
HEDGING AND PRICING IN INCOMPLETE MARKETS:

THEORY AND APPLICATIONS

Hirbod Assa

A thesis

in

The Department

of

Economics

Presented in Partial Fulfillment of the Requirements

For the Degree of Doctor of Philosophy

Concordia University
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Abstract
Hedging and Pricing in Incomplete Markets: Theory and Applications

Hirbod Assa, Ph.D.

Concordia University, 2014

This thesis consists of three essays in financial econometrics. In the first part of the

thesis, motivated by different applications of hedging methods in the literature, we

propose a general theoretical framework for hedging and pricing. First, we review

briefly different strands of literature on hedging which have been developed in various

fields such as finance, economics, operations research and mathematics, and then try

to come up with a tractable way for hedging and pricing in this paper. By introduc-

ing different market principles, we study conditions under which the hedging problem

has a solution and pricing is possible. We will conduct an in-depth theoretical anal-

ysis of hedging strategies with shortfall risks as well as the spectral risk measures,

in particular those associated with Choquet expected utility. We show that asym-

metric information results in incorrect risk assessment and pricing. In the second

part of the thesis, we will apply our results in the first part to construct an economic

risk hedge. We also introduce a general method to estimate the stochastic discount

factors associated with different risk measures and different financial models. The

third part of the thesis modifies the speculative storage model by embedding stag-

gered price features into the structural model of Deaton and Laroque (1996). In an

attempt to replicate the stylized facts of observed commodity price dynamics, we add

an additional source of intertemporal linkage to Deaton and Laroque (1996), namely

speculation in intermediate-good inventories. The introduction of this type of friction

into the model is motivated by its ability to increase price stickiness which gives rise

to an increased persistence in the first and higher conditional moments of commodity
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prices. By incorporating intermediate risk neutral speculators and a final bundler

with a staggered pricing rule in the spirit of Calvo (1983) into the storage model, we

are able to capture a high degree of serial correlation and conditional heteroskedas-

ticity, which are observed in actual data. The structural parameters of both Deaton

and Laroque (1996) and our modified models are estimated using actual prices for 8

agricultural commodities. Simulated data are then employed to assess the effects of

our staggered price approach on the time-series properties of commodity prices. Our

results lend empirical support to the possibility of staggered prices.
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Introduction

Asset pricing and hedging are two cornerstones of financial economics; seemingly two

different areas of research in the literature, in many cases so entangled that it is

impossible to distinguish one from the other. While pricing always seems to be a

necessary issue, according to the Modigliani and Miller Theorem, there is no need

for hedging in financial markets. This theorem holds in an efficient market, with a

market price process being the classical random walk, under certain conditions: there

is no tax, no bankruptcy costs, no agency costs and no asymmetric information. This

suggests that in the absence of each assumption, one has to hedge.

The theory of asset pricing has been developed extensively during past few decades,

from different aspects. The most elegant development of the theory of asset pricing

in the literature is based on a representative agent’s utility maximization problem

which gives rise to several interesting discussions in matching the stylized facts with

ones suggested by theory. On the other hand, there are theories which find their

root directly in finance literature such as factor models (e.g. Arbitrage Price The-

ory) or the dynamic hedging of Merton, Black and Scholes. The former literature

is based on behavioral principles of consumers whereas the latter literature is based

on market principles, such as the No Arbitrage assumption. In both cases however,

two important facts play a major role: first, both theories try to hedge a financial

position against potential risks, either the shocks in asset values, or shocks in news,

by manipulating a set of available strategies; second, in both theories the key factor
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for pricing is the stochastic discount factor, which prices financial positions in a cor-

rect way. For a comprehensive discussion on both facts see Cochrane (2009). In this

work we develop a methodology which can be properly used for hedging and pricing,

including both key facts mentioned earlier. Indeed, motivated by the development

of risk measures, their relation to Choquet expected utility, and their application in

the literature of finance and financial economics, we model the financial practitioners

behavior by risk measures leading to an aggregate cost (or profit) minimization (max-

imization) problem in order to hedge and price. We will see how using the aggregate

cost (or profit), instead of just using the hedging cost (or portfolio profit), will lead

to a more consistent theory which can easily be laid down in the existing literature

of finance.

We are mainly motivated by a framework that has been introduced and developed

in Assa and Balbás (2011), Balbás, Balbás, and Heras (2009), Balbás, Balbás, and

Garrido (2010) and Balbás, Balbás, and Mayoral (2009); we set up our framework by

modeling the behavior of a (representative) financial practitioner using risk measures.

The key player in this setting is no longer a consumer, but a financial practitioner

who minimizes the aggregate cost (or maximizes the profit). Our aim is to develop a

tractable, as well as a general framework, which is also based on strong financial and

economic principles. We use different strands of literature developed in the asset-

pricing, economic hedging and hedging for pricing, compromising a unique theory of

factor hedging.

The last decade has witnessed a surge in commodity prices and a widespread

financialization of commodity products. The upward movements and the increased

volatility of commodity prices has been largely attributed to strong demand by China

and other emerging markets, as well as massive capital flows into the commodity mar-

kets by institutional investors, portfolio managers and speculators. While the impor-

tance of commodity price movements for economic policy and investors’ sentiment
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has generated a substantial research interest, the behavior and the determination of

commodity prices is not yet fully understood. The main objective of this work is to

develop a structural model of commodity price determination that reflects the em-

pirical properties (high persistence and conditional heteroskedasticity) of commodity

prices. In order to achieve this goal and to gain further understanding of the fun-

damental factors that drive observed behavior of commodity prices, we modify the

structure of the speculative storage model from one where prices adjust almost instan-

taneously to harvest shocks to a setup in which change slowly and infrequently. More

specifically, we depart from the assumption that market prices are determined in a

perfectly competitive environment and extend the basic speculative storage model

by explicitly introducing intermediate goods speculators with a staggered pricing

rule. One appealing aspect of this approach is its ability to mimic some important

characteristics of actual commodity prices such as high persistence and conditional

heteroskedasticity, which can be generated even in the absence of correlated harvest

shocks. Another advantage of our proposed approach is the possibility of conducting

policy analysis by tracing the dynamic effects of a harvest shock on commodity prices

over time.
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Chapter 1

Hedging and Pricing in Incomplete

Markets

1.1 Literature on Pricing and Hedging

The theory we develop in this chapter is inspired by various asset pricing models in

the literature. First, we use the idea of factor models to the extent that a financial

position is approximated by a possible portfolio, namely the mimicking portfolio.

Starting with asset pricing, there are numerous theories, including the original capital

asset pricing models (CAPM) of Sharpe (1964), Lintner (1965) and Black (1972),

which have been used in measuring the relationship between an expected return on

a security and its risk. In inter-temporal models the same idea has been developed,

for example by Merton (1973), Long (1974), Rubinstein (1976), Breeden (1979),

and Cox, Ingersoll, and Ross (1985), and the Arbitrage Pricing Theory (APT) of

Ross (1976). These models, in principle, suggest a relation between expected return

and one or more measures of exposure to systematic risk. In CAPM, a security’s

systematic risk is measured by its beta with respect to a diversified stock index, see

Blume and Friend (1973), and Fama and MacBeth (1973). However, in the wake of

Roll (1977), who criticizes the early studies by notifying that they are tests of that
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the stock index is mean-variance efficient, many began risk-return analysis. Among

these variants of APT, Roll and Ross (1980) use factor-analytic methods to estimate

multiple measures of systematic risk.

The other main feature of our theory is to find an appropriate (stochastic) discount

factor in order to price correctly a position. Initiated by Black and Scholes (1973)

and Merton (1973), the methodology of No Arbitrage (NA) pricing and its relation

to martingale measures have been studied in Harrison and Kreps (1979); relating the

existence of a correct stochastic discount factor, the No Arbitrage assumption and

perfect hedging. This was the beginning of the idea that pricing a derivative of an

underlying asset is nothing but a discounted weighted average of the derivative, dis-

counted by a correct stochastic discount factor suggested by the martingale theory. In

a different setting though, a stochastic discount factor is assumed to be a probability

measure that can correctly price the test assets. The No Arbitrage condition holds

in this setting if the probability measure is everywhere positive. Given that typically

the stochastic discount factor set is a large set, the No Arbitrage conditions was

replaced later by the No Good Deal (NGD) assumption, which was first introduced

in Cochrane and Saa-Requejo (2000) in order to incorporate the market efficiency

measure. In Černý and Hodges (2002) the authors re-introduce the notion of Good

Deals as free and desirable financial positions. In Assa and Balbás (2011) one can

find a set of equivalent conditions to NGD assumptions when the agents preferences

are modeled by coherent risk measures.

In addition to what has been studied in the literature on pricing, we consider the

process of pricing as a natural product of a hedging process: meaning, to price the

fully hedged part and to value the un-hedged part. The literature on hedging has been

extensively studied in recent years. Apart from corporate hedging1, there is a large

1It is worth mentioning that the corporate hedging is an area has been developed in last few
years, however, since this literature has little to do with pricing we will not focus our attention to
it, just to mention few work look at Mayers and Smith (1990a), Mayers and Smith (1990b), Tufano
(1996), Smith and Stulz (1985) and Jensen and Meckling (1976).
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literature on developing methods based on mean-variance utility for economic hedg-

ing. Breeden, Gibbons, and Litzenberger (1989) test the consumption-based CAPM

by using a portfolio which has maximum correlation with consumption growth. Vas-

salou (2003) constructs a mimicking portfolio to proxy news related to future GDP

growth to explain a cross-section of equity returns. Balduzzi and Kallal (1997) apply

smaller variance interval bounds of Hansen and Jagannathan (1991), using hedging

portfolios for various economic risk variables. Balduzzi and Robotti (2001) use the

minimum-variance kernel of Hansen and Jagannathan to estimate the economic risk

premiums. In all of these papers, the mimicking portfolios are constructed by means

of an ordinary least squares projection of the risk variables on a set of security re-

turns. In Goorbergh, Roon, and Werker (2003), however, a weighted least squares

projection, based on a utility function, yields the hedging on security returns.

Another line of research has been developed in mathematical finance, devoted to

hedging financial positions, mainly concerned with the pricing of contingent claims.

This literature is developed in different directions. One is based on replicating (or

closely replicating) financial positions. For instance, the super-hedging strategy of

El Karoui and Quenez (1995), is well studied in the literature; see Karatzas and

Shreve (1998). In a different direction the problem of hedging was studied in a

mean-variance framework. Mean-variance hedging was first formulated in Duffie and

Richardson (1991), while the first ground-breaking result was obtained in Schweizer

(1992). For further evidence of this literature see Föllmer and Schweizer (1991),

Gourieroux, Laurent, and Pham (1998), Laurent and Pham (1999), Schäl (1994) and

Schweizer (1995). Hedging is analyzed by using other decision-making tools, risk

measures, in place of mean variance. Föllmer and Leukert (2000) propose replicating

contingent claims by minimizing the probability of shortfalls. Similarly Nakano (2004)

and Rudloff (2007, 2009) study the problem of minimizing the risk of a shortfall when

the risk is measured by a general coherent or convex risk measure.
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Another line of research, which is mainly developed in the literature of operation

research, is based directly on the concepts of hedging and minimization of risk rather

than replication of contingent claims (see Assa and Balbás (2011), Balbás, Balbás, and

Heras (2009), Balbás, Balbás, and Garrido (2010) and Balbás, Balbás, and Mayoral

(2009)). The main idea is that the financial practitioner minimizes the risk of his/her

global position, given the budget constraint on a set of manipulatable positions (a

set of accessible portfolios, for example). Assa and Balbás (2011) characterize the

existence of a solution to the hedging problem, showing that a solution exists if and

only if there is no costless risk-free position (arbitrage opportunity or “Good Deal”).

1.2 Preliminaries and Analytical Setup

We start by introducing the main terminology and notation for hedging and pricing

financial or economic variables. We assume a finite probability space with a finite2

event space Ω = {ω1, . . . , ωn}. We denote the physical measure by P, and the associ-

ated expectation by E. To simplify the discussion, we assume that P(ωi) = 1/n for

all i = 1, . . . , n. Our theory is developed in a static setting and we only have time

0 and time T . Each random variable represents the random value on a variable at

time T . We denote by Rn the set of all variables. The duality relation is expressed

as (x, y) 7→ E(xy) , ∀x, y ∈ Rn. The risk measure and the pricing rule are expressed

in terms of time-zero value and are real numbers.

Let Y be a subset of Rn. In the subsequent discussion, we will assume that Y

possesses one or several properties from the following list:

S1. Normality if 0 ∈ Y ;

S2. Positive homogeneity if λY ⊆ Y , for all λ > 0;

2All of the results can be easily extended to a probability space with no atoms in an appropriate
space – for instance, L2(Ω).
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S3. Translation-invariance if R+ Y ⊆ Y 3;

S4. Sub-additivity if Y + Y ⊆ Y ;

S5. Convexity if λY + (1− λ)Y ⊆ Y .

1.2.1 Risk Measures

In what follows, we use risk measures to quantify the risk associated with the undi-

versifiable part of the market exposure.

A risk measure % is a mapping from a set D ⊆ Rn to the set of real numbers R

which maps each random variable in D to a real number representing its risk. Each

risk measure can have one or more of the following properties:

R1. %(0) = 0;

R2. %(λx) = λ%(x), for all λ > 0 and x ∈ D;

R3. %(x+ c) = %(x)− c, for all x ∈ D and c ∈ R;

R4. %(x) ≤ %(y), for all x, y ∈ D and x ≥ y;

R5. %(x+ y) ≤ %(x) + %(y), ∀x, y ∈ D;

R6. %(λx+ (1− λ)y) ≤ λ%(x) + (1− λ)%(y).

If % satisfies properties R1, R2, R3, R5 or R6, D has to possess properties S1, S2,

S3, S4, or S5, respectively. A risk measure is called an expectation bounded risk if it is

defined on Rn and satisfies properties R1, R2, R3 and R5 above. The mean-variance

risk measure defined as

MVδ(x) = δσ(x)− E(x),

where σ(x) is the standard deviation of x and δ is a positive number representing the

level of risk aversion, is an example of an expectation bounded risk.

3in the sequel R represents the set of all constant random variables {(c, ..., c) ∈ Rn|c ∈ R}.
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An expectation bounded risk is called a coherent risk measure if it also satisfies

property R4. Finally, a convex risk measure satisfies properties R1, R3, R4 and R6.

Coherent and convex risk measures are introduced by Artzner, Delbaen, Eber, and

Heath (1999) and Föllmer and Schied (2002), respectively, while expectation bounded

risks are first defined in Rockafellar, Uryasev, and Zabarankin (2006).

One popular risk measure is the Value at Risk defined as

VaRα(x) = −qα(x) , ∀x ∈ Rn,

where qα(x) = inf {a ∈ R|P[x ≤ a] > α} denotes the α-th quantile of the distribution

of x. Note that VaRα is a decreasing risk measure which is neither a coherent risk

measure nor an expectation bounded risk. In contrast, the Conditional Value at Risk

(CVaR), expressed as the sum over all VaR below α percent

%να(x) =
1

α

∫ α

0

VaRβ(x)dβ, (1.1)

is a coherent risk measure.

Coherent risk measures are tightly linked to the Choquet expected utility of the

form

U(x) =

∫ 1

0

u(F−1
x (t))dν(t), (1.2)

where u is a utility function and ν is a non-additive probability. The measure ν

distorts the probability of different events. The case of a concave ν corresponds to a

pessimistic way of weighting events by assigning larger weights to less favorable events

and smaller weights to more favorable ones. A convex ν has the opposite effect. In

particular, when u is the identity function and ν = να such that dνα = 1
α
1[0,α]dt in

equation (1.2), we obtain the coherent risk measure %να defined in (1.1).

We have the following result from Bassett, Koenker, and Kordas (2004) which

relates the notion of coherent risk measures to the Choquet expected utility.
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Theorem 1.2.1 Let % be a coherent risk measure. If % is distribution invariant

(i.e., %(x) = %(y) for any two random variables x, y ∈ Rn such that Fx = Fy) and

co-monotone additive, then it is pessimistic.

To further generalize the concept of a risk measure, consider the following family

of risk measures.

Definition A risk measure is a generalized spectral risk measure if and only if there

is a distribution ϕ : [0, 1] → R+ such that
∫ 1

0
ϕ(s)ds = 1, and

%ϕ(x) =

∫ 1

0

ϕ(s)VaRs(x)ds. (1.3)

One can readily see that %ϕ is law invariant, i.e., if x and x′ are identically

distributed, then we have %ϕ(x) = %ϕ(x
′). Indeed, it can be shown that all law-

invariant co-monotone additive coherent risk measures can be represented as (1.3);

see Kusuoka (2001). Note that, by a change of variables, the spectral risk mea-

sure (1.3) coincides with the Choquet utility (1.2) for a risk neutral agent, i.e, when

u(x) = x. Furthermore, equation (1.3) describes a family of risk measures which are

statistically robust. Cont, Deguest, and Scandolo (2010) show that a risk measure

%(x) =
∫ 1

0
VaRβ(x)ϕ(β)dβ is robust if and only if the support of ϕ is away from zero

and one. For example, Value at Risk is a risk measure with this property.

An interesting fact about this type of risk measures is that it can be represented

as infimum of a family of coherent risk measures.

Theorem 1.2.2 If %ϕ(x) =

∫ 1

0

VaRα(x)ϕ(α)dα, for a nonnegative distribution ϕ

with

∫ 1

0

ϕ(s)ds = 1, then we have

%ϕ(x) = min{%(x)| for all coherent risk measure % such that % ≥ %ϕ}.

Proof See Appendix A.
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This theorem provides a motivation for introducing another family of risk mea-

sures, called the infimum risk measures, which includes all coherent as well as spectral

risk measures.

Definition Let D be a point-wise-closed set of risk measures on D. Then, the infi-

mum risk measure associated with D is defined as

%D(x) = min
%∈D

%(x). (1.4)

1.2.2 Pricing Rules

A pricing rule π is a mapping from X ⊆ Rn to the set of real numbers R which maps

each random variable in X to a real number representing its price. The pricing rule

can possess one or more of the following properties:

P1. π(0) = 0;

P2. π(λx) = λπ(x), for all λ > 0 and x ∈ X ;

P3. π(x+ c) = π(x) + c, for all x ∈ X and c ∈ R (cash-invariance);

P4. π(x) ≤ π(y), for all x, y ∈ X and x ≤ y;

P5. π(x+ y) ≤ π(x) + π(y), for all x, y ∈ X ;

P6. π(λx+ (1− λy)) ≤ λπ(x) + (1− λ)π(y).

If π satisfies properties P1, P2, P3, P5 or P6, X has to satisfy properties S1, S2,

S3, S4, or S5, respectively. A pricing rule is super-additive if π(x+ y) ≥ π(x) + π(y),

for all x, y ∈ X .

A pricing rule that satisfies properties P1, P2, P3, P4 and P5 is called a sub-linear

pricing rule. Any sub-linear pricing rule can be extended from X to Rn as follows

π̃(x) = sup
{y∈X|y≤x}

π(y). (1.5)
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Indeed, this supremum exists and is a finite number because (i) min(x) ∈ {y ∈ X |y ≤

x} and (ii) for any x, y ∈ X such that y ≤ x, we have π(y) ≤ max(x). It can be

easily seen that π̃ is a sub-linear pricing rule on Rn.

Moreover, any sub-linear pricing rule admits the following representation:

π̃(x) = sup
z∈R

E(zx), (1.6)

where R is given by

R := {z ∈ Rn|E(zx) ≤ π̃(x), ∀x ∈ Rn}. (1.7)

Monotonicity implies that z ≥ 0, ∀z ∈ R and translation-invariance implies E(z) =

1, ∀z ∈ R. Therefore, R is a compact set.

In this paper, the set R represents the set of nonnegative stochastic discount

factors induced by π and

π(x) = π̃(x) = sup
z∈R

E(zx), ∀x ∈ X . (1.8)

Also, the condition z > 0 is equivalent to the no-arbitrage condition

π(x) ≤ 0 & x ≥ 0 ⇒ x = 0. (1.9)

Jouini and Kallal (1995a), Jouini and Kallal (1995b) and Jouini and Kallal (1999)

argue that for a wide range of market imperfections such as dynamic market incom-

pleteness, short selling costs and constraints, borrowing costs and constraints, and

proportional transaction costs, the pricing rule is sub-linear. Even though the set

of sub-linear pricing rules is quite large, it does not cover some practically relevant
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pricing rules. For example, in a super-hedging context, ask and bid prices defined as

πa(x) = sup
Q∈R

EQ[x], (1.10)

and

πb(x) = inf
Q∈R

EQ[x], (1.11)

where R is the set of martingale measures of the normalized price processes of traded

securities (see Jouini and Kallal (1995a) and Karatzas, Lehoczky, Shreve, and Xu

(1991)), are of particular interest (El Karoui and Quenez (1995)). In this case, the

bid price is a super-additive pricing rule which does not fulfill the sub-additivity

conditions of the sub-linear pricing rule. Furthermore, in insurance applications, the

pricing rules are not, in general, sub- or super-additive. As pointed out by Wang,

Young, and Panjer (1997), the price of an insurance risk has a Choquet integral

representation as in equation (1.2) or (1.3) with respect to a distorted probability.

For this reason, we introduce the family of infimum pricing rules that subsumes both

sub-linear and non-sub-linear pricing rules.

Definition LetM be a point-wise-closed set of pricing rules on X . Then, the infimum

risk measure associated with M is defined as

πM(x) = min
π∈M

π(x). (1.12)

1.2.3 Projection

To put the subsequent discussion in the proper context, assume that we have a set of

perfectly-hedged variables denoted by X , where all members of X are priced according

to the pricing rule π : X → R. As an example, consider the case when X is equal

to the set of all portfolios of given assets (x1, ...., xN), i.e., X = Span(x1, ..., xN) or
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X = Span(x1, ..., xN)+ if the short-selling is forbidden. A variable y is perfectly-

hedged if y ∈ X . In this particular example, y is perfectly-hedged if there is a

portfolio whose value is equal to y, i.e., there exist numbers a1, ..., aN such that

y = a1x1 + · · · + aNxN . If any variable y can be perfectly-hedged, we say that the

market is complete. Otherwise, if there is at least one variable y whose risk cannot

be diversified by the set of perfectly-hedged positions, the market is incomplete.

This prompts the need to introduce the mapping (risk measure) % from the set of

all variables D to real numbers which measures the risk generated by the part that

cannot be hedged.

We next introduce the idea of projection. Let us consider a financial position y

in an incomplete market which has to be hedged or priced. To achieve this, we find

a variable, among all perfectly-hedged variables in the set X , that mimics y most

closely. In other words, we want to project y on the set X . Assume for a moment

that we know this projection and denote it by x ∈ X . Hence, y can be decomposed

into two parts: a mimicking strategy (portfolio in our example) x which is perfectly-

hedged, and an unhedged part y − x which generates risk. The cost of the mimicking

strategy (or perfectly-hedged) part is given by π(x), and the risk generated by the

unhedged part, which cannot be diversified by any member of X , is measured by

%(x − y). The idea of projection is to minimize the aggregate cost of the hedging

given as π(x) + %(y − x). Therefore, one can state the problem as follows:

inf
x∈X

{π(x) + %(x− y)} . (1.13)

In this case, the market imperfections are reflected by the (non-linear) pricing rule

π and the risk measure % which capture the market frictions and the market incom-

pleteness, respectively.

Let us now look at this problem from a pricing point of view. Suppose that

a financial practitioner wants to price the position (contingent claim, for example)
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y. While the pricing of y in complete markets can utilize directly the no-arbitrage

approach, the pricing problem in incomplete markets is less straightforward as it

needs to incorporate the cost of the unhedged part. As discussed above, the cost of

forming the mimicking strategy x is given by π(x) and the unhedged risk associated

with the unhedged part of y is given by %(x − y). Then, the competitive price for

position y can be defined as

π%(x) = inf
x∈X

{π (x) + % (x− y)} . (1.14)

As we demonstrate below, if % is a coherent risk measure and π a sub-linear pricing

rule, π% satisfies all of the properties of a sub-linear pricing rule except for the nor-

mality condition. As a result, we need to ensure that the normality condition holds

for π% to be a proper pricing rule.

Potential applications of this framework include hedging and pricing contingent

claims, insurance underwriting, hedging of economic risk etc. It should be noted

that a similar approach to pricing is adopted in Föllmer and Leukert (2000) and

Rudloff (2007, 2009) but it is based on minimizing shortfall risk instead of minimizing

aggregate cost as we do in this paper. In what follows, we refine the choice of pricing

rules and risk measures and analyze their theoretical properties.

1.3 Main Theoretical Results

In this section, we establish some market principles for general risk measures and

pricing rules. The results are stated for two different categories: first, for risk mea-

sures and pricing rules which satisfy properties R1–R4 and P1–P4 (including non-

sub-additive pricing rules and risk measures), and, second, for risk measures and

pricing rules that satisfy properties R1, R2, R3, R5 and P1, P2, P3, P5, respectively

(including non-monotone ones). Results for the second family make use of the dual
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representation of pricing rules and risk measures. We then study the conditions under

which an arbitrage opportunity is generated.

1.3.1 Market Principles

We start with the following result for π% defined in (1.14).

Proposition 1.3.1 Let

X% := {x ∈ Rn|π%(x) ∈ R}.

Then, the following statements hold:

1. π% and X% are positive homogeneous if % and π are.

2. π% and X% are translation-invariant if % and π are.

3. π% and X% are sub-additive if % and π are.

4. π% and X% are convex if % and π are.

Furthermore,

5. π% is monotone if % and π are.

Proof See Appendix A.

Note that Proposition 1.3.1 does not say anything about the first property of a

pricing rule which warrants some further explanation. It turns out that for the first

property of a pricing rule to hold, we need to guarantee that some conditions for X ,

% and π are satisfied. Below, we explicitly state these conditions as general pricing

principles that are valid regardless of the type of pricing or pricing rule.

Normality (N). π%(0) = 0.
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No Good Deal Assumption (NGD). There is no financial position x such that

%(x) < 0 , π(x) ≤ 0.

Consistency Principle (CP). For any member x ∈ X , π and π% are consistent,

i.e.,

π(x) = π%(x).

Compatibility (C). For a risk measure % and a pricing rule π, (1.13) has a finite

infimum.

The first principle simply recognizes that the price of zero is always zero. The

second principle states that any risk-free variable has a positive cost (see Cochrane

and Saa-Requejo (2000)). The third principle is a consistency condition between a

pricing rule π and π% over X . The last principle points out that the hedging problem

always yields a price.

1.3.2 Positive-Homogeneous and Monotone Risk and Pricing

Rules

Next, we discuss the equivalence of the market principles for a risk measure % and

pricing rule π which satisfy properties R1–R4 and P1–P4.

Theorem 1.3.2 Let us assume % and π satisfy properties R1–R4 and P1–P4. Then,

(CP ) ⇒ (N) ⇔ (NGD) ⇔ (C).

Moreover, if X is a vector space and π is super-additive, we also have

(N) ⇒ (CP ).
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Proof See Appendix A.

The following corollary states the conditions under which π% is a pricing rule.

Corollary 1.3.3 Given the notation above, π% : X% → R is a pricing rule if and only

if (N) or (NGD) holds.

1.3.3 Positive-Homogeneous and Sub-Additive Risk and Pric-

ing Rules

In this section, we assume that the risk measure % and the pricing rule π satisfy

properties R1, R2, R3, R5 and P1, P2, P3, P5, respectively. In that case, we extend

the range of the these mappings to R ∪ {+∞}

%̄(x) =











%(x) x ∈ D

+∞ otherwise
, π̄(x) =











π(x) x ∈ X

+∞ otherwise.

This extension allows us to use the dual representation of positive-homogeneous

convex functions. Duality theory and sub-gradient analysis prove useful since the risk

measures and pricing rules are usually not differentiable. First, we present conditions

under which arbitrage opportunities do not exist in terms of the dual sets. Then,

we characterize the solution to the hedging problem (1.13) and the pricing rule π% in

(1.14).

We start by introducing some additional notation. From the theory of convex risk

measures, any convex function f : Rn → R∪{+∞} has the following Fenchel-Moreau

representation4

f(x) = sup
z∈Rn

{E(−zx)− f ∗(z)},

4For technical reasons, we use −z instead of z.
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where f ∗ : Rn → R ∪ {+∞} is the dual of f defined as

f ∗(z) = sup
x∈Rn

{E(−zx)− f(x)}.

It can be easily seen that for any positive-homogeneous function f, f ∗ is 0 on a

convex closed set, denoted by ∆f , and infinity otherwise. Therefore, the Fenchel-

Moreau representation of a positive homogeneous function f has the form

f(x) = sup
z∈∆f

E(−zx).

As an example, for any coherent risk measure %, ∆% is a subset of the set of all prob-

ability measures, i.e., ∆% ⊆ {z ∈ Rn|z ≥ 0,
∑

zi = 1}, and, therefore, it is compact

(see Artzner, Delbaen, Eber, and Heath (1999)). In contrast, for any expectation

bounded risk %, ∆% ⊆ {z ∈ Rn|∑ zi = 0} (Rockafellar, Uryasev, and Zabarankin

(2006)).

Now let us assume that, in general, % and π are positive-homogeneous and sub-

additive mappings. Since % and π are positive-homogeneous and sub-additive, and

because X and D are positive cones, their extensions are also positive-homogeneous

and sub-additive. Then, we have the representations

%̄(x) = sup
z∈∆%̄

E(−zx) , π̄(x) = sup
z∈Rπ̄

E(zx) , ∀x ∈ Rn, (1.15)

for closed convex sets ∆%̄ and Rπ̄.

In order to obtain the representations for %̄ and π̄, we need to introduce the dual-

polar of a scalar-cone of random payoffs. If A is a scalar-cone of a random payoff,

the dual-polar of the set A is given by

A⊥ := {z|E(zx) ≤ 0 ∀x ∈ A}.
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We then have the following proposition.

Proposition 1.3.4 For any function f(x) := sup
z∈∆f

E(zx), for some set ∆f , which is

defined on a positive cone A, we have that

f̄(x) = sup
z∈∆f+A⊥

E(zx).

Proof See Appendix A.

Proposition 1.3.4 has the important implication that any risk measure %(x) =

sup
z∈∆%

E(−zx) defined on D, and pricing rule π(x) := sup
z∈R

E(zx) defined on X , can be

rewritten as

%(x) = sup
z∈∆%̄

E(−zx), π̄(x) = sup
z∈Rπ̄

E(zx),

where ∆%̄ = ∆% −D⊥ and Rπ̄ = R+ X⊥.

The following theorem states the main theoretical result of the paper.

Theorem 1.3.5 Assume that the risk measure %D is defined as in (1.4) and the

pricing rule πM is defined as in (1.12). Then, the following statements are equivalent:

1. The hedging problem (1.13) is finite.

2. R%,π = (∆% −D⊥) ∩ (Rπ + X⊥) 6= ∅ , ∀% ∈ D, ∀π ∈ M

Furthermore, if condition 3 holds for π and %, these statements are equivalent

to

3. There is no Good Deal in the market.

In all cases, the price (1.14) can be represented as

(πD)%M(x) = inf
π∈M,%∈D

π%(x) = inf
π∈M,%∈D

sup
z∈Rπ,%

E(zx).
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Proof See Appendix A.

In most cases, such as coherent risk measures and deviation measures of risk, the

risk measure % is defined on Rn meaning that D⊥ = {0}. We then have the following

corollary.

Corollary 1.3.6 If % is a coherent risk measure and π a sub-linear pricing rule, then

there is no Good Deal if and only if Rπ% := ∆% ∩ (Rπ + X⊥) 6= ∅, and the pricing

rule is given by

π%(y) = sup
z∈Rπρ

E(zx). (1.16)

Theorem 1.3.5 and Corollary 1.3.6 illustrate the generality of our approach com-

pared to the existing literature. In the existing literature, the set of stochastic

discount factors is constructed either parametrically (using, for example, a semi-

martingale process), or empirically and a pricing rule π is then obtained by taking

supremum of prices over a closed convex subset R. In order to price all positions in

the market, any stochastic discount factor z′ is constructed as a positive and linear

extension of z ∈ Rπ, i.e., z
′|X = z. Therefore, the set of stochastic discount factors

is induced by the unique monotonic extension π̃ of π (for more details, see Theorem

2.1 in Jouini and Kallal (1995b)). By contrast, in our approach, the extension of the

pricing rule is not constructed monotonically but it is obtained within the hedging

problem and is affected, in general, by two additional factors: market incompleteness

and frictions. In our approach, assuming that % is defined on the whole space so that

D⊥ = {0}, the set of stochastic discount factors is equal to ∆% ∩ (Rπ + X⊥), which

is expanded by adding X⊥ and contracted by intersecting with ∆%.

Our method can reproduce the existing approach if we assume %(x) = π̃(−x).

Indeed, our approach is able to reproduce the pricing rule π̃ if and only if the con-

sistency principle holds. If the pricing rule is super-additive, this can be achieved if

and only if π(−x) ≤ %(x), ∀x ∈ X . This implies that R ⊆ ∆%. It can be easily veri-

fied that x 7→ π̃(−x) is the smallest risk measure for which the consistency principle
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holds. The mapping x 7→ π̃(−x) is the market measurement of risk and has been

proposed by Assa and Balbás (2011). In this case, D⊥ = {0} and ∆% = R, which

yields π% = π. Hence, the hedging problem becomes











min{π̃(y − x) + π(x)}

x ∈ X .
(1.17)

It is clear that since π̃ is sub-additive, x = 0 is a solution to this hedging problem.

Therefore, the pricing rule ππ̃(−.) equals π̃, which reproduces the existing approach

in the literature.

1.4 Appendix: Proofs of Propositions and Theo-

rems

1.4.1 Proof of Theorem 1.2.2

From Delbaen (2002), the equality in Theorem 1.2.2 holds for %α = VaRα. Therefore,

since the minimum is attained for VaRα, for any α there exists %α ≥ VaRα such that

%α(x0) = VaRα(x0). Now introduce %(x) =

∫ 1

0

%α(x)ϕ(α)dα. It is easy to see that

% is a coherent risk measure such that % ≥ %ϕ and %(x0) = %ϕ(x0), which proves the

desired result.

1.4.2 Proof of Proposition 1.3.1

We only provide the proof of statement 1 since the proof of statement 2 follows very

similar arguments. Let g ∈ Xα and t ∈ R+. Then,

π%(tg) = inf
x∈X

{%(x− tg) + π(x)} = inf
tx∈X

{%(tx− tg) + π(tx)} = tπ%(x) ∈ R.

22



Using the same argument, one can show that for g ∈ X%, π%(x + c) = π%(x) + c for

all c ∈ R. Hence, we have that g + c ∈ X%.

Now let g ∈ X% and g ≤ h. Because % is decreasing, we have that

%(x− h) + π(x) ≥ %(x− g) + π(x).

By taking infimum on X , we obtain that π%(h) ∈ R.

1.4.3 Proof of Theorem 1.3.2

We begin by showing the equivalence between (N) and (NGD). To this end, we

demonstrate that both of them are equivalent to the following inequality:

%(x) + π(x) ≥ 0 , ∀x ∈ X . (1.18)

First, we show that (N) is equivalent to (1.18). Given (N), we have that π%(0) = 0

which, by construction, implies (1.18). On the other hand, given (1.18) it is easy to

see that π%(0) ≥ 0. In addition, by setting x = 0 in (1.18), it follows that π%(0) = 0.

Second, we show the equivalence between (1.18) and (NGD). Suppose that x is

a Good Deal, i.e., %(x) < 0 and π(x) ≤ 0, which clearly implies %(x) + π(x) < 0.

On the other hand, if (1.18) does not hold, we have that %(x) + π(x) < 0 for some

position x. By cash-invariance of π and %, it is obvious that x−π(x) is a Good Deal.

Next, we demonstrate the equivalence between (NGD) and (C). Assume that

(NGD) does not hold. Then, there exists an x such that %(x) < 0 and π(x) ≤ 0. Let

y be a variable and assume that c ∈ R is such that y ≤ c. Since tx− y ≥ tx− c for

all t > 0,

%(tx− y) + π(tx) ≤ %(tx− c) + π(tx)

= %(tx) + c+ π(tx)

= t(%(x) + π(x)) + c→ −∞,
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as t tends to +∞. This shows that (1.13) does not have a finite infimum.

To establish (NGD) ⇒ (C), assume that for a variable y, (1.13) does not have a

finite infimum. Let c ∈ R be such that c ≤ y. Since x − c ≥ x − y for all financial

positions x ∈ X , we have that

%(x− c) ≤ %(x− y) ⇒ %(x) + c ≤ %(x− y)

⇒ %(x) + π(x) + c ≤ %(x− y) + π(x).

Since (1.13) is not bounded, then there exists an x such that %(x − y) + π(x) < c.

This yields %(x) + π(x) < 0. Thus, it is clear that x̃ = x− π(x) is a Good Deal.

Finally, we show (N) ⇒ (CP) when X is a vector space and π is super-additive.

Let y ∈ X and suppose that (N) holds. Since X is a vector space, we have that, for

a given x, X − x = X . Therefore, by construction,

%(x− y) + π(x− y) ≥ π%(0) = 0

and by super-additivity of π,

%(x− y) + π(x)− π(y) ≥ %(x− y) + π(x− y) ≥ 0

which implies that %(x− y) + π(x) ≥ π(y). Therefore, π%(y) = π(y).

1.4.4 Proof of Proposition 1.3.4

First, note that

χ∗
A(z) = sup

x
{E(zx)− χA(x)}

= sup
x∈A

E(zx)

= χA⊥(z).

,
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Hence, χA(x) = sup
z∈A⊥

E(zx). Then, we have

f̄(x) = f(x) + χA(x) = sup
z∈∆f

E(zx) + sup
z′∈A⊥

E(z′x)

= sup
(z,z′)∈∆f×A⊥

E((z + z′)x)

= supz∈∆f+A⊥ E(zx).

1.4.5 Proof of Theorem 1.3.5

First, we prove the result for sub-additive risk measures and pricing rules. The

following proposition, which is a standard result in the literature on convex analysis,

presents the necessary and sufficient conditions under which solution to the hedging

problem exists.

Proposition 1.4.1 Let f1, f2 : R
n → R∪ {+∞} be two convex functions. Then, the

following equality holds

inf
x∈Rn

{f1(y − x) + f2(x)} = (f ∗
1 + f ∗

2 )
∗(x),

with the convention that sup(∅) = −∞.

In the particular case when f1 = π̄ and f2 = %̄, we have

(f ∗
1 + f ∗

2 )(x) = (χ∆%−D + χR+X⊥)(x) = χ(∆%−D)∩(R+X⊥)(x).

Therefore,

inf
x∈X

{%(x− y) + π(x)} = sup
z∈(∆%−D)∩(R+X⊥)

E(zy).

This proves the existence of the infimum for the sub-additive case.
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In the general case, we have

inf
x∈X

{%D(x− y) + πM(x)} = inf
x∈X

{

inf
%∈D

%(x− y) + inf
π∈M

π(x)

}

= inf
x∈X

{

inf
%∈D×π∈M

%(x− y) + π(x)

}

= inf
%∈D×π∈M

{ inf
x∈X

%(x− y) + π(x)}.

This problem has a finite infimum if for every % ∈ D and π ∈ M, the inner problem

inf
x∈X

%(x − y) + π(x) is finite. Given the discussion above, this proves the statement

of the theorem.
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Chapter 2

Empirical Assessment and

Application

2.1 Estimation Problem

In this section, we illustrate the practical relevance of our theoretical results in the

context of hedging economic risk by highlighting the effect of different risk measures

on hedging strategies and the role of X⊥. Our analysis of portfolios that track or hedge

various economic risk variables follows largely Lamont (2001) and Goorbergh, Roon,

and Werker (2003). While these papers employ the mean-variance (MV) framework

for constructing the portfolio of assets, we consider the more general and robust

CVaR and VaR risk measures. Let yt denote an economic risk variable to be hedged

at time t (t = 1, 2, ..., T ), xt = (xt1, ..., xtN)
′ be N securities (traded factors) at time

t and X = span〈x1, . . . , xN〉. The pricing rule is the expected value of the portfolio

given by π(x′tθ) = E(x′tθ), where θ = (θ1, . . . , θN)
′.

For the mean-variance risk measure, we have that %(x) = δσ(x) − E(x). To

facilitate the comparison with the other risk measures, the risk aversion parameter

δ is set equal to 1. By plugging x =
∑

θixi − y, the problem (1.14) reduces to the
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following OLS problem:

min
θ

1

T

T
∑

t=1

(

ỹt −
∑N

j=1
θjx̃tj

)2

, (2.1)

where ỹt = yt − E(yt) and x̃tj = xtj − E(xtj).

For the CVaR risk measure, we rewrite the problem (1.14) with a risk measure

% = %να and a pricing rule π = E as

min
θ

{%να (x′tθ − yt) + E (x′tθ)} (2.2)

or, more conveniently, as

min
θ

{

%ν1−α
(yt − x′tθ) + E (x′tθ)

}

, (2.3)

using that %να (x
′
tθ − yt) = %ν1−α

(yt − x′tθ). Then, using translation-invariance and

Theorem 2 in Bassett, Koenker, and Kordas (2004), the problem (2.3) can be rewrit-

ten equivalently an (1− α)-quantile regression problem:

min
ξ,θ

1

T

T
∑

t=1

ρ1−α (ỹt − ξ − x̃′tθ) , (2.4)

where ρ1−α (u) = u [(1− α)I{u > 0} − αI{u ≤ 0}] and I{·} denotes the indicator

function. Note that since 1 is trivially in the intersection of the sub-gradient set of

these risk measures and R, then it follows from Theorem 1.3.5 there is no Good Deal

and the hedging problem has a solution.

For the VaR hedging problem, we simply minimize the aggregate hedging costs

min
θ
{VaR1−α(yt − x′tθ) + E(x′tθ)}.

One can easily show that the probability measure P belongs to the sub-gradient of any
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law-invariant risk measure which also has properties R2 and R5. Therefore, by using

part 2 of Theorem 1.3.5, the risk measures MV and CVaR do not produce any Good

Deal with the pricing rule E. For VaR, we use the No-Good-Deal assumption and the

theoretical results developed in the previous section. Since X is a vector space and π

is a linear function, then, according to Theorem 1.3.2, the No-Good-Deal assumption

holds if and only if π% (here EVaR) is consistent. Hence,

min
θ
{VaR1−α(yt − x′tθ) + E(x′tθ)} = E(yt).

2.2 Data Description

Our choice of economic risk variables and security returns is similar to Goorbergh,

Roon, and Werker (2003). The data are at monthly frequency for the period February

1952 – December 2012. The traded securities include the risk-free rate, four stock-

market factors (Fama and French (1992), Carhart (1997)) and two bond-market fac-

tors proxied, respectively, by: (i) the one-month T-bill (from Kenneth French’s web-

site), denoted by RF, (ii) the excess return (in excess of the one-month T-bill rate)

on the value-weighted stock market (NYSE-AMEX-NASDAQ) index (from Kenneth

French’s website), denoted by MARKET, (iii) the return difference between port-

folios of stocks with small and large market capitalizations (from Kenneth French’s

website), denoted by SMB, (iv) the return difference between portfolios of stocks

with high and low book-to-market ratios (from Kenneth French’s website), denoted

by HML, (v) the momentum factor defined as the average return on the two high

prior return portfolios minus the average return on the two low prior return port-

folios (from Kenneth French’s website), denoted by MOM, (vi) TERM defined as

the difference between the yields of ten-year and one-year government bonds (from

the Board of Governors of the Federal Reserve System), and (vii) DEF defined the

difference between the yields of long-term corporate Baa bonds (from the Board of
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Governors of the Federal Reserve System) and long-term government bonds (from

Ibbotson Associates).

The macroeconomic risk variables include (i) the inflation rate measured as monthly

percentage changes in CPI for all urban consumers (all items, from the Bureau of

Labor Statistics), denoted by INF, (ii) the real interest rate measured as the monthly

real yield on the one-month T-bill (from CRSP, Fama Risk Free Rates), denoted by

RI, (iii) the term spread measured as the difference between the 10-year Treasury

(constant maturity) and 3-month (secondary market) T-bill rate (from the Board of

Governors of the Federal Reserve System), denoted by TS, (iv) the default spread

measured as the difference between corporate Baa and Aaa rated (by Moody’s In-

vestor Service) bonds (from the Board of Governors of the Federal Reserve System),

denoted by DS, (v) the monthly dividend yield on value-weighted stock market port-

folio (from the Center for Research in Security Prices, CRSP), denoted by DIV, and

(vi) the monthly growth rate in real per capita total (seasonally-adjusted) consump-

tion (from the Bureau of Economic Analysis), denoted by CG.

2.3 Results

In order to hedge against unexpected economic shocks, we follow Campbell (1996)

and replace the variable yt with the corresponding error term form a six-variable

VAR(1) model of yt (y = [INF,RI, TS,DS,DIV, CG]). For VaR and CVaR, we

use α = 0.1 and 0.05 (i.e., 1 − a = 0.9 and 0.95). The standard errors for VaR and

CVaR are computed by bootstrapping. Statistically significant coefficients at the 5%

nominal level are reported in bold font. The results for hedging inflation, real interest

rate, term spread, default spread, dividend yield and consumption growth using the

three risk measures are presented in tables 2.1 to 2.6, respectively. The last line in

each table reports the computed price.

A number of interesting findings emerge from this hedging exercise. First, as it
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was noted in section 4.1, if the pricing rule E is correctly specified, the price should

equal E(y) (in the VaR case we also need to know if y is fully hedged). Tables 2.1

to 2.6 reveal that in all cases, the prices are significantly different from E(y), which

is attributed to the unhedged part in pricing y. These results highlight the role of

the set X⊥. Indeed, the true stochastic discount factor lies in the larger set X⊥ ∩∆%

for MV and CVaR, while for VaR we have a family of ∆%’s as in part 2 of Theorem

1.3.5. Our theory suggests that the true SDF has to represented as P + z, where z

belongs to X⊥.

Second, while there is agreement across the different risk measures in hedging

term spread, dividend yield and, to some extent, consumption growth, the hedging

of inflation, real interest rate and default spread exhibit substantial heterogeneity

both across and within risk measures. For example, CVaR suggests that RF, SMB

and TERM prove to be important factors for hedging inflation whereas the other

risk measures indicate that these factors are largely insignificant. Furthermore, there

are differences across the different quantile regressions for CVaR and in some cases,

depending on the level of α, the investor needs to switch from ‘long’ to ‘short’ positions

in order to hedge the underlying economic risk. This illustrates the potential of

alternative risk measures for robustifying the performance of economic portfolios.

2.4 Estimating the Stochastic Discount Factor

In this section we provide estimation methods to estimate Stochastic Discount Factors

for two particular cases. Following the literature on pricing we confine ourselves to the

set of the admissible stochastic discount factors. This means we are only interested

in a set SDF which can correctly price a set of the assets, called test assets. As we

have discussed earlier, we denote the set of test assets as R1, ..., RN and their correct

corresponding price as p1, ..., pN
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SDF = {z ≥ 0|E(z) = 1, E(zRi) = pi, i = 1, ..., N}.

As has been discussed in the same subsection this is equivalent to choosing the fol-

lowing pricing rule

π(x) = sup
{z≥0|E(z)=1,E(zRi)=pi,i=1,...,N}

E(zx).

We have chosen the excess return of Fama and French 25 portfolio assets, denoted

by R1, ...., R25, plus the risk free asset, denoted by x0. In addition we assume the

martingale condition for correct prices as follows

pi = 0 , i = 1, ..., 25 and p0 = 1.

In order to estimate a SDF we have to make some assumptions. Given discussions

in Cochrane (2009) a legitimate economical assumption is to assume that a SDF can

be determined by the economy-wide consumer’s preferences and consumption. The

next legitimate assumption is that the consumer’s decision is a function of macro-

economic factors. Therefore, we use a linear model for SDF by using the macro

economic factors (as proxy for the systemic factors), as is generally practiced in the

literature. Any SDF can model as follows

g(γ) = fTγ,

where f is aK×1 vector ofK systemic factors, and γ is aK vector of SDF parameters.

2.4.1 General Methodology

In this section we develop a general methodology, in order to make use it in the next

sections to estimate γ associated with the linear models of the stochastic discount
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factors. Our strategy is to design a nonnegative function Q(x) such that for a given

set ∆

x ∈ ∆ ⇔ Q(x) = 0.

Simply since the function Q attains its minimum at a point x belonging to ∆, by

setting the following minimization problem we can estimate the parameter γ

min
γ
Q(g(γ)).

In the following estimations, we minimize an objective function in the following

form

Q(γ,X) = E(q(γ,X)) +
J
∑

j=1

hj (E(rj(γ,X))) ,

where q, rj, j = 1, ..., J are smooth functions of the parameters and sample data, and

hj are two times differentiable functions. The empirical version can be written as

γ̂ = argminγQT (γ,X) = argminγ

{

1

T

T
∑

t=1

qt(γ, xt) +
J
∑

j=1

hj

(

1

T

T
∑

t=1

rj(γ, xt)

)}

.

It is straightforward to see that γ̂ is consistent. However, the asymptomatic

normality of the estimator needs some computational effort which is done in the

Appendix. Here we just present the result as follows

T 1/2(γ̂ − γ0) → N (0, V ),

where V = H−1MH−1,

H = E

(

∂2

∂γ∂γ′
Q(γ0)

)

,
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and

M = E

((

∂

∂γ
q +

∑

j

h′j(E(rj))
∂

∂γ
rj

)(

∂

∂γ
q +

∑

j

h′j(E(rj))
∂

∂γ
rj

)′)

∣

∣

∣

∣

γ=γ0

.

Note that h′ is the derivative of h (not the transpose).

2.4.2 Set of Admissible SDF

As we mentioned earlier we chose the set of all admissible assets based on true prices

of the Fama and French 25 portfolio. Therefore we have to design an appropriate

objective function which can capture this set. The objective function we need can be

introduced by the following elements











ri(γ, ft) = γftxit i = 1, ..., 25 and t = 1, ..., T

h(x) = xL25

,

where L25 is a large even number and it is reported in Table 2.7 for each model. In

the following we assume different No Good Deal conditions and the associated sets,

which will result in different pricing models. In each of them we assume that the

objective function is the summation of the one we have introduced above, to keep us

in the admissible set, and the one associated with the underling risk measure in use.

2.4.3 No Arbitrage

First we find an stochastic discount factor on which we do not pose any restriction,

which is equivalent to No -Arbitrage case. Therefore, we only need E(g(γ)) = 1 and

g(γ) > 0






















qt(γ, ft) = M(−γft) t = 1, ..., T

r(γ, ft) = γft − 1 t = 1, ..., T

h(x) = xLNA

,
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where LNA is a large even number and it is reported in Table 2.7 for each model. In

addition, M is defined as follows

M(x) =











0 x < 0

xLsmooth x ≥ 0
,

where Lsmooth is a large even number reported on Table 2.7 for each model. The first

equation is set to guarantee g(γ) ≥ 0 and the second and third equations are set to

ensure E(g(γ)) = 1. The choice of L is a large number to penalize any deviation from

r = 0 and are reported in the estimation tables. The choice of L and L′ depend on

how much we want to penalize deviation from our conditions. These two numbers will

play an important role in asymptomatic, implying that we cannot choose them too

large (or small), since otherwise the resulting variance-covariance matrix is singular.

We will report them once we report the result for the estimation.

2.4.4 Bounded SDF

In this part we assume that the set of SDF consists of all non-negative random

variables with mean one whose maximum value is less than or equal to a bound c > 0

i.e., ∀z ∈SDF, z ≤ c. Since any member of SDF has mean one, it is clear that c ≥ 1.

Taking α = 1
c
, it is clear that this is equivalent to the hedging problem 1.13, when

we use % = CVaRα. According to the parametric linear model we assumed for a SDF

this means that we have to estimate γ so that g(γ) ≤ c = 1
α
. We set for the following

functions in the objective























qt(γ, ft) = M(γft − 1
α
) +M(−γft) t = 1, ..., T

r(γ, ft) = γft − 1 t = 1, ..., T

h(x) = xLCVaR

,
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where LCVaR is a large even number reported on Table 2.7 for each model. The first

function is to capture 0 ≤ g(γ) ≤ 1
α
and the second and third one are to capture

E(g(γ)) = 1. Note that M has to be smooth enough, and takes positive values if and

only if its argument is positive.

2.4.5 Bounded Variance

In Cochrane and Saa-Requejo (2000), the authors introduced for the first time the

concept of Good Deal. They show that in their setting the No Good Deal assumption

is equivalent to setting an upper bound on the variance of the set of SDFs. In

mathematical terms let c be a positive number, the No Good Deal assumption holds if

for any g ∈ SDF, σ(g) ≤ c. According to the theory we have developed in this chapter,

this is equivalent to a hedging problem that uses the CS-risk measure % = %CSc . Given

that E(g) = 1, ∀g ∈SDF, the No Good Deal assumption is equivalent to saying that

E(g2) ≤ c2 − 1 and E(g) = 1. Therefore we have the following functions















































qt(γ, ft) = M(−γft) t = 1, ..., T

r1(γ, ft) = γft − 1 t = 1, ..., T

r2(γ, ft) = (γft)
2 − c2 + 1

h1(x) = xLCS

h2(x) = M(x)

,

where LCS is a large even number and it is reported in table 2.7 for each model. The

first equation is set to guarantee g(λ) ≥ 0, r1 and h1 to ensure E(g(γ)) = 1 and r2

and h2 to set σ(g(γ)) ≤ c. The choice of L and L′ are reported in the estimation

tables.
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2.4.6 Mean-Variance

Finally we used the mean-variance risk measure. It is not very difficult to see that

the sub-gradient of MVδ can be represented as:

∆MVδ = {z ∈ Rn|E(z) = 1, σ(z) = δ}.

Therefore,






















r1(γ, ft) = γft − 1 t = 1, ..., T

r2(γ, ft) = (γft)
2 − c2 + 1

h1(x) = h2(x) = xLMV

.

where LMV is a large even number and it is reported in table 2.7 for each model.

However, one can see that the members of the set ∆MVδ are not necessarily positive,

which can yield some Arbitrage opportunities.

2.4.7 Models

We use two different models, one model with traded factors and the other non-traded

factors.

FF3. The fist model is the most popular factor model in the finance literature, the

three factor Fama and French model. In this model f has three factors, Market, Size

and Book-to-Market. Therefore,

g(γ) = γ0 + γ1(RM −RF ) + γ2SMB + γ3HML.

CAY.The second model is the (CC-CAY) which is a conditional version of the

CCAPM due to Lettau and Ludvigson (2001). The relation is

g(γ) = γ0 + γ1consumption + γ2L(cay) + γ2consumption× L(cay) (2.5)
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where cay, the conditioning variable, is a consumption-aggregate wealth ratio, and L

is the lag operator. This specification is obtained by scaling the constant term and

the c factor of a linearized consumption CAPM by a constant and cay.

The results are presented in Tables 2.8 to 2.15. There are different observation

from the results, but we focus our attention only on the most important ones.

First of all, observe that while the stochastic discount factors resulting from the

No Arbitrage restriction and the ones from the No Good Deal assumption using CVaR

of 1,5 and 10% are exactly the same. The results for all No Good Deal constraint

are similar in direction, which shows the consistency between results; using the FF3

model all go short on RM-RF, SMB and HML, while on the other hand, they go

short on consumption and consumption× L(cay), and long on L(cay).

Tantamount results for the NA and CVaR show that all estimation methods find

their stochastic discount factors within the smallest set ∆CVaR0.1
.

We have included two different type of factors to compare different risk measures

we have used in this chapter, in two different type of models when we have only traded

securities or we have only non-traded ones. In all cases we impose the condition

that the stochastic discount factor has mean one. Therefore, if we measure the

performance of each method by measuring mean of γf , according to its distance

from one, then one can see among all different methods by NA and CVaR very well

capture mean one and others perform poorly. It is interesting to see that in both

models either not imposing any condition but the No Arbitrage or the CVaR (bounded

SDF), we get much better results, by our performance measure. It is also interesting

the CS and MV conditions (bounded variance), seem less restrictive than CVaR and

more restrictive than No Arbitrage, it is impossible to improve upon the performance

measure. This might be because the variance controlling conditions along with the

methods we have used in this chapter generate some mis-specification problems.

Another interesting point is when we compare the two different models. In the
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FF3 model, as one can see, the main load is due to risk free. It can be concluded

when we observe how close the mean of the estimated SDF is to the risk free factor,

and how small are the other ones. The meaning of this fact is that the prices could

be mostly explained by the risk free factor, which does not seem plausible for risky

portfolios. This is not the case for the second model, one can see that the variety of

the coefficients.

2.5 Appendix on Asymptotic Normality

Let

QT (γ) =
1

T

T
∑

t=1

qt(γ, xt) +
J
∑

j=1

hj

(

1

T

T
∑

t=1

rj(γ, xt)

)

.

By using the first-order Taylor series expansion of ∂
∂γ
QT (γ̂) about the true value

γ0 we have

0 =
∂

∂γ
QT (γ̂) =

∂

∂γ
QT (γ0) +

∂2

∂γ∂γ′
Q(γ∗)(γ̂ − γ0), (2.6)

where γ∗ is an intermediate point on the line joining γ̂ and γ0. This shows that we

have to derive the distribution of ∂
∂γ
QT (γ0). Given the form of QT we have

T 1/2 ∂

∂γ
QT (γ0) =

1

T 1/2

T
∑

t=1

∂qt
∂γ

(γ0)+
J
∑

j=1

(

1

T 1/2

T
∑

t=1

∂

∂γ
rj(γ0, xt)

)

h′j

(

1

T

T
∑

t=1

rj(γ0, xt)

)

.

(2.7)

As T → ∞, according to Law of Large Numbers, h′j

(

1
T

T
∑

t=1

rj(γ0, xt)

)

→ h′j(E(rj(γ0))).

Combining this with (2.7) yields

T 1/2 ∂

∂γ
QT (γ0) → N (0,M), (2.8)
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where

M = E

((

∂

∂γ
q +

∑

j

h′j(E(rj))
∂

∂γ
rj

)(

∂

∂γ
q +

∑

j

h′j(E(rj))
∂

∂γ
rj

)′)

∣

∣

∣

∣

γ=γ0

.

This relation with (2.6), and by using the consistency as T → ∞, yield the desired

relation.

40



41



2.6 Tables

MV CVaR0.9 CVaR0.95 VaR0.9 VaR0.95

Intercept 0.0026 0.0022

( 0.0001) ( 0.0002)

RF 0.0072 -0.6737 -0.7844 0.0058 0.0027

( 0.0558) ( 0.0705) ( 0.1106) ( 0.0041) ( 0.0019)

MARKET -0.0048 -0.0072 -0.0123 -0.0038 -0.0066

( 0.0029) ( 0.0030) ( 0.0043) ( 0.0013) ( 0.0023)

SMB -0.0008 0.0131 0.0383 -0.0008 -0.0003

( 0.0030) ( 0.0048) ( 0.0065) ( 0.0005) ( 0.0002)

HML 0.0022 0.0013 -0.0009 0.0038 0.0031

( 0.0042) ( 0.0013) ( 0.0006) ( 0.0016) ( 0.0023)

UMD 0.0015 0.0006 0.0002 0.0019 0.0023

( 0.0027) ( 0.0006) ( 0.0001) ( 0.0012) ( 0.0015)

TERM 0.0084 -0.1427 -0.1440 0.0025 0.0104

( 0.0109) ( 0.0162) ( 0.0263) ( 0.0018) ( 0.0070)

DEF -0.0265 0.1063 0.1370 -0.0246 -0.0227

( 0.0242) ( 0.0209) ( 0.0369) ( 0.0080) ( 0.0117)

Price 0.0023 0.0077 0.0093 0.0025 0.0037

( 0.0000) ( 0.0000) ( 0.0001) ( 0.0000) ( 0.0001)

Table 2.1: Hedging Inflation.

The table reports the estimates and their corresponding bootstrap errors (based on

400 bootstrap replications) for different risk measures (mean-variance MV,

conditional value-at-risk CVaR, and value-at-risk VaR). The bold font represents

statistical significance (at the 5% nominal level) of individual coefficients except for

the last row where the bold font signifies a statistically different price from E(y).
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MV CVaR0.9 CVaR0.95 VaR0.9 VaR0.95

Intercept 0.0021 0.0035

( 0.0001) ( 0.0002)

RF -0.0304 -0.1473 -0.6805 -0.0147 -0.0296

( 0.0563) ( 0.0621) ( 0.1000) ( 0.0063) ( 0.0380)

MARKET 0.0049 -0.0020 0.0094 0.0048 0.0038

( 0.0028) ( 0.0017) ( 0.0045) ( 0.0015) ( 0.0032)

SMB 0.0013 -0.0009 0.0042 0.0009 0.0013

( 0.0029) ( 0.0007) ( 0.0033) ( 0.0003) ( 0.0020)

HML -0.0029 -0.0142 0.0188 -0.0031 -0.0031

( 0.0042) ( 0.0042) ( 0.0072) ( 0.0012) ( 0.0037)

UMD -0.0008 -0.0346 -0.0011 -0.0007 -0.0007

( 0.0027) ( 0.0031) ( 0.0008) ( 0.0003) ( 0.0013)

TERM -0.0167 -0.0664 -0.1187 -0.0284 -0.0166

( 0.0109) ( 0.0123) ( 0.0239) ( 0.0065) ( 0.0133)

DEF 0.0205 0.1095 0.2810 0.0222 0.0226

( 0.0244) ( 0.0194) ( 0.0305) ( 0.0073) ( 0.0186)

Price 0.0023 0.0075 0.0110 0.0027 0.0035

( 0.0000) ( 0.0000) ( 0.0001) ( 0.0000) ( 0.0001)

Table 2.2: Hedging Real Interest Rate.

The table reports the estimates and their corresponding bootstrap errors (based on

400 bootstrap replications) for different risk measures (mean-variance MV,

conditional value-at-risk CVaR, and value-at-risk VaR). The bold font represents

statistical significance (at the 5% nominal level) of individual coefficients except for

the last row where the bold font signifies a statistically different price from E(y).
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MV CVaR0.9 CVaR0.95 VaR0.9 VaR0.95

Intercept -0.0000 -0.0000

( 0.0012) ( 0.0018)

RF 0.3958 0.3782 0.3696 0.3886 0.3883

( 0.0922) ( 0.0877) ( 0.1094) ( 0.0526) ( 0.0898)

MARKET 0.0011 -0.0023 -0.0016 0.0018 0.0006

( 0.0043) ( 0.0061) ( 0.0095) ( 0.0005) ( 0.0006)

SMB 0.0034 0.0047 0.0033 0.0026 0.0028

( 0.0048) ( 0.0092) ( 0.0138) ( 0.0008) ( 0.0016)

HML 0.0071 0.0010 0.0013 0.0091 0.0078

( 0.0053) ( 0.0227) ( 0.0230) ( 0.0021) ( 0.0042)

UMD -0.0038 -0.0017 -0.0015 -0.0065 -0.0051

( 0.0042) ( 0.0069) ( 0.0099) ( 0.0018) ( 0.0026)

TERM 0.1346 0.1055 0.1024 0.1277 0.1532

( 0.0163) ( 0.0194) ( 0.0242) ( 0.0126) ( 0.0251)

DEF -0.0691 -0.0789 -0.0756 -0.0926 -0.0571

( 0.0296) ( 0.0307) ( 0.0341) ( 0.0138) ( 0.0268)

Price 0.0033 0.0057 0.0082 0.0029 0.0044

( 0.0000) ( 0.0001) ( 0.0002) ( 0.0001) ( 0.0002)

Table 2.3: Hedging Term Spread.

The table reports the estimates and their corresponding bootstrap errors (based on

400 bootstrap replications) for different risk measures (mean-variance MV,

conditional value-at-risk CVaR, and value-at-risk VaR). The bold font represents

statistical significance (at the 5% nominal level) of individual coefficients except for

the last row where the bold font signifies a statistically different price from E(y).
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MV CVaR0.9 CVaR0.95 VaR0.9 VaR0.95

Intercept 0.0010 0.0011

( 0.0000) ( 0.0001)

RF -0.0616 0.0358 -0.0017 -0.0572 -0.0359

( 0.0335) ( 0.0214) ( 0.0010) ( 0.0119) ( 0.0133)

MARKET -0.0008 0.0002 0.0115 -0.0011 -0.0005

( 0.0018) ( 0.0001) ( 0.0026) ( 0.0003) ( 0.0002)

SMB -0.0015 0.0030 -0.0090 -0.0016 -0.0027

( 0.0014) ( 0.0015) ( 0.0036) ( 0.0005) ( 0.0011)

HML -0.0005 0.0091 0.0177 -0.0004 -0.0001

( 0.0023) ( 0.0015) ( 0.0040) ( 0.0001) ( 0.0001)

UMD -0.0003 0.0026 0.0097 -0.0002 -0.0000

( 0.0012) ( 0.0010) ( 0.0026) ( 0.0001) ( 0.0000)

TERM -0.0147 -0.0153 -0.0169 -0.0135 -0.0005

( 0.0049) ( 0.0051) ( 0.0082) ( 0.0025) ( 0.0003)

DEF 0.0503 0.1078 0.0965 0.0498 0.0882

( 0.0125) ( 0.0063) ( 0.0158) ( 0.0052) ( 0.0079)

Price 0.0011 0.0036 0.0048 0.0009 0.0016

( 0.0000) ( 0.0000) ( 0.0001) ( 0.0000) ( 0.0001)

Table 2.4: Hedging Default Spread.

The table reports the estimates and their corresponding bootstrap errors (based on

400 bootstrap replications) for different risk measures (mean-variance MV,

conditional value-at-risk CVaR, and value-at-risk VaR). The bold font represents

statistical significance (at the 5% nominal level) of individual coefficients except for

the last row where the bold font signifies a statistically different price from E(y).
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MV CVaR0.9 CVaR0.95 VaR0.9 VaR0.95

Intercept 0.0007 0.0011

( 0.0001) ( 0.0001)

RF -0.0735 -0.0323 -0.0794 -0.0774 -0.0736

( 0.0148) ( 0.0291) ( 0.0352) ( 0.0074) ( 0.0104)

MARKET -0.0309 -0.0313 -0.0343 -0.0293 -0.0313

( 0.0010) ( 0.0015) ( 0.0017) ( 0.0012) ( 0.0016)

SMB -0.0000 0.0004 0.0000 -0.0000 -0.0000

( 0.0012) ( 0.0007) ( 0.0000) ( 0.0000) ( 0.0000)

HML -0.0028 -0.0026 -0.0020 -0.0029 -0.0032

( 0.0014) ( 0.0021) ( 0.0019) ( 0.0004) ( 0.0005)

UMD -0.0012 0.0016 -0.0028 -0.0013 -0.0015

( 0.0008) ( 0.0012) ( 0.0015) ( 0.0002) ( 0.0002)

TERM -0.0036 0.0146 -0.0163 -0.0035 -0.0040

( 0.0029) ( 0.0069) ( 0.0067) ( 0.0006) ( 0.0008)

DEF -0.0038 -0.0152 0.0276 -0.0037 0.0010

( 0.0044) ( 0.0083) ( 0.0105) ( 0.0008) ( 0.0002)

Price 0.0007 0.0018 0.0028 0.0007 0.0010

( 0.0000) ( 0.0000) ( 0.0000) ( 0.0000) ( 0.0000)

Table 2.5: Hedging Dividend Yield.

The table reports the estimates and their corresponding bootstrap errors (based on

400 bootstrap replications) for different risk measures (mean-variance MV,

conditional value-at-risk CVaR, and value-at-risk VaR). The bold font represents

statistical significance (at the 5% nominal level) of individual coefficients except for

the last row where the bold font signifies a statistically different price from E(y).
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MV CVaR0.9 CVaR0.95 VaR0.9 VaR0.95

Intercept 0.0059 0.0080

( 0.0003) ( 0.0005)

RF -0.2533 -0.0510 0.0696 -0.2882 -0.1159

( 0.1112) ( 0.0718) ( 0.1184) ( 0.0672) ( 0.0788)

MARKET 0.0082 0.0079 -0.0067 0.0074 0.0048

( 0.0056) ( 0.0062) ( 0.0102) ( 0.0023) ( 0.0037)

SMB 0.0256 0.0315 0.0467 0.0288 0.0237

( 0.0080) ( 0.0097) ( 0.0169) ( 0.0051) ( 0.0094)

HML 0.0132 0.0079 -0.0096 0.0034 0.0108

( 0.0080) ( 0.0089) ( 0.0141) ( 0.0020) ( 0.0075)

UMD -0.0034 0.0334 0.0546 -0.0032 -0.0032

( 0.0052) ( 0.0073) ( 0.0120) ( 0.0015) ( 0.0028)

TERM -0.0509 -0.0581 -0.0070 -0.0835 -0.0819

( 0.0241) ( 0.0223) ( 0.0160) ( 0.0165) ( 0.0263)

DEF -0.0568 0.0005 0.1904 -0.0562 -0.0802

( 0.0312) ( 0.0007) ( 0.0648) ( 0.0178) ( 0.0332)

Price 0.0054 0.0159 0.0223 0.0064 0.0083

( 0.0000) ( 0.0001) ( 0.0002) ( 0.0001) ( 0.0002)

Table 2.6: Hedging Consumption Growth.

The table reports the estimates and their corresponding bootstrap errors (based on

400 bootstrap replications) for different risk measures (mean-variance MV,

conditional value-at-risk CVaR, and value-at-risk VaR). The bold font represents

statistical significance (at the 5% nominal level) of individual coefficients except for

the last row where the bold font signifies a statistically different price from E(y).

47



Model Lsmooth L25 LNA LCVaR LCS LMV

FF3 6 6 2 2 2 2

CAY 6 6 2 2 2 2

Table 2.7: Values for Lsmooth, L25, LNA, LCVaR, LCS, LMV, LNAMV.
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γ0 γ1 γ2 γ3 mean(γf)

0.9975 -0.0407 -0.0146 -0.1140 0.9964

(0.0019) (0.0028) (0.0061) (0.0047) (0.0010)

Table 2.8: FF3 model, No Arbitrage

α γ0 γ1 γ2 γ3 mean(γf)

1,5,10% 0.9975 -0.0407 -0.0146 -0.1140 0.9964

(0.0019) (0.0028) (0.0061) (0.0047) (0.0010)

Table 2.9: FF3 model, CVaR

c γ0 γ1 γ2 γ3 mean(γf)

0.1 0.2311 -0.0026 -0.0023 -0.0016 0.2316

(0.0001) (0.0001) (0.0003) (0.0002) (0.0001)

0.25 0.2467 -0.0031 -0.0027 -0.0019 0.2473

(0.0001) (0.0001) (0.0003) (0.0002) (0.0001)

1 0.6281 -0.0161 -0.0196 -0.0388 0.6321

(0.0008) (0.0011) (0.0020) (0.0010) (0.0005)

Table 2.10: FF3 model, CS
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δ γ0 γ1 γ2 γ3 mean(γf)

0.1 0.3132 -0.0015 -0.0013 -0.0010 0.3135

(0.0001) (0.0001) (0.0001) ( 0.0001) ( 0.0001)

0.25 0.3223 -0.0017 -0.0016 -0.0011 0.3227

( 0.0001) ( 0.0001) ( 0.0002) ( 0.0001) ( 0.0001)

1 0.5814 -0.0120 -0.0112 -0.0085 0.5840

( 0.0003) ( 0.0006) ( 0.0011) ( 0.0008) ( 0.0002)

Table 2.11: FF3 model, MV
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γ0 γ1 γ2 γ3 mean(γf)

1.2822 -0.6862 0.5187 -0.3580 0.9444

( 0.0492) ( 0.0792) ( 0.1171) ( 0.2623) ( 0.0134)

Table 2.12: CAY, No Arbitrage

α γ0 γ1 γ2 γ3 mean(γf)

1,5,10% 1.2822 -0.6862 0.5187 -0.3580 0.9444

( 0.0492) ( 0.0792) ( 0.1171) ( 0.2623) ( 0.0134)

Table 2.13: CAY, CVaR

c γ0 γ1 γ2 γ3 mean(γf)

0.1 0.2338 -0.0046 0.0009 -0.0005 0.2313

( 0.0013) ( 0.0019) ( 0.0008) ( 0.0014) ( 0.0006)

0.25 0.2499 -0.0068 0.0014 -0.0008 0.2462

( 0.0019) ( 0.0028) ( 0.0012) ( 0.0020) ( 0.0008)

1 0.7772 -0.3847 0.0880 -0.0484 0.5657

( 0.0586) ( 0.0874) ( 0.0726) ( 0.1219) ( 0.0101)

Table 2.14: CAY, CS
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δ γ0 γ1 γ2 γ3 mean(γf)

0.1 0.3147 -0.0005 0.0001 -0.0001 0.3144

( 0.0001) ( 0.0002) ( 0.0001) ( 0.0001) ( 0.0001)

0.25 0.3241 -0.0006 0.0001 -0.0001 0.3238

( 0.0002) ( 0.0003) ( 0.0001) ( 0.0002) ( 0.0001)

1 0.6287 -0.1168 0.0258 -0.0156 0.5645

( 0.0219) ( 0.0321) ( 0.0199) ( 0.0334) ( 0.0049)

Table 2.15: CAY, MV
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Chapter 3

A Staggered Pricing Approach to

Modeling Speculative Storage:

Implications For Commodity Price

Dynamics

The last decade has witnessed a surge in commodity prices and a widespread fi-

nancialization of commodity products. The upward movements and the increased

volatility of the commodity prices have been largely attributed to strong demand by

China and other emerging markets as well as massive capital flows into the commod-

ity markets by institutional investors, portfolio managers and speculators. While the

importance of commodity price movements for the economic policy and investors’

sentiment has generated a substantial research interest, the behavior and the deter-

mination of commodity prices is not yet fully understood. The main objective of

this paper is to develop a structural model of commodity price determination that

reflects the empirical properties (high persistence and conditional heteroskedasticity)

of commodity prices. In order to achieve this goal and to gain further understanding
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into the fundamental factors that drive the observed behavior of commodity prices,

we modify the structure of the speculative storage model from one where the prices

adjust almost instantaneously to harvest shocks to a setup where they change slowly

and infrequently. More specifically, we depart from the assumption that market

prices are determined in a perfectly competitive environment and extend the basic

speculative storage model by explicitly introducing intermediate goods speculators

with a staggered pricing rule. One appealing aspect of this approach is its ability to

mimic some important characteristics of the actual commodity prices such as high

persistence and conditional heteroskedasticity, which can be generated even in the

absence of correlated harvest shocks.

The speculative storage model for commodity prices can be dated back to Gustafson

(1958) who defines a set of optimal storage rules that state how much grain should

be carried over into the next period given the current year supply. Moreover, by

introducing intertemporal storage arbitrage and supply shocks, Gustafson (1958) in-

corporates rational expectations. This line of research is further elaborated in Muth

(1961). Samuelson (1971) develops a model for commodities which determines the

behavior of the prices as the solution to a stochastic dynamic programming problem.

Furthermore, Beck (1993) builds upon the work by Muth (1961) and provides a the-

oretical basis for treating the variance of storable commodities as serially correlated

which suggests that commodity prices may exhibit conditional heteroskedasticity.

The presence of storage is instrumental in ensuring that the price variance in one pe-

riod directly affects inventory variance which in turn is transmitted to next period’s

price variation. Williams and Wright (1991) provide a comprehensive discussion of

the basic storage model and its extensions, and summarize the time series proper-

ties of storable commodities. Williams and Wright (1991) put an emphasis on the

complex non-linear storage behavior resulting from the fact that aggregate storage

cannot be negative.
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Deaton and Laroque (1992, 1995, 1996) develop a partial equilibrium structural

model of commodity price determination and apply numerical methods to test and

estimate the model parameters, confronting for the first time the storage model with

the documented behavior of actual prices. Their analysis suggests that the introduc-

tion of speculative inventories and serially correlated supply shocks do not appear to

generate sufficient persistence in commodity prices although they prove to be suc-

cessful in replicating the substantial volatility observed in the actual data.

More recently, numerous studies have focused on modifying the storage model in

order to accommodate the persistence of commodity prices. Chambers and Bailey

(1996) relax the iid assumption on harvest shocks, and study the price fluctuations

of storable commodities, assuming that shocks are either time dependent or that the

model exhibits periodic disturbances. Ng and Ruge-Murcia (2000) incorporate addi-

tional features into the storage model in an attempt to generate a higher degree of

persistence in commodity prices. In particular, Ng and Ruge-Murcia (2000) allow for

serially correlated shocks assuming that harvest follows a first-order moving average

(MA(1)) process. They also examine the ability of production lags and heteroskedas-

tic supply shocks, multi-period forward contracts and convenience yields to generate

an increased persistence in commodity prices. Cafiero, Bobenrieth, Bobenrieth, and

Wright (2011) demonstrate that the competitive storage model can give rise to high

levels of serial correlation observed in commodity prices if more precise numerical

methods are employed. Moreover, estimates for seven commodities supported the

specification of the speculative storage model with positive constant marginal costs

and no deterioration, which is in line with Gustafson (1958).

Furthermore, Cafiero, Bobenrieth, Bobenrieth, and Wright (2011) use a maxi-

mum likelihood framework to estimate the storage model with stock-outs, which is

extended to include unbounded harvests and free disposal. Their results produce
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more accurate small sample estimates of the structural parameters of the model com-

pared to the previous studies based on the pseudo-maximum likelihood procedure.

Miao and Funke (2011) add shocks to the trends of output and demand. Evans and

Guthrie (2007) include transaction cost frictions into the speculative storage model.

One important finding that emerges from their analysis is that these frictions tend

to have explanatory power for the dynamic behavior of spot and futures commodity

prices. In a competitive equilibrium framework, the model of Evans and Guthrie

(2007) is able to capture the serial correlation and GARCH characteristics of com-

modity prices. Finally, Arseneau and Leduc (2012) embed the speculative storage

model into a general equilibrium framework. Their main result is that the interac-

tion between storage and interest rates in general equilibrium increases the impact

of competitive storage on commodity prices and leads to higher persistence than the

one observed in the storage model with fixed interest rate.

In spite of this extensive literature for understanding the determinants and the

dynamic patterns of commodity prices, reproducing the documented high persistence

and conditional heteroskedasticity of actual prices within a well-articulated structural

model proved to be a challenging task. In this paper, we address the issues regarding

the commodity price dynamics in a unified fashion by embedding a staggered pricing

mechanism into the speculative storage model. While Arseneau and Leduc (2012) also

suggest to “introduce staggered price setting on the part of the final goods producing

firm” in a general equilibrium framework as a possible extension for future research,

our paper is the first to implement this approach and assess the properties of the

model-generated commodity prices against the observed data.

In an attempt to depart from the assumption of perfect competition at both the

production and storage activity, Newbery (1984), Williams and Wright (1991), and

McLaren (1999) investigate the effects of market power on the storage behavior. Our

model differs from their work along the dimension that the final bundler does not
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store the good and the storage is only done by intermediate risk neutral speculators.

The final bundler only bundles intermediate prices in order to set the final price.

Finally, Mitraille and Thille (2009) examine the market power in production with

competitive storage by analyzing the effects that competitive storage has on the

behavior of a monopolist. Using his market power, the monopolist can influence

speculative activity by manipulating prices and consequently affect the distribution

of prices. One of the findings of Mitraille and Thille (2009) is that stockouts occur

less frequently under monopoly.

The focus of this paper is on the improved ability of the storage model with

staggered prices to account for the empirical features of commodity prices. The main

impact of staggered prices in our model is to dampen the movements in prices as

well as the market power of intermediate speculators to affect prices. This leads

to gradual adjustments and persistent responses of prices following a harvest shock.

In addition to generating sufficient persistence in commodity prices, the staggered

pricing approach allows us to match other important moments in the unconditional

and conditional distributions of the commodity prices.

Nominal price rigidity is often incorporated in dynamic general equilibrium models

with two widely used nominal price rigidity specifications in the literature. On one

hand, the partial adjustment model developed by Calvo (1983), Rotemberg (1987),

and Rotemberg (1996) allows for only a randomly chosen fraction of firms to adjust

their prices according to some constant hazard rate in any given period. On the

other hand, the staggered price setting rule adopted by Taylor (1980) and Blanchard

and Fisher (1989) permits all firms to optimize their prices after a fixed number of

periods.

In this paper, we assume that the pricing decisions are staggered as in Calvo

(1983) and use a similar modeling framework as the one developed in McCandless

(2008). Even though the staggered pricing is not generated endogenously within the
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model, it serves as a useful device to impart the inefficiencies in the agricultural com-

modity markets such as price floors, subsidies, import/export quotas and controls,

government strategic stock reserves, collusion etc. that prevent prices to adjust in-

stantaneously to changes in economic conditions. Note that these types of market

inefficiencies induce some product differentiation and allow us to depart from the typ-

ical assumption in the literature that commodities tend to be homogeneous products

whose prices are fully flexible and equal to their marginal costs. Our results confirm

the importance of staggered prices for commodity price dynamics and suggest that

the staggered pricing mechanism appears to be consistent with the behavior of the

actual data. Moreover, we show how our model can be used to analyze the response

of commodity prices to harvest shocks which provides a framework for economic and

policy evaluation.

The remainder of the paper is organized as follows. The competitive storage model

with staggered prices as well as the statistical characterizations of this model are

presented in Section 2. Section 3 studies the practical implications of our staggered

price speculative storage model using simulated data. Section 4 contains a brief

description of the data and the estimation method used in the paper, and presents

the main empirical results. Section 5 concludes.

3.1 Competitive Storage Model with Staggered Prices

This section introduces the model setup and characterizes the equilibrium and sta-

tistical behavior of the model-generated commodity prices.

3.1.1 Model and Equilibrium Price Behavior

The rational expectations model determines the optimal inventory decisions by risk-

neutral speculators. The basic version of the model developed by Deaton and Laroque
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(1992, 1995, 1996)1 incorporates competitive storage into the consumer demand and

supply dynamics and establishes the concept of stationary rational expectations equi-

librium (SREE). The model with serial correlation in harvest shocks is tested by Ng

and Ruge-Murcia (2000). In their paper, Ng and Ruge-Murcia (2000) consider an

MA(1) specification for the model harvest shocks. Our model complements and

extends the original DL model by embedding a staggered price setting into the spec-

ulative storage model. Regarding the harvest shock specification, we consider both

(i) iid harvest shocks and (ii) MA(1) harvests shocks.

Our modified model has three types of commodity market participants: final

consumers, intermediate risk neutral speculators and a bundler2 who bundles the

commodities in order to set the final price. In the absence of storage, the behavior

of final consumers is characterized by a linear inverse demand function

pt = P (zt) = a+ bzt,

where a and b < 0 are parameters to be estimated and zt denotes the harvest in

period t.

Let the harvest zt be given by

zt = z̄ + ut,

where z̄ is constant (perfectly inelastic) and ut is a random disturbance term which

1For brevity, we denote hereafter the basic speculative storage model of Deaton and Laroque by
DL.

2In the literature, it is common to use the term “monopolist” instead of the term “bundler” that
we employ in this paper. The reason that we prefer the latter is the following: in the staggered
pricing literature, the final goods producer maximizes profits by setting the price. In this paper, we
do not consider any profit maximization and any type of price setting for the final goods producer.
Instead, we use directly the final goods prices as set in (3.6).
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is assumed either to be iid or to follow an MA(1) process

ut = et + ρet−1,

where et is iid(0, σ
2). If ρ = 0, we have the case of iid shocks as in DL, and when

ρ > 0, we have MA(1) shocks as in Ng and Ruge-Murcia (2000). In this paper, we

investigate both cases and show that when we add staggered prices, the case for ρ = 0

gives better results compared to the case of non-staggered prices and ρ > 0.

Intermediate risk neutral speculators or inventory holders know the current year

harvest and demand the commodity to transfer to the next period. They will do

so whenever they expect to make a profit above the storage and interest cost. The

depreciation rate of storage is denoted by δ. A simple form of proportional deteriora-

tion is considered which means that if in period t the speculators store I units of the

commodity, they have at their disposal (1 − δ)I units at the beginning of the next

period. Moreover, speculators have to pay the real interest rate on the value of their

storage. Let r denotes the constant exogenous real interest rate. The sum of harvest

and inherited inventories, denoted by xt, is referred to as the amount on hand and is

given by

xt = (1− δ)It−1 + zt.

The relationship between the amount of storage and its net profit can be summarized

as










It > 0 if (1− δ)/(1 + r)Et[pt+1] = pt,

It = 0 otherwise,

where Et denotes the expectation given the information at time t.

The condition for non-negative inventories is the crucial source of non-linearity

in the model. This specification does not allow the market participants to borrow

commodities that have not yet been grown. In addition, intermediate speculators
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benefit from market power that reflects their ability to affect the price. In this

framework, we assume that there is a continuum of intermediate speculators (of unit

mass indexed by k ∈ [0, 1]) and final big players in the market. Final players collect all

the commodities from intermediate speculators and bundle intermediate speculators’

prices into the final price in order to sell the commodity to consumers. In reality,

the price level of many commodities is influenced either through the formation of

cartels by producers or through government intervention by imposing export control

agreements or keeping strategic stock reserves. Although some of those cartels brake

up in the long run, as discussed in Gilbert (1987), all of them have a strong influence

on commodity prices, at least in the short-run. Hence, the introduction of these final

big players who bundle prices tends to generate persistence in commodity prices over

consecutive periods.

For simplicity, we assume that there exists a bundler who bundles all intermediate

speculators’ prices into a single one. Each period t, a fraction 1−γ (0 < 1−γ < 1) of

the speculators is able to exploit their market power and to reset the prices of their

commodities P ∗
t (k). In contrast, those who did not benefit from their market power

to affect prices, retain their last period prices: P ∗
t (k) = P ∗

t−1(k). Given this staggered

pricing rule, along with the assumptions that speculators are risk neutral and have

rational expectations, intermediate speculators’ current and expected future prices

must satisfy

P ∗
t (k) = max

{

p(xt), (1− γ)
1− δ

1 + r
Et[P

∗
t+1(k)] + γP ∗

t (k)

}

. (3.1)

The first term in the brackets represents the price if the harvest is sold to consumers

in period t and no inventories are carried over to the next period. The second term

is known as the intertemporal Euler equation. This is the value of one unit stored if

1− γ of the speculators benefit form their market power to affect the price. This, in

turn, occurs if the speculators expect to cover their costs (after depreciation) from
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buying the commodity at time t. Since the current period bundler prices are not yet

determined, it is important to stress that speculators, who do not reset their prices,

use their own current prices and not the market ones in order to determine P ∗
t (k) in

(3.1).

Finally, the bundler will bundle all intermediate prices together according to the

following pricing rule (see McCandless (2008))

P 1−ψ
t = γP 1−ψ

t−1 + (1− γ)P ∗
t (k)

1−ψ,

where Pt denotes the bundler final price of the good, the parameter ψ is the gross

markup of the intermediate goods speculators and P ∗
t (k) represents the price for

intermediate goods speculators who can set their prices. Since all intermediate goods

speculators who can fix their prices are assumed to have the same markup over the

same marginal costs, P ∗
t (k) is the same for all intermediate risk neutral speculators

who adjust their prices. Prices for intermediate speculators who cannot set their

prices are the same as the previous period prices denoted by Pt−1.

In order to simplify the bundler’s pricing rule, we use the log-linearized version

of this equation so that the final price becomes

p̃t = γp̃t−1 + (1− γ)p̃∗t (k), (3.2)

where p̃t and p̃
∗
t denote the logarithm of Pt and P

∗
t , respectively.

After completing the description of our model, we elaborate on some important

implications of equation (3.1). As implied by this equation, the intermediate risk

neutral speculators’ price follows a non-linear first-order Markov process with a kink

at the price above which we do not have inventories. In the case of iid shocks, the

kink is determined by

p̂ = (1− γ)
1− δ

1 + r
Ep(z) + γp̂.
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This implies that

p̂ =
1− δ

1 + r
Ep(z) (3.3)

which coincides with the kink given in DL.

However, as in Chambers and Bailey (1996), the price kink p̂ in the case of

correlated harvests shocks is no longer constant and varies with the current harvest.

This is due to the fact that with serially correlated harvest shocks, speculators form

their price forecasts using all the information contained in the current shock.

Under some regularity conditions, most notably r + δ > 0 and that z has a

compact support, DL establish the existence of a solution to (3.1) when γ = 0 and

shocks are independent. Indeed, to show the existence of the demand function for

non-independent shocks, it is enough to prove the independent case conditioning on

time t. In our case, we proceed by following a similar approach to proving that such

an equilibrium exists. Assume that the demand xt always lies in a subset X = [z,+∞)

of the real numbers and that the harvest shock zt belongs to a compact set Z = [z, z̄].

Definition Assume that γ ∈ [0, 1). A staggered stationary rational expectation

equilibrium (SSREE) is a price function f : X× Z → R which satisfies the following

equation

pt = f(xt, zt) = max

{

p(xt), (1− γ)
1− δ

1 + r
Etf(zt+1 + (1− δ)It, zt+1) + γf(xt, zt)

}

where

It = xt − p−1(pt) = xt − p−1(f(xt, zt)). (3.4)

This defines the price function

P ∗
t (k) = f(xt, zt),

where f(xt, zt) is the unique, monotone decreasing in its first argument, solution to
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the functional equation. Since this price function is non-linear, numerical techniques

similar to the ones adopted by DL and Michaelides and Ng (2000) are used to solve

for f(xt, zt)

f(xt, zt) = max

{

p(xt), (1− γ)
1− δ

1 + r
Etf((zt+1 + (1− δ)It), zt+1) + γf(xt, zt)

}

.

In the case of independent shocks, we can remove the time subscript and the shocks

in f .

When γ = 0 and the shocks are iid, we have the same model as the one considered

by DL. Hence, the equilibrium is simply called SREE. In the following theorem we

show that the staggered stationary rational expectation equilibrium (SSREE) coin-

cides with the stationary rational expectation equilibrium (SREE) derived from the

basic DL speculative storage model.

Theorem 3.1.1 If shocks are iid, then SSREE=SREE.

Proof See Appendix A. �

Remark Theorem 3.1.1 shows that pt = P ∗
t . This allows us to use all of the results

for the process pt, that are available in the literature, for the process P ∗
t .

We next show that the final demand for the bundler in our staggered speculative

model is different form the one in DL. It proves useful to compare the price processes

in the speculative storage model with and without staggered prices for the market

participants who can reset their prices. In the basic speculative storage model of DL,

the market participants cannot hold negative inventories. If prices are expected to

increase or decrease by less than the cost of carrying the commodity from one period

to another, inventories are zero. If inventories are positive, the expected price next

period is equal to the current price plus the storage costs. The final price of the
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commodity in the basic speculative storage model satisfies

pt = max

{

p(xt),
1− δ

1 + r
Etpt+1

}

.

Hence,










pt =
1−δ
1+r

Etpt+1 if It > 0;

pt = p(xt) if It = 0.

However, as stated in the description of our speculative storage model with staggered

prices, the intermediate risk neutral speculators price function satisfies

P ∗
t = max

{

p(xt), (1− γ)
1− δ

1 + r
EtP

∗
t+1 + γP ∗

t

}

.

In this case,










P ∗
t = (1− γ)1−δ

1+r
EtP

∗
t+1 + γP ∗

t , if It > 0;

P ∗
t = p(xt) if It = 0.

(3.5)

It can be easily seen from (3.5) that the prices for intermediate risk neutral speculators

who can adjust them satisfy the same equation as the one that speculators face in

the basic storage model of DL.

Since the final price process in the speculative storage model with staggered prices

is given by

p̃t = γp̃t−1 + (1− γ)p̃∗t (k), (3.6)

one can infer that the demand of the bundler (the final demand) will be different from

the demand presented by DL in the basic speculative storage model. We expect the

final demand for speculative storage model with staggered prices to be in between

the DL demand and the regular market demand. Moreover, we expect this demand

to be more inelastic than the one derived from the basic speculative storage model.

This is more consistent with the commodity elasticities estimated from actual data.
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3.1.2 Statistical Characterization

Under the assumption of iid harvests shocks, the final log-price process satisfies equa-

tion (3.6). The bundler price can then be written as

Pt = Pt−1
γ P ∗

t
1−γ. (3.7)

The persistence of commodity prices is then simply an outcome of the staggered

prices which is extensively discussed in the literature on staggered pricing. Here, we

provide an alternative explanation. From the logarithmic form of the relation (3.7),

we have by induction that

p̃t+1 = (1− γ)
t
∑

i=0

γip̃∗t+1−i

which in turn yields

Pt+1 =

(

t
∏

i=0

P ∗
t+1−i

γi

)1−γ

.

This shows that Pt+1 shares overlapping terms prices in previous periods which gives

rise to high persistence.

Next, we show that the final prices of the bundler exhibit conditional heteroskedas-

ticity which is another salient characteristic of the observed commodity prices. Note

that from (3.7), we have

Et−1(P
2
t ) = Pt−1

2γEt−1(P
∗
t
2(1−γ)) (3.8)

and

(Et−1Pt)
2 = Pt−1

2γ(Et−1(P
∗
t
1−γ))2. (3.9)

Combining (3.8) and (3.9) and assuming that the shocks are iid, the conditional
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variance of the final prices is given by

Vart−1(Pt) = Pt−1
2γ
[

E
(

f(z + (1− δ)It−1)
2(1−γ)

)

− (E(f(z + (1− δ)It−1)
1−γ)2

]

.

(3.10)

In the absence of inventories in the previous period, It−1 = 0, the variance reduces to

Vart−1(Pt) = Pt−1
2γVar

(

f(z)1−γ
)

. (3.11)

From (3.10) and (3.11), we can see that the variance is time-varying and, as a result,

the final commodity prices derived from our model exhibit conditional heteroskedas-

ticity. In addition, it is worth noting that the variance also depends on the value of

γ.

It is interesting to point out that the form of the conditional variance in (3.11)

bears strong resemblance to modeling the conditional heteroskedasticity in interest

rate models (see, for instance, Brenner, Harjes, and Kroner (1996)). In these models,

there is a parameter that allows the volatility of interest rates to depend on the level

of the process. Similarly, higher values of the parameter γ in equation (3.11) indicate

that the volatility of commodity prices is more sensitive to their past level which

generates volatility clustering.

3.2 Model Comparisons Using Simulated Data

In this section we examine the statistical properties of the simulated data from our

commodity price model with staggered pricing. In order to assess the qualitative

and quantitative implications of our model, we compare it to the basic speculative

storage model of DL and the modified version of the speculative model of Ng and

Ruge-Murcia (2000). The model of Ng and Ruge-Murcia (2000) extends the DL

model by adding serially correlated harvest shocks that follow an MA(1) process, as
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well as gestation lags, heteroskedastic supply shocks, multi-period forward contracts

and convenience yields.

In our simulations, we calibrate the models using the parameter values estimated

by Deaton and Laroque (1996) for a set of 12 commodities. These parameters (a, b, δ),

presented in Table 3.1, are the same as the parameters used by Ng and Ruge-Murcia

(2000). The data are simulated using iid harvest shocks or MA(1) harvest shocks

with an MA parameter ρ = 0.8. We denote our speculative storage model with

staggered prices by ADG.

Table 3.2 presents the results for the first-order autocorrelation of the simulated

prices from the different models. The first column of Table 3.2 reports the autocorre-

lations from the actual data used in Deaton and Laroque (1996), the second column

shows the results from the basic DL model (ρ = 0) and the third column contains

the results obtained using DL model with MA(1) shocks (ρ = 0.8). The highest

autocorrelation for the simulated prices from the DL model is for Maize (0.413 for

the basic DL model and 0.644 for the specification with MA(1) harvest shocks). For

all other commodities, the serial correlation in the simulated prices is well below the

persistence in the actual prices.

The last two columns of Table 3.2 report the results from our model. For all

commodities, the autocorrelation coefficients of the simulated prices based on the

ADG model are much higher than those of the DL model specifications and are

very close to the autocorrelations obtained from actual data. Once we account for

staggered pricing, the additional effect of serially correlated harvest shocks is minimal.

Furthermore, Table 3.3 lends additional support to our ADGmodel with staggered

prices. In this table, we compare the autocorrelation coefficients for the model by Ng

and Ruge-Murcia (2000) with gestation lags, overlapping contracts and convenience

yields to those computed from our ADG model in columns 4 and 5 of Table 3.2.

Ng and Ruge-Murcia (2000) add gestations lags to the DL basic specification in an
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attempt to reduce the number of periods where the intertemporal price link between

periods with and without production is severed. Consequently, this increases the

serial correlation in prices. For this purpose, Ng and Ruge-Murcia (2000) assume

that there are odd and even periods and that harvest takes place in the even periods.

Hence, the random disturbance term of the harvest process has a variance that could

differ if the period is odd (σ1) or even (σ2). The highest autocorrelations are reached

for a value of σ2
σ1

= 1.8. This model is denoted by GS. The results from the GS

specification are reported in column 2 of Table 3.3.

Ng and Ruge-Murcia (2000) also show, in contrast to the earlier literature on stor-

age where contracts are absent and stockholders are free to roll-over their inventories,

that a model with overlapping contracts can partially explain the high serial corre-

lation in prices. Column 3, denoted by OV in Table 3.3 reports the corresponding

autocorrelation coefficients.

Finally, Ng and Ruge-Murcia (2000) add a convenience yield to the DL model.

Since inventory holders might derive convenience from holding inventories, Ng and

Ruge-Murcia (2000) introduce both a speculative and a convenience motive for in-

ventory holding. Hence, since the convenience yield partially compensates inventory

holders for the expected loss when the basis is below carrying charges, their model

with convenience yield generates a smaller number of stock-outs and, as a result, the

demand for inventories for convenience purposes strengthens the intertemporal link

resulting in a higher persistence of prices. Results for c = 50 are reported in column

4 of Table 3.3. The model is denoted by CY.

Overall, the results in Table 3.3 suggest that the different specifications of Ng and

Ruge-Murcia (2000) cannot generate autocorrelation coefficients greater than 0.640

and they are below the autocorrelation coefficients from our ADG model and the

actual data across all commodities.
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3.3 Empirical Application

This section presents new empirical results from estimating the structural parameters

of our proposed model using monthly data for four agricultural commodities..

3.3.1 Data

The data set employed in this empirical application consists of prices for four agricul-

tural commodities: sugar, soybeans, soybean oil, and wheat. The commodity prices

are obtained from the Commodity Research Bureau and are available at daily fre-

quency for the period March 1983 – July 2008. The trading characteristics of these

commodities are summarized in Table 3.4.

The spot price is approximated by the price of the nearest futures contract.

Monthly commodity price series are constructed from daily data by averaging the

daily prices in the corresponding month. The monthly frequency is convenient for

studying the persistence and conditional heteroskedasticity in commodity prices. The

real commodity prices are obtained by deflating the nominal spot prices by the CPI

(seasonally adjusted) index obtained from the Bureau of Labor Statistics (BLS). Each

deflated price series is then further normalized by dividing by the sample average.

By performing this additional normalization, each series has a historical mean of one

which allows us to conduct easier comparisons of the estimated parameters across

various price series.

3.3.2 Estimation Method: Simulated Method of Moments

This section provides a brief description of the simulated method of moments (SMM)

which is used for estimating the model parameters. The main advantage of SMM

lies in its flexibility of the choice of moment conditions that allow us to identify

the staggered pricing parameter γ. See Pakes and Pollard (1989), Lee and Ingram
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(1991) and Duffie and Singleton (1993) for a detailed description of the method and

its asymptotic properties, and Michaelides and Ng (2000) for an investigation of its

finite-sample properties in the context of the speculative storage model.

The SMM estimator requires repeatedly solving the model for given values of

the structural parameters. For this reason, we present some computational details

regarding the solution of the model. The function f(x) is approximated using cu-

bic splines and 100 grid of points for x. This function is calculated using an it-

erative procedure, starting with an initial value f0(x) = max[p(xt), 0]. As in DL,

the interest rate r is not estimated but it is fixed at 5 percent per annum or 0.41

percent (r = 1.05
1

12 − 1 = 0.0041) per month. In addition, we calibrate the depre-

ciation rate δ and set it equal to 0.04 per month. One reason to calibrate δ is that

the SMM estimator tends to over-estimate δ as indicated by Michaelides and Ng

(2000). Finally, the harvest shocks z are discretized using a discrete approximation

of a standard normal random variable with z taking one of the following 10 values:

(±1.755,±1.045,±0.677,±0.386,±0.126), with equal probability of 0.1.

It is worth noting that the prices used for estimation of ADG model parameters

represent the prices of intermediate risk neutral speculators, not the final prices that

are given by the data set described above. Hence, we first retrieve the prices of

intermediate risk neutral speculators from the final prices given by the time series of

commodity prices using the equation

Pt
∗ =

(

Pt
Pt−1

γ

)
1

1−γ

. (3.12)

Let θ = (a, b, γ)′ denote the vector of structural parameters of the model. Sample

paths of commodity prices can be simulated from the assumed structural model for

a candidate value of θ. In what follows, we simulate one sample path of prices P̃t(θ)

of length TH, where H = 20 and T is the sample size of the observed prices Pt. The

SMM estimator of θ is then obtained by minimizing the weighted distance (using an
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optimal weighting matrix) between the moments of the observed data Pt (empirical

moments) and simulated data P̃t(θ) (theoretical moments). Let m(Pt) and m(P̃t(θ))

denote the set of moments from the observed and simulated data. Then, the SMM

estimator θ̂ is defined as

θ̂ = ArgminθDT (θ)V
−1
T DT (θ), (3.13)

where

DT (θ) =
1

T

T
∑

t=1

m(Pt)−
1

TH

TH
∑

t=1

m(P̃t(θ)),

and VT denotes a consistent estimator of

V = lim
T→∞

Var

(

1√
T

T
∑

t=1

m(Pt)

)

.

The vector of moments

m(Pt) = [Pt, (Pt − P̄ )i, (Pt − P̄ )(Pt−1 − P̄ )]′, for i = 2, 3, 4, (3.14)

is chosen to capture the dynamics and the higher-order unconditional moments of

actual commodity prices. The long-run variance V is estimated using the Parzen

window

w(x) =











1− 6x2 + 6|x|3 if |x| ≤ 1/2,

2(1− |x|3) if 1/2 ≤ |x| ≤ 1
(3.15)

with four lags.

Under some regularity conditions, Lee and Ingram (1991) and Duffie and Singleton

(1993) show that the SMM estimator is asymptotically normally distributed

√
T (θ̂ − θ0) → N(0,ΩH), (3.16)
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where ΩH =
(

1 + 1
H

)

(

E

[

∂m(P̃t(θ0))
∂θ

]′

V −1E

[

∂m(P̃t(θ0))
∂θ

]

)−1

. The derivatives ∂m/∂θ

are computed numerically and ΩH is replaced by a consistent estimator in construct-

ing the standard errors of the parameter estimates.

3.3.3 Empirical Results

The estimation results for the ADG model parameters are presented in Table 3.5.

The standard errors of the estimated parameters, based on the asymptotic approxi-

mation described above, are reported in parentheses below the parameter estimates.

The standard errors for the staggered price parameter γ are low for all of the four

commodities indicating that γ is well identified and significantly different from zero.

The mean of γ for the four commodities is equal to 0.85. The parameter estimates

for b satisfy the constraint b < 0. For most of the cases, the standard errors of the

estimated parameters a and b are relatively low.

In this paper, we argue that the high persistence and the conditional heteroskedas-

ticity in commodity prices appear to be primarily driven by the staggered price pa-

rameter γ. To illustrate this, we simulate 200 price series, each of length of 300

observations. The set of parameters used to conduct the simulations is (a, b, δ) =

(.7,−3, .04) and r = .0041. We compute the first-order autocorrelation for each se-

ries and then calculate the average over the Monte Carlo replications. We repeat the

same exercise for four different values of γ, γ = (0, 0.3, 0.6, 0.9). In the first three

columns of Table 3.7 we report the first-order autocorrelation for the actual data,

ADG and DL models, respectively. Table 3.6 shows that incorporating staggered

prices into the speculative storage model does increase the first-order autocorrelation

of the prices and makes it comparable to the sample autocorrelation of the actual

data. More specifically, as γ increases from γ = 0 (which represents the case for the

DL model) to γ = 0.9, the first-order autocorrelation increases from 0.6 to 0.9.

To visualize the differences between the two models, Figure 3.1 plots the actual
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price of soybean, the simulated prices generated by our ADG model with iid harvest

shocks and estimated parameters (a, b, γ) = (0.352,−4.787, 0.909), and the simulated

prices generated by DL model with estimated parameters (a, b, δ) = (0.723,−0.394, 0.130).

It is clear from the graph that our staggered price model generates more persistent

data with volatility clustering which is closer to the actual price dynamics of soybean

prices presented in Figure 3.1. Also, in Figure 3.2 we trace the dynamic responses

of the simulated commodity prices following a negative harvest shock. The gradual

adjustment of the commodity prices from the ADG model stands in sharp contrast

with the stronger but short-lived impact of the harvest shock on commodity prices

in the DL model.

Next, in order to reveal the advantages of our ADG model in matching the dy-

namics in the first two conditional moments of the data, we simulate 200 series of

prices, each of length of 300 observations, using the parameters estimated from ADG

model (reported in Table 3.5). We repeat the same exercise, using the same values

for the parameters a and b but setting γ = 0, which represents the case for the DL

model. We filter the simulated prices from both the DL and ADG models using an

AR(1) model and then fit a GARCH(1,1) model to each of the pre-filtered series

using the following equations:

Pt = a0 + a1Pt−1 + εt

εt = σtzt

σ2
t = κ+ αε2t−1 + βσ2

t−1.

Figures 3.3 and 3.4 plot the distribution of the parameter estimates β̂ and α̂ for

the ADG and DL models. The figures clearly suggest that the ADG model provides

an improvement over DL model by better capturing the conditional heteroskedastic-

ity. In fact, the medians for β̂ and α̂, generated by ADG model, are much closer

74



to the parameters (denoted by bullets) estimated from actual data. Table 3.7 sum-

marizes the results by reporting the means of the autocorrelations and the GARCH

parameters for the ADG and DL models against the statistics from the actual data.

Overall, the results lend strong support to the staggered pricing feature of the mod-

ified speculative storage model of commodity price determination.

3.4 Conclusion

The main objective of this paper is to propose a model which is able to reproduce

the statistical characteristics of the actual commodity prices. Our modified specula-

tive storage model embeds a staggered price feature into the DL storage model. The

staggered pricing rule is incorporated by introducing intermediate good speculators

and a final goods bundler. We examine the empirical relevance of the structural

modification by comparing our model performance with several models in the litera-

ture, namely DL and the extended DL version of Ng and Ruge-Murcia (2000). Our

analysis suggests that the proposed model outperforms the existing models along

several dimensions such as matching the serial correlation and GARCH dynamics of

the observed commodity prices. We also estimate the vector of structural parameters

for the ADG model with uncorrelated harvest shocks using monthly data for four

agricultural commodity prices. The results tend to suggest that the staggered price

parameter is large and it proves to be instrumental in generating the documented

persistence and conditional heteroskedasticity of commodity prices.

While our paper provides convincing evidence for the importance of integrating

staggered pricing features in modeling the dynamics of commodity prices, it only

serves as an initial step towards better understanding of the source of the gradual

adjustment of commodity prices and the role of market power and government inter-

vention in commodity price determination. Explicitly incorporating institutional ar-

rangements, different risk preferences as well as possible existence of financial hedges
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in some commodity markets might offer a more solid justification for the sluggishness

of commodity prices adopted in this paper. Finally, developing a full structural model

in which staggered pricing is generated endogenously within the model appears to be

a promising direction for future research.
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3.5 Appendix: Proof of Theorem 3.1.1

First, we state the assumptions for the theorem.

Assumptions: Assume that

A.1 r + δ > 0.

A.2 The harvest shocks z belong to a compact set Z = [z, z̄];

A.3 The function p−1 : (q0, q1) → R is continuous and strictly decreasing such that

lim
q→q0

p−1(q) = +∞.

Furthermore, we have that z ∈ p−1(p0, p1) and p(z) ∈ R+ \ {0}.

Following Deaton and Laroque (1992), for any function g on the set X = [z,+∞)

we introduce a function G on Y = {(q, x)|x ∈ X , p(x) ≤ q < q1} which has the form

G(q, x) = (1− γ)
1− δ

1 + r
Eg(z + (1− δ)(x− p−1(q))) + γq. (3.17)

If γ = 0, then G is the same as in Deaton and Laroque (1992). Let GDL denote the

function when γ = 0:

GDL(q, x) =
1− δ

1 + r
Eg(z + (1− δ)(x− p−1(q))).

It can be seen that G = (1− γ)GDL + γp.

Theorem 3.1.1 aims to find a function f such that

f(x) = max{G(f(x), x), p(x)}, ∀x ∈ X, (3.18)

where we also have f = g. To prove the theorem, we use the following lemma.
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Lemma 3.5.1 For a given g, the unique solution f : X → R to (3.18) equals fDL,

where fDL is the unique solution to the same problem when γ = 0.

Proof For each x, f(x) is the solution to the following equation for q

max{G(q, x)− q, p(x)− q} = 0. (3.19)

It can be seen that

G(q, x)− q = (1− γ)GDL(q, x) + γq − q = (1− γ)(GDL(q, x)− q).

Thus, the solution q is a solution to

max{(1− γ)(GDL(q, x)− q), p(x)− q} = 0. (3.20)

But this is equivalent to solving3

max{GDL(q, x)− q, p(x)− q} = 0, (3.21)

which gives the desired result. �

This lemma shows that for any g, there is a unique f which is the solution to

(3.18). Therefore, we can introduce an operator T and denote f with Tg.

Proof of Theorem 3.1.1 From Lemma A.1 it follows that T is the same as the op-

erator introduced in Deaton and Laroque (1992). It is shown in Deaton and Laroque

(1992) that T is an operator from the set of non-increasing and continuous functions

on X to itself and has a unique fixed point f , i.e., f = Tf . It then follows that

this unique fixed point is the unique SSREE or SREE. This completes the proof of

Theorem 3.1.1. �
3For a positive number θ and two real numbers a, b, we have that max{a, b} = 0 ⇔ max{θa, b} =

0.
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3.5.1 Tables

Table 3.1: Parameter estimates from the DL (1996) model.

Commodity a b δ

Cocoa 0.162 -0.221 0.116

Coffee 0.263 -0.158 0.139

Copper 0.545 -0.326 0.069

Cotton 0.642 -0.312 0.169

Jute 0.572 -0.356 0.096

Maize 0.635 -0.636 0.059

Palm oil 0.461 -0.429 0.058

Rice 0.598 -0.336 0.147

Sugar 0.643 -0.626 0.177

Tea 0.479 -0.211 0.123

Tin 0.256 -0.170 0.148

Wheat 0.723 -0.394 0.130
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Table 3.2: Comparing autocorrelations for DL and ADG models based on 5000 ob-

servations.

Commodity Actual DL DL ADG ADG

ρ = 0 ρ = 0.8 ρ = 0 ρ = 0.8

γ = 0 γ = 0 γ = 0.8 γ = 0.8

Cocoa 0.834 0.352 0.609 0.7715 0.8446

Coffee 0.804 0.219 0.576 0.7811 0.8501

Copper 0.838 0.335 0.619 0.8918 0.9074

Cotton 0.884 0.173 0.564 0.8626 0.9053

Jute 0.713 0.289 0.589 0.8817 0.9072

Maize 0.756 0.413 0.644 0.9246 0.9180

Palm oil 0.730 0.397 0.637 0.9079 0.9050

Rice 0.829 0.237 0.579 0.8700 0.9078

Sugar 0.621 0.266 0.583 0.8860 0.9184

Tea 0.778 0.213 0.571 0.8332 0.8893

Tin 0.895 0.238 0.567 0.7547 0.8462

Wheat 0.863 0.250 0.602 0.8834 0.9198
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Table 3.3: Comparing autocorrelations for Ng and Ruge-Murcia and ADG models

based on 5000 observations.

Commodity Actual GL OV CY ADG ADG

ρ = 0 ρ = 0.8

γ = 0.8 γ = 0.8

Cocoa 0.834 0.511 0.462 0.522 0.7715 0.8446

Coffee 0.804 0.433 0.385 0.530 0.7811 0.8501

Copper 0.838 0.526 0.394 0.608 0.8918 0.9074

Cotton 0.884 0.365 0.337 0.473 0.8626 0.9053

Jute 0.713 0.486 0.365 0.545 0.8817 0.9072

Maize 0.756 0.620 0.418 0.623 0.9246 0.9180

Palm oil 0.730 0.640 0.438 0.625 0.9079 0.9050

Rice 0.829 0.398 0.334 0.475 0.8700 0.9078

Sugar 0.621 0.427 0.370 0.424 0.8860 0.9184

Tea 0.778 0.428 0.302 0.509 0.8332 0.8893

Tin 0.895 0.428 0.355 0.472 0.7547 0.8462

Wheat 0.863 0.411 0.368 0.505 0.8834 0.9198
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Table 3.4: Description of commodity prices data.

Description Exchange Contract size Contract month

Foodstuffs

SB : Sugar No.11/World raw NYBOT 112,000 lbs. H,K,N,V

Grains and Oilseeds

S : Soybean/No.1 Yellow CBOT 5,000 bu. F,H,K,N,Q,U,X

BO : Soybean Oil/Crude CBOT 60,000 lb. F,H,K,N,Q,U,V,Z

W : Wheat/No.2 Soft red CBOT 5,000 bu. H,K,N,U,Z

Notes: This table provides a brief description about each commodity. The

first column presents the symbol description and the second one lists the futures

exchange where the commodity is traded. In this table, CBOT refers to Chicago

Board of Trade, NYBOT: New York Board of Trade. The third column states the

contract size and the last column provides the contract months denoted by: F =

January, G = February, H = March, J = April, K = May, M = June, N= July, Q =

August, U = September, V = October, X = November and Z = December.
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Table 3.5: Parameters estimation for ADG model using SMM, with δ = 0.04 and

r = 0.004.

Commodity a b γ

W 0.4227 -4.6606 0.9476

(0.0102) (0.2929) (0.0086)

BO 0.7860 -2.1265 0.7621

(0.0177) (0.1354) (0.0237)

S 0.7209 -2.7562 0.8524

(0.0454) (0.3256) (0.0343)

SB 0.2264 -5.6592 0.9474

(0.0195) (0.4351) (0.0099)

Table 3.6: First order autocorrelations for simulated price series.

γ = 0 γ = 0.3 γ = 0.6 γ = 0.9

Auto. corr. 0.6122 0.7899 0.9172 0.9838
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Table 3.7: First order autocorrelation, β and α parameter for GARCH(1,1) of actual

prices.

Auto. corr. β α

Com. Actual ADG DL Actual ADG DL Actual ADG DL

W 0.9648 0.9899 0.6387 0.6977 0.6719 0.4834 0.2283 0.3006 0.5138

BO 0.9679 0.9550 0.5989 0.7903 0.5160 0.4089 0.1473 0.4709 0.5804

S 0.9697 0.9765 0.6180 0.3413 0.5674 0.4476 0.3410 0.4194 0.5483

SB 0.9620 0.9902 0.6680 0.9018 0.6781 0.4852 0.0798 0.2977 0.5126
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3.5.2 Figures

Figure 3.1: Actual data of soybean and the Simulated data

From models with staggered pricing and without staggered pricing.
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Figure 3.2: Impulse response function based on simulated data.
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Figure 3.3: Distribution of β.

For simulated data from models with and without staggered pricing. The

dash-point indicates the ADG model and the other one is the DL model. Bullet

indicates β for the actual data. Simulation is conducted based on a sample of 300

periods, repeated 200 times.
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Figure 3.4: Distribution of α

For simulated data from models with and without staggered pricing. The

dash-point indicates the ADG model and the other one is the DL model. Bullet

indicates α for the actual data. Simulation is conducted based on a sample of 300

periods, repeated 200 times.
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