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Abstract

Machines That Learn: Aesthetics of Adaptive Behaviors in Agent-based Art

Jean-Sébastien Senécal, Ph.D.

Concordia University, 2016

Since the post-war era, artists have been exploring the use of embodied, artificial agents. This

artistic activity runs parallel to research in computer science, in domains such as Cybernetics,

Artificial Intelligence and Artificial Life. This thesis offers an account of a particular facet of this

broader work — namely, a study of the artistic practice of agent-based, adaptive computational

artistic installations that make use of Machine Learning methods. Machine Learning is a sub-field

of the computer science area of Artificial Intelligence that employs mathematical models to classify

and make predictions based on data or experience rather than on logical rules.

These artworks that integrate Machine Learning into their structures raise a number of impor-

tant questions: (1) What new forms of aesthetic experience do Machine Learning methods enable

or make possible when utilized outside of their intended context, and are instead carried over into

artistic works? (2) What characterizes the practice of using adaptive computational methods in

agent-based artworks? And finally, (3) what kind of worldview are these works fostering?

To address these questions, I examine the history of Machine Learning in both art and science, il-

lustrating how artists and engineers alike have made use of these methods historically. I also analyze

the defining scientific characteristics of Machine Learning through a practitioner’s lens, concretely

articulating how properties of Machine Learning interplay in media artworks that behave and evolve

in real time. I later develop a framework for understanding machine behaviors based on the mor-

phological aspects of the temporal unfolding of agent behaviors as a tool for comprehending both

adaptive and non-adaptive behaviors in works of art. Finally, I expose how adaptive technologies

suggest a new worldview for art that accounts for the performative engagement of agents adapting

to one another, which implies a certain way of losing control in the face of the indeterminacy and

the unintelligibility of alien agencies and their behaviors.
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Preface

My fascination for nonhuman agencies goes back to my childhood. In the first seven years of my

life, I was an only child, and I believe that I was uniquely good at it. Being very much so a calm

and solitary kid, I did not need nor seek out friends of my age, as I seemed to get along better with

adults and things. One of my favorite activities, besides reading books and fiddling with LEGO

blocks, was to play board games. While the games I enjoyed most were meant to be played socially,

I immensely preferred to play alone, and for that to work I needed to invent an opposing player,

whom I would quite unimaginatively call “L’Autre” (“The Other”). “L’Autre” was a smart player

of course — almost as smart as I was — and he often offered a challenging battle, although he

always ended up losing, either because of bad luck or — when the die were rolling too much in his

favor — due to some bad decisions he would make in the mid-game.

Fast-forward a few decades later. Upon entering the University of Montreal in my early twenties,

I was quickly hooked by computer programming, and in particular by Object-Oriented Programming

(OOP). During my first Java class, I started building a software library for making artificial beings

as soon as I learned about class inheritance and packages, which was more of an abstract fantasy

than anything and never really achieved much. In my second year, I read an interview about

Machine Learning with Yoshua Bengio in the student departmental journal. I was immediately

excited by the idea of computational processes able to make inferences, to come up with their own

decisions, by interpreting real-life data. Machine Learning seemed to be a much more promising

approach to creating Artificial Intelligence than the kind of rule-based logic I was seeing in my

programming classes.
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I started doing research with Yoshua during the Summer, and when I finished my B. Sc. I

pursued a M. Sc. in his lab, studying neural networks applied to natural language modeling (Bengio

and Senécal 2003; Bengio et al. 2006). I was especially enthralled by the spectacle of watching the

error rate lowering during stochastic gradient descent. I imagined the neuronal connections self-

adjusting as megabytes of English sentences from the Brown Corpus was fed into the system. I

pictured the system as an artificial entity who tentatively tried to make sense of all of this text,

exploring the millions of dimensions of the error space, self-organizing both semantic and syntactic

information in a global, distributed network of subsymbolic representations.1 I always perceived

these systems as alive, in their own way, as possessing agency, years before I even know anything

about Cybernetics and Artificial Life.

When I finished my degree and was offered a pretty sweet deal for pursuing doctoral studies

in the area, I found myself in a difficult spot. I loved the work — at least, the creative part of

it — but not the environment. The science itself was fascinating, but what seemed to come with

it was less attractive: I perceived a very competitive and somewhat “macho” culture pervaded

by rampant libertarianism, techno-utopianism, and a relative lack of interest in the philosophical

and socioeconomic repercussions of the technologies we were developing. This, aligned with a

generalized absence of self-scrutiny and self-criticism with respect to the entanglement of science

with what were to me questionable endeavors such as financial computing or marketing which had

alienated me since my first day in the lab, pushed me to quit the field.

I created my first art installation in 2004 in collaboration with fellow developers and artist

Jonathan Villeneuve. The piece, which was created as part of a one-night multidisciplinary event

for emerging artists, was an interactive video work where the audience’s faces would get recognized

through the use of a homemade implementation of a cutting-edge Machine Learning algorithm,

and transformed using concave and convex distortions. It was really simple, quite silly in fact,

but surprisingly efficient in drawing people into an interactive experience. What attracted me the

1The model I studied during my Master involved a Multi-Layer Perceptron feedforward neural network with
eighty (80) hidden units, with millions of self-adjusting weights, which is relatively small by current standards. My
Thesis focused on a technique for accelerating the training of such networks using importance sampling. Even with
that acceleration method, in those years, it needed to run on a cluster of 20 CPUs for weeks in order to return
results (Senécal 2003).

viii



most to the experience was how the audience engaged with the work, using it in unexpected ways,

exploiting its imperfections. That night, I decided I wanted to become an artist. In the coming

years, I would, indeed, dedicate myself fully to this enterprise.

Changing disciplines is somewhat similar to moving into a new country. You need to learn new

languages. You discover a lot about yourself through another culture’s eyes. And yet, you never

ever really feel at home anywhere anymore. An emerging artist in the mid–2000s, I was lucky to

find in Montreal’s blooming new media art scene an extremely welcoming and generous community.

At first I just wanted to put my knowledge in Machine Learning to use in my work, but this

in turn constrained the possibilities for me to explore artistically, at a time where I needed, on the

contrary, to “open up”. So I decided to avoid using Machine Learning in my pieces, because I found

that it limited my perspective as an artist. For more than five years, my brain had been trained

to do science: now I needed to rewire it to be more of an “artist’s brain”, or maybe to develop

another part of it. It was rather schizophrenic in a way, and it took me years to develop another

way of thinking and being. Eventually these two realms inside my psyche, which were separated at

first, came to reconnect in ways that are hard to explain, the result of which is what makes me feel

constantly a bit like an outsider both in art and science — like an immigrant never feels at home

even when traveling in his country of origin.

My early works consisted in artistic software-based works based on dynamic models of social

and life processes. While interactive and computational in nature, these works stemmed from

my original interests in adaptive intelligent systems and natural language processing, and were

mostly an attempt to generate a poetic representation of some aspect of reality. My work with

the Drone collective — a Montreal-based group of practictioners consisting of three programmers

(Mathieu Guindon, Julien Keable, and myself), an electronics engineer (Samuel St-Aubin) and a

visual artist (Jonathan Villeneuve) — was centered on dynamic sketches of social interactions, such

as dialogue (Vélodrame, 2005) and tourism (Travel Agent, 2005). In the web-based software artwork

CHARACTERS (2005–2006), a game based on the definition and evolution of real and fictitious

identities is put forward within the constraining framework of an online dictionary.

In 2005 I started a M. A. in Communication at Université du Québec à Montréal (UQÀM) in
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was also my first work using reinforcement learning. It consisted of an old speaker attached to a

handheld microphone. The interactive agent’s only possible actions were to stay silent or emit a

digital sound which was parameterized by a simple genetic algorithm, thus allowing an evolution

of variety.

People could interact with the system by speaking into a microphone. The interactive agent

would cycle through two different states, one where it would seek company and another where it

would try to be alone. How to achieve these two goals was left to the agent to figure out. Typically,

after a certain time, it would learn to attract spectators and respond to them using its “voice” when

it wanted company, while staying silent when seeking solitude.

My experience with Drift would bring important changes to my artistic practice of the time.

My contact with electronics and especially the Arduino platform opened up the possibility for a

new approach to art through direct interventions in real-life using small, autonomous electronics

objects rather than representing processes within the safe and artificial realm of the gallery walls.

Figure 2: Drift (2007), V2 Institute for the Unstable Media, Rotterdam, Netherlands. Photo by
Sofian Audry.

During the years to come, I would steadily move my practice towards what I call an agent-based
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practice, where in essence, my approach as an artist is to design an artificial agency. Here, “agent”

is to be taken in its very general sense, of an entity or process that is able to act in an environment

in response to its own perceptions. Moreover, these developments slowly brought back the idea of

learning, which through the project Absences (described in chapter 4) would prove to be crucial

component of my research in understanding the aesthetics of such agents.

Related to the concept of agent is that of behavior, which is understood here as the observable

patterns that agents produce beyond their physical appearance. One can see how this idea directly

resonates with computationalism, a philosophical view that understands cognitive processes as di-

rectly derived from algorithms (software) operated by the brain (hardware), and holds that human

performance is completely independent of the material substrate that implements it (i.e., the body).

But this concept of behavior need not be understood within this reductionist framework, and should

rather be embraced by considering behaviors as the perceived performance of an embodied entity

acting within its environment.

Computation is a central idea in new media, and could be perhaps the concept that distinguishes

it from other artforms. In particular, computing allow to produce another artistic medium through

the design of agents governed by algorithmic processes: an “aesthetics of behavior” (Penny 2000,

398). To make a parallel, if we compare video and photography and try to find the most fundamental

properties that differentiates them, we can say that video, as a sequence of fixed images, adds

to photography a third dimension: that of time. It does not mean that video is better than

photography, but this difference is crucial to understand how both these media work, the effects

they can create, and how to use them.

When it comes to computational behaviors, which are activated by computer algorithms, we

are faced with something slightly different than video. A video is delimited by a finite time period:

if you play it back, it will replay exactly the same sequence of images. A behavior is different:

it can play for an infinite amount of time and will never exactly repeat itself. Yet, despite the

inexhaustible nature of its manifestations, it is still recognizable by a human observer as a definite

thing. If we experience a behavior long enough, we can adapt to it, we can get to know it, and then
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the patterns will become familiar.3 Contrary to a mere record of agents’ behavioral patterns (such

as a video of birds flocking), a behavior can be affected by stimuli in real-time.

Agent-based artworks thus conjure “The Other”, an alien entity that evokes liveliness, suggesting

the emergence of novel aesthetic experiences. In seeking the creation of such experiences, I am

especially interested in the blurry and muddy aspects of these behavioral forms, the uncanny nature

that results from their imperfections, mirroring our own fragility as living beings. This might

explain why I am an artist and not a scientist: I am not after some kind of optimal path to some

objective truth, but rather, I believe in art’s potential to provide humanity with the truth of reflexive

becoming, the reflection of ourselves as imperfect and contradictory beings. Defect, faillibility, and

indeterminacy are the substance of life, and the essence of freedom.

But beyond the aesthetics of behavior lay an important question: What role do algorithms

themselves play when they are articulated through an embodied system? There is an important

assumption as the base of this research: that there is a relationship between the choice of the

algorithm governing an agent and the way this agent’s behavior is experienced by the audience. This

belief is supported by the fact that people are able to recognize behaviors beyond the appearance

of the agents they animate. For example, people recognize swarming patterns in dots moving on a

screen governed by a certain algorithm that behaves like a swarm (fig. 3).

Figure 3: Swarming dots moving on the screen according to a swarming algorithm, as described in
(Reynolds 1987). Based on code by Daniel Shiffman (Shiffman 2012).

3As a comparison, consider the behavior of speaking a natural language. While the possible combinations of
words in a given grammatical structure in a given language are potentially infinite, in such a way that it is highly
possible that the exact words that constitute this dissertation have never been written (fingers crossed!) and will
never be written again in the history of the Universe, it remains that this thesis is recognizable as English writing,
and can be understood as such by an English reader.
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Does this mean there is always and automatically a relationship between an algorithm and how

it is perceived? No. While two different algorithms will objectively yield different outcomes, it does

not mean that these outcomes will be perceived differently by a human subject. For example, two

algorithms might both generate different forms of noise, but they might be indistinguishable from

one another by a general audience; the same way, two different “flocking” algorithms might give

the same impression of “lifelikeness” to an audience without necessarily being discernable from one

another.

Does it mean that we can control the outcomes by changing the algorithm? This is the assump-

tion that this thesis makes, that it is indeed possible to do so, and that Machine Learning is a path

for accomplishing this when working with self-organizing agents evolving in the real world.

At its heart, this dissertation focuses on the challenge of harnessing aesthetic experience from

the building blocks of life, a story that keeps repeating itself, spanning different time scales in the

history of humanity. It is a story of agents called genes who have traveled through millions of years,

adjusting themselves, fighting and cooperating with others to survive through the organisms that

host them; of an ant colony finding a route to a new source of food; or of an artificial neural network

learning to pilot an automobile. It is the story of computationally evolved circuit boards that learn

to recognize sound signals using microscopic magnetic perturbations of completely disconnected

components, in ways that lay beyond human comprehension. This story is the story of all and

everyone of us, that of a child learning how to smile, move, walk, talk, and later, ride a bike, read,

make friends, step by step, through trial and error, exploring and exploiting its environment, set

on a road of becoming. It is about how our world is filled with agents that adapt to one another,

competing and collaborating in incommensurable ways that defy logical understanding. Exploring

this universal narrative — and the evocative aesthetic potentials it holds — is what I seek above

all in conducting in this research.

xiv



Contents

List of Figures xix

List of Tables xxi

Glossary xxii

Acronyms xxiii

1 Introduction 1

1.1 About my Artistic Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Scope and Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Adaptation Matters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.2 A Core Dimension of Art and Science Practice . . . . . . . . . . . . . . . . . 15

1.2.3 Art Offers Alternative Ways to Engage with Adaptive Technologies . . . . . . 16

1.2.4 Adaptation in New Media Art Theory: Filling the Gap . . . . . . . . . . . . 19

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6 Chapter Breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Absences 31

2.1 The Need for Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

xv



2.2 A Narcissistic Self-Regulating System . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Surviving in the Wild . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Adapting to Conflicting Desires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Towards Adaptive Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Towards a Practice of Machine Learning in Agent-based Art 46

3.1 Historical Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Cybernetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.2 Early Connectionist Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.3 Classic AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.4 Cybernetics and Aesthetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.1.5 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1.6 Connectionism in the 1980s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1.7 Evolutionary Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.1.8 Adaptation and Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.1.9 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2 Machine Learning in Art Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2.1 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2.2 Components of a Machine Learning Algorithm . . . . . . . . . . . . . . . . . 86

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4 Vessels 97

4.1 Artistic Intent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.1.1 Occupying Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.1.2 Generating a Social World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.1.3 Interlacing Identity and Environment . . . . . . . . . . . . . . . . . . . . . . 104

4.2 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2.1 Locomotion and Steering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2.2 Expressive Gear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

xvi



4.2.3 Environmental Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2.4 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2.5 Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.3 Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.3.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.3.2 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.4 Ecosystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.5 Experiencing Vessels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5 Aesthetics of Behavior in Agent-based Art 137

5.1 Second-Order Cybernetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.2 Artificial Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.3 New AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.4 Enactivism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.5 Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.6 Autonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.7 Emergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.8 Authorship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.9 Believability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.10 Social Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.11 Performativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.12 Behavior Morphologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.13 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6 N-Polytope 178

6.1 Xenakis, Cybernetics, and the Polytopes . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.2 Technical overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.3 Adaptive Processes in N-Polytope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

xvii



6.3.1 Drunk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.3.2 Fireflies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.3.3 Boosters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.3.4 Chasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

6.4 Control and Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.5 Indeterminacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

6.6 Art and Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

7 Conclusion 210

7.1 Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

7.2 Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

7.3 Worldview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

7.4 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

7.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

7.6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

7.7 Final Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Bibliography 226

Appendices 248

A Online Documentation of Works 249

B Images of Works 259

xviii



List of Figures

1 A sample of my early work (2005–2008) . . . . . . . . . . . . . . . . . . . . . . . . . x

2 Drift (2007) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

3 Swarming dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

4 Hierarchy of systems: living, adaptive, emergent . . . . . . . . . . . . . . . . . . . . 14

5 Waiting for the sunset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Accrochages (2008) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7 Absences (2008–2011) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8 First Absence (2008) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

9 Second Absence (2009) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

10 Fourth Absence (2009) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

11 Fifth Absence (2011) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

12 Schematics of the negative feedback loop . . . . . . . . . . . . . . . . . . . . . . . . . 51

13 Schematics of the perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

14 Linearly and non-linearly separable data . . . . . . . . . . . . . . . . . . . . . . . . . 59

15 Schematics of a Multi-Layer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . 69

16 Schematics of a genetic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

17 Schematics of the Reinforcement Learning loop. . . . . . . . . . . . . . . . . . . . . . 84

18 Open Ended Ensembles (Competitive Coevolution) (2016) . . . . . . . . . . . . . . . 86

19 Relationship between components of a Machine Learning algorithm . . . . . . . . . . 87

20 Linear models, nonlinear models, and overfitting . . . . . . . . . . . . . . . . . . . . 93

xix



21 Vessels (2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

22 Vessels presentation at LABoral (2013) . . . . . . . . . . . . . . . . . . . . . . . . . 100

23 Relationship between agents among each other and their environment. . . . . . . . . 105

24 Vessels robot in action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

25 The sound/environment board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

26 Diagram of the infrared guidance system . . . . . . . . . . . . . . . . . . . . . . . . . 112

27 Simulation: a group of robots splits and dissipates . . . . . . . . . . . . . . . . . . . 117

28 Hue scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

29 Screenshot of the simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

30 Screenshot of the simulation (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

31 Comparison of behavior from formal, adaptive, and evolutionary devices in Cariani’s

framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

32 Example temporal evolution of a first-order behavior . . . . . . . . . . . . . . . . . . 168

33 Representation of behaviors in nonadaptive vs adaptive agents . . . . . . . . . . . . 169

34 Example temporal evolution of an adaptive behavior . . . . . . . . . . . . . . . . . . 170

35 Example of the temporal evolution of an adaptive behavior going through multiple

phases of learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

36 Example of the temporal evolution of different kinds of behaviors . . . . . . . . . . . 173

37 Inverted pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

38 N_Polytope (2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

39 Screenshot of a GUI for displaying and controlling the Drunk algorithm . . . . . . . 188

40 Diagram: the uncanny nature of adaptive behaviors . . . . . . . . . . . . . . . . . . 199

xx



List of Tables

1 Number of articles containing a reference to certain terms in Leonardo (1997–2015). 19

2 Evolution of systems in Absences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Summary of Cariani’s taxonomy of devices. . . . . . . . . . . . . . . . . . . . . . . . 153

4 Orders of behavior in agent-based systems. . . . . . . . . . . . . . . . . . . . . . . . 169

5 Example reward functions for the Chasers procedure . . . . . . . . . . . . . . . . . . 192

xxi



Glossary

adaptation

property of a system to adjust its structure in order to improve its performance in its envi-

ronment

agent

autonomous entity that acts in an environment, usually in response to observations

artificial intelligence

branch of computer science that aims to reproduce intelligent behavior in computational

systems

behavior

temporally invariant form of observable events produced by an agent performing in its envi-

ronment

machine learning

sub-field of Artificial Intelligence that develops and uses computer programs that learn from

data rather than relying on explicit logical rules

xxii



Acronyms

AI

Artificial Intelligence

AL, ALife

artificial life

ANN

Artificial Neural Networks

GA

genetic algorithm

GP

genetic programming

HCI

human-computer interaction

ML

Machine Learning

xxiii



MLP

Multi-Layer Perceptron

PDP

parallel distributed processing

RL

Reinforcement Learning

SOM

self-organizing map

STS

science and technology studies

UX

user experience

xxiv



Chapter 1

Introduction

When viewed on a long enough time scale, life forms are always changing, adjusting,

producing novel responses to unpredictable contingencies, adapting and evolving

through blindly opportunistic natural selection.

– Mark A. Bedau, The Nature of Life

There is no intelligence where there is no change and no need of change.

– H. G. Wells, The Time Machine

Since the 1960s, artists have been creating bodies of work using and/or inspired by computer

technologies. In this research, I am interested in a specific branch of artistic works that make

use of artificial agents, that is, man-made autonomous systems who act within their environment

in response to what their perceptions. Examples include pioneering cybernetic artworks such as

Nicholas Schöffer’s CYSP1 (1956) or Edward Ihnatowicz’s The Senster (1970—1974); more recent

works include Bill Vorn and Louis-Philippe Demers’ large-scale robotic piece La Cour des Miracles

(1997), Ken Rinaldo’s artificial life installation Autopoiesis (2000) and Yves Amu Klein’s “living

sculptures”. Artist and media theorist Simon Penny calls these kinds of work “embodied cultural

agents” or “agents as artworks” and integrates them within the larger framework of an “aesthetic of

behavior”: a “new aesthetic field opened up by the possibility of cultural interaction with machine
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systems” (Penny 2000, 398). These works are distinct from so-called “generative art” or “algorithmic

art” which use computer algorithms to produce stabilized morphologies such as images and sound.

The former’s aesthetics are about the performance of a program as it unfolds temporally in the

world through a situated artificial body.

This project offers an account of a particular facet of this broader work — namely, a study of

the artistic practice of agent-based, adaptive computational artistic installations that make use of

Machine Learning methods. Examining the cultural-social-technical repercussions that arise in the

use of such techniques in artistic works, I argue for an aesthetics of adaptive agents rooted in the

distinctive way their behavior evolves and stabilizes as they couple with their environment.

Machine Learning is a sub-field of the computer science area of Artificial Intelligence. It employs

mathematical models that can classify and make predictions based on data or experience rather

than on logical rules. Learning systems usually consist of computational structures that adjust

themselves when submitted to large quantities of data. Machine Learning is directly related to

the biologically-rooted concept of adaptation which refers to a “process whereby a structure is

progressively modified to give better performance in its environment” (Holland 1992, 7).

A late offspring of the cybernetic revolution, the field of Machine Learning has experienced an

impressive growth since the mid–1990s. Its applications are extremely widespread and its success

in the era of “big data” since the beginning of the millenium has pervaded Artificial intelligence

research in areas such as pattern recognition, natural language processing, data mining, search

algorithms and robotics.

As a proof of the importance of the field in contemporary society, consider the increased ac-

quisition of Machine Learning startups by major IT players like Google, Facebook and others. For

example, Geoffrey Hinton, the great-great-grandson of logician George Boole and an emeritus pro-

fessor at University of Toronto in the field of Artificial Neural Networks, joined Google in 2013 as

Distinguished researcher. Yann LeCun, another eminent pioneer in the field, was appointed in 2012

to be the first director of Facebook AI Research in New York City while Andrew Ng, an authority

in the field of Reinforcement Learning, became Chief Scientist at Baidu Research in Silicon Valley

in 2014. The year before, during Fall 2013, Ng’s Machine Learning class at Stanford was the most
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popular class on campus, enrolling more than 760 students (Markoff 2013). His online class at-

tracted more than 100,000 students in 2011, contributing to the development of Stanford’s Massive

Open Online Courses and the founding of Coursera (Friedman 2012).

Although the impact of these technologies on contemporary society is still relatively elusive,

the debate surrounding them has reached the public sphere. In a recent appearance that made

headlines, physicist Stephen Hawking warned about the threats that AI and in particular Machine

Learning pose to the future of mankind. He signed an open letter asking for more control over AI

and made numerous claims in the media that the rapid development of Machine Learning could

allow us to reach human-level AI soon, possibly leading to human extinction.

Many researchers in the field have since refuted his arguments, showing that research was actu-

ally not progressing as dramatically fast as Hawking claimed and that humankind should not worry

about an “AI singularity” happening in any foreseable future (Madrigal 2015). While Hawking’s

concerns seem largely unfounded, recent advances in Machine Learning research seem to have ag-

itated, in Western media, the classic fear of machine cognition outstripping human intelligence, a

sign that the widespread presence of AI is starting to gain public attention, for better or for worse.

While recent years have seen the field of Machine Learning grow at an unprecedented rate, the

underlying idea of a computational system able to adapt to or learn from a flow of observations

coming from real life is certainly not new. On the contrary, it recurs throughout the history of

computing, from early concepts of negative feedback in Cybernetics to evolutionary computation.

There has been a growing trend, since at least the late 1990s, to apply Machine Learning to the

fields of robotics and agent-based systems (Dorigo and Colombetti 1997; Riedmiller and Merke

2002; Quinlan 2006; Chalup, Murch, and Quinlan 2007). Reinforcement Learning, a branch of

Machine Learning dealing with agents adapting to their environment, is finally gaining momentum

after more than a decade of research (Soni and Singh 2006; Gu and Hu 2002). The advent of Deep

Learning in recent years suggest that this movement is not about to slow down (Mnih et al. 2013).

Despite this increased use of Machine Learning in many facets of contemporary industrial and

commercial culture, one site where it has not seemed to make a meaningful impact is the field of

art practice. This seems odd, considering that the use of computational systems in art goes back
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to at least until the early 1950s. Indeed, it feels like interest within the arts has been focused on

techniques and concepts such as self-regulation, evolution and emergence, while there has been little

rigorous work on Machine Learning and Adaptive Computation by artists (Kac 1997; Penny 1997;

Tenhaaf 2000).

Why is this? The relatively recent popularization of Machine Learning in scientific communities

might partly explain it. Another factor that may have slowed the adoption of such techniques by

artists is the lack of access to the skills and knowledge required to utilize them. Moreover, there is

a problem of translation: these techniques have never been designed for artistic production, which

makes it particularly unclear for artists as to how they would even begin to use them in their own

domain. Finally, the concepts surrounding adaptive systems and their definitions are fluid and

shifting depending on the context in which they are used. For example, the definition of concepts

such as “learning”, “adaptation” and even “AI” as they are used by artists more than often differ

largely from their scientific descriptions. The presence of such approaches in artistic works is often

hard to trace because they are frequently used more as metaphors than as actual techniques.

Hence, while a significant and increasing number of new media artworks are indeed employing

artificial agents, the vast majority of these agents are nonadaptive. Nevertheless, the integration of

such methods in new media artworks raises important questions that have powerful sociotechnical

and philosophical ramifications for aesthetic practice: (1) What new forms of aesthetic experience

do Machine Learning methods enable or make possible when utilized outside of their intended

context and are instead carried over into artistic works? (2) What characterizes the practice of

using adaptive computational methods in agent-based artworks? (3) And finally, what kind of

worldview are these works fostering?

These questions are hard to grasp, as they are solidly entangled with multiple disciplinary fields.

The category of artworks under consideration here are built around situated agents engaged in an

adaptive performance with their environment. But what exactly distinguishes them from systems

that share all their characteristics but which are not adaptive?

One potential key to this question lies in the intimate relationship between adaptivity and

performativity of a system. Adaptivity is what allows a system such as the brain to do things in
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the world. But the way a brain — and hence a human subject — performs is diffferent from the

way a drop of water or a grain of sand does.

Cognitive scientist Stevan Harnad provides a comprehensive explanation of this concept when

he talks about the importance of learning in category formation:

The adaptiveness comes in with the real-time history. Autonomous, adaptive sensori-

motor systems categorize when they respond differentially to different kinds of input,

but the way to show that they are indeed adaptive systems — rather than just akin to

very peculiar and complex configurations of sand that merely respond (and have always

responded) differentially to different kinds of input in the way ordinary sand responds

(and has always responded) to wind from different directions — is to show that at one

time it was not so: that it did not always respond differentially as it does now. (Harnad

2005, 3)

I suggest that the use of Machine Learning in works of art is distinguished from nonadaptive

works in their temporal unfolding. Works based on nonadaptive autonomous agents are, in theory,

able to respond to interactions in real-time, often in complex ways. However, their behavior —

understood as the way they act in the world — remains fixed over time, because the structure that

implements their actions remains unchanged. The behavior of such nonadaptive agents can surely

be convoluted and unpredictable, but more analogous to the way a grain of sand is carried by the

wind (responding to inputs in a manner that remains fixed over time) than in the way a living

and/or cognizing agent acts (which changes temporally as it is confronted to its environment).

In fact, adaptive agents can move beyond given limitations because their structure itself at

a given moment is changeable in response to interaction with the world. An adaptive systems’

behavior at any given time is determined by a structure, such as a set of weights in a artificial

neural network or a digital DNA code in the case of genetic algorithms. When the agent acts in

its environment, for example through its motor system, it does so both in reaction to both sensory

data as well as its structural characteristics. Furthermore, this structural change is accomplished

with the intent of enabling the agent to perform its tasks more effectively in the future. In other

words, the history of the agent’s interactions modifies the its behavior: the past feeds the future.

But the differences do not stop there. Indeed, one of the important characteristics of Machine
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Learning algorithms (and especially the most recent advances) is their ability to represent the raw

data in a more compact, abstract, efficient way (Bengio, Courville, and Vincent 2013). In other

words, recalling Harnad, their ability to categorize. These systems accomplish this in their own

unique way, thus the categories they create don’t necessarily correspond to what we would expect

as human beings. The responses from hidden neurons in a trained artificial neural network, for

example, are often hard to grasp, if not utterly incomprehensible to a human observer.

Based on both observation and experience, I argue that the strong representational power of

these systems, defined along dimensional axes that highlight the invariances in sensory data, can

somehow be “felt” in the highly nonlinear behavioral patterns generated by these algorithms. This

uncanny feeling feeds on the same intricate dynamics that evoke our very own way of performing

into the world, nevertheless at the same time alien to us, as the behavior of such systems follows

convoluted rules that lie beyond human comprehension.

This resonates with composer Iannis Xenakis’ call for the application of scientific techniques

by artists for the generation of new morphologies (Xenakis 1981a). For Xenakis, art is a “crys-

tallization”, a “materialization” of human intelligence, wherein art is fundamentally engaged in

the same universal, deductive, and socio-cultural dynamics on which the sciences are founded. As

a manifestation of this claim, he notes the close historical ties between music and mathematics,

demonstrating how one cannot be dissociated from the other. Xenakis concludes that a new type

of artist is required, one who can freely use science and mathematics to create spatio-temporal

“shapes” that can only be understood as the constant interaction between function and structure.

What does this mean for artmaking in a contemporary moment of Machine Learning and AI?

This question is challenging to address, because the practice of adaptive agent-based artworks is

marked, first and foremost, by a high degree of diversity in materials, subjects and outcomes.

In order to analyze the practical aspects of artworks that integrate these technologies into their

structures, I first need to take into account the technical challenges inherent to Machine Learning

systems in the context of agent-based artistic installations. Namely, the difficulty to build big and

reliable data in artistic venues, the loss of locus of control by the artist, difficulties that come with

real-time adaptation and the lack of a descriptive framework for adaptive behaviors.
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An important feature of this genre of work lies in the constant tension that exists between the

scientific and the artistic perspective in the creative process. I concur with digital artist Marc

Downie on the importance of authorship in this matter: it is a common mistake to think that

the use of computational technologies could replace altogether the artist’s artistic input, and it is

crucial for artists to hold on to their aesthetic intentions (Downie 2005). This might be especially

true for Machine Learning technologies which largely consist of optimization techniques that were

never designed for artistic use.

The specific shape of adaptive behaviors that I have called attention to is not a magical trick but

rather a tool to be explored to achieve a certain effect. Artists need to reflect from the beginning

on how the overall experience of a work will be related to the adaptive process, and in general, to

adopt a critical stance, in relationship to the technology.

It is useful here to stress that the specific aesthetic qualities of adaptive agents outlined above

are almost haphazard, in the sense that scientists working in the field of Machine Learning typically

have very little interest in the shape of behaviors and how they unfold in time. Most Machine Learn-

ing algorithms run entirely offline, training intricate mathematical models on huge, pre-compiled

databases of real-world data, with the sole objective of achieving a better performance on solving

a specific problem, according to a precise error factor. Bearing this scientific perspective in mind,

the aesthetics of such processes appears to be little more than a side-effect.

In order to tap into the artistic potential of learning and adaptive systems, artists need to

somehow invert this perspective. Whereas scientists fine-tune their algorithms to achieve better

performance over an agreed-upon error measurement, artists need to find their own way through

the different components of learning systems in order to produce subjectively compelling behaviors.

This being said, the artistic and scientific practices of adaptive agents have a similar set of

relationships between author and machine in that they both involve a constant interaction between

the practitioners and the material agents they interact with. Sociologist of science Andrew Pickering

has come up with the concept of a “dance of agencies” to describe the constant movement of

resistance and accommodations going on in scientific practice (Pickering 1995). The stakes in art

are different than those in science, of course, because artists are generally invested in the creation
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of an experience, while scientists try to discover or confirm some truth about the world by building

theories based on observations. However, both the artistic and the scientific processes have striking

similarities, and what Pickering essentially says about scientific practice can be applied to art.

Bringing British Cybernetics to the foreground as an inspirational example of this worldview,

Pickering argues for a conception of human cognition that is performative rather than represen-

tational: “the cybernetic brain was not representational but performative, as I shall say, and its

role in performance was adaptation.” (Pickering 2010, 6). In making these statements, Pickering

stands alongside many other humanities scholars who reject representationalism in favor of per-

formativity (Hayles 1999; Penny 2000). Following my discussion on adaptive systems, I want to

connect Pickering’s performative ontology of science to both Xenakis’ and John Cage’s approaches

to indeterminacy in art.

As an artist and researcher trained in the field of Machine Learning, I propose to tackle these

seemingly abstract and hard questions using three complementary approaches. First, I examine his-

torical accounts of machinic life and machine intelligence since the post-war era from both the per-

spectives of computer scientists working in the field of Machine Learning as well as techno-cultural

studies scholars exploring the larger sociotechnical impact of machine-based systems. Through

this dual perspective, I touch upon issues of adaptivity, learning, autonomy, self-organization and

emergence.

Second, I analyze artistic works making use of Machine Learning algorithms through close read-

ings of core texts on adaptive systems in three areas: science and technology studies (STS) (Hayles

1999; Pickering 1995, 2010); media art history (Shanken 2002, 2015; Ascott 2003b; Whitelaw 2004)

and computer science (Sutton and Barto 1998; Bishop 1995; Langton 1990; Langton 1995). My aim

here is to tease out the two different worldviews I described earlier (representational versus perfor-

mative) and to articulate how these different viewpoints have come to be defined, problematized,

expressed and legitimated in artistic works utilzing computationally adaptive techniques.

Finally, I provide descriptive and reflexive accounts of practice on three works I have been

involved in over the past few years. These artistic works specifically employ Machine Learning

methods such as Reinforcement Learning and Artificial Neural Networks in order to achieve the kind
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of adaptive behavior I have been describing above. I describe these works — Absences (2008—2011),

Vessels (2010—2015), and N-Polytope (2012) — in detail because they each embody different ways

of working with such systems to achieve certain aesthetic effects. Furthermore, they embody the

tensions between representation and performance that I’m attempting to describe here in practice.

As such, these artistic works are important to my argument in that they involve different ways to

approach my research questions, grounding theory into real-life bodies of work.

1.1 About my Artistic Practice

This dissertation, due to its interdisciplinary nature, might seem at times very technical to the

reader. Since I am writing this thesis primarily as an artist and a humanities scholar (and not as

a scientist or engineer), I believe it is important to give an overview of my own perspective on art,

and my approach as a practicing artist before entering into the core of the subject.

When it comes to art theory, I consider myself an anti-essentialist (Weitz 1956). It is never

possible to “pin down” art, to find a common set of properties that would encompass all of its

different forms. I think art is best conceived of as a socially constructed, constantly fluctuating

concept marked by an incommensurate richness and diversity. Art can be recognized, rejected,

criticized, debated, but never reduced to an absolute set of sufficient characteristics.

Whether political, expressive, and/or conceptual, however, most works of art propose a form of

human experience that happens in context. In this sense, art as John Dewey argues, is chiefly about

experience (Dewey 1959). It consists of physical energy and matter that circulate through human

bodies, stimulating neural synapses, provoking hormonal reactions, mobilizing organic systems. At

its best, art can truly change someone, physically, in ways that are often so personal that they can

hardly be foreseen. This transformative interweaving between the artistic process and the perceiver

is core to the aesthetic act.

The creative process itself is central to my practice. Part of being an artist is to be able to

bend oneself according to the transforming materiality of the work. The work itself is thus in a

process of becoming–through my interactions with matter (the materiality of the artwork), it grows
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an identity of its own. My engagement with practice does not only concern the interaction with

these material agencies. A significant aspect of my art practice involves collaborative work, which

necessitates an open approach. One needs to agree on an abstract set of basic principles, and then,

each co-author usually advances the project with the skills s/he has, in constant feedback with the

rest of the group.

This collaborative aspect of my artistic practice is directly linked with the nature of my preferred

medium: computer programming. The immense power of computers does not lie so much in their

capacity to rapidly treat information than in their great flexibility. While I believe the concept of a

“universal machine” is problematic in many ways — some of which will be covered in this thesis —

one cannot deny that computers, as a technology, possess a unique capacity to adapt to different

contexts and situations, which explains to a large extent their widespread dissemination across all

spheres of society.

This “quasi-universality” of computers makes them especially appropriate for collective work,

because in themselves algorithms are somehow an empty shell. Only through their embedding in

a network of other media can they truly become effective in the world. This brings me to mention

another equally important quality of computation beyond their flexibility, which is their capacity

to express behavioral patterns — in other words, to enact agency.

While computation has allowed the expansion of existing media such as photography, video,

and music, more interesting to me is the new forms of media that it can generate. The temporal

unfolding of dynamic patterns enabled by computation reveals movements that never exactly repeat

themselves, yet can be experienced in real-time as “something” that can be “felt”. In this regard,

I have a particular interest in artificial intelligence, which is the field of computer science that

has engaged primarily with questions of computational agency and behavior. As some of the core

results of this dissertation suggest, one of the aspects of this question is that some algorithms exist

that do not have a fixed structure, but can evolve over time.

From an aesthetic point of view, what are the politics of such practice? My own refusal of the

technoscientific trajectory that was offered to me as an engineer, in order to pursue the risky venture

of an artistic career is a deliberate political act. Nowadays, art provides one of the last remaining
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bastions for research against techno-utopianism and techno-determinism. I have no doubt that

whatever companies engaged in AI such as Google and Facebook are after will “work”, that we will

be besieged by autonomous cars, auto-diagnosis health systems, and robots that perfectly reproduce

human behavior. But the real challenge of history is not about technological advancement: it is

about a process of becoming, it is about the kind of human qualities we want to develop as a species.

Science and engineering have, over the past 30 years, been caught in the turmoil of a technocratic,

applied agenda, and have come to a dead-end. As an interdisciplinary artist trained in science and

engineering, I want to use my unique position, and through my work, actively participate in the

critique of these technologies, suggesting alternatives to this limited future.

1.2 Scope and Relevance

This research concerns agent-based installation artworks that use Machine Learning or adaptive

computational systems as a core element of behavior generation. Works that use Machine Learning

techniques without specifically staging agents, or nonadaptive agent-based installations, are also

considered when necessary, but only in order to better grasp the concepts under scrutiny.

The relevance of this research project, highlighted by the originality of its approach and the

importance of its subject of inquiry, can be summarized as follows:

1. Adaptation and learning are important concepts to understand the world we live in and the

future of contemporary societies.

2. In particular, they provide core insights into sociotechnical questions of practice in both art

and science.

3. Art offers a way to critically engage with adaptive systems through their material articula-

tions, in a manner that neither science or the humanities can approach them, thus generating

alternative kinds of knowledge.

4. However, while there has been some work on related questions of emergence and interactivity,

there is currently a lack of aesthetic theories specific to adaptive systems and how they are,
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have been, and can be used, in artistic practice.

This research offers an interdisciplinary account of adaptivity and learning in machinic agents.

I show how adaptivity pervades contemporary conceptions about life, autonomy, cognition, intel-

ligence, and the brain, emphasizing its strong influence on media art since the 1960s. Underlying

the concept of adaptivity is the idea that the human brain should not be understood as a universal

machine for solving problems using logical rules, but rather as an incredibly malleable organ with

the ability to change, to tune itself to its environment, and to even reinvent itself when needed.

Adaptive artworks resonate with this idea, holding the potential to change our perception of the

world, a world filled with performative agents in constant flux, adapting to their environment and

to one another.

This study is not about generative art and design. I am not interested here in computational

algorithms that create fixed and stable forms, but rather, I am interested in the aesthetics of the

processes themselves as seen in their real-time unfolding, and as part of an embodied, material

experience; agents that live and act in the physical world. As there has been much research carried

out in adaptive music composition and improvisation, I focus the scope of my research outside of

the music realm.1

Because I am interested in considering adaptive systems as an art practice, I choose not to engage

with works that merely make use of Machine Learning techniques as part of a specialized pattern

recognition component, such as face-tracking devices, unless when this component is modified or

used in a critical fashion that influences the aesthetic behavior of the piece.2 Finally, further

limiting the scope of analysis, I will not be considering works that involve human performers, such

as theater or dance works. Instead, I will focus on experiences that involve a direct, physical

relationship between nonhuman adaptive systems and a human audience.

Finally, I feel it is important to note that despite the fact that I directly engage with these tech-

niques as an integral part of an artistic practice involving the conception, design and implementation

1With the exception of certain robotic artworks that involve music performance such as Baginsky’s artificial
adaptive robotic rock band The Three Sirens (1992—2005).

2In other words, I exclude from this study artworks that use ML techniques in ways they are usually intended to
be used.
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of computational systems, I am not seeking advancements in the field of Artificial Intelligence, but

rather, to connect art practices that make use of AI with broader questions of life and agency. The

project thus remains within the field of the humanities, however, my hope is that it will provide

contexts and approaches that could benefit AI researchers as well.3

1.2.1 Adaptation Matters

As necessary conditions of life, standing right between self-organization, autonomy, and the genera-

tion of novelty, adaptation and learning are powerful concepts for understanding living systems and

they way they operate. Ultimately, it is the capacity to adapt that distinguishes life from other nat-

ural phenomenon. Life is about maintaining and extending itself in a changing environment, about

learning from experience; it is a process of becoming that emerges through a constant negotiation

with inner and outer conditions.

Adaptation and learning occupy a sweet spot in the hierarchy of systems properties, being more

closely related to the living than the concepts of emergence and self-organization imply. Adaptation

is a sufficient yet unnecessary condition of emergence, and while there exist self-organizing systems

that are nonadaptive, such as hurricanes and galaxies, all adaptive systems must have a capacity to

self-organize. I claim that adaptation is, in fact, the process by which living systems self-organize:

as all living systems are complex, emergent systems, they are also adaptive, in their capacity to

adjust their own structure and behavior to their environment.

Yet, few researches have addressed the questions of adaptation and learning in the fields of media

art theory, art history and science and technology studies, let alone their relationship with concepts

such as emergence, self-organization, self-regulation, autonomy, and life. Recent studies about

“artificial-life art” or “behavior aesthetics” have mostly focused on concepts of embodiment (Penny

1997; Dourish 2001; Bogart and Pasquier 2013), emergence (Baljko and Tenhaaf 2008; Soler-Adillon

2015), and the generation of novelty in lifelike agents (Whitelaw 2004; Cariani 2008; Boden 2009).

While these works are key to understanding the way natural and social systems operate, and

3For example, there is a growing community of AI scientists interested in notions of computational creativity and
on artistic applications of AI, who may find in this study valuable criticisms and alternatives to the research trends
commonly found in their field.
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start seeing them for the biologically-inspired, statistically-driven, agent-based entities they have

become.

This become particularly important because we now have technologies that are adaptive, whereas

these kinds of systems were only found in natural phenomena before. In particular, such systems

are newly important for artists and art theory because: (1) they suggest new approaches to work

with emergent systems; (2) they hold the promise of generating more “lifelike” behavioral patterns,

opening up novel ways to understand what it means to be alive and human; (3) they challenge

the notion that artistic creation is a purely human-centric practice, as the agency becomes diffused

between humans and machines that couple with one another.

1.2.2 A Core Dimension of Art and Science Practice

Adaptation and learning are key concepts by which to address the question of practice. Sociologist

of science Andrew Pickering suggests the “mangle of practice”, an ongoing dialectic of resistance

(by nonhuman entities) and accommodation (by scientists), as a framework to examine scientific

practice (Pickering 1995). Pickering describes the way human and nonhuman agents interplay in

“the mangle” as a “dance of agencies”. Science is thus best described as a performative material

practice that stages both human and nonhuman agents, the former adapting to the latter.

More recently, Pickering finds in Cybernetics — an interdisciplinary field started in the 1940s

which exists today under “many other names” — the perfect embodiment of his theory (Pickering

2010, 15). As early as the 1950s, cyberneticians built lifelike devices as a means to attain a higher

understanding of the workings of the brain. For example, Grey Walter designed a pair of artificial

“tortoises” with some basic learning capabilities, while Ross Ashby created the homeostat, a self-

regulating system that aimed to mimic feedback processes in the human brain. While clearly

scientific in nature, the creative process that made these apparatus possible is very close to art

practice, at least in the domain of computation art.4

Another interesting insight comes from Greek polymath Iannis Xenakis. For Xenakis, art and

4In the 1960s and 1970s, some of these devices were shown as part of art exhibitions, such as Gordon Pask’s
Colloquy of Mobiles (1968), a Cybernetics installation that was presented in the “Cybernetics Serendipity” 1968
exhibition curated by Jasia Reichardt in London.
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science can both access forms of objective knowledge through the processes of inference (the pro-

cess of drawing ideas out of observation and reasoning) and experimentation (verification of these

ideas through experiments). But art can go beyond these, attaining forms of subjective knowledge

through what Xenakis calls revelation, giving us access to the emotional, personal, universal di-

mension of reality. In Xenakis’ mind, the artist must thus be “simultaneously rational (inferential),

technical (experimental) and talented (revelatory)” (Xenakis and Messiaen 1994, 5–6).

In inference, one looks at data and makes an hypothesis about the process that generated it; in

experimentation, one verifies if the hypothesis is right, generating new data in the process. This is

an adaptive process, where we iteratively refine our view based on our actions in the world and their

consequential effect on our sensory surfaces. How does revelation interoperate with this process?

Is revelation reserved, as Xenakis claims, only to the arts, or does it also appear in science, but

hermetically, available only to scientists themselves?

Xenakis suggests that in the future, science and art must learn to work together, forming

“alloys” with new, emerging properties. But Xenakis definitely takes sides. In his mind, art

subdues science: it should be the driving force, bringing problems for science to resolve. I reject

this asymmetric worldview and I suggest, instead, one that supposes a co-adaptive relationship

between the artistic and the scientific spheres. Can adaptation help us understand and possibly

establish such a relationship between art and science, one that goes beyond Xenakis’ philosophy of

art and science alloys?

1.2.3 Art Offers Alternative Ways to Engage with Adaptive Technologies

The coming-of-age of Machine Learning seems to be activating a mix of fear and excitement, turning

contemporary discourse about AI technologies into a highly polarized debate. The first camp warns

against the emergence of a much dreaded technological “singularity” from which point AI will

replace humans as the superior intelligent species, with possibly dire consequences that could lead

to the extinction of the human race (Kurzweil 2006). On the other side, Silicon Valley’s techno-

optimist choirs are chanting the libertarian utopia of a post-work, post-democratic world where all

of humanity’s problems are to be smoothly solved by benevolent artificial learning agents.
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With their capacity to work both critically and creatively with material and experiential ques-

tions, artists have a unique standpoint for reflecting on the complex issues surrounding AI. Art can

suggest alternative ways of engaging with AI systems and imagining our relationship with them

now and in the future.

I claim that learning and adaptive systems suggest a complete change in paradigm about our

way of considering technology and how it operates in the world. Technologies of the past and

present are immensely nonadaptive: they are driven by a human-centric ethics that seeks to con-

trol nature (Pickering 2010). Quite paradoxically, current-day Machine Learning has not really

escaped that paradigm, being used for the most part for pattern recognition purposes in attempts

to efficiently solve concrete, measurable “problems”; to gain more control over outcomes.

What if technologies were designed to adapt themselves to natural processes and entities, rather

than the other way around? Can we envision technologies that are not meant to control nature, but

rather to take part in an ecosystem, trying to survive while allowing other processes to flow? Can

we give artificial agencies the right to make mistakes? Can we allow them to be gracefully weak,

imprecise and hesitant, just as we are? In the field of AI, what would happen if we moved beyond

the ideal of optimization and control, towards the most open-ended paradigm of adaptation as a

living process?

I believe adaptive systems allow us to imagine a whole new future for the world we live in. In

that future, artificial agents would become an active part of the aesthetic fabric that makes up our

existence. I picture adaptive agents acting as surrogates, carrying emotions in their neuroplastic

shells, facilitating their contagion like viruses. Some would have their own survival attached to

something or someone we hold dear, helping us protecting them. Some would write with us, dance

with us, do things with us rather than for us — or, as STS scholar Sherry Turkle says, do things

to us by “by changing the way we perceive ourselves and our sociotechnical environment” (Turkle

2006, 1).

New artforms will likely emerge beyond the traditional formats. Public works could run for long

time spans, evolving across many generations, constantly adapting to new circumstances. Artificial

beings could live inside homes, keeping a trace of past interactions in the way they behave and act
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in the world, transcending time. Robotic bands and human-machine collectives would emerge, live

and die, producing albums and shows, breaking up and reassembling. Nomadic agents could be

allowed to circulate among us, moving at the speed of light, influencing one another and engaging

with us, stimulating debates around art, politics, and science, rather than merely providing us with

what we are assumed to need. AI travelers could be sent in space, surviving for millions of years,

able to adapt, grow, and die beautifully.

The development of Machine Learning has long moved away from Cybernetics, which was largely

concerned with adaptive processes as a way to understand the living. This eventually resulted in

the exploitation of massive amounts of data for optimization, classification, and recognition tasks.

The vast majority of learning algorithms are designed to learn offline (i.e., not in real-time) in order

to perform a given task. The few artists who use Machine Learning usually stay within the scope

of their intended use5.

The success of Machine Learning goes hand-in-hand with “big data”, large collections of infor-

mation which are, for the most part, in the hands of big businesses such as Google and Facebook.

These companies generate wealth and power by appropriating these massive datasets which, while

provided by the general population, stay out of the control of the public. These learning algorithms

are increasingly present in our lives, often without us knowing. We do not see them, we do not

understand them, and this leaves us ineffective at criticizing them or critically engage with them.

We are left without a voice, to be the passive containers that corporate interests feed upon, for the

benefit of private interests.

As Machine Learning algorithms continue to transform our world, it is crucial to develop alter-

native ways to approach these technologies beyond science and business. What I propose here is

one attempt to do just that, by bringing together sociotechnical, artistic and aesthetic questions

into a global framework, and by suggesting ways artists can manipulate these algorithms. My hope

is that by providing these tools, I will inspire new ways of understanding the technology and its

impact on our world, giving artists some agency in creating works of art that are free of corporate

5For example, see David Rokeby’s works using ML for computer vision and image pattern recognition. In such
cases, ML could be replaced by any other technique which would be more or less as efficient, without affecting the
fundamental artistic intent behind the work.
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power and constraints.

1.2.4 Adaptation in New Media Art Theory: Filling the Gap

New media art as a field of research has not often been a sustained topic of study for art historians,

leaving a void that is only starting to be addressed. For a large part, it is new media artists

themselves who have started building some of the theoretical tools for understanding their discipline

through analyzing their own practices.

Still, theory about new media remains scarce, in particular when it comes to the niche of agent-

based art, let alone that of adaptive behaviors. A search in the database of Leonardo (the most

important peer-reviewed journal in the field of technological art) from 1997 to 2015 reveals a huge

gap between the number of papers containing references to Artificial Life (168), Artificial Intelligence

(160), and Cybernetics (165), when compared to Machine Learning (23), Connectionism (12), and

Adaptive Systems (4).6

Table 1: Number of articles containing a reference to certain terms in Leonardo (1997–2015).

Expression Number of publications

Interactivity 866
Artificial Life 168
Cybernetics 165
Artificial Intelligence 160
Self-organization 107
Machine Learning 23
Connectionism 12
Adaptive System 47

By comparison, Machine Learning and Adaptive Computation have been an essential part of

the AI ecology. While their role has often been peripheral, their presence has been exponentially

growing since the Deep Learning revolution of the mid–2000s, largely due to their unprecedented

success in tackling major AI-related problems. Adaptation and learning are thus critical concepts

whose increasing presence in our world has vast sociotechnical repercussions.

6These results were compiled by performing a clear text search using the JSTOR Arts & Science search engine
on August 3, 2016.
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As these technologies become more popular and more readily available, their use in works of art

will likely grow as well. Yet there exists at the moment almost no guidelines, tools, or theoretical

frameworks on how to make these works and think about them. It is therefore crucial for the

discipline of new media arts that we start building an aesthetic theory of adaptation, in order to

allow for a better understanding of artworks that utilize them, as well as to understand the processes

entailed in working with them artistically.

1.3 Contribution

This research project aims to address three interrelated questions about adaptive systems in com-

puter arts: one is about aesthetic experience, one is about practice, and one is about the forms of

knowledge with emerge from such contexts.

The first question concerns the kinds of experiences that are specifically enabled by using Ma-

chine Learning and Adaptive Computation as part of agent-based artworks. By extending and

refining Simon Penny’s behavior aesthetics (Penny 2000; Kim and Galvin 2012), I show that emer-

gent and adaptive processes exist in a different kind of time than formal/nonemergent/nonadaptive

behaviors, because emergent/adaptive behaviors change their morphology through time and thus

bring with them the potential for spectators to experience the unfolding of time in novel ways.

Therefore, these systems as used in art bring with them the potential to experience time in novel

ways.

As introduced above, adaptive behaviors bring with them a sense of aliveness, because adapta-

tion is “one step closer to life” than emergence. For instance, there exists emerging phenomenon

that are nonadaptive, yet adaptivity is impossible without emergence. Adaptation is a necessary

condition of life, first at the level of species development and survival (genetic adaptation) and

second, at the level of the individual (neuroplastic adaptation). This “lifelikeness” comes with its

own experiential essence, a quality which has been sought by artists since the dawn of time, from

the animal representations in the caves of Lascaux to current-day agent-based installations.

The second question I investigate is how adaptive computational methods affect practice in
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agent-based artworks. I delve into the core dimensions that define Machine Learning algorithms: (1)

the task they are aimed to accomplish; (2) the model that is trained by applying (3) an optimization

procedure that uses (4) an evaluation function to measure the system’s performance over (5) a set

of data. In the process, I suggest ways these components can be exploited for artistic expression.

Connecting Cariani’s taxonomy of agents (Cariani 1989; Cariani 2012) with Penny and Soler-

Adillon’s work on self-organizing systems (Penny 2009; Soler-Adillon 2015), I present a framework

for understanding behaviors based on the temporal unfolding of their morphology. At the first

level, one finds patterns generated by stateless, function-like devices called “mappings”. The second

category comprises behaviorful devices with states, driven by Finite State Machines or other formal

structures that do not evolve through time, but generate recognizable temporal patterns. Finally,

the third and last level is occupied by “metabehaviors”, that is, behaviors whose transformation in

time is driven itself by a behavior, such as those generated by adaptive or evolutive devices.

As adaptation is intimately connected to emergence, being the way by which self-organizing

systems mutate their behavior in response to changes in their environment, I argue that Machine

Learning and Adaptive Computation can provide a suitable tool, a pathway to design emergent

behaviors that move beyond the direct — and often strenuous — programming of unitary agents.

My third and last contribution lies in the delineation of another worldview brought forward by

adaptation in general, and by adaptive works of art in particular. Adaptation allows to imagine

embodied artistic works that couple with the world, actively changing it. The integration of these

systems in artworks challenges the way art is presented and received by audiences, as their lifelike

properties also make them as intricate and mysterious as life is. Perhaps more than other media

art forms, artworks that integrate adaptive systems demand more effort, more attention, as the

public itself needs to be engaged in an adaptive endeavor. These works thus often demands that

the audience spends enough time with these agents to get to know them in an embodied manner.

Through their capacity to transform their behavior through time, to reinvent their way of acting

in a constantly changing environment, adaptive agents-as-artworks can allow the emergence of a

worldview wherein agents are not just generating novelty out of the blue, but rather in relationship

with one another, by tentatively pointing their behavior towards a constantly evolving environment.
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1.4 Literature Review

This thesis aims to synthesize different perspectives in an effort to get a broad understanding of the

notion of adaptivity and its evolution in contemporary discourse in art and humanities. This is no

easy task, since different disciplinary fields usually evolve their own vocabularies and concepts. A

term used in two different disciplines might mean completely different things, whereas two different

terms might actually refer to a common notion. In practice, things are usually much more blurry

and one needs to be extremely careful where to draw the line when trying to establish appropriate

connections and groupings.

As previously argued, humanities scholars and artists who have tackled these concepts have

often provided incomplete, confused, inaccurate and/or out-of-date accounts of these practices. An

important contribution will thus be to use my scientific training in Machine Learning, mathematics

and computer science to articulate, disentangle and update these accounts.

In bringing together scientific, artistic, philosophical and sociotechnical contexts, I hope to (1)

present a more scientifically rigorous account than has previously been accomplished in media art

history and STS; (2) show how the aesthetic questions that drive the thesis are intimately entangled

with the scientific histories of AI, connectionism and adaptive systems, and; (3) to provide artists

working (or wanting to work) with adaptive technologies with a set of anchorpoints, highlighting

the aesthetic properties and potentialities specific to adaptive systems, and the challenges of using

them in artistic contexts.

In order to address the complex issues teased out above, I thus draw on three distinct but

overlapping bodies of literature and practice, namely: (1) scientific literature in computer science

and robotics; (2) sociotechnical and philosophical perspectives of artificial intelligence and artificial

life systems; (3) media art history and theory, including writings from art critics and media theorists

as well as works of media art dealing with adaptive systems.

First of all, I examine literature in computer science, tracing through the history of Machine

Learning since the post-war era. Within this history, I trace the occurrence and influence of adaptive

systems and Machine Learning on the field of Artificial Intelligence, with a focus on connectionist
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systems. I focus not only on the sociohistorical context but also directly on the techniques them-

selves. The reason for looking directly at the technological practices is to address accounts of AI

by cultural critics and theorists who rarely have a direct experience with the technology and/or

provide inaccurate descriptions of these technologies (the same way many scientists writing about

art usually only superficially address artistic questions). As an artist trained in computer science

and AI, I believe it is important to go back to these techniques directly to come up with my own

historical account of these practices.

In order to trace this archaeology of Machine Learning, I inspect seminal works in Cybernet-

ics (Wiener 1961; Ashby 1957; Rosenblueth, Wiener, and Bigelow 1943), information theory (Shan-

non 1948) and early connectionist models (McCulloch and Pitts 1943; Rosenblatt 1957; Selfridge

1959). I consider the emergence of what is referred to as “classic AI” or “Good Old-Fashioned

AI” (GOFAI) in the 1950s and 1960s, marked by a strong optimism in the ability of purely sym-

bolic, disembodied computational systems — often referred to as “computationalism” — to achieve

human-level cognition, and how this politically and instititutionally lead to the abandonment of

the connectionist project (Newell, Shaw, and Simon 1959; Minsky and Papert 1969). I describe

the emergence of the field of Artificial Life (ALife) which brought together ideas on self-replication,

self-organization and emergence, supported by a “bottom-up” approach and a computationalist

definition of living systems (von Neumann 1951, 1966; Langton 1986, 1989b; Ray 1991; Reynolds

1987).

In parallel, I explore the emergence of Machine Learning in the mid–1980s, following the demise

of symbolic AI and marking the end of the “AI Winter”, by focusing on approaches in neural

computation and pattern recognition (Rumelhart, Hinton, and Williams 1986; Bishop 1995; Duda,

Hart, and Stork 2001), genetic algorithms (Holland 1992; Mitchell 1998) and Reinforcement Learn-

ing (Sutton and Barto 1998; Wiering and Otterlo 2012). I contrast Machine Learning to “Nouvelle

AI”, an approach to AI which suggests that AI systems should be built incrementally, starting with

“simple levels of intelligence” that do not use any representation, and rather, “use the world as its

own model” (Brooks 1987). A major criticism of Nouvelle AI in the field of robotics is that by

refusing to include any form of representation in its architecture, it throws away Machine Learning,
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thus making it difficult to engineer adaptive systems which are deemed necessary to achieve more

robust forms of intelligent responses to real-world problems, such as driving a vehicle (Ziemke 1999).

For example, an important research strand since the 1990s in the field of robotics has been

working with Machine Learning methods, often used in conjunction with architectures and algo-

rithms inherited from Nouvelle AI or symbolic AI (Dorigo and Colombetti 1997). Current research

seems to advocate for hybrid approaches that integrate rule-based symbolic systems and Machine

Learning approaches within a framework that takes machinic embodiment seriously (Quinlan 2006;

Chalup, Murch, and Quinlan 2007). Finally, I analyze the latest evolution of connectionism in

the “deep learning” revolution (Hinton, Osindero, and Teh 2006; Bengio 2009; Bengio, Courville,

and Vincent 2013; Arel, Rose, and Karnowski 2010) and examine its utilization in agent-based

systems (Mnih et al. 2013, 2015; Nath and Levinson 2014).

At the same time, I implicate the scientific histories of Machine Learning in the processes of

how such concepts arose in cognitive science, and, in particular, in the tension that these histo-

ries highlight between a representationalist/computationalist and a situated/performative view of

the brain (Turing 1950; Searle 1980; Harnad 2007, 2005; Boden 2006, 1996). I do this while con-

trasting these histories with phenomenological and neurophenomenological critiques (Dreyfus 1979;

Maturana and Varela 1980; Varela, Thompson, and Rosch 1991). Cognitive science is a rigorous

interdisciplinary field which brings together computer science, philosophy, linguistics, psychology

and biology, and thus seems like a logical starting point for examining artificial intelligence while

expanding into other fields. In order to understand the relationship between human and machine

forms of cognition, I also explore sociotechnical work of researchers in areas such as technocul-

tural studies (Hayles 1999; Johnston 2008; Helmreich 2000), and science and technology studies

(STS) (Latour 2005; Pickering 1995, 2010), in order to understand how such flat hierarchizing be-

tween human and nonhuman subjects and objects serve to decentre strictly “human exceptionalist”

approaches to the links between humans and sociotechnical frameworks for knowledge production.

The third category of writing that I explore in this research comes from media art history and

theory as well as agent-based media artworks, examining the manner in which such scientific systems

are appropriated by artists. Here, I demonstrate the gaps in art historical accounts surrounding
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issues of self-organization, adaptation and learning, while attempting to disentangle these terms

from their often confused or inaccurate appropriation by art historians and media critics. In doing

so, I also pose the central questions of why such techniques are used in art practice in the first

place, and what they hope to accomplish.

I begin this endeavor by considering the influence of Cybernetics on art in the 1960s (Ascott

2003a; Burnham 1968; Software 1970; Hultén 1968), artificial life art (Penny 2009; Whitelaw 2004;

Tenhaaf 2008) and agent-based art (Downie 2005; Mateas 2001; Penny 2000). I pay special attention

to perspectives on the figure of the artist-engineer at the crossroads between art and science,

specifically as a way to analyze my own practice as an artist trained as an engineeer (Penny 2008;

Xenakis 1981a; Xenakis and Messiaen 1994). I compare nonadaptive agent-based installations

to ones that use adaptive computational systems, such as Ruairi Glyn’s multi-robot installation

Performative Ecologies (2010), Yves Amu Klein’s robotic sculpture Octofungi (1996), as well as

Stephen Kelly’s Open Ended Ensembles series (2014—2015). Through this analysis, I try to raise

the specific behavioral characteristics of artistic works that use Machine Learning while engaging

in larger discussions about the kind of worldview they suggest.

1.5 Methodology

This research follows the framework of “research-creation”, a growing set of largely qualitative

methodological approaches within the humanities which comes under many variants. Specifically,

my methodology aligns with “art-as-research” whereby art practice is embedded in theoretical

considerations in a bidirectional network of interactions.

Art and theory, in effect, are nothing more than two different forms of practice interre-

lated through a system of interaction and transferences. In this constellation, philosophy

neither brings the arts to the point nor does art sensualize philosophical truths; philoso-

phy serves a knowledge-based artistic practice as a point of reference, similar, conversely,

to how art might affect theoretical practice. (Busch 2011, 1)

In this context, the process that guided this research is anchored into both material and discur-

sive practices, traveling alternately between thinking and making. Specifically I adopt an iterative
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design approach inspired from Agile, a methodological framework for software development that

largely bottom-up, iterative, and adaptive (Rasmusson 2010). Agile relies on the self-organization

of collaborators on a project and values flexibility and adaptability in the planning and decision

making process. As an artist who develops open-source software, who is also often working collab-

oratively on art projects, I have successfully used Agile in the past and have found it a suitable

approach for making art that involves software.

Agile rests on the following process:

1. Break down a project into small units called user stories that describe situations we would

like the software to perform. These stories can range from the very abstract (e.g., “I want

the software to be able to generate reports”) to being very specific (e.g., “I need to be able to

export my monthly financial report with the push of a button”). In artmaking, this amounts

to establishing artistic intentions and components of the final work.

2. Estimate the resources needed to accomplish these tasks (usually measured in days of work).

3. Prioritize the list of stories. This is usually where you also establish a production calendar.

In an artistic context, where resources are often scarce, I typically choose to begin with

components that take less time to accomplish and that give me the most information in

regards to questions of technical feasibility and aesthetic effectiveness.

4. Execute the plan, updating it as you go. If the project is not moving fast enough, you can

either choose to do “less” (which, in media art, could actually be beneficial, as projects using

technology often tend to be so complex, that they risk reducing the overall aesthetic effect

that was initially aimed for), or you can decide to allocate more resources (hire people or add

days to the calendar, if possible).

Agile possesses many interesting features that are relevant to a research-creation strategy. First,

it does not presuppose a temporal succession of activities such as: analyze, design, code, test,

repeat. To the contrary, it rejects such a method in favor of a continuous model where all of these

activities happen at the same time. This is very effective in art-based research, where theoretical
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and practice questions are never fully separable, and are rather intertwined throughout the whole

process. Knowledge is thus constructed as part of an ongoing feedback loop between theory and

material practice.

Second, Agile favors an iterative design methodology with short development cycles. In Agile,

you usually start by implementing a simple working prototype of the final application, and you add

incrementally to it over time. This aspect is particularly well adapted to artistic research, where

it is often hard to pin down which aesthetic strategies will work best until one sees a material

embodiment of their ideas and intuitions.

Third, Agile values working software as the primary measure of success. Principles such as

YAGNI8 and DRY9 reduce development costs and prevent overdesign by focusing on making things

work. This is a very useful principle in the context of media art, as it is, alas, not uncommon to

see artworks in galleries that are plainly defective.10

Finally, Agile’s planning methodology is adaptive, meaning that it allows for changing plans

along the way when faced with reality. Both artists and programmers alike know that it is hard to

know how you are going to achieve something, or whether it will really yield the expected results

and effects, until you have gotten your hands dirty. This final component is, as expected, intimately

linked with many of the theoretical and practical questions approached in this research.

Throughout this research, I rely on records of practice as a way to empirically examine these

processes. Through the gathering of documents (notes, diaries, video documentation), as well

as introspection and interviews with collaborators, I investigate three (3) artistic projects and the

resulting works within which I participated either as solo author or as co-author, thus informing the

critical thinking about adaptive systems within an artistic context. The objective is to understand

the characteristics and limitations of adaptive agent-based systems by focusing on the reasons

which pushed me to use Machine Learning, the ways I have applied these techniques in the creative

8YAGNI stands for “You Ain’t Gonna Need It” and demands coders not to add functionalities that are not
expressely needed.

9For “Don’t Repeat Yourself”, a principle that asks programmers not to repeat information in different parts of
their code.

10I teach my students that if a new media work functions reliably, even the least of aesthetically compelling media
artworks are better than “busted masterpieces”.
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process, and how the audience reacted to them11. I then examine in detail the algorithms that we

used, how they were utilized in the research-creation process, and how they affected the outcomes,

more specifically in terms of experience.

It is important to highlight the fact that the chosen methodology itself embraces adaptivity

as a mode of knowledge generation. The short cycles and the adaptive planning method, allow

the various agents engaged in the research-creation process to more tightly adjust to one another,

providing a structured yet open-ended frame that gives ground to the emergence of new theories

about the world.

1.6 Chapter Breakdown

The following chapters alternate between accounts of practice (chapters 2, 4, 6) and theory (chapters

3 and 5), each chapter responding to the previous one and feeding into the next.

In chapter 2, I discuss my previous work with agent-based systems. Focusing mainly on Absences

(2008–2011) — a series of environmental interventions using electronic agents set in natural settings

— I highlight the research and creation processes that brought me to consider the use of adaptive

procedures in agent-based systems, which in turn opened up questions about aesthetics and practice

with such systems that lie at the core of this research.

Chapter 3 presents traces the history of adaptive computation and Machine Learning from

the 1950s onward. In this first historical overview, I discuss important notions related to agent-

based artworks, such as emergence, self-organization, adaptation, evolution, connectionism and

Artificial Life. I try to highlight how Machine Learning and adaptive computation operate in these

sociotechnical and art historical frameworks, in order to extract the different ways artists have been

using them, as well as embracing the challenges that come with such practices. By dissecting the

scientific description of learning algorithms and connecting their properties with artistic questions,

I establish a comprehensive framework artists and media theorists can use to approach Machine

11It is important to mention that at the moment of writing this proposal, the majority of the practice-based aspects
of the research have already been carried out. The research will thus mainly consist of reinterpreting the results and
bringing them together to create a logical whole.
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Learning in works of art.

In chapter 4, I examine Vessels (2010—2015), a robotic installation consisting of a swarm of

autonomous water vehicles whose collective behavior resembles social interactions in a community

of living creatures. The piece involves adaptive mobile robotic agents with complete sensorimotor

systems. The significant technological component of the work as well as my direct involvement with

the material in this project gives an opportunity to better exemplify the practical considerations of

an agent-based artwork involving adaptive methods. The chapter offers a look at how adaptivity

plays artistically in agent-based art using the framework developed in chapter 2, exploring the

application of Machine Learning as a pathway to generate self-orgainzing, lifelike systems, while

contrasting artistic objectives with audience response.

Chapter 5 digs deeper into the notion of behavior from an aesthetic perspective, trying to

understand the role and position of adaptation, learning, and emergence in the temporal unfolding

of agents’ observation-action couplings. I describe how adaptive and evolutionary agent-based

systems allow for new morphologies of behavior characterized by the establishment of a second-

order relationship to time, one wherein the past affects the future through the transformation of a

structure.

Finally, in chapter 6, I discuss the work N-Polytope: Behaviors in Light and Sound After Iannis

Xenakis (2012), a “spectacular light and sound performance-installation combining cutting edge

lighting, lasers, sound, sensing and Machine Learning software inspired by composer Iannis Xe-

nakis’s radical 1960s–1970s works named Polytopes”, directed by artist and researcher Chris Salter

and involving an interdisciplinary team, including myself who created the media behavior model-

ing and programming. This project allowed me to test a number of Machine Learning and other

adaptive algorithms such as Reinforcement Learning and Artificial Neural Networks in a large-

scale installation setting involving multiple agents. In revisiting the work of multidisciplinary artist

Iannis Xenakis, it provides a good starting point for thinking about the question of the relation-

ship between the spatio-temporal unfolding of adaptive systems and “alloys” of art and science

practices (Xenakis and Messiaen 1994).

The last chapter concludes the research by bringing back the questions and providing summaries
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of the arguments. It then examines the broad implications of the study with respect to the overall

areas of study. I end by discussing the limitations of the research and exploring future works that

could address some of these limits.

The reader will find additional material concerning some of my own works discussed in this

dissertation in the appendices. Appendix A includes references to external web resources such as

blogs and video documentation, while appendix B contains full-page images of these works.12

12Many of these images are repetitive of figures found in the core of the dissertation, in larger format.
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Chapter 2

Absences

The best bridge is one that just stands there, whatever the weather. Cybernetic

devices, in contrast, explicitly aimed to be sensitive and responsive to changes in

the world around them, and this endowed them with a disconcerting, quasi-magical,

disturbingly lifelike quality.

– Andrew Pickering, The Cybernetic Brain

I need to wait for it everyday. First thing in the morning, I put the circuit out under

the sun, letting it wake up, giving the batteries a chance to recharge. The days have a

strange shape. I seem to be waiting for the sunset to come for the whole day, measuring

the voltage increase as the day goes, doing some internet [sic], writing some code, running

simulations.

Then, when it comes, I’m always late. Around 4 o’clock, I got to [sic] restart the circuit

with the new, enhanced program. Even though I’m waiting for it all day long, I’m

always running after it, coming back home with the scooter, getting the program to

compile, checking if everything is fine. Then I wait, carefully looking at the evolution

of the little indicator LED.

It goes very fast. In about an hour, the sun dives down to the horizon, setting the sky

on fire. You can feel it in your skin.

Then the chill comes.
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Samuel St-Aubin is a self-taught artist who excels in hardware design, physical computing and

rapid prototyping. His extensive knowledge of electronics, combined with my programming skills,

would give us an opportunity for sharing approaches and learning. Inspired by psychogeographic

techniques of “détournement” (“drifting”) and street art, our work consisted of imagining and

designing low-cost electronics devices that could be distributed in the urban space, using “simple

means to give new qualities to the city environment by creating different interactive situations”.2

Figure 6: Accrochages (2008). Art souterrain, Montréal, Canada. Photo by Alexis Bellavance.

The second project, called Absences (2008—2011), involved a series of five (5) electronic inter-

ventions where artificial-life agents were installed in outdoor environments. Taking shape at the

frontier of new media and environmental art, it proposed a meditation on solitude and associa-

tion, interaction and adaptation, natural and artificial, biological and inanimate. Each intervention

consisted of the creation and installation of autonomous electronic devices in various ecosystems.

These artificial agents acted and reacted within their specific environment.

In Absences, I set out to meddle directly with natural processes. The very concept of inter-

activity, largely explored in my past work, was put under scrutiny: these systems were no longer

meant to interact with human spectators, but with a whole ecosystem of nonhuman agencies. One

of my core interests with the series was to subvert the accepted notion of technology as something

2Source: http://accrochages.drone.ws/
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“useful” that embodies man’s unbounded control over nature. Instead, here, I sought to place frail

technological systems in the outdoors, with the modest goal of giving them the ability to survive

within their habitat — an objective which would prove to be much harder than I originally thought.

Though most of my previous works were interactive, one of the important choices that I made

was to purposefully keep humans out of the equation. The first reason was conceptual: interacting

specifically with humans would have countered the spirit of the project itself, which called specifi-

cally for a decentering of the human subject in our view of how technology and nature interoperate.

Having worked on many interactive projects in the past, I wanted with Absences to subvert the

human-centric concept of interaction by “interacting with nature”.

The second reason was more practical. Humans are extremely complex agents and the way

they choose to interact with a piece is equally unpredictable. As I was already taking a risk by

intervening in the outdoors — a rather hostile place for electronic entities — it felt like adding the

extra challenge of accounting for human behavior in the design was a bit excessive and would limit

my freedom. From my perspective, natural phenomenon possessed a more “predictable” dynamics,

which would facilitate the integration of the devices in outside milieus. This an assumption would

turn out to be quite overblown.

I created Absences as a research-creation program which would allow me to move beyond a prac-

tice based on representations, and instead towards one anchored in interventions and performances.

The projects of the series inspire important questions about technology, nature, and nonhuman

agency. Can artificial agents “survive” in nature (and how)? What is the aesthetic effect of these

agents? How are they connected to art, science, beauty and truth? How do they refine and redefine

notions of agency and behavior in both science and art?

Absences marks a turning point in my research-creation practice as it resurrected my interest

in adaptive systems, fostering the fundamental questions at the core of this dissertation. One of

the important aspects of Absences — and the reason why I chose to specifically dedicate a chapter

to the project — is that there is a clear progression in the kinds of behaviors that were produced

in the project, from rule-based nonadaptive systems to self-regulated, self-organizing, and adaptive

processes. In particular, the last two interventions were adaptive, the fourth device being driven by
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(a) First Absence (2008). (b) Second Absence (2009). (c) Third Absence (2010).

(d) Fourth Absence (2009). (e) Fifth Absence (2011).

Figure 7: The five interventions of the Absences series (2008–2011).

a very simple feedback system, while the fifth and last agent was governed by a Machine Learning

algorithm using neural computation.

In this chapter, I describe my creative process in the design of the Absences series, which re-

activated my interest in Adaptive Computation and Machine Learning. I first recount my failed

attempt at building an agent activated by sunset during my first intervention in Northern Thailand,

showing how it gave rise to the need for integrating adaptive behaviors in my work. I then report

my use of different kinds of adaptive and learning algorithms, with increased complexity, in three

of the other interventions of the series. Finally, I discuss how Absences opened up the broader set

of questions that are addressed in this research.

2.1 The Need for Adaptation

One of the decisive moments in Absences happened while designing the first intervention, a device

that would only activate at sunset by inflating artificial “fruits” using small air pumps. Whereas

the device had solar panels and light sensors which allowed it to perceive incoming light, I wanted
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to prevent it from being “fooled” by passing clouds or dust that could potentially accumulate

on its sensors. Thus, I gave the agent some extra sensors in the form of thermoresistors. The

algorithm, which I programmed “by hand” over the course of several weeks, looked not only at

absolute values, but rather at the variation in both light and temperature through the day, on

the assumption that the general slope of change in both temperature and light are more robust

measurements (in particular with respect to seasonal variations).

Figure 8: First Absence (2008), ComPeung, Doi Saket, Thailand. Photo by Sofian Audry.

The excerpt from the project’s blog that began this chapter describes the creative process

undergone during that period. It shows how I myself became engaged in an adaptive procedure,

making adjustments from sunset to sunset, my agency intertwined with nature’s immutable cycle.

I installed the module around December 2008, on a small tree located on the ComPeung resi-

dency center’s land.3 For a few days, I made sure the piece worked as I had so carefully designed it

3For reference, read: http://absences.sofianaudry.com/fr/node/38.
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to, marking every sunset with its daily behavior. In January and February, I became more occupied

with my second intervention and did not look too closely at it.

At the end of my residency in late February 2009, the center held a public event to showcase

the work. As everyone anxiously waited for the device to start, the sun slowly descended to the

horizon. After about thirty minutes, the sun was almost gone with no reaction from the “artificial

tree”, forcing me to manually start it by flashing the microchip with an emergency program.

In the space of a few months, the initial conditions had changed and the adjustments I had so

carefully made in December to the light and temperature threshold, were no longer appropriate.

The algorithm, constrained by these hardcoded parameters, was utterly unable to adapt to seasonal

variations in daylight. That agent was therefore incapable of “surviving” in its environment, in the

sense that its behavior was unable to maintain itself through environmental changes. It was unable

to be “alive” — or at least stay alive — in these conditions without adaptation.

More importantly, the device’s aesthetic identity as a whole required adaptation in order to exist

temporally. While such an installation could have easily worked for an extended period of time

in a controlled setting such as a gallery space, the fixity of its design was hereby brutally exposed

through the rich variability of nature’s complexity.

I claim that learning and adaptive systems suggest a complete change in paradigm in regards to

technology and how it operates in the world. Technologies of the past and present are immensely

nonadaptive: they are driven by a human-centric ethics that seeks to control nature (Pickering

2010). Quite paradoxically, current-day Machine Learning has not really escaped that paradigm,

being used for the most part for pattern recognition purposes in attempts to efficiently solve con-

crete, measurable “problems”; to gain more control over outcomes.

2.2 A Narcissistic Self-Regulating System

In the meantime, I had already finished creating the Second Absence (2009), a small device consisting

of a simple input-output system involving an LED and a photoresistor enclosed in a glass bottle.

The device, which was installed deep in the Thai rainforest and only activated during nighttime, was
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driven by a minimalistic self-regulating mechanism where it tried to adjust its light level (actionable

through the LED) to counter-balance its perception of light (through the photocell), as if rapidly

reacting to its own reflection.

The algorithm went as follows:

1. Let x be the value of light as read by the photoresistor, normalized and remapped to [0, 1].

2. Set the LED value to (1− x) (i.e., the opposite of perceived light).

3. Wait for some time.

4. Go to step (1).

Figure 9: Second Absence (2009), Mae Kuang reservoir, Thailand. Photo by Sofian Audry.

The process results in a rapidly, yet unstable flickering light, as the agent iteratively adjusts

its actions to its perceptions. It stabilizes after a few seconds, asymptotically reaching a state of
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equilibrium. When the agent notices that its perceptions match its actions, it quickly gets “bored”

and moves into a “sleeping” state, represented by a simple sinusoidal oscillation.

This second intervention displayed a rather formal process that at the same time contained a

simple kind of adaptation called “self-regulation” through a closed feedback loop. We will see in

chapter 3 how self-regulation and negative feedback systems are the first principles behind adaptive

systems as they were defined by first-order Cybernetics.

2.3 Surviving in the Wild

The Fourth Absence (2009) used a similarly simple self-regulating process, however this time running

in an open feedback loop, fully engaged with the natural elements.4 The project directly engaged

with the situation of allowing an artificial agent to “survive” in a hostile setting, exploiting the

aesthetic potential of its own energy management. The agent consisted of a three-meter high tube,

most of which was buried underground to protect the circuit and batteries from the extremely low

temperatures of Winter. At the top, two solar panels allowed the device to recharge its batteries,

with an efficiency that was expected to vary highly through the seasons.

Energy management is a concrete example of acting within nature and a recurring issue

in the project. I will here focus on a kind of device that have insufficient access to

resources and thus needs to alternate between periods of activity and dormancy, such

as is the case for most real-life organisms. How can such a device reach its specific goals

in balance with the available energy resources?

A solution to that problem was developed during my stay near the Arctic (Yukon,

2009). I built a device that produced a sound at a specific pace. Between each sound

emission, it would switch to a sleep mode, consuming almost zero power. The massive

changes in day length in the region throughout the year requires it to adapt its frequency

accordingly. The right frequency cannot be computed analytically since it depends on

many unkown [sic] factors (such as the temperature and the precision of the sensors).

I addressed this issue by relying on a very simple adaptive algorithm that updates the

frequency of appearance of the action (in this case, emitting the sound) based on the
4For the sake of focusing on the most relevant works of the series, I will not discuss the_ Third Absence_ in

detail here. Suffice it to say that it played with the question of feedback and self-organization with multiple agents
using a very simple formal algorithm, using nature’s own indeterminacy as its main strategy. For more information,
please consult the following video documentation: https://vimeo.com/46469372.
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measured batteries [sic] power (voltage). If too much power is available, the frequency

is slightly increased, rising the energy consumption. If there is not enough, it is reduced

in a similar fashion. (Audry 2010, 2–3)

Figure 10: Fourth Absence (2009), Dawson City, Yukon, Canada. Photo by Sofian Audry.

The intervention thus applied a principle very important to early Cybernetics: homeostasis, the

mechanism by which organisms are able to keep some of their inner variables stable through time

by acting in purposeful ways with respect to their inputs. In this case, the charge of the battery is

the variable that is kept stable by adjusting the period at which the sound is played.

As in the Second Absence, the behavior is based on a simple feedback procedure — which as we

will see in section 3.1.1 is called negative feedback (Wiener 1961) — that updates a single parameter

w that controls the period T (expressed in hours) between each action (i.e., sound emission) using

the following formula:
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T =
1

1 + exp(−w)

5

When night comes, the agent compares the voltage that remains in its batteries (Vbatt) with a

target voltage (Vtarget), producing the following error value:6

E =
Vbatt − Vtarget

Vmax

This error becomes a way to assess the success of its strategy in choosing parameter w. The

agent then makes a step-wise adjustment to w, adjusting it to try and lower the error on the next

day, using a simple learning rule:

w ← w − η[(1− T )T ]E

This expression corresponds to a very common form of adaptive procedure called a stochastic

gradient descent (Bishop 1995). Parameter η is a small positive value called a learning rate which

controls the speed of adaptation. It needs to be set by hand to a value large enough to ensure

change, but small enough to smooth out natural variations in the data.7

Without entering into details, consider the case where too little energy has been consumed over

the day, with Vbatt > Vtarget, hence yielding a negative error (E > 0). Assuming the periodicity

of the actions is at least partly responsible for the situation, one can see how w will be decreased

because η[(1 − T )T ]E > 0. If that is the case, then the period T will also be decreased, which is

5This formula corresponds to the *sigmoid function*, an activation filter commonly used in Artificial Neural
Networks. One of its properties is that it maps values between 0 and 1 in a non-linear fashion (hence the expression
ensures that T stays between 0 and 1 hour). See Bishop (1995) for more information.

6The difference is divided by the maximum possible voltage of the batteries (Vmax) to ensure it stays between 0
and 1.

7Though this parameter is set by hand, it is relatively robust, meaning that a wide range of values for it will still
allow learning to occur. There is of course a tradeoff between speed of convergence and precision.

For example, if we consider the case of the Fourth Absence, choosing a high learning rate will result in the agent
reacting very abruptly to day-to-day variations (which might be due to natural noise), whereas choosing a low rate
could prevent the agent from adapting fast enough to seasonal changes.
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exactly what we want in this case: we would have had enough energy to produce the sound more

often, hence we want to increase the pace by lowering the time between each action.

2.4 Adapting to Conflicting Desires

The issue of adaptation proved to become an increasingly important aspect of Absences, both

practically, conceptually and aesthetically. For the final intervention, I decided to extend the idea

of an adaptive mechanism by trying to integrate a kind of Machine Learning procedure called

Reinforcement Learning (Sutton and Barto 1998) (see section 3.2.1 for more detail) by designing a

sensorimotor system animated by its own set of conflicting desires, which would be able to adapt

and learn from its actions.

Figure 11: Fifth Absence (2011), Catalonian Pyrenees, Farrera, Spain. Photo by Sofian Audry.

For this project, I imagined a robot that could control the orientation of one or more solar
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panels which would make up its body using servomotors. These solar panels would be used both

as sources of energy and as photosensors. The robotic agent would start with a “blank mind”,

not even knowing the relationship between its movements and the orientation of its solar panels.

It would simply explore its environment and, little by little, through trial and error, establish a

correlation between its actions and perception.

In December 2009, I had successfully used a Reinforcement Learning algorithm in the realization

of a very simple adaptive agent. Reinforcement Learning is an approach in AI that allows an

artificial agent to learn an optimal behavior from a series of actions based on observations, through

an iterative process of trial and error. In each action, the agent receives a reward or punishment in

the form of a number — positive or negative — which allows it to guide its future choices.

I found this approach exciting because it seemed to be an efficient way to design self-organizing,

emergent, potentially surprising behavioral patterns while giving some “guidelines” for the agent

to follow. The resulting behavior is not determined in advance: it is chosen by the agent itself,

according to its particular context and the rewards it receives, through its interactions with the

environment. The practitioner can thus work with the context (i.e., the inputs and outputs afforded

by the system) while encoding the desires of the agent through rewards and punishments. Yet, as

the agent itself determines its best strategy to maximize its rewards, the learning process holds the

potential to generate unexpected, possibly surprising behaviors.

The agent was anchored to a cliff in the Catalonian Pyrenees, floating above the void. I encoded

a very simple reward function which rewarded the agent for looking away from the sun while heavily

penalizing it for running out of batteries. In so doing, I I put the robot in a tension between two

conflicting choices, forcing it to navigate along the thin ridge between need and desire, slowly

adjusting to find its own balance in the world.

2.5 Towards Adaptive Systems

Absences was a first attempt to directly intervene in uncontrolled, so-called “natural” ecosystems

through performative, embodied artificial entities. The project, which was articulated as a three
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years research-creation program, follows the artistic tradition of environmental art, which is itself

a particular form of conceptual art.

As I struggled to integrate such embodied artificial agents in changing, often unstable envi-

ronments, I was pressured and inspired into using adaptive systems, as is summarized in table 2.

I began exploring these concepts more profoundly over the next several years with projects such

as N-Polytope (2012), Plasmosis (2013), Archipelago (2014), and Vessels (2015). Through these

works, I reconnected with the aesthetic dimension of Machine Learning that lead me into the field

in the first place; only in this artistic context, instead of seeing an error rate get lower, there were

real-time, media effects that unfolded in time and space.

Table 2: Evolution of systems in Absences.

Title Year Description of system

First Absence 2008 Nonadaptive (but should have been).
Second Absence 2009 Nonadaptive but included a process of self-regulation through a feed-

back loop.
Third Absence 20108 Nonadaptive but involved a multi-agent communication loop that

could be seen as a self-regulated system.
Fourth Absence 2009 Adaptive through a simple feedback system allowing the piece to “hi-

bernate” (i.e., adjust its consumption to available resources).
Fifth Absence 2011 Adaptive through a Reinforcement Learning system that made use of

an Artificial Neural Network.

This being said, Absences opens up a can of worms, provoking larger questions around the

use of such techniques within artistic practice. How can the different components and properties

of Machine Learning algorithms be exploited by artists? How do they affect the aesthetics of a

piece? How is adaptation related to autonomy, emergence, self-organization and self-regulation?

How are these concepts connected both aesthetically and historically? How do agent-based systems

work aesthetically? What effects do they have on audiences? How can/does adaptation influence

these effects? What distinguishes behaviors produced by adaptive systems from those produced by

self-organizing and rule-based systems?

To address these important considerations, we must first understand the sociohistorical frame-

work surrounding adaptive and Machine Learning methods. The techniques I have employed in
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Absences were taken largely out of context, as I simply applied my own knowledge derived from

computer science. In the next chapter, I strive to understand where these approaches come from,

to extract them from their pure technical meaning and bring them into a broader interdisciplinary

domain, I do so by tracing agent-based and adaptive systems back through the history of computer

science from the 1950s onward while simultaneously establishing parallels with media art history.
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Chapter 3

Towards a Practice of Machine

Learning in Agent-based Art

I suspect that the "aesthetics of intelligent systems" could be considered a dialogue

where two systems gather and exchange information so as to change constantly the

states of each other.

– Jack Burnham, The Aesthetics of Intelligent Systems

The great difference between magic and the scientific imitation of life is that where

the former is content to copy external appearance, the latter is concerned more with

performance and behavior.

– Grey W. Walter, An Imitation of Life

This chapter aims to provide a strong contextual ground for this thesis. It introduces the

fundamental concepts that are studied in the research, such as systems, agents, behaviors, self-

organization, emergence, adaptation and Machine Learning. Tracing through the history of adaptive

and learning systems since WWII in both science and art, I highlight how these concepts travel

between scientific and art historical frameworks, trying in particular to articulate how artists utilize
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these concepts and the challenges that come with such practices. Finally, I discuss the main

components that constitute Machine Learning algorithms, exploring ways they have been, or could

be used for artistic expression.

The first part of the chapter explores the history of adaptive and learning systems following a

more or less chronological path. One should however be aware of the intricate ramifications that run

synchronously to this story. I start by exploring so-called “first-order” Cybernetics (1946–1950s)

which is associated with the appearance of early connectionist models (1950s). I then describe the

appearance of the field of Artificial Intelligence in the 1950s which came in opposition to Cybernetics

and connectionism (1956–1974). The emergence of Cybernetics and AI in the 1950s is associated,

in the 1960s, with the rise of new art forms which art historian Jack Burnham has described as

“systems aesthetics” (Burnham 1968), and whose larger genealogy lies in artistic movements such

as conceptual art, cybernetic art, information art, algorithmic art, etc. I then examine the revival

of connectionism in the 1980s which I associate with the emergence of Machine Learning and its

development and popularization in the 1980s–1990s.

The second part of the chapter examines the intrinsic properties of Machine Learning systems

in an effort to delineate unique artistic strategies that can be used to exploit them. I summarize

the different dimensions that define Machine Learning algorithms in the scientific literature, such

as the tasks they can solve (supervised, unsupervised and reinforcement), the model being used

(neural networks, genetic algorithms), the evaluation criterion (measuring the performance of the

system) and the learning process itself. I discuss each of these properties from both and aesthetic

and practical standpoints, exploring how such techniques are utilized in artistic works, and based

on this knowledge suggest new possibilities.

3.1 Historical Context

History is imbued with a fascination for the possibility of humans to artificially fabricate life. Many

stories from Antiquity display artificial, humanoid creatures: Ovid’s Pygmalion, who fell in love

with a statue of his own making, brought to life by Venus, is perhaps the most well-known of
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them (Ovid 2008). The figure of the Golem, a humanoid creature made of clay, brought to life by

the name of God, appears in early talmudic mythology (Idel 1990).

There exist several records of mechanical automata in the ancient world. One of the first

documented example is a steam-activated “pigeon” constructed by mathematician Archytas of

Tarentum (circa 400–350 BC). In China, a mechanical orchestra was allegedly built for the emperor

during the Han dynasty around the 3rd century BC. In the 13th century, Muslim inventor al-Jazari

created a series of moving peacocks for the royalty of the Urtugid dynasty in Mesopotamia. French

inventor Jacques Vaucanson, who created the first completely automated loom, designed many

life-imitating automata. His most famous work, The Digesting Duck (1739), was an artificial bird

made of more than 400 parts who could move, drink, eat, and defecate.

These examples are only a fraction of the numerous life-imitating machines designed in both

the Eastern and the Western world from the Antiquity to the mid-XXth century. A common

characteristic of these mechanical devices is that they were always dedicated to a single set of tasks

and could not be easily modified and/or re-purposed to accomplish another one.

But a change in paradigm takes place in the period following WWII. Increased interest in

military applications of computation such as ballistics and cryptography led to the appearance of

the first general-purpose computers in the late 1940s. Contrary to mechanical automata, which were

usually able to address very specific problems such as manufacturing textiles or performing simple

arithmetics operations, computers are programmable, which means that they are theoretically able

to perform almost any kind of algorithmic symbol manipulation.1 It makes them uniquely powerful,

which led many at the time to think that computing is universal and could theoretically model any

kind of process found in nature, including animal behavior and human cognition.

Several accounts of the history of Artificial Intelligence and Machine Learning exist from both

humanities and social sciences (Hayles 1999; Whitelaw 2004; Johnston 2008; Penny 2008; Clarke

and Hansen 2009; Pickering 2010; Halpern 2014; Shanken 2015) as well as computer science (Brooks

1There are theoretical limitations to the power of computers, as was first revealed by Kurt Gödel in his famous
incompleteness theorems, published in 1931 (Van Heijenoort 1977). Five years later, inspired by Gödel’s work, math-
ematicians Alonzo Church and Alan M. Turing almost simultaneously demonstrated the impossibility of writing a
generic algorithm for solving the “halting problem” – or Entscheidungsproblem – which is the problem of automati-
cally reading another computer program and deciding whether it will stop (halt) or run undefinitely (Church 1936;
Turing 1936).
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1999; Sutton and Barto 1998; Duda, Hart, and Stork 2001; LeCun, Bengio, and Hinton 2015; Medler

1998; Nilsson 2010). Whereas the latter accounts from computer science have the advantage of

offering an insider’s perspective over the history of the field, it traditionally focuses on the evolution

of techniques, often neglecting to contextualize the sociocultural dimensions. As for the former in

the humanities and social sciences, they seem to suffer from the inverse illness, as they bring larger

considerations into the picture but often fail to understand the science itself and are thus prone to

misrepresenting it.

As an interdisciplinary scholar trained in Humanities, Media Art and Machine Learning, I aim

to bring some clarity into the debate by developing my own story of adaptive systems since the

post-war era. In particular, I want to focus on Machine Learning systems, analyzing them from the

perspective of the history of science as well as art history, articulating origins and developments of

cultural imaginings surrounding artificial adaptation and the role it plays in contemporary art.

One of the most important challenges lies in the difficulty to trace techniques used by artists, as

works using adaptive systems are scarce and often poorly documented. For example, many artists

use extremely general terms when describing the techniques employed in their works, such as “neural

networks”, “ecosystems”, or “evolutionary systems”.2 An important aspect of my contribution here

is thus to disentangle which methods were actually used in order to connect these works with their

scientific practices.

3.1.1 Cybernetics

It is largely accepted that contemporary concepts about artificial agency and adaptive systems

such as AI, Machine Learning, and Neural Computation, originated in the early 1940s with the

Macy Conferences on Cybernetics (1946–1953). A set of ten interdisciplinary gathering chaired by

neurophysiologist Warren McCulloch, these conferences brought together mathematicians, psychi-

atrists, psychologists, biologists, social scientists and computer engineers, with the ambitious goal

2For example, compare the use of the term “neural network” in the work of Yves Amu Klein (Klein 2014) —
which refers, in fact, to a specific kind of unsupervised neural net called self-organizing maps — with the dome
performance Bio-inspire by Turkish audiovisual artists Bahadır Dağdelen and Yusuf Emre Kucur who provide a
very elusive description of the kind of networks they are using, with no scientific reference that would allow one to
understand the kind of technique they are putting into action (Dağdelen and Kucur 2016).
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of constructing a general theory of the human mind (Dupuy 2000).

The conferences revolved around the organism and its relation with its environment. At the first

gathering in 1946, Warren McCulloch, following on his recent research with logician Walter Pitts,

had shown how propositional logic could be modeled by simple artificial neural networks. In their

1943 paper on neural networks, the authors had proposed a simplified model of neuron activity

where each brain cell is in either one of two states at any given time (on/off, true/false, 0/1) (Mc-

Culloch and Pitts 1943). The neurons are connected using synapses which are either excitatory or

inhibitory.3 The alleged “all-or-none” neural activity, thus reduced to on/off mathematical com-

ponents, allows “neural events and the relations among them” to be treated using logical calculus

(1).

In January 1943, Arturo Rosenblueth, Norbert Wiener and Julian Bigelow published “Behavior,

Purpose and Teleology” where they presented a teleological model of human and animal behavior

which would also be shown at the first Macy Conference in March of the same year (Rosenblueth,

Wiener, and Bigelow 1943). They defined behavior as a transformation in the organism related

to its environment (1). Recognizing the extreme broadness of the definition, they developed a

hierarchical taxonomy of behavior, classifying animal behavior as active (as opposed to passive),

purposeful (as opposed to random) and teleological.

Teleology is key to understanding the origins of contemporary notions of adaptation. It is

tightly connected to the notion of feedback, a concept that would become a central component of

Cybernetics (Wiener 1961). The term feedback comes from engineering where it has two meanings.

The first sense of the word, called positive feedback, refers to a property of a system where “some of

the output energy of an apparatus or machine is returned as input”, such as in an amplifier circuit.4

Thus, when talking about (teleological) feedback, the authors rather refer to the second sense of

3In neurological terms, an excitatory synapse increases the likelihood that the post-synaptic neuron will fire when
the pre-synaptic neuron does, while an inhibitory synapse decreases that likelihood. Inhibitory synaptic connections
play an important regulatory function in the brain.

As an example, epilepsy seizures are the result of a dysfunction in the inhibitory mechanisms in the brain which
causes neurons to fire erratically due to unregulated excitation.

In McCulloch & Pitt’s design, inhibitory inputs are absolute, meaning that if a neuron receives many inputs,
inhibition will take precedence over excitation, thus preventing the post-synaptic neuron to fire.

4Economic collapses are usually caused by such positive feedback loops: as people lose their trust in the market
they begin selling their assets, which causes more people to lose their trust in the market, and so on.
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clear separation between the message and the signal that encodes it. He states that the meaning

that the message conveys is unimportant to the engineering problem of communication, which is

rather concerned about its probability of appearance. Shannon thus defines information as an im-

material measurement of uncertainty that has nothing to do with significance; a “pattern, not a

presence” (Hayles 1999, 33).

Rosenblueth and Wiener’s definition of behavior and Shannon’s theory of information would

both have a major impact on Cybernetics. They are related to another foundational concept in the

field: homeostasis, a property of a system that constantly adjusts the output of an organism such

that it maintains a state of stability using an adaptive criterion embedded in a negative feedback

loop.6 A thermostat is the perfect example of a simple homeostatic system. It tries to regulate the

ambient temperature using negative feedback, switching the furnace on when the temperature is

too low, and off when it gets too high.

The perfect embodiment of homeostasis can be found in Ross Ashby’s homeostat (Ashby 1957),

a physical device that can adapt to its environment using a feedback loop. The homeostat was

presented by Ashby at the ninth Macy Conference. It is an electrical device made of two parts.

The first part consists of four units. Each unit has an electrical magnet that can deviate from its

central position. The deviation of each magnet is converted into an electric current which is sent as

an input to the other three units. Within the system, all units are interconnected. Moreover, each

unit sends its electric output as a feedback input to itself. The inputs control the activity of coil

relays that move the magnet in such a way that the deviation of the magnet is roughly proportional

to the sum of the currents (Ashby 1954, 95).

With appropriate tuning, the device displays extreme stability. “If the field is stable”, Ashby

explains, “the four magnets move to the central position, where they actively resist any attempt

to displace them. If displaced, a co-ordinated activity brings them back to the centre.” (96) For

Ashby, this “ultrastability” found in homeostatic systems is a necessary condition of life (110).

The Fourth Absence, described in the previous chapter, is an example of a simple homeostatic

device. In effect, it tries to maintain a stable variable (its battery level) over which it has only
6The concept was first described by physiologist Claude Bernard in 1865 (Bernard 1957) and the term homeostasis

was coined in 1928 by Walter Cannon (Cannon 1928).
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indirect control by tentatively adjusting its actions (the frequency at which it plays a sound) so as

to adapt to seasonal variations (cf., section 2.3).

3.1.2 Early Connectionist Models

Early after the war, the science of Cybernetics in the Macy era thus started designing rudimentary

adaptive, self-regulated systems able to “stay on course”, moving towards a definite target by

making micro-adjustments to their internal structure. Of particular interest is the self-organizing

nature of Cybernetics devices such as the homeostat, which also suggests a perspective on human

cognition. From this viewpoint, memory functions not as a definite trace image (like a “snapshot”)

that can be retrieved through some kind of addressing mechanism, but rather as the real-time,

dynamic relationship ongoing between a distributed set of control units.

In 1949, Canadian psychologist Donald O. Hebb proposed a revolutionary model for human

neural networks that went along similar lines. He claimed that as brain cells subject to certain

types of stimuli fire together, they also increase their likelihood of firing together in the future when

subjected to similar stimuli, thus forming self-organized assemblies of neurons (Hebb 1949). This

principle, a “form of connectionism” (xix) which would come to be known as Hebbian learning, views

human memory as a subsymbolic, distributed, self-reinforcing process, rather than as a collection

of coded representations that would somehow be stored in the brain.7

Building upon both Hebb’s findings and cybernetician models of the brain such as Ashby’s

homeostat and McCulloch and Pitts’ logical neural nets, Frank Rosenblatt proposed in 1957 one

of the first adaptive connectionist devices: the Perceptron (Rosenblatt 1957). The perceptron is a

simplified model of a human neural network in the shape of a thresholded linear function8 that is

able to classify a pattern in one of two categories.

7Physiological theories of learning similar to Hebbian learning had been around since the 19th century. For an
in-depth historical review, see Cooper (2005).

8A linear function is a polynomial function of degree zero or one. In the one-dimension case, such a function has
the form:

y = mx + b

which once drawn on a cartesian plane shows as a line with slope m, hence the attribute “linear”.
The Perceptron uses such a linear function, but in the more general n-dimensional domain, where n is the number

of inputs:
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It maps a set of typically binary data (input neurons) to a binary output (output neuron) using

a layer of parametric values called weights (representing the synapses). The weights are usually

initialized randomly. A simple training procedure allows the perceptron to adjust its weights based

on a series of example inputs for which the expected output is known.9

For example, suppose that we want to differentiate handwritten letters that are either “A” or “B”

using a Perceptron. We create a database of multiple 8x8 black and white images of handwritten

A’s and B’s. Each such image can thus be represented as a vector x of 256 dimensions x1, · · · , x256,

each being assigned a value of −1 to represent black pixels and a value of 1 for white pixels. The

model possesses a weight wi that is associated with each of the 256 inputs of an image, which is

usually initialized randomly.10

To compute the class of a given input as predicted by the Perceptron, we feed it one of the

examples by copying the values of one of the images to the network’s inputs xi, multiplying each

of these values by its corresponding weight wi and adding the results:

o(x) =
256
∑

i=1

wixi + b

Thresholding the value at zero (0), we classify this image in the “A” category if the resulting

sum is negative, and into the “B” category if it is positive. Let y be the category predicted by the

network:

o(x) =

n
∑

i=1

wixi + b

where wi are the weights (synapses) associated with inputs xi (eg., each pixel in a black and white image), while b

is a “bias” weight. In that case, the function can be represented geometrically as a hyperplane in n dimensions that
splits the space in two distinct regions representing the two classes that we try to distinguish.

The result (a scalar) is then “thresholded” to yield a binary output (representing the true/false category the
perceptron is trying to infer from the input data): the category will be 1 if the output o(x) is positive, and 0 if it is
negative.

9It is worth mentioning that the perceptron was invented around the same time as another connectionist network
inspired by the McCulloch-Pitts model, the Adaptive Linear Element or ADALINE (Widrow and Hoff 1960), which
uses a similar learning rule.

10There is also an additional bias weight b that needs to be initialized, however for the sake of simplicity we will
ignore it in the explanation that follows.
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y =















1, if o(x) ≥ 0

0, otherwise

Let d represent the desired category of the example under consideration (which we know of

because as human beings we can identify the true category of the character as either an “A” or a

“B”). We can then adjust the weights wi according to the following learning rule:

wi ← wi − η(y − d)xi

The motivation behind that rule amounts to:

1. If network output y = 0 while target output d = 1, then y is too small, so we need to increase

the weights associated with positive inputs by a small value η called a learning rate while

decreasing weights that correspond to negative inputs.

2. Likewise if y = 0 and d = 1 we need to do the exact opposite so as to lower the value of y.

3. Finally, if the network classified the example correctly (i.e., y = d) we do not change anything.

The procedure repeats for several steps, running through the database of images until the average

error converges to a minimum.

A similar kind of learning rule was used in the second and fourth interventions of Absence. In the

Second Absence (the light-adjusting system in a bottle), the output itself (i.e., the LED intensity)

is directly adjusted using a learning rate of 1 in response to the input (i.e., the photocell measuring

the light intensity) (see the algorithm p. 4). In the case of the Fourth Absence, an intermediate

parameter w is used to control the output (i.e., the rhythm at which a sound is produced); this

parameter gets updated in response to the battery voltage using a learning rate η (c.f. page 2.3).

In other words, a parameter gets adjusted to generate actions by trying to lower an error rate

(measured as the differential between a target and an actual battery charge during nighttime).

Perceptrons mark an important step in the history of Machine Learning for two reasons. These
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more complex and abstract features, such as handwritten letters.

The Pandemonium was built on Selfridge’s previous research on visual pattern recognition. In

1954, the scientist had given a talk at the RAND Corporation in Santa Monica, describing a system

programmed by G. P. Dinneen that was able to learn by experience (Dinneen 1955; Selfridge 1955).

Present at the conference was computer scientist Allen Newell who was then conducting research

into army-related logistic problems. Newell was deeply inspired by Selfridge’s talk. While the

learning capabilities of the system were rather poor in practice, it nonetheless revealed a true

potential for machines to display intelligent behavior.

In the year that followed, Newell started working on an adaptive system to effectively play chess,

which was presented at the Western Joint Computer Conference in 1955. His work grasped the

attention of economist Herbert A. Simon at Carnegie Mellon and, together with RAND programmer

J. C. Shaw, they started working on the ambitious project of designing a program that would be

able to prove mathematical problems.

The program, called the Logic Theorist, was shown the next year during the famous 1956 Dart-

mouth Conference at Dartmouth College in Hanover, New Hampshire. An initiative of Computer

Scientist John McCarthy, the conference brought together a small group of scientists around the

study of a new field: artificial intelligence. The study proceeded on the basis of the conjecture

that every aspect of learning, or any other feature of intelligence, can in principle be so precisely

described that a machine can be made to simulate it.

Whereas several approaches to the problem of computer intelligence were considered, includ-

ing connectionist methods (McCarthy et al. 2006), the conference was dominated by the work of

Newell, Shaw and Simon, who were the only researchers who came with an actual, working artificial

intelligence system.

Generally considered to be the first artificial intelligence program, the Logic Theorist was even-

tually able to prove 38 theorems from Whitehead and Russell’s Principia Mathematica, even coming

up with a more elegant proof for one of them (Newell, Shaw, and Simon 1958; Newell, Shaw, and

Simon 1959). It was extremely impressive in its ability to perform in a category of tasks that seemed
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extremely difficult to humans, requiring a high degree of abstraction and logic.11 To the contrary

of connectionist and Cybernetics approaches, it also did not attempt to model existing biological

systems, and instead focused on structured, symbolic manipulations to achieve its remarkable goals.

Newell, Shaw and Simon’s work would set the stage for the first phase of the development of

the field of AI from the mid–1950s till the mid–1970s. This era was marked, on the one side, by a

dubious optimism, as some researchers managed to rapidly achieve satisfying results on high-level

problems such as playing checkers or chess (Newell 1955), and responding effectively to simple text-

based chat interactions, or solving problems in simulated “micro-worlds” (Winograd 1970); and on

the other, by a heavy reliance on symbolic, rule-based systems, with little or no interest in biological

systems such as neural networks.

Indeed, the excitement for connectionist structures inspired from human biology that was grow-

ing in the 1950s would come to a halt with the publication of Minksy and Papert’s forceful critique

of perceptrons (Minsky and Papert 1969). By showing that even simple problems are unsolvable

by such a linear neural network, the book put a halt to the non-symbolic and distributed approach

which had had great attention in the field since the 1940s. Public funding switched sides and for

two decades, AI research turned towards the symbolic and heuristic approach pioneered by Minksy,

Papert and Simon, which would later be known as “classic AI” or Good Old Fashioned AI (GOFAI).

Classic AI is usually associated with “strong AI” or computationalism, a theory of mind based

on the premise that cognition is computation (Dietrich 1990).12 In 1950, Alan Turing proposed a

test for machine intelligence using a simple “imitation game”. The goal of the machine would be

to engage in a continuous chat with a human interrogator and try to “pass” as a human being. If

the interrogator could not distinguish the machine from a human interlocutor, then that machine

should, according to Turing, be considered as a thinking being (Turing 1950). In other words, what

11It would later be found that the most difficult problems for computers to address are not intricate mathematical
proofs or efficient strategies for playing board games, but rather the kind of problems that seem so easy to us that
we do them almost unconsciously, such as walking, talking, or driving a car.

12To understand the importance of this perspective in the history of AI, consider how the preamble of the project
proposal for the Darthmouth conference, written in 1955, places it as a foundational component of the field:

The study is to proceed on the basis of the conjecture that every aspect of learning or any other

feature of intelligence can in principle be so precisely described that a machine can be made to simulate

it. (McCarthy et al. 2006, p. 12)
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their approach, he proposes to address these caveats by putting the body back into the equation.13

After the impressive results of early AI, research quickly plateaued, plagued by profound theo-

retical and practical problems (Pfeifer 1996). By the mid–1970s, government support had stopped

flowing, leading to a dry period often referred to as the “AI Winter” which ran for about a decade.

In the 1980s, new approaches started resurfacing, such as Expert Systems, Artificial Life and Ma-

chine Learning. But before we move on, we will have a look at the influence of early conceptions of

machine intelligence and adaptation on the artistic culture of the 1960s and 1970s.

Many of my own agent-based installation works before 2008 used some form of rule-based systems

that, in the spirit of GOFAI, approached the question of artificial agency through heuristics. For

example, my M. A. project Flag (2007), an immersive interactive installation, generates sequences

of words semantically connected to one another through the construction of a hand-made graph

representation of a word cloud. The First Absence was also designed using such an approach,

using my own a priori knowledge of the world to encode a behavioral response (in this case to the

sunset). Most agent-based installations that use some form of AI technology actually follow this

same approach, often with very good results. Consider for example the excellent work of robotic

artists such as Louis-Philippe Demers, Jessica Field, Ken Rinaldo, and Bill Vorn.14

3.1.4 Cybernetics and Aesthetics

In the first three decades following the end of the war, Cybernetics, Connectionism and AI offered

different perspectives over the functioning of cognition. The apparition of computer-based technolo-

gies in society had a tremendous impact in these years. However, how it affected the artistic world

is often overlooked. Art historian Edward A. Shanken describes the influence of Cybernetics on art

in the 1960s through the work of Roy Ascott (Shanken 2002). Ascott’s reading of cyberneticians

13There is an extensive body of literature that critiques computationalism. For example, see (Searle 1980), (Wino-
grad and Flores 1987), (Suchman 1987), and (Harnad 1990).

14There are many reasons for this, but I will only name a few here. First, the controlled environment of the gallery
space offers very few degrees of freedom and it is possible to restrict it even more, thus allowing the effective use of
simple computational tricks. In other words: galleries are “small worlds” that can be toyed with in often impressive
ways. Second, contrary to AI researchers, artists only need to generate an illusion of agency which does not even
need to feel or look smart. Figurative elements are really important in the production of a sense of agency. Picture
how drawing two eyes and a mouth on an inanimate object such as a potato can suddenly transform it into an agent,
at least perceptually. Finally, the public itself is adaptive and, in an artistic setting, often ready to “suspend their
disbelief” as long as they are going to have a good show.
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Norbert Wiener, Ross Ashby and Frank H. George in 1961 made him envision a new conception

of art as something embodied in interactive systems rather than in physical objects. The scope of

Cybernetics as an encompassing theory of systems’ behavior and communication, would allow As-

cott to merge Cybernetics and art, in an effort to “theorize the relationship between art and society

in terms of the interactive flow of information and behavior through a network of interconnected

processes and systems” (4).

Cybernetics’ conceptions of adaptivity, homeostasis and feedback loops are thus an integral

component of Ascott’s perspective, which he explains in his 1966 paper Behaviourist Art and Cy-

bernetic Vision (Ascott 2003a). In it, he claims that visual arts have entered a new era where

other modalities (such as sound and touch) are explored by artists and where the interactive and

participative experience of the spectator in relationship with the artwork becomes central. Ascott

thus suggests the name “behavioural art”15 as a replacement for “visual art”, which has become too

narrow to describe the new paradigm (110). Ascott later argues more specifically what he means

by it and its relationship with adaptivity and feedback:

Behaviourist art constitutes [. . . ] a retroactive process of human involvement, in which

the artifact functions as both matrix and catalyst. As matrix, it is the substance

between two sets of behaviours; it exists neither for itself nor by itself. As a catalyst,

it triggers changes in the spectator’s total behaviour. Its structure must be adaptive,

implicitly or physically, to accommodate the spectator’s responses, in order that the

creative evolution of form and idea may take place. The basic principle is feedback. The

artifact/observer system furnishes its own controlling energy: a function of an output

variable (observer’s response) is to act as an input variable, which introduces more

variety into the system and leads to more variety in the output (observer’s experience).

(128)16

Hungarian artist Nicolas Schöffer’s piece CYSP I, created in 1956, is considered to be the first

autonomous cybernetic sculpture to follow Ascot’s definition.17 The work consists of an eight-foot

15Ascott seems to use the terms “behavioral” and “behaviourist” interchangeably in his writings.
16Roy Ascott would enact this vision not only through his art practice but also through his views on the pedagogy

of art. In his 1967 manifesto Behaviourables and Futuribles, Ascott frantically argues for restructuring art schools
“as homeostatic organisms, living, adaptive instruments for generating creative thought and action.” (Ascott 2003b,
p. 159)

17In fact, the name of the work comes from a combination of the two first letters of cybernetics and of Schöffer’s
theory of spatiodynamic sculpture.
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tall metallic structure that can move freely across space thanks to four rollers set at its base. At

the top of the sculpture are mounted sixteen (16) motorized plates of colored acrylic glass. A

central processing unit designed by the Philips corporation uses the signals coming from a set of

photo-electric cells and a microphone to control the motors, allowing the device to respond to its

environment and to itself, thus engaging in a self-organized behavior. This design allows it to adapt

to different contexts of presentation: shown for the first time in Paris as part of “Nuit de la poésie”,

it would later join human dancers in a pas de deux by choreographer Maurice Béjart and, in 1957,

would participate in a “spectacle cybernétique” in Évreux under the musical direction of Pierre

Henry (Schöffer 2004). Directly inspired by Norbert Wiener’s theory of control and communication,

Schöffer’s work is a pioneering example of the kind of feedback systems early cyberneticians had in

mind (Fernández 2006, 472).

British polymath Andrew Speedie Gordon Pask is another key figure of the cybernetic art

movement which was lead by Roy Ascott in the UK.18 Pask had allegedly discovered Cybernetics

as an undergraduate at Cambridge in the early 1950s, through an impromptu meeting with Norbert

Wiener himself (Pickering 2010, 313). While he his mostly known for his scientific work, Pask’s

involvement with Cybernetics first started in the art world. During his years at Cambridge, Pask

had participated in the lighting design of theatrical shows in Cambridge and London and created,

together with fellow student Robin McKinnon Wood, a business specialized in the orchestration

of musical comedies. In 1953, they invented a theatrical lighting system called the Musicolour, an

apparatus that “used the sound of a musical performance to control a light show, with the aim

of achieving a synesthetic combination of sounds and light”(316). Reacting adaptively to a sound

signal, it generated patterns of light, interacting with human performers in real-time. The device

contained a “rudimentary learning facility” that was able to change the relationship between sound

and light during the course of a performance.

Notions of adaptation and learning are what fascinated Pask the most in cybernetics systems.

Discussing the evolution of the work as it toured across the country, he notes:

18Evidently, it is Pask who originally explained cybernetics to Ascott at his request (Miller 2014). Pask and
Ascott would actually get to work together in the early 1960s as consultants on Price and Littlewood’s Fun Palace,
an ambitious Cybernetics architectural project that would never be built (Mathews 2005).
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By that time it was clear that the interesting thing about Musicolour was not synaes-

thesia but the learning capability of the machine. Given a suitable design and a happy

choice of visual vocabulary, the performer (being influenced by the visual display) could

become involved in a close participant interaction with the system. He trained the ma-

chine and it played a game with him. In this sense, the system acted as an extension of

the performer with which he could co-operate to achieve effects that he could not achieve

on his own. Consequently, the learning mechanism was extended and the machine itself

became reformulated as a game player capable of habituating at several levels, to the

performer’s gambits. (Pask 1971, 78)

Along with artists Nam June Paik, Jean Tinguely, John Cage and Edward Ihnatowicz, Pask

would participate in 1968 in the exhibition “Cybernetic Serendipity” at the Institute of Contem-

porary Arts in London, with his work Colloquy of Mobiles, which involved a social and sexual

metaphor of agents trying to collectively achieve a goal by adapting to one another (Reichardt

1968). The exhibition, curated by Jasia Reichardt, set a landmark in the historical upbringing of

media art. It brought together the work of more than a hundred contributors, the majority of which

were not artists, such as computer scientists, engineers, and philosophers, as well as a chaotic mix of

apparatuses and installations that were purposely intended to confuse the visitor as to whether they

were created by an artist or a scientist. Many of the works displayed were, like Pask’s installation,

directly inspired by Cybernetics, using principles of feedback as their core mechanism (Cybernetics

Serendipity - Late Night Lineup 1968).

The same year, artist and critic Jack Burnham published “Systems Aesthetics” in Artforum,

where he explained how the society of the time, shaken by the rapid progress of science and tech-

nology, was transiting from an “object-oriented to a systems-oriented culture” where “change em-

anates, not from things, but from the way things are done.” (Burnham 1968, 31). This transition,

he claims, is reflected in contemporary practices emerging in the 1960s such as Robert Smithson’s

“earthworks”, the light “sculptures” of Dan Flavin, the “kinetic art” of Jean Tinguely and Alexander

Calder as well as Allan Kaprow’s Happenings.

Burnham’s perspective over art and science is intimately linked with conceptual art, which in

the 1960s promulgated the supremacy of ideas over forms. Indeed, Burnham’s epitomic 1970 exhi-

bition Software brought together conceptual artists such as Vito Acconci, John Baldessari, Robert
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Barry, Donald Burgy, Hans Haacke, Douglas Huebler and Joseph Kosuth, to explore computer tech-

nologies as ways to generate interactions between the audience and machines. “Systems aesthetics”

established a link between Grey Walter’s creative experiments with mobile robots and the work of

pioneering cybernetic artists such as Nam June Paik and Nicholas Schöffer through their interest

in imitating life.

Whereas Burnham’s visionary perspective was directly influenced by Cybernetics, the concept

of systems on which it was built originates from General Systems Theory, an interdisciplinary

approach originally formulated by biologist Ludwig von Bertalanffy in the 1930s as well as in

different publications after the war. Observing that different disciplines were in fact dealing with

similar problems, he argued for an integrated approach that could be applied across them:

Thus, there exist models, principles, and laws that apply to generalized systems or their

subclasses, irrespective of their particular kind, the nature of their component elements,

and the relations or “forces” between them. It seems legitimate to ask for a theory, not

of systems of a more or less special kind, but of universal principles applying to systems

in general. (Bertalanffy 1969, 32)

General Systems Theory and Cybernetics are very close in spirit and in practice. In fact, as

pointed out by interdisciplinary researcher Francis Heylighen at the Free University of Brussels,

both approaches focus on the same problem of “organization independent of the substrate in which

it is embodied” using only a slightly different approach. “[S]ystems theory has focused more on

the structure of systems and their models, whereas cybernetics has focused more on how systems

function”. They should be considered as two faces of the same coin (Heylighen 2000, 460—461).

Burnham argued how art as an institution could be understood as a hierarchical system, with

artists as its basis being “similar to programs and subroutines”, with, at the very top, a “metapro-

gram” that constantly rearranges the long-term objectives of art. Key to Burnham’s vision is the

conclusion that this self-organizing, adaptive system does not produce new objects, but rather new

information embodied in works of art (Burnham 1969). In 1970, he curated the show Software at the

Jewish Museum in New York, where he articulated this vision by bringing together works created

by artists and scientists alike that made extensive use of computer technology, with the objective

of generating aesthetic effects without the intervention of objects. “The machines in Software”, he
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claimed, “should not be regarded as art objects; instead they are merely transducers, that is, means

of relaying information which may or may not have relevance to art.” (Software 1970, 12)

Burnham’s systems art and Ascott’s behaviourist art both translated ideas about the adap-

tive and emergent nature of human and nonhuman systems inherited from scientific research in

Cybernetics and General Systems Theory. While both Burnham and Ascott have been relatively

overlooked by art historians and theorists, their aesthetics have ramifications in many art forms

from the 1960s onward, such as conceptual art, information art, algorithmic art, generative art and

robotic art.

Yet, when applied to works such as Absences, both Burnham and Ascott’s theories have short-

comings. One of the strengths of Burnham’s framework is to relocate the locus of aesthetics from

the physical properties of an art object into the artwork’s mode of operation as a system embedded

in a network of relationships. Burnham’s emphasis on a disembodied flux of information that chan-

nels through the art object — which only act as an empty shell independent from the process that

it allows to run — is, however, reminiscent of computationalism as a model for the workings of the

brain. Burnham’s vision is thus somehow tainted by the Shannionian myth of aerial, disembodied

processes that run independently from their corporeal substrate. This argument is problematic

when applied to an aesthetics of agent-based systems as it fails to take into account the question

of the embodiment of these agents.

Ascott, on the other hand, seems to be interested in taking into account not only the production

of novelty as pure information but also in its morphological evolution. His perspective, however,

presupposes an interaction between a work of art and a human, which seems less appropriate in

the case of the nonhuman-to-nonhuman dynamics that happen in Absences.

Still, both Ascott and Burnham highlight an important point in their focus on behaviors —

and the experience of such behaviors — in machine-human configurations in the artistic domain.

Furthermore, their interest in Cybernetics aligns with a vision of society, culture, and art, as

profoundly adaptive systems, evolving through a network of self-organizing agents which adjust to

one another through a myriad of feedback loops.
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3.1.5 Machine Learning

At the beginning of the 1980s, classic approaches in AI were still dominant, showing no interest

in any form of biologically-based computation such as genetic algorithms and neural computation.

Nevertheless, a small portion of AI researchers had become interested in questions of learning

systems. Pat Langley describes the creation of the new discipline of Machine Learning in the early

1980s:

The first workshop in 1980 at Carnegie-Mellon University had identified a community

of researchers with common interests in computational approaches to learning and ar-

rived at a name for its activities. Moreover, the parent fields of artificial intelligence

and cognitive science were showing little interest at the time in learning-related issues,

preferring to focus on the role of knowledge in intelligence, regardless of its origin. As

a result, we encountered some difficulty publishing and, more generally, felt we were

not getting the attention we deserved. Finally, there was the common urge of young,

energetic researchers to create something of their own to which they could attach their

names. (Langley 2011, 275)

Machine Learning is a sub-field of Artificial Intelligence that employs mathematical models that

can classify and make predictions based on statistical inference over observed data rather than

on logical rules. It can be split in three main areas of inquiry: supervised learning, unsupervised

learning and reinforcement learning. Supervised and unsupervised learning methods are used for

statistical classification or regression of data points.19 Supervised learning is used when we know in

advance the target category of the data points we want to classify, such as when trying to recognize

hand-written digits, whereas unsupervised learning is when we do not have tagged data points

but rather want to learn some inherent properties of the data distribution under consideration.

Finally, reinforcement learning (RL) rather tries to address the problem of an agent adapting to its

environment by trying to optimize a criterion called a reward function, which basically rewards or

punishes the agent depending on its current state and actions (Sutton and Barto 1998).

19Classification consists in assigning a label or class to a data point, for example the symbol (A, B, C, etc.)
represented by a handwritten letter, or the name of an individual recognized in a photograph. Regression, on the
other hand, concerns the estimation of a numerical value, for example, the expected amount of claimed dollars that
will be made by an insurance customer, or the expected temperature for tomorrow.
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3.1.6 Connectionism in the 1980s

At its beginning, the new field of Machine Learning was still mostly based on symbolic methods

such as decision trees and logic. But in the middle of the decade, the discovery of an efficient

way to train Multi-Layer Perceptrons (MLP) would suddenly bring connectionism back on the

scene (Rumelhart, Hinton, and Williams 1986). MLPs — which are also often called Feedforward

Artificial Neural Networks (FANN) — can be used for classification as well as for regression (i.e.,

function approximation). As their name indicates, they consists in stacking many perceptrons on

top of each other in interconnected layers of neurons. Hence, they differ from perceptrons in that

they not only have an input and an output layer of neurons but also one or more hidden layers

between these inputs and outputs. Like in the perceptron, a first set of weights maps the input

neurons to an intermediate “hidden” layer, where abstract, higher-level representations of the inputs

are automatically generated through the cooperation of neurons.

One way to understand these structures is to consider each hidden neuron as the output neuron

of a perceptron. The difference is that in the case of the perceptron, the output is transformed

into a binary value using a hard threshold. In a MLP, the hidden neurons are transformed using

a smooth, non-linear thresholding function that pushes them towards a binary value. Finally, the

hidden neurons are linearly combined using a second set of weights to produce the next layer of

neurons.20 This process moves forward, from layer to layer, until the final output layer is reached,

yielding the result.

Because each layer projects the previous layer’s outputs using a non-linear thresholding func-

tion,21 MLPs model smooth classification functions that can grasp intricate, high-order variations

20One can look at an ANN as a network of agents, where each hidden neuron is seen as a minimal agent that
becomes an expert classifier over a specific domain. These agents are encouraged to divide the input space between
them. They are then combined to produce the final output, as if they were “voting”.

21As can be recalled from section 3.1.2, perceptrons are simple linear models that separate space using a hyperplane.
They are thus incapable of dealing with problems that are not linearly separable, as was rightfully pointed out by
Minsky and Papert (Minsky and Papert 1969). Indeed, most interesting problems turn out to be non-linearly
separable.

MLPs’ “tour de force” consists in preserving the self-organizing, distributed representation properties of percep-
trons, while alleviating their flaws by applying a non-linear filter to their outputs. A very commonly used filter is
the sigmoid function, which was described in section 2.3 .
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in the data, thus circumventing the main caveat of perceptrons as pointed to by Minsky and Pa-

pert (Minsky and Papert 1969). But while MLPs were actually known way before the mid–1980s22,

there existed no tractable way to train them. The 1986 breakthrough, introduced by David E.

Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams, consisted in a method known as back-

propagation that allowed the efficient computation of the neural network’s weights’ gradient.23 The

gradient essentially represents the partial derivatives (in other words, the degree of change, or the

slope) of the error function with respect to the weights. Knowing it thus gives a sense of how the

error changes in function of the weights, allowing the adjustment of weights in a stepwise manner

in the direction that is most likely to lower the error, a procedure known as Stochastic Gradient

Descent (SGD).24

Without entering into details, consider the similarity of the update rule in SGD to that of the

perceptron. Let E be the error function, w be a weight in the MLP, and ∂E
∂w

be the partial derivative

of the error with respect to that weight. After each step of SGD, the weight will be changed using

the following formula:

w ← w − η ∂E
∂w

Once again, we retrieve a negative feedback procedure that fine-tunes a weight by pushing it in

the direction that will enable it to most likely contribute to better classifications (i.e., lower errors)

in the future, tempered with an adjustable learning rate η that controls the speed of learning.

Like real neural networks in the brain, ANNs represent information in a distributed way, as

opposed to a symbolic, local representation. At the beginning of the procedure, the weights are

initialized randomly, such that the network decisions are completely chaotic (i.e., the entropy is

maximal). By getting exposed to the environment (in other words, by being subjected to examples

sampled from the real world distribution) and taking actions in a range of different contexts, the

network is slowly adjusted to make better predictions. Thus, the network itself becomes increasingly

ordered as its parameters (weights) are shaped to decrease the global entropy of the model.

22Selfridge’s Pandemonium, introduced earlier, grasped the concept of interconnected layers of abstractions already
in the 1950s (Selfridge 1959).

23In fact, backpropagation had been discovered years before but had not been applied specifically to neural net-
works. For a detailed historical account of backpropagation, read (Schmidhuber 2015).

24As a metaphor, imagine a ball rolling down a hill, always going in the steepest direction until it reaches a
minimum.
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3.1.7 Evolutionary Computation

Genetic Algorithms (GA) is another approach to Machine Learning that was largely popularized

in the 1980s. GAs stemmed from a completely different branch than neurology: that of genetics

and evolution. Although developing through its very own path, it is important to describe it here,

mainly because it is one of the learning approaches that has been the most largely adopted by

artists.25

While the were many research groups in the 1960s working on computational models of evolution

applied to AI,26 the invention of Genetic Algorithms (which is one of many approaches to evolution-

ary computation) is usually attributed to scientist John Holland (Mitchell 1998), who developed

them in an effort to build a formal mathematical representation of genetic adaptation that could

be run on computerized systems. Holland’s framework understands natural evolution as an itera-

tive optimization process that functions by evolving populations of individuals using basic genetic

operators such as cross-overs and mutations, testing them against a fitness function27 and selecting

only the best individuals to generate the next population (Holland 1992). The basic form of GAs

as proposed by Holland employs artificial chromosomes that are essentially sequences of bits (i.e.,

the genotype). Segments of the string correspond to genes that determine actual characteristics of

the individual (i.e., its phenotype). The performance of the individual can than be assessed using

a fitness function which determines what needs to be optimized.

A genetic algorithm in its simplest form goes more or less as follow (Mitchell 1995, 5):

1. Begin with an initial population of N individuals (i.e., chromosomes).

2. Select the M fittest individuals according to fitness function F (x).

3. Perform crossovers and mutations over pairs of selected individuals, thus generating a new

25The reasons for this are unclear. However, one can point to the fact that GAs are more easy to understand,
implement and apply in works of art, as one possible explanation.

26For example, see Rechenberg’s evolutionsstrategie (Rechenberg, 1965/August//; Rechenberg 1973) as well the
“evolutionary programming” by described in Fogel, Owens, and Walsh (1967).

27A fitness function is an evaluation function that gives a value (typically as a real number) to an individual in a
population, usually representing its performance over a problem that the GA tries to solve.

For example, a GA used to learn how to play chess might generate populations of agents and have them play
games against one another. The fitness function could then be the percentage of games won (with ties counting as
a half-win).
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generation of N offsprings.

4. Replace the population with the newly generated one.

5. Go to step 2.

This is an optimization algorithm: it performs a search through the space of possible solutions

to a problem, represented as computational chromosomes, using an evolutionary heuristic. The

process works by making local changes in potential solutions to a problem, moving closer to the

end goal in a stepwise manner. It is thus very close, in essence, to other adaptive algorithms such

as Stochastic Gradient Descent.

3.1.8 Adaptation and Learning

This historical overview exposes the important role played by adaptation and learning in the sci-

entific landscape in regards to computational cognition and machinic life, from the post-war era

onward. Yet, these ideas and associated techniques seem to have only been rarely exploited di-

rectly by artists and even less examined by humanities scholars. Before we move into the second

part of this chapter, I would like to discuss further these notions by considering different scientific

definitions.

As suggested earlier, we can trace the origins of modern understandings of adaptivity down to

first-order Cybernetics in the work of Arturo Rosenblueth, Norbert Wiener and Julian Bigelow (Rosen-

blueth, Wiener, and Bigelow 1943). Core to their conception of system processes is the teleological

nature of animal behavior, that is, their ability to adjust to their environment to reach their goals

using negative feedback. This fundamental idea constitutes the cornerstone of Machine Learning

approaches, which requires the interaction between a structural component, an error function and

an optimization procedure, as I will further explain in section 3.2.

The authors suggest a hierarchical taxonomy of behavior. In that ontology, living systems are

first said to be active, in that they are the source of energy that allows their actions, as opposed

to passive objects like a stone being thrown by another agent. They are also considered purposeful,

which relates to their behavior appearing as being directed voluntarily towards a goal. Some

71





purposeful active behaviors are also teleological, meaning that they use negative feedback to adjust

their aim while trying to reach their goal.28

British cyberneticians like Ross Ashby, Grey Walter, Gordon Pask and Stafford Beer proposed

visions of Cybernetics systems that can be seen as alternatives to these behavioral categories.

These researchers seemed less interested in a designing a theory of final causes than in imagining

and articulating ways in which living systems perform, in particular through the creation of devices

endowed with lifelike qualities. Discussing their work, Andrew Pickering writes:

There is something strange and striking about adaptive mechanisms. Most of the exam-

ples of engineering that come to mind are not adaptive. Bridges and buildings, lathes

and power presses, cars, televisions, computers, are all designed to be indifferent to their

environment, to withstand fluctuations, not to adapt to them. The best bridge is one

that just stands there, whatever the weather. Cybernetic devices, in contrast, explicitly

aimed to be sensitive and responsive to changes in the world around them, and this

endowed them with a disconcerting, quasi-magical, disturbingly lifelike quality. (7)

Grey Walter created his electro-mechanical “tortoises” during his spare time. His later versions

testify to an interest in a machinic form of learning inspired from behaviorism, even though he does

not explicitly use the expression “Machine Learning” to describe their behavior (Walter 1951). The

first alleged use of the term comes from engineer Arthur Lee Samuel who worked — also in his

time off — on the game of checkers. Samuel was interested in achieving better results at playing

the game not through logical rules or brute-force search, but rather by providing an algorithm with

several instances of played games, allowing the system to learn by itself what are the best moves.

His technique, which he describes in his 1959 foundational paper (Samuel 1959), can be considered

as an embryonic instance of reinforcement learning (Sutton and Barto 1998, 267).

In the preface to his foundational book Adaptation in Natural and Artificial Systems, John H.

Holland proposes a formal definition of adaptation as a “process whereby a structure is progressively

modified to give better performance in its environment” (Holland 1992, xiii). In this perspective,

28To understand the difference between teleological and non-teleological systems, consider the example of a snake
striking at a frog with “no visual or other report from the prey after the movement has started”. As the authors
express, in that case the movement is “so fast that it is not likely that nerve impulses would have time to arise at
the retina, travel to the central nervous system and set up further impulses which would reach the muscles in time
to modify the movement effectively.
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the story of evolution can be seen as an optimization process that performs a heuristic search in

the realm of possibilities by selecting the best individuals at each generation, preserving part of

their genetic structure while combining and mutating them. Significantly, the same kind of genetic

procedure which nature applies to evolve fittest forms or organs in living systems can be digitally

simulated to develop better strategies of action in computational agents:

Roughly, experience guides changes in the organism’s structure so that as time passes

the organism makes better use of its environment for its own end. (Holland 1996, 9)

As a final remark, to better contextualize the place of adaptation and learning in post-WWII

discourses on artificial intelligence, it is worth stating that agent-based approaches to learning and

Genetic Algorithms were substantially sidestepped during the connectionist renaissance of the mid–

1980s — which established the foundations of Machine Learning as a field of research in its own

rights — in favor of pattern recognition applications.29 The neural approach to learning decreased in

popularity throughout the 1990s in favor of a more general conception of computational adaptation

known as probabilistic or statistical learning. Gaussian Mixture Models (GMMs) and Support

Vector Machines (SVM) are examples of such approaches that rely primarily on statistics rather

than on some model of biological processes (Vapnik 2000).

3.1.9 Deep Learning

What mainly explains the decrease in popularity of connectionism as an approach to AI in the

1990s was the problem of training artificial neural networks with many layers of neurons. This

prevented such systems to grasp highly varying functions, which are needed to express complex

behaviors such as the ones we find in “intelligent” agents such as humans.

Until the mid–2000s, it was only possible to train shallow neural architectures efficiently — that

is, connectionist networks with only 1, 2, or 3 layers. But many neuroscientists seem to believe that

brains are organized in deep architectures, processing sensory information through many different

levels of abstraction (Serre et al. 2007; Bengio 2009). For example, the visual cortex contains

29However, GAs were very important in artificial life and evolutionary art communities.
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multiple layers of neurons that correspond to different degrees of representation, from detecting

edges and orientations to more complex shape recognition (Kruger et al. 2013).

In the early 2000s, raw computational power became more readily available to scientists, foster-

ing what Machine Learning expert Jürgen Schmidhuber called a “second Neural Network ReNNais-

sance” (Schmidhuber et al. 2011) — a reference to their “First Renaissance” in the 1980s triggered

by the publication of the backpropagation algorithm by David E. Rumelhart, Geoffrey E. Hinton

and Ronald J. Williams. This allowed researchers to run experiments over much larger models,

encouraging the development of algorithmic techniques to address the shortcomings of shallow

architectures.

In 2006, Geoffrey E. Hinton (who was part responsible for the aforementioned first “Renais-

sance” of neural nets), Simon Osindero, and Yee Whye Teh came up with a solution for training

Deep Belief Networks, which are a special kind of multi-layered neural network. This development

plugged the breach left open twenty years ago after Hinton last published his work on backpropa-

gation (Hinton, Osindero, and Teh 2006).30 The method they proposed used unsupervised learning

to pre-train the lower layers of the model before subjecting the whole system to a traditional su-

pervised learning procedure. Their approach created a significant improvement in the error rate of

MNIST (a benchmark database well-known in the field of Machine Learning) over other approaches

using shallow architectures or Support Vector Machines.

This breakthrough, along with much other research, allowed for the emergence of a whole new

field within Machine Learning called Deep Learning, whose main interest lies in finding solutions

to difficult problems (such as driving a car) by allowing computers to “learn from experience and

understand the world in terms of a hierarchy of concepts, with each concept defined in terms of its

relation to simpler concepts”. This system therefore avoids the need for humans to “formally specify

all of the knowledge that the computer needs”. In particular, this “hierarchy of concepts allows

the computer to learn complicated concepts by building them out of simpler ones” (Goodfellow,

Bengio, and Courville 2016).31

30This is an oversimplification of the history, of course, as scientific discoveries do not happen in a vaccuum. For
a more thorough analysis of the history of deep learning, please consult (Schmidhuber 2015).

31Deep Learning models have become extremely complex and powerful, with some neural nets being more than
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While none of the artworks described in this dissertation make use of deep architectures, I

wish to discuss Deep Learning here because of its important socio-technical repercussions. As

mentioned in the introductory chapter, its successes have now made Deep Learning the spearhead

of big IT companies such as Google and Facebook, who have become the main hiring bodies for

Deep Learning engineers. After the media success of its Deep Dream project, Google has recently

launched Magenta, a research project that seeks to advance and explore the applications of AI

relative to “music and art generation” (Eck 2016).32

While Google’s interest in art and creativity sounds like good news to media art professionals,

a word of caution is necessary. One should not forget that the multi-billion dollars companies’

main source of profit is advertising: in other words, their main use of Machine Learning and Data

Mining algorithms is to better target consumers who freely give their data through the use of

their platforms. I do not place faith in techniques developed by such companies, as I doubt their

capability to be particularly revolutionary or challenging aesthetically if they are intended to appeal

to a mass consumer market. I also notice that there are severe power unbalances between artists

and these companies, often resulting in a situation where artists are effectively functioning as an

underpaid cultural currency at best, and underpaid technological labor at worst. As such, I and

other cultural critics see art and science initiatives such as the Google Cultural Institute and the

Facebook Artist in Residence program as branding strategies that also offer convenient ways to

capitalize on artists, by getting access to their ideas and expertise at a low cost.33

3.2 Machine Learning in Art Practice

Cybernetics-style adaptive systems have evolved from the 1980s onward into the science of Machine

Learning, bringing together a vast multitude of approaches ranging from statistics, stochastics and

Bayesian logic to neural and genetic computing under a common research program within AI.

Machine Learning explores algorithms that are able to make inferences and predictions about the

1000-layers deep. . .
32It is unclear what they mean by “art” (as opposed to “music”) in this description.
33Read (Wilk 2016) for an in-depth analysis of the problematics raised by such initiatives.
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world by looking at large quantities of data.

Clearly, these techniques were never intended to be used for artmaking. Artificial Intelligence

in general, and Machine Learning in particular, have only recently been applied to artistic creation,

being traditionally focused on rational problem solving and optimization (Eigenfeldt, Burnett, and

Pasquier 2012; Mateas 2001). Art usually attempts to ask more questions than it tries to solve,

and does not provide the kind of objective criteria one needs to perform optimization.34 Still,

the excitement and fascination one feels while observing an agent tentatively trying to achieve the

arduous task of balancing a pole (Sutton and Barto 1998), performing acrobatic stunts with a toy

helicopter (Ng et al. 2004; Abbeel et al. 2007) or finding new ways to play Pong (Mnih et al. 2013),

show these experiences possess expressive and aesthetic potentials. But what are the dimensions

of Machine Learning algorithms that can be exploited for artistic expression, and how? As a way

to approach this question, let us examine the fundamental characteristics of learning methods and

explore ways they can be harnessed for art creation.

A Machine Learning algorithm comprises four components: (1) the category of task one is trying

to solve; (2) the model used to address it; (3) the loss function against which the model is trained;

and (4) the search or optimization procedure. These items represent interdependent dimensions of

a learning system which come to influence its outcomes — in particular, its aesthetic potentialities.

3.2.1 Tasks

As explained earlier, the field of Machine Learning is divided in three sub-fields, corresponding

to three different classes of problem: (1) supervised learning; (2) unsupervised learning; and (3)

reinforcement learning. These categories do not exist in utter isolation. Quite permeable, they often

share models and algorithms, as the research carried out in one domain can often be applied to

another. One famous example of this is the so-called “deep learning” breakthrough which involved

unsupervised learning as a key component in training neural network architectures with several

layers of neurons on both supervised and reinforcement learning tasks (Hinton, Osindero, and Teh

34In other words, it is not clear at all what one would try to optimize. There is no such thing as an “optimal”
work of art.
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2006).

Supervised Learning

Supervised learning — the most common category — concerns the problem of predicting an output

associated with a certain input data, based on a dataset containing examples of data points with

expected target response (typically hand-labelled by humans). Two sub-cases exist: (1) classifica-

tion, which consists in determining the correct category of a data point; and (2) regression, where

a continuous value needs to be predicted. A typical classification task is pattern recognition, for

example recognizing hand-written digits. In this case, input data (pixel values) is labeled by hu-

mans with a corresponding category (the digit that was written). Using only these examples, the

algorithm needs to learn how to recognize unseen examples correctly.

Most of contemporary applications of Machine Learning are supervised learning tasks, such as

speech recognition, spam detection, face recognition, and medical diagnosis. There has also been

much research carried on their artistic use in the past two decades, with often impressive successes,

such as in the field of music generation (Eck and Schmidhuber 2002; Boulanger-lewandowski, Bengio,

and Vincent 2012). Since supervised learning can be used to estimate probability distributions, it is

possible to train models such as ANNs on a database made up of all of Chopin’s work: the resulting

network could then be used to randomly generate a score that would sound like a Chopin piece.

Similar experiments have been done in the visual arts for generating images. Australian engineer

and digital artist Jonathan McCabe has created a piece called Nervous States (2006) consisting in

a series of prints generated by neural nets. The images come to reveal the underlying organization

of the system:

The X and Y coordinates correspond to two variables in the connections of the network;

the colour of the pixel at that point is a representation of the network’s behaviour for

those parameters. So the image is a map of system states; coherent colours show areas

of relative stability or gradual change; edges show sharp jumps in the output; marbled

swirls show complex oscillations. (Whitelaw, Wednesday, August 16, 2006)35

35Another research project analogous to this one that has gained a much wider audience is Google’d DeepDream
program, which produces psychedelic images based on the response of one of their deep neural network architectures
which is fed back into itself (Mordvintsev, Olah, and Tyka 2015).
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Rebecca Fiebrink, a computer scientist from Goldsmiths University, has created the Wekinator,

an open-source software that employs supervised learning as a tool for music performers and artists.

The software allows practitioners to easily train ML models to recognize gestures and map them

into any kind of contents. One advantage of the approach is that it opens up the possibility for

non-coders to create intricate relationships between movements and content in real-time.

An important work from the mid–1990s, Karl Sims’ Galápagos (1997), uses a GA trained in

real-time using supervised learning. The piece is representative of his interest in the evolution of

morphologies and behaviors. A series of twelve computers each show a single virtual 3D organism

whose shape and movements are the phenotypic outcome of a digital genotype. Visitors interact

with the piece by choosing which organisms they prefer. The selected individuals are then used

to generate a new population of organisms using a Genetic Algorithm that mates, recombines and

mutates their digital DNA, producing offsprings that resemble their parents (Sims 1991, 1994).

Galápagos rests on Sims’ astute application of a GA process where visitors take part in a retro-

action loop by evaluating the fitness of virtual creatures according to their (subjective) aesthetic

qualities. The artificial life forms are thus evolved so as to adapt to the audience’s tastes over the

exhibition period.

Supervised learning has thus been used for creative expression in generative art and performance-

driven works. In agent-based art that relies on the design of real-time behaviors, such as robotic

installations, it has mostly been utilized in less experimental manners, such as for computer vision,

often applying off-the-shelf solutions. These works are less interesting for the current study, as

the fact that they are based on learning does not have a strong impact on the resulting behaviors

produced. In other words, these works might simply perform better than previous non-learning

systems, but it does not change their final aesthetics in a significant manner.

Unsupervised Learning

Unsupervised learning refers to classes of problems wherein there are no precise outputs that need

to be predicted, typically referred to as “unlabeled data”. Rather, the algorithm needs to learn

“something about the data distribution”. Tasks include (1) clustering, where the system is asked
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to split the data space in different regions, or classes; (2) dimensionality reduction, where it tries to

extract the most important regularities in a distribution to represent it using less dimensions; and

(3) representation learning, where the model attempts to learn “good” representations of the data,

usually to be fed as inputs to other Machine Learning systems.

Unsupervised learning techniques are particularly interesting for artistic research and produc-

tion, as they give more space for the learning models to come up with potentially surprising solu-

tions, whereas supervised learning methods aim to achieve clear, definite goals in the most accurate

way possible; a property that is certainly useful for engineering applications, but quite restrictive

in its ability to generate novel content.

Indeed, one of the learning methods that has been the most widely used by new media artists

is an unsupervised neural network called a Self-Organizing Map (SOM). SOMs were invented in

1981 by Teuvo Kohonen — they are often called Kohonen Maps — and would become one the most

famous unsupervised learning techniques (Kohonen 1981, 2001).36 They can be thought of as a kind

of Perceptron that can be trained to learn a mapping from a high-dimensional continuous input

space to a low-dimensional, discrete output space, a clear example of a dimensionality reduction

method. In other words, it automatically creates a set of organized categories based on the data it

observes.

Many artists who claim to make use of neural networks are in fact using SOMs. Such is the case

of sculptor Yves Amu Klein, who demonstrates an explicit commitment to creating autonomous

robotic life forms. His Living sculpture project, a series of works that attempt to “bring emo-

tional intelligence and awareness to sculptured life forms” (Klein 1998, 393), directly resonate with

Burnham’s vision.

Many of Klein’s works show adaptive features. Such is the case of Octofungi, a 1996 robotic

sculpture that relies on shape-memory alloy wire to control eight robotic legs arranged in a circle.

The movements of the robot are defined by the interaction between the position of the legs and

the value of eight photocells that measure incoming light from all directions. The data from both

legs and photocells is fed into a SOM which autonomously extracts regularities from the input data
36Kohonen, which I briefly introduced in section 3.1.6, is a good example of a scientist whose research in connec-

tionist adaptive systems, shelved during the AI Winter, would finally be recognized during the 1980s.
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space and chooses to activate one of the eight legs as a response. The SOM thus learns from its

environment, adapting to it in real-time.

Other works from Klein’s Living Sculpture series which make use of SOMs, include Scorpibot

(which was the artist’s first attempt at using them), The Pods, Bella, and Flexicoatl. Klein loosely

refers to them as “neural nets” which is somehow misleading since, as I pointed out, the expression

does not refer to a specific technique but is rather an umbrella term for a large group of artifi-

cial models that try to achieve adaptive properties by reproducing biological neural networks on

computer systems.

Nicolas Baginsky also uses the term “neural nets” interchangeably for SOMs when describing his

piece The Three Sirens (1992—2005), a robotic music band who play improvisational rock music.

The band consists of three robots: a slide guitar player, a bassist and a drummer. The guitarist and

the bassist use SOMs to direct their actions, playing live music in response to the sound environment

they generate in real-time. Since the sound environment is largely influenced by their own playing,

they are also entangled in a feedback loop that runs through their bodies and their environment.

A particularly fascinating aspect of the piece is how the robots have allegedly evolved through a

number of years as the connections of their SOMs were preserved between performances:

When the robot first started playing in december 1992, the six neural network [sic]

that control the machine’s behaviour were randomly initialised. Today there are several

different sets of networks available for different modes of operation (different speeds

and tunings). All these sets are descendants of the primal neural nets from 1992. This

means that the robot system now has the experience of about ten years of playing. Not

constantly but regularly. (Baginsky 2005)

Quite interestingly, these systems use the self-organizing properties of SOMs as part of a decision-

making process, which is in counterpoint to what these models were originally designed for. Their

ability to organically remap their inputs into outputs in a meaningful way seems to be effectively

used by these artists to generate novel behaviors that is both organized, yet definitely nonhuman.

Whereas this particular approach of using unsupervised learning to control an agent-based system

is an original, creative hijacking of the technology, the field of ML has developed a distinctive

approach for training agents.
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Reinforcement Learning

Reinforcement learning (RL) (c.f., section 3.2.1) tries to address problems involving an agent that

attempts to take actions in an environment in order to maximize its reward over time (Sutton and

Barto 1998). The agent learns by taking actions and receiving positive or negative feedback from the

world through rewards. A reward is a single-value information unit given to the agent in response

to his state or actions. Following Holland’s definition of adaptation, the goal of a reinforcement

learning agent is to modify its inner structure in order to maximize its performance — represented

as the rewards it collects over time — as it evolves in the environment (Holland 1992).

The field of Reinforcement Learning (RL) emerged in the late 1980s as the result of a coalescence

between behavioral psychology, optimal control theory and dynamic programming. In reinforcement

learning, agents evolve inside an environment defined as a discrete time-based stochastic control

procedure known as a Markov decision process (MDP). In this procedure, an agent takes actions

in the environment based on what it observes. Each action modifies the environment, yielding a

new set of observations for the agent as well as a single-valued reward feedback. The goal of the

agent is to maximize its rewards over time. In order to do so, it usually proceeds by trial-and-error,

trying to infer what is the best course of action to take in a given context based on rewards and

punishments received in the past.

An example of a Reinforcement Learning technique is Q-Learning (Sutton and Barto 1998, 148),

a procedure in which the agent bases its decisions on an estimator function called a Q-function.

This function takes as parameters both the observation s and an action a and produces an estimate

of the expected reward the agent will get for taking action a in context s:

Q(s, a) = expected reward for taking action a given observations s

After each action taken, the Q(s, a) function is slightly adapted by the agent to give a better

approximation of the expected reward in the future. There are a certain number of ways the agent

can use that information to choose the actual action it is going to take. The way the agent uses

the Q-function to choose its actions is called a policy. The most obvious policy is just to take the

action with the maximum Q-value:
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a = argmaxa′Q(s, a′)

This is what we call a greedy policy. However, remember that the Q(s, a) function is learned

and thus, it is not the actual expected reward, but rather, an approximation of it based on what

the agent has been observing in the past (i.e., in the state-action pairs it went through). A purely

greedy policy favors exploitation of what the agent already knows, which is done at the expense

of exploration. Concretely, greedy agents will tend to get stuck in the same, safe zone where they

started, because they have not been given a chance to try out different things (i.e., to wander inside

the whole state-action domain).

To alleviate this problem, which will more often that not result in sub-optimal behaviors, one

has to introduce some exploration in the policy. A simple way to do this is to let the agent be

greedy most of the time but, once in a while — say, with a probability of ǫ — let it take a random

action. This variation on the greedy policy is called the ǫ-greedy policy and is the one used most

frequently in reinforcement learning. This is due both to the simplicity of its implementation as

well as to its surprising efficiency in allowing the agent to converge to a good solution in most

situations.

In their 2014 installation Zwischenräume, artist Petra Gemeinboeck and computer scientist Rob

Saunders looked at the live adaptative performances of robotic agents. The robots are “sandwiched”

between the gallery wall and a temporary wall. Each one of them is equipped with a motorized

system that allows it to move vertically and horizontally, covering a specific region of the wall.

The robots are also equipped with a puncturing device that allows them to make holes through

the surface, as well as a camera and a microphone that allows them to sense their environment.

The system also give robots the ability to extract features from the camera and from the audio

signal. It combines all this information using both a Self-Organizing Map to detect similarities

between images, and a Reinforcement Learning program that tries to “maximise an internally

generated reward for capturing ‘interesting’ images and to develop a policy for generating rewards

through action”. The level of interest in the described system is based on a measure of “novelty

and surprise” where “‘novelty’ is defined as a difference between an image and all previous images

taken by the robot” and “‘surprise’ is defined as the unexpectedness of an image within a known
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situation” (Gemeinboeck and Saunders 2013, 217).

An interesting aspect of the work is the relationship that is established between robots and

audience. As they dig holes through the walls, the curiosity-motivated agents become an “audience

to the audiences [sic] performance”. It is thus “not only the robots that perform, but also the

audience that provokes, entertains and rewards the machines’ curiosity” as the “robots don’t only

respond or adapt to the audience’s presence and behaviours, but also have the capacity to perceive

the audience with a curious disposition.” (218)

Canadian artist, musician and AI researcher Stephen Kelly, one of the collaborators on Vessels,

has produced a number of experimental works using Genetic Algorithms and Genetic Programming

(GP). Genetic Programming is a particular approach to GAs where the individuals that get evolved

are instances of computer programs. In a typical GP application, populations of such programs

are generated, tested on a problem, and then selected based on their performance. The fittest

candidates are used to generate new offsprings using different genetic manipulations. Hence, Genetic

Programming is considered a form of policy search, where the agents’ behaviors are evolved directly

based on their performance over a given task — as opposed to value search methods such as Q-

learning where agents are rather made more efficient based on the adaptation of a value function

that tries to estimate what is the best action to take in a given context (Grefenstette, Moriarty,

and Schultz 2011).

Kelly’s Open Ended Ensemble is an ongoing project involving physical, sound-generating agents.

In the current version (labeled Competitive Coevolution), two robotic probes move along a fluores-

cent light fixture, trying to find the region with the lowest electro-magnetic radiations.

The agent’s behaviour is adaptive, subject to an evolutionary process in which a random

population of computer programs slowly evolve, eventually achieving enough control of

the robotic probe to coax its movement away from the source of radiation and into

silence. Meanwhile, the light fixture would prefer to maintain the drone, and slowly

evolves a strategy of its own, learning to move the lights and trap the probe in regions of

strong radiation. An arms race ensues as the two competing forces interact and coevolve,

akin to predator/prey or host/parasite relationships in biological systems. (Kelly 2016)

Kelly’s strategy, in this particular version, echoes my own approach for staging agents with
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Figure 18: Open Ended Ensembles (Competitive Coevolution) (2016) by Stephen Kelly. Hamilton
Artist Inc, Hamilton, Canada. Image courtesy of the artist. Photo by Caitlin Sutherland.

conflicting goals, such as in Drift (2007) (solitude vs company) and Fifth Absence (2011) (energy

need vs desire of shade). The agents in Open Ended Ensemble have an imperfect control over their

movements, and their observations are limited, which places them into a partially unpredictable

environment.

The artist reported that one of the biggest challenges in creating this work was the fact that

the plastic, visual and audio components of the piece were, in his opinion, taking much more

place in the aesthetic space of the piece than its behavior, obscuring the trial-and-error process.

This remark resonates with my own observations working with adaptive agent-based systems in

art. It is not clear at all how a learning behavior can be observed or felt by the audience while

integrating it as part of an experience that manifests through different media in the creation of

a global experience. I have experienced similar difficulties working on projects using RL such as

my underwater installation Plasmosis (2013) and N-Polytope: Behaviors in Light and Sound After

Iannis Xenakis, which is described in more detail in chapter 6.

3.2.2 Components of a Machine Learning Algorithm

Parallel to the category of task they are designed for, Machine Learning algorithms can be qualified

by the interoperability of four constituents: (1) the model; (2) the optimization procedure; (3) the

evaluation function; and (4) the data. The optimization process gradually improves the model
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Models

Models in Machine Learning refer to the computational structure that gets modified through learn-

ing. The best way to think of a model is as a function that tries to approximate as close as possible

a distribution of data, based on a sample of that distribution (the dataset). The model contains

free parameters that are to be adjusted by the training algorithm. For example, in the Multi-Layer

Perceptron, the parameters are the “weights” or “synapses” that connect the neurons with one

another. Other models include decision trees, Bayesian networks, Support Vector Machines and

nearest neighbors models. In a GA, the model is the function that associates DNA strings with a

phenotype, while the chromosomes are the free parameters to adjust.

Models are the object of important debates in the field of Machine Learning, being the defining

flagships of different research strands. However, when it comes to artistic works, they are possibly

the least explored dimension. As was expressed earlier, most adaptive artworks involve a very re-

stricted set of models, which happen to be among the most easily understandable and applicable

ones (GAs and SOMs). This most likely has to do with the fact that scientists and artists have

different goals and expectations. To put it simply, an apparently small improvement in the perfor-

mance of a model can be seen as revolutionary from a scientist’s perspective but will not change

much in terms of how it affects the experience of an artwork.

Nonetheless, there are at least three ways in which models can affect artistic outcomes. First,

the nature of the model is often an important part of the concept of a piece: the imaginary space

opened-up through the use of neural nets differs conceptually from that of evolutionary computation

or decision trees. For example, Sims’ Galápagos plays with the richly evocative nature of evolution,

allowing the user to take part in a story of genetic adaptation as the godlike subject that runs

the natural selection process. Ben Bogart’s installation Dreaming Machine #2 (2009) and Ralf

Baecker’s Mirage (2014) both involve neural networks in pieces about memory and dreaming —

two themes that lie at the center of research on neurology that directly inspired computer-based

connectionism.

Secondly, models have specific structures that allow different forms of “hijacking”. Chapter 4
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presents an artistic strategy whereby a Genetic Algorithm model is used in a way utterly different

than what it was designed for. Google’s DeepDream is a good example of a creative approach that

employs specific properties of a neural net to transform it into a generative device it was never

meant to be. These artistic strategies usually take advantage of an accidental feature of a model,

diverting it out of its habitual or intended use. It requires a good comprehension of the model

and/or an experimental approach.

The third process by which models can impact artistic works is more subtle and has not been

the object of serious analysis. It has to do with the fact that different models will yield, or afford,

different kinds of behaviors. The variety and types of behavioral strategies that the model allows,

and the “smoothness” — or “abruptness” — in the evolution of these strategies during learning,

are examples of how models can affect agent aesthetics.37

Optimization Procedure

The optimization procedure — also called search or training algorithm depending on the context

— changes the parameters of the model in an attempt to improve its responses over time. Different

kinds of such procedures exist, each with their own advantages and domain of application. For

example, there is a vast amount of research on training algorithms for neural networks, using

different optimization approaches such as Stochastic Gradient Descent, Genetic Algorithm, and

simulated annealing.

Most optimization algorithms exploit the Cybernetics notion of negative feedback: in response

to the perceived error yielded by its actions, the organism adjusts its inner structure in a timewise

manner, step by step, moving towards an optimum. Whereas many cyberneticians were interested

in the process itself, for scientists working in the field of Machine Learning, optimization is a means

to an end. The principal goal is to train a system that will perform well on a particular task

once it has been optimized. What happens before that, the behavior of the system as it gets there,

is considered irrelevant. Conversely, it is what is probably the most relevant to an aesthetics of

adaptive behavior.
37The advantages and disadvantages of neural nets, as opposed to GAs and other techniques such as fuzzy logic

and Support Vector Machines, is a broadly debated topic in the field of Machine Learning.
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The learning process can typically be fine-tuned using a set of meta-parameters. For example,

most optimization methods involve the use of a learning rate parameter which represents the speed

at which the system moves towards a local minimum. There is, however, a trade-off: high learning

rates will get models to converge faster, however, they will often yield poorer results; lower values

will take more time but result in a finer model. A common way to solve this trade-off is to start

with a larger learning rate and slowly decrease it over time.

Another example is the exploration vs exploitation dilemma in Reinforcement Learning (Sutton

and Barto 1998, 4). When an agent moves in a space searching for the best strategy to maximize

its reward over time, it needs to be able to both exploit its current knowledge (by making decisions

it thinks are going to yield good rewards) and explore new avenues (so as to avoid getting stuck in

a region of the space that yields poor rewards). Exploration is usually more chaotic and random,

while exploitation is targeted and greedy. In a typical RL setup, agents will start by exploring and,

over time, be tuned to favor exploitation as they become more efficient in accumulating rewards.

The agent’s tendency to favor exploration over exploitation is usually represented by a single

parameter. For example, in one of the most commonly used learning policies, called ǫ-greedy, a

parameter ǫ between 0 and 1 represents the probability that, at any given step, the agent will choose

a completely random action (if not, then it will choose the action it believes will yield the highest

return, hence the name “greedy”) (28). Altering ǫ can be used as an aesthetic trick in agent-based

systems, allowing the shaping of behaviors in real-time, moving them between chaos and order.

This strategy was applied in the immersive installation/performance piece N-Polytope (2012), for

the construction of live generative behavioral patterns, as described in section 6.3.4.

Evaluation Function

The evaluation function measures the performance of the model in completing its task. In Super-

vised and Unsupervised learning, it is usually referred to as the loss function or cost function. In a

classification task, for example, the category predicted by the model given an example to classify

is compared to the expected target category: the more the model misses the target, the larger the

loss. In Reinforcement Learning, the evaluation function is called the reward function, while in
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Genetic Algorithms, it corresponds to the fitness function.

Among the three dimensions of a Machine Learning algorithm, the evaluation function is prob-

ably the one that is the most readily useable by authors. This is because it has been designed

specifically for the purpose of bringing human input into the equation. Models and optimization

procedures are meant to be rather agnostic: the evaluation function determines the kind of “prob-

lem” one tries to solve. However, the approach in art completely differs from that of science. While

scientists use evaluation functions as objective criteria for the learning algorithm to solve, artists

typically use the evaluation function as a tool for generating self-organizing behaviors, subject to

their own authorial control. In other words, for scientists, the evaluation function represents the

goal they aim to achieve, without any care for the way it is reached (i.e., the goal is more important

than the process to reach it), whereas for artists the relationship between the evaluation function

and the goal (which is to generate interesting behaviors) is indirect (i.e., the process is the goal).

Artists can thus play with evaluation functions and observe how the agent responds. An eval-

uation function can also be learned or attributed by another agent. Finally, evaluation functions

can be interactive, with either the artist or the audience replacing the function by directly giving

an evaluation of the system’s performance. In the case of evolutionary computation, this tech-

nique is known as an Interactive Genetic Algorithm (IGA), an approach first proposed by Richard

Dawkins (Dawkins 1986).

Karl Sims’ Galápagos (1997), which was presented earlier in section 3.2.1, is one of the most

renowned examples of the use of IGA in an interactive installation. Here, visitors are asked to

select their favorite artificial 3D creatures, whose genetic code is used to create the next generation

through mutations and crossovers. Core to the work’s aesthetics is its participatory nature, engaging

audiences in the production of novel forms through a playful and intriguing experience.

The Fifth Absence (2011) is another example of how an evaluation function can be used poetically

in the generation of an artificial behavior. As described earlier, the work involves a robotic agent

immersed in a behavioral conundrum through the implementation of a reward function precisely

designed to generate it. The agent in this artwork is forced to discover, through trial and error,

a strategy that will allow it to match its desire to avoid looking at light sources with its need to

91



get solar energy. The slow-paced behavior of the agent, who moves about once every 2–3 minutes,

places it in a different category than Galápagos in terms of aesthetics. Like most other interventions

in Absences, this is a very conceptual piece, as the shape of its behavior can not be perceived in

real-time by human subjects and thus needs to be imagined by the audience.

Data

Data is an often overlooked, yet crucial dimension to consider when thinking about adaptive behav-

iors, especially in an artistic context. There are practical concerns when dealing with data encoding,

as well as challenging issues that arise when dealing with high dimensional spaces, such as is the

case with image or speech recognition, which are largely beyond the scope of this dissertation.

The first thing to consider in regards to data is the kinds of inputs and outputs that will be

fed into the system — in other words — what the agent will be able to observe, and how it will be

able to respond to these observations. In order to be effective, these inputs and outputs need to

be carefully chosen to afford the kind of experience the artist has in mind. Moreover, there needs

to be a way for the agent to make inferences, otherwise no learning will happen. For example, a

system that can only detect light cannot be asked to learn about the sounds made by visitors.

The set of sensors/observations/inputs and actuators/actions/outputs, and the way they are

embodied in the adaptive physical devices that are staged in an agent-based artwork, possibly

constitute the most important decision an artist has to make in the creative process, as it will

define the kind of space in which the agent can evolve, the sort of behaviors it can afford.

Secondly, it is self-evident that the data distribution from which the examples are selected

has an important influence on the reactions and establishment of the system’s behavior. One of

the most dreaded issues in Machine Learning is overfitting, a problem that arises when a system

estimates “too perfectly” a specific dataset, thus becoming less efficient at making predictions on

unseen samples (i.e., taken outside of the training dataset). While overfitting is a plague for data

scientists, it might actually be exploited creatively by artists, by hand-picking data (such as by

creating a constrained environment) in order to encourage a specific response in the system.
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Other Considerations

Both from a scientific as well as an engineering perspective, Machine Learning techniques are simple

in spirit, yet extremely complex when it comes to details. Many elements can influence the success

or failure of a particular algorithm on a particular problem, and much energy is spent in the field

to compare strategies and try to extract general principles behind learning.

The biggest challenges are related to issues that arise when dealing with high dimensional data,

which becomes the case when dealing with image or speech recognition. These difficulties mainly

concern questions of generalization, that is, the problem of training a model on a specific set of

examples so that it becomes good at making predictions when faced with examples taken outside

of that dataset. An important conceptual issue is known as the curse of dimensionality. It spans

many unique problems that arise when dealing with high-dimensional data. One of the most

fundamental consequences of the “curse” is that the number of free parameters (which amount to

the representational power of the model) need to be tuned according to both the dimensions of the

input space and the size of the training database.38

(a) Linear model (e.g., percep-
tron).

(b) Nonlinear model (e.g.,
MLP).

(c) Nonlinear model overfitting
the data.

Figure 20: Example comparisons of how different kinds of model classify data points in a two
dimensional space, including a case of overfitting.

It is largely beyond the scope of this dissertation to give a detailed account of these theoretical

concepts. However, artists should be aware that these techniques require at least some basic knowl-

edge if one wants to be able to manipulate them as creative tools and material. Unfortunately, there

38The curse of dimensionality is directly linked with issues of overfitting and its opposite, underfitting.
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exist almost no resources at the moment specifically dedicated to teach artists about ML,39 and

most of the tutorials require at least some degree of knowledge in mathematics and programming.

3.3 Conclusion

The history of computational synthetic agents after the post-WWII era runs across several disci-

plinary grounds. In this chapter, I examined this history through consideration of the notions of

adaptation and learning, mainly from the point of view of media art history and computer science.

A few features of these histories stand out, and need to be highlighted. Tensions between

opposing ways of thinking about body, mind, life, and intelligence act as the backdrop for these

historical markers. Computationalism — the concept that cognition is the same as computation,

that software precedes hardware, and that the Turing test is decisive in determining if an agent is

cognizing or not — is central, and has been espoused in particular by symbolic, “good old fashioned”

AI. Opposed to this computational theory of mind are views that argue for the importance of

the body in the performance of a cognizing system. Somewhere in the middle, are connectionist

approaches, which claim that intelligence is all about learning subsymbolic, statistical relationships

between the agent and its environment.

Cybernetics had a significant influence on the evolution of contemporary art in the 1960s.

Thinkers such as Roy Ascott and Jack Burnham explained the transformation of art in these

years as a displacement of the aesthetic locus from objects to processes, and described the art world

itself as a flow of information and behaviors between a multitude of systems.

Adaptive devices were central to these visions. However, as the sweeping influence of rule-

based AI from the 1960s to the mid–1980s pushed away alternative approaches, it seems that the

importance of adaptive and learning systems in contemporary media art was equally diminished.40

Still, there remains a noticeable strand of artworks based on learning agents that runs through

history, dealing with similar questions and facing similar challenges.

39One promising initiative is a book in preparation by computer scientist and artist Gene Kogan, in collaboration
with designer and artist Francis Tseng (Kogan and Tseng 2016).

40As we will see in chapter 5 , in the 1980s–1990s, artists seemed to have moved away from AI towards the field
of Artificial Life.
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In the second part of the chapter, I examined Machine Learning algorithms as described in

scientific literature, in an effort to reveal their fundamental mechanisms, with the objective of

bringing out their aesthetic potential. I first gave an overview of the three different categories

of tasks that can be addressed by ML algorithms: supervised, unsupervised, and reinforcement

learning. Secondly, I described the different components of such systems and how they interact.

In a typical ML algorithm, an optimization procedure is used to train a model over data using an

evaluation function (Alpaydin 2004). I provided several examples on how these different elements

can be, and have been, exploited by artists working with adaptive agents.

These characteristics are not only important for understanding how such methods might have

aesthetic repercussions, but also demonstrate how difficult it is to seamlessly move between the

lower level of choice of algorithm (or technique) and the higher phenomenological level of aesthetic

experience — something that I will pick up in the next chapter.

A crucial consideration is that ML algorithms are designed for optimization, which makes their

use in art counter-intuitive. Yet, there are multiple ways in which artists can appropriate these

techniques by doing what they do best: diverting the technology from its targeted application.

There is no such thing as the “best” or the “most aesthetic” behavior for a computational agent,

therefore there exists no objective evaluation for it. Yet, for example, it is possible for artists to

“toy with” the evaluation function of a learning system as a way to generate effects, or to use the

fundamental properties of a model as a conceptual tool, or to choose the training dataset carefully

to produce specific content.

This set of tools allows one to better understand agent-based works such as the Absences series.

However, one of the characteristics of these works is that they were designed for the outdoors, with

no intention of being shown in front of an audience, aside from their documentation. What happens

when an adaptive agent-based installation is presented in front of a human audience? What effects

are generated? How does the public react to such behavioral patterns?

The next chapter describes a collaborative robotic work that was created between 2010 and

2015. Called Vessels, it involves a fleet of small autonomous water-dwelling agents, which create an

emergent, social behavior through their adaptation to their milieu and their peers. The piece, which
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can be shown either indoors or outdoors, allows the audience to directly observe their evolution

as they respond iteratively to their ecosystem. The question thus remains: what new kinds of

aesthetic paradigms do adaptive systems produce or generate in human perceivers, who themselves

are inexperienced in regards to the behaviors of such nonhuman agents and processes?
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Chapter 4

Vessels

Empty your mind, be formless, shapeless - like water. Now you put water into a cup,

it becomes the cup, you put water into a bottle, it becomes the bottle, you put it in a

teapot, it becomes the teapot. Now water can flow or it can crash. Be water, my friend.

– Bruce Lee

November 13, 2015. The sun is setting upon the solemn campus. In front of the Law School,

the Goddess Athena opens her arms to the “Nouvelle Cité”, heritage of the 1960s French marxist

revolution. Paris was attacked yesterday by groups of armed men. But we are in Strasbourg, and

the turmoils of last night have already settled, though a spectre of this violence seems to be walking

among us.

A woman asks if the robots are there in memory of the victims. She explains that she lives

in one of the condo towers in front of the fountain and that she noticed, from up there, the slow

oscillation of colored lights on the water. People have gathered on the eastern side of the basin,

where the wind was gently pushing the bots. A small grouping of the robots is slowly flickering

in greenish blues; over there, three orange ones are hopping, moving in short, erratic bursts, their

motors roaring like a voice.

There, on the other side of the fountain, a single purple one looks like it’s slumbering, it’s pale

color slowly undulating. Parents are watching their two kids playing around it, gently pushing it
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when it reaches the border.

Insect sounds, responding to one another, like a choir of electronic crickets; whispers coming

from the audience, as new groups of spectators gather around the place.

A gust of wind blows, pushing them away. By now, menacing clouds have also appeared: pink

and orange, tinted by the smog-drenched light of the setting sun. Lighting bolts flash over the

horizon: a storm is coming.

Fading colors.

The purple one has reached the rest of the group. All of a sudden, it starts squeaking now like

a fax machine. Three of them respond, then more. Binary codes echoing through space, a ballet

of colorful beings, all converging together as the first drops of rain fall from the sky. Slowly, their

color changes, a new community is formed as the territory is collectively redefined. People start

leaving, kids want to stay but they are scolded as the air gets thicker.

They take a break now. This one has started shining in a strange, whimsical way. This other

one shakes and pushes the other two. Their colors are now moving between green and orange.

Suddenly, the whole group starts moving towards the shore in unison. They bounce against the

border, pushing, as if in some kind of a panic.

Then, as quick as they began, they all stop. One of them leaves, changing back to a blueish

color. Then another one. And another. A sudden squeak, followed by screams of noisy binaries:

they all split up.

The clouds have passed. But everybody’s gone.
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Figure 21: Vessels (2015), L’Ososphère, Strasbourg, France. Photo: Philippe Groslier.

This chapter examines the research and creation process behind the realization of Vessels, an

artistic robotic installation consisting of large collectives of water-dwelling mobile robots, created

as a collaboration between myself, Samuel St-Aubin and Stephen Kelly from 2010 onward. As they

move over the water’s surface, the bots engage in different forms of social interplay, influencing each

other’s behavior and appearance in oscillating movements of convergence and divergence. Moreover,

each robot perceives a specific dimension of its environment such as water quality (air temperature,

atmospheric pressure, or ambient light and sound) which influences its behavioristic character. For

example, a high temperature measured by one of the agents could make it increase its speed or give

it a preference for rotating clockwise. In turn, this individual change in behavior contaminates its

neighbors’ demeanor.

Over time, a collective behavior that is specific to the immediate environmental characteristics
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of the presentation site emerges from the agents’ socialization. The work thus acts as an organic

laboratory that responds to hidden features of the urban ecosystem by displaying emergent social

behaviors, offering the viewers a new perspective on their living milieu and a model for cultural

exploration.

Figure 22: Vessels presentation at LABoral Centro de Arte y Creación Industrial (Gijón, Spain).
August 2013. Photo by Sofian Audry.

Here, I focus on the computational aspects of the project, in particular the use of Machine

Learning techniques. Vessels provides a valuable case study for applying the concepts developed

in the previous chapter. Specially, it highlights the different challenges faced when making use of

such techniques in behavior-based artistic works. Furthermore, the project offers an example of the

kind of aesthetic effects that can be generated through such work.

One of my intentions in creating this work had been to use Reinforcement Learning as a way

to generate different kinds of behavior in the robots. I explain how and why this approach was
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eventually abandoned for both technical and artistic reasons. In fact, it has already been pointed out

that the traditional inclination of AI towards problem-solving and optimization makes it unpractical

for creative applications (Eigenfeldt, Burnett, and Pasquier 2012; Mateas 2001). RL is particularly

challenging for artistic works because it is caught in a stark paradox: the traditional contexts in

which media art installations are produced and presented are particularly ill-suited for Machine

Learning in general, and Reinforcement Learning in particular. This is mainly due to the fact that

RL agents need to be exposed to a lot of data in order for them to learn. However, in a gallery

setting, the audience typically gives its attention to works of art for only a few minutes, which is

usually not enough for the learning process to complete.

I follow up by describing how we successfully made use of genetic algorithms by hooking into

the learning step as a way to evolve cohesive forms of behavior in real-time. GAs are the most-used

strand of ML methods employed in the creation of media art.1 In Vessels, we use GAs in a very

specific manner: as a way for robots to collectively self-organize so that a form of behavioral “family

resemblance” emerges from their interaction with one another and their environment.

Following these observations, I claim that one way of using Machine Learning methods within

the context of agent-based artworks is to provide an algorithmic framework which allows for the

generation of adaptive behaviors rather than the production of an efficient solution to a definite

problem. Most learning algorithms define an iterative procedure where a model is refined at each

step towards achieving a certain goal. By hooking into this process, an artwork can reveal to the

audience the process of adaptation itself, which can be made to be artistically compelling through

its evocation of familiar behavioral patterns usually displayed by living and/or sentient beings.

The first section of the chapter describes the broad artistic goals of the project. I address issues

related to form, content and choreographic development in a decentralized collective of adaptive

agents. The second section provides an overview of the technical dimension of the work, with

some contextual insights on the practical reasons justifying the choices that were made. The third

section depicts the research-creation process, bringing in questions of methodology as well as both

practical and theoretical implications of the work. The chapter ends with a description of similar

1For examples of ways GAs have been used in visual arts and music, see (Johnson and Cardalda 2002).
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artistic installations involving collectives of agents and analyses the affective experiences of Vessels

as reported by the audience.

4.1 Artistic Intent

Interactive media artist and theorist Simon Penny stresses the importance of establishing a rela-

tionship between the work, the viewer and the environment they share in works of art based on

artificial agents (Penny 2000). In Vessels, this interrelation is constructed from behaviors that occur

not only at the individual level, but foremost at the global, emergent level. The intention here is to

develop a kind of adaptive and distributed choreography; a social dance with no central conductor

that induces and maintains viewers’ interest by evolving constantly. My intuition is that this will

bring a sense of aliveness that will allow the audience to more intimately relate to the work, identify

with it, and ultimately to inspire the audience to reflect and question their own relationship with

their living environment and its inhabitants.

We addressed these challenges through three (3) major artistic objectives: (1) to dynamically

occupy space; (2) to create social interactions between the robots; (3) to establish a relationship

with the environment. These goals were deliberately meant to be blurry, allowing room for ex-

perimentation and creation. They are also incomplete and cannot, in themselves, fully encompass

the conceptual scope of the project. They serve primarily as anchor points and reflection axes for

supporting the creative process.

4.1.1 Occupying Space

Our general vision of the spatial disposition of robots was to create a constantly evolving mixture of

densities and colors, suggesting different configurations of both collective and individual behaviors.

Agents in Vessels operate in territories over which spectators have a global perspective. One of the

important dimensions of the work is thus the way by which the robots spread across space. The

robots must neither constitute a cloud of detached individuals that moves randomly, nor must they

be assembled in a single, static mass. Their locations and movements should be diverse such that
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at any given time, the surface on which they dwell might display contrastive variations in density

and movements that evolve over time.

The idea of varying the ways robots occupy their living milieu is tied to one of the important

challenges described by Penny, which is to ensure that an agent’s behavior is differentiable from

pure randomness while still evoking a sense of mystery and uncertainty. Discussing his experience in

creating Petit Mal, a piece featuring a robot interacting with users, he explains that a fundamental

concern for artists is to generate “poetic richness which is clear enough to orient the user but unclear

enough to allow the generation of mystery and inquisitiveness” (Penny 2000, 441).

These considerations illustrate one of the biggest challenges in this project. The establishment

of complex rules in the system contribute to the unfathomable character of the work, but may also

come to unbalance the emergent behavior by making it indistinguishable from the purely random.

4.1.2 Generating a Social World

While the spatial distribution of robots in Vessels is related with sociability as the natural outcome

of individual inclinations, these dynamics are assuredly not the only aspects of the robots’ social

life that can be explored as evocative material. We decided early on that agents should have a way

to communicate with one another to generate different kinds of social actions and events. Following

the same idea of a bottom-up approach, we designed a very simple process involving “social acts”;

kind of atomic behavioral building blocks by which robots could interact with one another.

Social acts would be triggered by a single robot who would lead the action through three (3)

different phases: negotiation, action and release. At first, the leading agent would call for peers to

perform the action. Those receiving the call would not send any messages back but would either

ignore it or start acting as temporary followers of the leading bot. While engaged in this follower-

followed relationship, the leading bot would have the option, from time to time, to activate a social

event. Examples include following or evading the leader, spinning clockwise or counterclockwise,

blinking lights or emitting sound. Finally, the leading robot could call off the action, releasing its

followers to their own inclinations.
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4.1.3 Interlacing Identity and Environment

Social interactions between the agents evoke a sense of a community, allowing the audience to

identify with the work. A final objective of this work is to build on that bond, to offer a space for

the public to reflect upon the urban environment by rooting the agents’ identity and behavior in

the human audience’s perception of underrecognized characteristics within their own milieu.

Installing the robots in an aquatic environments is directly linked to this ambition. Water car-

ries a strong poetic evocation, being both the quintessential source of life on earth, and sometimes

providing an unfathomable, possibly dangerous territory. Ponds and harbours in the urban envi-

ronment are places of gathering and reflection: places where one can evade the turmoils of city life

to meditate, observing birds and insects moving on the surface, listening to the sounds of wind and

lapping, dragging oneself into the ripples and vortices deep below the surface. Furthermore, the

water element contributes to an impression of fragility in the robots and makes their movements

imprecise, which gives them more personality.

Robots’ reaction to their environment is guided by a simple aesthetic principle: behavior dis-

played by the community should reflect the environmental characteristics of the location, thus acting

as kind of a dynamic “signature” of the milieu. This general rule can be expressed more or less as

the result of the tension between two sub-principles, namely; (1) an identity principle stating that a

community of robots presented in a given location, showing a specific set of environmental features,

will display an emergent behavior identical or similar if it is presented again in the same conditions;

and (2) a corresponding but opposite contrastive principle pushing robots towards engaging in a

different behavior when subjected to noticeably distinct environmental conditions.

In line with our bottom-up methodology, the relationship between the agents and their environ-

ment is first and foremost expressed at the individual level. As previously mentioned, each robot is

equipped with a sensor that measures specific environmental data, such as air temperature, atmo-

spheric pressure, carbone dioxyde level, ambient light intensity or audio noise level. That specific

piece of data directly influences the personality of the robot, who adapts to it by transforming itself

each time a new measurement is performed.
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4.2 Technical Overview

The artistic intentions outlined in the previous section are intertwined with practical considerations

about the physical, hardware and software dimensions of the robots. Though this research focuses

mainly on the algorithmic aspects, I want here to give a sense of the agents’ capabilities by taking

a peek at their physical constituents.

Vessels’ robots were designed iteratively over the course of several years, with most of the work

occuring as part of short research and production residencies in different artistic institutions. Some

points about the context of research-creation are worth mentioning in order to better understand

the choices that were made.

First, the fact that we operated under tight budgetary constraints — at least in comparison with

swarming robotics projects of comparable scope in science or engineering labs — had a tremendous

impact on the components we chose to equip the bots with. In general, we favored cheap solutions

that “do the job” and whose imprecision nevertheless added unpredictability to the piece, giving

robots a wider range of behaviors. Simon Penny expresses a similar idea when talking about the

“under-engineering” of his work Petit Mal, explaining how his approach of favoring cheaper solutions

which are “70% reliable” over more expensive ones that might be “90% reliable” actually expands

the “field of possibility” (Penny 2000, 401) by adding noise to the system, thus giving it more

personality.2

These budgetary constraints forced us to carefully choose each component installed on the robots

in order to give them enough capacity to be able to achieve the artistic goals while keeping costs and

complexity low. We mainly focused our choices towards components that would give our agents;

(1) a sensorimotor “body” that allowed them to have some minimal awareness of their surrounding

2An important difference between our approarch and that of Penny is that we compensated for a lot of the
hardware’s lack of robustness through software, whereas Penny, whereas Penny prefers to work with the material
constraints rather than trying to overcome them with algorithms. His main critique is that “fixing in software”
actually reduces the range of possibilities to be explored artistically. However, Vessels differs from Petit Mal in
a number of ways, the most important one being the number of agents: whereas Petit Mal consists of only one
robot which could be fine-tuned with a hands-on approach, in Vessels the large number of robots introduces a lot
of variability, thus the degree of robustness needed in the components is more critical, as fine-tuning each robot
would be too time-consuming. One of the favorable effects of developing these software algorithms is that our team
contributed a lot of open-source code to the community, as we favored simple, low-cost solutions over off-the-shelf
products.
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environment and also to move and avoid obstacles; and (2) a variety of media-generation means to

express a wide range of affects.

Second, it is worth mentioning that we went through several mock-ups and prototypes to ar-

rive at the current design, and that there still remained space for improvement. At each step, we

have validated certain items and made corrections in interaction with the different project partici-

pants. For example, software development at every step would reveal problems related to hardware,

suggesting changes in the electronics components and circuit in the next iteration.

This section gives an overview of the technical aspects of Vessels robots while drawing links

to the artistic intentions and to practice. I explain the propulsion and steering system, light and

sound components, environmental sensing system and the infrared messaging system.

4.2.1 Locomotion and Steering

The propulsion system was the first element that we explored when we started working on the

project. The vast majority of current research on robotics focuses on ground robots that move

on wheels, or on flying devices (i.e., drones). There are hardly any instances of projects involving

robots that move on water or other sorts of liquid.3

During our first residency at the CFAT in August 2010, we started experimenting with different

kinds of propulsion and directional systems. We came up with an air propulsion engine using a pair

of computer fans on servo-motors.4 However, the fans were not powerful enough to fight against

the wind and water current, while their large size made the robots less hydrodynamic.

For our second prototype, we opted for an alternative design involving a pair of stationary

underwater pumps, which proved to work quite well. We also provided each bot with a magnetic

electronic compass, allowing them to readjust their propulsion to stay on course and thus avoid

spinning — an idea which proved to be more difficult to implement than it looked, as we shall

see. We added an extra infrared distance sensor to the robots to give them a better sense of their

3During one of our public presentations at LABoral in 2013, an engineer working for one of the major petroleum
companies in Spain left me a business card. He was interested in our design as a way to explore pipelines and detect
cracks and other weak points.

4We came up with that idea originally because we feared underwater propellers could easily get stuck in aquatic
weeds.
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surroundings, facilitating obstacle avoidance among other things.

4.2.2 Expressive Gear

Some of the onboard components are specifically there to provide the robots with ways to manifest

their personality, state, emotions, etc. to spectators. The most evident of these components is

the color module, activated through three (3) RGB LEDs that allow the agents to display various

behaviors or states by means of colored light.5 A special routine running in parallel to the main

code allows smooth color transitions and oscillations, such as a rapid fluctuation between red to

blue.6

The robots are equipped with another light-emitting component which adds to the range of

expressiveness. After the first prototype, Samuel suggested that we add a series of eight (8) bright

white LEDs on the periphery of the printed circuit board. Unlike the RGB diodes, these LEDs can

be individually controlled using a shift register. The physical placement of these light sources on

the board opens up another layer of possibility: for example, we could now use these white LED

lights to give a sense of direction as the robots are navigating on water.

Additionally, robots are equipped with a separate circuit board with its own, on-board 8-bit

microcontroller and a small amplifying and filtering circuit, allowing the robots to generate 8-

bit sounds at 16384 Hz. As I explain in the next section, this sound/environment board is also

responsible for measuring a specific environmental condition. The board allows real-time audio

synthesis of different sound types. For example, we implemented some very simple sounds such

as white noise, as well as a more complex sounds such as the one generated through a genetic

programming procedure. In most cases, these sounds can be tuned using a series of parameters,

thus making it possible to generate an even wider range of audio effects.

5Although there are many LEDs, they are all programmed to glow in the same color. We increased the number
of LEDs in each of our prototypes to achieve a satisfying level of brightness.

6In other words, rather than being limited to choosing one specific color, it is possible to create simple color
animations that run in the background.
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Figure 24: Vessels robot in action, showing the colored LEDs. Photo by Sofian Audry.

Figure 25: The sound/environment board connected to the main board (view from below). Photo
by Samuel St-Aubin.
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4.2.3 Environmental Sensing

One of the core conceptual elements of Vessels is the interdependence between the robots and

their milieu. Each agent possesses a “piece of the puzzle”, a personal view over its environment

through a single sensor. These fragments of information are exchanged between the robots through

their behavior, generating an emerging “rendering” of the data in the form of a collective adaptive

performance.

Each robot is equipped with the exact same fundamental set of hardware and software (their

environmental sensor is the only exception to that rule).7 As each of these sensors can work quite

differently and therefore need specific hardware and software components to function properly.

In our first prototype, we had to hard-wire sensors separately on each board, soldering specific

circuit components and uploading the appropriate piece of code to work with it. This increased the

risk of errors and made troubleshooting and maintenance more difficult. In our second prototype,

we decided to create an external board which could be connected to the main one, a simple “plug-

and-play” interface that hides the complexity and particularities of the environmental readings.8

4.2.4 Communication

Let us take a moment to reflect on the robotic bodies of the agents that I have been described

thus far. A pair of water pumps are used to provide locomotion, colored and white LEDs for

generating light effects, and an audio circuit for digital sound production. In terms of technology

that facilitates the robots’ perceptions, they are equipped with a compass for navigation, a pair of

range finders for obstacle detection and a single, unspecified environmental sensor.

Now, notice that the range of perceptual data an agent has access to does not include movement,

color, light nor sound. In other words, aside from the accidental case where the environmental

7In a given collective, there might actually be some sub-groups of robots who share the same kind of environmental
sensor. There are two reasons for this.

First, it would be expensive timewise to research and test a different environmental sensor for each of our 50
robots.

Second, we actually believe it makes sense that some robots have the same kinds of perception, especially for
cheaper components such as light and sound perception while having less robots equipped with more “special”
sensors.

8As explained in the last section, we also thought it would be convenient to use the extra CPU power to run audio
synthesis, which is why we integrated both components on the same external board.
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sensor of one robot would be a microphone or a light sensor, these agents are unable to detect

the behavior of their peers. Even if they did, it would be extremely hard for them to extract the

complex information needed out of the flow of incoming data.9

Imagine that a robot starts acting in a specific way, like twirling, changing its color to green,

or producing a chirping sound. How are its peers meant to react to these behaviors if they do not

even have the means to perceive them?

We came up with a simple solution for addressing this issue. Instead of having agents notice

what one of their peers is doing through a sensory system, we simulate the act of perception by

having the perceived robots send the information about their behavior or state of being through

infrared (IR) messaging.10

IR messaging systems are extremely popular in scientific swarm robotics applications for various

reasons (Kornienko and Kornienko 2011, 9–10). One of the main advantages of using IR instead

of radio frequencies (RF) is that it is possible to detect where the direction the message is coming

from, allowing agents not only to exchange data but to locate one another11.

As such, we equipped each robot with a series of infrared receivers installed around the perimeter

of a simple technique described in (Hoyt, Mckennoch, and Bushnell 2005) which basically compares

the intensity of the signal received from each sensor to estimate the angle and range of communi-

cation (Fig. 26).

There are, however, important limitations to using IR. Data transmissions are slow, short-

distance and prone to error. This is accentuated by the presence of other sources of infrared light,

with the consequence that we cannot show the work during the day due to interference from bright

sunlight.

Another caveat is that the low transmission speed of infrared messaging increases the risk of

message collision, which forces us to limit the frequency at which robots send signals. This is true

9Early on when, we started reflecting about the question of how the agents could socialize with one another, we
considered the idea of using a simple, physical modality, like sound. For example, the robots could have reacted to
audio signals coming from their peers or the audience. It could have been an interesting venue to pursue, but if we
did so we would never have been able to achieve the level of interactional complexity we wanted to have in the piece.

10For example, instead of having robot A looking at robot B and seeing it spin clockwise (which would only be
possible through a complex system of camera doubled with pattern recognition algorithms), robot B would send a
message to A that says “I am spinning clockwise”.

11It is also possible to guess the proximity of the sender using the infrared intensity of the signal.
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Figure 26: Diagram of the infrared guidance system. The sender robot (S) emits an infrared message
in all directions. Receiver robots (R) perceive the signal through their six (6) infrared sensors with
various strength. The relative signal intensities perceived by these sensors is used to estimate the
orientation and distance of the sender robot with respect to the receiver. Image courtesy of Samuel
St-Aubin.

for any application using IR, however the technology that we use is many times slower (2.4 kbps)

than what is normally used in scientific research. As a comparison, the ISIS communication system

for swarm robotics applications described in (McLurkin 2004) runs more than 100 times faster

than our system at 250 kbps. Depending on the quantity of robots in the space, we thus need to

limit the number of messages sent by a robot to about one every 20 to 30 seconds.

Distance also has an impact on the signal. In our tests, we could easily communicate up to 2

meters, but could hardly get to more than 6 meters while achieving the same results. However, we

eventually came to see this apparent limitation as bearing a strategic advantage, as it constrained

the agents in only communicating with their closest neighbors. We even lowered the IR intensity

to limit the range further, bringing the outer limit of the signal to about 1.5 meters. Thus when a

robot calls for peers to accomplish a social act, the radius of action of the signal naturally generates

a local sub-group by being limited to the sender’s immediate neighbors.

Quite interestingly, these technological limitations have forced us to address robots communi-

cations in a way that is actually much closer to the reality of biological systems. Living beings
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communicate using channels with relatively low bandwidth and range such as sound and gestures.

The constraints hence coincide with our original goals for enabling IR messaging as complement to

robotic action, which makes these actions perceptible to their peers. A faster, more expensive IR

communication system would have allowed our robots to send hundreds of messages per second,

but these messages would have been completely abstracted from the audience. In Vessels, this

slowness means that each message accompanies a slow-paced, palpable behavior, such as emitting a

particular sound or moving in a specific way, which brings the robotic communication to a “human

level”.

4.2.5 Control Unit

The behavior of agents is controlled from a central ATmega1280, an 8-bit microcontroller running

at 16 MHz. We selected this technology for its small cost, low power consumption, high versatility

and compatibility with the Arduino library12, a very popular open-source software suite among

artists and hobbyists.

Every piece of hardware is connected one way or another to this processing unit, and therefore

have a software counterpart in the source code. A large proportion of the code is meant to provide

a high-level interface to each of the subsystems to make them more robust and easier to work with.

The chips are fully programmable in a variant of C++, an extremely widespread and powerful

object-oriented language. As such, it allows us to integrate nearly any kind of algorithmic techniques

and structures, at least in theory. However, in practice, their low memory (8kB SRAM) and speed

makes some applications difficult or even impractical, which excluded the use of some Machine

Learning methods.

To summarize, the agents in Vessels are equipped with a range of low-fi hardware that “do

the job”, while being relatively imprecise when compared to more expensive commercial solutions.

This lack of robustness is partly compensated for through software, but leaves room for more

unpredictable behavior in the robots.

12The ATmega1280 corresponds to an Arduino Mega board. More information at: http://www.arduino.cc/en/
Main/arduinoBoardMega
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Whereas some contextual elements have been introduced through this short technical overview,

in the next section we dig deeper into the research-creation process in an effort to address questions

related to the practical aspects of using multi-agent systems and Machine Learning techniques in

Vessels.

4.3 Practice

Through this technical overview, we have started to look at questions of practice, though only on

the surface. Among other things, we have not really considered yet where the notion of adaptation

fits in the project. I now want to start looking more closely at practice, describing in more details

some aspects of the research-creation through three important phases of the project.

First, I examine a series of computer-based simulations of the work that were designed during

Summer 2012. The simulations tried to give a sense of the global, emergent effect of robots moving

over the water, directly addressing the artistic goals.

Second, I look at the way the control loop was implemented in the system. I explain how we

started with Finite State Machines (FSM) in the first prototype and switched to a high-level goal-

oriented model known as Behavior Trees (BT) in the latest prototypes. I describe the experience

of working with these different approaches in terms of authoring and meeting our goals.

Finally, I review two ways we worked with adaptive systems: an approach based on genetic

algorithms which was successful; and another based on reinforcement learning, which was not. I

explain the reasons that have led us to experiment with these approaches, what the caveats were,

and the final resolutions.

4.3.1 Simulations

In Summer 2012, the progress on Vessels was very slow. We were working on a second prototype,

but had much trouble finding an appropriate physical space to experiment with such large groups

of robots — especially one where we could install a big enough indoors basin filled with water. It

was difficult to even begin to understand what things such as “emergent collective behavior” or
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“distributed choreography” really meant without first-hand experience with the installation.

In an attempt to make progress on the algorithms that could drive the piece, I implemented a

software model of the installation which would allow me to simulate experiments of the work in a

graphical interface using a 2D physics engine. The sensors, communication system and locomotion

capabilities of the robots, as well as various parameters such as surface friction and wind, could

be simulated in an integrated environment. The objective was not to create a perfectly faithful

simulation of the robots but rather to experiment with simple algorithms to validate general ideas.

These simulations allowed us to come up with a set of fundamental concepts and heuristics for

driving the work. First, the introduction of a high-level tension between sociability and solitariness

became a way to generate contrastive variations in densities across space. Second, an embryonic

notion of personality in the robots evolved through both social encounters and confrontation with

the environment. Third, negotiation and generation of subgroup behaviors lead through temporary

emergence of “leaders” in the community.

Solitary vs Sociable Robots

The first problem that I approached using the simulation engine was to create a distributed chore-

ography of agents moving through space, seemingly governed by emergent, antagonistic movements

of assembly and dissolution. The goal here was to find a simple self-organizing mechanism for gov-

erning how the robots occupy space, such that different distribution patterns could appear (isolated

robots, sub-groups, etc.)

The basic concept that I experimented exploited the desire of the agent to either assemble with

peers or avoid them. Following this idea, a robot would always be in one of two states: solitary

(i.e., seeking loneliness) or sociable (i.e., looking for companionship). In the simulated experiment,

robots regularly update their peers about their current state and location by broadcasting messages.

Simple rules dictate the actions of a robot being in either state, based on direction of incoming

messages and objects detected using the range finder, as portrayed in Algorithm 1.

This simple algorithm inspires solitude-seeking robots to avoid objects, while sociable ones are

drawn to one another. To prevent robots from staying indefinitely in the same state, I introduced an
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Algorithm 1 Basic decision algorithm based on agent’s sociability

if agent is sociable then ⊲ seeking company
if message received then

steer towards incoming message
start motor

else if object detected then
start motor ⊲ approaching

else
stop motor and steer clockwise ⊲ searching

end if
else ⊲ seeking solitude

if object detected then
stop motor and steer clockwise ⊲ avoiding

else
start motor ⊲ evading

end if
end if

additional “boredom” parameter representing how much the robot has become tired of its current

state, a value between 0 and 1 that slightly increases over time. The parameter is also influenced

by the presence of other robots detected during the reception of infrared messages. When a robot’s

boredom reaches 1, it changes state and the parameter is reinitialized to 0. Robots trying to be alone

will thus tend to become sociable through “peer pressure” if they move across a highly populated

area, whereas groups of friendly robots sticking together for too long will irremediable get bored of

each other after a while and split.

Once the experiment is launched, the robots start moving through space. Regions increase in

density as sociable robots coalesce, while their individualistic counterparts roam freely, avoiding

groups and taking refuge in deserted areas. Groups form, stick together for a while, then slowly

split and dissipate. As they disband, the territory becomes more chaotic as it fills up with runaway

robots running in all directions. Through their exploratory motion, these rogue robots reconfigure

the space as they attract friendly robots, inadvertently bump into groups, and eventually switch

states again and begin to seek new companions (fig. 27).
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Values near 0 and 1 represent more extreme, marginal identities, whereas “normal” is implied around

0.5 (50%). Robots with similar identity are deemed to be alike and tend to tolerate each other more,

though they also get bored more easily if their resemblance is too strong. Conversely, robots with

very different identities will find it difficult to stick together, though they might also be searching

for that difference.

Instead of using color codes to show the current state of the robots, I choose to use the simulated

RGB LED to represent the identity of the robot using a simple hue conversion. Agents near the

middle point (0.5) are cyan (180° hue) while extreme values (near 0 or 1) both tend towards red

(Fig. 28).

Figure 28: The hue scale, as used in the simulation engine to represent a robot identity.

Each robot is provided with an environmental sensor which also outputs a value between 0 and 1.

The basic, individual behavior of robots related to their current state of being (solitary or sociable)

remains unchanged from the last experience. However, the process governing the evolution of their

boredom is now affected by both their identity as well as their environmental readings.

When a robot chooses to broadcast a message, the first thing it does is to update its identity

based on the value of the environmental sensor using a simple adaptive rule:

identity ← identity − η(identity − environment) (1)

One will recognize here, the general form of the negative feedback, stochastic learning rule

introduced earlier, with a tunable learning rate η that can be adjusted to make the convergence

slower or faster (it was set to 0.1 in the simulations). This rule allows the smooth, asymptotical

convergence of the robot’s identity to match that of its sensor. One way to understand this process

metaphorically is that the value environment represents itself an identity that becomes the target

of the robot, meaning that if the agent was alone and if the measured variable would never change
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over time, the agent would eventually stabilize its identity to match that of its perception.

Once its identity is adjusted, the robot sends a packet containing its new identity value. Upon

receiving it, neighboring bots update both their boredom and identity parameters in ways that rein-

force unions with peers of akin temperament. One of the important consequences of this procedure

is that robots that assemble will tend to adapt their identity to one another using a learning rule

similar to equation 1. As members of a party exchange messages, their identity parameter tends

towards the group’s average. Since the individual identities of the bots are in turn strongly affected

by their environmental sensor, the robots will lean globally in the direction of the average output

of the sensors.

For instance, if sensors are strongly biased toward zero, in the long run, the agents’ color will

be closer to orange and red. However, even if the mass effect tends to move in a certain direction,

the spatial distribution of identities is subject to local variations. Thus, even if the global color

converges to red, there will still be variations at the individual and group levels. For example, a

party of robots with a higher identity parameter might gather in a safe spot, converging to blue or

purple.

This basic mechanism, allowing inter-robot personality exchange through mutual adaptation to

each other and their environment, would become the core principle behind the implementation of

collective, emerging behaviors in Vessels. As we will see in section 4.3.2, the simple principle of

mixing hues will later be augmented by the means of a genetic code in order to represent other

behavioral components such as sound and movement.

Leader Bots

Thus far in the experiments, intentional movement was mostly reserved to solitary agents, while

sociable robots stay more or less static once gathered in order to stick together. In a final experiment,

I attempted to occasionally break from this principle by introducing a concept of leadership. From

time to time, when a group is formed, a leader stands out and directs the other group members to

swarm with it in its explorations of the space.

The last simulation adds a new layer to the “lonelies-friendlies” duality by enabling groups to
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There were two things we wanted to explore with ML methods. First, we wanted to train robots

to maneuver across the surface of a water environment, efficiently avoiding obstacles in an effort to

generate aesthetically compelling motion. I tried implementing this using reinforcement learning,

an approach that we finally abandoned.

Secondly, following our artistic objectives, we applied genetic algorithms to generate different

forms of behavior that could evolve through time and be tied to the environmental readings. This

approach was quite successful, although it came with some limitations which I will discuss further.

Governing Towards a Dead-End

One of the biggest technical challenges that we faced with Vessels was how to efficiently navigate

the robotic agents through space. Their round shape and small weight combined with the low

viscosity of water made them extremely unstable and naturally likely to spin, sending them quickly

off course. Using compass data, I tried to design an algorithm that would allow them to complete

the seemingly simple, basic task of moving straight forward in a given direction.

I started with the most straightforward program I could come up with, which basically attempted

to readjust course by pushing the motors towards the target heading. In essence, the algorithm

says: “If you are currently bearing left of target heading, move clockwise. Otherwise, move counter-

clockwise.”

This approach would work relatively well if the robot were starting with a heading close to the

target heading. Otherwise, it would start making strong oscillations before adjusting or, in some

cases, start spinning indefinitely.

The main issue here is that this approach does not take into account the angular velocity. If the

robots need to move clockwise, the algorithm had better check whether the robot is already moving

in that direction before pushing its motors to accelerate even more, making it harder to slow down

later on.

I thus designed a simple mathematical model of the physics involved and used it to implement

a new algorithm. It worked much better but it demanded that a number of parameters be set by

hand through trials and errors, such as the impact of the motors on acceleration.
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At this point, I started contemplating the idea of using reinforcement learning to automatically

learn the system dynamics. This was an interesting candidate for RL because it is a clear optimiza-

tion problem: the robot simply needs to be rewarded for keeping its current trajectory as close as

possible to the target. The learning algorithm would do the rest, finding an optimal way of steering

in any given circumstance. This could potentially save a lot of time and achieve better results as

compared to fine-tuning a hard-coded program by hand.

While “moving straight” does not seem a particularly compelling aesthetic goal, I saw it as a

first step in generating more complex and interesting behaviors in the robots. My hunch was that

we could use the same approach to train robots to move across the surface to achieve different

objectives, such as avoiding all obstacles, running into them purposely, maximize movement, etc.,

simply by changing the reward function.

At the end of our residency at LABoral (Gijón, Spain) in Summer 2013, I managed to train a

system to move straight using batch RL (Lange, Gabel, and Riedmiller 2011). While those results

seemed promising, when I started working again on it a year later during our residency at Eastern

Bloc (Montréal, Canada), I found myself unable to reproduce them. All of my experiments yielded

poor performances on the task, usually leading to a dreaded spinning behavior. I still do not fully

understand what happened. My main hypothesis is that the environment we were in seemed to have

unusual magnetic properties, probably due to large metal beams which supported the ceiling. This

is demonstrated by the fact that as the bots moved on the surface, the magnetic field seemed to

change the response of the compass, providing unreliable data which might have impaired learning.

I had already spent way too much time working this out, and in the mean time had come up with

an even better analytic solution to the steering problem which worked satisfactorily. As such, my

research in RL came to a halt, and I began to concentrate on other issues.

Of course, it would probably have been possible to train the robots in this task given better

conditions and more time. But we would then probably only have ended with similar results than

what analytic solutions such as the one we implemented allowed, and it would have come at a

much higher cost in terms of memory and CPU power. Furthermore, while the robots would have

moved more efficiently, that would also have removed some of their clumsiness, which gives them
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more personality. In other words, indeterminacy played in our favor in the aesthetic design of the

work. Again, this shows how the stakes in art and AI differ from one another and often even play

antagonistically.

Nevertheless, as I mentioned earlier, learning the steering behavior was only a first step to open

up a wide range of learned behaviors for the robots. But in the end, what would we gain from it,

really?

Answer: probably not much.

The best we could hope for would have been to generate a surprisingly “intelligent” behavior

for our robots, possibly evolving through time. But the truth is that (1) the physical limitations of

the microcontroller we used would likely have prevented or at least impaired it; (2) the necessary

time involvement was hard to estimate but possibly quite high; and (3) we could create something

fairly close to this result, and possibly with more aesthetic success, using less resource-consuming

methods.

This example once again points to an important limitation of ML (and of AI in general), which is

that these approaches are directed towards problem solving and optimization, whereas in creative

applications, the optimal solution is ill-defined. There is no such thing as the “best” joke, an

“optimal” song or a “perfect” robotic behavior (Pasquier 2015). For instance, in Vessels, our

objective was not really to get robots to move on water without hitting one another: what we

are truly interested in was to generate a form of expressive behavior that matches our aesthetic

intention.

The “optimal” shape of an artwork — if such a thing is indeed possible — is an extremely

abstract concept even in the eyes of its creators. Were we to adopt an extremely naive conception

of the creative process, where an artist would have an a priori vision of what she wants to accomplish

and then materializes it in a work of art, that vision would necessarily be vague and difficult to

express mathematically.

Of course, the reality is that artists usually do not know in advance exactly what they want

to achieve. Artmaking is an intricate process, an ongoing interaction with material agencies that

generally lead us to place we might have not anticipated. The “optimal” form of a work of art is
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often revealed by accident: you know it only when you see it.

The maladjustment of traditional AI to creative applications has been raised by a number of

researchers in the field of digital creativity, a sub-field of computer science that tries to address

the question of how we can make computers creative (Boden 2004). One of their critiques of AI

is precisely the fact that it has traditionally focused on a certain category of problems (i.e., those

that can be optimized) leaving aside a vast range of what the human brain can do:

Artificial intelligence addresses the problem of emulating intelligence by having the

computer achieve tasks that would require intelligence if achieved by humans. These

tasks are usually formalized as well-formed problems. Rational problem solving is then

evaluated by comparison to some optimal solution. If the optimal solution is theoretical

and not attainable, optimization and approximation techniques can be used to get closer

to the optimal, or at least improve the quality of the solution according to some metrics.

Computational creativity is faced with the dilemma that, while creative behavior is

intelligent behavior, such notions of optimality are not defined. (Eigenfeldt, Burnett,

and Pasquier 2012, 144)

Reinforcement Learning is particularly challenging in artistic works because it is caught in a

paradox. Generating aesthetically compelling content is usually a difficult, highly non-linear task

which thus requires a lot of data and capacity (i.e., number of parameters/weights) for learning

to occur.14 But artistic contexts rarely offer these conditions. In the case of Vessels, for example,

while data can be more or less easily generated by having robots traverse the water, the information

was made too unstable to use because of the low-fi nature of the sensors used. Furthermore, the

hardware running the algorithms was simply not powerful enough to handle it.

To summarize, in this first step, I faced an important problem related to the nature of AI

research, which is that interesting artistic problems are intrinsically difficult for these methods

to address, and at the same time, the kind of problems they are designed to solve are often not

aesthetically interesting in themselves. In the next section, I present how we successfully subverted

a genetic algorithm approach to generate a compelling evolution in behaviors by employing a set

of strategies, introduced in section 3.2, which consists in utilizing the model and the evaluation

function of a ML algorithm of an alternative way.
14Consider for example the curse of dimensionality, introduced in section 3.2.2 .
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Evolutive Family Resemblance with Genetic Algorithms

As my experiments with RL proved unfruitful, I switched my attention back to the larger picture. By

this point, we had implemented a basic, nonadaptive behavior that allowed the robots to occupy

space dynamically and engage in basic social interactions using behavior trees. There were still

important challenges to address. How can groups of agents evolve behaviors that converge to

some form of similarity while staying diversified? How to make these behaviors correspond to

the environmental conditions sensed by the robots? Moreover, how to accomplish this with a

decentralized control where each bot makes its own decisions?

Simulations drafted a very rough sketch of how to attend to these questions by introducing a

minimalist concept of “personality” or “identity” in the robots that would be adapted through the

interaction with peers as well as readings of the environmental data. This factor, however, remained

at the proof-of-concept level, only affecting the robots’ color. But how to go further and allow for

a large variation in personalities while preserving the form of co-adaptation experimented in the

simulations?

Introduced in section 3.1.7, Genetic Algorithms (GA) offered an inspiring and useful framework

for undertaking these challenges. The fundamental principles behind GAs were put forward by

computer scientist John Holland in his famous study on adaptive processes (Holland 1992). His

conception of adaptation is highly Darwinian, anchored in a certain idea about the evolution of the

species through the survival of the fittest. Holland’s contribution was to provide a mathematical

framework for this process, turning it into an optimization method.

One way GAs have been utilized by artists is by tweaking the fitness function to match it to

aesthetic preferences, a procedure known as Interactive Genetic Algorithm (IGA) (Dawkins 1986).

Karl Sims’ 1997 installation Galápagos is emblematic of this approach in new media arts. In this

work, visitors can look at twelve (12) screens that display artificial 3D life forms. They can push

a pedal located in front of each screen to select their favorite creatures, and a new generation of

virtual beings is created based on that input.

Sims therefore lets visitors act as the fitness function: the GA is used directly to try learning
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“user preferences”, whatever that means. Hence, despite its innovative character, I always found

this piece to be quite didactic and artistically limited. Good art is not about providing people

with a chance to confirm their preexisting tastes and preferences, but about bringing them into an

experience that will surprise, move and, hopefully, transform the way they feel about the world.15

What I want to focus on here is another fundamental property of GAs, which is the ability

to transmit genes from one generation to the next. This is typically accomplished by a crossover

operator which takes the chromosomes from the parents and recombines them, producing offsprings

that share genetic material with their progenitors. In other words, the recombination step (which

is normally used as part of an optimization procedure) can be seen as a way to exchange genetic

patterns among members of the population, resulting in the evolution of a “family resemblance”

between them as they reproduce with one another. Thus, if we tweak or remove the selection

step, we can end up with an algorithm that is no longer trying to optimize anything, but rather is

furthering circulation of genetic information among agents.

This is what we did in Vessels. The idea is that each robot’s personality would be represented

not as a single real value — resulting in a color hue as its phenotype — but as a binary genetic

code that would define every aspect of the robot’s behavior and appearance. The same would also

go for environmental measurements, each measurement being associated with its own virtual DNA

(one way to see this is that each environmental measure has its own personality or identity).

When an agent encounters another agent, it mixes its own genetic code with its peer’s, with the

intention that its DNA moves a little bit towards that of its sibling; the same goes when it performs

an environmental reading. We achieve this by performing one step of the genetic algorithm and

selecting only the offspring whose DNA is the closest to the original code by defining our fitness

function as the number of bits differing between the offspring and the original robot’s DNA.

In other words, we hooked into the procedure and subverted it. We took took advantage of

the particular qualities of the model (the binary DNA stream), removed the selection part of the

optimization procedure, and used an evaluation function that would fit our aesthetic needs. We

15The installation Performative Ecologies (2008–2010) by architect Ruairi Glynn employs GAs in a similar fashion
as Sims but in a much more experiential, less didactic way. In the work, which won the VIDA 11.0 award for art
and artificial life, dancing robots compete for the audience’s attention. Their behaviors are implemented using GAs.
The fitness function here is the attention level of the public during each robotic performance (Glynn 2008).
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thus tweaked the standard approach — whose aim is to converge to an optimal solution among the

space of possible genetic codes — in order to use two features of the algoritmic process that we were

interested in, namely (1) the recombination operation that promotes “family resemblance” between

the bots, attached to the environment measurements; and (2) the iterative nature of the algorithm,

which makes a form of narrative of adaptation unfold before the eyes of the audience.16

The manner in which to use ML in artistic contexts is not obvious, as most of the scientific

research in the field has focused on applications whose needs are much different from those of

artists. It does, however, provide interesting tools that allow the implementation of conceptual

and formal ideas. In particular, adaptive computational strategies were used in Vessels to respond

to the artistic intend of designing a collective and evolving emergent behavior that attempted to

match, or tend towards, a set of environmental variables (which were potentially in constant flux).

But after considering all these practical questions, how do people react when confronted with

these behavioral patterns? What kind of agency do they attribute to these robots, both at the

individual and group levels? Does the use of adaptive and ML methods change anything in regards

to an uninitiated human’s perception? From an aesthetic perspective, how do these behaviors differ

from other, nonadaptive emergent processes?

4.4 Ecosystems

Vessels is an instance of an approach that has been successfully applied over the years that in-

volves bringing a large number of agents into an environment. This is reminiscent of the kind

of artificial ecosystems projects carried out by ALife researchers such as Thomas S. Ray and his

Tierra platform. Australian artist Jon McCormack is one of the leaders of this approach. One of

his most important works, Eden, is an “evolutionary sonic ecosystem” that represents agents on a

16In addition to that general “personality-evolution” process, an important component of the sounds produced
by the robots used another form of genetic learning. Stephen Kelly, who created this part of the program, used an
evolutionary approach known as Genetic Programming (GP). A variant of Genetic Algorithms, the DNA of a GP
system encodes sequences of instructions, which usually involve simple, low-level manipulations of memory registers.

Kelly used that system to manage the evolution of simple sound parameters controlling oscillators, such as ampli-
tude and pitch. This results in a diversity of sounds that stay in the same recognizable range, giving an identity to
the whole piece while allowing sufficient divergence to introduce novelties. In the most extreme cases, some robots
adopt really bizarre, loud voices, or shrieking cries that range from adorable to annoying.
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two-dimensional lattice, in a similar fashion as cellular automata. The agents react to one another

and to their environment using a set of rules that are encoded as binary chromosomes, which are

then evolved using a Learning Classifier System (LCS), a Machine Learning technique invented

by John Holland with close ties to both reinforcement learning, supervised learning and genetic

algorithms (McCormack 2009; Holland 1992; Urbanowicz and Moore 2009).

The work takes the form of an audiovisual installation in which the agents and their environ-

ment can be experienced as they move, mate, eat and communicate with one another using sound

signals. Contrary to Karl Sims’ Galápagos, in which the audience is asked to directly influence the

evolutionary process by acting as the fitness indicator, here the agents react only indirectly to the

visitors whose presence is necessary to add “food” to the environment, while the movements of the

audience increase the mutation rate (McCormack 2009).

As for the public reception of the work, McCormack notices that while most people “are not

aware of the learning system, camera sensing, even the fact that what they are experiencing is a

complex artificial life system”, the system does seem to “interest and engage the audience”:

Since the system is reactive to people (rather than interactive), there is no correct or

incorrect way to behave except to appreciate the experience. Anecdotal accounts from

people who have experienced the work describe it as “having a sense that it is somehow

alive,” or “like being in a strange forest at night.” In a number of exhibitions, people

returned to the work over a period of several days, to see how the qualitative behaviour

of the virtual environment had changed. In one recent exhibition, a local businessman

visited the work during his lunch-hour every day for 3 weeks, describing the experience

as “fascinating. . . one that made me more sensitive to my own environment.” While

these are, of course, subjective evaluations, it does appear that Eden is able to adapt

and evolve to create an ongoing interest for its audience. (McCormack 2009, 411)

Performative Ecologies (2008—2010) by architect Ruairi Glynn, is described by its author as “an

ongoing investigation into the design of conversational (interactive) environments” (Glynn 2008).

Inspired by the work of Gordon Pask, especially his 1968 installation Colloquy of Mobiles, Glynn’s

installation creates a conversational space in which dancing robots evolve in constant interaction

with one another and with the public.

The performances are generated from a gene pool of evolving dances functioning in
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a Genetic Algorithm (G.A.) which uses facial recognition to assess attention levels &

orientation of the audience before & after each performance as a way of assessing &

assigning a fitness value to each new choreography. Over time successful maneuvers are

kept & recombined to produce new performances while less effective ones are discarded.

Mutation in the G.A. fluctuates based on how successful the sculptures become. If they

get a lot of attention, mutation levels rise as if they are getting arrogant & as a result

be come more experimental. (4—5)

When no one is around, the robots start communicating with one another, sharing information

about their most successful moves. New performances are evolved through genetic crossovers:

They take the suggestions of their surrounding partners & compare their gene pool of

performances to their partners suggestions. If they are comparatively similar then they

are accepted & replace a chromosome from their own pool. If they are too different they

are rejected as if they dislike the partners dance moves. (5)

Performative Ecologies somehow lies between situated robotics, ecosystems installations and

interactive genetic algorithm systems such as Karl Sims’ Galápagos. Building upon the legacy of

artist David Rokeby through his “experiments in complexity” (3) and Gordon Pask’s Conversation

Theory (which suggests a way for humans and machines to interact within their shared environ-

ments), it uses Machine Learning as a way to engage the public in sophisticated interactions with

machinic systems.

Another example of an artistic installation driven by a virtual ecosystems is Richard Brown’s

2000 piece Biotica. In this one-person immersive environment, it is once again the presence and

movement of the participants that impact the growth and evolution of virtual 3D creatures. The

piece integrates different methods borrowed from AL and AI, such as systems theory, genetic al-

gorithms, L-Systems and Kauffman networks. Interestingly, agents in Biotica are modeled using

simple neural networks that are evolved with a genetic procedure (Brown et al. 2001).

In an honest self-critique of his work, Brown highlights important difficulties in the research-

creation process. In particular, he explains how the system interactions often resulted in chaotic

behaviors that were too random, therefore impossible to stabilize. There were some “promising

glimmerings” of emergent properties but in the end, in far too many instances, “the system had to
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be painstakingly coaxed, and behaviour had to be explicitely programmed to a degree that would

not warrant the description emergent” (78).

In the case of Vessels neither the agents nor the enviromnent are simulated, as the piece stages a

large group of situation robots that interact within their environment. In a similar fashion as Eden,

the work uses genetic computation to evolve a group behavior that reacts to the characteristics

of its milieu. A common feature of these works is that they presume a certain degree of loss of

control from the artist, and their complexity cannot be easily grasped by the audience. How does

the presentation context influence visitors’ experience of such works? Do they require technical

explanations to appreciate them? What are their first impressions, and how do these evolve as they

spend time with the work?

4.5 Experiencing Vessels

At the moment of writing this thesis, Vessels has been presented on multiple occasions. In this

section, I describe the experiences of the audiences in two of these showcases: one where the work

was shown indoors as part of a gallery exhibition; and another where it was installed in the public

space during a new media art festival.

In February 2015, a group of ten (10) robots was shown at the Eastern Bloc gallery in Montréal

(Canada) as part of a group exhibition titled “Robotis Personae”. The piece was thus presented

intra muros, running during the space’s normal daily opening hours. The reduced number of

agents diminished opportunities of emergent phenomenon, and the gallery setting induced a certain

expectation of reactivity that was not present. The context of an indoors exhibition did not favor

the kind of detached, contemplative mindset the piece was designed for — which can be more easily

found in people approaching an outdoors water feature in the city to eat a sandwich.

The most interesting perspective shared as a result of exhibiting this artwork came from a fellow

media artist, Audrey Samson, who was doing a residency at Eastern Bloc while the exhibition was

taking place. Because she experienced the piece on a daily basis, her experience was fundamentally

different than that of most people who came to see the work in the gallery. She contacted me to

131



tell me that, while she was unsure at the beginning, as she went pass the piece to get to the coffee

machine, she became increasingly familiar with it and started noticing patterns. In particular, she

explained that as a given day would go by, it seemed that the behaviors became less and less random

and seemed to converge and stabilize into more recognizable, interesting patterns.

Several months later, we showed the piece at University of Strasbourg (France) as part of

L’Ososphère, a public art festival running on the campus in November 2015. There, we exhibited

twenty (20) bots in a public fountain set in front of the Law School, near a large and busy boule-

vard. The piece was shown for four (4) consecutive evenings and attracted passers-by and festival

attendants alike.

In this case, the robots gave rise to a number of different social interactions and impressions

in the recipients. One of the unexpected phenomena was that people, especially children, were

immediately drawn to physically interact with them, either pushing them away, or even “testing”

them with the hand or foot. We even had two cases were robots were flipped over, putting them into

immediate risk of damage. I have mixed feelings about this: in one way, it got me exasperated, but

on the other hand, it shows the different beliefs people have about AI, which range from curiosity

and love, to fear and anger. In particular, the apparent fragility of these robots asks for a sense of

responsibility in the face of their precariousness.

Children loved to help the robots escape from the sides of the fountain (a tendency they have

due in part to their incapacity to move backwards) by pushing them away, usually gently enough

that they would not tilt over. One night, two kids played for over half an hour with a single outlier

robot who had run to the other side of the pool, apparently not caring much about the rest of

the robotic community. It became a kind of game, and French philosopher Michel Serres’ concept

of quasi-objects immediately came to my mind. According to Serres, such quasi-objects are what

“trace” relationships between members of a collective, like the ball in a soccer game. Through these

interactions, they actually define the collective (Serres 1982).

People of different age and apparent socioeconomic and racial backgrounds made remarks that

were more than often related to attributions of emotions and feelings in the agents. When asked

about the installation by a group of baby boomers that had been observing and photographing the
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piece for half an hour, I responded by reversing the question, asking them what they felt the piece

was about. They then started to describe all kinds of relationships that they imagined between the

bots. For instance: there was a couple forming over there, these three were dancing together, this

one was a loner, etc. We discussed whether one of the robots, who had got away from the rest, was

alone by choice or because it had been left alone by his comrades.

On the last night, a 10-year-old girl arrived with her mother and seemed really intrigued with

the piece. When told that the robots could communicate, the child asked whether the one receiving

a message could tell that it was another robot who was contacting it. She also asked if a robot

could tell another one that it was beautiful.

Many people (especially those who had just arrived at the site) asked whether the robots’

behaviors were “random”. I was surprised by this remark, because in my extensive experience

working with the behavior of technological agents, I experience randomness — for example, the

pattern generated by a random walk, where a completely random decision is taken at every step

— as having a distinctive “feel” to it, which is quite distinct from that in Vessels. When asked

what they meant exactly by that statement, many seemed to define “randomness” as oppositional

to “programmed”. What I understood by further discussing with them was that in their mind,

randomness meant total chaos, meaning no perceivable pattern spatially and temporally; while a

programmed behavior was to be naturally ordered and comprehensible, a set of defined steps, like

a kitchen recipe.

Once explained that they were imbued with some degree of indeterminacy but yet had “per-

sonalities” and “desires”, they often started looking at them differently, attributing more human

characteristics. A visual artist told me that her perspective changed once she read the description

of the piece. It seems that many people interpret such robotic systems using a mechanistic view.

At best, the most informed people might think of a logical, rule-based, deterministic process. But

until they are informed of the details of ML involved in the work, most people do not seem to be

aware of the possibility that the robots might be adaptive, or emergent, that they might have their

own agenda, that they might be shifting from chaos to order in performances that appear relatively

seamless to the human eye.
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Periods of social harmony in the robots contrasted with the clashing behavior of outlier agents.

While the robots seemed to reach points of stability, most noticeably in the tint of their colored

light, over time they evolved and transformed, not only in their individual expression, but also in

response to the wind and water current which directly influenced their spread across the surface,

which correspondingly influenced the distribution of spectators. In this way, the robots perhaps

became a reflection of their human counterparts. A passerby even suggested that they might

actually be the ones observing “our” behavior as the work of art.

4.6 Conclusion

In this chapter, we examined the agent-based installation Vessels in an attempt to address issues

related to the use of Machine Learning in agent-based artistic installations. We started by dis-

cussing the authorial intentions behind the piece, namely (1) the dynamic occupation of space; (2)

the generation of social interactions; and (3) the creation of a relationship between the robots and

their environment. We then focused on the different hardware and software components of the

piece, trying to contextualize these choices as part of the broader artistic research and development

process. I explained how budgetary and human resources, time constraints, and goals of the en-

terprise differentiated it from most commercial or scientific swarm robotics projects, resulting in

technological choices that favored expressivity over physical efficiency.

We then moved on to the crux of the chapter, looking directly at the storyline of some of the

important practice-based research that was carried over as part of the work. We examined how

high-level solutions were first considered through simple algorithms in a simulation environment.

We inspected the diversified structure of the program which intermixes a nonadaptive, goal-oriented

system with adaptive procedures.

I examined two strategies of using ML in the work. The first one, which tried to employ a RL

approach to address the problem of moving efficiently across space, failed for both technical and

artistic reasons. As I explained, this points towards the fact that, as other researchers have noticed,

the trouble with using AI methods in art is that their goals mismatch. Indeed, AI is traditionally
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aimed at rational problem solving and optimization, whereas artistic applications have more murky

objectives.

In response to this, I came up with a second stratagem using GAs, which involved hijacking the

learning loop, using the iterative, hill-climbing nature of the algorithm to induce small adaptive

changes that move towards a “family resemblance” over time, the objective of which was to allow

learning to be “felt” by the audience over time.

From a broader perspective, my analysis points towards a way of using ML artistically in agent-

based artworks by revealing the learning behavior itself to the audience in real-time, an antipodal

approach to traditional AI, which is (supposedly) interested in an algorithm’s outcomes rather than

in the process itself. I showed one very specific way one could hook into the optimization loop by

tweaking the returns function (i.e., the fitness in the case of GAs and the reward in the case of RL).

Yet, the final use of ML in Vessels has many caveats. First, while we did approach the project

from the perspective of ML, our reliance on Genetic Algorithms puts the piece in the space of

evolutionary devices such as Artificial Life ecosystems, which we will discuss in the next chapter.

Thus, it is possible that we could have come up with a similar system if we had an approach that

was not explicitly based on ML but rather on self-organization and complexity.

Secondly, as the work already had too many degrees of freedom due to the water environment

and the lo-fi sensors and motors, we ended up relying on a form of adaptation whose outcome was

disconnected from the embodied reality of the robots. This is indeed what was attempted through

the use of RL (but this approach eventually failed): to allow the robots to generate their own

movements under constraints. Instead, the GAs are used here more as a content generation device

that allows for similarities to emerge than as a way for agents to come up with their own, creative

behavior.

Finally, the aesthetic effect of the robotic agents’ behavioral patterns, and how adaptiveness

contributes to it, are still unclear. If we are to understand how people react to adaptive behaviors,

we have to discern how they react to artificial agents in general, and what roles are played by

notions such as autonomy, emergence, self-organization and adaptation in the generation of such

artificial behaviors.
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In the next chapter, I introduce a parallel strand of research to AI and ML which deals with

questions of aliveness and embodiment using a bottom-up approach. I dig more deeply into the rich

conceptual soil surrounding lifelike agents in art and science, showing the relationship of notions

such as autonomy and emergence with adaptation and learning. Finally, I use the morphologi-

cal differences between processes generated by adaptive and nonadaptive systems to construct a

aesthetic framework for agent behaviors.
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Chapter 5

Aesthetics of Behavior in

Agent-based Art

As observers we expect the environment to change and try to describe those features

that remain unchanged with the passage of time. An unchanging form of events due

to the activity within an assembly is called a behavior. The behaviour of a steam

engine is a recurrent cycle of steam injection and piston movements that remains

invariant. The behaviour of a cat is made up of performances like eating and sleeping

and, once again, it is an invariant form selected from the multitude of things a cat

might possibly do. The behaviour of a statue is a special case, for the statue is im-

mobile, or to use an equivalent formalism, it changes at each instant of time into itself.

– Gordon Pask, An Approach to Cybernetics

The first chapter of this dissertation explored the research-creation project Absences, a series of

site-specific environmental works using electronic agents installed in outdoor spaces. The evolution

of the project through the five (5) interventions that were realized demonstrated the origin of the

current research project while also opening up several problems and questions.

In the second chapter, I uncovered part of the historical background surrounding the algorithms
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employed in Absences, and I introduced a framework for understanding the use of Machine Learning

in art practice through an analysis of their innate properties as scientific objects.

The third chapter focused on the swarm robotics installation Vessels, showing an in-depth

research-creation project that began with the premise that it would employ adaptive methods. It

offered an opportunity to apply the framework built in the previous chapter, showing its forces

and limitations. It ended by looking into the aesthetic effects such adaptive behaviors generated

in a human audience, expanding this into possibilities for how audiences might react in future

applications..

The current chapter follows from its predecessors in its attempt to tackle the question of affects

and experience through a study of real-time behaviors in agent-based systems. In other words, it

completes the theoretical framework of chapter 3, which focused more on the question of practice

(i.e., the artistic dimension), by looking more closely at the question of experience (i.e., the aesthetic

dimension). It does so by exploring the concept of behavior in art and science, using adaptation as

a way to refine existing frames of reference.

In other words, this chapter presents an aesthetics of adaptive agent-based installations through

a morphological analysis of their behavior. Following Kwastek (2013), the word “aesthetics” is used

here as a fluctuating notion that ranges from “perception mediated by the senses” (aisthesis) to

“theory of art” (aesthetics) (66). My main objective is to provide a description of the experiential

mechanisms that are made possible by adaptive systems in media installations. I am especially in-

terested in connecting the dots between the scientific perspectives of such systems and the aesthetic

effects they afford. While artistic media installations cannot be separated from their visual and

aural qualities, here I am interested in another dimension, which is about the behaviors that guide

how these sensual elements manifest themselves in time, through the actions of an agent responding

to its environment.

This chapter introduces a number of missing concepts in the history of adaptive systems that

are necessary to understand my own aeshetic of behavior: Second-Order Cybernetics and Artifi-

cial Life (Langton 1989b; Helmreich 2000; Varela and Bourgine 1992; Maturana and Varela 1980;
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Whitelaw 2004); the question of embodiment in enactivist theory and Nouvelle AI (Varela, Thomp-

son, and Rosch 1991; Brooks 1987; Penny 1997); the notions of emergence and self-organization in

agent-based systems (Cariani 1989; Soler-Adillon 2015); and the importance of authorship and be-

lievability in designing such systems (Bates 1994; Downie 2005; Breazeal 2002; Mateas 2001). I then

contextualize adaptive behaviors within the scopes of analysis of social robotics through the work

of Sherry Turkle (Turkle 2006) and performativity theory using Andrew Pickering’s posthumanist

ontology (Austin 1962; Pickering 2010). Following this, inspired by the work of Iannis Xenakis

and Agostino Di Scipio on generative music, as well as on the writings of Cariani on adaptive and

emergent systems, I suggest a simple aesthetic framework for understanding behaviors based on

their morphological unfolding through time.

5.1 Second-Order Cybernetics

The historical review of chapter 3 followed a specific stream of Machine Learning, looking at its

origins in Cybernetics and AI. However, in the artistic world, another strand of research that has

ties with Cybernetics has been much more influential than AI: that of Artificial Life (AL, or ALife).

This strand of research is marked by an interest in generative and evolutive processes rather than

adaptive ones, and favors a “bottom-up” approach (as opposed to “top-down”).

In the 1960s, some cyberneticians had started to distance themselves from the original movement

of the 1950s because of an important philosophical limitation of the homeostatic model: the problem

of the observer. The first wave of cyberneticians kept the observer outside the system, a shortcut

that allowed for elegant mathematical modeling, among other things. But as Katherine Hayles puts

it, the problem is that “feedback can also loop through the observers, drawing them in to become

part of the system being observed.” (Hayles 1999, 9)

Austrian-American scientist Heinz von Foerster called at the end of the 1960s for a new wave

of Cybernetics by proposing to reinstate the observer in the homeostatic model by including it as

part of the system. In other words, the cybernetician had to take his or herself into account for

Cybernetics theory to be complete (Clarke and Hansen 2009). As the author would later put it,
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“Cybernetics then becomes cybernetics of cybernetics, or second-order cybernetics.” (von Foerster

2003, 287). Thus, as Hayles puts it, in this second movement of Cybernetics, reflexivity took the

place of homeostasis as a central concept.1

It is during that period that Chilean biologist Humberto Maturana and his student Francisco J.

Varela put together the concept of autopoiesis, a reflexive and self-organizing model of the living,

which quickly became extremely influential in the field (Maturana and Varela 1980). The link with

homeostasis is clear: autopoietic systems are homeostatic, however, all homeostatic systems are not

autopoietic. In autopoietic systems, the variable that is kept constant through homeostasis is none

other than the organisms’ own organization (79).

Maturana and Varela’s main interest is to establish a common ground for living systems. They

take, as the cornerstone of their theory, the unitary character of every living system. Although their

approach is mechanistic, they emphasize that their interest is not “in properties of components,

but in processes and relations between processes realized through components” (75). Autopoietic

machines are closed, autonomous systems that maintain their individuality and their unity by a

process of self-production that constantly builds and rebuilds the components that make up their

organization.2

Thus, contrary to what Rosenblueth, Wiener and Bigelow suggest, living systems are not defined

by their purpose, nor by their inputs and outputs: these features belong to the domain of the

observer, not to the phenomenological domain of the autopoietic system.

Purpose or aims [. . . ] are not features of the organization of any machine (allo- or

autopoietic); these notions belong to the domain of our discourse about our actions,

that is, they belong to the domain of descriptions, and when applied to a machine, or

any system independent from us, they reflect our considering the machine or system in

some encompassing context. (85)

Another consequence of their definition is that although the authors recognize the link be-

tween autopoiesis and self-reproduction in the history of evolution (106), they do not consider

1This first-order vs second-order cybernetics dichotomy, taken for granted by Hayles and other scholars, has been
criticized under both historical and conceptual grounds. For example, read Cariani (2016).

2German biologist Jakob von Uexküll’s notion of umwelt can be considered a precursor to the autopoietic theory.
Von Uexküll notes that animals are engaged in a functional loop where perceptions control actions that contribute
to change the world they live in, which is completely different from the world of the observer (von Uexküll 1957).
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self-reproduction to be a necessary condition of life. For a unity to reproduce, it needs to exist

first and foremost. Thus, self-reproduction is “operationally secondary to the establishment of the

unity” and, for the authors, should not be part of the definition of living systems (100).

5.2 Artificial Life

As second-order Cybernetics re-introduced the observer into the system, by removing self-reproduction

as a central feature of life, it failed to take the evolution of living systems into account, especially

in the context of complex, non-linear dynamics. Starting in the 1980s, a new approach known as

Artificial Life — or ALife for short — developed in response to these caveats (Hayles 1999, 222).

In the 1970s, chaos theory and complex system theory had revealed how highly non-linear

systems often display emergent properties, that is, unpredictable behavior as the result of simple

interactions between a large number of entities. Emergence challenges directly the distinction

between human and machine because we can now, starting from simple rules, simulate complex

and unpredictable behavior on a computer.3 Thus, in this third wave of Cybernetics, according to

Hayles, reflexivity gives way to virtuality. To understand Hayles’s definition of virtuality, one need

only think about an immersive game where a human body is put in a feedback loop with a 3D

simulation on the computer. The game thus happens at the intersection between the real and the

virtual:

Virtual reality technologies [. . . ] make visually immediate the perception that a world

of information exists parallel to the “real” world, the former intersecting the latter at

many points and in many ways. (14)

It should have become quite apparent by now that this kind of computationalist conception that

supposes a clear separation between the informatic world and the material world is a powerful thread

in the history of computing. In particular, it is clearly manifested in Christopher G. Langton’s

opening opus to the proceedings of the first Interdisciplinary Workshop On The Synthesis And

Simulation Of Living Systems at the Santa Fe Institute (Langton 1989b). In this foundational

3Emergence is a key concept of complexity sciences, such as chaos theory (Gleick 2008), which were very influentual
on the upbringing of Artificial Life (for example, see (Langton 1990)).
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paper (incidentally titled “Artificial Life”) Langton frames the field of Artificial Life as a synthetic

approach to biology.

Langton explains that biological sciences are anchored in an analytic methodology that tries to

understand life by looking at the only forms of living systems that we know of: carbon-based life

on Earth. This limitation to terrestrial examples of life makes it hard to derive general principles

for biology. Artificial Life proposes to overcome these constraints by creating “life-like behaviors”

within the computer. This new “biology of possible life” thus supplements traditional biological

sciences with a synthetic approach: “By extending the empirical foundation upon which biology

is based beyond the carbon-chain life that has evolved on Earth, Artificial Life can contribute

to theoretical biology by locating life-as-we-know-it within the larger picture of life-as-it-could-

be.” (Langton 1989a, 1)

Although this broadened picture should theoretically encompass hardware-based as much as

software-based systems — not to mention synthetic forms of carbon-based life, often called “wet-

ware”, inclusive of cyborgs and other hybrids — Langton gives little importance to the material

support of living systems, whether it be sillicon chips, biochemical structures or mechanical devices.

ALife, he explains, is rooted in the history of computing and more especially in the switch from a

mechanical to a logical — in other words, computational — conception of life (13).

Langton’s support of the computational approach can be seen in his appraisal of John von Neu-

mann’s theory of self-reproducing automata, the “first computational approach to the generation

of lifelike behavior” (13). Von Neumann, a genius of his time, had been a key player in early Cy-

bernetics and in the design of modern computers. In the early 1940s, with his student Stanislaw

Ulam, he designed a theory of cellular automata as a computational model of living systems. A

cellular automaton is a set of discrete cells arranged into a grid, each of which can be, at any given

time, in only one of many states. Cells change state according to a set of rules that depends on the

states of its immediate neighbors (von Neumann 1951).

Von Neumann was interested in the capacity for such an automaton to self-reproduce. He

set out to design a cellular automaton capable not only of reproducing itself, but also any given

automaton. Von Neumann called that automaton a “universal constructor”. Unfortunately, he died

142



before he was able to publish his research. It is Arthur W. Burks, a computer scientist who had

worked on cellular automata in the 1940s and who contributed to the design of the first general-

purpose computer, who in 1966 edited a posthumous publication of John von Neumann’s research

on self-reproducing automata (von Neumann 1966).

In a 1984 paper, Langton designed a simplified version of von Neumann’s automata. The

universality condition was dropped: the automaton should only reproduce itself, although it should

do so in a non-trivial manner. The resulting structure consists of a dynamic “loop” that stores

its own description. Reproduction occurs by the loop extending into an “arm” (ressembling an

umbilical cord), which in turn carries the code for creating another loop (Langton 1984). These

“Langton’s loops” thus exhibit a life-like behavior that is reminiscent of the steps of a biological

life cycle (143).

In his 1989 article “Artificial Life”, Langton’s bias towards the computationalist view of life

displays itself not only in his depiction of ALife’s origins in von Neumann’s theories, but also in

the examples he chooses to describe the field. Most of his attention is focused on purely compu-

tational models of life, like Lindenmayer’s generative grammars that grow artificial trees (Langton

1989a, 25), cellular automata (28—30), Reynolds’ flocking “boids” (30—31) and genetic algorithms

(35—38). To his defense, Langton does venture into hardware-based artificial life in the post-war

period, such as Grey Walter’s electronic tortoises (18) but he clearly insists on the primacy of be-

havior over matter: “Life is a property of form, not matter, a result of the organization of matter

rather than something that inheres in the matter itself.” (41).

The Tierra system, designed by ecologist Thomas S. Ray in the early 1990s at the Santa Fe

Institute, is probably the most emblematic example of this computational view of life (Ray 1991).

In this experiment, Ray raises the question: what would life look like in the universe of a computer?

To address this question, he establishes a metaphor in which processes reproduce, mutate and evolve

within computer memory. He thus establishes a direct parallel between organic and digital life.

Organic life is viewed as utilizing energy, mostly derived from the sun, to organize

matter. By analogy, digital life can be viewed as using CPU (central processing unit)

time, to organize memory. Organic life evolves through natural selection as individuals

compete for resources (light, food, space, etc.) such that genotypes which leave the
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most descendants increase in frequency. Digital life evolves through the same process,

as replicating algorithms compete for CPU time and memory space, and organisms

evolve strategies to exploit one another. CPU time is thought of as the analog of the

energy resource, and memory as the analog of the spatial resource. (Ray 1991, 373—374)

By running this program, Ray observes the occurrence of phenomena that he himself had not

foreseen, such as the emergence of different forms of parasitism (383—387). Here I want to draw

attention to the fact that, for Ray, the creatures that dwell in Tierra are real life forms. Tierra is

not a simulation of life, but rather a ground for the emergence of digital life form, as he expresses

very clearly in his introduction: “The intent of this work is to synthesize rather than simulate life.”

(111).

Thus, many ALife scientists share a computationalist vision of life, in which information sub-

sumes matter. But as Hayles rightfully claims, others are opposed to this view. In his book Silicon

Second Nature, Stefan Helmreich gives an anthropological account of Artificial Life research at the

Sante Fe Institute (SFI) where he highlights the largely computationalist nature of ALife in the US.

In the last chapter of the book, however, he contrasts it with a “European school of Artificial Life”

that has its own historical track. Whereas the US/SFI school of ALife is usually associated with

Langton, the European school is associated with Varela and reclaims its historical links with Walter

and Ashby’s cybernetic creatures, distancing itself from the computationalist tradition (Helmreich

2000; Varela and Bourgine 1992).

Like Cybernetics in the 1960s, the field of Artificial Life would open up a whole new territory for

artists after this period of growth in the late 1980s. In his Ph. D. dissertation, new media theorist

Mitchell Whitelaw attemps to define this area of artistic practice. He remarks that Artificial Life

(ALife) is an area of experimental science which is less preoccupied by observation and representa-

tion than by by intervention and action. He also opposes it to the field of Artificial Intelligence (AI)

which promotes a “top-down” rather than the “bottom-up” approach of ALife. Tracing through

the interests of art in regards to synthetic life over time, in artists and thinkers such as Goethe,

Malevich, Klee and Schöffer, he hypothesizes that “a-life art” might just be the latest addition to “a

modern creative tradition that seeks to imitate not only the appearance of nature but its functional
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structures” by using or appealing to technology. ALife might then just be the true destiny of art

and the realization of Jack Burnham’s vision of a “living, cyborg art form”. (Whitelaw 2004, 19)4

5.3 New AI

Influenced by approaches in both Machine Learning and Artificial Life, as well as by the work of

Maturana and Varela (Maturana and Varela 1980), MIT robotics scientist Rodney Brooks chal-

lenged classical AI by proposing a “New AI” or Nouvelle AI at the end of the 1980s. According to

this view, living systems should not be seen as the mere substrates on which a disembodied series

of symbolic manipulation happens. On the contrary, Brooks proposed that the behavior displayed

by living beings results from an embodied, situated interaction with their environment which does

not have a need for intermediate representations of the world (Brooks 1987).

Brooks’ robotic systems bear many resemblances to the works of early cyberneticians such as

Grey Walter, who created in the 1950s a couple of electro-mechanical turtles that could accomplish

complex, life-like behaviors through the use of a simple set of procedures that took into account

their specific bodily attributes (Walter 1950). Brooks’ subsumption architecture, which allowed

him to create his first walking robot, Genghis, displays learning capabilities and has some close

ties with Reinforcement Learning.5 It is built upon a bottom-up approach whereby the engineer

iteratively adds control layers to the robot, refining its behavior at each step. Lower-level layers

such as collision detection take priority over higher-level operations such as identifying objects and

reasoning about their behavior. (Brooks 1986; Brooks 1989; Maes et al. 1990; Maes 1994; Brooks

2002)

As an efficient, bottom-up approach to robotics, Nouvelle AI had an important influence on

ALife robotic art in the 1990s. Artists such as Louis-Philippe Demers, Bill Vorn, Ken Rinaldo and

Simon Penny claim Brooks as a direct inspiration for their work (Rinaldo 1998; Demers and Vorn

4According to Whitelaw, Karl Sims (see section 3.2.1) was one of the first artists to relate his practice to the field
of Artificial Life (p. 25).

5It is important to make a clear distinction between connectionism and New AI. Although conectionism in the
field of AI is in direct opposition to the symbolist nature of GOFAI, it shares the same objective of resolving real-life
problems in a disembodied, algorithmic way. As such, it is still part of the AI tradition that Brooks aims to challenge
through his reclamation of the importance of the body in relation with the real world.
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1995; Penny 1997). For example, Penny discusses in a 1997 paper how the Nouvelle AI paradigm

contributed to the development of his work Petit Mal:

My project owes a great deal, of course, to Brooks iconoclastic proposals of the 80’s

such as ‘the world is the map’. My goal has been to focus on the social and cultural

aspects of the question ‘how much can be left out’ by concentrating on the dynamics of

projection and representation (I mean this latter in a visual and critical theory sense).

The tool for this exploration was Petit Mal, an autonomous Robotic Artwork. Petit

Mal constitutes an Embodied Cultural Agent: an agent whose function is self reflexive,

to engage the public in a consideration of the nature of agency itself. (Penny 1997)

Over the course of the 1990s, Rodney Brooks and his colleagues would develop several robotic

projects using these kind of embodied interactive architectures, both with MIT and with the com-

pany iRobot, which Brooks founded in 1990 with Colin Angle and Helen Greiner; the same com-

pany that released the robotic vacuum cleaner Roomba a decade later. In the late 1990s, Cynthia

Breazeal, who had helped on the development of humanoid robot project Cog together with Brooks

at the MIT’s Humanoid Robotics Group, created a robot called Kismet that was able to detect and

display emotional states. Brazeal has since founded the Personal Robots Group at the MIT Media

Lab, where she studies social and emotional robots, such as the robotic pet Leonardo or the smart

driving assistant AIDA.6

5.4 Enactivism

Nouvelle AI and the aesthetics of behavior have many points of similarity with the concept of enac-

tion, first articulated by Francisco J. Varela, Evan Thompson and Eleanor Rosch in their landmark

work The Embodied Mind. The book offers a critique of computationalism — the dominant ap-

proach in cognitive science, which they refer to as cognitivism — by bridging Eastern and Western

philosophies. Plagued by the image of a pre-existing world whose features are represented by cog-

nitive systems, the authors demonstrate the failure of cognitivism to account for the bidirectional

6These systems are known to rely on Machine Learning algorithms, but not so much on connectionist models or
reinforcement learning.
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nature of interactions between action and perception from the embodied perspective of an agent

evolving in the real world (Varela, Thompson, and Rosch 1991, 8).

As explained earlier, connectionism contrasts with the local and symbolic representation model

of cognition proposed by the computationalists with distributed and subsymbolic representations

learned by self-organizing systems such as neural networks. While the authors recognize the contri-

bution of connectionism to the field, they argue that distributed and numerical representations are

still representations. Connectionism thus repeats the same mistake as cognitivism, failing to grasp

the importance of the situated body in cognition (9).

The authors thus propose enactivism as an alternative to both viewpoints. Based on Mahayana

Buddhism, Merleau-Ponty’s phenomenology of perception, and autopoiesis theory, this approach

suggests to replace the centrality of representation in cognizing agents by recognizing their active

involvement in the construction of meaning through autonomous coupling with their environment.

In this view, cognition should not be seen as the mere “representation of a pregiven world by a

pregiven mind” but rather as the “enactment of a world and a mind on the basis of a history of the

variety of actions that a being in the world performs” (9).

Philosopher and neuroscientist Christine A. Skarda believes that the enactivists’ critique of

connectionism partly misses the target by conflating two distinct types of connectionist structures:

parallel distributed processing (PDP) and self-organized systems (Skarda 1992). While she agrees

that the former, exemplified by feedforward pattern recognition neural networks such as the Multi-

Layer Perceptron (MLP), suffers from the same representationalism curse as cognitivism, the latter

emergentist systems are compatible with enactivism:

It is misleading to identify, as Varela does, connectionism with self-organizing, emer-

gentist systems, and to say that all connectionist systems are still wedded to the rep-

resentations of traditional cognitivism. Some connectionist models are self-organizing,

but others are not. All connectionist systems use distributed, highly parallel processing,

but that is not the same thing as being self-organizing. PDP systems are susceptible to

Varela’s attack on representations, self-organized systems are not. I believe that Varela’s

distinction between emergent and enactive systems is ultimately intended to capture the

same fundamental distinction, but it is mistaken to equate emergent systems with con-

nectionism as a whole and set all connectionist systems against the enactive approach.
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This dichotomy is a false one. (266)

Artificial neural networks have been traditionally associated with PDP systems. They are mostly

used in supervised learning applications, where they are trained to classify or give an estimate,

usually based on data tagged by a human “teacher”. In other words, they basically learn to give

the closest answer to what is expected from them by a human expert. However, what is less known

is that MLPs and other neural-inspired variants can be used in a number of unsupervised and

self-organized ways, such as the Self-Organizing Map (SOM).

Furthermore, of neural networks can be used as function approximators in reinforcement learning

applications involving real-life agents, where the agent is not trying to recognize specific patterns

chosen by human “supervisor”, but rather, uses the adaptive qualities that it collects through its

connectionist architecture as part of the embodied action-taking process.7 Therefore, while Skarda

stands with the enactivist critique of the PDP branch of connectionism, she also believes that the

self-organizing properties of some connectionist systems are “a step in the direction of defining a

nonrepresentational alternative in cognitive science” (267).

The vision of an embodied mind that enacts a world of meaning by autonomously coupling

with its environment both sustains, criticizes, and feeds upon theories of adaptive systems from the

Cybernetics era and 1980s connectionist learning research alike. Indeed, its sheer rejection of the

traditional view of enactivism sheerly rejecting connectionism is overblown, and merits refinement.

What enactivisists seem to be more accurately in opposition to are certain forms of representa-

tionalist connectionism — on the other hand, nonrepresentational neural architectures that rely on

self-organization do not seem incompatible with enactivism.

5.5 Coupling

Two concepts lay at the heart of enactivist theory: coupling and autonomy.

Enaction has been developed over the years as an alternative view to cognition based

on minds as abstract symbolic systems, whose fundamental constitutive mode is that of
7This is the approach that I took in programming the RL systems described in this research, such as the Fifth

Absence (2011), n-Polytope (2012), and Plasmosis (2013).
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a mental representation as a semantic-like correspondence with the world. In contrast,

enaction is based on situated, embodied agents, whose world of significance emerges

along their active living (?) [sic], not as a representation system, but as constrained

imagination, (which the name enaction evokes). More precisely its core theses are

twofold: (a) On the one hand, the ongoing coupling of the cognitive agent, a permanent

coping that is fundamentally an active embracing of the world in order to in-form it with

sense, not a passive reception of it [. . . ] (b) On the other hand, the autonomous nature

of the cognitive agent understood as an self-produced identity providing a concern (?)

[sic] or perspective, an ongoing endogenous activity that it configures into meaningful

world items in an unceasing flow. This identity is at the same time natural, since it

is based on endogenous configurations (or self-organizing patterns) of complex bodily/

neural activity, yet is also in direct line to subjectivity (Cohen and Varela 2000, . . . )

These two aspects of enactive behavior are complementary to one another. On the one hand, the

agent continuously maintains and regenerates itself, keeping its own structure stable while resisting

outside perturbations. This autonomy is what allows it to define itself as a separate unit from its

environment, and to adapt to environmental changes. At the same time, the organism also depends

on its milieu to survive. It needs to maintain its coupling with the environment since it is precisely

in relation to this very environment that it emerges as an embodied entity. “In defining what it is

as unity”, argues Varela, “in the very same movement it defines what remains exterior to it, that

is to say, its surrounding environment.” (Varela 1992, 7)

Coupling is an important concept in phenomenology and embodied interaction. It refers to the

way by which an object becomes an extension of the human body, not unlike a stick that aids one

in moving forward in the dark (Dourish 2001). It is similar to Heidegger’s concept of an object

being “ready-to-hand”. For Heidegger, this happens when the object somehow “disappears” into

the background when one is using it. The philosopher gives the example of a hammer. As one

interacts with it, as one uses it, it becomes an extension of one’s body and one ceases to notice it.

However, if one needs to find a way to use the hammer differently, it suddenly “reappears” in the

foreground. It is separated from one’s body again and one looks at it with a completely different

attitude, which Heidegger calls “present-at-hand” (Heidegger 1972).

A distinctive characteristic of adaptive agents lies precisely in their ability to adapt so tightly
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to objects in their environment that they become “ready-to-hand”. In that sense, adaptiveness

is a necessary condition to coupling. A compelling consequence, if one considers the case of an

adaptive agent’s environment as populated by other adaptive agents, is that agents can also become

coupled to one another as they adjust to each other’s presence. To this end, an adaptive agent is

not exactly exactly akin to a hammer or a stick: as one “uses” it until it “disappears in the

background”, one is also being “used” by the agent: both become “ready-to-each-other’s-hand”,

so to speak. This is especially interesting in the context of interactive interactions, as it shows

the potential for nonhuman adaptive systems to generate a different range of aesthetic experiences

through bidirectional coupling with human actors.

5.6 Autonomy

Autonomy seems to be a recurring property of intelligent and lifelike systems. In the introductory

article to the Proceedings of the First European Conference on Artificial Life, Francisco J. Varela and

cognitive scientist and economist Paul Bourgine describe the autonomy of agents as the fundamental

principle behind Cybernetics and ALife “creatures”. “Autonomy in this context”, they claim, “refers

to their basic and fundamental capacity to be, to assert their existence and to bring forth a world

that is significant and pertinent” (Bourgine and Varela 1994, xi), a statement which echoes Varela’s

enactivist theory. Based on this premise, the authors argue that ALife should move away from

trying to understand life by synthetizing its behaviors in software, and rather should engage more

seriously with lifelike processes that “assure the key features of autonomy” (xi).

Margaret Boden, an eminent cognitive scientist at the University of Sussex, delineates three

different aspects of autonomy in living and artificial systems. First, she claims that autonomy

implies an indirect response to the environment, where reactions are modulated by experience.

Second, autonomy supposes a self-generated control mechanism, as opposed to one that would be

pre-given or scripted — such as emergent behaviors that appear in artworks involving SOMs such

as Yves Amu Klein’s Octofungi (Klein 1998; Klein and Hudson 2003) or Nicolas Baginsky’s The

Three Sirens (1992—2005). The third component is defined by Boden as “the extent to which inner
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directing mechanisms can be reflected upon, and/or selectively modified” to adapt to the current

context (Boden 1996, 104).

The first and third facets of autonomy seem directly connected to adaptation and learning:

simple experience-driven reactions in one case, and the more complex ability to analyze one’s own

behavior in the other. Yet the second aspect described by Boden concerns the emergent properties

of the system, which also happens to be a crucially important idea in the study of adaptive artificial

agents.

5.7 Emergence

Emergence refers to the mechanism whereby higher-order forms or processes emanate from the

complex interactions of lower-order units. Emergence has been widely studied by scholars interested

in questions of artificial cognition and living systems. It is often associated with self-organization,

such as in the work of ALife researchers, cyberneticians and connectionists. However, emergence

also evokes an idea that goes beyond the automated configuration of a system: the generation of

novelty (Soler-Adillon 2015).

Peter A. Cariani is an interdisciplinary researcher who has developed one of the most compelling

theoretical model on the role of adaptation in cybernetic and ALife systems through an original and

constructive critique of computationalism (Cariani 1989; Cariani 1990, 1991). He has contributed

a uniquely stimulating taxonomy of artificial systems that establishes a clear relationship between

adaptation and emergence. Through the precision of his theorectical framework, he distances

himself from phenomenological critiques of computationalism such as Dreyfus’ What Computers

Can’t Do (Dreyfus 1979) or Searle’s “Chinese room” (Searle 1980), and rather situates himself in

the tradition of American pragmatists such as William James and John Dewey.

Cariani differentiates cybernetic devices on the basis of their adaptive qualities, identifying
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three kinds of such systems: formal, adaptive and evolutionary. Formal devices are purely (formal-

computational) or partly (formal-robotic) symbolic apparatuses that respond to a fixed set of in-

structions: thus, they are nonadaptive. Adaptive systems are capable of adapting their computa-

tional structure based on experience, but are limited by their fixed semantical components (sensors

and effectors). Machine Learning models such as MLPs, GAs, and even adaptive robotic agents are

part of that category.

The third category, which Cariani calls evolutionary devices, are able to adaptively construct

their own sets of sensors and effectors based on their interactions with the environment. Such

devices thus consist of “a set of sensors, a set of effectors, a computational part, a performance

measure, and an apparatus for constructing new sensors and effectors” (Cariani 1989, 132).

This category can be refined by considering systems that have adaptive semantics but a non-

adaptive syntactic part, such as the immune system. General evolutionary devices are those that

are both adaptive and evolutionary: in other words, general evolutionary devices that display both

semantic and syntactic adaptiveness, and there are plenty of examples of such systems in the biolog-

ical world. However, there exists to the author’s knowledge only one example of such a human-built

system: Gordon Pask’s electrochemical adaptive assemblage which allowed the evolution of a prim-

itive “ear” (27).

The main “advantage” of evolutionary devices as compared to adaptive or formal systems lies

in their open-endedness, in other words, their ability to generate novelty, which Cariani directly

associates with the question of emergence.

The problem of emergence is useful in evaluating the open or closed nature of the

devices in our taxonomy precisely because it relates to the problem of novelty in the

world. If we want to enlarge our own capabilities and free ourselves of the burden

of complete specification, our devices must be creative. If we want our devices to

be creative in any meaningful sense of the word, they must be capable of emergent

behavior, of implementing functions we have not specified. Our emergent devices must

not be prisoners of our notational systems if they are to aid us in our own break-out.

(148)
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Device type Plasticity Capacities Limitations

Formal-
computational

Fixed syntax Reliable execution of pre-
specified rules

Limited to pre-specified rules
and states

Formal-
robotic

Fixed syntax
Fixed semantics

Reliable execution of fixed
percept-action combinations

No feedback or learning from
environment

Adaptive Adaptive syntax
Fixed semantics

Performance-dependent op-
timization of percept-action
coordination

Limited to percept and ac-
tion categories fixed by the
sensors and effectors

General
evolutionary

Adaptive syntax
Adaptive semantics

Creation of new percept and
action categories;
Performance-dependent op-
timization within these cat-
egories

Time to construct and test
new sensors/effectors may be
very long

Table 3: Summary of Cariani’s taxonomy of devices.8

Three major theories of emergence are examined by Cariani: computational emergence, ther-

modynamic emergence, and emergence relative to a model. Computational emergence stands for

the computationalist theory of self-organizing systems, similar in viewpoints to those held by pro-

ponents of “strong ALife” like Langton and Ray. It assumes that all emergent behavior at the

macro level is reducible to micro level rules. Furthermore, proponents of this viewpoint argue that

emergent structures such as living systems can actually be realized by such symbolic operations

themselves, not just in the mind of the observer. Thermodynamic emergence theories attempt to

describe emergence employing differential equations such as those used in physics. Contrary to

computationalists, proponents of thermodynamic emergence do not suggest that the computation

of these equations should be considered as actualizations of the emergent systems they describe.

Emergence relative to a model (or “observer-centric emergence”) was first developed by theo-

retical biologist Robert Rosen and defines an emergent event as “a deviation of the behavior of the

physical system under observation from its predicted behavior” (30). In other words, emergence

comes from the fact that since we dispose of only a finite number of observable dimensions, in a

universe which contains a potentially infinite number of attributes, it follows that our models of

the world are always incomplete accounts of it. (157)

Emergence relative to a model, then is a result of the finite and hence incomplete

character of all models of the world. At some point in time we can, if we are fortunate,
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construct a model which will deterministically capture the behavior of the physical

system. The behavior predicted by the model will, for some period of time, correspond

to the observed behavior of the physical system, because it was constructed to do so.

But eventually, if one waits long enough, all physical systems will diverge from their

models, but some will diverge before others. (157)

Emergence relative to a model allows an integration of adaptation and emergence in a compre-

hensive framework. The taxonomy of adaptivity at the core of Cariani’s theory can now be attached

to the emergent qualities of a system’s behavior:

When the behavior of the physical system, in this case the device itself, bifurcates from

the behavior of the model, another model will have to be constructed which will capture

subsequent behavior of the physical system/device. [. . . ] We will call the situation where

changing the computational part of the model is sufficient to recapture the behavior of

the physical device syntactic-emergence. Only new syntactic linkages need be formed.

We will call the situation where adding new observables is necessary to recapture the

behavior of the device semantic-emergence. These types of emergence correspond to

device types in the adaptivity taxonomy. Formal devices are nonemergent. Adaptive

devices have syntactic-emergent behavior. Evolutionary devices have semantic-emergent

behavior. (158)

This “bifurcation” from the model’s behavior is thus, according to Cariani and Rosen, the

locus of novelty emergence in the agent’s behavior. Emergence is realized by the agent through its

adaptive capabilities, either syntactic, semantic, or both. As such, one could say that adaptivity is

the means by which emergence is realized in adaptive and evolutionary systems. In that context,

adaptivity is seen not just as a way for agents to self-organize, but as a necessary condition for

creativity.

Cariani’s viewpoint on the central role of adaptation in the emergence of behavior of agent-

based systems is particularly enlightening. It has an important consequence in terms of aesthetics.

Emergence is a necessary condition for adaptation in emergent-relative-to-a-model systems, because

adaptation is precisely what steers the self-organization of such agents. Yet, emergence is not a

sufficient condition for adaptation. Indeed, most emergent systems found in nature are nonadaptive.

For example, consider thermodynamic complex systems such as meteorological phenomena (e.g.,
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cloud formation, precipitations, hurricanes, etc.) and gravitational systems such as solar systems

and galaxies, or computational simulations of such phenomena (e.g., particle systems in physics

engines).

Now, following a similar set of intuitions, one can infer that adaptation is a necessary, yet

insufficient, condition of life. On the one hand, adaptation seems to be a defining feature of life

(this is one of the central claims of Cybernetics and Artificial Life), appearing first and foremost

through evolution, and, in the most advanced systems, in real-time.9 On the other hand, there

exist adaptive systems whose status as living beings is at the very least frought, such as Cybernetics

devices like Ashby’s homeostat and Pask’s artificial “ear”.

Hence, while adaptation is not enough to define life, it lies “one step closer” to it than emer-

gence. That is not to say that emergence has a less important contribution than adaptation to the

lifelikeness of an artificial behavior — intuitively, I would be inclined to think that it contributes to

most of it. Instead, emergence implies that self-organizing behaviors without adaptive properties

might lack some of the affective components possessed by living entities, which would give a more

substantial impression of being in the presence of one. This is significant for this study, as it points

towards the importance of adaptation in the building of lifelike artistic systems.

5.8 Authorship

Digital artist Marc Downie, who worked early on several interactive pieces with artificial social char-

acters such as alphaWolf (Tomlinson and Blumberg 2002) and The Music Creatures (2000—2003),

brings an interesting perspective to the question of agent-based behaviors. He criticizes two of the

most common concepts in the field of interactive art: mapping and emergence.

Mapping is a very common metaphor in media art. It represents a transformation of one signal

into another, which Downie finds extremely limiting. He suggests, as a replacement, the concept of

an agent, which has the capacity to be embedded into its world.

However, Downie explains that emergence is also problematic in artistic creation when contrasted

9As brought up above, Margaret Boden mentions how real autonomy in agential systems requires adaptation (Bo-
den 1996).
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with the question of authorship. He argues that emergence-based approaches try to avoid the

question of authorship altogether by trying to create processes that work by themselves, without

human intervention (Downie 2005, 29). Yet, despite decades of efforts, we are still waiting for the

advent of higher-order emergent artificial life structures (Bedau 2000).

Some of the motivation for the agent-based — and other distinct but related trends in

the 80s and 90s such as connectionism and artificial life — came from an often open

and explicit authorship twist: that reactive, connective, adaptive or behavior-based

systems avoid the burden of knowledge engineering (i.e. knowledge authorship) and

exploit a far closer relationship with statistical machine-learning techniques to avoid

the hand-tuning, assembly or even creation of systems altogether. (Downie 2005, 29)

Moreover, as Downie claims, the main difficulty faced by digital artists is not so much in “gener-

ating potential”, because this is the part made relatively easy by computer technology. The trouble

is rather to put that potential to work in the creation of a piece of art. Therefore, “there is no need

to be excited should it turn up or rather emerge without much effort on our part.” (36) According

to this logic, we should instead focus on hybrid systems that make integrate adaptive systems with

more traditional AI such as rule-based and goal-drected components.

In other words, once the artist’s fascination for emergence drops, what really matters is the

aesthetic experience of the work, which, for Downie, is sourced from the artist who authored the

work through the creative process. The question is not so much how autonomy, adaptation and

open-endedness affect our relationship with cultural agents per se. Rather, it concerns the kinds of

effects that can be created by integrating them in a creative practice of artificial agents in an effort

to provoke evocative relational experiences.

So when thinking about such adaptive agents, what an artistic researcher should focus on is the

sociocultural context in which the artist intervenes in relation with the data that is available. By

nature, adaptive agents come with distinctive authorship questions. What are the possible actions?

What data will be fed into the system? With what criteria are the agents trained (i.e., what is the

evaluation function)? How do the adaptive features of the agent help (or hinder) what is meant

to be expressed by the system? In particular, the adaptive nature could lead to tighter autonomy,

and may give a sense of precariousness and uniqueness to the work: which are strong features that
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can be exploited by artists in the production of aesthetic experiences.

5.9 Believability

So what exactly does the authoring adaptive agents entail? What are the characteristics that one

should look for when designing such agents? Downie points to the research on interactive drama

carried in the 1990s at Carnegie Mellon under the scope of the Oz Project as offering potential

leads. The research program, led by computer scientist Joseph Bates, tried to develop technologies

that would allow artists to design complex dramatic interactive fictions. In his famous paper “The

Role of Emotions in Believable Agents”, Bates suggests that researchers in AI are wrong in trying

to create machines that act like humans trying to reproduce thinking, reasoning, and learning.

Instead, he proposes they should follow in the footsteps of artists who rather attempt to make their

characters believable by having them display recognizable emotional states (Bates 1994).

Bates describes how he combined a goal-directed, representation-free architecture inspired by

Nouvelle AI with an emotion generation architecture to implement an ensemble of “believable”

characters called “Woggles” in a 1992 piece called Edge of Intention. Recalling the work of Disney

animators Thomas and Johnston, Bates claims that what makes us care about artificial characters

lies in what we recognize as their emotions and desires. “If the character does not react emotionally

to events, if they don’t care, then neither will we. The emotionless character is lifeless, as a machine.”

(123)

By turning the discussion on intelligent agents towards emotions, Bates echoes an interest in

Affective Computing, a field that flowered in the mid–1990s. The mother of this field, Rosalind

Picard at the MIT Media Lab, claims that emotions are an essential part of human intelligence and

should thus be considered at least on equal grounds with rational and abstraction capabilities by AI

scientists (Picard 2000). Social robotics expert Cynthia Breazeal considers that autonomy alone is

not “sufficiently life-like” and argues that believability is an important aspect in the design of social

robotic agents because it projects the “illusion of life” and gives the agent a personality (Breazeal

2002, 8).
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Following Bates, Michael Mateas adopts a more general point of view by associating the focus on

authorship adopted by artists such as Downies with a novel branch of research he calls Expressive

AI that lies between traditional AI (GOFAI) and Nouvelle AI (which he refects to as interactionist

AI ). Expressive AI practictioners are created cultural artifacts that behave in a seemingly intelligent

way within a specific sociocultural situation (Mateas 2001). In such a setting, the system “expresses

the author’s ideas within a performative space and is both a messenger for and a message from the

author.” (150)

This suggests that Machine Learning systems such as neural networks might be giving us a

false impression inherited from GOFAI, that impression of being neutral structures that can learn

almost anything. Sure, these systems are powerful models, able to perceive correlations out of high-

dimensional data streams; but their performance is nonetheless extremely influenced by the kind of

data that flows into them. In other words, choosing different inputs and outputs in these systems

comprises an important editorial decision, as it will directly modify the resulting predictions of the

neural net, hence the behavior of the agent in the reinforcement learning systems.

5.10 Social Agents

Science and technology theorist Sherry Turkle has studied the social dimension of computational

agents and robotic systems throughout her career. In particular, she studied the effect of interactive

toys such as Furby, AIBO, Pleo, and “My Real Baby”; a class of technological devices that are

designed for social interaction. Turkle refers to these toys as “relational artifacts”, and suggests

that the traditional view in computer science, which posits that computational tools such as these

items “do things for us”, is flawed. These agents rather “do things to us” by changing the way we

perceive ourselves and our sociotechnical environment. Their dissemination in households might

even be fostering a new “robotics culture”. (Turkle 2006, 1)

These agents, Turkle claims, act in two ways. First, affectively, by being things on which

we simply project our emotions—a phenomenon which Turkle refers to as the “Rorschach effect”.

This is the space occupied by traditional computational objects such as the artificial chatterbot
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ELIZA (Weizenbaum 1976). Second, Turkle claims that contemporary relational objects such as

AIBO and Pleo allow a move from this projection-based, individualistic perspective to that of a “psy-

chology of engagement”, an “evocative object effect” that is cognitive more than affective (Turkle

2006, 2). These two effects — projectional/affective and evocative/cognitive — are not incompatible

nor completely independent, but are perhaps best described as strongly interrelated in human-robot

relationships (4).

Turkle notices that autonomy (c.f., section 5.6) in artificial agents is often associated with

aliveness (the property of being alive) as if these agents were “alive in a way” (Turkle 2006). This

belief, and the way it is expressed, directly contrasts with people’s relationship with computers

or other technological devices that are not inherently social nor autonomous in of themselves.

Describing a change from people’s (especially children’s) beliefs about computational artifacts in

the early 1980s and robotic creatures of the mid–1990s onwards, she writes:

With relational artifacts, the locus of discussion about whether computational artifacts

might be alive moved from the psychology of projection to the psychology of engage-

ment, from Rorschach to relationship, from creature competency to creature connection.

Children and seniors already talk about an “animal kind of alive” and a “Furby kind of

alive.” The question ahead is whether they will also come to talk about a “people kind

of love” and a “robot kind of love.” (8)

Can adaptation in artificial agents contribute further to their aliveness, and thus to their propen-

sity for evocation? The learning capabilities of AIBO and Furby seem to be key features of their

commercial success, and also seem to add value to their long-term appreciation. Being patented

commercial products, it is difficult to access the precise methods for how their softwares are im-

plemented. However, first-hand experience with these toys suggests that they rely to a very large

extent on a relatively closed form of adaptation that is simulated rather than enacted: in other

words, they all seem to be pre-tuned for learning certain specific things through their interaction

with humans. This can reduce their value over time once their owner has explored all of the

possibilities offered by these devices.

In other words, these electronic “pets” lack the kind of indeterminate and open-ended qualities

that seem to be present in many of the works considered in this thesis which allow for a wide range
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of social interactions to happen, rather than being constrained to a limited number of possibilities.

How does this open-endedness affect social interactions with the robotic agencies in question?

Addressing this question adequately would require experimenting with agents embedded in everyday

life for long periods of time, which is beyond the scope of this thesis. However, an indeterminate and

complex nature of Machine Learning agents, the particular goals these agents would aim to achieve,

and the way that agent behavior unfolds through time are all important items for consideration

when studying their social impact.

5.11 Performativity

One last concept worth examining is that of performativity, which originated in the 1950s through

the work of language philosopher J. L. Austin. Defying analytic philosophy, Austin argues in How

to Do Things With Words that most assertions made in discourse are not statements describing a

reality, but are rather doing something in the world. Austin introduces iterability as a necessary

condition of a successful “performative utterance”: the citation or reiteration of a sentence — such

as the “I do” sealing a marriage — is what makes it efficient as a “speech act” (Austin 1962).

There are parallels to be drawn between adaptive behaviors and iterability. In response to

environmental changes, adaptive agents such as those who use Reinforcement Learning (see section

3.2.1) tend to develop and repeat strategies it believes are best fit to the situation, often in the

shape of recognizable patterns of actions. From time to time, it explores new actions and if they

appear to have good results, it will tend to promote these new actions in the future: otherwise, the

agent will strengthen its current strategy.

The agent thus works smoothly and continuously to the articulation and re-articulation of

contingencies, patterns and regularities of its world, through its behavioral model. Each action has

an influence on its world as it changes both its environment and its internal structure (and logically,

its future behavior).

At each step, the agent performs a more or less approximate citation of a single action or sub-

sequence of actions performed in the past. These past actions are also based on previous actions and
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so on. In short, every action can be seen as a modification of a pre-existing citation, of a “script”

that is constantly actualized. We can therefore say that such an action is repeatable, readable,

contextualizable.

Performativity has become, over the years, an attractor for a vast body of research in various

disciplines, such as performance studies (Turner 1982; Fischer-Lichte 2008; Schechner 2003), gender

studies (Sedgwick 1993; Butler 1999, 2004), and economics (Callon 2006). One of its great strenghts

is to provide an alternative to representative accounts of science, society, and cognition. Andrew

Pickering describes this “performative move” in his analysis of human relations with its environment.

Discussing his theory first put forward in his book The Mangle of Practice, he explains that the

“key move” was for him to “focus on performance rather than cognition”.

We have all been taught to think of science as primarily a cognitive activity – the

production of knowledge about the world – but my argument was that if you want to

understand scientific practice, you should start by thinking about (a) the performance

of scientists – what scientists do; (b) the performance of the material world – what

things do in the lab; and (c) how those performances are interlaced with one another.

He relates his conception of performativity to that of agency, a term which to him refers “directly

to action, doing things that are consequential in the world”. He uses these notions to describe the

interactions between humans and nonhumans in scientific practice as a performative, embodied

interaction: a “dance of agency” (Pickering 2013, 1–2).

Of particular interest to this study is Pickering’s more recent application of this theory to the

case of Cybernetics, a “postwar science of the adaptive brain” (Pickering 2010, 6). Cyberneticians,

he claims, did not see the brain as an apparatus able to generate representations and manipulate

them in an orderly manner — as would be the case for most of their successors — but rather as

an active organ that does things in the world. In summary, Pickering claims, “the cybernetic brain

was not representational but performative” and “its role in performance was adaptation." (6)

Pickering highlights the peculiar character of adaptive systems as introduced by cyberneticians:

There is something strange and striking about adaptive mechanisms. Most of the exam-

ples of engineering that come to mind are not adaptive. Bridges and buildings, lathes

and power presses, cars, televisions, computers, are all designed to be indifferent to their
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environment, to withstand fluctuations, not to adapt to them. The best bridge is one

that just stands there, whatever the weather. Cybernetic devices, in contrast, explicitly

aimed to be sensitive and responsive to changes in the world around them, and this

endowed them with a disconcerting, quasi-magical, disturbingly lifelike quality." (7)

What is especially compelling about Pickering’s analysis is that what he says about scientific

practice can also largely be said about the art practice of adaptive embodied agents, which deploys

technical creative methodologies similar to those used by cyberneticians such as Ashby, Pask and

Walter. Pickering’s posthumanist perspective harbors a non-anthropocentric vision over agency,

which suggests that in the context of an agent-based installation, both the artist, the recipients,

and the artificial agents are all considered active participants in the unfolding of a performative

aesthetic experience. This suggests an alternative perspective over artmaking, and the relationship

between art and science, which I will further discuss in chapter 6.

5.12 Behavior Morphologies

Now that the notion of adaptation has been more precisely defined, it is important, before moving

forward, to describe in more detail what is meant by “embodied” or “situated” in regards to agents

in an artistic context. The aesthetic framework that I want to articulate here resonates with the

work of Simon Penny. Directly inspired by Rodney Brooks’ revolutionary work on situated robotics

from the late 1980s that critiques representational systems in AI, Penny argues for a new “aesthetics

of behavior” that contains a rejection of computationalism:

I felt that underlying the fundamental premises of computer technology is the acceptance

of Cartesian dualism, the separation of the mind and body. This separation is written

right into the technology as hardware and software. It is inscribed into the fundamental

premises of computer science.

He further explains:

Part of my project has been to try to find theoretical resources to build a new aesthetics

around a rejection of these premises to formulate what I refer to as an ‘aesthetics

of behavior’. It is premised on the idea that when we use real time computational
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technologies for cultural practice we are doing a new aesthetic practice, which involves

the designing of behavior. We are somehow building a contingent model for what might

happen in the world, and how our system might respond in order to direct the aesthetic

attention of the user to a direction consistent with the artwork itself. It is a complex

and new aesthetic negotiation of the dynamics of interaction and authorial intent. (Kim

and Galvin 2012, 138)

Penny hereby joins Brooks and Dreyfus in their critique of the dualistic vision of behavior

and cognition that taints classical AI. Behavior, he claims, should not be understood as a purely

computational, disembodied thing called “software”, but rather needs to be grasped as a situated

process running through an agent’s body. Or course, behavior in a computational-based artwork

has algorithmic components, however, in the hands of the artist the code becomes another material,

with its own specific characteristics to be integrated with visual, sonic and physical components in

the construction of a global aesthetic experience.10

Whereas both Brooks’ Nouvelle AI and Penny’s behavior aesthetics are characterized by their

reliance on a “bottom-up” approach to technical practice directly inspired from ALife research, their

strong anti-computationalist stance is also directed at the rampant computationalism characteristic

of 1980s ALife. Thus, both Nouvelle AI and behavior aesthetics rearticulate concepts of emergence

and self-organization in ALife by integrating them in a performative theory of behavior that places

the agent’s body at the center of the equation. As such, Penny’s proposed artistic framework is

constitutionally different from concurrent disembodied artforms such as Algorithmic Art — that

essentially aim to produce stabilized forms, usually computer-generated images — and an important

part of Artificial Life Art that generates time-based simulations on the computer.

As an artist working with agent-based systems, I concur with the anti-computationalists: life

and cognition are not “pure” processes that can be separated from a sensorimotor body running

in the physical world. I hereby align with Harnad’s claim that cognition is at least partly non-

computational, though some computation (i.e., rule-based symbol manipulation) might be involved

in it (Harnad 2001, 2008). I join my voice with that of Simon Penny, arguing for a new field of

aesthetics opened up by computer technologies, with behavior as its central concept. Yet, I believe
10Questions regarding the material practice of programming artificial agents for media installation is further dis-

cussed in chapters 4 and 6.
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there are still important missing pieces in our understanding of the actual aesthetic qualities of

such behaviors.

Gordon Pask’s own definition of behaviors, which he detailed in his 1968 book on Cybernetics,

offers a visionary perspective over behaviors that connect well with Penny, while still allowing for a

formalization in terms of their morphological evolution. In line with his view, I argue that behaviors

are best defined not as algorithmic recipes, but rather as real-time material patterns as they are

recognized by an observing entity. As Pask writes:

As observers we expect the environment to change and try to describe those features

that remain unchanged with the passage of time. An unchanging form of events due to

the activity within an assembly is called a behavior. (Pask 1968, 18)

There are two important implications of this definition. First, while an agent’s behavior involves

a sequence of events that constantly change over time, its behavior has a recognizable “shape” that

remains temporally invariant. Pask gives the example of a cat, which consists of “performances like

eating and sleeping and, once again, it is an invariant form selected from the multitude of things a

cat might possibly do” (18).

Second, while a behavior is always generated by a system — which could, but need not be,

computational — it only exists through its perceptual effect on an observer. This implication is

particularly appropriate to an aesthetic framework, as it focuses on the phenomenological experience

generated by the agent-based performance, as it unfolds through time and space in the material

world. This connects directly, in fact, to the pragmatic aesthetics of John Dewey, who claims that

works of art should not be thought of as objects, but really as “refined and intensified forms of

experience” (Dewey 1959, 3).

I posit that different categories of system architectures allow for different kinds of behaviors,

thus allowing the emergence of different aesthetic experiences. What interests me here is to further

analyze Penny’s artistic frame of reference by looking more closely at embodied agents with adap-

tive qualities. Existing taxonomies of Cybernetics systems have mainly focused on relational and

structural aspects of these systems (Rosenblueth, Wiener, and Bigelow 1943; Cariani 1989). In this

section, I propose a flexible taxonomy of embodied systems that focuses on the aesthetics of agent
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behaviors as their shape unfold in time.

The “zero-degree” of that categorization is the “behaviorness” of the system, that is, whether

it should be considered to have a behavior or not. The initial differentiation criterion, I argue,

lies in the structural capacities of the system, more precisely in the existence of an internal state.

Stateless devices are akin to mathematical functions: their outputs/actions only depend on their

inputs/observations. By design, they are incapable of accumulating experience.

Such systems are known in the the field of digital media art as mappings. Their widespread

popularity is evidenced by the prevalence of data-flow softwares such as Max/MSP or PureData,

often appearing under names such as “visualisation” or “sonification”. Downie heavily criticizes this

hegemony of mapping in interactive arts. He argues that its apparent generality, which is seen as

beneficial, makes it ineffective and sterile: precisely because its definition has “no limits” it also has

“no use”. He writes:

In practice one can sense in this “function-like” aspect of mapping is a kind of college-

level, piecewise linear or otherwise smooth, locally stationary, state-less, typically de-

composable relationship between input and output. Such a vision acts as a normative

idea of how, in this field, numbers get transformed into numbers. The best work in the

field, of course, pushes against this central tendency, but the rules and arena remain

fixed. (Downie 2005, 17)

Devoid of any kind of autonomy and agency, mapping-based devices are behaviorless, their

conduct relying almost entirely upon the data that is fed into them. Whatever sense of aliveness

associated with them truly lies in the system that generates this data, be it a human performer or

a natural phenomenon. Their statelessness imprisons their “performance” into the instant: their

world, if they have any, is a succession of independent moments. They are, in other words, zero-order

behaviors (i.e., “nonbehaviors”).11

Agent-based systems, which are the focus of both this dissertation as well as Downie’s, are

behaviorful in their ability to extend their world into the past through the use of some kind of inner

structure. These stateful devices possess some sort of “memory” (whether it is discrete, continuous,

11[Pask’s example of the “behaviour of a statue” is an extreme case of such a “nonbehavior” (which he actually
chooses to ignore). (Pask 1968, p. 18)
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long or short) which is modified by their interactions with the environment. In other words: their

past experiences influence their present actions (at least within a certain time window).

This statefulness, which in other words implies some form of structure or trace, can be found

in a side variety of computer programs. For instance, formal devices as defined by Cariani can

possess states, typically recognizable in computer code as named variables of different types (i.e.,

booleans, integers, floats), however these syntactic components are fixed. Behaviors generated

by these systems are thus bound within a certain domain. Hence, while an agent’s response to

sensory data may change depending on context, its behavior itself does not change through time.

Given enough time, it will, inexorably, come to repeat similar patterns. We will thus refer to these

conducts as first-order behaviors.

To understand this idea better, consider how a behavior can have a certain, recognizable mor-

phology that exists in a domain different from other forms of non-computational, “stabilized” media,

so to speak, such as an image or video, or even, as I explained earlier, real-time mappings such as

sonifications or visualizations. The shape of a behavior is parameterized by the sensors, effectors

and processing capacities of the system that generates it, and evolves within a certain space-time

territory. Morphology and morphological processes have been used to describe time-based behav-

iors in the writings of contemporary music composers such as Iannis Xenakis and Agostino Di

Scipio (Xenakis 1981a; Di Scipio 1994; Solomos 2006).

Because of their inability to generate new forms and/or to transform their own form, I argue that

the behavioral morphologies produced by formal, rule-based systems, are fundamentally different

from those produced by adaptive and evolutionary agents. The latter produce second-order behav-

iors (i.e., “metabehaviors”), which involves the coming-into-being, and possibly transformation, of

their own (first-order) behavior. They therefore exist in a “different time” than their formal/fixed

counterparts, which affects the overall aesthetic effect they can engender.

I propose to use the concepts of morphogenesis, morphostasis and metamorphosis to further

characterize the different processes by which behavioral morphologies exist, emerge and/or change

over time. These notions are related, each in their own way, to ideas of emergence, self-organization,

self-regulation, novelty and autonomy. As these ideas bring processes related to forms to the fore,
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into being. These systems are often referred to as “generative”: they evolve behaviors regardless of

their fitness or value (Bown 2012).

Adaptive systems, on the other hand, evolve their morphologies in relationship to a usually

indeterminate “ideal” (i.e., optimal in regards to whatever the evaluation function is) behavior,

which they try to approach and match. In this, they differ from nonadaptive second-order behav-

iors. Adaptation, like intentionality, requires an object: systems do not simply adapt, they adapt

to something. Adaptive systems are relational devices by definition: they are governed by their

coupling with another behavior, which in turn can be of zeroth-, first-, or second-order. Their

experiences effects their inner structure so as to improve their prospective performances. In other

words, their past feeds their future.

Typically starting from a state of pure randomness, adaptive agents run through a learning

process of morphogenesis where they progressively and asymptotically modify the shape of their

behavior to better perform in relationship to their evaluation function. When they reach their final

form, they enter a state of morphostasis, exploiting the stabilized, learned behavior which they

converged to. Some adaptive systems have the ability to depart from this crystalized demeanor,

either as a result of an internal intentionality, or as a response to environmental changes that require

drastic adjustments to their performance.

The aesthetic experience of these behaviors is dependent on a number of factors. The ratio

between the magnitude of change and the time period necessary to perform it during metamorphosis

— which in the case of Machine Learning systems is directly related to the learning rate — can be

used as a measure of intensity. Abrupt, fast changes can bring a sense of astonishment or angst in

the viewer that artists working with interactive media have learned to exploit.

In contrast, longer yet steady and noticeable changes can evoke curiosity, anxiety, and uncanin-

ness. For example, in Vessels, the robots are always in a state of flux, which might explain the

feeling of estrangement inspired in some members of the audience. As the audience is never fully

able to observe a recognizable behavioral pattern, to some of its members, the robots’ behavior

seems purely random.

Finally, adaptive behaviors convey a certain narrative. Unfolding before our eyes, we perceive
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the face of changing environments.

Finally, these categories can (and should, when appropriate) be mixed together. Most agent-

based adaptive installations actually bring together a mixture of different systems, staging different

kinds of zero-, first- and second-order behaviors, intertwining phases of morphological stasis, genesis

and transformation intervening at different rates.13 The use of lower-order behaviors gives the

artist more direct control over the outcomes, which is often crucial for the success of a work.14

For example, chapter 4 describes the swarming robotics installation Vessels, which integrates a

formal-robotics structure known as a Behavior Tree and adaptive systems (Genetic Algorithms) in

a distributed, evolutive choreography of autonomous agents.

This categorization is not meant as a systematic classification scheme, but rather as a frame of

reference, a flexible analysis tool for artists and theorists. It gives an angle, a way to think and

discuss about agent-based systems in art practice, that I hope can contribute to the language of

new media as practitioners attempt to imagine new experiences and communicate their views with

their peers.

5.13 Conclusion

This chapter focused on the notion of behavior in agent-based systems in general, and more specif-

ically in works of art. I examined how properties such as embodiment, emergence, autonomy,

adaptation and learning play out aesthetically in behavioral patterns, and proposed a set of theo-

retical tools with which to understand them.

I began by introducing fundamental notions related to agent-based systems in general, looking

at a strand of research that took its origin in Cybernetics and GOFAI but ran in parallel to the

history of Machine Learning which was explored in section 3.1. This historical analysis brought

forward two significant considerations for a study of behavior aesthetics:

13Indeed, while recent research in the field of robotics suggests that the use of Machine Learning in robots is key
to the advancement of the field, it seems to work better when used in combination with rule-based systems, at least
at this point in time. In most studies, learning is used as a way to refine hand-coded processes or perform specific
pattern recognition tasks. (Quinlan 2006; Chalup, Murch, and Quinlan 2007)

14This is, in essence, Downie’s argument: he critiques both mapping (0th order behaviors) and emergence (2nd
order) in favor of authorship in the design of programmed agents (of the 1st order). (Downie 2005)
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1. A behavior consists in a pattern of events generated by an agent, as it is perceived by an

observer who experiences it through its own sensory surfaces.

2. Behaviors do not exist as purely informational constructs, but are rather produced through

the interactions of situated, embodied entities with their environmental surroundings.

New media art seems to have been much more influenced by this stream of research, which

includes Artificial Life and Nouvelle AI, than by Machine Learning, at least until now. The key

concepts of autonomy, embodiment, and emergence that run through it have been taken over by

a number of artists and media theorist interested in the creative potential of such technologies as

ALife and Nouvelle AI, which both seem to answer Roy Ascott’s call for a new “behaviorist art”.

Yet, it seems to be disconnected in large part from the question of adaptation and learning in

computational agents.

In an attempt to fill that gap, I examined Cariani’s taxonomy of systems which brings together

emergence, adaptation, and evolution in a unified framework. I connect it with Simon Penny’s

aesthetics of behavior and Soler-Adillon’s take on emergent and self-organizing systems, looking at

how adaptation and emergence play out in the generation of behaviors. In particular, I examined

the temporal aspect of adaptive behaviors through the evolution of their morphology. I suggested

to classify behaviors under three classes: (1) nonbehaviors (also called mappings, or zero-order

behaviors); (2) behaviors (of the first order); and (3) metabehaviors (or second-order behaviors).

The latest category involves processes whereby the agent’s behavior itself undergoes morphological

changes in time. These transformations include (1) morphostatis; (2) morphogenesis; and (3)

metamorphosis.

I explained how adaptive processes pertain to the category of second-order behaviors and dis-

play morphogenetic patterns that lead to morphostasis once the agent has converged to optimum.

Metamorphosis can be more or less abrupt, happening across different time spans, which influence

the experience of these systems. Moreover, most successful artistic installations use a melange of

approaches, possibly bringing the agent through different stages of evolution and stability, in an

effort to generate a specific experience for the viewer.
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In the next chapter, we approach these questions through a conclusionary analysis of the artistic

work N-Polytope: Behaviors in Light and Sound After Iannis Xenakis (2012) on which I collabo-

rated. This work rests largely on real-time generative behavioral patterns, some of which employ

Machine Learning methods. As N-Polytope employs both adaptive and nonadapive approaches, it

will act as a kind of test scenario for the proposed aesthetic theory of behaviors. I describe the

process by which they were elaborated, looking at questions of practice. I analyze their outcomes,

testing the application of the key concepts developed so far, examining the differences between the

adaptive and nonadaptive methods used from the point of view of both the artists and the audience.
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Chapter 6

N-Polytope

A complex sound may be imagined as a multi-colored firework in which each point of

light appears and instantaneously disappears against a black sky. But in this firework

there would be such a quantity of points of light organized in such a way that their

rapid and teeming succession would create forms and spirals, slowly unfolding, or con-

versely, brief explosions setting the whole sky aflame. A line of light would be created

by a sufficiently large multitude of points appearing and disappearing instantaneously.

– Iannis Xenakis, Formalized Music

In this chapter, I examine the installation/performance work N-Polytope: Behaviors in Light

and Sound After Iannis Xenakis. A 2012 work created by Chris Salter in collaboration with myself,

Marije Baalman, Adam Basanta, Elio Bidinost and architect Thomas Spier, N-Polytope brings

the audience into an immersive, spectacular experience: a reinterpretation of famous composer

Iannis Xenakis’s series of large-scale media installations known as the Polytopes. The work received

a special mention at the VIDA Art and Artificial Life International Awards and an honourable

mention for the Prix Ars Electronica in 2013.

Focusing on the algorithmic dimension of the piece, I examine three different adaptive procedures

that were used as ways to generate spatial patterns that unfold in time in a particular way. I

compare these approaches to a nonadaptive algorithm using the morphological behavioral aesthetic
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framework introduced in the previous chapter, looking at the fundamental temporal qualities that

differentiate adaptive from nonadaptive patterns in the work. I contextualize my analysis in terms

of practice by investigating the work of Iannis Xenakis, his use of stochastic processes, and how he

was influenced by Cybernetics. In particular, I oppose the notions of command and autonomy in

Xenakis’ work (Solomos 2006), contrasting it with works by early British cyberneticians and with

our own approach in designing N-Polytope. I explain how Xenakis, while calling upon stochastic

processes which were revolutionary for his time, guided by a notion of randomness, was indeed

obsessed with keeping a strong, overseeing control over his pieces, a trait which directly influenced

his vision of the relationship between art and science. Finally, I show how my approach to adaptive

systems in artmaking can be interpreted as a hybrid between Iannis Xenakis’ and John Cage’s

perspectives on indeterminacy.

In this chapter, I start by explaining the inception of the work, focusing on the relationship

between the work of Xenakis and Cybernetics and explaining how this inspired our own work in

N-Polytope. I give a short, high-level technical overview of the piece and then proceed to examine

the core algorithmic realizations — contrasting adaptive and nonadaptive processes, looking at how

they were used and what effects they had — using the aesthetic framework developed in the previous

chapters. Finally, I conclude by addressing questions of control and time in adaptive agent-based

installations, discussing important issues about audiences’ expectations in traditional presentation

contexts of new media art.

6.1 Xenakis, Cybernetics, and the Polytopes

Xenakis used stochastic methods for the first time in his 1956 piece Pithoprakta. He created the

score based on a model of gas particles’ speed and densities known as the Maxwell-Boltzmann

distribution (Xenakis 1992). Here, gas particles were replaced by pizzicato glissandi sound grains

whose steepness corresponded to the velocity sampled from the random distribution, resulting in a

cloud of swarming sounds filling up the air.
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Stochastic laws provided a way for Xenakis to generate compositions out of indeterminate sys-

tems, extirpated from directive human control. However, they still respond to macroscopic statis-

tical laws and are thus still determinate at the global level, in the sense that they are statistically

predictable.

The main interest of Xenakis in using these probabilistic approaches thus seems to be linked to

the notion of entropy, which represents the degree of disorder of a system. He is interested in the

potential for these distributions to generate “highly improbable events” that can result in sudden,

“explosive” deviations from the average. While entropy is a concept borrowed from physics, it

is especially interesting to notice it was one of the building blocks of early cybernetician Claude

Shannon’s information theory.

In his 1948 paper A Mathematical Theory of Communication, Shannon formulates the basic

problem of communication as the transmission of a message from one point to another, going

through a noisy channel (Shannon 1948). He posits that information is a quantity that corresponds

to the minimum number of bits needed to encode a message. Showing how highly predictable

messages can be encoded using less bits of information than unpredictable ones, Shannon points

out that the amount of information needed to encode a message is directly related to its degree of

unpredictability, which is mathematically equivalent to the entropy of the message.

Shannon’s work had a tremendous impact on the way digital communication systems would be

developed in the 20th century, as well as in a number of disciplines ranging from neuroscience to

quantum physics. The simplicity of the model, its strong mathematical ground and its immediate

applicability in the development of communication technologies of the time all contributed to its

phenomenal success. Shannon’s impact was so strong that his model gave rise to a whole new

research field that ostentatiously labelled itself “information theory”. However, one should notice

that early cyberneticians were largely aware that Shannon’s immensely reductive definition could

only account for a facet of what information could be.

In fact, in his definition of Cybernetics, Wiener was referring not only to the Shannionian

concept of information, which stays in the purely syntactic realm, but also to the semantic aspects

of messages and their potential role in the control and regulation of machines, humans and society.
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Indeed, Wiener coined the term “cybernetics” in reference to an 1867 article on feedback regulation

mechanisms in boat governors from James Clerk Maxwell, the physicist who originated the theory

of gasses (Maxwell 1867). “We have decided to call the entire field of control and communication

theory, whether in the machine or the animal, by the same Cybernetics, which we form from the

Greek kubernetes, or steersman. In choosing this term we wish to recognize that the first significant

paper on feedback mechanisms is an article on governors, which was published by Maxwell in 1868,

and that governor is derived from a Latin corruption of kubernetes." (Wiener 1961, 11–12)1

Wiener was interested in Shannon’s theory because it provided a probabilistic framework for

understanding how messages circulate between a system such as the brain and its environment. Yet,

he was even more interested in how such systems would relate to their environment in a purposeful

— one could say, meaningful — way by engaging in a self-regulating exchange with it. In this

context, information acts as an active code that takes part in a control loop. Such systems, in

their initial state, are highly entropic. Information flowing through negative feedback introduces a

“degree of order (control)” since “information reduces uncertainty and contributes to order.” (Smith

1974, 3)

An exception exists in some of his late works with algorithmic music composition. Xenakis

used a self-organizing system known as cellular automata to produce the scores of his 1980s works

Ata and Horos (Solomos 2006).2 Cellular automata are “discrete dynamical systems with simple

construction but complex self-organizing behaviour” (Wolfram 1984) which were first defined in

the 1950s by von Neumann as a way to study artificial self-reproduction (von Neumann 1966) and

extensively studied in the 1980s by people such as Christopher Langton (Langton 1984, 1986) and

Stephen Wolfram (Wolfram 2002).3

According to Xenakis specialist Makis Solomos, the composer’s idea of automata is related

to Wiener’s concept of autonomy, a vision that emphasizes the self-organization of the systems, as

1Interestingly, Maxwell’s theory of gasses was an important inspiration for Xenakis. For example, in his mas-
terpiece Pithoprakta (1955—1956), each instrument was acting like a molecule obeying the Maxwell-Boltzmann
distribution, which models the speed of gas at a given temperature. (Xenakis 1981b, 29)

2Cellular automata were introduced earlier in the work of Artificial Life pionneer Christopher Langton. See section
5.2 .

3For the sake of clarify, notice that standard cellular automata are deterministic and thus cannot be considered
stochastic processes. However their properties can make temporal structures emerge that makes some of them good
candidates to be used as pseudo-random generators (Wolfram 1986).

181



opposed to the command perspective of von Neumann which is rather linked to a militaristic, “black

box” model of machinic control. However, Xenakis does not fully endorse the idea of autonomy and

seems to be interested mainly in using cellular automata as a tool that helps him shape his scores

but over which he still maintains high levels of authorial control. Solomos explains: “Xenakis’

manual interventions are very important; sometimes they destroy the nature of cellular automata.

And, of course, they are far away from the idea of something that works alone, of an automaton,

from which an autonomous meaning emerges.” (Solomos 2006, 16)

We can only conjecture as to the reasons behind the relative absence of such autonomous

systems in Xenakis’ work up until the 1980s. The most logical explanation comes down to a

question of means and intention. As an artist, he was interested in massive spectacular works

that demonstrated complex, electrifying tensions between chaos and order such as the Polytopes

and the Diatope. The kind of self-regulated, autonomous algorithms existing in the 1980s were

just too simple and “toyish” to fulfill that vision. Furthermore, during the 1960s and 1970s eras,

where Xenakis was the most prolific, connectionism and other forms of self-regulated systems were

marginalized in favor of symbolic AI. Finally, the technology available to Xenakis was not advanced

enough to allow real-time processing of large-scale input-output systems. Picture how most of

his works were using cutting-edge resources, often running on university servers overnight, using

FORTRAN programs encoded on perforated cards. The use of these systems by Xenakis as offline

compositional tools thus comes at no surprise: there was really no other way.

As artists, this was our point of departure in creating N-Polytopes. We reflected on the kind of

work Xenakis would have created if he had access to the technology we have today, which permits

massive real-time computation involving large-scale arrays of sensors and actuators. We posited

that his interest in stochastic processes actually originates from an interest in the complexity of

nature in both space and time. We thus supposed that, following the changes that happened in the

scientific world from the 1980s onwards, he would have been more interested in the behavioral and

complexity dimensions of Cybernetics and not only in its informational and probabilistic aspects.

In particular, however, we were interested in questions related to how emergent systems are

felt by the audience, as well as an exploration of the continuum between order and disorder. The
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(a) LABoral (Gijón, Spain) (2012). (b) LABoral (Gijón, Spain) (2012).

(c) Darling Foundry (Montréal, Canada) (2014). (d) Darling Foundry (Montréal, Canada) (2014).

(e) Vitra Design Museum (Weil am Rhein, Germany)
(2014).

(f) Nuit Blanche (Paris, France) (2015).

Figure 38: N_Polytope (2012) as shown in different venues. All images by Thomas Spier.
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work of the late neuroscientist Walter Freeman on the brain as a dynamic system was an important

source of inspiration (Freeman 1995, 2000). Freeman claims that brains function most of the time

in a noisy manner except when cognitive acts take place: then neurons self-organize and random

patterns settle into some kind of order. We were interested in the idea of phenomena that appear

impermanently at the edge of order: the minute you think you have recognized them, they are gone.

In order to approach this, we worked with different kinds of real-time stochastic processes

known as Markov processes. Named after Russian mathematician Andrey Andreyevich Markov,

these random processes are characterized by their memory-lessness, meaning that the probability

of future states depends only on the current state of the system (and not on the full history of

preceding events). Markov processes are an important part of Xenakis’ work and formalized music

theory (Xenakis 1992). The most important extension to Xenakis’ practice in N-Polytope lies our

use of Markov decision process through reinforcement learning. A Markov decision process is a

kind of Markov process that takes into account actions and rewards as part of the decision of a

stochastic, memoryless agent, whereas reinforcement learning is an approach to address the decision

problem when transition probabilities and rewards are unknown (Sutton and Barto 1998).

One of the main consequences of our approach is its impact on practice. Working with such

autonomous devices transforms our relationship with matter, as it puts it out of our direct control.

This suggests a reply to Xenakis’s claim about art and science. As I already argued, Xenakis was

not a scientist: he was an artist who used science and mathematics as a means to an aesthetic end.

Xenakis recognized the growing importance of opening the dialogue between art and science. In

a 1981 seminar at IRCAM, he proposed the establishment of a new relationship between art and

science in which art would “pose problems that mathematics should solve” with the creation of new

theories. He claimed that the “artist-designer” should be trained in various scientific fields ranging

from mathematics to genetics, humanities and history, so that he acquires a kind of “universality”

based on forms, architecture and morphology (Xenakis 1981a).

Xenakis’ claim that artists need to come up with problems for science reveals, in my opinion,

an asymetric relationship that does not match my own experience and vision as an artist trained

in science. I suggest instead a relationship where science and art are willfully engaged into an
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embodied dialogue that goes both ways. In my experience, while it is true that scientific methods

are used to respond to artistic problems, it is equally true that artistic questions are more than often

inspired by scientific techniques. It is not a unidirectional process, but really a process of coupling,

a performative endeavor that does not exist as a rationally organized communication system with

clearly defined compartments, but rather as a blurry, embodied dynamics involving negotiations

between matter, techniques and agents.

In the next section, I provide some details about the technical dimension of the piece, focusing

mostly on the broad components and how they interrelate. This will provide some background for

understanding the different processes that were implemented as part of the work.

6.2 Technical overview

Before we proceed into the heart of the chapter, let us first briefly sketch out the technical aspects

of the work. N-Polytope consists of twelve (12) steel cables forming a customizable topological

surface that is adapted to each venue. This architectural choice was not arbitrary but based on

Xenakis’ interest in projective geometry and ruled surfaces. On each cable are attached four (4)

modules (or nodes) equipped with a Minibee board, an AVR-based microcontroller coupled with

an XBee wifi technology developed by LabXmodal.4 These modules form an ad-hoc network and

can thus be controlled wirelessly from a central computer, either individually, as a group, or as

sub-groups. Each module controls three (3) LEDs (light) and one speaker (sound) and observe

data about their surrounding through a photocell (light) and a microphone (sound). A total of

fourty-eight (48) nodes can thus be activated simultaneously, controlling up to 144 LEDs using

pulse-width modulation.

Following Xenakis’s own Polytope de Cluny (1972), a set of Minibee-controlled lasers are dis-

tributed across the space in specific spots together with both fixed and rotative mirrors, enabling

the creation of geometric projections of concentrated colored light. A smoke machine can be acti-

vated to plunge the room in a hazy atmosphere that diffuses the light, contributing to the sense of

4See: http://sensestage.eu.
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immersion and enhancing the lasers definition and intensity.

The piece can run in two different modes. In the installation mode, it employs more ambient and

subtle sounds and light effects, without much evolution. Using a reduced set of algorithms, it aims

to bring the spectator into a contemplative and reflective mood. Once every hour, the piece switches

to its performance mode which runs for about 15 minutes. That version is more orchestrated, with

a pre-rendered soundtrack and pre-defined cues that trigger other light and sound events, activating

the hazing machine and the lasers, launching the different artificial agent-based algorithms across

the cables and space, bringing the audience in more of a Wagnerian gesamptkunstwerk.

The algorithms, which were designed by myself, are used to activate light and sound spatially

at a very coarse level, while a computational layer allows for their refinement in real-time before

the final rendering. I examine some of these algorithms in more detail in the next section.

6.3 Adaptive Processes in N-Polytope

We now move to the core section of this chapter. Here, I review the computational composition of

N-Polytope, focusing on four different agent-based algorithms which were used in the construction of

the behavioral patterns that appear in the piece. The first procedure is nonadaptive and will be used

as a point of comparison with the two other procedures. The second uses a simple adaptive feedback

procedure applied to generate emerging synchrony between a large group of agents, whereas the

third and last use reinforcement learning as a way to spawn dynamic patterns of light.

6.3.1 Drunk

The first algorithm that we implemented was named Drunk. It is a global-level agent that outputs,

as its actions, intensities for all of the 144 LEDs using a hierarchical, one-dimensional random

walk procedure. Random walks have been studied for more than a century. They represent a

simple process where a variable changes its value by taking small, random steps, resulting in a

staggering motion (hence the name “drunk”). Random walks are a kind of Markov process, a class

of memoryless stochastic algorithms used by Xenakis in many of his works where the distribution
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of future states depends solely upon the current state and possibly a definite number of steps in

the past, but not on the entire history of past states the algorithm has gone through (in the case

of a random walk, the next state is only dependent on the current one).

The most simple way to apply this procedure to N-Polytope is to make a random walk in the 144-

dimensional space of light intensities. However, there are other ways to do it as well, by grouping

LEDs in different fashions and doing a random walk for each group. This is what was done in

the case of Drunk. We created three different kinds of groups: 48 node groups (each controlling

their 3 LED), twelve (12) line/cable group (each controlling 12 LEDs) and one (1) global-level

group (controlling all 144 LEDs). These groups are mixed using four (4) parameters (one for the

individual LEDs, one for the nodes, one for the cables and one for the global-level), allowing us to

have a fine-grained control over the light environment generated by the procedure. For example,

by setting the parameter controlling the global-level to 100% and the others to 0%, all the LEDs

will have the exact same intensity which will stagger according to the random walk. If we set both

the cable-level and the LED-level parameters to 50% and the others at 0%, we will see each line of

LED staggering approximately at the same pace, with small variation for each LED. By setting all

parameters to 25%, we get a mix of the four levels of control. We can think of this procedure as

a hierarchical set of nested agents, with a global-level agent setting the general motion while the

sub-level agents refine this motion down to the level of individual LEDs.

Thus, this procedure can be said to transform through time, bridging together past, present

and future in the most simple of ways. It is not merely a mapping of something else, but rather a

state-based behavior that displays some form of structured randomness. However, that structure

does not evolve through time: observing the behavior after a minute, an hour or a month gives a

similar impression. While the image is dynamic, constantly changing, the behavior itself is as still

as a photograph.

Hence, applying the morphogenetic framework proposed in the previous chapter, we can classify

Drunk as a very simple first-degree behavior. It is therefore morphostatic, since the patterns it

generates do not change in time.
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As time passes, we begin to perceive an interaction between the agents. Some agents seem to

be starting a chain reaction, where their flashing triggers their immediate neighbors, which in turn

activate their neighbors, generating cascades of light bursting in massive ripples. Two, sometimes

three such networks form, linked through space but separated in time. As they tend to refine their

synchrony, suddenly, there is a long, dark silence. The room is filled with emptiness and time is

frozen until, in a spectacular tempest of cold, white light, all the agents start flashing at the same

time.5

This Fireflies algorithm works with either light or sound. At the beginning of the installation’s

12–16 minute compositional cycle, we employ the same Fireflies technique on the audio component

of the piece, which is synthesized directly from the 48 microcontroller nodes with similar results.

In the case of audio, the synchronization is less perceptually discernable because the agents’ sounds

are mixed within the global background soundscape. However, the propagation effect of sounds

responding to one another creates a strong immersive impression : the effect is uncannily similar

to that of walking in a field of cicadas, or hearing frogs singing in a pond.

The procedure evolves from a chaotic, distributed, microscale behavior to a disciplined, singular,

monumental one. Agents here have inputs (photocell/microphone) and outputs (LEDs/speakers)

which are related through a feedback loop that pushes them to act the same way, in other words,

to become a singular entity. Thus, one could say that as the system becomes increasingly ordered,

it also becomes more monolithic. What is interesting from an aesthetic point of view is clearly not

the purpose of the agents (which is to attain this perfect synchrony) but rather the process of going

from discord to unison, which happens through the emergence of ephemeral temporal patterns.

As we did in Vessels, we are hereby revealing the stochastic, adaptive procedure in its real-time

unfolding as a way to create an aesthetic effect.

These agents can be said to be adaptive in the cybernetic sense, since they are engaged in a

feedback loop where their own actions have an impact on the environment, which in turn influences

their own future actions. Hence, the patterns they generate at the global level are different from

5I first used this algorithm in the media installation Trace (S) (2008) produced in collaboration with Jonathan
Villeneuve. In that piece, a set of twenty-eight (28) cube-shaped devices hooked to the gallery wall synchronize using
LEDs and photocells while pulsing air using computer fans.
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those of Drunk, because there is an evolution in the light and sound that unfolds through time,

embedded in a narrative of optimization. The behavior of the system as a whole is of second order.

What the observer gets to experience is not only a certain real-time, recognizable pattern (like

Drunk) but rather, a pattern which is a metamorphosis of patterns, transforming dynamically as

it moves from chaos to order.

A relationship can be established between these very simple units and neurons. Indeed, the

algorithm driving Fireflies is a form of “integrate-and-fire” oscillating neuron (Campbell, Wang,

and Jayaprakash 1999) whose origin can be traced back to early 20th century French neuroscientist

Louis Lapicque (Abbott 1999). This category of time-based, asynchronous6 neural models is widely

different from Perceptrons and MLPs, which are synchronous by definition and are targeted at

pattern recognition rather than biological simulation and temporal integration. In the field of

neural computation, these models are often called Spiking Neural Networks (SNN) (Maass and

Bishop 2001), a connectionist model of biological neurons that adds a conception of time. In

(Thivierge and Cisek 2010), the authors describe how such models can be trained to recognize and

generate synchrony. Here the evaluation function is the time difference between an observed flash

and the phase of the agent, and the update rule consists in slighly changing the phase so as to

match it more closely with the perceived phase of the flashing neighbor.

6.3.3 Boosters

The third algorithm, called Boosters, works in a similar fashion to Fireflies, although it utilizes

RL techniques: there is one agent for each light and sound node, each of which can emit flashes of

light as well as perceive the brightness of its neighbors. Agents in Boosters accumulate energy in

a virtual “battery” while they are at rest, collecting the light emitted by their neighbors. At each

step, the agents can choose to either stay at rest or emit a burst of light. If they choose the latter,

the sum of the energy they have accumulated is spent to produce the burst with the intensity of

the light emitted being proportional to the spent energy.

6By this, I mean that the neurons fire independently at their own rythm, however as we have shown it is possible
for them to learn how to fire synchronously.
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Boosters agents get rewarded for producing a flash, however, they receive an even larger reward

for producing a more intense one. Their best strategy is thus to wait until their battery is full before

taking a flash action. Since there is a “blind” relaxation period after emitting a burst during which

the light perceived from the environment does not add to the energy, the agents’ best strategy as

a group is also to intersperse their flashing. From a visual point of view, the perceptual impression

that results is one of a mass of individual lights pulsating over a range of different intensities only

to occasionally burst and blank out for a moment in order to again return to their struggle.

The Boosters, however, seemed to be rather unable to learn even this apparently simple proce-

dure. I suggest this could be attributed to the fact that the space of inquiry (in other words, the

number of possibilities to consider for each agent) is too large for them to learn in real-time because

they aren’t exposed to enough data in the time during which they run.7

If that is true, being able to witness a learning process happening in real time using generic

learning approaches such as RL would require that the problem to be solved by the agents stays

relatively simple (small search space). That would, in turn, completely defeat the purpose of using

ML techniques in the first place. The curse of dimensionality therefore creates a nasty situation for

artists wanting to exploit such methods by building of aesthetic experiences through the staging of

real-time adaptive behaviors.

6.3.4 Chasers

The last procedure, called Chasers, simulates agents moving across the installation’s cable structures

using a reinforcement learning algorithm combined with an artificial neural net. Here, instead of

working with continuous properties like light intensity and sound amplitude, we are rather using

a discrete representation of the agents’ position in space. Each cable represents a one-dimensional

“world” with twelve (12) discrete locations/cells. The world “wraps-around” at the end, meaning

that the first cell is considered to be adjacent to the last one. At any specific moment in time, an

agent occupies one and only one of the twelve cells and can choose to either stay in place or move

7Looking backwards, we could perhaps have managed to train them using an offline technique such as Batch
RL (Lange, Gabel, and Riedmiller 2011).
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to one of the adjacent cells. The only information (observation) the agent receives is the distance

(in number of cells) between itself and the next agent, in both direction. The agents’ positions are

represented by lighting the corresponding LED on the cable (stacked agents result in a brighter

light).

The reward function is the sum of three different components:

• The reward on touch (rt) rewards the agent (or punishes it) for being on the same spot as

another agent.

• The reward on move (rm) rewards the agent for moving in a given direction (and punishes it

for going the opposite way).

• The reward on stay (rs) rewards the agent for staying put (and punishes it for moving).

These parameters can be used independently (by keeping the other ones to zero) or they can be

combined to foster different behaviors in agents, as demonstrated in the following table:

Table 5: Example reward functions for the Chasers procedure, with corresponding expected results.

Touch (rt) Move rm Stay (rs) Resulting behavior

1 0 0 Try to catch other agents at all cost.
-1 0 1 Try to evade from other agents and otherwise stay still.
0 1 0 Move left-to-right no matter what.
2 -1 0 Try to catch other agents first and foremost, but with a

preference for moving right-to-left.
-1 0 -1 Always move but avoid collisions.

Furthermore, we can achieve more variation by combining agents with different reward functions

on the same cable, thus generating different kinds of movements such as predator-prey “chases” and

other adaptive dances. In the installation, we start by adding a few agents and allowing them to

stabilize, which happens rather quickly. We then manipulate the tension between chaos and disorder

— an important aesthetic dimension of the work — in two different ways.

First, we took advantage of a feature of the RL optimization procedure which was introduced

in section 3.2.2: the exploration-vs-exploitation criterion. A parameter ǫ ∈ [0, 1] controls the

probability that the agent will, at any given step, “explore” its environment by taking a completely
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random move, as opposed to “exploit” its current knowledge by taking a “greedy” action (i.e.,

moving in the direction it thinks will yield the highest reward). Choosing a low value for ǫ typically

yields more structured, “smart” moves (especially after the agents have been given enough time

to learn) while a high value will generate chaotic behaviors. By playing with ǫ we can influence

the behavioral shapes visible to the human audience, moving them instantly between order and

disorder.

The second strategy is used when agents have “stabilized” into an ordered, “smart” behavior,

entering a phase of morphostasis. By increasing the number of agents in the space, we make the

problem more difficult and confuse the agents that are already there. It also raises the density of

light sources activated along the wires, until the structure becomes saturated both spatially and

temporally, shifting the patterns towards chaos. In this sense, the shift in the behavior of the agents

gradually results in a growing sense of disorder, achieved by sudden discontinuities in the rhythm

of their movement up and down the lines and thus, making it increasingly difficult for observers to

recognize their patterns.

In the various contexts in which N-Polytope was presented, the audience seemed to be dragged

into the piece, often describing it as compelling and hypnotic. Many viewers stayed for extended

periods of time, lying down under the structure, engulfed into the cosmic spectacle offered by the

piece. Chasers and Fireflies seemed to be particularly effective as methods for inspiring this general

awe in the viewer, for what I believe to be two different reasons.

What made Fireflies compelling was that one could experience the actual learning process,

the slow adaptation of agents to one another where they auto-organized in real-time. This was

particularly effective as it happened at the beginning of the sequence, allowing a slow ramping

up towards higher energy movements. As Chasers happened in a later, climatic segment of the

show, it was tuned to learn faster, and was also augmented with additional light effects that made

the behavior less “pure”. Due to this it was harder to see the learning process happening because

the agents quickly stabilized into an optimal pattern, and the definition of their movements was

blurred by the added spectacular effects. Nonetheless, the rapid movements of the agents underlying

their actual representation follow behavioral patterns that, although hard to discern, are somehow
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evocative of recognizable shapes.

6.3.5 Discussion

This report described a number of different approaches that make use of adaptive and Machine

Learning algorithms as part of agent-based artworks. In particular, it shows one instance of using

reinforcement learning with success8 as part of a media installation. At the broad level, the strategy

is similar than that employed in Vessels for the co-adaptation of behavioral patterns using genetic

algorithms, in the sense that we can play on two different levels.

First, by hooking into the adaptive loop, we can unfold it before the eyes of the audience,

revealing the learning process itself as a behavior. This is particularly true of Fireflies, which opens

the show by allowing groups of agents to self-organize temporally, moving from chaos to order.

Here, the time span is much shorter than for Vessels, the adaptation happening over a period of

2–3 minutes (compared to 10–15 minutes in Vessels for a noticeable change to happen). The result

is impressive, as one gets to experience the real-time, incremental adjustment of light and sound

agents surrounding them, building up a dramatic transformation from individuality to unison.

Reinforcement Learning in Chasers goes even faster, as the agents converge after about a minute.

So the strategy differs from Fireflies: agents learn an optimal behavior, and it is this stabilized,

morphostatic performance that is revealed before the eyes of the audience. In N-Polytope, this

seemed to work out, although it is not absolutely clear why given the triviality of the learned

behavior. The software layer built on top of the behavior generation system, which augments these

temporal patterns with diverse fine-tunings and effects at both the local and the global levels,

makes it difficult to analyze what aspect of the general experience can be attributed to the learning

algorithm itself.

So it seems that we are confronted again with the same paradox. On the one hand, the kind

of problems that are interesting aesthetically are often very high dimensional and complex. Hence,

these are also the problems for which Machine Learning is useful, as compared to more traditional

8In fact, n-Polytope is, to my knowledge, one of the rare documented works of art employing RL, along with some
of my most recent works Fifth Absence (2011) and Plasmosis (2013).
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approaches. However, the context of artistic works that run in real-time is improper for training

these systems under the time constraints offered by traditional new media presentation contexts.

In the kind of scientific applications which they were designed for, Machine Learning algorithms

are usually trained offline, learning off disk-based databases, running as fast as the computers on

which they run can crunch the numbers. Naturally, this kind of computational power is not yet

fast enough or small enough to drive a live artistic event such as N-Polytope which runs over a time

span of about 15 minutes in performance mode.

Though it leaves a number of questions open, this research has at least the merit of highlighting

important distinctions between adaptive and nonadaptive algorithms. Stochastic processes such

as the multi-stage random walk implemented in Drunk, which is rather emblematic of the kind of

algorithms Xenakis was interested in, exist in a domain that is essentially distinct from adaptive

algorithms such as Fireflies and Chasers. While they could all be said to pertain to the category

of behavior-based aesthetic, they certainly differ in their temporal unfolding. Whereas Drunk is a

temporal process that creates a strong impression in the eyes of an external observer, the structure

that supports it does not adapt or evolve over time. Despite its strong temporal dimension when

considered over a short period, it is still flat and static when taken from the perspective of a longer

span of time.

Fireflies and Chasers pertain to another category of behaviors. Because they can adapt their

structure over time, and that this structure in turn determines their behavior, their relationship

with time is of a very different nature. The GA employed in Vessels for the evolution of the

behaviors is similar, however, we could even make a further distinction between algorithms such as

the one in Vessels, which changes behavior over time but without a definite goal, from Chasers and

Fireflies, which have precise goals.

Applying the morphogenetic framework proposed in the previous chapter, we can classify Drunk

as a very simple first-order behavior. It is therefore morphostatic, since the patterns it generates

thus do not evolve in time. In comparison, the three other algorithms are behaviors of second order,

or metabehaviors, because their dynamic shapes evolve in time. Chasers and Fireflies are both

characterized by an adaptive optimization narrative, their behavior being iteratively constructed
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in time (morphogenesis) until the system reaches an stable equilibrium (morphostasis). However,

in the case of Chasers, this process happens much faster, almost instantly, so we do not really

get to see the adaptive process. Here the changes and the way they are impacted by learning are

more blurry, as there are many variables that come into play (the variation of ǫ and the adding of

agents which impact the environment in which they evolve). Fireflies thus offers, in my view, a

much more “pure” example of the aesthetic effects of an adaptive metamorphic process involving

embodied agents. Furthermore, the behavioral properties of Fireflies allow it to learn over a short

time span of a few minutes, giving the audience an opportunity to experience the synchronization

of adaptive units in real-time.

Audiences respond to the piece with a feeling of enthrallment. It is not rare, during presentations,

to see people staying for extended periods of time, ranging from tens of minutes to hours, which is

rarely seen in new media artworks. Many people have described that the patterns unfolding before

their eyes seemed elusive, effervescent, always on the verge of being grasped, then dissolving. Trying

to make sense of what steered he system, what were the entities behind it, audience members would

make often turn up to analogies of living systems to make sense of the patterns observed in the

work: swarms of insects, flocks of birds, shoals of fishes, moving and scintillating in a way that

felt lifelike, yet never fully graspable. It may be possible that the force that kept these audiences

in thrall was that of being witness to alien modes of being and behaving that lie beyond human

understanding.

6.4 Control and Time

Temporal morphological characteristics of processes such as the ones that were explored in N-

Polytope inspire important questions about the use of adaptive agents in new media art installations.

What aesthetic effects do these morphological movements activate? How does working with partially

uncontrollable and indeterminate agents affect practice?

As a way to approach these questions, I will use as a complementary example Stephen Kelly’s

piece Open Ended Ensemble which was briefly introduced in section 3.2.1. Kelly is one of my
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collaborators on Vessels, and has a background in both art and science, as he is currently completing

a Ph. D. in computer science at Dalhousie University (Halifax, Canada) in the field of Genetic

Programming. The latest version of his piece involves two agents that adapt concurrently, a strategy

similar to the one I used for my 2013 underwater installation Plasmosis. The first agent consists in

a set of four pairs of neon lights that can choose to switch off one (only one) pair of fluorescents.

The second agent controls inaccurately the movements of a magnet moving near the fluorescents,

trying to find the spot with the lowest magnetic “noise”. The sound of the magnetic fields is directly

transmitted through a guitar amp of the artist’s making.

I interviewed him in June 2016 about his work which was displayed at Hamilton Artist Inc.

in Hamilton (Canada). Asked about how the audience experiences the piece, and how Machine

Learning plays into it, he says:

Working with such technologies involves a loss of control on the part of the artist, a

strategy which is very common in media art these days. And by doing that you are re-

introducing elements of uncertainty in a piece, you are giving it the potential to surprize

you. Something is controlled, but not by the audience nor the artist, so in a way it is

more “democratic”, it lies outside of the control of anyone. And that in turn speaks to

how people experience the work: you cannot understand it right away, even if you read

about the piece, and even as its designer. You need to get to know it. So in that sense it

is a very durational experience. It is common in many media art works but even more

so with adaptive systems.

As a point of comparison, Kelly mentioned the research of Adrian Thompson, a scientist at

the University of Sussex who is considered to be a pioneer in the field of evolvable hardware. In

1996, he used a Genetic Algorithm to evolve a circuit known as a Field-Programmable Gate Array

(FGPA) to discriminate between a 1kHz and a 10kHz tone (Thompson 1996). After the circuit

evolved into an optimal discriminator, in order to simplify it, he tried to prune out the parts of

the circuits that were not contributing to the output. Contrary to Thompson’s assumptions, some

parts of the circuits that were completely disconnected from any path that could influence the

output, were actually crucial to the discrimination process, probably through some forms of local

magnetic interactions. In other words, the adaptive agent that controlled the evolutionary process
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had learned a solution to the problem that made use of the intrinsic, embodied, physical properties

of the circuit and that no human could possibly have come up with.

Similarly, human observers of adaptive or evolutionary works such as Open Ended Ensembles,

Vessels, or N-Polytope cannot understand their behaviors rationally, because the underlying pro-

cesses that govern them follow non-logical rules. Works that are based on mappings and first-order

behaviors can be rationally explained and understood: for example, this photocell triggers that

sound effect, that microphone activates that video sequence, that gestures causes the agent to start

running in circle for a minute, etc. But in order to experience second-behaviors in all their richness,

one needs to “get to know them” phenomenologically, through her own sensorimotor body. One

needs to adapt to it, to change herself, to become attuned to it until the behavior reveals physically

itself in all of its unfathomable nature.

I posit that this is a direct consequence of two important features of adaptive systems that have

been highlighted earlier. First, the way by which their morphology evolve in time may contribute

to their mystifying nature. As was pointed out before, adaptive systems go through periods of

morphogenesis, metamorphosis and morphostasis. During their transitive phases, their behavior

lies in a state of flux, making its shape difficult to grasp by external observers.

Second, as they become better at performing the task they are trained for, Machine Learning

models grow into complex and intricate architectures that are more than often unintelligible to

humans. This is particularly true of neural networks, where large numbers of independent units

(neurons) work together to solve a problem, yet, it is difficult if not impossible for a human observer

to find out which neuron is responsible for what, because decisions are usually diffused across the

network. Adrian Thompson’s genetically evolved FGPA is another good example of how Machine

Learning agents find their own way through problem-solving, often moving beyond human logic.

Incidentally, this structural complexity is precisely what allows these systems to be efficient,

evolving intricate behaviors that often make them perform better than humans. It is thus not

surprising that the morphological patterns emerging from these architectures (once they stabilized)

remain perplexing to human observers.

More importantly, one should not forget that the human observers experiencing these systems
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trained to interact with mapping and formal systems, which can be grasped quickly. As always, it

is difficult to convince a large public to make an effort to understand an artwork, and most people

will leave a work that they cannot grasp within a frame of a few minutes.

Since adaptive systems require a lot of data to learn how to react to complex situations, they

usually require a lot of time, enough that they can have access to many different experiences. In this

way, they are very similar to complex living systems. Consider for example the time it takes for pets

and even humans to learn about things that seem relatively simple, such as walking. Strategies can

be deployed to prevent the audience from leaving too early. For example, in N-Polytope, a number

of nonadaptive effects are used to immerse the audience into the work, such as a smoke machine and

an underlying music score. The audience is informed that the piece runs in an installation mode

followed by a 15 minutes performance mode, which makes them want to stay long enough to “see

everything”. A set of carpets and comfy bean bags are dispersed under the structure, providing a

very simple yet effective way to increase the time spent with the work.

But this also suggests that the new media art scene is perhaps not currently adapted for these

works. The new aesthetic experiences these pieces offer necessitate a change, both in the way new

media institutions present and mediate them to the public, and in the expectations of the audiences.

It is possible that audiences have become accustomed to a certain type of new media artwork that

works well within a festival-oriented art network, and that might have been fostered in parts by the

popularity of mapping and interactive art in the last three decades. Long-form, evolution-centric

works such as Vessels and Open Ended Ensemble places value on duration and contemplation,

making them more akin to performance art practices where similar concerns of embodiment and

performativity come into play.

Furthermore, aside from these changes, we need to create new contexts that would allow these

for these new forms of experience to unfold naturally, such as take-at-home agents that would

evolve inside one’s living quarters over weeks, or public art monuments that would adapt to their

environment over the scope of many years, allowing the public to develop a relationship with these

systems so that they can “get to know them” and experience their adaptiveness.
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6.5 Indeterminacy

It is commonly known that visionary composer Iannis Xenakis was inspired by the aspect of Cy-

bernetics that concerns the probabilistic nature of information, which would later be known as

Claude Shannon’s information theory. It is less known that his interest in Cybernetics extended to

Wiener’s notion of control in autonomous systems.

Quite interestingly, while Xenakis was keen to employ probabilistic methods in his work, demon-

strating his fascination with chaos and order, he was also extremely demanding, and controlled each

aspect of his work with extreme precision in a top-down manner that is related to von Neummann’s

command perspective on Cybernetics.9 In realizing N-Polytope, we have been leaning more towards

the Wienerian notion of autonomy, allowing our agents to move freely, working with a much more

bottom-up approach.

This was both an effect of vision and means. As an artist working with technology, my own

practice has always been defined by the mise en scène of artificial computational agents, and

autonomy is a defining feature of my behavior-based aesthetics. This, of course, largely influenced

our decisions in the kind of algorithms that were implemented as part of the work. It was a

response to the question: “What would have Xenakis done if he had access to the technology

that we have?” The technology Xenakis was working with could not generate things in real-time:

everything needed to be pre-rendered, which suggested making changes to the score, because there

was time to react. That limitation has been largely alleviated nowadays, allowing for large-scale

real-time media processing like was used in N-Polytope.

This is not to say that N-Polytope is a purely autonomous work. The behaviors that were de-

scribed in this chapter were integrated inside a traditional score, with predefined cues that triggered

the various events that gave form to the piece. This is particularly true in the performance mode

9In a personal conversation during the presentation of N-Polytope at the Darling Foundry in Montreal (2014),
Robert Dupuy, who worked as an assistant for Xenakis on the Polytopes, seemed to suggest this. Recalling the times
where he worked for the artist, he explained that, as a programmer, he would write a program and run it, generating
a new score — a process which would take 24 hours. Then Xenakis would look at it and ask for some specific
and precise parts to be changed, such as one or two notes that he would not find satisfactory, requiring Dupuy to
perform yet another round-the-clock iteration. Dupuy’s story seems to support the claim that while Xenakis was
using stochastic systems as part of his creative process, he also took a strong authorial position, not allowing for
much autonomy or control in regards to the machines.
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of the work, which runs for a defined period of time. Nonetheless, while the performance itself is

predefined at a higher level, the artificial actors that create the performance are never doing the

exact same thing, which contributes to the natural feel of the piece.

The investigation of N-Polytope in the current chapter shows the advantages as well as the

limitations of the tools developed in this dissertation. In particular, when working with emergent

systems, a tension always exists between the artificial systems, the audience, and the artists. While

I agree with Downie and Xenakis in reaffirming the importance of authorship when working with

self-organizing agents, I dissent with them in regards to the way to enact that authorship. Both

Downie and Xenakis emphasize the role of the artist as an arbiter, with an unequivocal right to make

choices among the various contents generated by computational processes. In the case of Xenakis,

this seems to come down to an almost divine right, which is well rendered by the composer’s final

words in his thesis defense. Replying to Bernard Teyssèdres who asked him about the importance

of the ability for the composer to “select” preferred sonic versions generated by stochastic programs

of his design, as opposed to leaving them out of his control, he stakes:

But it is my right, my privilege. It’s my task to prefer one thing over another. (Xenakis

and Messiaen 1994, 98)

This tension between autonomy and command in Xenakis’ work echoes his conception of inde-

terminacy and the impact of Western philosophy and modern science on his work. Musicologist

Kostas Paparrigopoulos has contrasted Xenakis’ approach to chance and disorder with that of ex-

perimental composer John Cage. Both Cage and Xenakis made use of indeterminate processes in

their work, but in a different fashion. While Xenakis aimed to use science as a way to control

chance and shape it to its will, Cage saw in the unpredictability of nature an opportunity to break

free, leaving sounds out of his direct control. (Paparrigopoulos 2011)

Cage’s reasoning is based on the observation that sound exists beyond human intention. De-

scribing his visit into an anechoic chamber at Harvard University, he explains he could still hear

the sound of his circulatory system and a very high-pitched sound which he claimed came from his

nervous system.10 “Until I die there will be sounds. One need not fear about the future of music.”

10Cage most certainly did not hear his nervous system in that chamber. What he might have been hearing is
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Cage continues:

But this fearlessness only follows if, at the parting of the ways, where it is realized

that sounds occur whether intended or not, one turns in the direction of those he

does not intend. This turning is psychological and seems at first to be a giving up

of everything that belongs to humanity—for a musician, the giving up of music. This

psychological turning leads to the world of nature, where, gradually or suddenly, one

sees that humanity and nature, not separate, are in this world together; that nothing

was lost when everything was given away. In fact, everything is gained. (Cage 1961, 8)

Given this conundrum, the composer thus has two options. If he refuses to let go of his effort

to control sound, he can do as Xenakis, seeking complex techniques as ways to better approximate

nature. Otherwise, he can choose to “give up the desire to control sound, clear his mind of music,

and set about discovering means to let sounds be themselves rather than vehicles for man-made

theories or expressions of human sentiments” (9).

Free will being incompatible with determinism, and freedom being the prime substance of orig-

inality and creativity, both Cage and Xenakis wanted to use indeterminacy as a path to escape

their own individuality and channel larger powers in the universe, to “go beyond themselves”.

While Cage, inspired by eastern philosophies, sought to attain this freedom through the aban-

donment of control, giving their full autonomy to sounds, Xenakis, in his attempt to deconstruct

the determinism-indeterminism opposition, always stayed on the side of western philosophy and

science. (Paparrigopoulos 2011, 3)

These divergences resonate with many of the dilemmas that have followed us throughout this

research: determinism versus indeterminism, command versus autonomy, computationalism versus

enactivism. On the one hand, the instruments and methods of science allow us to create repre-

sentations of natural processes that can grant us control over them. On the other hand, we are

confronted by the fact that nature is out of control, that we can never fully know it, and that

our best shot at dealing with it is to boldly accept it as it is, or, as Cage says, to “let things be

themselves”.

My own perspective in regards to these quandries faced while working with computational

tinnitus, which often results in a high frequency sound. (McElhearn 2016)
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behaviors stands somewhere between a Cagean and a Xenakisian approach to indeterminacy. My

interest in Machine Learning as a way to generate self-organizing dynamics in agent-based systems

resonates with Xenakis’ usage of stochastic science as a way to bend randomness to his own will.

However, echoing Cage, I want to leave the agents “be themselves” and “live their artificial life”, so

to speak. Still, there is more of a blurring between human and inanimate in my work than in Cage’s

work, who wants to limit as much as possible human intervention to allow chance to take its course.

I see my role as an artist less as a director around which everything else revolves, and more as a

collaborator negotiating with other human and nonhuman agencies in the production of artworks.11

As an alternative to rule-based AI, Machine Learning — and, in particular, Reinforcement Learning

— is situated in the middle ground between these two visions, as it allows for a certain degree of

control over outcomes by giving the artist the right to design goals, while leaving the learning agent

the responsibility to find the way to reach them. There is a huge difference between the use of coin

flips (in Cage) vs a system that is based on experience. There’s a difference between a set of rules

vs a system that learns by experience, vs using a system based on randomness.

I recall here Andrew Pickering’s nonmodern ontology, which conceives the world as “built from

performative dances of agency”. Pickering remarks, following Latour, that modernism is built on

an “asymmetric dualism” that considers humans are the only beings able of true agency, thus

positioning humanity above other animals and things.

But then comes the twist. The great discovery of science studies was that in practice

the sciences themselves fail to exemplify this ontology. It turns out that in their own

laboratories the scientists are far from calling all the shots. They do not dominate

their materials through knowledge; instead they engage in rather symmetrical open-

ended and performative dances of agency, trying this and that in their struggles with

machines and instruments, finding out what the world will do in this circumstance or

that, and responding to what emerges in a process that I call mangling. [. . . ]

So studies of scientific practice conjure up a new ontological vision, a quasi-biological one,

of the world as itself as a lively place, itself a reservoir of agency, that can always surprise

us in its performance, and that we always have to get along with and accommodate

ourselves to, rather than seeing through and controlling. We are always, so to speak, in

11Indeed, collaboration has always been an integral and important dimension of my art practice, a particularity
which directly stems from my background in science, where collective work is the norm rather than the exception.
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the thick of things. (Pickering 2009, 198)

This idea directly resonates with my own artistic approach, and provides a strong argument

for addressing the problematics that this dissertation brings forward in trying to understand the

worldview that adaptive systems come to generate. Art is not meant to provide answers or to be a

vessels of communication, but rather a space of encounter, a theater where there different agencies

co-adapt: the work, the artist, but also the audience. So perhaps this is what adaptive systems

suggest when used in the arts: both in terms of experience and practice, they are the quintessence

of life’s unfathomable nature: open-ended, muddy, indeterminate processes, which we can never

fully know, let alone control.

6.6 Art and Science

This discussion suggests a review of Xenakis’ perspective over the relationship between art and sci-

ence. Xenakis claimed that while both art and science could construct objective forms of knowledge

by drawing out ideas through empirical observation and rational thought (inference) and putting

these ideas to test using experiments (experimentation), only artists had the power to attain subjec-

tive truths through the process of revelation. Xenakis proclaimed the advent of an artist-engineer

who would need to be “simultaneously rational (inferential), technical (experimental) and talented

(revelatory)” (Xenakis and Messiaen 1994, 5–6) in order to implement a merging of art and science.

Xenakis sees this artist-engineer as an interdisciplinary researcher and practioner, trained in

a wide range of scientific and artistic fields. He argues in favor of a new relationship between

science and art where the artist-originator would invent artistic problems that she would then

try to solve using mathematics and science (Xenakis 1981a). He claims that the numerous failed

attempts at making music using computers at the time were either due to musicians’ relative

ignorance of basic notions of mathematics, physics and acoustics or to scientists’ general lack of

points of reference when it comes to aesthetic creation. To him, art and science form an alloy, an

heterogenous substance whose properties are different than those of its constituents (Xenakis and

Messiaen 1994).

205



Xenakis’s vision is very noble: that through artists creating problems for science to solve, art

and science are forming “alloys” with each other possessing new emerging properties (similar to

that of bronze, which has other properties than copper and iron). This being said, Xenakis’ vision

fails to account for the sociopolitical context in which these field interoperate, in particular within

the millenial context of socioeconomic power relationships between art, science, and capitalism.

For example, the corporatization of academia has utterly transformed scientific research since

the 1970s. The contemporary context marked by an extreme pressure to succeed in their disci-

plinary field makes it difficult for scientists to get involved in projects involving interdisciplinary

research with artists because the return on investment remains unclear. There are almost no eco-

nomic incentives for scientists to shift into the arts. In counterpart, artists moving into scientific

environments are still subject to the financial and power unbalance described above, and are thus

at risk of finding themselves either used as contributors that can “think outside of the box” for a

cheap wage, or be forced to abandon their art career in favor of a more sustainable job as scientists

or engineers. Xenakis’ idea that artists should lead humanity’s quest for truth by creating questions

for science to solve thus seems hardly imaginable in the current situation.12

The performative ontology brought forward by Andrew Pickering in The Cybernetic Brain,

explored in section 5.11, suggests an alternative to Xenakis’ alloys that I find more fruitful (Pickering

2010). In his book, Pickering turns towards early British Cybernetics as an alternative approach

to modern science, which engaged directly with matter in often strange ways, such as through the

creation of bizarre apparatus such as Ashby’s homeostat, Walter’s tortoises, and Pask’s Musicolour.

At the most obvious level, synthetic brains—machines like the tortoise and the home-

ostat—threaten the modern boundary between mind and matter, creating a breach in

which engineering, say, can spill over into psychology, and vice versa. Cybernetics thus

stages for us a nonmodern ontology in which people and things are not so different after

all. (18)
12Perhaps Xenakis, an immensely successful architect and composer sitting at the top of the world, had trouble

seeing the power relationships induced by the forces of capitalism the way most artists do. Perhaps he was able to
pull these forces his way: but an exception is no rule, and more than often, scientists nowadays either do not have
time for artists, or when they do, it is more than often in situations where the power relationship is unbalanced
in their favor. This asymmetry in economic conditions is one of the social factors that prevent Xenakis’ alloys to
happen in the contemporary world. In a way, one can see how Xenakis’ alloys are a tribute to an idealized modernist
vision of art and science that fails to take into account the socio-historical reality in which they are embedded, and
the diverse actors that participate to their construction.
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Following that perspective, Xenakis’ claim, that the emotional and affective dimensions of truth

are only accessible by art, seems dubious. The role of intuition in science has been well documented,

and it is well known that the emotions, passions, and motivations play an important role in science.

Scientifics are human beings as much as artists, and in their work they touch a unique beauty

that is often hard to transmit outside their circles, whether it is in the astuteness of mathematical

proofs, the complexity of chemical reactions, or the elegance of biological interactions.

This is why I find that Xenakis’ approach is not only inaccurate (because I think there is a lot of

subjectivity in science, perhaps as much as in art), but it is also barren, as it precludes alternative

forms of relationships to take place beyond the idealization of an artist-engineer who puts science

to the service of art. If we adopt, instead, a perfomative vision of both art and science practices,

where practitioners and researchers engage in a “dance of agencies” with matter, then it becomes

possible to imagine different kinds of relationships. For example, it allows for artistic strategies

where an artist discovers a scientific technique that holds an aesthetic potential and brings it out of

science — such as many of Marcel Duchamp’s readymade works like Fountain (1917) and Bicycle

Wheel (1951). This is similar to what I am doing in this dissertation, and in much of my work: I am

often inspired by a technique that holds a potential to reveal some subjective truth and generate

novel experiences, and I extirpate it from its scientific context, deconstructing it to bring it in the

field of arts.

As an alternative to Xenakis’ artist-engineer figure that is more compatible with Pickering’s

view, consider Simon Penny’s historical analysis of “artist-inventors” in his 2008 text “Bridging

Two Cultures – towards a history of the Artist-Inventor”. There, Penny tries to position interrela-

tions between scientists and artists in technological practice, focusing on technological practitioners

engaged in the design of “machine-artworks” capable of generating embodied interactive experi-

ences with the audience. On the opposite side of media users who often see technology as an end

itself, these artist-inventors rather develop the technologies they need to achieve their objectives.

In contrast with Xenakis’ figure of the artist-engineer (who is an artist trained in engineering),

Penny’s artist-inventors category comprise people who are traditionally considered more like sci-

entists than artists, such as Cyberneticians Ross Ashby and Grey Walter, and engineers Nikola

207



Tesla and Alexander Graham Bell. As thus, it is a much more inclusive concept which provides an

alternative view against the modernist separation of art and science. (Penny 2008)13

6.7 Conclusion

In this chapter, I used the large-scale performance/installation work N-Polytope as a testbed for the

aesthetics of adaptive behaviors I have articulated through this dissertation. Of keen interest is the

comparative usage of both adaptive and nonadaptive systems in N-Polytope. The morphological

framework was useful in describing behavioral evolution in the different kinds of processes. The

various algorithms appearing in the work exploited the tension between morphogenesis, metamor-

phosis, and morphostasis.

The experience of the work as described by members of the audience echoes in many ways how

people experienced Vessels (c.f., section 4.5), seeing patterns that evoke alien agencies, pursuing

behaviors that are hard to pin and can hardly be described. This, in a way, is not surprising, when

one considers how observers are, themselves, adaptive systems, who are trying to make sense of

often complex behaviors that might or might not be stabilized yet. These self-organized systems

need a particular context to be correctly apprehended: they cannot be consumed like your usual

reactive, interactive art piece. One needs to spend time with these agents to get to know them —

in other words, to adapt to them.

Hence, adaptive systems and their use in agent-based artistic installation point to a view about

art and science that questions the notion of indeterminacy. In this context, I see the artist less as

one who attempts to give an idealized shape to matter by controlling randomness through science,

13This is certainly not to say that science and art are equals. As Penny claims, whereas “many of the innovations
in science and technology, arose from a passionate commitment to specific causes or ideas” and while the “drive to
invent and the drive to create are, at root, almost indistinguishable”, it remains that scientists are “taught to discount
motivations which exceed the positivist quest for knowledge, while artists have no such constraint” (Penny 2008,
143) In an earlier text, Penny compared how artists and scientists approach computer-based artworks. For example,
he contrasted the very scientific approach in the Oz Project — a research program led by computer scientist Joseph
Bates in the mid–1990s, that aimed to develop technologies that would allow artist to design complex dramatic
interactive fictions — which is very generic and complex, but engendered, in his opinion, rather limited results, to
the much more low tech approach of artist Luc Courchesne which yields a more evocative and achieved artwork in
his piece Family Portraits (1993). Penny pretends that scientists, due to their training, tend in general to focus on
problem solving and to produce “universal” solutions which favor didactic and literal works, whereas artists focus on
the experiental aspect of the work in its relationship with the audience and the environment, thus focusing on the
poetic and metaphorical aspects of the work (Penny 2000).
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but rather as one who tries to negotiate her way through trial and error, and exploration and

exploitation, in an interconnected network of both human and nonhuman agencies. In this regard,

I feel that the artist is ideally participating in the morphological evolution of her agents, yet is

keenly aware of her imperfect control over them, and in fact uses that awareness as a powerful

transformative instrument.

Adaptive Computation and Machine Learning provide ways for artists to design new behavioral

patterns, not by controlling each and every aspect of the outcomes, but rather by effecting the

intentionality of agents who are then left out of any direct human control from either the authors

or the audience. Authorship thus becomes much more diffuse, and experiences are brought into a

domain of uncertainty that evokes the meeting of an alien form of life. Understanding these new

experiences and the practices they are associated with demands a change of perspective from both

the artists, the audience and the art institutions. Human-centered principles of control needs to

be replaced by a posthumanist view that takes better account of how both human and nonhuman

actors intervene in the artistic process through adaptive/performative movements of resistance and

accommodation.
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Chapter 7

Conclusion

My intention is to let things be themselves.

– John Cage

Through this study, I set out to explore the concepts of adaptive systems and Machine Learning

in agent-based new media installations. The relevance of this pursuit is demonstrated by the

uniqueness of its subject of inquiry, the originality of its methods, and the significance of the

questions it seeks to address in the field of contemporary media art, as summarized by the following

premises:

1. Adaptation plays a central role in contemporary conceptions of life, bridging the gap between

self-organizing phenomena and living systems. Rooted in adaptive principles, the field of

Machine Learning has been steadily growing in presence in the contemporary landscape of

computer science since the early 2000. After half a century of research, Machine Learning

finally seems to have succeeded in surpassing the popularity of rule-based approaches to AI.

2. Adaptation is a core principle that is necessary for understanding scientific and artistic prac-

tice. For example, Pickering’s concept of a “dance of agencies” and Xenakis’ notion of art-

science “alloys” both articulate adaptive as well as learning mechanisms that resonate with

work in Cybernetics, Artificial Life, and Machine Learning.
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3. Because of its capacity to engage critically and creatively with matter and experience, art can

uniquely contribute to the understanding of these concepts, generating alternative narratives

and imaginary grounds for future learning agents.

4. There seems to be a discrepancy between, on the one hand, the growing importance of the

field of Machine Learning in AI since the mid–1980s and, on the other hand, the relative

scarcity of artworks that make use of adaptive systems, not to mention the lack of both

practical and theoretical frameworks for understanding such works. The research described

in this dissertation provides historical context as well as practical information for addressing

this gap, for example by developing an aesthetics of adaptive behaviors as they appear in

embodied agent-based art installations.

Following the principles of art-as-research, the study also highlights my experiences employing

an iterative research-creation methodology inspired from Agile software design. Seeking the devel-

opment of new knowledge through the aggregation of material practice and theoretical analysis, I

opened up this research by examining the Absences series of experimental intervention in natural

settings from 2008 to 2011. I described how installing agents in hostile and changing environments

further highlights questions about adaptation, revealing the necessity of doing this research. As

a way of better framing these questions, I followed the entangled historical paths surrounding the

emergence and progress of Machine Learning and Adaptive Computation from the 1950s onward,

examining in particular their influence on the development of media art. In parallel, I examined

important concepts tied to these research strands, such as embodiment, enaction, coupling, au-

tonomy, emergence, self-organization, authorship, and performativity. Through this theoretical

research, augmented by reflexive accounts of practice derived from my experiences creating the art-

works Absences (2008—2011), Vessels (2010—2015), and N-Polytope (2012), I address the research

questions core to this research project:

1. What new forms of aesthetic experience do Machine Learning methods enable or make possible

when utilized outside of their intended context and are instead carried over into artistic works?
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2. What characterizes the practice of using adaptive computational methods in agent-based

artworks?

3. What kind of worldview are these works fostering?

7.1 Experience

One of the biggest challenges of this dissertation has been to extract specific, focused observations for

comprehending how human audiences experience the type of agent-based, adaptive computational

artistic installations which are the focus of this study. This pursuit is complicated by the fact that

art, and New Media art in particular, is extremely dense and diversified, and more often than not

involves a multiplicity of technological and artistic strategies. This situation makes it difficult to

isolate the specific effects associated to the use of Machine Learning techniques in their construction.

As a way to address the aesthetics of such systems, I considered their autonomous coupling with

the real world through the notion of enaction, which provides a model for understanding novelty and

meaning generation through an embodied agent’s interactions with its environment. I examined

how adaptation acts as the way by which self-organizing systems are able to generate novelty in the

work of Peter Cariani, and is therefore an important mechanism in the emergence of creativity and

life. Based on these ideas, I extend Simon Penny’s concept of “behavior aesthetics” by providing a

framework for understanding behaviors in terms of how their shapes evolve through time.

In this taxonomy, three kinds of behaviors were distinguished, namely: (1) mappings; (2) first-

order behaviors; and (3) second-order behaviors, or metabehaviors. I claimed that adaptive and

evolutionary systems are the only ones capable of producing this third category, because their

behaviors themselves change over time according to an underlying metamorphic behavioral pattern.

While this does not make these systems aesthetically “better” than others, it reveals how adaptation

can generate different kinds of experiences deeply tied to their temporal unfolding.

To describe the ways by which these behaviors transform through time, I reference the notions of

morphostasis, morphogenesis and metamorphosis. Behaviors of the first order are purely morpho-

static: their shape does not change through time. Given enough time for their dynamic patterns to
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appear and repeat themselves, an external observer can recognize and familiarize themselves with

them. Contrary to these behaviors of the first order, adaptive behaviors usually oscillate between

periods of morphogenesis/metamorphosis and morphostasis as they adjust to their environment. If

the environment and the goals they are trying to meet remain stable, they will eventually stabilize

in a morphostatic behavior of the first order, until the conditions change again.

As such, the complexity of the self-organizing circuits that are trained in Machine Learning

algorithms lay beyond human comprehension. This is especially true in neural networks such as

MLPs, whose trained weights are difficult, if not impossible, to interpret by human beings (d’Avila

Garcez, Broda, and Gabbay 2001). Adrian Thompson’s mid–1990s experiment with a genetically

trained programmable circuit described in section 6.4, is an excellent example of that problem.

Once the FGPA was trained to distinguish between two audio frequencies, the scientist removed

the parts of the circuits that were completely disconnected from the inputs and outputs, thinking

that there was no possibility they could logically be involved in the computation. However, he

realized that by doing so he destroyed the functionality of the system, which had learned to make

use of the analogic variations induced on the signal through the disconnected yet physically present

parts of the circuit.

The second-order behaviors induced by adaptive systems, combined with the inability of humans

to understand their structural organization, are two important features of such systems. This may

explain why audiences subjected to such works are often mesmerized by their uncanniness, as they

are never able to settle on a familiar, recognizable morphology in the behaviors that unfold before

their eyes. This is why these works require a period of adjustment from the audience, as only by

spending time with the piece can they really begin “knowing” its behavior. This knowledge of the

work is not one that of specific logical processes, but rather a knowledge of generalized behavior

that one might become acclimated and perhaps become close to.

This process usually takes time and cannot be described using technical or precise languages, not

even by the artist who designed it. Adaptive systems are thus evocative of alien agencies, of lifelike

processes from another world: observing these behaviors is an underdetermined, subconscious,

concretely unexplainable experience. What it implies aesthetically for both artist and audience is a
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certain loss of control in regards to plastic or logical footholds for aesthetic experience, and instead

that the aesthetics might be found in behavioral patterns that evolve following rules that cannot

be pointed to directly, but felt through one’s own adaptive body.

7.2 Practice

As a first step in understanding the artistic implications of working with Machine Learning, I

examined scientific definitions of Machine Learning. I looked at how the different components of

a learning algorithms can be exploited by artists, namely: (1) models; (2) optimization procedure;

(3) evaluation function; and (4) training data. I used this format to demonstrate how artists could

work with ML methods to build self-organizing behaviors by focusing on each of these constituents

as aspects of creation.

An important aspect of artmaking with ML that constantly resurfaces is the relationship between

the complexity of the problem to solve, the capacity of the model (i.e., the number of free parameters

that can be adjusted, such as weights in a neural network or DNA bits in genetic algorithms), the

number of input and output dimensions and the quantity of data points available to the system.

To make a long story short, complex problems usually require bigger and more powerful models,

which in turn require more data. A direct consequence for artmaking is that, if one wants to

generate an adaptive behavior happening in real-time through an embodied agent, she must either

make the problem simple, or allow the agent to learn over a longer period of time. Even relatively

simple problems can extend beyond the timeframe characteristic of New Media art presentation

opportunities : problems can take days, weeks, or even years to solve.

These time constraints therefore complicate the trial-and-error process usually involved in the

creation of such behaviors in New Media artwork,1 which necessitates a certain loss of control. It

is often impossible to have the system behave exactly the way it was imagined, and therefore the

artist is often at the mercy of the very same system that she is designing.

Machine Learning offers a framework for working more efficiently with self-organizing systems, a

1Imagine having to wait for a year before verifying that an agent has learned something aesthetically satisfying,
only to realize there was a bug in the system or that some other adjustment is required.
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set of tools for “shaping” agents by assigning them goals and desires. Machine Learning thus holds

the potential to facilitate the development of emergent systems when compared with “bottom-up”

approaches such as those of ALife. Yet, in no way does it preclude the process of trial-and-error

that one goes through when making art. In a way, the process is even more antagonistic than in

more traditional artforms, because on the one hand, the artist often wants these systems to surprise

even herself, to become alive, so to speak, independent of one’s control; yet at the same time, as an

artist, one wants to create certain effects, and the more the systems become alive and autonomous,

the more they might drift away from one’s will and generate patterns that might be difficult to

understand.

Perhaps a solution to this conundrum is to accept that one cannot have both autonomy over

these processes and command them at the same time. So in the end the creative process demands

that one let down their guard and accommodate themselves to these processes, let the Machine

Learning agents “be themselves”, and then get to know them, and be changed by them. This is, of

course, easier said than done, but my hope is that the accounts of practice and the various tools

presented in this research help facilitate this process for artists wishing to work with adaptive and

evolutive agents.

7.3 Worldview

This loss of control is key to the development of a posthumanist perspective over art and science

in the 21st century. Adaptive behaviors suggest an alternative path between the mythical figure of

the artistic genius who selects the “right” processes, and the capitalist utopia of artificial creativity.

They ask for a new way to look at our relationship with other forms of agency.

Furthermore, the use of Machine Learning agents in artistic practice demands of artists and

audiences alike to examine and perhaps revise their expectations about information, control, and

time in regards to technologies themselves. The kind of artworks described in this thesis do not

provide any information, they drift in and out of everybody’s control, and they deploy over very

diverse time spans. This suggests that the media demands new ways for relating to art, science,
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and life, beyond the consumerist, tractable, and efficient forms the Western world has become

so accustomed to in technological interactions, towards undetermined, incontrollable, mutating,

non-optimizable processes which have a true potential for change.

Peter Cariani’s theory of biological semiotics, described above, highlights the profound adaptive

nature of emergent behaviors in both living and computational systems. His characterization of

the relationship between emergence, adaptation, and the production of novelty in such systems

resonates directly with Andrew Pickering’s perspective. Pickering describes how systems faced with

a changing environment that becomes incompatible with their model of the world (resistance) have

to adapt by redefining themselves (accommodation), thus suddenly diverging from their expected

behavior.

Pickering turns to early British Cybernetics to find an alternative way to do science, in a way

that both engages directly with matter and might fully embrace the indeterminate and muddy

characters of research. From this, he developed the idea that scientific practice should be seen as

an ongoing interaction between human and nonhuman agents, a “dance of agencies”, considering

scientific practice in a way which is decentered from the human subject. Pickering’s view of scientific

research might also suggest a means of addressing the demands placed on audiences and institutions

by emergent technologies in 21st century New Media art. The complexities of adaptive systems can

shed new insights on the relationalities between the artist, the audience, and the artworks. They

demand from art theories that are able to account for the various human-machine interplays that

happen in making and presenting art. In the context of agent-based systems, this suggests the artist

should be considered not so much as the commander of her work, but rather as a collaborator with

human and nonhuman agencies that literally develop the artistic object into its own intersubjective

becoming.2

2In particular, this further undermines the romantic figure of the solo artist, which has been put into question by
modern art but is still pervasive in the popular imagination.
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7.4 Implications

The theoretical and practical implication of this resonate across multiple fields of research in the

humanities. First and foremost, this research engages with contemporary discourses of computa-

tional and robotic systems in media art and STS by clearly articulating the power of adaptive and

learning systems and behaviors within larger historical and conceptual frameworks. My research

uniquely traces the impact of these concepts of adaptation through the history of both science

and art alike since the post-war era. It shows the active part played by Machine Learning and

Adaptive Computation in the history of Artificial Intelligence — a role that seems to be growing

exponentially in the past decade — while simultaneously demonstrating its impacts in media art.

This historical study of adaptive agents has led me to develop a framework to help art theorists

and practitioners come to a more cohesive understanding of behavioral aesthetics in agent-based

artworks. The proposed taxonomy differentiates “mappings” from behaviors, and suggests a special

category for the kind of “metabehaviors” produced by self-organizing systems in general (and adap-

tive systems in particular). I believe that this system might help one to better define behaviors of

Machine Learning agents, taking into account the imagined perspective of an external observer that

perceives recognizable patterns performed in the agent. I suggested the concepts of morphogenesis,

metamorphosis and morphostasis, borrowed from biology, to describe the way such second-order

behaviors change shape through time.

By bringing these conceptual tools into the contemporary discourse of media art, my goal is to

provide artists and theorists with ways to imagine, express, discuss, and criticize works of art that

makes use of computational (or computationally-inspired) processes. In particular, my research on

adaptive and self-organizing systems suggests that emerging, more revolutionary forms of art are

made possible through the use of agent-based systems that perform behaviors of higher order. It

supports and extends the idea that artificial agencies described by STS scholars such as Pickering

(early Cybernetics systems such as Ashby’s homeostat and Walter’s tortoises) offer the possibility

of a new range of experiential effects through the deployment of behavioral patterns that evoke our

own complexity, imperfections, and indeterminacy as embodied, living beings performing in the
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world.

Yet, it also suggests that the new media art scene might not be currently accustomed to works

with highly adaptive systems, as new media art has developed as a field largely through exhibition

contexts and festivals that acclimatize its audiences with mapping and clearly defined procedural

operations. As such, artists working with adaptive systems might perhaps find more ready contexts

for their practice by working within more traditional art networks that have long accepted subtle,

long performance of embodied practice as defining aspects of their history: performance art, envi-

ronmental art, and perhaps relational aesthetics. The other option is that institutions presenting

digital artworks could adapt in order to allow for these works to be presented under the right con-

ditions, to educate and develop the public into getting in the good state of mind to appreciate these

works.

As adaptive systems have increasingly become instruments of total control in contemporary

capitalism under the regime of “big data”, artists could perhaps subvert this idea of control and

authorial command into creating technologies of unseated becoming and subjecthood. In particular,

there is a way by which the lifelike behaviors of Machine Learning can become a space of emancipa-

tion from the art-as-object commodity drive of capitalism: if audiences are ready to accept artworks

“as themselves”, the objects as a relational locus can provide a means of artistic interaction that

resist logics of ownership and authorial control.

Further to the consideration of digital art, this study points to the need for a reconsideration

of how artists are conceived of. If we admit that art has “never been modern”, that it is a blurry,

muddy, performative dance that engages many agents, then the figure of the solo artist should hold

less sway. If practitioners want to truly understand how art and science can work together in the

creation of new aesthetic experiences, one has to also recognize how she is embedded in a network

of agencies that include significant economic and political asymetries in a 21st century neoliberal

context.

This in turn suggests a call for the deconstruction of the traditional notions of the solo authorial

artist in favor of models that actively embrace collaboration and multiple authoring as aspects of

contemporary creation, perhaps even assuming the model of the sciences in favor of formalized
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systems for co-authorship.

The relationship between arts and sciences cannot be conceived of any long as “pure” in a

modernist sense — because they never were, as anthropologist of science would claim (Latour

1991) — but should rather be seen as human activities embedded in specific networks and ways of

doing — engaged in material practice, negotiating with agents in an adaptive fashion, transforming

themselves as much as they transform the agents they are working with. Media art in particular is

hybridized, and for some artists, the practices of science and art are increasingly intertwined.

7.5 Limitations

This study of course is conducted in recognition of many limitations: I will hereby only discuss at

length the limitations that have the strongest impact on the quality of current findings.

First, this research is based on the important premise that the choice of a particular algorithm

to control the behavior of an agent has a direct impact on how it is experienced by the viewer.

While the aesthetic framework that I introduced in this dissertation has the advantage of clarifying

some of the conceptual and formal aspects of behavior as a medium for artmaking, the research

did not go as in-depth as it could have in understanding the role of the observers in the process.

Whether one uses mappings, first-order and/or second-order behaviors as part of an agent-based

installation, the experience of the work can never be separated from the intricate relationships that

are established between the viewers, the work, and the environment.

While much attention has been placed on understanding the intrinsic characteristics of learning

algorithms and the evolution of their morphologies, the role of the observer in this process has been

comparably asymmetric. It is still not clear how the usage of Machine Learning, as opposed to

more simple techniques from Cybernetics or GOFAI for example, really make a difference when it

comes to audiences—the development of large scale qualitative and quantitative research in this

regard is outside the scope of this thesis.

The second major limitation of this research is the weakness of its methodology when it comes

to evaluating the public response to adaptive works. Indeed, the first limitation is in large parts a
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consequence of this methodological flaw. My examination of these reactions could have been more

objective and better documented, for example through a more thorough qualitative study.

More generally, the focus on algorithms over human interactions characterizes an important

shortcoming, a lack of languages on behalf of researcher and audiences alike for how these computationally-

generated behaviors are received beyond a vague sense of “lifelikeness” and “uncanniness”. These

relationships between artwork and observer are subjectively encountered, as it is only the observers

themselves that have the power to assign agency to things around them. Social robotics expert

Cynthia Breazeal considers that making artificial agents autonomous does not make them “suffi-

ciently life-like”, and argues that believability is an important aspect in the design of social robotic

agents because it projects the “illusion of life” and gives the agent a personality (Breazeal 2002, 8).

In this light, the revolutionary nature of this work only holds if it is capable of inspiring a consistent

social impact. While this is true of most forms of experimental art, it is still premature to make

statements of the effects of these works on audiences who are still developing.

Moving on, the artistic projects that I analyzed were complex assemblages of different tech-

nologies and physical objects, making it difficult to precisely analyze the impact of the algorithms

used because they were intertwined with the aesthetics of their physical form as well as with other

sensory media. A more systematic set of experiments, where one could isolate the algorithms and

compare their effect in front of an audience, could have been beneficial in trying to tackle the

aesthetic question.

The third main weakness of this study lies in the fact that I feel like I have only scratched the

surface in regards to the establishment of a wider aesthetic worldview. It is still not clear how one

can imagine a new relationship between art and science through a nonmodern ontology. Does the

performative nature of practice adequate insist on a deconstruction of the frontier separating art and

science? How do adaptive systems, and in particular connectionist and deep learning architectures,

challenge both computationalism and enactivism in their conception of cognition, and how does

this affect our view about representation and embodiment in art and science practices? How is

indeterminacy connected to such a performative worldview? There are only a few of the many

questions that still remain to be explored.
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7.6 Future Work

The results of the study as well as its limitations suggest a number of future projects that could

address the study’s shortcomings, as well as extend its findings. Improved research approaches need

to be enacted for addressing questions of experience and practice in audience members. Can we

assess of human experience, and how? How to evaluate artificial agency and behavior morphologies

from the audience’s perspective?

The evaluation of experience presents important challenges. First, the concept of human experi-

ence itself is equivocal. When we use the term “human experience”, I consider, along with thinkers

like David Chalmers and Stevan Harnad, that we often conflate two distinct notions (Chalmers

1997; Harnad 2000). One meaning of “experience” refers to the set of functional, causal, and possi-

bly observable events happening in the physical world during consciousness. For example, when we

describe an experience using human language, or when we measure it using data such as biosignals,

interviews, or questionnaires, or otherwise employ measures that seem to presuppose rules or gen-

eral principles of human perception, we are referring to this tangible aspect of experience, which I

will refer to as “experience-as-function”.

The other meaning of experience concerns the phenomenal feelings associated with such events,

only accessible by the conscious subject living through them (“experience-as-feeling”). One of the

most fascinating characteristics of the world we live in is that, even though felt experience does

not seem to be playing any causal role in it, the only thing we can truly know for certain is, as

Descartes rightfully claims, that we are feeling. Yet, another fundamental principle of our universe

known as the “other minds problem” is that we can only feel our own experience of the world: we

do not have access to the felt experience of other bodies (Harnad 1991).

It is hence impossible to evaluate someone’s felt experience, because measurement can only be

done using a third person’s perspective, which is forbidden by laws of our universe. Yet, unless

one delves into solipsism, it is rational to assume that similar bodies, because they have close

physical properties, when placed in the same context, subjected to the same conditions, and affected

physically in similar ways, will likely feel something analogous.
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This correlation existing between function and feeling is what allows us to use different method-

ological approaches to measure experience-as-function. A number of strategies have been deployed

in the fields of user experience (UX) and human-computer interaction (HCI) that might be of in-

terest. Each evaluation method, however, has its drawbacks: for example, if we ask the subject to

describe her experience while she is living them, this will affect her experience, while if we ask her

after, she might not be able to recollect fully how she felt.3

Thus, it is possible to evaluate human experience in works of art, assuming we understand

that (1) what we measure belongs to experience-as-function, that (2) any measurement will be

imperfect and incomplete, and (3) that any instrument we use for observing the subject will impact

her experience and how she reports it. Experience is highly context-dependent, subjective, and

dynamic (Law et al. 2009). The best approaches need to take into account the context of the work,

in order to both limit the impact of the measurement method on the lived experience while getting

the best results, and also to facilitate the establishment of correlations by subjecting audience

members to a similar range of media events. This is very hard to do because works of art often

have open-ended contexts, and the human subjects that see the work of art are subjected to many

incontrollable affects that might be completely independent of the work itself.

Consider, for example, how evaluation of audience’s experience could be implemented in the

cases of Vessels and N-Polytope. These two works have two completely different contexts. Vessels

is designed as a public artwork where a mixed audience of passers-by as well as a targeted audience

can observe the ongoing spectacle of a community of artificial beings in public space. N-Polytope, in

comparison, is designed for indoor presentation as an immersive experience that engulfs the whole

experience of the audience members present. The piece also oscillates between an ambient mode

and a performative mode (which contains a narrative progression).

UX metrics are traditionally categorized as either external (i.e., based on observations from an

external examiner) or internal (i.e., generated by the user’s own observations over her experience).4

3Francisco J. Varela has proposed a set of neurophenomenological methodologies that try to bridge the gap
between first-person and third-person accounts of experience, but I do not find his argumentation satisfying (Varela
and Shear 1999).

4Importantly, even “internal” methodologies cannot access felt experience directly: they only provide descriptions
of these experiences, through the vantage point of the subject living them.
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External evaluation methods would be unlikely to provide useful data in N-Polytope because very

few observable events usually happen that could give hints about the user’s experience. In the case

of Vessels, it might be useful to use video and audio recordings to observe spectator placements

and movements around the robots as well as conversations between them.

One category of internal methods that could work well for both N-Polytope as well as Vessels is

the thinking aloud method, (Lewis 1982) where users are provided with a microphone and asked to

describe their experience in real-time, in their own words. Since in both cases we not only want to

collect information about the audience’s global experience, but rather how the different behavioral

patterns generated by the works comes to affect this experience in real-time, it would be useful

to use some form of recording as a reference frame for both internal and external data gathering

methods.

For example, in the case of N-Polytope, we could align the think-aloud session with the message

cues sent by the software running the show. This way, we could know, for example, how the

spectator reacts when the “fireflies” or the “chasers” patterns begin and end. In the case of Vessels,

since there is no centralized system that sends the triggers, a video recording, as suggested earlier,

would suffice to align the robotic behavioral happenings with the spectator’s reaction.

Semi-structured interviews (Edwards and Holland 2013, 2—3) would also be an interesting

method of measurement applicable to both cases, allowing the interviewer to investigate specific

questions while leaving space to allow for unforeseen ideas to flow during the conversation. In

particular, such techniques would be useful for Vessels because they could be applied more easily

to the input of passersby — for whom it might be impractical to ask to be hooked up with a

microphone for a think-aloud session. These interviews could be run on the spot with voluntary

visitors, interrogating them on their experience while promoting dialogue with groups (e.g., families,

couples, friends). For N-Polytope, it would be better that these interviews be made retrospectively,

to allow visitors the opportunity to experience the sensory experience without interruption.

An interesting, complementary approach called experience workshops is described in Edmonds,

Bilda, and Muller (2009). It involves bringing together a small group of experts from various fields

of study in arts, social sciences, HCI, etc. After experiencing the work on their own, the group
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meets and each participant describes her experience, while the others take notes. They then work

together on a set of questions about the work and generate a report.

New experiences need to be designed in order to better understand how people experience differ-

ent orders and types of behaviors. Vessels and N-Polytope are aesthetically complex works, making

it difficult to separate the influence of the behavioral patterns from the other media components

such as sound and light. It would be useful to design specific experiences where (1) users would be

confronted more specifically with the different types of behaviors, while keeping the media elements

stable; and (2) another set experiences where the behaviors are kept stable but are realized through

different kinds of media.

The appropriateness of different contexts for presenting agent-based works needs to be more

thoroughly studied, perhaps by comparing the experience of a work when it is presented inside a

traditional art venue, a new media festival, in public space, or in a semi-private space (such as a

workplace that would share its audience’s everyday life). More research also needs to be conducted

adressing issues of duration, such as examining the audience’s experience of adaptiebehaviors over

different time spans. In relation to these questions, I would like to continue to explore the work

that has been done in the field of social robotics.

An area I am interested in exploring further is the tension between a computationalist/representativist

and performative/enactivist worldview. While I agree in most part with critiques of computation-

alism, I find the enactivist model to be limited. Like Harnad, I think that representations exist

in the brain and play an important part in cognition, however, these representations are not, like

the computationalists claim, pure symbols independent from a physical substrate, but are rather

grounded in the body (through connectionist networks). I am interested in what the latest devel-

opments in representational learning and deep learning can contribute to this inquiry, and would

like to explore these systems as part of agent-based installations to understand better how these

notions interplay.

Finally, in terms of practice, there are a number of different artistic strategies that need to be

further explored. Firstly, the idea of agent “shaping”, where an agent is trained by the artist to

give its behavior the shape he wants through direct feedback, is particularly worthy of attention.
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One can imagine, for example, a robot that interacts in its environment; the artist observes it and

can, through a remote control, give it positive or negative rewards depending on its actions, until

the robot reaches a certain kind of behavior.

Secondly, as a strategy for reducing the time span taken by an agent to stabilize into a learned

behavior, I would like to experiment with pre-training systems over a problem, saving the model’s

state regularly. This would generate a sequence of states representing the different stages of learning

the agent has been through. For example, if the learning process takes a month, we could save one

version of the weights every day, yielding thirty (30) sequential sets of parameters, going from the

initial state to the fully adapted state. Once in the gallery space, this process could be accelerated

by sequentially switching from one set of weights to the next, but clearly at a more rapid timescale.

For instance, one could run through a sequence by loading a set of weights every 20 seconds, allowing

the audience to see the adaptive procedure over a span of about 10 minutes.

Thirdly, I am interested in further exploring the idea of bidirectional coupling, the idea that

an adaptive agent is different from an inanimate tool (such as a cane) because not only can it

be “ready-to-hand” for a human user, it can also make the human user ready to its hand, so to

speak. In that respect, I am interested in developing artistic agents that could live with a human

for a while so that a symbiotic, bidirectional coupling could start to emerge between them. (I

have already started working on this with a lamp project). In particular, I am interested in the

relationships a human could develop with such a system, which could become an imprint of the

human user’s own behavior. The agent’s adaptive features, when placed in an environment over a

long time, could have some kind of historical capacity, not so much in terms of being a placeholder

for content, such as pictures or words, but rather in its retention of a certain behavior and its

aptitude to recognize. When interacting, both human and non-human agents would adapt to each

other and, in the process, become attuned to one another. Thus, after a period of separation, when

the two met again (provided that they did not change too much in the mean time) there could be

a possibility that they might recognize one another. What becomes even more powerful is that the

kind of interaction the prototype suggests offers a ground for an historical-based social orientation,

where an object attuned to someone can interact with another person. The object is rather flexible

225



in regards to to the kind of environment it falls into: it can as well be used solely by a single person,

by two persons or by a group (eg. a family).

7.7 Final Thoughts

The advent of Machine Learning and its growing importance in the 21st century resonates with the

performative turn in humanities, as it suggests that machinic intelligence has less to do with logic

and rationality, and more with lifelike processes of self-organization that run beyond traditional

frameworks of representation. While the general public still perceives computers as things that

accumulate and manipulate data by applying logical rules, the artificial agents that will populate

our future seem more likely to be akin to biological forms than to advanced calculators. However,

the price to pay is that the behavior and data processing of these artificial “hybrids” might lay

beyond their users’ comprehension — even more opaque than the computers of today — as these

hypothetically adaptive devices would continuously come up with their own rules.

Artists have an important role to play in addressing these technologies beyond the applications

that science and industry suggest. The autonomy and indeterminacy of adaptive systems suggest

new ways to think about how to make art, how to experience art, and how the artistic world works.

One strategy might be to go back to the experiments of early British cyberneticians, enacting

a newly retro genre of performative science. In some ways, art might be more protected from

neoliberal funding models that currently dominate scientific research, allowing artists to address

blind spots left in the wake of an increasingly homogenic socio-economic scientific research culture.

My ambition is that my own research presented in this thesis will allow artists and theorists to

understand better the tensions between art and science in the field of AI, the role adaptation plays

as a concept in these relationships, and show how artists can reemploy, exploit, and reappropriate

techniques developed by science to create new aeshethic morphologies, just as Xenakis did decades

ago when he used stochastics to generate new forms of music. I hope that this study, as well as my

artistic practice, can actively participate to the development of this endeavor.

226



Bibliography

Abbeel, P., et al. 2007. “An Application of Reinforcement Learning to Aerobatic Helicopter Flight”.

In Advances in Neural Information Processing Systems 20, 1–8.

Abbott, L. F. 1999. “Lapicque’s Introduction of the Integrate-and-Fire Model Neuron (1907)”.

Brain Research Bulletin 50 (5–6): 303–304.

Alpaydin, E. 2004. Introduction to Machine Learning. Adaptive computation and machine learning.

Cambridge, MA: MIT Press.

Anderson, J. A., and E. Rosenfeld. 1998. Talking Nets an Oral History of Neural Networks. Cam-

bridge, MA: MIT Press.

Arel, I., D. Rose, and T. Karnowski. 2010. “Deep Machine Learning - A New Frontier in Artificial

Intelligence Research [Research Frontier]”. IEEE Computational Intelligence Magazine 5 (4):

13–18.

Ascott, R. 2003a. “Behaviourist Art and the Cybernetic Vision”. In Telematic Embrace: Visionary

Theories of Art, Technology, and Consciousness, 109–156. Berkeley: University of California

Press.

— . 2003b. Telematic Embrace: Visionary Theories of Art, Technology, and Consciousness. Ed. by

E. A. Shanken. Berkeley: University of California Press.

Ashby, W. R. 1957. An Introduction to Cybernetics. London: Chapman & Hall.

— . 1954. Design for a Brain. New York: Wiley.

227



Audry, S. 2010. “Absences: Public Art Interventions in Natural Spaces Using Autonomous Elec-

tronic Devices”. In ISEA 2010 Conference Proceedings, 469–471. Ruhr, Germany.

Austin, J. L. 1962. How to Do Things with Words. Vol. 88. London, UK: Oxford University Press.

Baginsky, N. A. 2005. “Aglaopheme - Slide Guitar Robot”. Visited on 03/08/2014. http://www.

baginsky.de/agl/agl_index.html.

Baljko, M., and N. Tenhaaf. 2008. “The Aesthetics of Emergence: Co-Constructed Interactions”.

ACM Transactions on Computer-Human Interaction 15 (3): 11:1–11:27.

Bates, J. 1994. “The Role of Emotion in Believable Agents”. Commun. ACM 37 (7): 122–125.

Bedau, M. A. 2000. “Artificial Life VII: Looking Backward, Looking Forward (Editor’s Introduction

to the Special Issue)”. Artif. Life 6 (4): 261–264.

Bedau, M. A., and C. E. Cleland. 2010. The Nature of Life: Classical and Contemporary Perspectives

from Philosophy and Science. 1st ed. Cambridge University Press.

Bengio, Y., A. Courville, and P. Vincent. 2013. “Representation Learning: A Review and New

Perspectives”. IEEE Transactions on Pattern Analysis and Machine Intelligence 35 (8): 1798–

1828.

Bengio, Y. 2009. “Learning Deep Architectures for AI”. Foundations and Trends in Machine Learn-

ing 2 (1): 1–127.

Bengio, Y., and J.-S. Senécal. 2003. “Quick Training of Probabilistic Neural Nets by Importance

Sampling”. In Proceedings of the Conference on Artificial Intelligence and Statistics (AISTATS).

Bengio, Y., et al. 2006. “Neural Probabilistic Language Models”. In Innovations in Machine Learn-

ing, ed. by P. D. E. Holmes and P. L. C. Jain, 137–186. Studies in Fuzziness and Soft Comput-

ing 194. Springer Berlin Heidelberg.

Bernard, C. 1957. An Introduction to the Study of Experimental Medicine. New York: Dover Pub-

lications.

Bertalanffy, L. van. 1969. General System Theory: Foundations, Development, Applications. New

York: Braziller.

228



Bishop, C. M. 1995. Neural Networks for Pattern Recognition. Oxford University Press.

Boden, M. A. 1996. “Autonomy and Artificiality”. In The Philosophy of Artificial Life, First, ed. by

M. A. Boden, 95–108. Oxford University Press, USA.

— . 2009. “Computer Models of Creativity”. AI Magazine 30 (3): 23.

— . 2006. Mind as Machine: A History of Cognitive Science. Oxford : New York: Clarendon Press

; Oxford University Press.

Boden, M. A. 2004. The Creative Mind Myths and Mechanisms. London; New York: Routledge.

Bogart, B. D. R., and P. Pasquier. 2013. “Context Machines: A Series of Situated and Self-

Organizing Artworks”. Leonardo 46 (2): 114–143. JSTOR: 23468147.

Boulanger-lewandowski, N., Y. Bengio, and P. Vincent. 2012. “Modeling Temporal Dependencies in

High-Dimensional Sequences: Application to Polyphonic Music Generation and Transcription”.

In Proceedings of the 29th International Conference on Machine Learning (ICML-12), ed. by

J. Langford and J. Pineau, 1159–1166. New York, NY, USA: ACM.

Bourgine, P., and F. J. Varela. 1994. “Towards a Practice of Autonomous Systems”. In Toward

a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial

Life, xi–xvii. Paris, France: The MIT Press.

Bown, O. 2012. “Generative and Adaptive Creativity: A Unified Approach to Creativity in Nature,

Humans and Machines (Preprint)”. In Computers and Creativity, ed. by J. McCormack and M.

d’Inverno, 361–381. Springer Berlin Heidelberg.

Breazeal, C. 2002. Designing Sociable Robots. Cambridge, MA: The MIT Press.

Brooks, R. 1986. “A Robust Layered Control System for a Mobile Robot”. IEEE Journal on Robotics

and Automation 2 (1): 14–23.

Brooks, R. 2002. Flesh and Machines: How Robots Will Change Us. Random House LLC.

Brooks, R. A. 1989. A Robot that Walks: Emergent Behaviors from a Carefully Evolved Network AI

MEMO 1091. Massachusets Institute of Technology.

— . 1987. “Intelligence Without Representation”. Artificial Intelligence 47:139–159.

229



Brooks, R. A. 1999. Cambrian Intelligence: The Early History of the New AI. Cambridge, MA:

MIT Press.

Brown, R., et al. 2001. Biotica: Art, Emergence and Artificial Life. London: RCA CRD Research.

Burnham, J. 1969. “Real Time Systems”. Artforum 8 (1): 49–55.

— . 1968. “Systems Esthetics”. Artforum 7 (1): 30–35.

— . 1970. “The Aesthetics of Intelligent Systems”. In On the Future of Art, ed. by E. F. Fry, 95–

122. New York: Viking Press.

Busch, K. 2011. “Artistic Research and the Poetics of Knowledge”. Art & Research: A Journal of

Ideas, Contexts and Methods 2 (2).

Butler, J. 1999. Gender Trouble: Feminism and the Subversion of Identity. New York: Routledge.

— . 2004. Undoing Gender. New York; London: Routledge.

Cage, J. 1961. “Experimental Music”. In Silence, 7–12. Middletown, CT: Wesleyan University Press.

Cage, J., and D. Charles. 1981. For the Birds. London, UK: Marion Boyars Publishers Ltd (.

Callon, M. 2006. What Does It Mean to Say that Economics Is Performative? CSI WORKING

PAPERS SERIES 005. Centre de Sociologie de l’Innovation (CSI), Mines ParisTech.

Campbell, S. R., D. L. Wang, and C. Jayaprakash. 1999. “Synchrony and Desynchrony in Integrate-

and-Fire Oscillators”. Neural Computation 11 (7): 1595–1619.

Cannon, W. B. 1928. “The Mechanism of Emotional Disturbance of Bodily Functions”. New England

Journal of Medicine 198 (17): 877–884.

Cariani, P. 1990. “Adaptive Connection to the World through Self-Organizing Sensors and Effec-

tors”. In Proceedings. 5th IEEE International Symposium on Intelligent Control 1990, 1:73–78.

IEEE.

— . 1991. “Adaptivity and Emergence in Organisms and Devices”. World Futures 32 (2-3): 111–

132.

— . 2012. “Creating New Informational Primitives in Minds and Machines”. In Computers and

Creativity, ed. by J. McCormack and M. d’Inverno, 383–417. Springer Berlin Heidelberg.

230



Cariani, P. A. 2016. “Beware False Dichotomies”. Constructivist Foundations 11 (3): 472–475.

— . 2008. “Emergence and Creativity”. In Emoção Art.ficial 4.0: Emergência, 20–42. Sao Paolo,

Brazil: Itaú Cultural.

— . 1989. “On the Design of Devices with Emergent Semantic Functions”, State University of New

York at Binghamton.

Chalmers, D. J. 1997. The Conscious Mind: In Search of a Fundamental Theory. Philosophy of

Mind Series. Oxford University Press.

Chalup, S., C. Murch, and M. Quinlan. 2007. “Machine Learning With AIBO Robots in the Four-

Legged League of RoboCup”. IEEE Transactions on Systems, Man, and Cybernetics, Part C:

Applications and Reviews 37 (3): 297–310.

Church, A. 1936. “A Note on the Entscheidungsproblem”. J. Symb. Log. 1 (1): 40–41.

Clarke, B., and M. B. N. Hansen, eds. 2009. Emergence and Embodiment: New Essays on Second-

Order Systems Theory. Duke University Press Books.

Cohen, A. E., and F. J. Varela. 2000. “Facing Up to the Embarrassment: The Practice of Subjectivity

in Neuroscientific and Psychoanalytic Experience”. Journal of European Psychoanalysis (10-11).

Cooper, S. J. 2005. “Donald O. Hebb’s Synapse and Learning Rule: A History and Commentary”.

Neuroscience & Biobehavioral Reviews 28 (8): 851–874.

Cybernetics Serendipity - Late Night Lineup. 1968. In collab. with J. Reichardt.

Dağdelen, B., and Y. E. Kucur. 2016. “Bio-Inspire FullDome Performance”. Visited on 09/26/2016.

http://prix2016.aec.at/prixwinner/17912/.

D’Avila Garcez, A. S., K. Broda, and D. M. Gabbay. 2001. “Symbolic Knowledge Extraction from

Trained Neural Networks: A Sound Approach”. Artificial Intelligence 125 (1): 155–207.

Dawkins, R. 1986. The Blind Watchmaker. 1st American ed. New York: Norton.

Demers, L.-P., and B. Vorn. 1995. “Real Artificial Life as an Immersive Media”. In Convergence:

Proceedings of the 5th Biennial Symposium for Arts and Technology, 190–203. New London, CT:

Center for Arts and Technology at Connecticut College.

231



Dewey, J. 1959. Art as Experience. A Perigee book. New York, NY: Putnam.

Di Scipio, A. 1994. “Formal Processes of Timbre Composition: Challenging the Dualistic Paradigm

of Computer Music”. In Proceedings of the 1994 International Computer Music Conference,

202–208. San Francisco: : International Computer Music Association.

Dietrich, E. 1990. “Computationalism”. Social Epistemology 4 (2): 135–154.

Dinneen, G. P. 1955. “Programming Pattern Recognition”. In Proceedings of the March 1-3, 1955,

Western Joint Computer Conference, 94–100. AFIPS ’55 (Western). New York, NY, USA: ACM.

Dorigo, M., and M. Colombetti. 1997. Robot Shaping: An Experiment in Behavior Engineering.

Cambridge, Mass: A Bradford Book.

Dourish, P. 2001. Where The Action Is: The Foundations of Embodied Interaction. Kindle Edition.

The MIT Press.

Downie, M. 2005. “Choreographing the Extended Agent: Performance Graphics for Dance Theater”.

Ph. D. Thesis, Massachusetts Institute of Technology. Visited on 03/12/2013.

Dreyfus, H. L. 1979. What Computers Can’t Do: The Limits of Artificial Intelligence. Harper &

Row.

Duda, R. O., P. E. Hart, and D. G. Stork. 2001. Pattern Classification. 2nd ed. New York: Wiley.

Dupuy, J. P. 2000. The Mechanization of the Mind: On the Origins of Cognitive Science. New

French thought. Princeton: Princeton University Press.

Eck, D. 2016. “Welcome to Magenta!” Visited on 08/04/2016. https://magenta.tensorflow.

org/welcome-to-magenta.

Eck, D., and J. Schmidhuber. 2002. A First Look at Music Composition Using LSTM Recurrent

Neural Networks. Technical Report. Manno, Switzerland: Istituto Dalle Molle Di Studi Sull

Intelligenza Artificiale.

Edmonds, E., Z. Bilda, and L. Muller. 2009. “Artist, Evaluator and Curator: Three Viewpoints on

Interactive Art, Evaluation and Audience Experience”. Digital Creativity 20 (3): 141–151.

Edwards, R., and J. Holland. 2013. What Is Qualitative Interviewing? A&C Black.

232



Eigenfeldt, A., A. Burnett, and P. Pasquier. 2012. “Evaluating Musical Metacreation in a Live

Performance Context”. Proceedings of the Third International Conference on Computational

Creativity: 140–144.

Fernández, M. 2006. “‘Life-Like’: Historicizing Process and Responsiveness in Digital Art”. In The

Art of Art History: A Critical Anthology, New ed, ed. by D. Preziosi, 477–487. Oxford history

of art. Oxford ; New York: Oxford University Press.

Fischer-Lichte, E. 2008. The Transformative Power of Performance: Re-Enchanting the World.

London: Routledge.

Fogel, L. J., A. J. Owens, and M. J. Walsh. 1967. Artificial Intelligence Through Simulated Evolution.

New York, NY: John Wiley and Sons.

Freeman, W. J. 2000. How Brains Make up their Minds. Maps of the mind. New York: Columbia

University Press.

— . 1995. Societies of Brains: A Study in the Neuroscience of Love and Hate. The International

Neural Networks Society series. Hillsdale, NJ: Lawrence Erlbaum Associates.

Friedman, T. L. 2012. “Come the Revolution”. The New York Times.

Gemeinboeck, P., and R. Saunders. 2013. “Creative Machine Performance: Computational Creativ-

ity and Robotic Art”. In Proceedings of the Fourth International Conference on Computational

Creativity. ICCC2013. Sydney: International Association for Computational Creativity.

Gleick, J. 2008. Chaos: Making a New Science. Revised. Penguin Books.

Glynn, R. 2008. “Conversational Environments Revisited”. In Conference Proceedings for the 19th

European Meeting on Cybernetics and Systems Research. Vienna, Austria.

Goodfellow, I., Y. Bengio, and A. Courville. 2016. “Deep Learning”.

Grefenstette, J. J., D. E. Moriarty, and A. C. Schultz. 2011. “Evolutionary Algorithms for Rein-

forcement Learning”. arXiv: 1106.0221 [cs].

Gu, D., and H. Hu. 2002. “Reinforcement Learning of Fuzzy Logic Controllers for Quadruped

Walking Robots”. In 15th Triennial World Congress. Barcelona, Spain.

233



Halpern, O. 2014. Beautiful Data: A History of Vision and Reason since 1945. Experimental futures.

Durham: Duke University Press.

Harnad, S. 2000. “Correlation vs. Causality: How/Why the Mind/Body Problem Is Hard”. Journal

of Consciousness Studies 7 (4): 54–61.

— . 2007. “Maturana’s Autopoietic Hermeneutics versus Turing’s Causal Methodology for Explain-

ing Cognition”. Pragmatics & Cognition 15 (3): 599–603.

— . 1991. “Other Bodies, Other Minds: A Machine Incarnation of an Old Philosophical Problem”.

Minds and Machines 1 (1): 43–54.

— . 2008. “The Annotation Game: On Turing (1950) on Computing, Machinery and Intelligence”.

In Parsing the Turing Test: Philosophical and Methodological Issues in the Quest for the Think-

ing Computer, ed. by G. Epstein , Robert & Peters. Springer.

— . 1990. “The Symbol Grounding Problem”. Physica D: Nonlinear Phenomena 42 (1-3): 335–346.

— . 2005. “To Cognize Is to Categorize: Cognition Is Categorization”. In Handbook of Catego-

rization. Summer Institute in Cognitive Sciences on Categorisation, ed. by C. Lefebvre and H.

Cohen. Elsevier.

— . 2001. “What’s Wrong and Right About Searle’s Chinese Room Argument?” In Essays on

Searle’s Chinese Room Argument, ed. by J. Preston and M. Bishop. Oxford University Press.

Hayles, N. K. 1999. How We Became Posthuman: Virtual Bodies in Cybernetics, Literature, and

Informatics. Chicago: University of Chicago Press.

Hebb, D. O. 1949. The Organization of Behavior. New York: Wiley & Sons.

Heidegger, M. 1972. On Time and Being. New York: Harper & Row.

Helmreich, S. 2000. Silicon Second Nature: Culturing Artificial Life in a Digital World. Updated.

Berkeley; Los Angeles: University of California Press.

Heylighen, F. 2000. “Foundations and Methodology for an Evolutionary World View: A Review of

the Principia Cybernetica Project”. Foundations of Science 5 (4): 457–490.

234



Hinton, G. E., S. Osindero, and Y. W. Teh. 2006. “A Fast Learning Algorithm for Deep Belief

Nets”. Neural Computation 18 (7): 1527–1554.

Holland, J. H. 1992. Adaptation in Natural and Artificial Systems: An Introductory Analysis with

Applications to Biology, Control, and Artificial Intelligence. New edition edition. Cambridge,

MA: A Bradford Book.

— . 1996. Hidden Order: How Adaptation Builds Complexity. Redwood City, CA: Addison Wesley

Longman Publishing Co. Inc.

Hoyt, S., S. Mckennoch, and L. G. Bushnell. 2005. An Autonomous Multi-Agent Testbed Using

Infrared Wireless Communication and Localization. Technical Report UWEETR-2005-3/17/05.

Seattle, Washington: Department of Electrical Engineering, University of Washington.

Hultén, P., ed. 1968. The Machine As Seen at the End of the Mechanical Age. New York, NY:

Museum of Modern Art.

Idel, M. 1990. Golem: Jewish Magical and Mystical Traditions on the Artificial Anthropoid. SUNY

series in Judaica. Albany, NY: State University of New York Press.

Isla, D. 2005. “Handling Complexity in the Halo 2 AI”. In Game Developer’s Conference 2005

Proceedings. San Francisco, CA: CMP Inc.

Johnson, C. G., and J. J. R. Cardalda. 2002. “Introduction: Genetic Algorithms in Visual Art and

Music”. Leonardo 35 (2): 175–184. JSTOR: 1577199.

Johnston, J. 2008. The Allure of Machinic Life: Cybernetics, Artificial Life, and the New AI. Cam-

bridge, MA: MIT Press.

Kac, E. 1997. “Foundation and Development of Robotic Art”. Art Journal 56:60–67.

Kelly, S. 2016. “Stephen Kelly: Open Ended Ensemble (Competitive Coevolution)”. Visited on

07/19/2016. http://www.theinc.ca/exhibitions/stephen-kelly/.

Kember, S. 2002. Cyberfeminism and Artificial Life. 1st ed. London; New York: Routledge.

Kennedy, J. F., R. C. Eberhart, and Y. Shi. 2001. Swarm Intelligence. San Francisco, CA: Morgan

Kaufmann.

235



Kim, J. F., and K. Galvin. 2012. “An Interview with Simon Penny: Techno-Utopianism, Embodied

Interaction and the Aesthetics of Behavior”. Ed. by L. Aceti and S. Penny. Leonardo Electronic

Almanac (DAC09: After Media: Embodiment and Context) 17 (2): 136–145.

Klein, Y. A. 1998. “Living Sculpture: The Art and Science of Creating Robotic Life”. Leonardo 31

(5): 393.

— . 2014. “Yves Amu Klein Living Sculpture”. http://www.livingsculpture.com/.

Klein, Y. A., and M. Hudson. 2003. “Living Sculpture”. In Proceedings of the Fifth International

Conference on Ubiquitous Computing.

Kogan, G., and F. Tseng. 2016. “Machine Learning for Artists”. Visited on 09/26/2016. https:

//ml4a.github.io/.

Kohonen, T. 1981. “Automatic Formation of Topological Maps of Patterns in a Self-Organizing

System”. In Proceedings of 2SCIA, ed. by E. Oja and O. Simula, 214–220. Helsinki, Finland.

— . 2001. Self-Organizing Maps. 3rd ed. Springer series in information sciences 30. Berlin ; New

York: Springer.

Kornienko, S., and S. Kornienko. 2011. “IR-Based Communication and Perception in Microrobotic

Swarms”. arXiv: 1109.3617 [cs].

Kruger, N., et al. 2013. “Deep Hierarchies in the Primate Visual Cortex: What Can We Learn for

Computer Vision?” IEEE Transactions on Pattern Analysis and Machine Intelligence 35 (8):

1847–1871.

Kurzweil, R. 2006. The Singularity Is Near: When Humans Transcend Biology. New York: Penguin

Books.

Kwastek, K. 2013. Aesthetics of Interaction in Digital Art. Cambridge, MA: The MIT Press.

Lange, S., T. Gabel, and M. Riedmiller. 2011. “Batch Reinforcement Learning”. In Reinforcement

Learning: State of the Art, ed. by M. Wiering and M. van Otterlo, 1–28. Heidelberg; New York:

Springer.

Langley, P. 2011. “The Changing Science of Machine Learning”. Machine Learning 82 (3): 275–279.

236



Langton, C. G. 1990. “Computation at the Edge of Chaos: Phase Transitions and Emergent Com-

putation”. Physica D: Nonlinear Phenomena 42 (1–3): 12–37.

Langton, C. G. 1989a. “Artificial Life”. In Artificial Life, ed. by C. G. Langton, 1–47. Redwood

City, CA: Addison-Wesley.

— , ed. 1995. Artificial Life: An Overview. Cambridge, MA: The MIT Press.

— , ed. 1989b. Artificial Life: Proceedings Of An Interdisciplinary Workshop On The Synthesis And

Simulation Of Living Systems. Vol. 6. Santa Fe Institute studies in the sciences of complexity.

Redwood City, Calif: Addison-Wesley.

— . 1984. “Self-Reproduction in Cellular Automata”. Physica D: Nonlinear Phenomena 10 (1–2):

135–144.

— . 1986. “Studying Artificial Life with Cellular Automata”. Proceedings of the Fifth Annual In-

ternational Conference 22 (1–3): 120–149.

Latour, B. 1991. Nous N’avons Jamais Été Modernes. Essai D’anthropologie Symétrique. Paris: La

Découverte.

— . 2005. Reassembling the Social: An Introduction to Actor-Network Theory. Oxford & New York:

Oxford University Press.

Law, E. L.-C., et al. 2009. “Understanding, Scoping and Defining User Experience: A Survey Ap-

proach”. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,

719–728. CHI ’09. New York, NY: ACM.

LeCun, Y., Y. Bengio, and G. Hinton. 2015. “Deep Learning”. Nature 521 (7553): 436–444.

Lewis, C. 1982. Using The "thinking Aloud" Method in Cognitive Interface Design. Technical Re-

port RC-9265. IBM T.J. Watson Research Center.

Maass, W., and C. M. Bishop. 2001. Pulsed Neural Networks. MIT Press.

Madrigal, A. C. 2015. “The Case against Killer Robots, from a Guy Actually Working on Artificial

Intelligence”. Fusion.

Maes, P. 1994. “Modeling Adaptive Autonomous Agents”. Artificial Life 1:135–162.

237



Maes, P., et al. 1990. “Learning to Coordinate Behaviors”. In Association for the Advancement of

Artificial Intelligence, 2:796–802. Palo Alto, CA: AAAI Press.

Markoff, J. 2013. “Brainlike Computers, Learning From Experience”. The New York Times.

Marzinotto, A., et al. 2014. “Towards a Unified Behavior Trees Framework for Robot Control”. In

2014 IEEE International Conference on Robotics and Automation (ICRA), 5420–5427.

Mateas, M. 2001. “Expressive AI: A Hybrid Art and Science Practice”. Leonardo 34 (2): 147–153.

JSTOR: 1577018.

Mathews, S. 2005. “The Fun Palace: Cedric Price’s Experiment in Architecture and Technology”.

Technoetic Arts: A Journal of Speculative Research 3 (2): 73–91.

Maturana, H. R., and F. J. Varela. 1980. Autopoiesis and Cognition: The Realization of the Living.

Dordrecht: D. Reidel.

Maxwell, J. C. 1867. “On Governors”. Proceedings of the Royal Society of London 16:270–283.

JSTOR: 112510.

McCarthy, J., et al. 2006. “A Proposal for the Dartmouth Summer Research Project on Artificial

Intelligence, August 31, 1955”. AI Magazine 27 (4): 12.

McCormack, J. 2009. “The Evolution of Sonic Ecosystems”. In Artificial Life Models in Software,

2. ed, ed. by M. Komosinski and A. Adamatzky, 393–414. London: Springer.

McCulloch, W. S., and W. Pitts. 1943. “A Logical Calculus of the Ideas Immanent in Nervous

Activity”. The bulletin of mathematical biophysics 5 (4): 115–133.

McElhearn, K. 2016. “John Cage and the Anechoic Chamber”. Visited on 07/26/2016. http :

//www.mcelhearn.com/john-cage-and-the-anechoic-chamber/.

McLurkin, J. 2004. “Stupid Robot Tricks: A Behavior-Based Distributed Algorithm Library for

Programming Swarms of Robots”. S.M. Thesis, Massachusetts Institute of Technology.

Medler, D. A. 1998. “A Brief History of Connectionism”. Neural Computing Surveys 1:61–101.

Miller, A. I. 2014. Colliding Worlds: How Cutting-Edge Science Is Redefining Contemporary Art.

New York: WW Norton.

238



Minsky, M. L., and S. Papert. 1969. Perceptrons: An Introduction to Computational Geometry.

Cambridge, MA: MIT Press.

Mitchell, M. 1998. An Introduction to Genetic Algorithms. Third Printing. Cambridge, MA: The

MIT Press.

— . 1995. “Genetic Algorithms: An Overview”. Complexity 1 (1): 31–39.

Mnih, V., et al. 2015. “Human-Level Control through Deep Reinforcement Learning”. Nature 518

(7540): 529–533.

Mnih, V., et al. 2013. “Playing Atari with Deep Reinforcement Learning”. In NIPS 2013 Deep

Learning Workshop.

Mordvintsev, A., C. Olah, and M. Tyka. 2015. “Inceptionism: Going Deeper into Neural Networks”.

Visited on 06/03/2016. http://googleresearch.blogspot.com/2015/06/inceptionism-

going-deeper-into-neural.html.

Nath, V., and S. E. Levinson. 2014. Autonomous Robotics and Deep Learning. 2014 edition. Springer.

Newell, A. 1955. “The Chess Machine: An Example of Dealing with a Complex Task by Adaptation”.

In Proceedings of the March 1-3, 1955, Western Joint Computer Conference, 101–108. AFIPS

’55 (Western). New York, NY, USA: ACM.

Newell, A., J. C. Shaw, and H. A. Simon. 1958. “Elements of a Theory of Human Problem Solving.”

Psychological Review 65 (3): 151.

Newell, A., J. C. Shaw, and H. A. Simon. 1959. “Report on a General Problem-Solving Program”.

In Proceedings of the International Conference on Information Processing, 256–264.

Ng, A. Y., et al. 2004. “Autonomous Helicopter Flight via Reinforcement Learning”. In Advances

in Neural Information Processing Systems 16 (NIPS 2003), 799–806.

Nilsson, N. J. 2010. The Quest for Artificial Intelligence: A History of Ideas and Achievements.

Cambridge, UK: Cambridge University Press.

Ovid. 2008. Metamorphoses. In collab. with E. J. Kenney. Trans. by A. D. Melville. Oxford: Oxford

University Press.

239



Paparrigopoulos, K. 2011. “Divergences and Convergences between Xenakis and Cage’s Indeter-

minism”. In Proceedings of the Xenakis International Symposium. London.

Pask, G. 1971. “A Comment, a Case History and a Plan”. In Cybernetics, Art, and Ideas. Ed. by

J. Reichardt, 76–99. Greenwich, CN: New York Graphic Society.

— . 1968. An Approach to Cybernetics. London: Hutchinson.

Pasquier, P. 2015. “Metacreation Lab: Generative Systems”. Simon Fraser University.

Penny, S. 2000. “Agents as Artworks and Agent Design as Artistic Practice”. In Advances in Con-

sciousness Research, ed. by K. Dautenhahn, 19:395–414. Amsterdam: John Benjamins Publish-

ing Company.

— . 2009. “Art and Artificial Life – A Primer”. In Proceedings of the Digital Arts and Culture

Conference. Irvine: University of California.

— . 2008. “Bridging Two Cultures – towards a History of the Artist-Inventor”. In Artists as In-

ventors, Inventors as Artists, Anthology of Ludwig Boltzmann Institute, ed. by D. Daniels and

B. U. Schmidt. Austria: Hatje Cantz.

— . 1997. “Embodied Cultural Agents: At the Intersection of Robotics, Cognitive Science and

Interactive Art”. In AAAI Socially Intelligent Agents: Papers from the 1997 Fall Symposium,

ed. by K. Dautenhahn, 103–105. Menlo Park: AAAI Press.

Pfeifer, R. 1996. “Symbols, Patterns, and Behavior: Towards a New Understanding of Intelligence”.

In Proc. Japanese Conference on Artificial Intelligence, 1–15.

Picard, R. W. 2000. Affective Computing. Cambridge, MA: MIT Press.

Pickering, A. 2013. “Being in an Environment: A Performative Perspective”. Natures Sciences

Sociétés 21 (1): 77–83.

— . 2010. The Cybernetic Brain: Sketches of Another Future. Chicago; London: University of

Chicago Press.

— . 1995. The Mangle of Practice: Time, Agency, and Science. 1st ed. Chicago: University Of

Chicago Press.

240



— . 2009. “The Politics of Theory: Producing Another World, with Some Thoughts on Latour”.

Quinlan, M. 2006. “Machine Learning on AIBO Robots”. Ph. D. Thesis, University of Newcastle.

Rasmusson, J. 2010. The Agile Samurai: How Agile Masters Deliver Great Software. The pragmatic

programmers. Raleigh: The Pragmatic Bookshelf.

Ray, T. S. 1991. “An Approach to the Synthesis of Life”. In Artificial Life II, ed. by C. G. Langton

et al., 10:371–408. Redwood City, CA: Addison-Wesley.

Rechenberg, I. 1965/August//. “Cybernetic Solution Path of an Experimental Problem”. In Royal

Aircraft Establishment Translation No. 1122, B. F. Toms, Trans. Ministry of Aviation, Royal

Aircraft Establishment.

Rechenberg, I. 1973. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der

biologischen Evolution. Stuttgart-Bad Cannstatt: Frommann-Holzboog.

Reichardt, J., ed. 1968. Cybernetic Serendipity: The Computer and the Arts. 2nd ed. New York,

NY: Studio International.

Reynolds, C. W. 1987. “Flocks, Herds, and Schools: A Distributed Behavioral Model”. In Proceed-

ings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, 25–34.

SIGGRAPH ’87. New York, NY.

Riedmiller, M., and A. Merke. 2002. “Using Machine Learning Techniques in Complex Multi-Agent

Domains”. In Adaptivity and Learning. Springer.

Rinaldo, K. E. 1998. “Technology Recapitulates Phylogeny: Artificial Life Art”. Leonardo 31 (5):

pp. 371–376.

Rosenblatt, F. 1957. The Perceptron – a Perceiving and Recognizing Automaton 85-460-1. Buffalo,

NY: Cornell Aeronautical Laboratory.

Rosenblueth, A., N. Wiener, and J. Bigelow. 1943. “Behavior, Purpose and Teleology”. Philosophy

of Science 10 (1): pp. 18–24.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams. 1986. “Learning Representations by Back-

Propagating Errors”. Nature 323:533–536.

241



Samuel, A. L. 1959. “Some Studies in Machine Learning Using the Game of Checkers”. IBM Journal

of Research and Development 3 (3): 210–229.

Schechner, R. 2003. Performance Theory. London & New York: Routledge.

Schmidhuber, J. 2015. “Deep Learning in Neural Networks: An Overview”. Neural Networks 61:85–

117.

Schmidhuber, J., et al. 2011. “On Fast Deep Nets for AGI Vision”. In Artificial General Intelligence,

ed. by J. Schmidhuber, K. R. Thórisson, and M. Looks, 243–246. Lecture Notes in Computer

Science 6830. Springer Berlin Heidelberg.

Schöffer, N. 2004. Nicolas Schöffer. In collab. with Villa Tamaris (La Seyne-sur-Mer, France) and

Fondation Vasarely. Art contemporain 9. Dijon: Presses du réel.

Searle, J. R. 1980. “Minds, Brains, and Programs”. Behavioral and Brain Sciences 3:417–424.

Sedgwick, E. K. 1993. “Queer Performativity: Henry James’s The Art of the Novel”. GLQ: a journal

of Lesbian and Gay Studies 1 (1): 1–16.

Selfridge, O. G. 1955. “Pattern Recognition and Modern Computers”. In Proceedings of the March

1-3, 1955, Western Joint Computer Conference, 91–93. AFIPS ’55 (Western). New York, NY,

USA: ACM.

Selfridge, O. G. 1959. “Pandemonium: A Paradigm for Learning”. In Symposium on the Mechaniza-

tion of Thought Processes, ed. by D. K. Blake and A. M. Uttley, 1:511–531. London: HMSO.

Senécal, J.-S. 2003. “Accélérer L’entraînement D’un Modèle Non-Paramétrique de Densité Non

Normalisée Par Échantillonnage Aléatoire”. Master Thesis, Université de Montréal.

Serre, T., et al. 2007. “A Quantitative Theory of Immediate Visual Recognition”. Progress in brain

research 165. pmid: 17925239.

Serres, M. 1982. The Parasite. In collab. with L. R. Schehr. Baltimore: Johns Hopkins University

Press.

242



Shanken, E. A. 2002. “Cybernetics and Art: Cultural Convergence in the 1960s”. In From Energy to

Information, ed. by B. Clarke and L. Darlymple, 155–177. Palo Alto, NM: Stanford University

Press.

— , ed. 2015. Systems. Cambridge, MA: The MIT Press.

Shannon, C. E. 1948. “A Mathematical Theory of Communication”. Bell System Technical Journal

27 (3): 379–423.

Shiffman, D. 2012. The Nature of Code. Ed. by S. Fry.

Sims, K. 1991. “Artificial Evolution for Computer Graphics”. In Proceedings of the 18th Annual

Conference on Computer Graphics and Interactive Techniques, 319–328. SIGGRAPH ’91. New

York, NY: ACM.

— . 1994. “Evolving Virtual Creatures”. In Proceedings of the 21st Annual Conference on Computer

Graphics and Interactive Techniques, 15–22. SIGGRAPH ’94. New York, NY: ACM.

Skarda, C. A. 1992. “Perception, Connectionism, and Cognitive Science”. In Understanding Origins,

ed. by F. J. Varela and J.-P. Dupuy, 265–271. Dordrecht: Springer Netherlands.

Smith, A. W. 1974. “Information Theory and Cybernetics”. Journal of Cybernetics 4 (3): 1–5.

Software: Information Technology: It’s New Meaning for Art. 1970. In collab. with J. Burnham.

New York, NY: Jewish Museum.

Soler-Adillon, J. 2015. “Emergence as Self-Organization and as Generation of Novelty: A Framework

for Understanding Emergence in the Context of Interactive Art”, Universitat Pompeu Fabra.

Solomos, M. 2006. “Cellular automata in Xenakis’s music. Theory and Practice”. In Definitive

Proceedings of the International Symposium Iannis Xenakis, ed. by S. Makis, A. Georgaki, and

G. Zervos, 11 p. Greece.

Soni, V., and S. Singh. 2006. “Reinforcement Learning of Hierarchical Skills on the Sony Aibo

Robot”. In Proceedings of the 5th International Conference on Development and Learning.

Suchman, L. A. 1987. Plans and Situated Actions: The Problem of Human-Machine Communication.

Cambridge: Cambridge University Press.

243



Sutton, R. S., and A. G. Barto. 1998. Reinforcement Learning: An Introduction. Adaptive compu-

tation and machine learning. Cambridge, MA: MIT Press.

Tenhaaf, N. 2008. “Art Embodies A-Life: The Vida Competition”. Leonardo 41 (1): 6–15.

— . 2000. “Perceptions of Self in Art and Intelligent Agents”. In Proceedings of the 2000 AAAI

Fall Symposium on Socially Intelligent Agents: The Human in the Loop, ed. by K. Dautenhahn.

North Falmouth: AAAI Press.

Thivierge, J.-P., and P. Cisek. 2010. “Spiking Neurons that Keep the Rhythm”. Journal of Com-

putational Neuroscience 30 (3): 589–605.

Thompson, A. 1996. “An Evolved Circuit, Intrinsic in Silicon, Entwined with Physics”. In Proceed-

ings of the First International Conference on Evolvable Systems: From Biology to Hardware,

390–405. ICES ’96. London, UK, UK: Springer-Verlag.

Tomlinson, B., and B. Blumberg. 2002. “AlphaWolf: Social Learning, Emotion and Development

in Autonomous Virtual Agents”. In In Proceedings of First GSFC/JPL Workshop on Radical

Agent Concepts, 35–45.

Turing, A. M. 1950. “Computing Machinery and Intelligence”. Mind, New Series, 59 (236): pp.

433–460.

— . 1936. “On Computable Numbers, with an Application to the Entscheidungsproblem”. In Pro-

ceedings of the London Mathematical Society, 42:230–265. 2.

Turkle, S. 2006. A Nascent Robotics Culture: New Complicities for Companionship, AAAI Technical

Report Series.

— . 2011. Alone Together: Why We Expect More from Technology and Less from Each Other. New

York: Basic Books.

— . 2007. Evocative Objects: Things We Think With. The MIT Press.

Turner, V. W. 1982. From Ritual to Theatre: The Human Seriousness of Play. Performance studies

series, 1st v. New York City: Performing Arts Journal Publications.

244



Tyrrell, A., G. Auer, and C. Bettstetter. 2006. “Fireflies As Role Models for Synchronization in Ad

Hoc Networks”. In Proceedings of the 1st International Conference on Bio Inspired Models of

Network, Information and Computing Systems. BIONETICS ’06. New York, NY, USA: ACM.

Urbanowicz, R. J., and J. H. Moore. 2009. “Learning Classifier Systems: A Complete Introduction,

Review, and Roadmap”. Journal of Artificial Evolution & Applications 2009:1–25.

Van Heijenoort, J. 1977. From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931.

Cambridge: Harvard University Press.

Vapnik, V. N. 2000. The Nature of Statistical Learning Theory. 2nd ed. Statistics for engineering

and information science. New York: Springer.

Varela, F. J. 1992. “Autopoiesis and a Biology of Intentionality”. In Proceedings of the Workshop

Autopoiesis and Perception, ed. by B. McMullin, 4–14. Dublin.

Varela, F. J., and P. Bourgine, eds. 1992. Toward a Practice of Autonomous Systems: Proceedings

of the First European Conference on Artificial Life. Cambridge, MA: MIT Press.

Varela, F. J., and J. Shear. 1999. “First-Person Methodologies: What, Why, How?” Journal of

Consciousness Studies 6 (2-3): 1–14.

Varela, F. J., E. Thompson, and E. Rosch. 1991. The Embodied Mind: Cognitive Science and Human

Experience. Cambridge, MA: MIT Press.

Von Foerster, H. 2003. Understanding Understanding: Essays on Cybernetics and Cognition. New

York: Springer.

Von Neumann, J. 1951. “The General and Logical Theory of Automata”. In Cerebral Mechanisms

in Behavior: The Hixon Symposium, ed. by L. Jeffress, 1–41. John Wiley and Sons.

— . 1966. Theory of Self-Reproducing Automata. Ed. by A. W. Burks. Champaign, IL, USA: Uni-

versity of Illinois Press.

Von Uexküll, J. 1957. “A Stroll Through the Worlds of Animals and Men”. In Instinctive Behavior:

The Development of Modern Concept, ed. by C. H. Schiller, 5–80. Intl Universities Pr Inc.

Walter, W. G. 1951. “A Machine that Learns”. Scientific American 185 (2): 60–63.

245



— . 1950. “An Imitation of Life”. Scientific American 182 (5): 42–45.

Weitz, M. 1956. “The Role of Theory in Aesthetics”. The Journal of Aesthetics and Art Criticism

15 (1): 27–35. JSTOR: 427491.

Weizenbaum, J. 1976. Computer Power and Human Reason: From Judgment to Calculation. New

York, NY, USA: W. H. Freeman & Co.

Wells, H. G. 1995. The Time Machine. New York: Dover Publications.

Whitelaw, M. Wednesday, August 16, 2006. “Jonathan McCabe - Nervous States”. Visited on

06/03/2016. http://teemingvoid.blogspot.com.au/2006/08/jonathan-mccabe-nervous-

states.html.

— . 2004. Metacreation: Art and Artificial Life. Cambridge, MA: The MIT Press.

Widrow, B., and M. E. Hoff. 1960. “Adaptive Switching Circuits”. 1960 IRE WESCON Convention

Record: 96–104.

Wiener, N. 1961. Cybernetics: Or Control and Communication in the Animal and the Machine.

Cambridge, MA: MIT Press.

Wiering, M., and M. Otterlo, eds. 2012. Reinforcement Learning: State-of-the-Art. 1st ed. ALO 12.

New York: Springer.

Wilk, E. 2016. “The Artist-in-Consultance: Welcome to the New Management | E-Flux”. Visited

on 08/04/2016. http://www.e-flux.com/journal/the-artist-in-consultance-welcome-

to-the-new-management/.

Winograd, T. 1970. “Procedures as a Representation for Data in a Computer Program for Under-

standing Natural Language”. Thesis, Massachusetts Institute of Technology. Visited on 10/01/2016.

Winograd, T., and F. Flores. 1987. Understanding Computers and Cognition: A New Foundation

for Design. Boston, MA: Addison-Wesley.

Wolfram, S. 2002. A New Kind of Science. Champaign, IL: Wolfram Media.

— . 1986. “Random Sequence Generation by Cellular Automata”. Advances in Applied Mathematics

7 (2): 123–169.

246



— . 1984. “Universality and Complexity in Cellular Automata”. Physica D Nonlinear Phenomena

10:1–35.

Xenakis, I. 1992. Formalized Music: Thought and Mathematics in Composition. Stuyvesant, NY:

Pendragon Press.

— . 1981a. “Les Chemins de La Composition Musicale”. In Le Compositeur et L’ordinateur, ed. by

M. Battier, 13–32. Paris: Ircam - Centre Pompidou.

— . 1981b. Musiques formelles: nouveaux principes formels de composition musicale. Paris: Stock

musique.

Xenakis, I., and O. Messiaen. 1994. Arts-Sciences: Alloys. Reprint edition. New York: Pendragon

Press.

Ziemke, T. 1999. Remembering How to Behave: Recurrent Neural Networks for Adaptive Robot

Behavior.

247



Appendices

248



Appendix A

Online Documentation of Works

This appendix presents web-accessible documentation of a sample of my work involving adaptive

systems which have been discussed in this dissertation, including video documentation
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A.1 Absences (2008–2011)

Creator: Sofian Audry

Description of work: Absences is an intervention project that involves electronic devices installed

in outdoor environments. Taking shape at the frontier of new media and environmental art, it pro-

poses a meditation on solitude and association, interaction and adaptation, natural and artificial,

biological and inanimate. Each intervention consists in the creation and installation of autonomous

electronic devices in various ecosystems. These artificial agents act within their specific environ-

ment. The project is created as an ongoing, residency-based process which was largely site-specific,

each context contributing to the conceptual and technical development of the work.

Link to work description: http://sofianaudry.com/en/works/absences1

Link to project’s blog: http://absences.sofianaudry.com

Duration of video: 3:25

Link to video: https://vimeo.com/41576835

1Links to video documentation of individual projects are available at the bottom of this page.
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A.2 Vessels (2010–2015)

Creators: Sofian Audry, Stephen Kelly, and Samuel St-Aubin2

Description of work: Vessels is a robotic installation consisting of large groups of autonomous

water vehicles. The robotic agents interact with each other and their environment to form a simple

ecosystem. Their collective, emergent behavior resembles the social interactions in a community

of living creatures. Observers may empathize with the robots’ behaviors, ascribe intentions and

motivations to their actions, and/or draw correlations between the group dynamic and unseen

characteristics of their milieu.

Link to project’s website: http://vessels.perte-de-signal.org

Duration of video: 2:34

Link to video: https://vimeo.com/137104837

2Special collaboration: Adam Kelly.
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A.3 N-Polytope (2012)

Creators: Chris Salter, Sofian Audry, Marije Baaldman, Adam Basanta, Elio Bidinost, and

Thomas Spier

Description of work: N-Polytope: Behaviors in Light and Sound After Iannis Xenakis** is a

spectacular light and sound performance-installation combining cutting edge lighting, lasers, sound,

sensing and Machine Learning software inspired by composer Iannis Xenakis’s radical 1960s- 1970s

works named Polytopes (from the Greek ‘poly’, many and ‘topos’, space). As large scale, immersive

architectural environments that made the indeterminate and chaotic patterns and behaviour of

natural phenomena experiential through the temporal dynamics of light and the spatial dynamics

of sound, the Polytopes still to this day are relatively unknown but were far ahead of their time.

N-Polytope is based on the attempt to both re-imagine Xenakis’ work with probabilistic/stochastic

systems with new techniques as well as to explore how these techniques can exemplify our own

historical moment of extreme instability.

Link to work description: http://chrissalter.com/projects/n-polytope-behaviors-in-light-and-sound-after-

Duration of video: 1:56

Link to video: https://www.youtube.com/watch?v=hxYJxwfnACU
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A.4 Archipelago (2014)

Creators: Sofian Audry and Samuel St-Aubin

Description of work: Archipelago is an interactive audio work involving a group of small electronic

modules. The modules emit sounds reminiscent of fictitious birds singing. The songs emitted by

the devices evolve during the course of the exhibition using genetic algorithms. Furthermore, they

respond to infrared signals, allowing visitors to interact with them using remote controls brought

from home or borrowed at the center. The coded messages sent by the remote interrupt and change

the songs through crossovers and mutations.

Link to work description: http://sofianaudry.com/en/works/archipelago

Duration of video: 1:08

Link to video: https://vimeo.com/135944076
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A.5 Plasmosis (2013)

Creators: Sofian Audry3

Description of work: Plasmosis is a site-specific, underwater, artificial life installation. It was

installed at the marina of Carleton-sur-Mer (Quebec, Canada) during the Summer 2013. An arti-

ficial entity, it interacts in the aquatic environment through multiple sensors, adapting over time

to the different natural movements that surround it. The work is thus as a passageway between

two worlds: that of air, and that of water. Situated at the point of phase change between liquid

and gas, it allows the visitor to exist for a time between these two worlds, to assess their shape,

density, temporality and limits. It raises questions about our relationship to the maritime area and

its ecosystems.

Link to work description: http://sofianaudry.com/en/works/plasmosis

Duration of video: 3:46

Link to video: https://vimeo.com/86963195

3Electronic and material design: Samuel St-Aubin.
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A.6 Accrochages (2008)

Creators: Sofian Audry and Samuel St-Aubin

Description of work: Accrochages is a urban electronic intervention project by Montreal-based

artists Sofian Audry and Samuel St-Aubin. It stems from their will to bring their art practice out

of the walls of a gallery space, on the walls of the city itself. The intent is to build small active and

autonomous objects that can, through simple means, give new qualities to the city environment by

creating different interactive situations.

Link to work description: http://sofianaudry.com/en/works/accrochages

Link to project’s blog: http://accrochages.drone.ws

Duration of video: 3:39

Link to video: https://vimeo.com/46397619
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A.7 Vévé (2008)

Creators: Sofian Audry4

Description of work: Vévé proposes an environment in which the visitor interacts with textual

entities through written speech. By taking part in a conversation based on exchange of atomic

words, the visitor contributes to the construction of these artificial beings: she teaches them new

words, but also new semantic links. Through these poetic dialogues, the entities evolve as their

behavior is shaped by interaction with their human counterparts. But there is still place for trials,

errors and novelties: in this allegorical space, the artificial creatures often seem to act with their

own free will.

Link to work description: http://sofianaudry.com/en/works/veve

Link to work: http://veve.sofianaudry.com

4Audio design: Alexandre Quessy.
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A.8 Flag (2007)

Creators: Sofian Audry

Description of work: Flag is an interactive dictionary of given names and identities. It allows

the visitor to participate by adding his own name and identity to the database. He can also create

new names/identities through an evolutionary algorithm. When a visitor wants to add his name

to the dictionary, the system asks him to fill out a form about his identity. The form compels the

visitor to choose among a limited set of categories and traits, shaping his identity into a socially

acceptable, standardized format. Getting back to the evolutionary analogy, if the name acts as the

genetic code of the visitor, the traits that form his social definition would be his phenotype. By

using artificial recombinations, mutations and crossovers through an evolutionary algorithm, the

visitor can then create offspring of his own name or others’. These offsprings’ identity traits are

recombined and mutated versions of their parents.

Link to work description: http://sofianaudry.com/en/works/flag

Duration of video: 3:30

Link to video: https://www.youtube.com/watch?v=XhIOQm5u7mw
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A.9 CHARACTERS (2005–2006)

Creators: Sofian Audry

Description of work: CHARACTERS is an interactive dictionary of given names and identities.

It allows the visitor to participate by adding his own name and identity to the database. He can also

create new names/identities through an evolutionary algorithm. When a visitor wants to add his

name to the dictionary, the system asks him to fill out a form about his identity. The form compels

the visitor to choose among a limited set of categories and traits, shaping his identity into a socially

acceptable, standardized format. Getting back to the evolutionary analogy, if the name acts as the

genetic code of the visitor, the traits that form his social definition would be his phenotype. By

using artificial recombinations, mutations and crossovers through an evolutionary algorithm, the

visitor can then create offspring of his own name or others’. These offsprings’ identity traits are

recombined and mutated versions of their parents.

Link to work description: http://sofianaudry.com/en/works/characters

Link to work: http://characters.tats.name
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Appendix B

Images of Works

This appendix contains full-page reproductions of works discussed in this research.
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Trace L (2007). With Jonathan Villeneuve, in collaboration with Myriam Bessette. Photo by Alexis Bellavance.



Trace V (2007). With Jonathan Villeneuve. Photo by Alexis Bellavance.



Trace S (2008). With Jonathan Villeneuve. Photo by Alexis Bellavance.



Drift (2007), V2 Institute for the Unstable Media (Rotterdam, Netherlands). Photo by Sofian Audry.



Accrochages (2008). Photo by Alexis Bellavance.



First Absence (2008).



Second Absence (2009).



Third Absence (2010).



Fourth Absence (2009).



Fifth Absence (2011).



Vessels, LABoral (Gijón, Spain) (2013). Photo by Beatriz Orviz.



Vessels, L’Ososphère (Strasbourg, France) (2015). Photo by Philippe Groslier.



Vessels, Nuit Blanche (Montréal, Canada) (2016) Photo by Catherine Aboumrad.



N-Polytope, LABoral (Gijón, Spain) (2012). Photo by Thomas Spier.



N-Polytope, LABoral (Gijón, Spain) (2012). Photo by Thomas Spier.



N-Polytope, Darling Foundry (Montréal, Canada) (2014). Photo by Thomas Spier.



N-Polytope, Darling Foundry (Montréal, Canada) (2014). Photo by Thomas Spier.



N-Polytope, Vitra Design Museum (Weil am Rhein, Germany) (2014). Photo by Thomas Spier.



N-Polytope, Nuit Blanche (Paris, France) (2015). Photo by Thomas Spier.



Archipelago, L’Imagier (Gatineau, Canada) (2014).



Plasmosis (2013) (Carleton-sur-Mer, Canada).



Plasmosis (2013) (Carleton-sur-Mer, Canada).



Plasmosis (2013) (Carleton-sur-Mer, Canada).



Plasmosis (2013) (Carleton-sur-Mer, Canada).


