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ABSTRACT

The Radon Split of Radially Acting Linear Integral

Operators on $2 with Uniformly Bounded

Double Norms

Ali Ghassel

This M. Sc. thesis treats the feasibility of the Radon Split for solving radial
integral equation involving radially acting integral operator on the Hardy-Lebesgue
Class $, of the half-upper plane I1,. In this process, we take a scrutinizing look at £
by means of the conformal map z + log z taking I, — R+ (0, 7). We demonstrate
that $,-functions f always possess a.e. unique boundary values f(£r) (r > 0) as
z — +r from within I1,. These boundary values are also angular limit functions in
the L,(0,00)-sense - i.e. |[f(-€®) — f(-€™)||Lr0,00) = 0 as ¢ = ¢ (¥ = 0, ) from
within (0,7). Concomitantly, the ¢-parameter family of Li-kernels K(r,r’,¢) =
e~ K,(r,r') with uniformly bounded double norms, have unique angular limit £,-

kernels K (r,r',%) = e" ¥ Ky(r,7") (¢ = 0,7) in the Ly((0, 00) x (0, 00))-sense - i.e.
1Ke — KyllL2(0,002 = [ Ks — Ky||| > 0as ¢ - ¢ (¢ = 0,w) from within (0, 7).

These properties are consequences of the inverse Mellin-Transform, which transfor-
mation originates in Fourier-Plancherel Theorem for Ly(R) and L;(R?). Because of

this Mellin-Transform representation of §; and K;, we may regard 5, as the three
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entities: ( H2 | H2 ), ( N2 | H2 ) and { H2 , H2 ), where the first two are Hilbert

spaces and the third is a dual system with
(Fo9y= [ fregtret)edr 0 < g <),
0

Consequently, we look upon R, as the Banach algebra (Rs,||| - |||s2)) and further
as the Hilbert space { £, | K2 ). We successfully construct for every radial linear
integral operator K of finite rank on R, its transpose K7 in { $2 , 2 ) as well as
its adjoint K* in ( $2 | H2 ), which leans heavily on the interaction of * and 7 in
§.. We prove a necessary and sufficient condition as to when an element of §,' is
radially representable. And finally, we construct Fredholm Resolvents not only finite-
dimensional K € £, but also, by means of the Radon Split, the Fredholm Resolvents
of any K € K, and that of its transpose K7 in terms of ( $, , H2 ). Herein, the

Fredholm Alternatives are induced by the derivations.
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CHAPTER 1

INTRODUCTION

This M. Sc. degree thesis has as one of its objectives the study of radially acting
Volterra integral operators on the analytic function space ), of the upper-half plane

[, = {z € C: IJm(z) > 0} of the set C of complex numbers, where

oc

H = {f € H(IL,) : | fllgs, = il;[g[/ |f(z+iy)|2d:c] 1/2 < oo}

—oc
with H(I1;) denoting the set of all functions holomorphic on II;. The other more
ambitious objective is the investigation of the feasibilities of the Radon splitting of

a radially acting linear integral operator K on §), defined by
(1.0.1) (K f)(re*®) = / K(r, 7', ¢)f(r'e®)e®dr' ae. inT >0 (0 < ¢ <),
0

determined by a ¢-parameter family of L,-kernels Ky(r, ') = K(r,7', #)e*® having
uniformly bounded double norms ||| Ky||| ([8], [20]), also called Hille-Tamarkin norm

([8], pg. 168), where

(> 00 , 1/2
(1.0:2) ”'KQ"”E[/O /0 (K (r, ", 8) Pdrdr’| ", 111K]lliy = sup [IIKsll] < oo.

Radon splitting for such an operator K means that for every € > 0, there exist
radially acting linear operators P = P. and Q = Q. on £, such that Ky4(r,r’) may

be split into the sum of two ¢-parameter family of £;-kernels, namely
Ko(r, ') = Py(r, ') + Qu(r, ') with Py(r,r') = P(r,1', ¢)e*®

and Q,(r, ') = Q(r, ', #)e”® (0 < ¢ < ) with
1



f (Pf)(re®) = [ P(r,r',¢) f(r'e®)ei*dr’ a.e. in r>0 (0<¢ <)

(1.0.3) and

| (QF)(re?) =[5 Q(r, 7', 9)f(r'e®)edr' ae. in >0 (0<¢<m)

defining two operators P, Q € B(%).) satisfying
(1.0.4) H1@lllsiz)y < € and rank(P) = dimP($)2) < oc.
By means of this Radon split, we can reduce the radial integral equation

(1.0.5) f(re*®) = g(re®) + A /'00 K(r,r,¢)f(r'e®)e®dr’ a.e. inT >0
0

0< o <m),

where g € 9, is given and f € §, is sought, to a matrix equation involving char-
acteristic polynomials of matrices. These matrices allow us to calculate the radially
acting Fredholm Resolvent operator Hy, = H,(K) with kernel H,(r, 7', ¢) in terms of
tensor products, and thereby we arrive at the solution of the radial integral equation

(1.0.5), namely

(1.0.6) f(re®) = g(re*®) + A/ H\(r, 7', $)g(r'e**)e'®dr’' a.e. inT >0
0

0 < o < 7).

1.1. Results Achieved In 9,

Clasine van Winter, in her study of the continuous spectrum of the Hamiltonian

operator of a two particle system ([18], [19]), examined radially acting linear integral
2



operators on the Hardy-Lebesgue Class $);. Every $3;-function f possesses a unique

L2(R)-"boundary value function”, which is also denoted by f, in the sense of
(1.1.1)  lim f(z) = f(u) with z = u non-tangentially from within II, a.e. in u
on R, where f(u) is an L;(R)-function of variable u, as well as in the L,(R)-sense

(1.1.2) ygrgl+llf(-+iy)-f(-)HLzoa)=y§rg+[/ f(e+iv) - f@)dz] " =0.

—0C

From this also follows that

(1.13) 1fllos = 1Ol = [ [ 1£@)Pds] ™ (£ € )

moreover, we can retrieve the values of f(z) for z € II; from its boundary values

f(z) (z € R) by means of the Poisson Integral Formula

(1.1.4) f(z) = %/_w mf(u)du (z=z+iy € IL,).

She defines the Banach algebra £ of radially acting linear integral operators with

action on $, given by equation (1.0.1) and ¢-parameter family of L;-kernels
Ky(r,r") = K(r, 7', ¢)e*®

satisfying(1.0.2). Further, she noticed that not only $;-functions f admit an inverse

Mellin-transform representation
. 0 . .
(1.1.3) f(re®) = (2#)'1/2/ f(t)(re’¢)""‘1/2dt (re’® € 1)
—00
with a.e. unique Lebesgue measurable f satisfying

/ [1 + €*™]|£(t)|?dt < oo,

3



but every K € R possesses an inverse Mellin-transform representation in the sense of
(1.1.6) K(r,,¢) = (27r)_1/2/ / K(t, t')(re®) 12 (r'e*)* ~12dt'dt
-0 4 —00

for (0<¢<m),

where it is understood that r and r’ always belong to (0, 00), by means of a C-valued

Lebesgue measurable function K(¢,t') on R? satisfying
(1.1.7) /- ~ /_ ” 1+ > |K (¢, ') 2dt'dt < oo.
If K and L belong to Banach algebra &, then M = KL € | with kernel
(1.1.8) M(r,r',¢) = /Ooo K(r,m", ¢)L(r", 7', ¢)e®dr" a.e. on (0,00)* (0 < ¢ < ),
where M (r,7’, ¢) has inverse Mellin-transform representation
(1.1.9) M(r,r', ¢) = (2x)"'/? J/—oo /;oo M(t, ') (re®) 12 (r'e™)* ~1/24t' dt
for (r,7') € (0,00)2 (0 < ¢ < 7) by means of M(t, t') satisfying
/_ = /_ ” [1+ >~ M(t, t')|?dt'dt < oo

Further, this kernel M(t,t') is expressible in terms of the kernels of K and L as

follows:
(1.1.10) M(t, t') = / / K(t,t")L(t",t')dt" for almost all (¢,t') € R?,

where K(t,t') and L(t,¢') are the Lebesgue measurable functions on R? giving the
inverse Mellin-transform representation of K(r,r',¢) and L(r,r’,$) respectively in

the sense of equation (1.1.6) and inequality (1.1.7). Because inequality (1.1.7) entails
4



that K(¢,t') and L(¢t,t') are both £y-kernels on R? in the conventional sense ([16],

pg. 11), namely their respective double norms are finite, that is

[ /_ ~ /_ ~ K, t)Pdt dt] vz [ /_ > /_ ~ L, 1) Pdt'dt) " < o,

the trace

(1.1.11) tr(M) = /w M(t, t)dt =

/ / K(t, t')L(t, t)dt'dt = / / L(t, " )K(t', t)dt'dt

of M exists, and this trace is independent of the parameter ¢. On account of the
uniqueness of the correspondence between M (r, 7', ¢) and the kernel M(t,t') giving
the inverse Mellin-transform representation (1.1.9) of M(r,7’,¢), she calls tr(M)

plainly the trace tr(M) of operator M. Hence, for any K € &
(1.1.12) tr(K™) = tr(K") =/ / K(t, t )K" (¢, t)dt'dt (n>2)

shall always exist and moreover, the quantities

(1.1.13) So(K) =1, 6,(K) =0, 6,(K) =
(o n—1 0 o o)
tr(K?) 0 n—2 - 0o 0
tr(K*)  tr(K?) 0 - 0o o
(—n1!) det | ¢r(K%) tr(K®) tr(K?) - 0 o (n22)
tr(K™" ) tr(K"2?) .- tr(K?) 0 1
\ tr(K")  tr(K™Y) tr(K"?) - tr(K?) 0 )

5



are always independent of ¢, whereas all the operators A,(K’) having kernels

(1'1'14) An(K;r7 T',¢) =
( K(T,TI,¢) n 0 =t 0 0 \
K2(r, 7, ¢) 0 n-1 -~ 0 0
K3(r, 7', ¢) tr(K?) 0 e 0 0
(_nl') det K4(r,r',¢) tr(K%) tr(K?) --- 0 0| (r=20)
K(r,7,¢) tr(K™') tr(K"2%) --- 0 1
\ K™l(r,r,¢) tr(K") tr(K"1') --- tr(K?) 0 }

belong to K. More than that, due to estimates ([18], pg. 133, (5.15)) on |6,(K)|
and [||An(K)|||s2) not unlike to those derived in the book entitled “Integral Equa-
tions” by F. Smithies ([16], chapter VI, section 6.4 with heading “Modification of the

Formulae”), namely
182K < 11K llr [ Ve/mllIK )] and

1A lls < elll Kl [Vernlll K] (n 2 1),

she was able to construct the C-valued and f-kernel-valued entire functions

(1.1.15) S(K;A) =Y 6.(K)A" and Ax(K;m, 7', 6) = D A" An(K;7,7',9)

n=0 n=0

of complex variable A respectively, which are designated as the modified Fredholm
determinant and modified Fredholm first minor of the radially acting integral operator

K with kernel K(r,r',¢). We note that §(K; A) is a modified Fredholm determinant
6



independent of parameter ¢, although the kernel K(r, 7', @) of the operator K is not.
In terms of the expressions in equation (1.1.15), she showed that all the characteristic
values of the operator K ((1.0.1)) are accounted for by the zeros of 6(K; ), which
do not accumulate in C. On the other hand, if §(K;\A) # 0, then the Fredholm

Resolvent Hy = H)(K) of the operator K exists, H) € & and H, has kernel
-1
Hy(r, 7', ¢) = Hy(K;1, 7', 9) = [J(K; A)] ALK, @), > 0,0 < ¢ < ).

Consequently, the unique solution of the radial integral equation (1.0.5) in the Hilbert

space §); assumes the form
(1.1.16) f(re*®) = g(re*®) + /\/00o Hy(r, 7', 0)g(r'e®)e®dr’  (re'® € I1,).
On the other hand, each L>-kernel
Ky(r, ') = K(r,7', ¢)e*® of Ly(0,00)
has finite double norm ||[K}||| given by equation (1.0.2). Therefore, if
oo
My(r,r') = (KL)p(r.7') = /0‘ Ky(r,m")Ly(r",r")dr",
then the traces
(1.1.17) tr(My) = /0 ” /0 " Ky(r, ") Ly(, r)dr'dr =

/:o /Ooo Ly(r,")K4(r', r)dr'dr
of each integral operator My on L,(0,00) exist. In consequence hereof, we can con-
struct the modified Fredholm determinants §(Ky; A) and modified Fredholm first
minors Ax(K,) with Lo-kernels Ay (Ky;r, ') of K4(0 < ¢ < m); however, these ex-

pressions are definitely dependent upon ¢ and therefore shed no light on the collective
7



behaviour of the ¢-parameter family of integral operators Ky, when looked upon as
generating an operator K € B($),;) with action (1.0.1) on $,. Thus the approach by
means of a ¢-independent trace , and more so a ¢-independent modified Fredholm

determinant is inevitable. Furthermore, there is also no guarantee that the £, kernel

coefficients
Ap(Kg;r, ')y =

( Ky(r,r") n 0 0 0 \
Ky2(r, ") 0 n—-1 .- 0 0
K¢3 (T, T’) tT(K¢2) 0 v 0 0

(=1)"
n!) det | K,i(rr') tr(Ks*) tr(K) - 0 0| (n20)

K,"(r, ") tr(K,"7Y) tr(Kg"%) .- 0 1

\ Ko™ (nr)  tr(Kg")  tr(Ke") e tr(Ke?) 0 )

are kernels of radially acting integral operators on )2 and not to mention the question

of the relationship between the ¢-parameter family of Fredholm Resolvent kernels
! -1 /
Hy(Ky;r,r') = [6(K¢; /\)] Ar(Kg;T, 1)

of the integral operators K; € B(L,(0,00)) and the Fredholm Resolvent kernel
Hy\(K;r,7',¢) defined by the ratio A,/6()\) from relation (1.1.15) for the radially
acting linear integral operator K € B($.). Do adequate terms in §(Ky; A) and

Ax(K4;1,7') cancel each other out, so that we may conclude

H\(Kg;r,m") = HA(K;m,m")e”® (0 < ¢ < 7)?
8



The answer to this is affirmative, but only by the circuitous path of introducing a
¢-independent trace and invoking the density of of the restriction of $,-function to

the rays {re** : r > 0} in L2(0,00) (0 < ¢ < )

1.2. Results Achieved In §, (1 < p < 00)

The inverse Mellin-transform is a special version of the Fourier-transform on
L(R), which determines a Hilbert space isomorphism on L»(R), as states by the
Plancherel theorem ([15], pg. 186). The Plancherel theorem has diminished validity
in L,(R) for 1 < p < 2, as can readily be seen from the statement of the Hausdorff-
Young theorem ([15], pg. 261), and fails totally in L,(R) for p > 2. Thus the inverse
Mellin-transform representation (1.1.6) of the kernel K (r,r’, ¢) defining an operator
K € B($,) (p # 2) by means of equation (1.0.1) is no longer valid, even though
we require that the ¢-parameter family of kernels Ky(r, ') = K(r,7’/, $)e*® possess
uniformly bounded double norms (Hille-Tamarkin norms) ([8], pg. 168) in the sense

of

(1.2.1) 1Kol = sup ||| Kslllppr where
0<op<r

1Kellloy = ( /0 ” [ /o = Kor )P dr’]p/”'dr) v

In the absence of an inverse Mellin-transform representation (1.1.5) of , (1 < p <
00, p # 2) and also of K, in the sense of equation (1.1.6), where &, in the Banach
algebra of all radially acting linear integral operators K € B($),) with action defined

as in (1.0.1) by means of kernels K(r,7',¢) satisfying condition (1.2.1), my thesis
9



advisor realized that the most crucial aspect to exploit was the fact that
w - - -
/ f(re'®)g(re*®)e®dr is independent of ¢ (0 < ¢ < ),
0

(f,.9) €HBpx 9y (@ =p[p—17).

He showed by means of the reflexivity of L,(X) (X =R, (0,00)) (1 < p < 00) that

$Hp-functions f have angular limits in the sense of
éirxtlb f(re®) = f(re'*) for ¢ — ¢ from within (0,7) a.e. in r > 0,

as well as lim |[(-¢) = £(-€®)llc,00) = 0 (¥ = 0,7).

Moreover, not only is the integral in the subsequent relation
(1.2.2) (f,9) = / f(re*®)g(re*®)e®dr (0 < ¢ < m,(f,g) € Hp X Hy)
0

for p' = p[p — 1]~! independent of ¢ on [0, 7], but {-,-) : H, x Hy — C is a bounded
bilinear functional £, x §,y with the essential properties, that out of (£,,9) = 0 and
(f, 9) = 0 shall follow that g and f vanish identically on IT, - i.e. they are the zero
functions. In short (), H,) constitutes a dual system, albeit not the natural one.
He further develops “necessary and sufficient” conditions, as to when a continuous

linear functional ¢ on $), is radially representable - i.e.
w - . .
(f) = / f(re*®)ge(re*®)e*®dr for some unique g, € Hy
0

([10]). With these results, he examines radially acting linear integral operators K of

finite rank and shows that they have kernels of the form

n

(1.2.3) K(r,7",¢) = E(fu ®g,,)(r, ) (fu € 9p, 9. € Hy, for 1 < p < n),

u=l1

10



where (f ® g)(r, 7', ¢) = f(re*®)g(r'e®) for all (f,g) € H, x H,. By further writing

these f, and g, in Cauchy integral form

o0

fu(2) = (2mi) ! /_oo fu(u)(u — z)"'du and g,(z) = (27ri)'1/ 9u(u)(u — 2)"'du,

where f,(u) anf g,(u) denote the respective L,(R)- and L, (R)-“boundary value
functions” of f, and g, calculated non-tangentially from within II, of course, he

arrived at the new a class of a Cauchy-Integral representable kernels
K(r,r',¢) = (2mi) 7! / / (re’® — )" K (s, t)(r'e"® — t)"'dsdt

with K and K7 having finite Hille-Tamarkin norms in L,(R) and L, (R) respectively

- l.e.

1R g = ([ &G p'as]™ at) " < oo,

NET |y = (/_: [/_: | (s, t)gﬂds]"""dt) 7 < .

For K(r,r’,¢) and L(r,r’,$) Cauchy-Integral representable by means of kernels

K(s,t) and L(s,t) respectively, the operator product KL has kernel
(KL)(r,r,¢) = /0*00 K(r,m",¢)L(r", 7', p)e®dr"
and is also Cauchy-Integral representable through
(KL)(s,t) = (2m)"" [ ” /_ T R(s )]s — ¢] log(s' /) E(s', t)ds'dt’

with log(s’/t’) interpreted in the complex sense, although s’ and t' are real variables.
We thus have a new multiplication of the kernels K(s, t), whereby we specifically
construct the powers K™ (s,t) of K(s,t) , and also obtain a new Banach algebra

without a multiplicative identity. He also demonstrated the existence of a new kind of
11



trace, called representation trace Spr(K) (the subscript R standing for representation
and Sp for the German word “Spur” meaning trace), therewith a new modified

Fredholm determinant

SR(KGA) =) Opa(K)A™ with Spo(K) =1, Smi(Ko) =0

n=0
( 0 n—1 - 0 0 \
Spr(K?) 0 e 0 0
(_ n
sunB) = Tl det | spu(r) spetny - 0 0 | (22)
0 1
\ Spr(K™) Spr(K™1') --- Spr(K?) 0 }
as well as new modified Fredholm first minor, particularly
Ap(K;r,m,0) =) A"Apa(K;r,7',¢) with Apo(K;,1,7',¢) = K(r, 7', 6)
n=0
and Agn(K;7 7', 0) = ('1') x
n!

/ K(T,T’,¢) n 0 ccc O 0 0\
K2%(r,7",¢) 0 n-1 0 0 0
K3(r,r',¢)  Spr(K?) 0 0 0 0

det (n>1).
K™(r,r",¢) Spr(K™') Spr(K"2%) --- Spr(K?) 0 1
\ K™*(r,7',6) Spa(K™) Spa(K™™') --- Spa(K®) Spa(K®) 0

The C and K,-valued functions dp(K; A) and Apa(K; 7,7, ¢) of complex variable A

have the following properties. If A is zero of dg(K; A), then A is a characteristic value
12



of the opertor K. On the other hand, if §g(K; A) # 0, then
I -1 !
Hy(Ki7,m',8) = [8(KG 0] Ama(Kin, T, 9)

is the kernel of the Fredholm Resolvent H)(K) of K for regular value A of K with
H\(K) € £,. The rationale for examining the Radon Split for a radially acting linear
integral operator is to find a direct, perhaps “brutal”, alternative for constructing
the Fredholm Resolvent kernel of K(r,r’, @), instead of approaching by way of the
elegant, but cumbersome, means of modified Fredholm determinants and modified

Fredholm first minors.

13



CHAPTER 2

FUNDAMENTAL NOTIONS

Our method of approach to the Radon Split of a radially acting integral operator
K € R (R,) relies heavily upon: integral convergence theorems from real analysis;
Fourier-Plancherel transform in inverse Mellin-Transform disguise; Volterra Integral
Operators on Ly(a,b); tensor product representation of the Fredholm Resolvent of a
continuous integral operator in L,(a, b) of finite rank; and the Radon Split for integral
operators on Lj(a,b) with kernels of finite double norm ([8], pg. 168; [16], pg. 11).
In the preceding, the a and b of the interval (a,b) may assume the values —oco and
oo respectively. Therefore, we shall first describe these concepts of convergence of
integrals from measure theory, followed thereafter by a brief discussion of the Fourier-
Plancherel Theorem, a statement of the Minkowski Integral Inequality, and last by
discourse on integral operators and equation on the Hilbert Space L(a,b) (a = —o0

and b = oo admissible).

2.1. Essential Convergence Concepts From Measure Theory

Although we shall be dealing primarily with Lebesgue Measure on R, we shall
assume p to be a positive measure on a o-algebra 9t of subsets of set X. Integrals

are initially defined for non-negative measurable simple functions

n
s(z) = Z xE,(z), where xg, denote the characteristic functions of the measurable
k=1
14



disjoint subsets Fj of X, with

[ s@du(z) = Zaku(Ek)

Thereafter, the concept of an integral with suitable additivity properties is made

meaningfull by the Lebesgue Monotone Convergence Theorem, which appears as

PROPOSITION 2.1.1. If {fo}S2, is @ monotone sequence of measurable functions

on X with f, > 0, and l_i+n°1°fn(1') = f(z) p-a.e. on X, then f is measurable and
lim [ folz)du(e) = [ f@)dutz).
n—oo X X

ProOF. ([15], Theorem 1.26, pg. 21) o

The next vital convergence result, where the monotonicity of the sequence is
not stipulated and in a direction toward realizing the integral of a measurable non-
negative function with respect to measure z on X, is Fatou’s Lemma, which we

designate as

LEMMA 2.1.2. If {fn}3, is a sequence a non-negative measurable functions on

X with oo allowed as value to be assumed, then
/ (lim inf f,)(z)dp(z) < lim inf/ fu(z)du(x).
X n—o0 n—,o0 X

Proor. ([15], pg.23) O

Finally, because we want to consider the integrals of complex valued measurable
functions and the integrals of convergent sequences of measurable functions, we need
a theorem that dispenses with non-negativeness, namely the Lebesgue Dominated

Convergence Theorem, which we formulate by
15



PROPOSITION 2.1.3. If {f,}32, is a sequence complez measurable functions with
lim, e fn(z) = f(z) p-a.e. on X and there erists a non-negative p-integrable func-

tion g on X such that |fo(z)| < g(z) p-a.e. on X for each n € N, then
lim | fo(z) — f(z)|du(z) = 0 and also lim / fn(z)du(x) =/ f(z)du(z).

PROOF. ([15],Theorem 1.34, pg. 26). 0

Not only it is possible to interchange the sumations in

([ el)” s (S ) ”

p=l v=1l v=l u=l1
as proved by H. Minkowski, but it has an integral version due to F. Riesz, ([7]) in

particular

PROPOSITION 2.1.4. (Minkowski Integral Inequality)
If (X,9, 1) and (Y,M,v) are o-finite measure spaces and f(z,y) is a (p x v)-

measurable C-valued function on X x Y, then

[ reva@|ww}” < [ { [ |1@of aw} " .

We now turn our attention to the Fourier-transformation and its extension to a

Hilbert space isomorphism on L,(R).

2.2. Essential Properties Of Fourier-Transformation

The Fourier-transform * : L;(R) — Cy(R) defined by means of

221)  f(t) = % /_ " f@)etds = /_ " f(z)etdm(z) (dm(z) = %)

i6



determines a continuous injective linear map from L,(R) into Cy(R), where Cp(R)
denotes the set of all complex valued continuous functions g on R vanishing at oo
in the sense of g(t) — 0 as |t] — oo. Further, ||flloo < l|flle,®) and the image
{f : f € Li(R)} under the Fourier-transform is a proper subset of Co(R) - i.e.
A2 Li(R) — Cy(R) fails to be surjective. The Fourier-transform carries multiplication
of f by e into translation of f by «, translation by a of f into multiplication
by e~ of f, and the convolution f % g of f with g into the product f§ in the

conventional sense. Due to the fact that * : L;(R) — Cy(R) is also a Banach algebra

homomorphism satisfying

Hf * gl < HFfll.a@llgll. @y,

where convolution plays the role of multiplication in L;(R), and the fact that L, (R)N
Lo(R) as well as its Fourier-transform image is dense in L,(R), we can prove with
the aforementioned properties of * : L;(R) — Cy(R) the Plancherel Theorem, which

is formulated as

PROPOSITION 2.2.1. There ezists a Hilbert space isomorphism on L,(R) denoted
by * : f — f such that if f € Li(R) N Ly(R), then f denotes the conventional
Fourier-transform defined by (2.2.1). Moreover, » possesses the following symmetry

relationships: given A > 0 and
A _ A .
pa(t) = (2m)~1/? / f(z)e™™dt and Ya(t) = (2m)""/? / f(z)e™*dt
—-A —A
then }i_{{.lonf- PallL.@ = lim [|f = ball.@ = 0.

PROOF. ([15], Theorem 9.13, pg. 186). a
17



Due to the nature of the two-diminsional inverse Mellin-Transformation, that is it
draws its existence from the Fourier-Plancherel Theorem in L,(R?), we therefore

state without proof

PROPOSITION 2.2.2. The Fourier Transformation " : L;(R?) — Cy(R?) defined

by f(t,t) = (27:)"1/ / fu,v)e ) dydy,

restricted to the dense linear manifold L, (R?)NL,(R?) of the Hilbert space L,(R?), has
an eztention " to all of Lo(R?), which is a Hilbert space isomorphism ~ : L,(R?) —
L2(R?) and it possesses the following properties. If f € Li(R?) N Ly(R?), then f(t,t')

is the conventional Fourier-Transform of the Li(R?)-function f. Given any A >0

A pA
and functions @(t,t') = (21r)_1/ / fu, v)e @) dydy
-AJ-a

A pA
and Y4(u,v) = (27r)’1/ / f(t, e ) dydy, then
—aJ-a

Ji_{goﬂf — allL.®2) = Ali_l’lc}on — YallL,w2) = 0.

The Fourier-Plancherel Theorem, combined with the Cauchy Integral Theorem,
brings about the realization of the inverse Melin-Transform Representation (1.1.5)
and (1.1.6) respectively of $,-functions f and kernels K(r, 7', ¢) belonging to oper-
ators K € K,. These we shall see in the next chapter. Further, for the next two
sections we shall again emphasize that the a and b appearing in the Hilbert space

L,(a,b) can assume the values —oo and oo respectively.
18



2.3. Essential From Integral Operators on L,(a,b)

In the process of investigating integral equations and integral operators, we en-
counter the concept of “relative uni form” and “relative uniform absulute” conver-
gence. A sequence {z,}32, of Lo(a,b) is said to converge to = € Ly(a,b) relatively
uniformly on (a,b) if there exists a non-negative L,(a, b)-function p and an integer

n(e) such that
|za(s) — z(s)| < ep(s) for all s € (a,b) and n > n(e).
Clearly, relative uniform convergence implies L;(a, b)-convergence, that is
b
HZn = Z||Lo(ap) = [/ | (s) — z(s)|?ds]'/? — 0 as n — oo,

and also (z, |y ) = (z |y ) as n — oo for all y € Ly(a,b). Correspondingly, a
series Y > z, is said to converge relatively uniformly, if the sequence of its partial
sums {ZZ=1 z,‘}

We further extend this notion by saying that the series in Y oo z, of Li(a,b)

e o]
converges relatively uniformly in L;(a, b).
n=1

functions converges relatively uniformly absolutely, if there exists a non-negative

Lo(a,b)-function p and an integer n(e) such that

n+p
Z |z, (s)| < ep(s) for all s € (e,b) and n > n(c) independent of integers p > 1.
u=n+l

Parallel to the idea of “relative uniform” convergence in L,(a, b) is that of a sequence
{Kn(s,t)}52, of Lr-kernels on (a,b) converging “relatively uniformly” to the C-
kernel K(s,t). This means that there exists a non-negative L,-kernel P(s,t) on
(a,b) x (a,b) and an integer n(e) such that

| K, (s,t) — K(s.t)] < eP(s,t) for all (s,t) € (a,b)® and n > n(e).
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Needless to say, if K,(s,t) converges “relatively uniformly” to C,-kernel K (s,t) on

(a,b) x (a,b), then

b b
(LK)(s,t) = / L(s,u)K,(u,t)du — / L(s,u)K(u,t)du= (LK)(s,t),

b b
(Ko L)(s,t) = / K (s, u)L(u, t)du — / K(s,u)L(u, t)du = (KL)(s, t) and

b b
(Kaz)(s) = / Ko(s, )z(t)dt — / K (s, )z(t)dt = (Kz)(s)

(L(s,t) an Ly-kernel on (a,b) x (a,b) and z € Ly(a, b)) “relatively uniformly”

as n — oo in the Hilbert space of L;-kernels and L,(a,b) respectively. Continuing

this trend of thought, we say that the series

oo
Z K, (s,t) of Lo-kernels converges relatively uniformly absolutely,

n=]
if the exist a non-negative L,-kernel P(s,t) and an integer n(e) such that

§ K, (s,t)] < eP(s,t) for all (s,t) € (a,b) x (a,b)

pu=n+1
and n > n(e) independent of the integers p.

If the above series of £,-kernels converges “relatively uniformly absolutely” towards

the Lo-kernel K(s,t), then

D (LK.)(s,t) = (LK)(s,t), D _(KaL)(s,t) = (KL)(s, 1)

and i(an‘)(s, t) = (Kz)(s)

20



with convergence in the sense of “relatively uniformly absolutely” in the space of
Lo-kernels and Lo (a,b) respectively, assuming that L(s,t) is an Ly-kernel on (a, b)
and z € L,(a,b). This conclusion follows from the inequalities

n+p
3 (LK) (s, 0)] < ellLis, Mlea@nlIPC> )l Laasy for all (s,2) € (a,0)%,
p=n+l
n+p

> WKL) (s, )| < ellP(s, Mlza@ |1LC )l Laap for all (s,¢) € (a, b)?, and

=n+1

n+p

ST (Kaz)(s:8)] < ellzl L@t | P(s, liaan) for all s € (a,b)

p=n+l
under the assumption that n > n(e), which inequalities are also independent of the
choice of the positive integer p.
The Fredholm Resolvent of an integral operator K, having L,-kernel K(s,t) on
L,(a,b) with action (Kz)(s) = f: K(s,t)z(t)dt for all s € (a,b), can be obtained
by means of the Neumann Series Hy = H)(K) = Y oo A"K™*! for all A satisfying

|A| x [[|K]|| < 1. This is so, because K(s,t) an L,-kernel on (e, b) means: K(s,t) is

Lebesgue measurable on (a,b) x (a,b);

b b b 2 b 2
[ [ i orasds = [ 1K Moo ds = [ IKC o] de < o

UK (S, )| La(any < 0o for all s € (a,b) and [|K (-, t)||L,(apy < o0 forallt e (a,b).

Lebesgue measurable K (s, t) satisfying only ||| K||| < oo are called Lo-kernels “in
the wide sense” ([16], pg. 14); however, there always exists an Lo-kernel Ky(s,t)
such that |||K — Kol|| = 0. This is in consequence of the Tonelli-Hobson Theorem,
as indicated by F. Smithies in his text entitled Integral Equations ([16], pgs. 14 -

15 ). So, we shall assume in this sequel that K(s,t) is an Lo-kernel.
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For special £,-kernels called Volterra £,-kernel K(s,t), namely K(s,t) = 0 for

all ¢ > s, the Fredholm Resolvent kernel

Hy(s,t) = Hx(K;s,t) = > _ A"K™*1(s, 1)

n=0

is a "Volterra L£,-kernel”-valued entire function of A\, because the estimates

K™ (s, )] < [(n = DK K (S5 )o@ (K G 1) Lages)

guarantee that the radius of convergence of the Neumann Series is co. It is also clear,
that Volterra L,-kernels do not have characteristic values.

Most L-kernels on (a, b) are not of Volterra type, and require therefore another
kind of treatment. To this end we note that L,-kernel of rank 1 are given in terms
of the sesquilinear tensor product u ® v from Ls(a,b) ® L,(a,b) with (u ® v)(s,t) =

u(s)v(t), wherefrom it follows that all finite rank operators K € B(L:(a,b)) are of

the form K = Y 7 a, ® b, with L;-kernel

K(s,t) = Z au(s)m

having finite double norm

n
HEN <D Hallag@s X 11BullLaas)-

u=1

Thus the integral equation z = y + AKz, namely
b
z(s) = y(s) + A/ K(s,t)z(t)dt for all s € (a,b)
with y € Ly(a,b) given and L,(a, b)-function z sought after, reduces to

z(s) — Ai( z | b, Ya,(s) = y(s) for all s € (a,b).

v=1
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After “inner-producting” this equation from the right with b,(1 < p < n), we obtain
the equivalent linear system of n equations [/ — Ak]Z = ¥, where k € C(»*n) having pu-
th row and v-th column entry k,, = (a, | b, ) and Z and 7 both belong to C"*!) with
p-thentry ( z | b, ) and ( y | b, ) respectively. The integral equation (I —AK)z =y
is solvable in Ly(a,b), if and only if the induced linear equation [I — Ak|Z = ¥, in
which 7 denotes the column vector comprising of the entries (y| b,) (1 < p < n), is

solvable for the column vector £. Moreover,

z(s) = y(s) + A D_ zuau(s)

is the solution of the integral equation in terms of Z, whose entries are z, (1 <
¢ < n). Consequently, the determinant d(\) = det(I — Ak) and the classical adjoint
Ay = A0j(I — Ak) are polynomials with coefficients from C and C(»*n) respectively
of degree at most n and n — 1. Out of the relation [I — Ak]Ax = A\[I — Ak] = d(A)]
rewritten as A\kAy, = AA k = Ay — d()\)I, shall follow that
Hy = Hy(K) = [dN)]™" D o (A)(au ® by)
pw=1

is the Fredholm Resolvent of K = Y "_ a, ® b, provided d()) # 0, where o, (A)
stands for the p-th row and v-th column entry of Ay = 2A0j(f — k). d(A) # 0 except
for at most n such A, and these zeros of d(\) account for all characteristic values of

K.

2.4. The Radon Split For £,-Kernels

For the case of an arbitrary £,-kernel K (s,t), we invoke the Weierstra Approx-

imation Theorem for many variables in integral format, as presented by R. Courant
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and D. Hilbert in their famous work Methods of Mathematical Physics ([3], Vol.
I, pgs. 65 - 68), coupled with a compactness argument in case the interval (a,b) is
unbounded (a = —oo or b = 00), to obtain for an arbitrary small € > 0 a finite rank
operator
P=) a,®b, € B(Ly(a,b)) such that [||K — Pl|| <e.
pn=l1

We therefore arrive at the Radon Split of K, namely K = P + Q with P an operator
of finite rank on L,(a,b) and @ an integral operator on Ly(a,b) with an L;-kernel
Q(s,t) of double norm less than € - i.e. |||@Q|ll < €. The integral equation z =
y + AKz in terms of the Radon Split becomes z = y + A(P + Q)z and is rewritten

as (I — AMQ)z = y + APz, wherein Q has Neumann Series type Fredholm Resolvent

Gy=d_2mQ ! Q@™ I < D IAMIQUM = QI - Al

n=0 n=0 n=0

for all X\ satisfying |A| x |||@Q]|] < 1, especially for |[A| < 1/e. Acting from the
left by I + AG\ on the Lj(a,b)-“integral equation” (I — AQ)z = y + APz leads to
the equivalent integral equation z = (I + AG,)y + A({ + AG,) Pz, after observing
ARG\ = Gy — Q = AG,Q (Fredholm Resolvent Equation for Q) for all A such that

|\ < 1/e. However,

(I +AGA)P = (a, + AGaa,) ® b,

u=l1

is again an Ly-kernel of finite rank, and thus

z(s) = (y + AGry)(s) + A i( z | b, Ya, + AGxa,)(s) for all s € (a,b).

v=1
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Taking the inner product of this equation from the right with b, leads to
(z1bu)=(y+AGry | by ) +A) (@ +AGra, | by ) (z| b ) 1< pu<n),
v=1
or equivalently

n

> [8w = Maw+2Gra, 15)](21ba) = (y+2Gw [ b)) (1Sp<n).

v=1
This last linear system of equations we write in short as [I — F)|Z = Z, wherein F)

is the n x n matrices with u—th row and v—th column entry being the holomorphic

function f,,(A) = (a, + AGxa,| b,) of variable A in a domain containing

{(AeC:|\N<1/e} (1 <prv<n), TeC™Y with py-thentry z, = (z | b, )
n n

(1 < <n)and e C™Y with u-th entry being the holomorphic function
(y+AGry | b, ) (1 < p < n)of variable A in a domain containing the open

disc of radius 1/e and centre 0.

Like before for L,-kernels of finite rank, we define instead of polynomials, the holo-
morphic functions §(\) = det(I — AF)) and A, = A0j(I — AF)) of variable A in a
domain containing {\ € C : |A| < 1/e} with values in C and C"*™ respectively.
Again as before, we let a,,,(\) stand for the p—th row and v—th column entry of A,,
which entries are no longer polynomials in A, but holomorphic function in an open
neighborhood of 0 containing the open disc of radius 1/¢ centered at the origin for

1< p,v<n
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Every solution of the integral equation £ = y + AKz induces a solution the linear
equation [I — AF,\]Z = Z, and every solution £ with column entries z,, (1 < u < n)

of the linear system of equations [I — AF)]Z = Z induces a solutions

z(s) = (y + AGxy)(s) + A Y_ zu(a, + AGry)(5)

u=1

of the integral equation z = y + AKz. Taking note of the relationship between
a square matrix and its classical adjoint, namely A (I — AFy) = (I — AF))A\ =

det(I — AFy\)I, we note that for §(\) = det(I — AF)) # 0 the vector T with entries

2, = B S Ny +AGay [ b, ) = BN 3 cw (W) y | b +3Gab, ),

v=1 v=1

where G,* denotes the adjoint of the bounded linear operator G, on the Hilbert
space L,(a,b), is the unique solution of the linear equation [I — AF)\]T = Z. After

utilizing the relation AAyF) = AF Ay = Ay — 6(\) 1, we see that

H, = HA(K) =G+ [6(/\)]_1 i(a,, + /\G,\a,,) 024 (b,, + XG,\'bu)

v=1

is the Fredholm Resolvent of the operator K with Ls-kernel K(s,t) for all A such
that [A| < 1/e and d(\) # 0. The set of zeros of §(\) on the closed disc {A € C :
[A] < 1/} is finite and constitutes the set of characteristic values of K lying therein
with characteristic functions z(s) = A3 "_, z.(a, + AGaa,)(s) for Z a solution of
[[ — AF)\]Z = 0. This is what the Radon Split of £o-kernel K(s,t), by means of
K = P+Q with L,-kernel P(s, t) of finite rank and L,-kernel Q(s, t) with |[[Q]|| < &,

is about.
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A norm ||-|| on a vector space E is induced by an inner product (- |-) : ExE —- C

if and only if the norm satisfies the parallelogram law - i.e.

I1f + gll® + [1f — gl> = 2lIf1I* + 2llglI> (f.g € E).

As consequence hereof, it is vitally important to be able to retrive the inner product in
terms of the norm only. This is accomplished by means of the polarization identity,

which says

(Flo)=3{If +al? = 1if = alP} + ${1F +igl — 11f —igl?}  (fg € B).

Consequently, E becomes an inner product space { £ | E ) and its completion with

respect to this norm || - || is a Hilbert Space.
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CHAPTER 3
INVERSE MELLIN-TRANSFORM REPRESENTATION

OF $; AND 8,

In the process of examining ), from the radial point of view, Clasine van Winter

({18]) introduced the normed linear space

(3.0.1) ®: = {f € H(L) : [Ifllsy = sup_ 1 (€[ L2(0,00) < 00}

and in an arduous way showed that &, = §,, which proof inherently contained the
equivalence of the two norms ||-||s(2) and ||-||5, on 2. We shall radically deviate from
Clasine van Winter in this chapter and shall show the equivalence of ®, and $, by
means of: the Minkowski Integral Inequality, whose validity was shown by Minkowski
for series only and its integral form is due to F. Riesz ([7]); the Mean-Value Property
of harmonic functions in area form; the Fourier-Plancherel Theorem; and conformal
mapping. Out of this shall also emerge the inverse Mellin-Transform representability
of $, as well as that of the Banach algebra K, consisting of all ¢-parameter family
of £,-kernels K(r,r’, ¢) having uniformly bounded double norms |{|K|||, which also

collectively induce an operator K € B(f);) defined by equation (1.0.1):

(K f)(re*®) = /000 K(r,7,¢)f(r'e®)e®dr ae. inT >0 (0 < ¢ < 7).
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3.1. An Elementry Integral and $, C &,

Prior to demonstrating that 5, C ®,, we need to ascertain the values of the

integral expression
o <]
(7~ sin ¢) / [u? — 2ucos ¢ + 1]t |u|~V2du,
—o0

which expression shall be inevitable in establishing the equivalence of the norms
Il - |ls2) and || - ||, of 2. In this integral, it is the absolute value of u, namely |u|~!/2
that cause difficulty in its exact evaluation, and not the weak singularity at 0 due
to the power —1/2. Therefore, we avail ourselves of the following well-established
technique from residue calculus to deal with it. To this end, we slit the complex
w-plane (w = u + iv) along the positive real axis and look at any path C that begins
at ooei?™ and circumscribes 0 counter-clockwise and returns to oce® in this split
w-plane, so that e and €'®>*~%) lie in the component not containing the positive
real axis. We note that C is a "Jordan-curve” in the compact w—plane (Riemann-
Sphere) and we require the image of this " Jordan-curve” on the Riemann-Sphere to

be rectifiable. For this path C,

o0

(7~ " sin ¢) / [w?—2w cos p+1] ' w™ 2dw = }:mes{(w—e“’)’l(w—e"‘¢)_1w’1/2},
-0

where the summation in over all the poles at [w? — 2wcos ¢ + 1]7'w~!/2 lying in

the component of the w-plane not containing the positive real axis. Moreover, it is

understood that we choose that branch of w='/2 for which u~1/2

= Jz foru > 0.
There are only two poles, namely € and €*®*~%) in the component not containing

the positive real axis, as is indicated in the immediately subsequent diagram labelled

Figure 1, and
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A
o
» ‘Re
0
ei(2z—¢)
Figure 1.

Res {(w — )7 (w — ™) w2} = lim (w — e®)(w —€?)7!

w=e'? w—retd

(w—e ) lw™2 = lim (w— e ) lw™/? = (2ising)~le™/?

w—rel®
and
Res {(w— ) (w—e )W = lim (w9 (w - )
w_—_ell(27t—o) w_’ei(z'_a)

(w—e ®) w12 = li_g1 o)(w —e ) lw™ Y2 = (—2isinp) e e /2 =
w—petter—

(2i sin ¢) ~'e™®/2,
which in turn let us calculate the path integral over curve C as

(2mi)~" /[w2 — 2weos ¢ + 1] 'w™2dw = (2isin¢) e T2 + €% =
C

(isin ¢) "' cos(4/2).

On the other hand, by letting C be the path I'., where I’ begins at co = coe**" and
goes along the lower edge of the positive real axis to €e**™, then continues counter-

clockwise from €™ along the circle |w| = € to £e'® and finally follows thereafter on
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the upper edge of the positive real axis to oo = oce’?, we obtain after letting ¢ — 0%

that
(2mi)~! /[w2 —2wcos ¢+ 1] w1V 2dw = 2(2mi) ! / [u® —2ucos ¢+ 1] (Vu) " 'du

c 0

= (m’)‘l/ [u® — 2ucos ¢ + 1]7'(vu) "'du = (isin ) "' cos(¢/2),

0
which after multiplication by isin ¢ leads to
(7~ !sin d))/ [u®* — 2ucos ¢ + 1]7H(Vu) ~'du = cos(¢/2) (0 < ¢ < ).
0
We now look at
0 00
(7w~ sin ¢) / [u® — 2ucos ¢ + 1] u|~2du = (7~ ' sin ¢>)/ [u? + 2ucos¢ + 1]7' x
—00 0

(Vu)~'du = (" sin(r — ¢)) /Om[u2 — 2ucos(m — ¢) + 1]71(Vu) " 'du

T—¢
2

) = sin(#/2).

= cos(

Combining these results, we arrive at
oo 0 oo
(r~!sin ¢)/ [u? — 2ucos @ + 1] Hu|"/2du = (v~ ' sin ¢){/ +/ }
—00 —oQ 0

[u? — 2ucos ¢ + 1] |u|"V%du = cos ¢/2 + sin ¢/2,

which function of ¢ has its maximum at ¢ = 7/2 and is thus bounded by 2/v2 = V2.

We have therefore,
(3.1.2) (! sin @) / [u? — 2ucos + 1] |u|"%du < V2 for (0 < ¢ < )

and are now able to demonstrate the following
31



LEMMA 3.1.1. H2 C &, and for every f € H, we have

sup [[£(-€*)|La0,00) < V2IIS]l52-

O<p<n

ProoF. We let f € H, with Poisson Integral Representation (1.1.4) in terms of
its boundary value function f(u) = f(u + ¢0). Writing z = z + iy in polar form

z=re*® =rcos¢+irsing (z =rcos¢, y = rsing) yields
(3.1.3) f(re*®) = (r~'sin ¢)/ [u? — 2ucos ¢ + 1]7! f(ru)du (re® € I1,)

after replacing the integration variable u by ru in equation (1.1.4). We estimate
the L,(0, o0)-norm of f(-e®) from equation (3.1.3) utilizing the Minkowski Integral

Inequality as follows:

) e oo /
HF(-€*®)L20,00) = [/0 [(7~!sin ¢)/_ [u® — 2ucos @ + 1]_1,}’(1‘1z)du|2dr]1 : <

(! sin @) /_w [u? — 2ucos ¢ + 17! [/oo If(ru)lzdr] l/2du =

0

(7~ !sin ¢) /oo [u® — 2ucos ¢ + 1]~ |u|71/2 [/oo |f(r sgn (u)|2dr] l/2d14 <

0

[t sing) [~ = 2ucosg + 2] [ [ 17 par] =

[cos(¢/2) +sin(¢/2)]l1flls. < V2| flls,

in consequence of equation (3.1.2), where sgnu = 1 or —1 according as u > 0 or

u < 0, and thereby completing the proof. |
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3.2. Demonstrating &, = H,.

We return to our normed liner space &, as defined by statement (3.0.1) and write

for an f € &, the square of the norm ||f(-€*®)[|L,(0,00) as the integral expression

[ eeeypar = [ jesiorzpessinpau = [ P+ is)Pdu
0 — 00 -0

in terms of

(324)  Flu+ig) = /2 (&) for all (u, ) € R x (0,7).

F € H(R+1i(0, 7)) - i.e. F is holomorphic on the infinite strip Rx (0, 7) = R+:(0, 7)
- and if we choose A arbitrary positive and u« + 0 in this infinite strip, then the Mean-

Value Theorem for harmonic functions in area form states that
(3.2.5) F(u+iv) = (mp?)~! // F(u, + i6,)du,d6,
fur—u|2+|0,-6|2<p?

for all p < min{6,r — 6}.

Thereafter we observe that the admissible p can not exceed 7/2, which number is
definitely less than 2, and we estimate the values of F', and indirectly those of f,

from Mean-Value (3.2.5) as follows:

IF(U + ZO)' S (7rp2)—1 // IF(’U.1 + 201)|du1d01 S
lur —u|2+]6;—0]2<p?

u+2
(sz)—1[ ol / |F(u1 + zOl)Idu1d01 S
0,-0|<p Jur=u—-2

0+p u+2 1/2
(‘n’pz)—l / [/ IF(U1 -+ i01)|2du1] (4)1/2(101
[} u

—p -2
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by means of the Schwarz Inequality applied to the term f:f: |F(u; + i6;)|du,;. Thus
we are able to write

6+p

(3.2.6) |F(uy + )| < 2(mp?)"" / VF( + i8] caqu-zrrdBh,

0—p

and because of
l llim |F (- + i9)||Lo(u—2.u+2) = O for each ¢ € (0, ),
Uu{—>roc

which follows out of

|F(- + i9)||L,®) < 0o and sup ||F(- + i®)|lL,®) = sup {|f(-€"®)||L,(0,00) < 00,
O<p<n 0<P<n

the Lebesgue Dominated Convergence Theorem (Proposition 2.1.3 of this thesis) lets
us conclude for the interval [# — p, 0 + p] that the limit of the integral expression of

inequality (3.2.6) tends torwards 0 as u — =*oc, and therefore

(3.2.7) lim F(u + t8) = 0 for each 8 € (0, 7).

{u| 200

The validity of this result may be strengthened by stating that this limit is at-
tained uniformly in # on every closed subinterval [a, 8] of (0,7). If we let p =

(1/2)min{a,m — B8}, then we directly derive from (3.2.6) that

T—p
(3.2.8) |F(u+10)| < 8(7"/02)—1/ HF (- + i01)||Lo(u-2u+2)d01 (x < 8 < B).

p

Again, the Lebesgue Dominated Convergence Theorem on the closed interval [p, 7—p]

applied to

lim ||F(- + 6,)||L,(u—2.u+2) = 0 for each 8, € [p, 7 — p]
|u|—oo0
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guarantees for us that limit (3.2.7) is attained uniformly in 6 in the closed subinterval
[, 8] of (0, 7). On the other hand, every compact subset C of the interval (0, 7) has
positive distance from the set R\ (0, 7) = (—o00,0]U[r, 00) -i.e. vy = min{|s—t|:s €
R\(0,w),t € C} - and consequently C C [y,7 — v] C (0, 7). Hence, the limit (3.2.7)
is attained uniformly an every compact subset of (0,n). Returning to the function

f € &, from which F was constructed, we formulate these results as

LEMMA 3.2.1. If f € ®,, then on every compact subset of the interval (0, ) the

limits

(3.2.9) lim (re*®)Y2f(re?) = lim (re*®)/2f(re’®) =0
r—0+ r—00

are attained uniformly.

The effectiveness of Lemma 3.2.1 in the form (3.2.7) becomes evident, when we

take the inverse Fourier-transform of the L,(R)-function F'(- + ), that is to say

(27)~1/? / F(u + i6)e**du,

¢ and thereby have the integral expression

1 [ _
S F(u + i0)etx+ 9 gy
7 Fero)

standing for the integral of the holomorphic function F(w)e™” over the path Jm(z) =

and multiply it by e™

0 from —oo + i@ to oo + i6. Utilising this idea and the Fourier-Plancherel Theorem

(Proposition 2.2.1), specifically that

h A
(27")—1/2/ F(u+i0)e'*du = Alim (21r)“/2/ F(u + i0)ei*“du
—00 —00 —A
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in the L,(R)-sense, we look at the Cauchy-Integral Theorem applied to the holomor-

phic function F(w)e*? = e*/2f(e*)e'*™ on the boundary 3R of the rectangle

R =R(A;0,,6,) = {w € C: [Re(w)| < 4, 6, < Im(w) < 6,}

contained inside the infinite strip R + (0, 7) of the complex w-plane -i.e. 0 < 6; <

8, < 7 - as depicted in the subsequent diagram labelled Figure 2. Clearly,

Jm
[}
- 7;
Y
6
R . >£Re
N 0 ‘A
Figure 2.

] A 1 1 02 . .
0= f F(w)e“wd'w = / F(u + igl)e:t(uﬂal)du +1 F(A + io)ett(A+10)d0+
aRrR _a o,

A . - 01 - -
/ F(u+ i0)et®+®)gy i | F(—A +i8)e™=4+9d (A > 0).
—-A -2}

Rewritten, we have out of this that

A ) 62
(3.2.10) / F(u + i6,) e+ ) gy 4 je'At F(A +i0)e "*df =
—-A 6

A ) 62
/ F(u + 10,)e™+92) dy 4 jeiA F(—A +1i6)e~**d6 for (A > 0).
—A &,

By invoking our Lemma 3.2.1 in the F(w)-form, specifically limit statement (3.2.7)

-i.e. Alim F(£A + i0) = 0 uniformly in 6 on every compact subset of (0, 7) - for the
—00
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closed interval [6,,6,], we have that both integrations with respect to 6 on [0, 62] in

equation (3.2.10) tend to zero as A — oo and thus
[o o] . . o0 A i
(3.2.11) / F(u + i0,)e ) dy = / F(u + i6,)e™ "+ 92)dy (0 < 8,0, < 7).
—00 —oo

By fixing 6, as ¢g (0 < ¢9 < 7) and letting 6, = ¢ vary freely on the interval (0, 7),

we arrive at

(3.2.12) (2m)~1/2 / F(u +i¢)e'*du = e**f(t) with

(2m)~1/2 /m |F(u + i¢)|?du = (27) /2 /‘00 et |f(t)|%dt (0 < ¢ < ),

—o0 ~o0
where the last equality is the Parseaval Equality for the inverse Fourier-Plancherel
transform for L,(R)-functions. However, by retrieving F'(u+t¢) through the Fourier-
Plancherel transform, we have that

e(u+i¢)/2f(e(u+i¢)) — (271,)—1/2 /°° e¢tf(t)e—iutdt (('U., ¢) e€R x (0, ’/T)),

—oo
which after the substitution © = Inr for the integration variable gives us the inverse
Mellin-Transformation representation

(3.2.13) f(re'®) = (2m)~1/2 ” £(t)(re®)""/24dt (re'® € I1,) with

—00

/ €29t |£(1) 2t = / |f(rei®)[2dr (0 < ¢ < ).
—Oo0 -0
In the Parseaval Equality of statement (3.2.12) we note that as ¢ 7 from within

(0,7), €?*|f(t)|? defines on the subsets (—00,0) and (0,00) a monotone decreas-

ing and increasing ¢-parameter family of L;(—o0,0)- and L, (0, oco)-functions, which
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converge to e2™t||f(t)|? respectively. The Lebesgue Monotone Convergence Theorem

guarantees through

0 o0 oo
{[ +[ }eusora= [~ egwra <iifile® ta
—o0 0

-0

/ >t |£(¢)|2dt = iim/ e®®|f(t)|%dt as ¢ — 7 from within (0, 7).

—0Q0

Correspondingly, as ¢ Y\, 0 we have a ¢-parameter family of L;(—o0,0)- and
L,(—o0,0)-functions, which increase and decrease to |f(t)|? respectively on the in-
tervals (—oo,0) and (0,00). Application of the Lebesgue Monotone Convergence

Theorem like before, lets us conclude that

/ |£(¢)|%dt = (l;_r)%/ e?®!|f(t)|*dt as ¢ — O from within (0, 7).

~c0
It is tacitly understood that we first showed that |f(¢)|?> and e*"*|f(t)|? define two
L,(R)-functions and that the Lebesgue Dominated Convergence Theorem, in terms
of the estimate

MR < [1+IEE)P
with [1 + €*™]|f(-)|? being a non-negative L;(R)-function, lets us replace the limits
¢\, 0 and ¢ M 7 from within (0, 7) by lim as ¢ — 0 and ¢ — 7 from within (0, 7).

Thus we have

(3:2.14) [ s@ra, [~ ems@ia < ifil f < )

—00 v =00
and by means of these inequalities, we can extend the definition of a &,-function f

to the positive and negative real axis by

(3.2.15) f(re™) = (2m)~V/2 /oo £(t)(re™¥)~*~/24¢ for almost all 7 > 0 (v = 0, 7).
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The limit functions f(t) and e™f(¢t) belong to L,(R) and allow the holomorphic

function F(w) = e*/2f(e?) of the infinite strip R + (0, ) to have the property that

(3.2.16) 4151_1’1‘11, (2r)~1/2 / |F(u+i¢) — F(u+ i)|?du =
ii_)n}}(?w)"/z/ le®t — e¥*|?|£(t)|?dt = O for ¢ — 1 from within (0, 7),
because:

(2#)‘1/2/ F(u +ig)e™du = e*f(t), e** > e* as ¢ = ¥

from within (0, 7) and [e®** — e¥| < 2[1 + €*™] for all real ¢.

As a few times already before, the Lebersgue Dominated Convergence Theorem lets
us conclude that the two limits in statement (3.2.16) are zero. Substituting in the

left limit statement for function F’ its expression in terms of f, namely
F(u+1i¢) = e(u+i¢)/2f(e(u+i¢)) and F(u + i) = e(u+iw)/2f(e(!t+i¢))’

and replacing the variable u by Inr leads to

(3.2.17) lim |l f(-€**) — €™/ f(-€")||La(0,00) = O @S

¢ — ¢ from within (0,7) (¢ =0, 7),

and after using

1 () = f(-€)lLao0) <
e/ £ (-®) — €¥/2 £ (-€")||Lac0,00) + [ — €¥2]|| f(-€™)]|L2(0,00):

we obtain the following
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PROPOSITION 3.2.2. Every &,-function possesses angular limit functions in the

a.e. pointwise- as well as in the L,(0,00)-sense as ¢ — ¢ from within (0,7) - i.e.

(3.2.18) gin}b f(re*®) = f(re*?) for almost all T > 0 (¢ = 0,7), and

(3.2.19) lim |1£(-€*) — f(-€¥)|La(0,00) = O (¥ = 0O, ).

The limit statement (3.2.17) suffers from the shortcoming that for any u € 9Il;

(that is u € R), the value f(u) has to be calculated by means of
f(u) = ¢li1(r)1+ f(|u|e*®) or ¢lim_ f(|lule*®) according as u > 0 or u < 0,

in other words the limit is calculated along the circular path |z| = |u| from above the
real axis. This does not say anything about the limit of f(z) as z — u from within I
generally. Consequently, a stronger version of limit statement (3.2.17), which takes
into account the conformality of the transformation w — e*, mapping the closed

infinite strip R + #{0, 7] (R x [0, w]) onto the punctured closed upper half-plane
(I4)"\ {0} = {z € C: z # 0,Im(z) > 0},
is given in
THEOREM 3.2.3. If f € ®,, then as z = re*¥ from within T1,
(3.2.20) z_lffnew f(2) = f(re™) for almost all T > 0 (¢ = 0, 7).

PROOF. We choose for any w € R + (0,7) a rectangle R = R(A4;6,,62) as

depicted by Figure 2 such that 0 < §; < Jm(w) < 02 < 7 and A > |Re(w)| and write
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the Cauchy-Integral Formula for F(w) in this rectangle - i.e.

A
F(w) = (i)™ fm F(O)[C — w]™d¢ = (2mi)~* /_ F(E+iB)lE +i6: — ] ldg+

82 —-A
(2m)~! F(A +in)[A +1in — w] 'dn + (27i)~! F(£ +16,)[€ + 16, — w]~'dE+
g, A

0,
(2m)~! F(—A+in)[—A + in — w]™'dn.
02

We note that limit statement (3.2.7) is valid uniformly on every compact subset of
(0, ) (Proposition 3.2.2 in terms of F(w) = e*/2f(e*)) and then by letting A — oo

in the immediately preceeding formula for F(w), we have

F(w) = (2mi)™" / = F(E+i6,)[E+i6, —w] 'dE—(273) " /_ ~ F(E+i0,)[E+i0,—w] ™ 'dE.

Here we used the facts that F(- + i6;) and [- + i6x — w]~! are both L,(R)-functions
(k =1, 2). Since 6, and 6, are arbitrary as long as 0 < 6; < Im(w) < 6; < m, we may

let 6, — 0% and #, — 7, and thus achieve, by means of limit statements (3.2.16)
lim |[F(-+i6,) — F(- +i0)||,®) = lim [[F(- + ;) — F(- +im)|[L,®) =0
g;—0+ Gr—m—
as well as the self-evident ones
1 . 1 j— -1 —_ e — -1 —
Jm ([ + 8 —w]™ [ — w] @)

lim {|[- +i02 —w]™' — [ + i7 — w]™}||L,®) = O,
Gr—on—

the fact that
(3.2.21) F(w) = (2mi)~! /_m F(€ +10)[€ — w]~'d€ — (2m3) ! /_m F(& +1im)

[€ + im — w]'dE = Fo(w) — Fr(w).
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The first integral expression herein is denoted by Fy(w) and it represents an Ho(I1,)-
function of the upper half-plane (of the w-plane), whereas the second integral F(w)
is an H,(im — I1.)-function of the lower half-plane ir — I, = {w € C: Im(w) < 7}.
For these, the following limit statements hold on the lower edge R of the boundary

of the strip R + (0, ):

lim Fp(w) exists as w — u non-tangentially from within R + (0, 7) for almost
w—ru

allu e R, 111,1_1)1!1‘ Fr(w) = (27)7! /oo F+im)[§ —u+inm] 'dE forallu e R

We have correspondingly for the upper edge R + 7 of the infinite strip:

lim F,(w) exists as w — u + i7 non-tangentially from within
w—u+tw

R + (0, 7) for almost all u € R,

lim Fy(w) = (27)~! /0‘J F(E+i0)[f —u—in] 'df forallu e R

w—u+iw

These we summarize in terms of the limit statements (3.2.16) as

(3.2.22) lim F(w) = F(u+ 1Y) as w — u + iw non-tangentially

w—ou+iyY
from within the infinite strip R + (0, 7).

However, because of Proposition 3.2.2 and the fact that w — e is a conformal map
of the closed infinite strip R + Z[0, 7] onto the punctured closed upper half-plane
(I1.)~\ {0}, the process “w — u+ i non-tangantially from within the infinite strip”
maps onto the process “z — re'¥ non-tangentially from within IT1,” (¢ = 0, 7) for all

7 > 0 and vica versa with the exception of r = 0. This completes the proof. O
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Theorem 3.2.3 implies that every ®,-function f belongs to $3;, because limit state-
ment (3.2.20) combined with relation (3.2.19) of Proposition 3.2.2 lets us construct
out of f(-e'¥) € Ly(0,00) (¢ = 0,w) the L,(R)-"boundary value function” f(- + i0)

of f, namely
f(z +10) = f(ze™) or f((—z)e'¥) according as z >0 or z < 0.

This f(-+10) is a boundary value satisfying properties (1.1.1), (1.1.3) and especially

(1.1.4), thereby affirming that f € $); and further
. i 2 i 2
1l = [1F(- + i0)llLo®)” = £ (-€)llLaony” + 1 (-€™|Laoo0)” <

2 sup _/0 |f (re®) Pdr = 2]| 1l

0<o<

on account of limit property (3.2.19). Therefore, we have proved

PROPOSITION 3.2.4. &, = §, and every H,-function f satisfies
1 £1l5: < V2IIlsc2)-

We may extend the Parseaval Equality of the Mellin-Transform representation
(3.2.12) to all ¢ € [0,7], because f(-€'*) — f(-€'¥) in the L,(0,00)-sense as ¢ —
¥ (¢ = 0,7) from within (0, 7) (statement (3.2.19) of Proposition 3.2.2), and thus

see that
|| f (-e""’)||[,2(0,c,‘,)2 is a convex function of ¢ on the closed interval [0, 7],

because e?** is convex as a function of ¢ for each t € R. In particular

CEEONN | " f(re®)dr < (8/7) / " | f(re™)Pdr + (1 — ¢/7) / " 1f (re)2dr
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(0<¢<n)

and further, we have from this convexity that the supremum of [|f(-€*®)||L,(0,00) is

attained at ¢ =¥ (¢ =0, 7) - i.e.

3224) Il = 598 1F(e¥)lcs0om = maz{llf(e)llssoo : ¥ = 0,7},
The best possible norm equivalence between || - |5, and || - [{5(2) is therefore
(3.2.25) £ lls@ < 1fllse < V201 fllsc2)s

which is a consequence of

(3.2.26) 1f(-€™)l2a(0.00) < NIFC + 0)|lLom) = [Iflls5e (¥ =0, 7).

3.3. Inverse Mellin-Transform Representation of £,

My thesis director demonstrated ([12]), that the totality &, (1 < p < o0) of
all radially acting linear integral operators (Section 1.2) with action (1.0.1) on ),
constitutes a Banach algebra; however, for the case of p = 2, we can say even more.
Using the result of my thesis director for the special case of p = 2, in particular that

the radial integral (1.2.2) defines the bounded bilinear functional
(-, ) :92 x H, — Cis independent of ¢ (0 < ¢ < ),
we have for K € R, and its ¢-parameter family of £,-kernels K(r,r’, ¢) that

(3.3.27) (9. Kf) = /0 ) g9(re®)(K f)(re®)e)dr =

/ ) / i 9(re®)K (r,1', ) f(r'e")e?*dr'dr (f, g € $2)
0 0
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exists (because (g(-€*?), (K f)(-e*®) € L2(0,00) (0 < ¢ < 7)) and is independent of ¢.
Moreover, by expressing f and g in terms of their respective inverse Mellin-Transform
representations

oo

o(re) = (2m) 2 [ gle)(re) 2 = (22 [ (=)o s

- 00 —00
and relation (3.2.12), where the last integral was obtained by replacing t with —¢ and
writing in the integral (3.2.12) for f(’e*®) the variable of integration as ¢’ instead of

t, we convert equation (3.2.27) to
(33.28) (g, Kf)= /0 " g(—t)[(em) 2 / (K £ (re®) (re®) - 2edr] dt =

/ / g(-t) [(271’)‘l / / K(r, v, ¢)(re*®)®* /2 (r'ei¢)_i‘_l/2ei2¢dr'dr] f(t')dt'dt
—o0 J -0 o Jo
after invoking the Fubini-Tonelli Theorem twice. This quadruple integral is indepen-

dent of ¢ for all g and f belonging to the Hilbert space
i 27t 2 1/2
(3.3.29) 92 = {£:1Iflls = (/ [1+eje(e)dt) < oo}
—oo
(these f’s are tacitly assumed Lebesgue measurable on R) with the inner product
(fle)= [ L+ ireedae

ensuing from polarization. This can only take place if
(3.3.30) (27r)’1/ / K(r, v, ¢)(re®) 2 (r'e®) " ~ 122" gr'dr =

(271’)_1 / / K(e", eu’¢)(eu+i¢)it+1/2(ev+i¢)—it’+l/2dvdu — K(t, t’)

is a Lebesgue measurable function on R? independent of ¢.
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In this equality we replaced (r,7') by (e%,e”) and the Fourier-Integral’s existence
is justfied by the Fourier-Plancherel Theorem on L»(R?) (Proposition 2.2.2). In

particular, K (e, e?, $)e(*+"/2 is an L,(R)-function, because

o0 0 OO0 lo o]
/ / K (e, ¢, ) 2e**+*dudy = / / (K (r, 7', ¢)Pdrdr’ = ||| K[>
o0 J -0 o Jo

By factoring out e~**~*~% from the integrand in each double integral of equality

(3.3.30), we obtain
(3.3.31) (2m)"! / / K(r, 7', ¢)rit=\ 20— "2 gy’ =
0 0
(27()_1/ / K(eu, eu’ ¢)e(u+u)/2€i(ut-ut’)dvdu —

!t TIK(2, ) ((t.) € R0 < ¢ < ).

Herein we replace ¢t by —t to change the second integral into the inverse Fourier-

Transform format
oo 0o _ ,

(3.3.32) (2m)7! / / K(e*, e, ¢)etv+v)/2eiuttvl) gy gy — g9+ HIK (¢, ¢')
—o00 J —00

in two variables on R? for each ¢ (0 < ¢ < )

(Proposition 2.2.2), for which the Parseaval Equality states

o0 [» o] o o] [o o]
/ / K (e*, ¥, )2+ dudu = / / e+ K (—t, ¢') 2dE'dt (0 < ¢ < ).
—oo J —oc —o0 J —00

Noting herein that the first integral is the double norm of K, (let © = Inr and
v = In7') and the second is the square of the L,(R?)-norm of e**~¢*~9K(¢t,t') (just

replace the integration variable ¢ by —¢), we can directly conclude that

(33.33) / / 24O K (¢, ¢') Pdt'dt = ||| KlI% < [I1K]lls? (0 < ¢ < 7).
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We now show that the ¢-parameter family of £,-kernels K(r, r’, @) possess boundary
Lo-kernels K(r,r',v¢) (¢ = 0,7) as ¢ — ¢ from within (0, 7). To this end, we let
A- = {(t,¢') e R : t > t'} and A" = {(¢,t') € R? : t < t'}, observe that A~ and
A* are two disjoint Lebesgue measurable subsets of R? (because A~ and A* are
open in R?), A~ = A+ = {(t,t) : t € R} is also Lebesgue measurable with two

dimensional Lebesgue measure equal to zero, and hence

/ / 62¢(t—tl)|K(—t, t’)[zdt,dt — // ez¢(¢.—¢/)|K(_t, t')lzdt'dt-f-
—o0J -0 A-

/ / 2K (—t, ¢)Pdt'dt < [||K]]s°-
A+

As ¢ \, m from within (0, ), the integrands of the integrals over domain A~ and
AY monotonely increase and decrease respectively, in terms of parameter ¢, to the
function exp(27(t — t'))|K(¢, ¢')|2. On the other hand, as ¢ 7 from within (0, 7),
we have that the selfsame integrands become respectively monotone decreasing and
increasing in parameter ¢ with limiting values exp(0(t —¢'))|K (¢, ¢')|? = [K(¢, t')|%. In
consequence hereof, the Lebesgue Monotone Convergence Theorem lets us conclude

that
(3.3.34) /_ ” /_ ~ [1+ > K(2, t')%dtdt’ < 2|||K]||s2)®
We return to equation (3.3.27) and take notice of the fact that
(@ [T ey et = ()t [T E)
eluTie)/2(gutid)itdy, — (27)~! / ~ F(u+i¢)(e***)*du with
-

F(u +i¢) = (K f)(e****)e*+¥)/2 where K f € $,.
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Relations (3.2.11) and (3.2.12) for the specific holomorphic function F' constructed
from K f of the infinite strip R+1¢(0, 7), namely the independence of the immediately

preceeding integral of ¢, tells us that
(3.3.35) (2m)~! / (K f)(re®) (rei®)it-12¢i dr = (K£)(2) with

/ 1+ €27 KE(t)[2dt < oo.

—0oC

Therewith, we reduce equation (3.3.27) to

(3.3.36) / ~ g(—t)(Kf)(t)dt = f " g(—t)(K(t, )E)(£)dt'dt (£, g € 52)

—00 —0C
in particular for all g € C.(R) - i.e. the space of continuous functions on R with

compact support. Out of this follows immediately
(3.3.37) (K£)(t) = / K(¢, ¢)f(¢)d? (t € R),

and the a.e equality implied by equation (3.3.36) may be dropped by redefining
K(t,t') on a set of two dimensional measure zero in such way, that K(t¢,t") and
exp(m(t — t'))K(t,t') are both L,-kernels on R? ([16], pgs. 14 - 16). This is feasible,
because inequality (3.3.33) entails that K(¢,¢') and ezp(w(t — t'))K(t,t') are both

Lo-kernels in the wide sense. We have therefore almost demonstrated

PROPOSITION 3.3.1. Every K € R, is inverse Mellin-Transform representable

kernel through an Rz-kernel K(t,t') on R? in the sense of
(3.3.38) K(r,7',¢) = (2m)™! / / K(t, t')(re®) " 1/2(r'e)® ~1/2dtdt’

o0 o0
with / [1 4 2™¢-*]|K(t,t")|?dt'dt < oo,
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and the action of the radially acting linear integral operator K € B($);) on $; in

terms of K and £ 1s

(3339) (Kf)(rei¢) — (271’)_1/2 oo(Kf)(t)(reid’)—it—-l/Zdt

-—0C

with (Kf)(¢t) = / ~ K(t, t')f(t)dt,

where f gives the Mellin- Transform representation (3.2.13) of f in I1.

PRrROOF. That K f is Mellin-Transform representable through Kf, as defined by
equation (3.3.35), has just been shown. Consequently, relation (3.3.39) is nothing
more than the Mellin-Transform representation of K f € §,. To prove representation
(3.3.38), we solve for the L,(R?)-function K (e*, e’, p)exp((u+v)/2) of variable (u, v)

in equation (3.3.30) by utilizing the inverse Fourier-Transform and thereby have that
oo 0o ) ) ,
(3.3.40) K(e*,e’, 9)e®t¥)/2 = (2m)~! / / e St HIK (—t )M+t dt' dt.
—oo J —00

This equation we multiply by ezp(—(u + v)/2) and thereafter replace (e*, e”) with

(r,7') and t with —t, which yields representation (3.3.38) and completes the proof. [

3.4. Boundary Value £;-Kernels of R;-Kernels

As a result of norm inequaltiy (3.3.33), we may introduce the boundary value
Lr-kernels through the use of the L,(R?)-functions appearing in equation (3.3.40),

where we bring out the fact that norm inequality (3.3.33) assumes the form

[~ [ e -t e)fard: < 20Ky,
—00 J —00
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when we replace £ by —¢ in it. Consequently, by setting ¢ = ¢ (¥ = 0, 7) in equation

(3.3.40), we immediately have the L,(R?)-functions

(o o] [ o]
(3.4.41)  K(e*, e",v)e* /2 = (2) ! / / e~V HIK (g ¢)eiluttut) gyl gy
ble o] —0oQ

(¥ = 0,7)

of variables (u,v) on R?, as guaranteed by the Parseaval Equality for the L,(R?)-
functions e ¥+ +IK(—¢,¢') (¢ = 0, 7) respectively. We apply to the defining equa-
tions (3.4.41) the selfsame process that converted equation (3.3.40) to represention

(3.3.38) in the proof of Proposition 3.3.1, and thus we have

(3.4.42) K(r,r,¢) = (271’)'1/ / K(t, t')(re®) "2 (e )i ~12gt dt

(ll) = 0,71’).

Again, the Parseaval Equality (the Fourier-Transform version thereof) allows us to
conclude for the difference of the expressions (3.3.38) and (3.4.42), written in the

forms (3.3.40) and (3.4.41) respectively, that
o o} (s o} foe) oo L
Gasd) [ [TIKGr8) - Ko oParar= [T [ st -
0 0 —o00 J —0o

o0 00
e-—w(t+¢'+i) [2|K(—t, tl) |2dtldt — / / Ied)(t-t’—i) _ ew(t—t’—i) |2IK(t, tl) Izdt'dt.
—oo J —oo

The Lebesgue Dominated Convergence Theorem applies to this last expression, be-
cause its integrand is bounded from above by the non-negative L,(R?)-function
2[1 +e2™t=)]|K(¢t, ¢')|?. Therefore, the fact that exp(¢(t —t' —1)) — exp((t —t' —1))

as ¢ — v from within (0, ) lets us conclude
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PROPOSITION 3.4.1. Fvery K € R, with ¢-parameter family of Li-kernels
K(r,7",9)(0 < ¢ < =) possesses boundary Lo-kernels K(r,r',¢) (¢ = 0,7) satis-

fying ||| Ky|ll < [[IKl]ls2) (¥ = 0,7) and

(3.4.44) lim / / |K(r,7,¢) — K(r,7',¢)|*dr'dr =0
=¥ Jo 0

as ¢ — ¥ from within (0,7) (¢ =0, 7).

Limit statement (3.4.44) can be expressed in terms of the £,-kernels K,(r, ') and

Ky(r, ') in the form
(3.4.45) },iné [[|[Ks — Kyl =0 as ¢ — ¢ from within (0, 7) (v =0, 7),

because

1Ky — Kolll = 1K (., 9)e™ — K (-, -, %)™ |Ly0.0002) <

|ei¢ - elw””K¢“[ + ”K(a ) ¢)ei¢ - K('7 " d))eid,”Lz((ovw)z)’

which tends to zero as ¢ — 7 from within (0, 7) (|||Kg|l} < |[|K]|||s@) for 0 < ¢ <
7). Proposition 3.4.1 lets us further extend the domain (0, 7) of the parameter ¢
appearing in the kernels of K € K; to [0, 7] by extending to K(r,r’,v) (¢ = 0, ),
and thereby having the ¢-parameter K(r,r’, ¢) (0 < ¢ < m) correspond to the radially
acting integral operator K € f;. We shall henceforth use the closed interval [0, 7] as
the domain for parameter ¢ whenever dealing with any f € § (Proposition 3.2.2) as

well as any K € K, (Proposition 3.4.1), and continue by formulating the next

THEOREM 3.4.2. For any K € RK; with ¢-parameter family of L,-kernels

K(r,7",¢) (0 < ¢ < ) and f € 92, we have that K f € $, possesses the following
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properties:

(3.4.46) (K f)(re'™) = [}m K(r, v, 9)f(r'e™®)e¥dr' a.e. int on (0,00) (¥ =0, 7),

(3.447) lim (Kf)(z) = (K f)(re™) as z — re'¥ non-tangentially from within I1,

for almost allr >0 (v =0,w), and

(3.4.48) ‘11’% (K F)(-€) — (K £)(-€¥)||L20.00) = 0 as ¢ — ¢ from within (0, 7).

PROOF. K f is an $,-function and as such possesses the non-tangential limits
(3.4.47) from within II, as z — re'¥ for almost all  in (0,00) (¥ = 0,7). To
show statements (3.4.46) and (3.4.48), we observe that in terms of the L,-kernels

Ky(r,r') = K(r,7",¢)e® (0< ¢ < )
/00 K(r, v, ¢)f(r'e®)e®dr’ = /co Ko(r, ) f(r'e®)dr’ = (Ksf(-€®))(r) (0 < ¢ < 7)

0 0
and write

[|(K f)(-e*) — /w K(,m, ) f(r'e™¥)e?dr'||L,0.00) =
0
[|(Ksf(-€™)) — (Ky f(-€¥NlLa0.00) <
(Ko f(-€%)) — (Ky f(-€)|L2(0,00) + [[(Ku f(-€°)) = (Kypf (-€¥)|Ls0,00) =
(K — Kol f(-€°)lLa(0,00) + || Ky (f(-€°®) — F(-€))|Ls0,00) <
11K — Kolll 11F(-€®)|Lac0.00) + Kl {1£(-€) — F(-€)|L000)0 <

1Ko — Kylll [1f1ls + HIEKls 1 (-€) = f(-€)l|L2(0,00)-

Herein we applied the Schwarz Inequality twice in going from the expression before

the first inequality to that after it, and we utilized the definitions of || - |{s2) and
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H] - [llsq2) given in statements (3.0.1) and (1.0.2). Due to the limit values given by

statements (3.4.45) and (3.2.19), we arrive at
. w - . -
(3.4.49) lim (K 1)0e®) = [ Ko ) fre)edrlinoem = 0

as ¢ — ¢ from within (0, 7).

Because (K f)(re'¥) is the limit of (K f)(z) as z — re*¥ non-tangentially from within
I1, for almost all 7 > 0 (¢ = 0, 7), in particular, re’ — re'¥ as ¢ — ¥ from within
(0, 7) and the circle |z| = r cuts the real axis at angles +m/2, we have out relation

(3.4.48) that
(K f)(-e™) — /0 K(, 7', ¢) f(r'e™)e™dr'||L0.00) = 0

which implies statement (3.4.46). Statement (3.4.47) is a direct consequence of The-
orem 3.2.3, and the last statement follows after writting the integral expression in
limit statement (3.4.49) as (K f)(-e¢¥)(¢¥ = 0,7). This completes the proof of our

theorem. O

3.5. Hilbert Space Properties of ) and |,

Not only is ||f(-€*®)||zs0.00)° @ convex function of ¢ on [0,7] as indicated by
inequality (3.2.23) for every f € $2, but so is ||| K]|||? for every K € K. This is so,

because ezp(2¢(t — t')) is convex in ¢ for all conceivable values of t — t' - i.e.
exp(2[(1 — A)¢1 + Ado|(t — 1)) < (1 — Nezp(21(t — t')) + Aezp(242(t — 1))

(0<ALL0< 1,02 <5t 8 €R) -
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inspite of the two variables (¢,#'). We multiply this convexity inequality by |K(¢, ¢')[?,

thereafter integrate over R? and thereby arrive at
(o ] o o]
/ / e2[(1—A)¢1+A¢21(2—t’)|K(t’ t')lzdt'dt <
o Jo
(o o] [= <] s o] ,
(1=2) / / 21 () K (¢, t')|%dt'dt + A / / 22—\ K (¢, t')|2dt dt,
—oc J —oo —o0 J —oo

which translates by means of the Parseaval Equality (3.3.33) into

K 1-nereaeallI* < @ = MK 12 + M| Kao||I? (0 S A< 10< 61,62 < )

-i.e. ||| Kgl||? is a convex function of ¢ on [0, 7]. Convex functions on a closed interval

attain their maximum at the end points, which lets us formulate

THEOREM 3.5.1. If K € R,, then
(3.5.50) 1Kl = sup [IIKslll = maz{|lIKylll - = 1,2}.

We now turn to the fact that square root of the integrals

o0 oo o
/ I£(2)|?[1 + €*™*]dt and / / 1K (L, t)[%[1 + >~ )dt'dt

—00
define norms on $)2 and K3, which satisfy the parallelogram law. This is because

both of these norms are £,-norms with respect to the o-finite measures
du(t) = [1 + e*™*|dt and du(t,t') =1+ ez”(“")]dt'dt of R and R? respectively.

Applying Theorem 3.2.3, we split the integral expression of the norm in equation

(1.1.3) into

2 . 2 ; 2 ; 2
1Alls:® = HFC + 0)am® = I1F Ce™)lLa0,00) + [IF (€ |L20.00) =
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o0 o0
/ et |£(t)|%dt + / e2Ot|£(¢)|%dt

—00
as consequence of the Parseaval Equality in relation (3.2.13) extended to ¢ = ¢ (¢ =
0, ) with the aid of limit statement (3.2.19) and the Lebesgue Monotone (or Dom-
inated) Convergence Theorem. If we write the two L,(0,o0)-norm expressions in

integral form, then we readily see that

[o 1 f(=r)Pdr + / Tl = [ L+ 2 E(8)Pdt for all f € B

—oc
with f having inverse Mellin-Transform representation (3.2.13) through f € §2. To
this equality we apply polarization to determin the inner products that induce the

specific norms, and therewith we obtain
[ @i = [ prand+ [ re)awr =
—o00 0 0

/ "1+ MO TDde (f,9 € Ha),

where f and g are inverse Mellin-Transform representable through f and g respec-
tively. Furthermore, f — f defines an injective linear transformation ; — 2, and
because of the inverse Mellin-Transform (3.2.13), this transformation is bijective. We

summarize these results as

PROPOSITION 3.5.2. The map f — f defines a Hilbert space isomorphism from

H2 — 92 with inner product relationship
(3.5.51) (flg)= / f(z +i0)g(z + 10)dz = / f(—=r)g(—r)dr +
—oo 0

[ s0ia@iar = (£ 1g) = [+ 6@t for all f and g € 5
0 —00
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The fact that $, is a Hilbert space in terms of inner product ( - | - ) we express
by writing ( 92 | H2 )or (- | - ) : 92 x H2 — C; whence ( H2 | H2 ) and ( H2 | H2 ).
Analogous to £3,, we can also write ( &, | K, ), provided we indicate the inner product
for K,. We observe that out of the Parseaval Equality (3.3.33) extended, via limit
statement (3.4.44) and the Lebesgue Dominated Convergence Theorem applied to
the integral expression of relation (3.3.33) with ¢ — ¥ (¥ = 0, 7) from within (G, 7),

to the values ¢ = v (¥ = 0, 7) follows

/ / |K(r, 7', 0)|%dr'dr +/ / |K (r,r', m)?dr'dr =
o Jo o Jo

/ / [1 4+ e EOK (¢, t')|2dt'dt,

where K € R, with inverse Mellin-Transform representation through K € fK; as
realized by Proposition 3.3.1. It is also more than clear, that the two integral expres-
sions to the left of the immediately preceeding equality denote |||Ko|||? and ||| Kx[]?
respectively, and are thus squares of £,-norms with respect to Lebesgue measure
du(r,r') = dr'dr on [0, 00|; whereas the integral on the right denotes the square of
the £,-norms of K with respect to the measure du(t,t') = [1+e2*(¢~*)]dt'dt. Thus the
parallelogram law applies to the square roots of all these three integral expressions,

and polarization gives us that
(3.5.52) / / K(r,7',0)L(r,r',0)dr'dr + / / K(r,r',7)L(r,r', 7)dr'dr =
o Jo o Jo

/ / [1 + 2K (¢, )L, P)dt'dt (K, L € Ra).

Herein, K and L € R, have inverse Mellin-Transform representation (3.3.38) through

K and L € f; respectively. Not only are K and f; Banach algebras on their own,
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but they are also Hilbert spaces - i.e.

(3.5.53) (R2| R ) with (K| L) =/ / K(r,r,0)L(r,r",0)dr'dr +
o Jo
/ / K(r,r',m)L(r,r",7)drdr' and
o Jo
(3.5.54) (R2 | Rz ) with (K [L) =

/ / 1+ 2Kt t')L(t, t')dt'dt;

whence the validity of the following

ProprPoOSITION 3.5.3. The map K — K, by means of the inverse Mellin-
Transform (3.3.38) , determines a Hilbert space isomorphism between ( K2 | R2 )

and ( Ry | Re ) - t.e.

(K|L)=(K|L)(K,L€ K, withK— K and L — L).

ProoOF. The map K — K is injective and the independence of the expression
w w . . - -of -
(271’)—1 / / K(T, rl’ ¢)(re:¢)1t—l/2(rlez¢)—:t —1/2612¢drrdr
o Jo

of parameter ¢ (0 < ¢ < 7) and inequality (3.3.33) lets us conclude that our rule
of correspondence is surjective. The preceeding integral equality (3.5.52) implies

(K|L)=(K|L), and therefore completes the proof. O

How does the fa-kernel (KL)(¢,t'), yielding the inverse Mellin-Transform rep-
resentation (3.3.38) of the product kernel (KL)(r,r',¢) for K and L € R, re-

late to the Lj-kernels K(t,t') and L(t,t'), which give representation (3.3.38) of
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K(r,r",¢) and L(r,r’,®) respectively? We do expect an answer that is compati-
ble with the established fact, that the inverse Mellin-Transform representation of
(KL)(f)(re*®) = (K(Lf))(re*®) in the sense of equation (3.3.39) comes on the one

hand from (KL)(f)(¢), and on the other hand from (K(Lf))(t), in other words
(KL)(£)(2) = / ~ (KL)(t, ¢)6(¢)dt = / T K(t, )LEE")dt" =

/ K(t,t") / L(t", (¢ )dt'dt" = / / K(t, t")L(t", t")dt"£(t")dt',

—00 —00 —0o0 v —00

where the interchange of order integration is justified by the Tonelli-Hobson Theorem
and the property that K(¢,¢') and L(¢,t') are £,-kernels on (—o0,00) and f € L,(R).
Because 3, is a dense linear manifold of L,(R), owing to the property that the set
C+(R) of continuous functions on R with compact support lies dense in 32 as well as

in L,(R), we may conclude with some minor trepidations that
(3.5.55) (KL)(t,t") = / K(t, t")L(t", t')dt" for almost all (¢,t') € R?.

For all that however, we place ourselves on more solid ground by arguing from the

relation
(3.5.56) (2m)"" / f (rei®)=t-V2(KL)(t, ¢')('e®)* ~V2dt' dt = (KL)(r,7', §) =

/ [(271,)—1 / / (Teinp)—-iz—l/zK(t’ tn)(rneid:)—it”-l/2dtndt] L(r", T', ¢)ei¢d,’_n
0 —00 J —©
as follows. In the first and last integral expression we let v’ = e* and thereby obtain

out of equation (3.5.56) that
(271’)_1 / / (Tei¢)—it—l/2(KL)(t, tl)(eu+i¢)it’—1/2dtldt —

oo oo o0
/ (rei¢)—it—l/2 / K(t, t”) [(211’)—1 / (rrlei¢)—i¢"_1/2L(r’ eu’ ¢)ei¢dr"] dt”dt,
- 00 bad e o} 0
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which after multiplication by e(*+#)/2 reduces to

(3.5.57) (2#)"1/2/ (211')‘1/2/ (rei®) " 2KL(t, t')e~* dte™t dt’ =
—0o —00

/ (re'®)—it-1/2 / K(t,t") [(271')‘1 / (")t ~V2L(r", e¥, ¢)e(“+i¢)/2ei"dr"] dt"dt.
—00 0

-0

Thus we may utilize the Fourier-Plancherel Theorem (Proposition 2.2.2) and write
s o] oC . B e o} i . oo
(QW)_l/ / (re’®) " Y2(KL)(t, t')dt e = (211')'1/ (re“’)""m/ K(t,t")

o o] [o o}
[(271')'1/ / (") V2L (" e, ¢)e(“+“”)/2ei¢dr”e’iu"du] dt"dt a.e. in t' on R,
0 —00

because the first integral expression is an Lo(R)-function of ¢’ on account of (KL)(t,t')
being an L£,-kernel on (—o0, o0), and similarly for the quadruple integral expression.
In this quadruple integral expression, the reshuffling of the order of integration is a
direct consequence of the kernels K(¢,t"”) and L(r",r’, ¢) having finite double norms
respectively and the Fubini-Tonelli Theorem. Taking further note of the fact that
e(uti®)/2gidg—iut — o(uti®)/2(gu+i®)=it'¢i¢ and replacing u by In7’ shall lead to

(2m)~1/2 /0‘J (re’®) "~ Y2(KL)(t, t')dt = (2m)"'/2 /’::(re"“s)'“‘1/2 -/_oo K(t, t")dt

—oo
w o0 . v/ - - -, .
[(271’)_1 / / (r"e )y V2L (", 1, 6) (7, e"’)—"’—l/ze'z"dr"dr'] dt"dt a.eint on R
o Jo
and by means of relation (3.3.30) for L(r, 7', ¢) and L(t, '), we convert this to

(3.5.58) (2m)~1/2 /oo (re®) " Y2(KL)(¢, t')dt =

[o ] [o o]
(2#)‘1/2/ (rei")‘i“l/zf K(t, t")L(t", t')dt"dt for almost all ¢',
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which we multiply by (27)~1/2(r'ei®)®* ~1/2 and integrate with respect to ¢’ over R to

obtain
(3.5.59) (KL)(r,7,¢) = (2r)~! /w /w (rei¢)~it—1/2

[ / K(t, t')L(t", t)dt"] (r'e'®)* ~12dt'dt (r,r' > 0;0 < ¢ < ).

This indeed justifies relation (3.5.55). Needless to say, the vector space structures of

R2 and K, are linked to each other through
(35.60) (K + BL)(r, ™', ¢) = (2m)"" / / (rei®)=it=1/2(oK + BL)(t, ¢')

(r'e'®) " ~1/2dt'dt with (aK + GL)(t,t') = aK(t,t') + SL(t,t")

and aK + 8L € R,, if K and L both belong to K;. We also have for K; the following

THEOREM 3.5.4. ( K2 | Ry ) and ( K2 | K2 ) are not only isomorphic Hilbert
spaces, but in terms of the norms induced by their respective inner products, they are

also Banach algebras.

PRrROOF. For multiplication in K, defined by equation (3.5.55), we need only show

that

{ /_ N [ [+ YKL )P} <

o) oo 1/2 0 oo , 1/2
{ f / 1+ ONK (s, £)Pdrde} x| / / (142 =L (s, )Pt}
—00 J —00 —o00 J ~00

This shall immediately follow by noticing that

1+t <14 ™1 + 2] for all t,¢,t” € R
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and that the Schwarz Inequality implies

o0 oo
/ V' 1+ ezt~ K(¢t, t")||L(t", t')[dt" < / K (¢, t"),/l + e2m(t=t')| x
—oo -

oo , 1/2
L(", )V + e E=Dde” < { / K (2, t")2[L + €270 de" )
—00
oo g 1/2
{/ IL(e", )1 + €2 ~de'} (2, ¢ € R).
—00
We further continue our upward estimations as follows:
[ o] [e o] o0 2
/ / [1 4 e t=¢ )]l / K(t, t”)L(t”,t’)dt”l dt'dt <
—00 J —00 -0
o0 oo [ o]
/ / [ / |VI+ e K (@, 1)V/T+ DL, )
—o0 J —00 "J —00
oo oo o0 11 oo "
/ / { / 1+ # K (L, 1) Pt} / 1+ e* =YL, ) Pde” }dt'dt =
—o00 J —00 —oo —o0
[ o] lo o] o o] o0
{/ / [1 +e2rr(t—z”)“K(t’ t")lzdt”dt}{/ / [1 +621r(t”—t’)“L(tn’ tl)|2dtlldtl}
—o00 J —o0 —o0 J —o0

2
dt”] dt'dt <

and thus complete the proof of our theorem. O
The relationship between the norms ||} - |||s2) of K2 and that of the Hilbert space
norm

© oo , /2
{ / / L+ =) (2, E)Pded}  of By is

oo oo
(3.5.61) 11K lls2)® < / / [1+ >IN K(2, ) [Pde'dt < 2°|]| Kl]s()®,
—oo J —c0

as is directly evident from Theorem 3.5.1 and relation (3.3.33) for ¢ = ¥(¢¥ =0, 7).
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CHAPTER 4

FREDHOLM RESOLVENTS BY NEUMANN SERIES

Prior to embarking upon a discourse on Fredholm Resolvents, we need to fix some
notions of convergence of a sequence of $o-functions as well as of a ¢-parameter family
of L, kernels belonging to operators from £;. Relying on the concept of “relative
uniform” and “relative uniform absolute” convergence for L,(a,b)-functions and
Lo-kernels as presented by F. Smities in his text entitled Integral Fquations ([16],

pgs. 23 - 26) we first make for a sequence in ), the following

DEFINITION 4.0.1. The sequence {f,}32, of $2-functions is said to converge rel-
atively uniformly to f € $,, if there ezists a ¢p-parameter family of non-negative
L2(0, 0o)-functions py (0 < ¢ < 7) with uniformly bounded L,(0, 00)-norms on [0, 7]

and an n(e) > 0 such that, out of n > n(c) shall follow
(4.0.1) | fa(re®) — f(re®)| < epe(r) (r > 0; 0< ¢ < 7).

From Definition 4.0.1 it becomes quite obvious, that if we square both sides of
inequality (4.0.1), integrate with respect to r over (0,00) and take the supremum

over ¢ (0 < ¢ < 7), then

an - f“s(Z) S € sup ”pd’”L(O,oo) (n Z n(e)),
0<p<n

and thus f,, converges to f in $2. In other words, “relative uni form”-convergence in
-, implies convergence in §)>. Because §), is a Banach space, we need not worry about

the limits of “relatively uniform”-Cauchy Sequences in $2. A series 3 .| fn of He-
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functions is said to be “relatively uniformly”-convergent in )., if the sequence of
its partial sums is “relatively uniformly”-convergent in ). However, we shall say
that the series Y _.- | fn of $2-functions converges “relatively uniformly absolutely”
in $,, if there exists a ¢-parameter family of non-negative L,(0, oo)-functions p, (0 <

¢ < ) and an n(g) such that, out of n > n(e) shall follow

n+p

S fulre®) < epo(r) (r >0 p2 1, 0< p < 7).

p=n+1

It is quite clear that a “relatively uniformly absolutely”-convergent series in )2
is “relatively uniformly”-convergent in §), as well as what its limit is in 2, since
9, is complete in both the norms |[| - |[s2) and || - ||,. Further, if K € R, then
K f, converges “relatively uniformly” to Kf, whenever f, converges “relatively
uni formly” to f in $2, because out of n > n(¢) follows |(K f,)(re®®) — (K f)(re?)| <
€N o(7, )| 2(0.00) | [Pl La(o,00) (0 < & < 7). On the other hand, the series 3_7° | K f,

converges “relatively uniformly absolutely” to K(3 .-, fa), because n > n(¢) im-

plies
n+p ) oo n+p .
S KR < [ IKE ] 3 1alre?)]ar <
p=n+1 0 p=n+l

el Ko(r, *)l|La(0,00) X ||PollL2(0,00)5

where ||K4(r, *)||£2(0,00) X |Pol|L2(0,00) is @ ¢-parameter family of L2(0, co)-functions

with Ly(0, oo)-norms that are uniformly bounded by

11K |]s2y X sup [|PgllL2(0,00)-
0<o<r
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4.1. Relative Uniform Absolute Convergence in R,
Parallel to the concept of “relative uniform”-convergence in ), we introduce

on K, the

DEFINITION 4.1.1. The sequence {K,}3, of radially acting linear integral oper-
ators from K, is said to converge “relatively uniformly” to K € Ry, if there exist
a ¢-parameter family of non-negetive L,-kernels P, (0 < ¢ < w) with uniformly

bounded double norms and n(g) such that, out of n > n(e) shall follow

(4.1.2) |Kn(r, 7', 0) — K(r,7',9)| < ePy(r,r") (r,7" >0; 0< <)

for the ¢-parameter family of £,-kernels inducing the operators K, and K respec-

tively.

In the selfsame evident way as in 9., K, — K “relatively uniformly” in Ko

implies LK, — LK and K, L — LK “relatively uniformly” in RK,, because

(LK) (r, 7', 8) — (LK)(r, 7', 8)| < ellLo(T, MlL2(0.00) X |[Po( T)IL2(0.00)

(r,' >0, 0< @< )

holds for all n > n(e), and ||Ly(7, )| £,(0,00) X || Po(*s 7') || L2(0,00) is @ ¢-parameter family
of non-negative Ly-kernels in variables (r, ') on (0,00)? (0 < ¢ < m) with uniformly

bounded double norms. We have correspondingly for all n > n(e) that

[(KaL)(r, 7', ¢) = (KL)(r, 7', 8)| < €]|Pa(r, lLat0.00) X 6 ™) L2(0,00)

(' >0,0< <)
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implies for K,L — KL "relatively uniformly” in K;. We note that

T NLotr lzaeen] [1P5C ) leaoeey | dr'dr,
o Jo [ ]

(= o] [e o] 2 2
[ [ THPstr Moo (Lol lst0om] dr'dr < EIle® x sup 1111
o Jo 0<¢<w

Just as for $,, we say that the series Z;‘f:l K, of radially acting linear integral
operators out of RK; converges “relatively uniformly”, if its sequence of partial
sums does. We further continue by saying that the series } -2 K, from £, con-
verges “relatively uniformly absolutely”, if there exists a ¢-parameter family of
non-negative Lp-kernels P, (0 < ¢ < 7) with uniformly bounded double norms and

n(e) such that, out of n > n(e) shall follow
n+p
(4.1.3) Y IKa(rr' ¢)| S ePy(r,T') (r,r' >0, p=1; 0< p < )
p=n+1l

for the ¢-parameter family of £,-kernels inducing the operators K, belonging to K;.

Owing to the fact that K, is complete (K, is a Banach algebra), it is quite clear
what the limit in K, of a “relatively uniformly”-convergent series is, and even more
so that of a “relatively uniformly absolutely”-convergent one. If f € R, L € R,

and Y o>, K, = K in the sense of “relative uniform absolute’-convergence in Ra,

then
iK,J:Kf, f:LK,, = LK and iKanKL
n=1 n=1 n=1

“relatively uniformly absolutely” in $H, and K., because

ni:; |(an)(7'ei¢)l < /0~oo [n:Z":-I IK,‘(T’ -,-” ¢)'] If(,rleiq&)ld,r, < 5‘/000 P¢(r’ T')If(T’€i¢)|dT’,
° o0 n-+p
S ILKE A< [ 1Ll 3 1K 0l ar <

n=1 0 n=n+1
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E/ |Lo(r, )| Py(r",r")dr" and further
0

n+p oo, NP
Z ‘(KI‘L)(T’ r” ¢)l S /(; [ Z IK“(T, T”, ¢)|] IL¢(7’”, T,)ld’l’” S
n=n+l n=n+l

le o}
E/ Py(r,7") | Lo(r",P)dr" (r,7" >0; n>n(e); p=>1; 0<p < 7).
0

We are now in a position to begin to look at the Fredholm Resolvent H,(K) of
a radially acting linear integral operator K € R, with the ¢-parameter family of
Lo-kernels K(r,r",¢) (0 < ¢ < =), wherein the domain (0, 7) of the parameter ¢
has been extended to the compact interval [0, 7] by means of Proposition 3.4.1 and
Theorem 3.4.2. Our notation shall be abused quite often in the sense of writing
Hy for the Fredholm Resolvent H,(K) of K € K,. This shall occur, whenever it is
clear that we are dealing with the Fredholm Resolvent of the operator K. For the
purpose of examining Fredholm Resolvents, we note that K, is a Banach algebra -
i.e. (R2.]]|ls2)) is a Banach space with the algebraic structure of K + 8L and KL
belong tc K, for all K, L € |, and a, 3 € C. Moreover, if the radially acting linear
integral operators K and L possess the ¢-parameter family of L,-kernels K(r, 1, ¢)

and L(r,r', ¢), then
(4.1.4) (aK + BL)(r,7',¢) = aK(r,1,¢) + BL(r,r',¢) (0 < ¢ <) and

(KL)(r, 7', 0) = /oo K(r,m", ¢)L(r,r", ¢)e*®dr” = e **(K4Ly)(r,7") (0< ¢ < 7)
0

are the respective ¢-parameter family of £,-kernels belonging to the radially acting
linear integral operator a K + 3L and KL and the norm relation concerning “operator

products” in Rs is

(4.15) K Ll < 1Kl x 1Ll (K. L € ).
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In a very self-evident way, K, is a Banach algebra without a multiplicative identity,
because the identity would have to be a radially acting integral operator I, and
it is well know that I fails to be an integral operator. In terms of the L£,-kernels
Ky(r,m") = K(r,7', ¢)e*® defined in Chapter 1, we have for the ¢-parameter family

L, kernels (KL)(r,r",9) (K,L € R;) of KL € K, the relation
(4.1.6) (KL)(r, ", 8)| < [|Kg(rs MLa0.00) X Lo (s T NL2(0,00)

(r,r'>0; 0< ¢ <),

which follows directly out of the Schwarz Inequality for inner products defined by
means of integrals. Consequently, by integrating |[(KL)(r,7’,¢)|> with respect to
(r,7") on (0,00)2, we obtain out of the immediately preceding inequality (4.1.6) that
HIKsLslll < [IKsll| % ||| Lelll, and after taking the supremum with respect to ¢ (0 <
¢ < m) our norm relation (4.1.5) for “operator products in K;” follows.

Continuing this trend of thought, we consider another operator M € K, with the

¢-parameter family of Lo-kernels M(r,r',¢) (0 < ¢ < ) and write
(EMDYE O < [ [ 1Kol u) Mo, o) Lo(w, ) Pdudo <
o Jo

HEs(, Mlzoo) X IMgl] X [|Le(-, T )] L2(0,00)5

and by utilizing ||| Myl||| < |||M|||s(2) we hereform arrive at

(4.1.7)  [(KML)(r, 7", )| < [IKe(r, )lzat0.0) ¥ 1M ]]ls2) X Lo (s 7)|L2(0,00)

(K,M, L€ £).

With the aid of these results, we now are able to formulate
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DEFINITION 4.1.2. An operator Hy = H\(K) is said to be the Fredholm Resolvent
of K € R, for the regular value A € C, if Hy € R, with ¢-parameter family of L,-

kernels

Hy(r, 7', ¢) = H\(K;r,7',¢) (r,7" > 0; 0 < ¢ < ) and satisfies

(4.1.8) AMH\K = AKH, = H, — K (Fredholm Resolvent Equations).

The Fredholm Resolvent Equations (4.1.8) allow us to construct the inverse of
the operator I — AK in the Banach algebra B(f),) with multiplicative identity I or
even better, in the Banach algebra obtained by adjoining to K, the identity operator
I ([8], pgs- 143, 200). Thus, if the Fredholm Resolvent H), = H)\(K) of K € R
exists, then I — AK is invertible and (] — AK)~! = I + AH,. In addition, we want to

point out that the Fredholm Resolvent Equations (4.1.8) assume the form
(4.1.9) AHAK)(r, 7', ¢) = M(KH)\)(r,7',¢) = Hx(r,7',0) — K(r,7', 9)

a.e. on (0,00)? (0 < ¢ < )

and the radial integral equation (1.0.5) for the unknown $.-function f has the
unique solution (1.0.6) in terms of the Fredholm Resolvent Kernel H\(r,1',¢) =
Hy(K;r,r', ¢) belonging to the Fredholm Resolvent H), = H)(K) of the element
K € R,. Values ), for which a Fredholm Resolvent of K € K, fails to exist, are called
“characteristic values” of K, and for these we expect the null-space of I — AK to

be non-trivial - i.e.

NI - AK)={f € R2: f— AKf =0} has positive dimension.
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4.2. Neumann Series

Given a K € £, how can we directly construct a Fredholm Resolvent H, =

H,(K) for regular values A of K ? The most elementary way is through the Neumann

Series
(4.2.10) H, = H\(K) = ZAnKnH (1Al < IHK”|3(2) <1)
n=0

with the ¢-parameter family of Lo-kernels

(4211) H'\(T’ T’, ¢) = H/\(K7 T, T’, ¢) = Z Anl{n&-L(T, T,y ¢)

n=0
a.e. on (0,00)% (0 < ¢ < ),

where the convergence of the series (4.2.11) of L£,-kernels is in the sense of “relatively
uniformly absolutely” in variables (r, 7', ) on (0, 00)? x [0, 7]. To see this, we first

note that

n+p n+p

SRS il < D [ < K@l 1K s <

pu=n+l p=n+1
K sy % DAL x HIEK s [ = 1M < [HE @] ™

and readily discern the condition |A| x |||K|[|s2) < 1, which originates from geometric
series, as well as the fact that ||| K|||sz) X [M|[|| K |[|sc]* {1 —ld] x ||| K|||sz)] ' can be
made arbitrarily small by choosing n sufficiently large (provided [A| x ||| K|||s2) < 1)
independent of the integer p. Therefore, the series converges to H), € K;. For the

@ . . it : n+p n n+1 !
relative uniform absolute”-convergence of the series 3 77 .| A"K"*!(r, 1, ¢) we
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observe K#*i(r,r',¢) = (KK#*)(r,7’,¢) = (K*K)(r, 7', ¢) and by means of estimate

(4.1.7) we have
|K*+ (r, 7, )| < 11K s(r, La@oo) X HE*Hls@) % [[Ks(-s )| 2(0,00)

(r.,7" >0; 0 < ¢ <), or even better

[K#* 1 (r, 7, 8)| < | Ko(rs Mleac0,0) X (K s@]* ™ x [|Ko(-, 7| L2(0,00)
(r,7>0; 0< ¢ < ).

As result of this, we can write the inequalities

n+p
D EKE ()| <
p=n+1
n+p
Z Al % [[Ko(r, )| La(0,00) X [IA] % ”lK”Is@)]#—l X [ Kp(-> ") || L2(0,00) <
p=n+l

1AL (1M x K sl [ = (A< K @] ™" % [1Ka(rs lza@ee) X [1Ka( )| 2(0.00);

where Py(r,1") = [[Ko(r, lcaen) % 1Kol ")lLaoeo) i @ ¢-parameter family of
non-negative Lo-kernels (0 < ¢ < 7), whose double norms on (0, 00)? are uniformly
bounded by [|[|K]lls% and [A] x [IAl x [IETll@]*[L = Al x [[1K]|ls2] ™" can be
made arbitrarily small by choosing n sufficiently large (independent of integer p).
That H, satisfies the Fredholm Resolvent Equations (4.1.9), is a direct consequence
of observing that in Hy — K = Y_ oo, A"K"*! the term AK can be factored out
to the left as well as the right of the series, provided |A| x |||K]|||s¢zy < 1, and
the “relative uniform absolute”-convergence of 3 oo  A"K"*!(r,r’, ¢) in variables

(r,7',#) on (0,00)2 x [0, 7] guarantees, by means of equality (4.2.11) that

(4.2.12) (K [i k) (7, 9) = ,\([i XK K) (r,7,6) =

n=1
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S oAnK™H(r, 1, 6) — K(r, ', 6) (1Al % [[|K s < 1)-
n=1

In terms of ¢-parameter family of Lo-kernels Hy(r, 7', ¢) = HA(K;1,7', ¢), this also
means the validity of equations (4.1.9) in the sense of a.e in (r,7’) on (0,00)? (0 <
¢ < =), provided again that || x |||K]||s2) < 1. Transfering these results to the
radial integral equation (1.0.5), we unequivocally see that its solution (1.0.6) has the
form

(4.2.13) f(re’®) = g(re'®) + A(Hyg)(re'®) = i A" (K™g)(re*®) with

n=0
(K™g)(re*®) = / K"(r,r', ¢)g(r'e**)e**dr for almost all
0

r>00<o¢<m n>1)and K* =1,

wherein the series converges “relatively uniformly absolutely” in $;.
Let us now consider the situation where Ag and A are two regular values of K € R

with Hy, = Hx,(K) and H) = H,(K) being the Fredholm Resolvent of K for regular

values A and A respectively of K - i.e.
(4.2.14) MKH), = Hy, — K = MH\K and AKH, = Hy, — K = AH,K.

We single out \oK Hy, = Hy,— K and AH\K = H,— K, “multiply” the first equation
by AH, from the left and the second equation by AgH), from the right and thereby

achieve

MoHAK Hyy = AH Hy, — AHAK = MHHx, — MoK Hj,
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and by further substituting Hy — K and H),, — K respectively for \H, K and A K H},,

we arrive at
/\H,\H,\O - (H,\ - K) = AoH,\H,\o - (Hz\o —K) or (A - /\Q)H,\H,\o = H,\ - H,\o.

By considering the pair of equations AH,, K = H), — K and AKH) = H\ - K, where
the first is “multiplied” by AH, from right and the second by A\oH), from the left,
we immediately see that AAH \,KHy = AH\H), — AKH), = AH),Hx — AH, K,

which we convert in the same manner as before into (A — Ag)Hy,Hx = H) — H),, or
(4.2.15) (/\ - /\o)H,\oH,\ = H,\ - HAo = (/\ t /\o)H,\H,\O.

This means that H, is the Fredholm Resolvent of H,, for regular value A — A¢ and

therefore, Hy = H,(K) has Nemann series expansion

(4216) H,\ = H,\(K) = Z(z\ - /\o)nH,\on+l, provided |/\ - /\Ql X |”HA0“|S(2) < 1,
n=0

or in terms of its ¢-parameter family of £,-kernels

(4.2.17) Hy(r,7',¢) = HA(K;7,m,0) = D _(A — o) Hx,"*' (1, 7', ¢)

n=0

(r,¥ >0, 0< ¢ <m),

whose convergence is “relative uniform absolute” in K, as long as |[A — Ag| X
[ Hollls < 1.

Let us now consider the converse of the situation just described - i.e. H), is the
Fredholm Resolvent of K € K, for regular value Ao and H, is the Fredholm Resolvent
of H,, for regular value A — Aq of Hy,. Can we then conclude that H), is the Fredholm

Resolvent of K for regular value A of K? The answer is affirmative, and we procede as
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follows. We concentrate on the last two expressions of equations (4.2.14), “multiply”
these two from the right by A\ K in the sense of operator multiplication, and thus

write

/\(/\ bl AQ)H,\(A()HAOK) = /\AoHAK - /\(/\QH,\OK),

which by use of \gH), K = H), — K reduces to
AMA = Ag)Hr(Hy, — K) = AAgHAK — M(H), - K).
We “multiply” this out and regroup as
AM(A = A)HaHy,| — N2HAK + MoH K = AMHAK — A(Hy, — K)
or A(Hx — Hy,) — N*H\K = —\(H,, — K),
which after a cancellation of A yields
Hy,— H),, — \H,K = -H), + K or \H\K = H, - K.

If we single out only (A — Xo)H),Hx = H, — H,, from the equations (4.2.14) and

“multiply” it from the left by Ao K, then we shall have
AA = X)) MoK Hy)Hyx = ANKH), — AM(AKHy,),
out of which shall follow
AN = Xo)(Hy, — K) = MK Hy — AM(H), — K)
after we replace A\gK H,, with H,, — K. This we regroup as

A[(X = AoYHao Hi] — A\ — Ao) K Hy = MoK Hy — A(Hy, — K)
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and rewrite it as A(Hy — Hy,) — A2KH), = —A(H), — K). Cancelling a )\ leads to
Hy, — Hy, — AKH, = —H,, + K or AKH), = H) — K. Combining both of these
results, we obtain the Fredholm Resolvent Equations (4.1.8). This result entails the
far reaching conclusion, that the set of regular values of any K € K, is an open
subset of C, and if A¢ is any regular value of K with H,, = H,,(K) being its
Fredholm Resolvent, then the Hy = H,(K) as given by the equations (4.2.15) and
(4.2.16) is the Fredholm Resolvent of K for [A — Ao} x ||[Hx,llls(2y < 1, and hence
{2 |A = ol x |||Hallls@2y < 1} is a subset of the regular values of K.

The condition |A| x [||K]||lszy < 1 is sufficient for the [|| - |||sc2)-norm conver-
gence of the Neumann Series, namely 3 oo o [A[®|[|[K™*!|[s2) < oo; however, it is not

necessary. What is necessary and at the same time also sufficient, is that

Al lim sup {/[[|K"{|ls2) <1,
n—oo

which tells us that the radius of convergence of the Neumann Series is
. Km ~i/n
(4.2.18) t(K) = lim inf [HI |||s(2)] ,

and hence H,, as given by equation (4.2.10), represents a R, valued holomorphic
function in the open disk centered at 0 of radius v(K). It becomes also evident,
by means of some complicated calculations in dual spaces ([8], Satz 4.11, pgs 48 -
49 ) , that the holomorphy of H, in terms of A must fail somewhere on the circle
{\ € C: |\ =t(K)} of convergence, as is well established for C-valued holomorphic
functions in complex analysis. It is more than clear, that the radius of convergence

t(K) exceeds |||K|||s2). Nonetheless, it may so happen on the one hand that t(K) =
74



| K||ls(2), whereas on the other t(K) = oo, which leads us to the next section of this

chapter.

4.3. Radially Acting Volterra Integral Operators on K,

An integral operator defined by an L,-kernel on Ly(a,b), wherein a = —oc and
b = oo are admissible, of Volterra Type has the advantage that the Neumann Series
not only represents the Fredholm Resolvent of the operator in a neighborhood about
0 in C, but actually in all of C. This means that the Fredholm Resolvent is an
Lo-valued entire function of the complex variable A\. Concomitantly, we shall look at

radially acting linear integral operator on ), of Volterra Type, which leads us to

DEFINITION 4.3.1. The class BR; of Volterra Type radially acting linear integral

operators on $, s

(4.3.19) YRy = {K € R, : with ¢-parameter family of Lo-kernels K(r,r', @)
satisfying K(r,7",¢) =0 (r' >1; 0 < ¢ < 7r)}

Due to the property of |||Ks — Ky||| =& 0 as ¢ — ¢ (¥ = 0,7) from within
(0,00) (Proposition 3.4.1, equation (3.4.44) in the form (3.4.45)), we coclude out of

the functional relationship

lim / / Ky(r, ™) xa(r,r')dr'dr = / / Ky(r,)xa(r,r")dr'dr =0 (¢ =0, )
v Jje Jo o Jo

for a characteristic functions x4 of Lebesgue measurable subsets A of {(r,7') : ' >
r > 0}, that Ky(r,7’) =0 a.e. in {(r,7') : ' > r > 0} if K € BRK,; and therefore we

have the simple
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LEMMA 4.3.1. If K € URK,, then its ¢-parameter family of L,-kernels satisfies

K(r,r",¢) =0 forallt > (0 < ¢ < ).

We further note that if K and L belong to URK,, then aK + L and KL €
URK,. This is so, because if K(r,r’,¢) and L(r,r’, ¢) are the respective ¢-parameter
family of £,-kernels belonging to K and L, then the ¢-parameter family of £,-kernels
(aK + BL)(r,7',¢) and (KL)(r,r’,®) belonging to aK + BL and KL respectively

(a, 3 € C) satisfy
(K + BL)(r.7",¢) = aK(r,7",¢) + BL(r,7",¢) =0 (' >r >0; 0 < ¢ < ) and

r

(4.3.20) (KL)(r,7',9) = K(r,u,¢)L(u,r’, ¢)e®du =

u=r’

K(r',u,d)L(u, r@e?=0(">r>0; 0< ¢ <),
[r'.r]

where we note that the closed interval {r',r] = @ (empty set) if ' > r. Moreover,

equality (4.3.20) implies
(KL)(r, 7", &) = 1K (T, Mleaery X Lo (oM Loy (i7" >0; 0 < ¢ < )

as a direct result of the Schwarz Inequality applied to the immediately preceding
equality defining (KL)(r,7', ) for K, L € BR,. However, if we replace the domain

of integration (r/,7) in the first norm by (0, r) and note that
I(KL)(r, 7', 0)| = [(LK)g(r,T')| = |LeKo(r, '),
then we obtain the following very useful estimate

(4.321)  |(KL)(r, 7", 9)| = |KsLo(r, )| < [IKo(r,7")||L20.00) X [1Lo (- ™) L2t )
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(r,” >0; 0< ¢ <m K,Le€DBRK,).
This result in the case of K = L, under the observation that [K?(r,r',¢)| =
|K3(r,m")| = | K4%(r,7")| and replacement of ' by u, reduces to

(4.3.22) [K2(r,u, 8)| = |Kp® (r; w)| < |1Ko(r, )lLatr X || Ko( w)llLaqun

(T:u>0; 0<o<m; Kemﬁg)

By taking the Ly(r, r')-norm with respect to variable u in expression to the left and

right of the inequality sign in relation (4.3.22), we have

r

(4328) (1Ko, Mlaes < 1ol Nlzacon x ([

u=

2 1/2
LA

(r,r' >0; 0< ¢ <m; KEe€TR).

Utilizing |K3(r, 7, ¢)| = |[(K2K)(r,7',$)| and estimate (4.2.10) for L = K?, we see

that

|K3 (7, u, )| = |[(K®)o (T, Wl Lauen X 1Ko W)llary (r, 7" > 0; 0 < ¢ < m; K € BRy),

where [|(K2)o(T, )lLaur) = Ko (T, )l|Ls(ur), is estimated by means of inequality
(4.2.23) as
(4.3.24) |K3(r,u, 9)| = |Ks (1, u)| < [|Ks(r, )l aor) X

r 1/2 '
([ 1K llzaa’du) < o wllasun (o' > 0 0< 6 < w5 K € DSa)

Taking the La(r’, r)-norm of both sides in terms of variable u, we thereby obtain

K (1‘, )”L o,r T 2/2
3. . L < ” ' 2(0,r) . 2
(4-3-25) “K¢ (Tv )”Lz(f Ty = ﬁ X ( e ”K¢( 1"’)”52(“,") du)

(r,” >0; 0< ¢ <m Ke€VR,).
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Continuing this process, we formulate

LEMMA 4.3.2. If K € BR, with ¢-parameter family of Volterra Li-kernels

K(r, 7, ¢), then

Ko(r, )l La00,r r (n—-2)/2
(4326) 1K (0 )] < ST o (7 )l ) ™

=u

”K¢>(" u)“Lz(u,r) (r,u >0, 0o m; n2> 2)

ProoF. We procede by induction on n, because we already proved the validity
of estimate (4.3.26) for n = 2 from inequality (4.3.22) and for n = 3 from (4.3.24).
Assuming it to be true for n = m, we write [K™*!(r, 1, ¢)| = [(K™K)(r,7’, ¢)| and

use inequality (4.3.21) for L = K™ and achieve with this that
(4.3.27) |[K™* (1, 7', )| < IKg™ (7 Loy X Ko (-, 7| agr )

(r,7 >0, 0< ¢ <m; K €VRK,).

We look at both sides of inequality (4.3.26) for n = m as functions of variable u,
take the L,(r’, 7)-norm of both of these functions with respect to variable u and thus

have, after noting |K™(r, u, )| = |(K™)s(r, u)| = |(K)™(r, u)|, that

1Ko (T )l L2(0r)
(m - 1)!

) (m-1)/2

(4.3.28) ||Kg™(r, MLaciry < x (/_r, | K (s )| Lacoir) *due

(r,7" >0, 0< d <7; K€ UR,).

Estimating the expression [|K,™(r, -)||L,(,r) in inequality (4.3.27) by means of norm

relation (4.3.28) gives us

[ Ko (r, )llLa(0.r) /' 2
== X Ky(-, vr) du
= x (Ko llzacon
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||K¢("T)”Lz(r',r) (Tl T, > 0; 0 S ¢ S w5 K e mﬁz)a

which actually is the estimation (4.3.26) for n = m + 1 and u = r’; and therewith

our inductive proof is completed. O

Lemma 4.3.2 has far reaching implication. In particular, by taking advantage of

”K¢('7U)”L2(Uv") < “K¢('7v)”L2(U,oo) (U > 0; 0 ¢ < W),

on account of (v,r) C (v, 00), we have that out of

/ ||K¢(', U)”Lz(v,r)zdv < / l|K¢('1 v)”Lz(U'OO)zdv =

=u 0

HKoll|? (0 < ¢ < 7; K € VRK,) follows that

[HIK s>/

(43.29) K™ 7, )l < Ty

X |[Ka(rs MlLaory X HEKe(> ™) |Latr 00)
(r,r' >0; 0< ¢ <m; K€ BRy; n>2), where Py(r,r') =
NEs(rs Meaer) X el T Latrtoo) (17 >0, 0< ¢ < m; K € TRo; n > 2)

is undoubtedly a non-negative ¢-parameter family of L,-kernels on (0,00)?. By

defining the entire function A of complex variable =z as

oo n
z
(4.3.30) Alz) =) —,
n=0 \/7?
we immediately see from the relation (4.3.29) that

R mgenslg. G (117 o118 e
ST OAK P e) < Y (A x o < el X
u=n+l pu=n+1 .

, AL K N
K sl < - A" 1Al x AQAL x 11K lls@) %
vn!

[1Ka(rs MlLaor X Es(- ') Latr 00)-
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Because [A| x A(|A} x [{|K]||sc2)) is bounded whenever A is confined to a compact
subset of C, [|A] x |||K]|||si]*[n!]~'/? can be made arbitrarily small by choosing
n sufficiently large and Py(r,r") = [[Ks(r, M0 X [[Ko(-, ™")||L2(r 0) defines a
¢-parameter family of £,-kernels with uniformly bounded double norms, we have
that the Neumann Series (4.2.11) converges “relatively uniformly absolutly” in
(r,7',¢) on (0,00)% x [0, 7] for all A € C. Further, the “relative uniform absolute”-
convergence of the Neumann Series of K € UK, for all A € C allows us to conclude
that

(4.3.31) A(K [i X‘K"“] ) (r,r', ¢) = i ACKH(r | ) =

n=0 n=1

/\([i /\"K"“] K) (r,7",®) (for almost all r, 7' >0; 0 < ¢ <m; Ae€C)

n=0

and this proves the following

THEOREM 4.3.3. If K € UK, with ¢-parameter family of Lo-kernels K(r,1’, ¢)

(0 < ¢ < 7), then the Fredholm Resolvent Hy = H,(K) of K defines an

(o o]

U R,-valued entire function of M- i.e. Hy = H\(K) = z ATK™ and
n=0
Hy(r,m',¢) = Hy(K;7, 7', 8) = ) _ A"K™*'(r,',¢) (r,r' >0; 0< ¢ < m; A€ C).
n=0

Turning toward the inverse Mellin-Transformation representation of K (r,r’, ¢) by
means of K(t,t'), as given by relation (3.3.38), we obtain out of equation (3.5.55)

and (3.5.47) that
(4.3.32) K"t'Y(r,r',¢) = (2#)'1/ / (re’®) 2K (g, ) (ret?) 1 2dt dt

(r,7 >0; 0 < ¢ < m) with
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K"+(t, t') = / K(t, tYK"*(t", t')dt" = / K*(t, t"YK(t", t')dt"

defined inductively on n (n > 1). Further, out of norm relationship (3.5.61) shall

follow that

Hy(K) = ) _ A"K"™*! with Lo-kernel Hy(K;t,t) =) A"K™*'(2,t)
n=0 n=0

represents the Fredholm Resolvent Kernel of K € R; and it has the same radius of

oo
n=0

convergnce as Hy(K) = Y22 A"K"*! for K € K,. Moreover, the convergence of the
series for H\(K;t,t') is “relative uniform absolute” for all A such that |A| < ¢(K) =
t(K) (norm relation (3.5.61) combined with defining equation (4.3.18)). Therefore,
for all A with |A| < ©(K) we have, in consequence of relations (3.3.38) and (4.3.32),

that the ¢-parameter family of £, kernels of the Fredholm Resolvent H,(K) are given

by
(4.3.33) Hy(K;r, 1, ¢) = (2r)7! /_ : /_ : HA(K;t, t')(re) %" 1/2 x
(r'e™®) 124t dt = i MK (r r ¢) =
n=0
i,\"(zw)—‘ /— Z /_ : K™t (t, ') (re™®) %12 (/i) ~ 1 2q¢/ dt.

n=0

If we invoke the inverse Mellin-Transform representation (3.3.39) with the accompa-
ning formula for Kf, then the solution (1.1.16) of the radial integral equation (1.0.5)
assumes the form

(4.3.34) f(re’®) = i AM(K™tlg)(re?) =

n=0

(21772 [ + A K)Jg)(0)re®) 2t =
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d_Ar@m)T / T (Kg)(t)(re®) V2t (r > 0, 0< B < ),

n=0

where the series representing the solution f(re*®) is “relatively uniformly
absolutely”-convergent as long as |A\| < v(K) = t(K). In the case of K € UKy,
we have that H,(K;t,t') is an f,-valued entire function of complex variable A, be-
cause t(K) = t(K) = oo, and the series representations (4.3.33) and (4.3.34) are
Rr-and $H,-valued entire functions of complex variable A, as result of Theorem 4.3.3
and the discourse on “relative uniform absolute”-convergence in K; and ), at the

begining of this chapter.
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CHAPTER 5
RADIALLY ACTING LINEAR INTEGRAL OPERATORS

OF FINTE RANK

Before delving into the topic of radially acting linear integral operators of finite
rank, we first have to ascertain which continuous linear functionals on 3, are radially
representable in terms of the dual system ( 2 , 9. ) defined by equation (1.2.2) of
chapter 1. Thereafter, we must also look at the adjoint K* in the inner product space
( $H2 | H2 ) of the operator K € ), in terms of the inverse Mellin-Transform repre-

sentation as well as the transposition operation “T™ in the dual system ( $2 , 92 ).

5.1. Radially Representable Continuous Linear Functionals on $,.

Let ¢ denote a radially representable bounded linear functional on $, - i.e.
(5.1.1) (f)=(f,qg") =/ f(re*®)g®(re'®)e*®dr is independent of ¢
0

(feN 0K Pp <)

with unique g* € $, determined by ¢, although g¢* should be written as g,* to bring
out the dependence of g* on the bounded linear functional £ € §);' ([10]). The Riesz
Representation of the dual space of a Hilbert Space, specifically $, and $2 in terms
of ( H2 | H2 ) and ( H2 | N2 ) respectively, guarantees by means of Proposition 3.5.2,

especially equation (3.3.51), that

(5.12)  6(f)=(flg)= /0 " f(—r)a(ndr + [ " fr)g@dr = (f | g) =
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/ (1 + e*™]f(t)E(t)dt (f € $H2,f — f via inverse Mellin-Transform),

where ¢ is a unique element of $3; and so is g € $H2 with g — g. We return to

equation (5.1.1), single out ¢ = 0, write

(5.1.3) €(f) = /0 " f(r)g* (r)dr = /0 ~ f(r)F@)dr @ (r) = 0 for all 7 > 0),

and note that the inverse Mellin-Transformation representation (3.2.13) for f = g¢°

extended to include ¢ = 0 and 7 by means of equation (3.2.15) gives us, after taking

the complex conjugate g*(r) = g*(r) of the expression (3.2.15) written for f = g°

and ¥ = 0, that

g*(r) = (2m)7'/? / T O 2dt = (2m)? / G

—00 -0

where the integration variable ¢ has been replaced by —t; therefore,

(5.1.4) g°(e?) = (271')'[/2/ g°(—t)(re®)~*~Y2dt provided

—oo
oo
/ [1 + e*™]|g*(—t)|?dt < oo.

—0C
A word of caution, g*(t) as defined by equation (5.1.4) is not the complex conjugate
of g*(z); however, it must be regarded as a “involution” in the sense of a norm-
preserving anti-linear bijective operation ([8], Section 4.7, pgs. 53 - 54 ) on H2.
Because of relations (5.1.2) and (5.1.3), we have from norm-equality of the inverse

Mellin-Transform representation (3.2.13) extended to ¢ = 0 and polarization, that
615 0= [ s0F@e= [ togode= [ o0+ egi =
0o —00 —00

(f|g) forall f € $H,y, provided g*(—-) € Ha.

In consequence hereof, we formulate
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THEOREM 5.1.1. A bounded linear functional € = ( - | g ) on $, is radially
representable if and only if the g in the inverse Mellin-Transform representation

(3.2.13) of g has the property g°(-) = [1 + e 2™|g(—-) € 2. In this case, we also

have
(5.1.6) Ulf) = /oo f(re*®)g*(re*®)e*®dr with
0
g°(re*®) = (2m)~1/? /oo [1 + e~ ?]g(—t)(re®) =" 1/2dt.

PROOF. That g*(t) = [1 + e~ ?"|g(—t) is evident from the equality of the second
and third integral in relation (5.1.5), followed by replacement of ¢ with —¢t. Con-
versely, if [1 + e 2" |g(—-) € H2, then defining g*(re*?) by the equation on the right
in statement (5.1.6) for g*(t) = [1 + e~ ?"*]g(—t) lets us write the four equalities of

relation (5.1.5). Therewith our theorem is proved. a

Since not all elements of " are radially representable, we may ask for a counter-
example. To this end we let s be any complex number with PRe(s) > 1/4 and
define g,(t) = [1 + €*™]7'/2[1 + t?]~* (¢ € R), after choosing that branch for which

[1 + ¢3]7%s) > 0. Clearly, g, € ., because

o
/ [1 4+ t2]722()dt < oo;

-0

however [1 + e~ 2"|g,(—t) = [1 + e~27*]=3/2[1 + ¢?]* has the property that

o e ]
/ [1+ e[l + e 2™ 731 + 3] 2Re)dt > 273 / [1 + e*™[1 + ¢3]72()dt = oo.
0

—00
Moreover, we may further inquire about the density of radially representable bounded

linear functionals in $2’, and thereby arrive at the following
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THEOREM 5.1.2. The linear manifold of bounded linear functionals € on $,,
which are radially representable in the sense of € = ( -, g ) (g € $2), lies dense
in $2'. Furthermore, the set of bounded linear functionals on $ not radially repre-

sentable is also dense in Ha'.

PROOF. On account of the denisty of C.(R) in §>, we may approximate every
g € H2 by an [1 + e"”’]ﬁ € C.(R) arbitrarily close in $;-norm, whence the
validity of the first assertion. By adding to anyone of these C.(R)-functions the term
€Es, s(t) = [1 + €]~ 1/2[1 +£2]7*(Re(s) > 1/4), demonstrates the second assertion;

thereby completing the proof. a

We now turn our attention to the next pressing question, namely that of the

Hilbert space adjoints of operators belonging to ..

5.2. Adjoints of f>-Operators in ( H; | 2 )

To determine the Hilbert space adjoint of an operator K € R;, we invoke the
inverse Mellin-Transform Representation (3.3.38) of its ¢-parameter family of C,-
kernels K(r,7', #), by means of the Lo-kernel K(¢,t'), and with the aid of relation

(3.3.39) and (3.3.48) we write
(5.27) (Kflg=(Kf|g)=(f|K'g)=(f]|K'g)forall f,g€ 5.

In particular, the last equality lets us conclude by means of Proposition 3.5.2 and

the inverse Mellin-Transform Representation (3.2.13) of $.-functions that
(5.2.8) (K"g)(re®) = (2m)~"/2 / (K"g(t)(re'®) ™" 1/%dt (re” € I14; g € H2),

because { $2 | H2 ) is a Hilbert space and K € B($)2) implies that K* € B(2).
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Pursuing this concept further, we would like to know what K* € B(£2) looks
like, and also if it is an integral operator belonging to R;. We disentangle the second

inner product in equation (5.2.7) as follows:

(Kf|g)= /_ o0[1+ez""](Kf)(t’)?t')dt'= / co[1+e'~’"f] /_ = K(t,t') x

ocC -

f(t)dtg(t)dt' = / ” 1+ e™]f(¢) / ~ [1+ e |K(#, t)[1 + 2™ 'g(t')dt'dt =

—0Q

/—oo [1+e*™|f(t) [/oo [1+ e K (#,t)[1 + 62’"]“1g(t’)dt’} d=(f|K'g)=

oo -0

/ 1+ e*™)f(t)(K*g)(t)dt for all f and g € 9.

[ o]

Because of the positive nature of the measure du(t) = [1 + €*™]dt, we conclude that

e o}

(5.2.9) &)t = [ Kt

—00

where K‘(t, tl) — [1 + e21!’:’] x K(tl, t) x [1 + 6211'!]—1;

however, by using the standard notation T for transposition and * for transposition

followed by complex conjugation, we have that kernel K*(¢,t') may be written as
(5.2.10) K'(t,t') - [1 + 627""] x KT(t, tl) x [1 + e21rt]—1 —

[1+e*™] x K*(¢,t') x [1 + €L

The action of K* is well defined by equation (5.2.9), because

[ ik, 0g(eiar = [0 ) g ) < 1+ €27 x

—00

oo 1/2 ,
[ / K (6, ¢)Pldu(t)] " Ilells, < oo for almost all t € R (du(t) = [1 + €™ dt);

and by the very nature of the adjoint of continuous operators on a Hilbert space, in

particular K* € B(£2).
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THEOREM 5.2.1. The adjoint K* of K € K, belongs to the Banach algebra K2
if and only if the kernel K(t,t'), in the inverse Mellin-Transform representation
(3.8.38) of the ¢-parameter family of L,-kernels K(r,r’, ¢), has the additional prop-
erty that (coshwt)(cosh 7wt')"'K(t,t') is the kernel of an operator belonging to K; -

i.e.
(5.2.11) / / [1 + e¥¢=)](cosh 7t)?(cosh 7t') ~2|K (¢, t')|*dt'dt < co.

Proor. If K* € R, then by the fact that ( H, | 9. ) and ( H2 | H2 ) are
isomorphic as Hilbert spaces, the kernel K*(¢,¢') defined in relation (5.2.9) must

yield the inverse Mellin-Transform representation (3.35) of K*(r,7’, ¢) - i.e.
K*(r,7,¢) = (271')‘1/ / K*(t, t')(re'®) "2 (r'e®) i ~ /24’ dt

(r,r' >0; 0 < ¢ <) and K*(t,t') = [1 + > |K(#, t)[1 + €*™]~! must satisfy

(5.2.12) / / [1 4 ¢ |K* (¢, ') |2dt'dt =

0 00 1 4 e27(t=t)q ] 4 27t 92 .
/ / 1+ e%(t’—t)] [ 1+ e2nt ] [1+ 9K, t)[*dt'dt =

1+ 2t

anw—gyy|coshmt’ o, 12,
/ /_m[l +e ]lcoshwtK(t,t)l dtdt’ < oo.

2nt/
/‘ / 2”“ tl)] 1+e ] [1+ezr(g'_t)]lK(tl,t)lzdtldt=

Herein, we used the identity (1 + w)(1 + 1/w)~' = w and took e***~*) underneath
the square of the first bracket. Clearly, condition (5.2.11) follows, if we interchange
the integration variables t and t'. Conversely, condition (5.2.11) implies the finiteness
of the first double integral in the chain of equations (5.2.12) and thus the proof is

completed. a
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Not all operators K € K, have K* € K;. Such a counter-example is the following

operator K ¢ with ¢-parameter family of L,-kernels
[eS) oo ) ) o
(5.2.13) K,u(r, 7, ¢) = (2r)7" / / K(s,s';t,t')(re®®) "2 (+'el®) i ~1/244' dt
—~o00 J —00
(r,¥ >0; 0< ¢ <) with K(s, s;¢,t') =
(1 + e2E=O1"2[1 4+ £2]75[1 + ] (Re(s), Re(s) > 1/4), for which
o0 oo ,
/ / [1 + e [K(s, s’ ¢, ') [Pdt'dt =

{ /_ ” 1+ tﬂ‘”“‘”dt}{ /_ ” 1+ t’2]‘”"(")dt’} < 00.

That the immediately preceding double integral with expression K(s, s’; ¢, t') replaced

by (cosh 7t)(cosh 7t')~'K(s, s'; ¢, t') is infinite, follows from
/ / [1 + e¥"¢=*)]|(cosh 7t)(cosh 7t') "' K(s, s'; ¢, t')[*dt'dt =

o0 o0
/ / (cosh m¢)2(cosh mt') "2[1 + 2] 7221 4 %] 2RV gy’ dt =
{/ (cosh 7t)?[1 + t2]“2m‘(’)dt} {/ (cosh wt')7[1 + t’2]'2m‘(")dt’} = 00X
/ (cosh 7t') ~2[1 + £"2]72R)dt’ = oo for all s, s' € C with Re(s), Re(s’) > 1/4.

Just as for the case of radially representable continuous linear functionals - i.e. those

expressible in terms of the dual system ( . , 2 ) in the sense of
(N =(f, g")= [ Freé®)g'(re)edr (0 < 6 < ) with unique g" € 5, -
0

being dense in 52, we expect a result similar to Theorem 5.1.2 to also hold for the
adjoint operator K* in the Hilbert Space ( . | H2 ) of an element K € K,. This is

precisely the content of the next
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THEOREM 5.2.2. The linear manifold {K € R, : K* € R;} is dense in the Ba-

nach algebra K, whereas the set {K € R, : K* € R2} is also dense in € R,.

PRrRoOOF. The density of { K € R, : K* € R,} follows immediately from the inverse
Mellin-Transform representation (3.3.38) of the ¢-parameter family of L;-kernels
K(r,r",¢) through K(t,t'). We note that for the charactristic function x[_4,4j2 of

the square [— A, A]2 = [-A, 4] x [-4, A] (A > 0), we have
(5.2.14) Jim / / [1+ 2™ ON|[1 - xj_a,42(t, ¢')]K(t,t')|*dtdt’ = 0 and

Ka(tt') = x[-a,ap(t,t')K(t,t') is a Lo-kernel belonging to Co(R?) for all A > 0.

Consequently, K 4(¢,t') and (cosh wt)(cosh ') 'K 4(¢, t') satisfy the norm-condition

set forth in relation (3.3.38), because
A A , oo [ ] ,
/ / [1+ > )|K(¢, t)|2dt'dt < / / 1+ 2= |K(¢, ') [2dt'dt < oo
—aJ-a Y

A pA
and / / [1 + e2™t=t)]|(cosh 7t)(cosh 7t") "' K (¢, t')[°dt'dt <
S
(cosh A)Z/ / 1+ e E)|K (¢, ¢')|?dt dt.

By means of Theorem 5.2.1, we have that operator K4 € K, with ¢-parameter family

of L,-kernels
A A o o
Ka(rir,8) = m)™ [ [ K@ e)re) 1 ey A dar
-aJ-a
(r,r">0,0< o< M)
and K4* € KR, with ¢-parameter family of L,-kernels

A A
(5.2.15) Kp(rr',¢) = (2m)™ / A ./ o e K (¢, t)[1 + €] x
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(re*®) " V2 (1) 124 dt (r,7' > 0; 0< ¢ < )

and norm relationship (3.5.61) guarantees that

o0 oo
”IK - KAII|3(2)2 < / / [1 + eZw(t—t’)]lsz\[_A'Alz (t, t’)K(t, t’)lzdtdt’.
—o00 J —0co

Limit statement (5.2.14) immediately implies the density of {K € K; : K* € R;}
in Ry. If we take any K € R that has adjoint K* € R,, then by adding €K, , to
K, where K, + has ¢-parameter family of Ly-kernels K, (7, 7', ¢) given by equation
(5.2.13) with Ly-kernels K(s, s';¢t,t') in the variables (¢,t’) defined subsequent to
expression (5.2.13), we have an operator K + K, ¢, whose adjoint (K + K, «)* =
K~ +¢€K, " no longer belongs to K; if ¢ > 0, because K, ¢* ¢ R and |||K +¢eK, o —
K|lls@2) = €ll|Ks,slls2) can be made arbitrarily small by choosing ¢ sufficiently small.
Since the manifold {K € K, : K* € R;} is dense in K;, we conclude that the set

{K € R : K* ¢ R,} is also dense in R, and thus our proof is completed. O

5.3. Transposition in the Dual System ( 2 , 92 ).

Because we shall be looking at radial acting linear integral operators of finite
rank, we must return to the dual system ( 2 , . ) and examine the concept of
transposition T in this dual system { 2 , 2 ), where we emphatically point out that
(-, -): H2xH — Cis by no means a sesquilinear form. (-, - }: 9y, xH2 = Cis far
from being an inner product, and complex conjugation of the entries to the right of
the comma, shall not turn it into one, because we definitely lose the ¢-independence

of the defining integral. Nevertheless, things are not as hopeless as they seem.
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We turn to the inverse Mellin-Transform representation of K(r,r’, ¢) as given in

relation (3.3.38) and single out the norm condition on K(t,¢') therein, because
(s o] o ,
(5.3.16) / / [1 + T~ K(=t/, —t)|?dt'dt =
—oo J -0

/ / [1+ > E-9)|K(t, t')|?dt'dt < oo,
when we replace the variable (¢,t') by (—t, —t) in the second double integral. We

therefore define the L;-kernel
(5.3.17) K7(t,t') = K(—t',—t) ((t,t') € R?) and note that

/_ = /_ > [1+ > |KT (¢, t')|2dt'dt < oo,
which implies that the inverse Mellin-Transform applied to K7 (¢,t') yields
(5.3.18) KT (r,r,¢) = (2m)™" [ ” /_ ” KT(t,t') x
(rei"’)—“_l/z(r'eid’)i"_llzdt'dt (r, 7" >0;0< ¢ <),
which is the ¢-parameter family of £;-kernels of the operator KT € £, defined by
(5.3.19) (KT f)(re®) = /ooo KT(r,r,¢)f(r'e*®)e®dr’ (r >0; 0 < ¢ < 7).

To see this, all we have to do is to calculate the integral expression in this defining
equation by means of inverse Mellin-Transform representation (5.3.18), which gives

us
3.2 OOKT , I’ ! _id id)d r__ ) -1 ® °OI(T , ’
(5.3.20) [ Ko aseeaesar = ent [T [ xTe
—12 [ pporion ot idyit'~1/2 isgr' \dt' ib)—it—1/2 4y —
{(211') /0 f(r'e*®)(r'e*®) e r} t](re ) t

(2m) /2 / " (KT (¢) (rei) " V2dt with
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(5.3.21) (KTf)(t) = / ” KT (t, t"f(t)dt' = / ” K(—t',-t)f(t)dt'(t € R).

At this stage we momentarily stop to emphasize that K7 is definitely not the trans-
pose of K in the sense of KT(t,t') = K(#,t), and this clarifies the use of the symbol
“T™ instead of “T” in K7. The second equality is justified by the fact that the
defining equation (3.2.12) of f(t) came from F(u + i) = f(e*+*®)e(*+*¢)/2 and the

independence of the integral expression
(o o)
(271,) —-1/2 / f(eu+i¢)e(u+i¢)/2ei(u+i¢)/2 ei(u+i¢)tdu — f(t)
—oc

from ¢ (0 < ¢ < ). If we replace herein e* by 7' (u = In7’ and du = (') ~'dr’), then

we have
(5:3.22) f(e) = @m) 2 [ f(re(reRy et 0 <o < )

after appealing to Proposition 3.2.2 for the case of ¢ = ¢ (v =0, 7). That KTf € R,

follows from the estimates

/ ~ KTE() 2t = /_ :[ /_ : KT (¢, ¢)E(t')dt’

—0Q

2 [o o] o o)
dt < / / [K(t,t')|%dt'dt x

o0 oo 0o , 2
”flle(R)z’ / e21rt|KTf(t)|2dt =/ '/ ew(t—t )KT(t, tl)ewt’f(tl)dtl dt <

-0

(o ] o0
/ / 2" KT(¢,t')|2dtdt’ x ||e™f|| LZ(R)Z, which taken together yield
-0 J —o0

/ T+ e (KT (8Pt < /_ ~ /_ [+ PO K (e, ) Pt } x

—00

{ / (1 + ¥ |f (t)|2dt} and therefore the action (5.3.20) becomes

(5.3.23) /*oo KT(r, v, ¢)f(r'e)edr’ = (27r)'l/2 /oo (KTf)(t)(rei")'i‘_l/zdt =
0

—00

(KT f)(re'®) with KT f € $, for all f € H,.
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The justification of the notation “T'(T)” for transpose stems from the following two
arguments. If we replace in the inverse Mellin-Transform representation (5.3.18) the
K7(t,t') by K(—t', —t) and interchange (¢,t') with (—¢/, —t) again, then we have in

terms of the inverse Mellin-Transform representation (3.3.38) of K(r,r’, ¢) that
(5.3.24) KT(r,r',¢) =K' ,r,¢) (r,7”" >0; 0 < ¢ < ).
On the other hand, by calculating in the dual system ( $, , f; ) the expression
(Kf,g)= /().oo(Kf)(re"")g(rei"’)e""dr = /-co /-oo K(r, ', ¢) f(r'e®)e*®dr x
g(e*®)e*dr = /Ooo f(r'e?) /.»oo KT (r', 1, ¢)g(e*®)e®dre®dr’ =
/00‘J f(r'e®)(KTg)(r'e®)edr’ = ( f, KTg),
we have the forumlation of

THEOREM 5.3.1. Every K € R, possesses is a transpose KT € R, in the dual

system { HH2 , H2 ) in the sense of

(5.3.25) (Kf,g)=(f, KTq) for all f,g € $H2, where KT has the
é-parameter family of Lo-kernls KT (r,r',¢) = K(r',7,¢) (r,r' > 0; 0 < ¢ < 7).

If K(r,r',¢) has inverse Mellin-Transform representation through K(¢,t'),
then KT (r,',¢) has inverse Mellin-Transform representation through K7(¢,¢') =
K(—t,—t). The operation of transposition T'(T) is on the one hand linear -
ie. (K + BL)T = aKT + BLT - and on the other hand contra-variant - i.e.

(KL)T = LTKT - on R,.
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We now are able to address ourselves to the following question. What do radially
acting linear integral operators of finite rank look like? Herewith we enter into the

next section.

5.4. Radially Acting Linear Integral Operator of Finite Rank.

We start by recalling that a linear operator is of finite rank, if its image space is
finite dimensional, and the rank of an operator is defined to be the dimension of its

image space.

DEFINITION 5.4.1. An operator K € K, is said to be of finite rank, if it range

R(K)={Kf: f € 92} has finite dimension and

(5.4.26) rank(K) = dim(R(K)).

An operator K € £; not of finite rank, is said to be infinite dimensional and we
shall not treat it in this chapter. What does a 1-dimensional operator K € K, look

like? It has the form

(5.4.27) (K f)(re*®) = ( f | g Yh(re*®) for some g, h € H, and all f € $H,.

We take the bilinear product of this equation K f = ( f | g Yh with respect to some
k € $H,, such that ( h | k) #0-ie. ( Kf =(f]g)h, k) - and thus obtain
(Kf, k)Y=(flg)Xh,k)or(f,KTk)=(flg)h,k)forall f € %H,. This
means that ( f | g) =(h, k)W f, KTk)={(f, (h, k) 'KTk ) for all f € 5,

or the bounded linear functinal ( - | ¢ } : f — ( f | g ) is radially representable
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through the $H,-function ( A, &k Y7'KTk - i.e.

(5.4.28) (-1g)Y={(-, ¢°) with ¢* = ( h, k) ' KTk having inversc

Mellin-Transform representation through g* = (h, k£ )7} / K(-t', —)k(t")dt'

as consequence of Theorem 5.3.1 The conclusion we draw from this, for our radially

acting integral operator defined by equation (5.3.20), is that

(5.4.29) (K f)(re'®) = /ooo(h ® ¢°)(r, 7', 8) f(r'e®)edr (re'® € I1,; f € $H2),
where the bilinear map ® : 2 x $2 — K, given by

(5.4.30) (@ ®b)(r,r',¢) = a(re®)b(r'e®) (r,r' >0; 0< ¢ < 7; a,b€ H)

is lifted to a map ® : $H; @ H2 — K, of the tensor product space of §H, with itself
([14], pg. 327). Continuing in this manner, we do know that if K € R, has rank n,
then

(5.4.31) (K f)(re*®) = zn:( f | by Yau(re®) with {b,}"_, and {a,}?_, two linearly

p=1
independent subsets of $, containing precisely n elements.
We recall that a finite system of vectors of a Hilbert space is linearly independent,

if and only if its Grammian ®rt is positive, which for our set {a,}}_, from $; means

that

a aaz --- Ay
(5.4.32) St

a,aaz --- aq

96



((a1|a1)(a1|a2)---(a1[an)\

ot (ar|az)(az]az)---(a-|az) -0

\ (a1la Nazlar)-(arla) )

Because of the continuity of the sesquilinear maps ( - | - ) : 2 x H; — C and
(-1-): $2x9H2—=Cand(a,|a )=(as|a, ) (1 <puv<n), we have that by
choosing $,-functions ¢, arbitrarily close to a,, which is the same as choosing the
$2-functions ¢, and a, (giving the inverse Mellin-Transform representation (3.2.13)

of ¢, and a, respectively) arbitrarily near to each other,

((ala)ala) (ale) )

a; az agz --- Qn (azlci)(az]|c)---(az|cn)
(5.4.33) &r = det =

CLC2C3 - Cp

\ (anleianlc)-(anlca) )

((ale)(alea)(alen) )

aja; --- an (az]|ci)(ar]|ca)---(az|cn)
ec| = det l £0

C1Cy - Cp

\ (anlc1){an|c2)--(an|ca)

can be made sufficiently near to the Grammian of {a;,a,,- - ,a,}. In particular, we

can always guarantee that there exists a 4 > 0 such that

an ayazaz --- ay .
) > (1/2)®r¢ if

CLCy --+ Cp apazaz --- an

ay az ---
(5.4.34) me(ﬁt

lla, — culls, = Ha, — culls, <6 (1<pu<n).
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Theorem 5.1.2 permits us to to choose c, arbitararily close a,, so that ¢, = [1 +
e 2|c;(—) € 92 (1 < pu < n), and for such ¢, we have (a, | ¢, ) =(a, |c, )=

(a,, ¢ ) (1 < u,v <n), and therefore the matrix A =

((al,cl‘)(ag,q') "'(an,q‘)\

(a1, c®*){az, c2®*) -+ (an, 2°*) a,a; --- a,

(det(A) = &t £ 0)

C1Cy -+ Cp

\ (a1, en®) (@2, &®) - (an, &)
is invertible provided ||a, —c.||s;, < 6 (1 € u < n) and hence, the system of equations

(Kf=3(flb)a, e )or (Kf, e )= (a, e N flb)(Qsus<n

v=1
is uniquely solvable for the unknowns ( f | b, ) (1 < u < n). Rewriting the terms

(Kf,c.)as {f, KT¢,* ), because K € R,, we have that
(5435) < f | bn ) = ( f y Z7puKTcu. ) = ( f ) KT(Z’)’“,,CV.) ) =
v=1 v=1

(f,b,°) (1< p<n),

where the +,, denotes the u-th row and v-column entry of A~! (1 < p,v < n) and

thus
bt = KT(Y_twet) 1< n<n)
v=1

and in terms of the tensor product space gives us the following

THEOREM 5.4.1. Every K € R, with rank(K) = n and action (K f)(z) =

w=1{ f | by )au(2) has the ¢-parameter family of L-kernels

(5.4.36) K(r,r',¢) = En:(a,, ® b,°)(r, 7', @) with b,*(r'e*?) =

p=1
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(2m™ / T+ e b, (—t)(r'e®)"*"2dt (1 < p < n)

and Mellin-Transform representation through
K(t,t) = _a,(t)b,*(—t) = ) a,(t)[1 + > ]b,(¢).
u=1 u=1

PROOF. The Mellin-Transform represenatation of K(r,r’,®) is a direct conse-

quence of those of a, and b, (1 < p < n), thereby completing the proof. a

From the preceding is becomes quite apparent that the transpose K7 of the fi-
nite dimensional operator K € R,, appearing in Theorem 5.4.1, in the dual system

(52, H2)1is
(5.4.37) KT(r,r",¢) = Z(b,,‘ ®ay,)(r,r,¢) = Zb,"(rei"’)a,,(r'e“’)(r, r' > 0;
pu=l1 u=1

0 < ¢ < w) with inverse Mellin-Transform representation through K¥(t,t') =

n

K(-t,—t) = Xn:b,,'(-—t’)a,,(—t’) = Z[l + eZ™b,(t)a,(—t') (¢, t' € R).

=1
5.5. Solving Radial Integral Equations with K € RK; of Finite Rank.
The radial integral equation (1.0.6) with the radial integral operator K € K; of

finite rank n, where K(r,r’, ¢) is given by relation (5.4.34), gives us

(5.5.38) f(re*®) = g(re*®) + /\i( f, b, )a,(re?®) =

v=1

g(re®) + XY ( f | b, Ja,(re®) (re*® € I1,)

for the expression f = g + AKf. Calculating ( f - AKf =9, 58,°) (1 <pu<n)

leads to the system of linear equations

(5.5.39) (L — Ak)Z = ¥, where

99



(7o ey ) (g, b°) )
Py (f7 bo ) and § = (g,bz ) eC(uxl) and_/g=(k,w)€C(""")
\ (f., ")) K(g,bn‘))

(kw =(av, b,°)=(a, [ by)=(a, | b,) (1 <p,v<n))
with I standing for the identity of C"*™). Therefore, every solution f € $, of the

radial integral equation (1.0.6) induces via relation (5.5.38) a solution £ € C®*1) of

(o)

)
the linear system (5.5.39) of n equations in the unknowns £ = . Conversely,

\ - )

every such solution 7 of the linear system (5.5.39) yields a solution

(5.5.40) f(re*®) = g(re® + /\ix”a“(rew’) (r>0;,0<¢<mn)

u=l1

of the radial integral equation (1.0.6), because the linear equation (5.5.39) tells us

that

Tu=(g,b)+AD (a, b, )z, (1<p<n),

v=1

and these z, sustituted into the expression (5.5.40) gives us

f(rei¢) = g(reid’) + ’\Z[< g, bu. ) + /\Z( a, , b,‘. )l',,] a,‘(rei"’) =

g(re™) + /\Z[( g, b, )+¢( /\zzuau , b.* )] a,‘(reid’) = g(re’®)+

v=1l

AY (g +AY ma s b Jau(re®) = g(re®) + AD_( £, b," Jau(re) =
pu=1 =1

v=1

g(re’®) + /\/‘00 K(r, 7, 0)f(r'e®)e®dr’ (r >0; 0 < ¢ < ).
0

100



Of course, all of this is valid only for K € R, of finite rank n with a ¢-parameter
family of £,-kernels given by equation (5.4.36). For such K € K; of finite rank n, we

set
(5.5.41) 0(A) = det(L — Ak) and A, = AVI(L — Ak) = (a(N)) (A € C)

and note that &(A) is precisely a polynomial of degree n in A and the
classical adjoint A, of I — Ak is an n x n matrix with polynomial entries in A
of degree at most n — 1. In general, the relation between a determinant of a matrix

and the classical adjoint of the self-same matrix lets write for these expressions
(5.5.42) A\(L— Ak) =d(A)L = (L - Ak)A, (A € C).

If herein d(A\) = 0, then the null-space N(I — Ak) is non-trivial; and therefore, the
homogeneous radial integral equation (I — AK) f = 0 with g being the O function of
$2, has a non-trivial solution f. Moreover, the characteristic function space is given

by

-

(5.5.43) NUI-)AK)={f€H:(I-AK)f=0}= {Aixm,(re“’) :

v=1l

(2, )

I
=T € NI - Ak)}

\ 7= /

and due to the linear independence of the sets {b,}5_, and {a,}}_, in 9.,

(5.5.44) dim(N(I — AK)) = dimN(L — \k) (A € C).
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Turning toward the situation d(\) # 0, the linear system (5.5.39) of equation has
the unique solution

(5.5.45)  T=[dN]" AT -ie 2, = [dN] Y 0w (W)(g, b)) (1S p<n)

v=l

and thus

(5.5.46) f(re®®) = g(re'®) + ’\E[d(/\)]_l Zauu()\)( g, b° a,(re’?®) =

p=1

9(re®) + A({[@N] 3 aw(N)(ax ®b.%) }g) (re) (r>0; 0< o < m)

=

is the unique solution of the radial integral equation (I — AK)f = g induced by the

linear system of equations (5.5.39). This leads us to formulate the following

THEOREM 5.5.1. If K € R, of finite rank n with ¢-parameter family of L,-kernels
K(r,r',¢) = 3_(a, ® b,°)(r, 7', ) in terms of statement (5.4.34), then {A € C :
d(A\) = det(Il — Ak) # 0} constitutes the set of all regular values A of K and the
Fredholm Resolvent of K for these regular value \ has the ¢-parameter family of
Lo-kernels
(5.547)  Hi(r,r',¢) = HA(K;r,7', ) = [dV)] ™ Y 0 (M) (2, ® 6,°) (1,7, 8)

pw=1

(r,r' >0; 0< ¢ <), where (o, (N)) = AWj(L — Ak) and k = (k) € C™*™)

with ky =(a, , b,°)=(a, | b, ) (1 < p,v<n).

PROOF. We need only verify the Fredholm Resolvent Equation in either operator
form (4.1.8) or ¢-parameter family of L£,-kernels form (4.1.9). We shall take the less

cumbersome approach of form (4.1.8) and observe: for the tensor products elements
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(a ® b) and (c ® d) of K, defined by equation (5.4.29) and any K € RK,, we always

have
(5.5.48) (a®@b)(c®d)=(c, b)(a®d), K(a®b) =(Ka)®b

and (a @ b)K = a® (KTb).

This is because,
(e@b)c®d)(r.0) = /0 " a(re®)b(r"e®)c(r"e)d(r'e®)ePdr" =
/0 " e(re®)b(re)edr(a ® d)(r, ', @), (K(a ® b))(r,,6) =
/0 T K(r ", d)a(r"e®)edrb(r'e®) = ((Ka) ® b)(r. ', 6) and ((a ® b)K)(r, 7', 6) =
a(re®) /0 T b K (", §)edr” = a(re®) /0 T KT, $)b(r"e®)ePdr" =
(e ® KTb)(r, 7', ¢).

Further, the (n x n)-matrix equations (5.5.42), satisfied by classical adjoint A, of

I — Ak, we rewrite in the form
(5.5.49) Mk A, = A, —d(\)I = )A, k, where (a,,(\)) = A, and 0., =1,
or in terms of matrix entries

/\i kuyaq (A) = au (X)) — a(A)d,, = /\Zn:a,,.,(A)kw 1< p,v<n).

=1 =1

By means of these, we calculate AK H) and AH,K by writing K = Ea,‘ ®b,*

p=1

and Hy = [d(\)]™! Za,‘,,(/\)(a,‘ ® b,°%); in particular,
v=l
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(5.5.50) AKH) = /\[z ay ® by ] [d(/\ Z (M) (ay @b, ] Z d(/\)

u=1 Y=l Bw=1

n

[/\ zi:( a, , b,° )aﬂ,u(x)] (2, ®b,°) = Z y (1A) [a,,u(,\) d(,\)a,,,] (a, ®b,°) =

d()\)
d(/\) Z au(a, ®b,°%) — aon

=1

Za,,,( ,‘®b')—H,\—Za,,®b =H\,-K

=1

(5.5.51) and ,\HAK=,\[d(/\) Z oy (A)(ay ® by )] [Zau®b ] Z d(,\)

my=1 #y=1

n

[/\Zi:am(/\)(a,,, b.,‘)] (a, ®b,°) = Z Eo [ Za,,.,(x)k,u](a,,@b ) =

> gt Low) — a0 @00 =

ur=1

d(A) 3 0@ ®b, )—Em@b ") = Hx— K,

wv=1
out of which follows AKHy = Hy — K = AH,K and our proof is completed. 0O
By taking notice of the action of operator transposition 7' in the dual system
( $H2 , H2 ) on the tensor product operator (a®b) € K2, namely (a ®b)T = b®a, we

need not repeat the selfsame proof for

= [Ceonn)] =36, @),
p=1 u=1
but observe that transposition T is a contra-variant operation - i.e. (KL)T = LTKT.
Therefore, (AKHy = Hy — K = AKH,)T leads to AKTH,\T = H\T — KT = AH,\TKT,
which means that if d(A\) # 0, then H,T = [H,(K)]T is the Fredholm Resolvent of
the finite dimension radial integral operator KT = Yo ®@ay) -ie.

(5.5.52) HA(KT) = [HA(K)]" = d(A)Za,w(A)(b ®a,) (d()) #0).

pr=1
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Let us for a moment turn to the realm of linear algebra and recall that if A €
C(m*n) | then the range R(A) of matrix A has the property, that it is the annihilator

of the nullspace of the transpose AT of 4 - i.e. R(A) =

() ()

U9 (2]

m
€ cnxb . Zu“w,‘ =0 forw =
p=l1

\ ) \ %n

Therefore, the linear system of equations (5.4.36) is solvable for the unknown vector

NN = {a= e N(aT)}.

Z (e C*x1)), if and only if

/ (g ’ bl. ) \
(g, b°)
j= C ] e I - MM = [N - AEDI
\ (9. 8:") )
However, the transpose of the finite-dimensional operator K = Z:=1 a, ® b,° is

KT =3%""_.b.,° ®a, and the radial integral equation
u(re’®) = v(re'®) + A(KTu)(re®) = v(re*) + A Z( u, a, )b, (re)
u=1

is solvable for the unknown $),-function u, if and only if the linear system of equations

(u;\ ((!],al)\

U2 ( g, a )
(5.5.53) (L — k7))@ =7, where @ = and 7 = e cnx)

\Un) \(9703)}



is solvable for @ € C("*1). Like before for K = Y_"_ a, ®b,°, we have that

(5.5.54) u(re®®) = v(re*®) + A Z u,b,*(re*)
p=1

is the solution of the transposed radial linear integral equation (I — AKT)u = v.

Further,
( Uuy \
T - o L — 2 T
N(I = AKT) = {/\Zu“b,, (re®) : @ = € N(I — 2kT)} and
p=1 :
\u,, )
(g, b0y
— (g ? b2. ) T\i1L - . = [ ]
7= € [N(L — Ak")]™ if and only if /\Z( g, b,° )u, =0 for all

u=l1

\ (g, 6:°) )

@ € N(L—Ak"), which is rewritten as (g, A _ u,b," ) =0 for all @ € N(L - k")

pu=1

vields the Fredholm Alternatives, as formulated by

THEOREM 5.5.2. The radial integral equation f = g + AK f for the unknow $,-

function f, where K =3 _"_ a,®b,* € K with rank(K) = n, is solvable if and only

(5.5.55) (g, NU-XMKT))=0.
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Moreover, the transposed radial integral equation u = v + AKTu for the unknow

$92-function u, is solvable if and only if
(5.5.56) (N(I-)XK), v)=0.

How do these results relate to the inverse Mellin-Transform representation of $»
and R, ? Owing to Propostion 3.3.1, in particular equation (3.3.39) and further to
equation (3.3.59), we have that our radial integral equation (1.0.6) in format (5.4.36)

is solvable, if and only if the integral equation for the unknow $32-function f

(5.5.57) £(t) = g(t) + A /_ T K(t, O)E(¢)dt = g(t) + A zn:( f | b, )a,(t)

is solvable in §33, where the $,-function g occuring in relation (1.0.6) and (5.4.36)
has inverse Mellin-Transform representation (3.2.13) through g € $2 and the kernel
K(t,t') is given by relation (5.4.36) of Theorem 5.4.1. Just as for the K € R;
appearing in Theorem 5.4.1, we obtain that the $);-integral equation (5.5.57) with

degenerate (finite rank) kernel
K(t,t) =Y a, @b (~t) = a, )+ b,(t)
v=1l v=1

is solvable in $3 if and only if the linear system (5.5.39) is solvable for

(2 ) (o oy ) [ (o1my ) [ (glb)y )
xz (g, ba*) (glb) (g|bs)

with :17 = = = ,

8y
I

\ zn \(g.8") ) \(glt)) \ (&lbn) )
because (£ | by ) =( f b ) =(f.5°) (A <p<n), (glby)=(glb)=

(9,6, °)(1<p<n)and(a,|by)=(ay|by)=(av, ) =ku (1 <pv<n)
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Without any difficulty, we conclude that if d(A\) = 0, then A is a characteristic value

of K € B($2) and
(5.5.58) NI — AK) = {(2n)"'/? / °° f(t)(re®) 24t . £ e N(I — AK)},

as a direct consequence of equation (3.3.37) and representation (3.3.38) in Proposition

3.3.1. In case d()) # 0, the solution of the linear system (5.5.39) is unique with

(2 [ (glb) ) ((glbe) )

- | P [ caoma | BT

8
I

\ zn \ (9l ba") ) \ (81b.") )

where 4, = Wj(L — Ak) = (aw(N)),

and the unique solution of the $;-“integral equation” (5.5.57) is given by

(5.5.59) £(t) = () + o3 d( 5 3" aw()(g | by )aud) (¢ € R)

=1
At this point we introduce the tensor product map © : 2 x 2 — K2 by means of
oo

(5560)  (@@@OB))(®)=(f|b)a(t) = / (a® b)(t, ¢)E())dt with kernel

(a®@b)(t, t') = a(t)[1 + > |b(t),

and note that the rule of correspondence © is linear in the first variable and anti-
linear in the second - i.e. it is linear to the left of ® and anti-linear to the right of

®. With the aid of ® we translate the result (5.5.59) into saying that

(5.5.61) H, = Hy(K) = 7 ( 5 Z o, (A)(a, ®b,) ( provided d()) # 0)

=1
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is the Fredholm Resolvent of the $H2-“integral operator” K, with the £,-kernel

(5.5.62)  Hy(t,t) = Hy(K;t,t) = Z e (Nau ()1 + e b, () =

d)(/\)

(A) Z au(N)a,(t)b,*(—t') = d(,\) Z . (A)(@a®b,®)(t,t)

pw=l p=1

as a consequence of defining equation (5.4.31) and the fact that (a, ® b,°)(r, 7', @)
has inverse Mellin-Transform representation through a,(t)b,*(—t') = a,(¢)[1 +
e?™*'|b,,(—t). Therefore, the Fredholm Resolvent kernels of K =Y/ e, ®b,° € &,

and K=3_"_, a, ©®b, are related via the inverse Mellin-Transform as follows:
(5.5.63) H\(K;r,7,¢) = (2m)7! / / H,(K;t, t')(re'®) Y2 (r'e'®) i ~1/2d¢' dt

(r,7" >0; 0< ¢ <m).
Solving the radial integral equation (1.0.6) in §); is therefore equivalent to solving the
$2-“integral equation” (5.5.59), because of the “Hilbert space isomorphism”-nature
of the inverse Mellin-Transform $, — $H2 and K, — RKs.

What about the adjoint kernel K* of K = }_7_,a,®b," € & ? Is K* also
an element of K, ? Let us begin by considering the radially acting linear integral
operator a®b® of rank 1, where (a®b°)(r, 7', ¢) = a(re'®)b®*(r'e'?) has inverse Mellin-
Transform representation through a(t)b®(—t') = a(t)[1 + 2™ |b(t'). If (a®b°)* € fRa,

then it must also be of rank 1, because out of
((@®b*)flg)=((flblalg)=(flb)alg)=(fl(gla)p)=(f]|(a®b")g)
follows (a ® b*)*g = ( g | a )b for all g € $H,. Therefore (a ® b°*)* € Ky, if and only if

(5.5.64) / / [1 + e2™¢=*)](cosh wt)?(cosh nt") 2|a(t)[1 + €% ]b(¢')|2dtdt’ < oo.
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By choosing a = g, (g.(t) = [l + ¥™]"Y2[1 + ¢2]7°,Re(s) > 1/4) we clearly see
that condition (5.5.64) must fail, otherwise (a ® b°)* € K, with ¢-parameter family
of Lo-kernels (a ® b*)*(r,7",¢) (r,7" > 0; 0 < ¢ < 7) and (a ® b*)*T(r,7',¢) =
(a®b°)*(r',r, @) is the p-parameter family of Lo-kernels belonging to (a ® b°)* € K;

hence,
((@®8)'g,u)=((gla)®, u) (g,u € H).

By choosing a u € $, such that ( * , u ) # 0, we obtain that
(gla)y=(b, u) " ((a®b)g,u)=(g,.(b, u)(@a®b’)Tu) (g € H),

which means that g — (g |a ) = ( g | a) is a radially representable bounded
linear functional on $,; however, a(t) = g,(t) was the counter-example of Section
5.1 demonstrating that not all elements of the dual space $;' of $, are radially
representable.

The situation with K* € K, for a K € K, of finite rank is not so disenchanting.

We have the following

THEOREM 5.5.3. If K =3 " a,®b,° € Ry and rank(K) =n, then K* € R, if

and only if a,® € H2 (1 < p < n). If this is indeed the case, then

(5565) K* = Zb# R a“°’ where a,"(rei¢) — (271')_1/2/ [1 + e—27tt] %
)

p=1

a,(—t)(re?) ™24t (r >0; 0<p<m; 1< p<n).
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PRrROOF. The action Kf =30 ( f, b,° Ja, = 3°0_,( f | by )a,, as result of

Theorem 5.4.1, applies to each of the b,® individually (1 < u < n) ; therefore, out of

(Kflg)=3 (flbuXaulg)=C(fI1D (gladbu)=(f1K"g)(f g€ H)

shall follow that
(5.5.66) K'g=> (gla,)b,-ie (K'g)(re®) = (g|a,)bu(re?)
p=1 p=1

(r>0;0<¢<m).

We note that the set of $,-functions {b,}%_, is linearly independent in $,; thus, we
can find n $H,-functions {d,}%_,, d, sufficiently near to b, in $H2-norm (1 < p < n)

such that d,* € 2 (1 < ¢ < n) and

by by b --- by, b; b; b; --- b,
B = Bt

didydy --- dn didzd; --- dn

( (bys di)bys da )by do)-(bysdn)

det (ba, di ){(ba, d2 )}(bp, d3g)---(b2, dn) L0,

\ (n . di)(bn, d2)(bu, ds)---(bn, dn) }

as consequence of the comment made to justify relation (5.4.34). Let us try to
find n $H,-functions u, (1 < p < n) with u,* € $H, (1 < p < n) by means of setting
Uy = Yon_; Bpudn (1 < p < n), which is equivelent to u,® = 3 1, Bpudy” (1 < p < ),

so that

(5.5.67) (by |u, )= (b, u,* ) =6, (1 <p<n),
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where 4, stands for the Kronecker delta symbol. By replacing each u,® by its

respective linear combination of d,° (1 < n < n), we obtain the C"*") matrix

equation
( (by, di® )by, do% ) ---(b1, dy*) \ ( Pii Bz - Bin )
(b2=d1.>(b2ad2.>"'<b27dﬂ.) B21 Bz -+ [Pon I
\(bn’d1.><bn7d2.>"'(bnadn.>/ \ ﬂnl ,Bn2 et ,Bnn}
which is uniquely solvable for the unknown (n x n)-matrix (8,,) on account of
bl b2 b3 e bn
&t # 0. Hence, these n f;-functions exist. We now calcu-
dydyds --- dy

late { K*g , u,® ) (1 < p < n) by use of equation (5.5.66) and thus conclude out of

relation (5.5.67), that

(K'g,d")=(3(gla )b, d°)=

S (gla )b, d)=(gla,) 1 <u<n),

v=1
which is the same as saying (g |a,) = ( K*g, d,*) 1 <p<n). f K" € Ry,
then K*T € R, by Theorem 5.3.1 and ( K*g, d,* )=(g, (K*)Td,*) (1 < pu < n);
in other words, {( g | a, ) = (g, (K*)Td,* ) (g € H2; 1 < p < n), which actually

means
(5.5.68) (gla,)=(g, a, ) forallge H; and a,® = (K")Td,* (1 < p < n).

By writing each quantity ( ¢ , a,® ) in terms of its respective integral expression
(1.2.2) for each fixed ¢, we immediately obtain (5.5.65). Conversely, if each a, € 92

appearing in the tensor product format of K, has the property that a,* € 9, (1 <
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p<n),then (gla,)={(g, a,*) holds for all g € H, and p (1 < u < n), out
of which we immediately extrapolate that K* has the tensor product representation

(5.5.65), and hence K* € $2. Herewith our proof is completed. O

Let us now look at the radial integral equation f = g + AK*f for a K € R; of
finite rank n, possessing a tensor product representation as in Theorem 5.5.3, such
that K* € RK,. Because K* has tensor product representation (5.5.65), our radial
integral equation f = g + AK" f takes the form f =g+ A>_._,( f, a,® )by, which

admits a solution if and only if the linear system of equations

((g,al‘)\ (xl\

— (g, a") 2
(5.5.69) (I — Ak)'f = ¢ with 7 = and 7 = e ¢cnx)

\ (9. a') ) \ 2 )

is solvable for Z, and the interaction between radial integral equation (I —AK*)f =g

and linear equation (5.5.69) is that of

(5.5.70) f(re*®) = g(re*®) + A Zzub“(reid’) (r>0;,0<¢<m).

s=1
This comes about by redoing for K*, what was done for K in showing the interaction

between equation (5.5.38) and (5.5.39), under the considerations that

(b,,,a,,'):(b,,|a“)=(a,,lb,,):Ez(&‘),,.,(lSy,uSn).
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Let us now look at C**!) as an n-dimensional Hilbert Space with the conventional

(2 (4 )

T2 Y2
inner product ( T | ) =3, z,¥, for £ = and § = . Denoting by

=) )
@ the direct sum of orthogonal subspaces, we recall that for the matrices I — Ak and
(L-Ak)* = I-Xk" we have: C™*1) = R(I-AK)®N(I-AL") = R(I-Ak")ON(L-Ak).
Converting this to the interaction between radial integral equations (I — AK)f =
g and (I — AK*)f = g and their respective linear equations ([ — Ak)Z = ¥ and

(I — Mk)*T = ¢, we have first that
(5.5.71) dim(N(I - ,\K)) = dim (N(I - XK')) for all A € C,

owing to the fact that the n x n matrices I — Ak and (I — Ak)* have the same rank,

and second, the validity of the Fredholm alternatives - i.e.

(5.5.72) (I — AK)f = g solvable, if and only if ( g | N(I — AK") ) =0 and

(I — XAK*)f = g solvable, if and only if ( N(I — AK) | g ) =0.

Therefore, the characteristic values of K* are the complex conjugates of the charac-
teristic values of K, and the regular values of K* are also the complex conjugates of
the regular values of K if K € K, is of finite rank and K* € K».

For linear operators on finite dimensional Hilbert Spaces, we do not worry about
the interchangability of the processes of taking adjoints and inverses - i.e.(4*)"! =

(A~1)* for any such operator A as long as A or A* is invertible. Therefore, we turn
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to the unique solution Z of the linear the linear system (5.5.69), namely
~ Tryey—1 .~ Tiy-lysrr ] ey T ) -
F=((L-3)") "= (L-30))7=([dD)] 20 -3k)) 7=

" -1 — \ . -1 T
[Z0)] (aw®) 7= [d0)] (@) 7
where d()\) is the polynomial in A obtained by complex conjugating the coefficients

of the polynomial d()) and likewise for the n? polynomials &,,(\). Hence,

(5.5.73) zo= A0 Y @, @) A <p<n dX) £0)

p=l

and by repeating the proof of Theorem 5.5.1,

(5.

N

) HE)=[IN)] Y @m0 6. @) @) #0)

uo=1

is the Fredholm Resolvent of K* € K, in consequence of {A € C:d(\) #0} ={X €

C : d()) # 0}, with ¢-parameter family of L,-kernels

SRR o Qe iy :
(5.5.75) Hy\(K*;r, 7', ¢) = {d()\)] Z op(A)b,(re®)a,” (r'e®)
pw=1
(r>0,0<¢<m)
having inverse Mellin-Transform Representation

(5.5.76) H\(K*;r,r', ¢) = (27)"! /oo /oo H,(K*; t, ') (re'®)~it1/2 x

(') ~24¢'dt (r,7' > 0; 0 < ¢ < ), where

H(K't,0) = [d0)] 7 3 @b, 02,)(,8).

#w=1

In this closing paragraph of Chapter 5, we emphasize that: K € R, is finite
rank n with tensor product representation K = > _, a, ® b,°, its adjoint K* also

belongs to K2, a,, (A) is the u-th row and v-th column entry of Adj(L — Ak), T (A) is
115



the polynomial obtained from «,,(A) by complex conjugating the coefficients of the
polynomials a,,()) (1 < u,v < n), and d()\) is obtained from d()\) = det(I — Ak) by

doing likewise.
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CHAPTER 6

THE RADON SPLIT FOR R-OPERATORS

R? is a locally compact Hausdorff Space and we define the o-finite measure u on

R? by means of
’ o Rl v
u(E) = / / [14e27¢ ’ldt'dtzf f x&(t, ') [1+e2™ ¢ dt' dt (xg(t,¢) = 1 or 0
E —00 J —00

according as (t,t') € or € E, for E € M),

where the measure space (R?,9R, 1) encompasses the o-algebra of Lebesgue measur-

)

able subsets of R?. u defines a "Radonizing measure ” in the sense of determining a
positive linear functional ([8], pg. 179; [15], pgs. 40 - 49 ) on the linear space C.(R?)

of all C-valued continuous functions with compact support in R?. Hence, C.(R?) lies

dense in L,(R?,9M, u) (1 < p < o0), especially for p = 2.

6.1. Approximation by Means Operators of Finite Rank

The density of C.(R?) in L,(R?,90, 1) means, that for any K € K, and ¢ > 0

there exists a function K, € C.(R?) such that

(6.1.1) /_ ” /_ TIK () — K. (¢, ) Pdult, ¥) < (e/2)?

Moreover, because support trg(K.) (teg standing for " Trager”, carrier in German) is

a compact subset R?, we can find an A > 0 such that

teg(K.) C [—A4, A2 = [-A, A] x [-A, A].
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Continuing this trend of thought, due to the WeierstraB-Approximation ([3], Vol. I,
pgs. 65 - 68, especially pg. 68 ), there exist a, and b,* with trg(a,) and teg(b,*) C

[—4, A] (1 € p < n) satisfying

(e/2)?

612)  sup{IK. ~ 3 au b, (#0171 (18) € [, AP} < s

u=1

with b,*(—t') = [1 +€e>]b,(t') and b, € C.(R) (teg(b,) C [-4,4]) (1 < u < n).

The relations (6.1.1) and (6.1.2) let us estimate as follows:

(6.1.3) K =Y 2, @b llls <
p=l
[/m /m |K(t,t') — Z(a,‘ © b,)(t,t')[2du(t, t’)] e <
-0 -0 [1.:1

[/;: _/;: IK(t, t') - K(t, t’)Pdﬂ(t, t')] l/2+

A (A n 1/2
[ [ Ket) - S @obae Pt )] <e2+e/2=e
—AJ-A p=1

where we used the defining relation (5.5.60) for the sesqulinear tensor product ©.

However, we can say even more,
(6.1.4) 11K — Y (0, @ b,)oll> = II(K =D _ au ®b,°)sllI* =
pu=l1 ps=1
[ [ ek ) - Y aueb,e (¢)rarar =
—o0 J —00 u=1
/ [ et K (—t', —t) — Zb“'(t)an(—t')[zdt’dt =
—o0 J —0o0 =1
(KT = (6" ® a,)sll* <
u=1

/_w /_co K (8. ) - zn:(au ©b,*)(t,t')|*du(t, t') (0 < ¢ < m),
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which in particular for ¢ = 3 (¢ = 0, 7) combined with equation (3.5.50) of Theorem
3.5.1 yields
(6.1.5) HE =D a, @8l = IKT =D _ b, @ aylllae <,

#=1 p=1

and leads into the next section.

6.2. The Radon Split of K,-Operators

We use inequality (6.1.5) to make the following

DEFINITION 6.2.1. Given an e > 0 and K € R,, the Radon Split of K fore >0
s
(6.26) K=Q+P, P=) a,8b,° satisfying |||K — Pllls) = |l Qlll:») < &
u=t

For such a Radon Split, the radial integral equation (1.0.5) turns into
f=g+MQ+P)for(I-AQ)f =g+ APf.

Owing to |||Q|||s¢2y < €, the Fredholm Resolvent G, of Q is given by the Neumann
Series G = Z?:o A"Q™*! whose radius of convergence as Rr-valued holomorphic
function of A is definitely not less than 1/¢; in particular, [+AG = Y oo , A"Q" (Q° =
I)-ie (I —AQ)"!' =1+ AG,. Therefore, out of (I + AG,)[(I — AQ)f = g+ APf]

shall follow

(6.2.7) F=U+AG\)g+ A+ \G,)Pf =

(I + AGa)g + ,\i( £, b)Y + AGr)a,.

n=1
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Proceding just like before for operators of finite rank belonging to R, namely bilinear
producting these expressions and thereafter rewriting them, we obtain

(f=U+AGyr)g+ /\Z( f, 0.2 YT + AGha, , b,° ) (1 < p <n) or alternately

v=1

n

(628) 3 [dw = MewN]|(£ 8.) = (I +AGhg, ) (1S u<n),

v=1
where &k, (A\) =( [I + AG)la, , b, ) (1 < p < n).

These n? functions k,, () of complex variable A are all holomorphicin an open discs
centered at the orgin with radius not less than 1/¢. Therefore, our radial integral
equation (1.0.5) is solvable for A (JA| < 1/e), if and only if the system of linear

equations

(o)

I2
(6.2.9) [I — Mk,]Z = 9 is solvable for T = e Cmx1)

\ = )

(([I—/\G’,\]g, bl)\

where 3, = ,

\ (L =2G)lg, ba)

k, is a C™*™)_valued holomorphic function of variable ) in a disc centered at 0 of

radius not less than 1/e and k,,(A) is pu-th row and v-th column entry of k,.
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After we write [[ — AG.]g and the [I + AG,Ja, (1 < p < n) as g + AG»rg and
a, + AGra,(1 < p < n) respectively, the solution of radial integral equation (1.0.5)
induced by solution Z of the linear system (6.2.9) is

(6.2.10)  f(re™®) = (g + AGrg)(re™®) + A zn:z,,(a,, + AGha,)(re*?) (re € I1).

u=1
Let us now examine the linear system (6.2.9) more closely. As in Chapter 5, we

define the C"*")_valued holomorphic function

(6.2.11) A, = A0)(L — Aky) = (auw(A)) (|A] < 1/€) and note that

(6.2.12) (L= Mey)A, = 0(N)L = A\(L — Ak,) with §(A) = det(L — Ak,),

where §()) is no longer a polynomial in A but a holomorphic function in a disc
centered at 0 of radius not less than 1/e. We consider the case of §(A) = 0, which
can only occur for a finite number of A in any compact subset of {\ € C: |A| < 1/e},
and note that the solution  of the linear system (6.2.9) for g being the identically

vanishing $.-function, yields the characteristic function

f(re®) = A Zx,‘(a” + AGiaa,)(re®) (re*® € 1) or better

u=lL
(6.2.13) N(I - AK) = {/\zn::z:,‘(a,, + AGaa,)(re*®) :
u=1
()
I2
F= e N - ,\Lc_,\)} and

\ 2= /
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(6.2.14) dim(N(I - AK)) = dim(NQ - Ag)) (1Al < 1/).

Concentrating now on the case §(A) # 0, we have that the linear system (6.2.9)

has unique solution £ = [6(\)]7!A,#x, which we write component-wise as

(6.2.15) zu =BT D WA [I+AGhlg, b,°) 1< pu<n)

v=1

and substitute these entries into equation (6.2.10) to obtain thereby

(6.2.16) f(re®®) = (g + AGarg) (re®®) + A[6(A)] ! x

(3 cwN(au +AGara,) ® (5" +AGab,) ) (9) (re®).

nwv=1

This immediately follows after we transfer I + AG, in ( (I + AG,)g , b,° ) to the

right of the comma by means of transposition - i.e.
(g+AGrg, b )=(g, U+AG)Tb")=(g, b " +2G\"b,*) 1<v<n)-

and apply properties (5.5.48) of tensor product operators illucidated in the previous

chapter. Owing to equation (6.2.16), we expect that the Fredholm Resolvent of K €
K, in terms of the Radon Split as given in Definition 6.2.1 -i.e. K = Q+ZZ=1 a,®b,*

- to turn out to be

(6.2.17) H) = H,\(K) =G+ [(5(/\)]—1 i a,w(/\)(a,‘ + /\G,\a“) ® (b“. + /\G,\Tb“.)

mwr=1
with Gy = »_ A™Q™*! (|| < 1/¢), provided &()) # 0.
m=0

It satisfies the Fredholm Resolvent equations, as can readily be seen from the

following arguments. We rewrite the relationship (6.2.12) between the matrix I — Ak,
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and its classical adjoint A, as

(6.2.18) Ak, = A, — 6(A\)L = Ak,\A, and calculate as follows:

AHLK = ,\{GA +[5(\)] ! i oun (V) (I + AGala,) ® (1 + G2 T1b,") }

#n=1

{Q+Zau®b *} =G+ Zaun(/\)([I+/\G,\]au)®(QT[I+/\G,\T]b )+

sn=1

Z(/\G,\a,,)@b +[6(N)] Z{Zxa,‘,,u)(au, [ + AG,T]b," )}

wr=1 n=l1

(I + 2Galay) ® ;" = AGxQ + [5(A)] ™ > aw() (1 + AGala,) @ (AGAT16,") +

pr=1

Z(/\G,\au) ®b,* + [5(A)] ™" Z {Z ANk (V) } ([T + AGrla,) @ b,° =

ur=1 n=l1

Gy — Q+[6(N)]™ znj o) (I + AGrla,) ® (AGATH,%) + zn:(,\axau) ® b, +

pr=1 v=1l

B Y {a,,,,(,\ — 506w } (I +AGrla,) @b, =

",

Gr—Q+ [ Xn: o (N ([ + AGala,) ® (AG»Tb,*) + zn:(/\G,\a,,) ® b+

uw=1 v=1

[5(A)] ! Zn: () ([T +XGalay) ® b, — i([z +2Gla,) ®b," =G+

ur=1 v=1

[5(A)]! Zaw(,\ (@, + AGaa,) ® (b, + AG b, )-{Q+Za,®b ‘}=H\ -k

pw=l

We used herein in the second equality the contra-variance of transposition T - i.e.
QT[I + AG,T1b,* = QT[I + A\G\]Tb,* = [(I + AGL)Q|Tb,* = [I + AG\]Tb,* = GATb,*,

and (a, , [+ AGT]b,* Y = (ay , ([ +AGA|TH® ) = ([ + AGhlay , b,° ) = ku(N)
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as result of equation (6.2.8), and in the third equality we availed ourselves of equation

(6.2.18). On the other hand,

AKHy = /\{Q-i-Za,,@b ‘He+ oo Za,,,,(/\)x

=l

([1 + ,\G,\]a,,) ® ([1 + /\GAT]b,“)} = AQG) + Zn:a,, ® (/\G,\Tb,") + [6(N)] ! x

SO E oty (A) (,\Q[[ + ,\GA]aW) ([I+ z\GXT]by°)+

nv=l1

B~ i {i ([ +2AGalay » b Yo (N Jau ® ([ +AGaTIb") =

ur=1 n=1

AQG + i a, ® (AGEb,,') + 6] i (A (AGaay) ® ([1 + AGAT]b,,')+

nwv=1

B S {Z Mo (N (M) Yau ® (I +XGaTIb,) = G — Q+

pr=1l n=1

Z’::au ® (/\Gbe,") + (V)] Z an (M) (AGaray) ® ([1 + AG\T)b, )

nwv=1

[s(M)]! Zn: {a,w ~ 6(A)6“,u}a“ ® ([1 + /\GAT]bu‘) =Gy — O+

uw=l1

Xn: a, ® (AGATh,%) + [6(V)] ™" zn: o (A)(AGaa,) ® ([I + /\GAT]b,,') +

u=1 p=l1

[6(’\)]—1 i a“u(/\)a“ ® ([I + G,\T]b,,.) - ia“ R (b‘: + /\GATb“.) =G+

uwv=1 #=1

[L")-(/\)]_1 zn: a,u,(/\)(a,‘ + /\G,\au) Q (b,,. + /\G,\Tbu.) - {Q + ia‘, ® b“.} =H,-K
u=l1

pv=1

and thus the Fredholm Resolvent Equations (4.1.8) are satisfied, if §(A) # 0. Hx =

H,(K) has ¢-parameter family of £, kernels

(6.2.19) Hy(r,r',¢) = HA\(K;T1,7,0) = GA(Q; 7,7, 8) +
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BN S (W) (@, + AGaa, ) (re®) (B, + AGaTb,)('e)

(r,r">0; 0 <o <m §(A) #0, and |A] < 1/e)

with inverse Mellin-Transform representation

(6.2.20) H\(K;r,v,¢) = (211')'1/ / Hi(K;t, t')(re'®) 12 (/") —1/2q¢ dt

(r,7' > 0; 0 < ¢ <), where HA\(K;t,¢) = Ga(Q;t,t) + [6(N)] ™' D e (M) x

uyv=1

(a, + AGya,)(t)(b,* + AG.Tb,*) (1) ((t,t') € R?, §(A) #0, and |A] < 1/e).

Further, it is very clear from these results, that the set of regular values of K € K»
is an open subset of C, because if §()\q) # 0 for |[A¢] < 1/e, then the condition
8(\) # 0 may be continued into a neighborhocd of A¢ contained within the open disc

{Xx € C:|\| < 1/} on account of the holomorphy of 6()) in {A € C: || < 1/e}.

6.3. Radon Split of the Transpose of K € R,.

Let us look at the transpose K7 of K € R, under the Radon Split K = Q+ P with
P € R, of finite rank and |||Q|||s¢2) < €. This induces also a Radon Split of KT € K,
namely K7 = QT + PT with |||Q7|||s2) < &, owing to QT(r,7’,¢) = Q(r',r, ¢) and

thus [[1Q7 Il = I/1Qlllscz), because
o0 o0 ,
[ [ eseonardpaar = 1@l =
—oo J —00
oo oo ,
QalE= [~ [~ Qe e)fatar < ¢ <.
—o00 J —00
The transposed radial integral equation

(6.3.21) u(re’®) = v(re®) + /\/ KT(r, 7, ¢)u(r'e®)edr’ (re*® € I1,)
0
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with given v € §; and u € §, sought after, reduces in terms of the Radon Split
KT =QT+PT tou =v+ AQTu+ APTu or (I — AQT)u = v+ APTu, which equation

we operate on from the left by I + AG\T = (I — AQT)~! and thereby obtain

(6.3.22) u=[I+AG:Tv + [I + AG,T|PTu, where PT =) b,°®a, or
u=1

(6.3.23) u(z) = ([1 + ,\G,\T]v) (2)+AY (a,, u )([1 + ,\GAT]b,:) (z) (z € IL,).
v=1
Calculating the bilinear products
(au, u=[T+AGTv+ A (a, w)I+AG\T]0*) (1< p<n)

v=1

under the observation that
(au, I+ 2GaT]b.° ) = (I +2Gi|Ta, , b.° ) =kuu(A) (1 < p<n),

we readily see that the radial integral equation (6.3.22) is solvable, if and only if the

linear system of equation

/(al,[I-i-/\G,\T]v)\ (([I+/\G,\]a1,v)\

6324) [-wTi=| Y +AG\Tlw) | _ | ([ +2Gilaz, v)

k(an,[I+AG,\T]v)) \([I+/\G,\]an,v))

(2,

T2
is solvable for £ = e Cnxb)

\ =~ /
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and the solution of the transposed radial integral equation is given by

(6.3.25) u(re®) = ([ + /\G,\T]U) (re®®) + X zn: z, ([1 + /\GAT]b,,') (re®)

v=1
(re’® € I1,).

Since rank(l — Ak,) = rank([I — Ak,|T) = rank(L — Ak,T), we have that K and KT

have the same characteristic values and on account of

NI = AKT) = {AZ z,,([l + /\G,\T]bu‘) (rei®) : [I — Ak,T|Z = 6}, we have that
v=1

(6.3.26) dim(N(I = AKT)) = dim (NI - AKT)).

From linear algebra, we know that the range R([ — Ak,) has N((l - /\&,\)T)) =
N(I — Ak,T) as its annihilator and therefore, the radial integral equation (1.0.5) has
a solution, if and only if

A ([T +2Galg , b," )z, =0 for all £ € N(L— Ak,T) or

v=1

2> z(g, [I+AG)]b," ) =0, even better (g, A _ 2 [l +AG,]b," ) =0.

v=l1 v=1

Hence, f = g + AK f is solvable in $, for unknown f, if and only if
(6.3.27) (g, NIU-AKT))=0.

Further, due to the self-evident property of K77 = (KT)T = K and the fact that
transposition preserves the Radon Split, as indicated in the sentence immediately

preceding equation (6.3.21), we have that the transposed radial integral equation
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u=v+ AKTu (v € H, given, and u € $H, sought after) is solvable, if and only if

(v, N(I —X(KT)T) ) =0, which is the same as saying, if and only if
(6.3.28) ( N(I - AK) ,v) =0.

For the conditions (6.3.27) and (6.3.28) to be valid, it must be assumed that our

¢ > 0 for the Radon Split is such that €|A| < 1, in order that

Gy = Z A"Q™*! and G,\T = Z A"(QT)"*! stand for operators belonging to Re.

n=0 n=0

6.4. Summary and Conclusion.

We therefore summarize the results accumulated in this chapter in the following

four theorems.

THEOREM 6.4.1. If K € R,, then the radial integral equation f =g+ AKf (f =

g + AKT f) is solvable if and only if
(g, NU=XKT))=0 (( NI - AK) , g)=0).

THEOREM 6.4.2. IF K € R,, then K and its transpose KT have the same charac-
teristic values, which characteristic values cannot accumulate in the infinite complez

plane C; moreover,
dim(N(I - AK)) = dim(N(I - AKT)) for all X € C.
THEOREM 6.4.3. If )\ is a reqular value of K € K2, then any Radon Split

K=Q+P(P=Y 0,8b,"€ 58, IQlllwm <e)
p=1
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of K yields the Fredholm Resolvents

H,\(K) = G,\ + [6(/\)]_1 i a,w(/\)(au -+ /\G,\a,‘) Q (bu. + /\G,\Tb,,.) € Ry and

#r=l

HA(KT) = GyT + [6(N)] i (V) (b,° + AG2b,*) ® (g, + AGha,) € R

pw=1

of K and KT respectively, where the holomorphic functions §(\) and a,,(A)(1 <
i, v < n) of variable A in the open disc {\ € C: |A\| < 1/€} are defined in terms of

the matriz k, and A, as they appear in the relations (6.2.8) , (6.2.11) and (6.2.12).

THEOREM 6.4.4. Given the Radon Split K = Q+P (P = Y _,a,®b,° €
92 ® D2, |||Q|lls2) < €) of K € Ra, then the radial integral equations f = g+ AK f
and f = g + AKTf, for the regular value A of K with €|A\| < 1, have the unique

solution in terms of the Fredholm Resolvents given by

(6.4.29) £(2) = (g + AGag)(2) + ABN]™ x

3" auu(AN( g, b+ AGTb,® )(a, + AGra,)(2) and

(6.4.30) f(z) = (g + AGaTg)(2) + A[6(V)] ™! x

E o, (N a, +AGra, , g )(b° + AGATb,*)(2) for all z € T1, respectively.

=1

What about the Fredholm Resolvent of the adjoint K* of K € K, in the Hilbert
space { $ | 2 }? Due to Theorem 5.5.3 and relation (5.5.75) for Hy(K*), it is not
simple to construct a Radon Split K = Q+ P with P =3_%_, 4, ®b," € H:® 9

and |||Q|||s2) < € so that
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K* =Q*+ P*, where P* = be‘ ®a,’ € H: N,

u=1

on account of the counter-example described in the paragraph prior to Theorem 5.5.3,
namely the operator a®b € K, of rank 1 with adjoint (a®b)* € K,. The investigation

of the Radon Split so that

K*=Q +P" € K with P* =) _b,8b," € % and [[|Q"]|ls2) < 1/

pu=1

requires an extensive and very detailed study of the interplay between the Hilbert
spaces ( 92 | H2 ) and ( H2 | H2 ) and the dual system ( . , $H2 ), which is beyond

the scope of this M. Sc. thesis.
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