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Abstract

Motion Control of Smart Material Based Actuators: Modeling, Controller De-

sign and Experimental Evaluation

Sining Liu, Ph.D.
Concordia University, 2013

Smart material based actuators, such as piezoelectric, magnetostrictive, and shape mem-
ory alloy actuators, are known to exhibit hysteresis effects. When the smart actuators are
preceded with plants, such non-smooth nonlinearities usually lead to poor tracking per-
formance, undesired oscillation, or even potential instability in the control systems. The
development of control strategies to control the plants preceded with hysteresis actuators
has become to an important research topic and imposed a great challenge in the control
society. In order to mitigate the hysteresis effects, the most popular approach is to construct
the inverse to compensate such effects. In such a case, the mathematical descriptions are
generally required. In the literature, several mathematical hysteresis models have been pro-
posed. The most popular hysteresis models perhaps are Preisach model, Prandtl-Ishlinskii
model, and Bouc-Wen model. Among the above mentioned models, the Prandtl-Ishlinskii
model has an unique property, i.e., the inverse Prandtl-Ishlinskii model can be analytically
obtained, which can be used as a feedforward compensator to mitigate the hysteresis effect
in the control systems. However, the shortcoming of the Prandtl-Ishlinskii model is also
obvious because it can only describe a certain class of hysteresis shapes. Comparing to the
Prandtl-Ishlinskii model, a generalized Prandtl-Ishlinskii model has been reported in the
literature to describe a more general class of hysteresis shapes in the smart actuators. How-
ever, the inverse for the generalized Prandtl-Ishlinskii model has only been given without
the strict proof due to the difficulty of the initial loading curve construction though the

analytic inverse of the Prandtl-Ishlinskii model is well documented in the literature. There-
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fore, as a further development, the generalized Prandtl-Ishlinskii model is re-defined and
a modified generalized Prandtl-Ishlinskii model is proposed in this dissertation which can
still describe similar general class of hysteresis shapes. The benefit is that the concept of
initial loading curve can be utilized and a strict analytical inverse model can be derived for
the purpose of compensation. The effectiveness of the obtained inverse modified generalized
Prandtl-Ishlinskii model has been validated in the both simulations and in experiments on a
piezoelectric micropositioning stage. It is also affirmed that the proposed modified general-
ized Prandtl-Ishlinskii model fulfills two crucial properties for the operator based hysteresis

models, the wiping out property and the congruency property.

Usually the hysteresis nonlinearities in smart actuators are unknown, the direct open-loop
feedforward inverse compensation will introduce notably inverse compensation error with
an estimated inverse construction. A closed-loop adaptive controller is therefore required.
The challenge in fusing the inverse compensation and the robust adaptive control is that
the strict stability proof of the closed loop control system is difficult to obtain due to the
fact that an error expression of the inverse compensation has not been established when the
hysteresis is unknown. In this dissertation research, by developing the error expression of the
inverse compensation for modified generalized Prandtl-Ishlinskii model, two types of inverse
based robust adaptive controllers are designed for a class of uncertain systems preceded
by a smart material based actuator with hysteresis nonlinearities. When the system states
are available, an inverse based adaptive variable structure control approach is designed.
The strict stability proof is established thereafter. Comparing with other works in the
literature, the benefit for such a design is that the proposed inverse based scheme can achieve
the tracking without necessarily adapting the uncertain parameters (the number could be
large) in the hysteresis model, which leads to the computational efficiency. Furthermore,
an inverse based adaptive output-feedback control scheme is developed when the exactly
knowledge of most of the states is unavailable and the only accessible state is the output of
the system. An observer is therefore constructed to estimate the unavailable states from the

measurements of a single output. By taking consideration of the analytical expression of the

v



inverse compensation error, the global stability of the close-loop control system as well as the
required tracking accuracy are achieved. The effectiveness of the proposed output-feedback

controller is validated in both simulations and experiments.
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Chapter 1

Introduction

1.1 Motivation

In recent decades, the demands of high precision positioning techniques have increased dra-
matically in various industrial areas such as biomedical science, optics, semiconductors, mi-
croscopy, and so forth. The required performance in such a high level demands a significant
improvement of both the actuators and the controllers. The smart material, including the
piezoelectric material, the magnetostrictive material and the shape memory alloy (SMA),
has become the ideal material to manufacture the improved actuators because of their supe-
rior performances, such as high resolution and fast response. However, the smart material
based actuators usually exhibit the hysteresis effect [2]. This nonlinear effect will result
in the performance limitations of the control systems when it is preceded with the smart
material based actuators, including poor tracking accuracy, oscillations, or even potential
instabilities in the control systems [3]. On the other hand, due to the multi-valued and non-
smooth natures of the hysteresis nonlinearity, as shown in Fig.1.1, it is insufficient to directly
adopt the traditional control technologies to mitigate the hysteresis effects [4|. Therefore,
the development of effective methods of hysteresis compensation so as to enhance the con-

trol systems tracking performance as well as guarantee the system stability has attracted



significant attention in both theoretical and practical fields in recently years.

In order to compensate the hysteresis effects in the control systems, the construction of the
hysteresis models definitions is essential. The characterizations of hysteresis nonlinearities
in various smart material based actuators are usually different. For example, the hysteresis
loops of the piezoelectric actuators are close to symmetric. However, the magnetostrictive
and SMA actuators yield highly asymmetric hysteresis nonlinearities. Furthermore, some of
the smart material based actuators exhibit the output saturation. In an effort to describe
the diverse hysteresis phenomenons, numbers of hysteresis models have been proposed in the
literature |5,6|. The most cited hysteresis models perhaps are the Preisach model [7-9], the
Krasnosel’skii-Pokrovskii (KP) model [10, 11|, the Prandtl-Ishlinskii (PI) model [12,13], the
Duhem model [14], and so forth. Among these models, the PT model is well known because
its unique invertible property. The analytical inverse of PI model bas been derived in [15]
and applied as the hysteresis compensator to mitigate the hysteresis effect in the control
systems. However, the obvious limitation of the PI model is that it can only describe a
certain class of hysteresis shapes, i.e., the symmetric and non-saturated hysteresis loops. In
recently years, several works |16-18| have been proposed to modify the PI model so as to
enlarge its application range. Especially, a generalized Prandtl-Ishlinskii (GPI) model has
been defined in [19] to describe a more general family of hysteresis shapes comparing to the
PI model. Furthermore, the inverse GPI model has been derived in [20]. However, based on
such a definition of GPI model, even though the form of the inverse model has been given and
its effectiveness has been testified in the experiment, the strict theoretical proof of the inverse
GPI model is difficult of obtain, which prevents it from the compensation error analysis and
inverse controller designs. The reason could be the difficulty of defining the initial loading
curve that is essential for the inverse construction. Therefore, as a further development, the
GPI model will be modified and a modified generalized Prandtl-Ishlinskii (MGPI) model
will be defined in this dissertation. The benefit of this modification is that the MGPI model
not only can describe the similar generalize class of hysteresis shapes comparing to the PI

model, but also make it possible to obtain an inverse model with the strict theoretical proof
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since the concept of initial loading curve can be utilized.

Based on the available hysteresis models, the corresponding compensation methods have
been reported in the literature, which can be classified into two groups. The first one is using
the inverse hysteresis model as a feedforward compensator, which is pioneered by Tao and
Kokotovic [3], and the second group is without using the inverse construction but directly
applying the feedback controllers. For the first group, the strict stability proof is still a
challenge task except [3] and [21] due to the fact that an error expression of the inverse
compensation has not been established yet when the hysteresis is unknown. This explains
the reason why the second group of controllers were developed, which usually satisfies the
Lyapunov condition. In this dissertation research, it will be shown that a strict stability
proof can be established for the inverse compensation scheme taking consideration of error
expression of the inverse compensation in the controller design, where the MGPI model is
used to describe the hysteresis nonlinearities. Comparing with a typical approach [13] in
the second category, the benefit for such a design is that the proposed inverse based scheme
can achieve the tracking without necessarily adapting the uncertain parameters(the number
could be large) in the hysteresis model, which is made possible by the introduction of the
stop operator in the error formulation. Though the proposed approach incurs extra cost in
implementing hysteresis inversion, it achieves gain in computational efficiency by not having
to adapt the hysteresis parameters. Furthermore, for the case when not all the states are
measurable in the control systems, an observer based adaptive output-feedback controller
together with the inverse construction will be designed for a class of unknown nonlinear
systems preceded by the unknown hysteresis described by the MGPI model. It has been
validated that, by using the proposed inverse based output-feedback controller, both the

global stability and the tracking accuracy are achieved.



1.2 Objective and Contributions

1.2.1 Objective of the Dissertation

|
Input Signal | Robust Inverse | Smar.t Output Signal
A o . | - | Material o L C
> Adaptive »  Hysteresis | > Based »  Plant >
_ : Controller Compensator | Actuator
e e e e e e e e — c— — — — — J
Controller

Figure 1.2: Closed-loop control system with hysteresis effect

Figure 1.2 shows a closed-loop control system of a plant preceded by a smart material
based actuator. The smart material based actuators usually exhibit the hysteresis nonlin-
earity, which will highly restrict the performance of the closed-loop control system. In the
literature, many important works of hysteresis compensation have been reported for such a

system. However, there are still some challenges left, some of which are listed as follows,

< The PI model is widely used in describing the hysteresis effects in the smart material
based actuators because of its unique invertibility, but it can only describe a restrict
type of hysteresis loops. Moreover, the definition of PI model has been extended to
a general form in the literature so as to describe a more general class of hysteresis
shapes. However, the analytical expression of the inverse general PI models is difficult

to obtain with a strict theoretical proof.

< In the literature, one of the most common ways to compensate the hysteresis effect is to
construct an inverse. Since the hysteresis nonlinearity is usually unknown in the control
systems, the inverse compensation error due to the hysteresis modeling uncertainties
is unavoidable. Nevertheless, the strict stability proofs of the control systems can not
be established due to the difficulty of deriving the analytical expression of the inverse

compensation error.



< Other than the inverse based approaches, the direct methods are also adopted in the
literature for the hysteresis compensation without constructing the hysteresis inverse.
However, there are few works reporting the performance comparisons between these
two control strategies. Furthermore, the direct compensation methods usually need
to adapt many hysteresis parameters, which significantly increases the computation

burden.

< Most of the developed control methods in the literature are valid only for all the system
states are measured except a few works [22,23|. However, for a given particular dy-
namical system, in most of the case, the exact knowledge of all the states is unavailable
and the only accessible state is the output of the system. Therefore, it is necessary
to develop control methods with observers to estimate the unavailable states from the
measurements of a single output. How to fuse the hysteresis model, especially the
PI-type model, with the available output-feedback control technologies to mitigate the

hysteresis effect is still a challenge task.

Therefore, to address the above mentioned challenges, the objective of this dissertation
is to propose an improved hysteresis model and design the inverse based control strategies
so as to mitigate the hysteresis effect described by the proposed hysteresis model as well as
ensure the global stability of the control systems, while tracking a desired trajectory with a
certain precision. The performance of the inverse based controller will be compared with the
direct method. In addition, this dissertation research also aims to design an output-feedback

controller for the nonlinear systems preceded by the hysteresis nonlinearities.

1.2.2 Contributions of the Dissertation

This dissertation deals with the inverse based adaptive controller design for unknown non-
linear systems preceded by unknown hysteresis nonlinearities. The main contributions of the

dissertation are highlighted as follows.



< For the purpose of enlarging the application of the PI model as well as facilitate the
inverse model derivation with a strict theoretical proof, a modified generalized Prandtl-
Ishlinskii (MGPI) model has been proposed in the dissertation research. Comparing
to the PI model, the proposed MGPI model is able is describe a more general class of
hysteresis shapes. Comparing to the GPI model, the concept of initial loading curve
can be utilized, which makes it possible to obtain an analytical expression of the inverse

MGPI model with the strict theoretical proof.

< Two essential properties, the wiping out property and the congruency property, for the
modified generalized Prantl-Ishlinskii model have been inspected. It has been shown
that the modified generalized Prantl-Ishlinskii model fulfills these properties. This
result provides the necessary and sufficient conditions for the hysteresis nonlinearity

to be represented by the proposed modified generalized Prantl-Ishlinskii model.

< The analytical inverse of the MGPI model with both linear and nonlinear envelope
functions has been derived based on a strict theoretical proof. The numerical imple-
mentation of the inverse model has been subsequently provided. The effectiveness of

the inverse model has been verified in both the simulations and experiments.

< When the hysteresis is unknown, the analytical form of the inverse compensation error
has been derived. The nonlinear part of the obtained inverse compensation error
expression is proved bounded. Based on such a expression, the adaptive controllers
can then be designed and the closed-loop stability analysis can be established based
on the Lyapunov method.

<In this dissertation, the error expression of the inverse compensation has been fused
with the adaptive variable structure controller design. The global stability of the
system and tracking a desired trajectory to a certain precision are achieved without
adapting the uncertain hysteresis parameters (except one parameter that corresponds
to the bound of the inverse compensation error). Though the proposed approach

incurs extra cost in implementing hysteresis inversion, it achieves gain in computational



efficiency. From the simulation results, it can be shown that, by taking consideration of
error expression of the inverse compensation in the controller design, the inverse based
scheme for the hysteresis compensation generates a superior transient performance over

the direct approach without inverse constructions.

< When not all the system states are available, an inverse based adaptive output-feedback
controller has been designed for nonlinear systems preceded by unknown hysteresis
effect described by the MGPI model. A state observer has also been designed for the
system states estimations. The global stability of the system has been guaranteed and
the tracking accuracy has been ensured. The performance of the developed controller

has been validated in both simulations and experiments.

1.3 Organization of the Dissertation

This dissertation is systematically organized in nine chapters. The topic of each chapter is

briefly introduced as follows.

In Chapter 2, an exhaustive literature review of the mathematical models of the hysteresis

nonlinearity and control methods of systems with the hysteresis effect will be provided.

In Chapter 3, an extensive review of the PI model and the GPI model will be presented.
Then, a MGPI model will be proposed. Two essential properties, the wiping out property
and the congruency property, of the proposed MGPI model will be investigated thereafter.

The analytical expression of the inverse MGPI model will be derived in Chapter 4 based
on a strict theoretical proof. The numerical implementation of the inverse compensation will

then be provided. The simulation results will also be included for the purpose of validation.

In Chapter 5, the analytical expression of the inverse compensation error of the MGPI

model will be derived.

In Chapter 6, an adaptive variable structure controller with consideration of the expression

of the inverse compensation error will be designed for the unknown nonlinear systems pre-



ceded with the unknown hysteresis described by the MGPI model. The stability analysis of
the closed-loop control system will be given. The performance of the inverse based hysteresis

compensation scheme will be compared with the direct method in simulation studies.

When the system states of the uncertain nonlinear systems which is preceded by unknown
hysteresis nonlinearities cannot be fully measured from the output, an inverse based adaptive
output-feedback controller together with an state observer will be designed in Chapter 7.
The stability analysis of the closed-loop system will be provided. The effectiveness of the

proposed controller will be verified in simulations.

In Chapter 8, all the theoretical results obtained in previous chapters will be verified

through the experiment studies.

The conclusion and the major contributions will be summarized in Chapter 9 together

with the recommendations of the future work.



Chapter 2

Literature Review

The hysteresis nonlinearity exists in various fields, ranging from mechanical to economics,
from physics to electronics, and from bioscience to terrestrial hydrology. In some areas,
the hysteresis effects can bring the benefits. For instance, the hysteresis effect provides a
mechanism that enhances the robustness of cell functions against random perturbations in
cell-biology |24]. In marketing, the hysteresis effect may create a long-run investment bene-
fit from marketing actions for the firms [25]. However, in most areas, the hysteresis effects
are usually considered as the undesired influences. For example, the smart material based
actuators, such as piezoelectric actuators |26, 27|, magnetostrictive actuators [28], and SMA
actuators [10,29|, in industrial control systems usually exhibit the hysteresis effects. Such
non-smooth nonlinearities will considerably degrade the performance of these actuators, or
even result in the control systems instability. Hysteresis is a multi-valued mapping. It is
non-smooth, non-differentiable, and usually unknown. Therefore, it is difficult to mitigate
its harmful effects by using the existing traditional control approaches. In recent decades,
control of systems exhibiting the hysteresis effects becomes to an interesting topic and great
challenge. In this dissertation, the research will focus on analyzing and modeling the hys-
teresis characterization in the smart based actuators and designing the controllers for the

nonlinear plants preceded by smart material based actuators.
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2.1 Hysteresis Nonlinearity

The word “hysteresis” comes from a Greek work “hysterein" which means “to lag behind".
However, with the development of the hysteresis studies, the definitions of hysteresis have
been interpreted by a number of researchers and varies from area to area and from paper
to paper. Usually, one may refer to a relation between two scalar time-dependent quantities
that cannot be expressed in terms of a single-valued function, but take the form of loops [12].
As pointed out by 1. D. Mayergoyz [7], this description may be misleading and can create
the impression that the looping is the essence of hysteresis. In this work, the definition of
hysteresis which was introduced by a Scottish physicist, Alfred Ewing, is adopted in order

to avoid the confusion and ambiguity [30].
Definition of Hysteresis

When there are two quantities M and N, such that cyclic variations of N cause cyclic
variations of M, then if the changes of M lag behind those of N, we may say that there is
hysteresis in the relation of M and N.

The hysteresis nonlinearity has some essential characteristics, such as memory, wiping-out,

congruency, minor and major loops, and so forth.

First of all, the principal characteristic of hysteresis is the memory. It can be described
that the output of the hysteresis nonlinearity not only depends on the current input value,

but also influenced by the previous history of the inputs.

Another significant property of the hysteresis is wiping-out which is closely related to
the memory. Any local maximum of the input value wipes out the memory impressed by
previous smaller local maxima. Similarly, any local minimum of the input function wipes

out the memory impressed by previous larger local minima.

The congruency property means that, regardless of the input history, the minor loops
caused by the same input range are congruent. The congruency property and the wiping-out

property are two essential properties of the hysteresis nonlinearity.
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Figure 2.1: Major and minor loops of hysteresis nonlinearity.
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The major hysteresis loop is the contour of the hysteresis region and the minor loops exist
inside the major loop, as shown in Fig.2.1. It should be noticed that although the major
and minor loops are widely occur in the hysteresis nonlinearities in smart material based

actuators, not all the hysteresis model can produce the minor loops.

The hysteresis effect can also be characterized by either rate-independent or rate-dependent
models. The hysteresis is rate-dependent if the output of the hysteresis effect is not only de-
pendent on the past input extremum, but also determined by the rate of change of the input
variation between the extreme points. On the other hand, the rate-independent hysteresis

means that the output of the hysteresis only influenced by the history of input extremum.

Besides the above mentioned properties, the hysteresis loops can be described as symmet-
ric loops and asymmetric loops. The hysteresis nonlinearities in some of the smart material
based actuators, such as piezoeletric actuators, possess close symmetric shapes. In some
other smart material based actuators, i.e., magnetostrictive actuators, the asymmetric hys-
teresis loops are observed. Furthermore, some smart material based actuators, such as the

two-wire SMA actuators, possesses the output saturation.

2.2 Hysteresis Models

Hysteresis nonlinearities in the smart material based actuators usually lead to the poor per-
formances of control systems. Therefore, control of the systems preceded with the hysteresis
effects becomes to an important topic and attractive challenge in the control system area.
In order to describe the hysteresis nonlinearities so as to facilitate the hysteresis compen-
sation, several hysteresis models have been proposed in the literature since the end of 19th
century. Generally, the hysteresis models can be classified into two categories, physic-based

models [31,32] and phenomenological models [3,8,9,11,33-36].

The physic-based hysteresis models are built on first principles of physics. They are

derived based on the comprehensive knowledge of the physical phenomenon, for instance
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displacement, energy, or stress-strain relationship. In [31], Jiles and Atherton proposed a
physic-based hysteresis model, the Jiles-Atherton (J-A) model, on the basis of observed
physical properties of ferromagnetic materials. The J-A model is widely used in modelling
ferromagnetic hysteresis [37, 38| since it is capable of exhibiting all of the main features of
hysteresis in ferromagnetic hysteresis such as the initial magnetization curve, saturation of
magnetization, coercivity, and hysteresis loss. Another physic-based hysteresis model has
been proposed by Basso and Bertotti in |32 to simulate the magnetic component part in
a power electronic converter. Furthermore, an electromechanical piezo model, based on
physical principles, is presented in [39] to describe the hysteresis exhibits in the piezoelectric
actuator. Since the physic-based hysteresis models are usually very complicated and limited
to specific physics or structures, this kind of models is very difficult for applying to various

materials and actuators in the industry.

The phenomenon hysteresis models, on the other hand, do not require the knowledge of
the physical phenomenon. They are used to produce the similar behaviour to those physical
systems that possess hysteresis. Most of the phenomenon hysteresis models were initially
proposed to describe the hysteresis effects in specific material or physical systems and then
extended to a general expression for the application in other systems. These models can
predict the hysteresis accurately as well as facilitate the design of controller for compensat-
ing the hysteresis effect. The most popular phenomenon hysteresis model is the Preisach
model. The Preisach model, which can be considered as a superposition of elementary hys-
teretic “relay” operators, was initially developed to describe hysteresis in the ferromagnetic
material [8,40]. However, in the recently decades, the Preisach model has undergone many
enhancements to enlarge its application range. It has been shown by many experimental se-
tups that the Preisach model can be used to characterize the hysteresis nonlinearities in vari-
ous smart material based actuators, such as magnetostrictive [28], piezoceramic [41-43|, and
SMA actuators [44,45]. As a further development of the Preisach model, the Krasnoselarfskii-
Pokrovskii (KP) model was proposed in 1970s. Instead of the “relay operator”, the KP model
is defined based on the Lipschitz continuous KP operators. The KP model has been used
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to model the hysteresis effects in different smart material based actuators [46,47]. Similar
to the Preisach model and the KP model, the Prandtl-Ishlinskii (PI) model, early proposed
in [48,49]|, is constructed based on the continuous play or stop hysteresis operators. The
detailed discussion of the PI model can be found in [12,50]. The PI model is usually used
to describe a certain class of hysteresis effects, such as symmetric, rate-independent, and
non-saturated hysteresis. The utilization of Preisach model and the PI model to describe
the hysteresis nonlinearity in piezoelectric actuators can be found in |51]. In recent years,
several significant improvements have been proposed so as to expand the applicants of the PI
model. Al Janaideh et al. have proposed a rate-dependent PI model based on the integration
of the rate-dependent play operators with the dynamic thresholds in [52]. To express the
asymmetric hysteresis, a modified PI model has been reported in [16]. The improved model
is defined based on a combination of two asymmetric operators which can independently sim-
ulate the ascending branch and descending branch of hysteresis. Kuhene and Janocha [53]
modified the play operator by combining the one-sided dead-zone operator so as to describe
the asymmetric hysteresis nonlinearity. In [19], a generalized PI (GPI) model has been pro-
posed by introducing the envelope functions. The GPI model can be used to describe both

the asymmetric and saturated hysteresis nonlinearity.

Besides the above mentioned operator based phenomenon hysteresis model, some hystere-
sis models are defined in the form of differential equations. The most accepted differential
equation models are the Duhem model and the Bouc-Wen model. The development of the
Duhem model dates from 1897 [54] and focusses on the fact that the output can only change
its character when the input changes direction. It has been shown that the Duhem model is
useful in applied electromagnetics [55,56]. The Bouc-Wen model proposed by Bouc in 57|
and extended by Wen in [36] is an nonlinear differential equation-based model. This model
is widely used to describe the hysteresis effect between the applied displacement and the out-
put force in wide range of mechanical systems [6]. In particular, the Bouc-Wen model has
been applied to express the hysteresis in piezoelectric elements [58, 59|, magnetoheological

dampers [60], and wood joints [61].
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2.3 Hysteresis Compensation

In recent decades, more and more smart material based actuators have been used in control
systems. Such devices can offer high resolution of displacement and can be used in microp-
osition applications. However, the hysteresis effect exhibited in smart materials may cause
the undesirable inaccuracy or oscillation, or even instability in the control systems [3]. In
this case, the demand of compensating the hysteresis effect has received considerable atten-
tions. Since the hysteresis effect is an non-smooth and non-differentiable nonlinearity, the
traditional control methods for nonlinear system are insufficient to solve such a problem.
Therefore, the new nonlinear control approaches are required. The control approaches for
hysteresis compensations can be generally classified into two categories, the inverse-based
methods and the direct methods. The representative works of both categories will be re-

viewed in this section.

2.3.1 Inverse-based Methods

In the literature, the most common method to compensate the hysteresis nonlinearity is to
construct the inverse model of the hysteresis model, which is pioneered by Tao and Koko-
tovic [3] in 1995. As shown in Fig. 2.2, for a given reference input signal, an inverse model is
cascaded to the hysteresis model as a feedforward hysteresis compensator so that, theoreti-
cally, the compensated output of the open-loop system can track the reference input signal.
In Tao and Kokotovic’s work, an adaptive control algorithm was developed to mitigate the
hysteresis nonlinearity of a system consisting of a linear plant and a hysteresis characteristic
as its input. An adaptive hysteresis inverse was constructed when hysteresis nonlinearity
is described in a regular shapes and cascaded with the plant to cancel the hysteresis effect
and stabilize the linear plant. Motivated by this work, numbers of inverse model-based ap-
proaches have been addressed in literature. Among these works, the main challenge is how
to construct the inverse hysteresis model for a general hysteresis models. The inverse com-

pensation methods of the Preisach model, the KP model and the PI model will be reviewed
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as follows.

Input Output
Signal Signal
— Inverse Model Hysteresis Model ———J

Figure 2.2: Inverse feedforward controller for hysteresis nonlinearity.

As introduced in the previous section, the Preisach model is one the most popular and
widely used hysteresis models. Compensation of hysteresis represented by Preisach model
has been studied by many researchers. In [62], Ge and Jouaneh have derived a feedforward
computer-based tracking control approach to mitigate the hysteresis effect described by the
Preisach model in a piezoceramic actuator. They also designed a PID feedback control to
adjust the control error. By fusing the PID feedback control and the tracking approach in
the feedforward loop, the results showed that the system can track the desired sinusoidal tra-
jectory successfully. The system had better time and frequency tracking characteristic and
smaller tracking error than using a regular PID controller alone. If the reference signal fre-
quency is low enough, the control accuracy is mainly limited by the control system hardware.
However, the controller addressed in this work is only valid for tracking sinusoidal reference
signals and requires resetting for different inputs. An integrated inversion-based approach to
compensate creep, hysteresis and vibrations of piezoactuators in Scanning Probe Microscopy
(SPM) applications has been proposed in [63]. Rather than modeling the Preisach model and
then construct its inverse model, the authors directly implement the inverse hysteresis model
using Preisach approach. N. Takahashi et al. [64] have proposed an approach to employ the
Preisach model itself as the inverse model to compensate another Preisach model. Neverthe-
less, such an operator, strictly speaking, cannot be considered as the inverse of the original
operator because of the congruency property [65]. Tan and Baras [28] have proposed a new
dynamic hysteresis model for magnetostrictive actuator by coupling a Preisach model and

an ordinary differential equation. This dynamic model described the hysteresis effect in the
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magnetostrictive actuator as well as the eddy current loss and the magnetoelastic dynamics
of the magnetostrictive rod. The inverse Preisach model with an adaptive controller is then
developed to compensate the hysteresis nonlinearity. In a more recent paper [66], a unified
approach is presented to obtain fast inversion of a broad of class of Preisach-type model by
exploiting the massive parallelism offered by field-programmable gate arrays. In [67], the
authors compare the performance of inverse-based compensation of both the physic-based
Jiles-Atherton model and phenomenon-based Preisach model in terms of the identification
complexity, the runtime, and the space efficiency of the control-oriented implementation.
It turns out that the Preisach model works smoothly in the control framework and perfor-
mance robust while the Jiles-Atherton model shows significant advantage in the space and
runtime complexity. Xiao and Li |68] have proposed a novel modified inverse Preisah model
featured with weight sum of u-density functions based on the linearity property. The proper
p-density functions and weights are determined by the fast Fourier transform. The effec-
tiveness of the developed inverse model has been verified on a piezoceramic actuator. It has
been shown that the proposed open-loop hysteresis adjust method dramatically improves
the tracking accuracy of the piezoceramic actuator for the multifrequency composed signals.
The Preisach model was also used to model the rate-dependent hysteresis nonlinearity of a
Giant Magnetostrictive Actuator (GMA) in [69]. A PID feedback controller combined with
an inverse compensation in the feedforward loop was proposed for the tracking control in

this work.

In addition to the investigation of inverse Preisach model, the inverse-based compensation
methods of Krasnosel’skii-Pokrovskii (KP) model have also been studied. Webb et al. [10]
have proved that an exact inverse under a condition of the value of the rise constant of kernel
functions for the parameterized KP model exists. This inverse model has been combined
with adaptive laws for implementing the parameters on-line identification and for eliminating
the hysteresis effect. In another work [70]|, Galinaitis and Rogers proposed an approximate
KP model to describe the hysteresis in a piezoelectric stack actuator. The inverse model

was also developed and verified through the computer simulation. In [71], an inverse KP
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model has been constructed for an off-line KP approximate model of the unknown hysteresis.
Furthermore, an adaptive control algorithm was designed to update the model parameters

so as to ensure that the tracking error asymptotically converges to zero.

It is worth to be mentioned that the inverse models of Preisach model and the KP model
are usually derived using numerical methods. Although the compensation performance by
using numerical inverse models is satisfied under some particular conditions, the limitations
still can not be overlooked. First of all, the numerical inverse is only an approximate inverse
so that the compensated system usually exist uncertain inversion errors. In this case, the
stability of the closed-loop control system comprising the controlled plant preceded by the
numerical inverse compensation cannot be established. Second, in order to obtain the numer-
ical inverse model, the outputs of the actuators are usually required to be known. However,
in most of the practical control systems in the industries, the actuators are embedded in the
plants and the output of the actuators are impossible to be measured directly. Third, the
numerical inverse of a hysteresis model cannot be considered to be unique and one inverse
model can only be applied to the specified input and initial conditions. In addition, because
of the complexity of the hysteresis models, the derivations of numerical inverse models are

computationally intensive.

Comparing to Preisach model and KP model, the Prandtl-Ishlinskii (PI) model is well
known because of its unique analytically invertible property. In [15], a feedforward controller
designed based on the inverse of PI model has been addressed to remove the hysteresis effect
in piezoelectric actuators. In their work, the analytical expression of the inverse PI model
has been derived for the first time. The knowledge of the exact description of inverse PI
model and thus the compensation error would facilitate the design of robust controllers and
stability analysis. In [72|, the inverse of PI model was applied with a smooth robust adaptive
controller with the hyperbolic tangent function for the compensation of hysteresis effect
described by the PI model. An adaptive inverse strategy was proposed in [73] to compensate
the discrete PI model without any prior knowledge of the PI model. The unknown hysteresis

parameters were identified online by the least mean square method or the gradient method.
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In [74], an inverse rate-dependent Prandtl-Ishlinskii model has been utilized for feedforward
compensation of the rate-dependent hysteresis nonlinearities in a piezomicropositioning stage
over different excitation frequencies. The proposed inversion holds under the condition that
the distances between the threshold do not decrease in time. Moreover, a modified PI model
has been introduced in [53,75] to describe a more complex hysteretic actuator nonlinearities.
This modified PI model was the combination of the backlash operators and the one-side
deadzone operators. The inverse model was also derived to compensate the hysteresis effect.
The above result has been applied in [18] on a piezoeletric-actuator system. To reduce the
inverse compensation error and the system uncertainty and disturbances, a sliding model
controller was designed. The experimental results on a nano-stage verified the effectiveness
of this method. In [19], a generalized PI model has been proposed to describe a more general
class of hysteresis shapes. The corresponding inverse compensator to this generalized PI
model has been reported in [20]. The effectiveness of the inverse GPI model has been verified
in the experiment thought the strict theoretical proof of the inverse model derivation was

missing.

Other than the above mentioned inverse approaches, neural networks and fuzzy-based
models are also proposed to compensate the hysteresis effect by constructing the corre-
sponding inverse models through the neural networks and fuzzy logics, respectively [76-78].
For the case when not all the system states are available, the inverse compensation has been
combined with the observer-based adaptive output-feedback controller. In [23,79|, the au-
thors proposed an inverse-based adaptive output-feedback controller for the dead-zone and
the backlash nonlinearity, respectively. Besides the phenomenological models, the inverse
models are constructed as well for the physic-based models. In [80], the inverse of the Ferro-
magnetic material hysteresis model was constructed to mitigate the hysteresis nonlinearity
in the Piezoelectric actuators. A more exhaustive review of inverse model-based methods

for hysteresis compensation can be found in [65].
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2.3.2 Direct methods

Due to the complexity of hysteresis properties, especially the multi-branches property and the
non-smoothness, the compensation methods based on inverse models are usually complicated,
computationally costly and strongly sensitive to unknown modeling errors and measurement
errors. These issues will directly cause the difficulty of system stability analysis excepted for
certain special cases [3]. To overcome the disadvantage of inverse compensation approaches,
a number of control methods, such as robust adaptive control [1,13,81-83|, energy-based
control [44], and sliding mode control [84-86], have been proposed without constructing the
inverse models. Su et al. have dealt with the hysteresis represented by PI models in [1,81].
In their works, the PI model was fused with the robust adaptive control approach without
deriving the inverse model. The proposed controllers lead to the desired output and the
global stability. The developed controller has been further substantiated in the experiment
in [87]. In [88], the above proposed controller has been extend to be applied on a SMA
micro-actuators based flap positioning system. Moreover, in [89], an adaptive robust control
strategy has been proposed for the GPI model without constructing the inversion. Passivity-
based stability and control of hysteresis were attempted by Gorbet and Pare [44,90]|. Pare [90]
proposed a transformation which convert the hysteresis in to a passivity operator, and then,
developed a simple stability theorem. In [44], Gorbet derived a passivity property of the
Preisach model and designed an energy-based approach to mitigate the hysteresis effect. The
direct compensation methods avoid the mathematical complex in constructing the inverse
model. However, this kind of approaches may lead to computational burden of adapting the

hysteresis parameters and inferior transient performance of the control systems.

Besides the control methods discussed before, the compensation of differential hysteresis
models were also studied. In [91], Su et al. have developed an adaptive control of a class
of nonlinear dynamics systems preceded by unknown backlash-like hysteresis nonlinearities,
which was represented by Duhem model, without constructing the inverse. The adaptive
laws ensured the global stability and high precision of tracking. The compensation methods

for hysteresis described by Bouc-Wen model have been investigated in [26,92].
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Chapter 3

Modified Generalized Prandtl-Ishlinskii
(MGPI) Model

The hysteresis nonlinearities exhibit widely in the smart material based actuators, which
may lead to the inaccuracy, oscillation or even instability of the control systems. In or-
der to describe the hysteresis nonlinearities in the smart actuators so as to facilitate the
compensation, a number of hysteresis models have been proposed in the literature. The
Prandtl-Ishlinskii (PI) model is one of the most popular hysteresis models and is well known
because of its unique invertibility. The inverse model can be considered as a feedforward
compensator to mitigate the hysteresis effects in the control systems. The PI model has
been applied in the control systems to describe the hysteresis effects in various smart mate-
rial based actuators, especially the piezoelectric actuators [27,93|. However, the limitations
of the PI model are obvious. First, the PI model will yield considerable errors when describe
the asymmetric hysteresis loops which are observed in the output-input properties of the
SMA |94] and magnetostrictive actuators [95]. In addition, the PI model usually fail to
describe the output saturation of the hysteresis loops in the smart material based actuators.
In [19], a generalized Prandtl-Ishlinskii (GPI) model has been proposed to overcome the

limitations of the PI model by introducing envelope functions. The GPI model can describe
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both the asymmetric and saturated hysteresis loops. However, based on the definition of
the GPI model, the inverse model cannot be obtained with the strict theoretical proof due
to the difficulty of the initial loading curve construction. In this chapter, the GPI model
is re-defined and a modified generalized Prandtl-Ishlinskii (MGPI) model will be proposed
which can still describe similar general class of hysteresis shapes. The benefit is that the
concept of initial loading curve can be utilized, based on which a strict analytical inverse
model can be derived for the purpose of compensation. Two essential properties, the wiping

out property and the congruency property, will be validated for the proposed MGPI model.

Before introducing the MGPI model, the definitions of the PI model and the GPI model

will be reviewed.

3.1 Prandtl-Ishlinskii Model

The PI model can be considered as the weighted superposition of the elementary hysteresis
operators, i.e., the play operators. The definition and the properties of the play operators

will be addressed as follows.

3.1.1 The Play Operator

The one dimensional play operator can be considered as a free-to-move cylinder of length 2r
and a moving piston as shown in Fig. 3.1. The output w(t) is the position of the center of

the cylinder and the input v(t) represents the piston position.

According to the definition in [12], the description of the play operator F,.[v](t) from the

mathematical point of view can be given as follows.

Let C,,[0,tg] denotes the space of the piecewise monotone continuous function. 0 =
toy < t; < ty < xxXx< ty = tp are intervals in [0,tg]. For any piecewise monotone input
function v (t) / C,, [0,tg] such that v(t) is monotone on each of the subintervals [t;, ;1]

where i = 0,1,2, %, N 1, the play operator w(t) = F,[v](t) with threshold » C 0 and
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initial value w_; is defined by

w(0) = F[0](0) = f(v(0),w-1),
w(t) = Fp[v](t) = fr(v(t), w(ti)) (3.1)

where

fr(v,w) =maz}v rymin}o +r,w| | (3.2)

forti<t2ti+1,02i<N.

2r

A
Y.

Figure 3.1: A piston with plunger of length 2r.

The argument of the operator is written in square brackets to indicate the functional

dependence, since it maps a function to a function.

The play operator has the rate-independent memory. It means that the output of this
operator is only determined by the current input value and the past extrema of input function
v(t). The velocity of input variation between each extreme will not affect the shape of input-
output relationship. The input-output relationship of play operator F,[v](t) can be expressed
in Fig. 3.2.

Some of the significant properties of the play operator are briefly reviewed as follows.

< Lipschitz-continuity
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Figure 3.2: Input-output relationship of play operator F,.[v](t).
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For a given v(t) and r > 0, the output of the play operator is Lipschitz-continuous

[12,35], which is important for the inverse construction of the PT model.

< Rate-independence

The branches of the play operator are only determined by the past input extrema.
The velocity of input variation between each extremum will not affect the shape of the
branches, i.e.,

F.lvea]l = F,[v] e« (3.3)
where « is a continuous increasing function, « : [0, 77, satisfying «(0) = 0 and a(7T") =

T.

< Counter-clockwise

The play operator creates the counter-clockwise input-output trajectories.

3.1.2 Prandtl-Ishlinskii Model

The Prandtl-Ishlinskii model, a operator-based phenomenological hysteresis model, is defined
as a weighted superposition of a number of play operators. The analytical formula of the PI

model II[v]t utilizing the play operator F,.[v](t) is defined by

M) = poott) + [ o) B Lol (3.4
where pg is a positive constant and p(r) is an integrable density function. This density
function satisfies p(r) C 0 with [[“rp(r)dr < €. It represents the distribution of the
weighting for the play operators with distinct thresholds r and vanishes when r is sufficient
large. With the defined density function, the PI model maps Cltg, € ) to Cltg, € ), i.e., the
Lipschitz continuous input will lead to the Lipschitz continuous output [11]. Since the density
function p(r) vanishes when r is sufficient large, the choice of R = € as the upper limit of

the integration is widely accepted and used in the literature for the sake of convenience [12].

As an illustration, Fig. 3.3 shows the input-output relationship of the PI model given
in (3.4), with py = 5 and p(r) = 5e"*0M" for r / [0,90], under the input signal v(t) =
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Figure 3.3: An example of PI model under v(t)
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5sin(1.6mt)+4cos(4.8t
14-0.4t

) for t / [0,10] with initial value w_; = 0. It can be shown that the PI
model generates the hysteresis curves. The hysteresis described by the PI model is symmetric

and non-saturated.

3.2 Generalized Prandtl-Ishlinskii Model

Although the PI model has been widely applied to represent hysteresis nonlinearity for
different smart materials, its limitations are still obvious. It can only describe a certain class
of hysteresis shapes. For the asymmetric or saturated hysteresis loops which are usually
observed in various smart actuators and ferromagnetic materials, the PI model is insufficient
to describe. To overcome the limitations of the PI model, a generalized Prandtl-Ishlinskii
(GPI) model has been proposed in [19]. Comparing to the PI model, the proposed GPI
model has enhanced the prediction ability of the PI model, particularly in the content of
the above named nonlinearities, by defining an alternate play operator, the generalized play

operator.

3.2.1 The Generalized Play Operator

For any piecewise monotone input function v (t) / C,, [0,tg| such that v(t) is monotone on
each of the subintervals [t;,t;11] where i = 0,1,2, %, N 1, the generalized play operator

wy(t) = G,[v](t) with threshold » C 0 and initial value w, , is defined by

wy(0) = Gr[v}(0) = g, (v(0), Wy, ),
wy(t) = Gr[v](t) = gr(v(t), wy(ti)) (3.5)

where
gr(v,w) = maz}y.(v) rymin}y(v) +r,w| | (3.6)
for t; <t >t;11, 0> i< N. Comparing to the play operator defined in (3.1) and (3.2), the

envelope functions 7,(v) and 7;(v) are introduced, which are strictly increasing and fulfill
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that v, (v) C v.(v). It is these envelope functions that make it possible to describe a more

general class of hysteresis shapes.

3.2.2 Generalized Prandtl-Ishlinskii Model

The generalized PI model II,[v](¢) utilizing the generalized play operator G,[v](t) is defined

in [19] as follow.
R
I, o] (t) = / py(r)G, o) (t)dr (3.7)

where py(r) is an integrable density function satisfying py(r) C 0 with [~ rpy(r)dr < € .
Since the generalized play operator G,[v](t) is Lipschitz continuous and density function
pg(r) is integrable, the generalized PI model II,[v](t) is Lipschitz continuous for a given

input v(t) / C,[0,tg].

With these envelope functions, it is possible for the generalized PI model to describe a
more general class of hysteresis shapes. However, the introduction of the envelope functions
in the generalized play operator (3.5) has changed the meaning of the threshold r. Fig. 3.4
shows the outputs of both the play operators and the generalized play operators with various
choices of threshold 7. In the classic play operator (3.1) and (3.2), the r is the threshold for
the input signal itself. However, in the definition of the generalized play operator (3.6), it
is obvious that r becomes the threshold for the functions ~,.(v) and 7;(v), rather than the
input signal itself. In this case, the value r no longer directly related to the input signal

itself, causing difficulty for construction of an initial loading curve.

To remedy this difficulty, the definition of the generalized PI model is required to be
modified. As the further development, the modified generalized Prandtl-Ishlinskii model
(MGPT) is proposed as follows.
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3.3 Modified Generalized Prandtl-Ishlinskin Model

The modified generalized PI model is defined based on the modified generalized play operator

which can be expressed as follows.

3.3.1 The Modified Generalized Play Operator

For any piecewise monotone input function v(t) / C,,[0,tg] such that v(t) is monotone on
each of the subintervals [t;,¢;11] where i = 0,1,2, %<, N 1, the modified generalized play
operator wys(t) = Gy, [v](t) with threshold » C 0 and initial value w,,_, is defined by

wM(O) = Gmr [U](O) = 9mr (U<O)’ wmﬂ):

Wy (t) = Gnr[V](8) = Grnr (v(2), wrr (L)) (3-8)

where

Gmr(V, W) = maz}y.(v 1), min}y(v+r),w|| (3.9)

for t; <t >t;11, 0> 14 < N. The envelope functions v,.(v) and ~,(v) are strictly increasing
and fulfill that v, (v) > ~.(v). In the modified generalized play operator, the trajectories
(v r)and (v+r) of the classical play operator, not the input signal v(t) itself, are mapped
directly into the envelope functions v,.(v  r) and (v + ), as shown in Fig. 3.5. The new

cross-over values (; and (5 are linearly related to r, i.e.,

G="7"(0)+r
CG=77"(0) (3.10)

With the increase of v(t), the output of the modified generalized play operator increase
along the trajectory v.(v 7). When the input function v(t) decreases, the output of the
modified generalized play operator decreases along another curve (v + r). Therefore, the

threshold r still works as the threshold of the input signal itself rather than the envelope
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functions, which can also be observed by comparing Fig. 3.4(a) and Fig. 3.6 with various

choices of threshold r.

The properties for the play operator in the PI model are still valid for the modified

generalized play operator, which are listed as follows.

< Lipschitz-continuity
If the envelope functions are Lipschitz-continuous, then the proposed modified gener-
alized play operator is Lipschitz-continuous.

< Rate-independence

The branches of the modified generalized play operator are only determined by the
past input extrema. The velocity of input variation between each extremum will not

affect the shape of the branches, i.e.,

Gur[veal = G [v] e« (3.11)

where « is a continuous increasing function, « : [0, 77, satisfying «(0) = 0 and o(T") =

T.

< Counter-clockwise

The modified generalized play operator creates the counter-clockwise input-output tra-

jectories.

3.3.2 Modified Generalized Prandtl-Ishlinskii Model

The MGPI model is defined as a weighted superposition of the modified generalized play

operators G,,,[v](t). The analytical formula is given by

0[] (1) = / Do (P) Gl [0] () (3.12)
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where p,,(r) is an integrable density function satisfying p,, (1) C 0 with [~ rp,(r)dr < € .
It represents the distribution of the weighting for the modified generalized play operators
with distinct thresholds r and vanishes when r is sufficient large. The MGPI model is a

Lipschitz-continuous, rate-independent, counter-clockwise hysteresis model.

Remark: If the envelope function are selected as 7,.(v) = v and ,(v) = v, the MGPI
model will be the same as the classical PI model. Therefore, the PI model can be considered

as a special case of MGPI model.

3.3.3 Some Examples of Modified Generalized Prandtl-Ishlinskii

model

In this subsection, some examples of the MGPI model with various choices of envelope
functions will be shown under a complex input function v(t) = bsin(1.67t) + 4cos(4.8t),
t /[0,20]. The envelope functions selected for each example can be found in Table 3.1. The

density functions of the proposed MGPI models are chosen as follows.

Ppm(r) = 1.7¢70-307, (3.13)

Table 3.1: Various envelope functions for MGPI model

v) =0
Example 1 % (v)
7T<U) =v
v) = 2.4v
Example 2 ()
Yr(v) = 2.4v
v) = tanh(0.45v
Example 3 () ( )
~r(v) = tanh(0.45v)
~(v) = 20tanh(0.150 +0.1) 0.5
Example 4
Y (v) = 20tanh(0.1v + 0.3)

In Fig. 3.7(a), the MGPI model describes the same shape as the PT model does, which
shows that the PI model is a special case of the proposed MGPI model. In Fig.3.7(b)
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and 3.7(c), the envelope functions are chosen as linear and nonlinear functions respectively.
Particularly, the MGPI model with nonlinear envelope function can describe the saturated
hysteresis shapes. Furthermore, the MGPI model can also characterize the asymmetric

hysteresis nonlinearity as shown in Fig. 3.7(d),

3.4 Wiping Out Property and Congruency Property of
Modified Generalized Prandtl-Ishlinskii

As shown in the previous section, the proposed MGPI model can yield asymmetric as well
as saturated minor and major input-output hysteresis loops. In this section, two essential
properties, the wiping out property and the congruency property, will be validated for the
developed MGPI model by following the similar procedure in [96]. These two properties are
the necessary and sufficient conditions for the hysteresis nonlinearity to be represented by

the proposed MGPI model on the set of piece-wise monotonic inputs |7].

3.4.1 Memory Curve Structure

The memory curve of a hysteresis model is a curve that can reveal the state of this hystere-
sis model at each instant. Inspirited by the Preisach plane [97|, we construct a MGPI
plane denoted by S = }((2,(1): ¢ C G, 7 (G) = ()| for the given envelope func-
tions to define the memory curve for the MGPI model. For the given envelope functions,
there exists a unique modified generalized play operator wy(t) = G..[v](t) for every point
(C2,¢1). Let P — S be a a compact set and assume that the density function p,,(r) van-
ishes outside P. Define the domain Py and P_ as P (t) = }((s,¢1) / P :wpy(t) > 0] and
P_(t) = }(C2,G1) / P wn(t) <0

Suppose that all the outputs of modified generalized play operators are negative initially.

First, the input signal increases monotonically to value v; at time ¢;. At this moment, all

the modified generalized play operators with (; < v; have the positive outputs while the
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others remain the negative outputs, as shown in Fig. 3.8(a). The boundary between P, and
P_ is called the memory curve. Next, the input signal decreases monotonically to value vy
at time to. Then, all the modified generalized play operators with }((2, (1) : (1 < v1, (e > vg]
and (; > vy have the negative outputs while the others have the positive outputs, as shown
in Fig. 3.8(b). In this manner, an arbitrary, piecewise-monotone input can lead a memory
curve that has the staircase structure, as shown in Fig.3.8(c). The corners of this memory
curve represent all the extrema in the input history and the intersection of the memory curve

with the line (; = (, indicates the current input value.

3.4.2 Wiping Out Property

The wiping out property refers to the behavior that any local maximum of the input value
wipes out the memory impressed by previous smaller local maxima. On the other hand, any
local minimum of the input function wipes out the memory impressed by previous larger

local minima. It can be attested that MGPI model fulfills the wiping out property.

First, it will be shown that the modified generalized play operator possesses the wiping
out property. Fig. 3.9 shows an input signal v(¢) (Fig. 3.9(a)) and the output of the modified
generalized play operator defined in (3.8) (Fig. 3.9(b)).

In the beginning, the input v(¢) increases from the initial value 0 to the first maximum
value v1y;. The output trajectory of the modified generalized play operator increases through
the curve (0,0), ((1,0) and arrives at (vias, war,,,) as shown in Fig. 3.9(b). After that, the
input function decreases from the value vy, to its first minimum vy,,. The process takes the
trajectory from point (vinr, wag,,) to (Viar, War,, ), and then to point (vim,,wy,,,). Then,
the input function v(t) increases again to the second maximum value vyy;. Correspondingly,
the output trajectory moves from point (vi,,, way, ) to point (vi,, way,,), and after that,
arrives at point (vens, Way,,,). With the decrease of input v(t) to the second minimum value
Vam, the output of modified generalized play operator decreases again through the trajectory

(Vonrs Watyy, )s (Vanrr, Wary,,) and (Vom, W, ). After reaching vs,, the input rises again to
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Figure 3.9: (a) The input signal v(¢). (b) The output wy,(¢) of the modified generalized play

operator.

the third maximum value v3y7, which leads the trajectory to travel from point (ven,, was,,,)
to point (vVams, Wi, ), and then, to the point (vsar, was,,). Now, there are three maxima
and three minima in the input history. Since all the maxima (minima) are smaller (larger)
than the previous ones, no memory has been wiped out so far. However, when the input
reduces to the fourth minimum which coincides with the first minimum vy,,, the trajectory
travels from point (vsar, Way,,, ) to point (Vim,, wag,, ) via point (vsyr, wag,, ) and wipes out the
memory of vy, and vy, successfully. After reaching the last maximum value vy,;, the input
function goes back to zero. The corresponding trajectory of the modified generalized play
operator output first moves from (vi,, War,,,) t0 (Vimy, War,,) and increases to (viar, War,,, )-
So far, the memory of the maxima vy, vop; and w3y, has been wiped out. In this end, the
trajectory moves to (viar, war,,, ), and finally decreases back to the origin. This process will
not be affected by any past extrema for the further input because all the memories about the
past input extrema have been completely wiped out. It can be concluded that the modified

generalized play operator possesses the wiping out property.

Since the wiping out property follows the linear superposition, it also holds for the MGPI

model. In Fig. 3.10, an input function is specifically chosen in the simulation so as to verify
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the wiping out property of the MGPI model proved above. The alternating extrema of input
function v(t) is }0 0o 10 00 2 00 8 00 4 00 6 00 2 00 10 0o 0] . The other parameters are
chosen as follows.

v (v) = 5.5tanh(0.25v) + 0.3,

Y(v) = Ttanh(0.15v), (3.14)

P (1) = 2.4e7 047,

The result shows that no memory of the input extrema has been wiped out until ¢ = 25s.
The output trajectory depends on the current input and all the input extrema in the history.
At the time t = 30s, the memory of the input minimum recorded at ¢ = 20s has been wiped
out and the output trajectory after ¢t = 30s is not affected by the memory of this minimum.

Similarly, all the input extrema have been wiped out after the input reduces back to zero at

t = 40s.

3.4.3 Congruency Property

Congruency property means that, regardless of the input history, the minor loops caused by
the same input range are congruent. By using the memory curve, it can be shown that the

MGPI model possesses the congruency property as well.

As shown in Fig.3.11(a), f; and (s are two memory curves for the same MGPI model
with different input histories. Assume that they have the same current input value v; at
time ¢;. The input function increases monotonically to v, at time ¢5, and then goes back to
vy at time t3. As shown in Fig. 3.11(b) and (c), this variance affects the memory curve
by the triangle A; and affects the memory curve (35 by the triangle As. It is obvious that
the triangles A; and A, are coincident. Therefore, one can conclude that the MGPI model

fulfills the congruency property [12].

The above outcome can also be supported in the simulation by adopting a special input

function as shown in Fig. 3.12(a). In Fig. 3.12(b), the lower minor loop is caused by the
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input wavering between the value 1 and 3 in the ascending process. The upper minor loop
is led by the input wavering in the same range in the descending process. These two minor

loops are congruent.

Based on the above discussion, it can be concluded that the proposed modified generalized

Pradntl-Inshlinskii model fulfills both the wiping out property and the congruency property.
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Chapter 4

Inverse Hysteresis Compensation of
Modified Generalized Pradtl-Ishlinskii
Model

The hysteresis nonlinearities are known to deteriorate the control systems performances. One
of the most common way to compensate the hysteresis effects is to construct the inverse model
and apply it as a feedforward compensator. The precise inverse of the Preisach model and the
Krasnoselarfskii-Pokrovskii model are not available. Only the numerical methods can be used
to determine the approximate inversions of those models [24,28,70,71]. Different from the
Preisach model and the KP model, the Prandtl-Ishlinskii model is analytical invertible and its
inversion can be applied as a feedforward compensator in the control systems to mitigate the
hysteresis effects. Furthermore, based on the analytical inversion, the inverse compensation
error can be therefore obtained, which make it possible to design robust controllers with
stability analysis. The analytical expression of the inverse PI model has been reported in [15]
as a real-time feedforward controller for piezo-electric actuators. It has been demonstrated
that, by using the inverse compensator, the tracking errors caused by the hysteresis effect

were reduced significantly. However, as explained in the previous chapters, the applications

45



of the PI model is restricted because of the limited hysteresis shapes it can describe.

As proposed in Chapter 3, the modified generalized Prandtl-Ishlinskii model can be con-
sidered as an extension of the PI model. The purpose of the work in this chapter is to
compensate the hysteresis described by the proposed MGPI model through constructing an
inverse MGPI model and applying this inverse model as the feedforward hysteresis compen-
sator. To follow the similar procedures which determine the inverse model for the classical PI
model using the initial loading curve [15], it requires that the increasing trajectory ~v,.(v )
and the decreasing trajectory 7;(v+r) of the modified generalized play operator are parallel.
Therefore, the inverse construction is limited to the case that the envelope functions of the
MGPI model are equal, i.e. v,.(v) =y (v) = v(v). For v,.(v) £ y(v), it is still under investi-
gation. It should be noted that the case that ~,.(v) = v,(v) = y(v) is still more general than

the classical PI model.

As shown in Fig. 4.1, the inverse model of the MGPI model IT;! is composed by two
parts. The first part Il.,, is the hysteresis loop compensator. It is used to mitigate the
hysteresis loop. The compensated input-output relationship after applying the hysteresis
loop compensation becomes from multi-values mapping to the single-valued mapping. This
part is the main challenge of constructing the inverse MGPI model. The second part of
the inverse model is y~!(3. It is introduced here in order to compensate the effect of the
envelope function. After applying the inverse model II)! as the feedforward compensator,
the compensated output of MGPI model II,, is able to track the reference input, i.e. 11, ®
I 1 (t) = ve(t).

m

4.1 Concept of Initial Loading Curve

Equation (3.4) provides the widely accepted expression of the PT model for hysteresis de-

scription. However, such a definition is difficult to obtain an analytical inverse PI model. As
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Figure 4.1: Inverse compensation for MGPI mode

an alternative description, the concept of initial loading curve is required to be introduced.
The curve can be explained, physically, as a stress-strain curve, and is formed when the

input signal increases from zero to a final value. The initial loading curve of the PI model is

defined by [12]
O(r) = por +/ p(9)max}0,r | dd (4.1)
0

where pg and p(r) have the same definition as given in (3.4). The derivative of initial loading

curve (4.1) with respect to  can be obtained by

O'(r) = po + /0 () do. (4.2)

It can be observed that the density function of PI model can be expressed by the double
derivative of (4.1) with respect to the threshold r, that is

p(r) = ©"(r). (4.3)
In addition, the constant py can be obtained by substituting r = 0 into (4.2) as
po = ©'(0). (4.4)

Therefore, based on (4.3) and (4.4), the PT model can be alternatively expressed in terms of
the initial loading curve as

[v](t) = ©'(0)v(t) +/ 0" (r)E,[v](t)dr. (4.5)

0
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Remark: For the initial loading curve O(r) = r, the PT model is reduced to II[v](t) = v(t),

which means that no hysteresis effect exists.

Fig. 4.2 shows an example of the PI model with density function p(r) = 0.53¢ 1"
and pp = 0.53 under a harmonic input v(t) = 8sin(27t)/(1 + 0.3t) for t / [0,10] and its
corresponding initial loading curve. The output of the PI model in this example, as shown
in Fig. 4.2(a) is expressed by

I[v](t) = 0.53v(t) + / 0.53¢ 1" . [v](t)dr. (4.6)
0
According to the definition in (4.1), the corresponding initial loading curve of the PT model
(4.6) shown in Fig. 4.2(b) is defined in the following form

O(r) = 0.53r + / 0.53¢ %"max}0,r Y| dv. (4.7)
0

It should be noted that, in the PI model, the increasing branches of play operator for
various threshold r are parallel horizontally with each other. The initial loading curve of PI
model is defined based on the integration of these branches. However, in the GPI model,
the increasing branches of generalized play operator for different threshold r are parallel
vertically with each other. Therefore, it is difficult to construct the initial loading curve for
the GPI model. On the other hand, in the proposed MGPI model, the increasing branches
of modified generalized play operator for various threshold r are parallel horizontally with
each other, which is the same as in the PI model. The initial loading curve of MGPI model
can then be similarly defined by the integration of these branches, which gives a main reason

for proposing the MGPI model.

Similar to the (4.1), the initial loading curve for the proposed MGPI model is defined as,
0u(r) = | pulOmazhr (01 O] de. (18)
0

In the next subsection, the initial loading curves of both the classical PI model and MGPI
model will be adopted in order to derive the analytical hysteresis loop compensator for the

MGPI model.
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4.2 Inverse Construction of the Modified Generalized Prandtl-
Ishlinskiit Model

It has already been proved in [12]| that the inverse of the classical PI model can work as
the compensator to mitigate the hysteresis loops. In [15], the analytical formulas of the
threshold and the density function of the inverse model have been derived. In this section,
the similar procedures as outlined in [15] is employed to construct the inverse model of the
proposed MGPI model. Comparing to the previous work, the analytical expressions of the
threshold and density function of the compensator will be discussed for the first time based

on the MGPI model.

As shown in Fig. 4.1, the inverse MGPI model constructed in this work is defined in the

form of

I, ve] () = 77" @ Meom[ve] (£). (4.9)

The hysteresis loop compensator theresin is defined as follows,

ML, (f) = /0 Gon(5) Ful0](£)ds (4.10)

where Fg[v](t) is the classical play operator with the threshold s. The thresholds s and the
density function ¢,,(s) are required to be determined so that the hysteresis loop of MGPI
model (3.12) can be compensated by (4.10).

The hysteresis loop compensator developed based on the classical PI model is symmetric
with respect to the origin and the proposed MGPI model is asymmetric with the bias to the
origin due to the existence of the envelop function. In order to compensate the asymmetric
MGPI model with the symmetric compensator, the MGPI model (3.12) is shifted first, which
is just the coordinate translation and does not affect the final compensation result, resulting
in

R
Lat) = [ pn()(Gonlel)) 1) (.11)
0

In the next step, the initial loading curves of both hysteresis loop compensator 1., (%)
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(4.8) and the shifted MGPI model Il (t) (4.11) are used to determine the analytical expres-

sion of the compensator’s thresholds s and density function g,,(s).

The initial loading curve of the hysteresis loop compensator (4.10) is expressed by
U(s) = / Gm(V)maz}0,s V| dv (4.12)
0
where ¢,,,(> is the density function and s is the threshold.

Following the definition of initial loading curve of MGPI model in (4.8), the corresponding

shifted initial loading curve for Il is expressed by,

0u(r) = [ pu@mar)0slr &) (0] dg (1.13)
0
where p,,, (> is the density function and r is the threshold.

To compensate the multi-branches hysteresis loops of the MGPI model, the composition

of the initial loading curves (4.12) and (4.13) is required to have the following relation.

Ve Oun(r)=(r) ~(0) (4.14)
where e denotes the composition operator.

Comparing (4.14) with (4.12), the threshold of the hysteresis loop compensator s in (4.10)
can be calculated from

5= Og(r). (4.15)

Based on the above selection of threshold s, the analytical form of the corresponding

density function g,,(s) of the hysteresis loop compensator will be determined from (4.12)

and (4.14).

Taking the derivative of both sides of (4.14) with respect to (), one has

d\IJ(@sh (7’)) XdGSh(T)
dOgp (1) dry(r)

With the threshold s determined in (4.15), the left-hand side of (4.16) can be continuously

= 1. (4.16)

deducted as

dV (O, dv s
doa = "ot = Iy an(0)dY (4.17)
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dOsn(r) _ ©4,(r) _ Jo pm(&)y (r—€)dE
dy(r) 'y’}zr) : ~'(r) : (418)

Substituting (4.17) and (4.18) into (4.16), the density function of the hysteresis loop

’

compensator can be obtained from the following formula

° B y'(r)
| antrar = o @ (r E)de (4.19)

Finally, the analytical form of hysteresis loop compensator (4.10) has been obtained. The

threshold s and density function g,,(s) are determined by (4.15) and (4.19). This compen-

sator can remove the hysteresis loop while preserving the shape of the envelop function.

4.3 Numerical Implementation of the Inverse MGPI Model

In practice, because of the continuity property of the modified generalized play operator, the
complex continuous hysteresis nonlinearities described by the MGPI model can be modeled
in a sufficiently precise way with a small number of elementary operators [98]. Therefore,

the definition of MGPI model given in (3.12) can be approximated by

N
() =Y priGon, V] (1). (4.20)
=0
where NV denotes the number of the modified generalized play operators considered, 0 = ry <
ry < xxx<ry = R.

The corresponding hysteresis loop compensator can also be written in terms of the super-

position as
N
Meom () = Y _ quFo,[v](2). (4.21)
i=0

In (4.20) and (4.21), p,; and ¢ are the weights of the density functions of the MGPI model

and the hysteresis loop compensator respectively, defined by

Pri = pm<rz)
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From (4.15), we can obtain the discrete thresholds of the hysteresis loop compensator as

follows,

S

i = Osn(ry)
j (4.23)
= pro(y(r;)  ~(0)) +me'(7(7“j ri) 7(0))
for j = 1,2, xxx, N.

We still need to compute the discrete density weights of the hysteresis loop compensator.

From (4.19), it can be observed that, in each interval [s;, sj41] for 7 = 1,2, xxx, N, we have

J /
7' ()
ds0 + qsi = - . (424)
ZZ:; proY' (r5) + 21 o (15 1)
Hence, in particular,
! (4.25)
qso = — .
0 Pro
and -
s) i St .
oY (1) 20 e ()

for j = 1,2, xxx, N.

Remark 2: If we choose the envelop function v (v) as y(v) = v, equations (4.23) , (4.25)
and (4.26) will be coincident with the corresponding formulas in [15]. Therefore, the results

concluded in [15] can be considered as a special case of our work.

4.4 Simulation Results of Inverse Compensation

In this section, the hysteresis loop compensator developed above will be verified in the

simulation studies. Both the linear and nonlinear envelope functions will be selected.
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4.4.1 Linear Envelope Function
In this section, the envelope function v is chosen in the linear form.
Y(ve) = move + my, (my > 0) (4.27)

where my and m; are chosen as 1.2 and 1.9 respectively as an example.

There are 10 modified generalized play operators considered in this simulation as an
example. The thresholds r; and weights p,; for ¢ = 0,1, <, N of the MGPI model are

selected as shown in Table 4.1.

Table 4.1: Thresholds and weights selected for the MGPI model with linear envelope function

o r ) rs T4 T's Ts r7 s T 10

0 0.54 1.08 1.62 2.16 2.70 3.24 3.78 4.32 4.86 5.40

Pro Pr1 Pr2 Pr3 Pra Prs Pre Dr1 Prs Pro Pri1o

0.18 | 0.0358 | 0.0339 | 0.0321 | 0.0305 | 0.0289 | 0.0273 | 0.0259 | 0.0245 | 0.0233 | 0.0220

The corresponding thresholds s; and the weights ¢ for ¢ = 0,1, 3, N of the inverse
MGPI model can be calculated through (4.23), (4.25), and (4.26), respectively. The calcu-

lation results are summarized in Table 4.2.

The effectiveness of the inverse compensation can be illustrated from the input-output
relationship as shown in Fig. 4.3. Fig. 4.3(a) shows the input-output relation of the MGPI
model, which is the non-smooth multi-value hysteresis nonlinearity. The hysteresis loop
compensator, in the form of (4.10) with the thresholds and weights summarized in Table
4.2, is shown in Fig. 4.3(b). Based on the compensated result shown in Fig. 4.3(c), it can
be demonstrated that the proposed inverse MGPI model can effectively compensated the

hysteresis effect and achieve the accurate tracking.
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Figure 4.3: Input-output relations of (a) MGPI model, (b) the hysteresis loop compensator,

(c) and the compensation result, with the linear envelope function.
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Table 4.2: Thresholds and weights obtained for the inverse MGPI model with linear envelope

function

S0 Sy So S3 S4 S5
0 0.1166 0.2565 0.4183 0.6010 0.8034
S6 S7 S8 S9 510

1.0245 1.2633 1.5189 1.7904 2.0770
dso ds1 ds2 ds3 ds4 ds5

5.5556 0.9219 0.6295 0.4566 0.3459 0.2708
ds6 ds7 ds8 ds9 ds10

0.2174 0.1782 0.1485 0.1255 0.1073

4.4.2 Nonlinear Envelope Function

Besides the linear function adopted in the previous subsection, the envelope functions can
also be chosen as the nonlinear functions. The application range of the proposed MGPI

model can be therefore extended.

In the simulation, the envelope function 7(v) is chosen in the following nonlinear form,

v(v) = motanh(myv 4+ my) + ms, (mg > 0) (4.28)

where mg, m1, my and mg are chosen as 2.0258, 0.0179, 0.0371 and 0.1202 respectively as

an example.

There are 300 modified generalized play operators selected in this simulation, i.e. N = 300.
The thresholds r; and density weights are selected as r; = 0.22¢ for ¢ = 1,2, xxx, N and
Pm = 0.5¢700014°  The thresholds sg, s1, xxx, sy and weights ¢so, gs1, XX, s Of hysteresis

loop compensator can be calculated using (4.23) , (4.25) and (4.26) respectively.

Fig. 4.4(a) shows the output of the MGPI model under a complex input function
ve(t) = 40sin(2wt) 4+ 60cos(6t), t / [0,20]. The hysteresis loop compensator Il.., deter-

mined in (4.10) is shown in Fig. 4.4(b). The compensation result of the hysteresis loop
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compensator can be seen in Fig. 4.4(c). The hysteresis loop has been perfectly canceled and

the shape of the nonlinear envelope function has been preserved. The Fig. 4.4(d) shows final

compensation result. The nonsmooth multi-branches hysteresis loops and the influence of

the nonlinear envelope function have been compensated successfully.

TETL I )
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-1
NAT0)
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50 100

. vI®
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100

50

—100 =50 50 100

0
v.(®)
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Figure 4.4: Input-output relations of (a) The MGPI model, (b) The hysteresis loop compen-

sator, (c¢) The effectiveness of the hysteresis loop compensator, (d) and the compensation

result, with the nonlinear envelope function.



Chapter 5

Analysis of Inverse Compensation Error

As addressed in previous chapters, the hysteresis nonlinearities can be remarkably remedied
by applying the inverse model as a feedforward compensator. Theoretically, as shown in
Fig. 5.1, when the hysteresis nonlinearity is entirely depicted by the hysteresis model,
the hysteresis effect can be completely compensated through the inverse method, which
has also been demonstrated by the simulation studies in Chapter 4. The compensated
output is u(t) = II! e IT,,[v.](t) = v.(t). However, in practice, the hysteresis is unknown
so that the hysteresis effects can not be fully descried by the hysteresis models. Usually,
the unknown hysteresis implies the unknown density functions in the hysteresis models,
which means that, in our case, the density function of the modified generalized Prandtl-
Inshlinskii model p,,(r) can only be estimated as p,,(r) in experiments for the hysteresis
description and inverse construction. Therefore, the corresponding inverse MGPI model
can only be derived based on the estimated MGPI model, which, as shown in Fig. 5.2,

will be expected to yield some degree of inverse hysteresis compensation error e(t), i.e.,

~

u(t) = I o I, [0 (1) = 7 (Tleom @ I [ve](£)) = ve(t)  e(t), where IT v ](¢) is the inverse
MGPI model derived from the estimated MGPI model I1,,[v.](¢) with the estimated density
function py,(r). Therein, Iy [ve] (t), compared with the Teon[v.](t) defined in (4.10), stands
for the estimated hysteresis loop compensator derived from the estimated MGPI model

I1,,[ve] (t) with the estimated density function p,,(r).
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In this chapter, the linear envelope function ~(v) = mov 4+ my, where mgy > 0, has been
chosen as a special case and the analytic expression of the inverse compensation error will be
derived. The development of the error expression of the inverse compensation is extremely
essential since that, by taking consideration of the error expression, the adaptive controllers
can be further designed and, more important, the strict stability proofs can therefore be
established based on the Lyapunov methods. In [99], the inverse compensation error of the
PI model has been developed. In the following developement, the analysis expression of the

inverse compensation error of the MGPI model will be investigated.

5.1 The Analytical Inverse Compensation Error

Since the hysteresis is usually unknown in practice, only an estimated MGPI hysteresis model
ﬂm(t) with the estimated density function p,,(r) can be used to approximately describe the
unknown hysteresis. Comparing to (4.11), the estimated shifted MGPI model TI;[v](t) is

expressed by

~

L[] (£) = / D) G [t () 7(0))dr
0 (5.1)

= /0 Pm(r)moFy v (t)dr

where p,,,(r) is the estimations of p,,(r) and F,[v.](t) is the classic play operator defined in
(3.1). For the linear envelope funtions, II,,[v.)(f) can be considered as a classic PI model

with the density function mgp,,(r).

The initial loading curve of (5.1) is now defined as
Ou(r) = [ mapm(©masto,r ¢l de 5.2
0

The inverse model

A

I, (#) = 7" o Tom (1) (5.3)

constructed based on the estimated MGPI model f[m(t) would be expected to yield some

A

degree of inverse hysteresis compensation error e(t). Comparing to (4.10), . [ve](t) is
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expressed by

~

S
Moo 0] (1) = / (3 Folod ()3 (5.4)

where § and ¢, are the threshold and density function of the estimated hysteresis loop

compensator, respectively. The corresponding initial loading curve of o [ve](t) is

A

B(s) = /0 S an(@)maz},s 9] dv (5.5)

According to the composition corollary in [50], the composition of the f[com and Il can

be rewritten as

~

Hcom L Hsh<t) - Hn (t> (56)

A

where 7 = U @ ©,(r) and II, is a classic PI model with the initial loading curve n(r).

Based on above results, the analytical expression of the inverse compensation error e(t)

can be derived as

e(t) =ve(t) u(t)
=0,(t) 7 (eom @ Ian(t) +7(0))

=v.(t)  yHIL,(2) + my) .
(1) 1 (0)ve(t) + [ 0" (r) Fyr v (t)dr
N (1 %2)) ve(t) /0°° n;&:) F[ve] (t)dr

Remark: If the parameters of the MGPI model and its inverse are exact, the composition

of the initial loading curves n(r) can be simplified as
n(r) = e O (r) = myr, (5.8)

and



n"(r) = 0. (5.10)
Then, the inverse compensation error (5.7) is
e(t) =0 (5.11)

and the compensated output

u(t) = ve(t), (5.12)

which implies that there is no inverse compensation error and the hysteresis effects have be

completely compensated.

The analytic expression of inverse compensation error of MGPI model has been obtained
in (5.7). However, Since the term [;* %(OT)F,«[UC] (t) in (5.7) is unbounded, it is difficult to
directly apply the control approaches to remedy it. Therefore, an alternative form will be

provided in the following development.

Note that the play operator F,[v.](t) in (5.7) can be rewritten as [12]
Filv)(t) =v.  E.v(t) (5.13)

where E,.[v.](t) denotes the stop operator as

ET<O) :er(vc(o) w—l)a

(5.14)
E.(t) =er(ve(t)  ve(ti) + Er[ve](t:))
fOI’ti<t2ti+1,0Zi<N 1,Wlth
er(ve) = min(r,mazx( r,v.)) (5.15)
and w_; as the initial value.
Therefore, the inverse compensation error can be further written as
/ 0 o0 1 o0 !
e=p 7O / T 4oty + / ") et
mo o Mo o Mo (5.16)

21 xo)ve(t) + dlvl] (t)
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where yo £ %2) + ;7 %(g)dr and dlv.](t) & [;7 ";:L(g) E.[v](t)dr. The boundness of d[v.](t)
can be guaranteed as proved in [81], i.e., d[v.(t) > D where D is a bounded constant.
Hence, d[v.](t) can be treated as a bounded disturbance in the controller design. Based
on this result, an adaptive controller v(¢) can then be designed to remove the inverse com-
pensation error and achieve the precise tracking. As will be clear late, it is this expression

that makes it possible to achieve the tracking without necessarily adapting the uncertain

hysteresis parameters.

Remark: It is important to note that it is this analytical expression of the inverse
compensation error that makes it possible to conduct the stability analysis in the controller
design, which generally constitutes a challenge in the literature with the inverse approaches

except [3].

5.2 Simulation Results of the Inverse Compensation Er-

ror

The analytic expression of the inverse compensation error obtained in (5.16) will be verified
in the simulation studies. The actual density function of the MGPI model for the simulation
is selected as p,,(r) = 0.17 + 0.1r. The input-output relation of the MGPT model with
envelope function y(v) = 1.7v is shown in Fig. 5.3 under a harmonic input signal v.(t) =
7sin(wt)/(1 + 0.06t). In the following simulation studies, the inverse compensation will
be conducted in the cases that the estimated density function pp,(r) has no estimation
error, minor estimation error, or major estimation error, respectively. The accuracy of the
analytical expression of inverse compensation error (5.16) will be shown by comparing the
analytical error calculated from (5.16) and the simulation error obtained from the direct

deduction of input signal v.(t) and compensated output wu(t).

Case 1: The density function of MGPI model in this case is exactly known, based on

which the inverse MGPI model is constructed. Therefore, there is no inverse compensation

64



20 T T T

15

T
1

10

T
1

vl

|
—_
=]

T

1

0
v (0

10

Figure 5.3: Input-output relation of MGPI mode under v.(t) = 7sin(wt)/(1 + 0.06¢).
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error, which can be seen from Fig. 5.4. The simulation error and the analytical error are
coincident and both equal to zero. The perfect inverse compensation can also be told from
Fig. 5.5 where the relationship of the reference input signal and the compensated output is
shown. It can be seen that the multi-branch non-smooth hysteresis nonlinearity has been
completely remedied. As shown in Fig. 5.6, the system compensated output can successfully

track the reference input signal.

Case 2: The estimated density function p,,(r) has minor estimation error in this case,
i.e., Pr(r) = 0.184+0.15r. As shown in Fig. 5.7, the analytical error calculated from (5.16) is
still the same as the simulation error. It shows that the minor estimation error in the density
function leads to the inverse compensation error. From Fig. 5.8, it can be seen that the
input-output relation of the input signal and the compensated output is no longer a straight
line but very narrow hysteresis loops. The comparison between the reference input signal and
the compensated output as shown in Fig. 5.9 implies that with the minor estimation error

in the density function, the inverse model cannot fully mitigate the hysteresis nonlinearity.

Case 3: In this case, the estimated density function p,,(r) has a major estimation error,
ie., pm(r) = 0.2 4+ 0.2r. The major estimation error leads to a larger inverse compensa-
tion error compared with Case 2, which is confirmed by both the analytical error and the
simulation error shown in Fig. 5.10. The input-output relation of the input signal and the
compensated output, shown in Fig. 5.11, becomes to the wider hysteresis loops in this case
compared to Fig. 5.8. The compensation output shown in Fig. 5.12 also supports the above

outcomes.

Based on the simulation results, it can be concluded that the obtained analytical expres-
sion in (5.16) can accurately describe the inverse compensation error brought by the unknown
density function in the MGPI model. Such an expression is essential for the controller designs

and the stability analysis of the closed-loop control system.
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Chapter 6

Controller Design I: State-Feedback

Control

Recently, the control of nonlinear systems preceded by hysteresis nonlinearities has re-
attracted much attention due to the rapid growth of applications of smart material based
actuators. Many control approaches have been proposed in the literature (see, for exam-
ple, [1,3,4,15,20,22,81,91,95,97,100-108|), which can generally be classified as two groups.
The first is the use of inverse hysteresis as a feedforward compensator [3,4,15,20,22,95,97,101,
105,107,108] and the second is without using the inverse construction [1,81,91,102-104,106].
For the first group, the strict stability proof is still a challenge task except [3| and [21] due
to the fact that an error expression of the inverse compensation has not been established yet
when the hysteresis is unknown. This explains the reason why the second group of controllers
were developed, which usually satisfies the Lyapunov condition. In this chapter, it will be
shown that a strict stability proof can be established for the inverse compensation scheme
as well by taking consideration of error expression of the inverse compensation derived in
Chapter 5 in the controller design, where a play operator-based model is used to describe the
hysteresis nonlinearities. Comparing with a typical approach [1] in the second category, the

benefit for such a design is that the proposed inverse based scheme can achieve the tracking
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without necessarily adapting the uncertain parameters(the number could be large) in the
hysteresis model, which is made possible by the introduction of the stop operator in the er-
ror formulation. Though the proposed approach incurs extra cost in implementing hysteresis
inversion, it achieves gain in computational efficiency by not having to adapt the hysteresis

parameters. Simulation example confirms the developed control approach.

6.1 Problem Statement

Consider a controlled system consisting of a nonlinear plant preceded by a hysteresis actuator,

which is described as [1]

2™ (t) + Z @ Yi(z(t),2(t), ..., 2" V(1)) = bu(t) (6.1)

u(t) = I, [v](t) (6.2)

where Y; are known continuous, linear or nonlinear functions. The parameters a; and the
control gain b are unknown constants. It is a common assumption that the sign of b is known.
Without losing generality, it is assumed that b > 0. II,, is the MGPI hysteresis operator,
which was introduced in Chapter 3. The function wu(t) is the output of hysteresis actuator
(6.2), serving as the input signal of the nonlinear plant (6.1), and v(¢) is the input signal to
the actuator. In this chapter, it is assumed that the system states x = [z, @, 30, 2™~ V]T are

available to be measured.

The control objective is to design a control law for v(¢) with unknown parameters of the
system (6.1) and hysteresis (6.2), to drive the plant state x(t) to track a predefined desired

trajectory, x4(t), i.e., z(t) oo x4(t) as t oo € .

Before proceeding, a basic assumption for x4(t) is required, which is standard and generally
satisfied.

(n—l)]T

Assumption: The desired trajectory X = [Tq, Tq, XX, 2 is continuous. Furthermore,

(x2 x&n)]T / Qq — R" with Qg being a compact set.
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As a matter of fact, focusing on the above control objective, a control scheme was devel-
oped in [1] without using inverse hysteresis cancelation. However, the following development
will focus on an inverse compensation scheme, showing a strict stability proof with certain

advantages over |1|. The control scheme attacked in the chapter is depicted in Fig. 6.1.

I
. Inverse | | Hysteresis .
Adaptive | v (1) Hysteresis | v(®) Actuator u(t) | Nonlinear z(t)
Controller o i "|  Plant
') || I (1)

m

[
|

Controller

Figure 6.1: State-feedback control structure

It can be seen that the inverse hysteresis model 1:[;11 (t) is the feedforward compensator

and the feedback adaptive controller is expected to be designed in this chapter.

6.2 State-Feedback Controller Design

In [1], an adaptive variable structure controller has been designed to mitigate the hysteresis
effect described by PI model without constructing the inverse model. In this chapter, with
the inverse compensation error derived previously, an adaptive variable structure controller
is developed to show the advantage of using inverse compensation. Meanwhile, since the
inverse compensation error is derived in the form of (5.16), the boundness D will be adapted
online. Note that in this section, the adaptive control law for v.(t) as shown in Fig. 6.1 will

be designed. Then, the control signal v(t) can be calculated by v(t) = IT v ](t).

From (5.16), the output u(t) of the inverse compensation can be expressed by

u(t) = Xove(t)  dlvc](t). (6.3)

78



The close-loop control system (6.1) can then be re-written as

2.71 = T
.1"2 = I3
i =, (6.4)

k
I."n, - Z ai}/i(xla Zo, ><><><7 xn—l) + vac(t) db[/Uc] (t)
i=1

=alY + ypu(t)  dyfve(t)
where a = [ a1, ag, xxx, ap]t, Y = [V, Ys, 3¢ Yi]T, x = bxo and dy[ve](t) = b xd[v.](t).
The boundness of dy[v.](t) is denoted by D, = b xD. The parameters a, x;, and D, are
unknown and have to be estimated. The estimated values are represented by a, x; and ﬁb,
respectively. The errors between the real values and the estimated values are defined as

follows.
Blty=p8 Bt (6.5)

where g = é

In order to facilitate the controller design, the introduction of the following new variables

are necessary.

z21(t) = z1(t)  za(t)
2:(t) = x; 20D a;—1(t),1 = 2,3, 0,1
=) 28 )i =23 0 66
ar(t) = cz(t)
(i-1)

ozz(t) = CZZZ(t) Zi_l(t) + di_l(Ij, XK, L1, T g, XXX, Ty )7Z =23, xx,n 1

where ¢;, 2 = 1,2, xxx,n 1, are positive design parameters.
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According to (6.6), the time derivative of 2 is

Q) = a1(8)  dat) = 2a(t)  dalt)

(6.7)
= Zg(t) + o (t) = Zg(t) C121 (t)
Similarly, for z;, i = 2,3, xxx,n 1, the time derivative z; can be obtained by
L) =a(t) 201 iy
! (6.8)
=zip1(t)  zia(t)  cz(t)
and the time derivative of z, is
) = dn(t) 2
‘ (6.9)

=alY + yuo(t)  dyfue(t) 2l .

Based on the given plant and hysteresis model subject to the assumptions described above,

the following control law is proposed.

1

0e(t) = —v1(t) = Buy(t) (6.10)
Xb
where
vi(t) = enzn Zno1+ Qo1+ xfln) aly + sgn(zn)Db (6.11)

and ¢, is a positive design parameter.

The parameter a, B and function Dj will be updated based on the following adaptation

laws:

a =¢e,Yz, (6.12)
B = ez (6.13)
Dy = ep2, (6.14)

where €., €, and €p are adaptive parameters.

Theorem: For the plant given in (6.1) with the hysteresis IL,,(¢) in (3.12), the inverse
MGPI model IT-'(¢) with the hysteresis loop compensator Ileom(t) defined in (5.4) and the

80



inverse compensation error described as (5.16), the adaptive controller specified by (6.10)
and (6.12)-(6.14) ensures that all the closed-loop signals are bounded and z(t) co z4(t) as

too e .

Proof: From (6.6), (6.9) and (6.10), one can obtain that

Pn = CnZn Zn1 +ATY  sgn(z,)Dy

dylve)(t)  xoPun(t).

To prove the stability of the closed-loop control system with the designed controller (6.10)

(6.15)

and (6.11), the following Lyapunov function candidate is selected,

n

1 1 Xb 72 1
t —D 1

=1

The derivative of V (t) is
) " 1 ;o Xosz 1 ~ =
V(t) = Z zizi+—a'a+ =00+ —DyDy
i1 €a b €D

> Zc,z +ia (caY2zp + )+§/3’(5 epvi(t)zn)
b

=1
1 ~ = A
—|— —DbDb Zn Db—|— db[UcKt) Zn
D 1 (6.17)
> Zczz LG e &)+ 255 cpui(t)zn)
=1 b

1 B
+ —Db(Db +ED Zn )
€D

n
E Cz‘ZZ-2
i=1

Since V/(t) is nonincreasing, it implies that z;, for i = 1,2, xxx, n, a, B and D, are bounded.
Furthermore, by applying the Lasalle-Yoshizawa theorem, it can be shown that z; oo 0

(1=1,2,xx,n) as t oo € , which implies that x(t) co x4(t) as t oo € . ]

Remark: Comparing with a typical approach [1] in the second category, the inverse

hysteresis compensation is inserted into the control loop in an attempt to further improve
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the control performance. The benefit for such a design is that the proposed inverse based
scheme can achieve the tracking without necessarily adapting the uncertain parameters(the
number could be large) in the hysteresis model, which is made possible by the introduction
of the stop operator in the error formulation. Though the proposed approach incurs extra
cost in implementing hysteresis inversion, it achieves gain in computational efficiency by not

having to adapt the hysteresis parameters.

6.3 Simulation Studies

In this section, the adaptive variable structure controller developed above will be applied to
an nonlinear system described by

1 €_$(t)

where u(t) stands for the output of the inverse compensated hysteresis nonlinearity by (6.3).
The actual parameter values of the nonlinear system are ¢ = 1 and b = 1. The desired
trajectory is given as x4(t) = Hsin(2t) + cos(3.2t). The actual and estimated value of p,,0
and p,,o are 0.5 and 0.52. The actual and estimated density function of the MGPI model
are pp(r) = 0.5 0014 and p..(r) = 0.52¢7092* for r / [0,100], respectively, and the
envelope function parameter is chosen as my = 1.7. The control parameters are chosen as
c1 = 5.9468, ¢, = 0.13, ¢, = 0.05 and €p = 0.02. The initial parameters of the controller
are selected as a(0) = 0.13, 4(0) = 0.431 and D,(0) = 16. The initial state of the system is
x(0) = 2.05 and the sample time is set to be 0.001.

Also, in the simulation the function sgn(z,) in (6.11) is replaced by the saturation function
sat(z,/T), where 7 = 0.01, to avoid the control chatter. The main penalty paid for the
replacement is that it will introduce the tracking error. It should be noted that if the width
of the linear region in the saturation function is chosen excessively thin, the controller runs
the risk of exciting high frequency dynamics. This suggests that a tradeoff must be made

between the width and the trajectory-following requirements.
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To show the performance of using the control scheme with the inverse hysteresis compen-
sation, the simulations were performed comparing with the approach developed in [1], where
there is no inverse construction. Following the control approach in |1], the controller without

inverse compensation can be obtained by

~

v (1) = do(t)vei(t) (6.19)
with
1 e .
Vg1 (t) = (1% am + Zq SgTL(Zl)B (620)
where ¢ = mOI%me’ B = 15 Pom (1) G [V](8) dr, Pomo = bpmo and prn, = bpy,. Note that the

parameters in both adaptive controllers are the same.

The simulations were conducted in Matlab. To show the superior performance of using
the control scheme with the inverse hysteresis compensation, the simulations were performed
comparing with the approach developed in [1], where there is no inverse construction. Note
that the parameters in both adaptive controllers are selected the same. Fig. 6.2 shows the
tracking errors of the proposed controller and the controller in 1], where Fig. 6.2(a) is the
tracking error with an inverse MGPI model and Fig. 6.2(b) is the tracking error without
the inverse compensation, respectively. The comparison of state trajectories of proposed
controller and controller in [1] is provided in Fig. 6.3. Fig. 6.4 shows the control signals for

both controllers.

It is clear that, with the similar control magnitudes, the control scheme with the inverse
compensation has superior transient performance, for example, much shorter settling time.
Furthermore, the control signal of the inverse control scheme is smoother than the control
signal generated by the direct controller. Therefore, it can be concluded that the control
scheme with the inverse hysteresis compensation has superior performance over the controller

developed in [1].
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Figure 6.2: Tracking errors of state-feedback controller (a) with inverse compensation and

(b) without inverse compensation.
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Figure 6.3: System states x(f) of state-feedback controller (a) with inverse compensation

and (b) without inverse compensation.
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Figure 6.4: Control signals v(t) of state-feedback controller (a) with inverse compensation

and (b) without inverse compensation.
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Chapter 7

Controller Design II: Output-Feedback

Control

The development of control approaches for the systems preceded with the hysteresis effects
has received great attentions in the recent decades. The most common way is to construct
an inverse model as the compensator, which is pioneered by Tao and Kokotovic in [3]. The
adaptive controller was then designed as a feedback compensator to stabilize the close-loop
control systems. The representative works can be found in, see, for example, |28,34,82,101].
In particular, in [109] an adaptive variable structure controller has been developed along
with the inverse construction for the MGPI model. The hysteresis nonlinearities and the
tracking error of the dynamic system have been remedied successfully. However, most of the
developed control methods in the literature are valid when the system states are measured.
However, for a given particular dynamical system, in most of the case that the exactly
knowledge of all the states is unavailable and the only accessible state is the output of the
system. Therefore, it is significant to develop control schemes with observers to estimate the

unavailable states from the measurements of a single output [22,23].

In this chapter, an output control scheme still using inverse compensation will be ad-

dressed. The MGPI model proposed in Chapter 3 is adopted for describing hysteresis non-
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linearity and its corresponding inverse model obtained in Chapter 4 is used as the feedforward
compensator. The analytical expression of the inverse compensation error derived in Chapter
5 is considered to facilitate the controller design. An observer-based robust adaptive output
feedback controller is developed for a class of uncertain systems preceded by a smart material
based actuators. the proposed output control scheme guarantees the global stability of the
close-loop control system as well as achieves the tracking accuracy. The effectiveness of the

developed controller is illustrated by the simulation studies.

7.1 Problem Statement

Consider a controlled system, consisting of a plant preceded by a hysteresis actuator, which

is described as

(7.1)

u(t) = Iy [v](t) (7:2)

where Y; are known continuous, linear or nonlinear functions. The parameters a; and the
control gain b are unknown constants. It is a common assumption that the sign of b is known.
Without losing generality, we assume that b > 0. I1,,,(¢) is the MGPT hysteresis model, which
has be described in the Chapter 3. The function u(t) is the output of hysteresis actuator
(7.2), serving as the input signal of the nonlinear plant (7.1), and v(¢) is the input signal to

the actuator.

When the states of the plant are unavailable except the system output y(¢), the control
objective is to design a control law for v(¢) with unknown parameters of the system (7.1)
and hysteresis (7.2), to drive the system output y(t) to track a predefined desired trajectory,
ya(t), i.e., y(t) oo yu(t) as t oo € .
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Before proceeding, a basic assumption for y,(t) is required, which is standard and generally

satisfied.

Assumption: The desired trajectory yq = [Ya, Yd, --- yén_l)]T is continuous. Furthermore,

yZ M7/ Q4 — R with Q, being a compact set.

In this chapter, focusing on the above control objective, an output feedback control scheme
using inverse hysteresis cancelation will be developed. The proposed control scheme can be

depicted in Fig.7.1

I
l Adaptive Inverse | | Hysteresis
Output | V() | Hysteresis Lo Actuator u(t) vt
- LY = > Plant >
Feedback - | (1
Controller Hm (ﬂ | m( )
_____________ 1
Controller
() State |
Observer [

Figure 7.1: Output-feedback control structure

7.2 State Observer

For the purpose of the output feedback controller design, an state observer is required as the

first step.

To construct such an observer, the plant (7.1) can be rewrite as

&= Az + a’Ye, + bue,
(7.3)

Yy =cx
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where

0 ai Y,
A= I,, |.,a= Y = ,
0 x0 ay, Y
T (7.4)
1 0
c= L €n =
0 1

From (5.16), the output of the hysteresis actuator u(t) with the inverse compensation when

the hysteresis is unknown can be obtained by
u(t) = ve(t) e(t) = xove(t) dlv(t). (7.5)

Thus, the plant (7.3) can be further written as

(t) = Az(t) + a* Ye, + bxove(t)e,  bdv.](t)e, 76)
Yy = cx.

To construct an observer for (7.6), we choose ¢ = [q1, ¥xX, ¢,]7 such that all eigenvalues

of Ay = A qc are at some desired stable locations.

The estimate of z(t) can be obtained by

k
Bt)=& Y ai& +bo (7.7)
i=1
where
0= Apo+ eyu
&0 = Aoko + qu (7.8)

Si = AO&Z +}/;en7i = 17 ><><><7k'
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The state estimation error is denoted by €(t) = x(t) Z(¢) and it can be obtained that
=i @

= Ar+a’Ye, +byovee, bdlvle, Ao&o qex  atAl&; a'Ye, bAjo  beyu
k

=(A gz A& Zai§i+bé))
i=1

= Age.
(7.9)

Therefore, it can be proved that, with a proper choice of ¢, the states estimation error €

will be vanished.

It worth mentioning that the signal wu(t) is the output of the actuator, which usually can
not be measured in the control systems in practice. Therefore, the signals g in (7.8) is not
available for controller design and need to be reparameterized. Let § denote (d)/(dt). With
A() = det(5]  Ap), we express o(t) as

0= [o1, 00, 0n]"
] (7.10)
= [P1(9), 01, PA@F@“@)
for some known polynomials P;(9),7 = 1, xxx, n. Note that u(t) = xove(t) d(t) from (7.5),

we obtain that

where
P;(9) P;(d)
;= ——0.(t),d; = d(t 12
Wi A((S) UC( )7 1 A(é) ( ) (7 )
for i = 1,2, xxx,n.
In particular, we have
k
Ty = o Zaifiz + bxows  bdy (7.13)
i=1
Wy = O+ an ve(t). (7.14)

0"+ 10"t + x00et gy
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7.3 Adaptive Output Feedback Controller Design

In this chapter, with the inverse compensation error expressed in the form of (5.16) and
the designed state observer (7.7), it is now ready to develop an adaptive output feedback
controller to remedy the inverse compensation error as well as achieve the tracking accuracy.
Note that in this section the adaptive control law will be designed for v.(t) which is shown

in Fig. 7.1. The control signal v(t) can then be calculated by v(t) = II![v,](t).

The adaptive output feedback controller is achieved by using the recursive backstepping
strategy. Before proceeding the controller design, some necessary definitions are given as

follows,

A~

a=a a b=b b
b=¢ & Dy=D, D, (7.15)
Xo = Xb Xb Xo=Xo Xo

~

where ¢ = 1/b, x» = bxo and D, = bD. a, b, qg, X0, X» and D, are the estimations of a, b, ¢,
Xo, X» and Dy, respectively.

To construct the output feedback controller, the following alternative coordinates are

introduced.

21 =Y Ya=T1 Y (7.16)
z; = Xowéjd) Q1,7 = 2,3, 5, n. (7.17)

where a;_; is the virtual control signal at the jth step and will be determined in the following

development.
Step 1:

From (7.16),
Zr=a1 Yqg=CEon+ anzQ +bxows bdy+e3  Yq. (7.18)

Noting that zo = Xows 7 as in (7.17) and xows = (Yo + Xo)w2 = 22 + a1 + Xows, 21 can be
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expressed by
21 = i‘l yd - 502 + aTgiQ + bZQ + bO[l + b}Z()CUQ bdg + €9 yd- (719)

The first virtual control law o is then selected as

~

v = oY (7.20)

Y o= azn ha o2 5T5(2)+?)d (7.21)

where ¢, and [; are positive constants and &) 2 (€19, Ea9, 20K, Ea] T 21 in (7.19) can then be
rewritten as

21 = (1?2 1121 + bZQ + é.Té-(Q) -+ b)ZOWQ b(%’(ﬂ bd2 + €9. (722)

The Lyapunov function candidate for this step Vj is chosen as

1
‘/1:52%+

b -~
ala+ —o¢*+ X
2l<d¢

1
Yo+ =€ Pye (7.23)
2l

2/'{@ 2/€X0

where k,, £ and ko are positive constants, and Py = P > 0 satisfies the equation PyA4q +

al Py = 2I, where I represents the n On identity matrix.

The time derivative of V] is obtained by

. 1 . b ~= b . 1
Vi=zn% —a'a —¢p —ZXoXo —c¢€ (7.24)
a K¢ R0 ll

= 612% llzf + b2122 + ZléTf(g) + Zlbiowg Zlb(gw Zlbdg + z1€9

1 ~T A b ~ A b ~ A 1
—a’'a —¢¢ —Xoxo ¢
Ka K Kx0 I
2 L 7 X b 3
= ¢z +tbnzm+ —a (Kaz1€2) a)+ R—X()(K,X()legn(b)ab Xo0)
a X0

€

b X
K—¢(ﬁ¢2189n(b)¢+¢) zidyy (2 2—11)2+4—l1 L

1 _ x b - A
> 2t bzt ﬁ—aT(/iazlf(g) a)+ — Xo(kxoz15gn(b)wa  Xo)
a X0
b : 3
—(kg1sgn(b)) + @) zidyy €€
R 4ll
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where dyy £ bdy and sgn (> represents the sign function. The adaptive laws for ngS and y, are

selected as
6= Kgz18gn (b)) (7.25)
Xo = Fxoz15gn(b)ws, (7.26)
respectively.
Step 2:
From (7.17), we can obtain that
Zy =Xows + Yoz Gy

=23+ a9 + Xow2 (1

X Oa (7.27)
=23 + Q2 + Xow2 8—;(502 + an(z) +bxows  dyg + €2)
80&1 . 80(1 . k 8041 : 8051 X
Y v &0 o Hia 08, S oa "
Let KT5 contain all the known terms in (7.27), then we have
) Oa Oa Oa
2y =Z3 + Qo —13T5(2) —1wa2 + —dpy
Ay Ay Ay
(7.28)
8061 80412;1 1 KT
—€ — )
oy > 0a ’
The virtual controller ay for step 2 is selected as
O day . day
Qg = (22 52(—1)222 KT, + —13T§(2) + _1wa2
dy dy dy
(7.29)
bz + %/{ (z %z )€
1T g Hel21 ay 2)5(2)
where ¢y and [y are positive constants.
Then 2z, can be rewritten as,
. . Oa Oay _ ooy _
Z9 =23 2z bz 12(—1)22'2 —lan(Q) —Iwaz
Ay Ay Ay
(7.30)
n 8a1d Oay . Oay (kal2 (90412 e A)
—_— — €+ —(Ka — )
ay b2 ay T 1 ay 2)§(2)
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The Lyapunov function candidate V5 in this step is selected as

Vo=Vi + %zg + 2%662 + 2;{);& + 2il2€TP0€. (7.31)
where x, and k4 are positive constants.
The time derivative of V5 can be obtained by
Vo =Vi + 2059 L3 im Ler, (7.32)
Kb Kb ly
> 2 bz + %aéT(ﬁazlf(z) é) 21dpy %ETE
Hibl;i? %Xbilﬁ;(b 2z czi bziz ZQ(%)% 22%5T§(2)
ZQ%XWQ + Zz%dw 22%62 + ZQ%(%(?A %22)&2) a) %ETG
= 2d  co2s + 223+ I{ibl;(mbzlzg 13) + HiaéT(fia(zl %22)5(2) é)
%be(b(’fxb%f@‘v@ + Xb) + %Zz(fﬁa(zl %22)5(2) a) (= %22)%2
lo(22 2il2>2 + 46—;2 %ETG %ETE
> 2 cozs + 2023 + ééT(Ka(zl %Zg)f(z) é) Kixbf(b(’fxb%@WQ + )Zb)
+ %22(/%(21 %22)5(2) é) (z1 %Zg)dbg (4%1 + %)ETE + Hibl;(nbzlzg l;)
The adaptive law for b is selected as
b= KpZ129. (7.33)
Step 7, j = 3,4, xx,n 1:
Based on the definition in (7.17), we have
G =xowd TV + Xowd Py
=21+ a; + KT 5%_;—1aT§(2) ac;;_lewg + 865;;1%2 82—?62 (7.34)

8aj_1é 8aj_1 .
Da o,
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where K'T; denotes the known terms in Z;.

The virtual controller «; is chosen as

804]'_1

2 j J
L +
o )z + By a ) By XoWa

i= ¢z oz KT L(

. oy .
Ka(21 Elela—yziﬂ)f(z) a—)zbﬁxbuézz‘:lla_yzwrl

8ozj_1 i_9 80@ 80('_1 ;
Ka YTz K I a2,
83/ 6(2) i=1 da +1 xb ay 244=2 aXb +1

where ¢; and [; are positive constants.

Then %; can be rewritten as

Zj :Zj—l-l Cij Zj—l lj( 8y )QZj ay an(Q) a]y XovW2
8ozj_1 80& 1 8a i—1 -1 80@- -
d J J u EJ_ 2
dy b2 B 94 (Ka(21 i=1 ayzﬂ)f@) a)
Oaj_q 1 0qy . Ooi_q _90qy;
S ey (S
8)%1) (K’Xb( i=1 ay Z+1)(.U2 + Xb) K ay 5(2)( i=1 DA Z+1)
da;_ 50y
Kxb P 1W2(EZ—228A Ziy1)
Select the jth Lyapunov function candidate V; as
1 1
‘/j = ‘/];1 + §ZJ2 + 2—lj€TP0€.
The time derivative of V; can be obtained by
) . _ 1,
‘/j :‘/j_l + ZjZj 76 €
J
. 1 - ~_ a(l/i I
> Yzl + 2z + R—a(ﬁa(h Efzfa—yziﬂ)f(z) a)
L 20y X 20 200
K—XbXb(ﬁxb(Efd a—yzm)w +x0) + (55 %Zi+1)(>{a<zl ) a—yziﬂ)f@)

j—2 day 20

(7.35)

(7.36)

(7.37)

(7.38)

. .3 . .
(Ez:Qa_mziJrl)(ﬁxb(Zg:l8_yzi+1>w2+Xb) (B2 dia(z Ef:1a—yzi+1)

i=1 E

806‘71 805'71 - 6’04-,1 - (‘906;1 804‘71
(2%t 2 91 94y O%-1, j
J( By )2z dy a o 7 9y Xowa + 2 Dy b2 2 2y €
Oozj,l 16041-

+a—s (Ka(21 Z?;a—yzm)ﬁ(z) a)
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80&'_1 i aOéi R 8@ i—1 i 80@
Zja—;(b(“xb(xgzlla_yziﬂ)wz +Xb)  ZjKa 8Jy 5(2)(25212%%“)
aozj,l ) Gozi 1
Zikony———wo (XI5 —2; —e
jlvxb Dy 2( =2 X +1) lj
i ; 3 i 80@
Z Eleciziz + ZjZi+1 (Zgzlz)eTﬁ de(Zl Zgzlla_yzi-i-l)

1 0oy . 1 Oy -
—a(ke(n1 oz 2) (R (D oz Jwn + X
+ h}aa(li (21 i=1 8y Z +1)§(2) a) KIXbXb(l{Xb( i=1 ay Z +1)w2 Xb>

i aai i 80@- P
+ (Efzfgzm)('fa(zl Elela—yzm)f(z) a)
i (904i i 8&1‘ X
<Eg:228_)2b2i+1>(ﬁxb(zgzlla_yzﬂ_l)a& + Xo)
(9ozj_1 i1 8041- ;i 8@ i—1 1 8042' .
- ol DI T (B
+ 2 04 (Ka(21 i=1 ay zir1)€e)  a) 2 9% (Ko (372, oy Zit1)w2 + Xb)
i ; 3 i 80@
= X%+ 2z (252147);6 dya (21 Zgzlla_yzi-i-l)

1 0oy . 1 L Oay -
—a(ko(n1 Iz 2) (R (D1 o zi Jwn + X
+ h}aa(li (21 i=1 8y Z +1)§(2) a) KIXbXb(l{Xb( i=1 ay Z +1)w2 Xb>

i aai i aai P
+ (Elelgzm)('fa(zl Elela—yzm)f(z) a)
i (904i i 8&1‘ X
(Eg:%a_mzi+l>(ﬁxb(zgzlla_yzi+l>w2 + Xo)-

Step n:
In this step, the alternative coordinate z, is expressed by

o (n-2)
Zn = XoWsy Qp—1

and the time derivative of z, is obtained by

L m=2) | . (ne1)

Note that
>A< w(n—l) :X 5” + qlén_lv ( )
=Xove(t) + vo(t)
where

0" 00 g,
vo(t) = NG ve(t).
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Eq. (7.40) can be rewrite as

En =Xove(t) + vo(t) + Xows" ™ s
8an 1 aan—l 8an—1 8an—1
=Vove(t) + KT, a’ d
Xove(t) + dy a § dy Xpw2 + By 2 By €2
8ozn_1é 0oy :
da o
where KT, denotes the known terms in z,.
Therefore, the controller v.(t) is designed as
1
Ve(t) = —wg(t
(t) o (t)
where
aOén—l aOé'n—l ~ aan—l ~
s t) = KTn n<n n— ln 2 n r
vs(t) CnZn  Zn-1 (ay)z-i‘ aya§(2)+ ay Xpw2
oo, _1 o1 Oy 8ozn L o1 O
+ Oa HG(Zl 21 11 a ZH—l)S() 8A (El 11 a ZZ+1>W2
Oovy_q n— 8a Oay,_ L (yn- (904 A

.. n—1 da;
where ¢, and [,, are positive constants, zss = 25 /2, and zg = 2; X Byl Zit1-

The adaptive laws for a, x; and Dy are given by

- 1 00

a =— lia(zl Zz 11 8 Zz+1>€(2
: day;

~ n—1

Xo = (727 S By Zz+1)W27
Db - K/Db ZS?

where k,, Ky and kp, are positive constants.

(7.43)

(7.44)

(7.45)

(7.46)

(7.47)

(7.48)

Theorem: For the plant given in (7.1) with the hysteresis II,,(¢) in (3.12), the inverse

MGPI model IT(¢) with the hysteresis loop compensator I, (t) defined in (5.4) and the

inverse compensation error described as (5.16), the designed state observer (7.7), the adaptive

output feedback controller specified by (7.44) and the adaptive laws (7.25), (7.26), (7.33),

(7.47), (7.48) and (7.48) ensures that all the closed-loop signals are bounded and y(t) oo ya(t)

ast oo € .
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Proof: From (7.43)-(7.45), it can be obtained that

) oay,_1 ooy, 0,1 .
n — n<n n— ln = 2 n - r -
z CnZn  Zn-1 ( 9 )z oy a’ §() Dy XpW2
aOZn_l aOZn_l 804,1_1 _ 8@ I
d a X i
By b2 oy € + 94 (Ka(21 i= 1 y Z+1)§( 2) 4) (7.49)
Oy, 1 0 8an o0 '
Wbl(/‘ﬁxb(zz 11 By ——Zi1)ws + Xb) 15 2 (Xi2 12 4 Zz+1)
Oovy_q no 0y A
Rxb—— By wa (B2 ZQaA Ziy1)  ZssDb.
The Lyapunov function candidate V,, is selected as
Vie=Vou1+ = + ! D? + Lerp 7.50
n— Z P € .
Lt T o, o, " (7.50)
where rkp, is a positive constant.
) ) 1 ~ = 1
Vn :anl + Znén -+ DbDb —GTE (751)
KJDb lT’L
3 1 0 .
> Shed (St sabn(a SIH Gl 8)
1 ~ _ 8 n 3& n—1 80( I
_Xb<’€Xb(Ez 1 a Zz+1)W2+Xb) (Ez 11 8A Z’H'l)( (Zl Zz 1 a Z7«+1)§(2) a)
’fxb
(‘Mi n 8 A 1 ~ =
(37 = zi1) (R (B0 —— —i)ws + 9b) 2e Dy zgdyy + DbDb
aeb a K/Db
3 1 oy Oy -
> XL 101 (Zi 14[ )ETE + K_aa(“a(zl i 1l Dy Zz+1)£( 2) a)
1 _ 1 00y 1 00 :
(O S 2 s + ) + (SIS ) (Fa(z1 ST A1) A)
Koxb oy da oy
ooy o1 Oy . 1 .~ =
(E;;_;_AZH‘O(K’Xb(Ez 11 Zl—l—l)w? + Xb) Zs Db + Z db2 + _DbDb
0)(1) 8 KD,
3 1 0 x
> E?=1Cizi2 (Y 14[ )5 €+ K_aa("‘fa(z i 11 aoz Zz+1)§( 2) a)
1 1 00y 1 00y 1 0 .
H_XbXb(’fxb(Eizll y Zz+1)w2 +Xb) + (X2 11 94 Z@+1)(f€a(21 X By Zz+1)5(2) a)
_1 0q Oy 1 - =
(E?zzla_%ziﬂ)(”xb(zz "oy ——zip1)ws + Xp) + 25 Dy + o DbDb
3 1 0 :
= Thed CLig)der calmla S A)
1 Jo; 1 0ay; 1 0ay; .
—X S S = zi) (Ka Sz :
/beXb<HXb( i=1 ay2+1)w2+><b) (Zi 74 —= i) (Fa(21 =1 By —Zir1)e)  a)
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n— aal n— aal X 1 ~ <
(Ez‘:21a_%zi+1)(ﬁxb<2izlla_yzi+l)w2 + Xo) + /i_DbDb(Db + Kp, 25 )-

V,, is nonincreasing, it implies that z;, for i« = 1,2, %, n, a, l;, ngS, Xo0; Xp» and D, are
bounded. Furthermore, by applying the Lasalle-Yoshizawa theorem, it can be shown that

2000 (1 =1,2,%x,n) as t co € , which implies that y(t) co y4(t) as t co € . ]

Based on the output feedback control developed in (7.44), the control signal v(¢) for the
plant given in (7.1) with the hysteresis II,,(¢) in (3.12) is obtained by

~

v(t) =1L, v () (7.52)

where II7;!, given in (5.3), is the inverse MGPI model constructed based on the estimated

MGPI model.

7.4 Simulation Studies

In this section, the effectiveness of the proposed controller is verified by the simulation studies

with two different plants.

7.4.1 Example 1:

In the first example, a second-order linear system with unknown parameters is considered,
which can be described by

& = ax + bu(t) (7.53)

y=x
where u(t) stands for the output of the compensated hysteresis output (7.5). The parameter
a and b are selected as a = 1 and b = 1 and assumed to be unknown in the simulation. The

desired trajectory is given as y,4(f) = bsin(1.5t). The initial state of the system is z(0) = 0
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and the sample time is 0.0001. The actual and estimated density function of the MGPI
model I1,,,(¢) and IL,,(£) are p,(r) = 0.5e"%914* and p,,(r) = 0.52¢992 for r /[0, 100],
respectively, and the envelope function parameter is chosen as my = 1.7. For the state
observer, the parameter ¢ is selected as ¢ = [q1,¢2]7 = [1,3]7. The control parameters are

summarized in Table 7.1.

Table 7.1: Output-feedback controller parameters in Example 1
1 125.598 | co  189.475
14 0.0003 | Il 0.0003
a(0) 0.6 ke  0.0008
)

0.75 | m  0.028
0) 14 | ke 0.0005
0) 03 | Ky 0001
(0) 1.3 | ks 0457
»(0) 001 | kp, 0.0001

Fig. 7.2 and 7.3 show the tracking error and the control signal, respectively. The com-
parison between the desired trajectory y,(t) and the actual system output y(t) can be found
in Fig. 7.4. The simulation results demonstrate that the developed control algorithm can

effectively compensate the effect of hysteresis as well as achieve admirable tracking accuracy.

7.4.2 Example 2:

A second order nonlinear plant preceded by a hysteresis actuator is considered in the second

example. The nonlinear system is described as

1 —x(t)
a— bu(t)
1+e=® (7.54)

T =
y=uz
where u(t) stands for the output of the compensated hysteresis output (7.5). The parameter

a and b are selected as a = 1 and b = 1 and assumed to be unknown in the simulation. The
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Figure 7.2: The tracking error of output-feedback controller in example 1.
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Figure 7.3: The controller signal v(¢) of output-feedback controller in example 1.
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Figure 7.4: The desired output y4(¢) and the actual output y(¢) of output-feedback controller

in example 1.
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desired trajectory is given as y4(f) = 4sin(t). The initial state of the system is z(0) = 0
and the sample time is 0.0005. The actual and estimated density function of the MGPI
model I1,,,(¢) and IL,,(£) are pn(r) = 0.5¢"%9M4* and p,,(r) = 0.52¢992 for r /[0, 100],
respectively. The envelope function parameter is chosen as my = 1.7. For the state observer,
the parameter ¢ is selected as ¢ = [q1, g2]7 = [1,3]7. The control parameters are summarized

in Table 7.2.

Table 7.2: Output-feedback controller parameters in Example 2
¢ 120.961 | ¢ 99.2
14 0.0003 | Il 0.0003

0.02 ke 0.0045

0.75 ky  0.032

Xo(0) 1.4 Kyo  0.005

X»(0) 0.3 Ky 0.0125

(0) 1.3 | Ky 0452

Dy(0)  0.01 | &p, 0.004

The simulation results presented in Fig. 7.5, 7.6, and 7.7 are the tracking error, the control
signal v(t) and the comparison of the desired output y,(¢) and the actual system output y(t),
respectively. It can be seen that the proposed inverse based output feedback controller by
considering the inverse compensation error demonstrates excellent tracking performance for

the nonlinear plant.

Based on the simulation resluts, it can be concluded that the developed observer for
state estimation works efficiently and provides exponentially convergent estimates of the
unmeasured states. In addition, the proposed adaptive output feedback control method not
only guarantee the stability of the close-loop control system, but also ensure the desired

tracking accuracy.
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Figure 7.5: The tracking error of output-feedback controller in example 2.
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Figure 7.6: The controller signal v(¢) of output-feedback controller in example 2.
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Figure 7.7: The desired output y4(¢) and the actual output y(¢) of output-feedback controller

in example 2.
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Chapter 8

Experimental Implementation

In this chapter, the theoretical results obtained in previous chapters will be further sub-
stantiated in the laboratory. The experiment results achieved in this chapter will imply the

possibility of implementing the proposed works in this dissertation into industries.

8.1 Experimental Setup

The piezoelectric actuators, which are well known by their light weight, high resolution,
and rapid response speed, are widely used in micro/nanomanipulation systems [87,110-112].
The piezoelectric micropositioning stage (P-753.31 C) from Physik Instrumente Company is
selected in the experiments. The architecture of experimental devices is shown in Fig. 8.1.
The natural frequency of this piezoelectric actuator is 2.9 KHz and the maximum output
displacement of the actuator is 38um from its static equilibrium point. A capacitive sensor
(sensitivity = 0.38um/V ; resolution > 0.1nm) is integrated with the actuator to measure
the actuator displacement response. The excitation module is a voltage amplifier (LVPZT,
E-505) with a fixed gain of ten in the range of 0 V to 100 V . The measured displacement
is transferred to analogue voltage in the range of 0-10V by a position servo-control module

(PSCM). The input voltage and output displacement signals will be obtained by using dSpace
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ControlDesk data acquisition card at a sampling frequency of 10 kHz.

Inverse MGPI

Controller

Figure 8.1: Experiment setup.

8.2 Hysteresis Parameters Identification and Model Val-
idation

To model the hysteretic effect in PZT P-753.31C, the MGPI model is comprised by select-
ing N = 10 modified generalized play operators with fixed threshold values rj;, which are

determined by
T =c Xk (8.1)

for £ = 1,2, xxx, 10.

The envelope function is selected as,

’7(1)) = mov + ml(mo > 0) (82)

The model parameter ¢, density function weights p,x, for &k = 0,1, xxx, 10, my and my,

with the initial state }3,0,0,0,0,0,0,0,0,0,0,0,1,0], were identified through minimizing an
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Table 8.1: Identified parameters of PZT P-753.31C

Parameters | PZT P-753.31C | Parameters | PZT P-753.31C

c 3.5000 Pro 0.2422
Dr1 0.0681 Pr2 0.0272
Dr3 0.0179 Dra 0.0199
Drs5 0.0057 Dre 0.0202
Pr7 0.0410 Drg 0.0001
Dro 0.0001 Prio 0.0001

mo 0.9800 my 0.3933

error sum-squared function Fl,, given by

B =Y (L) (1) (53)

i=1
where II,,, is the displacement response of the MGPI model under a certain excitation. IL, is
the measured displacement of PZT mode P-753.31C under the same input signal. @ is the

number of data point considered.

The error minimization problem was solved by the function fmincon in MATLAB, sub-

jected to the following constrains:
Ye, o, mo| > 0.

The final model parameters are summarized in Table 8.1 and the fitness of the proposed
MGPI model to the experimental data is illustrated by Fig. 8.2. The peak deviation between
the MGPI model response and the experimental measured data is in the order of 0.2 um, as
shown in Fig. 8.3. It should be mentioned that to avoid the error sum-squared function FE;
converge to a local minimum, the above procedures were used with different values of the

initial states. All the results show the identified parameters are very similar.
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Figure 8.2: The identification result of MGPI model for PZT P-753.31C.
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Remark: 1. It has been shown in the experiment that the MGPI model comprised of N =
10 modified generalized play operators is accurate enough for describing the hysteresis effect
in PZT P-753.31C. The increase of number N will lead to the unnecessary computational

burden.

2. Under the input signals with higher frequencies (larger than 20Hz for ex-
ample), the hysteresis nonlinearities in the PZT become rate-dependent. In this case, the
rate-dependent hysteresis model is required. In this dissertation research, with the proposed
rate-independent MGPI model, only the input excitations with lower frequencies are selected

in the experiments.

8.3 Experimental Verification of Inverse Compensation

Based on the MGPI model determined in Table 8.1, the experimental verification of the
proposed inverse compensation are provided in Fig. 8.4 and Fig. 8.5. The inverse MGPI
model IT,! is calculated based on (4.15), (4.25), and (4.26). The thresholds s; and the density

weights ¢, for ¢« = 1, xxx; N are shown in Table 8.2.

Table 8.2: Thresholds and weights obtained for the inverse MGPI model for PZT P-753.31C

So S1 So S3 S4 S5
0 0.8227 1.8852 3.0435 4.2638 5.5562
Sg S7 S8 Sg S10

6.8677 8.1795 9.6357 | 11.0923 | 12.5492
dso ds1 ds2 ds3 ds4 dss5

4.2808 0.9663 0.2741 0.1569 0.1565 0.0417
ds6 ds7 ds8 ds9 ds10

0.0007 0.2662 0.0006 0.0006 0.0006

Figure 8.4(a) shows the hysteresis nonlinearity of PZT P-753.31C described by the MGPI

under the reference input signal v.(t) = 15.2 + 11.4sin(27t). The compensated result is
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shown in Fig. 8.4(b). In Fig. 8.5, the proposed inverse scheme has been further confirmed
by applying a more complex reference input signal v.(t) = 19+ 2.28sin(4.283t) 4 3.8sin(27t).
The input-output relation before and after the inverse compensation are shown in Fig. 8.5(a)
and Fig. 8.5(b), respectively. The experimental results show the effectiveness of the inverse
compensation approach proposed in Chapter 4. However, since the validated MGPI model
is only an estimation of the actual hysteresis nonlinearity in the PZT P-753.31C, the open-
loop inverse compensation can not completely remedy the hysteresis effect and usually yield
some degree of inverse hysteresis compensation error, which can be clearly observed from

Fig. 8.4(b) and Fig. 8.5(b).

8.4 Experimental Verification of Adaptive Output Feed-
back Controller

In this section, the adaptive output feedback controller developed in Chapter 7 is illustrated
on the piezo micropositioning stage P-753.31C. The dynamic model of PZT P-753.31C is
described by [87]

= 4090z + 0.0116u

y=ux (8.4)

where y(t) denotes the output displacement, u(t) is the output of the MGPI model I1,,[v](t).
The parameters of the MPGI model are identified in previous section as shown in Table
8.1. wv(t) is the output of the inverse MGPI model II[v.](¢). The objective is to design
the control signal v.(t) to control the system output y(¢) to follow a desired trajectory
ya(t) = 10 + bsin(2xt). First, the inverse MGPI model v(t) = I, ![v.]() is chosen as in
(4.15), (4.25), and (4.26). Then the control design in (7.44) is applied to the plant. In the
experiment, the controller parameters is selected as ¢ = 278.3. The initial value and adaptive

law for the unknown parameters are chosen as a(0) = 4000, ¥;(0) = 0.02, D,(0) = 0.01,
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Figure 8.4: (a) The MGPI model of PZT P-753.31C with input signal v.(t) = 15.2 +
11.4sin(2xt); (b) The compensated output with applying the inverse MGPI model.
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ke = 0.8, Ky = 0.0001, and xp, = 0.004, respectively.

The experiment results represented in Fig. 8.6 is the tracking error. Fig. 8.7 shows that
the system output y(t) perfectly tracks the reference desired trajectory yq(t). Fig. 8.8 shows
the control signal v(t). Clearly, the experimental results verify that the theoretical design
of the adaptive output feedback controller proposed in Chapter 7 works efficiently for the

piezoelectric actuator.

The experimental results in this chapter demonstrate effectiveness of the theoretical find-

ings proposed in previous chapters.
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Figure 8.6: The tracking error in experiment.
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Chapter 9

Conclusions and Future Work

9.1 Concluding Remarks

The hysteresis effect, which is known as the non-smooth and non-differentiable nonlinearity,
widely exhibits in smart material based actuators, such as piezoceramics actuators, mag-
netostrictive actuators, and shape memory alloy actuators. When a plant is preceded with
such the undesired effect, the control systems usually suffer from the undesirable inaccuracies,

detrimental oscillation, or even instability.

This dissertation research has extensively addressed controller designs for hysteresis com-
pensation with the consideration of the proposed modified generalized Prandtl-Ishlinskii
model and its inversion, while guaranteeing the fundamental requirement of control system
stability and ensuring the tracking precision. The major contributions of the dissertation

research are summarized as follows.

< As an extension of the Prandtl-Ishlinskii model, a modified generalized Prandtl-Ishlinskii
model has been proposed to describe a more general class of hysteresis shapes. The pro-
posed modified generalized Prandtl-Ishilinskii is capable of describing the symmetric

or asymmetric major and minor hysteresis loops with output saturation.
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<Two essential properties, the wiping out property and the congruency property, for
the proposed modified generalized Prantl-Ishlinskii model have been inspected. It
has been shown that the modified generalized Prantl-Ishlinskii model fulfills these two
properties. This result provides the necessary and sufficient conditions for the hysteresis
nonlinearity to be represented by the proposed modified generalized Prantl-Ishlinskii

model on the set of piece-wise monotonic inputs.

< Compared to the generalized Prantl-Ishlinskii model, the benefit of the modified gener-
alized Prantl-Ishlinskii model is that the concept of initial loading curve can be utilized
and the inverse model can be therefore constructed based on the strict theoretical proof.
In this dissertation research, the analytical inverse expression of the modified gener-
alized Prantl-Ishlinskii model with a general form of the envelope function has been
derived, which is applied as a feedforward compensator for the hysteresis compensation
in the control systems. The numerical implementation has been subsequently provided.
The effectiveness of the obtained inverse model has been verified under different inputs
in the simulation studies. The simulation results show that the constructed inverse

feedforward compensator can remarkably mitigate the hysteresis effects.

< In the practical control systems, the hysteresis is usually unknown. The application of
the inverse models which are constructed based on the approximate hysteresis models
will result in the inverse compensation error. The expression of such inverse compensa-
tion error is essential for the strict stability proof of the closed-loop control system. In
this dissertation research, the analytical expression of the inverse compensation error
for the modified generalized Prantl-Ishlinskii model has been derived. The nonlinear
part of the obtained inverse compensation error formula is bounded so that it can be
treated as a bounded disturbance. By considering the inverse error expression, the
strict stability proof can be established based on the Lyapunov method for the closed-
loop control system. It is also worth mentioning that the benefit of the proposed
formula of the inverse compensation error is that the designed adaptive controllers can

achieve the tracking without necessarily adapting the uncertain parameters(the num-
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ber could be large) in the hysteresis model except for only one parameter related to
the boundary, which is made possible by the introduction of the stop operator in the

error formulation.

< An inverse based adaptive variable structure controller has been designed with the
consideration of the inverse compensation error. The global stability of the system and
tracking a desired trajectory to a certain precision are achieved. It has also been proved
that by taking consideration of error expression of the inverse compensation in the
controller design, the inverse based scheme generates a superior transient performance

over the direct compensation methods without inverse constructions.

< An inverse based adaptive output-feedback controller has been developed for systems
preceded by unknown hysteresis effect, which is described by the proposed modified
generalized Prandtl-Ishlinskii model with unknown parameters, when not all the system
states are available. An state observer has also been design for the system states
estimations. The global stability of the system has been guaranteed and the tracking
accuracy has been ensured by considering the above proposed inverse compensation

error expression.

< The above theoretical findings have been verified in the experiments on a piezoelectric
micropositioning stage (PZT P-753.31 C). Based on the experiment results, it can be
shown that the theoretical results proposed in this dissertation research have great

potential to be applied into the control systems in industries.

9.2 Recommendations for Future Works

As the continuation of the studies in this dissertation research, the following research topics

in this area can be conducted in the future.

<In Chapter 4, the inversion of the MGPI model with identical envelope functions has
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been investigated. However, for the case that +,(v) £ 4;(v), the inverse construction is

still an open problem.

< Rate-independent property is one of the characteristics of the proposed modified gen-
eralized Prandtl-Ishlinskii model. However, it has been observed in laboratory that
some smart material based actuators exhibit rate-dependent hysteresis. Therefore, it

is desirable to extend the current research to rate-dependent circumstances.

< Further efforts are also desirable for compensation of rate-dependent modified gener-

alized Prandtl-Ishlinskii model using the inversion as a feedforward compensator.

9.3 Publications

Several papers reporting results of this dissertation research have been published /submitted
in journals and well-known international conferences as listed below. These papers were
written under the guidance of my supervisor, Dr. C.-Y. Su. Other co-authors of some of
the papers contributed partially through extensive discussions with remarkable recommen-

dations, initial simulations, or the combinations of the above.

<S. Liu, C.-Y Su and Z. Li, “Robust adaptive inverse control of a class of nonlinear
systems with modified generalized Prandtl-Ishlinskii hysteresis model,” IEFEE Trans-
actions on Automatic Control, 2013 (Accepted for Publication).

<S. Liu and C.-Y. Su, “Analytical hysteresis inverse compensation for a modified gen-
eralized Prandtl-Ishlinskii model,” in the Proceedings of the 2013 American Control
Conference (ACC), Washington, DC, pp. 4759-4764, 2013 .

<Z. Li, S. Liu and C.-Y. Su, “A novel analytical inverse compensation approach for
Preisach model.” in the Proceedings of the 6th International Conference on Intelligent

Robotics and Applications (ICIRA), Busan, Korea, pp. 656-665, 2013.
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<Z.Li, Y. Feng, S. Liu and C.-Y. Su, “Prescribed Adaptive Control of a Class of Non-
linear System Preceded by Actuators with Hysteresis,” in the Proceedings of the 2013

IFAC Conference on Manufacturing Modelling, Management, and Control, Saint Pe-
tersburg, Russia, pp. 1849-1854, 2013.

<S. Liu and C.-Y Su, “Analytical hysteresis inverse compensation for smart actuators
with a modified generalized Prandtl-Ishlinskii model,” submitted to IEEE Transactions

on Nanotechnology.

<S. Liu and C.-Y Su, “Adaptive output feedback control of uncertain systems with mod-
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<S. Liu and C.-Y. Su, “Inverse Error Analysis and Adaptive Output Feedback Control
of Uncertain Systems Preceded with Hysteresis Actuators”, submitted to IET Control

Theory & Applications.

<S. Liu, X. Sheng, Z. Li and C.-Y. Su, “Inverse control of a class of nonlinear systems
with modified generalized Prandtl-Ishlinskii hysteresis,” in the Proceedings of the 38th
Annual Conference on IEEE Industrial Electronics Society (IECON), Montreal, QC,
Canada, pp. 2319-2324, 2012.

<8S. Liu, Z. Li and C.-Y. Su, “Robust adaptive control of a class of nonlinear system with
an asymmetric shifted Prandtl-Ishlinskii hysteresis model,” in the Proceedings of the
2012 International Conference on Advanced Mechatronic Systems (ICAMechS), Tokyo,
Japan, pp. 217-222, 2012.
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