
Hypnoguard: Protecting Secrets across Sleep-wake Cycles∗

Lianying Zhao and Mohammad Mannan
Concordia Institute for Information Systems Engineering

Concordia University, Montreal, Canada
{z lianyi, mmannan}@ciise.concordia.ca

Abstract

Attackers can get physical control of a computer in sleep
(S3/suspend-to-RAM), if it is lost, stolen, or the owner is
being coerced. High-value memory-resident secrets, in-
cluding disk encryption keys, and private signature/en-
cryption keys for PGP, may be extracted (e.g., via cold-
boot or DMA attacks), by physically accessing such a
computer. Our goal is to alleviate threats of extracting
secrets from a computer in sleep, without relying on an
Internet-facing service.

We propose Hypnoguard to protect all memory-
resident OS/user data across S3 suspensions, by first
performing an in-place full memory encryption before en-
tering sleep, and then restoring the plaintext content at
wakeup-time through an environment-bound, password-
based authentication process. The memory encryption
key is effectively “sealed” in a Trusted Platform Mod-
ule (TPM) chip with the measurement of the execu-
tion environment supported by CPU’s trusted execution
mode (e.g., Intel TXT, AMD-V/SVM). Password guess-
ing within Hypnoguard may cause the memory content
to be permanently inaccessible, while guessing without
Hypnoguard is equivalent to brute-forcing a high-entropy
key (due to TPM protection). We achieved full memory
encryption/decryption in less than a second on a main-
stream computer (Intel i7-4771 CPU with 8GB RAM,
taking advantage of multi-core processing and AES-NI),
an apparently acceptable delay for sleep-wake transi-
tions. To the best of our knowledge, Hypnoguard pro-
vides the first wakeup-time secure environment for au-
thentication and key unlocking, without requiring per-
application changes.

1 Introduction

Most computers, especially laptops, remain in sleep
(S3/suspend-to-RAM), when not in active use (e.g., as
in a lid-close event); see e.g., [50]. A major concern
for unattended computers in sleep is the presence of
user secrets in system memory. An attacker with phys-
ical access to a computer in sleep (e.g., when lost/s-

∗This is the tech-report version (August 11, 2016) of a CCS
2016 paper [72]; new additions: the custom GCM implementation
and other minor details in the Appendix.

tolen, or by coercion) can launch side-channel memory
attacks, e.g., DMA attacks [38, 54, 6, 58] by exploiting
vulnerable device drivers; common mitigations include:
bug fixes, IOMMU (Intel VT-d/AMD Vi), and disabling
(FireWire) DMA when screen is locked (e.g., Mac OS X
10.7.2 and later, Windows 8.1 [38]). A sophisticated at-
tacker can also resort to cold-boot attacks by exploiting
DRAM memory remanence effect [26, 22]. Simpler tech-
niques also exist for memory extraction (e.g., [16]); some
tools (e.g., [14]) may bypass OS lock screen and extract
in-memory full-disk encryption (FDE) keys.

Some proposals address memory-extraction attacks by
making the attacks difficult to launch, or by reducing ap-
plicability of known attacks (e.g., [48, 46, 57, 23, 64, 24];
see Section 8). Limitations of these solutions include:
being too application-specific (e.g., disk encryption), not
being scalable (i.e., can support only a few application-
specific secrets), and other identified flaws (cf. [5]). Most
solutions also do not consider re-authentication when
the computer wakes up from sleep. If a regular re-
authentication is mandated (e.g., OS unlock), a user-
chosen password may not provide enough entropy against
guessing attacks (offline/online).

Protecting only cryptographic keys also appears to be
fundamentally inadequate, as there exists more priva-
cy/security sensitive content in RAM than keys and pass-
words. Full memory encryption can be used to keep all
RAM content encrypted, as used in proposals for en-
crypted execution (see XOM [37], and a comprehensive
survey [28]). However, most such proposals require hard-
ware architectural changes.

Microsoft BitLocker can be configured to provide cold
boot protection by relying on S4/suspend-to-disk instead
of S3. This introduces noticeable delays in the sleep-wake
process. More importantly, BitLocker is not designed
to withstand coercion and can provide only limited de-
fence against password guessing attacks (discussed more
in Section 8).

We propose Hypnoguard to protect all memory-
resident OS/user data across S3 suspensions, against
memory extraction attacks, and guessing/coercion of
user passwords during wakeup-time re-authentication.
Memory extraction is mitigated by performing an in-
place full memory encryption before entering sleep, and
then restoring the plaintext content/secrets after the

1

wakeup process. The memory encryption key is en-
crypted by a Hypnoguard public key, the private part
of which is stored in a Trusted Platform Module (TPM
v1.2) chip, protected by both the user password and the
measurement of the execution environment supported by
CPU’s trusted execution mode, e.g., Intel Trusted Exe-
cution Technology (TXT [31]) and AMD Virtualization
(AMD-V/SVM [2]). The memory encryption key is thus
bound to the execution environment, and can be released
only by a proper re-authentication process.

Guessing via Hypnoguard may cause the memory con-
tent to be permanently inaccessible due to the deletion
of the TPM-stored Hypnoguard private key, while guess-
ing without Hypnoguard, e.g., an attacker-chosen cus-
tom wakeup procedure, is equivalent to brute-forcing a
high-entropy key, due to TPM protection. A user-defined
policy, e.g., three failed attempts, or a special deletion
password, determines when the private key is deleted.
As a result, either the private key cannot be accessed
due to an incorrect measurement of an altered program,
or the adversary takes a high risk to guess within the
unmodified environment.

By encrypting the entire memory space, except a few
system-reserved regions, where no OS/user data resides,
we avoid per-application changes. We leverage mod-
ern CPU’s AES-NI extension and multi-core processing
to quickly encrypt/decrypt commonly available memory
sizes (up to 8GB, under a second), for avoiding degraded
user experience during sleep-wake cycles. For larger
memory systems (e.g., 32/64GB), we also provide two
variants, for encrypting memory pages of user selected
applications, or specific Hypnoguard-managed pages re-
quested by applications.

Due to the peculiarity of the wakeup-time environ-
ment, we face several challenges in implementing Hypno-
guard. Unlike boot-time (when peripherals are initial-
ized by BIOS) or run-time (when device drivers in the
OS are active), at wakeup-time, the system is left in
an undetermined state, e.g., empty PCI configuration
space and uninitialized I/O controllers. We implement
custom drivers and reuse dormant (during S3) OS-saved
device configurations to restore the keyboard and VGA
display to facilitate easy user input/output (inadequately
addressed in the past, cf. [47]).

Several boot-time solutions (e.g., [32, 65, 71]) also per-
form system integrity check, authenticate the user, and
may release FDE keys; however, they do not consider
memory attacks during sleep-wake cycles. For lost/stolen
computers, some remote tracking services may be used to
trigger remote deletion, assuming the computer can be
reached online (with doubtful effectiveness, cf. [13, 63]).

Contributions:

1. We design and implement Hypnoguard, a new ap-
proach that protects confidentiality of all memory re-
gions containing OS/user data across sleep-wake cy-
cles. We provide defense against memory attacks
when the computer is in the wrong hands, and

severely restrict guessing of weak authentication se-
crets (cf. [71]). Several proposals and tools exist to
safeguard data-at-rest (e.g., disk storage), data-in-
transit (e.g., network traffic), and data-in-use (e.g.,
live RAM content); with Hypnoguard, we fill the gap
of securing data-in-sleep.

2. Our primary prototype implementation in Linux
uses full memory encryption to avoid per-application
changes. The core part of Hypnoguard is decou-
pled from the underlying OS and system BIOS, for
better portability and security. Leveraging mod-
ern CPU’s AES-NI extension and multi-core process-
ing, we achieve around 8.7GB/s encryption/decryp-
tion speed for AES in the CTR mode with an Intel i7-
4771 processor, leading to under a second additional
delay in the sleep-wake process for 8GB RAM.

3. For larger memory systems (e.g., 32GB), where full
memory encryption may add noticeable delay, we pro-
vide protection for application-selected memory pages
via the POSIX-compliant system call mmap() (re-
quiring minor changes in applications, but no kernel
patches). Alternatively, Hypnoguard can also be cus-
tomized to take a list of applications and only en-
crypt memory pages pertaining to them (no applica-
tion changes).

4. We enable wakeup-time secure processing, previously
unexplored, which can be leveraged for other use-
cases, e.g., OS/kernel integrity check.

2 Terminologies, goals and
threat model

We explain the terminologies used for Hypnoguard, and
our goals, threat model and operational assumptions.
We use CPU’s trusted execution mode (e.g., Intel TXT,
AMD-V/SVM), and the trusted platform module (TPM)
chip. We provide brief description of some features as
used in our proposal and implementation; for details, see,
e.g., Parno et al. [49], Intel [31], and AMD [2].

2.1 Terminologies

Hypnoguard key pair (HGpub, HGpriv): A pair of pub-
lic and private keys generated during deployment. The
private key, HGpriv, is stored in a TPM NVRAM in-
dex, protected by both the measurement of the environ-
ment and the Hypnoguard user password. HGpriv is re-
trieved through the password evaluated by TPM with
the genuine Hypnoguard program running, and can be
permanently deleted in accordance with a user-set pol-
icy. The public key, HGpub, is stored unprotected in
TPM NVRAM (for OS/file system independence), and
is loaded in RAM after each boot.

Memory encryption key (SK): A high entropy symmetric
key (e.g., 128-bit), randomly generated each time before

2

entering sleep, and used for full memory encryption. Be-
fore the system enters sleep, SK is encrypted using HGpub

and the resulting ciphertext is stored in the small non-
encrypted region of memory.

Hypnoguard user password: A user-chosen password to
unlock the protected key HGpriv at wakeup-time. It
needs to withstand only a few guesses, depending on the
actual unlocking policy. This password is unrelated to
the OS unlock password, which can be optionally sup-
pressed.

TPM “sealing”: For protecting HGpriv in TPM, we use
the TPM NV DefineSpace command, which provides envi-
ronment binding (similar to TPM Seal, but stores HGpriv

in an NVRAM index) and authdata (password) protec-
tion. We use the term “sealing” to refer to this mecha-
nism for simplicity.

2.2 Goals

We primarily consider attacks targeting extraction of se-
crets through physical access to a computer in S3 sleep
(unattended, stolen, or when the owner is under co-
ercion). We want to protect memory-resident secrets
against side-channel attacks (e.g., DMA/cold-boot at-
tacks), but we do not consider compromising a computer
in S3 sleep for evil-maid type attacks (unbeknownst to
the user).

More specifically, our goals include: (G1) Any user or
OS data (secrets or otherwise), SK, and HGpriv must
not remain in plaintext anywhere in RAM before re-
suming the OS to make memory attacks inapplicable.
(G2) The protected content (in our implementation, the
whole RAM) must not be retrieved by brute-forcing SK
or HGpriv, even if Hypnoguard is not active, e.g., via
offline attacks. (G3) No guessing attacks should be pos-
sible against the Hypnoguard user password, unless a
genuine copy of Hypnoguard is loaded as the only pro-
gram in execution. (G4) The legitimate user should be
able to authenticate with routine effort, e.g., memoriza-
tion of strong passwords is not required. (G5) Guessing
the user password when Hypnoguard is active should be
severely restricted by the penalty of having the secrets
deleted.

An additional goal for coercion attacks during wakeup
(similar to the boot-time protection of [71]): (AG1) when
deletion is successful, there should be a cryptographic
evidence that convinces the adversary that the RAM se-
crets are permanently inaccessible.

2.3 Threat model and assumptions
1. The adversary may be either an ordinary person with

skills to mount memory/guessing attacks, or an orga-
nization (non-state) with coercive powers, and consid-
erable but not unbounded computational resources.
For example, the adversary may successfully launch
sophisticated cold-boot attacks (e.g., [26, 22]), but

cannot brute-force a random 128-bit AES key, or de-
feat the TPM chip and CPU’s trusted execution envi-
ronment (for known implementation bugs and attacks,
see e.g., [60, 69, 55]); see also Item (f) in Section 7.

2. Before the adversary gains physical control, the com-
puter system (hardware and OS) has not been compro-
mised. After the adversary releases physical control,
or a lost computer is found, the system is assumed
to be untrustworthy, i.e., no further use without com-
plete reinitialization. We thus only consider directly
extracting secrets from a computer in sleep, excluding
any attacks that rely on compromising first and trick-
ing the user to use it later, the so-called evil-maid at-
tacks, which can be addressed by adapting existing de-
fenses, e.g., [20] for wakeup-time. However, no known
effective defense exists for more advanced evil-maid
attacks, including hardware modifications as in NSA’s
ANT catalog [21]. Note that, our AES-GCM based
implementation can restrict modification attacks on
encrypted RAM content.

3. The host OS is assumed to be general-purpose, e.g.,
Windows or Linux; a TXT/SVM-aware kernel is not
needed. Also, the Hypnoguard tool may reside in an
untrusted file system and be bootstrapped from a reg-
ular OS.

4. We assume all user data, the OS, and any swap space
used by the OS are stored encrypted on disk, e.g., us-
ing a properly configured software/hardware FDE sys-
tem (cf. [45, 12]). A secure boot-time solution should
be used to enforce strong authentication (cf. [71]). The
FDE key may remain in RAM under Hypnoguard’s
protection. This assumption can be relaxed, only if
the data on disk is assumed non-sensitive, or in the
case of a diskless node.

5. Any information placed in memory by the user/OS is
treated as sensitive. With full memory encryption, it
is not necessary to distinguish user secrets from non-
sensitive data (e.g., system binaries).

6. The adversary must not be able to capture the com-
puter while it is operating, i.e., in Advanced Configu-
ration and Power Interface (ACPI [1]) S0. We assume
the computer goes into sleep after a period of inactiv-
ity, or through user actions (e.g., lid-close of a laptop).

7. The adversary may attempt to defeat Hypnoguard’s
policy enforcement mechanism (i.e., when to delete or
unlock HGpriv during authentication). With physical
access, he may intervene in the wakeup process, e.g.,
by tampering with the UEFI boot script for S3 [68],
and may attempt to observe the input and output
of our tool and influence its logic. In all cases, he
will fail to access HGpriv, unless he can defeat TX-
T/SVM/TPM (via an implementation flaw, or ad-
vanced hardware attacks).

8. In the case of coercion, the user never types the cor-
rect password but provides only deletion or incorrect
passwords, to trigger the deletion of HGpriv. Coercion
has been considered recently during boot-time [71],

3

M
ea

su
re

m
en

ts

Figure 1: Memory layout and key usage of Hypnoguard.
Shaded areas represent encrypted/protected data; differ-
ent patterns refer to using different schemes/key types.

requiring the computer to be in a powered-off state
before the coercive situation. We consider coercion
during wakeup; ideally, both systems should be used
together.

9. We require a system with a TPM chip and a
TXT/SVM-capable CPU with AES-NI (available in
many consumer-grade Intel and AMD CPUs). With-
out AES-NI, full memory encryption will be slow, and
users must resort to partial memory encryption.

3 Design

In this section, we detail the architecture of Hypnoguard,
and demonstrate how it achieves the design goals stated
in Section 2.2. Technical considerations not specific to
our current implementation are also discussed.

Overview. Figure 1 shows the memory layout and key
usage of Hypnoguard across sleep-wake cycles; the tran-
sition and execution flows are described in Section 4.1.
User secrets are made unavailable from RAM by encrypt-
ing the whole system memory, regardless of kernel or user
spaces, with a one-time random symmetric key SK be-
fore entering sleep. Then SK is encrypted using HGpub

and stored in system memory. At this point, only HGpriv

can decrypt SK. HGpriv is sealed in the TPM chip with
the measurements of the genuine copy of Hypnoguard
protected by a user password.

At wakeup-time, Hypnoguard takes control in a
trusted execution session (TXT/SVM), and prompts the
user for the Hypnoguard user password. Only when the
correct password is provided in the genuine Hypnoguard

environment, HGpriv is unlocked from TPM (still in TX-
T/SVM). Then, HGpriv is used to decrypt SK and erased
from memory immediately. The whole memory is then
decrypted with SK and the system exits from TXT/SVM
back to normal OS operations. SK is not reused for any
future session.

3.1 Design choices and elements

Trusted execution mode. We execute the unlock-
ing program in the trusted mode of modern CPUs (TX-
T/SVM), where an unforgeable measurement of the ex-
ecution environment is generated and stored in TPM
(used to access HGpriv). The use of TXT/SVM and
TPM ensures that the whole program being loaded and
executed will be reflected in the measurement; i.e., nei-
ther the measurement can be forged at the load time nor
can the measured program be altered after being loaded,
e.g., via DMA attacks. The memory and I/O space of
the measured environment is also protected, e.g., via In-
tel VT-d/IOMMU, from any external access attempt.

We choose to keep Hypnoguard as a standalone module
separate from the OS for two reasons. (a) Small trusted
computing base (TCB): If Hypnoguard’s unlocking pro-
gram is integrated with the OS, then we must also in-
clude OS components (at least the kernel and core OS
services) in the TPM measurement; this will increase
the TCB size significantly. Also, in a consumer OS,
maintaining the correct measurements of such a TCB
across frequent updates and run-time changes, will be
very challenging. Unless measuring the entire OS is the
purpose (cf. Unicorn [39]), a TXT/SVM-protected ap-
plication is usually a small piece of code, not integrated
with the OS, to achieve a stable and manageable TCB
(e.g., Flicker [41]). In our case, only the core Hypnoguard
unlock logic must be integrity-protected (i.e., bound to
TPM measurement). The small size may also aid man-
ual/automatic verification of the source code of an im-
plementation. (b) Portability: We make Hypnoguard
less coupled with the hosting OS except for just a kernel
driver, as we may need to work with different distribu-
tions/versions of an OS, or completely different OSes.

TPM’s role. TPM serves three purposes in Hypno-
guard:

1. By working with TXT/SVM, TPM’s platform con-
figuration registers (PCRs) maintain the unforgeable
measurement of the execution environment.

2. We use TPM NVRAM to store HGpriv safely with two
layers of protection. First, HGpriv is bound to the
Hypnoguard environment (e.g., the Intel SINIT mod-
ule and the Hypnoguard unlocking program). Any
binary other than the genuine copy of Hypnoguard
will fail to access HGpriv. Second, an authdata secret,
derived from the Hypnoguard user password, is also
used to protect HGpriv. Failure to meet either of the
above two conditions will lead to denial of access.

4

3. If HGpriv is deleted by Hypnoguard (e.g., triggered via
multiple authentication failures, or the entry of a dele-
tion password), we also use TPM to provide a quote,
which is a digest of the platform measurement signed
by the TPM’s attestation identity key (AIK) seeded
with an arbitrary value (e.g., time stamp, nonce).
Anyone, including the adversary, can verify the quote
using TPM’s public key at a later time, and confirm
that deletion has happened.

4. For generation of the long-term key pair HGpriv and
HGpub, and the per-session symmetric key SK, we
need a reliable source of randomness. We use the
TPM GetRandom command to get the required num-
ber of bytes from the random number generator in
TPM [61] (and optionally, mix them with the output
from the RDRAND instruction in modern CPUs).

Necessity of HGpriv and HGpub. Although we use
random per sleep-wake cycle symmetric key (SK) for
full memory encryption, we cannot directly seal SK in
TPM (under the Hypnoguard password), i.e., avoid us-
ing (HGpriv, HGpub). The reason is that we perform the
platform-bound user re-authentication only once at the
wakeup time, and without involving the user before en-
tering sleep, we cannot password-seal SK in TPM. If the
user is required to enter the Hypnoguard password ev-
ery time before entering sleep, the user experience will
be severely affected. We thus keep SK encrypted un-
der HGpub in RAM, and involve the password only at
wakeup-time to release HGpriv (i.e., the password input
is similar to a normal OS unlock process).

3.2 Unlock/deletion policy and deploy-
ment

Unlocking policy. A user-defined unlocking policy will
determine how Hypnoguard reacts to a given password,
i.e., what happens when the correct password is entered
vs. when a deletion or invalid password is entered. If
the policy allows many/unlimited online (i.e., via Hypno-
guard) guessing attempts, a dictionary attack might be
mounted, violating goal G5 ; the risk to the attacker in
this case is that he might unknowingly enter the deletion
password. If the composition of the allowed password is
not properly chosen (e.g., different character sets for the
correct password and the deletion password), an adver-
sary may be able to recognize the types of passwords,
and thus avoid triggering deletion.

Static policies can be configured with user-selected
passwords and/or rule-based schemes that support eval-
uating an entered password at run-time. Security and
usability trade-offs should be considered, e.g., a quick
deletion trigger vs. tolerating user mistyping or misre-
membering (cf. [11]). During setup, both unlocking and
deletion passwords are chosen by the user, and they
are set as the access passwords for corresponding TPM
NVRAM indices: the deletion password protects an in-
dex with a deletion indicator and some random data (as

dummy key), and the unlocking password protects an
index containing a null indicator and HGpriv (similar
to [71]). Note that, both the content and deletion indi-
cator of an NVRAM index are protected (i.e., attackers
cannot exploit the indicator values). Multiple deletion
passwords can also be defined. We also use a protected
monotonic counter to serve as a fail counter, sealed under
Hypnoguard, and initialized to 0. We use a regular nu-
meric value sealed in NVRAM (i.e., inaccessible outside
of Hypnoguard); the TPM monotonic counter facility can
also be used. The fail counter is used to allow only a lim-
ited number of incorrect attempts, after which, deletion
is triggered; this is specifically important to deal with
lost/stolen cases.

At run-time, only when the genuine Hypnoguard pro-
gram is active, the fail counter is incremented by one,
and a typed password is used to attempt to unlock the
defined indices, sequentially, until an index is success-
fully opened, or all the indices are tried. In this way, the
evaluation of a password is performed only within the
TPM chip and no information about any defined plain-
text passwords or HGpriv is leaked in RAM—leaving no
chance to cold-boot attacks. If a typed password success-
fully unlocks an index (i.e., a valid password), the fail
counter is decremented by one; otherwise, the password
entry is considered a failed attempt and the incremented
counter is not decremented. When the counter reaches
a preset threshold, deletion is triggered. The counter is
reset to 0 only when the correct password is entered (i.e.,
HGpriv is successfully unlocked). Thus, a small threshold
(e.g., 10) may provide a good balance between security
(quick deletion trigger) and usability (the number of in-
correct entries that are tolerated). For high-value data,
the threshold may be set to 1, which will trigger deletion
immediately after a single incorrect entry.

Deployment/setup phase. With a setup program in
the OS, we generate a 2048-bit RSA key pair and save
HGpub in TPM NVRAM (unprotected), and ask the user
to create her passwords for both unlocking and dele-
tion. With the unlocking password (as authdata secret),
HGpriv is stored in an NVRAM index, bound to the ex-
pected PCR values of the Hypnoguard environment at
wakeup (computed analytically); similarly, indices with
deletion indicators are allocated and protected with the
deletion password(s). There is also certain OS-end prepa-
ration, e.g., loading and initializing the Hypnoguard de-
vice drivers; see Section 4.1.

3.3 How goals are achieved

Hypnoguard’s goals are defined in Section 2.2. G1 is
fulfilled by Hypnoguard’s full memory encryption, i.e.,
replacement of all plaintext memory content, with corre-
sponding ciphertext generated by SK. As the OS or appli-
cations are not involved, in-place memory encryption can
be performed reliably. SK resides in memory encrypted
under HGpub (right after full memory encryption is per-

5

formed under SK). HGpriv can only be unlocked with
the correct environment and password at wakeup-time,
and is erased from RAM right after its use in the trusted
execution mode.

A random SK with adequate length generated each
time before entering sleep, and a strong public key pair
(HGpub, HGpriv) generated during setup guarantee G2.

TPM sealing (even with a weak Hypnoguard user pass-
word) helps achieve G3. Without loading the correct bi-
nary, the adversary cannot forge the TPM measurement
and trick TPM to access the NVRAM index (cf. [31, 61]);
note that, learning the expected PCR values of Hypno-
guard does not help the attacker in any way. The ad-
versary is also unable to brute-force the potentially weak
user password, if he is willing to program the TPM chip
without Hypnoguard, as TPM ensures the consistent fail-
ure message for both incorrect passwords and incorrect
measurements.

The user is required to memorize a regular password
for authentication. If the adversary keeps the genuine
environment but does not know the correct password, he
may be only left with a high risk of deleting HGpriv. The
legitimate user, however, knows the password and can
control the risk of accidental deletion, e.g., via setting an
appropriate deletion threshold. Therefore G4 is satisfied.

When the adversary guesses within Hypnoguard, the
password scheme (unlocking policy) makes sure that no
(or only a few, for better usability) guessing attempts are
allowed before deletion is triggered. This achieves G5.

The additional goal for coercion attacks is achieved
through the TPM Quote operation. The quote value re-
lies on mainly two factors: the signing key, and the mea-
surement to be signed. An RSA key pair in TPM called
AIK (Attestation Identity Key) serves as the signing key.
Its public part is signed by TPM’s unique key (Endorse-
ment Key, aka. EK, generated by the manufacturer and
never leaves the chip in any operations) and certified by
a CA in a separate process (e.g., during setup). This en-
sures the validity of the signature. The data to be signed
is the requested PCR values. In TXT, the initial PCR
value is set to 0, and all subsequent extend operations
will update the PCR values in an unforgeable manner
(via SHA1). As a result, as long as the quote matches
the expected one, the genuine copy of the program must
have been executed, and thus AG1 is achieved.

4 Implementation

In this section, we discuss our implementation of Hypno-
guard under Linux using Intel TXT as the trusted exe-
cution provider. Note that Hypnoguard’s design is OS-
independent, but our current implementation is Linux
specific; the only component that must be developed for
other OSes is HypnoOSService (see below). We also per-
formed an experimental evaluation of Hypnoguard’s user
experience (for 8GB RAM); no noticeable latency was

observed at wakeup-time (e.g., when the user sees the
lit-up screen). We assume that a delay under a second
before entering sleep and during wakeup is acceptable.
For larger memory sizes (e.g., 32GB), we implement two
variants to quickly encrypt selected memory regions.

4.1 Overview and execution steps

The Hypnoguard tool consists of three parts: HypnoCore
(the unlocking logic and cipher engine), HypnoDrivers
(device drivers used at wakeup-time), and HypnoOSSer-
vice (kernel service to prepare for S3 and HypnoCore).
HypnoCore and HypnoDrivers operate outside of the OS,
and HypnoOSService runs within the OS. The approx-
imate code size of our implementation is: HypnoCore,
7767 LOC (in C/C++/assembly, including reused code
for TPM, AES, RSA, SHA1); HypnoDrivers, 3263 LOC
(in C, including reused code for USB); HypnoOSService,
734 LOC in C; GCM, 2773 LOC (in assembly, including
both the original and our adapted constructions); and a
shared framework between the components, 639 LOC in
assembly.

Execution steps. Figure 2 shows the generalized exe-
cution steps needed to achieve the designed functional-
ities on an x86 platform. (a) The preparation is done
by HypnoOSService at any time while the OS is running
before S3 is triggered. HypnoCore, HypnoDrivers, ACM
module for TXT, and the TXT policy file are copied into
fixed memory locations known by Hypnoguard (see Sec-
tion 4.3). Also, HypnoOSService registers itself to the OS
kernel so that if the user or a system service initiates S3,
it can be invoked. (b) Upon entry, necessary parameters
for S3/TXT are prepared and stored (those that must be
passed from the active OS to Hypnoguard), and the ker-
nel’s memory tables are replaced with ours, mapped for
HypnoCore and HypnoDrivers. (c) Then, HypnoCore en-
crypts the whole memory in a very quick manner through
multi-core processing with AES CTR mode using SK. SK
is then encrypted by HGpub (an RSA-2048 key). Before
triggering the actual S3 action by sending commands to
ACPI, Hypnoguard must replace the original OS waking
vector to obtain control back when the machine is waken
up. (d) At S3 wakeup, the 16-bit realmode entry, residing
below 1MB, of Hypnoguard waking vector is triggered. It
calls HypnoDrivers to re-initialize the keyboard and dis-
play, and prepares TXT memory structures (TXT heap)
and page tables. (e) Then the user is prompted for a pass-
word, which is used to unlock TPM NVRAM indices one
by one. Based on the outcome and the actual unlocking
policy, either deletion of HGpriv happens right away and
a quote is generated for further verification (and the sys-
tem is restarted), or if the password is correct, HGpriv is
unlocked into memory. After decrypting SK, HGpriv is
erased promptly from memory. HypnoCore then uses SK
to decrypt the whole memory. (f) TXT is torn down, and
the OS is resumed by calling the original waking vector.

Machine configuration. We use an Intel platform run-

6

OR

Figure 2: Simplified execution steps of Hypnoguard

ning Ubuntu 15.04 (kernel version: 3.19.0). The devel-
opment machine’s configuration includes: an Intel Core
i7-4771 processor (3.50 GHz, 4 physical cores), with In-
tel’s integrated HD Graphics 4600, Q87M-E chipset, 8GB
RAM (Kingston DDR3 4GBx2, clock speed 1600 MHz),
and 500GB Seagate self-encrypting drive. In theory, our
tool should work on most machines with TPM, AES-
NI and Intel TXT (or AMD SVM) support, with minor
changes, such as downloading the corresponding SINIT
module.

4.2 Instrumenting the S3 handler

Hypnoguard needs to gain control at wakeup-time be-
fore the OS resume process begins. For simplicity, we
follow the method as used in a similar scenario in Intel
tboot [32]. An x86 system uses ACPI tables to commu-
nicate with the system software (usually the OS) about
power management parameters. The firmware waking
vector, contained in the Firmware ACPI Control Struc-
ture (FACS), stores the address of the first instruction
to be executed after wakeup; and to actually put the
machine to sleep, certain platform-specific data, found
in the Fixed ACPI Description Table (FADT), must be
written to corresponding ACPI registers.

We must register Hypnoguard with an OS callback
for replacing the waking vector, so as not to in-
terfere with normal OS operations. In Linux, the

acpi os prepare sleep() callback can be used, which will
be invoked in the kernel space before entering sleep.
However, we cannot just replace the waking vector in this
callback and return to the OS, as Linux overwrites the
waking vector with its own at the end of S3 preparation,
apparently, to ensure a smooth resume. Fortunately, the
required data to be written to ACPI registers is already
passed in as arguments by the kernel, and as the OS is
ready to enter sleep, we put the machine to sleep without
returning to the OS.

4.3 Memory considerations

To survive across various contexts (Linux, non-OS native,
initial S3 wakeup and TXT), and not to be concerned

with paging and virtual memory addressing, we reserve
a region from the system memory by providing a custom
version of the e820 map, so that Linux will not touch it
afterwards. This is done by appending a kernel command
line parameter memmap. In Windows, this can be done
by adding those pages to BadMemoryList. 1 MB space at
0x900000 is allocated for HypnoCore, HypnoDrivers and
miscellaneous parameters to be passed between different
states, e.g., the SINIT module, original waking vector of
Linux, policy data, stack space for each processor core,
and Intel AES-NI library (see Section 5).

Full-memory coverage in 64-bit mode. To support
more than 4GB memory sizes, we need to make Hypno-
guard 64-bit addressable. However, we cannot simply
compile the Hypnoguard binary into 64-bit mode as most
other modules, especially those for TXT and TPM ac-
cess, are only available in 32-bit mode, and adapting
them to 64-bit will be non-trivial (if possible), because
of the significantly different nature of 64-bit mode (e.g.,
mandatory paging).

We keep HypnoCore and HypnoDrivers unchanged,
and write a trampoline routine for the 64-bit AES-NI
library, where we prepare paging and map the 8GB mem-
ory before switching to the long mode (64-bit). After the
AES-NI library call, we go back to 32-bit mode. Also,
the x86 calling conventions may be different than x86-
64 (e.g., use of stack space vs. additional registers). A
wrapper function, before the trampoline routine goes to
actual functions, is used to extract those arguments from
stack and save them to corresponding registers. In this
way, the 64-bit AES-NI library runs as if the entire Hyp-
noCore and HypnoDrivers binary is 64-bit, and thus we
can access memory regions beyond 4GB, while the rest
of Hypnoguard still remains in 32-bit mode.

4.4 User interaction

In a regular password-based wakeup-time authentication,
the user is shown the password prompt dialog to enter
the password. In addition to the password input, we also
need to display information in several instances, e.g., in-
teracting with the user to set up various parameters dur-

7

ing deployment, indicating when deletion is triggered,
and displaying the quote (i.e., proof of deletion). Pro-
viding both standard input and output is easy at boot-
time (with BIOS support), and within the OS. However,
resuming from S3 is a special situation: no BIOS POST
is executed, and no OS is active. At this time, periph-
erals (e.g., PCI, USB) are left in an uninitialized state,
and unless some custom drivers are implemented, display
and keyboard remain nonfunctional.

For display, we follow a common practice as used in
Linux for S3 resume (applicable for most VGA adapters).
HypnoDrivers invoke the legacy BIOS video routine us-
ing “lcallw 0xc000,3” (0xc0000 is the start of the VGA
RAM where the video BIOS is copied to; the first 3 bytes
are the signature and size of the region, and 0xc0003 is
the entry point).

For keyboard support, the S3 wakeup environment is
more challenging (PS/2 keyboards can be easily sup-
ported via a simple driver). Most desktop keyboards
are currently connected via USB, and recent versions of
BIOS usually have a feature called “legacy USB sup-
port”. Like a mini-OS, as part of the power-on check,
the BIOS (or the more recent UEFI services) would set
up the PCI configuration space, perform USB enumera-
tion, and initialize the class drivers (e.g., HID and Mass
Storage). But when we examined the USB EHCI con-
troller that our USB keyboard was connected to, we
found that its base address registers were all zeros at
wakeup-time, implying that it was uninitialized (same
for video adapters). As far as we are aware, no reli-
able mechanisms exist for user I/O after wakeup. TreVi-
sor [47] resorted to letting the user input in a blank screen
(i.e., keyboard was active, but VGA was uninitialized).
Note that the actual situation is motherboard-specific,
determined mostly by the BIOS. We found that only one
out of our five test machines has the keyboard initialized
at wakeup-time.

Loading a lightweight Linux kernel might be an option,
which would increase the TCB size and (potentially) in-
troduce additional attack surface. Also, we must execute
the kernel in the limited Hypnoguard-reserved space. In-
stead, we enable USB keyboard support as follows:

1. Following the Linux kernel functions pci save state()
and pci restore config space(), we save the PCI con-
figuration space before entering S3, and restore it
at wakeup-time to enable USB controllers in Hypno-
guard.

2. We borrow a minimal set of functions from the USB
stack of the GRUB project, to build a tiny USB driver
only for HID keyboards operating on the “boot pro-
tocol” [62].

3. There are a few unique steps performed at boot-time
for USB initialization that cannot be repeated during
S3 wakeup. For instance, a suspended hub port (con-
necting the USB keyboard) is ready to be waken up by
the host OS driver and does not accept a new round of
enumeration (e.g., getting device descriptor, assigning

a new address). We thus cannot reuse all boot-time
USB initialization code from GRUB. At the end, we
successfully reconfigure the USB hub by initiating a
port reset first.

With the above approach, we can use both the USB
keyboard and VGA display at wakeup-time. This is
hardware-agnostic, as restoring PCI configuration simply
copies existing values, and the USB stack as reused from
GRUB follows a standard USB implementation. We also
implement an i8042 driver (under 100 LOC) to support
PS/2 keyboards. Our approach may help other projects
that cannot rely on the OS/BIOS for input/output sup-
port, e.g., [47, 15].

4.5 Moving data around

Hypnoguard operates at different stages, connected by
jumping to an address without contextual semantics.
Conventional parameter passing in programming lan-
guages and shared memory access are unavailable be-
tween these stages. Therefore, we must facilitate binary
data transfer between the stages. To seamlessly inter-
face with the host OS, we apply a similar method as in
Flicker [41] to create a sysfs object in a user-space file
system. It appears in the directory “/sys/kernel” as a
few subdirectories and two files: data (for accepting raw
data) and control (for accepting commands). In Hyp-
noOSService, the sysfs handlers write the received data
to the 1MB reserved memory region. When S3 is trig-
gered, HypnoDrivers will be responsible for copying the
required (portion of) binary to a proper location, for in-
stance, the real-mode wakeup code to 0x8a000, SINIT
to the BIOS-determined location SINIT.BASE and the
LCP policy to the OsMleData table, which resides in
the TXT heap prepared by HypnoDrivers before enter-
ing TXT.

4.6 Unencrypted memory regions

In our full memory encryption, the actual encrypted ad-
dresses are not contiguous. We leave BIOS/hardware
reserved regions unencrypted, which fall under two cate-
gories. (a) MMIO space: platform-mapped memory and
registers of I/O devices, e.g., the TPM locality base starts
at 0xfed40000. (b) Platform configuration data: memory
ranges used by BIOS/UEFI/ACPI; the properties of such
regions vary significantly, from read-only to non-volatile
storage.

Initially, when we encrypted the whole RAM, including
the reserved regions, we observed infrequent unexpected
system behaviors (e.g., system crash). As much as we are
aware of, no user or OS data is stored in those regions
(cf. [34]), and thus there should be no loss of confiden-
tiality due to keeping those regions unencrypted. Hypno-
guard parses the e820 (memory mapping) table to deter-
mine the memory regions accessible by the OS. In our test
system, there is approximately 700MB reserved space,

8

spread across different ranges below 4GB. The amount
of physical memory is compensated by shifting the ad-
dresses, e.g., for our 8GB RAM, the actual addressable
memory range goes up to 8.7GB (see Appendix B for an
example of our e820 table).

5 High-speed full memory en-
cryption and decryption

The adoptability of the primary Hypnoguard variant
based on full memory encryption/decryption mandates
a minimal impact on user experience. Below, we discuss
issues related to our implementation of quick memory
encryption.

For all our modes of operation with AES-NI, the pro-
cessing is 16-byte-oriented (i.e., 128-bit AES blocks) and
handled in XMM registers. In-place memory encryp-
tion/decryption is intrinsically supported by taking an
input block at a certain location, and overwriting it with
the output of the corresponding operation. Therefore,
no extra memory needs to be reserved, and thus no per-
formance overhead for data transfer is incurred.

5.1 Enabling techniques

Native execution. We cannot perform in-place mem-
ory encryption when the OS is active, due to OS memory
protection and memory read/write operations by the OS.
Thus, the OS must be inactive when we start memory en-
cryption. Likewise, at wakeup-time in TXT, there is no
OS run-time support for decryption. We need to perform
a single-block RSA decryption using HGpriv to decrypt
the 128-bit AES memory encryption key SK. On the
other hand, we need fast AES implementation to encrypt
the whole memory (e.g., 8GB), and thus, we leverage new
AES instructions in modern CPUs (e.g., Intel AES-NI).
AES-NI offers significant performance boost (e.g., about
six times in one test [8]). Although several crypto li-
braries now enable easy-to-use support for AES-NI, we
cannot use such libraries, or the kernel-shipped library,
as we do not have the OS/run-time support. We use
Intel’s AES-NI library [53], with minor but non-trivial
modifications (see Appendix C).

OS-less multi-core processing. Outside the OS,
no easy-to-use parallel processing interface is available.
With one processor core, we achieved 3.3–4GB/s with
AES-NI, which would require more than 2 seconds for
8GB RAM (still less satisfactory, considering 3 cores be-
ing idle). Thus, to leverage multiple cores, we develop
our own multi-core processing engine, mostly following
the Intel MultiProcessor Specification [33]. Our choice
of decrypting in TXT is non-essential, as SK is gener-
ated per sleep-wake cycle and requires no TXT protec-
tion; however, the current logic is simpler and requires
no post-TXT cleanup for native multi-core processing.

Modes of operation. Intel’s AES-NI library offers
ECB, CTR and CBC modes. We use AES in CTR mode
as the default option (with a random value as the ini-
tial counter); compared to CBC, CTR’s performance is
better, and symmetric between encryption and decryp-
tion speeds (recall that CBC encryption cannot be par-
allelized due to chaining). In our test, CBC achieves
4.5GB/s for encryption and 8.4GB/s for decryption. In
CTR mode, a more satisfactory performance is achieved:
8.7GB/s for encryption and 8.5GB/s for decryption (ap-
proximately).

When ciphertext integrity is required to address con-
tent modification attacks, AES-GCM might be a bet-
ter trade-off between security and performance. We
have implemented a Hypnoguard variant with a custom,
performance-optimized AES-GCM mode; for implemen-
tation details and challenges, see Appendix A.

5.2 Performance analysis

Relationship between number of CPU cores and
performance. For AES-CTR, we achieved 3.3–4GB/s
(3.7GB/s on average), using a single core. After a prelim-
inary evaluation, we found the performance is not linear
to the number of processor cores, i.e., using 4 cores does
not achieve the speed of 16GB/s, but at most 8.7GB/s
(8.3GB/s on 3 cores and 7.25GB/s on 2 cores).

A potential cause could be Intel Turbo Boost [9] that
temporarily increases the CPU frequency when certain
limits are not exceeded (possibly when a single core is
used). Suspecting the throughput of the system RAM to
be the primary bottleneck (DDR3), we performed bench-
mark tests with user-space tools, e.g., mbw [29], which
simply measures memcpy and variable assignment for an
array of arbitrary size. The maximum rate did not sur-
pass 8.3GB/s, possibly due to interference from other
processes.

During the tests with GCM mode, our observation
demonstrates the incremental improvement of our im-
plementation: 2.5GB/s (1-block decryption in C us-
ing one core), 3.22GB/s (1-block decryption in C us-
ing four cores), 3.3GB/s (4-block decryption in C using
four cores), 5GB/s (4-block decryption in assembly using
four cores), and 6.8GB/s (4-block decryption in assembly
with our custom AES-GCM, see Appendix A). The en-
cryption function in assembly provided by Intel already
works satisfactorily, which we do not change further. The
performance numbers are listed in Table 1.

At the end, when ciphertext integrity is not considered
(the default option), 8.7GB/s in CTR mode satisfies our
requirement of not affecting user experience, specifically,
for systems up to 8GB RAM. When GCM is used for
ciphertext integrity, we achieve 7.4GB/s for encryption
and 6.8GB/s for decryption (i.e., 1.08 seconds for enter-
ing sleep and 1.18 seconds for waking up, which is very
close to our 1-second delay limit). Note that, we have
zero run-time overhead, after the OS is resumed.

9

CTR (1-core) CTR CBC GCM-C1 (1-core) GCM-C1 GCM-C4 GCM-A4 GCM-A4T
Encryption 3.7GB/s 8.7GB/s 4.5GB/s — — — — 7.4GB/s
Decryption 3.7GB/s 8.7GB/s 8.4GB/s 2.5GB/s 3.22GB/s 3.3GB/s 5GB/s 6.8GB/s

Table 1: A comparative list of encryption/decryption performance. Column headings refer to various modes of
operation, along with the source language (when applicable; A represents assembly); the trailing number is the
number of blocks processed at a time. A4T is our adapted GCM implementation in assembly processing 4 blocks at
a time, with delayed tag verification (see Appendix A); — means not evaluated.

6 Variants

For systems with larger RAM (e.g., 32GB), Hypnoguard
may induce noticeable delays during sleep-wake cycles,
if the whole memory is encrypted. For example, ac-
cording to our current performance (see Section 5), if
a gaming system has 32GB RAM, it will take about
four seconds for both entering sleep and waking up (in
CTR mode), which might be unacceptable. To accom-
modate such systems, we propose two variants of Hypno-
guard, where we protect (i) all memory pages of selected
processes—requires no modifications to applications; and
(ii) selected security-sensitive memory pages of certain
processes—requires modifications. Note that, these vari-
ants require changes in HypnoOSService, but HypnoCore
and HypnoDrivers remain unchanged (i.e., unaffected by
the OS-level implementation mechanisms).

(i) Per-process memory encryption. Compared to
the design in Section 3, this variant differs only at the
choice of the encryption scope. It accepts a process
list (e.g., supplied by the user) and traverses all mem-
ory pages allocated to those processes to determine the
scope of encryption. We retrieve the virtual memory ar-
eas (VMA, of type vm area struct) from task −−> mm −−>
mmap of each process. Then we break the areas down
into memory pages (in our case, 4K-sized) before con-
verting them over to physical addresses. This is neces-
sary even if a region is continuous as VMAs, because
the physical addresses of corresponding pages might not
be continuous. We store the page list in Hypnoguard-
reserved memory.

Our evaluation shows that the extra overhead of mem-
ory traversal is negligible. This holds with the assump-
tion that the selected apps are allocated a small fraction
of a large memory; otherwise, the full-memory or mmap-
based variant might be a better choice. For smaller apps
such as bash (38 VMAs totaling 1,864 pages, approxi-
mately 7MB), it takes 5 microseconds to traverse through
and build the list. For large apps such as Firefox (723
VMAs totaling 235,814 pages, approximately 1GB), it
takes no more than 253 microseconds. Other apps we
tested are Xorg (167 microseconds) and gedit (85 mi-
croseconds). We are yet to fully integrate this variant
into our implementation (requires a more complex multi-
core processing engine).

(ii) Hypnoguard-managed memory pages via
mmap(). There are also situations where a memory-
intensive application has only a small amount of secret
data to protect. Assuming per-application changes are

acceptable, we implement a second variant of Hypno-
guard that exposes a file system interface compliant with
the POSIX call mmap(), allowing applications to allocate
pages from a Hypnoguard-managed memory region.

The mmap() function is defined in the file operations
structure, supported by kernel drivers exposing a device
node in the file system. An application can request a
page to be mapped to its address space on each mmap
call, e.g., instead of calling malloc(). On return, a virtual
address mapped into the application’s space is generated
by Hypnoguard using remap pfn range(). An applica-
tion only needs to call mmap(), and use the returned
memory as its own, e.g., to store its secrets. Then the
page is automatically protected by Hypnoguard the same
way as the full memory encryption, i.e., encrypted before
sleep and decrypted at wakeup. The application can use
multiple pages as needed. We currently do not consider
releasing such pages (i.e., no unmap()), as we consider a
page to remain sensitive once it has been used to store
secrets. Note that, no kernel patch is required to support
this variant. We tested it with our custom application
requesting pages to protect its artificial secrets. We ob-
served no latency or other anomalies.

7 Security analysis

Below, we discuss potential attacks against Hypnoguard;
see also Sections 2.3 and 3.3 for related discussion.

(a) Cold-boot and DMA attacks. As no plaintext
secrets exist in memory after the system switches to sleep
mode, cold-boot or DMA attacks cannot compromise
memory confidentiality; see Section 3.3, under G1. Also,
the password evaluation process happens inside the TPM
(as TPM receives it through one command and compares
with its preconfigured value; see Section 3.2), and thus
the correct password is not revealed in memory for com-
parison. At wakeup-time, DMA attacks will also fail due
to memory access restrictions (TXT/VT-d).

(b) Reboot-and-retrieve attack. The adversary can
simply give up on waking back to the original OS ses-
sion, and soft-reboot the system from any media of his
choice, to dump an arbitrary portion of the RAM, with
most content unchanged (the so-called warm boot at-
tacks, e.g., [10, 67, 66]). Several such tools exist, some of
which are applicable to locked computers, see e.g., [16].
With Hypnoguard, as the whole RAM is encrypted, this
is not a threat any more.

(c) Consequence of key deletion. The deletion of

10

HGpriv severely restricts guessing attacks on lost/stolen
computers. For coercive situations, deletion is needed so
that an attacker cannot force users to reveal the Hypno-
guard password after taking a memory dump of the en-
crypted content. Although we use a random AES key SK
for each sleep-wake cycle, simply rebooting the machine
without key deletion may not suffice, as the attacker can
store all encrypted memory content, including SK en-
crypted by HGpub. If HGpriv can be learned afterwards
(e.g., via coercion of the user password), the attacker
can then decrypt SK, and reveal memory content for the
target session.

If a boot-time anti-coercion tool, e.g., Gracewipe [71] is
integrated with Hypnoguard, the deletion of HGpriv may
also require triggering the deletion of Gracewipe secrets.
Hypnoguard can easily trigger such deletion by overwrit-
ing TPM NVRAM indices used by Gracewipe, which we
have verified in our installation. From a usability per-
spective, the consequence of key deletion in Hypnoguard
is to reboot and rebuild the user secrets in RAM, e.g., un-
locking an encrypted disk, password manager, or logging
back into security-sensitive websites. With Gracewipe
integration, triggering deletion will cause loss of access
to disk data.

(d) Compromising the S3 resume path. We are
unaware of any DMA attacks that can succeed when the
system is in sleep, as such attacks require an active pro-
tocol stack (e.g., that of FireWire). Even if the adversary
can use DMA attacks to alter RAM content in sleep, by-
passing Hypnoguard still reveals no secrets, due to full
memory encryption and the unforgeability of TPM mea-
surements. Similarly, replacing the Hypnoguard wak-
ing vector with an attacker chosen one (as our waking
vector resides in memory unencrypted), e.g., by exploit-
ing vulnerabilities in UEFI resume boot script [34, 68]
(if possible), also has no effect on memory confidential-
ity. Any manipulation attack, e.g., insertion of malicious
code via a custom DRAM interposer, on the encrypted
RAM content to compromise the OS/applications after
wakeup is addressed by our GCM mode implementation
(out of scope for the default CTR implementation).

(e) Interrupting the key deletion. There have been
a few past attacks about tapping TPM pins to detect
the deletion when it is triggered (for guessing with-
out any penalty). Such threats are discussed elsewhere
(e.g., [71]), and can be addressed, e.g., via redundant
TPM write operations.

(f) Other hardware attacks. Ad-hoc hardware at-
tacks to sniff the system bus for secrets (e.g., [7]) are
generally inapplicable against Hypnoguard, as no secrets
are processed before the correct password is entered. For
such an example attack on Xbox, see [30], which only ap-
plies to architectures with LDT (HyperTransport) bus,
not Intel’s FSB.

However, more advanced hardware attacks may allow
direct access to the DRAM bus, and even extraction

of TPM secrets with an invasive decapping procedure
(e.g., [60], see also [27] for more generic physical attacks
on security chips). Note that the PC platform (except
the TPM chip to some extent) cannot withstand such at-
tacks, as components from different manufactures need
to operate through common interfaces (vs. more closed
environment such as set-top boxes). With TPMs inte-
grated into the Super I/O chip, and specifically, with
firmware implementation of TPM v2.0 (fTPM as in Intel
Platform Trust Technology), decapping attacks may be
mitigated to a significant extent (see the discussion in [51]
for discrete vs. firmware TPMs). Hypnoguard should be
easily adapted to TPM v2.0.

8 Related work

In this section, we primarily discuss related work on
memory attacks and preventions. Proposals for address-
ing change of physical possession (e.g., [56, 17]) are not
discussed, as they do not consider memory attacks.

Protection against cold-boot and DMA attacks.
Solutions to protecting keys exposed in system mem-
ory have been extensively explored in the last few
years, apparently, due to the feasibility of cold-boot at-
tacks [26]. There have been proposals based on relocation
of secret keys from RAM to other “safer” places, such
as SSE registers (AESSE [44]), debug registers (TRE-
SOR [46]), MSR registers (Amnesia [57]), AVX registers
(PRIME [18]), CPU cache and debug registers (Cop-
ker [23]), GPU registers (PixelVault [64]), and debug reg-
isters and Intel TSX (Mimosa [24]).

A common limitation of these solutions is that spe-
cific cryptographic operations must be offloaded from
the protected application to the new mechanism, man-
dating per-application changes. They are also focused
on preventing leakage of only cryptographic keys, which
is fundamentally limited in protecting RAM content in
general. Also, some solutions do not consider user re-
authentication at wakeup-time (e.g., [18, 23]). Several
of them (re)derive their master secret, or its equivalent,
from the user password, e.g., [44, 46]; this may even al-
low the adversary to directly guess the master secret in
an offline manner.

Memory encryption. An ideal solution for memory
extraction attacks would be to perform encrypted exe-
cution: instructions remain encrypted in RAM and are
decrypted right before execution within the CPU; see
XOM [37] for an early proposal in this domain, and Hen-
son and Taylor [28] for a comprehensive survey. Most
proposals for memory encryption deal with data in use
by an active CPU. Our use of full memory encryption
involves the sleep state, when the CPU is largely in-
active. Most systems require architectural changes in
hardware/OS and thus remain largely unadopted, or de-
signed for specialized use cases, e.g., bank ATMs. Us-
ing dedicated custom processors, some gaming consoles

11

also implement memory encryption to some extent, e.g.,
Xbox, Playstation. Similar to storing the secrets in
safer places, memory encryption schemes, if implement-
ed/adopted, may address extraction attacks, but not user
re-authentication.

Forced hibernation. YoNTMA [35] automatically hi-
bernates the machine, i.e., switch to S4/suspend-to-disk,
whenever it detects that the wired network is discon-
nected, or the power cable is unplugged. In this way, if
the attacker wants to take the computer away, he will
always get it in a powered-off state, and thus memory
attacks are mitigated. A persistent attacker may pre-
serve the power supply by using off-the-shelf hardware
tools (e.g., [40]). Also, the attacker can perform in-place
cold-boot/DMA attacks.

BitLocker. Microsoft’s drive encryption tool BitLocker
can seal the disk encryption key in a TPM chip, if avail-
able. Components that are measured for sealing include:
the Core Root of Trust Measurement (CRTM), BIOS,
Option ROM, MBR, and NTFS boot sector/code (for
the full list, see [43]). In contrast, Hypnoguard mea-
sures components that are OS and BIOS independent
(may include the UEFI firmware in later motherboard
models). In its most secure mode, Microsoft recom-
mends to use BitLocker with multi-factor authentication
such as a USB device containing a startup key and/or
a user PIN, and to configure the OS to use S4/suspend-
to-disk instead of S3/suspend-to-RAM [42]. In this set-
ting, unattended computers would always resume from
a powered-off state (cf. YoNTMA [35]), where no secrets
remain in RAM; the user needs to re-authenticate with
the PIN/USB key to restore the OS.

BitLocker’s limitations include the following. (1) It un-
dermines the usability of sleep modes as even with faster
SSDs it still takes several seconds to hibernate (approx.
18 seconds in our tests with 8GB RAM in Windows 10
machine with Intel Core-i5 CPU and SSD). Wakeup is
also more time-consuming, as it involves the BIOS/UEFI
POST screen before re-authentication (approx. 24 sec-
onds in our tests). On the other hand, RAM content re-
mains unprotected if S3 is used. (2) It is still vulnerable
to password guessing to some extent, when used with a
user PIN (but not with USB key, if the key is unavailable
to the attacker). Based on our observation, BitLocker
allows many attempts, before forcing a shutdown or en-
tering into a TPM lockout (manufacturer dependent). A
patient adversary can slowly test many passwords. We
have not tested if offline password guessing is possible.
(3) BitLocker is not designed for coercive situations, and
as such, it does not trigger key deletion through a dele-
tion password or fail counter. If a user is captured with
the USB key, then the disk and RAM content can be
easily accessed. (4) Users also must be careful about the
inadvertent use of BitLocker’s online key backup/escrow
feature (see e.g., [4]).

Recreating trust after S3 sleep. To re-establish a

secure state when the system wakes up from S3, Kumar
et al. [36] propose the use of Intel TXT and TPM for
recreating the trusted environment, in the setting of a
VMM with multiple VMs. Upon notification of the S3
sleep, the VMM cascades the event to all VMs. Then
each VM encrypts its secrets with a key and seal the key
with the platform state. The VMM also encrypts its se-
crets and seals its context. Thereafter, the VMM loader
(hierarchically higher than the VMM) encrypts the mea-
surement of the whole memory space of the system with
a key that is also sealed. At wakeup-time, all checks are
done in the reversed order. If any of the measurements
differ, the secrets will not be unsealed. This proposal
does not consider re-authentication at wakeup-time and
mandates per-application/VM modifications. More im-
portantly, sealing and unsealing are performed for each
sleep-wake cycle for the whole operating context: VMM
loader, VMM, VMs. Depending on how the context be-
ing sealed is defined, this may pose a severe performance
issue, as TPM sealing/unsealing is time-consuming; ac-
cording to our experiment, it takes more than 500ms to
process only 16 bytes of data.

Unlocking with re-authentication at S2/3/4
wakeup. When waking up from one of the sleep modes,
a locked device such as an FDE hard drive, may have al-
ready lost its security context (e.g., being unlocked) be-
fore sleep. Rodriguez and Duda [52] introduced a mech-
anism to securely re-authenticate the user to the device
by replacing the original wakeup vector of the OS with a
device specific S3 wakeup handler. The user is prompted
for the credential, which is directly used to decrypt an un-
lock key from memory to unlock the device (e.g., the hard
drive). This approach does not use any trusted/privi-
leged execution environment, such as Intel TXT/AMD
SVM. Without the trusted measurement (i.e., no sealed
master key), the only entropy comes from the user pass-
word, which may allow a feasible guessing attack.

Secure deallocation. To prevent exposure of memory-
bound secrets against easy-to-launch warm-reboot at-
tacks, Chow et al. [10] propose a secure deallocation
mechanism (e.g., zeroing freed data on the heap) to limit
the lifetime of sensitive data in memory. This approach
avoids modifications in application source, but requires
changes in compilers, libraries, and OS kernel in a Linux
system (and also cannot address cold-boot attacks). Our
solution is also effective against warm-reboot attacks, but
requires no changes in applications and the OS stack.

Relevant proposals on mobile platforms. Consid-
ering their small sizes and versatile functionalities, mo-
bile devices are more theft-prone and more likely to be
caught with sensitive data present when the user is co-
erced. CleanOS [59] is proposed to evict sensitive data
not in active use to the cloud and only retrieve the data
back when needed. Sensitive information is pre-classified
and encapsulated into sensitive data objects (SDOs). Ac-
cess to SDOs can be revoked in the case of device theft

12

and audited in normal operations. TinMan [70] also re-
lies on a trusted server, but does not decrypt confiden-
tial data in the device memory to avoid physical attacks.
Keypad [19], a mobile file system, provides fine-grained
access auditing using a remote server (which also hosts
the encryption keys). For lost devices, access can be eas-
ily revoked by not releasing the key from the server. All
these proposals require a trusted third party. Also, under
coercion, if the user is forced to cooperate, sensitive data
will still be retrieved. Moreover, the protected secrets in
Hypnoguard might not be suitable for being evicted as
they may be used often, e.g., an FDE key.

Gracewipe. For handling user secrets in the trusted
execution environment, we follow the methodology from
Gracewipe [71], which operates at boot-time and thus
can rely on BIOS and tboot. In contrast, Hypnoguard
operates during the sleep-wake cycle, when no BIOS is
active, and tboot cannot be used for regular OSes (tboot
assumes TXT-aware OS kernel). Gracewipe assumes
that the attacker can get physical possession of a com-
puter, only when it is powered-off, in contrast to Hypno-
guard’s sleep state, which is more common. Gracewipe
securely releases sensitive FDE keys in memory, but does
not consider protecting such keys against memory ex-
traction attacks during sleep-wake. Gracewipe addresses
an extreme case of coercion, where the data-at-rest is of
utmost value. We target unattended computers in gen-
eral, and enable a wakeup-time secure environment for
re-authentication and key release.

Intel SGX. Intel Software Guard Extensions (SGX [3])
allows individual applications to run in their isolated
context, resembling TXT with similar features but finer
granularity (multiple concurrent secure enclaves along
with the insecure world). Memory content is fully en-
crypted outside the CPU package for SGX-enabled ap-
plications. Considering the current positioning of Hypno-
guard, we believe that TXT is a more preferable choice,
as running either the protected programs or the entire
OS in SGX would introduce per-application/OS changes.
TXT also has the advantage of having been analyzed over
the past decade, as well as its counterpart being available
in AMD processors (SVM).

9 Concluding remarks

As most computers, especially, laptops, remain in sleep
while not actively used, we consider a comprehensive
list of threats against memory-resident user/OS data,
security-sensitive or otherwise. We address an important
gap left in existing solutions: comprehensive confidential-
ity protection for data-in-sleep (S3), when the attacker
has physical access to a computer in sleep. We design and
implement Hypnoguard, which encrypts the whole mem-
ory very quickly before entering sleep under a key sealed
in TPM with the integrity of the execution environment.
We require no per-application changes or kernel patches.

Hypnoguard enforces user re-authentication for unlock-
ing the key at wakeup-time in a TXT-enabled trusted en-
vironment. Guessing attacks bypassing Hypnoguard are
rendered ineffective by the properties of TPM sealing;
and guessing within Hypnoguard will trigger deletion of
the key. Thus, Hypnoguard along with a boot-time pro-
tection mechanism with FDE support (e.g., BitLocker,
Gracewipe [71]) can enable effective server-less guessing
resistance, when a computer with sensitive data is lost/s-
tolen. We plan to release the source code of Hypnoguard
at a later time, and for now it can be obtained by con-
tacting the authors.

Acknowledgements

This paper was significantly improved by the insightful
comments and suggestions from the anonymous review-
ers of CCS 2016, USENIX Security 2016 and EuroSys
2016, as well as Jonathan McCune. We also appreciate
the help we received from the members of Concordia’s
Madiba Security Research Group. The second author is
supported in part by an NSERC Discovery Grant.

References

[1] ACPI.info. Advanced configuration and power in-
terface specification. Revision 5.0a (Nov. 13, 2013).
http://www.acpi.info/spec.htm.

[2] AMD. AMD64 architecture programmer’s man-
ual volume 2: System programming. Technical
article (May 2013). http://developer.amd.com/

wordpress/media/2012/10/24593_APM_v21.pdf.

[3] I. Anati, S. Gueron, S. P. Johnson, and V. R. Scar-
lata. Innovative technology for CPU based attes-
tation and sealing. In Hardware and Architectural
Support for Security and Privacy (HASP’13), Tel-
Aviv, Israel, June 2013.

[4] ArsTechnica.com. Microsoft may have your encryp-
tion key; here’s how to take it back. News article
(Dec. 29, 2015).

[5] E.-O. Blass and W. Robertson. TRESOR-HUNT:
Attacking CPU-bound encryption. In ACSAC’12,
Orlando, FL, USA, Dec. 2012.

[6] B. Böck. Firewire-based physical secu-
rity attacks on windows 7, EFS and Bit-
Locker. Secure Business Austria Research
Lab. Technical report (Aug. 13, 2009). https:

//www.helpnetsecurity.com/dl/articles/

windows7_firewire_physical_attacks.pdf.

[7] A. Boileau. Hit by a bus: Physical ac-
cess attacks with Firewire. Ruxcon 2006.
http://www.security-assessment.com/files/

presentations/ab_firewire_rux2k6-final.pdf.

[8] Calomel.org. AES-NI SSL performance: A study
of AES-NI acceleration using LibreSSL, OpenSSL.

13

http://www.acpi.info/spec.htm
http://developer.amd.com/wordpress/media/2012/10/24593_APM_v21.pdf
http://developer.amd.com/wordpress/media/2012/10/24593_APM_v21.pdf
https://www.helpnetsecurity.com/dl/articles/windows7_firewire_physical_attacks.pdf
https://www.helpnetsecurity.com/dl/articles/windows7_firewire_physical_attacks.pdf
https://www.helpnetsecurity.com/dl/articles/windows7_firewire_physical_attacks.pdf
http://www.security-assessment.com/files/presentations/ab_firewire_rux2k6-final.pdf
http://www.security-assessment.com/files/presentations/ab_firewire_rux2k6-final.pdf

Online article (Feb. 23, 2016). https://calomel.

org/aesni_ssl_performance.html.

[9] J. Charles, P. Jassi, N. S. Ananth, A. Sadat, and
A. Fedorova. Evaluation of the Intel R© coreTM i7
Turbo Boost feature. In IEEE International Sym-
posium on Workload Characterization (IISWC’09),
Austin, TX, USA, Oct. 2009.

[10] J. Chow, B. Pfaff, T. Garfinkel, and M. Rosen-
blum. Shredding your garbage: Reducing data life-
time through secure deallocation. In USENIX Secu-
rity Symposium, Baltimore, MD, USA, Aug. 2005.

[11] J. Clark and U. Hengartner. Panic passwords: Au-
thenticating under duress. In USENIX HotSec’08,
San Jose, CA, USA, July 2008.

[12] A. Czeskis, D. J. S. Hilaire, K. Koscher, S. D. Grib-
ble, T. Kohno, and B. Schneier. Defeating encrypted
and deniable file systems: TrueCrypt v5.1a and the
case of the tattling OS and applications. In USENIX
HotSec’08, San Jose, CA, USA, 2008.

[13] S. M. Diesburg and A.-I. A. Wang. A survey of con-
fidential data storage and deletion methods. ACM
Computing Surveys (CSUR), 43(1):2:1–2:37, 2010.

[14] Elcomsoft.com. Elcomsoft forensic disk decryptor:
Forensic access to encrypted BitLocker, PGP and
TrueCrypt disks and containers. https://www.

elcomsoft.com/efdd.html.

[15] A. Filyanov, J. M. McCuney, A.-R. Sadeghiz, and
M. Winandy. Uni-directional trusted path: Transac-
tion confirmation on just one device. In IEEE/IFIP
Dependable Systems and Networks (DSN’11), Hong
Kong, June 2011.

[16] Forensicswiki.org. Tools:memory imaging.
http://www.forensicswiki.org/wiki/Tools:

Memory_Imaging.

[17] M. Frank, R. Biedert, E. Ma, I. Martinovic, and
D. Song. Touchalytics: On the applicability of
touchscreen input as a behavioral biometric for con-
tinuous authentication. IEEE TIFS, 8(1):136–148,
Jan. 2013.

[18] B. Garmany and T. Müller. PRIME: Private RSA
infrastructure for memory-less encryption. In AC-
SAC’13, New Orleans, LA, USA, 2013.

[19] R. Geambasu, J. P. John, S. D. Gribble, T. Kohno,
and H. M. Levy. Keypad: an auditing file system
for theft-prone devices. In EuroSys’11, Salzburg,
Austria, 2011.

[20] J. Götzfried and T. Müller. Mutual authentication
and trust bootstrapping towards secure disk encryp-
tion. ACM TISSEC, 17(2):6:1–6:23, Nov. 2014.

[21] Gov1.info. NSA ANT product catalog. https://

nsa.gov1.info/dni/nsa-ant-catalog/.

[22] M. Gruhn and T. Müller. On the practicability of
cold boot attacks. In Conference on Availability, Re-
liability and Security (ARES’13), Regensburg, Ger-
many, Sept. 2013.

[23] L. Guan, J. Lin, B. Luo, and J. Jing. Copker: Com-
puting with private keys without RAM. In NDSS’14,
San Diego, CA, USA, Feb. 2014.

[24] L. Guan, J. Lin, B. Luo, J. Jing, and J. Wang.
Protecting private keys against memory disclosure
attacks using hardware transactional memory. In
IEEE Symposium on Security and Privacy, San
Jose, CA, USA, May 2015.

[25] S. Gueron and M. E. Kounavis. Intel R©carry-less
multiplication instruction and its usage for comput-
ing the GCM mode. Intel whitepaper (Apr. 2014).

[26] J. A. Halderman, S. D. Schoen, N. Heninger,
W. Clarkson, W. Paul, J. A. Calandrino, A. J. Feld-
man, J. Appelbaum, and E. W. Felten. Lest we re-
member: Cold boot attacks on encryption keys. In
USENIX Security Symp., Boston, MA, USA, 2008.

[27] C. Helfmeier, D. Nedospasov, C. Tarnovsky,
J. Krissler, C. Boit, and J.-P. Seifert. Breaking
and entering through the silicon. In ACM CCS’13,
Berlin, Germany, Nov. 2013.

[28] M. Henson and S. Taylor. Memory encryption: A
survey of existing techniques. ACM Computing Sur-
veys (CSUR), 46(4):53:1–53:26, Mar. 2014.

[29] A. Horvath and J. M. Slocum. Memory bandwidth
benchmark. Open source project. https://github.
com/raas/mbw.

[30] A. Huang. Keeping secrets in hardware: The
Microsoft XboxTM case study. In Workshop on
Cryptographic Hardware and Embedded Systems
(CHES’02), San Francisco, CA, USA, Aug. 2002.

[31] Intel. Intel Trusted Execution Technology
(Intel TXT): Measured launched environ-
ment developer’s guide. Technical article
(July 2015). http://www.intel.com/content/

dam/www/public/us/en/documents/guides/

intel-txt-software-development-guide.pdf.

[32] Intel. Trusted boot (tboot). Version: 1.8.0. http:
//tboot.sourceforge.net/.

[33] Intel. The MultiProcessor specification (MP
spec), May 1997. http://www.intel.com/design/
archives/processors/pro/docs/242016.htm.

[34] IntelSecurity.com. Technical details of the S3
resume boot script vulnerability. Technical report
(July 2015). http://www.intelsecurity.com/

advanced-threat-research/content/WP_Intel_

ATR_S3_ResBS_Vuln.pdf.

[35] iSECPartners. YoNTMA (you’ll never take
me alive!). https://github.com/iSECPartners/

yontma.

[36] A. Kumar, M. Patel, K. Tseng, R. Thomas, M. Tal-
lam, A. Chopra, N. Smith, D. Grawrock, and
D. Champagne. Method and apparatus to re-create
trust model after sleep state, 2011. US Patent
7,945,786.

14

https://calomel.org/aesni_ssl_performance.html
https://calomel.org/aesni_ssl_performance.html
https://www.elcomsoft.com/efdd.html
https://www.elcomsoft.com/efdd.html
http://www.forensicswiki.org/wiki/Tools:Memory_Imaging
http://www.forensicswiki.org/wiki/Tools:Memory_Imaging
https://nsa.gov1.info/dni/nsa-ant-catalog/
https://nsa.gov1.info/dni/nsa-ant-catalog/
https://github.com/raas/mbw
https://github.com/raas/mbw
http://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
http://tboot.sourceforge.net/
http://tboot.sourceforge.net/
http://www.intel.com/design/archives/processors/pro/docs/242016.htm
http://www.intel.com/design/archives/processors/pro/docs/242016.htm
http://www.intelsecurity.com/advanced-threat-research/content/WP_Intel_ATR_S3_ResBS_Vuln.pdf
http://www.intelsecurity.com/advanced-threat-research/content/WP_Intel_ATR_S3_ResBS_Vuln.pdf
http://www.intelsecurity.com/advanced-threat-research/content/WP_Intel_ATR_S3_ResBS_Vuln.pdf
https://github.com/iSECPartners/yontma
https://github.com/iSECPartners/yontma

[37] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln,
D. Boneh, J. Mitchell, and M. Horowitz. Architec-
tural support for copy and tamper resistant soft-
ware. In Architectural Support for Programming
Languages and Operating Systems (ASPLOS-IX),
Cambridge, MA, USA, Nov. 2000.

[38] C. Maartmann-Moe. Inception. PCI-based
DMA attack tool. https://github.com/carmaa/

inception.

[39] M. Mannan, B. H. Kim, A. Ganjali, and D. Lie.
Unicorn: Two-factor attestation for data security.
In ACM CCS’11, Chicago, IL, USA, Oct. 2011.

[40] Maximintegrated.com. Switching between battery
and external power sources, 2002. http://pdfserv.
maximintegrated.com/en/an/AN1136.pdf.

[41] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter,
and H. Isozaki. Flicker: An execution infrastruc-
ture for TCB minimization. In EuroSys’08, Glas-
gow, Scotland, Apr. 2008.

[42] Microsoft.com. BitLocker frequently asked ques-
tions (FAQ). Online article (June 10, 2014).
https://technet.microsoft.com/en-ca/

library/hh831507.aspx.

[43] Microsoft.com. ProtectKeyWithTPM method of the
Win32 EncryptableVolume class. Online reference.
https://msdn.microsoft.com/en-us/library/

windows/desktop/aa376470(v=vs.85).aspx.

[44] T. Müller, A. Dewald, and F. C. Freiling. AESSE: A
cold-boot resistant implementation of AES. In Eu-
ropean Workshop on System Security (EuroSec’10),
Paris, France, Apr. 2010.

[45] T. Müller and F. C. Freiling. A systematic assess-
ment of the security of full disk encryption. IEEE
TDSC, 12(5):491–503, September/October 2015.

[46] T. Müller, F. C. Freiling, and A. Dewald. TRESOR
runs encryption securely outside RAM. In USENIX
Security Symposium, San Francisco, CA, USA, Aug.
2011.

[47] T. Müller, B. Taubmann, and F. C. Freiling. Tre-
Visor: OS-independent software-based full disk
encryption secure against main memory attacks.
In Applied Cryptography and Network Security
(ACNS’12), Singapore, June 2012.

[48] E. T. Pancoast, J. N. Curnew, and S. M. Sawyer.
Tamper-protected DRAM memory module, Decem-
ber 2012. US Patent 8,331,189.

[49] B. Parno, J. M. McCune, and A. Perrig. Bootstrap-
ping Trust in Modern Computers. Springer, 2011.

[50] J. E. Pixley, S. A. Ross, A. Raturi, and A. C. Downs.
A survey of computer power modes usage in a uni-
versity population, 2014. California Plug Load
Research Center and University of California, Irvine.
http://www.energy.ca.gov/2014publications/

CEC-500-2014-093/CEC-500-2014-093.pdf.

[51] H. Raj, S. Saroiu, A. Wolman, R. Aigner, J. Cox,
P. England, C. Fenner, K. Kinshumann, J. Loeser,
D. Mattoon, M. Nystrom, D. Robinson, R. Spiger,
S. Thom, and D. Wooten. fTPM: a firmware-based
TPM 2.0 implementation. Microsoft techreport,
MSR-TR-2015-84 (Nov. 5, 2015).

[52] F. Rodriguez and R. Duda. System and method
for providing secure authentication of devices awak-
ened from powered sleep state, 2008. US Patent
20080222423.

[53] J. Rott. Intel AESNI sample library.
Source code (May 11, 2011), available at:
https://software.intel.com/en-us/articles/

download-the-intel-aesni-sample-library.

[54] R. Sevinsky. Funderbolt: Adventures in Thunder-
bolt DMA attacks. Black Hat USA, 2013.

[55] J. Sharkey. Breaking hardware-enforced security
with hypervisors. Black Hat USA, 2016.

[56] T. Sim, S. Zhang, R. Janakiraman, and S. Kumar.
Continuous verification using multimodal biomet-
rics. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 29(4):687–700, Apr. 2007.

[57] P. Simmons. Security through Amnesia: A software-
based solution to the cold boot attack on disk en-
cryption. In ACSAC’11, Orlando, FL, USA, 2011.

[58] P. Stewin. Detecting Peripheral-based Attacks on the
Host Memory. PhD thesis, Technischen Universität
Berlin, July 2014.

[59] Y. Tang, P. Ames, S. Bhamidipati, A. Bijlani,
R. Geambasu, and N. Sarda. CleanOS: Limit-
ing mobile data exposure with idle eviction. In
USENIX Operating Systems Design and Implemen-
tation (OSDI’12), Hollywood, CA, USA, Oct. 2012.

[60] C. Tarnovsky. Hacking the smartcard chip. Black
Hat DC, 2010.

[61] Trusted Computing Group. TPM Main: Part 1 De-
sign Principles. Specification Version 1.2, Level 2
Revision 116 (March 1, 2011).

[62] Usb.org. Universal serial bus (USB), device
class definition for human interface devices (HID).
Firmware Specification (June 27, 2001). http://

www.usb.org/developers/hidpage/HID1_11.pdf.

[63] A. S. Uz. The effectiveness of remote wipe as a
valid defense for enterprises implementing a BYOD
policy. Master’s thesis, University of Ottawa, 2014.

[64] G. Vasiliadis, E. Athanasopoulos, M. Polychronakis,
and S. Ioannidis. PixelVault: Using GPUs for se-
curing cryptographic operations. In ACM CCS’14,
Scottsdale, AZ, USA, Nov. 2014.

[65] A. Vasudevan, S. Chaki, L. Jia, J. McCune, J. New-
some, and A. Datta. Design, implementation and
verification of an eXtensible and modular hypervi-
sor framework. In IEEE Symposium on Security and
Privacy, Berkeley, CA, USA, 2013.

15

https://github.com/carmaa/inception
https://github.com/carmaa/inception
http://pdfserv.maximintegrated.com/en/an/AN1136.pdf
http://pdfserv.maximintegrated.com/en/an/AN1136.pdf
https://technet.microsoft.com/en-ca/library/hh831507.aspx
https://technet.microsoft.com/en-ca/library/hh831507.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa376470(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa376470(v=vs.85).aspx
http://www.energy.ca.gov/2014publications/CEC-500-2014-093/CEC-500-2014-093.pdf
http://www.energy.ca.gov/2014publications/CEC-500-2014-093/CEC-500-2014-093.pdf
https://software.intel.com/en-us/articles/download-the-intel-aesni-sample-library
https://software.intel.com/en-us/articles/download-the-intel-aesni-sample-library
http://www.usb.org/developers/hidpage/HID1_11.pdf
http://www.usb.org/developers/hidpage/HID1_11.pdf

[66] T. Vidas. AfterLife: USB based memory acqui-
sition tool targeting “warm boot” machines with
4GB of RAM or less. http://sourceforge.net/

projects/aftrlife/.

[67] T. Vidas. Volatile memory acquisition via warm
boot memory survivability. In Hawaii International
Conference on System Sciences (HICSS’10), Hon-
olulu, HI, USA, Jan. 2010.

[68] R. Wojtczuk and C. Kallenberg. Attacking UEFI
boot script, 2014. http://events.ccc.de/

congress/2014/Fahrplan/system/attachments/

2566/original/venamis_whitepaper.pdf.

[69] R. Wojtczuk, J. Rutkowska, and A. Tereshkin.
Another way to circumvent Intel Trusted
Execution Technology: Tricking SENTER
into misconfiguring VT-d via SINIT bug ex-
ploitation. Technical article (Dec., 2009).
http://theinvisiblethings.blogspot.com/

2009/12/another-txt-attack.html.

[70] Y. Xia, Y. Liu, C. Tan, M. Ma, H. Guan, B. Zang,
and H. Chen. TinMan: Eliminating confidential mo-
bile data exposure with security oriented offloading.
In EuroSys’15, Bordeaux, France, Apr. 2015.

[71] L. Zhao and M. Mannan. Gracewipe: Secure and
verifiable deletion under coercion. In NDSS’15, San
Diego, CA, USA, Feb. 2015.

[72] L. Zhao and M. Mannan. Hypnoguard: Protect-
ing secrets across sleep-wake cycles. In ACM Com-
puter and Communications Security (CCS’16), Vi-
enna, Austria, Oct. 2016.

A Adaptation for AES-GCM

A.1 Implementing regular GCM

GCM mode is unavailable in the current Intel AES-NI li-
brary. So we make use of a set of sample code published
by Intel [25] as a starting point. Of interest to us, the
sample code comes with, among other functions, encryp-
tion function (single block at a time) in C, encryption
function (4 blocks at a time) in both C and assembly, key
expansion function in C, and decryption function (single
block at a time) in C. While adapting AES-GCM for
Hypnoguard, we encountered several challenges, as dis-
cussed below. We did not evaluate the encryption func-
tion as it is already in assembly with 4-block processing
(yielding over 7GB/s).

Stack alignment. All Intel SSE instructions (in-
volving registers XMM0 through XMM7, and in x64 XMM8

through XMM15) mandate the memory operand to be 16-
byte aligned; otherwise, the general-protection excep-
tion (#GP) will crash the system. For GCM imple-
mentations (exemplified by Intel’s sample code), such
instructions are used intensively. In assembly, this can
be adjusted manually, while in C it must be enforced

at the compiler level, e.g., by specifying attribute

((aligned (16))) when defining such variables. How-
ever, for Hypnoguard we perform “hybrid compilation”,
where the 32-bit components (for all core functions like
TXT processing) and the 64-bit component (for AES en-
cryption) are compiled separately, and the 64-bit code is
only invoked as binary located at a fixed address with an
arbitrary stack position. Therefore, the compiler for the
64-bit code no longer has the global control over stack us-
age. This causes indeterministic behavior, such as, ran-
dom system crashes when the incoming stack is aligned
differently from what the compiler assumed.

A way around it is to force the compiler to insert a
prologue that always realigns the local variables on the
stack by specifying -mstackrealign (forcing to realign
when necessary) and -mincoming-stack-boundary=3

(assuming the worst case: 8-byte aligned). However,
this is disallowed in a 64-bit system with current GCC
versions (producing error message “-mincoming-stack-
boundary=3 is not between 4 and 12 ”). We follow a non-
mainline patch 1 (backported to gcc-5), and manually
applied the changes to allow the value 3. After compila-
tion, a prologue (a few lines of assembly code) is inserted
to the beginning of each C function. This prologue al-
ways contains “and $0xfffffffffffffff0,%rsp” that
removes the last significant nibble so that it is guaran-
teed to be 16-byte aligned. This way, Hypnoguard can
run with GCM mode without crashes.

Parallelized decryption. Intel’s sample code mostly
focus on encryption performance, and the same applies
to its evaluation, i.e., no mention of decryption. The
decryption function is single-threaded and only available
in C. Therefore, even if all the four cores are used, de-
cryption speed was always under 3.3GB/s, which takes
nearly 2.5 seconds to resume for an 8GB-memory com-
puter. The first step we take is adapting it to process
4 blocks at a time, following the already parallelized en-
cryption function.

We observe that even with all physical cores enabled,
processing 4 blocks at a time only improves the perfor-
mance a little (from 3.22GB/s to 3.3GB/s). We realize
that the decryption function being in C, and that there
is a prologue at the entry of each function invocation
are possibly causing significant latency. We proceed to
adapt the encryption function in assembly for decryption
according to the construction of the existing decryption
function in C. During this process, we have encountered
several challenges, mainly related to the lack of deep un-
derstanding of the undocumented code, e.g., implicit and
condensed use of the limited number of registers.

For now, we are unable to tell if the prologues alone are
the root cause for the performance degradation, rather
than the code being in C, as the program will crash with-
out them. The new decryption function in assembly (pro-
cessing 4 blocks at a time) achieves a performance of

1https://gcc.gnu.org/bugzilla/show_bug.cgi?id=66697

16

http://sourceforge.net/projects/aftrlife/
http://sourceforge.net/projects/aftrlife/
http://events.ccc.de/congress/2014/Fahrplan/system/attachments/2566/original/venamis_whitepaper.pdf
http://events.ccc.de/congress/2014/Fahrplan/system/attachments/2566/original/venamis_whitepaper.pdf
http://events.ccc.de/congress/2014/Fahrplan/system/attachments/2566/original/venamis_whitepaper.pdf
http://theinvisiblethings.blogspot.com/2009/12/another-txt-attack.html
http://theinvisiblethings.blogspot.com/2009/12/another-txt-attack.html
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=66697

5GB/s. This is much better than our initial attempts;
however, considering wakeup-time latency (decryption)
is more critical to user experience, 1.6 seconds for an
8GB-memory computer may not be ideal.

A.2 GCM with deferred tag verification

With the current GCM construction, we have already
customized the implementation to a large extent, i.e.,
code written in assembly and processing 4 blocks at a
time. However, encryption is still much faster than de-
cryption (1.55 times) even when all other factors are the
same. Note that in GCM, decryption is composed of a
tag verification phase and the actual decryption. Our
analysis shows that the tag verification accounts for a
significant portion of the latency (a complete separate
loop through all the data blocks). But this sequential
processing is apparently necessary: the tag verification
should be done before the (more) processing-intensive
decryption operation is performed.

We propose a significant change in GCM implemen-
tation for boosting GCM decryption performance that
fits certain circumstances, e.g., in our case where it does
not matter if the plaintext content is already decrypted
in RAM when an anomaly is detected (Hypnoguard can
just halt/reboot the machine when tag verification fails).
To this end, we try to remove the upfront tag verifica-
tion, and integrate it into the existing decryption loop.
Recall that during encryption the tag is generated along-
side, and the logic is partially reusable and helpful for
adapting the decryption function. The new construction
only contains one loop through the ciphertext blocks, and
GHASH is calculated for each iteration and the tag value
is updated. We eventually managed to make run this
construction, and have verified that at the end of the de-
cryption, Hypnoguard is able to notify the user if authen-
ticity of the RAM data is compromised; the user can then
reboot or shut down the machine. Our GCM implemen-
tation with deferred tag verification achieves 6.8GB/s,
taking only 1.18 seconds to wake up.

B An example e820 memory map

Our e820 table is shown below as an example; note
that the reserved spaces are scattered across the RAM,
and remain unused by the OS or user applications. We
therefore exclude encrypting such regions.

[mem 0x0000000000000000-0x000000000009ebff] usable

[mem 0x000000000009ec00-0x000000000009ffff] reserved

[mem 0x00000000000e0000-0x00000000000fffff] reserved

[mem 0x0000000000100000-0x00000000007fffff] usable

[mem 0x0000000000800000-0x0000000000afffff] reserved

[mem 0x0000000000b00000-0x00000000b4fabfff] usable

[mem 0x00000000b4fac000-0x00000000b4fb2fff] ACPI NVS

[mem 0x00000000b4fb3000-0x00000000b5403fff] usable

[mem 0x00000000b5404000-0x00000000b586afff] reserved

[mem 0x00000000b586b000-0x00000000ca22dfff] usable

[mem 0x00000000ca22e000-0x00000000ca436fff] reserved

[mem 0x00000000ca437000-0x00000000ca44ffff] ACPI data

[mem 0x00000000ca450000-0x00000000ca9a4fff] ACPI NVS

[mem 0x00000000ca9a5000-0x00000000cbbfefff] reserved

[mem 0x00000000cbbff000-0x00000000cbbfffff] usable

[mem 0x00000000ce000000-0x00000000de1fffff] reserved

[mem 0x00000000f8000000-0x00000000fbffffff] reserved

[mem 0x00000000fec00000-0x00000000fec00fff] reserved

[mem 0x00000000fed00000-0x00000000fed03fff] reserved

[mem 0x00000000fed1c000-0x00000000fed1ffff] reserved

[mem 0x00000000fee00000-0x00000000fee00fff] reserved

[mem 0x00000000ff000000-0x00000000ffffffff] reserved

[mem 0x0000000100000000-0x000000021fdfffff] usable

C A memory alignment bug in
Intel AES-NI library

During the process of the implementation, we identified
a potential issue in the assembly module of Intel’s 64-
bit AES-NI library (only CTR mode). In iEnc128 CTR,
there is one instruction that requires the first argument
to be 16-byte aligned: movdqa [rsp+16*16], xmm6.

However, we have no control over where the stack
pointer (rsp) is. Especially, even if we always assume
rsp is 16-byte aligned on its entry, the instruction before
it breaks this situation (sub rsp,16*16+8+16). In con-
sequence, the system crashes with a general protection
error (depending on the calling context). We ended up
having to patch it as follows:

mov rax, rsp ;stack pointer into rax for processing
and eax, 15 ;take the least significant nibble
sub rsp, rax ;subtract the nibble from the stack pointer

;so that it is guaranteed to be 16−byte aligned
push rax ;save what we have done for later reversion
... ;the actual CTR function in AES−NI library
pop rax ;load what was subtracted
add rsp, rax ;reverse what we have done

17

	Introduction
	Terminologies, goals and threat model
	Terminologies
	Goals
	Threat model and assumptions

	Design
	Design choices and elements
	Unlock/deletion policy and deployment
	How goals are achieved

	Implementation
	Overview and execution steps
	Instrumenting the S3 handler
	Memory considerations
	User interaction
	Moving data around
	Unencrypted memory regions

	High-speed full memory encryption and decryption
	Enabling techniques
	Performance analysis

	Variants
	Security analysis
	Related work
	Concluding remarks
	Adaptation for AES-GCM
	Implementing regular GCM
	GCM with deferred tag verification

	An example e820 memory map
	A memory alignment bug in Intel AES-NI library

