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Abstract

Monodromy Criterion for the Good Reduction of K3 Surfaces.

Genaro Hernández Mada, PhD.

Concordia University, 2015.

Let p > 3 be a prime number and K a finite extension of Qp. We consider a proper

and smooth surface XK over K, with a semistable model X over the ring of integers OK

of K. In this thesis, we give a criterion for the good reduction of XK for the case of K3

surfaces, in terms of the monodromy operator in the second De Rham cohomology group

H2
DR(XK).

We don’t use trascendental methods nor p-adic Hodge Theory as in other works concern-

ing this problem (such as [Ma14], [LM14] and [Pe14]). Instead, we first get a p-adic version

of the Clemens-Schmid exact sequence and use it to study the degree of nilpotency of the

monodromy operator N on the log-crystalline cohomology group of the special fiber Xs of

the semistable model X.

By the work of Nakkajima ([Na00]), we can assume that Xs is a combinatorial K3 sur-

face. Then, we prove that Xs is of type I iff N = 0; Xs if of type II iff N 6= 0, N2 = 0; Xs

is of type III iff N2 6= 0. In particular, this implies that XK has good reduction if and only

if the monodromy operator on H2
DR(XK) is zero.

Finally, we also give some ideas on how to address the same problem for the case of

Enriques surfaces. In particular, we prove that we are reduced to the case of K3 surfaces.
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Chapter 1

Introduction

Let p be a prime number and K a finite extension of Qp. Consider a smooth, proper and

geometrically irreducible scheme XK over Spec K.

Definition 1.0.1. We say that XK has good reduction if there exists a smooth, proper

scheme X over OK with generic fiber XK , i.e.,

XK
∼= X×Spec OK

Spec K

The question of whether XK has good reduction or not can be answered via `-adic or

p-adic criteria in some cases. For example, if XK = AK is an abelian variety and GK

the absolute Galois group of K, we get that AK has good reduction if and only if for all

` 6= p (equivalently, for some ` 6= p), the `-adic GK-representation T`(AK) is unramified

(see [ST68]). The p-adic criterion says that AK has good reduction if and only if the p-adic

GK-representation Tp(AK) is crystalline (see Theorem II.4.7 in [CI99] and Corollaire 1.6 in

[Br00]). Recall that in general, for semistable p-adic representations, this is equivalent to

having trivial monodromy operator.

For more general varieties, the criteria from the preceding paragraph are not valid, but in

some cases, different criteria can be obtained. For example, if XK is a curve with semistable

reduction, Oda (in [Oda95]) obtained an `-adic criterion looking at the Galois action on the

étale fundamental group and Andreatta-Iovita-Kim (in [AIK13]) obtained its p-adic version

studying the monodromy action on the De Rham fundamental group. This means that it

1



2 Introduction

is not enough to look at the first cohomology group with its Galois/monodromy action, but

one needs to look at the whole fundamental group (i.e., not only its abelianization).

In this thesis, we shall obtain a p-adic criterion for the analogous situation for K3

surfaces. Namely, we suppose that p > 3 and XK is a smooth, projective K3 surface over

Spec K having a minimal semistable model X over the ring of integers OK of K. We may

assume to have combinatorial reduction (see proposition 3.4 in [Na00]). Then, since we

are dealing with K3 surfaces, the first De Rham cohomology group is trivial, as well as

the connected De Rham fundamental group. Now we look at the monodromy action on

the higher De Rham cohomology groups Hi
DR(XK). The monodromy N is given in the

frameweork of the theory of log-schemes and log-crystalline cohomology (see [HK94]). Then

our result is the following:

Under the hypotheses above, the K3 surface XK has good reduction if and only if the

monodromy N is zero on H2
DR(XK).

In fact we shall get more than that. We know that the operator N is always nilpotent

(N3 is always trivial). In case of not having good reduction, we can refine the theorem just

stated: the type of bad reduction is determined by the order of nilpotency of N . For the

complete result, see theorem 5.2.1.

One can also note that once that we obtain this criterion for good reduction in terms of

the monodromy operator on log-crystalline cohomology, we also get an étale one. Namely:

XK has good reduction if and only if H2
ét(XK ,Qp) is a crystalline representation. This is a

consequence of our criterion and the comparison theorems in [Ts99].

Over the complex numbers, the analogue of the previous situation can be understood as

a semistable family of varieties over the complex unit disk. Given a semistable degeneration

of K3 surfaces, the works of Kulikov ([Ku77]), Persson-Pinkham ([PP81]) and Morrison

([Mo84]) show how the monodromy action on the generic fiber determines the behavior of

the special one. We state the most important results for this classical situation in section

4.1. To prove this, one uses all the information coming from the structure of the family:

weight-monodromy conjecture and Clemens-Schmid exact sequence. Our proof has been

inspired by these methods.

The monodromy on the De Rham cohomology ofXK is given by the monodromy operator

on the log-crystalline cohomology of the special fiber Xs (which is in characteristic p)
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endowed with the induced log-structure (see for example [HK94]). Using Nakkajima’s results

on deformations of K3 surfaces ([Na00]) we may construct a log-smooth deformation of our

special fiber over the ring of formal power series k[[t]], where k is the residue field of K.

Then, using a Popescu’s version of Artin approximation, we can get a deformation of Xs

over a smooth scheme Y over k[t] (possibly of dimension larger than 1). Finally, by taking

a well-chosen curve inside Y , we are reduced to the case of a family over a smooth curve, so

we can use Chiarellotto-Tsuzuki’s results for this setting. In particular, for such a family, we

can use the weight-monodromy conjecture and the existence of a Clemens-Schmid type exact

sequence. This gives the elements to rephrase Kulikov-Persson-Pinkham’s and Morrison’s

results in characteristic p, allowing us to get our main theorem (theorem 5.2.1), which is

similar to the one obtained by Pérez Buendía in [Pe14]. This method of proof is completely

different to the one used by Matsumoto in [Ma14] and by Liedtke and Matsumoto in [LM14],

who obtain results related to ours.

One can expect to use our methods to study the case of semistable Enriques surfaces.

Indeed, we can follow our techniques along the lines we used for K3 surfaces, since again by

Nakkajima’s work ([Na00]) we have a classification of the possible special fibers. In chapter

6 we describe the ideas to treat this problem.

Let us give an outline of this thesis. We begin in chapter 2 stating the most basic

tools that we use in the proof of our main theorem. These are logarithmic structures, log-

deformations, cohomology theories and Néron-Popescu desingularization. Then, in chapter

3 we give a brief study of K3 surfaces, first over C and then for more general fields, such as

fields in characteristic p > 0.

Chapter 4 is devoted to get a generalization of Clemens-Schmid exact sequence in

characteristic p > 0. First we begin by recalling the classical Clemens-Schmid exact sequence

and an application of it. Then, we make a brief description of Chiarellotto and Tsuzuki’s

work on a p-adic version of the Clemens-Schmid exact sequence. Then, we proceed to work

on our situation of study, describing first the geometric situation and then using Néron-

Popescu desingularization (see [Sw95]) to write the ring of formal power series k[[t]] as a

limit of smooth k[t]-algebras:

k[[t]] = lim
−→
α

Aα.
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This allows, in a similar way to what is done in section 4 of [It05], to see our situation as a

fiber inside a larger family of varieties f : XA → Y = Spec A, where A = Aα for some α.

Then, we can use the relative cohomology theories defined and studied by Shiho in [Sh08],

which give relative cohomology sheaves on a formal scheme, that is a smooth lifting Y of Y .

This is useful once that we have a deformation, which we have by the results in chapter 3.

In section 4.5 we state the results on relative cohomology that are useful for our purposes.

In particular, we need the base change theorem and the comparison isomorphisms between

the different cohomology theories (log-crystalline, log-convergent and log-analytic), since

these are needed to use the results in [CT12]. This means that the relative cohomology

sheaves, defined on the large family, satisfy the desired properties.

Then, in section 4.6, we construct a smooth curve C inside Y in such a way that we can

restrict the family XA → Y , as well as the cohomology sheaves, to a smaller family XC over

this curve. In particular, this allows us to use the main result in [CT12] and get the version

of the Clemens-Schmid exact sequence for this setting:

· · · → Hm
rig(Xs) → Hm

log−crys((Xs,Ms)/W
×)⊗K0

N
−→

Hm
log−crys((Xs,Ms)/W

×)⊗K0(−1) → Hm+2
Xs,rig

(XC) → Hm+2
rig (Xs) → · · ·

In chapter 5 we get out main result. First in section 5.1 we use the Clemens-Schmid

exact sequence in characteristic p to get criteria for N to be the zero map on H1
log−crys or

H2
log−crys, assuming that we are dealing with a semistable family of varieties over a smooth

curve over a finite field. For this, we use the fact that the monodromy and weight filtrations

on the special fiber coincide ([CT12]). If we do not assume that the special fiber is inside

a semistable family of varieties, this is known only for the case of curves and surfaces (see

[Mk93]). The criteria that we get in this section are in terms of the Betti numbers of the

dual graph of the special fiber, which can be easily described in the case of combinatorial

reduction. As we mentioned before, we can always restrict ourselves to this case.

Finally, in section 5.2, after introducing deformation theory for K3 surfaces along the

lines of Nakkajima ([Na00]), we apply the criteria from section 5.1 to the case of K3

surfaces, assuming that the special fiber is combinatorial, i.e., it is one of three possible

types. We obtain that the degree of nilpotency determines the type of degeneracy we will

get. Our main result will be stated in theorem 5.2.1, and as a consequence we get that the
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trivial monodromy action on the second de Rham cohomological group is equivalent to good

reduction (corollary 5.2.1).

In the last chapter, we state some ideas for further work. Once that we have found a

criterion for good reduction of K3 surfaces, we shall treat the analogue problem for Enriques

surfaces. As in the case of the criterion for curves (in [AIK13]), an idea is to study some

kind of “homotopy" or rational homotopy theory and the monodromy action on it (see for

example [Lz14]). Heuristically, an Enriques surface X is not simply connected, but has the

same second homotopy group as its universal covering, which is a K3 surface X ′, which is

simply connected, hence this second homotopy group is in fact the second cohomology group

of X ′. Following this idea, in section 6.1 we give a description of the universal covering of

an Enriques surface, and then in section 6.2 we state how to apply it in order to get the

desired result.



Chapter 2

Preliminaries

In this chapter we recall the basic notions and the results that will be useful for the

development of the next chapters. In particular, we present log-structures following [Ka89],

log-deformations following [Sc68], [Ka], [Na00], and K3 surfaces.

2.1 Logarithmic Structures

The notion of logarithmic structure was formulated by J.M. Fontaine and L. Illusie and

developed by K. Kato in [Ka89]. It allows to study a new range of smooth morphisms,

which are not necessarily smooth in the classical sense.

2.1.1 Pre-log and Log Structures

We shall consider only commutative monoids with a unit element.

Definition 2.1.1. Let X be a scheme. A pre-log structure on X is a sheaf of monoids M

on the étale site Xét endowed with a morphism α :M → OX , where OX is considered as a

monoid with the operation of multiplication.

Definition 2.1.2. A morphism (X,M) → (Y,M) of schemes with pre-log structures is a

pair (f, h) of a morphism of schemes f : X → Y and a homomorphism h : f−1N →M such

6



2.1 Logarithmic Structures 7

that the diagram

f−1N

f−1OY

M

OX

.....................................................................................................................................
.....
.......
.....

........................................................................................................................... ............
h

.....................................................................................................................................
.....
.......
.....

.................................................................................................................. ............

is commutative.

Definition 2.1.3. A pre-log structure (M,α) on X is called a logarithmic structure (or log

structure) if α induces an isomorphism α−1O×X
∼= O×X . The couple (X,M) is called a log

scheme.

Remark 2.1.1. We can make analogue definitions for a formal scheme instead of the scheme

X.

An immediate example of log structure on a scheme X is given by the monoid O×X with

the inclusion O×X ⊂ OX . The main example of log structure that we shall use is the following:

Let X be a regular scheme and D a reduced divisor with normal crossings. Then, we define

M as

M = {g ∈ OX : g is invertible outside D} ⊂ OX .

In fact, this is an example of a fine log structure (see section 2 of [Ka89]).

Remark 2.1.2. Given a pre-log structure M on X, we can define an associated log structure

Ma as the push-out of the diagram

α−1O×X

O×X

M.................................................................................................................. ............

.....................................................................................................................................
.....
.......
.....

in the category of sheaves of monoids on Xét, endowed with the morphism Ma → OX

defined by the formula

(a, b) 7→ α(a)b ∀a ∈M, b ∈ O×X
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Given a morphism of schemes f : X → Y , and a log structure on Y , the sheaf of monoids

f−1M gives a pre-log structure on X via the composition

f−1M → f−1OY → OX .

We define the inverse image of M to be the log structure associated to f−1M and we denote

it by f∗M . In fact one can also define direct images, but we are not going to need them.

The reader can find the definition in page 193 of [Ka89].

2.1.2 Log smooth and Log étale morphisms

As mentioned at the beginning of the chapter, the notion of log schemes allows to define a

notion of “smoothness” for morphisms that are not necessarily smooth in the classical sense.

In general, a morphism of log schemes f : (X,M) → (Y,N) is said to be a closed immersion

if X → Y is a closed immersion and f∗N →M is surjective. With this notion, we can define

log smoothness and log étaleness, in an analogous way to the usual notions of smoothness

and étaleness.

Definition 2.1.4. Let f : (X,M) → (Y,N) a morphism of log schemes (with M and N

fine log structures). We say that f is log smooth (resp. log étale) if for any commutative

diagram
(T ′, L′)

(T, L)

(X,M)

(Y,N)

.....................................................................................................................................
.....
.......
.....

f

.............................................................................................. ............

.....................................................................................................................................
.....
.......
.....

i

.......................................................................................................... ............

with L,L′ fine log structures, i a closed immersion defined by an ideal I on T with I2 = 0,

there exists étale locally on T (resp. there exists a unique) g : (T, L) → (X,M) making the

complete diagram commutative.

In the next chapter we shall see examples of log smooth morphisms. In fact, we shall get

an important example by the following criterion:
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Proposition 2.1.1. Let f : (X,M) → (Y,N) be a morphism of log schemes. Assume we

are given a chart QY → N of N . Then, f is smooth (resp. étale) if and only if étale locally

on X, there exists a chart (PX → M,QY → N,Q → P ) of f extending the given QY → N

such that the following two conditions are satisfied:

(i) The kernel and the torsion part of the cokernel (resp. the kernel and the cokernel) of

Qgp → P gp are finite groups of orders invertible on X.

(ii) The induced morphism X → Y ×Spec Z[Q] Spec Z[P ] is étale (in the classical sense).

The proof can be found in [Ka89] (see theorem 3.5).

2.2 Log-Deformations

In this section we study the other main tool that plays a central role in the development of

the theory, specially for what is done in chapter 3. This is the theory of log deformations,

developed mainly by F. Kato ([Ka96]), and which is a log version of the theory of Schlessinger

([Sc68]).

2.2.1 Pro-representable functors and hulls

Here we follow [Sc68]. We consider a complete noetherian local ring Λ, with maximal ideal

µ and residue field k. Denote by C the category of artinian local Λ-algebras having residue

field k (i.e., the structure morphism Λ → A induces a trivial extension of residue fields).

Denote by Ĉ the category of complete artinian local Λ-algebras such that A/mn is in C for

all n.

Given a functor F : C → Sets (covariant and such that F (k) has only one element), we

extend it to Ĉ by

F̂ (A) := lim
←−

F (A/mn).

For any R in Ĉ, we denote by hR the functor on C hR(−) = Hom(R,−). Then, for any

functor on C we have a canonical isomorphism

F̂ (R)
∼
−→ Hom(hR, F ).
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For the definition of this isomorphism, look at [Sc68]. Take into consideration that the

factorization for some n is due to the fact that we are dealing with artinian algebras.

Given a functor F : C → Sets and a pro-couple (R, ξ) (this is, R ∈ C and ξ ∈ F̂ (R)),

we say that (R, ξ) pro-represents F if the morphism hR → F corresponding to ξ is an

isomorphism.

Definition 2.2.1. A morphism of functors F → G is smooth if for any surjection B → A

in C, the morphism

F (B) → F (A)×G(A) G(B)

is surjective.

Remark 2.2.1. If F → G is smooth, then for any A in Ĉ, we have F̂ (A) → Ĝ(A) is

surjective.

For any functor F : C → Sets, we denote by tF its tangent space, which is defined to

be F (k[ε]), where k[ε] is the ring of dual numbers. Usually, tF has an intrinsic structure of

vector space (Lemma 2.10 in [Sc68]).

Definition 2.2.2. A pro-couple (R, ξ) is a pro-representable hull of F , or just a hull of F , if

the morphism hR → F induced by ξ is smooth and the induced map tR → tF is a bijection.

Remark 2.2.2. If the pro-couple (R, ξ) pro-represents F , then it is also a hull. Moreover,

in this case (R, ξ) is unique up to canonical isomorphism. In general we only have non

canonical isomorphism (for hulls).

Definition 2.2.3. A surjection p : B → A in C is called a small extension if ker p is a

nonzero principal ideal annihilated by the maximal ideal of B.

Now we can state the following theorem. For the proof, see [Sc68].

Theorem 2.2.1. Let F be a functor C → Sets, such that F (k) contains only one point.

Let A′ → A and A′′ → A be morphisms in C, and consider the map

F (A′ ×A A
′′) → F (A′)×F (A) F (A

′′). (2.1)

Then,
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(i) F has a hull if and only if F has the following three properties:

(a) (2.1) is a surjection whenever A′′ → A is a small extension.

(b) (2.1) is a bijection when A = k, A′′ = k[ε].

(c) dimk(tF ) <∞.

(ii) F is pro-representable if and only if F satisfies the three preceding properties and

F (A′ ×A A
′) → F (A′)×F (A) F (A

′)

is a bijection for any small extension A′ → A

We shall see that theorem 2.2.1 can be used to prove that the functors that we are

interested in are pro-representable or at least have a hull. We introduce the first one in the

next section.

2.2.2 Deformation functors

Let X be a fixed scheme over k and A ∈ C. A deformation of X/k to A is a flat scheme

Y over A, together with a morphism i : X → Y , such that X = Y ⊗A k. If Y ′ is another

deformation to A, we say that Y and Y ′ are isomorphic deformations if there exists a

morphism f : Y → Y ′ over A which induces the identity on the closed fiber X. This implies

in particular that f is an isomorphism of schemes.

We define D(A) to be the set of isomorphism classes of deformations of X/k to A.

Notice that D defines a functor C → Sets. In general, this is not pro-representable, but

using theorem 2.2.1, we can prove the following (see [Sc68]):

Proposition 2.2.1. If X is proper, then D has a hull (R, ξ). Moreover, (R, ξ) pro-represents

D if and only if for each small extension A′ → A, and each deformation Y ′ of X/k to A′,

every automorphism of the deformation Y ′ ⊗A′ A is induced by an automorphism of Y ′.

Remark 2.2.3. A special case in which the functor D is pro-representable, which is treated

in [De81], is when k is an algebraically closed field of characteristic p > 0, W = W (k) the

ring of Witt vectors of k and X is a K3 surface over k.
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Now we would like to get similar results in the log setting. First of all, let us consider

a finitely generated integral saturated monoid Q having no invertible element other than 1.

Denote by CΛ[[Q]] the category of artinian local Λ[[Q]]-algebras with the residue field k, and

ĈΛ[[Q]] the category of pro-objects, as in [Sc68].

Definition 2.2.4. Let A be an object of CΛ[[Q]]. A log smooth lifting of f : (X,M) →

(Spec k,Q) on A is a morphism f̃ : (X̃, M̃) → (Spec A,Q) together with a cartesian diagram

(X,M)

(Spec k,Q)

(X̃, M̃)

(Spec A,Q)

.....................................................................................................................................
.....
.......
.....

f̃

............................................................................................. ............

.....................................................................................................................................
.....
.......
.....

f

............................................... ............

With this definition, we define a functor D(X,M) : CΛ[[Q]] → Sets by associating to each

A the set of isomorphism classes of log smooth liftings of f on A.

Remark 2.2.4. We use an abuse of notation by writing D(X,M), and not making emphasis

on the map f and/or the log structure on the base log point, but for our purposes, this

shouldn’t cause confusion.

The main result in [Ka96], which is proven using the criterion that we gave in the

preceding section, is the following:

Theorem 2.2.2. If X is proper over k, then D(X,M) has a hull.

Remark 2.2.5. As in the smooth case, the case of K3 surfaces is of special interest. In

particular, in that case D(X,M) is pro-representable. In [Na00], Nakkajima uses this functor

and the log enlarged formal Brauer group (see [AM77]) to construct a lifting of semistable

K3 surfaces which will be useful in the following chapters. We treat this in chapter 3.

Moreover, Nakkajima also considers the functor of deformations not only of the log-scheme

but the log-scheme with a line bundle L. That one is pro-representable as well.



2.3 Cohomology Theories 13

2.3 Cohomology Theories

2.3.1 Rigid Cohomology

In this section we state the definitions and results that are useful for our work. For the

proofs, see [Be97ii]. A more complete treatment of Rigid Cohomology can be found at [LS].

We assume the reader familiar with rigid analytic geometry, as in [BGR] or [FV].

We fix a field k of characteristic p > 0, and a complete discrete valuation ring V with

residue field k. We denote by m the maximal ideal of V and by K its fraction field. We

suppose moreover that the valuation v is such that v(p) = 1 and we use the absolute value

given by |p| = p−1.

Let P be a p-adic formal scheme locally topologically of finite presentation over V. Recall

that there is an algebraic k-variety Pk, called special fiber of P, which is homeomorphic as

topological space to P. This allows to identify P and Pk as topological spaces. There is also

a quasi-separated rigid analytic variety over K, denoted by PK and called generic fiber of

P. This is equipped with a map of ringed spaces

sp : PK → P,

called specialization map.

Example 2.3.1. Suppose that A is a complete p-adic V-algebra topologically of finite

presentation. If P = Spf A, then

Pk = Spec (A⊗V k), PK = Spm(A⊗V K).

The specialization map sp : PK → P is given by

x 7→ ker(A→ V(x) → K(x)),

where K(x) denotes the residue field of x ∈ PK and V(x) its valuation ring.

For any closed subset X of Pk, we define the tube of X in P as

]X[P := sp−1(X).
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It is an open subset of PK , hence it has a structure of rigid analytic space.

Now suppose that X is a closed subschema of Pk with an open immersion j : X → X.

Let Z = X −X. An open V ⊂ ]X[P is said to be a strict neighborhood of ]X[P in ]X[P if

{V, ]Z[P} is an admissible covering of ]X[P . For any strict neighborhood V , denote by jV

the inclusion

V ↪→ ]X[P .

For any abelian sheaf F on ]X[P , we define

j†F := lim
−→

V

jV ∗j
−1
V F ,

where the limit is taken over all strict neighborhoods of ]X[P in ]X[P . This defines an exact

functor from the category of abelian sheaves on ]X[P to itself. We define another exact

functor Γ†]Z[ via the short exact sequence

0 → Γ†]Z[F → F → j†F → 0.

With the definitions that we have given in this section, we can define the rigid cohomology

spaces. Let X a separated scheme over k and take a Nagata compactification j : X ↪→ X

over k. Suppose that there exists a closed immersion into a smooth formal V-scheme

X ↪→ P.

Then, we define the rigid cohomology of X as the K-vector space

H∗rig(X) := H∗(]X[P , j
†Ω•

]X[P
).

Remark 2.3.1. In general, we cannot find such an immersion into a smooth formal V-

scheme. This can be done only locally, and then one defines the rigid cohomology via a

Čech complex. More details can be found in section 2 of [Ch99].

Rigid cohomology is compatible with extensions of scalars:

Proposition 2.3.1. Let K ′ be an extension of K, with ring of integers V ′ and residue field
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k′, X a separated k-scheme of finite type and X ′ = X ⊗k k
′. Then, there is a canonical

isomorphism

K ′ ⊗K H∗rig(X)
∼
−→ H∗rig(X

′)

The final two propositions of this section indicate that rigid cohomology generalizes both

crystalline and Monsky-Washnitzer cohomology.

Proposition 2.3.2. Let X be a proper and smooth over k. If W is a Cohen ring of k, there

is a canonical isomorphism

H∗rig(X)
∼
−→ H∗crys(X/W )⊗W K.

Proposition 2.3.3. Let X be affine and smooth over k. Denote by H∗MW its Monsky-

Washnitzer cohomology. Then, there is a canonical isomorphism

H∗rig(X)
∼
−→ H∗MW(X).

2.3.2 Rigid Cohomology with support on a closed subscheme

In this section we define rigid cohomology with support on a closed subscheme. Again our

main reference for the proofs of all the results is [Be97ii].

Let X be a k-scheme of finite type and Z ⊂ X a closed subscheme. Take jX : X ↪→ X

a compactification of X over k, and Z ⊂ X a closed subscheme such that Z ∩X = Z. We

define the rigid cohomology of X with support on Z by

H∗Z,rig(X) := H∗(]X[P ,Γ
†

]Z[j
†
XΩ•

]X[P
).

If X is smooth, then they are finite dimensional K-vector spaces.

Remark 2.3.2. These cohomology spaces do not depend (up to canonical isomorphism) on

the choice of Z,X,P.

Remark 2.3.3. For a fixed X, these cohomology spaces depend only on the topological

space of Z, and not on its subscheme structure. Moreover, if Z = X, then we can take

Z = X, and consequently

H∗X,rig(X) = H∗rig(X).
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Rigid cohomology and rigid cohomology with support on a closed subscheme satisfy the

usual long exact sequence. Namely, using the same notation as before and denoting by

U := X − Z, there is a long exact sequence,

· · · → Hi
Z,rig(X) → Hi

rig(X) → Hi
rig(U) → · · ·

The following result allows to compute the rigid cohomology with support on a closed

subscheme using not all X but only an open subset:

Proposition 2.3.4. Let X be a k-scheme of finite type, Z ⊂ X a closed subscheme, and

X ′ an open of X containing Z. Then, the canonical homomorphism

H∗Z,rig(X) → H∗Z,rig(X
′)

is an isomorphism.

Finally, we have a Gysin isomorphism. Using the same notation as in the previous

proposition, this relates the cohomology of Z with the cohomology of X with support in Z.

Proposition 2.3.5. If Z is of codimension r, then there is a Gysin isomorphism

H∗rig(Z)
∼
−→ H∗+2r

Z,rig(X).

2.3.3 Rigid Cohomology with Compact Support

In this section we define rigid cohomology with compact support. Here our main references

are [Be97i] and [Be97ii].

This notion shall allow to define rigid homology and to have Poincaré duality. We

consider again a separated k-scheme X of finite type. We take a Nagata compactification X

and we suppose that there exists an embedding in a formal V-scheme. Denote Z = X −X,

and i the inclusion ]Z[P ↪→]X[P . For any abelian sheaf F on ]X[P , we define

χ0
]X[(F) := ker(F → i∗i

∗F).
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This defines a left exact functor χ0
]X[ with right derived functors. Then, we define the rigid

cohomology with compact support of X as

H∗c,rig(X) := H∗(]X[P , Rχ
0
]X[(Ω

•
]X[P

)).

The following proposition states the basic properties of this cohomology.

Proposition 2.3.6. 1. There is a canonical homomorphism Hi
c,rig(X) → Hi

rig(X) that

is an isomorphism if X is proper.

2. H∗c,rig is a contravariant functor with respect to proper morphisms and covariant with

respect to open immersions.

3. If X is an open of Y and Z = Y −X, then there is a long exact sequence

· · · → Hi−1
c,rig(Z) → Hi

c,rig(X) → Hi
c,rig(Y ) → Hi

c,rig(Z) → Hi+1
c,rig(X) → · · ·

Finally, this cohomology satisfies Poincaré duality. In general, if X is a k-scheme and

Z ⊂ X is a closed subscheme, there is a cup-product

Hi
c,rig(Z)×Hj

Z,rig(X) → Hi+j
c,rig(X),

which is functorial with respect to proper morphisms. If X is irreducible of dimension d,

there is a trace map

tr : H2d
c,rig(X) → K,

functorial with respect to open immersions. Now if X is smooth, by composition we get the

Poincaré pairing

Hi
c,rig(Z)×H2d−i

Z,rig(X) → H2d
c,rig(X) → K,

which is perfect. In particular, we get:

Proposition 2.3.7. If X is a smooth k-scheme and Z ⊂ X is a closed subscheme, then

there is an isomorphism Hi
c,rig(Z)

∨ ∼= H2d−i
Z,rig(X).
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2.3.4 Relative Log Crystalline Cohomology

In this section we recall the notions and main results of relative log crystalline cohomology

following [Sh08]. We assume the reader familiar with PD-structures. The definition can be

found for example in [BO78].

We begin with a field k of characteristic p, W a fixed Cohen ring of k and K the fraction

field of W . We fix a p-adic fine formal log scheme (B,MB) separated and topologically of

finite type over Spf W . We denote by (B,MB) its reduction modulo p.

Let (X,MX), (Y,MY ) be fine log schemes over (B,MB), and (Y,MY) a p-adic fine formal

log scheme. Suppose that we are given a morphism f : (X,MX) → (Y,MY ) over (B,MB)

and the exact closed immersion ι : (Y,MY ) ↪→ (Y,MY) given by the ideal pOY . In this

situation we define the log crystalline site (X/Y)logcrys:

Definition 2.3.1. An object of (X/Y)logcrys is T := ((U,MU ), (T,MT ), i, δ), where:

• (U,MU ) is a fine log scheme strict étale over (X,MX),

• (T,MT ) is a fine log scheme over (Y,MY)⊗Zp
Z/pnZ for some n,

• i : (U,MU ) ↪→ (T,MT ) is an exact closed immersion over (Y,MY),

• δ is a PD-structure on ker(OT → i∗OU ) which is compatible with the canonical PD-

structure on pOY .

Morphisms are defined in a natural way and the coverings are the ones induced by étale

coverings of T . We denote by OX/Y the sheaf on (X/Y)logcrys defined by T 7→ Γ(T,OT ).

Given any site S, denote by S∼ the associated topos. Then, we have a natural functor

(X/Y)log,∼crys → Y∼Zar defined by

F 7→ (U 7→ Γ((X ×Y U/U)logcrys,F)),

and we denote its right derived functor (resp. qth right derived functor) by RfX/Y,crys,∗F

(resp. RqfX/Y,crys,∗F).

Remark 2.3.4. If we take Y = Spf W , with the log structure defined by 1 7→ 0, we get the

usual log crystalline cohomology Hq
log−crys((X,MX)/W×)
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Now we define the notions of crystals and isocrystals:

Definition 2.3.2. Let F be a sheaf of OX/Y -modules on (X/Y)logcrys and for any object

T of (X/Y)logcrys, denote by FT the induced sheaf on TZar. We say that F is a crystal if

for any morphism ϕ : T ′ → T in (X/Y)logcrys, the canonical morphism ϕ∗FT → FT ′ is an

isomorphism.

A crystal F is of finite presentation (resp. locally free of finite type) if for any object T

of (X/Y)logcrys, FT is an OT -module of finite presentation (resp. a locally free OT -module of

finite type). We denote by Ccrys((X/Y)log) the category of crystals of finite presentation on

(X/Y)logcrys. It is an abelian category.

For any abelian category C, we can define a new category CQ as follows: the objects of

CQ are the objects of C and for any two objects X,Y ,

HomCQ(X,Y ) := HomC(X,Y )⊗Z Q.

When we consider X as an object of CQ, we shall denote it by X ⊗Z Q.

Definition 2.3.3. We define the category of isocrystals on (X/Y)logcrys to be

Icrys((X/Y)log) := Ccrys((X/Y)log)Q.

For an isocrystal E = F ⊗ Q, we shall also use the notation F ⊗K. We can define the

relative log-crystalline cohomology of (X,MX)/(Y,MY) with coefficient E as

RfX/Y,crys,∗E := RfX/Y,crys,∗F ⊗Z Q, RqfX/Y,crys,∗E := RqfX/Y,crys,∗F ⊗Z Q.

In our study we shall use mainly trivial coefficients, i.e., the trivial isocrystal that we denote

by OX/Y,crys. Nevertheless, the results of this section shall be stated in a more general

setting, in the lines of [Sh08].

Relative log crystalline cohomology can be computed using p-adically completed log

PD-envelopes. Assume for the moment that (X,MX) admits a closed immersion

(X,MX) ↪→ (P,MP)
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into a p-adic fine log formal B-scheme, which is formally smooth over (Y,MY). We denote

by (D,MD) the p-adically completed log PD-envelope of (X,MX) in (P,MP) and by

DR(D/Y,F) the log De Rham complex associated to the crystal F (the details of this

construction can be found in section 1 of [Sh08]). Then, we have a quasi-isomorphism

RfX/Y,crys,∗F ∼= Rf∗DR(D/Y,F). For an isocrystal E = F ⊗Q, we define DR(D/Y, E) :=

DR(D/Y,F)⊗Q and we get a quasi-isomorphism

RfX/Y,crys,∗E ∼= Rf∗DR(D/Y, E). (2.2)

In the case where there is no closed immersion (X,MX) ↪→ (P,MP), by [HK94] 2.18, there

is always an embedding system

(X(•),MX(•))

(X,MX)

(P(•),MP(•))....................................................................................................... ............
ι

................................................................................................................................................................................................................
.....
.......
.....

g(•)

with X(•) → X an étale hypercovering and ι a closed immersion into a p-adic fine log formal

B-scheme, which is formally smooth over (Y,MY). Then, by the last part of page 7 in [Sh08],

for any crystal F on (X/Y)logcrys, we have

RfX/Y,crys,∗F = RfX(•)/Y,crys,∗F
(•) = R(f ◦ g(•))∗DR(D(•)/Y,F (•)), (2.3)

where (D(•),MD(•)) denotes the p-adically completed log PD envelope of

(X(•),MX(•))

in (P(•),MP(•)), and F (•) is the pull-back of F to (X(•),MX(•)).

Remark 2.3.5. The formulas 2.3 are still valid for isocrystals.

Now we state the main results regarding the structure of relative log crystalline
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cohomology. For the proofs, see theorems 1.15 and 1.16 of [Sh08].

Theorem 2.3.1. Suppose f is proper and log smooth. Then, for any isocrystal E, the relative

log crystalline cohomology RqfX/Y,crys,∗E is an isocoherent sheaf on Y for any q ∈ N, i.e.,

a sheaf of Q⊗OY -modules on Y which is isomorphic to Q⊗ F , for some coherent sheaf F

of OY -modules. Moreover, RqfX/Y,crys,∗E is zero for sufficiently large q.

Theorem 2.3.2. Assume that E is a locally free isocrystal and that either f is integral or

Y is regular. Then, RfX/Y,crys,∗E is a perfect complex of OY ⊗Q-modules.

To finish this section we state the following base-change theorem:

Theorem 2.3.3. Assume we are given a diagram

(X ′,MX′)

(X,MX)

(Y ′,MY ′)

(Y,MY )

(Y ′,MY′)

(Y,MY)

.....................................................................................................................................
.....
.......
.....

................................................................. ............

................................................................................. ............
f

.....................................................................................................................................
.....
.......
.....

.................................................................... ............

.....................................................................................................................................
.....
.......
.....

ϕ

.................................................................................... ............
ι

where f is proper, log smooth and integral, ι is the exact closed immersion defined by the ideal

pOY and the squares are cartesian. Then, for any locally free isocrystal E on (X/Y)logcrys, we

have the quasi-isomorphism

Lϕ∗RfX/Y,crys,∗E
∼
−→ RfX′/Y′,crys,∗ϕ

∗E .

The proof in general can be found in [Sh08], but as it is pointed out in remark 1.20 of

that reference, for the case of isocrystals of the form F ⊗Q, where F is a locally free crystal

of finite type, this result was essentially obtained in [BO78], 7.8.

2.4 Néron-Popescu Desingularization

In the next chapter we shall use a desingularization result proved by Popescu (theorem 1.8

in [Po]). An exposition of this result, its proof and some of its consequences is the paper of

Swan [Sw95]. In this section we state only the definitions and results that we are going to

use.
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Definition 2.4.1. Let f : R → A be a ring homomorphism. Then, f is said to be

formally smooth if for any R-algebra B with a nilpotent ideal I ⊂ B, and any R-algebra

homomorphism g : A→ B/I, can be lifted to an R-algebra homomorphism g̃ : A→ B

R

B

A

B/I

.....................................................................................................................................
.....
.......
.....

g

.......................................................................................................................................... ............
f

.....................................................................................................................................
.....
.......
.....

.................................................................................................................................... ............

.............................................................................................................................
....
............

g̃

Moreover, f is said to be formally étale if the morphism g̃ is unique

Definition 2.4.2. Using the notation from the previous definition, we say that f is smooth

if it is formally smooth and A is finitely presented over R (via f). Similarly, f is étale if it

is formally étale and A is finitely presented over R.

Example 2.4.1. Any polynomial extension R → R[x1, ..., xn] is smooth. Moreover, let

f1, ..., fn ∈ R[x1, .., xn] and suppose that the jacobian ∆ = det |∂fi/∂xj | is invertible in

R[x1, ..., xn]/(f1, ..., fn). Then, R→ R[x1, ..., xn]/(f1, ..., fn) is smooth.

Example 2.4.2. Let f ∈ R[Y ] be a monic polynomial in one variable. Then, R →

(R[Y ]/(f))f ′ is étale.

We are going to need some extra definitions concerning geometrical regularity. We first

define it for a local ring containing a field, and then for a ring homomorphism. This shall

allow us to state the main theorem of this section.

Definition 2.4.3. Let R be a local ring and suppose that a field k of characteristic p is

contained in R. We say that R is geometrically regular over k if for any finite field extension

k′/k, such that (k′)p ⊂ k, the ring k′ ⊗k R is regular.

Definition 2.4.4. A ring homomorphism f : R → A is geometrically regular if it is

flat and for each prime ideal p of R and each prime ideal q of A lying over p, the ring

Aq/pAq = k(p)⊗R Aq is geometrically regular over k(p) = Rp/pp.

Popescu’s main theorem gives an equivalence condition for a morphism to be

geometrically regular. We shall use this in order to consider a family of varieties defined

over a ring of type k[[t]] as part of a larger family.
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Theorem 2.4.1. Let f : R → A be a morphism of rings. Then, f is geometrically regular

if and only if A is a filtered colimit of smooth R-algebras.

The article [Sw95] is an exposition of the proof of this theorem.

Now we shall focus specifically in the case A = k[[t]], for k a finite field, since this is the

type of rings that we are going to use to prove our main theorem. Namely, it can be checked

that the natural morphism k[t] → k[[t]] is geometrically regular:

Proposition 2.4.1. The natural morphism k[t] → k[[t]] is geometrically regular.

Proof. It is clearly flat, since it is a completion. Now there are only two prime ideals of

k[[t]]. Namely, 0 and (t), and their respective counterpart in k[t] are the only couples to

consider in definition 2.4.4.

Case 1 (the ideal generated by t): in this case, we need to check that k ⊗k[t] k[[t]](t) ∼= k

is geometrically regular over k in the sense of definition 2.4.3, which is trivial.

Case 2 (the ideal 0): in this case, we need to check that k(t)⊗k[t] k((t)) is geometrically

regular over k(t), in the sense of definition 2.4.3. To do this, take a finite extension k′ of k(t)

such that (k′)p ⊂ k(t), and note that k′ is necessarily k(t1/p). Indeed, it is a finite extension

of degree p (hence it does not have any subextension) and (k′)p = k(t). Finally, since

k(t1/p)⊗k(t) (k(t)⊗k[t] k((t))) ∼= k((t1/p)),

we can conclude that k(t1/p)⊗k(t) (k(t)⊗k[t] k((t))) is a regular local ring, which completes

the proof.

In particular,

k[[t]] = lim
−→
α

Aα,

where the Aα’s are smooth k[t]-algebras. One can say even more:

Proposition 2.4.2. Let k be an algebraic closure of k and A a smooth k[t]-algebra. Then,

there exists a finite extension k′ of k and a smooth k′[t]-algebra A′ such that A′ ⊗k′ k ∼= A.

Proof. Let us take a presentation of A of the type k[t][x1, ..., xn]/(f1, ..., fc). Since f1, ..., fc

are a finite number of polynomials, one needs a finite number of elements of k to define

them in the variables t, x1, ..., xn. Let k′ be a finite extension of k containing all of those
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coefficients and define A′ := k′[t][x1, ..., xn]/(f1, ..., fc). We only need to assure that A′ is

smooth over k′[t]. This is a direct consequence of corollary 17.7.3, part ii), in EGAIV.

This proposition implies that if we can deform the geometric special fiber of a proper

scheme over k[[t]], then we can do it for the base change to a finite extension k′/k. In

particular, in this case we can still work with finite fields. This shall be useful to prove

theorem 5.2.1.



Chapter 3

Generalities on K3 surfaces

The notion of K3 surface was introduced by A. Weil and this name was given in honor

of the three geometers Kummer, Kähler and Kodaira. The purpose of this chapter is to

get familiar with the properties of K3 surfaces, since this is the object treated in our main

theorem.

In the first section, we study complex K3 surfaces and in the second we give a more

general definition that works for p-adic fields. In the last section we shall see the results

concerning Log K3 surfaces that will be useful to prove our main theorem.

3.1 K3 Surfaces over C

Here we state only a few basic facts about the theory of complex K3 surfaces. A more

complete treatment of this subject can be found, for example, in [BPV].

Definition 3.1.1. Let X be a compact smooth complex manifold of dimension 2. We shall

say that X is a K3 surface if the following conditions are satisfied:

1. The canonical bundle ωX is trivial.

2. The first Betti number b1(X) = 0.

In [Siu], it is proven that with this definition, any K3 surface is a Kähler manifold. In

particular, one can use Hodge Theory to study their cohomology. We shall do this in section

4.1, where we use the Clemens-Schmid exact sequence in order to get information on certain

25
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families of K3 surfaces.

The Betti numbers, and moreover the Hodge diamond of a complex K3 surface can be

completely described:

Proposition 3.1.1. Let X be a complex K3 surface. Then, b1(X) = b3(X) = 0,

b0(X) = b4(X) = 1, b2(X) = 22. Moreover, its Hodge diamond is the following:

h2,0

h1,0

h2,1

h1,1

h0,0

h2,2

h0,1

h1,2

h0,2 = 1

0

0

20

1

1

0

0

1

Another important fact concerning the cohomology of K3 surfaces is the following

Proposition 3.1.2. Let X be a complex K3 surface. Then, the cup-product ∪ induces a

structure of non-degenerated lattice on H2(X,Z).

This allows to reduce geometric problems into problems of lattices. A very important

result on this is the following, known as the weak Torelli’s theorem:

Theorem 3.1.1. Let X,X ′ be complex K3 surfaces and suppose that there is an isometry

φ : (H2(X,Z),∪) → (H2(X ′,Z),∪) such that φ(H2,0(X)) = H2,0(X ′). Then, X is

isomorphic to X ′.

The proof of this theorem can be found in [LP80].

3.2 K3 Surfaces over more General Fields

We are interested in the case of algebraic K3 surfaces. It is well-known from Hodge Theory

that for complex algebraic surfaces, we have

q := dimH1(X,OX) =
1

2
b1(X).

The number q is called irregularity of X. Thus, in this case the condition 2 of the definition

is equivalent to have irregularity 0. This leads to the more general definition:
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Definition 3.2.1. Let K be any field and X a smooth, proper algebraic variety over K of

dimension 2. We shall say that X is a K3 surface if the following conditions are satisfied:

1. The canonical sheaf ωX is trivial, i.e., isomorphic to OX .

2. The irregularity of X is 0.

This is the definition of K3 surface that we are interested in, since we want to work over

p-adic fields. More specifically, we are interested in finite extensions K of Qp.

Remark 3.2.1. A direct consequence of the first condition of the definition is that the

canonical divisor KX is 0.

By Serre duality, we get that the Euler characteristic χ(OX) of a K3 surface X is 2.

Then, we can compute the Euler number using Noether’s formula:

e(X) = 12χ(OX)−K2
X = 24.

We can also note that since e(X) can be written as alternating sum of the Betti numbers

(that in this case they are the rank of the `-adic cohomology groups, for ` 6= p), we get

that the Hodge diamond with entries hi(X,Ωj
X) is the same as in the complex case. As a

consequence of this, the Hodge spectral sequence

Ep,q
1 = Hj(X,Ωj

X) =⇒ H∗DR(X)

degenerates at level 1.

Now we restrict ourselves to fields of characteristic p > 0. Suppose that k is a perfect

field of characteristic p > 0, and we denote by W = W (k) its ring of Witt vectors. Then,

one may study the modules of crystalline cohomology of a K3 surface X over k and we have:

Proposition 3.2.1. The W -modules of crystalline cohomology Hi
crys(X/W ) are free of rank

1, 0, 22, 0, 1 for i = 0, 1, 2, 3, 4, respectively.

The proof can be found in [De81].

Now we may wonder if we can lift X to characteristic 0, i.e., if there exists some proper

scheme over W such that its special fiber is X. In [De81], Deligne addressed this problem,

using deformation functors.
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Theorem 3.2.1 (Deligne). Let X be a K3 surface over k and X/S its universal deformation

over W . Then, S ∼= Spf W [[t1, ..., t20]].

In order to get the desired lifting, we restrict to certain kind of K3 surfaces.

Definition 3.2.2. Let X be a K3 surface over a perfect field k of characteristic p > 0. We

say that X is ordinary if the height of its Brauer group is 1.

Proposition 3.2.2. The following conditions are equivalent:

1. X is ordinary

2. The Frobenius F : H2(X,OX) → H2(X,OX) is bijective.

3. The Hodge and Newton polygons of H2
crys(X/W ) coincide.

4. Hi(X, dΩj
X/k) = 0 for all i, j.

For the proof of this, see Lemma 1.3 in [Ny83].

If k is moreover a finite field, Nygaard defined a formal lifting Xcan over Spf W by pulling

back the universal formal family X/S along the 0-section Spf W → S. The formal scheme

Xcan is algebraizable, hence it defines a K3 surface lifting, denoted by Xcan, over W . For

the details, see proposition 1.8 of [Ny83].

Definition 3.2.3. Xcan is called the canonical lifting of X.

A similar technique to the one used by Nygaard can be used for log K3 surfaces, which

we treat in the following section.

3.3 Log K3 Surfaces

In this section we state the main results of [Na00]. This shall play a fundamental role in the

proof of our main theorem. We begin by recalling the following:

Definition 3.3.1. Let k be a field and Y a variety over k. We say that Y/k is a

normal crossing variety if Y is geometrically connected, the irreducible components of Y

are geometrically irreducible and are of the same dimension d, and Y is a scheme over k

that étale locally is isomorphic to

Spec k[x0, ..., xd]/(x0 · · ·xr).
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Let m be the number of connected components of the singular locus Ysing of Y . Let

us denote them by Di, for i = 1, ...,m, and assume they are geometrically connected. We

endow Spec k with the log structure defined by Nm → k, as follows:

ei 7→ 0,

for all the canonical generators of Nm. We denote this log-scheme by Spec klog or as

(Spec k,Nm).

For each i = 1, ...,m, we can endow Spec (k[x0, ..., xn]/(x0 · · ·xr)) with a log structure

given by as follows:

Nm+r = Ni−1 ⊕ Nr+1 ⊕ Nm−i → k[x0, ..., xn]/(x0 · · ·xr)

ei 7→





0 if ei ∈ Ni−1

xi−1 if ei ∈ Nr+1

0 if ei ∈ Nm−i

Then,

1. If x is a smooth point of Y , étale locally on a neighbourhood of x, the log structure is

the pull-back of the log structure of the log-point Spec klog

2. If x ∈ Di, étale locally on a neighbourhood of x, the log structure is the pull-back of

the log structure defined above.

Definition 3.3.2. We denote by Y log the log scheme defined above and we call

Y log/Spec klog a normal crossing log (NCL) variety.

Remark 3.3.1. Note that we can also define a log structure in Spec k given by N → k,

1 7→ 0. We denote this by (Spec k,N). Then,

Y ′ log = Y log ×Spec klog (Spec k,N),

where Y ′ log is the canonical log structure associated to a normal crossing variety (see [Ka96]).
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Moreover, they give the same sheaf of relative log differentials

ω1
Y/k = ω1

Y ′/k.

Definition 3.3.3. Let Y log/Spec klog be a NCL variety. We say that it is a simple normal

crossing log (SNCL) variety if the underlying scheme Y is a simple normal crossing variety,

i.e., its irreducible components are smooth and geometrically irreducible.

As one can notice, these definitions are stated for varieties of any dimension, but we

want to focus our attention to the case of surfaces, and more concretely to the case of log

K3 surfaces:

Definition 3.3.4. Let X log/Spec klog be a NCL variety of pure dimension 2. We say that

X log/Spec klog is a normal crossing log K3 surface if the underlying scheme is a proper

scheme over Spec k, such that H1(X,OX) = 0 and ω2
X/k

∼= OX .

Another definition that plays a central role en route to the proof of our main theorem is

that of combinatorial K3 surface.

Definition 3.3.5. Let X be a proper surface over a field k. Let k be an algebraic closure

of k. Consider the following conditions:

I) X is a smooth K3 surface over k.

II) X ⊗k k = X1 ∪ X2 ∪ · · ·XN is a chain of smooth surfaces with X1, XN rational and

the others elliptic ruled, such that the double curves on each of them being rulings.

III) X ⊗k k = X1 ∪X2 ∪ · · ·XN , with every Xi a rational surface, the double curves on Xi

are rational and form a cycle on Xi. The dual graph of X ⊗k k is a triangulation of

the sphere S2.

The surface X is called a combinatorial Type I (Type II or Type III, respectively) K3 surface

if X satisfies I (II or III, respectively), X has a log structure whose charts are given by its

local normal crossing components as in definition 3.3.2, and ω2
X/k

∼= OX .

In general we shall refer to a combinatorial K3 surface when it is not necessary to specify

which type is. Now we give two important results about combinatorial K3 surfaces. They

are theorem 3.3 and proposition 3.4 in [Na00], respectively.
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Proposition 3.3.1. Let X be a combinatorial Type II or Type III K3 surface over k. Then,

Γ(X,ω1
X/k) = 0.

Proposition 3.3.2. Let X log/Spec klog be an SNCL K3 surface. Then, X ⊗k k is a

combinatorial K3 surface.

Since we shall deal with K3 surfaces XK over a p-adic field K, having a semistable model

X, we shall use the following:

Proposition 3.3.3. If XK has a minimal semistable model X, then its special fiber is

automatically an SNCL K3 surface.

This result can be found in page 20 of [Mau12]. The following is a consequence of the

works by Kawamata (beginning of section 1 in [Kw93], and section 3 in [Kw98]), which

together with propositions 3.3.3 and 3.3.2 tells us that if p > 3, we can always assume that

the special fiber is a combinatorial K3 surface.

Proposition 3.3.4 (Kawamata). If XK has a semistable model and p > 3, then XK has a

minimal semistable model.

Now we consider the log-analogue of the notion of ordinaryK3 surface from the preceding

section. Suppose that k is perfect of characteristic p > 0, and let f log : Y log → Spec klog be

a log smooth, integral morphism of Cartier type of fine log schemes such that f is proper.

Definition 3.3.6. f log (or Y log) is said to be log ordinary if Hj(Y, dωi
Y/k) = 0 for all i, j.

One can find log-versions of the equivalences from proposition 3.2.2. In particular, one

can define a log enlarged formal Brauer group of X log and the condition of being log ordinary

is equivalent to this having height 1. This is important when one wants to have a log-lifting

in characteristic 0, since one might proceed as in the preceding section, following what

Nygaard did for ordinary K3 surfaces and do the log analogue of his proof for log ordinary

K3 surfaces. This is what Nakkajima does in section 5 of [Na00], and this theorem is

obtained:

Theorem 3.3.1. Assume that X log is log ordinary. If X is projective, there exists a log

deformation Xlog
can over Spec W [[u1, ..., um]]log.
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We can get a log deformation over Spec W log by specializing each of the variables ui

to p, and a log deformation over Spec k[[t]]log by specializing each of the variables to t and

reducing modulo p.

Now we have the following result that tells us that the log ordinary assumption is not

too restrictive:

Proposition 3.3.5. An SNCL K3 surface X log of Type II is log ordinary if and only if the

double elliptic curve is ordinary. Any SNCL K3 of Type III is log ordinary.

However, one would like to get rid of the log-ordinary assumption, in order to get these

deformations for a more general situation. This is possible, but we need to assume that

the base field k is algebraically closed. This is what Nakkajima does in section 6 of [Na00].

Then, we have the following:

Theorem 3.3.2 (Nakkajima). Let k be an algebraically closed field of characteristic p > 0.

Let X log be a projective SNCL K3 surface over Spec klog. Then, there exists a log smooth

family Xlog over Spec W [[u1, ..., um]]log that is a charted deformation of X log.

And by proceeding as after theorem 3.3.1, we get the following:

Corollary 3.3.1. Let X be a projective SNCL K3 surface over k (algebraically closed). The

following hold:

1) There exists a projective semistable family X̃ over Spec W whose special fiber is X.

2) There exists a projective semistable family X̃ over Spec k[[t]] whose special fiber is X.



Chapter 4

Clemens-Schmid exact sequence

over a local basis

In a classical situation (that we describe in the first section of this chapter), given a semistable

degeneration over the complex unit disk π : X → ∆, the Clemens-Schmid exact sequence

relates the topology and Hodge Theory of the central fiber to that of a generic (smooth)

fiber, by means of the monodromy of the family π∗ restricted to the punctured disk.

One may wonder if it is possible to do a p-adic version of this. A first arithmetic

analogue to a semistable degeneration is a family of varieties in characteristic p > 0 defined

over a smooth curve C, and such that a “special" fiber is a NCD. This geometric situation

was studied by Chiarellotto and Tsuzuki and they obtained a Clemens-Schmid type exact

sequence. In the second section of this chapter we make a brief description of their work

and their main result.

The next natural arithmetic analogue is to consider a family of varieties defined over

Spec V, where V is a complete discrete valuation ring. This is usually understood as an

arithmetic analogue of the complex unit disk. This new problem can have different variants:

mixed characteristic, equicharacteristic p > 0, equicharacteristic 0. The main purpose

of this chapter is to obtain a Clemens-Schmid type exact sequence for one of this cases:

equicharacteristic p > 0. Indeed, we may assume that V = k[[t]], and we shall use Néron-

Popescu desingularization to reduce this problem to the one that Chiarellotto and Tsuzuki

33
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studied. In sections 4.3-4.6 we do this.

4.1 Classical Clemens-Schmid exact sequence

Consider the following classical situation: let ∆ be the open disk around 0 in the complex

plane and X a smooth complex variety of dimension n+1, with Kähler total space. Suppose

that π : X → ∆ is a semi-stable degeneration: a holomorphic, proper and flat map such

that π is smooth outside the central fiber X0 = π−1(0), which is a normal crossing divisor,

i.e., it is a sum of irreducible components meeting transversally, and such that each of them

is smooth.

In this case, the restriction of π to the punctured disc π∗ : X∗ → ∆∗ is a C∞ fibration,

so π1(∆∗) acts on the cohomology Hm(Xt) of the fiber Xt = π−1(t), for any t 6= 0. The

Picard-Lefschetz transformation, denoted by T : Hm(Xt) → Hm(Xt) is the map induced

by the canonical generator of π1(∆∗). Then, one can prove (see for example the appendix

of [La73]) that T is unipotent, i.e., (T − I)m+1 = 0, where I is the identity operator. This

allows to define a monodromy operator as

N := log T = (T − I)−
1

2
(T − I)2 +

1

3
(T − I)3 − · · · ,

which is in fact a finite sum. It is also clear that N is nilpotent, hence we can endow Hm(Xt)

with an increasing filtration

0 ⊂W0 ⊂W1 ⊂ · · · ⊂W2m = Hm(Xt)

which is the unique filtration such that:

1) N(Wk) ⊂Wk−2.

2) Nk induces an isomorphism on the graded parts:

Grm+k(H
m(Xt))

∼
−→ Grm−k(H

m(Xt)).

One can make an explicit description of this filtration. See for example section 2 of [Mo84].

We define a filtration on Hm(X0) via a spectral sequence. Denote by Y1, ..., Yr the
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irreducible components of X0, which we assumed to be smooth and proper. We define the

codimension p stratum of X0 as

X [p] :=
⊔

i0<···<ip

Yi0 ∩ · · · ∩ Yip .

We define Ep,q
0 = Aq(X [p]), the C∞ q-forms on X [p]. Then, we have dp,q0 : Ep,q

0 → Ep,q+1
0

the exterior derivative. We also have morphisms δp,q0 : Ep,q
0 → Ep+1,q

0 induced by the

combinatorial formula

(δp,q0 ω)|Yj0
∩···∩Yjp+1

=

p+1∑

k=0

(−1)kω|Yj0∩···∩Ŷjk
∩···∩Yjp+1

where Ŷjk means that we ignore this term. This defines a double complex (E•,•0 , d, δ) and

we have the following:

Theorem 4.1.1. The spectral sequence with

Ep,q
1 = Hq(X [p])

degenerates at level 2 and it converges to H∗(X0).

By letting

Wk =
⊕

q≤k

E∗,q0 ,

we get a filtration on the simple complex associated to the double complex (E•,•0 , d, δ), and

consequently a filtration on Hm(X0).

One can construct a retraction r : X → X0 which induces isomorphisms

r∗ : Hm(X0)
∼
−→ Hm(X) (4.1)

r∗ : Hm(X)
∼
−→ Hm(X0). (4.2)

The details of this construction are in [Cl77].

The isomorphism (4.2) allows to define a filtration on Hm(X0) ∼= Hm(X) =: Hm. Indeed,
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we use Poincaré duality and define

W−k(Hm) = Ann(Wk−1(H
m)) = {h ∈ Hm|(Wk−1(H

m), h) = 0}.

Now that we have filtrations on Hm, Hm and Hm
lim := Hm(Xt). We shall define maps

relating them and respecting the filtrations in the following sense:

Definition 4.1.1. Let H,H ′ vector spaces with filtrations that we denote by W• for both.

A morphism of filtered vector spaces of type r is a linear map φ : H → H ′ such that for all

k,

φ(Wk(H)) =Wk+2r(H
′) ∩ Im(φ).

Recall that dimX = n + 1. Then, we define a morphism α : H2n+2−m → Hm as the

composite

H2n+2−m(X0)
p

−→ Hm(X,X −X0) −→ Hm(X),

where p is the Poincaré duality map, and the second is the natural morphism.

We define β : Hm
lim → H2n−m as the composite

Hm(Xt)
pt
−→ H2n−m(Xt)

i∗−→ H2n−m(X),

where i∗ is induced by the natural inclusion Xt ↪→ X and pt is the Poincaré duality

morphism. Then, we have the following:

Theorem 4.1.2 (Clemens-Schmid). The maps α, i∗, N, β are morphisms of filtered vector

spaces of type n+ 1, 0,−1,−n, respectively, and the sequence

· · · → H2n+2−m
α

−→ Hm i∗
−→ Hm

lim
N
−→ Hm

lim
β

−→ H2n−m
α

−→ Hm+2 → · · · (4.3)

is exact.

Remark 4.1.1. One can state the Clemens-Schmid exact sequence as an exact sequence of

Mixed Hodge Structures. This explains the notation of Hm
lim, since that term is considered

with the limit Mixed Hodge structure, defined by Steenbrink in [St76]. In fact, in order to

prove that the sequence 4.3 is exact, one really needs to use the Mixed Hodge Structures

involved, but one can get some applications by considering it only as an exact sequence of
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filtered vector spaces.

Since we are interested in studying surfaces, now we want to restrict ourselves to the

case n = 2. By using the exact sequence (4.3) for H2, restricted to the elements of the

filtrations on each term, and the properties of the graded parts, one can prove the following

monodromy criteria:

Theorem 4.1.3. Let Γ be the dual graph of X0 and denote

Φ = dimker(H1(X [0]) → H1(X [1])),

q =
1

2
h1(X [0]), g =

1

2
h1(X [1]).

Then,

1. N = 0 on H1
lim if and only if h1(|Γ|) = 0 if and only if b1(Xt) = Φ.

2. N2 = 0 on H2
lim if and only if h2(|Γ|) = 0.

3. N = 0 on H2
lim if and only if h2(|Γ|) = 0 and Φ+ 2g = 2q.

The proof of this theorem is in section 4(c) of [Mo84]. Now we apply these monodromy

criteria to the case of semistable degenerations of K3 surfaces. In order to use it, we first

need the following classification:

Theorem 4.1.4 (Kulikov). A semistable degeneration of K3 surfaces is birational to one

for which the central fiber X0 is one of three types:

• Type I. X0 is a smooth K3 surface.

• Type II. X0 = Y0 ∪ · · · ∪ Yk+1, where Yα intersects only Yα±1, and each Yα ∩ Yα+1 is

an elliptic curve. The surfaces Y0, Yk+1 are rational, and for 1 ≤ α ≤ k, Yα is ruled

with Yα ∩ Yα+1 and Yα ∩ Yα−1 sections of the ruling.

• Type III. All components of X0 are rational surfaces, Yi ∩ (∪j 6=iYj) is a cycle of rational

curves, and |Γ| = S2.

Now a simple application of the criteria from theorem 4.1.3 to these three cases, we get

a classification of the special fiber in terms of the monodromy operator N :
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Theorem 4.1.5. 1. X0 is of type I if and only if N = 0 on H2
lim.

2. X0 is of type II if and only if N 6= 0, but N2 = 0 on H2
lim.

3. X0 is of type III if and only if N2 6= 0.

4.2 Chiarellotto-Tsuzuki’s work

In this section we deal with a first analogue in characteristic p > 0, to the geometric situation

in which the Clemens-Schmid exact sequence from the preceding section can be obtained.

We make a brief description of Chiarellotto and Tsuzuki’s work on this. The details can be

found in [CT12].

Let k be a finite field of characteristic p > 0, X a smooth variety of dimension n+1 and

C a smooth curve over k. Consider a proper and flat morphism f : X → C, over k, and

suppose moreover that for a k-rational point s ∈ C, the fiber of f at s, denoted by Xs is a

normal crossing divisor (NCD) inside X, and that f is smooth outside Xs.

The NCD Xs allows to define a log structure M on X, and the NCD given by the point

s allows to define a log structure N on C. We denote by s× the log point given by the point

s with the log structure induced from (C,N) via the closed immersion {s} ↪→ C. By taking

the fiber product, we get the following cartesian diagram:

(Xs,Ms)

s×

(X,M)

(C,N)

.....................................................................................................................................
.....
.......
.....

f

..................................................................................... ............

.....................................................................................................................................
.....
.......
.....

....................................................................................................................... ............ (4.4)

where f is log-smooth.

Let V be a complete and absolutely unramified discrete valuation ring of mixed

characteristic with residue field k, and fraction field K. We denote by V× the spectrum

of V endowed with the log structure associated to 1 7→ 0.

In this setting, one can construct a Clemens-Schmid type exact sequence, which is

analogue to 4.3. To do this, one considers a smooth lifting CV over V of C 1 and its p-

1One can always do this by 7.4 III in SGA 1.
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adic completion C. Then, by fixing a lift ŝ of s in C and a local coordinate t of C over V, we

can define a log structure N on C by 1 7→ t. Then, we have the following diagram:

(Xs,Ms)

s×

(X,M)

(C,N) (C,N )

.....................................................................................................................................
.....
.......
.....

f

..................................................................................... ............

.....................................................................................................................................
.....
.......
.....

....................................................................................................................... ............ ...................................................................................................... ............

Recall that in this setting Shiho defined the sheaves of relative log crystalline cohomology,

as in section 2.3.4. Moreover, one can find relations between these and the sheaves of relative

log convergent and log analytic cohomology. In [CT12] they consider only the situation that

they are interested in (where the basis are curves), but these remain valid in more general

situations as we state in section 4.5.

One can define a Frobenius structure on the sheaves of relative cohomology and a log

integrable connection. This allows to define a monodromy operator Nm on the K-vector

space Hm
log−crys((Xs,Ms)/V

×) ⊗K, that coincides with the one defined by Hyodo-Kato in

[HK94].

The p-adic analogue of 4.3 is constructed by putting together two long exact sequences

that are compatible with Frobenius structures, since these give the weight filtration. Namely,

· · · → Hm
log−conv((Xs,Ms)/V) → Hm

log−crys((Xs,Ms)/V
×)⊗K

Nm−→

Hm
log−crys((Xs,Ms)/V

×)⊗K(−1) → Hm+1
log−conv((Xs,Ms)/V) → · · · , (4.5)

and

· · · → Hm
Xs,rig(X) → Hm

rig(Xs) → Hm
log−conv((Xs,Ms)/V) → Hm+1

Xs,rig
(X) → · · · (4.6)

and the following sequence is obtained:

· · · → Hm
rig(Xs)

γ
→ Hm

log−crys((Xs,Ms)/V
×)⊗K

Nm−→

Hm
log−crys((Xs,Ms)/V

×)⊗K(−1)
δ
→ Hm+2

Xs,rig
(X)

α
→ Hm+2

rig (Xs) → · · · , (4.7)
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Once that the sequence 4.7 is constructed, one needs to prove that it is exact. As in

the classical case, the most important point is the equivalence of the weight filtration and

the monodromy filtration on log-crystalline cohomology. This is done by comparing the log-

crystalline cohomology to the log-analytic and the rigid one. Then, it is a direct consequence

of theorem 10.8 in Crew’s article [Cr98].

The equivalence of the weight and monodromy filtration allows to use weights arguments

to prove the following:

Theorem 4.2.1 (Chiarellotto-Tsuzuki). The sequence 4.7 is exact.

With this long exact sequence in hand, we can prove another p-adic analogue of 4.3. Namely,

for a family of varieties over a local basis, which is the main purpose of this chapter, and

particularly of the next sections. We shall see that it can be obtained as a consequence of

theorem 4.2.1.

4.3 Notation and setting over a local basis

In this and the following sections of this chapter, we consider another analogue situation

to the classical one. Namely, let k be a finite field of characteristic p > 0, and consider a

proper and flat morphism

F : X → Spec k[[t]],

where X is smooth over k, such that étale locally is étale over

Spec (k[[t]][x1, ..., xn]/(x1 · · ·xr − t)).

For this situation, we shall obtain an arithmetic version of the Clemens-Schmid exact

sequence, similar to the one in [CT12]. In fact, we shall use that sequence, and for this

purpose we shall see the special fiber of F as a fiber of a family over a smooth curve.

We fix a finite field of characteristic p > 0, denoted by k. We denote by W = W (k) its

ring of Witt vectors and K the fraction field of W . We shall denote by the same letter W

the formal scheme Spf W with the trivial log structure, and we denote by W× the same

formal scheme with the log structure given by 1 7→ 0.

Recall that a divisor Z ⊂ Y of a noetherian scheme is said to be a strict normal crossing
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divisor (SNCD) if Z is a reduced scheme and, if Zi, i ∈ J are the irreducible components

of Z, then, for any I ⊂ J , the intersection ZI = ∩i∈IZi is a regular scheme of codimension

equal to the number of elements of I. We shall say that Y is a normal crossing divisor

(NCD) if, étale locally on Y , it is a SNCD.

We consider a proper and flat morphism

F : X → Spec k[[t]]

over k, where X is a smooth scheme such that étale locally it is étale over

Spec (k[[t]][x1, ..., xn]/(x1 · · ·xr − t)) .

We denote by s the closed point of Spec k[[t]] and X0 its fiber, which is a NCD inside X. We

denote by (X,M) the scheme X endowed with the log structure defined by X0, Spec k[[t]]×

the scheme Spec k[[t]] endowed with the log structure defined by the point s (i.e., by the

NCD given by the ideal generated by t), and s× the log point given by the point s and the

log structure induced from Spec k[[t]]×. Then, we have the following cartesian diagram of

log schemes
(X0,M0)

s×

(X,M)

Spec k[[t]]×

.....................................................................................................................................
.....
.......
.....

F

..................................................................................... ............

.....................................................................................................................................
.....
.......
.....

............................................................................................ ............ (4.8)

where (X0,M0) is obtained by taking the fiber product in the category of log schemes.

4.4 A construction using Néron-Popescu desingulariza-

tion

In order to get the desired result, we need to study the cohomology of the special fiber X0

of X over k[[t]], and for this, we use the results from section 2.4. In particular, recall that

the ring k[[t]] is a filtered colimit of smooth k[t]-algebras.

Since X is proper over k[[t]], there exist a smooth k[t]-algebra A, a scheme XA, proper
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over Spec A, Zariski locally étale over Spec A[x1, ..., xn]/(x1 · · ·xr − t), and such that the

following diagram is cartesian:

X

Spec k[[t]]

XA

Spec A

......................................................................................................................................... ............
u

.....................................................................................................................................
.....
.......
.....

F

............................................................................... ............

v

.....................................................................................................................................
.....
.......
.....

f

Note that the composition v◦F is flat, hence f is flat in an open of XA containing the image

of X under u. Thus, we may assume that f : XA → Spec A is flat.

Since the divisor of Y = SpecA, defined by Y0 = (t = 0) is a NCD, and the fiber product

XA,t=0 = Y0×Y XA is a NCD divisor in XA, then we can naturally define fine log structures

MA and N on XA and Y , respectively. Then, f : (XA,MA) → (Y,N) is a morphism of log

schemes. Moreover, we have the following:

Lemma 4.4.1. The morphism f : (XA,MA) → (Y,N) is log-smooth.

Proof. We use the criterion given in proposition 2.1.1. First note that f has (étale locally

on XA) a chart (PXA
→MA, QY → N,Q→ P ) given by Q = N, P = Nr, and the diagonal

map Q→ P .

We can easily see also that the kernel and the torsion part of the cokernel of Qgp → P gp

(which is just the diagonal map Z → Zr) are both trivial.

It remains to prove that the induced morphism XA → Y ×Spec Z[Q] Spec Z[P ] is smooth.

Recall that XA is locally étale over V = Spec (A[x1, ..., xn]/(x1 · · ·xr − t)), and note that

W = Spec A×Spec Z[Q] Spec Z[P ] ∼= Spec A×Spec Z[u] Spec Z[u1, ..., ur]

∼= Spec (A[u1, ..., ur]/(u1 · · ·ur − t)).

The last isomorphism can be verified by checking directly that the ring

A[u1, ..., ur]/(u1 · · ·ur − t)

satisfies the universal property of the tensor product A⊗Z[u] Z[u1, ..., ur].
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Now note that there are natural closed immersions jV : V ↪→ An
A, jW : W ↪→ Ar

A.

Moreover, the following diagram is cartesian:

V

W

An
A

Ar
A

.......................................................................................................................................... ............
jV

.....................................................................................................................................
.....
.......
.....

h

.......................................................................................................................................... ............

jW

.....................................................................................................................................
.....
.......
.....

p

where h is defined by sending each ui to xi for i = 1, ..., r, and p is the natural projection

from the first r components. Since p is smooth, we get that h is smooth. Since XA →W is

the composition of an étale and a smooth morphism, we conclude that it is smooth (in the

classical sense).

Then, we have the following diagram of log schemes:

(X0,M0)

s×

(X,M)

Spec k[[t]]×

(XA,MA)

(Y,N)

.....................................................................................................................................
.....
.......
.....

fs

.....................................................................................................................................
.....
.......
.....

f

............................................................................................ ............

..................................................................................... ............ ............................................................................... ............

........................................................................... ............

.....................................................................................................................................
.....
.......
.....

F

where the horizontal arrows are exact closed immersions. In particular, note that s is a closed

point inside Y , hence (X0,M0) is a fiber of the log smooth family (XA,MA) → (Y,N). This

means that we can study the cohomology of X0 using relative cohomology sheaves for this

family. These are studied in the next section.

4.5 Relative Cohomology

Recall that A is a smooth k[t]-algebra. By theorem 7, in section 4 in [El73], there exists

a W [t]-algebra A0 such that A0/pA0 = A, which is smooth over W .2 Let Â be the p-adic

completion of A0, and Y = Spf Â. We can define a log structure N on Y by 1 7→ t, and

2Note that A0 might be not smooth over W [t].
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then we have the following diagram:

(X0,M0)

s×

(XA,MA)

(Y,N) (Y,N )

...................................................................... ............

.....................................................................................................................................
.....
.......
.....

fs

......................................................................................................................... ............

.....................................................................................................................................
.....
.......
.....

f

..................................................................................................... ............ (4.9)

where the lower row consists of two exact closed immersions. Now we are in the situation

studied in [Sh08], and we can use all the results there. We shall state the results on relative

log crystalline, log convergent and log analytic cohomology that are useful to apply the main

result in [CT12], i.e., a Clemens-Schmid exact sequence in characteristic p.

Relative Log Crystalline Cohomology

In the situation of diagram (4.9), Shiho defined in [Sh08], for any sheaf F on the

log crystalline site (X/Y)logcrys the sheaves of relative log crystalline cohomology of

(XA,MA)/(Y,N ) with coefficient F , denoted by RmfXA/Y,crys∗F , and for an isocrystal

E = Q ⊗ F , denoted by RmfXA/Y,crys∗E . Here we will work only with the trivial log

isocrystal E = OXA/Y,crys.

In order to study the sheaves RmfXA/Y,crys∗OX/Y,crys, we fix a Hyodo-Kato embedding

system (P•,M•) of an étale hypercovering (X•,M•) of (XA,MA). It always exists, as stated

in [HK94] 2.18 (the definition of simplicial schemes and étale hypercoverings can be found

in [CT03]). Then, we have the following diagram:

s×

(X0,M0)

(X0,•,M0,•)

(Y,N)

(XA,MA)

(X•,M•)

(Y,N )

(P•,M•).......................................................... ............

.....................................................................................................................................
.....
.......
.....

θs

...................................................................... ............

.....................................................................................................................................
.....
.......
.....

fs

......................................................................................................................... ............

......................................................................... ............
i•

.....................................................................................................................................
.....
.......
.....

θ

.....................................................................................................................................
.....
.......
.....

f

..................................................................................................... ............

....................................................................................................................................................................................................................................................................................................................
.....
.......
.....

g

(4.10)
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where (X0,•,M0,•) is the fiber product in the upper left square.

We want to see that the sheaves RmfXA/Y,crys∗(OX/Y,crys) satisfy some finiteness

properties. For each n ∈ N, denote by Yn the reduction of Y modulo pn, and CX•/Yn

the logarithmic De Rham complex of the log PD-envelope of the closed immersion i• over

(Yn,Nn). Then, we have the following:

Lemma 4.5.1. (a) For each n, there is a canonical quasi-isomorphism

R(fθ)∗CX•/Yn
⊗L
OYn

OYn−1

∼
−→ R(fθ)∗CX•/Yn−1

.

(b) For each n, R(fθ)∗CX•/Yn
is bounded and has finitely generated cohomologies.

Proof. In section 1 of [Sh08], it is proved that

R(fθ)∗CX•/Yn
∼= RfX•/Yn,crys,∗(OX•/Yn,crys),

and so part (a) follows from the claim in the proof of theorem 1.15, in [Sh08].

For part (b), we proceed inductively. Note that for n = 1, Y1 = Y , and so the result

follows by properness of f . The inductive step is direct by using the second part of the same

claim used in part (a).

The preceding lemma says that {R(fθ)∗CX•/Yn
}n is a consistent system, as defined in

B.4, in [BO78]. Then, by corollary B.9 in [BO78], it follows that

RfXA/Y,crys∗(OXA/Y,crys) = R lim
←−

RfXA/Yn,crys,∗(OXA/Yn,crys)

is bounded above and has finitely generated cohomologies. Thus, we have the following:

Theorem 4.5.1. RfXA/Y,crys∗(OXA/Y,crys) is a perfect complex of isocoherent sheaves on

Y. Moreover, the isocoherent cohomology sheaf

RmfXA/Y,crys∗(OXA/Y,crys)

admits a Frobenius structure for each m.
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Proof. The first assertion follows from the above paragraph and theorem 1.16 in [Sh08]. The

Frobenius structure is given by 2.24 in [HK94], since f is of Cartier type. Indeed, recall that

f has a local chart (PXA
→ MA, QY → N,Q → P ) given by Q = N, P = Nr, and Q → P

the diagonal map.

Now let us consider the following commutative diagram, where all squares are cartesian:

(XA,MA) (Y,N)

(X0,M0) s×

(Y,N )

Spf W×
.....................................................................................................................................
.....
.......
.....

.......................................................................................................... ............
fs

.................................................................................... ............

f

.....................................................................................................................................
.....
.......
.....

............................................................................................................... ............

..................................................................................................... ............

ι

.....................................................................................................................................
.....
.......
.....

ϕ

(4.11)

By theorem 1.19 in [Sh08], we have the following base change property.

Theorem 4.5.2. In diagram (4.11), there is a quasi-isomorphism

Lϕ∗RfXA/Y,crys∗(OXA/Y,crys)
∼
−→ Rfs,X0/W,crys,∗(OX0/W,crys).

Note that Rfs,X0/W,crys,∗(OX0/W,crys) is a perfect K-complex that gives the cohomology

Hi
log−crys((X0,M0)/W

×)⊗K.

Relative Log Convergent Cohomology

Following [Sh08], we study the relative log convergent cohomology sheaves there defined.

Again, we work only with the trivial isocrystal OXA/Y,conv, on the log convergent site, and

denote the sheaves of relative cohomology by RfXA/Y,conv∗(OXA/Y,conv).

Recall that there is a canonical functor (see 2.34 in [Sh08]) from the category of isocrystals

on the relative log convergent site to that on log crystalline site

Φ : Iconv((XA/Y)logconv) −→ Icrys((XA/Y)logcrys)

sending locally free isocrystals on (XA/Y)logconv to locally free isocrystals on (XA/Y)logcrys. In

particular, Φ(OXA/Y,conv) = OXA/Y,crys.
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Now let us go back to the situation in diagram (4.10). Let ]X•[
log
P•

be the log tube of the

closed immersion i•, and P̂• the completion of P• along X•. Then, as in [CT12], we have a

specialization map

sp : ]X•[
log
P•

→ P̂•.

Moreover, if we denote by Ω•
]X•[

log
P•

/YK

〈M•/N〉 the logarithmic De Rham complex of the

simplicial rigid analytic space ]X•[
log
P•

over the generic fiber YK of Y, then by corollary 2.34

in [Sh08], we have

RfXA/Y,conv∗(OXA/Y,conv) ∼= R(fθ)∗sp∗Ω
•

]X•[
log
P•

/YK
〈M•/N〉.

Now by using the remarks of page 31 in [Sh08] and passing to the projective limit, we have

a canonical morphism of complexes

sp∗Ω
•

]X•[
log
P•

/YK
〈M•/N〉 −→ lim

←−
n

CX•/Yn
, (4.12)

which by theorem 2.36 in [Sh08] gives the following:

Theorem 4.5.3. The canonical morphism (4.12) induces an isomorphism

RmfXA/Y,conv∗(OXA/Y,conv) ∼= RmfXA/Y,crys∗(OXA/Y,crys)

of isocoherent sheaves on Y.

In particular, by theorem 4.5.1 this allows to prove that

RfXA/Y,conv∗(OXA/Y,conv)

is a perfect complex of isocoherent sheaves, and a base change theorem:

Theorem 4.5.4. With the same notation in diagram (4.11), there is a natural isomorphism

Lϕ∗RfXA/Y,conv∗(OXA/Y,conv) ∼= RfsX0/W,conv∗(OX/Y,conv).
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The complex RfsX0/W,conv∗(OX/Y,conv) gives the cohomology

Hi
log−conv((X0,M0)/W

×).

Relative Log Analytic Cohomology

Now we study the sheaves of relative log analytic cohomology. Note that g in diagram

(4.10) induces a morphism gexK :]X•[
log
P•

→ YK . Then, the log analytic cohomolgy sheaves of

(XA,MA)/(Y,N) with respect to (Y,N ) can be computed by (see 4.1 in [Sh08])

RmfXA/Y,an∗(OXA/Y,an) = RmgexK∗Ω
•

]X•[
log
P•

/YK
〈M•/N〉.

Then, by applying theorem 4.6 in [Sh08], we have the following comparison theorem

Theorem 4.5.5. Let sp be the specialization map YK → Y. Then for each m,

RmfXA/Y,an∗(OXA/Y,an) is a coherent sheaf on YK , and there is an isomorphism

sp∗R
mfXA/Y,an∗(OXA/Y,an) ∼= RmfXA/Y,conv∗(OXA/Y,conv).

4.6 Reduction to the case of a family over a curve

Now that we have relative cohomology sheaves defined for the family over Y , we want to

restrict those sheaves to a smaller family. Namely, a family over a curve, in order to be in

the same situation as in [CT12].

Let us first construct the curve that we shall use. As stated at the beginning of the

preceding section, A0 is a smooth W -algebra. Let Ỹ = Spec A0 and S = Spec W . Since

Y → Ỹ is a closed immersion, the image ŝ of s inside Ỹ is a closed point. Since the natural

morphism Ỹ → S is smooth, there exists an affine open neighborhood Ũ of ŝ and an étale
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morphism σ : Ũ → Ad
W such that Ũ → S factorizes in the following way:

Ũ

S

Ad
W

....................................................................................................................................... ............
σ

.....................................................................................................................................
.....
.......
.....

..................................................................................................................................................................................................
....
............

Let us recall this construction. There exists an open affine subset Ũ = Spec (A0)g of Ỹ

such that the restriction of Ỹ → S is standard smooth, i.e., locally defined by a morphism

of rings of the type

R→ R[x1, ..., xn]/(f1, ..., fc) =: S,

where the polynomial det(∂fi/∂xj)1≤i,j≤c is invertible in S.

Moreover, we may assume (using the fact that the reduction modulo p is smooth over

k[t]) that we can write

(A0)g =W [x1, ..., xr, t]/(f1, ..., fc),

where the polynomial

det




∂f1
∂x1

· · · ∂fc
∂x1

· · · · · · · · ·

∂f1
∂xc

· · · ∂fc
∂xc




is invertible in (A0)g. Then, the morphism W [xc+1, ..., xr, t] → (A0)g is étale, and with

d = r + 1− c we get the desired factorization.

Using this description, it is clear how to construct a smooth curve CW inside Ũ ,

transversal to (t = 0) and passing through the point ŝ: by pulling back a curve with these

properties inside Ad
W . In particular, its reduction C modulo p is a smooth curve inside Y ,

transversal to (t = 0) and passing throught the point s.

LetNC be the log structure on C defined to make the closed immersion (C,NC) → (Y,N)

exact, and then we have a sequence of exact closed immersions

s× → (C,NC) → (Y,N).

Let (XC ,MC) = (XA,MA)×(Y,N) (C,NC). Then, we have the following diagram, where all
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the squares are cartesian:

(X0,M0)

s×

(XC ,MC)

(C,NC) (Y,N)

(XA,MA)
.....................................................................................................................................
.....
.......
.....

..................................................................... ............

.....................................................................................................................................
.....
.......
.....

................................................................ ............

................................................................................................................ ............ ............................................................................................... ............

.....................................................................................................................................
.....
.......
.....

Note that the family (XC ,MC) → (C,NC) is in the situation studied in [CT12]. We

denote by C the p-adic completion of CW along the special fiber C. Then 1 7→ t defines a

log structure NC on C and we have the following diagram

(XC ,MC)

(XA,MA)

(C,N)

(Y,N) (Y,N )

(C,NC)
.....................................................................................................................................
.....
.......
.....

.................................................................................. ............

fC .....................................................................................................................................
.....
.......
.....

.................................................................................................. ............

.....................................................................................................................................
.....
.......
.....

ι

..................................................................................................... ................................................................................................ ............
f

Then, by theorem 1.19, corollary 2.38 in [Sh08], we have an isomorphism

Lι∗RfXA/Y,crys∗(OXA/Y,crys)
∼
−→ RfC,XC/C,crys∗(OXC/C,crys) (4.13)

Now consider the diagram

(X0,M0)

(XC ,MC)

s×

(C,NC) (C,NC)

Spf W×
.....................................................................................................................................
.....
.......
.....

........................................................................... ............

.......................................................................................................... ............

.....................................................................................................................................
.....
.......
.....

........................................................................................... ............

............................................................................................................... ............

.....................................................................................................................................
.....
.......
.....

ψ

where ι ◦ ψ = ϕ. Then we have an isomorphism

Lψ∗RfC,XC/C,crys∗(OXC/C,crys)
∼
−→ Rfs,X0/W,crys∗(OX0/W,crys). (4.14)

By combining the isomorphisms (4.13) and (4.14), and the fact that Lψ∗Lι∗ ∼= L(ψ∗ι∗) ∼=

L((ι ◦ψ)∗) = Lψ∗, we get that Rfs,X0/W,crys∗(OX0/W,crys) can be obtained from the family
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over Y or over C. In particular, by the main result in [CT12], we get the following Clemens-

Schmid type exact sequence:

· · · → Hm
rig(X0) → Hm

log−crys((X0,M0)/W
×)⊗K

N
−→ (4.15)

Hm
log−crys((X0,M0)/W

×)⊗K(−1) → Hm+2
X0,rig

(XC) → Hm+2
rig (X0) → · · ·

The terms of the form Hm+2
X0,rig

(XC) depend a priori on the choice of the curve C, but if we

choose a different smooth curve C ′, by Poincaré duality (theorem 2.4 in [Be97i]), we have

isomorphisms

Hm+2
X0,rig

(XC) ∼= Hm+2
X0,rig

(XC′) ∼= H2 dimX−m−2
c,rig (X0)

∨(− dimX)

∼= Hrig
2 dimX0−m

(X0)(− dimX),

and we get a Clemens-Schmid type exact sequence that depends only on X and the special

fiber X0 for our starting situation.



Chapter 5

Monodromy Criteria

Recall from the first section of chapter 4 that in the classical situation, for a semistable

degeneration of K3 surfaces one can determine the behavior of the central fiber by the

degree of nilpotency of the monodromy operator N on the limit cohomology. This is done

by first proving criteria for N being zero.

In this chapter we shall prove the p-adic analogue of these results. Namely, we shall get

in the first section criteria for the monodromy operator (on the log-crystalline cohomology)

being zero. Then, in the second section we apply these criteria to the case of combinatorial

K3 surfaces over finite fields. This shall allow us to get our main theorem and consequently

a criterion for good reduction of K3 surfaces.

5.1 General Monodromy Criteria

As an application of the p-adic version of the Clemens-Schmid exact sequence, we prove a

p-adic version of the Monodromy Criteria (p. 112 in [Mo84]). We start with a situation in

which we have an exact sequence of Clemens-Schmid type, as for example the situation in

[CT12] or the situation of section 4.3, that we saw that it is reduced to the first one.

Suppose k is a finite field and C a smooth curve over k. We consider a proper and flat

morphism

f : X → C,

52
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where X is a smooth variety of dimension n + 1 over k. Moreover, we assume that there

exists a k-rational point s ∈ C such that the fiber of f at s, which we denote by Xs is a

NCD. This defines a log structure M on X. We denote by (Xs,Ms) the log scheme with

the induced log structure.

Then, the main result of [CT12] states that there is a long exact sequence:

· · · → Hm
rig(Xs) → Hm

log−crys((Xs,Ms)/W
×)⊗K →

Hm
log−crys((Xs,Ms)/W

×)⊗K(−1) → Hm+2
Xs,rig

(X) → Hm+2
rig (Xs) → · · ·

We can consider the maps as morphisms of filtered vector spaces, where we give the

weight filtration to each of them. Let us make a description of this: denote by X1, ..., Xr

the irreducible components of Xs and assume they are proper and smooth. Define the

codimension p stratum of Xs as

X [p] :=
⊔

i0<···<ip

Xi0 ∩ · · · ∩Xip .

For each a = 0, ..., p + 1, denote by δa : X [p+1] → X [p] the natural map that restricted

to each component is the inclusion

Xi0 ∩ · · · ∩Xip+1
↪→ Xi0 ∩ · · · ∩Xia−1

∩Xia+1
∩ · · · ∩Xip+1

and define

ρp := (−1)p
p∑

a=0

(−1)aδ∗a, (5.1)

where δ∗a is the morphism of De Rham-Witt complexes WnΩ
•
X[p] → WnΩ

•
X[p+1] induced by

δa, where we identify WnΩ
•
X[p] with its direct image in the étale site of Xs.

This gives a double complex

0 −→WnΩ
•
X[0]

ρ0
−→WnΩ

•
X[1]

ρ1
−→WnΩ

•
X[2]

ρ2
−→ · · · (5.2)

and by taking projective limit, we get the double complex

0 −→WΩ•X[0]

ρ0
−→WΩ•X[1]

ρ1
−→WΩ•X[2]

ρ2
−→ · · · (5.3)
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This allows to define a spectral sequence with

Ep,q
1 = Hq

rig(X
[p]) (5.4)

with dp,q1 induced by ρp.

Theorem 5.1.1. The spectral sequence (5.4) degenerates at E2 and converges to H∗rig(Xs).

Proof. Since X [p] is smooth and proper, then Hq
rig(X

[p]) is pure of weight of q. Since Ep,q
2

is a sub quotient of this, we have that

dp,q2 : Ep,q
2 → Ep+2,q−1

2

has to be the zero morphism, which proves the degeneracy. To prove that it converges

to H∗rig(Xs), it is enough to notice that the simple complex associated to (5.3) gives this

cohomology. This is proposition 1.8 and theorem 3.6 of [Ch99].

Mokrane defined the following spectral sequence in [Mk93]1:

E−k,i+k
1 =

⊕

j≥0,j≥−k

Hi−2j−k
crys (X [2j+k]/W )(−j − k) =⇒ Hi

log−crys((Xs,Ms)/W
×)

Then, theorem 3.32 in [Mk93] asserts that if Xs is projective, this sequence degenerates at

E2 modulo torsion, and it gives the weight filtration on log-crystalline cohomology.

The weight filtration on rigid cohomology (given by the Frobenius operator) is induced

by the spectral sequence (5.4). Now we list some properties of this filtration, denoted by

W•, and its respective graded modules Gr• on Hm
log−crys := Hm

log−crys((Xs,Ms)/W
×) ⊗K

and Hm
rig := Hm

rig(Xs), which are just a consequence of the previous remarks and theorem

5.1.1.

Proposition 5.1.1. (i) Nk induces an isomorphism of vector spaces

Grm+kH
m
log−crys

∼
−→ Grm−kH

m
log−crys

1Note that in Mokrane’s article, there is a shift in the indices of the strata.
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for all k ≥ 0.

(ii) For k ≤ m, we have a decomposition

Grk(H
m
log−crys) =

[k/2]⊕

a=0

Grk−2a(Km),

where Km = kerN ⊂ Hm
log−crys, and the filtration on Km is induced by the one on

Hm
log−crys.

(iii) Gr0(H
m
rig) = Hm(|Γ|), where Γ is the dual graph associated to Xs.

(iv) Grk(H
m
rig) = Em−k,k

2 .

We also need the following, which is an immediate corollary of the Clemens-Schmid exact

sequence.

Proposition 5.1.2. For all k < m, Wk(H
m
rig)

∼=Wk(Km).

Proof. It is enough to note that since Hm
Xs,rig

(X) has weights > m− 1, when restricting the

Clemens-Schmid sequence to the Wk-parts we get an exact sequence:

0 →Wk(H
m
rig) →Wk(Km) → 0

for k < m.

With the two previous propositions in hand, we can prove the following monodromy

criteria:

Theorem 5.1.2. Denote Hi
log−crys := Hi

log−crys((Xs,Ms)/W
×) ⊗ K. Let hk(|Γ|) =

dimHk(|Γ|), bk(Xs) = dimHk
log−crys, h

k(X [j]) = dimHk
rig(X

[j]) and Φ = dimGr1H
1
rig.

Then, we have the following:

(i) N = 0 on H1
log−crys if and only if h1(|Γ|) = 0 if and only if b1(Xs) = Φ.

(ii) N2 = 0 on H2
log−crys if and only if h2(|Γ|) = 0.

(iii) N = 0 on H2
log−crys if and only if h2(|Γ|) = 0 and Φ = h1(X [0])− h1(X [1])
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Proof. (i) By the final remark in [Ch99], we have an exact sequence

0 → H1
rig → H1

log−crys
N
→ H1

log−crys.

In particular, kerN ∼= H1
rig. Then, by part (i) of proposition 5.1.1, we have

Gr2H
1
log−crys

∼= Gr0H
1
log−crys, and by part (ii), we have Gr0H1

log−crys
∼= Gr0(K1) =

Gr0(H
1
rig), and by part (iii), we conclude that Gr2H1

log−crys
∼= H1(|Γ|).

Similarly, by part (ii) of proposition 5.1.1, we have Gr1H
1
log−crys

∼= Gr1(K1) =

Gr1H
1
rig.

First suppose N = 0. Then, Gr2H1
log−crys = 0 = Gr0H

1
log−crys, since the first

isomorphism is induced by N . Then it follows that h1(|Γ|) = 0 and b1(Xs) = Φ.

Now suppose that h1(|Γ|) = 0. Then, Gr0H1
log−crys

∼= Gr0(H
1
rig) = 0. This implies

thatGr1H1
log−crys = H1

log−crys, butGr1H1
log−crys = Gr1K1, henceGr1K1 = H1

log−crys.

By part (ii) of proposition 5.1.1, we also have Gr0K1
∼= Gr0H

1
log−crys = 0 and

Gr2K1 ⊕Gr0K1 = Gr2K1
∼= Gr2H

1
log−crys = 0,

hence K1 = Gr1K1 = H1
log−crys, which proves that N = 0.

Finally, note that if b1(Xs) = Φ, then Gr1H1
log−crys = H1

log−crys, and this implies that

h1(|Γ|) = 0.

(ii) For the proof of this and next part, we note that the Clemens-Schmid sequence for

even indices can be seen as two exact sequences (since N = 0 on H0
log−crys):

0 → H0
rig → H0

log−crys → 0

0 → H0
log−crys → H2

Xs,rig(X) → H2
rig → H2

log−crys
N
→ H2

log−crys → · · ·

By part (ii) of proposition 5.1.1, we have that Gr0H
2
log−crys

∼= Gr0K2, and by

proposition 5.1.2, this is isomorphic to Gr0H2
rig

∼= H2(|Γ|).

Suppose that N2 = 0 on H2
log−crys. Then, by part (i) of proposition 5.1.1, we have

Gr4H
2
log−crys

∼= Gr0H
2
log−crys = 0, and this gives that h2(|Γ|) = 0.

Conversely, suppose that h2(|Γ|) = 0. Then, dimGr0H
2
rig = 0. Note that N2 takes

W0 to W−4 = 0, W1 to W−3 = 0, W2 to W−2 = 0, W3 to W−1 = 0 and W4 to
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W0 = Gr0H
2
rig = 0. Thus, N2 = 0.

(iii) By part (ii) of proposition 5.1.1, we have that Gr1H
2
log−crys

∼= Gr1K2, and by

proposition 5.1.2, this is isomorphic to Gr1H2
rig = E1,1

2 = ker d1,11 / Im d0,11 .

Note that d1,11 : H1
rig(X

[1]) → H2
rig(X

[1]) is the zero map (since H2
rig(X

[1]) = 0). Then,

we conclude that

dimGr1H
2
log−crys = h1(X [1])− dim Im (H1

rig(X
[0]) → H1

rig(X
[1]))

= h1(X [1])− (h1(X [0])− dimker(H1
rig(X

[0]) → H1
rig(X

[1])))

= Φ− h1(X [0]) + h1(X [1]).

Now suppose that N = 0. Then, N2 = 0 and by the preceding part, we have

h2(|Γ|) = 0. Moreover, N induces an isomorphism

Gr3(H
2
log−crys)

∼
−→ Gr1(H

2
log−crys),

hence Gr1H2
log−crys = 0 and Φ− h1(X [0]) + h1(X [1]) = 0.

Conversely, suppose that h2(|Γ|) = 0 and Φ−h1(X [0])+h1(X [1]) = dimGr1H
2
log−crys =

0 and let us prove that K2 = H2
log−crys (hence N = 0). First note that Gr0H2

log−crys =

0, since h2(|Γ|) = 0, i.e., W0 = 0. But since Gr1H2
log−crys = 0, then W1 = 0. By part

(ii) of proposition 5.1.1, we have Gr3H2
log−crys = 0, hence W3 = W2. By the same

argument, Gr0H2
log−crys

∼= Gr4H
2
log−crys, hence W4 = W3 = W2 = H2

log−crys. This

gives Gr2H2
log−crys = H2

log−crys. By part (ii) of proposition 5.1.1, we get

Gr2H
2
log−crys = Gr2K2 ⊕Gr0K2 = Gr2K2 = K2,

which concludes the proof.
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5.2 The Main Theorem

In this section we assume p > 3. Let K be a finite extension of Qp and denote by

OK its ring of integers, π a uniformizer of OK and k its residue field. We consider a

smooth, projective K3 surface XK → Spec K with a semi-stable model X → Spec OK ,

i.e., X is a proper scheme over OK , étale locally étale over a scheme of the form

Spec (OK [x1, ..., xn]/(x1 · · ·xr − π)). Let Xs := X ⊗OK
k be the special fiber of X and

assume it is a combinatorial K3 surface. In particular, we may assume that we are in one

of the following cases:

I) Xs is a smooth K3 surface over k

II) Xs = X0 ∪X1 ∪ · · · ∪Xj+1 is a chain of smooth surfaces, with X0, Xj+1 rational and

the others are elliptic ruled and two double curves on each of them are rulings.

III) Xs = X0 ∪ X1 ∪ · · · ∪ Xj+1, with every Xi a rational surface, and the double curves

on Xi are rational and form a cycle on Xi. The dual graph of X is a triangulation of

the sphere S2.

We shall refer to each of these as surface of type I, II and III, respectively.

Remark 5.2.1. The definition of a combinatorial K3 surface (definition 3.3.5)requires for

the cases II) and III) that the geometric special fiber Xs has a decomposition of those types

and not necessarily Xs, but this implies that there exists a finite extension k′ of k such that

the base change Xk′ = Xs ⊗k k
′ has such decomposition. Since k′ is again a finite field, we

may assume that it is Xs the one that admits such decomposition.

To study surfaces of type II we shall use the following:

Lemma 5.2.1. Let Y be a smooth, proper, rational surface over a field. Then, H1
rig(Y ) = 0.

Proof. First note that since Y is smooth and proper over a field, then Y is necessarily

projective (this is remark 3.5 in chapter 9 of [Liu]). Then, we use Castelnuovo-Zariski’s

criterion in characteristic p as stated in theorem 4.6 of [Li13] to get that the first `-adic étale

cohomology group is trivial. Since Y is smooth and proper, we conclude that the dimension

of the first rigid cohomology group is also 0, by the Weil cohomology formalism.
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Recall from [Na00] that the special fiber Xs can be endowed with a log structure Ms in

such a way that we have a log smooth morphism (Xs,Ms) → (Spec k,Nm), where m is the

number of connected components of the singular locus of Xs and the log structure is defined

by ei 7→ 0, where ei denotes the ith canonical generator of Nm.

Let us make an explicit description of Ms. In general, suppose that Y is a normal

crossing variety and denote by Ysing the singular locus. Denote by Y1, ..., Ym the connected

components. For each i = 1, ...,m, we can endow Spec (k[x0, ..., xn]/(x0 · · ·xr)) with a log

structure given by as follows:

Nm+r = Ni−1 ⊕ Nr+1 ⊕ Nm−i → k[x0, ..., xn]/(x0 · · ·xr)

ei 7→





0 if ei ∈ Ni−1

xi−1 if ei ∈ Nr+1

0 if ei ∈ Nm−i

Then,

1. If x is a smooth point of Y , étale locally on a neighbourhood of x, the log structure is

the pull-back of the log structure of the log-point (Spec k,Nm)

2. If x ∈ Yi, étale locally on a neighbourhood of x, the log structure is the pull-back of

the log structure defined above.

Since Xs is in particular a normal crossing variety over k, we can endow Xs with this log

structure and we denote it by Ms. Note that this is not the usual log structure defined for

example in [Ka89], which we denote here by M ′s. As it is stated in [Na00], the relationship

between them is

(Xs,M
′
s) = (Xs,Ms)×(Spec k,Nm) (Spec k,N),

where the morphism of log schemes (Spec k,N) → (Spec k,Nm) is defined by s :

Nm → N the sum of the components. Moreover, the sheaves of relative log

differentials ω•(Xs,Ms)/(Spec k,Nm) and ω•(Xs,M ′s)/(Spec k,N) coincide, and there is also a canonical

isomorphism

Hi
log−crys((Xs,Ms)/(W,N

m)) ∼= Hi
log−crys((Xs,M

′
s)/(W,N)),
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as stated and proved in the appendix of [Na00].

Assume for the moment that Xs is either of type I), type III) or type II) such that the

double curve is ordinary. Then, by corollary 5.4 and proposition 5.9 in [Na00], there exists

a semistable family X log over Spec k[[t]]log such that its special fiber is precisely (Xs,Ms).

Then we have the following diagram, with cartesian squares:

(Xs,M
′
s)

(Spec k,N)

(Xs,Ms)

(Spec k,Nm)

X log

Spec k[[t]]log

.....................................................................................................................................
.....
.......
.....

............................................................................ ............

.......................................... ............

.....................................................................................................................................
.....
.......
.....

.................................................................................................... ............

.....................................................................................................................................
.....
.......
.....

.................................. ............ (5.5)

Let X̃ be the underlying scheme of X log. Then we can apply the same technique as in

section 4.6 and get a smooth curve C over k, and a regular scheme XC with a proper, flat

morphism XC → C such that there exists a k-rational point s ∈ C such that the fiber of f

at s is precisely Xs. Then, we have the following:

Theorem 5.2.1. (a) Xs is of type I if and only if N = 0 on H2
log−crys.

(b) Xs is of type II if and only if N 6= 0 and N2 = 0 on H2
log−crys.

(c) Xs is of type III if and only if N2 6= 0 on H2
log−crys.

Proof. We shall prove that if N = 0 on H2
log−crys, then Xs is neccesarily of type I; if N 6= 0

and N2 = 0, then Xs is necessarily of type II; and if N2 6= 0, then Xs is necessarily of type

III. This shall prove the equivalence, since we know that we can be only in one of these three

cases.

First assume that Xs is of type I. Then, X [0] = Xs, X [1] = ∅ and the dual graph Γ is

only one point. In this case, the spectral sequence has the form

Ep,q
∞ = Ep,q

1 = Hq
rig(X

[p]) =





0 if p ≥ 1

Hq
rig(Xs) if p = 0

and this gives immediately that Φ = dimGr1H
1
rig = dimE0,1

2 = 0. Since H1
rig(Xs) =

H1
rig(X

[1]) = 0, and h2(|Γ|) = 0, we conclude that N = 0, by theorem 5.1.2 (iii).
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Now assume that Xs is of type II (use the same notation as in the beginning of the

section). In this case, it is clear that the dual graph is homeomorphic to [0, 1]. In particular,

h2(|Γ|) = 0 and N2 = 0 by theorem 5.1.2 (ii). By definition of the type II, X [1] is the

disjoint union of j + 1 elliptic curves, hence h1(X [1]) = 2j + 2. Since X0 and Xj+1 are

rational surfaces, by lemma 5.2.1, we have

h1(X [0]) =

j∑

i=1

h1(Xi),

but the Xi’s are ruled, with the double curves rulings. Then, h1(X [0]) = 2j and we get

h1(X [0])− h1(X [1]) = −2, but Φ cannot be negative, hence

Φ 6= h1(X [0])− h1(X [1])

and N 6= 0. Finally, assume that Xs is of type III. In this case, h2(|Γ|) = h2(S2) = 1 6= 0,

hence N2 6= 0.

The only remaining case is when Xs is of type II such that the double curve is not

ordinary, i.e., supersingular. In this case, by corollary 6.9 of [Na00], the geometric special

fiber Xs is the special fiber of a projective semistable family X̃ over Spec k[[t]]. Now we

use the same approximation argument from section 4.4, and we get the following cartesian

diagram:

X̃

Spec k[[t]]

XA

Spec A

......................................................................................................................................... ............

.....................................................................................................................................
.....
.......
.....

............................................................................... ............

.....................................................................................................................................
.....
.......
.....

where A is a smooth k[t]-algebra. Locally, XA is defined by a finite number of polynomials

in k[t], and in particular they contain a finite number of elements of k. Then by proposition

2.4.2, there exists a finite extension k′ of k and a k′[t]-algebra A′ over which we can define

XA′ to have a cartesian diagram
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XA

Spec A

XA′

Spec A′

..................................................................................................................................... ............

.....................................................................................................................................
.....
.......
.....

............................................................................................ ............

.....................................................................................................................................
.....
.......
.....

f ′

The composition A′ → A → k[[t]] → k defines a closed point x in Spec A′. Then, the fiber

of f ′ at x, denoted by Xx, satisfies

Xx ⊗k′ k ∼= Xs ⊗k k = Xs

Then, there exists a finite extension k′′ of k′ such that

Xx ⊗k′ k
′′ ∼= Xs ⊗k k

′′ =: X ′′s .

Since (Xs ⊗k k
′′)⊗k′′ k = X ′′s ⊗k′′ k, we get that Xs is of the same type (I, II or III) as X ′′s .

Moreover, if we denote by K ′′/K the extension corresponding to k′′/k, then the degree of

nilpotency on H2
log−crys and H2

log−crys ⊗K K ′′ is preserved, since any extension of fields is

faithfully flat. This completes the proof for all the cases.

Finally we prove the monodromy criterion for the good reduction of K3 surfaces that we

stated in the introduction, and we can get as well the main result in [Pe14].

Corollary 5.2.1. Let p > 3 and K a finite extension of Qp. Let XK be a smooth, projective

K3 surface over K, that admits a semistable model over OK . Then, XK has good reduction

if and only if the monodromy operator N on H2
DR(XK) is zero.

Proof. Since p > 3, by proposition 3.3.4, XK has a minimal semistable X model over OK .

In particular, the special Xs is a combinatorial K3 surface over a finite field k. By the

preceding theorem, Xs is smooth if and only the monodromy operator on its log-crystalline

cohomology is zero. But since XK has a semistable model, this is equivalent to have trivial

monodromy on H2
DR(XK), which is the desired result.
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Corollary 5.2.2 (Pérez Buendía). Let p > 3 and K a finite extension of Qp. Let XK be a

smooth, projective K3 surface over K, that admits a semistable model over OK . Then, XK

has good reduction if and only if the monodromy operator Nst on Dst(H
2
ét(XK ,Qp)) is zero.

Proof. The proof is almost identical to that of corollary 5.2.1, but now we need to use the

comparison isomorphism (theorem 0.2 in [Ts99]) in order to get the same result for the

monodromy operator Nst.

Remark 5.2.2. The comparison isomorphism from [Ts99] used to prove corollary 5.2.2 says

that our main result is actually equivalent to the main result in [Pe14]. The proofs, however,

are very different since the proof made in [Pe14] uses p-adic Hodge Theory and, moreover,

it relies on a trascendental argument. Namely, one constructs a semistable degeneration

of complex K3 surfaces, as defined in section 4.1, which preserves the type of the special

fiber and the degree of nilpotency of the monodromy operator. Then, one uses the classical

monodromy criteria (theorem 4.1.5) to get the desired result. On the other hand, our proof

relies only on p-adic methods and it is largely inspired by the proof of theorem 4.1.5.



Chapter 6

The case of Enriques Surfaces

Once that we have proven our main theorem, we shall try to get a similar result for Enriques

surfaces. Namely, we would like to get a good reduction crieterion for semistable Enriques

surfaces. In this chapter we describe the techniques that can be used to get that result.

First let us recall some facts about the previous works, including ours. Let V be a

complete discrete valuation ring of mixed characteristics, K its fraction field and k the

residue field, which we assume to be perfect. Let W := W (k) denote the ring of Witt-

vectors with coefficients in k, seen as a subring of V and let K0 denote its fraction field.

For a proper variety X over V with semistable reduction and special fiber Xk, via the

theory of log schemes and the work of Hyodo-Kato in [HK94], one defines a monodromy

operator on the de Rham comology groups of its generic fiber XK . This action has been

used to give criteria for good reduction. In the case of abelian varieties, this has been enough.

But in a more general situation, it has been proved that such an action is not enough to

detect “good reducibility”. In fact, even in the case of curves one has to study the unipotent

fundamental group (whose abelianization is related to the first cohomology group).

Since K3 surfaces are simply connected, the first fundamental group is trivial and the

only relevant cohomology group is the second. By the Hurewicz theorem, we have that the

second homotopy group π2 is isomorphic to the second homology group. If we want to state

this in terms of cohomology, their second rational homotopy group is associated by duality

to the second cohomology group, and in fact using this second cohomology group we can

get the criterion.

64
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Moreover, we want to give another hint of the following philosophy: the criteria for good

reduction should involve the unipotent fundamental group and the other higher rational

homotopy groups. Note that this is exactly the setting of the rational homotopy theory of

Sullivan and Morgan. Here we want to focus on the case of the Enriques surfaces, i.e.,

surfaces with irregularity 0 and such that the square of its canonical divisor is trivial.

Moreover, we assume that the characteristic of the residue field is strictly larger than 3.

For such a surface, the first homotopy group π1 is torsion: indeed, it is isomorphic to Z/2Z.

We would like to get a result similar to that of curves (as in [AIK13]). Note that we

cannot study the action on the first homotopy group or the unipotent completion, which is

zero for Enriques surfaces. We study the second homotopy group, which does not coincide

with the second cohomology group (as it happens in the case of K3 surfaces) since they are

not simply connected. We need to study the second homotopy group for Enriques surfaces,

and the monodromy action on it should give the desired criterion.

6.1 Universal coverings of Enriques and Rational schemes

in characteristic p

In this section we consider a (proper) log semistable Enriques surface X defined over a DVR,

such that the generic fiber is a smooth proper Enriques surface and the special fiber is a

simple normal crossing log Enriques surface (see Nakkajima [Na00]). In this case Λ2ωX is

invertible and satisfies (Λ2ωX)⊗2 = OX . Then to this object is associated an étale covering

2:1 :

Y → X,

where Y is a proper semistableK3 surface. Moreover, its generic fiber is a proper smooth K3

surface (classical K3 cover of Enriques surfaces). We can see then the covering YK → XK

as the universal covering of XK (even if it is finite étale, this is one of the few cases where

an algebraic variety has a universal covering in algebraic terms). Since it is a covering, we

have that πi(XK) = πi(YK) for i ≥ 2 (without a precise meaning, for the moment). Hence

the second homotopy group π2 of our Enriques surface is the π2 of the K3 surface, which is

linked to its second cohomology group.

Once we have done this step, we need to know the shape of the étale universal covering
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Y . Recall that we are assuming that the special fiber of the semistable model is one of those

explained by Nakkajima in [Na00], and that just as the case of K3 surfaces, it is one of three

types, called type I, II and III. Moreover, our map is étale even over the special fiber.

6.2 Enriques Surfaces and Monodromy

Let us give the following definition.

Definition 6.2.1. A semistable surface X is called semistable Enriques if it is a regular,

projective surface, such that the generic fiber is a smooth Enriques surface and its special

fiber Xk is one of the following:

I) Xk is a smooth Enriques surface.

II) X ⊗k k = X1 ∪ X2 ∪ · · ·XN is a chain of smooth surfaces, with X1 rational and the

others are elliptic ruled and two double curves on them are rulings.

III) X⊗k k = X1∪X2∪ · · ·XN , with every Xi smooth and rational, and the double curves

on Xi are rational and form a cycle on Xi. The dual graph of X⊗k k is a triangulation

of the real projective plane P2(R).

Note that under our definition, if ΛX denotes the sheaf of log-differentials (with respect

the log-structure given by the special fiber), we have

(Λ2
X)⊗2 = OX .

Indeed, the restriction to the open XK of (Λ2
X)⊗2 is zero by definition of Enriques in

characteristic 0, while its restriction to the special fiber is trivial. Hence (Λ2
X)⊗2 = OX .

From this we have a natural étale covering of X associated to (Λ2
X)⊗2 (see [CD]).

In the generic fiber we have a smooth K3 surface, while in the special fiber we have

a normal crossing divisor which looks like a K3 surface because we have vanishing of

cohomology and triviality of (Λ2
X).

If the special fiber of our Enriques surface is smooth, the étale lifting would not change

the smoothness and then the action of the monodromy on π2 is the action of the monodromy
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on the second cohomology group of the smooth K3 surface, hence it is trivial.

Let us now work the other cases.

Lemma 6.2.1. Consider an Enriques NCD with simple components in Xk. Then the

étale covering respects the components, i.e., the lifting of a rational component is a rational

component and the lifting of an elliptic one is an elliptic one.

Proof. The geometric fundamental group of a rational surface is zero. Indeed, it is true that

every proper, normal, rational variety over an algebraically closed field is simply connected:

see SGA 1, XI, Cor. 1.2. This is more than what we had at the beginning of this chapter.

Hence the covering is just a base change: hence the variety remains rational. In the other

cases: one may expect that by means of the étale covering we may change the shape of the

combinatorial. But if we have a finite étale map ϕ : T → S, then we have an injection of

the cohomology groups H1(S) ↪→ H1(T ). Then an elliptic surface (whose cohomology is not

zero) cannot be transformed into a rational one (whose cohomology is zero). Moreover the

étale map does not change the fact that the components are smooth.

Corollary 6.2.1. The étale K3 covering of any Enriques SNCL is a combinatorial SNCL

K3 surface, and we have a correspondance on the type.

We may conclude that by using the étale cover given by the Λ2
X of the given semistable

Enriques surface X, we are reduced to a semistable K3 surface Y , whose special fiber is a

combinatorial one. In particular, the generic fiber gives a universal covering (since a smooth

K3 surface is simply connected) of the given Enriques surface. We then have that

π2(XK) = π2(YK) = H2
dR(YK),

since for a smooth K3 surface, the second homotopy group coincide with the second

cohomology group. For the universal covering, the higher homotopy groups do not change.

Recall that the action of the monodromy on H2
dR(XK) was zero. Now we look at the

action on the fundamental group: we have a natural immersion H2
dR(XK) → H2

dR(YK) =

π2(YK) = π2(XK), and moreover the étale map Y → X gives a morphism in cohomology

compatible with monodromy (even if it is not a priori). Thus, the final result should be:

Conjecture 6.2.1. A semistable Enriques surface is smooth if and only if the action of the

monodromy on second homotopy group of the generic fiber is trivial.
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