. For example, signal packets and voice packets are

usually smaller in compare to email packets. Each IM packet follows a different protocol

and tries to connect some preferred ports. Differences in packet size along with protocol,

session, flow and traffic related information will allow to differentiate specific application

traffic from others in the incoming packet stream. We briefly worked in Wireshark [35]

software application that offers an in-build set of rules to differentiate various packet traffic.

Secondly, we like to verify the suitability of SPIM detection algorithms on various speed

of incoming packet stream and messaging event distributions (e.g. Poisson distribution,

uniform distribution, etc.) to conclude over a particular machine learning technique. A

majority of these events reflects user activities in real LTE network. The results can also

be compared with other existing techniques apart from machine learning such as rule-based

spam detection [28].

A thorough understanding of the real-time spam detection requirements and techniques

for modern telecommunication networks will certainly help to secure national and inter-

national communication infrastructures against SPIM and SPIM-based cyber-attacks. We

expect that our research and development work will encourage ISPs and other organizations

to initiate further research. It will also facilitate large-scale, real-life implementation of such

message spam detection system.
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Appendix

Figure 23: Packet Excerpt from Skype Insiant Messenger Collected Using Wireshark
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Figure 24: Packet Excerpt from Yahoo Messenger Collected Using Wireshark
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[30] G. Camarillo and M.A. Garćıa-Mart́ın. The 3G IP Multimedia Subsystem (IMS):

Merging the Internet and the Cellular Worlds. Wiley, 2007.

[31] Gonzalo Camarillo and Miguel A. Garcia-Martin. The 3G IP Multimedia Subsystem

IMS - Merging the Internet and the Cellular Worlds (2. ed.). Wiley, 2006.

[32] B. Campbell, J. Rosenberg, H. Schulzrinne, and C. Huitema. Session Initiation Pro-

tocol (SIP) Extension for Instant Messaging. Technical report, IETF: Request for

Comments: 3428, 2002.

[33] Sujata Chavan. Understanding Instant Messaging (IM) and Its Security Risks. SANS

Institute, August 2003.

80



[34] Thomas Claburn. SPIM, Like Spam, Is on the Rise. Information week, March 2004.

[35] Gerald Combs. Wireshark. online, http://www.wireshark.org/.
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