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Abstract

Invariant Measures for Inner Functions

Wael Bahsoun

This thesis describes the chaotic behavior of inner functions in the unit disk and in
the upper half plane. Absolutely continnous invariant measures for inner functions.
ergodicity and exactness will be discussed. Moreover. under some conditions. we
prove that the restriction of an inner function to R is ergodic if and only if the Julia

set is the real line.
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Introduction

The areas of dynamical svstems and ergodic theory are rich in connections with
subjects such as mathematical physics. statistics. number theory. geometry and bi-
ologv. Although this field is relatively new in mathematics. it has led to interesting
applications in other branches of science. One of the basic ideas in the field of dy-
namical systems is the theory of invariant measures. Absolutely continuous invariant

measures are believed to be of physical importance.

In the late 1970's. attention had been called to transformations of the unir disk.
and the upper half plane. that preserve Lebesgue measure. Inner functions are
bounded analyvtic functions in the unit disk that have a limit a.e. on the unit circle.
The study of ergodic properties of inner functions was begun by Aaronson [Aa] and

Neuwirith [Ne].

In this thesis. we are going to present results on inner functions and their invariant



measures through proofs often more detailed than those in the original papers. Then.
we will prove a new result for a class of meromorphic functions which are inner

funcrions in the upper half plane.

In Chapter 1. we are going to present some preliminaries. In Chapter 2. we are
going to discuss the chaotic behavior of inner functions in the unit disk starting with
absolutely continuous invariant measures. After that. we will focus our attention
on the case of a finite Blaschke product. In Chapter 3. we will move the results of
Chapter 2 from the unit disk to the upper half plane. In addition. we discuss some
strong resiilts due to Aaronson [Aa] such as proving that ergodic inner functions are
exact. Finally. we prove new results for a class of meromorphic functions which are

inner functions in the upper half plane.

(V]



Chapter 1

Background Information

In this chapter we are going to present basic information from complex analyvsis.
complex dynamics. hyperbolic geometry. measure theory and ergodic theory. For
more information in complex analysis and measure theory we refer the reader to

[Ru]. and in ergodic theory to [BG].

1.1 Complex Analysis

Iu this section we assume familiarity with the definition of an analytic function and
some of its properties such as the maximum modulus principle. We will present the
notion of an inner function with some of its properties in the unit disk and in the

upper half plane. The theorems of this section can be found in [Ru].
Definition 1.1 The open unit disk is D = {z : |z| < 1}. the closed unit disk 1s
D = {z:|z| <1} and the unit circle is S' = {z : |[z] = 1}.
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Definition 1.2 An inner function in D is a function F(z) such that |F(z)] < 1

Vz € D and |F(e*)| = 1. a.e. on S*.

Theorem 1.1 [f {a,} is a sequence in D such thata, # 0 and Yoo (1 —|a,]) < x.

nl e D. then B(z) is an

if k is a nonnegative integer. and if B(z) = z* [I=

n= I1--(1,,: an

inner function and has no zeros except at the points a, and the origin if b > 0.

Proof. Consider Y .- |1 — 8=z 122} The nth term is Iu—lﬁil(l — lan]) <

1-aGnz an —danz)an

(1 — ag|) if 2] < r. If

(1 —jaa|) < oc. then 327, |1— f2===

L an= l l—-@nz a,

uniformly by the Weierstrass M-test in any compact subset of D. Therefore. B(z) =

A x an~: |an!
[  an=z lan!

n=1 1@,z an

converges uniformly in any compact subset of D. Consider f(z) =

fe==. Then.
f(2)? = —a,T + |an|® — 283, + |2|?
1 — an — @nz + |a,|?zf?’
Observe that |f(z)] = 1 for [z| = 1. Therefore. if = € D then [f(z)] < I by the

maximum principle. Since each factor of B{(z) is less than 1 in D. it follows that

|B(z)] < 1in D. To complete the proof. we must show that |B(e")| =1 a.e.. on

St Let B,(z) = II"_ An=z @l for each n > 1. Since B(z) /B, (z) is holomorphic

J=11—-@nz an

in D. |B(z)/B, (z)] is subharmonic in D. Recall that the means of a subharmonic
function are decreasing when the radius is increasing. Then. for 0 < r <r’ <1 we

get

/__IB (re’) /Bn (re) |dt < /-:.—IB( ‘e'") /B (r'e") |dt.



Fix r and let r’ — 1. Since |B, (e)| =1 on S! we get

w

/_ (B (re') /By (re') |dt < /- |B (e') |dt a.e..

Let n — >c and use Fatou's lemma to obtain

/" dfg/' B () |dt.

Since |B(e')| < 1. we get |B(e")|=1.ae on S'. =

Definition 1.3 The product B (z) produced in the above theorem is called a Blaschke

product.

Theorem 1.2 Suppose c is a constant. |c| = 1. B(z) is a Blaschke product. ji is a

positive Borel measure which is singular with respect to Lebesque measure. Let

F(z) = ¢B(z)exp{— 1- el.—-*_:—d,u(f)}.

ezt_.,

<

2 € D. Then F(z) is an inner function in D and every inner function in D is of thus

form.

Proof. Let g = %. Then Log|g| is the Poisson integral of —dji. Therefore. Log|g|
< 0. ie. |g| € 1. Since F = Bg. then |F(z)| = {B(z)|lg(z)] < 1 for anv = € D.
Since 1 is singular with respect to Lebesgue measure then D, = 0. a.e. on S'. where
D, denotes the Radon-Nikodym derivative of the measure. By theorem 11.10 in
[RU]. the radial limits of a harmonic function equal to D,. a.e. on S'. Therefore.
lim,_;Log|g(re®)| = D,(t). a.e. on S'. Then Loglg| = 0. a.e. on S!. Hence. |g| = 1.

-
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a.e. on S'. It follows that |F| = |B|lg| = 1. a.e. on S'. Therefore. F is an inner
function.

Now. consider F to be any inner function. Let B(z) be the Blaschke product formed
with the zeros of F. Consider g = %. Then g is zero free in D. [t follows that Loglg| is
harmonic. Since g = %. then |[g| = 1 a.e. on S!'. By the maximum principle |g(z)] < 1
in D. Then. Loglg| < 0. Log|g| is harmonic. then it can be written as the Poisson

integral of its boundary values

1 -]z

Since. Loglg| = 0. a.e. on S'. then D, = 0. a.e. on S'. It follows that g is singular.

Now. observe that Log|g| is the real part of

el +z
h(z) = —/ T ).
—_— e

T

This implies that ¢ = ¢ exp(h) for some constant ¢ with |¢[ = 1. Thus.
et 4z
F = cB(z) exp{— o :d/.z.(f)}

is the form of an inner function in D =

Definition 1.4 4 singular inner function is an inner function of the form

et + z

ezt_..

F(a)=cexp(- [ Sdn o).

z € D. where i is a positive Borel measure which is singular with respect to Lebesgue

measure and ¢ is a constant with |c| = 1.



Definition 1.5 The upper half plane is defined by R** = {z : Imz > 0}.

Definition 1.6 An inner function in R** is an analytic function F : R?*™ — R~
such that for a.e. r € R. F(r+iy) — T (x) €R as y — 0. The measurable function

T : R — R is the restriction of F to R.

1.2 Complex Dynamics

The subject of complex dynamics is large and rapidly growing. Fatou and Julia starred
this theory when they independently discovered the dichotomy of the Riemann sphere
inro sets now bearing their names. We will present some of the information that we

need for the remaining chapters. For more details we refer the reader to [Mi].

Definition 1.7 The Riemann sphere is defined by C = C U {x} where C is the
rompler plane.

Definition 1.8 A family of analytic functions having a common domain of definition
is called normal if every sequence in this family contains a locally uniformly convergent

subsequence.

Definition 1.9 Let f : C — C. The Fatou set is defined by F(f) = {z : 3 «

neighborhood U, s.t. {f"}3., is a normal family in U.}.TheJulia set is defined hy
J(f) = C\F(f).

Definition 1.10 Let f : C — C and f(z) = zo. i.e.. let zg be a fized point of f.

Then. we say that:

~I



1. zp is an attracting fixed point if |f'(z)| < 1.

o

zp is a neutral fixed point if |f (20)| = 1.
3. 2o is a repelling fixed point if |f' (z0)]| > 1.

Definition 1.11 Let f(z) = ’C‘:::z ad — bc # 0. where a.b.c.d are complex ronstants.

A function of this form is called a Mébius function.

Lemma 1.1 (Schwarz) If f : D — D is a holomorphic map with f(0) = 0. then
the derivative at the origin satisfies |f (0)| < 1. If equality holds. then f is a rotation
about the origin. that is f (z) = Az for some constant X = f (0) on the unit circle. [f

f(0)] < L. then |f(2)] < z for all = # 0.

Proof. Consider the function g(z) = ﬂ_i) for = % 0 and ¢(0) = f'(0). Observe

that ¢ (z) is well defined and holomorphic throughour D. Since |giz)i < i when

|z = r < 1. it follows by the maximum modulus principle that [g(z)j < 1 for all = in

the disk |z| < r. Taking the limit as r — 1. we see that |g(z)] < 1 forall z € D. Again

by the maximum modulus principle. we see that the case |g(z)] = 1 with z € D. can
occur only if the function g(z) is constant. [f we exclude this case ijl = A. then it
follows that |g(z)| = @ < 1 for all z # 0. and similarly that {g(0)| = {f"(0)]| < L.
a



1.3 Hyperbolic Geometry

In this section we are going to present the Poincaré metric or the hyperbolic metric
not only for the geometry itself. but for the application of this geometry to function

theory. This metric is considered to be a useful tool in proving some theorems in

dynamical systems. Let us consider the fractional linear transformation S(z) = ;—]%:—;
with ja]|? - |bj?2 = 1. Observe that S (z) maps D conformaly into itself.
Definition 1.12 Consider z;,z; € D and set wy = S§(z,). w2 = S(z2). Then .
azy +b  azy+b
Wy —wy = = — — = —
bZl -+ a bZl + a
Il — 29
(bz, +@)(bzs + @)
and
az, +baz +b
] — Ty = 1 — ——— 22
I+~ abzy +a
1-— :.:122
(b=Zy + a)(bz, + a)
Hence.
iZI—z2l lwl—wz
1—-Z29 1 - uw,
Define 6 (z1.25) = |1—:_1—=—‘1"-_2:[ to be the Poincare distance between two points in D. Ob-

serve that § is a metric in D. Another fact can be also read from the identity

1-6(z.22)° =



If 2y — 2o we get

dz] |du|
1— 27 1— |l

The shortest arc from zero to any other point is along the radius. Hence the geodesics
are circles orthogonal to St. They can be considered straight lines in a geometry. the

hyperbolic or the Poincare geometry of the disk. The hyperbolic distance from 0O to

r>01s

T 2dr _J 1+r
0o 1—r2 T

From the above definition we can notice that the hyperbolic geometry does nor

satisfy the parallel straight line axiom in the Euclidean geometry.

Lemma 1.2 (Schwarz-Pick) Let f: D — D be an analytic map. Then either f

15 linear. or else for each z9 € D the inequalities

f) = fz)l _ l—z

— P pos '-jé Zo
11 — f(z0) f(2)] 1 — %oz
and
’ = 1
IAE T q
1—|f(20)? 1 — |27

hold.

Proof. Let f(zg) = wg. Let T;.T, be transformations taking D onto D with

Ti(z) = Ty (wg) = 0. So. T\(z) = == and Ts(w) = ;‘_—_IL_“(;% Define an analytic

-0z

10



function e on D by o(z) = Tof (T~ !z). Then
0(0) = Tof (TY(0))
= T>f (20)
= T (wo)
= 0
and [o(2)] < 1if [2| < 1. By Schwarz’s lemma either |0 (z)| < |z|. = # O or else
0 (z) = cz where [¢| = 1. In the later case let z = T15. ¢ € D. We have
f(o) = T3y'e(Ti)
= 2—ICTI (<)

In rhis case f is a linear transformation of the unit disk into itself. In the former case

where f is not linear we find that [Tof (<) | < |T1 (<) | for all ¢ € D. ¢ # zo. Therefore.

| f(s) = f(=0)l < |< — 20 %

-

20-

11— F(zo)f()l 11 —=Zosl

As a conclusion. we can say that an analytic mapping of the unit disk into itself which
is not linear decreases the noneuclidean distance between any two points. Now. we

are left to prove that if f is not linear. then

1 (z0) | 1
T-1f(z) P 1= |2F

For fixed z; define g by

f(z) = f(z0) 1 —Zo2

— .Z#Zo
1—f(20)f(z) 2~ %
’ - ].“IZOI2 .
P& T G 7

11



The function g (z) is analytic. and by the first part of the lemma |g(z)| < 1
for z # 2. From the maximum principle we conclude that |g(z9)| < 1. which is

equivalent to

If (z0) | 1
< -
1—|f(z0)]*> 1-]z0l?

Now. we can conclude that an analytic mapping of the unit disk into itself decreases

the noneuclidean length of an arc. ®

1.4 Measure and Ergodic Theory

In this section our aim is to present basic definitions and theorems in ergodic theory.
The reader who would like to know more about ergodic theory will find much more

in [BGJ.

Definition 1.13 Let X be a space. Let 8 be a o-algebra of Borel sets of X and y1 be

a measure defined on f. Then (X.f. 1) is called a measure space.

Definition 1.14 [f(X.8. ;1) and (Y.£.v) are measure spaces. and f is a mapping of
X into Y. then f is said to be measurable provided that f~' (B) is a measurable set

in X for every measurable set B in Y.

Definition 1.15 Let (X.f.u) be a measure space and let T : X — X be a measurable
function. Then yu is said to be T invariant if for any set B € f we have p(B) =

(T~H(B)).



Lemma 1.3 Let (X. B, u) be a measure space and let T : X — X be a measurable

function. Then p is T invariant if and only if [ fdu = [ foTduvfe LY X.B ).

Lemma 1.4 Let (X. 8. j1) be a measure space and let T : X — X he a measurable

function. Then y is T invariant if and only if [ fdpu = [ foTdu Vf € C°(X).

Proof. One way follows from the previous lemma. The other way follows from
the Riesz representation and the Hahn-Banach theorems which are stated and proved

in [Ru]. =

Definition 1.16 Let T : X — X be any transformation. The n'* iterate of T 1s

denoted by T™. i.e.

n times. {T™(x)}n>0 is called the orbit of r.

Theorem 1.3 (Poincaré Recurrence Theorem) Let (X.pf. ;1) he a probability
measure space . Let T : X — X be a measurable transformation which preserves yi.
Let E € f§ such that y(E) > 0. Then almost all points of E return infinitely often to

E under iterations of T.

Proof. Let E be a measurable set with y(E) > 0. and let us define the set B of
points that never return to £. i.e.. B={r € E :T"(r) ¢ E. k =1.2....}. We will

prove that
T~ (BYNT™7(B) =0.

13



fori>j>0. IfreT-(B)NT7(B).then T7? () € Band T (17 (x)) =T" (r) €
B. which contradicts the definition of B . Hence. we have

S u(T7(B)) = p (U, T (B)) < p(X) =1L

1=0

Since 4 is T- invariant. this implies that Y .cqu (B) < 1. Therefore. p (B)=0. =

Definition 1.17 Let T : X — X be a transformation. A point £ € X is called T-

recurrent of and only if 3 a strictly increasing sequence of positive integers (1), _o

such that

r= lim T™(r).

1—+0C

Definition 1.18 Let (X.f0. ) be a probability measure space. Let T : X — X be a
measurable transformation. T is called ergodic if for every set B € f§ unth T-'B=2EB

we have that p (B) =0 or up(B) = 1.
A more general definition of ergodicity is the following

Definition 1.19 Lef (X.f. ) be a measure space . Let T : X — X be a measurable
transformation. T is called ergodic if for every set B € B with T"'B = B we have

that 1 (B) =0 or pu(B€) =0.

Lemma 1.5 T is ergodic with respect to y if and only if. whenever fe LYX.p.p)

satisfies f = foT. then f is a constant function.

14



Definition 1.20 We call a measure preserving transformation T : X — X on «
probability measure space (X.f.4t) an exact endomorphism if NG T "f = {X.0} up
to sets of zero measure (i.e.. if B € T™" f. for every n > 0. then y(B) =0 or

((B)y=1).
From the above definition one can observe that if T is exact then it is ergodic.

Proposition 1.1 T : X — X is ezact if for any positive measure set A with T"A €

B.n>0 (T"4) — 1 asn — x.

Proof. First we remark that T is exact if every measurable set A satisfving for
arbitrary n the relationship A = T7" (T™4) is either of measure zero or measure one.
For such a set A. it is clear that p(4) = 1 if £ (A) > 0. as p(T"A4) = p(4) and s0

limp o g (T"A)=p(A) =11 p(A)>0. =

Definition 1.21 Let (X.f8.;1) be a normalized measure space. Then T : X\ — X
is said to be non-singular if and only if T.y << p. i.e.. if for any A € f such that

piA) =0. we have T.p(a) = p(T™14) = 0.

Proposition 1.2 Let T be a non-singular transformation of (.X. B.4). If T is exact.
then

T flli =0 asn—x Vf € L'. / fdu =20
X

Proof. Let f € L'. [, fdu = 0. There are functions g, € L>=. such that

li. Any weak-+-limit of {gnoT™"} is measurable

l|gnll> = 1. and f\ fgnoTrdp = T

15



with respect to N,>;7T~"8, and hence is constant by exactness. Whence.
lim ||T"" fl]; = lim / fgnoTdu =0.
n—oc n—oc ‘Y

and the proposition follows. ®

16



Chapter 2

Invariant Measures For Inner

Functions In The Unit Disk

2.1 Absolutely Continuous Invariant Measure

Proposition 2.1 Let F : D — D be an inner function that has a fired point in D.

F(0) = 0. Then the restriction of F to S* .0 : S — S'. preserves Lebesgue measure.

Proof. Let ¢ be a continuous real valued function on S!. Since F is analytic in
D then v o F is harmonic in D and the Poisson integrals of ¢ o F and v o o are

equal because both have the same boundary values: therefore. we can write



for any z € D. Since F(0) = 0. we get

/w(e“)dt=/ v o o(e*)dt.
St St

By Lemma 1.4. we conclude that if F(0) = 0. the restriction of F to the unit circle

preserves Lebesgue measure. @

Corollary 2.1 Let F : D — D be an inner function that has a fired point in

D. F (z9) = zo. Then the restriction of F to S'- o : St — St preserves the Poisson

1—{zo]2
lett—zol?

measure dt. where dt is Lebesque measure.

Proof. Let v be a continuous real valued function on S'. Since F is analytic in
D then v o F is harmonic in D and the Poisson integrals of ¢ o F' and v o o are

equal because both have the same boundary values: therefore. we can write

for anyv = € D. Since F (zg9) = zo we get

1 — |zol? " 1 —|z)?
/ u(e")——l—ﬂdf =/ vool(e) ——,—Lﬂ—dt.
st st lett —

leit — zo? zol?
By Lemma 1.4, we conclude that the restriction of every inner function F with F(z) =

Z0. o € D. to the unit circle preserves the Poisson measure. @

Proposition 2.2 Let F : D — D be an inner function. Let © be the restriction of

F to Stand y1 be o invariant. where dy = =iyt dt is Lebesque measure. Then F

le't ~zoi?

has a fized point in D.

18



Proof. Let v be a continuous real function on S! then ¢ o F is harmonic in D

and the Poisson integrals of v o F and v o o are equal

1 = 1zal? 1 F(z)2
/ woo(e't)———l |zl dt =/ w(eu)————————l [F(20)] dr.
st st I

e — 2o et = F(zo)P

Since o preserves i then by Lemma 1.4 we get

- ay L—=l20® . oy L= |z0]?
vool(e) ———zdt = v (") ————dt.
St St

et — 2o le* — z|*

Hence.

it 1-|F(50)12 / it l-|20|2
w(e —___f)df = wie _____').df_
/51 (%) e — F(z0)|? st ( )le" — Zo|*
Therefore.
v (F (z0)) = v (z0)-

Since this is true for any continuous function. it follows that F(z) = 2o. l.e.. F has

a fixed pointin D. =

2.2 Denjoy-Wolff Theorem

Lemma 2.1 Suppose U is hyperbolic disk. F : U — U is analytic and F 1s not an
isometry with respect to the hyperbolic metric. Then either F* (z) — 9U forallz € U.

or else there is an attracting fived point for F in U to which all orbits converge.

Proof. Since F is not an isometry then & (F(z). F(w)) < §(z.w) for all z.w € U
by Schwarz-Pick lemma. In particular for any compact set K C U. there is a constant

19



I = k(K) such that § (F(z).F (w)) < ké(z.w). z. w € K. Suppose there is a
=p € U whose iterates visit some compact subset L of [ infinitely often. Take A" to
be a compact neighborhood of LU F(L) then 6{zm+2. Zm+1) < k6(2m+1- Zm) whenever
=m € L. This occurs infinitely often. so 6(zn+1.2.) — 0. Thus by continuity any
limit point £ € L of the sequence {z,} is fixed by F. which is attracting because
§(F(2).€) < 6(z.€) in some neighborhood of £. Since the iterares of F form a

normal family they convergeon U to . ®

Theorem 2.1 ( Denjoy- Wolff) Suppose that F : D — D is analytic and not

Mébius. Then. there is a unique point a € D such that F" (z) — o asn — xVz € D.

Proof. If the orbit of zero visits any compact set infinitely often. the previous
lemma provides a fixed point in D. Thus. we may assume that the orbir of zero
acenmulates on @D. The remaining part is to show that this accumulation point is
unique. Define F, = (1 — €)F(z) which is analytic and maps to a compact subser of
D. Let =, be the fixed point of F.. and let D, be the hyperbolic disk centered at =z,
with radius 6 (0. z,). Since F, is contracting then F, (D,) C D.. Now counsider D, in
the Euclidean metric. Zero is on the boundary of D,. Let Dy be any of the limits
of the circles D,’s as ¢ — 0. see Figure 1. Dg is a Euclidean disk with zero on its
boundary and F (Dg) C Do. Hence. the orbit of zero never leaves Dg. Thus. the

point of tangency of Dy and 9D is a unique limit point of the orbit of zero. ®

Definition 2.1 (Denjoy- Wolff point) Since the point a produced by the Denjoy-
Wolff theorem is unique, it is called the Denjoy- Wolff point.
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a
Figure 1
Now. we are going to present a special definition for recurrence.

Definition 2.2 A4 measurable map T : X — X of a measure space (X .B. ) is recur-

rent if the set

= UT"3

N>0n>N

of all points r € X such that T*(x) € 3 for infintely many values of n 2 0 satisfies

j1 (3 —3) =0 for every 3 € 8.

Theorem 2.2 [f F : D — D is an inner function and there exists a point : € D

such that

then the Denjoy-Wolff point a of F belongs to St and lim,—.xc F" (w) = a for a.e.

w e St



Proof. Assume z € D is such that ano(l — |F™(2)]) < >c: this implies that the

Denjoy-Wolff point a of F belongs to S!. Given a Borel set S C S!. let

s={J N F™S

N>0n2N
denote the set of all points w € S for all n > V. [t is enough to prove that m(57) =1
for everv open neighborhood S of a. because taking a decreasing sequence of open

neighborhoods Si of a such that (..o Sk = {a}. we obtain

m (Qﬁ) =1

all that remains to do is to observe that w € (.5, Sk implies that for each neighbor-
hood Sy of a3 N, > Osuch that F*(w) € Si¥n > Vi. which means that lim, . F"(w) =
a. Since m (N> S™) = L. this will prove the theorem.

20 dm s
=0~

To estimate m(S™). we recall that the Poisson measure. dy., =

let! —
equivalent to the Lebesgue probability measure and consider the characteristic func-

tion v of S°. Then v o F" is the characteristic function of F~"(S5¢). It follows that

p(F"(S5%) = /(u o Fdji.)) = / vdjipne) = CT(F2)).

Since

o
o



we obtain

\20n>-\
We also have
CHFT(2)) 1 1—|F*(2)? 1
= =dy, = (1 + |F™(z) —_———djt,,
1—{F(z)] 1—=|F"(2)| Jse |w— Fn(2)}? f | ) sc fw — Fm(z)|?

Let us now assume that S is an open neighborhood of a. Then

lim L—‘(—F—M = iy
n—oe 1 —|Fr(z)| " Jshe—al2 "
Hence there exists C' > 0 such that v*(F™(z)) < C(1 — |F™(z)]) for large n > 0 and

therefore

STUFT () S CY (1= FE))

n>N\N n>\N

for large .\ > 0. But our hypothesis is ano(l —|F™(z)]) < . from which it
follows that ianZO ZnZN v (F" (z)) = 0. Therefore. /[:(S'C) = 0. implying that

m(S=) =0.ie.m(S)=1 w



2.3 Ergodicity and Exactness

Proposition 2.3 [Ne] Let F be an inner function with F (0) = 0. Suppose that F

is not invertible. Then. the restriction of F to S' is eract.

Proof. Let £ € [ F~™(8). Then for every n we can find a set £, € 8 so that
E = F~"(E,). Since Lebesgue measure is preserved by F (Proposition 2.1). we have
m(E) = m(E,) for all n. Letting yg and Yg, be the characteristic functions of E

and E,. respectively. we find that

' 1— |z / 1 —|zf? / L= [Fmi) P
- F* (1)) —————dt = t _7____.‘»”
/ \£ (1) |e”_‘,,df XEn ( () —Z]? d \E. (1) |ez(_Fn(:)|_(

Iezt

for all - € D and all n. Since z = 0 is an attracting fixed point. then lim,_. F" (z) =

0. Therefore. lim, Iln—L‘(:i)il = 1 uniformly on S! for all = € D. Thus.
1 — |z 1 -z
il e B = — ljdt
/\E()let—x_‘ df +hm/\E lezt_7|2 J

= m(E)

Therefore. \ g (#) is constant a.e. on S'. Hence. m (E) = 0 or m(E) = 1. It follows

that the restriction of F to S! is exact. ®

Now. we are going to present a general definition for ergodicity. This definition is

mainlv used when we don’t have a measure preserving transformation.
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Definition 2.3 Let T : S! — S! be any transformation. T is said to be ergodic if

whenever T~! (B) = B, then m (B) =0 or m (S'\B) = 0.

Proposition 2.4 [Ne] Let F be an inner function with Denjoy- Wolff point a € S!.
Assume that F' (a) = 7. |v| < 1. and F has an analytic extension around a. Then

the restriction of F to S! is not ergodic.

Proof. Since F is analytic in a neighborhood of a. rhereisane > Oand n < 1 such
that F'(z) #0and |[F(z) —a|<plz—a|for |z —a| <e. Let G ={z:|z —a} < e€}:
thenv : € G

a— F"(z)

~n
/

— A(z) for |z —a]l < e

where 4(z) = {t € St : F"(t) — a}. Clearly A(z) is F invariant and {|z — a| <
e} NS} C A(z). and m({jz — a| <€} NS} > 0. Therefore. m(A(z)) > 0. If F were

1

ergodic then A(z) = S a.e. and this completes the proof. =

Lemma 2.2

i 4
/ ip: — puldm = =sin™'8(z.w).
St W

it

where § denotes the Poincaré distance in D and p. denotes the Poisson kernel.

Proof. Set d(z.w) = [g |p: — puldm. Suppose that v : D — D is a Mobius
transformation. Its Sl-restriction ¢ is an invertible non-singular transformation of
(St.3.m). Write

d(z.w) = sup (p: — pu)odm.
oeL>(m)Js!
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Observe that p.o = p.o o g. Hence.

d(z.w) = sup / (p‘r(:) - p‘y(w))Odm- = d(~v(z). 7 (w)).
o€l>*(m)JS!

It follows that

d(z.uw) = d(0.]

z—uw
I—Tzl)'

for r € [0.1) we get

4
d(0.r) = = sin~!r.

i

Hence. the lemma. =

Theorem 2.3 [Aa] Let F : D — D be an inner function. Then F is exact if and
only if $ (F™(z1).F™ (23)) — 0 as n — oc. where § denotes the Poincaré distance in

D.
Proof. First. suppose that F is exact. By Proposition 1.2
IFgll —ovger’ [g=o0.
In particular. by Lemma 2.2. for z;, 22 € D.
6 (F" (z1). F" (22)) = sin (%HF'"(I):l - :;.)Ih) — 0.

Conversely. suppose that lim,_.o. 6 (F" (21).F" (z3)) = 0. Let 8 denote the Borel

o-algebra of S!. Let A € ngO F~™(8). then A = F~™(A4,) with 4, € 8. n > 0.

Consider the characteristic functions y and y, of 4 and A4, respectively. Since 4 =



F~"(A4,). then x, o F* = x. Therefore. the boundary values of x, o F" and \ are

equal. Thus. for z, 20 € D we get

1 —|z[? 1 — |z
/ \'(f)—#f;df—/ \(f),t—f“l—sdf
s le — z|? st et — zf?

1= |Fr(z))? / L— [F7(z2)]
= Xn (f - df Xn t - _7df
/51 ) G~ Jo O e PP

for each n > 0. Now. choose a Mébius map T, : D — D with T,, (0) = F™ (z;). Then.

L— |Fr(z)P? / L— [F (=)
n f df An f - .)df
/51 X ( ) lelt Fn 41) St X ( ) |€'t sl F"(Zg)""

B / 1 — T (F™(22)) ]
= /S n (Tn (t))dt—/SI Xn (Tn (t))| —T- 1(Fn(w)),‘”

B 1= T (Fr(e) | -
= /51 Xn (T, (f)) []‘ Iezt _Tn—l (F"(:g))ljdf

But limp—se T7H(F™(22)) = 0. since §(T7 (F™(22)).0) = &(F"(22).Ta(0)) =

§(F™(z2).F™(z1)) — 0 as n — . Hence.

Therefore.

Therefore.

t 1—|zll2df_ fl———_i:?'lidfv-» e D
Slx()Teit—_z—lrz = 51X()|e"‘—z|2 2. 22 :

Hence. Y is a constant function and m (4) = 0 or m (4) = 1. It follows thar Fis

exact. &

™
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The proofs of the following theorem and corollary are found in [DM]. Since we are

going to use them later in the text. we repeat the proof.

Theorem 2.4 If F : D — D is an inner function and there exists a point z € D

such that Y~ o (1 — |F™(z)]|) = oc. then the restriction of F to S' is recurrent.

Proof. Assume = € D issuch that 3 (1 —[F™(2)]) = >c. We shall prove thar
tp. (B — F~'(B)) = 0. where 1, is the Poisson measure. for every Borel set B C 9D
such that F~! (B) C B. which ensures recurrence. Given a Borel set B C dD and
F~'(B) C B. assume A C B — F~!(B) is a Borel subset and v is a characteristic

function of A. Then. v o F™ is the characteristic function of £~" (A). Then. we get

i (F ) = [ (o Fydpp, = [ wditpen,, = 07 (F7 ()

where = denotes the Poisson integral of v. Also.

v (FT () _ — 1
T—[F"(2)] (1+|F (-)I)/A T Fr (:)l‘_,d;l,,u.

Let £ = limp—oc F™ (z) be the Denjoy-Wolff point of F: again £ ¢ A implies

(F"() _ /
nh—vn’_}c]_—-|Fn - (1+I£|) I If) /lpu.

Now. A C B— F~!(B) and F~!(B) C B. Therefore.
F7(ANF'A) =0,
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for all 0 < j < i and we have

L2 pp, <U F""(A)) =Dty (FT"(A) =) v (F(2)).

n>0 n>0 n>0

Suppose that y1, (A) > 0. Then

i L)
im

—_— > 0.
nmoe T — |F7 ()]

which guarantees the existence of A* > 0 and N > 0 such that ¢ (F7(z2)) >

K (1l —|F"(z)]) forall n > N. Since

123w (F ()

n>0

and by our hvpothesis. we get

.

123w (F () 2R Y (- |F"(2)])

n>N n>N

This contradiction proves that s, (A) = 0 for every Borel set A C B — F~! (B) saris-
fving £ ¢ A. Since B — F~!(B) is a measurable subset of S'. it is a countable union
of such sets A. plus "mayvbe” the point £ itself. it follows that p, (B — F~1(B))=0.



Corollary 2.2 If F: D — D is an inner function and the restriction of F to S! is

recurrent. then it is exact.

Proof. Let F : D — D be an inner function with a recurrent boundary map
and let us prove that it is exact. Later in the text. Corollary 3.1 will guarantee that
ergodic inner functions are exact. Therefore. to prove this corollary. it suffices to
show that F is ergodic. Suppose A C S! is a Borel set such that F7'({4) = A and
let us consider the characteristic function . Then. v o F = v and since theyv are
harmonic functions. each can be represented as the Poisson integral of its boundary
value: hence. v o FF = ¢*. where v* denotes the Poisson integral of ¢ at a certain

point. Therefore. if g : D — C is any holomorphic function with Reg = ¢".then

Re(goF)=Re(g)oF=v o F = v .

and one mayv choose b € R such that

(go F) =g+ ib.

Let us assume that b # 0. Defining G : D — C by G = exp (—2%|b|"!g). we obtrain

27 27

|G (z)| = exp <— o] Reg(z)) = exp (—l:ﬂ "(Z)) <1

27 27 o _ o 27 .
and (Go F)(z)=exp (_I—lﬁ ((F(z))) = exp (——lb—lg(‘):t?.nl) —(‘Z\p< [big(~)>

30



= ((z). that is. G is bounded and F-invariant. It follows that G o F® = G for all
n 2> 0. which means that G — G(a) is zero at every F™ (a). for all n > 0 and every

a € D. Given a € D. then by Theorem 1.1 we get

G-G(a)=0

or else its sequence of zeros ag. a;. ... satisfies

D (1= laal) < .

n>0

If the later follows. then we would obtain

Z(l—F"(:))<x.

n>0

and then by Theorem 2.2. the Denjoyv-Wolff point £ of F' would belong to S! and the
lim, . F"(z) = & for a.e. z € S'. Since. our hypothesis is the recurrence of F. this
cannot happen and we are left with G — G(a) = 0. But this implies that G. and then
g and Reg = ¢*. are all constants. Hence. v is constant because its Poisson integral
is constant. Therefore. v =0 a.e. or ' = 1 a.e. proving that m(A4) =0or m(4d) = 1.
The other case. b = 0 is proved by applyving the same argument to G = exp(—g).

which is again bounded and F-invariant. ®
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2.4 The Chaotic Behavior of a Finite Blaschke

Product and The Shape of Its Julia Set

In this section we are going to present the chaotic behavior of a finite Blaschke
product. This is a special case of the general theory. presented for illustration and as

an introduction to Chapter 3.

Case B*(0) =0

First. let us consider the following Blaschke product B*(z) = e'“zH;';z%. la,| < 1.
Obviously. zero is a fixed point of B*(z). We will prove that J(B*(z)) = S' . Let

glz) = I'I;"ﬂli_% and observe that {g(0)] < 1. Then. (B"(z)) = e'*(g(z) + zg'(=)).

Therefore. |( B~(z))(0)| = |g(0)] < 1. It follows that = = 0 is an attracting fixed point

of B*(z). Let f(z) = ==£. For |z| = 1 we have |f(z)| = 1. Hence. f(S!) = S' and

1<

by the maximum principle f(D) = D. Then. sup [f(z)| £ p < 1V z € D. Therefore.
IB7(z)] < plzl < 1and |(B")"(z)] < p*lz] — 0 as n — x . Then every point in D is

attracted to zero. Hence. D C F(B"). Also. B*(>c) = x: implies o is a fixed point.



Consider the conjugation o (z) = % =uw. Let G(w) = @c B* o 0~} (w) . Therefore

C(w) =00 B (i)

@
=0< ’Qlﬂ’f__-l GilL)
w w —a]
_» w a;
=e zaujnr.n_o J

Then G (0) = 0. Let A (w) =II7., ;i_ui’) and observe that |h(0)| < 1. Then |G (w) | =
(h (w) — wh' (w)). Therefore. |G" (0)| = |h(0)]| < 1. Hence. 0 is an attracting fixed
point of G (w) . i.e.. > is an attracting fixed point of B* (z). Now. we will show that
for z€ U. U = {z:|z] > 1}. z is attracted to oc. Let f(z) = 1:_—_;1; Forizj]>R>1
we have inf|f(z)] = R > 1. Therefore. for z € U' we have [|B*(z)| > R|z|. Then
(B™)" (z)] > R"|z] — > as n — x. Hence every point in U is attracted to x. Then

LU C F (B") and it follows that D is completely invariant in F (B"). The following

theorem can be found in [Be].

Theorem 2.5 [fQ is the union of components of F which is completely invarant i

. then J = 99.

Since D is invariant in F (B”) by the above theorem the Julia set of B™(z) = ¢'*=

I—a .
Mrzs s S
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General Case

Now consider the general case B(z) = e'®II™ | =—=-. By the Denjov-Wolff theorem

Jj=l1-a;z

B(z) has a unique fixed point in D. Suppose B(zy) = zo. 29 € D. and consider o(z)
= =2. Observe that o(z) = 0 and that ¢(z) preserves D. Using o(z) we can

1-Toz

conjugate B(z) into B~ (z) = €*z [IT,—=. We proved that J(B*) = S!. Therefore.

j=2 1-a,=

if B(z) has a fixed point in D. then J(B) = S'.

Now we are going to look for the case when the fixed point of B(z) belongs to

S'. Here. we present examples with J(B) = Stand J(B) as a Cantor like set of S'.

Consider B(z) = =2 —i-'—f-z— Observe that B(1) = 1. i.e.. z = 1 is a fixed point.

l-az 1—

(1 —az)(l —az)(2z—a—a) —(z —a)(z —@)(—a — @ + 2|a|?z)

(1 -d2)%(1 —az)

o)

B'(z)=

Then |B' (1) | = 2U=lall

I1—af®

We will check some cases where z = 1 is an arttracting fixed point. Consider
a = —,/2. then |B’(1)| = —2—= < 1.Then = = 1 is an attracting fixed point. Other
3 ~ 1+2v6
cases where z = 1 is an attracting fixed point can be checked by taking a = ——%. a=
=1— . =1l+i
—— ora= :

o)

For discussing the shape of Julia set in this case consider the symbolic space )
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=>,={l2. ... d} which endowed with the metric

= Tl — Tk
6(0’,7)—_—2—————I Ad‘“ |
k=1

is compact and totally disconnected metric space. The follwing theorems are found

in [Mi].

Theorem 2.6 For each hyperbolic rational function f there erists a continuous map

o: Y — J such that
ooS=fco

where S is the shift operator S : Y — > . (01. 2. cceee. ) — (2. O3+ evenn.... ).

Theorem 2.7 Suppose that f is a hyperbolic map and F is connected. Then .J 1s

totally disconnected and the map o : Z — J is a homeomorphism.

Proposition 2.5 If B(z) has an attracting fized point on S'. then J(B) is a Cantor

like set of St.

Proof. When the attracting fixed point of B(z) is on S'. we conclude that F (B) is
connected because the attracting fixed point is in F(B). Therefore. from the above
theorems. we get that J(B) is totally disconnected in the unit circle. The above
theorems are with respect to Poincaré metric. Then. J(B) is totally disconnected in
Poincaré metric is equivalent to saying that J(B) is a Cantor like set of S! according

to Euclidean metric. @



Now. we are going to check a case when z =1 is a neutral fixed point of B(z).

Consider a = -‘3—‘ Then B'(1) = Ll_y%—) = 1. Therefore. |B'(1)] = l.ie..z =1isa

(1+3)?

neutral fixed point of B(z).

The following lemma and theorem are proved in [Be| for rational functions: we

are going to repeat the proof to make sure that it does not depend on rationality.

Lemma 2.3 Let R : C — C be any map.Suppose that Fy is a forward invariant
component of F (R). [f there exists a constant limit function with value §. then & is

a fired point.

Proof. A function o is a limit function on a component fy of F (R) if there is
some subsequence of { R"} which converges locally uniformly to o on Fy. The class
of limit functions on Fp is denoted by & (Fy). Since {R™ : n > 1} is normal in F,.
then P (Fp) is non empty and each map is analytic in Fy. If Fg is forward invariant.
and if o is a limit function in Fy. then o (Fp) lies in the closure of Fy: in particular.
if o is constant with value £. then & € Fy U @Fy. Moreover. if z is in Fy. then so is

R (z). Therefore. on some sequence of integers n tending to infinity. we get
R(¢) = R (lim R"(2)) = lim R"(R(2)) = o(R(2)) = &

n—oc n—oc

Therefore. € is a fixed point. ®
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Theorem 2.8 Let R : C — C . Suppose that Fy is a forward invariant component
of F(R). and that R® — 9Fy as n — oc. Then there is a rationally indifferent
fixzed point §& of R in OF, such that R* — £ locally uniformly on Fy as n — x. and

R'(€) = 1.

Proof. The Lemma preceding the theorem proves that there is a fixed point §

in 0Fy such that R® — £ locally uniformly on Fy as n — oc. Thus & is uniquely
determined by the action of R on Fy. So. it remains to prove that R'({) = 1. Ob-
viously. |R/(§)} > 1. otherwise £ would be attracting fixed point of R so would lie in
F(R). It is also true that [R'(£)| < 1. otherwise & would be repelling fixed point of
R: however. R™ (z) can converge to a repelling fixed point £ if R" (z) = £ for some
n and as z belongs to Fatou and £ belongs to Julia. this cannot happen. It follows
that {R'(€)] = 1. By conjugation. we may assume that { = 0 and < € dF,. Then
put A\ = R’ (0) and note that as |A\] = 1. R is injective in some neighborhood L~ of
the origin. We construct a forward invariant subdomain 1" of Fo N L. Now. rake any

point & in 11", and for n > 1 define the functions ¢, on 1" by 0, (z) = ::((fo)). Now

we want to show that {e,} is normal in I". First. o, does not take 0 and x in I
because R™ does not. As W C U. R is injective on . As 0, (&) = 1 non of the o,
takes the value 0.1.oc in W — {&}. It remains to prove that it is normal near §,. By
normality. we can find a sequence {On,} which converges locally uniformly to some
constant function o on W — {&}. Now. choose a disk centered at . and lying in Fg

and B be its interior and B be its boundary, using the Cauchy integral formula and
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letting n; — oc. we get

1 On(w) 1 o (w) '
on(z)~27i/63w—-zdu—’2 /aBLL— du

o(u.)

and the convergence is uniform near &. Notice that .,_1 ) 25 =—dw is holomorphic
in B with value 1 at & and it is ©(2) when z # &. It follows thar {o, } converges

uniformly through out " where 0 (z9) = 1. Therefore. 0, — o locally uniformly on

11", Now. for all n.

z : R"(z)) -
on (R(2)) = 0n (2) <—(‘£)i> = on (2) ( : (i) ) .

Letting n — > through the sequence n,. we obtain o (R (z)) = R’ (0) o(z) = Ao(z).

Still we need to prove that A = 1. First. a non constant locally uniformly limit
function of injective analytic maps is injective by the Hurwitz's Theorem. Thus. either
o is constant in 117 or it is injective in 1", If @ is constant. then its value at & is one.
and since o (R (z)) = \o(z) we deduce that A = 1. If o is not constant on 11", rhen
it has an inverse 0~! which maps o (11) onto W". However. since o (R (z)) = Mo (z)
we obtain that o (R™ (&)) = A0 (&) =.A". Since |[A| = 1. so there is an increasing
sequence of integers n; such that \"> — 1. [t follows that o (R™ (&)) — 1 and as the
open set o (H17) contains 1 = o (&) we see that o (R™ (&)) € o (117) for sufficiently

large j. For this j. we have.
RY (§)=0"'(A\V) — o7 (1) =&
and this is false because R® — 0 on W' recall that we conjugated £ to 0. Therefore.

we deduce that o is necessarily constant and that A=1. &
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Proposition 2.6 If B(z) has a neutral fized point, then it is rationally indifferent.

Proof. By Theorem 2.8 we get that if B(z) has a neutral fixed point then it is

rationally indifferent. ®

Theorem 2.9 Let f be any function. If deg(f) > 2 then every rationally indifferent

cycle of f lies in J(F).

Definition 2.4 Let f : C — C .U is called an attracting petal of f at 0 if and only
of F(0) € U U{0} and Neso f5(T) = {0}. V is a repelling petal if and only if 1t 1s

an attracting petal of f~1.

Theorem 2.10 Suppose f is any function where f(z) = z(1 —az™ + ...... ). a # 0.
n > 1. near 0. Then f has ezactly n Leau domains. L,. L. ..... L, corresponding
to the houndary point O, and {f"} converges to O locally uniformly in L. Each L,

contains an invariant attracting petal.

Proposition 2.7 If B(z) has a neutral fired point petals will appear. Moreover. we

may have one of the following cases:

p—t

. The repelling petals are part of the unit circle. In this case .J (B) = S'.

[A)

. The attracting petals are part of the unit circle. In this case J (B) is a Cantor

like set of the unit circle.

3. The neutral point is repelling from on side and attracting from the other side.
In this case J(B) is a Cantor like set of the unit circle.

39



Proof. Since the neutral point of B(z) is rationally indifferent. then by Theorem
2.10 petals will appear. We will discuss the three possible cases.
For the first case. the only possible attractor on S! is the neutral fixed point. which
is repelling in this case. Moreover. B (S!) = (S!). then no arc of the unit circle can
be attracted to a point in D. Therefore. no arc in S! is in F (B). Hence. J (B) = S!
For the second case. the attracting petals are subsets of components of F (B) and
the boundary of there basin is in J (B) .Therefore. F (B) is connected. This implies
J (B) is totally disconnected. by Theorem 2.7. i.e.. J(B) is a Cantor like set of S'.

The third case is similar to the second case. &

Definition 2.5 If f is an analytic map of a domain U onto a domain G and if ~
is a curve in G. then it is. in general not true that there is some curve I' such that

fol =n~. IfU exists. then it is called a lift of ~.

The following theorem and corollary are proved in [DM] for rational functions: we

are going to repeat the proof to make sure that it does not depend on rationality.

Theorem 2.11 Let U be a fized parabolic hasin of a map f : C —Candleto: D —
D be a lifting of f : U — U via a uniformization v : D — U such that oo = fou.
Then. for every z € D and all a > :}Z- the inequality

) 1
1-|o"(2)| > —

n a

holds for all sufficiently large n.
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Proof. We shall only prove that there exists a point 25 € D such that. for all

a >

S |—

— e~ ) i _
l-jo (40)|Zna

holds for all sufficiently large n. From this. the same relation holds for all = € D
because the boundary map of f is recurrent by Theorem 2.4. It follows thar ir is
exact by Corollary 2.2. Therefore. by Theorem 2.3 lim,_.. 8 (0" (z).0" (2}} = 0.

where ¢ is the Poincare distance between two points in D. Hence.

o™ (z) — 0" (20)|

lim =0
n—c 1 — 0" ()]
for all - € D. Hence. given z € D. we have that
1—]o"(z})] = 1—|o"(20)|—1{0"(z) — 0" (20)!

> (1-€)(1—l0"(20)])

holds for all € > 0 and sufficiently large n. This implies that z also sartisfies

1
L—-]o" (2)| 2 —-
n

Now we need to prove that

n ! 1
l1~Jo"(z0)| 2 —
n

holds for all sufficiently large n. So. let p be the parabolic fixed point of f: then

pedlU CC. f'(p)is a root of unity and lim,_.o f*(z) = p for all z € U. Without
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loss of generality we can assume p = 0. f'(p) = 1 and the Taylor series of f at = =0

for some k& > 2. The basic theory of parabolic fixed points ( see [Mi]) implies that

there exists an n > 0 such that U contains the sector

wm |<7r(l—e)
k—1 k-1

S={zeC:|z|<n.|arg(z) — b

and. moreover. f™(S) € S for all large n. sayv n > NV and lim, .. f"(z) = 0 and
lim, o |arg (f*(z) — &%) =0forall z € S.

Without loss of generality. we may assume that m = 0. From the Tavlor expansion

of f at z =0 it follows that for each z € S there exists C > 0 such that

1
A—1

reize(r)

for all n. Let v : D — U be the uniformization of U': write S° for the connected

component of v~} (S) such that 0" (S%) C S° for all n > V. Set n = =% and choose
a branch g : § — C of 227 which leaves the positive half line {t € R : + > 0} invariant.
Then u(z) = Reg(z) is a harmonic function of S that vanishes on the sides of S.
Consider the harmonic function v o v : S — R and observe that there exists A" > 0

stich that

—Klog|z| > (uow)(z)



for all = € S9. In fact. to check this inequality. it suffices to verify it at the boundary
of S°. It holds on the part of 9S° mapped by vonto the sides of the sector S. since

there u o ¢ vanishes. Taking K large enough we can make it also true on the part

95 that v maps onto {z € C : [z| = n.|arg(z)| < %l} since u o v is bounded

there. Now. for zy € S° we have 0" (zg) € S° for n > .V and
—Kloglo™ (z9)| =2 wowvo™(z)=u(f"(v(zg)))
= Reg (f" (v (20)))-
Since lim,_ |arg (f™ (v (29))) | = 0 it follows that
lim Jargg((f" (v (20))))] =0

and therefore

Reg (f* (v (20))) = 219 (f" (v (=)

If" (U (20)) [

N -t

for large n. Combining this result with

!

2 C (%)

we obtain. for large n.

—Kloglo" (20)| 2

]_> In(x=1)
1> 2nte—1)

[
Q
ER
TN
3

It
[N
Q

l.:l,_
k)
N
3

Since € is arbitrary. we get the result. ®
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Corollary 2.3 If U is a fized parabolic basin of a map f : C — C. then the restric-

tion of f to OU is exact and recurrent with respect to the harmonic class of OU .

Proof. the harmonic class of U is the class of measures on the Boreal o-algebra
of 9U which are equivalent to a harmonic measure /1, for somep € U. Let v : D — U
be a uniformization mapping. i.e.. a holomorphic covering map of U: it always exists
if L'¢ contains at least three points. as in our case. since U is regular. the regularity
of U also implies that the logarithmic capacity of U'¢ is positive. Then. the radial
limit of " (') = v (re'?) a.e.. on OU. Moreover. v transforms a harmonic measure
t1p on U in the harmonic measure yq on 9D. where ¢ € ' ({p}). More precisely-
p1q (L)1 (A)) = pp (A) for every Borel set A C 9U. To see this. take a continuous

function g : U — R and let g~ : U — R be its harmonic extention. Then
}1—1.1} (g"ou) (re®) =g (v ()
a.e. on dD and by a theorem of Fatou.
/(g‘ ov)dug=g"ouv(q) =g (p)= /gd/lp-

From this. pq (( )7 (A)) = pp(A) follows by applying standard approximation
methods.

Now. lift f : U — D. we obtain an inner function o : D — D such that v:oo =
fou. with Denjoy-Wolff point p* € dD since v* : 9D — 9U satisfies i, ()" (A) =
t1p (A). for each Borel set A C 9U and every point p € U. v (q) = p. it is clear that the
ergodic properties of the boundary map of o. thus the recurrence and the exactness
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of f/AU with respect to the harmonic class of QU are consequences of recurrence and

exactness of 0o* the boundary map of ¢. By Theorem 2.10 we have.
1
n (.
I—]o™(2)]| = s

where a > ;. which implies recurrence and exactness of o*. ®

(M

Theorem 2.12 Ergodicity of a finite Blaschke product is equivalent to J (B) = S'.
Proof. We are going to divide the proof into two cases:

1. If B(z) has a fixed point in D. then by Proposition 2.3 the restriction of B (z)
to S! is ergodic. Moreover we discussed before that if B (z) has a fixed point

in D. then it is attracting and J(B) = S'.

If B(z) does not have a fixed point in D. then B (z) has a fixed point on S'.

[}V

which can be either attracting or neutral.

(a) If B(z) has an attracting fixed point on S*. then by Proposition 2.4 we
showed that the restriction of B (z) to S! is not ergodic. M\lorcover. we
discussed before that if B (z) has an attracting fixed point on S!. then
J(B) is a Cantor like set of S!.

(b) If B(z) has a neutral fixed point on S!. then petals will appear and we
will get one of the following:

i. If the attracting petals are part of the unit circle. then by a previous
discussion we found that .J (B) is a Cantor like set of S'. Moreover. if
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Zg is the neutral point. then it is the end point of the complementary
arcs a of J(B). Furthermore. we can choose a small closed subarc
n C a with B™ (n) are all subarcs of a tending uniformly to z. n =
1.2........ . Choose n small enough such that g(n)Nn =@ and V" be an
open interval between n and g(n). Let A = UZXB" (). We want to
show that V"N A = 0. Since B"(n) converges uniformly to zy. no image
of n will intersect V. Now. suppose that VN 4 # 0. then 3r € V"N A.
i.e.. r € B™"(n) for some n. Hence. B*(r) € n which is impossible. [t
follows that V' N 4 = @. Therefore. m(S'\A4) > 0. Also B~1(4) = A

Hence. the restriction of B to S! is not ergodic in this case.

ii. The neutral point is attracting from one side and repelling from the

other one. This case is similar to the previous one.

iii. The repelling petals are part of the unit circle. For rhis case we showed
that J (B) = S!. Moreover. by Corollary 2.3 we get that the restriction

of B(z) to S'is ergodic.

Therefore. ergodicity of a finite Blaschke product is equivalent to .JJ (B) = S'. =
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Chapter 3

Invariant Measures For Inner

Functions In The Upper Half Plane

In this chapter we will transfer the results from the circle to the line by a conformal

map. That is. let w = ®(z) = i (1££) be the conformal map of D into the upper half

1-=

w—1

D If

plane R?* of C. the complex plane. & carries S! onto R with &~ ! («) = :
w +1

F is an inner function in D. then G = ® o F o ®~! is an inner function in R*~ and

2
-z

vice versa. ® carries the Poisson measure P.dt = dt to the Cauchy measure

1 b
m(r —a)? + b2

Ieit —_ zl’l

Quir)dr = dr on the line. where w = ®(z) = a + tb. and dr is

Lebesgue measure on the line.



3.1 Absolutely Continuous Invariant Measure

Theorem 3.1 [fT : R?>* — R2?* is an analytic function. then

1
T(z)=a7-z+87-+/ t!
wp F—

d#T( )

where a.3 € R. a > 0. and p is singular with respect to Lebesque measure if and only

if T is an inner function.

Proof. Let v = ImT. then v : B** — R_. is harmonic. Set 0(z) = o_;(z) =

11—z o . . . s
l <l— . then o(e*") = tan#t and r oo : D — R_ is harmonic. Since it is

harmonic. then 3 a positive measure yr on S! such that

! 1—|zf?
v (Z) =/ po“(:)dl" (t). p: = _‘__I:,
0

Nouw. Po~1(z) (T) =Im

hence.

d/lr( )

l+tanwur:z
r(z)=arz+ Im Im
tan ~r —

where ar =y ({3}) and [ h(t) dpr(t) = fsw{%} h (tan7x)dyu (17). Observe that.

1+ ¢tz
z— arz -{-/ , d//T (t)

<

is an analytic function and has the same real part as T. Hence.

1 +1¢=2
T(2) =ars+or+ [ T dur ()

X . -~
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for some 3r € R.
The measure p is singular if and only if v 0 @ has a boundary value zero. a.e. with
respect to Lebesgue measure. This is true when o~ o T o 0 is an inner function of

D. Also. yur is singular whenever y is singular. Therefore. T is an inner function of

2. =

Proposition 3.1 Let F : R** — R?* be an inner function. Let T : R — R be the

1 __ b ___dr is T-invariant
T (r—a®)+b2

N

restriction of F to R. Then the Cauchy measure Q,. ()
if and only if F fizes some point in R2*.

Proof. Consider the function w = & (z) = i (1=£). then &~ (u) = - - * which
w o+

t

maps R2* conformally onto D. Therefore. the result follows by Corollary 2.1 and

Proposition 2.2. ®

Proposition 3.2 Let T : R?* — R2* be an inner function with ar = 1. Then. the

restriction of T to R preserves Lebesgue measure.

Proof. Let T : R?* — R2* be an inner function. then

1++tz

T(2) =a-rz+3T+/ duir (1)

- =

=
where a.3 € R. a > 0. and y is singular with respect to Lebesgue measure. Recall.
1 b :
L— — —dt. where df is Lebesgue measure on
T(t —a)?+ b

the real line. Then. for any measurable set A € R. #bQqzip (A) — m (A). [—'b‘— — 0 as

the Cauchy measure Q.. (t)dt =
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b — . Now. observe that

1+ tib
b dur (t)

(1 + ibt) (¢ + ib)
t

t— tb° " b+ bt?
= 3T+/ .,d/lf[‘(f)‘i'i(b()"["i‘/ ,—)_:——,,d/l'['(f)> .
t2 + b2

:.:f2+b- 3

T(ib) = ibaT+_3T+/_

= ibar + Gr +

Therefore.

lim ImT (i6)

— ar.
b—oc b

m (A)

ar

Hence. 76Q (T 'A) — m (T~ 'A) and 7bQrp (A) — Bur #bQ., (A) =

7bQrup) (A) and ar = 1. Therefore.
m(T™ ) =m(4d) VAR
Therefore. the restriction of T to R preserves Lebesgne measure. ®&

Proposition 3.3 Suppose that T : R*? — R¥2 is an inner function which is analytic

around rg € R and T (rg) = 19. T’ (1¢) = 1. Then. the restriction of T to & preserves

dt

e where dt is Lebesque measure on R.
—Iag

Aty (t) =

. -1
Proof. Assume that rq =0 and let 7" (19) =a. Let R(z) = m Observe that

1 1
—— — - — —aas z — 0.

T(z) z

[t follows that 3A” > 1 such that

Rz)=z+a+)» — V|z| 2 K.



Hence. ap = 1 and

t=
R(z)=z+a+5'+/1f+

R T

dy (t)

for some singular measure 2 on R and 8 € R. It follows. by Proposition 3.2. that the

—_— -1
restriction of R to R preserves Lebesgue measure. Since R(:) = ———. then

T(3)
T’(‘ )
R(z) = =,
Define Iy = {z : 6 < Arg(z) <= —6}. For z € T’y we get
R(z) —las:z—0.

Since the restriction of R to R preserves Lebesgie measure. then the restriction of T

to X preserves the infinite measure %’_5 where dt is Lebesgue measure on X. Shifting
the neutral fixed point again to 1y we get that the restriction of # to R preserves the

infinite measure —%—. =
(t—x0)

3.2 Ergodicity and Exactness

Theorem 3.2 Let F : R?* — R?* be an inner function with boundary restriction T .

Then T is ezact if and only if §(F™ (w).F™"(w')) — 0 as n — x for all w. w € B3,
Fruw') — F™ (w)
Fr(uw) — F" (w)

| the Pioncaré distance in the upper half

where §(F™ (w) . F*(w')) = |

plane.



Proof. Consider the function w = & (z) = i (1), then &~ ! (w) = = — * which
: w+

maps R?* conformally onto D. Therefore. the result follows from Theorem 2.3. ®

Theorem 3.3 (Pommerenke) Let T : R** — R?*" be analytic with Denjoy- Wolff
point . Let T" (i) = a, + itb,. then 3 lim, . -TL,,)—i’l = F(z). Moreover. FoT =

aF +bwherebeR. a>a,and FoT =F & F=i.

TV (z) — a,

Proof. Without loss of generality. T is not Mobius. Set F,(z) = ;

Then. F" (i) =i . Denote by § the Pioncaré distance in R>*. Observe that
S(F (2) . Fa (") =686(T"(2).T™(2").
and

§(T™(z).T"(Z)) —0asn —xV =z e B2,

§(T"(z).T"(2")) —0asn —x V=22 eR¥e F(i)— iV e R,
Suppose that § (T (z).T"(2")) — L(z.2') = L{(T:. TZ'). Then. if F,, — G. we get
G{(i)=iand L(z.2)=6(G(z).G ().

Since 8 (G(Tz).G(TZ))=L(Tz.T)=L(z.2')=6(G(z).G (z")). then by Schwarz

-Pick lemma we get



where 4 is Mobius. Suppose that A has a fixed point p € R2*. Notice that.
ImT™ () — oc as Imz — oc because ar» = af > 1 for all n > 1. Hence.
ImG (z) — o< as Imz — oc. Now. Im7T™ (i) — x as n — oc. This implies that
ImA” (i) =ImA" oG (i) =ImGoT" (i) — > as n — >c. Since 6§ (A" (i).p) = 6 (i. p)
for n > 1. we have that A% (i) = i. Since 4% (p) = p. we must have 4 (/) = i. Now
let & : D — R?* be an analytic bijection with ®(0) = ¢ and set A = 1o T o b.
g=®'1'oGodanda =P 'oAdod Then g(0) =0. g(h(z)) = Ag(z) for some

A€ Sl and g(h"(0)) =0V n >0. Then by Theorem 1.1 we get

h™ (0) — 2
) LSy
|g( ) l —= I_In—Ol — Thn (O)

Hence. for every NV > 0.

. B o ~ hk—:—n (O)___hn(z) . N ) _
lg(2)|=lg(h (o))lsﬂk=ol_hn—(2—)hk+n(0) lg(z)[7 as n — .

This implies that g = 0. or G =i. Hence. L =0 and F,(z) — ¢.

Now. suppose that A has no fixed point in R*~. Then A" ({) — x. Therefore.
A(z)=az+bwherea > 1 and b € R. In case A is not the identity map. claim that
F, — G. Suppose that F,, — H. We have that HoT = B o H with B"(z) — x.
Also. 6 (H (z).i) = L(z.i) = §(G(z).i). Hence. H = C o G where C' is Mobius
and C (i) = i. But since A™ (z).B™ (z) — 2. we have in addition that C'({x) = x.

Hence. (' is the identity map and G = H.



n+1

Finally. we are going to show that a > ar. Clearly. bT— — a as n — x. Using

Theorem 3.1. we get

bps t2
'1=aT+/( 1+ >d;t(_t)2€t’[‘

(t —an)?® + b2

which ends the proof. ®
Theorem 3.4 [Aa] Let F : R?>* — R*T be analytic. and not Mébius. Then either
1. 8(F" (w).F™(uw')) — 0 as n — x for all w.w' € R,
or

2. There is a non constant. bounded analytic function h : R*™ — D such thar

hoF = h.

Proof. Suppose that F 's Denjoy-Wolff point is in R?* and assume that x is the
Denjov-Wolff point or otherwise conjugate by a Mébius transformation. Then by the

Pomnterenke’s theorem. either
§(F™(w).F"(u)) —0asn — > Y uw.uw' € R*
or 3 an analvtic function G : R?>* — R?* satisfving
GoF=aG +bforsomea.beR. a>ar.a#1and bec R,

Thus 3 H : R** — D analyvtic and non constant such that H (aw + b) = H (w). Let

h=HoGthenhoF =h. ®



Remark 3.1 In case 2, for a.e. r, lim,_oh (z +iy) = k(z) exists. k(Tx) = k(1)

a.e. and k is a non-constant because h is non-constant. Hence T is not ergodic.
Corollary 3.1 [Aa] Ergodic inner functions are ezact.

Proof. Let T : R?* — R?* be an inner function. If T is ergodic. then by Remark

3.1 and Theorem 3.4 we get
§(I™ (w).T" (")) —0asn — x V w.u’ € R*™.
Therefore. by Theorem 3.2 we get that T is exact. ®

Theorem 3.5 [Aa] Let T : R* — R?* be an inner function with Denjoy-Wolff

point >xc. If ar > 1. then the restriction of T to R is non-ergodic.
Proof. By Theorem 3.4 3 F : R** — R?~ analytic such that
FoT =aF +b

where b € R.a > ar > 1. It follows that 3 A : R*” — D analytic and non-constant.

such thar
H(az +b) = H(z)

H o F being bounded. analytic. non-constant and T-invariant. Therefore. by Remark

3.1. the restriction of T to R is non-ergodic. ®

Theorem 3.6 [Aa] If T : R>* — R>** is odd. inner function and ar = 1. then the

restriction of T to R is exact.

n
(1]



Proof. Write T7(i) = ib,. then

bn+1 1+f2 l(R)
E— —_—— <
> 1+/R(t2+b5)d (1) <1+ 5

therefore.

bn+l

— lasn— x.
b,

It follows by Pommerenke's Theorem that

i——»F(z)abn—,xV e R>*.

where F : R?* — R2?T is analytic and odd. and F(Tz) = F(z). hence F =
ST (w).T™(u")) — 0 as n — o for all w.uw’ € R?>* where & denotes the Pioncaré

distance in R2™. Therefore. by Theorem 3.2. the restriction of 7 to R is exact. @

3.3 Julia Set and Ergodicity for a Class of Mero-

morphic Functions

In this section. we are going to discuss a class of meromorphic functions which are

represented in the form

g(z)=.4+s[ “‘—‘ZC<._,,S ;)J (1)

where 4. B.C,.ps.s = =1, £2. ... are real constants. B.Cs > 0 and £ = £1. Observe

that g (z) represents the inner functions in the upper half plane. In this representation.
the constant B is the same as ar in the previous represntaion.
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Proposition 3.4 Let g(z) be of the form (1). Then. 3, %} < +2c.
Proof. There is no loss in generality if we assume that Cy = 0. Then. g(z) is the

uniform limit of the sequence

n

ga(2) = Y CS_’"Z + Cn

§=-n o

where ¢, is a real constant. Taking the derivative at the point zero.we find that the

sequence of sums

n
Csn
2 p?

s=—n

converges to g’(0). On the other hand. it is evident that C,, tends to the residue C,

at the point p,. Passing to the limit as n — . we find from the inequality

N
> i" < ¢'(0) (n>N)

s=—N

that

and accordingly the series



converges. B

Now. we are going to discuss the behavior of g at oc. Although g is not analytic
at >c. we still can explore its behavior in a neighborhood of >c with removed real
line R. There is no loss in generality if we assume that Cy = 0. then. we conjugate g
using the function z — =% and consider G(z) = —1/g(=}). infact. we have used the

same kind of argument in the Proposition 3.3.

Lemma 3.1 Let Ty be the cone {z :60 < Arg(z) < = —8}. Then. for = — 0.z € Ty.

we have

Cs = c, =22
Lzt et

Proof. Let us first notice that from the geometrical considerations it follows thar

for - € 'y and any ps. we have

1 .
|— + z| > |z|sin@ and

s 3

1 L.
| — + z] > |—|siné.
Ps

. . C 1gc .:
Fix 6 > 0. Since ) %} converges we can find sq such that - 2 < 56sin6. Then.

we have




The second summand is less than §/2 and the first can be made smaller by choosing

|z| sufficiently small. This proves the first part of the Lemma. Similarly. we have

22 C, 2 C, z
< R D PR
pL_*_: I—IZP3(¢+Z)2[ |sz(L+:)zl

L ps s>sg ©% " Ps
The second summand is less than §/2 and the first can be made smaller by choosing

|z} sufficiently small. This proves the second part of the Lemma. ®

Proposition 3.5 Let B #0. Then. For z € I’y
(1jlim._oG(z) =0
(2)lim._oG'(z) = 5
For B = 0. if G(0)=0. then G'(0) = . where hoth values are calculated as

appropriate limits for z — 0.z € T'y.

Proof. Let B # 0. We have

G(z) = —z2(dz — B — Z~_ -

5 "P:

By Lemma 3.1. G(z) — Oas z — 0 for z € ['p. This proves the first part of the

Proposition. Moreover. we have

c, =z?
B+)» .—
ey e
G(Z)= gg(_l/za (AZ—B—Z E z )2
i S p? ;1: + =z



By Lemma 3.1. G'(z) — é as z — 0. This proves the second part of the Proposition.

Now. for B = 0. assume that. in the sense we discussed above. G’(0) = 0. Then. for

ey

G'(0) = lim b2 lim —(Az — Z
This completes the proof of the Proposition. ®

Corollary 3.2 Let g be of the form (1). Then. the point > is:
(1) repelling. for B < 1:
12) neutral. for B =1. and

(3) attracting. for B > 1.

where the words repelling. neutral and attracting are understood in the sense defined

in Proposition 3.5.

Example 1: Boole’s Transformation
Boole’s transformation is defined by r — r — % Since B = 1 in Boole’s transfor-

mation. then by Corollary 3.2 we have oc as a neutral fixed point. Moreover. by

Proposition 3.2. it preserves Lebesgue measure.

Example 2: Generalized Boole Transformation

The generalized Boole transformation is represented by
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T.r=:l?+,3+i Pk

k=1 tk -t
where n > 1. py.....p, > 0. 3.t;.....t, € R. Since B = 1 in the generalized Boole
transformation. then by Corollary 3.2 we have oc as a neutral fixed point. \Moreover.

by Proposition 3.2. it preserves Lebesgue measure.

Let g(z) be of the form (1). Baker. Kotus and Yinian proved in [BKY] thart
the Julia set . J(g). equals to R or it is an unbounded Cantor like set of R. As a
consequence of this work. and from the results we obtained on ergodic theory for

inner functions. we got the following result:

Theorem 3.7 Let g(z) be of the form (1) with B < 1. Then. .J(g) = R if and only

if the restriction of g to R is ergodic.

In Theorem 3.7. ergodicity is meant in a more general sense: whenever g7'(4) = A.

then either m(4) = 0 or m(R\4) = 0 where 4 is a measurable set.

Proof. By the Denjov-Wolff theorem. g(z) has a unique fixed point zy in %2~
such that g" (z) — 29 V z € R?*. We have two cases:

1. zo € R?>*. By the Denjoy-Wolff theorem zg is an attracting fixed point. There-
fore. ¢g" (2) — 2z V z € R?>* and R®>" C F (g). Now. since g is symmetric with
respect to R. then C'\R?+ is attracted to a fixed point in C\RZ2+* and C\R* C F (g).
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Moreover. g(z) preserves the real line: therefore. R>* is completely invariant in £ (g)

Suppose that R contains a subset of Fatou set. then this subset will be eventu-
ally attracted by the fixed point in R?** or C\R2+. However. g(z) preserves the real
line. Hence. no subset of R can be attracted to the fixed point. Therefore. R cannot

contain a part of Fatou set. It follows by [BKY] that J (g) = R.

i ] . .
- which maps R™2 conformally onto D. and Proposirion

Using the map v —
w+i

2.6. we get that the restriction of g(z) to R is ergodic.
2. zp € R. Here we have two cases:
i. zo is an attracting fixed point. then zp € F (g). By [BKY]. J(g) =R oritisa
Cantor like set of R. and since zg € F (g) the latter follows.
w—1

. which maps R?* conformally onto D. and Proposition
w [

Using the map w —
2.7. we get that the restriction of g(z) to R is not ergodic in this case.
ii. 2o is a neutral fixed point. By Theorem 2.8 our neutral fixed point is rationally

indifferent. Hence. petals will appear. Observe that

"oy CO 1
g (20)=6—+6 Ci—
201 Z (ZO _ps)(

is strictly greater than zero. Therefore. zg is of multiplicity 3 or 2. and in both cases
2o eventually attracts all points in R**.

Consider the first case. which is shown in Figure 2. the repelling petals are on the
real line. According to [BKY]. J(g) = R or it is a Cantor like set of R. Since zg
evenrually attracts all points in R?*. then R?>* C F (g) and similarly for C \B2*. o
is the only possible attractor on R. Since R contains the repelling petals. no piece of
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R will be attracted to zp: moreover. g(z) preserves the real line: therefore. no piece
of R will be attracted to R*2 or C\R2+. Hence. J (g) = R. Now. by Corollary 2.3
we get that g (z) is ergodic in this case.

Consider the second case. which is shown in Figure 3. the attracting petal is part
of the real line. We know that the attracting petal is subset of a component of Fatou
set. Therefore. the real line contains some parts of Fatou and it follows that . by
[BKY]. .7 (g) is a Cantor like set of R.

2 is the end point of complementary intervals a of .J (g). We can choose a small
imterval n C a with g" () being subsets of a tending uniformly to z5. n = 1.2.....
Choose n small enough such that g(n)Nn = 0 and V be an open interval between 1 and
g(n). Let A =UTXg" (n). We want to show that V" N 4 = @. Since g"(n) converges
uniformly to zg. no image of n will intersect 1. Now. suppose that V"N A # 0. then
3re V"N A ie. r € g "(n) for some n. Hence. g"(r) € n which is impossible. It
follows that V"N 4 = 0. Therefore. m(R\A) > 0. Also g~!(A4) = 4. Hence. g is not

crgodic in this case. ®

Corollary 3.3 Let g(z) be of the form (1). Then J(g) = R if and only if the

restriction of g to R is ezact.

Proposition 3.6 In case 2 of Theorem 3.7. if g'(z0) = 1 and the attracting petal
is part of the real line, then the absolutely continuous invariant measure ., has
the following property: for any g-invariant set A of positive pi-measure. the measure
v = 1,4 is not ergodic.
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Proof. Let A be a g-invariant set. Choose 5 C A such that v N g(~) = 0 with
g"({~) being subsets of the invariant set tending uniformly to z,. Moreover. choose ~
small enough such that 3§ C A with v(6) > 0 and § lies between + and g{(~). Now. let
B =U"Xg™ (7). We will prove that BN§ = (. Since g™(+) converges uniformly to .
no image of ~ will intersect §. Suppose that BN # 0. then 3r € BNé.ie...r € g7"(~)
for some n. Hence. g"(r) € 5 which is impossible. It follows that BN é = 0. ie..
§ C (A\B). We have chosen § such that v(§) > 0: therefore. v(A\B) > 0. Also.

g~'(B) = B. Hence. the measure v = ;14 is not ergodic. ®

Example 3: Let g(z) =

(M

(_— +;1-) + %\/5 Observe that g(\/g) = /3 and

z—1 :+1

that g’(\/g) = 1. ie.. /3 is a neutral fixed point. Hence. the restriction of g(z)

to ® preserves the infinite measure ([_'35):,. Also. ¢"(2) = %((::f);, + (::f)3> and
” s . . : , . ;. - _,VS
¢"(V/3) < 0. Plotting the graph of our function. see Figure 4. we notice that zo =

is attracting from one side and repelling from the other. Therefore. the petal will be
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the same as in Figure 3. Therefore. by Proposition 3.6. for any g-invariant set .4 of

positive p-measure. the measure v = 4 is not ergodic.

Now. we are going to study g(z) when B > 1. This is the case when x is the

Denjov-Wolff point. It is different from the above because g(z) is not analytic at x.

Proposition 3.7 Let g(z) be of the form (1) with B > 1. If J(g) is a Cantor like

set of R. then the restriction of g(z) to R is non-ergodic.

Proof. Suppose that J(g) is a Cantor like set of R. Then. there exist open
intervals in F(g) NR. Since B > 1. x is the Denjoy-Wolff point and all the points
are repelling on B by Corollary 3.2. Therefore. there is a sequence of intervals a, of
F (g) converging uniformly to oc. We can choose a small interval n C a, with g" (n)
being subsets of a, tending uniformly to oc. n = 1.2..... Choose  small enough such
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-2 n

that g(7)Nn = 0 and V be an open interval between 1 and g(n). Let A =UZXg" (n).
We want to show that V"N A = 0. Since g"(n) converges uniformly to >c. no image of
n will intersect I". Now. suppose that VN A # 0. then 3r € VNAd. ie.r € g™"(n) for
some n. Hence. g"(z) € p which is impossible. It follows that VN A = 0. Therefore.

m(R\A) > 0. Also g7 (A) = A. Hence. the restriction of g(z) to R is not ergodic. ®

Example 4: Let g(z) be of the form (1) with B > 1. Suppose that >__ C, < x and

ps < 0 for all s. For B > 1. we have
Re g(z) > Br + A — Z Cs

for all Re = > 1. This shows that Re g(z) > Re z + 1 in some right half-plane H,.
Therefore.

gtr) — xas n — x

uniformly in A,;. Hence. H; C F(g). It follows that J(g) is a Cantor like set of X.

Hence. by Proposition 3.7. the restriction of g(z) to R is not ergodic.

Example 5: Let g(z) be of the form (1) with B = 1. Suppose that > C, < >x and

ps <0 forall sand A — Y C. > 0. We have.

Re g(z) > Br + 4 — Z Cs
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for all Re z > 1. This shows that Re g(z) > Re z + § . for some § > 0. in some right
half-plane H,. Therefore.

gt (r) - xasn —
uniformly in H,. Hence. H; C F(g). It follows that J(g) is a Cantor like set of X.

Hence. by Proposition 3.7. the restriction of g(z) to R is not ergodic.
Remark 3.2 [n Example 3. we constructed a non-ergodic inner function for B = 1.

Proposition 3.8 If g(z) satisfies the assumptions of Proposition 3.7 with B = 1.
then Lebesque measure m has the following property: for any g-invariant set A of

positive Lebesque measure. the measure v = m,, is not ergodic.

Proof. Let A be a g-invariant set. Choose v C A N a, such that ~ Ng(~) = 0.
where a, is a sequence of intervals of F (g) converging uniformly to x. Being subsers
of a,. g"(~) converges uniformly to >x. Moreover. we choose ~ small enough such
that 36 C A with v(8) > 0 and § lies hetween ~ and g(~). Now. let B = UZZg" (~).
We will prove that BN & = 0. Since g”(~) converges uniformly to >x. no image of -~
will intersect §. Suppose that BN # @. then 3 € BNé. i.e.. r € g~"(~) for some n.
Hence. g"(r) € 5 which is impossible. It follows that Bné = 0. i.e.. § C (A\B). We
have chosen & such that v(§) > 0: therefore. v(A\B) > 0. Also. g7'(B) = B. Hence.

the measure v = m4 is not ergodic. ®

Now we are going to discuss some examples where Theorem 3.7 is invalid for
B > 1. Theorem 3.7 will hold for B > 1 only when it is rational. i.e.. when it

67



has finite number of poles where we can conjugate oo to a real Denjov-Wolff point.

However. it is invalid “in general” when g(z) has infinite number of poles.

Example 6: Let g(z) = tan(z) + Bz. This is an example where Theorem 1 fails for
B > 1. Since B > 1. x is an attracting fixed point. Observe that the inrervals of
R\ U, ps = L have bounded lengths. Then. for r in some interval [/ € L. g'(r) > B
which implies that (g"(x))’ > B™. Suppose that J(g) is a Cantor like set of R and let

I, = g"(I). Then. there exists I C F(g). It follows that I, C F{g). Then we get
|I,| > B"|I[| — >c as n —

. which is a contradiction. It follows that J(g) = R. By Theorem. g(z) is non-ergodic.

Example 7: This a more general example where Theorem 1 fails for B > 1. Ler

{p:} be an increasing sequence and

1 1
(z) = Bz + (— - ).
9(2) Z( <= Ds Z+Ps

s2>0

Suppose that the intervals of R\|J, p; = L have bounded lengths. The rest can be

proved in the same wayv as Example 6.

Remark 3.3 In Examples 6 and 7. if B = 1. we have that the restriction of g(z) to &
is ergodic by Theorem 3.6. Moreover. for any x in some interval [ € L. g'(r) > 6 > 1.
Following the proof of Exzample 4, we get that J(g) = R in this case.
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One is led to ask : Does Theorem 3.7 hold for B = 1? We could not prove or disprove

this statement.

g(z) g(x) is ergodic = J(g) =R J(g) =R = g(r) is ergodic
B<1 True True

B = True Open Problem

B >1 True False
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