
GPU BASED REAL-TIME WELDING SIMULATION WITH

SMOOTHED-PARTICLE HYDRODYNAMICS

Qing Gu

A thesis

in

The Department

of

Computer Science

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Computer Science

Concordia University

Montréal, Québec, Canada

January 2016

c⃝ Qing Gu, 2016

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Qing Gu

Entitled: GPU Based Real-time Welding Simulation with Smoothed-Particle

Hydrodynamics

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining commitee:

Dr. Nikolaos Tsantalis
Chair

Dr. Adam Krzyzak
Examiner

Dr. Charalambos Poullis
Examiner

Dr. Tiberiu Popa
Supervisor

Dr. Sudhir Mudur
Co-supervisor

Approved
Chair of Department or Graduate Program Director

20

Amir Asif, Ph.D..P.Eng., Dean

Faculty of Engineering and Computer Science

Abstract

GPU Based Real-time Welding Simulation with Smoothed-Particle Hydrodynamics

Qing Gu

Welding training is essential in the development of industrialization. A good welder will build

robust workpieces that ensure the safety and stability of the product. However, training a welder

requires lots of time and access professional welding equipment. Therefore, it is desirable to have a

training system that is economical and easy to use. After decades development of computer graphics,

sophisticated methodologies are developed in simulation fields, along the advanced hardware, enables

the possibility of simulation welding with software. In this thesis, a novel prototype of welding

training system is proposed. We use smoothed-particle hydrodynamics (SPH) method to simulate

fluid as well as heat transfer and phase changing. In order to accelerate the processing to reach the

level of real-time, we adopt CUDA to implement the SPH solver on GPU. Plus, Leap Motion is

utilized as the input device to control the welding gun. As the result, the simulation reaches decent

frame rate that allows the user control the simulation system interactively. The input device permits

the user to adapt to the system in less than 5 minutes. This prototype shows a new direction in the

training system that combines VR, graphics, and physics simulation. The further development of

VR output device like Oculus Rift will enable the training system to a more immersive level.

iii

Acknowledgments

Firstly, I would like to thank my supervisors. It’s their help and professional support allow me to

finish this thesis. I also would like to thank my family for their unconditional love. Finally, I would

like to thank all of my friends for their support.

iv

Contents

List of Figures vii

1 Introduction 1

2 Related Work 3

2.1 Fluid Dynamics and Navier-Stokes Equation . 3

2.1.1 Lagrangian vs. Eulerian Specification . 3

2.1.2 Contniuum Equation . 4

2.1.3 Stress and Strain . 5

2.1.4 Newton’s Law of Friction . 8

2.1.5 Navier-Stokes Equation . 8

2.1.6 Surface Tension . 10

2.2 SPH . 11

2.2.1 Interpolation . 11

2.2.2 Densities . 11

2.2.3 Pressures . 12

2.2.4 Viscosities . 13

2.2.5 Surface Tension . 14

2.2.6 Heat Transfer . 16

2.2.7 Neighborhood Search . 16

2.2.8 GPU SIMD . 18

2.3 Rendering . 19

2.4 User Interfaces . 20

3 Proposed Approach 21

3.1 Realtime implementation with GPU . 21

3.1.1 Neighboring Search . 22

3.1.2 Sorting . 23

3.1.3 Summation Equation . 25

3.1.4 Kernel Functions . 26

3.1.5 Densities . 26

3.1.6 Pressure Forces . 26

v

3.1.7 Viscosity . 28

3.1.8 Surface Tension . 28

3.1.9 Heat Transfer . 28

3.1.10 Multi-Phases . 29

3.2 Boundary Handling . 29

3.3 Rendering . 30

3.3.1 Rendering of Particles . 30

3.4 User Interface . 31

4 Results and Discussions 35

4.1 Implementation . 35

4.2 Simulation Results . 37

4.2.1 Bars . 37

4.2.2 V-Joint . 37

4.2.3 T-Joint . 37

4.2.4 Bunny . 39

4.2.5 Melting-Troughs . 39

4.3 Benchmarks . 40

4.4 Evaluation . 40

5 Conclusion 44

5.1 Limitations . 44

5.2 Future Works . 45

Bibliography 46

vi

List of Figures

1 From t0 to t1, in the Lagrangian specification, the position of the point is only the

function of time. However, in Eulerian specification, the particles observed at different

positions, represent as the squres in the figure. Thus, the velocity of fluid in the small

space is function of time. 4

2 Control Volume . 5

3 Square a, b, c, d is deformed to a′, b′, c′, d′ from t to t+∆t 6

4 The stresses on the control volume. Stress is decomposed into 6 components indicated

in the figure. 7

5 The relationship between shear stress and shear strain rate of different fluids. 8

6 Control volume with stresses on x direction. 9

7 Surface Tension. 10

8 On the left, when ξ is small, fluid is more viscous than the one with higher ξ on the

right. 14

9 Space is separated by the grid. Each particle is inserted in to one of the cells. The

searching area of neighborhood is narrowed down to the neighboring cells 17

10 Points in space are hashed to a hash table. 17

11 This image shows the memory arrangement of a 2D exmaple. Particles are put in 2

by 2 blocks. 18

12 Vector addition is applied to an array of vectors with the same addition operation. 19

13 Leap Motion with Oculus Rift DK2. 20

14 Flow Chart of particle handling in a frame. 22

15 In this figure, the neighbor of red point is searched within the 3 × 3 grid, with the

length of the cell equal to searching radius. 22

16 The histogram is firstly generated, than a prefix sum operation is performed to cal-

culate the start indices of sorted array. Finally, input array is relocated according to

the indices. 23

17 In reduction process, the strides are 1,2 and 4. 24

18 In post reduction phase, elements omitted in reduction phase are added together to

form the final prefix sum output. 24

vii

19 The first prefix sum is performed in each thread bock. Then the last elements of

outputs are copied to an extra array sum0 · · · sumn. After that, a second prefix sum

is performed on the extra array. Finally, the final output is achieved by summing

elements in extra array back to outputs of all thread bocks. 25

20 From left to right are Wpoly6,Wspiky and Wviscosity. and their first and second deriva-

tives. 27

21 On the left is the reflective boundary, particles bounce back when reached outside

box. On the right is the free boundary, particles are disappeared when going beyond

the boundary. 30

22 Bilateral function smoothed noises on the surfaces while preserving the edges. 31

23 The texture on the left is attached to the cube to render the skybox, and attached to

the bunny to generate reflection effect. 32

24 Leap Motion Setup . 33

25 Leap Motion and camera share the same coordinate system. The object captured by

Leap Motion is the at the same coordinate that seen by camera. 34

26 Simplified Class Diagram . 36

27 Flow diagram of python console. 37

28 Bars, the color in the picture on the right is color coded. 38

29 V joint . 38

30 T joint . 39

31 Bunny . 39

32 Melting through . 40

33 The left image is the simulation result of our system. The right image is a photo of

welding. 41

34 The top image is the simulation result. The middle image is the simulation result of

Arc+. The bottom image is a photo of real welding. 42

35 Divergence is color coded. The dark blue ones are particles with zero divergence. . 45

viii

Chapter 1

Introduction

Welding is a fabrication process that fuses metals together. The fusing is caused by melting the base

metal. Usually, a filler material is injected into the joint to form a weld pool. By cooling off, the filled

joint will have the same durability as the base metal. There are many welding methods exist, for

instance, shielded metal arc welding, gas tungsten arc welding, gas metal arc welding, etc. Welding

plays a significant role in the industry. Essentially, Some of the fuselage and the chassis components

are fabricated with tungsten inert gas (TIG) welding. The quality of welding has a direct influence

on the user’s safety. In contrast to the importance of welding, welding training and certification is

not accessible for most of the people due to the expense of equipment and resources like electricity

and gas. Also, for beginners, it’s not safe to practice welding without supervising. Therefore,

welding student can only practice their skills at certain facilities. To address this problem, people

start to seek methods in computer simulations. For instance, 123 Certicification Inc. in Montreal

has developed an Arc+ welding simulator which is a simulation machine including both software

and hardware. But their equipment is expensive and simulation is based on experimental data.

There exist certain welding simulation methods. Some of the studies [TMZ+11, Faw13] con-

centrate on finite element models. In these models, workpieces are considered as solid metals and

be separated into small finite elements. Heat transfers are considered occurring between the finite

elements. This method is mainly used to investigate the heat transfer, but not the deformation of

the workpieces. Recently, there are several studies focus on using fluid simulation [RC09,IIFS12]. In

these papers, fluid simulation is used to simulate the molten filler materials. However, both of them

are single-phase simulations. Although filler material is modeled as liquid particles whose viscosity

changes with temperature, they will not solidify even if their temperature is lower than freezing

point. The parent material does not melt when the temperature is higher than the melting point.

Another crucial issue is that the simulation is too slow to satisfy the real-time application.

Phase changing is discussed in [SSP07], in their method, they talked about the 3 states of

particles: liquid, the elastic body, and rigid body. The last two phases require cold particles to form

certain reference bodies in order to calculate the elastic force or sum of torque. Still, this scheme

is difficult to combine with parallel scheme. Also, regarding the fluid simulation, several methods

are proposed to solve smoothed-particle hydrodynamics (SPH) in real-time. Most of them adopted

1

GPU computation, e.g. [GSSP10,IABT11]. GPU was originally designed for 3D graphics rendering,

which contains much more threads than CPU. Different from CPU which is designed as MIMD

processor to handle different tasks in the operating system, GPU has the SIMD architecture that

is suitable for rendering vertices and pixels. Since in graphics rendering, we just perform the same

operations on the given elements, e.g. multiply each vertex by model, view, and projection matrices,

applying a gaussian filter to rendered frame buffer, etc. These implementations mentioned in the

papers achieved high frame rate, but not no heat transfer nor multiphase were discussed.

Furthermore, several studies focus on generating better simulation result using iterative pressure

solver to ensure incompressibility, for instance, [SP09, SSP07]. Also, an implicit viscosity solver is

proposed this year by [PICT15] to generate better result in a non divergence free velocity field.

However, the implementations of these solvers are all CPU based and requires more iteration, im-

plementations with GPU or real-time applications are barely introduced.

This thesis focuses on welding simulation based on SPH and CUDA. SPH was originally intro-

duced by [GM77] for astrophysical problems but further modified to simulate fluid. This method

smoothed the effect of particles by a kernel function, allowing simulating fluid with a limited number

of particles by giving the interpolation equation:

A(r) =
∑
j

mj
Aj

ρj
W (|r− rj|, h)

where A is the quantity (a scalar or a vector) of a particle, r is the position of the particle and rj

is the position of a neighboring particle. W is a kernel function that smooths the contribution of

neighbor particles. By implementing this solver with CUDA, we achieved real-time fluid simulation

with high granularity. Furthermore, we incorporate a heat transfer scheme and phase changing

methods to this solver to simulate the solidification and melting of metals. Moreover, we adopted

Leap Motion as the input method to control the welding gun. Leap Motion is a finger tracker that

can capture the position and directions of fingers in very high refreshing rate. Comparing to the

marker method in Arc+, this method is more accessible and flexible.

There are following contributions in this thesis:

• We achieved real-time fluid simulation based welding simulation with GPU.

• We incorporated heat transfer and phase changing scheme that compatible with our system.

• We developed a decent rendering method to render metal particles.

• A Python console is embedded into the system to control simulation system at runtime.

• We adopted Leap Motion as an intuitive and low cost input method.

• We implemented a mesh importer that allows user to use the customized meshes as workpieces.

• The system is designed to be easily incorporated with VR goggles.

2

Chapter 2

Related Work

In this section, related works will be listed in the following fashion. Firstly, we will introduce the

background of fluid dynamics as well as the derivation of Naver-Stokes equation of incompressible

fluid. Then the method of smoothed hydrodynamic particles is introduced. After that, we will focus

on the developing of SPH in the past decades and state-of-the-art methods, mostly on correction of

incompressibility and viscosity. Also, techniques of user interface improvement based on the modern

hardware are investigated.

2.1 Fluid Dynamics and Navier-Stokes Equation

Fluid simulation is a physics simulation process employed fluid dynamics equations, mostly Navier-

Stokes equation. Navier-Stokes equation describes the acceleration of fluid particles regarding their

hydrodynamics pressures, viscosity forces and external body forces. Having a good understanding

of Navier-Stokes equation will contribute to better implementation of the simulation system. This

section will give a brief introduction of the basic knowledge of fluid dynamics as well as the derivation

of Naver-Stokes equation.

2.1.1 Lagrangian vs. Eulerian Specification

In the Lagrangian specification, fluids are treated as small particles move with flow, observer focus

on the movement of a particular particle, and moves with it. In this case, the translation vector, i.e.

the position, can be represented as:

r = r(a, b, c, t)

Where (a, b, c) = r(a, b, c, t0) is the Lagrangian variable. It denotes the position of the particle at

starting point t0. Thus, different particles can be labeled by their starting positions. The velocities

and accelerations are the first and second derivative of r. Note that the acceleration is only the

function of t, thus they can be given as:

u =
dr

dt
= ∇r

3

a =
du

dt
= ∇(∇(r))

u0(x(t0), y(t0), z(t0), t0)

r0(a, b, c, t0)

u1(x(t1), y(t1), z(t1), t1)

r1(a, b, c, t1)

Figure 1: From t0 to t1, in the Lagrangian specification, the position of the point is only the function
of time. However, in Eulerian specification, the particles observed at different positions, represent
as the squres in the figure. Thus, the velocity of fluid in the small space is function of time.

As shown in figure 1, while Lagrangian specification focus on the position of particles, Eulerian

specification focuses on the velocity of particles. It is a method to study the velocity field of fluids.

Observer focus on a particular space, and observes the fluid particles flow through it. In Eularian

specification, the velocity vector of a particle is given as:

u = u(x, y, z, t)

where (x, y, z) is a small volume in space. Different from Lagrangian specification, x, y, z are

all functions of time t. Thus, by given the speed as d(x,y,z)
dt = (ux, uy, uz), the acceleration can be

represented as the full derivative of velocities:

a =
Du

Dt
= (

∂

∂t
+ u · ∇)u

This derivative is also called material derivative. This equation indicates that the change of velocity

has been composed by two part: the local velocity change in time dt and the velocity change casued

by the difference of velocity in different positions. The Eulerian specification is widely used in fluid

dynamics analysis. The Navier-Stokes equation is also derived by using this specification.

2.1.2 Contniuum Equation

Continuum Equation is broadly used in physics to represent transportation of materials. The con-

tinuum equation of fluid can be derived by applying conservation of mass. According to the principle

of mass conservation, the pure mass input of the control volume should be equal to the increment

of the density of the control volume.

Figure 2 shows a control volume, and ux is the speed of flow. On the x direction, the input

of mass of the control volume in time dt is ρuxdydzdt. Applying the Taylor approximation, at the

4

x

y

z

ux

dx
dy

dz

Figure 2: Control Volume

same time, we can get the output of the mass is (ρux +
∂(ρux)

∂x dx)dydzdt. Thus the pure input mass

in dt is:

ρuxdydzdt− (ρux +
∂(ρux)

∂x
dx)dydzdt = −∂(ρux)

∂x
dxdydz

The pure input mass is calculated by the different of input mass and output mass, considering

the mass input on x, y, z directions, we have:

∂ρ

∂t
+

∂(ρux)

∂x
+

∂(ρuy)

∂y
+

∂(ρuz)

∂z
=

∂ρ

∂t
+∇ · (ρu) = 0 (1)

where ∂ρ
∂t is the increment of density. The density of incompressible fluid is constant. Based on

Euler specification, the material derivative of density should be zero, i.e. Dρ
Dt = 0. Plug it into (1),

the continuum equation for incompressible fluid is given as:

∇ · u = 0.

2.1.3 Stress and Strain

Strain is a value that measures the deformation of object comparing to its original position and

stress is the force that causes the deformation. Consider the 2D situation in figure3 on x− y plane,

a square control volume a, b, c, d is deformed to new shape a′, b′, c′, d′ in time t to t+∆t. On x axis,

the linear strain rate can be represented by εxx = ∂ux

∂x and angular strain rate can be represented

by εxy = 1
2 (

∂uy

∂x +
∂uy

∂x). Simply expand this to the other directions in 3D, we can define strain the

strain tensor:

ε =

⎡⎢⎢⎣
εxx εxy εxz

εyx εyy εyz

εzx εzx εzz

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1
2 (

∂ux

∂x + ∂ux

∂x) 1
2 (

∂ux

∂y +
∂uy

∂x) 1
2 (

∂ux

∂z + ∂uz

∂x)
1
2 (

∂uy

∂x + ∂ux

∂y) 1
2 (

∂uy

∂y +
∂uy

∂y) 1
2 (

∂uy

∂z + ∂uz

∂y)
1
2 (

∂uz

∂x + ∂ux

∂z) 1
2 (

∂uz

∂y +
∂uy

∂z) 1
2 (

∂uz

∂z + ∂uz

∂z)

⎤⎥⎥⎦ (2)

5

x

y

o

a(a′) b

c d

b′

c′

d′

t ⇒ t+∆t

Figure 3: Square a, b, c, d is deformed to a′, b′, c′, d′ from t to t+∆t

6

In which the three elements on the diagonal are the linear strain rate and the others are angular

strain rate.

As shown in figure 4, we use Pab to denote the component of stress that applied on the face whose

normal is a and stress direction is b. For instance, Pxy denotes the y component of stress applied to

the surface whose normal is x. By putting them together, we can have the following stress tensor,

given as:

P =

⎡⎢⎢⎣
Pxx Pxy Pxz

Pyx Pyy Pyz

Pzx Pzy Pzz

⎤⎥⎥⎦ .

x

y

z

Pxx

Pxy

Pxz

Pyx

Pyy

Pyz

Pzx

Pzy

Pzz

Figure 4: The stresses on the control volume. Stress is decomposed into 6 components indicated in
the figure.

The values on the diagonals are orthogonal normal stresses and the others are orthogonal shear

stresses. The common part p = 1
3 (Pxx, Pyy, Pzz) is extracted. Thus, the stress tensor can be

rewritten as the linear combination of the following two parts:

P =

⎡⎢⎢⎣
Pxx + p Pxy Pxz

Pyx Pyy + p Pyz

Pzx Pzy Pzz + p

⎤⎥⎥⎦− pI = D+ pI (3)

Where D =

⎡⎢⎢⎣
Pxx + p Pxy Pxz

Pyx Pyy + p Pyz

Pzx Pzy Pzz + p

⎤⎥⎥⎦ is caused by viscous, let’s call it viscous stress tensor. I

is the unit tensor and p is called hydrodynamic pressure and irrelevant to the direction.

7

2.1.4 Newton’s Law of Friction

Viscosity is caused by friction between particles, generally speaking, the friction force is proportional

to the differential of speed, i.e. the viscous stress tensor is proportional to strain tensor. In 1

dimensional situation, it can be represented as τ = µdu
dy . By using the strain tensor (2) and stress

tensor (3) above, the Newton’s law of friction in 3D can be represented by D = 2µε, by plugging it

into stress tensor (3), we have:

P = 2µε+ pδ (4)

It is safe to say that Newton’s law of friction served as the glue between stress tensor and strain

tensor. Also note that here we assume that the viscous stress tensor is linearly proportional to strain

tensor. This assumption, unfortunately, is not always true. Numbers of fluids satisfy Newton’s law

of friction, for instance, water, gases and molten metals. We call these fluids Newtonian fluids. On

the other hands, there are also a lot of other kinds of fluids. Figure5 lists different kinds of fluids.

Though, our discussion will focus on Newtonian fluids.

Figure 5: The relationship between shear stress and shear strain rate of different fluids.

2.1.5 Navier-Stokes Equation

Navier-Stocks equation is a continuum equation that describes the movement of the fluid. It de-

scribes the relationship among external forces, viscosity force and pressure force. According to the

conservation of momentum, the increment of the momentum should be equal to the momentum

flows into the control volume plus the momentum contributed by external forces(both body forces

and surface forces), given as:

pincrement = pflow + pbodyforce + psurfaceforce. (5)

We will first discuss this equation on x direction, then expand to the tensor form in 3 dimension.

Firstly, according to the equation of momentum p = mv, the increment of momentum in dt on x

8

x

y

z

dx
dy

dz

Pxx
Pyx

Pzx

Figure 6: Control volume with stresses on x direction.

direction is:

pincrement =
∂(ρux)

∂t
dxdydz (6)

On the right side of equation 5, we have the momentum flows into the control volume:

pflow = (−∂(ρuxux)

∂x
− ∂(ρuyux)

∂y
− ∂(ρuzux)

∂z
)dxdydz (7)

Note that we need to consider all of the three surfaces in figure 6.

Then, the density contributed by the body force on x direction is easy to derive:

pbodyforce = ρXdxdydz (8)

where X is the body force on x direction.

The surface forces on x direction need also to take account of all three surfaces:

psurfaceforce = (
∂Pxx

∂x
+

∂Pyx

∂y
+

∂Pzx

∂z
)dxdydz (9)

By plugging all of the four components into (5), we will have the momentum conservation equation

on x direction:

∂(ρux)

∂t
dxdydz − (−∂(ρuxux)

∂x
− ∂(ρuyux)

∂y
− ∂(ρuzux)

∂z
)dxdydz =

ρXdxdydz + (
∂Pxx

∂x
+

∂Pyx

∂y
+

∂Pzx

∂z
)dxdydz

⇒ ∂(ρux)

∂t
+ (

∂(ρuxux)

∂x
+

∂(ρuyux)

∂y
+

∂(ρuzux)

∂z
) =

ρX + (
∂Pxx

∂x
+

∂Pyx

∂y
+

∂Pzx

∂z
)

9

By plugging in continuum equation (1):

dux

dt
= X +

1

ρ
(
∂Pxx

∂x
+

∂Pyx

∂y
+

∂Pzx

∂z
) (10)

Now, it’s time to expand it to other directions:

duy

dt
= X +

1

ρ
(
∂Pxy

∂x
+

∂Pyy

∂y
+

∂Pzy

∂z
)
duz

dt
= X +

1

ρ
(
∂Pxz

∂x
+

∂Pyz

∂y
+

∂Pzz

∂z
) (11)

Still on x direction, we use Newton’s fraction law to substitute stresses with strains:

dux

dt
= X − 1

ρ

∂p

∂x
v(

∂2ux

∂x2
+

∂2ux

∂y2
+

∂2ux

∂z2
) (12)

Where p = 1
3 (Pxx, Pyy, Pzz) is the hydrodynamic pressure mentioned before. Now, writing it in

tensor form, we will have the Navier-Stokes equation:

du

dt
= f − 1

ρ
∇p+ v∇2u (13)

Navier-Stokes equation is a partial derivative equation can be solved under few conditions. Nev-

ertheless, our implementation requires solution under all conditions, thus, only numerical solutions

exist.

2.1.6 Surface Tension

Apart from internal forces and external forces we have discussed, surface tension also contributes to

the movement of particles, and only exists on the free surfaces.

Figure 7: Surface Tension.

Surface tension is generated by the cohesive forces. Cohesive forces are attract force between

particles. It’s balanced inside the fluid. Because on each direction, the mass of fluid are the same.

However, for particles on the free surfaces, because there is only one side has particles, the cohesive

force is unbalanced, which causes the phenomenon of surface tension. In physics, the surface tension

is described as the force that perpendicular to the length and tangent to the free surface. The force

can be represented as σ = ∆T/∆L.

10

2.2 SPH

Since we are using Eulerian specification, the conservation of mass is guaranteed, thus, SPH uses

the following Navier-Stocks Equation.

ρ
∂u

∂t
= −∇p+ µ∇2u+ ρg (14)

Where u is the velocities of particles, µ is the stiffness parameter, ρ is the densities of particles.

The 3 parts on the right side of the equation represents the pressure force density, viscosity force

density and external force density which are needed to be solved one by one. Navier-Stokes equation

is established on the continuum hypothesis. With this assumption, the properties of fluid like

densities, velocities, accelerations are well-defined at infinitely small space. In fact, fluids are made

of molecules, for example, the molar mass of water is 18.01528g/mol, which means that there are

6.02214129(27)× 1023 molecules in 18.01528g of water. Each molecule is so small such that we can

approximately consider it infinitely small.

In this following sections, the basic SPH implementation is firstly introduced. Then, the varia-

tions of SPH methods are presented. The variations mostly focus on developing more stable pressure

solver and viscosity solver.

2.2.1 Interpolation

One issue arises at fluid simulation is granularity. Due to the limitation of computational power,

fluids are impossible to be simulated at the molecule level. That is to say, we need certain interpo-

lation methods to integrate numbers molecules into a bigger particles without significant impact on

the accuracy of the simulation. One method proposed in [GM77] involves the following summation

equation. With this equation, the effect of a particle is smoothed within its support radius.

A(r) =
∑
j

mj
Aj

ρj
W (|r− rj|, h) (15)

In which W is the kernel function and h is the smooth distance. The kernel function W defines

the influence a particle can have to another by giving their distance r.

2.2.2 Densities

The first step of SPH is to calculate the densites ρ using summation equation, plug in ρ into eq15,

we can get the density of ith particle.

ρi =
∑
j

mjW (xij, h) (16)

With densities of all particles that calculated by the the equation above, we can start to calculate

the pressure force p using the following equation.

11

2.2.3 Pressures

Hydrodynamics pressure is formed by the average of the orthogonal pressure and irrelevant to the

direction. Thus, we can define it as a scalar. In order to calculate the gradient of pressure force of

each particle, we need to compute the pressure at each point according to the density computed by

(16). [DG96] provides a method as flowing equation based on idea gas law:

pi = k(ρi − ρ0), (17)

Where k is the stiffness parameter, ρi is the density of ith particle given by (16) and ρ0 is the rest

density of fluid. (e.g. rest density of water is 1g/cm3). In order to maintain incompressibility, a

large k is required.

Besides the ideal gas equation, Tait equation that was published by Peter Guthrie Tait in 1888

is also used to simulate the weakly compressible liquids [BT07]. In this approach, the pressure of

the particle can be written as:

P = B

(
(
ρ

ρ0
)γ − 1

)
(18)

Where γ = 7, B are constants govern the density fluctuation |δρ|ρ0
;

Then apply pressure forces calculated from (17) or (18) to the gradient of summation equation

(15), we will have.

−∇p = −
∑
j

mj

ρj
pj∇Wij (19)

Note that the pressure force density calculated in (19) is not symmetric, resulting in violation

of the Newton’s 3rd law. Thus after symmetrization, we can get the final equation that used to

calculate the pressure force density.

∇p = −
∑
j

mj

ρj

pi + pj
2

∇Wij (20)

The velocity computed above is not guaranteed to be divergence free. Therefore, other methods

e.g. [SP09, HLL+12] are developed to add a correction step. In these methods, an intermediate

velocity is calculated without effects of pressure force. Based on the intermediate velocity, an offset

to the density is applied, giving the new density as:

ρ∗i =
∑
j

mjWij +∆t
∑
j

(v∗i − v∗j) · ∇Wij . (21)

Where v∗i ,v
∗
j are velocities of particles, ∆t is the length of time step and ρ∗i is the corrected density.

Then based on the corrected density, the pressure force is calculated, giving fluid a more divergence

free velocity field.

Though non-iterative EOS methods yield good results, iterative methods are developed to further

enforcing incompressibility, e.g. PCISPH [SP09] and LPSPH [HLL+12]. In these methods velocity

is firstly calculated without the effect of pressure force. Then, the position is updated by the

12

velocity repeatedly. In the iteration part, density ρ∗ is updated by new position derived from

density calculated in the previous iteration until ρerr = ρ∗− ρ0 is smaller than a threshold η. These

methods provide a flexibility on controlling the compressibility as well as allowing bigger time step.

Another methods emerged recently is to solve pressure force with a pressure Poisson equation

(PPE), e.g. IISPH [ICS+14]. In these methods, Laplacian of pressure is written as [CR99,PTB+03]

∇2pi =
ρ0
∆t

∇ · v∗i . (22)

or as [SL03,KGS09]:

∇2pi =
ρ0 − ρ∗i
∆t2

(23)

However, PPEs need to be solved with successive over-relaxation, conjugate gradient or multigrid

techniques, resulting in more iterations.

2.2.4 Viscosities

Viscosity is introduced to stabilize the velocity field of the particle system. The velocities of particles

are diffused to neighbor particles which makes particles move in groups. Using the second part on

the right of (14), the viscosity force density is given by using the Laplacian of velocity field in the

following form. [MCG03]

µ∇2u = µ
∑
j

mj

ρj
uj∇2Wij (24)

However, the equation above also suffers from the same issue of non-symmetric. After symmetriza-

tion, we have:

µ∇2u = µ
∑
j

(uj − ui)∇2Wij (25)

The method above computes the viscosity explicitly by plugging in Newton’s law of friction to

convert stress into strain. Another method to solve viscosity implicitly is proposed by [PICT15].

The main idea is to decompsite the velocity gradient into three parts: spin tensor R, expansion-rate

tensor V and shear-rate tensor S in the following fashion:

∇v = (26)

1

2
(∇v − (∇v)T) D (27)

+
1

3
(∇ · v)I V (28)

+(
1

2
(∇v + (∇v)T)− 1

3
(∇ · v)I) S (29)

Note that the speed gradient ∇v is a second rank tensor given as:

∇v =

⎡⎢⎢⎣
∂vx

∂x
∂vx

∂y
∂vx

∂z
∂vy

∂x
∂vy
∂y

∂vy
∂z

∂vz

∂x
∂vz

∂y
∂vz

∂z

⎤⎥⎥⎦ (30)

13

The viscosity is controlled by a parameter ξ ∈ [0, 1] applied on shear-rate tensor S. Rewrite (30) to:

∇v = R+V + σS (31)

When ξ = 0, no shear force is applied to the particles, particle will remain the shape. When ξ = 1,

the system has no resist to the shear force, resulting in fluid with no viscosity, Figure 8 shows the

different result by setting ξ = 0.8 and ξ = 0.2.. Additionally, when the density is smaller than the

rest density, the pressure solver will generate attraction force which causes instability. This implicit

viscosity model does not address this problem, but stops worsen it by removing the expansion rate

tensor V, yields:

∇v = R+ ξS (32)

Figure 8: On the left, when ξ is small, fluid is more viscous than the one with higher ξ on the right.

2.2.5 Surface Tension

As mentioned above, surface tension is caused by cohesion forces between particles. The particles

on the free surfaces are affected by cohesion forces from only one side, resulting in unbalanced

composition force that stops them from moving away.

The early researches focus on minimizing the surface curvatures [Mor00]. In these methods, a

color function is given to describe the shape of the fluid.

c =
∑
j

mj

ρj
W(r − rj) (33)

The gradient of the color function is used to define the direction of force direction.

n =
∑
j

mj

ρj
∇W(r − rj) (34)

Since the effect of the surface tension is to minimize the curvature of surfaces, we can use the

Laplacian of the color function to describe the strength of the force. Thus, the surface tension is

given by the following equation.

ft = −k∇2c
n

|n|
(35)

14

Note that in order to apply forces on surface only, a threshold t is given and the surface tensions

are applied when and only when |n| > t.

This method, though widely used, have certain issues. Firstly, inner particles have arbitrary

directions. Though it can be solved by applying a threshold, the choice of threshold is very important

to the stability of simulation. Secondly, this model is very sensitive to SPH disorder since it highly

relies on the contribution of neighbor particles while calculating the Laplacian. Lastly, the external

forces that applied on the surface violate the conservation of momentum.

An important method is proposed by [IIFS12] which provides a surface tension combined cohesion

force and tangent force. The cohesion force is calculated by:

Fattract
a = d

∑
b

γ′fattract
ab (36)

where d is the particle diameter, γ′ is a constant computed from surface tension coefficient γ, and

fattract
ab is a kernel function given as:

fattract(|ra − rb|, h) =

⎧⎪⎪⎨⎪⎪⎩
q (0 ≤ q < 1)

2− q (1 ≤ q < 2)

0 (2 ≤ q)

(37)

Tangent force is calculated by the following equation:

F tangent =
dγ

dT
d · n×∇T × n, (38)

where n is the surface normal vector and dγ
dT = 0.21mN/mK is a constant.

While calculating the tangent force, it takes account of the gradient of temperature, makes it

more suitable for SPH system with heat transferring. However, it also has issues on the attraction

force. The kernel function is a two segments of linear function, causes artifacts of particles on the

surfaces.

[AAT13] proposed a versatile solution of surface tension that combined cohesion term and surface

area minimization term, which generates stable and momentum conserve surface tension. According

to this method, cohesion term is defined as:

Fcohesion
i←j = −γmimjC(|xi − xj |)

xi − xj

|xi − xj |

where i, j are neighboring particles, m is mass and x denotes the positions. C is a spline function

given as:

C(r) =
32

πh9

⎧⎪⎪⎨⎪⎪⎩
(h− r)3r3 2r > h ∧ r ≤ h

2(h− r)3r3 − h6

64 r > 0 ∧ 2r ≤ h

0 otherwise

Also, the surface area minimization term is calculated by using neighbor’s smoothed color field

calculated by :

n = h
∑
j

mj

ρj
∇W(r − rj). (39)

15

Here, an parameter h is added to make the computed normal scale independent. The symmetric

curvature force is given as:

Fcurvature
i←j = −γmi(ni − nj).

A correction factor is calculated by the following equation:

Kij =
2ρ0

ρi + ρj

Finally, those two terms can be combined together as:

Fi←j = Kij(F
cohesion
i←j + Fcurvature

i←j)

2.2.6 Heat Transfer

Heat transfer is essential in welding simulation. Hot particles injected into system transfer their

thermal energy to the surrounding particles, resulting in temperature and phase changing. The

temperature also contribute to the change of the viscosity. The general form of thermal equation is

given as:

cp
dT

dt
=

1

ρ
∇(k∇T), (40)

where T is the absolute temperature, cp is the heat capacity per unit mass at constant pressure,

ρ is the density and k is the conductivity. Monaghan and Cleary [CM99] proposed the SPH heat

conduction by using integral approximants as:

dUa

dt
=

∑
b

4mb

ρaρb

kakb
ka + kb

TabFab, (41)

where F = q · ∇W (q) and ∇W (q) is the gradient of kernel function. The heat conduction equation

in (41) ensures that heat flux is automatically continuous across material interfaces.

2.2.7 Neighborhood Search

SPH computation requires a huge amount of computation between neighbor particles. Without

neighboring search, the time complexity of searching over all particles is O(n2). However, because

the kernel functions only take account of the neighbor particles within the support radii, narrowing

down the searching space will boost the processing speed significantly. A commonly used technique

is uniform grid which separates space into small cubic cells with length equal to the size of support

radii. As depicted in figure 9 Particles are inserted into cells, and the one particle has effects to the

particles that reside in cells nearby.

Anther method used is hashing. It is broadly used in SPH system for infinite space. [THM+03]

provides a hashing function which maps particle position p(x, y, z) to a hash table of size m:

c = [(⌊x
d
⌋ · p1)xor(⌊

y

d
⌋ · p2)xor(⌊

z

d
⌋ · p3)] (42)

where p1, p2, p3 are large prime numbers chosen as 73856093, 19349663 and 83492791 [THM+03].

As shown in Figure 10, particles in space is hashed into an array of limited size.

16

Figure 9: Space is separated by the grid. Each particle is inserted in to one of the cells. The
searching area of neighborhood is narrowed down to the neighboring cells

p0

p1

p2

p3

p4

p5
p6 c0

c1
c2
c3
c4
c5
c6

...

Figure 10: Points in space are hashed to a hash table.

17

Another method called Z-index sort is proposed by [IABT11,GSSP10]. Instead of sorting them

by cell ids and put them linearly in the memory, particles are arranged in a z-curve style shown in

figure 11. This z-curve style increases the memory hit. In this arrangement, particles that are close

in space more likely to be close in memory, comparing to the linear arrangement.

Figure 11: This image shows the memory arrangement of a 2D exmaple. Particles are put in 2 by
2 blocks.

2.2.8 GPU SIMD

GPU programming technology is soaring these years. Since graphics computation requires processing

of large amount of data at the same time, GPU is designed to be good at SIMD(Single Instruction

Multi Data) processing. CUDA is an API designed by nVidia to give the power of GPU general

purpose computing. With GPU SIMD architecture, calculations that involve the same operations on

a large amount of data can be significantly accelerated. For instance, vector addition is an operation

that takes two vectors and return a vector in which each element is the sum of the corresponding

elements in the two vectors. In SISD system, we need to iterate over the full length of the vector to

calculate the output. However, in GPU SIMD implementation, we just need to populate data into

the device memory and assign all the threads with the same addition operation. Thus, as shown

in figure 12, each thread needs to take care of one element. There exist several GPGPU(General

Purpose GPU) APIs. For instance, CUDA by nVidia, OpenCL and the compute shader of OpenGL

Shading Language. They all have fairly good performance [FVS11]. Considering the compatibility,

OpenCL is supported by all of the operation systems as well as almost any graphics card, GLSL is

supported on any graphics card with OpenGL 4.3 compatibility(However, by now, Mac OS’s driver

supports only up to OpenGL 4.1), and CUDA can only be used on nVidia GPUs. On the other

hand. GLSL has better integration with OpenGL graphics applications although all of the three has

interfaces to interop with OpenGL buffers.

Nevertheless, amongst the three, CUDA provides relatively easy-to-use interfaces as well as

18

complete debugging tools. In GPU programming, debugging is a tough task because of the high

concurrency and the errors are sometimes random [ABD+15], resulting in huge workload on debug-

ging.

CUDA nVidia drivers provide very handy debugging tools as well as memory checking tools. The

Nsight IDE can debug device code, cuda-memcheck can check GPU memory leaks and nvidia-smi

provides by the driver can track GPU memory use and other parameters. All of the tools make it

easier to develop device code than other platforms.

a0 a1 a2 · · · ana :

b0 b1 b2 · · · bnb :

c0 c1 c2 · · · cnc :

++ + + + +

= = = = =

Figure 12: Vector addition is applied to an array of vectors with the same addition operation.

2.3 Rendering

One method broadly used to render particle system is metaball. Each metaball has a density

function. By putting a set of metaballs together, we can represent a smooth surface as the isosurface

of the density field. Polygonization or ray casting ca be further used to visualize this isosurface [LC87,

LC87]. In [GSSP10], a GPU based real-time metaball ray casting rendering is offered. In the first

step, the surface particles are extracted, then a distance field volume is created by rasterizing the

surface point cloud into a volume with scalar values. The normals are further calculated by the

volume, and lighting is calculated based on the normal informations. The surface extracting by the

distance to the center of mass rCMi
given by (43): if rCMi

is larger than a threshold, the particle is

considered on surface. This value can be extracted from the simulation result.

rCMi
=

∑
j mjrj∑
j mj

(43)

Another widely used method is screen based rendering. In this method, particles are firstly

rendered to deptho map as squares or spheres, and then a smooth method is applied on the depth

map to smooth the edges of particles. Lastly, normals are calculated based on the smoothed depth

map. In [vdLGS09], bilateral filter is used to smooth the depth map of spheres. Comparing to

Gaussian filter, bilateral filter preserves edges. However, since it’s non-separable, therefore requires

more iterations.

19

2.4 User Interfaces

Traditional input method like mice and keyboards have certain issues at simulation of intuitive

interactions. For instance, the movements of the objects controlled by keystrokes are usually artifact.

Using input devices that capture human movement in 3D has a better result in applications that

depends on the natural input. Microsoft Kinect is a body movement capturing device that have

been widely used not only in recreational fields but also research facilities. However, the design

of the Kinect is aimed to capture whole body movement at a distance, and become limited when

capturing detailed movements like fingers. On the other hand, the Leap Motion is a device that

captures the movement of hands and fingers in close range and map them into 3D space. The high

refresh rates guarantee the real-time mapping results in intuitive and flawless interactions to 3D

objects. Also, with the development of virtual reality, VR goggles like Oculus Rift can provide users

immersive experience. This kind of VR device feeds images directly into users eyes, and can track

users’ heads relative movement with an inertial tracker and the absolute position with an external

tracker [BHP+13]. Additionally, the combination of 3D input and output device provides solutions

for further enhancement virtual reality experience. In Figure 13, Leap Motion has provided a mount

that can attach their device on Oculus Rift DK2. This setup allows the users to visualize their hands

in VR goggles, as well as interact with 3D objects with their hands.

Figure 13: Leap Motion with Oculus Rift DK2.

20

Chapter 3

Proposed Approach

Implementing a real-time welding system has certain challenges. First of all, SPH simulation is an

intensive algorithm, making it real time requires deliberated designed algorithms that not only time

efficient but also memory efficient. Secondly, the welding process involves heat transfer between

particles, and it is desirable to have a heat transfer model that compatible with SPH. Third, in the

welding process, molten metals are solidified by losing heat, and can be molten again by absorbing

energy from neighboring particles. This process involves multiphase interactions and needs to be well

explained. Lastly, to have better user interface, make welding gun trace more plausible, a proper

input method is required. In this chapter, methods are stated to solve the described challenges.

Real-time is achieved by adopting GPU computation by populating workloads on a large scale of

GPU threads. Then, a heat transfer model is given to calculate the temperatures transformation

and emission. Multi-phase interaction is also solved in the frame of SPH. Lastly, Leap Motion is

used as user input device to capture user input.

3.1 Realtime implementation with GPU

CUDA is used in this implementation. As we know, GPU is designed in the architecture that prefers

SIMD operations. With SIMD operations, data are firstly populated into memory and perform the

same operation at the same time. For instance, vector summation is a typical SIMD operation since

each element has the same summation operation. When adding two vectors. SPH at some level

can be described as this kind of problem – Each particle can be treated as a single element. Each

thread performs SPH summation equation and composes Navier-Stokes equation to calculate the

acceleration, and then performs leap frog interaction to update its speed and position. It is simple

enough at first glance, but while diving in, it becomes more difficult. Figure 14 shows the process

of a particle in one frame.

21

Figure 14: Flow Chart of particle handling in a frame.

3.1.1 Neighboring Search

Considering the summation equation, we don’t need to search brutally for all particles, but only

the particles within the support radius of kernel functions. Also, since we only care about the fluid

simulation in a certain area, it is not necessary to use hashing. A grid is adopted to narrow down

the searching area by separating the space into cells whose size are as same as the support radii.

Each particle will be inserted into a grid. Thus, the neighboring space is narrowed down to the

neighboring 27 cells. Because of the impressibility of the fluid, number of particles in each cell is

limited.Figure 15 illustrates neighborhood searching in 3D. The length of the cells is equal to the

searching radii guaranteeing that all of its neighbors are withing this 3× 3 grid.

Figure 15: In this figure, the neighbor of red point is searched within the 3× 3 grid, with the length
of the cell equal to searching radius.

In order to keep track of particles in cells, After the insertion, each particle will have a cell ID,

and each cell will have a count indicates the number of particles in the cell. Each cell will also

22

maintain the index of the first particle in the cell and will be used later for query particles after the

sort.

3.1.2 Sorting

An important issue arises at GPU parallel implementation of uniform grad is memory coherence.

After the insertion process, particles whose distance are close are not necessarily close in memory,

resulting in incoherence for following processes. This issue can be solved by sorting particles by their

cell IDs. Counting sort [CLRS01] is an efficient parallel sorting algorithm. We use this algorithm

to sort indices because it is good at sorting integers with limit range. Counting sort involves three

steps. Firstly, in the counting phase, a histogram is generated by counting the number of particles

in each cell. Then, a prefix sum is performed to determine the initial position of each cell. Finally,

particles are relocated in memory according to given indices. A toy example is shown in figure 16

Figure 16: The histogram is firstly generated, than a prefix sum operation is performed to calculate
the start indices of sorted array. Finally, input array is relocated according to the indices.

Counting

Counting phase is done during the insertion process; each cell will keep an integer indicates how

many particles are there.

Prefix Sum

Prefix sum is a typical reduction process. In linear implementation, prefix sum is performed by

iteration over all elements in an array, the time complexity is O(n). However, in parallel implemen-

tation, this method doesn’t apply. To avoid race condition, the array need to be synchronized each

23

x0 x1 x2 x3 x4 x5 x6 x7

x0
∑

x0, x1 x2
∑

x2, x3 x4
∑

x4, x5 x6
∑

x6, x7

x0
∑

x0, x1 x2
∑

x0 · · ·x3 x4
∑

x4, x5 x6
∑

x4 · · ·x7

x0
∑

x0, x1 x2
∑

x0 · · ·x3 x4
∑

x4, x5 x6
∑

x0 · · ·x7

Figure 17: In reduction process, the strides are 1,2 and 4.

x0
∑

x0, x1 x2
∑

x0 · · ·x3 x4
∑

x4, x5 x6
∑

x0 · · ·x7

x0
∑

x0, x1 x2
∑

x0 · · ·x3 x4
∑

x0 · · ·x5 x6
∑

x0 · · ·x7

x0
∑

x0, x1

∑
x0 · · ·x2

∑
x0 · · ·x3

∑
x0 · · ·x4

∑
x0 · · ·x5

∑
x0 · · ·x6

∑
x0 · · ·x7

Figure 18: In post reduction phase, elements omitted in reduction phase are added together to form
the final prefix sum output.

time when summation is performed, that is to say, each element in the array needs to perform a full

summation process, without using the summation result of previous element. It is not work-efficient

comparing to linear solution. [Ble90] describes a work-efficient multi-thread prefix sum algorithm.

This process consists of two phases. In the first phase, the array is forwardly reduced as shown in

figure 17 with stride from 1 to number of threads in a block, multiplying by 2 in each iteration.

Then in the second phase described in figure 18, the array is reversely added back to get the final

result.

This process is further accelerated by adopting shared memory. Shared memory is a part of

memory in the graphics card hierarchy which is designed to share between the threads in one thread

block. It has relatively small capacity comparing to global memory but has lower latency. If no bank

conflicts between thread, the latency of shared memory is 100 times smaller than uncached global

memory. However, since it is allocated for each thread block, the size of shared memory is limited.

Moreover, because of the limitation of the number of threads per block, e.g. maximum 1024 threads

per block in GPUs higher than 2.0 compute capability, All of the particles can not share a single

shared memory. In Mark Harris’ [HSO07] CUDA implementation, he discussed the work efficient

implementation in one block. In his implementation, each thread will take care of the summation

of two elements, thus, with the maximum of 1024 threads in a thread block, it can handle an array

of 2048 elements.

In our implementation, we have a grid with 16× 16 times16 = 4096 cells. In this case, the array

is separated into two arrays with 2048 elements each. Then the prefix sum is applied to the two

24

arrays simultaneously. In order to merge the outputs, an extra array is created to store the last

element of each output. By applying prefix sum on the extra array, we can get the offset of each

segment. The final output is got by adding all of the elements with their corresponding offset in the

extra array. Figures 19 shows the prefix sum scheme. This scheme can be applied to the array has

less than 20482 elements. More elements can be achieved by recursively calling this method.

x0 x1 · · · x2047 x2048 x2049 · · · x4095 · · ·

x′0 x′1 · · · x′2047 x′2048 x′2049 · · · x′4095 · · ·

0 sum0 sum1 · · · 0 sum′0 sum′1 · · ·

prefix sumprefix sum

sum

prefix sum

Figure 19: The first prefix sum is performed in each thread bock. Then the last elements of outputs
are copied to an extra array sum0 · · · sumn. After that, a second prefix sum is performed on the
extra array. Finally, the final output is achieved by summing elements in extra array back to outputs
of all thread bocks.

Relocation

The last step is to relocate the particles in a correct order. In traditional method, data need to copy

back after being sorted. However, in our implementation, a ping-pong buffer is used to eliminate the

copy process. In the memoroy allocating process, two sets of memory are allocated, let’s call them

ping buffer and pong buffer. In the odd frames, particles are inserted into ping buffer, and than

sorted and copied to pong buffer, then preform the further operation on pong buffer, vice versa.

3.1.3 Summation Equation

Interpolation is the crucial step that influnce the accuracy of the simulation. Here, the SPH sum-

mation is used to calculate the contribution of neighboring particles to the centering particle:

A(r) =
∑
j

mj
Aj

ρj
W (|r− rj|, h) (44)

25

where W is the kernel function. The first and second derivatives are simply derived:

∇A(r) =
∑
j

mj
Aj

ρj
∇W (|r− rj|, h) (45)

∇2A(r) =
∑
j

mj
Aj

ρj
∇2W (|r− rj|, h) (46)

This interpolation method will achieve good result if kernel function is carefully chosen.

3.1.4 Kernel Functions

There is a wide choice of kernel functions as long as it satisfy certain criteria. For example, compact

support, normalized and differentiable. According to [MCG03] The kernel functions been used are:

Wpoly = (xij, h) =
315

64πh9

{
(h2 − x2

ij)
3 0 ≤ xij ≤ h

0 otherwise
(47)

Wspiky = (xij, h) =
15

πh6

{
(h− xij)

3 0 ≤ xij ≤ h

0 otherwise
(48)

Wviscous = (xij, h) =
15

2πh3

⎧⎨⎩− x3
ij

2h3 +
x2
ij

h2 + h
2xij

− 1 0 ≤ xij ≤ h

0 otherwise
(49)

The shapes of kernel functions are depicted in figure 20. Wpoly6 is used for all cases except viscosity

and pressure. Wspiky is used for pressure since in Wpoly6, the second derivative vanies when two

particles are getting closer, which vilolates the fact that the closer the particles are, the more

repulsion force they have. However, the gradient of Wspiky satisfy the phenomenon by reaching the

maximum when two particles overlap. Viscosity adopts the Laplacian of kernel functions. In Wpoly6,

the second gradient becomes negative, which means that the effect of viscosity becomes smaller when

two particles getting closer, this also doesn’t satisfy the truth. While with Wviscosity, the second

derivative is positive and increases when two particles are becoming closer.

3.1.5 Densities

Densities of particles are calculated by substituting A with ρ in summation equation (15).

ρi =
∑
j

mjW (xij, h)

The kernel function used here is poly6 (47).

3.1.6 Pressure Forces

Pressure force is the surface force applied on control volume. This force is caused by the difference

of density in the fluid. Firstly, let’s take a look at the common form of gas state law:

pV = nRT

26

Figure 20: From left to right areWpoly6,Wspiky andWviscosity. and their first and second derivatives.

where p is the pressure, V is the volume, n is the amount of substance, R is the ideal gas constant

equal to the product Boltzmann constant and Avogadro Constant and T is the temperature. Since

n = m
M , this equation can be rewritten as:

p = ρ
R

M
T.

Note that R and M are constants for the same kind of fluid, we use a variable k as a function of

temperature k(T) = R
M T . Thus, the gas state law can be written as:

p = kρ

To calculate the pressure force of ith particle pi, the following equation is applied [DG96,MCG03]:

pi = k(ρi − ρ0),

where ρi is the density at location i yielded by (16), ρ0 is the rest density of fluid and k is the

gas constant which is a function of temperature. The equation added −ρ0 as an offset to pressure.

Since we are calculate the gradient of pressure ∇p, this offset will mathematically have no effect on

the result. On the other hand, it will also stabilize the simulation by limiting value in a relatively

smaller range.

Applying SPH summation equation, the pressure of ith particle is:

fpressure
i = −

∑
j

mj

ρj
pj∇Wij

Unfortunately, the pressure given by the equation above is not symmetric. For example, given a

pair neighboring particles a, b, assuming each particle represents the same volume V , the pressure

force applied on each others are:

F pressure
a = −mb

ρb
pb∇Wab · V, (50)

F pressure
b = −ma

ρa
pa∇Wba · V (51)

27

in which fpressure
a = fpressure

b is not always satisfied since ρa and ρb, pa and pb are not necessarily

equal, results in violation of Newton’s third law. Here, we symmetrization them by taking the

arithmetic mean of two neighboring particles, yields:

fpressure
i = −

∑
j

mj
pi + pj
2ρj

∇Wij

The kernel function we used here is kernel spiky (48).

3.1.7 Viscosity

Viscosity term in Navier-Stokes equation is µ∇2u. Velocity of previous iteration is known, so we

can calculate the Laplacain of velocity and plug it in to the SPH summation equation, yields:

fviscosity
i = µ

∑
j

mj
uj

ρj
∇2Wij

However, like the pressure force, viscosity also suffers from unsymmetrical forces. Applying the same

trick, we have:

fviscosity
i = µ

∑
j

mj
uj − ui

ρj
∇2Wij

3.1.8 Surface Tension

Surface tension is essential to simulate the particles near the free surfaces. In the traditional methods

that are implemented by minimizing the surface curvature, an important issue is that while applying

external forces on surfaces, conservation of momentum is violated. As we know, surface tension is

caused by cohesion forces among particles. The particles on free surfaces is affected by unbalanced

cohesion forces from their neighbors, results in the phenomenon of surface tension. It is desirable to

add cohesion forces on surfaces instead of introduce new forces to the system. In this implementation,

we use the method proposed in [AAT13], combined with method suggests in [IIFS12]. Firstly, the

cohesion force is calculated by:

Fcohesion
i←j == γmimjC(|xi − xj|)

xi − xj

|xi − xj|

3.1.9 Heat Transfer

Within the particles, thermos energy will transport from hot particles to cold particles. The temper-

ature of cold particles will heat up by surrounding cold particles. The heat conduction can be easily

integrated into SPH system by smoothing out with a kernel function. In [IIFS12], a heat transfer

formula is given as:
∂Ta

∂t
=

1

ρaCa
(
6

λa

∑
b

kb(Tb − Ta)Wab +Qa)

λa =
∑
b

(rb − ra)
2Wab

Where Ca is the specific heat, Ta and Tb are the temperature of current particle and neighbor

particles. Wab, again is the kernel function. This formula can be easily integrated into SPH system.

28

3.1.10 Multi-Phases

Fluid simulations involve solid and fluid phases. Temperature plays an important role in the phase

changing. When the temperature is higher than the melting point, particles will be fluid. However,

when the temperature is lower than the melting point, it will become solid particles.

Fluid particles satisfied the process of the SPH. The stress of fluid is proportional to the tem-

perature, given by [GA05]:

σy = σyr + Cy(T − Tr) (52)

where σy is the stress of the material at temperature T , Tr is the reference temperature, σyr is

the stress at Tr and Cy is a material coefficient. Thus, the viscosity coefficient is a linear function

of temperature.

Solid particles have a different behaviour. Particles merge into a rigid body when solidified. The

transformation of rigid bodies is determined by its angular velocity, acceleration and linear velocity

and acceleration. To calculate them, we need first to get the torque of the rigid body.

τ i = (ri − rcm)× Fi (53)

Where τ i is the torque of a particle in the body. ri is the position of a particle, rcm denotes

the center of mass and Fi is the total force applied on the particle. By summing them together by

τ body =
∑

i∈body τ i, we can get the torque of the rigid body. The external force is calculated in the

same fashion by Fbody =
∑

i∈body Fi. Note that the forces and torques within the same rigid body

is omitted.

Thus the linear acceleration of rigid body is given as a = F/m and the angular momentum is

updated in every frame by L = L+∆t

In the first attempt, we modeled solid particles as the rigid body. In this method, we clus-

ter solidified particles, then calculate their mass center, mass, and moment of inertia. According

to the external forces applied on each particle, we can derive the linear acceleration and angular

acceleration. This process has pretty good simulation with both solid and fluid particles.

However, it requires a lot more computation power since clustering is not easy to parallelize.

Considering molten metals are very viscous fluid, when solidified, instead of split away to form

different rigid bodies, it tend to stick together as a whole rigid body. Furthermore, since workpiece

is fixed on a table, it is safe to freeze simply particles when they are solidified.

3.2 Boundary Handling

Collision with rigid bodies is integrated with SPH system since all rigid bodies are modeled by fixed

SPH particles. However, Collision with grid boundaries are solved by two methods. In the first

methods, we reflect the particle’s speed by the normal of the boundary. An energy penal coefficient

is added if the collision is not perfectly a elastic collision. In another methods, in order to simulate

ultimate flow, particles move outside of the grid is removed. This is achieved at the insertion part.

29

If the position of particle is inserted to a space outside of the gird, this particle will be assigned with

a cell ID that’s more than the number of the cells in grid, and atomically subtract the number of

particles by one. During the sorting part, the particles outside of the grid will be sorted at the end

of the array. During the following operations like calculating forces and densities, the GPU only

calculate the number of particles that’s given, thus the particles outside of the grid will be omitted.

Also, a particle can be removed in the same fashion. This methods does not requires relocation of

the memory, and keeps the speed fast.

boundary boundary

Figure 21: On the left is the reflective boundary, particles bounce back when reached outside box.
On the right is the free boundary, particles are disappeared when going beyond the boundary.

3.3 Rendering

The scene is rendered with OpenGL 4.3. Particles and environment, including welding gun and

skybox, are rendered separately: one uses deferred rendering because the lack of connectivity in-

formation and another uses forward rendering. The texture of skybox is reused to map onto the

particle system to calculate the reflection.

3.3.1 Rendering of Particles

There are a lot of rendering techniques exists in SPH. One popular method is using marching cube.

This process is in a way similar to the uniform grid in neighbor search. However, it is generally slow

and have bumps on the surfaces. Another method that is widely used is screen space rendering.

Screen space rendering is a derivative of deferred rendering. It passes all necessary informations like

depth, normals and textures to the final stage, than calculate them. In our implementation, firstly

particles are rendered to spheres by substituting depth. Then, we smoothed the depth image using

30

bilateral filter given by:

Ifiltered(x) =
1

Wp

∑
xi∈Ω

I(xi)fr(||I(xi)− I(x)||)gs(||xi − x||). (54)

where Ifiltered is the filtered image,I is the original image, x is the coordinate of current pixel, Ω

is the window size centered at x. fr is the gaussian function, gs is the spatial kernel and Wp is the

normalization term:

Wp =
∑
xi∈Ω

fr(||I(xi)− I(x)||)gs(||xi − x||). (55)

Comparing to the Gaussain smooth function, the bilateral filter can preserve the edges, as shown in

figure 22. This feature is quite useful to smooth the particles on the free surfaces.

Figure 22: Bilateral function smoothed noises on the surfaces while preserving the edges.

Finally, we use this smoothed depth map to generate normals, and applying lights and reflections.

Rendering of Environment

To generate a relatively realistic background, we used a skybox. Skybox is a widely used techniques

in games and simulation programs. A Skybox is a cube in which scene is rendered. There is a

texture attached on the inside of the box to simulate the background environment. This skybox

is rendered in camera space, and moves with camera. Further more, the texture of skybox can be

mapped to the object in the 3D space to simulate the reflection effect.

The welding guns is loaded as a model. This model can be chosen by users.

3.4 User Interface

Leap Motion is adopted to have a good simulation of the welding gun. Leap Motion is a stereo

camera with ability to track fingers’ positions. In the Leap Motion SDK, the origin of coordinate

31

Figure 23: The texture on the left is attached to the cube to render the skybox, and attached to the
bunny to generate reflection effect.

32

is the Leap Motion, the Y axis is perpendicular to the cameras, and X axis is along the long side

of the device. The following images shows the coordinate. In every frame, the relative position of

fingers are returned. An important issue here is that the Leap Motion has better performance if

the fingers’ directions are nearly perpendicular to the Y axis. However, since in welding simulation,

we want to use the fingers to simulate the welding guns, which means we will mostly point fingers

down. Considering the situation in figure 24, we rotated the Leap Motion along X axis for 90 degree

and fixed it on an box. As shown if figure 25

Figure 24: Leap Motion Setup

Generally, Leap Motion is considered a stationary equipment and camera for rendering is also

fixed. In this case, the positions of hands are mapped to object space or word space. However, in

our application, the camera can be rotated by mouse. Once the camera is moved from the original

position, tracking hands positions to object space is not intuitive since people generally detect relative

positions of the objects referring their eyes. This issue is addressed by mapping hands positions to

view space. Figure 25 shows the rotated coordinate system. When the camera is rotated by mouse

without moving hands, the relative position of hands is fixed on the screen. Another advantage of

adopting this scheme is that it is easier to be integrated with VR devices. Leap Motion has a VR

developer mount that can attach the Leap Motion to Oculus Rift DK2. While the position of hands

in the 3D space is relative to the eye position, user feels more consistency.

33

Figure 25: Leap Motion and camera share the same coordinate system. The object captured by
Leap Motion is the at the same coordinate that seen by camera.

34

Chapter 4

Results and Discussions

This section describes the implementation details and some simulation result.

4.1 Implementation

The system is implemented with maintainability and extensibility in mind, as well as the principle

of robustibility. Firstly, an object-oriented OpenGL 4.3 framework is firstly built with compatibility

of OpenGL compute shader for rendering. It also contains basic forward and deferred renderers and

an extensible Python APIs. Within this framework, fluid simulation system is implemented as an

plug-in of this system. A Python console is used to control the fluid system. Further more, the

welding gun can be controlled by both keyboard and Leap Motion, giving users more choices.

As shown in figure 26, Scene class is the Single Tone that manages all of the resources, including

shaders, cameras, lights renderers and objects. Shaders are shared by renderers in order to assemble

necessary rendering pipeline. This class is also in charge of shader creation, including vertex shader,

geometry shader, fragment shader ad compute shader (if OpenGL 4.3 or above is used), as well

as getting uniform locations. Renderers are rendering pipelines, e.g. forward rendering, deferred

rendering or raytracing; each renderer has an array of objects attached to it. When to perform

rendering, the renderer will render all of the objects assigned to it. With this design, one object

can be rendered multiple times if necessary. The object is the superclass of all objects, e.g. meshes

and SPH system. It contains buffer objects in GPU and a tree structure. In another word, all of

the objects are arranged in the Scene in the tree hierarchy such that translations can be stacked.

In this implementation, a basic MeshNode is inherited from the superclass of Object as a basic

static mesh, and the welding gun LeapEmitter is inherited from MeshNode class in order to map

LeapMoition input to mesh transformations. One more different of the LeapEmitter with other

meshes is that the transformations of LeapMoition are mapped to screen space instead of object

space. This design ensures that the transformation of welding gun is always consistent. SPH system

is also inherited from the Object class. In the initialization part, memories are allocated in GPU as

vertex buffers using OpenGL APIs, each vertex represents a particle. Then a CUDA API is used to

get the pointers in GPU. With theses pointers, CUDA kernel functions are able to know where to

35

Figure 26: Simplified Class Diagram

find the necessary resources in GPU. In the SPH phase, SPH algorithms are applied to the vertex

buffers. Then in the rendering phase, a renderer is assigned to render those vertex buffers. This

architecture eliminates the overhead of transferring data between host memory and device (GPU)

memory. Note that resources are allocated and deleted by Scene class. All the other classes need to

do is free the memory they created in their own destructors. This design ensured the extensibility of

the system: users can write their own renderers, objects by inheriting from the base classes, manage

their own resources within the class and register to the system, scene class will automatically render

them and free the memory when the object is destroyed.

Another feature that designed to enhance extensibility is the exposure of API to Python. Python

is a script programming language with an interactive shell as well as plenty of GUI libraries. Instead

of tweaking parameters within the C++ code, changing values through Python API is more elegant

and convenient. For example, the famous free software Blender uses Python as its GUI and script

language. In PyConsole class, Python APIs are implemented. These APIs runs on a separate

thread without interfering or blocking the system. Whenever these APIs are called, the functions

are encapsulated as lambda functions and pushed into a function queue. On the main thread, the

queue is checked in each iteration if there’s command waiting.

The discussion will focus on two aspects. First part is the accuracy of simulation. In this part,

multiple examples is stated to test the result of the simulation. This will include the extreme situa-

tions like melting through. The other part is to examine the performance improvement comparing

to traditional implementations. In this section, a table of CPU implementation, naive GPU imple-

mentation and advanced GPU implementation is given. Real situations can be shown to the users

36

for more details.

Figure 27: Flow diagram of python console.

4.2 Simulation Results

In this section, a few running examples are listed. First, The plates is used to test certain situations.

The, V-Joint and T-Joint are commonly used in welding practices. A bunny is used to indicate that

this system can accommodate arbitrary shapes. At last, an extreme situation of melting through is

shown. Note that all of the resluts are generated interactively with high frame rate.

4.2.1 Bars

The basic implementation are two bars that put together side by side. The operation is to fill the

gap between the bars.

4.2.2 V-Joint

V-Joint is formed by two trapezoid metal put side by side. Welders are required to inject filler

materials between the gap to merge them together. In this example, we modeled a V-Joint mesh

with grids in Blender, and imported into the particle system with our importer. The result is shown

in figure 29. Note that particles on the left is rendered as metal, and particles on the right are

rendered as spheres with the temperature color coded.

4.2.3 T-Joint

T-Joint is also a common workpiece for welding and widely used in real-life circumstance. It is

formed by putting two plates perpendicularly. The filler material is injected into the right angle

between the two plates on both sides of the vertical plate. The result of T-joint is shown in 30. The

filler material is injected by using Leap Motion.

37

Figure 28: Bars, the color in the picture on the right is color coded.

Figure 29: V joint

38

Figure 30: T joint

4.2.4 Bunny

With the simulation, we also investigate the possibility of performing welding on more complicated

meshes. Figure 31 shows a result of welding simulation on a bunny. The back of bunny was missing,

and the user need to fill the gap with the welding gun. The Leap Motion tracker is easy to use such

that this process can be done in easily by anyone without experience this system. Also, this example

proves that the simulation can be applied to any surfaces.

Figure 31: Bunny

4.2.5 Melting-Troughs

Melting-Through happens when hot particles are emitted to one place for too long. The hot particles

keep melting the base material. When the particles in the thickness direction are all molten, the

39

particles will go through and form a whole on the work piece. The example in figure 32 shows this

situation.

Figure 32: Melting through

4.3 Benchmarks

The speed of the simulation is essential for real-time implementation. Our implementation achieved

real-time welding simulation that allows the user to perform interactive welding training precess.

Also, the granularity is high in order to have good simulation result. Table 1 shows the FPS of

different examples mentioned above.

4.4 Evaluation

In this section, we compared our simulation result with existing simulation methods as well as real

welding images.

The first evaluation focuses on the comparison of our simulation and real life cases. In this case,

we choose a typical workpiece of two plates. The filler material is injected into the gap to form the

welding pool. By melting the base, filler material fuses with the workpiece. Figure 33 shows this

case. The simulation result yielded similarity to the result on the right both on the shape and the

rendering. Note that the simulation area correspondent to a small part of welding pool on the right

image.

The second evaluation focuses on the real welding output as well as a mesh-based simulation

system in the industry. Arc+ is a welding simulator that currently developed by a company in

Montreal, QC. In their system, they have adopted a mesh-based method that generates the result of

welding based on the movement of welding gun and other parameters. Their method is not based on

40

physical simulation, and the equation is highly tuned to certain workpieces. However, our method

is physical based and can handle any surfaces. In this case, we choose a common mesh, T-joint, to

compare the welding results. Figure 34 shows the three outputs on the T-joint. In the picture, we

observe that our simulation result preserves volume and is more close to the actual case depicted in

the bottom image.

Also, comparing to the latest existing methods [IIFS12,Ind09] in welding simulation. Our method

incorporates phase changing, heat transfer, injection of new particles in a real-time simulation sys-

tem.

Figure 33: The left image is the simulation result of our system. The right image is a photo of
welding.

41

Figure 34: The top image is the simulation result. The middle image is the simulation result of
Arc+. The bottom image is a photo of real welding.

42

Table 1: Benchmarks
Type Number of Particles FPS with Rendering FPS without Rendering
Bars 10076 44.7 82.7

V-Joint 17760 35.8 58.4
T-joint 11714 36.7 110
Bunny 6990 35.8 58.4

Melting-Through 10597 43.2 76.5

43

Chapter 5

Conclusion

In this work, we implemented a real-time welding training system based on smoothed hydrodynamics

particles. The essential part of this system is a real-time multi-phase SPH fluid simulation methods.

This method employed CUDA as GPU computation system and parallel counting sort to reduce

memory inconsistency. Also, Leap Motion is used to track users input. The result of simulation

yields close situations to the real welding process, the finger tracker provides acceptable accuracy.

Moreover, the simulation is implemented efficiently. The frame rate reaches real-time that makes

user operate interactively. Besides, an object-oriented fluid simulation framework is created that

allows users to develop their fluid or rigid objects by simply inherit from base classes and implement

the interfaces. The whole project is built from scratch in order to satisfy the requirement of flexibility

and enabled the possibility of advanced optimization.

In this section, the challenges and solutions will be summarized, after that, limitations will

be stated objectively. Finally, a section of future work will explain the direction of the further

development, as well as the potential for further improvement.

5.1 Limitations

Though the simulation system achieved real-time implementations, it still has certain limitations.

Here, the limitations and their causes will be stated, as well as possible solutions.

• In order to accelerate simulation, rigid body is simplified to support only one reference body.

The artifact will happen when there are more than one rigid bodies in the system. The rigid

body that away from the main rigid body will freeze in the air instead falling down. This issue

can be addressed by using the previous implementation. However, it will increase the cohesion

within particles and makes it difficult to incorporate with GPU parallel scheme, resulting in

drastic performance impact.

• Another issue is that, since we are using WCSPH, the negative force is eliminated in order

to avoid disorder, resulting non-divergence free velocity field, as shown in 35. However, in

incompressible fluid, the negative force doesn’t exist and the density should remain constant.

44

The reason why it happens here is because the velocity field that calculated by SPH is not

divergence free. This issue can be addressed by adopting iterative correction pressure solver

like PCISPH, LPSPH or pressure projection solver like IISPH. Divergence of velocity field is

calculated by:

∇ · v =
∑
b

mbvb · ∇W (r− rb, h) (56)

Where the kernel function used is Wviscosity given by (49) and its gradient is given as:

(− 45r2

2πh6
+

30r

2πh5
− 15

4πh2r2
)

r− rb
||r− rb||

(57)

Figure 35: Divergence is color coded. The dark blue ones are particles with zero divergence.

• Also, the time step is relatively small right now, the time step we used here 6.6× 10−4s. This

is because the large time step will cause unstablility when the viscosity is high. This issue

can be addressed by using implicit viscosity solver, incorporate with the iterative correction

pressure solver.

5.2 Future Works

Obviously, this simulation system has a huge room for improvement. To me, the future works mainly

focus on improving simulation quality. The first thing that I can do is to allowing larger time step

45

by adopting iterative correction pressure solver, incorporate with implicit viscosity solver proposed

in [PICT15]. Those solvers may slow down the simulation but will have better simulation results.

I believe with the developing of hardware, real-time and good quality can be both achieved. If

so, the 2nd and 3rd limitation can be addressed. Another idea is to incorporate it with VR kit.

As mentioned in introduction part in figure 13, the VR goggle goes well with Leap Motion device.

Also, my implementation of OpenGL 4 renderer has taken VR system into account. While multiple

cameras are set to render the scene, VR effect can be achieved by passing camera matrix of two eyes

and render them into the different lens in the goggles. This matrix is also tweakable for different

VR devices.

46

Bibliography

[AAT13] Nadir Akinci, Gizem Akinci, and Matthias Teschner. Versatile Surface Tension and

Adhesion for SPH Fluids. ACM Trans. Graph., 32(6):182:1—-182:8, 2013.

[ABD+15] Jade Alglave, Mark Batty, Alastair F Donaldson, Ganesh Gopalakrishnan, Jeroen

Ketema, Daniel Poetzl, Tyler Sorensen, and John Wickerson. Gpu concurrency: weak

behaviours and programming assumptions. In Proceedings of the 20th International

Conference on Architectural Support for Programming Languages and Operating Sys-

tems (ASPLOS15). ACM, New York, pages 577–591, 2015.

[BHP+13] Mark Bolas, Perry Hoberman, Thai Phan, Palmer Luckey, James Iliff, Nate Burba, Ian

McDowall, and David M Krum. Open virtual reality. In Virtual Reality (VR), 2013

IEEE, pages 183–184. IEEE, 2013.

[Ble90] Guy E Blelloch. Prefix Sums and Their Applications. Computer, (7597):35–60, 1990.

[BT07] Markus Becker and Matthias Teschner. Weakly compressible sph for free surface flows.

In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer

animation, pages 209–217. Eurographics Association, 2007.

[CLRS01] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 8.2:

Counting sort. Introduction to Algorithms,, pages 168–170, 2001.

[CM99] Paul W Cleary and Joseph J Monaghan. Conduction modelling using smoothed particle

hydrodynamics. Journal of Computational Physics, 148(1):227–264, 1999.

[CR99] Sharen J Cummins and Murray Rudman. An sph projection method. Journal of com-

putational physics, 152(2):584–607, 1999.

[DG96] Mathieu Desbrun and Marie-Paule Gascuel. Smoothed particles: A new paradigm for

animating highly deformable bodies. Springer, 1996.

[Faw13] Hasan Fawad. Heat transfer modeling of metal deposition employing welding heat source.

In Applied Mechanics and Materials, volume 315, pages 463–467. Trans Tech Publ, 2013.

[FVS11] Jianbin Fang, Ana Lucia Varbanescu, and Henk Sips. A comprehensive performance

comparison of cuda and opencl. In Parallel Processing (ICPP), 2011 International Con-

ference on, pages 216–225. IEEE, 2011.

47

[GA05] John A Goldak and Mehdi Akhlaghi. Thermal analysis of welds. Computational Welding

Mechanics, pages 71–117, 2005.

[GM77] Robert A Gingold and Joseph J Monaghan. Smoothed particle hydrodynamics: theory

and application to non-spherical stars. Monthly notices of the royal astronomical society,

181(3):375–389, 1977.

[GSSP10] Prashant Goswami, Philipp Schlegel, Barbara Solenthaler, and Renato Pajarola. Inter-

active sph simulation and rendering on the gpu. In Proceedings of the 2010 ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation, pages 55–64. Eurographics

Association, 2010. https://graphics.ethz.ch/~sobarbar/papers/Sol10b/Sol10b.

pdf.

[HLL+12] Xiaowei He, Ning Liu, Sheng Li, Hongan Wang, and Guoping Wang. Local poisson

sph for viscous incompressible fluids. In Computer Graphics Forum, volume 31, pages

1948–1958. Wiley Online Library, 2012.

[HSO07] Mark Harris, Shubhabrata Sengupta, and John D Owens. Gpu gems 3. Parallel Prefix

Sum (Scan) with CUDA, pages 851–876, 2007.

[IABT11] Markus Ihmsen, Nadir Akinci, Markus Becker, and Matthias Teschner. A parallel sph

implementation on multi-core cpus. In Computer Graphics Forum, volume 30, pages

99–112. Wiley Online Library, 2011.

[ICS+14] Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christopher Horvath, and Matthias

Teschner. Implicit incompressible sph. Visualization and Computer Graphics, IEEE

Transactions on, 20(3):426–435, 2014.

[IIFS12] M Ito, S Izawa, Y Fukunishi, and M Shigeta. SPH Simulation of Gas Arc Welding

Process. Iccfd7, pages 1–9, 2012.

[Ind09] Process Industries. Investigation of Flow Dynamics and Plastic Deformation in Arc.

(December):1–6, 2009.

[KGS09] Abbas Khayyer, Hitoshi Gotoh, and Songdong Shao. Enhanced predictions of wave

impact pressure by improved incompressible sph methods. Applied Ocean Research,

31(2):111–131, 2009.

[LC87] William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d surface

construction algorithm. In ACM siggraph computer graphics, volume 21, pages 163–169.

ACM, 1987.

[MCG03] Matthias Müller, David Charypar, and Markus Gross. Particle-based fluid simulation

for interactive applications. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics

symposium on Computer animation, pages 154–159. Eurographics Association, 2003.

48

https://graphics.ethz.ch/~sobarbar/papers/Sol10b/Sol10b.pdf
https://graphics.ethz.ch/~sobarbar/papers/Sol10b/Sol10b.pdf

[Mor00] Joseph P Morris. Simulating surface tension with smoothed particle hydrodynamics.

International journal for numerical methods in fluids, 33(3):333–353, 2000.

[PICT15] Andreas Peer, Markus Ihmsen, Jens Cornelis, and Matthias Teschner. An implicit vis-

cosity formulation for sph fluids. ACM Transactions on Graphics (TOG), 34(4):114,

2015.

[PTB+03] Simon Premžoe, Tolga Tasdizen, James Bigler, Aaron Lefohn, and Ross T Whitaker.

Particle-based simulation of fluids. In Computer Graphics Forum, volume 22, pages

401–410. Wiley Online Library, 2003.

[RC09] DAS Raj and Paul W CLEARY. Investigation of flow dynamics and plastic deformation

in arc welding using sph. 2009.

[SL03] Songdong Shao and Edmond YM Lo. Incompressible sph method for simulating new-

tonian and non-newtonian flows with a free surface. Advances in Water Resources,

26(7):787–800, 2003.

[SP09] Barbara Solenthaler and Renato Pajarola. Predictive-corrective incompressible sph. In

ACM transactions on graphics (TOG), volume 28, page 40. ACM, 2009.

[SSP07] Barbara Solenthaler, Jürg Schläfli, and Renato Pajarola. A unified particle model for

fluid–solid interactions. Computer Animation and Virtual Worlds, 18(1):69–82, 2007.

[THM+03] Matthias Teschner, Bruno Heidelberger, Matthias Müller, Danat Pomerantes, and

Markus H Gross. Optimized spatial hashing for collision detection of deformable ob-

jects. In VMV, volume 3, pages 47–54, 2003.

[TMZ+11] Abdelaziz Timesli, Abdelhadi Moufki, Hamid Zahrouni, Bouaaza Braikat, and Hassan

Lahmam. Numerical model based on sph method to simulate friction stir welding. In

10e colloque national en calcul des structures, pages Clé–USB, 2011.

[vdLGS09] Wladimir J van der Laan, Simon Green, and Miguel Sainz. Screen space fluid rendering

with curvature flow. In Proceedings of the 2009 symposium on Interactive 3D graph-

ics and games, pages 91–98. ACM, 2009. http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.443.6926&rep=rep1&type=pdf.

49

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.443.6926&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.443.6926&rep=rep1&type=pdf

	List of Figures
	Introduction
	Related Work
	Fluid Dynamics and Navier-Stokes Equation
	Lagrangian vs. Eulerian Specification
	Contniuum Equation
	Stress and Strain
	Newton's Law of Friction
	Navier-Stokes Equation
	Surface Tension

	SPH
	Interpolation
	Densities
	Pressures
	Viscosities
	Surface Tension
	Heat Transfer
	Neighborhood Search
	GPU SIMD

	Rendering
	User Interfaces

	Proposed Approach
	Realtime implementation with GPU
	Neighboring Search
	Sorting
	Summation Equation
	Kernel Functions
	Densities
	Pressure Forces
	Viscosity
	Surface Tension
	Heat Transfer
	Multi-Phases

	Boundary Handling
	Rendering
	Rendering of Particles

	User Interface

	Results and Discussions
	Implementation
	Simulation Results
	Bars
	V-Joint
	T-Joint
	Bunny
	Melting-Troughs

	Benchmarks
	Evaluation

	Conclusion
	Limitations
	Future Works

	Bibliography

