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Abstract

Machines That Learn: Aesthetics of Adaptive Behaviors in Agent-based Art
Jean-Sébastien Senécal, Ph.D.
Concordia University, 2016

Since the post-war era, artists have been exploring the use of embodied, artificial agents. This
artistic activity runs parallel to research in computer science, in domains such as Cybernetics,
Artificial Intelligence and Artificial Life. This thesis offers an account of a particular facet of this
broader work — namely, a study of the artistic practice of agent-based, adaptive computational
artistic installations that make use of Machine Learning methods. Machine Learning is a sub-field
of the computer science area of Artificial Intelligence that employs mathematical models to classify
and make predictions based on data or experience rather than on logical rules.

These artworks that integrate Machine Learning into their structures raise a number of impor-
tant questions: (1) What new forms of aesthetic experience do Machine Learning methods enable
or make possible when utilized outside of their intended context, and are instead carried over into
artistic works? (2) What characterizes the practice of using adaptive computational methods in
agent-based artworks? And finally, (3) what kind of worldview are these works fostering?

To address these questions, I examine the history of Machine Learning in both art and science, il-
lustrating how artists and engineers alike have made use of these methods historically. I also analyze
the defining scientific characteristics of Machine Learning through a practitioner’s lens, concretely
articulating how properties of Machine Learning interplay in media artworks that behave and evolve
in real time. I later develop a framework for understanding machine behaviors based on the mor-
phological aspects of the temporal unfolding of agent behaviors as a tool for comprehending both
adaptive and non-adaptive behaviors in works of art. Finally, I expose how adaptive technologies
suggest a new worldview for art that accounts for the performative engagement of agents adapting
to one another, which implies a certain way of losing control in the face of the indeterminacy and

the unintelligibility of alien agencies and their behaviors.
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Preface

My fascination for nonhuman agencies goes back to my childhood. In the first seven years of my
life, I was an only child, and I believe that I was uniquely good at it. Being very much so a calm
and solitary kid, I did not need nor seek out friends of my age, as I seemed to get along better with
adults and things. One of my favorite activities, besides reading books and fiddling with LEGO
blocks, was to play board games. While the games I enjoyed most were meant to be played socially,
I immensely preferred to play alone, and for that to work I needed to invent an opposing player,
whom I would quite unimaginatively call “L’Autre” (“The Other”). “L’Autre” was a smart player
of course — almost as smart as I was — and he often offered a challenging battle, although he
always ended up losing, either because of bad luck or — when the die were rolling too much in his
favor — due to some bad decisions he would make in the mid-game.

Fast-forward a few decades later. Upon entering the University of Montreal in my early twenties,
I was quickly hooked by computer programming, and in particular by Object-Oriented Programming
(OOP). During my first Java class, I started building a software library for making artificial beings
as soon as I learned about class inheritance and packages, which was more of an abstract fantasy
than anything and never really achieved much. In my second year, I read an interview about
Machine Learning with Yoshua Bengio in the student departmental journal. I was immediately
excited by the idea of computational processes able to make inferences, to come up with their own
decisions, by interpreting real-life data. Machine Learning seemed to be a much more promising
approach to creating Artificial Intelligence than the kind of rule-based logic I was seeing in my

programming classes.
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I started doing research with Yoshua during the Summer, and when I finished my B. Sc. I
pursued a M. Sc. in his lab, studying neural networks applied to natural language modeling (Bengio
and Senécal 2003; Bengio et al. 2006). I was especially enthralled by the spectacle of watching the
error rate lowering during stochastic gradient descent. I imagined the neuronal connections self-
adjusting as megabytes of English sentences from the Brown Corpus was fed into the system. I
pictured the system as an artificial entity who tentatively tried to make sense of all of this text,
exploring the millions of dimensions of the error space, self-organizing both semantic and syntactic
information in a global, distributed network of subsymbolic representations.! I always perceived
these systems as alive, in their own way, as possessing agency, years before I even know anything
about Cybernetics and Artificial Life.

When I finished my degree and was offered a pretty sweet deal for pursuing doctoral studies
in the area, I found myself in a difficult spot. I loved the work — at least, the creative part of
it — but not the environment. The science itself was fascinating, but what seemed to come with
it was less attractive: I perceived a very competitive and somewhat “macho” culture pervaded
by rampant libertarianism, techno-utopianism, and a relative lack of interest in the philosophical
and socioeconomic repercussions of the technologies we were developing. This, aligned with a
generalized absence of self-scrutiny and self-criticism with respect to the entanglement of science
with what were to me questionable endeavors such as financial computing or marketing which had
alienated me since my first day in the lab, pushed me to quit the field.

I created my first art installation in 2004 in collaboration with fellow developers and artist
Jonathan Villeneuve. The piece, which was created as part of a one-night multidisciplinary event
for emerging artists, was an interactive video work where the audience’s faces would get recognized
through the use of a homemade implementation of a cutting-edge Machine Learning algorithm,
and transformed using concave and convex distortions. It was really simple, quite silly in fact,

but surprisingly efficient in drawing people into an interactive experience. What attracted me the

IThe model I studied during my Master involved a Multi-Layer Perceptron feedforward neural network with
eighty (80) hidden units, with millions of self-adjusting weights, which is relatively small by current standards. My
Thesis focused on a technique for accelerating the training of such networks using importance sampling. Even with
that acceleration method, in those years, it needed to run on a cluster of 20 CPUs for weeks in order to return
results (Senécal 2003).
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most to the experience was how the audience engaged with the work, using it in unexpected ways,
exploiting its imperfections. That night, I decided I wanted to become an artist. In the coming
years, I would, indeed, dedicate myself fully to this enterprise.

Changing disciplines is somewhat similar to moving into a new country. You need to learn new
languages. You discover a lot about yourself through another culture’s eyes. And yet, you never
ever really feel at home anywhere anymore. An emerging artist in the mid—2000s, I was lucky to
find in Montreal’s blooming new media art scene an extremely welcoming and generous community.

At first I just wanted to put my knowledge in Machine Learning to use in my work, but this
in turn constrained the possibilities for me to explore artistically, at a time where I needed, on the
contrary, to “open up”. So I decided to avoid using Machine Learning in my pieces, because I found
that it limited my perspective as an artist. For more than five years, my brain had been trained
to do science: now I needed to rewire it to be more of an “artist’s brain”, or maybe to develop
another part of it. It was rather schizophrenic in a way, and it took me years to develop another
way of thinking and being. Eventually these two realms inside my psyche, which were separated at
first, came to reconnect in ways that are hard to explain, the result of which is what makes me feel
constantly a bit like an outsider both in art and science — like an immigrant never feels at home
even when traveling in his country of origin.

My early works consisted in artistic software-based works based on dynamic models of social
and life processes. While interactive and computational in nature, these works stemmed from
my original interests in adaptive intelligent systems and natural language processing, and were
mostly an attempt to generate a poetic representation of some aspect of reality. My work with
the Drone collective — a Montreal-based group of practictioners consisting of three programmers
(Mathieu Guindon, Julien Keable, and myself), an electronics engineer (Samuel St-Aubin) and a
visual artist (Jonathan Villeneuve) — was centered on dynamic sketches of social interactions, such
as dialogue ( Vélodrame, 2005) and tourism ( Travel Agent, 2005). In the web-based software artwork
CHARACTERS (2005-2006), a game based on the definition and evolution of real and fictitious
identities is put forward within the constraining framework of an online dictionary.

In 2005 I started a M. A. in Communication at Université du Québec & Montréal (UQAM) in



(a) Trace L (2007). With (b) Trace V (2007). With (¢) Trace S (2008). With
Jonathan Villeneuve, in collab- Jonathan Villeneuve. Photo by Jonathan Villeneuve. Photo by
oration with Myriam Bessette. Alexis Bellavance. Alexis Bellavance.

Photo by Alexis Bellavance.

ANNIELE fem. (French,
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madeleine) CHRISTIANISM A
married 39-year-old bisexual
woman from Canada.

(d) Flag (2008). Photo by Mar- (e) CHARACTERS (2005- (f) Vélodrame (2005). With the
leen van Wijngaarden. 2006). Drone collective.

Figure 1: A sample of my early work (2005-2008).

the Interactive Media program of the School of Media, through which I produced a solo interactive
installation (Flag, 2007) which confronts the spectator with an experience involving different mech-
anisms related to prejudice, dialogue and culture shock. Finally, the triptych Trace (2007-2008),
realized in collaboration with artist Jonathan Villeneuve, yet again deals with depicting social and
individual processes, such as attraction and memory.?2

In the Spring of 2007, I went to Rotterdam to complete my M. A. in Communication studies.
During that period, I participated in one of Piet Zwart Institute’s “thematic projects” with artist
and designer Kristina Andersen. The workshop, which took place through the whole three months
of my stay in the Netherlands, dealt with physical computing in contexts of interaction design and
artistic practice. There, I was confronted with new techniques and ways to think about interactivity
and experience which brought me to create my first electronics-based artwork. The piece, called

Drift (2007), was presented at the V2 Institute for Unstable Media as part of a group show and

2Tt is around those years that I started to use the nom de plume Sofian Audry to sign my artistic work.



was also my first work using reinforcement learning. It consisted of an old speaker attached to a
handheld microphone. The interactive agent’s only possible actions were to stay silent or emit a
digital sound which was parameterized by a simple genetic algorithm, thus allowing an evolution
of variety.

People could interact with the system by speaking into a microphone. The interactive agent
would cycle through two different states, one where it would seek company and another where it
would try to be alone. How to achieve these two goals was left to the agent to figure out. Typically,
after a certain time, it would learn to attract spectators and respond to them using its “voice” when
it wanted company, while staying silent when seeking solitude.

My experience with Drift would bring important changes to my artistic practice of the time.
My contact with electronics and especially the Arduino platform opened up the possibility for a
new approach to art through direct interventions in real-life using small, autonomous electronics

objects rather than representing processes within the safe and artificial realm of the gallery walls.

Figure 2: Drift (2007), V2 Institute for the Unstable Media, Rotterdam, Netherlands. Photo by
Sofian Audry.

During the years to come, I would steadily move my practice towards what I call an agent-based
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practice, where in essence, my approach as an artist is to design an artificial agency. Here, “agent”
is to be taken in its very general sense, of an entity or process that is able to act in an environment
in response to its own perceptions. Moreover, these developments slowly brought back the idea of
learning, which through the project Absences (described in chapter 4) would prove to be crucial
component of my research in understanding the aesthetics of such agents.

Related to the concept of agent is that of behavior, which is understood here as the observable
patterns that agents produce beyond their physical appearance. One can see how this idea directly
resonates with computationalism, a philosophical view that understands cognitive processes as di-
rectly derived from algorithms (software) operated by the brain (hardware), and holds that human
performance is completely independent of the material substrate that implements it (i.e., the body).
But this concept of behavior need not be understood within this reductionist framework, and should
rather be embraced by considering behaviors as the perceived performance of an embodied entity
acting within its environment.

Computation is a central idea in new media, and could be perhaps the concept that distinguishes
it from other artforms. In particular, computing allow to produce another artistic medium through
the design of agents governed by algorithmic processes: an “aesthetics of behavior” (Penny 2000,
398). To make a parallel, if we compare video and photography and try to find the most fundamental
properties that differentiates them, we can say that video, as a sequence of fixed images, adds
to photography a third dimension: that of time. It does not mean that video is better than
photography, but this difference is crucial to understand how both these media work, the effects
they can create, and how to use them.

When it comes to computational behaviors, which are activated by computer algorithms, we
are faced with something slightly different than video. A video is delimited by a finite time period:
if you play it back, it will replay exactly the same sequence of images. A behavior is different:
it can play for an infinite amount of time and will never exactly repeat itself. Yet, despite the
inexhaustible nature of its manifestations, it is still recognizable by a human observer as a definite

thing. If we experience a behavior long enough, we can adapt to it, we can get to know it, and then
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the patterns will become familiar.® Contrary to a mere record of agents’ behavioral patterns (such
as a video of birds flocking), a behavior can be affected by stimuli in real-time.

Agent-based artworks thus conjure “The Other”, an alien entity that evokes liveliness, suggesting
the emergence of novel aesthetic experiences. In seeking the creation of such experiences, I am
especially interested in the blurry and muddy aspects of these behavioral forms, the uncanny nature
that results from their imperfections, mirroring our own fragility as living beings. This might
explain why I am an artist and not a scientist: I am not after some kind of optimal path to some
objective truth, but rather, I believe in art’s potential to provide humanity with the truth of reflexive
becoming, the reflection of ourselves as imperfect and contradictory beings. Defect, faillibility, and
indeterminacy are the substance of life, and the essence of freedom.

But beyond the aesthetics of behavior lay an important question: What role do algorithms
themselves play when they are articulated through an embodied system? There is an important
assumption as the base of this research: that there is a relationship between the choice of the
algorithm governing an agent and the way this agent’s behavior is experienced by the audience. This
belief is supported by the fact that people are able to recognize behaviors beyond the appearance
of the agents they animate. For example, people recognize swarming patterns in dots moving on a

screen governed by a certain algorithm that behaves like a swarm (fig. 3).

Figure 3: Swarming dots moving on the screen according to a swarming algorithm, as described in
(Reynolds 1987). Based on code by Daniel Shiffman (Shiffman 2012).

3As a comparison, consider the behavior of speaking a natural language. While the possible combinations of
words in a given grammatical structure in a given language are potentially infinite, in such a way that it is highly
possible that the exact words that constitute this dissertation have never been written (fingers crossed!) and will
never be written again in the history of the Universe, it remains that this thesis is recognizable as English writing,
and can be understood as such by an English reader.
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Does this mean there is always and automatically a relationship between an algorithm and how
it is perceived? No. While two different algorithms will objectively yield different outcomes, it does
not mean that these outcomes will be perceived differently by a human subject. For example, two
algorithms might both generate different forms of noise, but they might be indistinguishable from
one another by a general audience; the same way, two different “flocking” algorithms might give
the same impression of “lifelikeness” to an audience without necessarily being discernable from one
another.

Does it mean that we can control the outcomes by changing the algorithm? This is the assump-
tion that this thesis makes, that it is indeed possible to do so, and that Machine Learning is a path
for accomplishing this when working with self-organizing agents evolving in the real world.

At its heart, this dissertation focuses on the challenge of harnessing aesthetic experience from
the building blocks of life, a story that keeps repeating itself, spanning different time scales in the
history of humanity. It is a story of agents called genes who have traveled through millions of years,
adjusting themselves, fighting and cooperating with others to survive through the organisms that
host them; of an ant colony finding a route to a new source of food; or of an artificial neural network
learning to pilot an automobile. It is the story of computationally evolved circuit boards that learn
to recognize sound signals using microscopic magnetic perturbations of completely disconnected
components, in ways that lay beyond human comprehension. This story is the story of all and
everyone of us, that of a child learning how to smile, move, walk, talk, and later, ride a bike, read,
make friends, step by step, through trial and error, exploring and exploiting its environment, set
on a road of becoming. It is about how our world is filled with agents that adapt to one another,
competing and collaborating in incommensurable ways that defy logical understanding. Exploring
this universal narrative — and the evocative aesthetic potentials it holds — is what I seek above

all in conducting in this research.
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Chapter 1

Introduction

When viewed on a long enough time scale, life forms are always changing, adjusting,
producing novel responses to unpredictable contingencies, adapting and evolving

through blindly opportunistic natural selection.

— MARK A. BEDAU, The Nature of Life

There is no intelligence where there is no change and no need of change.

— H. G. WELLS, The Time Machine

Since the 1960s, artists have been creating bodies of work using and/or inspired by computer
technologies. In this research, I am interested in a specific branch of artistic works that make
use of artificial agents, that is, man-made autonomous systems who act within their environment
in response to what their perceptions. Examples include pioneering cybernetic artworks such as
Nicholas Schoffer’s CYSP1 (1956) or Edward Ihnatowicz’s The Senster (1970—1974); more recent
works include Bill Vorn and Louis-Philippe Demers’ large-scale robotic piece La Cour des Miracles
(1997), Ken Rinaldo’s artificial life installation Autopoiesis (2000) and Yves Amu Klein’s “living
sculptures”. Artist and media theorist Simon Penny calls these kinds of work “embodied cultural
agents” or “agents as artworks” and integrates them within the larger framework of an “aesthetic of

behavior”: a “new aesthetic field opened up by the possibility of cultural interaction with machine



systems” (Penny 2000, 398). These works are distinct from so-called “generative art” or “algorithmic
art” which use computer algorithms to produce stabilized morphologies such as images and sound.
The former’s aesthetics are about the performance of a program as it unfolds temporally in the
world through a situated artificial body.

This project offers an account of a particular facet of this broader work — namely, a study of
the artistic practice of agent-based, adaptive computational artistic installations that make use of
Machine Learning methods. Examining the cultural-social-technical repercussions that arise in the
use of such techniques in artistic works, I argue for an aesthetics of adaptive agents rooted in the
distinctive way their behavior evolves and stabilizes as they couple with their environment.

Machine Learning is a sub-field of the computer science area of Artificial Intelligence. It employs
mathematical models that can classify and make predictions based on data or experience rather
than on logical rules. Learning systems usually consist of computational structures that adjust
themselves when submitted to large quantities of data. Machine Learning is directly related to
the biologically-rooted concept of adaptation which refers to a “process whereby a structure is
progressively modified to give better performance in its environment” (Holland 1992, 7).

A late offspring of the cybernetic revolution, the field of Machine Learning has experienced an
impressive growth since the mid-1990s. Its applications are extremely widespread and its success
in the era of “big data” since the beginning of the millenium has pervaded Artificial intelligence
research in areas such as pattern recognition, natural language processing, data mining, search
algorithms and robotics.

As a proof of the importance of the field in contemporary society, consider the increased ac-
quisition of Machine Learning startups by major IT players like Google, Facebook and others. For
example, Geoffrey Hinton, the great-great-grandson of logician George Boole and an emeritus pro-
fessor at University of Toronto in the field of Artificial Neural Networks, joined Google in 2013 as
Distinguished researcher. Yann LeCun, another eminent pioneer in the field, was appointed in 2012
to be the first director of Facebook AI Research in New York City while Andrew Ng, an authority
in the field of Reinforcement Learning, became Chief Scientist at Baidu Research in Silicon Valley

in 2014. The year before, during Fall 2013, Ng’s Machine Learning class at Stanford was the most



popular class on campus, enrolling more than 760 students (Markoff 2013). His online class at-
tracted more than 100,000 students in 2011, contributing to the development of Stanford’s Massive
Open Online Courses and the founding of Coursera (Friedman 2012).

Although the impact of these technologies on contemporary society is still relatively elusive,
the debate surrounding them has reached the public sphere. In a recent appearance that made
headlines, physicist Stephen Hawking warned about the threats that Al and in particular Machine
Learning pose to the future of mankind. He signed an open letter asking for more control over Al
and made numerous claims in the media that the rapid development of Machine Learning could
allow us to reach human-level Al soon, possibly leading to human extinction.

Many researchers in the field have since refuted his arguments, showing that research was actu-
ally not progressing as dramatically fast as Hawking claimed and that humankind should not worry
about an “Al singularity” happening in any foreseable future (Madrigal 2015). While Hawking’s
concerns seem largely unfounded, recent advances in Machine Learning research seem to have ag-
itated, in Western media, the classic fear of machine cognition outstripping human intelligence, a
sign that the widespread presence of Al is starting to gain public attention, for better or for worse.

While recent years have seen the field of Machine Learning grow at an unprecedented rate, the
underlying idea of a computational system able to adapt to or learn from a flow of observations
coming from real life is certainly not new. On the contrary, it recurs throughout the history of
computing, from early concepts of negative feedback in Cybernetics to evolutionary computation.
There has been a growing trend, since at least the late 1990s, to apply Machine Learning to the
fields of robotics and agent-based systems (Dorigo and Colombetti 1997; Riedmiller and Merke
2002; Quinlan 2006; Chalup, Murch, and Quinlan 2007). Reinforcement Learning, a branch of
Machine Learning dealing with agents adapting to their environment, is finally gaining momentum
after more than a decade of research (Soni and Singh 2006; Gu and Hu 2002). The advent of Deep
Learning in recent years suggest that this movement is not about to slow down (Mnih et al. 2013).

Despite this increased use of Machine Learning in many facets of contemporary industrial and
commercial culture, one site where it has not seemed to make a meaningful impact is the field of

art practice. This seems odd, considering that the use of computational systems in art goes back



to at least until the early 1950s. Indeed, it feels like interest within the arts has been focused on
techniques and concepts such as self-regulation, evolution and emergence, while there has been little
rigorous work on Machine Learning and Adaptive Computation by artists (Kac 1997; Penny 1997;
Tenhaaf 2000).

Why is this? The relatively recent popularization of Machine Learning in scientific communities
might partly explain it. Another factor that may have slowed the adoption of such techniques by
artists is the lack of access to the skills and knowledge required to utilize them. Moreover, there is
a problem of translation: these techniques have never been designed for artistic production, which
makes it particularly unclear for artists as to how they would even begin to use them in their own
domain. Finally, the concepts surrounding adaptive systems and their definitions are fluid and
shifting depending on the context in which they are used. For example, the definition of concepts
such as “learning”, “adaptation” and even “AI” as they are used by artists more than often differ
largely from their scientific descriptions. The presence of such approaches in artistic works is often
hard to trace because they are frequently used more as metaphors than as actual techniques.

Hence, while a significant and increasing number of new media artworks are indeed employing
artificial agents, the vast majority of these agents are nonadaptive. Nevertheless, the integration of
such methods in new media artworks raises important questions that have powerful sociotechnical
and philosophical ramifications for aesthetic practice: (1) What new forms of aesthetic experience
do Machine Learning methods enable or make possible when utilized outside of their intended
context and are instead carried over into artistic works? (2) What characterizes the practice of
using adaptive computational methods in agent-based artworks? (3) And finally, what kind of
worldview are these works fostering?

These questions are hard to grasp, as they are solidly entangled with multiple disciplinary fields.
The category of artworks under consideration here are built around situated agents engaged in an
adaptive performance with their environment. But what exactly distinguishes them from systems
that share all their characteristics but which are not adaptive?

One potential key to this question lies in the intimate relationship between adaptivity and

performativity of a system. Adaptivity is what allows a system such as the brain to do things in



the world. But the way a brain — and hence a human subject — performs is diffferent from the
way a drop of water or a grain of sand does.
Cognitive scientist Stevan Harnad provides a comprehensive explanation of this concept when

he talks about the importance of learning in category formation:

The adaptiveness comes in with the real-time history. Autonomous, adaptive sensori-

motor systems categorize when they respond differentially to different kinds of input,

but the way to show that they are indeed adaptive systems — rather than just akin to

very peculiar and complex configurations of sand that merely respond (and have always

responded) differentially to different kinds of input in the way ordinary sand responds

(and has always responded) to wind from different directions — is to show that at one

time it was not so: that it did not always respond differentially as it does now. (Harnad
2005, 3)

I suggest that the use of Machine Learning in works of art is distinguished from nonadaptive
works in their temporal unfolding. Works based on nonadaptive autonomous agents are, in theory,
able to respond to interactions in real-time, often in complex ways. However, their behavior —
understood as the way they act in the world — remains fixed over time, because the structure that
implements their actions remains unchanged. The behavior of such nonadaptive agents can surely
be convoluted and unpredictable, but more analogous to the way a grain of sand is carried by the
wind (responding to inputs in a manner that remains fixed over time) than in the way a living
and/or cognizing agent acts (which changes temporally as it is confronted to its environment).

In fact, adaptive agents can move beyond given limitations because their structure itself at
a given moment is changeable in response to interaction with the world. An adaptive systems’
behavior at any given time is determined by a structure, such as a set of weights in a artificial
neural network or a digital DNA code in the case of genetic algorithms. When the agent acts in
its environment, for example through its motor system, it does so both in reaction to both sensory
data as well as its structural characteristics. Furthermore, this structural change is accomplished
with the intent of enabling the agent to perform its tasks more effectively in the future. In other
words, the history of the agent’s interactions modifies the its behavior: the past feeds the future.

But the differences do not stop there. Indeed, one of the important characteristics of Machine



Learning algorithms (and especially the most recent advances) is their ability to represent the raw
data in a more compact, abstract, efficient way (Bengio, Courville, and Vincent 2013). In other
words, recalling Harnad, their ability to categorize. These systems accomplish this in their own
unique way, thus the categories they create don’t necessarily correspond to what we would expect
as human beings. The responses from hidden neurons in a trained artificial neural network, for
example, are often hard to grasp, if not utterly incomprehensible to a human observer.

Based on both observation and experience, I argue that the strong representational power of
these systems, defined along dimensional axes that highlight the invariances in sensory data, can
somehow be “felt” in the highly nonlinear behavioral patterns generated by these algorithms. This
uncanny feeling feeds on the same intricate dynamics that evoke our very own way of performing
into the world, nevertheless at the same time alien to us, as the behavior of such systems follows
convoluted rules that lie beyond human comprehension.

This resonates with composer Iannis Xenakis’ call for the application of scientific techniques
by artists for the generation of new morphologies (Xenakis 1981a). For Xenakis, art is a “crys-
tallization”, a “materialization” of human intelligence, wherein art is fundamentally engaged in
the same universal, deductive, and socio-cultural dynamics on which the sciences are founded. As
a manifestation of this claim, he notes the close historical ties between music and mathematics,
demonstrating how one cannot be dissociated from the other. Xenakis concludes that a new type
of artist is required, one who can freely use science and mathematics to create spatio-temporal
“shapes” that can only be understood as the constant interaction between function and structure.

What does this mean for artmaking in a contemporary moment of Machine Learning and AI?
This question is challenging to address, because the practice of adaptive agent-based artworks is
marked, first and foremost, by a high degree of diversity in materials, subjects and outcomes.
In order to analyze the practical aspects of artworks that integrate these technologies into their
structures, I first need to take into account the technical challenges inherent to Machine Learning
systems in the context of agent-based artistic installations. Namely, the difficulty to build big and
reliable data in artistic venues, the loss of locus of control by the artist, difficulties that come with

real-time adaptation and the lack of a descriptive framework for adaptive behaviors.



An important feature of this genre of work lies in the constant tension that exists between the
scientific and the artistic perspective in the creative process. I concur with digital artist Marc
Downie on the importance of authorship in this matter: it is a common mistake to think that
the use of computational technologies could replace altogether the artist’s artistic input, and it is
crucial for artists to hold on to their aesthetic intentions (Downie 2005). This might be especially
true for Machine Learning technologies which largely consist of optimization techniques that were
never designed for artistic use.

The specific shape of adaptive behaviors that I have called attention to is not a magical trick but
rather a tool to be explored to achieve a certain effect. Artists need to reflect from the beginning
on how the overall experience of a work will be related to the adaptive process, and in general, to
adopt a critical stance, in relationship to the technology.

It is useful here to stress that the specific aesthetic qualities of adaptive agents outlined above
are almost haphazard, in the sense that scientists working in the field of Machine Learning typically
have very little interest in the shape of behaviors and how they unfold in time. Most Machine Learn-
ing algorithms run entirely offline, training intricate mathematical models on huge, pre-compiled
databases of real-world data, with the sole objective of achieving a better performance on solving
a specific problem, according to a precise error factor. Bearing this scientific perspective in mind,
the aesthetics of such processes appears to be little more than a side-effect.

In order to tap into the artistic potential of learning and adaptive systems, artists need to
somehow invert this perspective. Whereas scientists fine-tune their algorithms to achieve better
performance over an agreed-upon error measurement, artists need to find their own way through
the different components of learning systems in order to produce subjectively compelling behaviors.

This being said, the artistic and scientific practices of adaptive agents have a similar set of
relationships between author and machine in that they both involve a constant interaction between
the practitioners and the material agents they interact with. Sociologist of science Andrew Pickering
has come up with the concept of a “dance of agencies” to describe the constant movement of
resistance and accommodations going on in scientific practice (Pickering 1995). The stakes in art

are different than those in science, of course, because artists are generally invested in the creation



of an experience, while scientists try to discover or confirm some truth about the world by building
theories based on observations. However, both the artistic and the scientific processes have striking
similarities, and what Pickering essentially says about scientific practice can be applied to art.

Bringing British Cybernetics to the foreground as an inspirational example of this worldview,
Pickering argues for a conception of human cognition that is performative rather than represen-
tational: “the cybernetic brain was not representational but performative, as I shall say, and its
role in performance was adaptation.” (Pickering 2010, 6). In making these statements, Pickering
stands alongside many other humanities scholars who reject representationalism in favor of per-
formativity (Hayles 1999; Penny 2000). Following my discussion on adaptive systems, I want to
connect Pickering’s performative ontology of science to both Xenakis’ and John Cage’s approaches
to indeterminacy in art.

As an artist and researcher trained in the field of Machine Learning, I propose to tackle these
seemingly abstract and hard questions using three complementary approaches. First, I examine his-
torical accounts of machinic life and machine intelligence since the post-war era from both the per-
spectives of computer scientists working in the field of Machine Learning as well as techno-cultural
studies scholars exploring the larger sociotechnical impact of machine-based systems. Through
this dual perspective, I touch upon issues of adaptivity, learning, autonomy, self-organization and
emergence.

Second, I analyze artistic works making use of Machine Learning algorithms through close read-
ings of core texts on adaptive systems in three areas: science and technology studies (STS) (Hayles
1999; Pickering 1995, 2010); media art history (Shanken 2002, 2015; Ascott 2003b; Whitelaw 2004)
and computer science (Sutton and Barto 1998; Bishop 1995; Langton 1990; Langton 1995). My aim
here is to tease out the two different worldviews I described earlier (representational versus perfor-
mative) and to articulate how these different viewpoints have come to be defined, problematized,
expressed and legitimated in artistic works utilzing computationally adaptive techniques.

Finally, I provide descriptive and reflexive accounts of practice on three works I have been
involved in over the past few years. These artistic works specifically employ Machine Learning

methods such as Reinforcement Learning and Artificial Neural Networks in order to achieve the kind



of adaptive behavior I have been describing above. I describe these works — Absences (2008—2011),
Vessels (2010—2015), and N-Polytope (2012) — in detail because they each embody different ways
of working with such systems to achieve certain aesthetic effects. Furthermore, they embody the
tensions between representation and performance that I'm attempting to describe here in practice.
As such, these artistic works are important to my argument in that they involve different ways to

approach my research questions, grounding theory into real-life bodies of work.

1.1 About my Artistic Practice

This dissertation, due to its interdisciplinary nature, might seem at times very technical to the
reader. Since I am writing this thesis primarily as an artist and a humanities scholar (and not as
a scientist or engineer), I believe it is important to give an overview of my own perspective on art,
and my approach as a practicing artist before entering into the core of the subject.

When it comes to art theory, I consider myself an anti-essentialist (Weitz 1956). It is never
possible to “pin down” art, to find a common set of properties that would encompass all of its
different forms. I think art is best conceived of as a socially constructed, constantly fluctuating
concept marked by an incommensurate richness and diversity. Art can be recognized, rejected,
criticized, debated, but never reduced to an absolute set of sufficient characteristics.

Whether political, expressive, and/or conceptual, however, most works of art propose a form of
human experience that happens in context. In this sense, art as John Dewey argues, is chiefly about
experience (Dewey 1959). It consists of physical energy and matter that circulate through human
bodies, stimulating neural synapses, provoking hormonal reactions, mobilizing organic systems. At
its best, art can truly change someone, physically, in ways that are often so personal that they can
hardly be foreseen. This transformative interweaving between the artistic process and the perceiver
is core to the aesthetic act.

The creative process itself is central to my practice. Part of being an artist is to be able to
bend oneself according to the transforming materiality of the work. The work itself is thus in a

process of becoming—through my interactions with matter (the materiality of the artwork), it grows



an identity of its own. My engagement with practice does not only concern the interaction with
these material agencies. A significant aspect of my art practice involves collaborative work, which
necessitates an open approach. One needs to agree on an abstract set of basic principles, and then,
each co-author usually advances the project with the skills s/he has, in constant feedback with the
rest of the group.

This collaborative aspect of my artistic practice is directly linked with the nature of my preferred
medium: computer programming. The immense power of computers does not lie so much in their
capacity to rapidly treat information than in their great flexibility. While I believe the concept of a
“universal machine” is problematic in many ways — some of which will be covered in this thesis —
one cannot deny that computers, as a technology, possess a unique capacity to adapt to different
contexts and situations, which explains to a large extent their widespread dissemination across all
spheres of society.

This “quasi-universality” of computers makes them especially appropriate for collective work,
because in themselves algorithms are somehow an empty shell. Only through their embedding in
a network of other media can they truly become effective in the world. This brings me to mention
another equally important quality of computation beyond their flexibility, which is their capacity
to express behavioral patterns — in other words, to enact agency.

While computation has allowed the expansion of existing media such as photography, video,
and music, more interesting to me is the new forms of media that it can generate. The temporal
unfolding of dynamic patterns enabled by computation reveals movements that never exactly repeat
themselves, yet can be experienced in real-time as “something” that can be “felt”. In this regard,
I have a particular interest in artificial intelligence, which is the field of computer science that
has engaged primarily with questions of computational agency and behavior. As some of the core
results of this dissertation suggest, one of the aspects of this question is that some algorithms exist
that do not have a fixed structure, but can evolve over time.

From an aesthetic point of view, what are the politics of such practice? My own refusal of the
technoscientific trajectory that was offered to me as an engineer, in order to pursue the risky venture

of an artistic career is a deliberate political act. Nowadays, art provides one of the last remaining
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bastions for research against techno-utopianism and techno-determinism. I have no doubt that
whatever companies engaged in Al such as Google and Facebook are after will “work”, that we will
be besieged by autonomous cars, auto-diagnosis health systems, and robots that perfectly reproduce
human behavior. But the real challenge of history is not about technological advancement: it is
about a process of becoming, it is about the kind of human qualities we want to develop as a species.

Science and engineering have, over the past 30 years, been caught in the turmoil of a technocratic,
applied agenda, and have come to a dead-end. As an interdisciplinary artist trained in science and
engineering, I want to use my unique position, and through my work, actively participate in the

critique of these technologies, suggesting alternatives to this limited future.

1.2 Scope and Relevance

This research concerns agent-based installation artworks that use Machine Learning or adaptive
computational systems as a core element of behavior generation. Works that use Machine Learning
techniques without specifically staging agents, or nonadaptive agent-based installations, are also
considered when necessary, but only in order to better grasp the concepts under scrutiny.

The relevance of this research project, highlighted by the originality of its approach and the

importance of its subject of inquiry, can be summarized as follows:

1. Adaptation and learning are important concepts to understand the world we live in and the

future of contemporary societies.

2. In particular, they provide core insights into sociotechnical questions of practice in both art

and science.

3. Art offers a way to critically engage with adaptive systems through their material articula-
tions, in a manner that neither science or the humanities can approach them, thus generating

alternative kinds of knowledge.

4. However, while there has been some work on related questions of emergence and interactivity,

there is currently a lack of aesthetic theories specific to adaptive systems and how they are,
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have been, and can be used, in artistic practice.

This research offers an interdisciplinary account of adaptivity and learning in machinic agents.
I show how adaptivity pervades contemporary conceptions about life, autonomy, cognition, intel-
ligence, and the brain, emphasizing its strong influence on media art since the 1960s. Underlying
the concept of adaptivity is the idea that the human brain should not be understood as a universal
machine for solving problems using logical rules, but rather as an incredibly malleable organ with
the ability to change, to tune itself to its environment, and to even reinvent itself when needed.
Adaptive artworks resonate with this idea, holding the potential to change our perception of the
world, a world filled with performative agents in constant flux, adapting to their environment and
to one another.

This study is not about generative art and design. I am not interested here in computational
algorithms that create fixed and stable forms, but rather, I am interested in the aesthetics of the
processes themselves as seen in their real-time unfolding, and as part of an embodied, material
experience; agents that live and act in the physical world. As there has been much research carried
out in adaptive music composition and improvisation, I focus the scope of my research outside of
the music realm.’

Because I am interested in considering adaptive systems as an art practice, I choose not to engage
with works that merely make use of Machine Learning techniques as part of a specialized pattern
recognition component, such as face-tracking devices, unless when this component is modified or

2 Finally, further

used in a critical fashion that influences the aesthetic behavior of the piece.
limiting the scope of analysis, I will not be considering works that involve human performers, such
as theater or dance works. Instead, I will focus on experiences that involve a direct, physical
relationship between nonhuman adaptive systems and a human audience.

Finally, I feel it is important to note that despite the fact that I directly engage with these tech-

niques as an integral part of an artistic practice involving the conception, design and implementation

IWith the exception of certain robotic artworks that involve music performance such as Baginsky’s artificial
adaptive robotic rock band The Three Sirens (1992—2005).

2In other words, I exclude from this study artworks that use ML techniques in ways they are usually intended to
be used.
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of computational systems, I am not seeking advancements in the field of Artificial Intelligence, but
rather, to connect art practices that make use of Al with broader questions of life and agency. The
project thus remains within the field of the humanities, however, my hope is that it will provide

contexts and approaches that could benefit Al researchers as well.?

1.2.1 Adaptation Matters

As necessary conditions of life, standing right between self-organization, autonomy, and the genera-
tion of novelty, adaptation and learning are powerful concepts for understanding living systems and
they way they operate. Ultimately, it is the capacity to adapt that distinguishes life from other nat-
ural phenomenon. Life is about maintaining and extending itself in a changing environment, about
learning from experience; it is a process of becoming that emerges through a constant negotiation
with inner and outer conditions.

Adaptation and learning occupy a sweet spot in the hierarchy of systems properties, being more
closely related to the living than the concepts of emergence and self-organization imply. Adaptation
is a sufficient yet unnecessary condition of emergence, and while there exist self-organizing systems
that are nonadaptive, such as hurricanes and galaxies, all adaptive systems must have a capacity to
self-organize. I claim that adaptation is, in fact, the process by which living systems self-organize:
as all living systems are complex, emergent systems, they are also adaptive, in their capacity to
adjust their own structure and behavior to their environment.

Yet, few researches have addressed the questions of adaptation and learning in the fields of media
art theory, art history and science and technology studies, let alone their relationship with concepts
such as emergence, self-organization, self-regulation, autonomy, and life. Recent studies about
“artificial-life art” or “behavior aesthetics” have mostly focused on concepts of embodiment (Penny
1997; Dourish 2001; Bogart and Pasquier 2013), emergence (Baljko and Tenhaaf 2008; Soler-Adillon
2015), and the generation of novelty in lifelike agents (Whitelaw 2004; Cariani 2008; Boden 2009).

While these works are key to understanding the way natural and social systems operate, and

3For example, there is a growing community of Al scientists interested in notions of computational creativity and
on artistic applications of AI, who may find in this study valuable criticisms and alternatives to the research trends
commonly found in their field.
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correspondingly what this might mean for the arts, they are missing an important piece of the

puzzle, which this study aims to address.

Figure 4: Hierarchy of systems. Living systems are adaptive (thought not all adaptive systems are
alive). Adaptive systems are emergent (though not all emergent phenomena are adaptive).

The importance of adaptation and learning in contemporary views of natural systems is echoed
by the strong and growing presence of these concepts in science particularly in Al technologies
that we use every day. Since its inception in the post-war era, computer science has oscillated
between two poles: one that sees life as a logic-based phenomena, and another which emphasizes
the importance of adaptation. In the beginning of the 21st century, we are seeing the demise of the
former and the triumph of the latter.

As deep neural architectures computing billions of artificial synaptic connections on GPU clus-
ters owned by the largest I'T companies, attuning to the smooth melody of our everyday actions in
the most peaceful, steady, and inexorable fashion, the digital world we were used to, with its recog-
nizable, explainable, decision-making procedures based on hand-coded heuristics, is already gone.
We are moving into a new era, where pervasive, organic-like apparatuses feeding on statistics are
replacing rule-based systems, adaptively coupling to our bodies in over-encompassing, distributed
processes of control and optimization. To understand this new age, we need to extricate ourselves

from an outdated vision of computational systems as formal, rule-based, logical constructs, and
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start seeing them for the biologically-inspired, statistically-driven, agent-based entities they have
become.

This become particularly important because we now have technologies that are adaptive, whereas
these kinds of systems were only found in natural phenomena before. In particular, such systems
are newly important for artists and art theory because: (1) they suggest new approaches to work
with emergent systems; (2) they hold the promise of generating more “lifelike” behavioral patterns,
opening up novel ways to understand what it means to be alive and human; (3) they challenge
the notion that artistic creation is a purely human-centric practice, as the agency becomes diffused

between humans and machines that couple with one another.

1.2.2 A Core Dimension of Art and Science Practice

Adaptation and learning are key concepts by which to address the question of practice. Sociologist
of science Andrew Pickering suggests the “mangle of practice”, an ongoing dialectic of resistance
(by nonhuman entities) and accommodation (by scientists), as a framework to examine scientific
practice (Pickering 1995). Pickering describes the way human and nonhuman agents interplay in
“the mangle” as a “dance of agencies”. Science is thus best described as a performative material
practice that stages both human and nonhuman agents, the former adapting to the latter.

More recently, Pickering finds in Cybernetics — an interdisciplinary field started in the 1940s
which exists today under “many other names” — the perfect embodiment of his theory (Pickering
2010, 15). As early as the 1950s, cyberneticians built lifelike devices as a means to attain a higher
understanding of the workings of the brain. For example, Grey Walter designed a pair of artificial
“tortoises” with some basic learning capabilities, while Ross Ashby created the homeostat, a self-
regulating system that aimed to mimic feedback processes in the human brain. While clearly
scientific in nature, the creative process that made these apparatus possible is very close to art
practice, at least in the domain of computation art.*

Another interesting insight comes from Greek polymath Iannis Xenakis. For Xenakis, art and

4In the 1960s and 1970s, some of these devices were shown as part of art exhibitions, such as Gordon Pask’s
Colloguy of Mobiles (1968), a Cybernetics installation that was presented in the “Cybernetics Serendipity” 1968
exhibition curated by Jasia Reichardt in London.
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science can both access forms of objective knowledge through the processes of inference (the pro-
cess of drawing ideas out of observation and reasoning) and experimentation (verification of these
ideas through experiments). But art can go beyond these, attaining forms of subjective knowledge
through what Xenakis calls revelation, giving us access to the emotional, personal, universal di-
mension of reality. In Xenakis’ mind, the artist must thus be “simultaneously rational (inferential),
technical (experimental) and talented (revelatory)” (Xenakis and Messiaen 1994, 5-6).

In inference, one looks at data and makes an hypothesis about the process that generated it; in
experimentation, one verifies if the hypothesis is right, generating new data in the process. This is
an adaptive process, where we iteratively refine our view based on our actions in the world and their
consequential effect on our sensory surfaces. How does revelation interoperate with this process?
Is revelation reserved, as Xenakis claims, only to the arts, or does it also appear in science, but
hermetically, available only to scientists themselves?

Xenakis suggests that in the future, science and art must learn to work together, forming
“alloys” with new, emerging properties. But Xenakis definitely takes sides. In his mind, art
subdues science: it should be the driving force, bringing problems for science to resolve. I reject
this asymmetric worldview and I suggest, instead, one that supposes a co-adaptive relationship
between the artistic and the scientific spheres. Can adaptation help us understand and possibly
establish such a relationship between art and science, one that goes beyond Xenakis’ philosophy of

art and science alloys?

1.2.3 Art Offers Alternative Ways to Engage with Adaptive Technologies

The coming-of-age of Machine Learning seems to be activating a mix of fear and excitement, turning
contemporary discourse about Al technologies into a highly polarized debate. The first camp warns
against the emergence of a much dreaded technological “singularity” from which point AI will
replace humans as the superior intelligent species, with possibly dire consequences that could lead
to the extinction of the human race (Kurzweil 2006). On the other side, Silicon Valley’s techno-
optimist choirs are chanting the libertarian utopia of a post-work, post-democratic world where all

of humanity’s problems are to be smoothly solved by benevolent artificial learning agents.
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With their capacity to work both critically and creatively with material and experiential ques-
tions, artists have a unique standpoint for reflecting on the complex issues surrounding Al. Art can
suggest alternative ways of engaging with Al systems and imagining our relationship with them
now and in the future.

I claim that learning and adaptive systems suggest a complete change in paradigm about our
way of considering technology and how it operates in the world. Technologies of the past and
present are immensely nonadaptive: they are driven by a human-centric ethics that seeks to con-
trol nature (Pickering 2010). Quite paradoxically, current-day Machine Learning has not really
escaped that paradigm, being used for the most part for pattern recognition purposes in attempts
to efficiently solve concrete, measurable “problems”; to gain more control over outcomes.

What if technologies were designed to adapt themselves to natural processes and entities, rather
than the other way around? Can we envision technologies that are not meant to control nature, but
rather to take part in an ecosystem, trying to survive while allowing other processes to flow? Can
we give artificial agencies the right to make mistakes? Can we allow them to be gracefully weak,
imprecise and hesitant, just as we are? In the field of Al, what would happen if we moved beyond
the ideal of optimization and control, towards the most open-ended paradigm of adaptation as a
living process?

I believe adaptive systems allow us to imagine a whole new future for the world we live in. In
that future, artificial agents would become an active part of the aesthetic fabric that makes up our
existence. I picture adaptive agents acting as surrogates, carrying emotions in their neuroplastic
shells, facilitating their contagion like viruses. Some would have their own survival attached to
something or someone we hold dear, helping us protecting them. Some would write with us, dance
with us, do things with us rather than for us — or, as STS scholar Sherry Turkle says, do things
to us by “by changing the way we perceive ourselves and our sociotechnical environment” (Turkle
2006, 1).

New artforms will likely emerge beyond the traditional formats. Public works could run for long
time spans, evolving across many generations, constantly adapting to new circumstances. Artificial

beings could live inside homes, keeping a trace of past interactions in the way they behave and act
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in the world, transcending time. Robotic bands and human-machine collectives would emerge, live
and die, producing albums and shows, breaking up and reassembling. Nomadic agents could be
allowed to circulate among us, moving at the speed of light, influencing one another and engaging
with us, stimulating debates around art, politics, and science, rather than merely providing us with
what we are assumed to need. Al travelers could be sent in space, surviving for millions of years,
able to adapt, grow, and die beautifully.

The development of Machine Learning has long moved away from Cybernetics, which was largely
concerned with adaptive processes as a way to understand the living. This eventually resulted in
the exploitation of massive amounts of data for optimization, classification, and recognition tasks.
The vast majority of learning algorithms are designed to learn offline (i.e., not in real-time) in order
to perform a given task. The few artists who use Machine Learning usually stay within the scope
of their intended use®.

The success of Machine Learning goes hand-in-hand with “big data”, large collections of infor-
mation which are, for the most part, in the hands of big businesses such as Google and Facebook.
These companies generate wealth and power by appropriating these massive datasets which, while
provided by the general population, stay out of the control of the public. These learning algorithms
are increasingly present in our lives, often without us knowing. We do not see them, we do not
understand them, and this leaves us ineffective at criticizing them or critically engage with them.
We are left without a voice, to be the passive containers that corporate interests feed upon, for the
benefit of private interests.

As Machine Learning algorithms continue to transform our world, it is crucial to develop alter-
native ways to approach these technologies beyond science and business. What I propose here is
one attempt to do just that, by bringing together sociotechnical, artistic and aesthetic questions
into a global framework, and by suggesting ways artists can manipulate these algorithms. My hope
is that by providing these tools, I will inspire new ways of understanding the technology and its

impact on our world, giving artists some agency in creating works of art that are free of corporate

5For example, see David Rokeby’s works using ML for computer vision and image pattern recognition. In such
cases, ML could be replaced by any other technique which would be more or less as efficient, without affecting the
fundamental artistic intent behind the work.
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power and constraints.

1.2.4 Adaptation in New Media Art Theory: Filling the Gap

New media art as a field of research has not often been a sustained topic of study for art historians,
leaving a void that is only starting to be addressed. For a large part, it is new media artists
themselves who have started building some of the theoretical tools for understanding their discipline
through analyzing their own practices.

Still, theory about new media remains scarce, in particular when it comes to the niche of agent-
based art, let alone that of adaptive behaviors. A search in the database of Leonardo (the most
important peer-reviewed journal in the field of technological art) from 1997 to 2015 reveals a huge
gap between the number of papers containing references to Artificial Life (168), Artificial Intelligence
(160), and Cybernetics (165), when compared to Machine Learning (23), Connectionism (12), and
Adaptive Systems (4).6

Table 1: Number of articles containing a reference to certain terms in Leonardo (1997-2015).

] Expression \ Number of publications ‘
Interactivity 866
Artificial Life 168
Cybernetics 165
Artificial Intelligence 160
Self-organization 107
Machine Learning 23
Connectionism 12
Adaptive System 47

By comparison, Machine Learning and Adaptive Computation have been an essential part of
the AI ecology. While their role has often been peripheral, their presence has been exponentially
growing since the Deep Learning revolution of the mid—2000s, largely due to their unprecedented
success in tackling major Al-related problems. Adaptation and learning are thus critical concepts

whose increasing presence in our world has vast sociotechnical repercussions.

6These results were compiled by performing a clear text search using the JSTOR Arts & Science search engine
on August 3, 2016.
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As these technologies become more popular and more readily available, their use in works of art
will likely grow as well. Yet there exists at the moment almost no guidelines, tools, or theoretical
frameworks on how to make these works and think about them. It is therefore crucial for the
discipline of new media arts that we start building an aesthetic theory of adaptation, in order to
allow for a better understanding of artworks that utilize them, as well as to understand the processes

entailed in working with them artistically.

1.3 Contribution

This research project aims to address three interrelated questions about adaptive systems in com-
puter arts: one is about aesthetic experience, one is about practice, and one is about the forms of
knowledge with emerge from such contexts.

The first question concerns the kinds of experiences that are specifically enabled by using Ma-
chine Learning and Adaptive Computation as part of agent-based artworks. By extending and
refining Simon Penny’s behavior aesthetics (Penny 2000; Kim and Galvin 2012), T show that emer-
gent and adaptive processes exist in a different kind of time than formal/nonemergent/nonadaptive
behaviors, because emergent/adaptive behaviors change their morphology through time and thus
bring with them the potential for spectators to experience the unfolding of time in novel ways.
Therefore, these systems as used in art bring with them the potential to experience time in novel
ways.

As introduced above, adaptive behaviors bring with them a sense of aliveness, because adapta-
tion is “one step closer to life” than emergence. For instance, there exists emerging phenomenon
that are nonadaptive, yet adaptivity is impossible without emergence. Adaptation is a necessary
condition of life, first at the level of species development and survival (genetic adaptation) and
second, at the level of the individual (neuroplastic adaptation). This “lifelikeness” comes with its
own experiential essence, a quality which has been sought by artists since the dawn of time, from
the animal representations in the caves of Lascaux to current-day agent-based installations.

The second question I investigate is how adaptive computational methods affect practice in
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agent-based artworks. I delve into the core dimensions that define Machine Learning algorithms: (1)
the task they are aimed to accomplish; (2) the model that is trained by applying (3) an optimization
procedure that uses (4) an evaluation function to measure the system’s performance over (5) a set
of data. In the process, I suggest ways these components can be exploited for artistic expression.

Connecting Cariani’s taxonomy of agents (Cariani 1989; Cariani 2012) with Penny and Soler-
Adillon’s work on self-organizing systems (Penny 2009; Soler-Adillon 2015), I present a framework
for understanding behaviors based on the temporal unfolding of their morphology. At the first
level, one finds patterns generated by stateless, function-like devices called “mappings”. The second
category comprises behaviorful devices with states, driven by Finite State Machines or other formal
structures that do not evolve through time, but generate recognizable temporal patterns. Finally,
the third and last level is occupied by “metabehaviors”, that is, behaviors whose transformation in
time is driven itself by a behavior, such as those generated by adaptive or evolutive devices.

As adaptation is intimately connected to emergence, being the way by which self-organizing
systems mutate their behavior in response to changes in their environment, I argue that Machine
Learning and Adaptive Computation can provide a suitable tool, a pathway to design emergent
behaviors that move beyond the direct — and often strenuous — programming of unitary agents.

My third and last contribution lies in the delineation of another worldview brought forward by
adaptation in general, and by adaptive works of art in particular. Adaptation allows to imagine
embodied artistic works that couple with the world, actively changing it. The integration of these
systems in artworks challenges the way art is presented and received by audiences, as their lifelike
properties also make them as intricate and mysterious as life is. Perhaps more than other media
art forms, artworks that integrate adaptive systems demand more effort, more attention, as the
public itself needs to be engaged in an adaptive endeavor. These works thus often demands that
the audience spends enough time with these agents to get to know them in an embodied manner.

Through their capacity to transform their behavior through time, to reinvent their way of acting
in a constantly changing environment, adaptive agents-as-artworks can allow the emergence of a
worldview wherein agents are not just generating novelty out of the blue, but rather in relationship

with one another, by tentatively pointing their behavior towards a constantly evolving environment.
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1.4 Literature Review

This thesis aims to synthesize different perspectives in an effort to get a broad understanding of the
notion of adaptivity and its evolution in contemporary discourse in art and humanities. This is no
easy task, since different disciplinary fields usually evolve their own vocabularies and concepts. A
term used in two different disciplines might mean completely different things, whereas two different
terms might actually refer to a common notion. In practice, things are usually much more blurry
and one needs to be extremely careful where to draw the line when trying to establish appropriate
connections and groupings.

As previously argued, humanities scholars and artists who have tackled these concepts have
often provided incomplete, confused, inaccurate and/or out-of-date accounts of these practices. An
important contribution will thus be to use my scientific training in Machine Learning, mathematics
and computer science to articulate, disentangle and update these accounts.

In bringing together scientific, artistic, philosophical and sociotechnical contexts, I hope to (1)
present a more scientifically rigorous account than has previously been accomplished in media art
history and STS; (2) show how the aesthetic questions that drive the thesis are intimately entangled
with the scientific histories of AI, connectionism and adaptive systems, and; (3) to provide artists
working (or wanting to work) with adaptive technologies with a set of anchorpoints, highlighting
the aesthetic properties and potentialities specific to adaptive systems, and the challenges of using
them in artistic contexts.

In order to address the complex issues teased out above, I thus draw on three distinct but
overlapping bodies of literature and practice, namely: (1) scientific literature in computer science
and robotics; (2) sociotechnical and philosophical perspectives of artificial intelligence and artificial
life systems; (3) media art history and theory, including writings from art critics and media theorists
as well as works of media art dealing with adaptive systems.

First of all, I examine literature in computer science, tracing through the history of Machine
Learning since the post-war era. Within this history, I trace the occurrence and influence of adaptive

systems and Machine Learning on the field of Artificial Intelligence, with a focus on connectionist
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systems. I focus not only on the sociohistorical context but also directly on the techniques them-
selves. The reason for looking directly at the technological practices is to address accounts of Al
by cultural critics and theorists who rarely have a direct experience with the technology and/or
provide inaccurate descriptions of these technologies (the same way many scientists writing about
art usually only superficially address artistic questions). As an artist trained in computer science
and Al, I believe it is important to go back to these techniques directly to come up with my own
historical account of these practices.

In order to trace this archaeology of Machine Learning, I inspect seminal works in Cybernet-
ics (Wiener 1961; Ashby 1957; Rosenblueth, Wiener, and Bigelow 1943), information theory (Shan-
non 1948) and early connectionist models (McCulloch and Pitts 1943; Rosenblatt 1957; Selfridge
1959). I consider the emergence of what is referred to as “classic AI” or “Good Old-Fashioned
AT” (GOFAI) in the 1950s and 1960s, marked by a strong optimism in the ability of purely sym-
bolic, disembodied computational systems — often referred to as “computationalism” — to achieve
human-level cognition, and how this politically and instititutionally lead to the abandonment of
the connectionist project (Newell, Shaw, and Simon 1959; Minsky and Papert 1969). I describe
the emergence of the field of Artificial Life (ALife) which brought together ideas on self-replication,
self-organization and emergence, supported by a “bottom-up” approach and a computationalist
definition of living systems (von Neumann 1951, 1966; Langton 1986, 1989b; Ray 1991; Reynolds
1987).

In parallel, I explore the emergence of Machine Learning in the mid-1980s, following the demise
of symbolic Al and marking the end of the “Al Winter”, by focusing on approaches in neural
computation and pattern recognition (Rumelhart, Hinton, and Williams 1986; Bishop 1995; Duda,
Hart, and Stork 2001), genetic algorithms (Holland 1992; Mitchell 1998) and Reinforcement Learn-
ing (Sutton and Barto 1998; Wiering and Otterlo 2012). I contrast Machine Learning to “Nouvelle
AT”, an approach to AI which suggests that Al systems should be built incrementally, starting with
“simple levels of intelligence” that do not use any representation, and rather, “use the world as its
own model” (Brooks 1987). A major criticism of Nouvelle AT in the field of robotics is that by

refusing to include any form of representation in its architecture, it throws away Machine Learning,
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thus making it difficult to engineer adaptive systems which are deemed necessary to achieve more
robust forms of intelligent responses to real-world problems, such as driving a vehicle (Ziemke 1999).

For example, an important research strand since the 1990s in the field of robotics has been
working with Machine Learning methods, often used in conjunction with architectures and algo-
rithms inherited from Nouvelle AT or symbolic AI (Dorigo and Colombetti 1997). Current research
seems to advocate for hybrid approaches that integrate rule-based symbolic systems and Machine
Learning approaches within a framework that takes machinic embodiment seriously (Quinlan 2006;
Chalup, Murch, and Quinlan 2007). Finally, I analyze the latest evolution of connectionism in
the “deep learning” revolution (Hinton, Osindero, and Teh 2006; Bengio 2009; Bengio, Courville,
and Vincent 2013; Arel, Rose, and Karnowski 2010) and examine its utilization in agent-based
systems (Mnih et al. 2013, 2015; Nath and Levinson 2014).

At the same time, I implicate the scientific histories of Machine Learning in the processes of
how such concepts arose in cognitive science, and, in particular, in the tension that these histo-
ries highlight between a representationalist /computationalist and a situated/performative view of
the brain (Turing 1950; Searle 1980; Harnad 2007, 2005; Boden 2006, 1996). I do this while con-
trasting these histories with phenomenological and neurophenomenological critiques (Dreyfus 1979;
Maturana and Varela 1980; Varela, Thompson, and Rosch 1991). Cognitive science is a rigorous
interdisciplinary field which brings together computer science, philosophy, linguistics, psychology
and biology, and thus seems like a logical starting point for examining artificial intelligence while
expanding into other fields. In order to understand the relationship between human and machine
forms of cognition, I also explore sociotechnical work of researchers in areas such as technocul-
tural studies (Hayles 1999; Johnston 2008; Helmreich 2000), and science and technology studies
(STS) (Latour 2005; Pickering 1995, 2010), in order to understand how such flat hierarchizing be-
tween human and nonhuman subjects and objects serve to decentre strictly “human exceptionalist”
approaches to the links between humans and sociotechnical frameworks for knowledge production.

The third category of writing that I explore in this research comes from media art history and
theory as well as agent-based media artworks, examining the manner in which such scientific systems

are appropriated by artists. Here, I demonstrate the gaps in art historical accounts surrounding
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issues of self-organization, adaptation and learning, while attempting to disentangle these terms
from their often confused or inaccurate appropriation by art historians and media critics. In doing
so, I also pose the central questions of why such techniques are used in art practice in the first
place, and what they hope to accomplish.

I begin this endeavor by considering the influence of Cybernetics on art in the 1960s (Ascott
2003a; Burnham 1968; Software 1970; Hultén 1968), artificial life art (Penny 2009; Whitelaw 2004;
Tenhaaf 2008) and agent-based art (Downie 2005; Mateas 2001; Penny 2000). I pay special attention
to perspectives on the figure of the artist-engineer at the crossroads between art and science,
specifically as a way to analyze my own practice as an artist trained as an engineeer (Penny 2008;
Xenakis 1981a; Xenakis and Messiaen 1994). I compare nonadaptive agent-based installations
to ones that use adaptive computational systems, such as Ruairi Glyn’s multi-robot installation
Performative Ecologies (2010), Yves Amu Klein’s robotic sculpture Octofungi (1996), as well as
Stephen Kelly’s Open Ended Ensembles series (2014—2015). Through this analysis, I try to raise
the specific behavioral characteristics of artistic works that use Machine Learning while engaging

in larger discussions about the kind of worldview they suggest.

1.5 Methodology

This research follows the framework of “research-creation”, a growing set of largely qualitative
methodological approaches within the humanities which comes under many variants. Specifically,
my methodology aligns with “art-as-research” whereby art practice is embedded in theoretical

considerations in a bidirectional network of interactions.

Art and theory, in effect, are nothing more than two different forms of practice interre-
lated through a system of interaction and transferences. In this constellation, philosophy
neither brings the arts to the point nor does art sensualize philosophical truths; philoso-
phy serves a knowledge-based artistic practice as a point of reference, similar, conversely,
to how art might affect theoretical practice. (Busch 2011, 1)

In this context, the process that guided this research is anchored into both material and discur-

sive practices, traveling alternately between thinking and making. Specifically I adopt an iterative
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design approach inspired from Agile, a methodological framework for software development that
largely bottom-up, iterative, and adaptive (Rasmusson 2010). Agile relies on the self-organization
of collaborators on a project and values flexibility and adaptability in the planning and decision
making process. As an artist who develops open-source software, who is also often working collab-
oratively on art projects, I have successfully used Agile in the past and have found it a suitable
approach for making art that involves software.

Agile rests on the following process:

1. Break down a project into small units called user stories that describe situations we would
like the software to perform. These stories can range from the very abstract (e.g., “I want
the software to be able to generate reports”) to being very specific (e.g., “I need to be able to
export my monthly financial report with the push of a button”). In artmaking, this amounts

to establishing artistic intentions and components of the final work.
2. Estimate the resources needed to accomplish these tasks (usually measured in days of work).

3. Prioritize the list of stories. This is usually where you also establish a production calendar.
In an artistic context, where resources are often scarce, I typically choose to begin with
components that take less time to accomplish and that give me the most information in

regards to questions of technical feasibility and aesthetic effectiveness.

4. Ezxecute the plan, updating it as you go. If the project is not moving fast enough, you can
either choose to do “less” (which, in media art, could actually be beneficial, as projects using
technology often tend to be so complex, that they risk reducing the overall aesthetic effect
that was initially aimed for), or you can decide to allocate more resources (hire people or add

days to the calendar, if possible).

Agile possesses many interesting features that are relevant to a research-creation strategy. First,
it does not presuppose a temporal succession of activities such as: analyze, design, code, test,
repeat. To the contrary, it rejects such a method in favor of a continuous model where all of these

activities happen at the same time. This is very effective in art-based research, where theoretical
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and practice questions are never fully separable, and are rather intertwined throughout the whole
process. Knowledge is thus constructed as part of an ongoing feedback loop between theory and
material practice.

Second, Agile favors an iterative design methodology with short development cycles. In Agile,
you usually start by implementing a simple working prototype of the final application, and you add
incrementally to it over time. This aspect is particularly well adapted to artistic research, where
it is often hard to pin down which aesthetic strategies will work best until one sees a material
embodiment of their ideas and intuitions.

Third, Agile values working software as the primary measure of success. Principles such as
YAGNI® and DRY? reduce development costs and prevent overdesign by focusing on making things
work. This is a very useful principle in the context of media art, as it is, alas, not uncommon to
see artworks in galleries that are plainly defective.!?

Finally, Agile’s planning methodology is adaptive, meaning that it allows for changing plans
along the way when faced with reality. Both artists and programmers alike know that it is hard to
know how you are going to achieve something, or whether it will really yield the expected results
and effects, until you have gotten your hands dirty. This final component is, as expected, intimately
linked with many of the theoretical and practical questions approached in this research.

Throughout this research, I rely on records of practice as a way to empirically examine these
processes. Through the gathering of documents (notes, diaries, video documentation), as well
as introspection and interviews with collaborators, I investigate three (3) artistic projects and the
resulting works within which I participated either as solo author or as co-author, thus informing the
critical thinking about adaptive systems within an artistic context. The objective is to understand
the characteristics and limitations of adaptive agent-based systems by focusing on the reasons

which pushed me to use Machine Learning, the ways I have applied these techniques in the creative

8YAGNI stands for “You Ain’t Gonna Need It” and demands coders not to add functionalities that are not
expressely needed.

9For “Don’t Repeat Yourself”, a principle that asks programmers not to repeat information in different parts of
their code.

107 teach my students that if a new media work functions reliably, even the least of aesthetically compelling media,
artworks are better than “busted masterpieces”.
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process, and how the audience reacted to them''. I then examine in detail the algorithms that we
used, how they were utilized in the research-creation process, and how they affected the outcomes,
more specifically in terms of experience.

It is important to highlight the fact that the chosen methodology itself embraces adaptivity
as a mode of knowledge generation. The short cycles and the adaptive planning method, allow
the various agents engaged in the research-creation process to more tightly adjust to one another,
providing a structured yet open-ended frame that gives ground to the emergence of new theories

about the world.

1.6 Chapter Breakdown

The following chapters alternate between accounts of practice (chapters 2, 4, 6) and theory (chapters
3 and 5), each chapter responding to the previous one and feeding into the next.

In chapter 2, I discuss my previous work with agent-based systems. Focusing mainly on Absences
(2008-2011) — a series of environmental interventions using electronic agents set in natural settings
— I highlight the research and creation processes that brought me to consider the use of adaptive
procedures in agent-based systems, which in turn opened up questions about aesthetics and practice
with such systems that lie at the core of this research.

Chapter 3 presents traces the history of adaptive computation and Machine Learning from
the 1950s onward. In this first historical overview, I discuss important notions related to agent-
based artworks, such as emergence, self-organization, adaptation, evolution, connectionism and
Artificial Life. I try to highlight how Machine Learning and adaptive computation operate in these
sociotechnical and art historical frameworks, in order to extract the different ways artists have been
using them, as well as embracing the challenges that come with such practices. By dissecting the
scientific description of learning algorithms and connecting their properties with artistic questions,

I establish a comprehensive framework artists and media theorists can use to approach Machine

117t s important to mention that at the moment of writing this proposal, the majority of the practice-based aspects
of the research have already been carried out. The research will thus mainly consist of reinterpreting the results and
bringing them together to create a logical whole.
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Learning in works of art.

In chapter 4, I examine Vessels (2010—2015), a robotic installation consisting of a swarm of
autonomous water vehicles whose collective behavior resembles social interactions in a community
of living creatures. The piece involves adaptive mobile robotic agents with complete sensorimotor
systems. The significant technological component of the work as well as my direct involvement with
the material in this project gives an opportunity to better exemplify the practical considerations of
an agent-based artwork involving adaptive methods. The chapter offers a look at how adaptivity
plays artistically in agent-based art using the framework developed in chapter 2, exploring the
application of Machine Learning as a pathway to generate self-orgainzing, lifelike systems, while
contrasting artistic objectives with audience response.

Chapter 5 digs deeper into the notion of behavior from an aesthetic perspective, trying to
understand the role and position of adaptation, learning, and emergence in the temporal unfolding
of agents’ observation-action couplings. I describe how adaptive and evolutionary agent-based
systems allow for new morphologies of behavior characterized by the establishment of a second-
order relationship to time, one wherein the past affects the future through the transformation of a
structure.

Finally, in chapter 6, I discuss the work N-Polytope: Behaviors in Light and Sound After Ilannis
Xenakis (2012), a “spectacular light and sound performance-installation combining cutting edge
lighting, lasers, sound, sensing and Machine Learning software inspired by composer lannis Xe-
nakis’s radical 1960s-1970s works named Polytopes”, directed by artist and researcher Chris Salter
and involving an interdisciplinary team, including myself who created the media behavior model-
ing and programming. This project allowed me to test a number of Machine Learning and other
adaptive algorithms such as Reinforcement Learning and Artificial Neural Networks in a large-
scale installation setting involving multiple agents. In revisiting the work of multidisciplinary artist
Tannis Xenakis, it provides a good starting point for thinking about the question of the relation-
ship between the spatio-temporal unfolding of adaptive systems and “alloys” of art and science
practices (Xenakis and Messiaen 1994).

The last chapter concludes the research by bringing back the questions and providing summaries
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of the arguments. It then examines the broad implications of the study with respect to the overall
areas of study. I end by discussing the limitations of the research and exploring future works that
could address some of these limits.

The reader will find additional material concerning some of my own works discussed in this
dissertation in the appendices. Appendix A includes references to external web resources such as

blogs and video documentation, while appendix B contains full-page images of these works.!?

12Many of these images are repetitive of figures found in the core of the dissertation, in larger format.
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Chapter 2

Absences

The best bridge is one that just stands there, whatever the weather. Cybernetic
devices, in contrast, explicitly aimed to be sensitive and responsive to changes in
the world around them, and this endowed them with a disconcerting, quasi-magical,

disturbingly lifelike quality.

— ANDREW PICKERING, The Cybernetic Brain

I need to wait for it everyday. First thing in the morning, I put the circuit out under
the sun, letting it wake up, giving the batteries a chance to recharge. The days have a
strange shape. I seem to be waiting for the sunset to come for the whole day, measuring
the voltage increase as the day goes, doing some internet [sic|, writing some code, running
simulations.

Then, when it comes, I'm always late. Around 4 o’clock, I got to [sic] restart the circuit
with the new, enhanced program. Even though I'm waiting for it all day long, I'm
always running after it, coming back home with the scooter, getting the program to
compile, checking if everything is fine. Then I wait, carefully looking at the evolution
of the little indicator LED.

It goes very fast. In about an hour, the sun dives down to the horizon, setting the sky

on fire. You can feel it in your skin.

Then the chill comes.
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I'm not used to this. Dealing with reality. I can debug only once a day. For a pro-
grammer, this is nightmare. But I like it, that pace, that rythm [sic]. Ageless and

uncontrollable, it is incredibly comforting.®

Figure 5: Waiting for the sunset at the ComPeung art center (Doi Saket, Thailand.

I posted this entry on an ounline diary in December 2008, five years after I had finished my
computer science degree. What was [ doing there, an engineer trained in Artificial Intelligence,
now in a rural area of Northern Thailand, struggling with the elements? What led me so far away
from home and my zone of comfort?

As explained earlier, my first few years as an artist had led me to create interactive works that
were meant to represent different kinds of social or natural phenomena. However, after completing
my Communication degree in 2007, I begun to question that approach, and started exploring ways
to act directly in real life through small electronics agents. During a residency in the Netherlands,
I created Drift, an interactive sound device that attempted to adapt to its surroundings (fig. 6). In
the Fall of 2007, I started two projects in parallel that would allow me to further experiment with
these ideas.

The first project, Accrochages (2008), was co-authored with Samuel St-Aubin, a Montreal-based

artist whose work aims to rethink everyday life objects through the creation of autonomous devices.

IExcerpt from the Absences project blog (http://absences.sofianaudry.com/en/node/33).
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Samuel St-Aubin is a self-taught artist who excels in hardware design, physical computing and
rapid prototyping. His extensive knowledge of electronics, combined with my programming skills,
would give us an opportunity for sharing approaches and learning. Inspired by psychogeographic
techniques of “détournement” (“drifting”) and street art, our work consisted of imagining and
designing low-cost electronics devices that could be distributed in the urban space, using “simple

means to give new qualities to the city environment by creating different interactive situations”.?

Figure 6: Accrochages (2008). Art souterrain, Montréal, Canada. Photo by Alexis Bellavance.

The second project, called Absences (2008—2011), involved a series of five (5) electronic inter-
ventions where artificial-life agents were installed in outdoor environments. Taking shape at the
frontier of new media and environmental art, it proposed a meditation on solitude and associa-
tion, interaction and adaptation, natural and artificial, biological and inanimate. Each intervention
consisted of the creation and installation of autonomous electronic devices in various ecosystems.
These artificial agents acted and reacted within their specific environment.

In Absences, 1 set out to meddle directly with natural processes. The very concept of inter-
activity, largely explored in my past work, was put under scrutiny: these systems were no longer
meant to interact with human spectators, but with a whole ecosystem of nonhuman agencies. One

of my core interests with the series was to subvert the accepted notion of technology as something

2Source: http://accrochages.drone.ws/
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“useful” that embodies man’s unbounded control over nature. Instead, here, I sought to place frail
technological systems in the outdoors, with the modest goal of giving them the ability to survive
within their habitat — an objective which would prove to be much harder than I originally thought.

Though most of my previous works were interactive, one of the important choices that I made
was to purposefully keep humans out of the equation. The first reason was conceptual: interacting
specifically with humans would have countered the spirit of the project itself, which called specifi-
cally for a decentering of the human subject in our view of how technology and nature interoperate.
Having worked on many interactive projects in the past, I wanted with Absences to subvert the
human-centric concept of interaction by “interacting with nature”.

The second reason was more practical. Humans are extremely complex agents and the way
they choose to interact with a piece is equally unpredictable. As I was already taking a risk by
intervening in the outdoors — a rather hostile place for electronic entities — it felt like adding the
extra challenge of accounting for human behavior in the design was a bit excessive and would limit
my freedom. From my perspective, natural phenomenon possessed a more “predictable” dynamics,
which would facilitate the integration of the devices in outside milieus. This an assumption would
turn out to be quite overblown.

I created Absences as a research-creation program which would allow me to move beyond a prac-
tice based on representations, and instead towards one anchored in interventions and performances.
The projects of the series inspire important questions about technology, nature, and nonhuman
agency. Can artificial agents “survive” in nature (and how)? What is the aesthetic effect of these
agents? How are they connected to art, science, beauty and truth? How do they refine and redefine
notions of agency and behavior in both science and art?

Absences marks a turning point in my research-creation practice as it resurrected my interest
in adaptive systems, fostering the fundamental questions at the core of this dissertation. One of
the important aspects of Absences — and the reason why I chose to specifically dedicate a chapter
to the project — is that there is a clear progression in the kinds of behaviors that were produced
in the project, from rule-based nonadaptive systems to self-regulated, self-organizing, and adaptive

processes. In particular, the last two interventions were adaptive, the fourth device being driven by
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(a) First Absence (2008). (b) Second Absence (2009).

(d) Fourth Absence (2009). (e) Fifth Absence (2011).

Figure 7: The five interventions of the Absences series (2008-2011).

a very simple feedback system, while the fifth and last agent was governed by a Machine Learning
algorithm using neural computation.

In this chapter, I describe my creative process in the design of the Absences series, which re-
activated my interest in Adaptive Computation and Machine Learning. I first recount my failed
attempt at building an agent activated by sunset during my first intervention in Northern Thailand,
showing how it gave rise to the need for integrating adaptive behaviors in my work. I then report
my use of different kinds of adaptive and learning algorithms, with increased complexity, in three
of the other interventions of the series. Finally, I discuss how Absences opened up the broader set

of questions that are addressed in this research.

2.1 The Need for Adaptation

One of the decisive moments in Absences happened while designing the first intervention, a device
that would only activate at sunset by inflating artificial “fruits” using small air pumps. Whereas

the device had solar panels and light sensors which allowed it to perceive incoming light, I wanted
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to prevent it from being “fooled” by passing clouds or dust that could potentially accumulate
on its sensors. Thus, I gave the agent some extra sensors in the form of thermoresistors. The
algorithm, which I programmed “by hand” over the course of several weeks, looked not only at
absolute values, but rather at the variation in both light and temperature through the day, on
the assumption that the general slope of change in both temperature and light are more robust

measurements (in particular with respect to seasonal variations).

Figure 8: First Absence (2008), ComPeung, Doi Saket, Thailand. Photo by Sofian Audry.

The excerpt from the project’s blog that began this chapter describes the creative process
undergone during that period. It shows how I myself became engaged in an adaptive procedure,
making adjustments from sunset to sunset, my agency intertwined with nature’s immutable cycle.

I installed the module around December 2008, on a small tree located on the ComPeung resi-

dency center’s land.? For a few days, I made sure the piece worked as I had so carefully designed it

3For reference, read: http://absences.sofianaudry.com/fr/node/38.
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to, marking every sunset with its daily behavior. In January and February, I became more occupied
with my second intervention and did not look too closely at it.

At the end of my residency in late February 2009, the center held a public event to showcase
the work. As everyone anxiously waited for the device to start, the sun slowly descended to the
horizon. After about thirty minutes, the sun was almost gone with no reaction from the “artificial
tree”, forcing me to manually start it by flashing the microchip with an emergency program.

In the space of a few months, the initial conditions had changed and the adjustments I had so
carefully made in December to the light and temperature threshold, were no longer appropriate.
The algorithm, constrained by these hardcoded parameters, was utterly unable to adapt to seasonal
variations in daylight. That agent was therefore incapable of “surviving” in its environment, in the
sense that its behavior was unable to maintain itself through environmental changes. It was unable
to be “alive” — or at least stay alive — in these conditions without adaptation.

More importantly, the device’s aesthetic identity as a whole required adaptation in order to exist
temporally. While such an installation could have easily worked for an extended period of time
in a controlled setting such as a gallery space, the fixity of its design was hereby brutally exposed
through the rich variability of nature’s complexity.

I claim that learning and adaptive systems suggest a complete change in paradigm in regards to
technology and how it operates in the world. Technologies of the past and present are immensely
nonadaptive: they are driven by a human-centric ethics that seeks to control nature (Pickering
2010). Quite paradoxically, current-day Machine Learning has not really escaped that paradigm,
being used for the most part for pattern recognition purposes in attempts to efficiently solve con-

crete, measurable “problems”; to gain more control over outcomes.

2.2 A Narcissistic Self-Regulating System

In the meantime, I had already finished creating the Second Absence (2009), a small device consisting
of a simple input-output system involving an LED and a photoresistor enclosed in a glass bottle.

The device, which was installed deep in the Thai rainforest and only activated during nighttime, was
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driven by a minimalistic self-regulating mechanism where it tried to adjust its light level (actionable
through the LED) to counter-balance its perception of light (through the photocell), as if rapidly
reacting to its own reflection.

The algorithm went as follows:

1. Let x be the value of light as read by the photoresistor, normalized and remapped to [0, 1].
2. Set the LED value to (1 — z) (i.e., the opposite of perceived light).

3. Wait for some time.

4. Go to step (1).

Figure 9: Second Absence (2009), Mae Kuang reservoir, Thailand. Photo by Sofian Audry.

The process results in a rapidly, yet unstable flickering light, as the agent iteratively adjusts

its actions to its perceptions. It stabilizes after a few seconds, asymptotically reaching a state of
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equilibrium. When the agent notices that its perceptions match its actions, it quickly gets “bored”
and moves into a “sleeping” state, represented by a simple sinusoidal oscillation.

This second intervention displayed a rather formal process that at the same time contained a
simple kind of adaptation called “self-regulation” through a closed feedback loop. We will see in
chapter 3 how self-regulation and negative feedback systems are the first principles behind adaptive

systems as they were defined by first-order Cybernetics.

2.3 Surviving in the Wild

The Fourth Absence (2009) used a similarly simple self-regulating process, however this time running
in an open feedback loop, fully engaged with the natural elements.* The project directly engaged
with the situation of allowing an artificial agent to “survive” in a hostile setting, exploiting the
aesthetic potential of its own energy management. The agent consisted of a three-meter high tube,
most of which was buried underground to protect the circuit and batteries from the extremely low
temperatures of Winter. At the top, two solar panels allowed the device to recharge its batteries,
with an efficiency that was expected to vary highly through the seasons.

Energy management is a concrete example of acting within nature and a recurring issue
in the project. I will here focus on a kind of device that have insufficient access to
resources and thus needs to alternate between periods of activity and dormancy, such
as is the case for most real-life organisms. How can such a device reach its specific goals

in balance with the available energy resources?

A solution to that problem was developed during my stay near the Arctic (Yukon,
2009). I built a device that produced a sound at a specific pace. Between each sound
emission, it would switch to a sleep mode, consuming almost zero power. The massive
changes in day length in the region throughout the year requires it to adapt its frequency
accordingly. The right frequency cannot be computed analytically since it depends on

many unkown [sic] factors (such as the temperature and the precision of the sensors).

I addressed this issue by relying on a very simple adaptive algorithm that updates the

frequency of appearance of the action (in this case, emitting the sound) based on the

4For the sake of focusing on the most relevant works of the series, I will not discuss the__ Third Absence__ in
detail here. Suffice it to say that it played with the question of feedback and self-organization with multiple agents
using a very simple formal algorithm, using nature’s own indeterminacy as its main strategy. For more information,
please consult the following video documentation: https://vimeo.com/46469372.
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measured batteries [sic] power (voltage). If too much power is available, the frequency
is slightly increased, rising the energy consumption. If there is not enough, it is reduced
in a similar fashion. (Audry 2010, 2-3)

Figure 10: Fourth Absence (2009), Dawson City, Yukon, Canada. Photo by Sofian Audry.

The intervention thus applied a principle very important to early Cybernetics: homeostasis, the
mechanism by which organisms are able to keep some of their inner variables stable through time
by acting in purposeful ways with respect to their inputs. In this case, the charge of the battery is
the variable that is kept stable by adjusting the period at which the sound is played.

As in the Second Absence, the behavior is based on a simple feedback procedure — which as we
will see in section 3.1.1 is called negative feedback (Wiener 1961) — that updates a single parameter
w that controls the period T (expressed in hours) between each action (i.e., sound emission) using

the following formula:
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1
14 exp(—w)

When night comes, the agent compares the voltage that remains in its batteries (Vipqs:) with a

target voltage (Viarget), producing the following error value:®

E— ‘/batt - ‘/target
Vma:v

This error becomes a way to assess the success of its strategy in choosing parameter w. The
agent then makes a step-wise adjustment to w, adjusting it to try and lower the error on the next

day, using a simple learning rule:

w—w-—n[(l-T)T|E

This expression corresponds to a very common form of adaptive procedure called a stochastic
gradient descent (Bishop 1995). Parameter 7 is a small positive value called a learning rate which
controls the speed of adaptation. It needs to be set by hand to a value large enough to ensure
change, but small enough to smooth out natural variations in the data.”

Without entering into details, consider the case where too little energy has been consumed over
the day, with Viattr > Viarget, hence yielding a negative error (E > 0). Assuming the periodicity
of the actions is at least partly responsible for the situation, one can see how w will be decreased

because n[(1 — T)T)E > 0. If that is the case, then the period T will also be decreased, which is

5This formula corresponds to the *sigmoid function*®, an activation filter commonly used in Artificial Neural
Networks. One of its properties is that it maps values between 0 and 1 in a non-linear fashion (hence the expression
ensures that T stays between 0 and 1 hour). See Bishop (1995) for more information.

6The difference is divided by the maximum possible voltage of the batteries (Vinaz) to ensure it stays between 0
and 1.

"Though this parameter is set by hand, it is relatively robust, meaning that a wide range of values for it will still
allow learning to occur. There is of course a tradeoff between speed of convergence and precision.

For example, if we consider the case of the Fourth Absence, choosing a high learning rate will result in the agent
reacting very abruptly to day-to-day variations (which might be due to natural noise), whereas choosing a low rate
could prevent the agent from adapting fast enough to seasonal changes.
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exactly what we want in this case: we would have had enough energy to produce the sound more

often, hence we want to increase the pace by lowering the time between each action.

2.4 Adapting to Conflicting Desires

The issue of adaptation proved to become an increasingly important aspect of Absences, both
practically, conceptually and aesthetically. For the final intervention, I decided to extend the idea
of an adaptive mechanism by trying to integrate a kind of Machine Learning procedure called
Reinforcement Learning (Sutton and Barto 1998) (see section 3.2.1 for more detail) by designing a
sensorimotor system animated by its own set of conflicting desires, which would be able to adapt

and learn from its actions.

AN

Figure 11: Fifth Absence (2011), Catalonian Pyrenees, Farrera, Spain. Photo by Sofian Audry.

For this project, I imagined a robot that could control the orientation of one or more solar
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panels which would make up its body using servomotors. These solar panels would be used both
as sources of energy and as photosensors. The robotic agent would start with a “blank mind”,
not even knowing the relationship between its movements and the orientation of its solar panels.
It would simply explore its environment and, little by little, through trial and error, establish a
correlation between its actions and perception.

In December 2009, I had successfully used a Reinforcement Learning algorithm in the realization
of a very simple adaptive agent. Reinforcement Learning is an approach in Al that allows an
artificial agent to learn an optimal behavior from a series of actions based on observations, through
an iterative process of trial and error. In each action, the agent receives a reward or punishment in
the form of a number — positive or negative — which allows it to guide its future choices.

I found this approach exciting because it seemed to be an efficient way to design self-organizing,
emergent, potentially surprising behavioral patterns while giving some “guidelines” for the agent
to follow. The resulting behavior is not determined in advance: it is chosen by the agent itself,
according to its particular context and the rewards it receives, through its interactions with the
environment. The practitioner can thus work with the context (i.e., the inputs and outputs afforded
by the system) while encoding the desires of the agent through rewards and punishments. Yet, as
the agent itself determines its best strategy to maximize its rewards, the learning process holds the
potential to generate unexpected, possibly surprising behaviors.

The agent was anchored to a cliff in the Catalonian Pyrenees, floating above the void. I encoded
a very simple reward function which rewarded the agent for looking away from the sun while heavily
penalizing it for running out of batteries. In so doing, I I put the robot in a tension between two
conflicting choices, forcing it to navigate along the thin ridge between need and desire, slowly

adjusting to find its own balance in the world.

2.5 Towards Adaptive Systems

Absences was a first attempt to directly intervene in uncontrolled, so-called “natural” ecosystems

through performative, embodied artificial entities. The project, which was articulated as a three
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years research-creation program, follows the artistic tradition of environmental art, which is itself
a particular form of conceptual art.

As T struggled to integrate such embodied artificial agents in changing, often unstable envi-
ronments, I was pressured and inspired into using adaptive systems, as is summarized in table 2.
I began exploring these concepts more profoundly over the next several years with projects such
as N-Polytope (2012), Plasmosis (2013), Archipelago (2014), and Vessels (2015). Through these
works, I reconnected with the aesthetic dimension of Machine Learning that lead me into the field
in the first place; only in this artistic context, instead of seeing an error rate get lower, there were

real-time, media effects that unfolded in time and space.

Table 2: Evolution of systems in Absences.

’ Title \ Year \ Description of system ‘

First Absence 2008 | Nonadaptive (but should have been).

Second Absence | 2009 | Nonadaptive but included a process of self-regulation through a feed-
back loop.

Third Absence 2010% | Nonadaptive but involved a multi-agent communication loop that
could be seen as a self-regulated system.

Fourth Absence | 2009 | Adaptive through a simple feedback system allowing the piece to “hi-
bernate” (i.e., adjust its consumption to available resources).

Fifth Absence 2011 | Adaptive through a Reinforcement Learning system that made use of
an Artificial Neural Network.

This being said, Absences opens up a can of worms, provoking larger questions around the
use of such techniques within artistic practice. How can the different components and properties
of Machine Learning algorithms be exploited by artists? How do they affect the aesthetics of a
piece? How is adaptation related to autonomy, emergence, self-organization and self-regulation?
How are these concepts connected both aesthetically and historically? How do agent-based systems
work aesthetically? What effects do they have on audiences? How can/does adaptation influence
these effects? What distinguishes behaviors produced by adaptive systems from those produced by
self-organizing and rule-based systems?

To address these important considerations, we must first understand the sociohistorical frame-

work surrounding adaptive and Machine Learning methods. The techniques I have employed in
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Absences were taken largely out of context, as I simply applied my own knowledge derived from
computer science. In the next chapter, I strive to understand where these approaches come from,
to extract them from their pure technical meaning and bring them into a broader interdisciplinary
domain, I do so by tracing agent-based and adaptive systems back through the history of computer

science from the 1950s onward while simultaneously establishing parallels with media art history.
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Chapter 3

Towards a Practice of Machine

Learning in Agent-based Art

I suspect that the "aesthetics of intelligent systems" could be considered a dialogue
where two systems gather and exchange information so as to change constantly the

states of each other.

— JACK BURNHAM, The Aesthetics of Intelligent Systems

The great difference between magic and the scientific imitation of life is that where
the former is content to copy external appearance, the latter is concerned more with

performance and behavior.

— GREY W. WALTER, An Imitation of Life

This chapter aims to provide a strong contextual ground for this thesis. It introduces the
fundamental concepts that are studied in the research, such as systems, agents, behaviors, self-
organization, emergence, adaptation and Machine Learning. Tracing through the history of adaptive
and learning systems since WWII in both science and art, I highlight how these concepts travel

between scientific and art historical frameworks, trying in particular to articulate how artists utilize
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these concepts and the challenges that come with such practices. Finally, I discuss the main
components that constitute Machine Learning algorithms, exploring ways they have been, or could
be used for artistic expression.

The first part of the chapter explores the history of adaptive and learning systems following a
more or less chronological path. One should however be aware of the intricate ramifications that run
synchronously to this story. I start by exploring so-called “first-order” Cybernetics (1946-1950s)
which is associated with the appearance of early connectionist models (1950s). I then describe the
appearance of the field of Artificial Intelligence in the 1950s which came in opposition to Cybernetics
and connectionism (1956-1974). The emergence of Cybernetics and Al in the 1950s is associated,
in the 1960s, with the rise of new art forms which art historian Jack Burnham has described as
“systems aesthetics” (Burnham 1968), and whose larger genealogy lies in artistic movements such
as conceptual art, cybernetic art, information art, algorithmic art, etc. I then examine the revival
of connectionism in the 1980s which I associate with the emergence of Machine Learning and its
development and popularization in the 1980s-1990s.

The second part of the chapter examines the intrinsic properties of Machine Learning systems
in an effort to delineate unique artistic strategies that can be used to exploit them. I summarize
the different dimensions that define Machine Learning algorithms in the scientific literature, such
as the tasks they can solve (supervised, unsupervised and reinforcement), the model being used
(neural networks, genetic algorithms), the evaluation criterion (measuring the performance of the
system) and the learning process itself. T discuss each of these properties from both and aesthetic
and practical standpoints, exploring how such techniques are utilized in artistic works, and based

on this knowledge suggest new possibilities.

3.1 Historical Context

History is imbued with a fascination for the possibility of humans to artificially fabricate life. Many
stories from Antiquity display artificial, humanoid creatures: Ovid’s Pygmalion, who fell in love

with a statue of his own making, brought to life by Venus, is perhaps the most well-known of
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them (Ovid 2008). The figure of the Golem, a humanoid creature made of clay, brought to life by
the name of God, appears in early talmudic mythology (Idel 1990).

There exist several records of mechanical automata in the ancient world. One of the first
documented example is a steam-activated “pigeon” constructed by mathematician Archytas of
Tarentum (circa 400-350 BC). In China, a mechanical orchestra was allegedly built for the emperor
during the Han dynasty around the 3rd century BC. In the 13th century, Muslim inventor al-Jazari
created a series of moving peacocks for the royalty of the Urtugid dynasty in Mesopotamia. French
inventor Jacques Vaucanson, who created the first completely automated loom, designed many
life-imitating automata. His most famous work, The Digesting Duck (1739), was an artificial bird
made of more than 400 parts who could move, drink, eat, and defecate.

These examples are only a fraction of the numerous life-imitating machines designed in both
the Eastern and the Western world from the Antiquity to the mid-XXth century. A common
characteristic of these mechanical devices is that they were always dedicated to a single set of tasks
and could not be easily modified and/or re-purposed to accomplish another one.

But a change in paradigm takes place in the period following WWII. Increased interest in
military applications of computation such as ballistics and cryptography led to the appearance of
the first general-purpose computers in the late 1940s. Contrary to mechanical automata, which were
usually able to address very specific problems such as manufacturing textiles or performing simple
arithmetics operations, computers are programmable, which means that they are theoretically able
to perform almost any kind of algorithmic symbol manipulation.! It makes them uniquely powerful,
which led many at the time to think that computing is universal and could theoretically model any
kind of process found in nature, including animal behavior and human cognition.

Several accounts of the history of Artificial Intelligence and Machine Learning exist from both
humanities and social sciences (Hayles 1999; Whitelaw 2004; Johnston 2008; Penny 2008; Clarke

and Hansen 2009; Pickering 2010; Halpern 2014; Shanken 2015) as well as computer science (Brooks

IThere are theoretical limitations to the power of computers, as was first revealed by Kurt Gédel in his famous
incompleteness theorems, published in 1931 (Van Heijenoort 1977). Five years later, inspired by Gédel’s work, math-
ematicians Alonzo Church and Alan M. Turing almost simultaneously demonstrated the impossibility of writing a
generic algorithm for solving the “halting problem” — or Entscheidungsproblem — which is the problem of automati-
cally reading another computer program and deciding whether it will stop (halt) or run undefinitely (Church 1936;
Turing 1936).
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1999; Sutton and Barto 1998; Duda, Hart, and Stork 2001; LeCun, Bengio, and Hinton 2015; Medler
1998; Nilsson 2010). Whereas the latter accounts from computer science have the advantage of
offering an insider’s perspective over the history of the field, it traditionally focuses on the evolution
of techniques, often neglecting to contextualize the sociocultural dimensions. As for the former in
the humanities and social sciences, they seem to suffer from the inverse illness, as they bring larger
considerations into the picture but often fail to understand the science itself and are thus prone to
misrepresenting it.

As an interdisciplinary scholar trained in Humanities, Media Art and Machine Learning, I aim
to bring some clarity into the debate by developing my own story of adaptive systems since the
post-war era. In particular, I want to focus on Machine Learning systems, analyzing them from the
perspective of the history of science as well as art history, articulating origins and developments of
cultural imaginings surrounding artificial adaptation and the role it plays in contemporary art.

One of the most important challenges lies in the difficulty to trace techniques used by artists, as
works using adaptive systems are scarce and often poorly documented. For example, many artists
use extremely general terms when describing the techniques employed in their works, such as “neural
networks”, “ecosystems”, or “evolutionary systems”.2 An important aspect of my contribution here
is thus to disentangle which methods were actually used in order to connect these works with their

scientific practices.

3.1.1 Cybernetics

It is largely accepted that contemporary concepts about artificial agency and adaptive systems
such as AI, Machine Learning, and Neural Computation, originated in the early 1940s with the
Macy Conferences on Cybernetics (1946-1953). A set of ten interdisciplinary gathering chaired by
neurophysiologist Warren McCulloch, these conferences brought together mathematicians, psychi-

atrists, psychologists, biologists, social scientists and computer engineers, with the ambitious goal

2For example, compare the use of the term “neural network” in the work of Yves Amu Klein (Klein 2014) —
which refers, in fact, to a specific kind of unsupervised neural net called self-organizing maps — with the dome
performance Bio-inspire by Turkish audiovisual artists Bahadir Dagdelen and Yusuf Emre Kucur who provide a
very elusive description of the kind of networks they are using, with no scientific reference that would allow one to
understand the kind of technique they are putting into action (Dagdelen and Kucur 2016).
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of constructing a general theory of the human mind (Dupuy 2000).

The conferences revolved around the organism and its relation with its environment. At the first
gathering in 1946, Warren McCulloch, following on his recent research with logician Walter Pitts,
had shown how propositional logic could be modeled by simple artificial neural networks. In their
1943 paper on neural networks, the authors had proposed a simplified model of neuron activity
where each brain cell is in either one of two states at any given time (on/off, true/false, 0/1) (Mc-
Culloch and Pitts 1943). The neurons are connected using synapses which are either excitatory or
inhibitory.> The alleged “all-or-none” neural activity, thus reduced to on/off mathematical com-
ponents, allows “neural events and the relations among them” to be treated using logical calculus
(1).

In January 1943, Arturo Rosenblueth, Norbert Wiener and Julian Bigelow published “Behavior,
Purpose and Teleology” where they presented a teleological model of human and animal behavior
which would also be shown at the first Macy Conference in March of the same year (Rosenblueth,
Wiener, and Bigelow 1943). They defined behavior as a transformation in the organism related
to its environment (1). Recognizing the extreme broadness of the definition, they developed a
hierarchical taxonomy of behavior, classifying animal behavior as active (as opposed to passive),
purposeful (as opposed to random) and teleological.

Teleology is key to understanding the origins of contemporary notions of adaptation. It is
tightly connected to the notion of feedback, a concept that would become a central component of
Cybernetics (Wiener 1961). The term feedback comes from engineering where it has two meanings.
The first sense of the word, called positive feedback, refers to a property of a system where “some of
the output energy of an apparatus or machine is returned as input”, such as in an amplifier circuit.*

Thus, when talking about (teleological) feedback, the authors rather refer to the second sense of

3In neurological terms, an excitatory synapse increases the likelihood that the post-synaptic neuron will fire when
the pre-synaptic neuron does, while an inhibitory synapse decreases that likelihood. Inhibitory synaptic connections
play an important regulatory function in the brain.

As an example, epilepsy seizures are the result of a dysfunction in the inhibitory mechanisms in the brain which
causes neurons to fire erratically due to unregulated excitation.

In McCulloch & Pitt’s design, inhibitory inputs are absolute, meaning that if a neuron receives many inputs,
inhibition will take precedence over excitation, thus preventing the post-synaptic neuron to fire.

4Economic collapses are usually caused by such positive feedback loops: as people lose their trust in the market
they begin selling their assets, which causes more people to lose their trust in the market, and so on.
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the word, called negative feedback. Here, the difference between the goal and the outputs (i.e., the
error) is sent back to the inputs, allowing the system to correct its course. Thus, for the authors,
teleological behavior refers to the changes undergone by a system that tries to reach a given goal

in its environment, constantly adjusting using a feedback loop.

Input output
v v o

system

feedback

Figure 12: Schematics of Norbert Wiener’s negative feedback loop. Some of the output energy of
the system is subtracted from its input as a way to adjust its course of action.

For example, the Second Absence project described in the previous chapter (section 2.2) contains
a simple negative feedback mechanism whereby an agent’s actions (changing the intensity of a diode)
directly influence its own sensory perceptions (a photoresistor) and, in turn, trigger an inverse
reaction as the system tries to compensate for either a lack or excess of luminosity.® Interestingly,
the natural behavior of the system is to oscillate with a large amplitude at first, but to slowly and
steadily move towards stability. As we will see, most Machine Learning training algorithms use
forms of negative feedback as a way to search the space of possible solutions to a problem.

Renowned Duke University literary critic N. Katherine Hayles highlights another essential ele-
ment of these early years of Cybernetics in Claude E. Shannon’s theory of information. Shannon,
a mathematician and engineer, had worked as a cryptographer during the Second World War.

In his seminal 1948 paper, “A Mathematical Theory of Communication”, Shannon establishes a

5In contrast, the Third Absence, where the sonic perception of a single agent triggers a chain reaction as it sends
the sound to the next agent, perhaps exemplifies a positive form of feedback.
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clear separation between the message and the signal that encodes it. He states that the meaning
that the message conveys is unimportant to the engineering problem of communication, which is
rather concerned about its probability of appearance. Shannon thus defines information as an im-
material measurement of uncertainty that has nothing to do with significance; a “pattern, not a
presence” (Hayles 1999, 33).

Rosenblueth and Wiener’s definition of behavior and Shannon’s theory of information would
both have a major impact on Cybernetics. They are related to another foundational concept in the
field: homeostasis, a property of a system that constantly adjusts the output of an organism such
that it maintains a state of stability using an adaptive criterion embedded in a negative feedback
loop.% A thermostat is the perfect example of a simple homeostatic system. It tries to regulate the
ambient temperature using negative feedback, switching the furnace on when the temperature is
too low, and off when it gets too high.

The perfect embodiment of homeostasis can be found in Ross Ashby’s homeostat (Ashby 1957),
a physical device that can adapt to its environment using a feedback loop. The homeostat was
presented by Ashby at the ninth Macy Conference. It is an electrical device made of two parts.
The first part consists of four units. Each unit has an electrical magnet that can deviate from its
central position. The deviation of each magnet is converted into an electric current which is sent as
an input to the other three units. Within the system, all units are interconnected. Moreover, each
unit sends its electric output as a feedback input to itself. The inputs control the activity of coil
relays that move the magnet in such a way that the deviation of the magnet is roughly proportional
to the sum of the currents (Ashby 1954, 95).

With appropriate tuning, the device displays extreme stability. “If the field is stable”, Ashby
explains, “the four magnets move to the central position, where they actively resist any attempt
to displace them. If displaced, a co-ordinated activity brings them back to the centre.” (96) For
Ashby, this “ultrastability” found in homeostatic systems is a necessary condition of life (110).

The Fourth Absence, described in the previous chapter, is an example of a simple homeostatic

device. In effect, it tries to maintain a stable variable (its battery level) over which it has only

6The concept was first described by physiologist Claude Bernard in 1865 (Bernard 1957) and the term homeostasis
was coined in 1928 by Walter Cannon (Cannon 1928).
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indirect control by tentatively adjusting its actions (the frequency at which it plays a sound) so as

to adapt to seasonal variations (cf., section 2.3).

3.1.2 Early Connectionist Models

Early after the war, the science of Cybernetics in the Macy era thus started designing rudimentary
adaptive, self-regulated systems able to “stay on course”, moving towards a definite target by
making micro-adjustments to their internal structure. Of particular interest is the self-organizing
nature of Cybernetics devices such as the homeostat, which also suggests a perspective on human
cognition. From this viewpoint, memory functions not as a definite trace image (like a “snapshot”)
that can be retrieved through some kind of addressing mechanism, but rather as the real-time,
dynamic relationship ongoing between a distributed set of control units.

In 1949, Canadian psychologist Donald O. Hebb proposed a revolutionary model for human
neural networks that went along similar lines. He claimed that as brain cells subject to certain
types of stimuli fire together, they also increase their likelihood of firing together in the future when
subjected to similar stimuli, thus forming self-organized assemblies of neurons (Hebb 1949). This
principle, a “form of connectionism” (xix) which would come to be known as Hebbian learning, views
human memory as a subsymbolic, distributed, self-reinforcing process, rather than as a collection
of coded representations that would somehow be stored in the brain.”

Building upon both Hebb’s findings and cybernetician models of the brain such as Ashby’s
homeostat and McCulloch and Pitts’ logical neural nets, Frank Rosenblatt proposed in 1957 one
of the first adaptive connectionist devices: the Perceptron (Rosenblatt 1957). The perceptron is a

simplified model of a human neural network in the shape of a thresholded linear function® that is

able to classify a pattern in one of two categories.

"Physiological theories of learning similar to Hebbian learning had been around since the 19th century. For an
in-depth historical review, see Cooper (2005).

8A linear function is a polynomial function of degree zero or one. In the one-dimension case, such a function has
the form:

y=mx—+b

which once drawn on a cartesian plane shows as a line with slope m, hence the attribute “linear”.
The Perceptron uses such a linear function, but in the more general n-dimensional domain, where n is the number
of inputs:
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It maps a set of typically binary data (input neurons) to a binary output (output neuron) using
a layer of parametric values called weights (representing the synapses). The weights are usually
initialized randomly. A simple training procedure allows the perceptron to adjust its weights based
on a series of example inputs for which the expected output is known.?

For example, suppose that we want to differentiate handwritten letters that are either “A” or “B”
using a Perceptron. We create a database of multiple 8x8 black and white images of handwritten
A’s and B’s. Each such image can thus be represented as a vector x of 256 dimensions 1, - - - , Ta56,
each being assigned a value of —1 to represent black pixels and a value of 1 for white pixels. The
model possesses a weight w; that is associated with each of the 256 inputs of an image, which is
usually initialized randomly.'®

To compute the class of a given input as predicted by the Perceptron, we feed it one of the

examples by copying the values of one of the images to the network’s inputs x;, multiplying each

of these values by its corresponding weight w; and adding the results:

256
o(x) = Z w;T; + b
i=1
Thresholding the value at zero (0), we classify this image in the “A” category if the resulting
sum is negative, and into the “B” category if it is positive. Let y be the category predicted by the

network:

n
o(z) = Z w;z; +b
i=1

where w; are the weights (synapses) associated with inputs z; (eg., each pixel in a black and white image), while b
is a “bias” weight. In that case, the function can be represented geometrically as a hyperplane in n dimensions that
splits the space in two distinct regions representing the two classes that we try to distinguish.

The result (a scalar) is then “thresholded” to yield a binary output (representing the true/false category the
perceptron is trying to infer from the input data): the category will be 1 if the output o(z) is positive, and 0 if it is
negative.

91t is worth mentioning that the perceptron was invented around the same time as another connectionist network
inspired by the McCulloch-Pitts model, the Adaptive Linear Element or ADALINE (Widrow and Hoff 1960), which
uses a similar learning rule.

10There is also an additional bias weight b that needs to be initialized, however for the sake of simplicity we will
ignore it in the explanation that follows.
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1, ifo(x) >0

y =
0, otherwise
Let d represent the desired category of the example under consideration (which we know of

because as human beings we can identify the true category of the character as either an “A” or a

“B”). We can then adjust the weights w; according to the following learning rule:

w; +— w; —n(y — d)x;
The motivation behind that rule amounts to:

1. If network output y = 0 while target output d = 1, then y is too small, so we need to increase
the weights associated with positive inputs by a small value n called a learning rate while

decreasing weights that correspond to negative inputs.
2. Likewise if y = 0 and d = 1 we need to do the exact opposite so as to lower the value of y.

3. Finally, if the network classified the example correctly (i.e., y = d) we do not change anything.

The procedure repeats for several steps, running through the database of images until the average
error converges to a minimum.

A similar kind of learning rule was used in the second and fourth interventions of Absence. In the
Second Absence (the light-adjusting system in a bottle), the output itself (i.e., the LED intensity)
is directly adjusted using a learning rate of 1 in response to the input (i.e., the photocell measuring
the light intensity) (see the algorithm p. 4). In the case of the Fourth Absence, an intermediate
parameter w is used to control the output (i.e., the rhythm at which a sound is produced); this
parameter gets updated in response to the battery voltage using a learning rate n (c.f. page 2.3).
In other words, a parameter gets adjusted to generate actions by trying to lower an error rate
(measured as the differential between a target and an actual battery charge during nighttime).

Perceptrons mark an important step in the history of Machine Learning for two reasons. These
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Figure 13: Schematics of the perceptron. Inputs z1, - - - , x, (for example, the value of the p1xels of a
black-and-white image representing a handwritten character) are multiplied by weights wq, -+, w,
with added bias b to generate output y (which represents a class, for example, whether the image
represents letter “A” or “B”) .

simple linear systems, which combined ideas about logic, statistics, and self-organization in a com-
putational apparatus that could be used for dedicated purposes through a supervised learning loop,
would be used as building blocks for later theories about Machine Learning and Neural Compu-
tation. Yet, as we see in the next section, they contain an important flaw that would soon to be

revealed, plunging the field into the dark for more than two decades.

3.1.3 Classic Al

Interestingly, Allen Newell, one of the key researchers behind this shift away from connectionist
networks, was originally inspired by a self-organizing model similar in spirit to the perceptron.
In 1959, Oliver Selfridge proposed the Pandemonium, a multi-layered connectionist structure for
image pattern recognition (Selfridge 1959). In this structure, simple agents called “demons” are
organized in a hierarchy, with the lower-level ones specialized in detecting simple features such as

curves and lines, whereas the higher-level ones use the information from the lower layers to detect

56



more complex and abstract features, such as handwritten letters.

The Pandemonium was built on Selfridge’s previous research on visual pattern recognition. In
1954, the scientist had given a talk at the RAND Corporation in Santa Monica, describing a system
programmed by G. P. Dinneen that was able to learn by experience (Dinneen 1955; Selfridge 1955).
Present at the conference was computer scientist Allen Newell who was then conducting research
into army-related logistic problems. Newell was deeply inspired by Selfridge’s talk. While the
learning capabilities of the system were rather poor in practice, it nonetheless revealed a true
potential for machines to display intelligent behavior.

In the year that followed, Newell started working on an adaptive system to effectively play chess,
which was presented at the Western Joint Computer Conference in 1955. His work grasped the
attention of economist Herbert A. Simon at Carnegie Mellon and, together with RAND programmer
J. C. Shaw, they started working on the ambitious project of designing a program that would be
able to prove mathematical problems.

The program, called the Logic Theorist, was shown the next year during the famous 1956 Dart-
mouth Conference at Dartmouth College in Hanover, New Hampshire. An initiative of Computer
Scientist John McCarthy, the conference brought together a small group of scientists around the
study of a new field: artificial intelligence. The study proceeded on the basis of the conjecture
that every aspect of learning, or any other feature of intelligence, can in principle be so precisely
described that a machine can be made to simulate it.

Whereas several approaches to the problem of computer intelligence were considered, includ-
ing connectionist methods (McCarthy et al. 2006), the conference was dominated by the work of
Newell, Shaw and Simon, who were the only researchers who came with an actual, working artificial
intelligence system.

Generally considered to be the first artificial intelligence program, the Logic Theorist was even-
tually able to prove 38 theorems from Whitehead and Russell’s Principia Mathematica, even coming
up with a more elegant proof for one of them (Newell, Shaw, and Simon 1958; Newell, Shaw, and

Simon 1959). It was extremely impressive in its ability to perform in a category of tasks that seemed
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extremely difficult to humans, requiring a high degree of abstraction and logic.!' To the contrary
of connectionist and Cybernetics approaches, it also did not attempt to model existing biological
systems, and instead focused on structured, symbolic manipulations to achieve its remarkable goals.

Newell, Shaw and Simon’s work would set the stage for the first phase of the development of
the field of AI from the mid—1950s till the mid—1970s. This era was marked, on the one side, by a
dubious optimism, as some researchers managed to rapidly achieve satisfying results on high-level
problems such as playing checkers or chess (Newell 1955), and responding effectively to simple text-
based chat interactions, or solving problems in simulated “micro-worlds” (Winograd 1970); and on
the other, by a heavy reliance on symbolic, rule-based systems, with little or no interest in biological
systems such as neural networks.

Indeed, the excitement for connectionist structures inspired from human biology that was grow-
ing in the 1950s would come to a halt with the publication of Minksy and Papert’s forceful critique
of perceptrons (Minsky and Papert 1969). By showing that even simple problems are unsolvable
by such a linear neural network, the book put a halt to the non-symbolic and distributed approach
which had had great attention in the field since the 1940s. Public funding switched sides and for
two decades, Al research turned towards the symbolic and heuristic approach pioneered by Minksy,
Papert and Simon, which would later be known as “classic AI” or Good Old Fashioned AI (GOFAI).

Classic Al is usually associated with “strong AI” or computationalism, a theory of mind based
on the premise that cognition is computation (Dietrich 1990).'2 In 1950, Alan Turing proposed a
test for machine intelligence using a simple “imitation game”. The goal of the machine would be
to engage in a continuous chat with a human interrogator and try to “pass” as a human being. If
the interrogator could not distinguish the machine from a human interlocutor, then that machine

should, according to Turing, be considered as a thinking being (Turing 1950). In other words, what

11Tt would later be found that the most difficult problems for computers to address are not intricate mathematical
proofs or efficient strategies for playing board games, but rather the kind of problems that seem so easy to us that
we do them almost unconsciously, such as walking, talking, or driving a car.

1276 understand the importance of this perspective in the history of Al, consider how the preamble of the project
proposal for the Darthmouth conference, written in 1955, places it as a foundational component of the field:

The study is to proceed on the basis of the conjecture that every aspect of learning or any other
feature of intelligence can in principle be so precisely described that a machine can be made to simulate
it. (McCarthy et al. 2006, p. 12)
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sents a possible linear function (such as a per- els such as perceptrons are incapable of cor-
ceptron) to split the space in two regions cor- rectly separating the space to classify such data
responding to each category. points.

Figure 14: Examples of linearly and non-linearly separable datasets in a two dimensional space
using two categories of points.

matters when it comes to cognition is not the biological substrate in which it is rooted but the
performance of the system on tasks that are deemed to require intelligence.

Hence, computationalists also think that the problem of cognition cannot be solved by mimick-
ing neurological processes using robots or models of the brain, but by using the favored tools of
mathematics and computing: logical rules applied to a set of symbols. Its proponents thus believe
in the independence of cognition from the “platform” that “runs” it, and also place faith in the
Turing test as the ultimate measure of intelligence.

While computationalism is still the dominant viewpoint in the fields of Cognitive Science and
AT, it contains many fundamental problems. Philosopher Hubert Dreyfus was one of the first to
criticize the computationalist approach of GOFAIL In his 1979 book, What computers can’t do: the
limits of artificial intelligence (Dreyfus 1979), he highlights the false promises of classic Al that
shows a “recurring pattern” of “early, dramatic success followed by sudden unexpected difficulties”
(39). Dreyfus attributes this pattern to four inadequate assumptions (biological, psychological,

epistemological and ontological) from early Al practitioners. In a phenomenological critique of
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their approach, he proposes to address these caveats by putting the body back into the equation.'3

After the impressive results of early Al, research quickly plateaued, plagued by profound theo-
retical and practical problems (Pfeifer 1996). By the mid-1970s, government support had stopped
flowing, leading to a dry period often referred to as the “Al Winter” which ran for about a decade.
In the 1980s, new approaches started resurfacing, such as Expert Systems, Artificial Life and Ma-
chine Learning. But before we move on, we will have a look at the influence of early conceptions of
machine intelligence and adaptation on the artistic culture of the 1960s and 1970s.

Many of my own agent-based installation works before 2008 used some form of rule-based systems
that, in the spirit of GOFAI, approached the question of artificial agency through heuristics. For
example, my M. A. project Flag (2007), an immersive interactive installation, generates sequences
of words semantically connected to one another through the construction of a hand-made graph
representation of a word cloud. The First Absence was also designed using such an approach,
using my own a priori knowledge of the world to encode a behavioral response (in this case to the
sunset). Most agent-based installations that use some form of AI technology actually follow this
same approach, often with very good results. Consider for example the excellent work of robotic

artists such as Louis-Philippe Demers, Jessica Field, Ken Rinaldo, and Bill Vorn.!*

3.1.4 Cybernetics and Aesthetics

In the first three decades following the end of the war, Cybernetics, Connectionism and AT offered
different perspectives over the functioning of cognition. The apparition of computer-based technolo-
gies in society had a tremendous impact in these years. However, how it affected the artistic world
is often overlooked. Art historian Edward A. Shanken describes the influence of Cybernetics on art

in the 1960s through the work of Roy Ascott (Shanken 2002). Ascott’s reading of cyberneticians

I3There is an extensive body of literature that critiques computationalism. For example, see (Searle 1980), (Wino-
grad and Flores 1987), (Suchman 1987), and (Harnad 1990).

14There are many reasons for this, but I will only name a few here. First, the controlled environment of the gallery
space offers very few degrees of freedom and it is possible to restrict it even more, thus allowing the effective use of
simple computational tricks. In other words: galleries are “small worlds” that can be toyed with in often impressive
ways. Second, contrary to Al researchers, artists only need to generate an illusion of agency which does not even
need to feel or look smart. Figurative elements are really important in the production of a sense of agency. Picture
how drawing two eyes and a mouth on an inanimate object such as a potato can suddenly transform it into an agent,
at least perceptually. Finally, the public itself is adaptive and, in an artistic setting, often ready to “suspend their
disbelief” as long as they are going to have a good show.
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Norbert Wiener, Ross Ashby and Frank H. George in 1961 made him envision a new conception
of art as something embodied in interactive systems rather than in physical objects. The scope of
Cybernetics as an encompassing theory of systems’ behavior and communication, would allow As-
cott to merge Cybernetics and art, in an effort to “theorize the relationship between art and society
in terms of the interactive flow of information and behavior through a network of interconnected
processes and systems” (4).

Cybernetics’ conceptions of adaptivity, homeostasis and feedback loops are thus an integral
component of Ascott’s perspective, which he explains in his 1966 paper Behaviourist Art and Cy-
bernetic Vision (Ascott 2003a). In it, he claims that visual arts have entered a new era where
other modalities (such as sound and touch) are explored by artists and where the interactive and
participative experience of the spectator in relationship with the artwork becomes central. Ascott
thus suggests the name “behavioural art”!® as a replacement for “visual art”, which has become too
narrow to describe the new paradigm (110). Ascott later argues more specifically what he means
by it and its relationship with adaptivity and feedback:

Behaviourist art constitutes [...] a retroactive process of human involvement, in which
the artifact functions as both matrix and catalyst. As matrix, it is the substance
between two sets of behaviours; it exists neither for itself nor by itself. As a catalyst,
it triggers changes in the spectator’s total behaviour. Its structure must be adaptive,
implicitly or physically, to accommodate the spectator’s responses, in order that the
creative evolution of form and idea may take place. The basic principle is feedback. The
artifact/observer system furnishes its own controlling energy: a function of an output
variable (observer’s response) is to act as an input variable, which introduces more

variety into the system and leads to more variety in the output (observer’s experience).
(128)16

Hungarian artist Nicolas Schoffer’s piece CYSP I, created in 1956, is considered to be the first

autonomous cybernetic sculpture to follow Ascot’s definition.'” The work consists of an eight-foot

15 Ascott seems to use the terms “behavioral” and “behaviourist” interchangeably in his writings.

16Roy Ascott would enact this vision not only through his art practice but also through his views on the pedagogy
of art. In his 1967 manifesto Behaviourables and Futuribles, Ascott frantically argues for restructuring art schools
“as homeostatic organisms, living, adaptive instruments for generating creative thought and action.” (Ascott 2003b,
p. 159)

17Tn fact, the name of the work comes from a combination of the two first letters of cybernetics and of Schéffer’s
theory of spatiodynamic sculpture.
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tall metallic structure that can move freely across space thanks to four rollers set at its base. At
the top of the sculpture are mounted sixteen (16) motorized plates of colored acrylic glass. A
central processing unit designed by the Philips corporation uses the signals coming from a set of
photo-electric cells and a microphone to control the motors, allowing the device to respond to its
environment and to itself, thus engaging in a self-organized behavior. This design allows it to adapt
to different contexts of presentation: shown for the first time in Paris as part of “Nuit de la poésie”,
it would later join human dancers in a pas de deux by choreographer Maurice Béjart and, in 1957,
would participate in a “spectacle cybernétique” in Evreux under the musical direction of Pierre
Henry (Schoffer 2004). Directly inspired by Norbert Wiener’s theory of control and communication,
Schoffer’s work is a pioneering example of the kind of feedback systems early cyberneticians had in
mind (Ferndndez 2006, 472).

British polymath Andrew Speedie Gordon Pask is another key figure of the cybernetic art
movement which was lead by Roy Ascott in the UK.!® Pask had allegedly discovered Cybernetics
as an undergraduate at Cambridge in the early 1950s, through an impromptu meeting with Norbert
Wiener himself (Pickering 2010, 313). While he his mostly known for his scientific work, Pask’s
involvement with Cybernetics first started in the art world. During his years at Cambridge, Pask
had participated in the lighting design of theatrical shows in Cambridge and London and created,
together with fellow student Robin McKinnon Wood, a business specialized in the orchestration
of musical comedies. In 1953, they invented a theatrical lighting system called the Musicolour, an
apparatus that “used the sound of a musical performance to control a light show, with the aim
of achieving a synesthetic combination of sounds and light”(316). Reacting adaptively to a sound
signal, it generated patterns of light, interacting with human performers in real-time. The device
contained a “rudimentary learning facility” that was able to change the relationship between sound
and light during the course of a performance.

Notions of adaptation and learning are what fascinated Pask the most in cybernetics systems.

Discussing the evolution of the work as it toured across the country, he notes:

18Evidently, it is Pask who originally explained cybernetics to Ascott at his request (Miller 2014). Pask and
Ascott would actually get to work together in the early 1960s as consultants on Price and Littlewood’s Fun Palace,
an ambitious Cybernetics architectural project that would never be built (Mathews 2005).
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By that time it was clear that the interesting thing about Musicolour was not synaes-
thesia but the learning capability of the machine. Given a suitable design and a happy
choice of visual vocabulary, the performer (being influenced by the visual display) could
become involved in a close participant interaction with the system. He trained the ma-
chine and it played a game with him. In this sense, the system acted as an extension of
the performer with which he could co-operate to achieve effects that he could not achieve
on his own. Consequently, the learning mechanism was extended and the machine itself
became reformulated as a game player capable of habituating at several levels, to the
performer’s gambits. (Pask 1971, 78)

Along with artists Nam June Paik, Jean Tinguely, John Cage and Edward Ihnatowicz, Pask
would participate in 1968 in the exhibition “Cybernetic Serendipity” at the Institute of Contem-
porary Arts in London, with his work Colloguy of Mobiles, which involved a social and sexual
metaphor of agents trying to collectively achieve a goal by adapting to one another (Reichardt
1968). The exhibition, curated by Jasia Reichardt, set a landmark in the historical upbringing of
media art. It brought together the work of more than a hundred contributors, the majority of which
were not artists, such as computer scientists, engineers, and philosophers, as well as a chaotic mix of
apparatuses and installations that were purposely intended to confuse the visitor as to whether they
were created by an artist or a scientist. Many of the works displayed were, like Pask’s installation,
directly inspired by Cybernetics, using principles of feedback as their core mechanism (Cybernetics
Serendipity - Late Night Lineup 1968).

The same year, artist and critic Jack Burnham published “Systems Aesthetics” in Artforum,
where he explained how the society of the time, shaken by the rapid progress of science and tech-
nology, was transiting from an “object-oriented to a systems-oriented culture” where “change em-
anates, not from things, but from the way things are done.” (Burnham 1968, 31). This transition,
he claims, is reflected in contemporary practices emerging in the 1960s such as Robert Smithson’s
“earthworks”, the light “sculptures” of Dan Flavin, the “kinetic art” of Jean Tinguely and Alexander
Calder as well as Allan Kaprow’s Happenings.

Burnham’s perspective over art and science is intimately linked with conceptual art, which in
the 1960s promulgated the supremacy of ideas over forms. Indeed, Burnham’s epitomic 1970 exhi-

bition Software brought together conceptual artists such as Vito Acconci, John Baldessari, Robert
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Barry, Donald Burgy, Hans Haacke, Douglas Huebler and Joseph Kosuth, to explore computer tech-
nologies as ways to generate interactions between the audience and machines. “Systems aesthetics”
established a link between Grey Walter’s creative experiments with mobile robots and the work of
pioneering cybernetic artists such as Nam June Paik and Nicholas Schoffer through their interest
in imitating life.

Whereas Burnham’s visionary perspective was directly influenced by Cybernetics, the concept
of systems on which it was built originates from General Systems Theory, an interdisciplinary
approach originally formulated by biologist Ludwig von Bertalanffy in the 1930s as well as in
different publications after the war. Observing that different disciplines were in fact dealing with
similar problems, he argued for an integrated approach that could be applied across them:

Thus, there exist models, principles, and laws that apply to generalized systems or their
subclasses, irrespective of their particular kind, the nature of their component elements,
and the relations or “forces” between them. It seems legitimate to ask for a theory, not
of systems of a more or less special kind, but of universal principles applying to systems
in general. (Bertalanffy 1969, 32)

General Systems Theory and Cybernetics are very close in spirit and in practice. In fact, as
pointed out by interdisciplinary researcher Francis Heylighen at the Free University of Brussels,
both approaches focus on the same problem of “organization independent of the substrate in which
it is embodied” using only a slightly different approach. “[S]ystems theory has focused more on
the structure of systems and their models, whereas cybernetics has focused more on how systems
function”. They should be considered as two faces of the same coin (Heylighen 2000, 460—461).

Burnham argued how art as an institution could be understood as a hierarchical system, with
artists as its basis being “similar to programs and subroutines”, with, at the very top, a “metapro-
gram” that constantly rearranges the long-term objectives of art. Key to Burnham’s vision is the
conclusion that this self-organizing, adaptive system does not produce new objects, but rather new
information embodied in works of art (Burnham 1969). In 1970, he curated the show Software at the
Jewish Museum in New York, where he articulated this vision by bringing together works created
by artists and scientists alike that made extensive use of computer technology, with the objective

of generating aesthetic effects without the intervention of objects. “The machines in Software”, he
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claimed, “should not be regarded as art objects; instead they are merely transducers, that is, means
of relaying information which may or may not have relevance to art.” (Software 1970, 12)

Burnham’s systems art and Ascott’s behaviourist art both translated ideas about the adap-
tive and emergent nature of human and nonhuman systems inherited from scientific research in
Cybernetics and General Systems Theory. While both Burnham and Ascott have been relatively
overlooked by art historians and theorists, their aesthetics have ramifications in many art forms
from the 1960s onward, such as conceptual art, information art, algorithmic art, generative art and
robotic art.

Yet, when applied to works such as Absences, both Burnham and Ascott’s theories have short-
comings. One of the strengths of Burnham’s framework is to relocate the locus of aesthetics from
the physical properties of an art object into the artwork’s mode of operation as a system embedded
in a network of relationships. Burnham’s emphasis on a disembodied flux of information that chan-
nels through the art object — which only act as an empty shell independent from the process that
it allows to run — is, however, reminiscent of computationalism as a model for the workings of the
brain. Burnham’s vision is thus somehow tainted by the Shannionian myth of aerial, disembodied
processes that run independently from their corporeal substrate. This argument is problematic
when applied to an aesthetics of agent-based systems as it fails to take into account the question
of the embodiment of these agents.

Ascott, on the other hand, seems to be interested in taking into account not only the production
of novelty as pure information but also in its morphological evolution. His perspective, however,
presupposes an interaction between a work of art and a human, which seems less appropriate in
the case of the nonhuman-to-nonhuman dynamics that happen in Absences.

Still, both Ascott and Burnham highlight an important point in their focus on behaviors —
and the experience of such behaviors — in machine-human configurations in the artistic domain.
Furthermore, their interest in Cybernetics aligns with a vision of society, culture, and art, as
profoundly adaptive systems, evolving through a network of self-organizing agents which adjust to

one another through a myriad of feedback loops.
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3.1.5 Machine Learning

At the beginning of the 1980s, classic approaches in Al were still dominant, showing no interest
in any form of biologically-based computation such as genetic algorithms and neural computation.
Nevertheless, a small portion of AI researchers had become interested in questions of learning
systems. Pat Langley describes the creation of the new discipline of Machine Learning in the early
1980s:

The first workshop in 1980 at Carnegie-Mellon University had identified a community

of researchers with common interests in computational approaches to learning and ar-

rived at a name for its activities. Moreover, the parent fields of artificial intelligence

and cognitive science were showing little interest at the time in learning-related issues,

preferring to focus on the role of knowledge in intelligence, regardless of its origin. As

a result, we encountered some difficulty publishing and, more generally, felt we were

not getting the attention we deserved. Finally, there was the common urge of young,

energetic researchers to create something of their own to which they could attach their
names. (Langley 2011, 275)

Machine Learning is a sub-field of Artificial Intelligence that employs mathematical models that
can classify and make predictions based on statistical inference over observed data rather than
on logical rules. It can be split in three main areas of inquiry: supervised learning, unsupervised
learning and reinforcement learning. Supervised and unsupervised learning methods are used for
statistical classification or regression of data points.'® Supervised learning is used when we know in
advance the target category of the data points we want to classify, such as when trying to recognize
hand-written digits, whereas unsupervised learning is when we do not have tagged data points
but rather want to learn some inherent properties of the data distribution under consideration.
Finally, reinforcement learning (RL) rather tries to address the problem of an agent adapting to its
environment by trying to optimize a criterion called a reward function, which basically rewards or

punishes the agent depending on its current state and actions (Sutton and Barto 1998).

19(Classification consists in assigning a label or class to a data point, for example the symbol (A, B, C, etc.)
represented by a handwritten letter, or the name of an individual recognized in a photograph. Regression, on the
other hand, concerns the estimation of a numerical value, for example, the expected amount of claimed dollars that
will be made by an insurance customer, or the expected temperature for tomorrow.
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3.1.6 Connectionism in the 1980s

At its beginning, the new field of Machine Learning was still mostly based on symbolic methods
such as decision trees and logic. But in the middle of the decade, the discovery of an efficient
way to train Multi-Layer Perceptrons (MLP) would suddenly bring connectionism back on the
scene (Rumelhart, Hinton, and Williams 1986). MLPs — which are also often called Feedforward
Artificial Neural Networks (FANN) — can be used for classification as well as for regression (i.e.,
function approximation). As their name indicates, they consists in stacking many perceptrons on
top of each other in interconnected layers of neurons. Hence, they differ from perceptrons in that
they not only have an input and an output layer of neurons but also one or more hidden layers
between these inputs and outputs. Like in the perceptron, a first set of weights maps the input
neurons to an intermediate “hidden” layer, where abstract, higher-level representations of the inputs
are automatically generated through the cooperation of neurons.

One way to understand these structures is to consider each hidden neuron as the output neuron
of a perceptron. The difference is that in the case of the perceptron, the output is transformed
into a binary value using a hard threshold. In a MLP, the hidden neurons are transformed using
a smooth, non-linear thresholding function that pushes them towards a binary value. Finally, the
hidden neurons are linearly combined using a second set of weights to produce the next layer of
neurons.?? This process moves forward, from layer to layer, until the final output layer is reached,
yielding the result.

Because each layer projects the previous layer’s outputs using a non-linear thresholding func-

tion,2! MLPs model smooth classification functions that can grasp intricate, high-order variations

200ne can look at an ANN as a network of agents, where each hidden neuron is seen as a minimal agent that
becomes an expert classifier over a specific domain. These agents are encouraged to divide the input space between
them. They are then combined to produce the final output, as if they were “voting”.

21 As can be recalled from section 3.1.2, perceptrons are simple linear models that separate space using a hyperplane.
They are thus incapable of dealing with problems that are not linearly separable, as was rightfully pointed out by
Minsky and Papert (Minsky and Papert 1969). Indeed, most interesting problems turn out to be non-linearly
separable.

MLPs’ “tour de force” consists in preserving the self-organizing, distributed representation properties of percep-
trons, while alleviating their flaws by applying a non-linear filter to their outputs. A very commonly used filter is
the sigmoid function, which was described in section 2.3 .
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in the data, thus circumventing the main caveat of perceptrons as pointed to by Minsky and Pa-
pert (Minsky and Papert 1969). But while MLPs were actually known way before the mid—1980s2,
there existed no tractable way to train them. The 1986 breakthrough, introduced by David E.
Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams, consisted in a method known as back-
propagation that allowed the efficient computation of the neural network’s weights’ gradient.?? The
gradient essentially represents the partial derivatives (in other words, the degree of change, or the
slope) of the error function with respect to the weights. Knowing it thus gives a sense of how the
error changes in function of the weights, allowing the adjustment of weights in a stepwise manner
in the direction that is most likely to lower the error, a procedure known as Stochastic Gradient
Descent (SGD).24

Without entering into details, consider the similarity of the update rule in SGD to that of the
perceptron. Let F be the error function, w be a weight in the MLP, and g—f; be the partial derivative
of the error with respect to that weight. After each step of SGD, the weight will be changed using
the following formula:

W — w — 172—5

Once again, we retrieve a negative feedback procedure that fine-tunes a weight by pushing it in
the direction that will enable it to most likely contribute to better classifications (i.e., lower errors)
in the future, tempered with an adjustable learning rate n that controls the speed of learning.

Like real neural networks in the brain, ANNs represent information in a distributed way, as
opposed to a symbolic, local representation. At the beginning of the procedure, the weights are
initialized randomly, such that the network decisions are completely chaotic (i.e., the entropy is
maximal). By getting exposed to the environment (in other words, by being subjected to examples
sampled from the real world distribution) and taking actions in a range of different contexts, the
network is slowly adjusted to make better predictions. Thus, the network itself becomes increasingly

ordered as its parameters (weights) are shaped to decrease the global entropy of the model.

228elfridge’s Pandemonium, introduced earlier, grasped the concept of interconnected layers of abstractions already
in the 1950s (Selfridge 1959).

23In fact, backpropagation had been discovered years before but had not been applied specifically to neural net-
works. For a detailed historical account of backpropagation, read (Schmidhuber 2015).

24As a metaphor, imagine a ball rolling down a hill, always going in the steepest direction until it reaches a
minimum.
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Figure 15: Schematics of a Multi-Layer Perceptron with a single hidden layer. The first layer is
a perceptron that maps input neurons to hidden neurons that act as intermediate outputs. The
second layer is another perceptron that uses these hidden neurons as inputs and maps them to the
final output neuron of the model.

The revival of connectionist adaptive systems in the 1980s had a tremendous impact on the
emergence and development of Machine Learning and neural computation as fields of research. In
1987, the first Conference on Neural Information Processing Systems (NIPS) took place, bringing
together researchers interested in connectionist approaches from both neurosciences and computer
science and would become, over the years, the most important conference in the field of Machine
Learning. The same year, Stephen Grossberg launched the International Neural Network Society
(INNS) as well as its associated publication, Neural Networks.

Recalling a conversation with Grossberg in 1987 where he was asked to join the INNS and become
a co-editor of the journal, Finnish scientist Teuvo Kohonen gives an insight into the important
connections between neural systems and Al at the origins of Machine Learning in the mid—1980s:

Then he started to talk about the term “neural” I said, “No, no, no, no.” I said, “Why

not learning machines or adaptive systems or whatsoever?” So he said, “Yes, but we

have so many opinions, and this seems to satisfy everybody.” (Anderson and Rosenfeld
1998, 153)
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3.1.7 Evolutionary Computation

Genetic Algorithms (GA) is another approach to Machine Learning that was largely popularized
in the 1980s. GAs stemmed from a completely different branch than neurology: that of genetics
and evolution. Although developing through its very own path, it is important to describe it here,
mainly because it is one of the learning approaches that has been the most largely adopted by
artists.?’

While the were many research groups in the 1960s working on computational models of evolution
applied to AL?2% the invention of Genetic Algorithms (which is one of many approaches to evolution-
ary computation) is usually attributed to scientist John Holland (Mitchell 1998), who developed
them in an effort to build a formal mathematical representation of genetic adaptation that could
be run on computerized systems. Holland’s framework understands natural evolution as an itera-
tive optimization process that functions by evolving populations of individuals using basic genetic
operators such as cross-overs and mutations, testing them against a fitness function®” and selecting
only the best individuals to generate the next population (Holland 1992). The basic form of GAs
as proposed by Holland employs artificial chromosomes that are essentially sequences of bits (i.e.,
the genotype). Segments of the string correspond to genes that determine actual characteristics of
the individual (i.e., its phenotype). The performance of the individual can than be assessed using
a fitness function which determines what needs to be optimized.

A genetic algorithm in its simplest form goes more or less as follow (Mitchell 1995, 5):

1. Begin with an initial population of N individuals (i.e., chromosomes).
2. Select the M fittest individuals according to fitness function F'(z).

3. Perform crossovers and mutations over pairs of selected individuals, thus generating a new

25The reasons for this are unclear. However, one can point to the fact that GAs are more easy to understand,
implement and apply in works of art, as one possible explanation.

26For example, see Rechenberg’s evolutionsstrategie (Rechenberg, 1965/August//; Rechenberg 1973) as well the
“evolutionary programming” by described in Fogel, Owens, and Walsh (1967).

27A fitness function is an evaluation function that gives a value (typically as a real number) to an individual in a
population, usually representing its performance over a problem that the GA tries to solve.

For example, a GA used to learn how to play chess might generate populations of agents and have them play
games against one another. The fitness function could then be the percentage of games won (with ties counting as
a half-win).
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generation of N offsprings.
4. Replace the population with the newly generated one.
5. Go to step 2.

This is an optimization algorithm: it performs a search through the space of possible solutions
to a problem, represented as computational chromosomes, using an evolutionary heuristic. The
process works by making local changes in potential solutions to a problem, moving closer to the
end goal in a stepwise manner. It is thus very close, in essence, to other adaptive algorithms such

as Stochastic Gradient Descent.

3.1.8 Adaptation and Learning

This historical overview exposes the important role played by adaptation and learning in the sci-
entific landscape in regards to computational cognition and machinic life, from the post-war era
onward. Yet, these ideas and associated techniques seem to have only been rarely exploited di-
rectly by artists and even less examined by humanities scholars. Before we move into the second
part of this chapter, I would like to discuss further these notions by considering different scientific
definitions.

As suggested earlier, we can trace the origins of modern understandings of adaptivity down to
first-order Cybernetics in the work of Arturo Rosenblueth, Norbert Wiener and Julian Bigelow (Rosen-
blueth, Wiener, and Bigelow 1943). Core to their conception of system processes is the teleological
nature of animal behavior, that is, their ability to adjust to their environment to reach their goals
using negative feedback. This fundamental idea constitutes the cornerstone of Machine Learning
approaches, which requires the interaction between a structural component, an error function and
an optimization procedure, as I will further explain in section 3.2.

The authors suggest a hierarchical taxonomy of behavior. In that ontology, living systems are
first said to be active, in that they are the source of energy that allows their actions, as opposed
to passive objects like a stone being thrown by another agent. They are also considered purposeful,

which relates to their behavior appearing as being directed voluntarily towards a goal. Some
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(1) A population of genes is translated into a
population of phenotypes. (2) These phenotypes are evaluated using a fitness function: the fittest
individuals are selected. (3) Crossovers and (4) mutations are performed over the genes of the

selected individuals, thus generating a new population of genes.
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purposeful active behaviors are also teleological, meaning that they use negative feedback to adjust
their aim while trying to reach their goal.?®
British cyberneticians like Ross Ashby, Grey Walter, Gordon Pask and Stafford Beer proposed

visions of Cybernetics systems that can be seen as alternatives to these behavioral categories.
These researchers seemed less interested in a designing a theory of final causes than in imagining
and articulating ways in which living systems perform, in particular through the creation of devices
endowed with lifelike qualities. Discussing their work, Andrew Pickering writes:

There is something strange and striking about adaptive mechanisms. Most of the exam-

ples of engineering that come to mind are not adaptive. Bridges and buildings, lathes

and power presses, cars, televisions, computers, are all designed to be indifferent to their

environment, to withstand fluctuations, not to adapt to them. The best bridge is one

that just stands there, whatever the weather. Cybernetic devices, in contrast, explicitly

aimed to be sensitive and responsive to changes in the world around them, and this

endowed them with a disconcerting, quasi-magical, disturbingly lifelike quality. (7)

Grey Walter created his electro-mechanical “tortoises” during his spare time. His later versions
testify to an interest in a machinic form of learning inspired from behaviorism, even though he does
not explicitly use the expression “Machine Learning” to describe their behavior (Walter 1951). The
first alleged use of the term comes from engineer Arthur Lee Samuel who worked — also in his
time off — on the game of checkers. Samuel was interested in achieving better results at playing
the game not through logical rules or brute-force search, but rather by providing an algorithm with
several instances of played games, allowing the system to learn by itself what are the best moves.
His technique, which he describes in his 1959 foundational paper (Samuel 1959), can be considered
as an embryonic instance of reinforcement learning (Sutton and Barto 1998, 267).

In the preface to his foundational book Adaptation in Natural and Artificial Systems, John H.
Holland proposes a formal definition of adaptation as a “process whereby a structure is progressively

modified to give better performance in its environment” (Holland 1992, xiii). In this perspective,

28To understand the difference between teleological and non-teleological systems, consider the example of a snake
striking at a frog with “no visual or other report from the prey after the movement has started”. As the authors
express, in that case the movement is “so fast that it is not likely that nerve impulses would have time to arise at
the retina, travel to the central nervous system and set up further impulses which would reach the muscles in time
to modify the movement effectively.
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the story of evolution can be seen as an optimization process that performs a heuristic search in
the realm of possibilities by selecting the best individuals at each generation, preserving part of
their genetic structure while combining and mutating them. Significantly, the same kind of genetic
procedure which nature applies to evolve fittest forms or organs in living systems can be digitally
simulated to develop better strategies of action in computational agents:

Roughly, experience guides changes in the organism’s structure so that as time passes

the organism makes better use of its environment for its own end. (Holland 1996, 9)

As a final remark, to better contextualize the place of adaptation and learning in post-WWII
discourses on artificial intelligence, it is worth stating that agent-based approaches to learning and
Genetic Algorithms were substantially sidestepped during the connectionist renaissance of the mid—
1980s — which established the foundations of Machine Learning as a field of research in its own
rights — in favor of pattern recognition applications.?? The neural approach to learning decreased in
popularity throughout the 1990s in favor of a more general conception of computational adaptation
known as probabilistic or statistical learning. Gaussian Mixture Models (GMMs) and Support
Vector Machines (SVM) are examples of such approaches that rely primarily on statistics rather

than on some model of biological processes (Vapnik 2000).

3.1.9 Deep Learning

What mainly explains the decrease in popularity of connectionism as an approach to Al in the
1990s was the problem of training artificial neural networks with many layers of neurons. This
prevented such systems to grasp highly varying functions, which are needed to express complex
behaviors such as the ones we find in “intelligent” agents such as humans.

Until the mid—2000s, it was only possible to train shallow neural architectures efficiently — that
is, connectionist networks with only 1, 2, or 3 layers. But many neuroscientists seem to believe that
brains are organized in deep architectures, processing sensory information through many different

levels of abstraction (Serre et al. 2007; Bengio 2009). For example, the visual cortex contains

29However, GAs were very important in artificial life and evolutionary art communities.
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multiple layers of neurons that correspond to different degrees of representation, from detecting
edges and orientations to more complex shape recognition (Kruger et al. 2013).

In the early 2000s, raw computational power became more readily available to scientists, foster-
ing what Machine Learning expert Jiirgen Schmidhuber called a “second Neural Network ReNNais-
sance” (Schmidhuber et al. 2011) — a reference to their “First Renaissance” in the 1980s triggered
by the publication of the backpropagation algorithm by David E. Rumelhart, Geoffrey E. Hinton
and Ronald J. Williams. This allowed researchers to run experiments over much larger models,
encouraging the development of algorithmic techniques to address the shortcomings of shallow
architectures.

In 2006, Geoffrey E. Hinton (who was part responsible for the aforementioned first “Renais-
sance” of neural nets), Simon Osindero, and Yee Whye Teh came up with a solution for training
Deep Belief Networks, which are a special kind of multi-layered neural network. This development
plugged the breach left open twenty years ago after Hinton last published his work on backpropa-
gation (Hinton, Osindero, and Teh 2006).3° The method they proposed used unsupervised learning
to pre-train the lower layers of the model before subjecting the whole system to a traditional su-
pervised learning procedure. Their approach created a significant improvement in the error rate of
MNIST (a benchmark database well-known in the field of Machine Learning) over other approaches
using shallow architectures or Support Vector Machines.

This breakthrough, along with much other research, allowed for the emergence of a whole new
field within Machine Learning called Deep Learning, whose main interest lies in finding solutions
to difficult problems (such as driving a car) by allowing computers to “learn from experience and
understand the world in terms of a hierarchy of concepts, with each concept defined in terms of its
relation to simpler concepts”. This system therefore avoids the need for humans to “formally specify
all of the knowledge that the computer needs”. In particular, this “hierarchy of concepts allows
the computer to learn complicated concepts by building them out of simpler ones” (Goodfellow,

Bengio, and Courville 2016).3!

30This is an oversimplification of the history, of course, as scientific discoveries do not happen in a vaccuum. For
a more thorough analysis of the history of deep learning, please consult (Schmidhuber 2015).
31Deep Learning models have become extremely complex and powerful, with some neural nets being more than
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While none of the artworks described in this dissertation make use of deep architectures, I
wish to discuss Deep Learning here because of its important socio-technical repercussions. As
mentioned in the introductory chapter, its successes have now made Deep Learning the spearhead
of big IT companies such as Google and Facebook, who have become the main hiring bodies for
Deep Learning engineers. After the media success of its Deep Dream project, Google has recently
launched Magenta, a research project that seeks to advance and explore the applications of Al
relative to “music and art generation” (Eck 2016).32

While Google’s interest in art and creativity sounds like good news to media art professionals,
a word of caution is necessary. One should not forget that the multi-billion dollars companies’
main source of profit is advertising: in other words, their main use of Machine Learning and Data
Mining algorithms is to better target consumers who freely give their data through the use of
their platforms. I do not place faith in techniques developed by such companies, as I doubt their
capability to be particularly revolutionary or challenging aesthetically if they are intended to appeal
to a mass consumer market. I also notice that there are severe power unbalances between artists
and these companies, often resulting in a situation where artists are effectively functioning as an
underpaid cultural currency at best, and underpaid technological labor at worst. As such, I and
other cultural critics see art and science initiatives such as the Google Cultural Institute and the
Facebook Artist in Residence program as branding strategies that also offer convenient ways to

capitalize on artists, by getting access to their ideas and expertise at a low cost.??

3.2 Machine Learning in Art Practice

Cybernetics-style adaptive systems have evolved from the 1980s onward into the science of Machine
Learning, bringing together a vast multitude of approaches ranging from statistics, stochastics and
Bayesian logic to neural and genetic computing under a common research program within Al

Machine Learning explores algorithms that are able to make inferences and predictions about the

1000-layers deep. ..
321t is unclear what they mean by “art” (as opposed to “music”) in this description.
33Read (Wilk 2016) for an in-depth analysis of the problematics raised by such initiatives.
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world by looking at large quantities of data.

Clearly, these techniques were never intended to be used for artmaking. Artificial Intelligence
in general, and Machine Learning in particular, have only recently been applied to artistic creation,
being traditionally focused on rational problem solving and optimization (Eigenfeldt, Burnett, and
Pasquier 2012; Mateas 2001). Art usually attempts to ask more questions than it tries to solve,
and does not provide the kind of objective criteria one needs to perform optimization.?* Still,
the excitement and fascination one feels while observing an agent tentatively trying to achieve the
arduous task of balancing a pole (Sutton and Barto 1998), performing acrobatic stunts with a toy
helicopter (Ng et al. 2004; Abbeel et al. 2007) or finding new ways to play Pong (Mnih et al. 2013),
show these experiences possess expressive and aesthetic potentials. But what are the dimensions
of Machine Learning algorithms that can be exploited for artistic expression, and how? As a way
to approach this question, let us examine the fundamental characteristics of learning methods and
explore ways they can be harnessed for art creation.

A Machine Learning algorithm comprises four components: (1) the category of task one is trying
to solve; (2) the model used to address it; (3) the loss function against which the model is trained;
and (4) the search or optimization procedure. These items represent interdependent dimensions of

a learning system which come to influence its outcomes — in particular, its aesthetic potentialities.

3.2.1 Tasks

As explained earlier, the field of Machine Learning is divided in three sub-fields, corresponding
to three different classes of problem: (1) supervised learning; (2) unsupervised learning; and (3)
reinforcement learning. These categories do not exist in utter isolation. Quite permeable, they often
share models and algorithms, as the research carried out in one domain can often be applied to
another. One famous example of this is the so-called “deep learning” breakthrough which involved
unsupervised learning as a key component in training neural network architectures with several

layers of neurons on both supervised and reinforcement learning tasks (Hinton, Osindero, and Teh

34Tn other words, it is not clear at all what one would try to optimize. There is no such thing as an “optimal”
work of art.
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2006).

Supervised Learning

Supervised learning — the most common category — concerns the problem of predicting an output
associated with a certain input data, based on a dataset containing examples of data points with
expected target response (typically hand-labelled by humans). Two sub-cases exist: (1) classifica-
tion, which consists in determining the correct category of a data point; and (2) regression, where
a continuous value needs to be predicted. A typical classification task is pattern recognition, for
example recognizing hand-written digits. In this case, input data (pixel values) is labeled by hu-
mans with a corresponding category (the digit that was written). Using only these examples, the
algorithm needs to learn how to recognize unseen examples correctly.

Most of contemporary applications of Machine Learning are supervised learning tasks, such as
speech recognition, spam detection, face recognition, and medical diagnosis. There has also been
much research carried on their artistic use in the past two decades, with often impressive successes,
such as in the field of music generation (Eck and Schmidhuber 2002; Boulanger-lewandowski, Bengio,
and Vincent 2012). Since supervised learning can be used to estimate probability distributions, it is
possible to train models such as ANNs on a database made up of all of Chopin’s work: the resulting
network could then be used to randomly generate a score that would sound like a Chopin piece.

Similar experiments have been done in the visual arts for generating images. Australian engineer
and digital artist Jonathan McCabe has created a piece called Nervous States (2006) consisting in
a series of prints generated by neural nets. The images come to reveal the underlying organization
of the system:

The X and Y coordinates correspond to two variables in the connections of the network;
the colour of the pixel at that point is a representation of the network’s behaviour for
those parameters. So the image is a map of system states; coherent colours show areas

of relative stability or gradual change; edges show sharp jumps in the output; marbled

swirls show complex oscillations. (Whitelaw, Wednesday, August 16, 2006)3°

35 Another research project analogous to this one that has gained a much wider audience is Google’d DeepDream
program, which produces psychedelic images based on the response of one of their deep neural network architectures
which is fed back into itself (Mordvintsev, Olah, and Tyka 2015).
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Rebecca Fiebrink, a computer scientist from Goldsmiths University, has created the Wekinator,
an open-source software that employs supervised learning as a tool for music performers and artists.
The software allows practitioners to easily train ML models to recognize gestures and map them
into any kind of contents. One advantage of the approach is that it opens up the possibility for
non-coders to create intricate relationships between movements and content in real-time.

An important work from the mid-1990s, Karl Sims’ Galdpagos (1997), uses a GA trained in
real-time using supervised learning. The piece is representative of his interest in the evolution of
morphologies and behaviors. A series of twelve computers each show a single virtual 3D organism
whose shape and movements are the phenotypic outcome of a digital genotype. Visitors interact
with the piece by choosing which organisms they prefer. The selected individuals are then used
to generate a new population of organisms using a Genetic Algorithm that mates, recombines and
mutates their digital DNA, producing offsprings that resemble their parents (Sims 1991, 1994).

Galdpagos rests on Sims’ astute application of a GA process where visitors take part in a retro-
action loop by evaluating the fitness of virtual creatures according to their (subjective) aesthetic
qualities. The artificial life forms are thus evolved so as to adapt to the audience’s tastes over the
exhibition period.

Supervised learning has thus been used for creative expression in generative art and performance-
driven works. In agent-based art that relies on the design of real-time behaviors, such as robotic
installations, it has mostly been utilized in less experimental manners, such as for computer vision,
often applying off-the-shelf solutions. These works are less interesting for the current study, as
the fact that they are based on learning does not have a strong impact on the resulting behaviors
produced. In other words, these works might simply perform better than previous non-learning

systems, but it does not change their final aesthetics in a significant manner.

Unsupervised Learning

Unsupervised learning refers to classes of problems wherein there are no precise outputs that need
to be predicted, typically referred to as “unlabeled data”. Rather, the algorithm needs to learn

“something about the data distribution”. Tasks include (1) clustering, where the system is asked
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to split the data space in different regions, or classes; (2) dimensionality reduction, where it tries to
extract the most important regularities in a distribution to represent it using less dimensions; and
(3) representation learning, where the model attempts to learn “good” representations of the data,
usually to be fed as inputs to other Machine Learning systems.

Unsupervised learning techniques are particularly interesting for artistic research and produc-
tion, as they give more space for the learning models to come up with potentially surprising solu-
tions, whereas supervised learning methods aim to achieve clear, definite goals in the most accurate
way possible; a property that is certainly useful for engineering applications, but quite restrictive
in its ability to generate novel content.

Indeed, one of the learning methods that has been the most widely used by new media artists
is an unsupervised neural network called a Self-Organizing Map (SOM). SOMs were invented in
1981 by Teuvo Kohonen — they are often called Kohonen Maps — and would become one the most
famous unsupervised learning techniques (Kohonen 1981, 2001).36 They can be thought of as a kind
of Perceptron that can be trained to learn a mapping from a high-dimensional continuous input
space to a low-dimensional, discrete output space, a clear example of a dimensionality reduction
method. In other words, it automatically creates a set of organized categories based on the data it
observes.

Many artists who claim to make use of neural networks are in fact using SOMs. Such is the case
of sculptor Yves Amu Klein, who demonstrates an explicit commitment to creating autonomous
robotic life forms. His Living sculpture project, a series of works that attempt to “bring emo-
tional intelligence and awareness to sculptured life forms” (Klein 1998, 393), directly resonate with
Burnham'’s vision.

Many of Klein’s works show adaptive features. Such is the case of Octofungi, a 1996 robotic
sculpture that relies on shape-memory alloy wire to control eight robotic legs arranged in a circle.
The movements of the robot are defined by the interaction between the position of the legs and
the value of eight photocells that measure incoming light from all directions. The data from both

legs and photocells is fed into a SOM which autonomously extracts regularities from the input data

36Kohonen, which I briefly introduced in section 3.1.6, is a good example of a scientist whose research in connec-
tionist adaptive systems, shelved during the AI Winter, would finally be recognized during the 1980s.
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space and chooses to activate one of the eight legs as a response. The SOM thus learns from its
environment, adapting to it in real-time.

Other works from Klein’s Living Sculpture series which make use of SOMs, include Scorpibot
(which was the artist’s first attempt at using them), The Pods, Bella, and Flezicoatl. Klein loosely
refers to them as “neural nets” which is somehow misleading since, as I pointed out, the expression
does not refer to a specific technique but is rather an umbrella term for a large group of artifi-
cial models that try to achieve adaptive properties by reproducing biological neural networks on
computer systems.

Nicolas Baginsky also uses the term “neural nets” interchangeably for SOMs when describing his
piece The Three Sirens (1992—2005), a robotic music band who play improvisational rock music.
The band consists of three robots: a slide guitar player, a bassist and a drummer. The guitarist and
the bassist use SOMs to direct their actions, playing live music in response to the sound environment
they generate in real-time. Since the sound environment is largely influenced by their own playing,
they are also entangled in a feedback loop that runs through their bodies and their environment.
A particularly fascinating aspect of the piece is how the robots have allegedly evolved through a

number of years as the connections of their SOMs were preserved between performances:

When the robot first started playing in december 1992, the six neural network [sic]
that control the machine’s behaviour were randomly initialised. Today there are several
different sets of networks available for different modes of operation (different speeds
and tunings). All these sets are descendants of the primal neural nets from 1992. This
means that the robot system now has the experience of about ten years of playing. Not

constantly but regularly. (Baginsky 2005)

Quite interestingly, these systems use the self-organizing properties of SOMs as part of a decision-
making process, which is in counterpoint to what these models were originally designed for. Their
ability to organically remap their inputs into outputs in a meaningful way seems to be effectively
used by these artists to generate novel behaviors that is both organized, yet definitely nonhuman.
Whereas this particular approach of using unsupervised learning to control an agent-based system
is an original, creative hijacking of the technology, the field of ML has developed a distinctive

approach for training agents.
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Reinforcement Learning

Reinforcement learning (RL) (c.f., section 3.2.1) tries to address problems involving an agent that
attempts to take actions in an environment in order to maximize its reward over time (Sutton and
Barto 1998). The agent learns by taking actions and receiving positive or negative feedback from the
world through rewards. A reward is a single-value information unit given to the agent in response
to his state or actions. Following Holland’s definition of adaptation, the goal of a reinforcement
learning agent is to modify its inner structure in order to maximize its performance — represented
as the rewards it collects over time — as it evolves in the environment (Holland 1992).

The field of Reinforcement Learning (RL) emerged in the late 1980s as the result of a coalescence
between behavioral psychology, optimal control theory and dynamic programming. In reinforcement
learning, agents evolve inside an environment defined as a discrete time-based stochastic control
procedure known as a Markov decision process (MDP). In this procedure, an agent takes actions
in the environment based on what it observes. Each action modifies the environment, yielding a
new set of observations for the agent as well as a single-valued reward feedback. The goal of the
agent is to maximize its rewards over time. In order to do so, it usually proceeds by trial-and-error,
trying to infer what is the best course of action to take in a given context based on rewards and
punishments received in the past.

An example of a Reinforcement Learning technique is Q-Learning (Sutton and Barto 1998, 148),
a procedure in which the agent bases its decisions on an estimator function called a Q-function.
This function takes as parameters both the observation s and an action a and produces an estimate
of the expected reward the agent will get for taking action a in context s:

Q(s,a) = expected reward for taking action a given observations s

After each action taken, the Q(s,a) function is slightly adapted by the agent to give a better
approximation of the expected reward in the future. There are a certain number of ways the agent
can use that information to choose the actual action it is going to take. The way the agent uses
the Q-function to choose its actions is called a policy. The most obvious policy is just to take the

action with the maximum Q-value:
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a = argmazq Q(s,a’)

This is what we call a greedy policy. However, remember that the @Q(s,a) function is learned
and thus, it is not the actual expected reward, but rather, an approximation of it based on what
the agent has been observing in the past (i.e., in the state-action pairs it went through). A purely
greedy policy favors exploitation of what the agent already knows, which is done at the expense
of exploration. Concretely, greedy agents will tend to get stuck in the same, safe zone where they
started, because they have not been given a chance to try out different things (i.e., to wander inside
the whole state-action domain).

To alleviate this problem, which will more often that not result in sub-optimal behaviors, one
has to introduce some exploration in the policy. A simple way to do this is to let the agent be
greedy most of the time but, once in a while — say, with a probability of ¢ — let it take a random
action. This variation on the greedy policy is called the e-greedy policy and is the one used most
frequently in reinforcement learning. This is due both to the simplicity of its implementation as
well as to its surprising efficiency in allowing the agent to converge to a good solution in most
situations.

In their 2014 installation Zwischenrdume, artist Petra Gemeinboeck and computer scientist Rob
Saunders looked at the live adaptative performances of robotic agents. The robots are “sandwiched”
between the gallery wall and a temporary wall. Each one of them is equipped with a motorized
system that allows it to move vertically and horizontally, covering a specific region of the wall.
The robots are also equipped with a puncturing device that allows them to make holes through
the surface, as well as a camera and a microphone that allows them to sense their environment.
The system also give robots the ability to extract features from the camera and from the audio
signal. It combines all this information using both a Self-Organizing Map to detect similarities
between images, and a Reinforcement Learning program that tries to “maximise an internally
generated reward for capturing ‘interesting’ images and to develop a policy for generating rewards
through action”. The level of interest in the described system is based on a measure of “novelty
and surprise” where “‘novelty’ is defined as a difference between an image and all previous images

taken by the robot” and “‘surprise’ is defined as the unexpectedness of an image within a known
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Figure 17: Schematics of the Reinforcement Learning feedback loop. At each step of the process,
the agent takes an action in its environment. In response to this action, the environment returns
a set of observations as well as a reward measuring the performance of the agent. The goal of
the agent is to find an optimal policy (i.e., a decision mechanism to assign appropriate actions in
response (o observations) that allows it to maximize its rewards over time.



situation” (Gemeinboeck and Saunders 2013, 217).

An interesting aspect of the work is the relationship that is established between robots and
audience. As they dig holes through the walls, the curiosity-motivated agents become an “audience
to the audiences [sic] performance”. It is thus “not only the robots that perform, but also the
audience that provokes, entertains and rewards the machines’ curiosity” as the “robots don’t only
respond or adapt to the audience’s presence and behaviours, but also have the capacity to perceive
the audience with a curious disposition.” (218)

Canadian artist, musician and Al researcher Stephen Kelly, one of the collaborators on Vessels,
has produced a number of experimental works using Genetic Algorithms and Genetic Programming
(GP). Genetic Programming is a particular approach to GAs where the individuals that get evolved
are instances of computer programs. In a typical GP application, populations of such programs
are generated, tested on a problem, and then selected based on their performance. The fittest
candidates are used to generate new offsprings using different genetic manipulations. Hence, Genetic
Programming is considered a form of policy search, where the agents’ behaviors are evolved directly
based on their performance over a given task — as opposed to wvalue search methods such as Q-
learning where agents are rather made more efficient based on the adaptation of a value function
that tries to estimate what is the best action to take in a given context (Grefenstette, Moriarty,
and Schultz 2011).

Kelly’s Open Ended Ensemble is an ongoing project involving physical, sound-generating agents.
In the current version (labeled Competitive Coevolution), two robotic probes move along a fluores-
cent light fixture, trying to find the region with the lowest electro-magnetic radiations.

The agent’s behaviour is adaptive, subject to an evolutionary process in which a random
population of computer programs slowly evolve, eventually achieving enough control of
the robotic probe to coax its movement away from the source of radiation and into
silence. Meanwhile, the light fixture would prefer to maintain the drone, and slowly
evolves a strategy of its own, learning to move the lights and trap the probe in regions of

strong radiation. An arms race ensues as the two competing forces interact and coevolve,

akin to predator/prey or host/parasite relationships in biological systems. (Kelly 2016)
Kelly’s strategy, in this particular version, echoes my own approach for staging agents with
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Figure 18: Open Ended Ensembles (Competitive Coevolution) (2016) by Stephen Kelly. Hamilton
Artist Inc, Hamilton, Canada. Image courtesy of the artist. Photo by Caitlin Sutherland.

conflicting goals, such as in Drift (2007) (solitude vs company) and Fifth Absence (2011) (energy
need vs desire of shade). The agents in Open Ended Ensemble have an imperfect control over their
movements, and their observations are limited, which places them into a partially unpredictable
environment.

The artist reported that one of the biggest challenges in creating this work was the fact that
the plastic, visual and audio components of the piece were, in his opinion, taking much more
place in the aesthetic space of the piece than its behavior, obscuring the trial-and-error process.
This remark resonates with my own observations working with adaptive agent-based systems in
art. It is not clear at all how a learning behavior can be observed or felt by the audience while
integrating it as part of an experience that manifests through different media in the creation of
a global experience. I have experienced similar difficulties working on projects using RL such as
my underwater installation Plasmosis (2013) and N-Polytope: Behaviors in Light and Sound After

Iannis Xenakis, which is described in more detail in chapter 6.

3.2.2 Components of a Machine Learning Algorithm

Parallel to the category of task they are designed for, Machine Learning algorithms can be qualified
by the interoperability of four constituents: (1) the model; (2) the optimization procedure; (3) the

evaluation function; and (4) the data. The optimization process gradually improves the model
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based on its performance over the data using an evaluation function (Alpaydin 2004, 35-36). This
is roughly true for each kind of task, with many variations within the kinds of techniques that are

suitable for each of these components.

optimization
procedure

evaluation
function

. .
.. .
......
.................

Figure 19: Relationship between components of a Machine Learning algorithm. The optimization
procedure trains a model over a set of data/examples using an evaluation function that measures
the performance of the model.
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Models

Models in Machine Learning refer to the computational structure that gets modified through learn-
ing. The best way to think of a model is as a function that tries to approximate as close as possible
a distribution of data, based on a sample of that distribution (the dataset). The model contains
free parameters that are to be adjusted by the training algorithm. For example, in the Multi-Layer
Perceptron, the parameters are the “weights” or “synapses” that connect the neurons with one
another. Other models include decision trees, Bayesian networks, Support Vector Machines and
nearest neighbors models. In a GA, the model is the function that associates DNA strings with a
phenotype, while the chromosomes are the free parameters to adjust.

Models are the object of important debates in the field of Machine Learning, being the defining
flagships of different research strands. However, when it comes to artistic works, they are possibly
the least explored dimension. As was expressed earlier, most adaptive artworks involve a very re-
stricted set of models, which happen to be among the most easily understandable and applicable
ones (GAs and SOMs). This most likely has to do with the fact that scientists and artists have
different goals and expectations. To put it simply, an apparently small improvement in the perfor-
mance of a model can be seen as revolutionary from a scientist’s perspective but will not change
much in terms of how it affects the experience of an artwork.

Nonetheless, there are at least three ways in which models can affect artistic outcomes. First,
the nature of the model is often an important part of the concept of a piece: the imaginary space
opened-up through the use of neural nets differs conceptually from that of evolutionary computation
or decision trees. For example, Sims’ Galdpagos plays with the richly evocative nature of evolution,
allowing the user to take part in a story of genetic adaptation as the godlike subject that runs
the natural selection process. Ben Bogart’s installation Dreaming Machine #2 (2009) and Ralf
Baecker’s Mirage (2014) both involve neural networks in pieces about memory and dreaming —
two themes that lie at the center of research on neurology that directly inspired computer-based
connectionism.

Secondly, models have specific structures that allow different forms of “hijacking”. Chapter 4
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presents an artistic strategy whereby a Genetic Algorithm model is used in a way utterly different
than what it was designed for. Google’s DeepDream is a good example of a creative approach that
employs specific properties of a neural net to transform it into a generative device it was never
meant to be. These artistic strategies usually take advantage of an accidental feature of a model,
diverting it out of its habitual or intended use. It requires a good comprehension of the model
and/or an experimental approach.

The third process by which models can impact artistic works is more subtle and has not been
the object of serious analysis. It has to do with the fact that different models will yield, or afford,
different kinds of behaviors. The variety and types of behavioral strategies that the model allows,
and the “smoothness” — or “abruptness” — in the evolution of these strategies during learning,

are examples of how models can affect agent aesthetics.3”

Optimization Procedure

The optimization procedure — also called search or training algorithm depending on the context
— changes the parameters of the model in an attempt to improve its responses over time. Different
kinds of such procedures exist, each with their own advantages and domain of application. For
example, there is a vast amount of research on training algorithms for neural networks, using
different optimization approaches such as Stochastic Gradient Descent, Genetic Algorithm, and
simulated annealing.

Most optimization algorithms exploit the Cybernetics notion of negative feedback: in response
to the perceived error yielded by its actions, the organism adjusts its inner structure in a timewise
manner, step by step, moving towards an optimum. Whereas many cyberneticians were interested
in the process itself, for scientists working in the field of Machine Learning, optimization is a means
to an end. The principal goal is to train a system that will perform well on a particular task
once it has been optimized. What happens before that, the behavior of the system as it gets there,
is considered irrelevant. Conversely, it is what is probably the most relevant to an aesthetics of

adaptive behavior.

37The advantages and disadvantages of neural nets, as opposed to GAs and other techniques such as fuzzy logic
and Support Vector Machines, is a broadly debated topic in the field of Machine Learning.
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The learning process can typically be fine-tuned using a set of meta-parameters. For example,
most optimization methods involve the use of a learning rate parameter which represents the speed
at which the system moves towards a local minimum. There is, however, a trade-off: high learning
rates will get models to converge faster, however, they will often yield poorer results; lower values
will take more time but result in a finer model. A common way to solve this trade-off is to start
with a larger learning rate and slowly decrease it over time.

Another example is the exploration vs exploitation dilemma in Reinforcement Learning (Sutton
and Barto 1998, 4). When an agent moves in a space searching for the best strategy to maximize
its reward over time, it needs to be able to both exploit its current knowledge (by making decisions
it thinks are going to yield good rewards) and explore new avenues (so as to avoid getting stuck in
a region of the space that yields poor rewards). Exploration is usually more chaotic and random,
while exploitation is targeted and greedy. In a typical RL setup, agents will start by exploring and,
over time, be tuned to favor exploitation as they become more efficient in accumulating rewards.

The agent’s tendency to favor exploration over exploitation is usually represented by a single
parameter. For example, in one of the most commonly used learning policies, called e-greedy, a
parameter € between 0 and 1 represents the probability that, at any given step, the agent will choose
a completely random action (if not, then it will choose the action it believes will yield the highest
return, hence the name “greedy”) (28). Altering ¢ can be used as an aesthetic trick in agent-based
systems, allowing the shaping of behaviors in real-time, moving them between chaos and order.
This strategy was applied in the immersive installation/performance piece N-Polytope (2012), for

the construction of live generative behavioral patterns, as described in section 6.3.4.

Evaluation Function

The evaluation function measures the performance of the model in completing its task. In Super-
vised and Unsupervised learning, it is usually referred to as the loss function or cost function. In a
classification task, for example, the category predicted by the model given an example to classify
is compared to the expected target category: the more the model misses the target, the larger the

loss. In Reinforcement Learning, the evaluation function is called the reward function, while in
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Genetic Algorithms, it corresponds to the fitness function.

Among the three dimensions of a Machine Learning algorithm, the evaluation function is prob-
ably the one that is the most readily useable by authors. This is because it has been designed
specifically for the purpose of bringing human input into the equation. Models and optimization
procedures are meant to be rather agnostic: the evaluation function determines the kind of “prob-
lem” one tries to solve. However, the approach in art completely differs from that of science. While
scientists use evaluation functions as objective criteria for the learning algorithm to solve, artists
typically use the evaluation function as a tool for generating self-organizing behaviors, subject to
their own authorial control. In other words, for scientists, the evaluation function represents the
goal they aim to achieve, without any care for the way it is reached (i.e., the goal is more important
than the process to reach it), whereas for artists the relationship between the evaluation function
and the goal (which is to generate interesting behaviors) is indirect (i.e., the process is the goal).

Artists can thus play with evaluation functions and observe how the agent responds. An eval-
uation function can also be learned or attributed by another agent. Finally, evaluation functions
can be interactive, with either the artist or the audience replacing the function by directly giving
an evaluation of the system’s performance. In the case of evolutionary computation, this tech-
nique is known as an Interactive Genetic Algorithm (IGA), an approach first proposed by Richard
Dawkins (Dawkins 1986).

Karl Sims’ Galdpagos (1997), which was presented earlier in section 3.2.1, is one of the most
renowned examples of the use of IGA in an interactive installation. Here, visitors are asked to
select their favorite artificial 3D creatures, whose genetic code is used to create the next generation
through mutations and crossovers. Core to the work’s aesthetics is its participatory nature, engaging
audiences in the production of novel forms through a playful and intriguing experience.

The Fifth Absence (2011) is another example of how an evaluation function can be used poetically
in the generation of an artificial behavior. As described earlier, the work involves a robotic agent
immersed in a behavioral conundrum through the implementation of a reward function precisely
designed to generate it. The agent in this artwork is forced to discover, through trial and error,

a strategy that will allow it to match its desire to avoid looking at light sources with its need to
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get solar energy. The slow-paced behavior of the agent, who moves about once every 2—-3 minutes,
places it in a different category than Galdpagos in terms of aesthetics. Like most other interventions
in Absences, this is a very conceptual piece, as the shape of its behavior can not be perceived in

real-time by human subjects and thus needs to be imagined by the audience.

Data

Data is an often overlooked, yet crucial dimension to consider when thinking about adaptive behav-
iors, especially in an artistic context. There are practical concerns when dealing with data encoding,
as well as challenging issues that arise when dealing with high dimensional spaces, such as is the
case with image or speech recognition, which are largely beyond the scope of this dissertation.
The first thing to consider in regards to data is the kinds of inputs and outputs that will be
fed into the system — in other words — what the agent will be able to observe, and how it will be
able to respond to these observations. In order to be effective, these inputs and outputs need to
be carefully chosen to afford the kind of experience the artist has in mind. Moreover, there needs
to be a way for the agent to make inferences, otherwise no learning will happen. For example, a
system that can only detect light cannot be asked to learn about the sounds made by visitors.
The set of sensors/observations/inputs and actuators/actions/outputs, and the way they are
embodied in the adaptive physical devices that are staged in an agent-based artwork, possibly
constitute the most important decision an artist has to make in the creative process, as it will
define the kind of space in which the agent can evolve, the sort of behaviors it can afford.
Secondly, it is self-evident that the data distribution from which the examples are selected
has an important influence on the reactions and establishment of the system’s behavior. One of
the most dreaded issues in Machine Learning is overfitting, a problem that arises when a system
estimates “too perfectly” a specific dataset, thus becoming less efficient at making predictions on
unseen samples (i.e., taken outside of the training dataset). While overfitting is a plague for data
scientists, it might actually be exploited creatively by artists, by hand-picking data (such as by

creating a constrained environment) in order to encourage a specific response in the system.
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Other Considerations

Both from a scientific as well as an engineering perspective, Machine Learning techniques are simple
in spirit, yet extremely complex when it comes to details. Many elements can influence the success
or failure of a particular algorithm on a particular problem, and much energy is spent in the field
to compare strategies and try to extract general principles behind learning.

The biggest challenges are related to issues that arise when dealing with high dimensional data,
which becomes the case when dealing with image or speech recognition. These difficulties mainly
concern questions of generalization, that is, the problem of training a model on a specific set of
examples so that it becomes good at making predictions when faced with examples taken outside
of that dataset. An important conceptual issue is known as the curse of dimensionality. It spans
many unique problems that arise when dealing with high-dimensional data. Omne of the most
fundamental consequences of the “curse” is that the number of free parameters (which amount to
the representational power of the model) need to be tuned according to both the dimensions of the

input space and the size of the training database.3®

(a) Linear model (e.g., percep- (b) Nonlinear model (e.g., (c) Nonlinear model overfitting
tron). MLP). the data.

Figure 20: Example comparisons of how different kinds of model classify data points in a two
dimensional space, including a case of overfitting.

It is largely beyond the scope of this dissertation to give a detailed account of these theoretical
concepts. However, artists should be aware that these techniques require at least some basic knowl-

edge if one wants to be able to manipulate them as creative tools and material. Unfortunately, there

38The curse of dimensionality is directly linked with issues of overfitting and its opposite, underfitting.
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exist almost no resources at the moment specifically dedicated to teach artists about ML,? and

most of the tutorials require at least some degree of knowledge in mathematics and programming.

3.3 Conclusion

The history of computational synthetic agents after the post-WWII era runs across several disci-
plinary grounds. In this chapter, I examined this history through consideration of the notions of
adaptation and learning, mainly from the point of view of media art history and computer science.

A few features of these histories stand out, and need to be highlighted. Tensions between
opposing ways of thinking about body, mind, life, and intelligence act as the backdrop for these
historical markers. Computationalism — the concept that cognition is the same as computation,
that software precedes hardware, and that the Turing test is decisive in determining if an agent is
cognizing or not — is central, and has been espoused in particular by symbolic, “good old fashioned”
AL Opposed to this computational theory of mind are views that argue for the importance of
the body in the performance of a cognizing system. Somewhere in the middle, are connectionist
approaches, which claim that intelligence is all about learning subsymbolic, statistical relationships
between the agent and its environment.

Cybernetics had a significant influence on the evolution of contemporary art in the 1960s.
Thinkers such as Roy Ascott and Jack Burnham explained the transformation of art in these
years as a displacement of the aesthetic locus from objects to processes, and described the art world
itself as a flow of information and behaviors between a multitude of systems.

Adaptive devices were central to these visions. However, as the sweeping influence of rule-
based AI from the 1960s to the mid—1980s pushed away alternative approaches, it seems that the
importance of adaptive and learning systems in contemporary media art was equally diminished.*°
Still, there remains a noticeable strand of artworks based on learning agents that runs through

history, dealing with similar questions and facing similar challenges.

390ne promising initiative is a book in preparation by computer scientist and artist Gene Kogan, in collaboration
with designer and artist Francis Tseng (Kogan and Tseng 2016).

40As we will see in chapter 5 , in the 1980s-1990s, artists seemed to have moved away from Al towards the field
of Artificial Life.
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In the second part of the chapter, I examined Machine Learning algorithms as described in
scientific literature, in an effort to reveal their fundamental mechanisms, with the objective of
bringing out their aesthetic potential. I first gave an overview of the three different categories
of tasks that can be addressed by ML algorithms: supervised, unsupervised, and reinforcement
learning. Secondly, I described the different components of such systems and how they interact.
In a typical ML algorithm, an optimization procedure is used to train a model over data using an
evaluation function (Alpaydin 2004). I provided several examples on how these different elements
can be, and have been, exploited by artists working with adaptive agents.

These characteristics are not only important for understanding how such methods might have
aesthetic repercussions, but also demonstrate how difficult it is to seamlessly move between the
lower level of choice of algorithm (or technique) and the higher phenomenological level of aesthetic
experience — something that I will pick up in the next chapter.

A crucial consideration is that ML algorithms are designed for optimization, which makes their
use in art counter-intuitive. Yet, there are multiple ways in which artists can appropriate these
techniques by doing what they do best: diverting the technology from its targeted application.
There is no such thing as the “best” or the “most aesthetic” behavior for a computational agent,
therefore there exists no objective evaluation for it. Yet, for example, it is possible for artists to
“toy with” the evaluation function of a learning system as a way to generate effects, or to use the
fundamental properties of a model as a conceptual tool, or to choose the training dataset carefully
to produce specific content.

This set of tools allows one to better understand agent-based works such as the Absences series.
However, one of the characteristics of these works is that they were designed for the outdoors, with
no intention of being shown in front of an audience, aside from their documentation. What happens
when an adaptive agent-based installation is presented in front of a human audience? What effects
are generated? How does the public react to such behavioral patterns?

The next chapter describes a collaborative robotic work that was created between 2010 and
2015. Called Vessels, it involves a fleet of small autonomous water-dwelling agents, which create an

emergent, social behavior through their adaptation to their milieu and their peers. The piece, which
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can be shown either indoors or outdoors, allows the audience to directly observe their evolution
as they respond iteratively to their ecosystem. The question thus remains: what new kinds of
aesthetic paradigms do adaptive systems produce or generate in human perceivers, who themselves

are inexperienced in regards to the behaviors of such nonhuman agents and processes?
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Chapter 4

Vessels

Empty your mind, be formless, shapeless - like water. Now you put water into a cup,
it becomes the cup, you put water into a bottle, it becomes the bottle, you put it in a

teapot, it becomes the teapot. Now water can flow or it can crash. Be water, my friend.
— BRUCE LEE

November 13, 2015. The sun is setting upon the solemn campus. In front of the Law School,
the Goddess Athena opens her arms to the “Nouvelle Cité”, heritage of the 1960s French marxist
revolution. Paris was attacked yesterday by groups of armed men. But we are in Strasbourg, and
the turmoils of last night have already settled, though a spectre of this violence seems to be walking
among us.

A woman asks if the robots are there in memory of the victims. She explains that she lives
in one of the condo towers in front of the fountain and that she noticed, from up there, the slow
oscillation of colored lights on the water. People have gathered on the eastern side of the basin,
where the wind was gently pushing the bots. A small grouping of the robots is slowly flickering
in greenish blues; over there, three orange ones are hopping, moving in short, erratic bursts, their
motors roaring like a voice.

There, on the other side of the fountain, a single purple one looks like it’s slumbering, it’s pale

color slowly undulating. Parents are watching their two kids playing around it, gently pushing it
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when it reaches the border.

Insect sounds, responding to one another, like a choir of electronic crickets; whispers coming
from the audience, as new groups of spectators gather around the place.

A gust of wind blows, pushing them away. By now, menacing clouds have also appeared: pink
and orange, tinted by the smog-drenched light of the setting sun. Lighting bolts flash over the
horizon: a storm is coming.

Fading colors.

The purple one has reached the rest of the group. All of a sudden, it starts squeaking now like
a fax machine. Three of them respond, then more. Binary codes echoing through space, a ballet
of colorful beings, all converging together as the first drops of rain fall from the sky. Slowly, their
color changes, a new community is formed as the territory is collectively redefined. People start
leaving, kids want to stay but they are scolded as the air gets thicker.

They take a break now. This one has started shining in a strange, whimsical way. This other
one shakes and pushes the other two. Their colors are now moving between green and orange.
Suddenly, the whole group starts moving towards the shore in unison. They bounce against the
border, pushing, as if in some kind of a panic.

Then, as quick as they began, they all stop. One of them leaves, changing back to a blueish
color. Then another one. And another. A sudden squeak, followed by screams of noisy binaries:
they all split up.

The clouds have passed. But everybody’s gone.
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Figure 21: Vessels (2015), L’Ososphére, Strasbourg, France. Photo: Philippe Groslier.

This chapter examines the research and creation process behind the realization of Vessels, an
artistic robotic installation consisting of large collectives of water-dwelling mobile robots, created
as a collaboration between myself, Samuel St-Aubin and Stephen Kelly from 2010 onward. As they
move over the water’s surface, the bots engage in different forms of social interplay, influencing each
other’s behavior and appearance in oscillating movements of convergence and divergence. Moreover,
each robot perceives a specific dimension of its environment such as water quality (air temperature,
atmospheric pressure, or ambient light and sound) which influences its behavioristic character. For
example, a high temperature measured by one of the agents could make it increase its speed or give
it a preference for rotating clockwise. In turn, this individual change in behavior contaminates its
neighbors’ demeanor.

Over time, a collective behavior that is specific to the immediate environmental characteristics
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of the presentation site emerges from the agents’ socialization. The work thus acts as an organic
laboratory that responds to hidden features of the urban ecosystem by displaying emergent social
behaviors, offering the viewers a new perspective on their living milieu and a model for cultural

exploration.

Figure 22: Vessels presentation at LABoral Centro de Arte y Creacién Industrial (Gijén, Spain).
August 2013. Photo by Sofian Audry.

Here, I focus on the computational aspects of the project, in particular the use of Machine
Learning techniques. Vessels provides a valuable case study for applying the concepts developed
in the previous chapter. Specially, it highlights the different challenges faced when making use of
such techniques in behavior-based artistic works. Furthermore, the project offers an example of the
kind of aesthetic effects that can be generated through such work.

One of my intentions in creating this work had been to use Reinforcement Learning as a way

to generate different kinds of behavior in the robots. I explain how and why this approach was
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eventually abandoned for both technical and artistic reasons. In fact, it has already been pointed out
that the traditional inclination of AI towards problem-solving and optimization makes it unpractical
for creative applications (Eigenfeldt, Burnett, and Pasquier 2012; Mateas 2001). RL is particularly
challenging for artistic works because it is caught in a stark paradox: the traditional contexts in
which media art installations are produced and presented are particularly ill-suited for Machine
Learning in general, and Reinforcement Learning in particular. This is mainly due to the fact that
RL agents need to be exposed to a lot of data in order for them to learn. However, in a gallery
setting, the audience typically gives its attention to works of art for only a few minutes, which is
usually not enough for the learning process to complete.

I follow up by describing how we successfully made use of genetic algorithms by hooking into
the learning step as a way to evolve cohesive forms of behavior in real-time. GAs are the most-used
strand of ML methods employed in the creation of media art.! In Vessels, we use GAs in a very
specific manner: as a way for robots to collectively self-organize so that a form of behavioral “family
resemblance” emerges from their interaction with one another and their environment.

Following these observations, I claim that one way of using Machine Learning methods within
the context of agent-based artworks is to provide an algorithmic framework which allows for the
generation of adaptive behaviors rather than the production of an efficient solution to a definite
problem. Most learning algorithms define an iterative procedure where a model is refined at each
step towards achieving a certain goal. By hooking into this process, an artwork can reveal to the
audience the process of adaptation itself, which can be made to be artistically compelling through
its evocation of familiar behavioral patterns usually displayed by living and/or sentient beings.

The first section of the chapter describes the broad artistic goals of the project. I address issues
related to form, content and choreographic development in a decentralized collective of adaptive
agents. The second section provides an overview of the technical dimension of the work, with
some contextual insights on the practical reasons justifying the choices that were made. The third
section depicts the research-creation process, bringing in questions of methodology as well as both

practical and theoretical implications of the work. The chapter ends with a description of similar

IFor examples of ways GAs have been used in visual arts and music, see (Johnson and Cardalda 2002).
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artistic installations involving collectives of agents and analyses the affective experiences of Vessels

as reported by the audience.

4.1 Artistic Intent

Interactive media artist and theorist Simon Penny stresses the importance of establishing a rela-
tionship between the work, the viewer and the environment they share in works of art based on
artificial agents (Penny 2000). In Vessels, this interrelation is constructed from behaviors that occur
not only at the individual level, but foremost at the global, emergent level. The intention here is to
develop a kind of adaptive and distributed choreography; a social dance with no central conductor
that induces and maintains viewers’ interest by evolving constantly. My intuition is that this will
bring a sense of aliveness that will allow the audience to more intimately relate to the work, identify
with it, and ultimately to inspire the audience to reflect and question their own relationship with
their living environment and its inhabitants.

We addressed these challenges through three (3) major artistic objectives: (1) to dynamically
occupy space; (2) to create social interactions between the robots; (3) to establish a relationship
with the environment. These goals were deliberately meant to be blurry, allowing room for ex-
perimentation and creation. They are also incomplete and cannot, in themselves, fully encompass
the conceptual scope of the project. They serve primarily as anchor points and reflection axes for

supporting the creative process.

4.1.1 Occupying Space

Our general vision of the spatial disposition of robots was to create a constantly evolving mixture of
densities and colors, suggesting different configurations of both collective and individual behaviors.
Agents in Vessels operate in territories over which spectators have a global perspective. One of the
important dimensions of the work is thus the way by which the robots spread across space. The
robots must neither constitute a cloud of detached individuals that moves randomly, nor must they

be assembled in a single, static mass. Their locations and movements should be diverse such that

102



at any given time, the surface on which they dwell might display contrastive variations in density
and movements that evolve over time.

The idea of varying the ways robots occupy their living milieu is tied to one of the important
challenges described by Penny, which is to ensure that an agent’s behavior is differentiable from
pure randomness while still evoking a sense of mystery and uncertainty. Discussing his experience in
creating Petit Mal, a piece featuring a robot interacting with users, he explains that a fundamental
concern for artists is to generate “poetic richness which is clear enough to orient the user but unclear
enough to allow the generation of mystery and inquisitiveness” (Penny 2000, 441).

These considerations illustrate one of the biggest challenges in this project. The establishment
of complex rules in the system contribute to the unfathomable character of the work, but may also

come to unbalance the emergent behavior by making it indistinguishable from the purely random.

4.1.2 Generating a Social World

While the spatial distribution of robots in Vessels is related with sociability as the natural outcome
of individual inclinations, these dynamics are assuredly not the only aspects of the robots’ social
life that can be explored as evocative material. We decided early on that agents should have a way
to communicate with one another to generate different kinds of social actions and events. Following
the same idea of a bottom-up approach, we designed a very simple process involving “social acts”;
kind of atomic behavioral building blocks by which robots could interact with one another.

Social acts would be triggered by a single robot who would lead the action through three (3)
different phases: negotiation, action and release. At first, the leading agent would call for peers to
perform the action. Those receiving the call would not send any messages back but would either
ignore it or start acting as temporary followers of the leading bot. While engaged in this follower-
followed relationship, the leading bot would have the option, from time to time, to activate a social
event. Examples include following or evading the leader, spinning clockwise or counterclockwise,
blinking lights or emitting sound. Finally, the leading robot could call off the action, releasing its

followers to their own inclinations.
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4.1.3 Interlacing Identity and Environment

Social interactions between the agents evoke a sense of a community, allowing the audience to
identify with the work. A final objective of this work is to build on that bond, to offer a space for
the public to reflect upon the urban environment by rooting the agents’ identity and behavior in
the human audience’s perception of underrecognized characteristics within their own milieu.

Installing the robots in an aquatic environments is directly linked to this ambition. Water car-
ries a strong poetic evocation, being both the quintessential source of life on earth, and sometimes
providing an unfathomable, possibly dangerous territory. Ponds and harbours in the urban envi-
ronment are places of gathering and reflection: places where one can evade the turmoils of city life
to meditate, observing birds and insects moving on the surface, listening to the sounds of wind and
lapping, dragging oneself into the ripples and vortices deep below the surface. Furthermore, the
water element contributes to an impression of fragility in the robots and makes their movements
imprecise, which gives them more personality.

Robots’ reaction to their environment is guided by a simple aesthetic principle: behavior dis-
played by the community should reflect the environmental characteristics of the location, thus acting
as kind of a dynamic “signature” of the milieu. This general rule can be expressed more or less as
the result of the tension between two sub-principles, namely; (1) an identity principle stating that a
community of robots presented in a given location, showing a specific set of environmental features,
will display an emergent behavior identical or similar if it is presented again in the same conditions;
and (2) a corresponding but opposite contrastive principle pushing robots towards engaging in a
different behavior when subjected to noticeably distinct environmental conditions.

In line with our bottom-up methodology, the relationship between the agents and their environ-
ment is first and foremost expressed at the individual level. As previously mentioned, each robot is
equipped with a sensor that measures specific environmental data, such as air temperature, atmo-
spheric pressure, carbone dioxyde level, ambient light intensity or audio noise level. That specific
piece of data directly influences the personality of the robot, who adapts to it by transforming itself

each time a new measurement is performed.
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If we were to just leave things that way, then the individual robots would each come to modify
their behavior according to their own sensor; upon convergence, a robot would have the “person-
ality” of its sensor, so to speak. However, what we really want is that the community as a whole,
rather than as distinct individuals, tends towards behaviors that render the dynamic state of the
ecosystem it inhabits. The personality of an agent at any given moment thus needs to be tainted not
only by their own environmental measurements but also by that of other agents. As I explain later
on, this will be made possible through adaptive strategies. The relationship between the robotic
society and its environment is thus assembled through the constant negotiation between individual
and collective identities.

The cohesive inhabitance of a space, complex socialization, and an embeddedness in the envi-
ronment; these three encompassing goals have provided a supportive frame for the development of
Vessels. In the next section, I lay the groundwork for an in-depth examination of the research-
creation process by broadly describing the technical components of the work in relationship with

these goals.

measurement

Figure 23: Schematic representation of the relationship between robotic agents among each other
and their environment. Agents collect different measurements from their environment and exchange
this information organically through socialization.
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4.2 Technical Overview

The artistic intentions outlined in the previous section are intertwined with practical considerations
about the physical, hardware and software dimensions of the robots. Though this research focuses
mainly on the algorithmic aspects, I want here to give a sense of the agents’ capabilities by taking
a peek at their physical constituents.

Vessels’ robots were designed iteratively over the course of several years, with most of the work
occuring as part of short research and production residencies in different artistic institutions. Some
points about the context of research-creation are worth mentioning in order to better understand
the choices that were made.

First, the fact that we operated under tight budgetary constraints — at least in comparison with
swarming robotics projects of comparable scope in science or engineering labs — had a tremendous
impact on the components we chose to equip the bots with. In general, we favored cheap solutions
that “do the job” and whose imprecision nevertheless added unpredictability to the piece, giving
robots a wider range of behaviors. Simon Penny expresses a similar idea when talking about the
“under-engineering” of his work Petit Mal, explaining how his approach of favoring cheaper solutions
which are “70% reliable” over more expensive ones that might be “90% reliable” actually expands
the “field of possibility” (Penny 2000, 401) by adding noise to the system, thus giving it more
personality.?

These budgetary constraints forced us to carefully choose each component installed on the robots
in order to give them enough capacity to be able to achieve the artistic goals while keeping costs and
complexity low. We mainly focused our choices towards components that would give our agents;

(1) a sensorimotor “body” that allowed them to have some minimal awareness of their surrounding

2An important difference between our approarch and that of Penny is that we compensated for a lot of the
hardware’s lack of robustness through software, whereas Penny, whereas Penny prefers to work with the material
constraints rather than trying to overcome them with algorithms. His main critique is that “fixing in software”
actually reduces the range of possibilities to be explored artistically. However, Vessels differs from Petit Mal in
a number of ways, the most important one being the number of agents: whereas Petit Mal consists of only one
robot which could be fine-tuned with a hands-on approach, in Vessels the large number of robots introduces a lot
of variability, thus the degree of robustness needed in the components is more critical, as fine-tuning each robot
would be too time-consuming. One of the favorable effects of developing these software algorithms is that our team
contributed a lot of open-source code to the community, as we favored simple, low-cost solutions over off-the-shelf
products.
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environment and also to move and avoid obstacles; and (2) a variety of media-generation means to
express a wide range of affects.

Second, it is worth mentioning that we went through several mock-ups and prototypes to ar-
rive at the current design, and that there still remained space for improvement. At each step, we
have validated certain items and made corrections in interaction with the different project partici-
pants. For example, software development at every step would reveal problems related to hardware,
suggesting changes in the electronics components and circuit in the next iteration.

This section gives an overview of the technical aspects of Vessels robots while drawing links
to the artistic intentions and to practice. I explain the propulsion and steering system, light and

sound components, environmental sensing system and the infrared messaging system.

4.2.1 Locomotion and Steering

The propulsion system was the first element that we explored when we started working on the
project. The vast majority of current research on robotics focuses on ground robots that move
on wheels, or on flying devices (i.e., drones). There are hardly any instances of projects involving
robots that move on water or other sorts of liquid.3

During our first residency at the CFAT in August 2010, we started experimenting with different
kinds of propulsion and directional systems. We came up with an air propulsion engine using a pair
of computer fans on servo-motors.* However, the fans were not powerful enough to fight against
the wind and water current, while their large size made the robots less hydrodynamic.

For our second prototype, we opted for an alternative design involving a pair of stationary
underwater pumps, which proved to work quite well. We also provided each bot with a magnetic
electronic compass, allowing them to readjust their propulsion to stay on course and thus avoid
spinning — an idea which proved to be more difficult to implement than it looked, as we shall

see. We added an extra infrared distance sensor to the robots to give them a better sense of their

3During one of our public presentations at LABoral in 2013, an engineer working for one of the major petroleum
companies in Spain left me a business card. He was interested in our design as a way to explore pipelines and detect
cracks and other weak points.

4We came up with that idea originally because we feared underwater propellers could easily get stuck in aquatic
weeds.
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surroundings, facilitating obstacle avoidance among other things.

4.2.2 Expressive Gear

Some of the onboard components are specifically there to provide the robots with ways to manifest
their personality, state, emotions, etc. to spectators. The most evident of these components is
the color module, activated through three (3) RGB LEDs that allow the agents to display various
behaviors or states by means of colored light.> A special routine running in parallel to the main
code allows smooth color transitions and oscillations, such as a rapid fluctuation between red to
blue.b

The robots are equipped with another light-emitting component which adds to the range of
expressiveness. After the first prototype, Samuel suggested that we add a series of eight (8) bright
white LEDs on the periphery of the printed circuit board. Unlike the RGB diodes, these LEDs can
be individually controlled using a shift register. The physical placement of these light sources on
the board opens up another layer of possibility: for example, we could now use these white LED
lights to give a sense of direction as the robots are navigating on water.

Additionally, robots are equipped with a separate circuit board with its own, on-board 8-bit
microcontroller and a small amplifying and filtering circuit, allowing the robots to generate 8-
bit sounds at 16384 Hz. As I explain in the next section, this soun<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>