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ABSTRACT 

Centralized Thermal Storage Systems Model for Buildings of the Future: 

Development and Validation 

Azeldin El-Sawi, Ph.D. 

Concordia University, 2013 

 

Thermal energy storage system (TES) is a promising technology for buildings 

heating and cooling applications. Energy storage systems have been widely used for 

reducing energy use from peak-demand to off-peak times. Among the various thermal 

storage technologies, phase change materials (PCMs) are the most commonly used 

approaches for storing thermal energy for buildings heating and cooling application. 

These materials enable buildings to store and retrieve a considerable amount of energy, 

typically by being integrated into structural components through a wide variety of TES 

techniques. A centralized energy storage system can provide a part of the heating and 

cooling requirements of a low-energy building. Relatively little general information 

pertaining to the thermal characteristics of latent heat thermal energy storage (LHTES) 

systems are available; further investigation is required to analyze the thermal 

performance of centralized LHTES systems in buildings. In this dissertation, a 3-

dimensional mathematical model of a centralized LHTES system is conducted and 

validated for both a quasi-steady state and a transient conjugate heat transfer problem. 

The model is then used to carry out a parametric study to investigate the effect of 
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geometrical parameters, charging and discharging times and mass flow rates on the long-

term system performance.  

Based on the parameters that could affect the long-term system performance, 

artificial neural networks (ANN) are developed not only to reduce the computational time 

but also to relate the outlet air-temperature to the inlet air-temperature of LHTES. The 

database obtained from the numerical solution is first used to train the ANN and then 

utilized to evaluate the accuracy of the trained ANN. The developed model is then 

integrated with a building’s mechanical ventilation system to investigate the potential 

improvement in occupants’ thermal comfort level and energy efficiency arising from the 

integration of the LHTES. It was found that the temperature difference between the air as 

a heat transfer fluid (HTF) and the PCM melting point has a significant effect on the 

performances of a LHTES system. The thermal energy retrieved from the centralized 

LHTES system is the highest when the inlet air temperature is about 10K higher than the 

PCM mean melting temperature. 
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Chapter 1 

Introduction 

1.1 General 

Due in part to the increasing demand for energy for heating and cooling buildings, 

fuel prices are continually raising, albeit gradually in many areas. Conventional cooling 

systems require a considerable amount of primary energy which increases building 

operation costs; much of that energy consumption is also linked to increased greenhouse 

gas (GHG) emissions. In developed nations, the building sector uses about 40% of the 

world-wide total energy and contributes up to 40% of annual GHG [1]. The search for 

new alternative energy sources has become more and more crucial. Some countries have 

insisted on a clear mandate to encourage new building practices that follow the standard 

regulation of net-zero energy buildings (NZEBs). NZEBs are defined as buildings that 

maintain their energy demand from sustainable sources. Clean energy can be obtained 

from natural resources such as sunlight, wind, geothermal sources as well as hydropower 

as alternatives to fossil fuel. Sustainable buildings utilize the renewable energy as a main 

source of energy to heat and cool spaces. However, most of the renewable energy sources 

are intermittent and need to be stored for use during peak demand time. 

Thermal energy storage (TES) technologies play an important role in storing the 

excess energy from renewable sources in high production hours. Phase change materials 

(PCMs) are characterized by their relatively high latent heat. Due to the very small 

change in the volume of PCMs during the transition phase, implementing PCMs as 

http://en.wikipedia.org/wiki/Building
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thermal storage and for regulated temperature applications has become a suitable option 

among other thermal storage mediums.  

 By using energy storage technologies, one can bridge the gap between supply and 

demand. Energy storage technologies help to reduce on-peak demand to off-peak times 

[1]. Reducing on-peak demand to off-peak timing can be translated to fewer power plant 

installations (or smaller power plants). Substantially, reducing demand takes advantage of 

night time free cooling ventilation TES, improving the performance and reliability of 

energy system [2]. As a result, the electricity supplied from power generation plants is 

expected to be minimized, thereby mitigating greenhouse gas emissions.  

 

1.2 Introduction to phase change materials for thermal energy storage 

Phase change materials (PCMs) can be used as a heat transfer medium to store 

energy. A variety of PCMs, with different thermo-physical properties, are used for latent 

heat thermal energy storage (LHTES) systems. Despite having some drawbacks, such as 

a sub-cooling effect [3], they present a high potential for various thermal storage 

applications. In this regard, the fundamentals of the phase change layout classification of 

PCMs are presented.  

1.2.1 Phase change mechanism  

Most pure materials have a distinct transition temperature at which the 

transforming process from liquid to solid takes place, and vice versa. That temperature is 

defined as its melting or freezing temperature,   . In the early stage of the melting 

process, the shape of the interface appears to be planar due to heat transfer by pure 

conduction. As time passes, the melting front starts to form a curvature shape and heat 
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transfer by natural convection comes to play a role when sufficient PCM melt has 

developed. PCMs have the ability to absorb and give off a huge amount of heat at their 

constant phase transition temperature at which their phase change phenomenon occurs.  

Figure 1.1 illustrates the isothermal phase change process. At first, the 

temperature rises during the solid phase as its sensible heat rises, until the temperature 

reaches the melting point. After a certain time, the heat is absorbed in the form of latent 

heat energy, and this stage continues until all of the solid phase material changes 

completely to its liquid phase. Next, the temperature continuously rises during the 

liquid phase in the form of sensible heat. The latent heat, which is the heat stored during 

the phase change process, is evaluated using the enthalpy difference of the solid liquid 

phase change. In this case, it is called the solid liquid phase change enthalpy, or the 

melting enthalpy, or the heat of fusion. The term latent heat storage is more commonly 

used for those materials that have the ability of storing energy during their phase change. 

 
Figure 1.1 The layout of solid liquid phase change materials [4] 
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1.2.2 Classification of phase change materials 

PCMs can be divided into three subcategories based on their phase change state: 

solid liquid, liquid gas, and solid gas PCMs.  Practically, the solid liquid PCMs are 

the best candidate to be utilized for TES in buildings [5]. According to Zalba et al. [6], 

the solid liquid PCMs consist of organic, inorganic, and eutectic mixtures of PCMs, 

based on their constitutive materials. For instance, two types of PCMs are commonly 

used (i.e., paraffin wax and salt hydrate), which are categorized as organic and inorganic 

PCMs, respectively.  

 

1.2.3 Latent heat thermal energy storage (LHTES) 

Latent heat storage takes place when the heat energy due to a change in the phase 

of a storage material is absorbed or released. Phase change materials are considered as 

latent heat storage materials due to their release and absorption of heat at a nearly 

constant temperature. Sharma et al. [7] reported latent heat thermal energy storage 

systems can store 5-14 times more heat per unit volume than the sensible heat storage 

systems (i.e., water, masonry, and rock). 

 Over the past decade, LHTES systems and their applications have received broad 

attention from building researchers and practitioners, due to their relatively large heat 

storage capacities. The development of LHTES systems has been reviewed by Agyenim 

et al. [8]. They concluded that most phase change materials have low thermal 

conductivity. To improve the thermal conductivity, an enhancement technique is 

required. For example, different configurations of fins are widely used to enhance the 

charging/discharging of LHTES systems. 
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In fact, LHTES can be applied to both heating and cooling processes for a variety 

of applications (e.g., buildings and industries); an example of the latter is ice harvesting 

in the winter season in moderate climates, to be used during summer for preserving food.  

LHTES systems have received increasing attention, as they have a great potential to meet 

the comfort requirement conditions inside buildings with both more effective and more 

environmentally benign means of energy consumption. These systems enable 

practitioners and householders to reduce peak-demand use to off-demand periods. The 

energy consumption rate in the whole world is expected to increase by 1.4% every year 

from 2007 to 2020 [9]. In 2007, the building sector was reported to contribute to about 

40% of global greenhouse gas emissions. There are three types of heat storage systems: 

sensible heat, latent heat, and thermochemical heat. Latent heat thermal storage systems 

are considered to be good options for buildings due to their high density storage. The 

most commonly used storage media (PCM) is paraffin. The thermal properties of paraffin 

are well-suited to building heating/cooling applications; they are commercially available, 

chemically stable, have relatively high fusion latent heat, self-nucleating behavior, and 

little super-cooling effect. Numerical models mimic these qualities to provide optimal 

selection of phase change temperature range. An overview of the energy saving potential 

and the possible peak load reduction in the built environment is presented in Table1.1. 

Table 1.1 Overview of literature addressing reducing peak load and saving energy 

Reference Object configuration Results Analysis type 

 

Alawadhi.[10] 

 

Evaluated common brick wall 

building containing cylindrical holes 

filled with and without PCM in hot 

climate. 

 

The heat flux was reduced by 

17.55% by incorporating three 

cylinders of PCM at the 

centerline of the bricks. 

 

Simulation 

Weinlader et 

al.[11] 

Investigated the effect of double 

glazing with PCM on day-lighting 

performance of rooms in winter and 

to reduce peak demand in summer. 

The facade panel with PCM 

showed about 30% less heat loss 

in south oriented facades. Solar 

heat gains were also reduced by 

Experimental 
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about 50%. 

Evers et al. [12] Study of two types of PCMs, 

paraffin-based and hydrated salt-

based incorporated in a frame wall. 

 

Paraffin-based PCMs reduced 

the average peak heat flux and 

the average total “daily” heat 

flow by up to 9.2% and 1.2% 

respectively. Hydrated salt-

based PCMs did not exhibit any 

influence. 

Experimental 

Diaconu and 

Cruceru [13] 

Implemented a PCM wallboard 

composed of three layers. External 

layer was PCM with high melting 

point; whilst the internal layer was 

PCM with melting point close to set 

point temperature of the test room. 

A conventional insulation layer was 

located in the middle layer. 

Peak cooling load reduction was 

found (35.4%). The reduction of 

the total cooling load (energy 

savings for AC) and the value of 

the annual energy savings for 

heating were 1% and 12.8%, 

respectively. 

 

Simulation 

Hammou and 

Lacroix [14] 

Performed a simulation of walls 

containing PCM spherical capsules 

with diameter 0.064m. The system 

under study consists of a 5 m ×5 m 

× 3 m room with a storage wall  

0.192 m thick 

The electricity consumption for 

space heating during four 

consecutive winter months was 

reduced by 32%. 

Simulation 

Kosny et al. [15] Investigated the effect of using a 

multilayer attic insulation foam 

system with micro-encapsulated 

PCM on the heat flow during peak 

hours. Two types of PCM were 

tested with melting points of 26oC 

and 32oC. 

The peak hour heat flow was 

reduced by 20%. Total heat flow 

through the enhanced roof was 

reduced by 90% compared to 

that of a conventional roof. 

Experimental 

Peippo et al. [16] Analyzed the potential energy 

savings of a lightweight passive 

solar house with PCM (fatty acids) 

impregnated plasterboard. 

Savings of annual energy were 

estimated to be 15%. 

Simulation 

Zhou et al. [17] Set up a 3.9m×3.3m×2.7m test room 

to determine the possible energy 

savings during a heating season. 

PCM composite plates with phase 

change enthalpy 60kJ/kg and 

optimal thickness 30mm were used 

to line the inner walls and ceiling. 

The energy savings over the 

entire heating season was 10% 

compared to without using a 

PCM. 

Experimental 

Ismail and Castro 

[18] 

Investigated a building with brick 

walls and a PCM layer of 20mm 

lining in the ceiling of 100mm 

thickness to assess the reduction of 

energy consumed by central air 

conditioning. 

The central air conditioning unit 

utilized 31% less energy. 

Experimental and 

Simulation 

Chen et al. [19] Setup a room test with interior 

walls, ceiling, and floor consisting 

of PCM layers to investigate the 

heating energy savings throughout 

the complete winter season. 

An energy savings of  10% over 

the winter heating season was 

achieved. 

 

Experimental 

Athienitis et al. 

[20] 

Studied the integration of PCM into 

building envelope components for 

The total heating load was 

reduced by approximately 15%. 

Experimental and 

Simulation 
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thermal storage in a passive solar 

test-room. Gypsum board 

impregnated with a phase change 

material was used. The PCM 

gypsum board contained about 25% 

butyl stearate by weight 

Stetiu and 

Feustel[21] 

Simulated one room in an office 

building, with PCM wallboard 

interior walls and mechanical 

ventilation at night. The mass 

concentration of the PCM, paraffin, 

accounted for 20% of the wallboard 

by weight. 

The peak cooling load was 

reduced by 28%. 

Simulation 

Boehm and 

Halford [22] 

Modeling of a three-layer sandwich 

panel with external and internal 

layers composed of insulation and a 

middle layer of PCM. 

The maximum reduction of peak 

load was found to be 19-57% 

compared to a panel composed 

only of insulation. 

Simulation 

Koschenz and 

Lehmann [23] 

Set up two1.83m×1.83m×1.22m test 

rooms in order to determine the 

amount of heat flux that crossed 

through the walls. 

 

The average reduction of the 

wall heat flux was found to be 

11% to 21% for 10% PCM 

concentration, and from 1% to 

15% for 20% PCM 

concentration. Wall orientation, 

weather, and climate conditions 

significantly affected the heat 

flux reduction rate. The cooling 

load was reduced by 8.6% to 

10.8% over a daily basis. 

Experimental 

 

LHTES is a promising technology for building heating and cooling. A centralized 

LHTES system is a hybrid phase change material (PCM) closed system based on a multi-

fin heat sink. The PCM is used as a heat transfer medium to store and release energy. A 

variety of PCMs, with different thermo-physical properties, are used for LHTES systems. 

For instance, two types of PCMs that are commonly used are paraffin wax and salt 

hydrate, which are categorized as organic and inorganic PCMs, respectively   

 

1.3 Objectives  

Considering the limitations in the literature, the objectives accomplished in this 

dissertation is summarized below: 
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 To develop and validate a 3-D numerical model of a LHTES system and 

to study its thermal behavior under various conditions.  To carry out a 

parametric study to investigate the impact of geometrical parameters, 

PCM type, the HTF inlet air-temperature, the HTF mass flow rate, and the 

discharging time on the system thermal performance.  

 To develop an Artificial Neural Network (ANN) to be utilized to predict 

the long-term performance of the centralized LHTES system. 

 To investigate the long-term peak-demand reduction performance of the 

centralized LHTES system. A control strategy is applied to manage the 

charging and discharging processes. The centralized LHTES system is 

integrated with a mechanical ventilation system combined with night-time 

ventilation.  

 

1.4 Organization of the dissertation 

In addition to this introductory Chapter 1, Chapter 2 presents a comprehensive 

literature survey regarding the LHTES system and their features. The methodology used 

to solve the heat transfer and phase change phenomena is provided in Chapter 3. The 

development of the numerical model and its validation are elaborated in Chapter 4.  

Chapter 5 presents the modeling of a centralized latent heat thermal energy 

storage system and its potential benefits in energy efficiency, load shifting, and in 

emergency heating/cooling load systems. A three-dimensional heat transfer model of a 

LHTES system is conducted to investigate the quasi-steady state and the transient heat 

transfer of phase change materials (PCMs). Through a parametric study, the effect of the 
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temperature, the PCM phase change temperature range, and the temperature difference of 

the incoming air and PCM melting temperature on PCM thermal performance is 

undertaken.  

Chapter 6 presents an assessment and prediction of the thermal performance of a 

centralized latent heat thermal energy storage system utilizing an artificial neural 

network. A validated computational fluid dynamics simulation tool is used to study the 

long term performance of a centralized latent heat thermal energy storage (LHTES) 

system.  

Integrating a centralized LHTES system into an energy building model is 

elaborated in Chapter 7. Finally, the conclusions, contributions, and recommendations for 

potential future work are summarized in Chapter 8.   
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Chapter 2 

Literature Review 

This section presents a comprehensive review of the previous studies regarding 

the integration of thermal energy storage in buildings. Considerable attention is paid to 

interpreting different aspects of heat transfer enhancement between PCMs and airflow. 

The most influential parameters of LHTES systems are reviewed, including the related 

experimental work. Additionally, specific design parameters and their characteristics are 

evaluated.  

 

2.1 Heat transfer between air and PCMs 

LHTES systems have been extensively examined in terms of their effective 

thermal performance both numerically and experimentally [24]. Despite the very low 

thermal conductivity of PCMs, which is considered an inherent disadvantage, 

considerable efforts have been made to improve their performance. Different techniques 

have been used to enhance the performance of these systems using extended surfaces, as 

reported by Jegadheeswaran and Pohekar [25], Fan and Khodadadi [26], and Baby and 

Balaji [27]. Two popular techniques are the use of fins with cooling storage units  [28-34] 

and the application of multiple PCM methods [35]. Heat pipes [36, 37], and porous 

matrix of graphite [38, 39] have been embedded in PCMs to improve the thermal 

performance of LHTES systems. PCMs have also been combined with granules formed 

by mixing foamed glass beads and paraffin wax together to speed up melting and freezing 

processes [40]. The charging time was reduced by approximately 60% when aluminum 
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powder was added to the paraffin wax [41]. Aluminum foil has been used to increase the 

solidification rate under a boundary condition of constant heat flux in a shell-and-tube 

cold storage unit [42].  

Mosaffa et al. [43] studied an isothermal solidification process for a rectangular 

finned thermal storage unit both numerically and analytically and predicted the 

liquid solid location and the temperature distribution of a fin. They reported that a minor 

error was found when the one-dimensional analytical solution was used, and that the 

solidification time reduces with decreasing the temperature of the heat transfer fluid 

(HTF). Jeon et al.[44] reported the development of a PCM thermal energy storage system 

combined with radiant floor heating systems to reduce the building energy consumption. 

They showed that a proper melting point of PCMs plays a significant role in optimizing 

PCM performance. Due to the complexity of temperature distribution in the radiant 

heating system when combined with other means of heating, PCM technology needs to 

be experimentally examined. 

  

2.2 Effect of PCM container design 

The main advantages of PCM encapsulation are: providing a large heat transfer 

surface area, reducing PCM reactivity towards the outside environment, and controlling 

the changes in the storage materials’ volume wherever phase change occurs [45]. An 

extremely challenging task is the optimal design of the container to reduce the 

solidification time and thereby improve free-cooling efficiency. Different configurations 

of PCM containers such as cylindrical, flat plate, spherical, and shell-tube encapsulation 

have been designed and examined. A cylindrical LHTES with a packed bed of spherical 
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encapsulated PCM was investigated for six cities across Europe with different climatic 

conditions [46]. In their numerical analyses, the effective heat capacity of a PCM, 

ceff(PCM), was approximated as an exponential function. The latent heat of the PCM in all 

cases was equal to 142kJ/kg. They found that the optimum PCM has a melting 

temperature equal to the average ambient air temperature, in the hottest month, for a 

phase change temperature range of 12K. Accordingly, the potential of free-cooling is 

proportional to the average daily amplitude of the ambient air temperature fluctuations. 

As a result, the optimal size of the LHTES for free cooling of buildings lies in between 1 

and 1.5kg of PCM per 1m
3
/h of fresh ventilation air.  

Encapsulated PCM in a container of a prototype storage unit made of galvanized 

steel (0.5m×0.5m×0.01m) was experimentally examined by Waqas and Kumar [47] to 

investigate the influence of airflow rate and of inlet air temperature on thermal 

performance. They reported that a higher airflow rate causes a higher heat exchange 

during the solidification process. A flat slab LHTES unit for cooling applications with 

convective boundary conditions was analyzed to estimate the heat transfer between the 

plate and the air gap [48-50]. These studies indicated that enlargement of the air gap or of 

PCM slab thickness can lead to lower heat transfer rates. The performance of floor supply 

air conditioning system, using PCM was experimentally investigated to reduce the 

cooling load of  an office building [40]. A floor supply air conditioning system was 

combined with a 30mm thick packed bed of granular PCM RT20 with a transition 

temperature phase in the range of 17-22 . This study concluded that 89% of daily 

cooling needs can be shifted by storing the coolness during the night for a small 

experimental system with a floor area of 0.5m
2
.  
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Several experimental and numerical investigations of the melting and 

solidification processes have been performed on rectangular enclosures [41, 51-55], and 

on finned enclosures [28, 29, 31-34, 37, 43, 56]. Two different prototypes of PCM-air 

real-scale heat exchangers were experimentally evaluated by Lazaro et al. [57] to 

examine their potential to be used for free cooling application. The first prototype was 

constituted vertically of aluminum pouches filled with an inorganic PCM and was tested 

by changing the thickness of the PCM, while the second one had aluminum panels filled 

with organic PCM, assessed by passing different airflow rates. It was observed that the 

second prototype has more potential to be utilized for free cooling; the first prototype 

suffered a leakage problem due to the increase of PCM thickness. The role of buoyancy-

driven convection during the constrained melting of PCMs inside a spherical capsule was 

computationally investigated using the commercially available Fluent code [58]. Their 

result showed the formation of a thermal stratification of the molten liquid on the top of 

the sphere due to the density differences among the layers of liquid. A system consisting 

of PCM in thin flat containers with air passed through gaps between them is proposed by 

Vakilaltojjar and Saman [59]. They determined that the system performance could be 

improved by utilizing smaller air gaps and thinner PCM slabs. 

 

2.3 Specific design parameters and evaluation characteristics 

A review of PCM-thermal storage systems is presented by Zalba et al. [60], listing 

all the common types of PCM that are used in building applications. Different proposed 

mathematical models for the analysis of PCM problems in conjunction with the 

numerical methods for solving them was reviewed by Dutil et al. [61]. Various 
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parametric studies have been carried out to study the impact of selected parameters on the 

thermal performance of a TES. The size of a cylindrical LHTES was optimized on the 

basis of (i) the calculated cooling degree-hours; and (ii) the optimal PCM melting 

temperature [46]. The optimal melting point was found to be higher than the average 

three summer months ambient air temperature by 2 . Waqas and Kumar [47] examined 

the potential of nightly free cooling in different climatic locations, and found that lower 

ambient temperatures and higher air flow rates are the influencing factors. Tay et al. [62] 

introduced the heat exchanger effectiveness as an applicable parameter to describe the 

thermal process until the HTF temperature reaches the PCM temperature. The 

effectiveness of LHTES system can be defined as the ratio of the heat retrieved over the 

maximum heat that can be discharged. Therefore, the maximum effectiveness occurs 

when the outlet temperature of HTF is equal to the PCM temperature. The discharging 

process of a cool TES system was reported by Wu et al. [63]. They concluded that the 

released cooling energy increases when the HTF has either higher inlet temperature or 

lower volume flow rate. Waqas and Kumar [64] evaluated slabs of PCM (SP27) with a 

latent heat of 190kJ/kg, melting point 27 , and mass of 10kg during the summer months 

in a hot-dry climate. These slabs were encapsulated in a storage unit and supplied with an 

airflow rate of 15-20m
3
/hr. They demonstrated that the melting point of a PCM should be 

equal to the comfort temperature of the hottest summer month to maximize thermal 

performance of the storage unit. Dolado et al. [65] simulated a real-scale TES PCM-air 

heat exchanger system to investigate the heat transfer between the air and a slab made of 

macro-encapsulated phase change materials. They observed that melting or solidification 

time decreases when the air gap between the slabs is narrowed. 
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A flat plate configuration with an airflow channel width of 15mm was examined 

by Raj and Velraj [35]. Their simulation indicated that a  charging time of 4hr and a 

discharging time of 6hr was found to be a suitable period for free cooling. Night 

ventilation with fatty acid PCM embedded in a Packed Bed Storage (PBS) system for an 

office building (3.3m×3m×3m) was modeled and experimentally studied by Kang et al. 

[66]. The PBS system was 2.4m×3m×0.12m, placed in the space in the suspended 

ceiling. Altogether, about 2000 PCM capsules with a total mass of 150kg and convective 

heat transfer coefficient of about 12-19Wm
-1o

C
-1

 were used. They concluded that night 

ventilation of a PBS system has a good potential to improve the thermal comfort of the 

indoor environment. 

The effect of cooling and heating rates on the accuracy of the experimental 

measurement of the apparent heat capacity for RT20 paraffin was assessed by Arkar and 

Medved [67]. They used a Differential Scanning Calorimetric (DSC) test and presented 

the results for cylindrical LHTES systems. The numerical predictions showed a good 

agreement with the experimental investigations for a 0.1K/min cooling rate and a 

0.2K/min heating rate. Experimental investigations of the melting process have been 

performed in a rectangular enclosure [54]. That study was limited to covering the 

following ranges: Raleigh Number,    = 2.02×10
7
- 2.61×10

7
, the product of Fourier and 

Stefan number (Ste), Ste F0 = 0.001-0.125, and the Prandtl number, Pr = 804-1055.  The 

critical Rayleigh number that indicates the switch from conduction to convection was 

found to be in the range of 7.869×10
6
- 3.237×10

7
.  

The effect of an expected unstable flow structure on the waviness and enhanced 

melting of the solid PCM at the bottom of a transparent glass sphere filled with Paraffin 
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wax n-octadecane was examined by Tan et al. [58]. They reported that computational 

results closely matched the thermocouple readings at the bottom of the sphere and clearly 

predict a chaotic flow structure. They presented and analyzed the results obtained from 

the PCM freezing process for the recovery and storage of cryogenic gas cold energy in 

dimensionless forms, such as Biot number and the Stefan number. Tan et al. [68] reported 

that Biot number exerted the most influence on the frozen layer growth performance. A 

correlation of Nusselt number as a function of Rayleigh number was developed  by Stritih 

[31] to determine the convective heat transfer coefficient for finned storage units.  

A steady state analysis was carried out to assess the pressure drop across a PCM 

module heat exchanger by Raj and Velraj [69]. They observed that the increase in frontal 

velocity up to 2m/s has a considerable effect on boosting the surface heat transfer 

coefficient and reducing the solidification time. Shatikian et al. [32] numerically studied 

the melting process of paraffin placed in the partition of a small-scale unit. The 

simulation was conducted for different fin size thicknesses ranging from 0.15-1.2mm. 

The system was heated at its base to 6-24  above the mean melting PCM temperature. 

They reported that by normalizing the results in the term of Stefan, Fourier, and Rayleigh 

numbers can give more information about the melting phenomenon of a PCM.  

In a study of a thermal energy storage/release system employing PCM conducted 

by  Ye et al. [34], fins were set higher than the PCM, which filled about 85% of the 

allowed space. Meanwhile, the air filled 15% of the total enclosed space. A PCM layer of 

width     =4mm and vertical fins of height   =12mm and width   =1.6mm were 

considered. The results showed that temperature differences had a pronounced influence 

on the performance of energy storage when temperature differences were less than 20 . 
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  Mesalhy et al. [70] studied the effect of decreasing porosity on enhancing the 

melting process. They noted that the effective thermal conductivity could either raise or 

inhibit the liquid phase motion that naturally enhances the melting process. 

 Analysis of the thermal performance of a phase change thermal storage unit 

(PCTSU) showed that the HTF mass flow rate has a significant influence on the PCM 

melting process [71]. That analysis showed that the higher HTF mass flow rate leads to 

faster heat exchange with PCM parallel slabs, and that changing the slab geometry does 

not show any pronounced effect on the exchange heat transfer. 

Colella et al. [72] performed a numerical analysis of a medium-scale latent energy 

storage unit for district heating systems, using a shell-and-tube LHTES unit filled with 

technical grade paraffin-graphite composite as phase change materials and water as a heat 

transfer fluid. Their 2-D numerical model in axial and radial coordinates was developed 

to solve the momentum and energy equations simultaneously, based on an enthalpy-

porosity approach. The model domain had a structured mesh of 15×15 of vertical HTF 

pipes submerged in paraffin RT100 with solidification temperature of 99 . The storage 

unit was subjected to heat flow in a range from 130kW to 400kW. They designed a 

storage unit to transfer heat from the district to the building heating networks. The 

simulation results were presented as a function of    and     numbers. The impact of 

natural convection during the melting process was considered to be negligible. The 

simulations were performed for three different scenarios of HTF mass flow rates, 

0.02kg/s, 0.01kg/s and 0.005kg/s, all started at the liquid phase of the PCM with 120  as 

a maximum fluid temperature in the primary distinct heating network. Colella et al. 

reported that combining the storage unit with the building heating network stores more 
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energy than combining it with the primary district heating network. The thermal 

conductivity of the PCM was improved by adding graphite with a 15% volume fraction, 

which was found to be suitable for the specific applications. However, the numerical 

mode was not validated because no data was available in the literature for similar. 

 

2.4 Free ventilation with LHTES systems for building of future applications 

Ubinas et al. [73] reviewed the studies that are pertinent to enhancing the thermal 

mass of lightweight buildings using phase change materials. They clearly showed that 

heavyweight buildings have a high thermal mass to offset the variations of daily 

temperature, while lightweight buildings do not have a sufficient thermal mass to balance 

their demand for energy. Using a control strategy combined with getting the full benefits 

from night ventilation during summer becomes very attractive for integrating PCMs into 

lightweight buildings. The PCM performance is affected by the building characteristics 

and the local climate.  

Stritih and Butala [74] conducted experimental work to investigate the thermal 

performance of PCM storage unit. The objective was to lower the volume flow rate of air 

supplied and to extract the most possible latent heat, as shown in Figure 2.1. However, a 

high volume flow rate was recommended for ventilating purposes. A storage unit can 

save energy as it is used to cool down a building space in conjunction with a conventional 

cooling system. The heat transfer problem was simply formulated using two-dimensional 

transient diffusion equation. Stritih and Butala [75] reported that the comparison between 

the numerical model and the measurement data showed a discrepancy in the transient 

range and had a good agreement at the steady-state range at selected simulation times, as 
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shown in Figure 2.2. Additionally, the airflow rate and the specific heat were considered 

constant throughout the simulation time, as in experimental observations. Typically, the 

value of the specific heat was provided from DSC measurements at a heating rate of 

0.1K/min.    

 
              Figure 2.1 Cold thermal storage with PCM [74] 

 

 

 
Figure 2.2 Comparison of experimental and numerical values of air temperatures [75] 

 

Yam et al. [76] proposed a model to study a naturally ventilated building thermal 

mass coupled with the non-linear relation between the airflow rate and the indoor air 

temperature. They showed that when working with natural ventilation for thermal mass 

inside buildings, two factors need to be considered. First, the ventilation airflow rate, 
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which was not constant in their situation due to temporary ventilation needs, and second, 

the natural ventilation flow rate, which was affected by changes  in the wind and added 

thermal forces. They reported that the ventilation air flow rate depends on the 

temperature difference between indoor and outdoor air, and so the ventilation air flow 

rate and indoor air temperature are coupled in non-linear relation.  

Costa et al. [77] developed a theoretical model  for assessing the thermal behavior 

of a one-dimensional latent heat energy storage system, including conduction and 

convection heat transfer modes without fins, and of a two-dimensional diffusion model 

modified by taking into account only conduction mode in fins, as shown in Figure 2.3. A 

fully implicit finite difference method and an enthalpy formulation were used to solve the 

heat transfer PCM problem. However, the thermo-physical properties of the PCM and fin 

material were considered to be constant and not a function of temperature. For simplicity, 

the convective term in the energy equation was ignored. They showed that the melted 

fraction rate was increased by four times when fin was applied. The rate of heat transfer 

was thus enhanced due to the improved performance of PCM thermal conductance.   

 
Figure 2.3 Schematic of latent heat storage system. 1) aluminum PCM containers; 2) transparent 

polycarbonate envelope; 3) tubes for fluid flow; and 4) wall of the electric heater [77] 
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Henze and Humphrey [33] numerically and experimentally investigated the 

thermal performance of a finned PCM device, shown in Figure 2.4. They developed a 

simplified numerical model, assuming that the problem solved as a quasi-linear, and 

transient. The following assumptions were made: the fins were modeled to be thin, and 

hence their temperature was a function of the   direction, the conduction heat transfer 

mode in solid phase was neglected because the operating initial temperature of the 

storage cell was set equal to the melting temperature of the PCM, only the latent heat of 

fusion was taken into account, and all the solid and liquid phase thermo-physical 

properties were considered to be constant. Heat transfer by natural convection from the 

fins to the PCM was assumed, due to instabilities created above the fins and the surface 

of solid liquid interface. Nu was correlated to be used over all of the parameter range 

studied in the experiment. To verify the accuracy of the model, the model predictions 

were compared with model the experimental data: the results were in fairly good 

agreement. Their results indicated that the rate of heat transfer could be further enhanced 

if the space between fins was decreased. They also showed that the melted fraction and 

shape of a liquid solid interface could be represented as a function of time. 
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Figure 2.4 Experimental test section [33] 

 

In a  cooling system studied by Zalba et al. [78], the main influencing parameters 

such as the ratio of energy/volume in encapsulates, the load/unload rate of the storage 

unit, and the installation cost were determined experimentally for acceptable solutions of 

an engineering problem design. The results showed that the most influential parameters 

of the solidification process are the inlet air temperature, the thickness of the 

encapsulation, and the air flow rate. In the melting process, the inlet air temperature has a 

prevailing effect. Based on the data obtained from these experiments, empirical 

formulations were established to determine the solidification and the melting times. The 

selected PCMs for this full-scale experiment were RT25 and C22, and the encapsulation 

material was Polyethylene High-Density (PE-HD). However, enhancing the heat transfer 

between the PCM and the HTF was required, which allowed the PCM melting point to be 

in the desirable range of 22-23 . A fan with variable speed was also required.  
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Figure 2.5 Configuration of the TES device [78] 

 

The free cooling of a low-energy building using a LHTES system integrated into 

a mechanical ventilation system was studied by Arkar and Medved [79] as illustrated in 

Figure 2.6. Spherical encapsulated of RT20 paraffin (PCM) was filled in the LHTES 

system’s cylindrical device. To obtain the optimum phase-change temperature a periodic 

inlet ambient-air temperature was used as an input parameter to a developed numerical 

packed-bed model. A temperature-response function was deployed, which means that the 

outlet air-temperature of the LHTES system was approximately formed as Fourier 

functions and then integrated into the TRNSYS building thermal response model. The 

distributions of the air axial velocity and of the bed porosity were considered uniform and 

applied into coupled energy equations for the air and the PCM. A specific air-flow rate 

and a bed porosity were chosen to be 0.7m
3
/hr and 0.38, respectively. Intensive night-

time cross ventilation (with an air-change rate of 5 h
-1

) was required. This study indicated 

that a PCM with a melting temperature between 20 and 22  has a significant potential to 

be implemented for free cooling in areas with a continental climate (cold in winter and 

hot in summer). A LHTES system with 6.4kg/m
2
 floor area of PCM, with a diameter of 

25mm and storage aspect ratio L/D of 1.5 can achieve a desirable level of thermal 

comfort during the summer period for a building model space of 430m
3
. The spherical 
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capsules of PCM were handled as a continuous medium despite the physical problem that 

it was constituted of several individual parts.  

 

Figure 2.6 Different natural and free cooling ventilation modes [79] 

 

Arkar et al. [80] investigated the application of using free cooling principles by 

integrating two cylindrical LHTES systems  into a mechanical ventilation system for 

heavyweight and lightweight low energy buildings. One was utilized for cooling the fresh 

supply air and the other for cooling the re-circulated indoor air. The LHTES systems 

contain spherical capsules filled with PCM (paraffinRT20) as shown in Figure 2.7. The 

LHTES system’s outlet air-temperature was manipulated to be in the Fourier series form 

and then modeled in TRNSYS to calculate the building’s thermal response. The 

temperature response functions considered the storage size, the air flow rates, and the 

PCM’s thermal properties. A verified numerical model was used to describe the heat 

transfer equations for the air and the PCM. Arkar et al. reported that the free cooling 

technique has the potential to minimize the size of mechanical ventilation systems.  



 

25 

 

 

Figure 2.7 Different mechanical ventilation modes. (a) Mechanical ventilation or night cooling, 

(b) free cooling daytime operation, (c) free cooling  night-time operation [80] 

 

Lamberg et al. [81] performed a validation of the numerical results predicted by  

FEMLAB with the experimental data for a cold storage unit containing paraffin as PCM. 

Two internal fins were embedded in the storage unit as shown in Figure 2.8. The energy 

equation was approximated by replacing the velocity convective term with a correlated 

formula for the convection heat transfer coefficient during the melting process. The 

continuity and momentum equations were ignored. FEMLAB software was used to 

couple non-linear and time-dependent partial differential equations. They reported that 

the effective heat capacity method was the most efficient way to simulate the melting and 

solidification processes for a small (2 ) phase changing range.  

 

 
Figure 2.8 Storage with fins [81] 
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2.5 Summary and conclusion 

The melting and solidification characterization processes have mainly been 

investigated for small-scale plate-fin units or partitioned systems. However, there are a 

few studies of an enhanced LHTES system with extended surfaces penetrating into PCM 

medium. One- or two-dimensional transient diffusion energy models have often been 

used for the characterization of PCM heat transfer behavior, which may not be accurate 

enough to describe this phenomenon. Also, the thermo-physical properties of phase 

change materials (PCMs) exhibit nonlinear behavior with temperature changes. In 

addition, the PCM properties that are provided in the literature are not sufficient to be 

used in nonlinear PCM heat transfer problems.  

Due to the complexity of the governing equations involved in the phase change 

problem, most of the available numerical solutions have been modeled in one- or two-

dimensional systems to simulate the characterization of the charging and/or discharging 

processes for almost one day under constant boundary conditions. Therefore, an 

extensive numerical simulation needs to be carried out to study the long-term 

performance of a centralized LHTES system under realistic conditions.  
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Chapter 3 

Modelling of LHTES 

This chapter provides a general overview of the modeling of phase change 

materials. Numerical methods to solve phase change problems are presented. More focus 

is placed on the developing and modeling a centralized LHTES system, including the 

governing equations, boundary and initial conditions that describe the nature of phase 

change behavior. The integration of this centralized LHTES system model into a building 

model is thoroughly described. 

3.1 Modelling phase change material 

Heat transfer in PCM storage is a transient, non-linear phenomenon with a 

moving solid–liquid interface, generally referred to as the “moving boundary” problem. 

Due to the non-linear nature of such a problem, numerical analysis in general is the best 

option to get a proper solution [61, 81]. An enthalpy formulation for the 

convection/diffusion phase change was developed by Voller et al. [82]. They concluded 

that their method combined with the Darcy source technique for velocity correction 

would be suitable for existing heat-transfer numerical methods. The definitions of the 

source items need to be added to the heat and momentum equations. Voller et al.[83] 

developed a new source-based method for modeling solidification phase change systems. 

This method updates the liquid fraction step-by-step by implementing the linearization of 

the discretized source term. As a result, it can achieve more accurate computation. 
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The difficulty in modelling the phase change problem is due to its inherent non-

linear nature at moving interfaces where the absorbed or released latent heat is dominated 

by the displacement rate at the boundary. The equation below, known as the Stephan 

condition, describes this process:  

              (
  ( )

  
)    (

   

  
)    (

   

  
)                                      (   ) 

where   is the latent heat of fusion,   is the density,  ( ) is the surface position,   is the 

thermal conductivity,   is the time, and   is the temperature. Subscripts     imply the 

solid and liquid phases, respectively.  

Many simulation models have been developed in the past decade, such as a fast 

implicit finite-difference method for the analysis of phase change problems. Voller et al. 

[84] introduced a rapid implicit solution technique for the enthalpy formulation of 

conduction-controlled phase change problems. Their method was developed to solve the 

nonlinear equations resulting from implicit time integrations of the enthalpy formulation. 

A major advantage of new source scheme was to update the liquid fraction from the 

sensible enthalpy field. The technique was compatible with a number of commercial 

codes, where the solvers are based on TDMA (tri-diagonal matrix algorithm) line-by-line 

algorithms to return the exact sensible enthalpy field. However, non-isothermal phase 

change problems are neglected. Shamsundar and Rooz [85] reported that the Gauss-

Seidel point-by-point method  provided a straightforward way in which an implicit 

solution of a phase change problem can be achieved. Voller [86] developed the enthalpy 

method to analyse one-dimensional conduction phase change problems. This technique is 

called node-jumping scheme in which the space grid keeps constant but the time step 
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varies. As a result, the phase change boundary maintains on a node point. The finite-

difference scheme in conjunction with TDMA iterations was used to solve the enthalpy 

formulation of conduction phase change problem. Also, the liquid fraction is updated at 

nodes where the phase change is taking place.  

Swaminathan and Voller [87] introduced a general enthalpy method for modeling 

solidification processes. A general implicit source-based enthalpy method was utilized 

for the analysis of solidification systems. They reported that with their proposed scheme 

there is no need to set under-relaxation parameter that is required to achieve a faster 

convergence in the enthalpy update and the enthalpy is a function of temperature.  Thus, 

nonlinear system needs to be solved by two steps. First step is to linearize the discrete 

equations using the outer Newton linearization according to the current known values (T 

or h). Second step is to solve the inner linear equations using a direct iteration method 

(e.g., Gauss elimination) or a point-by-point iterative method (e.g., Gauss-Seidel) as the 

value of the liquid fraction is not known. For this problem, an appropriate governing 

equation for 2-D presented by Swaminathan and Voller [87] for the system is 

                                
   

  
       (   )                                                   (   ) 

where   is the mixture conductivity given as 

                               (   )                                                     (   ) 

and   is a mixture enthalpy written as 

                              (   )                                                    (   )  

and    is the volume fraction of the liquid, and the subscripts   and   represent solid and 

liquid phases, respectively. 



 

30 

 

The specific heat is a function of temperature alone, while the latent heat of fusion 

is constant. The enthalpy can thus be written as  

       (   ) ∫        ∫           

 

    

 

    

                         (   ) 

where   is the specific heat,   is the density,   is the latent heat of fusion, and      is an 

arbitrary reference temperature.    

3.2 Numerical methods 

 There are two methods to describe the thermal behavior of phase change 

phenomenon: the enthalpy method and the effective heat capacity method. The problem 

of phase change is solved by considering one governing equation for the two phases; the 

interface condition is automatically satisfied, creating a mushy zone between the two 

phases.     

3.2.1 Enthalpy method 

 The enthalpy method assumes that the enthalpy in the energy equation is 

composed of sensible and latent parts, where the sensible enthalpy    is calculated by  

                                       ∫  ( ) 
 

    

                                 (   ) 

In a realistic condition, the phase change usually occurs in a non-isothermal 

temperature range, such as in the case of paraffin. In such cases, tracking the solid liquid 

interface might be difficult. To overcome this difficulty, the problem is reformulated 

according to the Stefan condition, which applies a new form of equations. These 

equations are applied over the entire fixed domain. This can be performed by calculating 

what is called an enthalpy function  ( ) of the materials. Then, instead of temperature, 
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the enthalpy         is set for phase change. This method has been used 

successfully to solve a wide range of phase change problems,  as reported by Agyenim et 

al. [8], Dutil et al. [61], Qiangbet al. [88], Tao and He [89], and Waqas and Kumar [47].    

 

3.2.2 Effective (apparent) heat capacity method 

To avoid tracking the interface, the apparent heat capacity method is used. In this 

method, the latent heat is calculated by integrating the heat capacity over the temperature, 

and the computational domain is considered as one region. Furthermore, there is a direct 

relation between the effective heat capacity of a material and the specific heat during 

phase change. However, the effective heat capacity becomes  an inverse relation with the 

width of the melting and solidification temperature range [16]. Thus, the time steps must 

be small enough so that this temperature range is not overlooked in the calculation. If it is 

assumed that the heat of fusion is released equally throughout the entire phase change 

process, the effective heat capacity, or the       term can be written as: 

     
 

              
                                               (   ) 

 and 

                                                                                             (   )   

In addition to the assumption of evenly distributed heat of fusion, other 

relationships between the heat absorbed or released (the effective heat capacity) and 

temperature were used. Heim and Clarke [90] assumed a linear relationship for effective 

heat capacity, while Diaconu and Cruceru [91] expressed it in a Gauss function as shown 

in Figure 3.1. 
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Figure 3.1 Gauss function approximation for the specific heat capacity of PCM 

 

 

                         
 

   
   * (

    

   
)
 

+                             (   ) 

where     is the temperature range of the phase transition,    is the melting peak factor, 

which is equal to  √ ⁄  , and           
 

   
 as presented by Diaconu, B.M. and M. 

Cruceru [91].  

Yuan and Medina [92] presented a work dealing with a problem of phase change 

processes that start from a partially melted state. A typical wall temperature with 

paraffin-based PCMs was studied experimentally. The effective heat capacity of the PCM 

was determined using the differential scanning calorimeter (DSC) test method over the 

phase change temperature range. Based on the test results, a modified model for paraffin-

PCM was developed to be used in cases of complete or partial melting.  

Cao and Faghri [93] formulated the enthalpy-based energy equation into a non-

linear equation with a single variable for the temperature transforming model (TTM). 

However, with this method it is difficult to suppress the melting front velocity at zero in 

the solid phase. The ramped switch-off method (RSOM) was considered to be the 

simplest technique to set the velocity equal to zero in the solid phase by setting values for 
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momentum and velocity-correction equations able to inhibit any motion. In a 

solid liquid interface, the RSOM undergoes a discontinuity in velocities, while the TTM 

manages to create a mushy zone where the temperature is continuous. Zhanhua and 

Yuwen [94] studied the effects of three different solid velocity correction schemes, the 

ramped switched-off method (RSOM), the ramped source term method (RSTM) and the 

variable viscosity method (VVM) on a temperature transforming model (TTM). They 

reported that the discretized TTM can be used efficiently to obtain convergence if a grid 

size was selected with a not-too-small time step. Additionally, applications of RSOM and 

RSTM-TTM lead to the same results, which are more precise than with the VVM. 

 

3.3 A numerical study of centralized latent heat thermal energy storage 

The design and characterization of a large-scale LHTES system has not yet been 

investigated numerically. A full description of the LHTES unit is presented, following by 

a discussion of numerical modelling of the system. Additionally, the thermo-physical 

properties of the PCM are modeled. The second part of my research focuses on 

investigating the best performance of a PCM unit through which parametric study of all 

thermal factors will be carried out. The third part will be devoted to determining the 

optimal size of such a unit based on varying the ventilation air flow rate. 

 

3.3.1 Physical model 

The schematic diagram of the three-dimensional physical model for a centralized 

storage unit filled with phase change materials is shown in Figure 3.2. The hybrid PCM 

closed system is designed to be placed into ceiling or basement boards. The justification 

for using a LHTES system rather than integrating PCMs into walls, floors and/or ceilings 
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is to avoid the question of a weakness in the mechanical strength of a building structure 

itself. Two different industrial fins, made of aluminum, are used to increase the thermal 

power of the storage unit and are connected to the metal box from the internal and 

external sides of the lower and upper faces. All dimensions of the computational domain 

are referenced to the experimental study conducted by Stritih and Butala [74], as shown 

in Table 3.1. The fins are placed on the external side of the box to increase the area 

exposed into convection heat flux; meanwhile, those fixed inside the box are aimed at 

boosting the thermal conduction heat flux. The box is filled with paraffin, which has a 

melting point of 22  and heat storage capacity of 172 kJ kg
-1

 within an operating  

temperature range of 11-26  and a specific heat of 1.8/2.4 (solid/liquid) kJ kg
-1

 K
-1

.   

Table 3.1 Storage unit properties 

 

 

Figure 3.2 Physical model 

 

 

 

Storage unit properties 

Dimensions 500×220×90 (mm) 

Total mass 16.2 kg 

Mass of the shell 12.6 kg 

Mass of PCM 3.6 kg 

Phase change temperature 20-22oC 

Operation temperature 15-30oC 

Cold storage capacity (11-26oC) 172 kJ kg-1 

Cold stored in PCM 732.6 kJ 

Cold stored in shell 11.3 kJ 

Fin Height 

(mm) 

Thickness 

(mm) 

Distance 

(mm) 

External 11 2 6 

Internal 21 2 7 
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3.3.2 Numerical model description 

The schematic diagram of the three-dimensional computational domain storage 

unit filled with PCM is shown in Figure 3.3. The aluminum fins are arranged orthogonal 

to the axis of the unit. The heat transfer fluid flows in the vicinity of such a unit. In other 

word, the model has three zones; fluid or solid zones as described herewith: 

1- An Air box, a flow channel through which the air flow passes through the fins and 

around the whole system; 

2- The PCM box, which is defined as a fluid/solid; and 

3- The Fin box, which is defined as a solid. 

All the boxes are coupled to each other as one geometrical body. The Air and PCM boxes 

are coupled so that thermal energy goes through and from the air to a fin and then from a 

fin to the PCM. 

Due to the symmetrical structure of the unit considered, the computational domain 

has been simplified to deal with only one symmetry unit cell in which the planes of 

symmetry are in the middle of the fin and are mid-way between the two subsequent fins, 

as illustrated in Figure 3.3. 

 
Figure 3.3 Computational domain of the developed model 
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The detailed properties of the fins are listed in Table 3.1. The governing equations 

of phase change phenomenon are applied to describe the heat flow through the developed 

model at different inlet conditions (i.e., inlet air-temperature and air flow rate). The 

developed model is designed to overcome the limitations that may be encountered due to 

the complexity of the involved physical phenomena, e.g., the convection effect in the 

liquid phase, moving of the solid in melted mixture, and volumetric expansion due to 

changes in the phase. Previous studies, however, have ignored one or more of the 

influential parameters of the phase change process. 

 

3.3.3 Modeling the physical properties of PCMs 

The developed model is verified by using experimental data as reported by Stritih 

and Butala [74]. The developed model is also compared to a numerical model performed 

by Stritih and Butala [75]. Through a parametric study, the most influential parameters 

are investigated to characterize the performance of the developed model system. The 

density and dynamic viscosity of the liquid PCM depend on its temperature. The density 

is introduced as 

                                 (   )  
  

 (    )   
                                    (    ) 

where  (   ) is the  density of a PCM;    is the reference density of the PCM at its 

melting temperature;    , and   is the expansion factor. The value of            is 

selected based on the analysis of the detailed data presented by Humphries and Griggs 

[95]. 

The dynamic viscosity of the liquid PCM was introduced as Reid et al. [96]: 
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                             (  
 

 
)  (     ⁄ )                                   (    ) 

where           and         are coefficients.  

Since the phase transition from solid to liquid usually occurs at a certain 

temperature range, the latent heat is a function of temperature. In most cases, the latent 

heat should be used in the form of an effective heat capacity or a as a specific enthalpy 

based on experimental results. The effective heat capacity is measured using the 

differential scanning calorimeter (DSC) method with a heating rate of 0.1K/min, as 

reported by Arkar et al. [80] in Figure 3.4. As given in both Eqs. (3.10), and (3.11), the 

density and viscosity of a PCM are dependent on the temperature. The correlations for 

the density and viscosity of a PCM are generated as illustrated in Figures 3.5 and 3.6. 

 

                                 
Figure 3.4 DSC measurements for the effective heat temperature capacity of RT20 

 

                                    
Figure 3.5 PCM’s density as a function of the temperature 
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Figure 3.6 PCM’s viscosity as a function of the temperature 

 

3.3.4 Heat and mass transfer formulation for LHTES system 

The enthalpy porosity method is employed to solve a multi-dimensional phase 

change heat transfer model where both enthalpy and temperature are unknown 

parameters and a unified energy equation is built. The enthalpy-porosity technique for 

modeling convection-diffusion phase change has the advantage of coupling the 

momentum and energy equations belonging to a fixed-grid solution and avoiding having 

to consider variable transformations. Furthermore, the main advantage of this approach is 

that it converges quickly and produces an accurate result with modest computational 

requirements. In fact, a numerical solver algorithm is employed for solving the 

momentum and continuity equations [97], resulting in determining the velocity field. The 

liquid fraction and temperature changes are assumed to have a linear relationship in the 

mushy regions. In order to track the solid liquid interface positions, the method updates 

the liquid fraction at each unit cell at each time step in the entire computational domain 

[83].   
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 A numerical technique is employed to simulate PCM heat transfer within a range 

of a certain temperature, which typically had been done by using the enthalpy porosity 

theory to deal with the solid liquid interface. The porosity effect was found to be similar 

to the liquid volume fraction of the porous media at the mushy regions (Brent et al. [53]). 

From the viewpoint of a multiphase flow model such as the volume of fluid method 

(VOF) or the mixture and Euler model, only the VOF and a solidification/melting model 

can be applied simultaneously. A VOF algorithm to solve the problem of updating the 

volume fraction is discussed in general terms by Hirt and Nichols [98], and remains one 

of the most widely used interface tracking methods.   

In the interest of simplicity, the following assumptions are considered: 

- The axial conduction and viscous dissipation in the fluid are considered to be 

negligible; 

- The PCM is considered to be homogenous and isotropic;  

- The thermo-physical properties of the PCM such as the density, the viscosity, and 

the specific heat vary with temperature but the thermal conductivity is assumed 

constant. The density of the heat transfer fluid (air) varies with temperature and 

the other thermo-physical properties of the air are considered constant; and;  

- The occurrence of PCM melting is considered at a single mean melting 

temperature    .  

A model of a centralized finned thermal energy storage system to investigate heat 

flow behavior is carried out. The simulation can be carried out under all operating 

conditions of pressure and temperature and with various ventilation air flow rates over a 

wide range of time. Furthermore, the model will be evaluated against experimental data 
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available in the literature. Thus, a detailed parametric investigation will be carried out in 

this work. A large amount of data could be generated using the proposed model, and then 

the results obtained could be analyzed and discussed. In order to interpret the outcomes 

of the transient simulations, flow visualization will be presented based on the parameters 

of interest.  

The energy equation could be written in terms of the sensible enthalpy, as follows: 

                                             ∫     
 

    
                                                          (    ) 

             
   

  
        (   )     ((   )     )                       (    ) 

where   is the thermal conductivity,   is the specific heat capacity, and    is the latent 

heat source term. In order to describe the fluid flow of full liquid and mushy regions, the 

conservation equations of momentum and mass are required. By assuming a Newtonian 

laminar flow, such equations can be presented in the following forms: 

 
 (  )

  
        (    )     (        )  

  

  
                         (    ) 

 
 (  )

  
        (    )     (        )  

  

  
                   (    ) 

      
 ( )

  
        (  )                                                                          (    ) 

where   (   ) is the velocity,   is the effective pressure,    is the buoyancy source 

term, and    s the viscosity. The buoyancy source term can further be expressed as  

                                              (      )                                   (    ) 

where   is the thermal expansion coefficient and      and      are the reference values 

of enthalpy and density, respectively [53].   
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The Boussinesq approximation is assumed, in which the density is constant in all 

terms excluding a gravity source term, and the buoyancy source term can account for the 

effects of natural convection, as follows: 
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If the value of the Rayleigh number is below 10
8
, the flow is laminar; meanwhile, 

turbulent flow is reached when the Rayleigh number lies between 10
8
 and 10

10
. The fluid 

density changes satisfy the Boussinesq approximation, but only in regard to the volume-

related items in the momentum equations.  

One of difficulties encountered using a fixed grid approach during the analysis of 

solidification and melting processes is how to account for mass and heat transfer 

conditions in the vicinity of the phase change. Indeed, the basic approach to resolve such 

problem is to assign appropriate volume source terms combined with the governing 

equations (momentum and energy). In the enthalpy-porosity approach, the energy 
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equation source term (  ) which accounts for the latent heat evolution could be written in 

the following form: 

                 
 (   )

  
     (    )                                            (    ) 

where     ( ), the latent heat content, is recognized as a function of temperature. 

Indeed, the convective term     (    ) would disappear when the isothermal case is 

satisfied. In fact, the value of  ( ) can be generalized as follows; 

 ( )   {

                                                                   

 (    )                                           

                                                                    

          (    ) 

where     is the local solid fraction. 

The total enthalpy of the material can be introduced as 

                                                                                                               (    ) 

where 

                                        ∫  
 

    
                                                           (    ) 

and      is the  reference enthalpy,       is the reference temperature; and   is the   

specific heat. The total enthalpy, H, is the sum of the sensible heat,      , and the 

latent heat   . The liquid friction, f, can be expressed as 
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In terms of the latent heat of the material, the latent heat content can be written in the 

following form: 

                                                                                                   (    ) 

In the enthalpy-porosity technique, the mushy region (the partially solidified 

region) is treated as a porous medium. For the purpose of the methodology, it is 

worthwhile to consider the whole cavity as a porous medium. In fully solidified regions, 

the porosity   is set to be equal to zero and takes the values     in fully liquid regions, 

and lies between 0 and 1 in mushy regions. Accordingly, the flow velocity is linked to the 

porosity state and is defined as: 

                                                                                                                 (    ) 

where     is the real flow velocity. Equation (3.24) can be extended to yield 

             {

                                             

(    )                              

                                         

                   (    ) 

To describe the flow of a fluid through a porous medium, it is necessary to introduce 

Darcy’s law as: 

                                                 (
 

 
)                                               (    ) 

where   is the permeability, which is considered as a function of the porosity. Based on 

Darcy’s law, the Carman-Koseny equation can be derived as; 

                                                  
 (   ) 

                                               (    ) 

  (in Eqs. 2.13, and 2.14) can be presented as 

                                                        
 (   ) 

    
                                              (    ) 
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The value of   is related to the morphological properties of the porous medium, and it is 

assumed constant at 1.6× 10
5
. The constant   is used to avoid dividing over zero and is 

set to be 10
-3

 [82]. 

 

3.3.5 Boundary and initial conditions 

The initial and boundary conditions are referenced to those of Stritih and Butala 

experiment [74]. The whole initial computational domain is set to be at the ambient 

temperature. In addition, the boundary condition on each side of the wall is adiabatic. The 

symmetry boundary conditions can be applied in half of a computational domain to 

reduce the calculation time, as shown in Figure 3.3. The following initial and boundary 

conditions are applied to solve the governing equations: 

1. Initial conditions 

                        

         

2. Symmetry boundary conditions at a side: 

  

  
|
   

 
  

  
|
   

   
  

  
|
     ⁄

 
  

  
|
    ⁄

  (            ) 

 

3.4 Single-zone building integrated into a LHTES system 

3.4.1 The test room description 

The thermal building simulation model is for a single-zone model. This model is a 

prototype of a test room with dimensions of 11.44m (length) ×5.69m (width) ×2.76m 

(height). Each room wall is divided into several layers, which allows the modeling of 
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multi-layer walls, as shown in the Appendix (A). The zone under study is a living room 

with 11.44m×5.69m of floor area and one exterior wall. The exterior wall, a façade 

(5.69m×2.76m), faces south-north. The window area is 2.08m
2
 in south wall, double 

pane. The opaque part of the façade has a U-value of 0.34W/m
2 

K, while the double-pane 

window has a U-value of 2.95W/m
2
K. The ceiling insulation level amounts to a U-value 

of 0.93W/m
2
K. The floor has a U-value of 1.31W/m

2
K. Two adjacent rooms in the 

vicinity of the considered model are assumed to be adiabatic.  The test room is occupied 

by two people generating about 120W. During the occupancy time there is a scheduled 

additional load of 230W (appliances). For more details on the simulation boundary 

conditions, please refer to Appendix (B). Typical Meteorological Year (TMY) weather 

file data is used. The weather data (ambient temperature and solar radiation intensity) are 

generated using TRNSYS Type TMY2 software. 

3.4.2 Thermal storage unite integrated into a single building zone ceiling 

space 

A schematic diagram of a direct-gain solar room and a general sketch of the 

installation are depicted in Figure 3.7. The thermal storage unit was modeled on a portion 

of the ceiling. The unit was used to absorb the daytime energy while the PCM changes 

from solid to liquid, and later in the evening when the room temperature falls, the stored 

energy is retrieved, resulting in solidified PCM again.  
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Indoor environment: 

      

   

  
    (     )                  ⁄                     (    ) 

where 

                            ⁄             
(       )

    
                                         (    ) 

                                            (       )                                                    (    ) 

where    is the room volume,    ⁄  is the infiltration heat flow  and ventilation,      is 

the ambient temperature,    is the indoor temperature,     is the air change per hour, 

      is the heat supplied by the  air heating and conditioning equipment     is the heat 

flow through the window, and    is the total overall heat transfer coefficient.  

The heating/cooling load can be calculated from the energy balance equation as: 

        (       )                          
(         )

    
     (         )    (3.33) 

Window 

Storage unit 

SN-facing wall 

Test room 

Figure 3.7 Thermal storage model of a free cooling concept for a single-size building 
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where       is the set point temperature, selected as 20  for heating and 25  for cooling. 

According to the ASHRAE recommendations provided by Jegadheeswaran and Pohekar 

[25], the convective heat transfer coefficients are assumed to be      8.3 W/m
2
 K and 

     17 W/m
2
 K.  

The following initial and boundary conditions are applied to solve the governing 

equations: 

1. Initial conditions 

                       

      

2. Boundary condition 

               

  
    

   

  
    (  

    
 )           

          ⁄
         

      
       (    ) 

The cooling/heating load is calculated at each time step based on the wall 

temperature; where ambient corresponds to the previous time step.  

    
     (  

        )           
                  

(    
        )

    
     (    

        )       (    ) 

 

3.4.3 Integrated thermal storage unit into single-zone building at floor space 

Figure 3.8 demonstrates the integration of a centralized LHTES within the 

basement of a building. The strategy allows fresh air to be supplied into the storage 

system.  
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Figure 3.8 Conceptual centralized latent heat thermal energy storage system [99] 

 

3.5 Summary 

In the first part of this dissertation, a mathematical model of LHTES system is 

conducted to investigate its heat flow characteristics. Two models are presented. First, a 

two-dimensional model of a LHTES rectangular cavity is studied. The rectangular cavity 

was filled with gallium as the PCM. Second, a three-dimensional mathematical model of 

the centralized LHTES system is carried out to analyze the thermal performance of the 

melting process for both the quasi-steady state and the transient conjugate heat transfer 

problems. Paraffin RT20 was selected as the PCM medium in the hybrid PCM closed 

system multi-fin heat sink for cooling and heating applications in a building.  
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Chapter 4 

Two-Dimensional LHTES Model Development and Validation 

A numerical simulation method has been conducted to analyse the 2-D phase 

change material (PCM) melting process problem in a rectangular cavity filled with 

Gallium. The numerical prediction is verified by comparing with experimental data. 

Solid liquid interface positions and the temperature distributions at different rates of 

melting are computed for three cases with different boundary conditions. The first case 

has a constant wall temperature on the left and right sides while the top and bottom 

surfaces remain insulated. In the second case, the top and bottom surfaces are subjected 

to a constant convective heat transfer while the side surfaces are kept insulated. To 

examine the increasing melting rate, a third case is established where two fins are set on 

the top and bottom of a rectangular cavity. To verify the methodology, a comparison 

between the experimental work conducted by Gau and Viskanta [100] and a numerical 

simulation of the evolution of a melted phase’s fraction was performed. 

 

4.1 Case I: 2-D LHTES model for constant wall temperature 

A proposed physical model of interest has a length of 88.9mm and height of 

63.5mm in a rectangular cavity filled with solid metal gallium, as illustrated in Figure 

4.1. The temperature of gallium is assumed to be 28.3 . At time zero, the left wall 

temperature suddenly rises to 38  and then remains constant, while the temperature of 

the right wall is constant at 28.3 . The model employs a single precision (which requires 

conversion of about 7 decimal digits), unsteady solver to solve the implicit second-order 
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scheme, and the time step is set to 0.2s. The pressure implicit with splitting operator 

(PISO) algorithm is used for pressure-velocity coupling.  

The computational domain of the physical model is meshed at a 44×32 size using 

GAMBIT software. The methodology used in this proposal is verified using the data from 

work conducted by Qiang et al. [88], as shown in Figure 4.2. The melted fraction for 

different melting times is shown in Figure 4.3. The results show a good agreement with 

the available reference data.    

 
                 Figure 4.1 Physical model [88] 

 

 

 

 

 

 

 



 

51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Qiang et al. 2011)   Present work 

301.15K 

311.15K 

301.15K 

311.15K 

Figure 4.2 Temperature fields of two different melting time processes, for comparing the methodology 

used (on the left side) and the reference data (on the right side) 

Figure 4.3 Melted fractions for different melting times 
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4.2 Case II: 2-D LHTES model validation with experimental work 

To verify the model, the numerical simulation of the evolution of fraction of the 

melted phase was compared with experimental data reported by Gau and Viskanta [98]. 

They measured the performance of a physical model in a rectangular cavity with a length 

of 88.9mm and height of 63.5mm filled with gallium PCM. The melting temperature of 

gallium is assumed to be 29.8 . At time zero, the left wall temperature suddenly rises to 

38  and remains constant, while the temperature at the right wall was maintained 

constant at 28.3 . Table 4.1 gives the relevant properties of gallium, air, and aluminum. 

The numerical solution was performed using Fluent-12 [101]. Figure 4.4 shows the 

solid liquid interface positions for 2min, 6min, 10min, and 17min of melting processes. 

The numerical simulation results are in good agreement with the experimental results, as 

indicated in Figure 4.4. 

 
Figure 4.4 Comparison between experimental and numerical results in the evolution of the 

fractions of melted phase 
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Table 4.1 Properties of gallium, air, and aluminum used for the calculations 
Materials   (     )  (    )  (     )     ( )  (    )  (      ) 

Gallium 6093 32 381.5 29.78 80160 1.81×10-3 

Air             

               

0.0242 1006.43 - - 1.7894×10-5 

Aluminum 2719 202.4 871 - - - 

 

 

4.3 Case III: 2-D LHTES model for constant convective boundary 

conditions 

The same domain used in Case I is studied by imposing a constant convective 

heat transfer on the top and bottom surfaces while the side surfaces remain insulated, as 

shown in Figure 4.5. Air passes in a free stream aligned at the top and bottom surfaces at 

certain thermal properties of heat transfer coefficient,   20 W/m
2
 K, and ambient 

temperature of    311.15K. Two contours of the melted fraction and temperature 

distribution are illustrated in Figures 4.6 and 4.7, respectively.  

 

 

 

 

 

Constant convective surface  

 

Insulated surface   Insulated surface   

Constant convective surface  

Liquid phase   

Solid phase 

Air, h=20 W/m
2
K, T∞=311.15k 

Figure 4.5 Physical model 
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Figure 4.6 Melted fraction at 677s                           Figure 4.7 Temperature field at 677s 
  

                            

4.4 Case IV: 2-D LHTES model for constant convective boundary 

conditions with fins 

The geometry for this case is the same as in the previous case study, except for 

two fins that are added on the top and the bottom, as shown in Figure 4.8. They are added 

in order to study the effect of fins on the thermal performance of a unit. Two contours of 

the melted fraction and temperature distribution is illustrated in Figure 4.9. After 

approximately 3hr, the melting rate appears to be slow and there is no a significant effect 

of the extended surfaces on the top and the bottom on enhancing the heat exchange 

between PCM and HTF.  

 

 

 

 

 

Constant convective surface  

Insulated surface   Insulated surface   

Constant convective surface  

Liquid phase   

Solid phase 

Air, h=20 W/m2K, T∞=311.15k 

Fin 

Fin 

Figure 4.8 Physical model 
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The compassion between the finned unit and the unit without fins indicates that 

the melted fraction is speeded up by % 48 at 4000s of simulation time for a finned unit 

compared to a unit without fins, as illustrated in Table 4.2. 

Table 4.2 Comparison between a finned unit and a unit without fins 

Time (s) 
Melted fraction for a 

unit without fin 

Melted fraction 

for a unit with fin 
Enhanced melting rate % 

1000 0.0418 0.0772 46 

2000 0.117 0.222 47 

3000 0.192 0.367 48 

4000 0.267 0.513 48 

5000 0.342 0.658 48 

6000 0.417 0.804 48 

 

4.5 Summary and conclusion 

A numerical simulation method has been carried out to solve the 2-D phase 

change material (PCM) melting process problem in the condition of a side-heated wall 

enclosure and natural convection. The developed model solves phase change problem 

using the enthalpy-porosity method adopted by computational fluid dynamic (CFD), 

Fluent 12. The melting evolution process is characterized at several time intervals to 

provide the positions of the solid-liquid interface and temperature distributions. The 

numerical results are compared with the available experimental and numerical data. The 

Figure 4.9 Melted fraction and temperature field at 3hr 
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comparisons show that the developed model is able to predict the thermal behavior of 

PCMs. However, a LHTES 2-D PCM model applied to a convective boundary condition 

has indicated that further investigations is required to provide more details about the heat 

exchange between the PCM and the air as a fluid heat transfer (FHT) process.     
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Chapter 5 

Three-Dimensional Model Development of a Centralized 

LHTES System 

 

5.1 Introduction 

Different techniques have been evaluated to enhance the performance of PCM 

systems using fins which are being the most common method to boost the thermal 

conduction heat flux within the PCM [25-27]. A simplified numerical model was 

developed for a thin fin system assuming quasi-linear and transient. Physical properties 

of PCM were assumed to be constant for liquid and solid phases. Natural convection heat 

transfer occurs from the fins to the PCM caused by instabilities created above fins and the 

solid liquid interface. Numerical results were in a good agreement with experimental 

data and showed that the rate of heat transfer could be enhanced if the space between the 

fins is reduced.      

The centralized LHTES system is integrated into a mechanical ventilation system 

through suitable air supply ducts inside a room of the building to store/retrieve the 

thermal energy, which leads to justify the indoor air temperature variation during the day-

time, as shown in Figure 5.1. To regulate the function of a mechanical ventilation system, 

a control unit is required to balance the temperature difference between the inlet ambient 

air,    and outlet air from LHTES system,     . Thus, the ventilation system has two 

modes of operation. First mode is to restrict the air flow to just pass through the LHTES 

system as the ambient air temperature is higher than the set point temperature. Second 
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mode is to allow ambient air directly be supplied to the room and also to pass through the 

LHTES system thereby storing cold energy when the ambient air temperature is lower 

than the set point temperature as shown in Figure 5.1 (b). However, the ventilation 

control strategy is beyond the scope of the current study. 

                 
Figure 5.1 Installation of the centralized latent heat thermal energy storage system 

(LHTES) in two ventilation control modes; (a) discharging mode, (b) charging mode 

 

To the knowledge of the author, the investigation of transient conjugate heat 

transfer for the three-dimensional mathematical model for the centralized LHTES system 

integrated into the building has not been addressed. The developed model solves 

simultaneously complete conservation equations for solid fins and solid liquid phase 

change. The nonlinear variation of PCM’s thermo-physical properties with temperature is 

considered. Here, the development of a mathematical model of a centralized finned 

LHTES for analyzing the thermal performance of melting process for both quasi-steady 

state and transient conjugate heat transfer problems is reported. The developed model 

utilizes PCM technology that stores and retrieves energy at almost a constant temperature 

and is subjected to constant convective boundary conditions of free air stream based on a 

specific ventilation airflow rate. The numerical simulation results using paraffin RT20 are 
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compared with available experimental data for cooling and heating of buildings. The 

effect of temperature difference between the melting point of PCM and the temperature 

of the heat transfer fluid (HTF) on the effectiveness of the hybrid PCM thermal 

performance through the discharging period is assessed. In addition, the effects of the 

HTF inlet temperature, HTF mass flow rate, and discharging time on the thermal 

performance of the hybrid PCM system are numerically investigated. A detailed transient 

analysis of charging/discharging process for practical application was provided. For long- 

time simulation, the behavior of the system shows a similar trend for various inlet air 

temperatures. Therefore, correlations are obtained for the distribution of melting front 

and solid fraction as a function of time that provide useful information for the design of 

hybrid finned PCM closed system. Thus, the air cooling time can be predicted for the 

centralized LHTES system with paraffin RT20.  

 

5.2 Computation for LHTES model 

 Numerical technique is employed to simulate PCM heat transfer within a certain 

range of phase change temperature, which typically uses the enthalpy porosity theory to 

deal with solid liquid interface. The porosity effect found to be similar to the liquid 

volume fraction of the porous media at mushy region [53]. Based on multiphase flow 

model such as volume of fluid method (VOF), mixture and Euler model, only VOF and 

solidification/melting model can be applied simultaneously.  

For simplicity, the following assumptions are considered:  

- The axial conduction and viscous dissipation in the fluid are negligible; 

- PCM and porous matrix material are considered homogenous and isotropic;  
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- The thermo-physical properties of the PCM and transfer fluid are independent of 

temperature; however, the properties of the PCM could be different in the solid 

and liquid phases;  

- The PCM is considered at a single mean melting temperature,    ;  

- The effect of radiation heat transfer is negligible.  

 

5.2.1 Modelling  

The density and the viscosity of PCM are simulated as they depend on their 

temperature. Assuming a Newtonian laminar flow, the continuity and momentum 

equations in 3-D are: 

    
 ( )

  
        (  )                                                                        (   ) 
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        (    )     (        )  

  

  
                     (   ) 

  (  )

  
        (    )     (        )  
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        (    )     (        )  

  

  
                    (   ) 

where    (     ) is the velocity,   is the effective pressure, and    s the viscosity. 

The parameter   in Eqs (5.2-5.4) represents the source term for PCM.  

 

5.2.2 LHTES unit description 

The schematic diagram of the three-dimensional physical model of the centralized 

storage unit filled with phase change materials is shown in Figure 5.2. Two different fins, 

made of aluminum, are used to increase the thermal performance of the storage unit and 
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are connected to the metal box from both the lower and upper faces. The fins on the 

external side of the box are to increase the exposed area for convective heat flux whilst 

fins inside the box are aimed at boosting the thermal conduction heat flux. The box is 

filled with paraffin RT20 with a melting point of 22 , heat storage capacity of 

            within an operating temperature range of 11-26 , and specific heat capacity 

of 1.8 and 2.4 kJ kg
-1

 K
-1

 for solid and liquid, respectively as the experiment conducted 

by Stritih and Butala [74]. Paraffin RT20 is chemically stable and commercially available 

compared with the other materials. In addition, the phase change temperature range of 

paraffin RT20 is suitable to regulate the indoor air temperature within the range of the 

comfort condition inside the building as reported by Tatsidjodoung et al. [102]. The 

centralized LHTES system is integrated into a mechanical ventilation system with an 

advanced control unit through suitable air supply ducts for free cooling of a low-energy 

building. Thus, the fluctuation in indoor air temperature is stabilized during the day-time. 

The three-dimensional computational domain storage unit filled with PCMs 

where the aluminum fins are arranged orthogonal to the axis of the unit. The heat transfer 

fluid flows in the vicinity of such unit. The model has three zones: 1) Air box with 

airflow around the fins and system, 2) PCM box (fluid/solid), and 3) Fins box (solid).All 

boxes are coupled to each other as one geometrical body. Air and PCM are coupled so 

energy transfers from air to fin and then from fin to PCM. Using the symmetrical 

structure of the considered unit, the computational domain is simplified to only one 

symmetry unit cell in which the planes of symmetry are in the middle of the fin and are in 

middle between the two subsequent fins, as illustrated in Figure 5.2. 
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Figure 5.2 Geometrical configuration of the latent heat thermal energy storage system (LHTES) : 

(a) the schematic Figure of LHTES system, Stritih and Butala [74]; (b) three-dimensional of 

computational domain; (c) cross section of computational domain 

 

5.2.3 Three-dimensional model validation 

The proposed model verification was performed by comparing the 3-D model 

prediction with experimental data of Stritih and Butala [74]. The computational grid was 

selected based on a grid study for two cases of quadrilateral grid systems. First case 

(mesh.1) was meshed as follows: bottom fin domain of 100×16×4, fluid of 100×210×8, 

PCM of 100×68×4, and top fin of 100×16×4. Second case (mesh.2) was chosen, which 

was meshed of 125×20×4 for bottom fin; 125×20×4 for top fin; 125×91×8 for HTF; 

125×102×4 for PCM. After examining the grid refinement, the time step size was set as a 

variable starting from 10
-5

s. The convergence criterion is met when the scaled residuals 

were set to be 10
-4

 for momentum and 10
-6

 for continuity and energy equations.  
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The following initial and boundary conditions are applied to solve the governing 

equations: 

1. Initial condition 

                       

               

2. Symmetry boundary conditions  

  

  
|
   

 
  

  
|
   

    
  

  
|
     ⁄

  
  

  
|
    ⁄

  (            ) 

 where   is the convection coefficient. The three-dimensional physical model was 

verified by comparing its prediction with experimental data reported by Stritih and Butala 

[74] with inlet air temperature of    26 , velocity = 1.5m/s for the second grid mesh 

case as shown in Figure 5.3. The entire initial computational domain was set to the 

ambient temperature. Properties of paraffin RT20, air, and aluminum used are given in 

Table 5.1. The density of air was modeled with a polynomial function while the 

properties of aluminum were used in a standard form. Two cases of HTF condition were 

considered as external boundary condition as follows; Case.1) the inlet air temperature 

36  and the temperature difference (            )  16 , and Case.2) the inlet air 

temperature 26  and the temperature difference 6 . 
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Figure 5.3 Comparison of outlet temperature of storage unit during different time of melting 

between experimental data and developed numerical model with inlet air temperature of T = 26  
 

Table 5.1 Properties of paraffin, air, and aluminum used for calculations 
Materials   (     )  (    )  (     )  (      ) 

Paraffin 740/(0.001×(T 293.15)+1) 0.15 RT20 

(DSC) 

0.001×exp(-4.25+1970/T) 

Air                           
 

0.0242 1006.43 1.7894×10-5 

Aluminum 2719 202.4 871 - 

 

5.3 Results and discussion of numerical simulation 

Figure 5.4 compares the model prediction with the experimental data and with the 

prediction of the numerical model developed by Stritih and Butala [75]. The prediction of 

numerical result shows that the transient outlet air temperature is closer to the 

experimental data at the early stage of the melting process with a maximum discrepancy 

of 0.5K compared to a numerical solution presented by Stritih and Butala within a 

maximum discrepancy of 1.5K as shown in Figure 5.4. As time passes, the convective 

heat transfer plays a role to exchange the thermal energy between the incoming air and 

PCM. Thus, the general trend of the predictive curve gets aligned with the experimental 
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data over the transient melting period of the phase change. The experimental 

measurement was carried out when the indoor/outdoor temperature difference was at 

15  with a room temperature maintained at 23 . It should be mentioned that the 

experimental measurement of the outlet temperature was conducted using a K-type 

thermocouple with a reading error of ± 1.5 . After 145 min the outlet air-temperature 

approaches the inlet air temperature. This is due to the length of the storage unit which is 

not suitable for more discharging time. In case of the inlet air temperature of 36  and air 

flow of 1.5m/s, the outlet air temperature does not reach the inlet air temperature because 

of thermal losses to the surroundings. This is attributed to the loss to the room 

temperature which is maintained at 23 . 

 
Figure 5.4  Comparison of model prediction of outlet temperature for the mesh.2 (see page 62) 

with 2-D numerical solution and experimental data Stritih and Butala [75] with inlet air 

temperature of T = 36  

 

 

The experimental observation reported by Stritih and Butala [74] shows that the 

outlet’s LHTES air-temperature is lower when the air flow is of 1.5m/s than that of 

2.4m/s. The length of air channel might be not appropriate for air flow larger than 1.5m/s 
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and it is more effective with inlet air temperature not lower than    . Table 5.2 below 

shows air cooling time completion,          , against the inlet air temperature,   , and air 

flow rate.  

Table 5.2 Completion time for cooling at two different inlet air conditions 

Air flow 
Inlet air temperature 

    (   )     (   ) 

1.5 m/s 
Experimental work [74] 150 110 

Numerical prediction 146 119 

2.4 m/s 
Experimental work [74] 140 100 

Numerical prediction 120 98 

 

Figure 5.5 presents the comparison between the numerical result and experimental 

work [74] for 3-D diagram of completion’s air cooling. This graph is obtained from the 

surface plane for simulation of two cases of the inlet air conditions (i.e.,   =36, 40 ) 

with two different scenarios of air flows (i.e.,   =1.5, 2.4m/s). The numerical model 

prediction is in a good agreement with the experimental data. The computational result of 

completion’s air cooling time of the LHTES system varies within 2% to 8% for air flow 

of 1.5m/s. During the numerical calculations, the variation of PCM’s thermo-physical 

with temperature and also the volume expansion due to the phase change are taken into 

account by leaving 18% filled up with air above PCM of the total PCM enclosed space. 

However, a slight deviation is found when the flow rate is of 2.4m/s. The possible reason 

can be attributed to the length of air channel that is located at over and bottom of the 

PCM’s metal box is not appropriate for flow rate higher than 1.5m/s as Stritih and Butala 

[74] reported in their experimental observations. Therefore, the predicted results can be 
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acceptable as a guide manual to design a practical engineering of LHTES model for 

cooling applications.    

 

Figure 5.5 The comparison of air cooling time completion between the present numerical 

model and the experimental work [74] 

 

5.3.1 Numerical computations and mesh evaluation 

The governing equations are solved numerically using CFD commercial package. 

The grid dependency on the solution is tested for several grid resolutions. Typically, three 

different sizes of the centralized LHTES system are studied, 500mm, 650mm, and 

750mm. The available pressure-velocity coupling schemes, SIMPLE is used. Multiphase 

model is implemented for two Eulerian phases. Explicit scheme is used to calculate 

volume fraction parameters with 0.25 Courant number. The modelling is conducted using 
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finite-volume CFD code, Fluent. A segregated solver has been used to numerically solve 

the melting 3-D Navier-Stokes and energy equations. The PCM-air volume of fluid 

(VOF) model is implemented to deal with the changes of the phase change volume 

expansion and to track the fluid volume fraction throughout the domain. In the VOF 

model, the Geo-Reconstruct model which is the volume fraction spatial discretization is 

used to solve the face fluxes when the cell is near the interface between two phases. The 

pressure staggering option (PRESTO) scheme uses the discrete continuity balance to 

compute the staggered pressure for a staggered control volume about the face. Viscous 

model is used to set parameters for laminar flow (the same model can be used for inviscid 

and turbulent flow). The under-relaxation factors for the pressure, density, momentum, 

liquid fraction updates, and energy are set to be 0.3, 1, 0.7, 0.9, and 1, respectively. Time 

step independent solutions are obtained using a variable time stepping within a minimum 

time step size of 10
-5

s to a maximum time step size of 1s. Several grid resolutions are 

evaluated based on the experimental data of the cooling completion time with inlet air 

conditions as shown in Table 5.2. All examined grid resolutions yield an acceptable 

accuracy of the cooling completion time estimation for the discharging process. 

However, the minimum computation time is found 3days 4hr and 55min for the storage 

unit of 500mm length. To save computing time without sacrificing of desirable accuracy, 

the grid system shown in Table 5.3, can be regarded as grid independent and sufficient to 

perform the numerical investigation purposes with using quadrilateral/hexahedral 

meshes. However, a hexahedral cell demands more CPU and memory than a tetrahedral 

cell. 
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Table 5.3 Three computational grids resolutions   

 
LHTES’s length of 

500mm 

LHTES’s length of 

650mm 

LHTES’s length of 

750mm 

Domain Cells Cells Cells 

HTF (air) 90550 

11500 

17250 

71300 

9200 

199800 

141720 

20480 

20480 

108800 

16320 

307800 

156920 

25600 

25600 

138800 

21600 

368520 

Fin bottom 

Fin top 

PCM 

PCM air 

All Domains 

 

 

5.3.2 Effective heat capacity 

The effect of initial condition of temperature on the thermal performance of 

LHTES system was investigated using four different initial conditions. As expected, it is 

found that the rate of melting increases with increasing initial temperature as shown in 

Figure 5.6. Low melting temperature differences lead to increasing rate of melting. To 

assess the effect of effective heat capacity of the system, three different approximations 

of the effective heat capacity are studied (see Figure 5.7). The first is based on the 

differential scanning calorimeter (DSC) measurement, while the second and third 

approximations are chosen for which the phase change temperature range, dTP, equals 

4K, and 6K , respectively, according to the function used by Medved and Arkar [46]. It is 

noted that the effective heat capacity measured by DSC is more reliable because 

commercially available PCMs have a wide temperature range of the phase change.  
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Figure 5.6 Liquid fraction of melting evolution at different inlet temperature of boundary 

conditions 

 

 
Figure 5.7 Liquid fraction for different effective specific heat capacity of RT20 paraffin measured 

using DSC test with cooling rate of 0.1K/min and with different melting range temperature dTp 

 

 

Figure 5.8 illustrates the computed liquid and solid fractions of the centralized 

LHTES system as a function of time. The y-axis on the left side of Figure 5.8 presents the 

liquid fraction, for non-melting to complete melting. For long-scale time simulation, the 

behavior of the system shows a similar trend for various inlet temperatures. Therefore, 

the relation between the liquid fraction and the discharging time (min) for case.1 is 
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correlated using curve fitting to the numerical results obtained that are plotted on Figure 

5.8. The equation obtained is of a third degree polynomial and can be written as; 

                                                         

                                  (          )                     (    ) 

Similarly, the relation between the solid fraction and the charging time (min) can be 

written as following:                                         

                                                          

              (          )                    (    ) 

As can be seen from Figure 5.8 the solid fraction increases rapidly at early stage 

of the charging period due to relatively small thermal resistance between the aluminum 

walls and the PCM. However, when the charging period prolongs, the solidified layers of 

PCM cause an increase of thermal resistance to the heat transfer.  

The distribution of melting front and solid fraction provides useful information 

for practical application of a hybrid PCM closed system based multi-fin heat sink. 

 
Figure 5.8 Liquid fraction during discharging time and solid fraction during charging time 
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5.3.3 Temperature Difference 

The transient heat flux for two cases of inlet temperature of HTF is illustrated in 

Figure 5.9. The curves are for     16  
and 6 . It is observed that the transient heat 

flux drastically decreases at early stage of discharging time caused by the strong 

influence of diffusion through the lateral heating surface. The result reveals that the 

higher temperature difference (  )  results in a higher release of heat flux at the 

beginning of melting process. Accordingly, the discharging period shortens and the 

transient heat flux reduces. During prolong melting time the thermal resistance of the 

growing layer thickness is significantly increased leading to a decrease in the surface heat 

flux. The effect of buoyancy plays a role in reducing the rate of heat flux and, hence, 

prolonging the discharge period. This situation is more pronounced in case.2. 

 
Figure 5.9 Heat transfer rate during melting period for two different inlet air temperatures, 36 , 

and 26  

 

Figure 5.10 (a) demonstrates the transient heat flux for case.1 for both discharging 

and charging periods. Both the melting and the solidification processes are simulated to 

analyze the heat transfer performance. The total energy released from the PCM is 
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portrayed for two cases of interest. As expected, the total energy stored increases with 

increasing temperature difference as shown in Figure 5.10 (b).   

 
Figure 5.10 (a) Transient heat flux releasing from the PCM during discharging time and storing 

during charging time (case.1) 
 

Figure 5.10 (b) Total energy releasing from the PCM during discharging time for two cases of 

inlet air conditions 

 

5.3.4 Normalization analysis of the results 

The computational results of evolution of melting front are employed to describe 

the fluid flow and heat transfer characteristics. For generalization, the dimensionless 

Fourier number is used as a common approach to explain the transient heat conduction. 
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Fourier number is defined as a measure of conducted heat within a body relative to the 

stored heat,        
 ⁄ , where   is the thermal diffusivity of the PCM and    is the 

characteristic length (half thickness of the PCM layer). To accommodate the phase 

change processes, however, Fourier number needs to be combined with Stefan number. 

Stefan number is defined as the ratio of sensible heat to latent heat,          ⁄ , where 

  is the specific heat capacity of the PCM,    is the temperature difference between the 

free stream of air temperature and the PCM average melting temperature, and   is the 

latent heat. The product of Fourier number and Stefan number,       acts as an 

independent dimensionless parameter that defines the transient heat conduction and phase 

change processes.  

The governing equation can be written in dimensionless from. The following 

parameters are the dimensionless variables and groups that are introduced for analysis  
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The dimensionless continuity, momentum, and energy equations can be expressed as; 
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In addition, melting fraction of the PCM and Nusselt number are employed as two 

dependent dimensionless parameters. Nusselt number can be introduced as: 

                
   

  

  
    

                                                     (    ) 

where     is the mean heat flux,    is the temperature difference between the free stream 

of air temperature and the PCM average melting temperature,    is a half thickness of the 

PCM layer equals to 0.004m, and      is the thermal conductivity of the PCM. Rayleigh 

number (Ra) which is associated with buoyancy driven flow in fluid has to be determined 

to take into account the effect of convection during melting stage. The dimensionless 

form of temperature can be expressed as follows: 

                                                           (    ) (     )⁄                                        (    ) 
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where    is the mean melting temperature of the PCM, and    is the inlet air temperature. 

                                                                     
      

  

  
                                              (    ) 

The average Nusselt number of    is correlated according to Pal et al. [103] as follows; 

                                                           ̅̅ ̅̅         *
    ⁄

      
+

   

                                   (    ) 

Figures 5.11 (a) and 5.11 (b) illustrate the melt fraction and the dimensionless 

temperature versus the product of Fourier and Stefan numbers (Fo Ste) for cases 1, and 2, 

respectively. The melting fraction increases clearly for relatively small values of Fo Ste. It 

is noticeable from Figure 5.11 (a) that plotting the melting fraction against Fo Ste has a 

remarkable uniformity for two cases of HTF. This indicates that Fo Ste could be used to 

generalize the result for different cases of hot or cold HTF passing over a centralized 

LHTES unit. As shown in Figure 5.11 (b), the dimensionless temperature for two cases is 

not identical. This deviation is attributed to the temperature variation in the molten PCM 

during early stage which became more uniform with time. It is worthwhile to notice that 

the dimensionless temperature increases as    increases for a given Fo Ste (independent 

dimensionless parameter) because the temperature in liquid PCM is higher than that in 

solid liquid interface. When the value of Fo Ste reaches about 8.2, the corresponding 

value of the dimensionless temperature is 0.65. It can be seen that the intersection point 

between two cases occurs at 0.65 of dimensionless temperature scale. Thus, from Eq. 

(5.25), it is concluded that the performance of LHTES system is enhanced when the 

temperature difference between the ambient air at the inlet of LHTES system and the 

PCM mean melting temperature is higher by about 10K.  
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Figure 5.11 (a) The melt fraction versus the product of Fourier and Stefan numbers (Fo Ste) for 

two cases of inlet air conditions 

 

Figure 5.11 (b) The dimensionless temperature versus the product of Fourier and Stefan numbers 

(Fo Ste) for two cases of inlet air conditions 

 

The convective heat transfer of melted liquid has a potential effect to increase the 

melting rate. To include the effect of convective heat transfer in the liquid PCM, the 

Rayleigh number is scaled into dimensionless time and normalized with     ⁄ , as a 

scaled parameter of (           ⁄ ) as shown in Figures 5.12 (a) and 5.12 (b). The 

power of Rayleigh number is selected based on natural convection laminar flow for a 

vertical surface. However, Figures 5.12 (a) and 5.12 (b) for the melting fraction and the 
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dimensionless temperature against            ⁄  respectively, appear to be slightly 

different due to non-isothermal boundaries. Figure 5.12 (b) shows the data for two cases 

collapse on a single curve when the scaled dimensional time approaches 0.035.      

Figure 5.12 (a) The melt fraction versus the scaled dimensionless time (Ste. Fo/Ra
1/5

) for two 

cases of inlet air conditions 

 

Figure 5.12 (b) Dimensionless temperature versus the scaled dimensionless time (Ste.Fo/Ra
1/5

) 

for two cases of inlet air conditions 

 

As can be seen from Figures 5.13 (a), (b), (c), (d), the dimensionless scaled time 

decreases from 0.02 to 0.004 for four different inlet air-temperatures (i.e. 26, 30, 36, and 

40 ). Those graphs were obtained from the numerical calculations of HTF heat transfer 
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at the inlet and outlet of the centralized LHTES system. Fourier number was determined 

by accounting it at each time step over the entire melting process involving the selected 

PCM thermo-physical properties represented by Stefan number such as thermal 

conductivity, density, viscosity, specific heat capacity, the mean melting point, and latent 

heat of fusion. As the inlet air-temperature was approximately defined, which was limited 

to be in range of 26 to 40 , the Rayleigh number was estimated. The melt fraction, then, 

can be determined at each time until it reaches the unity for melting completely case. 

 
Figure 5.13 (a) The melt fraction versus the scaled dimensionless time (Ste.Fo/Ra

1/2
) for three 

sizes of LHTES systems at the inlet air temperature of 40  

 

 

 
Figure 5.13 (b) The melt fraction versus the scaled dimensionless time (Ste.Fo/Ra

1/2
) for three 

sizes of LHTES systems at the inlet air temperature of 36  
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Figure 5.13 (c) The melt fraction versus the scaled dimensionless time (Ste.Fo/Ra

1/2
) for three 

sizes of LHTES systems at the inlet air temperature of 30  

 

 
Figure 5.13 (d) The melt fraction versus the scaled dimensionless time (Ste.Fo/Ra

1/2
) for two sizes 

of LHTES systems at the inlet air temperature of 26  

 

In general, Figure 5.14 shows a linear relation between the melt fractions 

multiplied by reciprocal of the Stefan number (       ) and the ratio of the 

dimensionless heat release completion time (   (  ) ) for four cases of the inlet air-

temperature with three LHTES’s sizes. As the melt fraction was determined based on the 

inlet air condition and the thermo-physical properties of the selected PCM, the 

determined value on the x-axis is intersected with the specific temperature line to figure 
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out the best size of LHTES system with a lower ratio of the dimensionless heat release 

completion time. This figure was performed to take into account the completion time 

required for the entire melting process. For example, when the PCM completely melts, 

the melt fraction ( ) and the ratio of the Fourier number are equal to unity. Hence, the 

LHTES system can be selected based on the inlet air-temperature and the available PCM 

thermo-physical properties. 

 
Figure 5.14 The dimensionless of completion melting time ratio versus the combined term of the 

melt fraction multiplied by the reciprocal of the Stefan number for four different inlet air 

temperatures at three sizes of LHTES systems 

 

The completion time of the melting process, as can be seen from Figure 5.15, 

which is presented by the Fourier number, approaches about 30 and 20 for the LHTES 

systems’ sizes of 650 and 500mm, respectively. Meanwhile, it reaches about 40 for the 

LHTES system’s sizes of 750mm. This graph can be used to select an appropriate size of 

the LHTES system. As the inlet air-temperature of HTF, the thermo-physical properties 

of a potential PCM, and the estimated time for discharging period are defined, the Fourier 
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and Stefan numbers can be calculated. Then, their values are assigned on the Figure 5.16 

to select the proper size of LHTES within the inlet air-temperature range.    

 
Figure 5.15 The dimensionless of completion melting time versus the reciprocal of the Stefan 

number for four different inlet air temperatures at three sizes of LHTES systems 

 

 
Figure 5.16 The dimensionless of completion melting time versus the reciprocal of the Stefan 

number for four different inlet air temperatures at three sizes of LHTES systems 

 

Illustrative example to determine a LHTES’s size is demonstrated for a selected 

PCM to which the inlet air-temperature of 36  and the inlet velocity of 1.5m/s are 
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predefined. For approximately 3.0hr of the discharging period, the thermo-physical of a 

potential PCM was assumed to have the thermal diffusivity of 3.49×10
-8

m
2
/s, the Fourier, 

Stefan, and Rayleigh numbers thus can be calculated (i.e F0 =25.3, Ste =0.034, and Ra 

=23279). Figure 5.15 might be used to provide an initial guess for the Stefan number 

value. Using Figure 5.13 (b), the melt fraction can be determined (i.e.   =0.95). 

Thereafter, Figure 5.14 is used to identify the LHTES’s size by assigning the value of 

(       ) and then crossing with a temperature line of 36 . The intercepted temperature 

line points the LHTES’s size which needs to be selected. 

 

5.3.5 Transient analysis of charging and discharging performances 

The results for melting and solidification processes are depicted in Figures 5.17 

(a) and 5.17 (b), respectively. Figure 5.17 (a) shows the melting simulation in the form of 

solid liquid phase distribution. The first picture (10.4min) shows the early stage of 

melting where the whole domain is still in solid state as presented in blue color. There are 

zones with red color at the top and bottom of the computational domain forming the hot 

air channels HTF. The PCM is gradually melting with time and associated with mushy 

zone, which is shown in green color. The melted zone of PCM has a red color similar to 

HTF color. By increasing the evolution period of melting, the growth of liquid fraction is 

accordingly pronounced.  

The PCM starts melting in the vicinity of the fins at the top and bottom partitions 

due to their relatively high thermal conductivity. Thus, the heat transfer from the fin to 

the PCM initially occurs by conduction and later by natural convection. However, the 

gravity acts to draw down the liquid PCM from the top to the bottom resulting in an 
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increased in convection and hence an increase in the rate of melting. Thus, the liquid 

PCM near the fin and heated surface forced to flow up due to the influence of buoyancy. 

At the start of the melting process, the velocity of the liquid PCM is relatively small. The 

convection mode of heat transfer becomes dominant until the magnitude of liquid 

velocity drops because the temperature difference is more likely to be uniform. 

 

 
Figure 5.17 (a) The liquid fraction and phase distribution of PCM as a function of time during 

melting process of energy release. (b) The liquid fraction and phase distribution of PCM as a 

function of time during solidification process of energy storage at the inlet air temperature of 

36  and the velocity of 1.5m/s 

 

Figure 5.17 (b) shows a typical evolution of solidification solid liquid phase 

distribution as a function of time for vicinity of the fins. Solid layers start developing in 

parallel of the cooling walls at the top and bottom of the LHTES system. The solid 
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interface shape is formed in a way resembling the lateral fin surface. The position of solid 

interface can be determined to identify the speed of solidification evolution. 

 

5.3.6 Heat flow performance and flow characteristics 

Figures 5.18 and 5.19 show the three-dimensional contour images of the 

temperature distribution at different stages of melting and solidification processes for 

case.1, respectively. Figure 5.18 shows four different simulation times of melting 

process. At the early stage, the heat is transferred by conduction from the fin to the PCM; 

the conduction mode dominants through the whole system. In general, the distribution of 

melting front is most likely to match the melting temperature distribution.  

           

           

Figure 5.18 PCM temperature contours for the evolution of melting process at case.1 

 (a) t =1208s (b) t = 4590s (c) t = 5680s (d) t = 6440s 
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Figure 5.19 PCM temperature contours for the evolution of solidification process at case.1 

 (a) t = 2424s (b) t = 6624s (c) t = 11424s (d) t = 17424s 
 

A solidification process for case.1 is modeled and presented in the form of the 

temperature profile contours for four different solidification time, see Figure 5.19. The 

effect of heat conduction mode on the solid liquid interface position is significant 

compared to the effect of free convection as reported by Kroeger and Ostrach [104].  

5.4 Fan power and cooling load calculations of the centralized LHTES 

system 

This section presents fan power and cooling load calculations of the LHTES 

system. Three LHTES systems were modeled to evaluate their optimal performances at 

four cases of the inlet air-temperatures. Numerical computations and mesh evaluation 
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were demonstrated. Finally, the dimensionless analysis of LHTES systems’ thermal 

performances was characterized.    

5.4.1 Convective heat transfer (h) calculations 

The value of convective heat transfer is calculated from velocity of the inlet air 

stream using empirical data for spiral wire fins provided by the manufacturer (SHE, 

Lincoln) [105]; 

                   (     )                 (    ) 

where   is the average air-flow velocity (m/s). 

5.4.2 Fan power calculation 

The power needed to meet the free cooling requirement can be calculated as 

following [106]; The static pressure caused by the temperature differences between inlet 

and outlet air can be written in the form; 

                                                                          (    ) 

Velocity pressure can be defined as the total pressure which measured in the flow 

direction and it should be less that the static pressure. From a typical graphical illustration 

of the performance characteristic of a fan at 50% of maximum free delivery air flow, the 

following characteristics can be provided [107]; The total differential pressure 94%; total 

fan static differential pressure 79%; fan total efficiency 0.76; fan static efficiency 0.63; 

power input the fan shaft 50%; power factor 0.99; motor efficiency 0.82. The total 

differential pressure across the fan can be calculated from the following formula; 
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                                                                   (    ) 

where     is the velocity pressure at the outlet (Pa),     is the static pressure (Pa, gauge).  

The average velocity of air (m/s) can be obtained at standard conditions of     and 

101.325kPa barometric pressure.  

                           (   )
                                  (    ) 

The volumetric air flow rate of a fan (L/s), can be introduced as; 

                                                      (    ) 

where    is the coefficient of fan volumetric flow rate which is approximated by 1.1, and 

   is the cross sectional area of a duct (  ), 1000 is used for unit conversion.  

Fan power, (W) can be determined as; 

                    (      )                  (    )                 

where    is the coefficient of electrical capacity which is 0.99;    and    are the fan and 

motor efficiencies,0.99,0.82, respectively.  The calculated pressure drop of the air stream 

from the inlet to the room is 3.5kPa and the required fan power is 130W for the inlet air 

velocity of 1.5m/s. 

5.4.3 Cooling load calculations  

Cooling factor,  , of the centralized LHTES’s thermal performance is defined as 

the ratio of difference temperatures between the inlet and outlet air and between the inlet 

and PCM mean melting point during discharging period. 
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                     (     ) (     )                  (    )                                 

where    is the inlet air-temperature,    is the outlet’s LHTES air-temperature, and    is 

the mean melting PCM temperature.  

The cooling load ratio, Φ, which is released from the centralized LHTES system 

for two design sizes, is calculated at four different scenarios of inlet air conditions. Two 

sizes of LHTES system of 650 and 750mm are simulated for four conditions of the inlet 

air-temperatures, (i.e., 26, 30, 36, and 40 ).  

                                              (    )                     

where   is the cooling energy released over the discharging period, and      is the 

maximal amount of cooling energy that could be obtained during such period.   

As appears from the numerical results of the different size LHTES of Figures 

5.20- 5.21, it can be seen that the order of magnitude for the cooling factor lines increase 

for the entire discharge period when the inlet air conditions are lower than    . Due to 

the different air flow rate, the predicted cooling factor, ξ, against the cooling load ratio 

(see Figure 5.20) falls within a narrow band for mean melting point of    . This is due 

to the fact that the temperature of melted PCM is uniform for long time with evenly 

releasing cooling energy, promoting by natural convection effect. As expected, the 

cooling factor increases when the inlet air-temperature is equal to     with phase 

change temperature range of 22-24 . Also, it is found that the average ratio of the 

cooling factor is equal to 3.5 corresponding to case of entering air-temperature of     

with phase change range of 22-24  for the LHTES’s size system of 650mm as shown in 



 

90 

 

Figure 5.21. The straight lines which are obtained from the relation between the cooling 

factor and the cooling load ratio become closer at averaging cooling load ratio equal to 

1.3 for entering air-temperature of    . While entering air-temperature of    , the 

average ratio reaches 2.0 for the LHTES’s size system of 650mm.   

 
Figure 5.20 Cooling factor versus the rate of the cooling load for the centralized LHTES’s 

length of 750mm 

 

 
Figure 5.21 Cooling factor versus the rate of the cooling load for the centralized LHTES’s 

length of 650mm 
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5.5 Summary and conclusion 

A transient three-dimensional heat transfer model of a centralized LHTES system 

is conducted to investigate the effect of influential parameters on its thermal 

performance. The numerical solution is conducted using the commercial software 

package, Fluent 12. The centralized LHTES system constitutes of a metal box filled with 

paraffin RT20 as PCM, enhanced with internal and external fins on its surfaces. The 

conduction heat transfer flow through the fins is numerically solved in conjunction with 

the transient conjugate heat transfer problem of PCM. The enthalpy-porosity approach 

was used to model the convection-diffusion phase change. The developed model is 

validated by comparing the numerical results with the available experimental data. The 

numerical model shows a great potential to predict the heat transfer fluid performance of 

a centralized LHTES system.  

Simulations were carried out to study the impact of initial temperature condition 

on improving the outlet temperature of LHTES system for cooling and heating 

applications. The convective term considered in this study shows that its effect is 

significant during the melting stage prompting the melted liquid of PCM to move. 

Parametric simulations were carried out to investigate the effect of the geometrical 

parameters on the HTF outlet temperature, heat transfer rate, and melting time. The 

normalized analysis shows that the temperature difference has an influential impact on 

the performances of a centralized LHTES system. During the discharging process, the 

performance of a centralized LHTES system is enhanced when the temperature 

difference is greater than 10K. Correlations have been developed for the distribution of 
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melting front and solid fraction as a function of time. These correlations can be used to 

further optimize the design of cooling or heating systems.      
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Chapter 6 

 

Assessing Centralized Thermal Energy Storage System 

Performance 

 

6.1 Introduction 

Evidence from a variety of research suggests that the built environment 

contributes substantially to global energy consumption and to the production of 

greenhouse gases that impact climate change: buildings use about 40% of the world-wide 

total annual energy consumption and contribute up to 35% of the Greenhouse Gases 

(GHG). These facts highlight the importance of targeting building energy use as a way to 

decrease building energy consumption and GHG emissions simultaneously. The 

contribution of building energy use to climate change has been acknowledged by the 

Intergovernmental Panel on Climate Change (IPCC) [108]. The IPCC has prepared 

documents that assist policy makers to design programs for reducing energy use in 

buildings.  

Dincer et al. [109] applied a feed-forward back-propagation artificial neural 

network (ANN) algorithm to analyze heat transfer through an annularly finned tube filled 

with a PCM, concluding that the ANN approach is a promising method for analyzing 

thermal energy storage systems within a maximum discrepancy of about 5% compared to 

a numerical solution. Sanchez et. al [110] applied ANN to study the performance of 

microencapsulation containing a PCM. They investigated the effect of the ratios of 

paraffin wax to styrene mass, of poly-vinylpyrrolidone to styrene mass, and of water to 
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styrene mass on micro particles. The average of the particle size was empirically 

correlated based on the latent heat of microcapsules using a neural network with a single 

neuron. It was concluded that the developed neural network can predict the latent heat 

with less than 7% error and the average particle size with less than 20% error. To the 

authors’ knowledge, no effort has been made to investigate the performance of a LHTES 

system integrated with a building under realistic conditions.       

The outcome of an extensive CFD simulation to study the long term performance 

of a centralized LHTES system is reported. A validated CFD simulation tool is integrated 

with a building’s mechanical ventilation system. Paraffin RT20 was used as a PCM and 

fins are used to enhance its performance.  

To reduce the computational time, ANN was used to relate the relationships 

between the LHTES inputs and the output parameters. To develop the ANN, extensive 

CFD simulations were carried out to identify all the influential parameters, which include 

phase change temperature range, airflow rate, the geometrical configuration of a LHTES 

system, fin size, and the unit’s length. Further CFD simulations were carried out to 

develop a sufficient database for the proper training and testing of the ANN.  

 

6.2 Ventilation system using the LHTES system 

The LHTES system is integrated with a building mechanical ventilation system to 

provide the required indoor thermal conditions using free cooling. The control strategy 

for the ventilated room is established to ensure that the internal air room temperature does 

not exceed 25 . To analyze the LHTES system’s thermal performance, the following 

operational strategy was used: 
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1- Charging period: from midnight until 8:00AM, higher air flow rates are used to 

solidify the PCM since the ambient air temperature is relatively lower than the 

average mean melting point temperature of the PCM (i.e., 24 ), as shown in 

Figure 6.1 (a). 

2- Discharging period: Relatively low air flow rates are allowed to pass over a 

centralized LHTES system during the discharge period, normally from 8:00AM 

until midnight, seeking to dampen the fluctuation of inlet air temperatures from 

the storage system outlet to within the comfort temperature range, as shown in 

Figure 6.1 (b). 

 

 
Figure 6.1 Installation of a LHTES in two ventilation control modes; (a) charging 

mode, (b) discharging mode 

 

The National Climate Data and Information Archive in Canada weather data for 

Montreal was used as an input to investigate the system performance [111], refer to UDF 

in Appendix (C). By assuming that the inner surfaces of the duct are smooth and the air is 

an ideal gas, the air properties were obtained at an approximate average surface 

temperature of 293.15K and at atmospheric pressure of 1atm. The air-flow movement 
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through the LHTES system is illustrated in Figure 6.2. The average velocity of air is 

considered to be 1.5 m/s, equivalent to the volume airflow rate of 0.0271m
3
/s. The 

ventilation load required to regulate the indoor air temperature is estimated for two cases: 

1) with a conventional ventilation system, and 2) applying the LHTES system to assess 

its potential to reduce peak-hour electricity demand to off-peak period.   

 

Figure 6.2 Channel of air flow movement through the LHTES system  

 

Eq. (6.1) was used to calculate the energy release during discharge. The energy 

calculation was performed when the LHTES system’s outlet air temperature was lower 

than that of the inlet ambient air temperature. Figure 6.3 shows the hourly inlet air 

temperature, the calculated LHTES system’s outlet air temperatures, and the cooling 

load. The inlet air velocity of 1.5m/s and the phase change temperature range of 4K for 

an average melting point of 294.15K were assumed. The inlet air temperature increased 

during the daytime, allowing the PCM to melt. However, in most cases the PCM was not 

completely solidified during the night-time charging period.       

             ̇(               )                             (   )        
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Figure 6.3 Variations of the outdoor ambient and calculated outlet air temperatures 

along with the PCM energy released for the hourly temperature changes on July 1
st
 

 

1- Conventional ventilation load system: The ventilation load was determined when 

the outdoor air was directly supplied to the room, using Eq. (6.2). Calculations 

were performed to ensure that the indoor air temperature did not exceed the target 

temperature of 24 . 

            ̇(       )                                      (   )       

2- Ventilation load with LHTES system: To investigate the potential of integrating 

the LHTES system, the ventilation load was estimated based on two scenarios: 1) 

when both the ambient outdoor and the LHTES system’s outlet air temperatures 

were higher than the set-point temperature of 24 , and thus the cooling load was 

equal to zero; and 2) when the LHTES system’s outlet air temperature was equal 

to or less than the outdoor air temperature. Eq. (6.3) was used to calculate the 

controlled ventilation load supplied by the LHTES system.   

             ̇(             )                              (   )       
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In chapter 5, the development and validation of a CFD model to characterize the 

performance of a PCM was reported by A. El-Sawi et al. [112]. Here, the validated CFD 

model is used to perform hourly simulation using 1
st
 June Montreal weather data to 

investigate the potential of using LHTES for free cooling. Paraffin, of RT20, was used as 

a storage media (the PCM) with latent heat of fusion of 172kJ/kg for a phase change 

range of 4K with an average melting point of 297.15K. Figure 6.4 shows the calculated 

hourly LHTES system’s outlet air temperature associated with the PCM’s energy release. 

When the centralized LHTES system is applied, the results show the inlet air 

temperature, which is extracted from weather data, can be stabilized. The dashed area 

represents the amount of cooling load that was removed using the control strategy by 

switching to the LHTES system. This results in a reduction of 63% in the total required 

cooling load for June 1
st
.  

 

 
Figure 6.4 Hourly variations of the measured ambient air and the LHTES system’s 

outlet air-temperatures for June 1
st
 and the cooling load of the LHTES 
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6.3 Development of an artificial neural network (ANN) for predicting 

the long-term performance of a LHTES system 

 

Predicting the long-term performance of a centralized LHTES system using CFD 

simulation is a very time consuming process. There are different methods to identify the 

relation between the independent variable and the dependent variables. Since the relation 

between the outdoor air temperature and the thermal performance of the centralized 

LHTES system is highly non-linear, the Artificial Neural Networks (ANNs) method can 

be an efficient way to find that relation [113, 114]. ANNs are known as an effective 

method for approximating non-linear model function. To predict the thermal performance 

over a wide range of weather data, an ANN approach was developed to extrapolate the 

LHTES’s outlet air temperature, which is calculated by CFD.  

Extensive CFD simulations were carried out to identify all the influential 

parameters for the development of the ANN. 

 

6.3.1 Effect of phase change temperature range on the ventilation load 

 The effect of the range of phase change temperature on the thermal performance 

of a LHTES was investigated. The reduction in cooling load was estimated using Eq. 

(6.4).  

                  Rate of cooling load reduction  
∑        

∑      
                          (   ) 

Three values of phase change temperature range, 4, 8, and 12K, were used to assess their 

effect on reducing the cooling load [46]. The inlet air-temperature was varied based on 

the hourly weather data of Montreal, Canada to simulate changes of LHTES system’s 

outlet air-temperature for July 1st, 2011, as shown in Figure 6.5. The latent heat of the 
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PCM remained constant for all three cases, at 172kJ/kg. Table 6.1 shows three different 

ranges of phase change temperatures.  

Table 6.1 Effective specific heats used for three ranges of phase change temperatures [46] 

Range Phase Change 4K 8K 12K 

    (K)     (kJ/kg.K)     (kJ/kg.K)     (kJ/kg.K) 

283.15  0.5 1.1 2.1 

285.15 21.3 14.4 29.7 

294.15 200 118 62.2 

295.15 260 128 60.8 

297.15 2.13 3.6 4.1 

 

 
Figure 6.5 Simulation results of a LHTES system’s outlet air temperatures at different 

ranges of phase change temperature for the selected day for July 1
st
, 2011 in Montreal 

 

To meet the thermal comfort requirement the indoor air temperature is set at 20 . 

The total required cooling load, ∑        was numerically determined and found to be 

5327kJ when the inlet air temperature was higher than the set point.  
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 The summations of        and          over the simulation time are obtained using the 

trapezoidal rule. Table 6.2 presents the controlled cooling load, ∑          and the 

cooling load of the LHTES system, ∑        . 

Table 6.2 Daily cooling and controlled loads for a LHTES system with (a conventional 

load) (DSC stands for differential scanning calorimeter) 

Phase change temperature 

range (K) 
∑         (kJ) ∑         (kJ) 

DSC 1192 3574 

4 2574 2162 

8 2050 2710 

12 1515 3264 

 

It was found that the potential of reducing the cooling ventilation load is higher, 

48%, for the phase change temperature range of 4K followed by 38% for 8K, and 28% 

for 12K, while for DSC it is about 23%. This is because the inlet air temperature is 

relatively low in the early morning with a modest increase to midday of 296K, where the 

phase change occurs in the range of 293.15-297.15K. These observations leads us to 

assume that the PCMs with phase change temperature of 12K, and 8K do not have the 

required time to be completely melted with only a small fluctuation of the ambient air 

temperature. Thus, the melting process is only partially performed leading to a release of 

smaller amount of stored cold energy. Here, the PCM with a phase change temperature of 

4K is allowed to completely melt and thus release an appreciable amount of stored cool 

energy.   

The cooling load was calculated when both the LHTES’s outlet and the inlet air 

temperatures were higher than the set point and the LHTES’s outlet temperature was 

lower than the inlet air temperatures. The potential cooling load,         , for a typical 
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day is calculated hourly and reported in Table 6.2. After calculating the summation of the 

total hourly values of        and         , the reduction of ventilation load is verified at 

61% of the total required ventilation for the effective heat capacity in  the phase change 

range of 12K, and 67% for the DSC approximation function of the effective specific heat. 

The daily energy demand reduction for the phase change ranges of 8K and 4K are 51% 

and 41%, respectively. In addition, the amount of cooling load reduction calculated for 

the DSC measurements at 0.1 K/min is about the same as that for the phase change range 

of 12K.  

 

6.3.2 Effect of the geometrical configuration of a centralized LHTES  

 

6.3.2.1 Fin size 

Figure 6.6 shows the LHTES system’s outlet air temperature calculated for fin 

thicknesses of 0.6, 1.1, 1.5, and 2mm. The PCM is selected to be paraffin, with melting 

and solidification points of 297.15  and 294.15 , respectively. It was found that the fin 

size does not have a significant effect on enhancing the heat exchange between the heat 

transfer fluid (HTF) and the PCM. Nevertheless, the storage system reached its thermally 

optimal performance when the fin thickness was 0.6mm. For the first day, the liquid 

fraction approached 0.8 and 0.9 for fin sizes of 1.5mm and 2.0mm, respectively. For the 

fin size of 1.1mm, the liquid fraction reached 0.7 at 19hrs, as depicted in Figure 6.7. The 

heat exchange between the PCM and the HTF was faster in case of the 2.0mm fin size 

compared to the other cases. Hence, after 19hrs of discharging time, the released stored 

cooling energy was no longer available. Figure 6.8 shows the variations of hourly cooling 

loads with different fin sizes. The summation of the cooling load, ∑        , is 
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determined based on a control strategy that allows the inlet air stream to pass through the 

LHTES system when its temperature is equal to or over the set point temperature, 

297.15K. However, an additional condition is required and is satisfied when the LHTES 

system’s outlet air temperature is higher than the selected control temperature. The 

results revealed that the smallest fin size evaluated provides the highest amount of 

cooling load.  

 

Figure 6.6 Hourly calculated outlet air temperatures of LHTES system for July 1
st
 in 

Montreal, Canada. 
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Figure 6.7 Numerically-calculated volume fraction of PCM for different fin sizes 

 

Figure 6.8 Hourly calculated cooling load of LHTES system as a function of time for 

different fin sizes, for July 1
st
 in Montreal 

 

6.3.2.2 LHTES system length 

Figure 6.9 shows the calculated LHTES’s outlet air temperature as a function of 

time for different LHTES system lengths. The length of the LHTES system was changed 
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from 500 to 650, and to 750mm associated with the change in the inlet air flow rate 

conditions. Accordingly, the mass of RT20 paraffin, which has a phase change 

temperature range of 294.15-297.15K, is increased from 3.6kg for the LHTES system 

length of 500mm, to 4.68kg and 5.4kg for the LHTES system lengths of 650mm and 

750mm, respectively. For each selected length, two different velocities of inlet air 

conditions were considered, 1.5m/s and 2.4m/s.   

Figure 6.10 shows that the amount of stored energy increases as the LHTES 

system length increases. However, the thermal performance does not show any 

improvement with the increase of the air flow rate. This figure shows that in the case of a 

750mm length size and inlet air flows of 1.5m/s and 2.4m/s, the system has a significant 

potential to stabilize the fluctuation of the inlet air temperature, followed by the 650mm 

length size with 1.5m/s. There is a significant improvement (15%) on the reduction of the 

cooling load when the length of the LHTES system is increased from 500mm to 650mm. 

However, the ventilation airflow rate does not show a significant effect on reducing the 

cooling load when the entering air speed is higher than 1.5m/s. This result is consistent 

with experimental work [74]. The result shows a marginal improvement on reducing the 

cooling load for the longest size compared to the LHTES system length of 650mm.   
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Figure 6.9 Hourly calculated LHTES system’s outlet air temperature for the typical first 

two days of a week in July in Montreal for different LHTES system lengths 

 

 

 

Figure 6.10 Reduction in the cooling load for different parameters of the LHTES system 

performance design 

 

 The remaining cases appear to have a similar trend of the variation with relatively 

small differences. This can be interpreted from Figure 6.11, where the variation of 

volume fraction with time for the selected cases is plotted. In the case of the 500mm 

length size with 1.5m/s, the PCM starts melting after about 10hr (10:00AM) and it is 
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completely melted at hour 20 (8:00PM), resulting in a complete release of the stored 

cooling energy. As a result, the LHTES’s outlet air temperature is sharply increased. 

However, the melting rate is relatively faster in the case with higher air speed. This 

phenomenon can be observed with the 650mm length when the inlet air speed is 2.4m/s; 

the melting rate is higher, thus increasing the LHTES system’s outlet air temperature. On 

the other hand, when the inlet air speed is 1.5m/s, the LHTES system’s outlet air 

temperature becomes more stabilized, resulting in a higher thermal performance for the 

LHTES system. The longest size shows the best thermal performance on the first day, 

regardless of the inlet air speed.          

 

Figure 6.11 Liquid volume fraction calculations of the typical first two days of a week in 

July in Montreal for different LHTES system lengths 

 

6.3.3 ANN development 

 A generalized GMDH-type (group method of data handling) ANN is 

implemented to integrate with the obtained numerical results. A generalization of the 

neutral network improved the connectivity configuration to provide an optimal network 
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in which hidden layers and numbers of neurons were more effective to describe the 

dependent variable of heat transfer phase change process in a polynomial expression. A 

genetic algorithm is involved in a GMDH-type ANN to effectively determine the values 

of the quadratic coefficients for a second-order transformation of the inputs. This method 

provides the flexibility to manage neutral networks with different lengths, sizes and 

capabilities, as it allows the information to be manipulated by changing building blocks. 

As a result, both small and large numbers of input variables can be effectively modeled.  

The classical GMDH algorithm can be described as a group of neurons where 

each pairs of neurons is tied at each layer using a quadratic polynomial, so that a new 

generation of neurons will be produced for the next layer. Thus, the output will be a 

consequence of this reproduction process. Finally, the target is to reach an approximate 

function value,   ̅ of output close to the actual one,   for a given input vector,   

(              ). Furthermore, the square difference between the actual and predicted 

functions should be minimized to ensure a reasonable accuracy. Farlow presented a 

polynomial form to relate the input to the output [115]: 

              ∑  

 

   

   ∑        

 

     

 ∑           

 

       

                             (   ) 

This formula can be simplified for two input variables into the quadratic polynomial form 

which is most often used to predict the output,   ̅as follows [116]  

            ̅   (     )                          
      

                       (   ) 

    The evolved hidden two layers of a typical GMDH-type neural network structure 

(G4 and G5) are illustrated in Figure 6.12, and the coefficients    in Eq. (6.6) can be 

determined using regression techniques so that the output   ̅is calculated for each pair of 
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      as input variables. A tree of polynomials is constructed where the coefficients are 

determined using the quadratic form in a least-square sense. The general structure of a 

GMDH-type neural network is evolved in which neurons are connected to each other for 

all layers. Thus, an optimal fit of the output in the entire set of input and output data is 

achieved for each connected pair of input-output data through quadratic function G. 

 

 
Figure 6.12 A typical feed-forward GMDH-type network  

 

Numerical results for the melting processes were obtained at different inlet air-

temperatures. The output parameter was the outlet temperature from the LHTES system 

and the three input parameters are: heat transfer fluid (HTF), inlet temperature, and 

volume fraction. Proper training enables an ANN to provide a fast and accurate 

approximation of the LHTES outlet temperature for a wide range of inlet conditions (i.e., 

air temperature and flow rate). Thus, a large number of CFD simulations are needed for 

proper training of the ANN. The simulations must cover a wide range of all influential 

parameters, and cover the whole search space.  

Figure 6.13 compares the numerical results and ANN prediction and indicates a 

good agreement between them so that ANN function can be used later to predict the 

LHTES system’s outlet air temperature. Table 6.3 illustrates the data used for training a 

feed forward GMDH-type network. The data is selected based on CFD simulations for 
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the first days of each week for the month of July in Montreal, Canada. Thus, the LHTES 

system’s outlet air temperature for the entire month can be predicted utilizing a feed-

forward GMDH-type network. Table 6.4 provides the calculated coefficients that are 

used for the second-order polynomial equation after training the ANN for the month of 

July, obtained from Table 6.4. G1, G2,…, Gn represent a general connection between the 

input and output variables, as expressed in Eq. (6.6). For instance, G1 is a quadratic 

function to connect the inlet ambient air temperature and the volume fraction, with an 

optimal set of appropriate coefficients,   ,   ,…,   which are given in Table 6.4. 

Similarly, G2 represents a connection between the computational time and the volume 

fraction through a quadratic polynomial equation. G3 is utilized to connect the 

computational time and the inlet ambient air temperature. Hence, first a hidden layer is 

built and then the second layer is established by connecting the predictive functions, G1 

and G2 so that the quadratic polynomial equation G4 is constructed using the quadratic 

form provided in Eq. (6.6) for which the coefficients are obtained in a least-squares 

sense. Finally, the outlet prediction function, G5, is constructed by integrating G3 and G4 

with the associated coefficients obtained for G5.    

Figure 6.14 shows the thermal performance of the centralized LHTES system that 

represents the response of the LHTES system’s outlet to the inlet air temperatures using 

Eq. (6.6) and the coefficients from Table 6.4.  
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Figure 6.13 Comparison of the numerical calculation and the ANN’s prediction for the 

single LHTES system’s outlet air temperature 

 

 
Figure 6.14 The ANN’s prediction for the single LHTES system’s outlet air temperature 

for the entire month of July in Montreal 
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Table 6.3 Input parameters and the calculated output versus the ANN output prediction  

Iteration 

No 

Iteration 

start 

Time 

(hr:min) 

Ambient air 

temperature 

(K) 

Volume 

fraction 

Outlet air 

Temperature 

(K), Numerical 

result 

Outlet air 

Temperature (K), 

Prediction of ANN 

  (K) 

1 0:00 288.85 0.00 288.85 290.09 1.24 

2 0:52 289.21 0.00 288.91 290.29 1.38 

3 0:82 289.42 0.00 289.02 290.41 1.39 

4 2:62 289.17 0.00 288.98 290.26 1.28 

5 3:72 287.81 0.00 288.47 289.51 1.04 

6 3:99 287.28 0.00 288.16 289.21 1.05 

7 4:92 289.09 0.00 288.42 290.22 1.8 

8 6:09 290.34 0.00 289.45 290.91 1.46 

9 8:09 293.48 0.00 291.90 292.71 0.81 

10 10:50 294.94 0.00 293.83 293.58 0.25 

11 13:10 297.35 0.12 295.62 295.24 0.38 

12 14:00 297.40 0.23 295.94 295.54 0.4 

13 14:50 298.05 0.30 296.29 296.07 0.22 

14 16:50 298.40 0.59 296.97 297.14 0.17 

15 16:70 298.38 0.63 297.01 297.23 0.22 

16 17:60 298.35 0.75 297.15 297.64 0.49 

17 18:30 298.27 0.84 297.27 297.87 0.6 

18 19:50 297.09 0.93 297.08 297.54 0.46 

19 20:90 294.78 0.82 295.98 295.98 0 

20 20:90 294.77 0.82 295.98 295.98 0 

21 20:90 294.67 0.81 295.93 295.89 0.04 

22 20:90 294.67 0.81 295.93 295.89 0.04 

23 20:90 294.67 0.81 295.93 295.89 0.04 

24 21:00 294.54 0.79 295.84 295.77 0.07 

25 21:30 294.43 0.74 295.69 295.58 0.11 

26 22:20 293.98 0.57 295.10 294.84 0.26 

27 22:80 293.31 0.44 294.55 294.06 0.49 

28 25:00 293.10 0.11 293.83 292.82 1.01 

29 25:90 291.85 0.05 292.99 291.92 1.07 

30 27:60 292.04 0.00 292.30 291.87 0.43 

31 28:00 291.95 0.00 292.19 291.81 0.38 

32 28:10 291.94 0.00 292.18 291.81 0.37 

33 29:00 291.88 0.00 292.05 291.77 0.28 

34 33:70 296.79 0.06 295.28 294.80 0.48 

35 34:00 297.05 0.10 295.45 295.01 0.44 

36 35:00 298.53 0.18 295.81 296.03 0.22 

37 36:10 299.79 0.28 296.58 296.94 0.36 
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38 37:20 300.67 0.42 297.32 297.71 0.39 

39 38:40 301.03 0.58 297.81 298.34 0.53 

40 39:10 301.59 0.67 298.22 298.89 0.67 

 

 

Table 6.4 Coefficients of the quadratic form used in Eq. (6.6) 

                   

G1                                    

G2                                    

G3                                         

G4                                        

G5                                     

 

6.4 Summary and conclusion  

A validated transient 3-D numerical model of centralized LHTES system is used 

to solve the conjugate phase change heat transfer and fluid flow problem using a CFD 

commercial package, Fluent-12. The centralized LHTES system is filled with paraffin 

RT20 as a PCM and is enhanced with fins embedded at the top and bottom of its surfaces. 

The outlet air stream, a HTF (Heat Transfer Fluid), is allowed to pass over the top and 

bottom of the LHTES system. The centralized LHTES system is integrated into a 

mechanical ventilation system. The thermal performance of the LHTES system is 

assessed using hourly inlet air data obtained from the National Climate Data and 

Information Archive, Canada for summer months. The effect of phase change 

temperature range, HTF flow rate, of the geometrical configuration of a LHTES system, 

unit fin size and length on the output temperatures of the HTF is quantified. 

The time-step of the simulation model is one second, making long-term analysis 

computationally prohibitive. The performance of the LHTES system is simulated for the 
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first days of each week throughout the month. The obtained numerical results are used to 

train an ANN for estimating the long-term performance of the system. Using the ANN, 

the LHTES’s outlet air-temperatures are estimated over the entire summer (defined as 1 

June to 31 August). The predicted function of an ANN is evaluated by predicting the 

output temperatures of the LHTES for the simulated period of selected days throughout 

the summer months. The results indicate that there is a good agreement between the 

ANN’s prediction and the numerical results. Through the parametric study, the effects of 

various significant influencing factors on the system performance, including phase 

change temperature range, airflow rate, and geometrical configuration of LHTES system, 

fin size, and length of unit were studied. The numerical results show that the performance 

of a LHTES system is not significantly affected when the fin thickness size is reduced 

from 2 to 0.6mm. The effect of the range of phase change temperature on the thermal 

performance of a LHTES system is investigated by examining several values of the 

effective specific heat capacities; mainly for 4K, 8K, 12K, and DSC. The highest 

reduction of the total required ventilation is attained with a higher range of temperature 

phase change, 12K. The centralized LHTES system contributes to reducing the cooling 

load from 21% to 36% when the length of the centralized LHTES system is increased 

from 500-650mm at a flow rate of 1.5m/s.     
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Chapter 7 

Integrating a 3-D Model of the Centralized LHTES System 

into Buildings using TRNSYS 

 

7.1 Introduction 

TRNSYS is a dynamic simulation software for building energy calculations, 

developed by the Solar Energy Laboratory of the University of Wisconsin-Madison. The 

building model is described as a Type 56 and its visual interface given as (TRNBuild). 

The source codes of the modelling types were written in FORTRAN. The interface 

(TRNBuild) is used to model the building envelope, internal gains, ventilation, and air 

conditioning system. Another interface, called Studio, is used for performing the 

simulation. The latter interface enables the user to make a link with the building file and 

with the local weather file. Generally, the basic idea of TRNSYS is that systems are 

modeled as groups of components connected to each other according to the user's 

specifications.  

First, a dynamic model of a mono-zone building in TrnStudio simulation is 

established. Next, the ventilation modes with the centralized LHTES system are 

integrated into the building simulation model.  

7.2 Integrating the centralized LHTES system into a building 

7.2.1 The building model description 

The thermal building response is simulated for a single-zone model used 

TRNSYS. The model is an apartment with dimensions of 11.44m×5.69m×2.76m. Each 

wall of the apartment is divided into several layers of materials, which form a composite 



 

116 

 

wall (more details are provided in Appendix (A)). The floor area is 11.44m ×5.69m. The 

exterior walls, with a façade of 5.69m×2.76m, are facing south and north. On the south 

side, there is one door and one window with surface areas of 1.98 and 2.07m
2
, 

respectively, and one door and two windows of 2.07 and 1.41m
2 

(2x), respectively, are on 

the north side. Since there are no windows on the east-west sides of the apartment, two 

adjacent walls are considered in the building model. 

The thermal building response is investigated for free cooling using a mechanical 

ventilation system with the centralized LHTES system. Air is used as a heat transfer fluid 

(HTF) for the LHTES system. A ventilation system delivers fresh air to cool down the 

storage unit, normally during the night-time to early morning, thereby solidifying the 

PCM. This process is called the charging period. Thereafter, during the discharging 

period, the hot air from the internal heating loads is mixed with a fraction of fresh air and 

then directed to pass over the centralized LHTES system, resulting in a release of the 

accumulation of stored cooling energy due to the phase change of the PCM, thereby 

stabilizing the fluctuation of the indoor air-temperature.  

 

7.2.2 Indoor temperatures 

To analyze the performance of the storage system for one full day, the operational 

strategy should be followed along with the associated assumptions: 

1. Relatively low air flow rates are allowed to pass over a canalized LHTES system 

during the discharge period, normally from 6:00AM in the early morning until 19:00PM, 

seeking to flatten the fluctuation of inlet air temperatures from the storage system outlet 

to within the comfort temperature range. To this end, a fraction of fresh air is mixed with 
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the return air stream from the re-circulating air inside the building to be delivered into the 

centralized LHTES system through a ventilation system duct. The mixed air is cooled 

down by the centralized LHTES system before being supplied to the building. However, 

if the outlet air-temperature from the centralized LHTES system is higher than the 

ambient air temperature, fresh air is directed to the building without passing it into the 

centralized LHTES system.    

The following steps are performed in TRNSYS: 

- The air change function is carried out as shown in Figure 7.1. Type 14h is scheduled to 

allow an air change per hour (ACH) of 5 to flow into the building during the period of 

19:00PM -6:00AM and then only a lower flow of 2 ACH of air change is allowed for the 

rest of the day. The assembly equation is provided below:  

           (   )                                          (   ) 

where daytime is a function which is scheduled in Type 14h. This equation is similar to 

Type 56 where the building characteristics are created. 

 
Figure 7.1 Air change schedule through a day 

 

- The indoor air is re-circulated and mixed with a fraction of the fresh air as performed in 

the previous step in a scheduled amount as defined above. The fresh air temperature is 

provided from Type9A for the month of July in Montreal, and the re-circulated air 

temperature is delivered from Type56. The mixed air temperature obtained from Eq. (7.2) 
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is similar to the data supplied by Type56 for scheduling the air change ventilation, as 

shown in Figure 7.2. 

           {

                                                                              

        (                  )                  
     (   ) 

where           is the mixed air temperature,  ,         is the ambient fresh air 

temperature,  ,            is the re-circulated indoor air temperature,  . The mixed air 

temperature is linked to the centralized LHTES system function. 

 
Figure 7.2 Mixing re-circulated and fresh air exchange schedule through a day 

 

- The centralized LHTES Type is a function of time and temperature. This function is 

obtained after simulating a 3-D LHTES transient numerical model to solve the heat 

transfer phase change problem of paraffin RT20 during the month of July. Eq. (7.3), 

which is a second-order polynomial formula, represents the outlet air temperature of the 

centralized LHTES system. This formula is obtained after ANN training with data 

extracted from a CFD simulation for a centralized LHTES system of 650mm in length.  

                                           

                                                                      

                                                                                                                 (   ) 
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where           is the outlet air temperature of the centralized LHTES system ( ), 

     is the simulation time (hr), recalled from Type9A since the ambient air temperature 

reading is based on hourly changes according to the weather data for Montreal. Figure 7.3 

shows that      is the temperature of the mixed air temperature and how           is 

linked to evaluate whether it is allowed to supply into the building for cooling purposes 

or not, based on the desired indoor conditions.    

 
Figure 7.3 LHTES network connection 

 

- A bypass ventilation control is applied to ensure suitable ventilation for the building. 

The temperature of the mixed air, which includes fresh ambient air and the LHTES’s 

outlet air temperature, is linked to the bypass check point. A lower air temperature is 

chosen to be supplied into the building based on the Type56 information, using a control 

functions as shown in Figure 7.4. The control function has two conditions; the first 

condition is to check the air stream temperatures from the outside environment and from 

the centralized LHTES system. The second condition is to check the temperatures of the 

outdoor air stream and of the re-circulated air stream. Thereafter, the control function is 

used to select the air stream which has a lower air temperature to be supplied into the 

building, as illustrated in Eq. (7.4).  
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Condition one;                                                

Condition two;                                                

         {

                                                                                

                                                            
              (   ) 

where           is the LHTES’s outlet air-temperature,  ,            is the re-

circulated indoor air temperature,  , and         is the ambient fresh air 

temperature,  . 

 
Figure 7.4 Bypass ventilation network connections 

 

2- During the charging period, from 7:00PM until 6:00AM, higher air flow rates are 

preferable to solidify the PCM since the ambient temperatures are relatively lower than 

the PCM melting point temperature. This cycle is repeated, as illustrated in Figure 7.3.     

The test room is occupied by two persons from 8:00AM to 12:00PM and from 

1:00PM to 5:00PM Monday through Friday. During this occupancy there is a constant 

additional load of 150W (television) and 100W for electric lights. For more details on the 

simulation boundary conditions, (see Appendix B). Typical Meteorological Year (TMY) 
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weather file data is used. The weather data (ambient air temperature and solar radiation 

intensity) is generated using TRNSYS Type TMY2. 

The model building is simulated by considering the given assumptions to 

investigate the effect of integrating the LHTES system on the reducing energy demand. 

Figure 7.5 shows the variation of the indoor air temperature which is affected by the 

supply and the LHTES’s outlet air-temperatures. During the month of July, it is obvious 

that the value of ambient air temperature goes down in the middle of the week, which 

enhances the night ventilation and therefore the LHTES system is almost completely 

charged. However, the opportunity to take advantage of night ventilation decreases when 

the ambient air temperature increases, causing an increase of the indoor air-temperature. 

In general, the value of indoor air-temperature is relatively weighted to the summation of 

the supply and LHTES’s outlet air-temperatures, as illustrated in Figure 7.6.       

Figure 7.5 The variation of indoor air-temperature of the building model integrated into the 

LHTES system for a passive space 
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Figure 7.6 The variation of indoor air-temperature of the building model integrated into the 

LHTES system for days 6-9 of July for a passive space 

 

Figure 7.7 shows different scenarios of indoor air-temperature using the LHTES 

system and the night ventilation mode. No auxiliary cooling is provided during the 

selected period. To analyze the effect of a night ventilation system with and without the 

centralized LHTES system, three days (July 6-9) are chosen from the summer season. 

The LHTES’s response function in conjunction with night ventilation has a significant 

effect on reducing the variations of indoor air temperature compared to only 

implementing night ventilation. This is attributed to the thermal storage effect of the 

centralized LHTES system, in which the air stream coldness is stored during the night 

and then it is released to the indoor air during the day. The cooling effect of the 

centralized LHTES system lasts from 9:00 in morning to 17:00 in afternoon, when the 

PCM almost completely melts. This suggests that the centralized LHTES system can not 

only stabilize the temperature swing but also improve building occupant’s comfort. As 
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can be seen from Figure 7.7, the indoor air-temperature rises due to the internal load 

when there is no mechanical ventilation system.  

 

Figure 7.7 Indoor air-temperature histories with and without LHTES system combined with night 

ventilation for days 6-9 of July  

 

The indoor air-temperature is calculated when only the night ventilation system is 

applied and scheduled as mentioned in the previous section. The indoor air-temperature 

line overlaps the ambient air-temperature line from early morning to about mid-day, and 

then the indoor air-temperature increases and remains higher than the ambient air 

temperature. An auxiliary cooling supply is needed to maintain the indoor air-temperature 

within the comfortable range below 28  because of high ACH during the daily operation 

of the system. 



 

124 

 

7.3 Design evaluation of LHTES for cooling  

7.3.1 Development of ANN to characterize the optimal LHTES’s performance 

The optimal design and characterization of a centralized LHTES system are 

investigated for reducing the cooling demand under different boundary conditions. Three 

different models, each of which has a different mesh constructed according to its size and 

computational domain (i.e., 500, 650, 750mm), are used to discretize the LHTES unit for 

estimating the stored cooling energy. Each model is then simulated using the CFD solver 

for selected typical days, as the inlet air temperature varies based on hourly changes, in 

accordance to the weather data [111]. Thereafter, the database obtained from CFD 

simulations for each model is used to train the ANN method for the long-term prediction 

of this LHTES system’s performance. Each model has a trained ANN’s response function 

which reflects the LHTES system’s outlet air temperature for summer season.  

The trained ANN’s response function is integrated into the TRNSYS building 

thermal response model which was described in section 3.4.1. A ventilation system that 

operates in two modes is installed. One mode ventilates the cooling space with a constant 

air flow rate at 2 ACH throughout the day. The second mode is set up to supply a 

relatively cold air stream during the night time, or the night ventilation mode. Type 14h is 

scheduled to allow the air change per hour (ACH) to be changed from 1 to 11 to supply 

into the building during the period of 7:00PM-6:00AM, which is an appropriate time 

period for night ventilation. To this end, a fan with variable electrical power is required. 

Fan power calculations are performed according to the changes required for the varying 

ACH. The average stored cooling energy is determined for each LHTES system model, 

combined with the fan energy consumption for several values of ACH. 
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The thermal performance of the centralized LHTES system combined with night 

ventilation is investigated numerically. The system is charged during the night (7:00PM 

to 6:00AM) by night ventilation with a variable air change per hour (ACH). Then, the 

stored cooling energy is discharged to the building model’s environment during the 

daytime hours (7:00AM-6:00PM). Figure 7.8 shows the stored cooling energy release for 

three LHTES unit models verses the electrical energy required for the ventilating fan. The 

cold energy released increases with fan energy consumption, since a higher ACH with 

night ventilation leads to higher rates of the PCM’s solidification period (charging 

process), resulting in an increase of the cooling energy curve in an exponential trend. For 

instance, when the ACH reaches 10, the calculated pressure loss of the air-flow through 

the building model is 87 Pa and the required fan power is 50W. As can be seen from 

Figure 7.8, the cooling energy extracted from either the first storage unit of 750mm 

length or the second one of 650mm length is higher than that of the third one of 500mm 

length. However, the thermal performances for the first storage unit of 750mm length and 

for the second one of 650mm length are relatively similar. Therefore, the second storage 

unit model of 650mm length appears to be more efficient for cooling purposes as 

compared to the first storage model of 750mm length in terms of economic benefits. It is 

concluded that the design optimization of a centralized LHTES is found to be the second 

storage model of 650mm length. 
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Figure 7.8 The stored cooling energy released for three different-sized LHTES system models 

verses the fan energy consumed 
 

7.4 Summary and conclusion 

A design of a centralized LHTES system is evaluated based on the stored cooling 

energy and the LHTES system’s size. A validated 3-D centralized LHTES transient 

numerical model is used to solve the conjugate phase change heat transfer and fluid flow 

problems using the CFD commercial package, Fluent. The centralized LHTES system is 

filled with paraffin RT20 and is enhanced with fins embedded at the top and bottom of its 

surfaces. The LHTES system is integrated with the mechanical ventilation system of a 

low-energy TRNSYS building model to provide the required indoor thermal conditions 

combined with night ventilation. To analyze the optimized performance of the centralized 

LHTES system and its contribution to enhance building energy performance, two 

operational strategies are applied. First, a charging period strategy is applied from 
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7:00PM until 6:00AM. Higher air flow rates are preferable to solidify the PCM, since the 

ambient air temperature is relatively lower than the PCM’s melting temperature.  

A control strategy for a ventilated room is established to ensure that the internal air 

room temperature does not exceed 25 . The daily ambient air temperature variations are 

recorded based on hourly changes. A discharge period is applied when relatively low air 

flow rates are allowed to pass over a canalized LHTES system from 6:00AM until 

7:00PM, thereby reducing the fluctuation of indoor air-temperatures. The outlet LHTES 

system’s air temperatures for three LHTES models are numerically calculated for 

selected typical summer days. The calculation time is computationally expensive, and so 

the simulations are performed separately for the first days of each week through the 

month, in turn; the numerical database is used to train the artificial neural networks 

(ANN) model. Thereafter, the LHTES’s outlet air-temperatures are extrapolated over the 

entire summer, from the beginning of June to the end of August. The reduction of the 

indoor air-temperature is found in the range of 1.5-2.5 . The results show the optimal 

performance design of a centralized LHTES system can be achieved using the medium-

scale 650 mm models. 
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Chapter 8 

 

Summary, Conclusion, Contributions, and Future Work 

 

8.1 Summary 

The characterization of a centralized latent heat thermal storage system was 

investigated in this dissertation. The evolution of the phase change of a rectangular cavity 

filled with PCM was investigated using a developed 2-D mathematical model and the 

model prediction was verified with experimental data. The thermo-physical properties of 

PCMs were varied for a wide temperature ranges for paraffin RT20. The effect of the 

specific heat capacity on the thermal performance of a centralized LHTES system was 

studied. The evolution of liquid and solid fractions was explored at different inlet air-

temperature conditions.  

PCM technology is recommended as a storage medium for use in building to 

reduce the peak demand. In this context, a practical model for LHTES systems is required 

for their implementation in buildings. To this end, a 3-D model for the transient phase 

change heat transfer problem is conducted and validated with the experimental data. To 

achieve more accuracy, the complete conservation equations were solved simultaneously 

for solid and liquid PCMs and for solid fins. Several meshes are structured to discover the 

effect of grid dependency on the solution. The numerical results obtained from the 

developed model were thus validated with experimental data.  

The thermal performance of the model was evaluated so that it may be 

implemented in buildings. Hence, the centralized LHTES system was integrated into a 
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mechanical ventilation system. LHTES design parameters were investigated by 

simulating the LHTES system performance with realistic boundary conditions. The 

effects of the phase change temperature range, the flow rate of HTF, of the geometrical 

configuration of a LHTES system, and of fin size and the length of a unit on the output 

temperatures of the HTF and the reduction of the ventilation load were assessed. Since 

calculation time is computationally expensive, the thermal performance of the centralized 

LHTES system was predicted using an ANN method by extrapolating the LHTES 

system’s outlet air-temperatures over the entire summer season. The reduction of 

ventilation load was determined for typical selected days. The centralized LHTES system 

was integrated into the building simulation model. The dynamic passive solar model of a 

mono-zone building with a thermally internal load was investigated using TRNSYS.   

 

8.2 Conclusion 

The findings of this thesis are elaborated in the following steps: 

1- A 3-D numerical model is conducted to analyze the transient heat transfer during 

the phase change process of a PCM in a centralized LHTES system which can be 

integrated into a building’s mechanical ventilation system. The numerical results 

are compared with experimental data and the results of that comparison show a 

good agreement, which could be attributed to having including the convective 

effect during the melting period.   

2- A parametric study is performed to investigate the effect of the design parameters 

on the thermal performance of a centralized LHTES system. The thermo-physical 

properties of a PCM are set as a variant, with the temperature parameters to be 
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investigated through different scenarios of the inlet air condition. It is found that 

the most influential property is the specific heat capacity. The results show that 

the effective specific heat capacity, which is obtained from DSC measurements, 

gives a more accurate indication for predicting the behaviour of phase change 

evolution. In addition, the thermal conductivity and the viscosity of a PCM are 

handled so that they can accommodate the temperature variation. The geometrical 

configuration of a physical model is investigated in terms of fin size and 

according to the size of the model itself. The fin sizes are varied in terms of their 

thickness, from 0.6mm to 1.5mm, and the simulations are run based on hourly 

changes of inlet air conditions to determine its contribution in enhancing the heat 

exchange between the HTF and the PCM. The numerical result obtained shows 

that the charging time is relatively shortened when the fin thickness is decreased, 

resulting in additional stored energy. The size of the centralized LHTES system is 

enlarged by increasing the length from 500-750mm and then two different 

scenarios of air stream flow rates, 1.5m/s, 2.4m/s, are allowed to pass over the 

LHTES system under realistic boundary conditions. The outlet’s LHTES air-

temperature is remarkably decreased compared to that of the inlet air-temperature 

at the longer sizes. Hence, it has a significant potential to be used as means for 

cooling purposes in buildings.   

3- The rate of recovering the stored energy from the centralized LHTES system is 

quantitatively improved when the temperature difference between the HTF and 

the mean melting point of PCM is greater than 10K. 
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4- The centralized LHTES system is integrated into a mechanical ventilation system 

in order to determine its contribution to reducing the required ventilation load. 

From perspective of the PCM’s thermo-physical properties, the maximum 

reduction of the cooling ventilation load is 48% when the phase change 

temperature range is 4K for a typical July day. A control strategy is applied to 

calculate the ventilation load reduction when the inlet air-temperature is higher 

than the desired indoor air-temperature and the LHTES’s outlet air-temperature is 

equal to or lower than the desired indoor air temperature. When both the inlet and 

the LHTES system’s outlet air-temperatures are higher than the desired indoor air-

temperature but the LHTES system’s outlet air- temperature is lower than the inlet 

air-temperatures, the maximum ventilation load reduction is attained with a phase 

change temperature range of DSC and 12K by 67% and 61%, respectively.   

5- The stored cooling energy recovered by the centralized LHTES system is 

investigated at three different design sizes. The retrieved cold energy contributes 

to reducing the ventilation load, which is the total daily required ventilation at 

similar air flow rate conditions, 1.5m/s, by 36% with the 650mm length, 

compared to 21% with the 500mm length. For the system length size of 750mm, 

the cooling reduction reaches 38%. This percentage of cooling reduction does not 

increase with increased air flow rates for all of the cases studied.     

6- The optimal size of the centralized LHTES system in terms of storing/retrieving 

cooling energy is found to be the 650mm length with paraffin RT20 as the PCM. 

This suggests that the predicted thermal performance of the centralized LHTES 
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system can be utilized to stabilize the daily variations of indoor air-temperatures 

and to improve the environmental footprint of buildings.     

7- The thermal performance of the centralized LHTES system is predicted over the 

entire summer season using the ANN approach because the calculation time of 

CFD simulation for a 3-D numerical phase change model is computationally 

expensive. The simulations are performed to calculate the LHTES’s outlet air- 

temperature for two days of each week. The database obtained from the CFD 

simulation is used to train the ANN method; the prediction of a LHTES system’s 

outlet air-temperature is then extrapolated to cover a certain time of year. The 

trained ANN is proven to be an effective tool to predict the thermal performance 

of a centralized LHTES system with reasonable accuracy.  

8- The centralized LHTES system is integrated into a building model with a 

mechanical ventilation system through the TRNSYS building simulation tool. The 

objective is to investigate the contribution of the centralized LHTES system in 

reducing the indoor air-temperature which has been charging during the night 

ventilation using free air streams. The predicted function of the LHTES system’s 

outlet air-temperature combined with the scheduled night ventilation for the 

month of July indicates that a significant reduction of the indoor air-temperature 

can be achieved along with reducing the peak energy demand by about 1.5-2.5 .  

9- Finally, a design tool for predicting the long-term performance of a centralized 

LHTES system is developed. To this end, a design optimization of the centralized 

LHTES system is carried out based on its thermal response to the building cooling 

load characterization. Three models of the centralized LHTES system are selected 
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to be optimized in tandem with night ventilation for use inside buildings (i.e., the 

large-scale 750mm long model and the medium-scale model of 650mm are both 

higher than that of the little-medium-scale model of 500mm). After implementing 

the trained ANN to predict the LHTES system’s outlet air-temperatures for the 

three selected models, the ACH plays an important role in enhancing a building’s 

thermal response. Generally, as a fan supplies higher airflow rates, the thermal 

performance of the selected models is significantly increased. However, the 

optimal design for the centralized LHTES system is characterized based on the 

average stored cooling energy over the whole summer season. The results indicate 

that the medium-scale of the centralized LHTES system is found to have the most 

favourable impact on enhancing the comfort level inside buildings while 

achieving a high level of energy demand shift.         

 

8.3 Contributions and list of publications 

The major contributions of this dissertation are summarized as following: 

 An effective design tool to predict the thermal performance of a centralized 

LHTES system is developed taking into account the heat exchange phenomenon 

between PCM and HTF through solid extended surfaces. 

 3-D PCM numerical modelling is implemented to solve complete conservation 

equations for a convection-diffusion phase change problem. The numerical result 

is verified using experimental data available in literature. Also, normalization 

study is performed to make a proper scale for collapsing the numerical result. The 
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discharging behavior is characterized by variable   ,   , and     numbers for 

several different scenarios of inlet air conditions. This is the first report to explore 

that the performance efficiency of LHTES system during the discharging period is 

maximized when the temperature difference between the inlet air and the mean 

melting point is 10K at phase change temperature range of 12K. 

 Three sizes of LHTES are evaluated through a parametric study to assess their 

thermal response for hourly variations of the inlet air temperature. As a simulation 

time is computationally expensive, ANN is developed to extrapolate the 

numerical result over a long-term for performance prediction on a selected season 

period. Thus, the LHTES thermal response function is utilized to determine the 

sored cooling energy. This research is the first in the literature to provide an 

assessment for cooling load reduction over a long-term period.  

 Finally, a low-energy building using a mechanical ventilation system with the 

trained ANN’s response function combined with night ventilation is simulated to 

investigate the cooling load reduction. There sizes of LHTES are simulated 

including the power fan required to evaluate the best LHTES size for maximum 

cooling energy release. 

List of publications 

1) “Centralized latent heat thermal energy storage system: Model development and 

validation”, Energy and Buildings, 2013; 65:260-71 

2)  “Assessing long-term performance of centralized thermal energy storage 

system”, Applied Thermal Engineering, 2014; 62:313-21 
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3)  “Assessment and prediction of the thermal performance of a centralized latent 

heat thermal energy storage utilizing artificial neural networks”, presented at the 

2013 International Conference for Enhanced Building Operations (ICEBO). 

 

8.4 Future work 

This work provides a design model of a centralized LHTES system which is 

proven with a primary experimental model. The design parameters are investigated 

through a parametric study. The findings can serve as a guide to fabricate models to meet 

free cooling application needs. From the thermo-physical PCM perspective, since 

centralized LHTES systems have the potential to be integrated into low-energy buildings, 

chemically-improved types of PCMs should be tested to identify and maximize  their 

optimal thermal performance. Additionally, the heat exchange between the HTF and 

PCM needs to be investigated by applying different enhancement techniques.  
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Appendix (A): Integration of a LHTES System with TRANSYS and 

Characterizations of Building Envelope 

 

TRANSYS consists of two interfaces (i.e., TRNBuild and Studio). The TRNBuild 

interface is used to model the building’s envelope and internal gains (i.e., the ventilation 

and heating modes). The building’s description file is processed by the TRNBUILD 

program and then two files are generated that will be used by a Type 56 component 

during a TRNSYS simulation. The Studio interface composes of components (Types) that 

are used for the simulation. For example, input data is introduced into the first box that 

will use it for calculations and then produce an output data. That output data will then 

become the input data that will be introduced in the next box, and this process will 

continue until all the Types have been utilized. 

Type 56 is used to simulate the selected building envelope. This type makes it 

possible to load an external file of the extension *.bui, thus allowing internal inputs to the 

studio interface. There is a flexibility to adjustment and accommodate the inputs made by 

user for the simulation. Several modes of building heat exchange are taken into account 

in this type. 

Type 9A is used to recall weather data obtained from the National Climate Data 

and Information Archive, Canada. Type 16A reads the meteorological solar radiation in 

order to calculate its contribution on each surface of the building envelope. Type 34 is 

used to simulate thermal barriers such as caps, awnings or balconies. These are usually 

added to the sides where the incident rays are concentrated. Thus, both Back and Street 
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types are employed for the calculation of this type. The heights of the angles of these 

barriers are provided using an external file. Type 108 is a function of the indoor 

temperature that is calculated in the building. The assembly equation is used to connect 

all of the conditions. For instance, when the indoor temperature exceeds a certain value, 

windows are more likely to be opened. In addition, when the speed of wind exceeds a 

certain value, windows are kept closed.  

Figure A.1 shows the flow chart of the types used for the simulation in Studio. 

Each group of types is connected and highlighted in a recognizable box. The orange box 

represents the thermal response function of the centralized LHTES system. The green 

box is the ventilation system, and the blue one is the building model. The brown box 

represents the outdoor data used in the simulation. The gray box is for the calculation of 

the indoor air humidity.  

A weather file that provides the air conditions for July, 2011, in Montreal, Canada 

is identified. It consists of the air temperature in  , relative humidity as a  percentage %, 

the dew point temperature in  , the wind direction, degree, and  speed (m/s), the 

atmospheric pressure in Pa, and the total horizontal solar radiation, J/m².  
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Figure A.1 Flow chart of the Types used for simulation in Studio 
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 A.1 The building internal load 

Internal heat gains in indoor air temperature and relative humidity contribute to a 

significant portion of the variation in building indoor air temperature and humidity. These 

are different from one dwelling to another depending on the habits of each building’s 

occupants. According to the ISO standard 7730, a person sitting with moderate activity, 

produces about 120W of energy, and that same person generates 185W when doing more 

activity. Two persons are normally considered to be performing a moderate level of 

activity. In addition, appliances, such as computers, televisions, lights, refrigerators, etc. 

are taken into account based on the daily scheduled functions of normal activities. 

 

A.2 Characterizations of building envelope 

Attached wall 

Inside 
 

- Ep: 1.2 cm (width: 2.5 cm spacing: 3.8 cm)  

- 28 cm spacing) 

 

- 28 cm spacing) 

 

 

back 

 

Interior floor 

inside 

 

- 40 cm spacing) 

 

 

 

back 

 

Roof 

inside 
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back 

Internal wall 

0.8 cm 

 

- 28 cm spacing) 

 

 

 

Exterior wall 

inside 

 

rds: 1.2 cm (spacing: 3.8 cm) 

- 28 cm spacing) 

 

 

 

back 

 

Composite layers Resistance [m².K/W] Thickness [m] Conductivity [kJ/h.m.K] 

①Plaster + wood light 0.058 0.012 0.745 

② Cleats + air 0.163 0.025 0.552 

③ Joists + air 30 cm 0.219 0.300 4.937 

④ Joists + air 45 cm 0.268 0.544 7.297 

⑤ Amounts + air 0.170 0.064 1.355 
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Walls Resistance [m².K/W] 

Interior wall 0.332 

Floor 0.594 

Ceiling (roof) 0.902 

Attached wall 2.366 

Exterior wall 3.252 

 

 

% Material ① % Material ② 

Average 

density 

[kg/m3] 

Capacitance 

medium [kJ/kg.k] 

① Plaster + light wood 35 % 65 % 850 1.38 

② Cleats + air 9 % 91 % 46 1.97 

③ Joists + air 30 cm 20 % 80 % 131 2.39 

④ Joists + air 45 cm 20 % 80 % 131 2.39 

⑤ Amounts + air 14 % 86 % 71 1.98 

 

Type of glazing Type of frame 

Double glazing 
Ug glazing = 2.79 W/m².K 

Solar factor g = 0.77 Uw frame wood = 2 W/m².K 
Uw insulated aluminum = 3 

W/m².K 

Uwaluminium Profile = 4 
W/m².K 

Double window 
Ug glazing = 3.2 W/m².K 

Solar factor g = 0.60 

Single glazing 
Ug glazing = 5.73 W/m².K 

Solar factor g = 0.92 
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Appendix (B): The SIMPLE Algorithm 

This procedure is flourished by [97] for evaluating of flow filed. The name of 

SIMPLE stands for Semi-Implicit Method for Pressure-Linked Equations. The important 

operations can be summarized as following: 

1- Guessing the pressure field p*. 

2- Solving the momentum equations to obtain u*, v*, w*. 

3- Solving the p’ equation where p’ is a correction pressure.  

4- Calculating p by adding p’ to p*. 

5- Calculating u, v, and w from their starred values using the velocity correction 

formulas.  

6- Solving the discretization equation for other dependent variables, such as 

temperature, concentration, and turbulence quantities with source term.  

Putting the corrected pressure p as a new guessed pressure p*, getting back to step 2, and 

repeating the entire procedure until a converged solution is achieved.  
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Appendix (C): A Code for Inlet Air-Temperature UDF  

 The following is a code used as user defined function (UDF) for implementing the inlet 

air-temperature based on hourly changes. 

#include "udf.h" 

real my_interpol() 

{ 

 int i=0; 

 int arr_no=168; 

 real out_write; 

 real time_min=CURRENT_TIME/60.0; 

 real time_weather[]={0,60,120,180, 240}; 

 real temp_weather[]={288.85, 289.55, 289.05, 289.25, 287.25}; 

 while(time_weather[i]<time_min) 

 { 

  if(i==(arr_no-1)) 

  { 

   break; 

  } 

  else 

  { 

   i+=1; 

  } 

 } 

 out_write=temp_weather[i]+(temp_weather[i-1]-temp_weather[i])*(time_min-

time_weather[i])/(time_weather[i-1]-time_weather[i]); 

 return out_write; 

} 

DEFINE_PROFILE(pressure_profile,t,i) 

{ 

 face_t f; 

 begin_f_loop(f,t) 

 { 

  F_PROFILE(f,t,i) = my_interpol(); 

 } 

 end_f_loop(f,t) 

} 

 

 

   

 


