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Abstract

“Performance Analysis of a Multistage Multicarrier Demultiplexer/Demodulator (M-MCDD) in
the Presence of Interference and Quantization Error”

David Salim Salhany

One of several proposed multicarrier demultiplexer/demodulator (MCDD) structures is studied for
application to satellite on-board regenerative repeaters. The structure considered here is the
multistage multicarrier demultiplexer/demodulator (M-MCDD). The M-MCDD has been chosen
as the preferred structure for demultiplexing signals composed of N=2' channels due to its high
level of modularity, low computational complexity and low power consumption. Originally
proposed by Gockler in 1992, the M-MCDD is considered one of the best available MCDDs to
demultiplex composite MF-TDMA signals in the presence of additive white Gaussian noise
(AWGN) and adjacent channel interference (ACI). Adjacent channel interference (ACI) is the
result of imperfoct filtering, which can be induced by any filtering method, and insufficient channel
separation within the aggregate input signal. An AWGN analysis is carried out considering the
presence of ACI within the M-MCDD. Once the effect of ACI on the performance of the M-
MCDD is determined, the AWGN analysis will be extended by assuming that the halfband filter
coefficients are quantized in value as opposed to being real-valued. This will also introduce
quantization noise into the demultiplexed output. Due to the complexity induced by ACI and the
combination of ACI with quantization noise, we rely on analytical techniques to armrive at
approximate numerical solutions, with calculable error margins, for the performance of the M-
MCDD. One of the important applications of the numerical solutions will be to determine the filter
design for the M-MCDD.
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lowpass output channels

1¥(n,-2’T,) -Summation of halfband filter coefficient-random variable combinations for the
highpass output channels

M -Number of points taken in the Taylor Series Expansion for QO(>)

Ry -Truncation error due to using only AM-+/ terms in the Taylor Series

R -Truncation error from upper bounding each Gram-Charlier Series to 2K; terms

2K, -Number of moments used in the interference, less one

2K, -Number of moments used in the quantization error, less one

2K; -Number of terms used in the orthogonal polynomial expansion of f{7, 1, ), less
one

Performance Evaluation In The Presence of Interference and/or Quantization Noise

Py -Probability of bit error

Pys -The probability of bit error due to interference

Apernq -Expression for BER degradation factor due to quantization noise

A -Amount of degradation in performance (relative to ideal QPSK demodulation)
due to interference

Aq -Amount of degradation in performance (relative to infinite quantization) due to
quantization

A -Amount of total degradation in performance (relative to ideal QPSK
demodulation) due to interference and quantization

M., -Computational complexity of the M-MCDD



Chapter One

Introduction

Broadband satellite communications systems are currently required to handle large
amounts of multimedia traffic, therefore greater power efficiency and bandwidth utilization are
demanded [1-3]. This means that satellites will be used as regenerative repeaters with muliti-beam
antennas and baseband switching resulting in low cost cellular and personal communication service
(PCS) systems [1-3]. This function is possible by considering the on-board processing (OBP)
satellite communications system, shown in Figure 1-1.

The communication process shown in Figure 1-1 can be summarized as follows. Cellular
and PCS subscribers communicate through different channels to a single earth station within each
spotbeam. This earth station uplinks the MF-TDMA signal to the satellite. Individual carriers are
then regenerated from the MF-TDMA signal on board the satellite. In the process of Figure 1-1,
we will focus on the process occurring on the uplink, that is, involving the MF-TDMA signal {1]
[4-5]).

The regeneration of a carrier from an MF-TDMA signal is very similar to a spectral
analysis in which a wideband signal is filtered, sampled and divided into uniform subbands. At the
center of each of these subbands will be one of the desired signals. In the context of OBP, this
“spectral analyzer” is most often referred to as a Muiti-Carrier Demultiplexer/ Demodulator
(MCDD) [2]. There have been several efficient structures proposed in the past to perform the
demultiplexing process [1] [4] [6]. One of these structures is the Multistage Multicarrier
Demultiplexer/Demodulator (M-MCDD) [6-8]. The M-MCDD has several advantages over
previously designed structures, the most notably being its modularity and compactness. Design
complexity is also reduced in comparison with the Single Stage Method (SSM) which uses more
modules for the demultiplexing process. These advantages result in the M-MCDD being a
relatively simple and cost effective solution for a demultiplexer (1] [6-7].
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Figure 1-1. Overview of the On-Board Processing (OBP) Satellite Communication System [1].

The design of the M-MCDD uses digital signal processing (DSP) hardware involving finite
impulse response (FIR) filters [6] [9]. Because these digital filters are of finite length, the presence
of sidelobes in the stopband region of the filter will cause imperfect filtering of the desired channel
[2] [9]. This, in tum, will induce adjacent channel interference (ACI) to appear in the
demultiplexed output which may degrade the performance (2] [10-12]. Therefore, to reduce the
amount of ACI, it is desirable to increase the filter lengths in order to reduce the size of the



sidelobes. However, the result of increasing the filter lengths is an increase in the complexity of the
M-MCDD. Therefore, there is a tradeoff in increasing the filter lengths, that is, performance
versus complexity of the M-MCDD [9]. To date, there exists actual hardware implementations of
the M-MCDD, however, tools which can be useful in choosing design criteria for the M-MCDD,
such as filtering requirements, have not been developed {13-14]. Thus, the aim of this research is
to evaluate the effect of interference on the performance of the M-MCDD and to develop an
analytical model to determine the performance given a fixed number of filter taps. It will then be
clear how this performance and complexity evaluation can be used to choose filtering requirements
for the M-MCDD.

There are two possibilities for the evaluation of the performance of the M-MCDD and they
are simulation and analysis® [2] [13]. Most of the work to date on performance evaluation of
MCDD structures has involved simulation. This method, however, is known to be very time
consuming, especially for evaluation at low bit error rates [2]. Typically, a simulation program
can take up to a full day or even a week depending on the desired symbol error rate (SER) to be
evaluated. The development of analytical tools for performance evaluation is a valuable asset since
an analytical tool is significantly faster and more accurate than a simulation program [13]. Thus,
in this research, it will be shown that an additive white Gaussian noise (AWGN) analysis can be
carried out to evaluate the performance of the M-MCDD in the presence of ACIl. And, as stated,
an analytical model with which one may evaluate the performance of the M-MCDD will be
developed. It should be noted that we do not present any simulation results for comparison.

The main reason why analytical techniques have been avoided is the degree of difficulty in
arriving at a solution. To elaborate, imperfect filtering and nsufficient channel separation cause
ACI to appear in the demodulated output in the form of intersymbol interference (ISI) and
interchannel interference (ICI) [2] [10-11). The presence of ACI makes the probability of bit error
expression difficult to solve since the probability density function involved in the expression is
unknown and virtually impossible to find [2] [12]. Therefore, to evaluate the analytical model with
known accuracy, we use numerical approximation techniques {2]. The analysis is later extended
beyond the complexity of ACI to include quantization noise resulting from finite length halfband
filter coefficients. Consequently, the analytical model is extended to evaluate the effect of
quantization noise as well as ACI un the performance of the M-MCDD. To arrive at a numerical
solution for the analytical model, the numerical approximation techniques considered are the Gauss

* In this thesis, no numerical comparison with simulation is donc. This work is actually a continuation
of previous analysis done on the PPM and SSM [2].
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Quadrature Rule (GQR) and the Fourier Series Expansion technique of Beaulieu (FSE). Both
techniques will be used to evaluate the effect of ACI on the performance of the M-MCDD [10-12]
{15-17]. To extend the evaluation to include the effect of quantization noise on the performance,
the Gram-Charlier Series expansion is considered [14] [17-22). These techniques have been
chosen to solve the problem because, generally, they are sufficiently fast while maintaining a
desired level of precision in the numerical results [10-12] [14-22].

The objectives of the research within this thesis may be outlined as follows:

1. The first objective is to evaluate the performance of the Multistage Multicarrier
Demultiplexer/Demodulator (M-MCDD) in the presence of Additive White Gaussian Noise
(AWGN) and Adjacent Channel Interference (ACI) to develop an analytical model. This
analytical model will in tum help determine the number of filter taps required in the halfband
filters and channel detection filter for the design of the M-MCDD.

2. Secondly, to extend the AWGN analysis and analytical model in order to investigate the effect
of quantization noise an the BER performance of the M-MCDD. The quantization noise is a
result of finite word length halfband filter coefficients [28]. In the end, this analysis will help us
choose the number of quantization bits per halfband filter tap.

The body of the thesis is organized into five chapters. In chapter two, an introduction to
the concept of group demodulation and the M-MCDD structure as background information is given
(1] [4] [6-7]. As well, previously analyzed MCDDs are briefly described and it is shown why the
M-MCDD is the preferred group demodulator [1-2] [4] [6] [13]. It is also made clear what are the
issues in the research which need to be solved. In chapter three, the analysis of the M-MCDD in
the presence of Adjacent Channel Interference (ACI) is carried out [9-13]. From this analysts,
performance analysis results will be presented on two fronts. On one hand, we will look at the
numerical accuracy of the performance of the M-MCDD. For example, between the GQR
technique and Beaulieu’s FSE technique, we will vary design parameters and show how the
performance varies between both techniques. We will also decide which of the two is the preferred
method of numerical approximation based on their CPU timing requirements [15-16]. Also, the
choice of several important parameters for the numerical analysis will be made [2]. On the other
hand, we look at the numerical results as a method to evaluate the system performance in order to



effectively choose the number of filter taps for the M-MCDD [6-7] [13] [26-27]. In particular, we
will try to choose values for the halfband filter taps and channel detection filter taps based on a
desired performance level, that is, a maximum allowable BER level, and degradation relative to
ideal QPSK demodulation. This may result in several possible scenarios to choose from. To
impose further limitations on our choice, the computational complexity of the M-MCDD as a
function of the number of filter taps will be evaluated [9] [25]. Thus, based on a maximum
tolerable level of computational complexity, it is possible to restrict our choice for the filter
characteristics needed to meet design criteria. If, in the end, we still have several possibilities to
consider, the choice will ultimately come down to which scenario achieves the better design criteria,
depending on what criteria is a priority in the design. It will also be clear why a tradeoff exists
between performance and complexity [2] {6-7] [9] [13] [25]. Finally, case studies based on all of
the above design criteria will be given showing how to choose the desired number of filter taps. In
chapter four, the AWGN analysis of the M-MCDD is extended to include the effect of finite
halfband filter coefficient quantization thus quantization noise as well as ACI appear in the
demodulated output [9] [14] [17-22] [25-26] [28]. The amount of degradation in performance
compared with the corresponding infinite quantization scenario is studied. The variation in the
amount of degradation as the filter lengths vary is looked at [14] [28]. As well, to further analyze
the system performance given from the previous chapter, it will be made clear how to determine the
minimum number of quantization bits per filter tap based on maximum tolerable degradation levels
relative to infinite quantization. The case studies from the previous chapter will also be extended
to take into account these degradation levels due to using a finite number of quantization bits as
opposed to an infinite number. From this, it will be shown how to choose the number of
quantization bits per halfband filter tap. It can be done based on the maximum tolerable
degradation levels and the relative improvement in degradation as we increase the number of
quantization bits while considering the potential increase in cost in doing so. Finally, conclusions
are made in chapter five.



Chapter Two

Group Demodulation Techniques and
Structures

2.1: Background on Multicarrier Demodulation

New On-Board Processing systems on satellites require the processing of N MF-TDMA
signals composed of frequency muitiplexed channels. We require a signal processing method
capable of discriminating the individual channels and distinguishing the desired symbol on the
desired channel. We therefore consider a spectral analysis process in which a wideband signal is
fikered, sampled and divided into uniform subbands which are then frequency shifted to baseband.
This spectral analysis process is known as multicarrier or group demodulation [1-2] [4] [6].

Multicarrier demodulation consists of two distinct processes and they are demultiplexing
and demodulation [4]. The focus of the thesis will be on spectral analyzers which mainly serve to
demultiplex MF-TDMA signals. These architectures are better lknmown as Multicarrier
Demultiplexers/Demodulators (MCDD) [2] [6-7]. The operation of the MCDD is to separate the
channels of the input MF-TDMA signal, perform channel detection and to supply each channel to a
demodulator for symbol detection using synchronization techniques [1] [4] [23-24]. The typical
baseband model for a signal composed of eight channels as input to the MCDD is shown in Figure
2-1. Here, the frequency spacing between the carriers is f; , the initial sampling frequency is
f; =2N-f. , to avoid aliasing once the MF-TDMA signal is sampled, and the center frequency of
the ¥* channel is f; =(k+3) £. (2] [9].
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Figure 2-1. Baseband model for N=8 channels as input to the MCDD [1] [2].

In the demodulation process, the demodulator receives the output QPSK signals from the
MCDD [2]. The purpose of the demodulator is to take these QPSK signals and extract the
essential information from them, namely the carrier frequency, the clock frequency and the symbol
and timing offsets in order to detect the desired symbol on the desired channel. We can find this
information through coherent demodulation, which is used in satellite communications n order to
achieve the required bit error rate with an acceptable signal to noise ratio (SNR).

There are reasons why we use group demodulation to obtain the individual channels from
an MF-TDMA signal [1-2] [4]. On one hand, we may perform frequency demultiplexing to obtain
each individual channel, followed by demodulation. To achieve frequency demultiplexing, we
directly implement a bank of digital filters followed by a decimator, which is used as a down-
sampler [1] [25-26]. The frequency demultiplexer may be realized through the direct method or the
Single Stage Method (SSM) where we implement a digital filter for each channel to be
demultiplexed [1] [6]. This, however, is not the most convenient solution because depending on the
number of channels to be demultiplexed, we can have many receivers which will introduce a high
level of complexity. As a cost-effective alternative to the SSM, we can resort to a multicarrier
group receiver where demultiplexing and part of the demodulation process are carried out
simultaneously thereby reducing complexity and payload [1] [4). There are two altematives for the
design of MCDD's and they are the Polyphase/FFT Method (PPM) and the Multistage Multicarrier
Demultiplexer/Demodulator (M-MCDD) [1] [6-8]. Because the M-MCDD has some important
advantages over the SSM and PPM, the focus of the thesis will be on the M-MCDD [6-7] [13]. In
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the next section, however, the SSM and PPM will be briefly described. Apart from these two
possibilities, there are also other techniques which have been described. One of these is the Chirp
Fourier Transform (CFT) Technique [2].

2.2 : Background on Previously Analyzed MCDDs
2.2.1: The Single Stage Method (SSM)

The Single Stage Method (SSM) is the most primitive way of implementing a frequency
demultiplexer. The way in which the SSM functions is that it demuitiplexes a composite MF-
TDMA signal on a channel-by-channel basis. This method of demultiplexing has two distinct
advantages, namely, a high degree of modularity and flexibility. The SSM will be modular if £ is
the same between each channel. In this case, the demultiplexing requirements for each channel will
be the same. Only varying channel bandwidths will cause deviations between the lowpass filtering
requirements for each channel. This is because the individual channel filters need to be adjusted
according to the filter requirements of each corresponding channel. This, along with the fact that
the number of channels pemitted is unconditional, shows a high level of design flexibility [1] [6]
[8]. The SSM also has drawbacks. One major drawback of the SSM is its extremely high level of
complexity. For example, to implement an N channel demultiplexer, you need exactly N modules
to obtain each channel giving the SSM a relatively large complexity and payload. The SSM also
has a high level of computational complexity in comparison with other structures [1] [6].

The SSM used for demultiplexing an N channel MF-TDMA signal is illustrated in Figure
2-2. Here, x(nT, ) represents the sampled input MF-TDMA signal, A(nT, ) is a lowpass filter, N is
the decimation rate corresponding to the number of channels to be demultiplexed and y; (1T ) is
the demultiplexed &* channel output signal. From x(T ), we wish to obtain the output y; (n7. )
and this can be done in either of two ways. The first method is to frequency shift xnT; ) to
baseband and then extract y; (nT. ) using the corresponding lowpass filter. The second method is to
filter x(n7T, ) in the bandpass region and then frequency shift the output signal to baseband [1] [9]
[23]. We see from Figure 2-2 the first method is used. In either case, however, we also require a
decimation of the signal by a factor of 2N in order to reduce the sampling frequency and to meet
the Nyquist Criterion [1] [9] [23] [26].
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Figure 2-2. Single Stage Method (SSM) for demultiplexing k* channel of N channel signal [1-2].

The normalized frequency here is ax =27 fi [1] [9]. To shift x(nT, ) to baseband,
homodyne demultiplexing is performed by multiplying x(nT. ) by e % [2] [9]. Also, to
distinguish the real and imaginary outputs in Figure 2-2, the sinusoidal components are separated.
The k® channel output signal of the SSM, y; (n7.) , is expressed as [1]:

L
Pe(T.) = Y hGT,) - x(n2NT, —iT) - e /¥ @-1)
i=0

,where f, f. and f; have been previously given. Also, the corresponding sampling periods are
T.=1/f. and T, =1/f,, respectively. It is also assumed that the lowpass filter, h(nT. ), and the
signal x(nT, ) are of equal length, L7. , where L is the length of each channel [2] . Concerning the
computational complexity of the SSM, the operation rate per unit time is given as [6]:

W(N —4)— 2B(N +2)
(W — BYW - 2B)

Mg, =KW?* - 2-2)

, where :

K= —%- log(56,9,) (2-3)

, where &, and & denote the acceptable passband and stopband ripples, respectively of the
lowpass filter, h(nT, ). Although it is not clear now, this represents a high level of computational
complexity which can be greatly reduced in the polyphase method [1] [6]. The comparison of the
operation rates for the different MCDDs, based on published results, will be shown after all three
structures are presented [6].



2.2.2 : The Polyphase/FFT Method (PPM)

The Polyphase/FFT Method (PPM) is more interesting than the SSM because the PPM is
more modular but involves less structural complexity [1-2] [6]. It will also be seen later on that the
operation rate is about 10% of the SSM operation rate. By operation rate, we mean the number of
filtering operations done per unit time [6]. Although better than the SSM, the PPM also has slight
disadvantages. Unlike the SSM, we are constrained to the number of channels we can demultiplex.
In general, the number of channels that can be demultiplexed must be a power of two, that is N=2',
since the FFT processor is designed primarily for this number of channels [2] (6] [9]. We also
require uniform channel spacing and symmetric stacking arrangement of the channels in order for
the polyphase filters to be able to filter out the desired channel [1-2].

The PPM consists of two main parts, and they are the polyphase filters and the FFT
processor. Each channel to be demulitiplexed has its own branch containing a polyphase filter.
Thus, for N channels to be demultiplexed, the PPM consists of N polyphase filters in N branches
and one FFT processor [1-2] [6] {25]. Thus, our objective is to arrive at a single unified structure
that can demultiplex a group of N channels with far smaller complexity than the SSM. The
derivation of the PPM structure is done directly from one SSM module, depicted in Figure 2-2.
Also, the demultiplexed output of the PPM can be derived from (2-1). If we define x,(mI.) as

the p™ multiplexed input channel and 7,(m7_) as the polyphase filter for the corresponding p*
channel, then the demultiplexed output for the desired A channel of the PPM is [2]:

ye(mL) = (D" Y. W% - Wy? -{B,(mT,)*%, (mT,)} 24)

p=0

zin

, where * denotes digital convolution and W)y, = ¢’¥ . The PPM used to demultiplex an N channel

MF-TDMA signal is shown in Figure 2-3.
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Figure 2-3. Structure of the Polyphase/FFT Method (PPM) used to demultiplex N channels [2].

The operation rate of the PPM used to determine its computational complexity is expressed
as [6]:

2 1
—-log( )-ZNW
3 106,68
M, =2W- L 12
’ N wW-2B

+4log, N 2-5)

, where W is the channel spacing which is uniform in this case, B is the polyphase filter bandwidth,
N is the number of channels to be demultiplexed, §; and & is the maximum allowable passband
and stopband ripple, respectively, for p,(mI.). The computational efficiency of this method
over the SSM will be shown.

The filters, p,(mT.), are called polyphase filters since this set of filters have the same
amplitude response but different phase responses [25-26]. Although in (2-4) it has been assumed
thatthepolyphaseﬁheshawmhﬁnﬂehnpubemseﬂlk),hmmydleywmbe
implemented as finite impulse response (FIR) filters. As an L-tap FIR filter, the amplitude
response of p,(mT.) will approximate an allpass function. Assuming that the original filter,
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h(nT, ), has a linear phase response, the filter p,(m7_.) will also have a linear phase response

whose slope is proportional to p/N [2] [9] [25]. The name polyphase network thus comes from the
fact that different paths in the network have different phase responses but the same amplitude
response [25-26). In the SSM, we recall that the lowpass filter, 4(n7, ), was used to filter out the
individual channels. Because the polyphase filters were derived directly from these lowpass filters,
the function of the polyphase filter bank is to extract the individual QPSK signals in each branch.
Following the polyphase filter bank is the second part of the PPM which is the FFT processor.
Finally, the set of alternating sign changes after the FFT processor is just a technicality of the
derivation [2].

The process occurring in the PPM structure will now be summarized from left to right.
The input MF-TDMA signal, x(nT, ), with input sampling rate /; , is subject to the commutator
arm which rotates clockwise starting from x, (m7.). To achieve the initial decimation from f; to
£, 72, the arm rotates clockwise as indicated in Figure 2-3, with every sample of x(nT. ), thus
dropping every second sample [2]. Once we separate all samples of x(nT ), we see I/2N of the
total amount of samples in each branch thus the sampling rate is decimated from f. =2N- /. to f.
[2] [25]. This concept of decimation in the time domain will be elaborated in section 2.3.2. The
data in each branch is then passed through the corresponding polyphase filter which performs the
channel filtering. The QPSK signals are then passed through the FFT processor and then toggled
in sign before arriving at the output.

2.3 : The Multistage Multicarrier Demultiplexer/Demodulator

2.3.1 : Concept

We recall for the PPM that its usefulness is exploited so long as we have a uniform
channel spachg,asymmehicstackhgarmganancfﬂledlmelsmdthenumberofdlamebw
be demultiplexed, N, is a power of two [1-2] [6]. The Multistage Multicarrier Demultiplexer/
Demodulator (M-MCDD) was developed using the same assumptions as the PPM for the input
MF-TDMA signal [6-7]. Under these assumptions, the M-MCDD demultiplexes the symmetrical
MF-TDMA signal by recursively dividing its spectrum into two halves, a highpass part and a
lowpass part above and below the spectral midpoint 7, respectively, through multiple stages of
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filtering and decimation until each individual channel is obtained at the output [1] [6] [13] [25].
Because the MF-TDMA signal spectrum keeps splitting into two, we must in the end have a
number of channels, N, being a power of two [6-7]. So if the number of channels we wish to
demultiplex is N=2' , we require an / stage M-MCDD. Each stage of the M-MCDD contains
identical modules which perform the demultiplexing process. Each module will be modeled as a
linear time invariant system and will take a single input and produce two outputs in two separate
branches corresponding to the highpass and lowpass portion of the input spectrum [6-7] [25]. The
K* stage of the M-MCDD (0<k</) will contain 2*' modules and because the process through the
M-MCDD is recursive, the 2/ modules, having a total of 2*’ inputs, will produce 2* outputs. It
follows that through the final /® stage, we need exactly N/2 modules to provide N demultipiexed
channels at the output.

Using identical modules offers some advantages over other MCDDs, the most notably
being a high degree of modularity. Its modularity is attributed to the inclusion of identical
components in every module such as the halfband filters and decimators, both of which will be
described later on. Its modularity results in the M-MCDD being a relatively simple and cost-
effective solution for a demultiplexer [1] [6-7] [13]. Other advantages of this demultiplexing
method are its high level of design feasibility because of its simplicity due to modularity and its
structural compactness resulting in a reduction in payload in comparison to the other MCDDs
[6-7]. The M-MCDD uses N-/ modules to demultiplex N channels [1] [6-7]. Furthermore, the N-
1 modules of the M-MCDD are arranged in a tree-like structure using /=log,N stages [1] [6-7]
[25-26]. Also, the M-MCDD has a relatively low computational or structural complexity [6-7].
This is demonstrated in Table 2-1 in section 2.3.3. The low structural complexity of the M-
MCDD provides a low power consumption. Based on implementations of the M-MCDD, it is
known that the M-MCDD could be designed using 2um CMOS technology with a power
consumption of less than SO0mW per channel [6].

2.3.2 : Operation and Structure

The essential elements of the M-MCDD structure will be considered here [6-8). Figure
2-4 shows the overall M-MCDD structure consisting of three stages to demultiplex N=8 channels.
Also, Figures 2-5(a,b,c) show the structure of the pre-processing block, the hierarchical multistage
module used in each stage of demultiplexing and the channel detection filter, respectively.
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Figure 2-4. The overall structure for the M-MCDD for the case of N=2° =8 channels [1] [6] [13].

* The assumption here is that an extra decimation process is present after the final stage. To make the
model modular, this assumption has not been taken in the analysis and as a result, y; (n7.) is bandlimited

tor
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FIR halfband filter (Ltap)

Figure 2-9
: (see Figure 2-9)

h(nT,) :the impulse response of the FIR halfband filter having Liap # of taps
(c)

channel detection fllter (/tap)

+ n(lTs)

w(@T:) i- g

where :

vi(nT.) : the ¥* demultiplexed output from the M-MCDD with 7. = 2N-Ts =2*! .Ts =1/f; , where
/- is the channel spacing , / is the # of stages and N=2' is the total # of channels *

g() : the impulse response of the channel detection filter having /tap # of taps

n(ITy) : the final output signal of the ¥* channel from the channel detection filter

Figure 2-5(a,b,c). Inset showing the components of the : (a) pre-processing block

(b) hierarchical multistage module(M.,,)
(c) channel detection filter [1] [6] [13].

The M-MCDD consists of two blocks: pre-processing and hierarchical multistage, as
shown in Figure 2-4. The implementation of the M-MCDD requires a pre-processing stage, shown
in Figure 2-5(a), consisting of three main components: the analog anti-aliasing filter (AAF), the

* The assumption here is that an extra decimation process is present after the final stage. To make the
model modular, this assumption has not been taken in the analysis and as a result, i (n7.) is bandlimited
torn
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analog-to-digital converter (A/D) and the digital anti-aliasing fiker (DAF) [6] [13]. We use a
lowpass analog anti-aliasing filter (AAF) to meet the Nyquist Criterion. In other words, the AAF
is used to bandlimit the analog MF-TDMA input signal, x(?), before sampling to avoid aliasing [9].
The analog MF-TDMA input signal should ideally have a maximum one-sided frequency of
Jfuax = NB, where N represents the number of channels to be demultiplexed and B is the
corresponding bandwidth for each channel. Here, with a symmetric stacking arrangement and to
obtain sufficient channel separation, we have B<f.. [1-2] Thus, to bandlimit x(?) t0 fuuxx = NB, we
choose the cutoff frequency of the AAF to be fox s = NB [6-7]. Figure 2-6 illustrates the AAF
frequency response.

- f

-NB 0 NB

Figure 2-6. Frequency response of the analog anti-aliasing filter (AAF) [6-7].

Because the input to the demultiplexer , x(7), is analog, it will have to be sampled before it
can be further processed. We use an A/D converter with a sampling rate of /; thus resulting in the
digital signal x(nT,) [9]. From what is known about the characteristic of the AAF, and using the
Nyquist criterion, we can determine the minimum value of the initial sampling frequency, fs: , for
the A/D converter. It can be determined from the maximum frequency of X(f) after filtering
through the AAF [6-7] [9]. According to the Nyquist criterion, the minimum sampling rate must
be at least twice the maximum frequency of the input signal and since, after the AAF, X(/) has
fmax = NB, we determine that fs.» > 2NB [9]. From actual implementations of the M-MCDD, the
A/D conversion of the input signal is done by using a fast sample-and-hold cascaded by an slow
analog-to-digital converter (A/D). Because of the siow A/D converter, we introduce an
oversampling of /5 » by a factor of two over the Nyquist Rate, thus the initial sampling rate, fs; , is
chosen to be f5, =1/Ts; = 4NB [6] [9]. In the analysis, however, this factor has not been taken into
account. We therefore accept /;=1/T, = 2Nf. as the initial sampling frequency, assuming that the
symmetrically stacked signals occupy the entire bandwidth allocated to them, that is, B=f.. This,
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however, will not affect the analysis since there is no dependency on how many samples are taken
per symbol.

The third component of the pre-processing block is the lowpass digital anti-aliasing filter
(DAF), which has a cutoff frequency of w=r. The reason for ntroducing the DAF after sampling
the input MF-TDMA signal is to avoid aliasing of the signal once decimation occurs through the
first stage. Once x(n7,) passes through the DAF, it is no longer a real signal but it is rather a
complex signal since only the portion of the signal between 0 and 7 is retained [9] [25-26]. Note
that this bandlimiting to 7 is possible without the loss of information since the analog input MF-
TDMA signal is real thus once sampled, x/, (n7,) is symmetric about 7 [6-7] [9]. It is also a result
of the assumed symmetric stacking arrangement of the channels [1] [9]. The DAF can ideally be
shown as a brickwall filter bandlimited to 7, and this is done by Figure 2-7 [6] {9] [25]. From
Figure 2-7, we note that the frequency range has been normalized such that o=2xf, [9]. Because
the function of the DAF is similar to that of the halfband filter, that is, to filter out the lowpass
spectrum of the imput signal, for the simplicity of analysis, we can approximate the filter
characteristic of the DAF by that of a halfband filter which is used in each stage of demultiplexing
[13].

4 D()

{ |
2x x 0 x 2x

Figure 2-7. Ideal filter characteristics for the digital anti-aliasing filter (DAF) [6] [9] [25).

The hierarchical multistage block involves identical modules in every stage of
demultiplexing. The process within each module is essentially broken down into two major parts:
decimation and filtering [6-7]. Decimation is an essential component of the M-MCDD structure
for the same reasons it was essential for the SSM and the PPM structures. That is, its purpose is
to convert the composite input signal to baseband by reducing its sampling frequency [6-7] [25].
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The decimation process can be visualized in both the time and frequency domains. In the
frequency domain, the decimation process extends the bandwidth of its input spectrum by the same
factor that the input sampling rate is reduced by. For example, if we are decimating a signal whose
sampling rate is /5 so that its new sampling rate will become /5. = fs / D, its spectrum will then
be bandlimited to D -@w.. , given that it was originally bandlimited t0 W < 224D [25]). Now, we
must choose the appropriate decimation factor for each stage of the M-MCDD. After any stage of
demultiplexing, the output signal is bandlimited t0 Wu.. = 7. We require that the spectrum after
decimation occupy the entire frequency range, that is, from 0 to 27. Since we need the frequency
range to double, we conclude then that the decimation rate required in every stage of
demultiplexing is D=2 [6-7] [25].

In the time domain and in context of the M-MCDD, the decimation process may be
visualized by a division of a sampled sequence in two separate branches, similar to the process
occurring in the PPM [2] [25]. Within the M-MCDD, the decimation by a factor of two discards
exactly half of the input samples to every stage which are not part of the desired output. Therefore,
after decimation in each stage, the lowpass and highpass output sequences each contain exactly
half of the input sequence, thus both outputs have the same number of samples. At the same time,
however, the highpass and lowpass output sequences are mutually exclusive in their content. If the
lowpass sequence is chosen to be x.p/n/=x/2n] , the highpass sequence will be
xgp[n] = x[2n+1], where n=0,£I, £2, 13, .... Figure 2-8 demonstrates decimation in the time
domain [25].

Xen(n(2*VTs )) Tx‘u (n(2* Ts))
process in the
cunsem—
— i 21l 2 1 L 1 1ty »n
x(0) x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9) ..... x(0) x(2) x(4) x(6) x(8) ...
\ Xeb i ((2* Ts))
process in the
o———
& , > % > n
x(1) x(3) x($) x(7) x(9) ...

Figure 2-8. Decimation and filtering process in the time domain for module M,, [25].
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Having shown the decimation process in the modules, we will discuss the other process
occurring, that is, filtering. The filtering requirements are achieved by using halfband filters which
divide the input signal spectrum into the highpass and lowpass portions in two separate branches of
the module [6-7]. The impulse response of the FIR halfband filter is [25]:

1 ,n=0
i T
h(nT)) = f‘im"ﬂr_/_z). n=%1%+3,+£5.... 2-6)
0 n=32 +4 +6. ...

with A(nT,) being an even function. Note that 7, is the initial sampling period. The impulse and
frequency responses of the FIR halfband filter are illustrated in Figure 2-9 [27].

H(jo) b(nT.)
! FIR Halfband Filter

' eg. Lap=9

\..“-‘

i A
v AL U RL
7 5 -3 -101 3 5 7

‘:'1‘1:._7’ n

x dxdx 4x 0 fx 3x Ix x Fx ix Fx 2x
. filters out the lowpass portion of the input signal

- filters out the highpass portion of the input signal

Figure 2-9. Frequency and impulse response of the FIR halfband fiiter [27].

The decimation and filtering operations for a three stage M-MCDD are demonstrated in
Figure 2-10 [6] [25-26]. From this figure, we note the redundant process occurring through each
stage [6]. Notice that whenever the highpass portion of the spectrum is desired, the filtered
spectrum must be shifted by £ in order to prepare it for the decimation process of the following
stage. In other words, we require a shifting of the highpass spectrum such that o, =0, where it
originally would be @, = 7. After shifting, this would be the same @ as the corresponding
lowpass portion prior to shifting. Because of this shifting, the highpass and lowpass filtering
components within each module are different yet related. Their relationship is shown by Figure
2-5(b) and is also indicated by [1] [6] :

hy(nT)) =(‘1). -h, (T,) =(-1)" -h(nT,) @7
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The process that proceeds the hierarchical multistage block is the channel detection filter
stage, shown in Figure 2-5(c). This consists of a channel detection filter, g(7), which has the ¥*
channel demultiplexed output from the hierarchical muitistage block, y: (77 ), as an input. As part
of the demodulation process, this filter does a sample rate conversion to detect the £ channel
signal [2] [4] [26). The corresponding output is r; (I7, ). The analysis involving the channel
detection filter stage is elaborated upon in section 3.1.1.

As an extra note, in Figures 2-4 and 2-10, a carrier spacing of f.=f; /N is reflected at the
output [6]. However, the output sampling frequency must be f.=f; /2N in order to satisfy the
Nyquist Criterion and to ensure the output signal is real [9]. Thus, to make the process complete,
we need another decimation process with D=2 after the final stage but this has not been taken into
account in the analysis so as not to effect the modularity of the M-MCDD [6-7] [9] [25].
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indicates the channel desired
at the output of the M-MCDD

(a) Spectrum of the sampled input signal
to the DAF of the pre-processing block.

(b) Spectrum of the ocutput signal from
the DAF. Also, the subsequent input to
M;: of stage 1.

(c) Spectrum of the decimated signal
within M, .

(d) Spectrum of the lowpass output
signal from M;,; which is also the input
to M22 of stage 2.

(e) Spectrum of the highpass output
signal from M2, which is also the input
to Ma3 of stage 3.

(I) Spectrum of the highpass output
sn from M3 representing the desired
4™ channel output from the M-MCDD.

Figure 2-10(a-f). The process occurring through each M-MCDD stage until the output [6] [25-26].
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2.3.3 : Comparison of MCDDs

To compare the operation rates of the SSM, PPM and the Multistage Multicarrier
Demultiplexer/Demodulator (M-MCDD), Table 2-1 has been compiled. The operation rates for
the SSM and PPM is based on (2-2) and (2-5), respectively. That of the M-MCDD is an
approximation based on an architectural analysis. The assumptions made in Table 2-1 are a 32-
channel demultiplexer, uniform channel bandwidth of 8.4kHz and A/D converter wordlength of 12
bits [6].

Table 2-1. Comparison of the three MCDDs presented [6].

PPM uniform power of two | 2 x (number of channels) | 143,135.2/ms
M-MCDD uniform power of two power of two 88,267.2/ms

It is clear from this table, under the specified assumptions, that there is a significant
improvement in the computational or structural complexity. It is also clear from the table that each
method is useful under certain limiting conditions. For the SSM, there are few, if not any, limiting
conditions for the MF-TDMA input signal since each channel is demultiplexed independently (1]
[6]. For the PPM and M-MCDD, its usefulness is exploited so long as we have a uniform channel
spacing, a symmetric stacking arrangement of the channels and the number of channels to be
demultiplexed, N, is a power of two [1-2] [6]. Generally, the PPM structure performs the same
functions as the SSM, that is, filtering and decimation to obtain the individual channels from the
MF-TDMA input signal, however as a unified structure, the PPM is more compact than the SSM
[1-2). From what was stated of the M-MCDD, however, it is preferred because it is more modular,
feasible, compact and power efficient than both the SSM and PPM [6-7]. In support of its relative
compactness, the M-MCDD uses N-/ modules to demultiplex N channels, whereas the SSM uses
N individual circuits to achieve the same end [1] [6-7]. From Table 2-1, we see it is also preferred
due to the fact that it is more efficient computationally.
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2.4 : Statement of the Research Problem

An important consideration in the implementation of OBP satellite communication systems
is the design of group demodulators [1]. The group demodulators, or MCDDs, are used to process
MF-TDMA signals with far smaller complexity than using individual channel demultiplexers [1-2])
[4] [6-8] [25-26] We are faced with several types of MCDDs which can be used in OBP satellite
communications systems. The first of these is the SSM, which represents the individual channel
demultiplexer and has a relatively high structural complexity and payload [1] [4] [6-8] [25-26]
The other two types of MCDDs considered are the PPM and the M-MCDD [1] [6] [8] [25-26].
The M-MCDD has been chosen as preferred structure to perform group demodulation because of
its modularity, compactness, low complexity and low power consumption in comparison to the
SSM and PPM [6). The M-MCDD must be designed such that it will permit the detection of the
desired symbol on the desired channel with a minimum probability of error. That is, it must
minimize the ability of the demodulation process to detect a symbol other than the desired symbol.
When attempting to detect the desired symbol, two sources of interference which appear in the
demodulated output may cause the data to be misinterpreted. These two sources are intersymbol
interference (IST) and interchannel interference (ICI) [2] [10-12]. Interchannel mterference arises
between adjacent channels because of imperfect fiitering and insufficient channel separation in the
MCDD [2]. Conceming imperfect filtering, an issue in the design of the M-MCDD is that the
haifband filters and the channel detection filter are finite impulse response (FIR) filters as opposed
to infinite impulse response (IIR) filters [2] [6] [25-27]. The finite number of filter taps or delays
cause a non-zero stopband ripple to occur within the rejection region. As a result, interchannel
interference (ICI) or “crosstalk” will occur since we cannot have perfect filtering of the channels.
This phenomenan is illustrated in Figure 2-11 [2] [9]. It is desirable to reduce the amount of ICI
and to do so, we must increase the filter lengths [9]. Consequently, the more filter taps we use in
the design of the M-MCDD, the closer its performance will be to that of ideal QPSK demodulation
[2]. However, by increasing the number of filter taps, we will increase the structural and
computational complexity of the M-MCDD [6]. The design problem for the M-MCDD is thus a
tradeoff between reducing the degradation caused by crosstalk while keeping the complexity of the
M-MCDD at an acceptable level.
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Figure 2-11. The true response of an FIR filter resulting in crosstalk due to imperfect filtering [2].

In addition to the imperfect filtering of the channels, ICI or crosstalk is also the result of
insufficient channel separation between adjacent channels [2]. A non-ideal case of Figure 2-1 is
shown by Figure 2-12 where we see a crossover between adjacent channels. This is one reason for
requiring a symmetric stacking arrangement of the channels in the input MF-TDMA signal, that is,
to guarantee sufficient channel separation between adjacent channels [1-2].

Whereas ICI or crosstalk occurs between adjacent channels, intersymbol interference (ISI)
occurs within each individual channel. The symbols which are demodulated interact with each
other, similar to what is seen at the output of a matched filter. When ISI occurs between adjacent
symbols, detection of the desired symbol becomes difficult and obscured [23-24]. Together, ISI
and ICI comprise adjacent channel interference (ACI) and it is this phenomenon that will be
investigated further in this thesis since it significantly effects the performance of the M-MCDD and
in effect plays an important role in its design (2] [10-12].

Although the M-MCDD is not a new concept and actual structural implementations exist,
the effect of ACI on its performance has not been determined [6] [13-14]. We are faced with two
different methods capable of analyzing the effect of interference on the performance of the M-
MCDD. These two methods are analysis and simulation [2] [13]. Most of the work to date on
performance evaluation of MCDD structures has involved simulation. This method, however, is
known to be very time consuming, especially for evaluation at low bit error rates {2]. For example,
to obtain acceptable simulation measurements, we require 100 errors being recorded. Thus, a
typical simulation at a symbol error rate (SER) of 10* requires a million symbols or a full day
simulation. A SER of 10 requires one hundred times as many symbols which may take up to a
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week. Thus, the development of analytical tools for performance evaluation is a valuable asset
since an analytical tool is significantly faster and more accurate than a simulation program [2] [10-
11] [13]. Therefore, in this research, we will use an additive white Gaussian noise (AWGN)
analysis in the presence of ACI to determine the probability of bit error expression used to evaluate
the performance of the M-MCDD. I should be noted that we do not compare our analytical results
with a baseline simulation result. Our purpose is simply to develop an analytical model.

LX(O 2 .I
desired 4% channel
Y«f)

Figure 2-11a
Yo

o — .-

crossover between adjacent channels
F_Q (ideal channel bandwidth

k‘ ﬂ' ;actmlchnnnelbandwidth
-« ideal channel characteristic

(see Figure 2-1)
N —— actual channel characteristic

Figure 2-12. Input MF-TDMA signal showing insufficient channel separation causing ICI
(a). Inset showing difference between ideal and actual channel characteristic [2].
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Until present, analytical techniques have been avoided because of difficulties in arriving at
a numerical solution for the probability of bit error. These difficulties arise since the probability
density function involved in the probability of bit error expression is unknown and virtually
impossible to find. The probability density function is unknown because it involves an infinitely
large amount of interfering symbols on each channel [2] [10-12]. In order to arrive at a solution,
we rely on numerical approximation techniques to solve the probability of bit error [2]). Two
techniques used to solve the effect of interference on the performance of the M-MCDD are the
Gauss Quadrature Rule (GQR) [10-12] [15] [17] and the Fourier Series Expansion technique of
Beaulieu (FSE) [16]. Analytical tools will be developed using these two techniques. From these
tools, BER curves will be determined for the performance analysis of the M-MCDD. Both
analytical tools will then be studied based on results of different BER curves. We will vary the
design parameters and see the effect on the convergence of the BER in both cases. It will then be
concluded which of the two techniques is better suited to analyze the performance of the M-MCDD
based on the CPU timing requirements [2].

In addition to the numerical accuracy of the results, the development of analytical tools
will also enable us to evaluate the system performance of the M-MCDD to be able to wisely
determine its filtering requirements. That is, given a certain performance and degradation level a
design engineer wishes to achieve in the implementation of the M-MCDD, the resuits of the system
performance for the M-MCDD will tell what are the possible filter lengths we can choose from
[10-12].

Another issue in the design of the M-MCDD is that we cannot achieve infinite precision in
the iilter taps for the digital filters. That is to say, the coefficients for the filter taps cannot be real-
valued [9]. Therefore, we are not only faced with a choice of the number of filter taps for the M-
MCDD but we must also choose the number of quantization bits per filter tap based on a
maximum allowed degradation in performance relative to the performance of the M-MCDD using
infinite quantization or real-valued filter tap coefficients [9] [28]. In particular, the AWGN
analysis will be extended so as to include the effect of halfband filter coefficient quantization on the
performance of the M-MCDD. To evaluate the amount of degradation in performance due to
quantization noise, the analytical tool will be extended using the Gram-Charlier Series Expansion
Technique {2] [14] [17-22).

Thus, to resummarize the two objectives of the research stated in the introduction and this
section, we first wish to evaluate the performance of the M-MCDD in the presence of AWGN and
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ACI to develop an analytical model. This will help determine the number of filter taps in the
halfband filters and channel detection filter for the design of the M-MCDD. Secondly, we will
assume that the halfband filter coefficients are represented by a finite number of quantization bits.
Thus, we will extend the AWGN analysis and our analytical model so as to include the effect of
quantization noise on the performance of the M-MCDD. The extended analytical model will help
us determine the number of quantization bits per halfband filter tap. In relation to the above
objectives, to effectively choose the number of filter taps and quantization bits per halfband filter m
the design of the M-MCDD, we will use the numerical results, compiled graphically, as well as the
computational complexity. The computational complexity will be analyzed based on derived
expressions. Therefore, the requirements of a design engineer can be satisfied based on a desired
performance and degradation levels and maximum allowable computational complexity.
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Chapter Three

Effects of Adjacent Channel Interference
on Group Demodulation Performance

3.1 : AWGN Analysis of the M-MCDD Structure

3.1.1 : Input FDMA signal and Rate Conversion Stage

The input to the M-MCDD is a baseband signal consisting of N FDMA signals, as shown
in Figure 2-1, and noise :

N-1
x() =D 5,(0) +2(f) G-

&=0

Assuming that the ¥* FDMA signal is QPSK, it will have the form :

oA (’) = A‘ . eJ2tf.t . ZeJ(m,ohl . h,(f —iI; - 7k) (3_2)

where A is the carrier amplitude, f; =( k+#)-f. is the carrier frequency of the desired "
channel, a;_, is the data phase in the /* symbol interval, » and ¢ represent random timing
and phase offsets, respectively, A, (1) is the transmit filter, 7, is the symbol duration and z(y) is
an additive white Gaussian noise (AWGN) process. .

After the channels are demmitiplexed, a channel detection filter stage, as is shown in Figure
2-4 and Figure 2-5(c), is required to convert from the channel sample rate f. =//T. to the symbol
rate f; =1/T, <f. in order to detect the desired * channel. The output signal may be expressed as
[2] [25-26] :

I
() =n((B,+u)I.]1= iyk[(ﬁl -OT.)-gl(§+u)T.] 3-3)
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where g(t) is the impulse response of the channel detection filter, y,(n7.) is the ¥* channel
demultiplexed output from the M-MCDD and £ and 4 are the basepoint index and the fractional
interval, respectively, and are defined by [2] :

.| 2T,
B = m[ 7:‘ ] G4)
L/
1= I: ﬂl (3‘5)
3.1.2 : Noiseless k* output signal

The first step in analyzing the M-MCDD structure is to derive the form of the X desired
output channel. This is possible by considering the structure presented in Figure 2-4. If we
assume that we have an /-stage M-MCDD structure which will produce N=2' output signals, the
analog input signal is bandlimited to NB and the spectral characteristics of the DAF approximate
those of h(nT, ), we obtain (see Appendix 3.1.1 for derivation®) [13] :

Lo [Tl 2 D))
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\ J=0 J

where T.=2 T, is the sampling period at the output of the demultiplexer and the halfband filter
has exactly 2L+/ taps.

3.1.3 : Final Output

Combining (3-1) through (3-3) and (3-6), we arrive at an expression for the final output
from the channel detection filter stage assuming k™ desired channel and o desired symbol (see
Appendix 3.1.2 for derivation):

! For simplicity, all derivations are given in the Appendix
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where the intersymbol interference (IST) from the ¥* channel is :
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and the interchannel interference (ICI) from all other interfering channels is :
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3.1.4 : Additive White Gaussian Noise (AWGN) Analysis

Referring to (3-7), the output WGN process from the £ channel is :
f (42'(8, - -3 2'n,) T}

]
i(—l)’"‘z ...... z‘n(h(nI-Z’T,))- \ 3 k=0, keven
é= L] L 4=0

st Tm
’

|8((S+u,)T.]-e )

(42" (8, -5~ 2'n,) T,}]
J

P T S [I(hen, 2 T) }  kodd

é=d, =0

Jadeiy s,

L gl(G+u, T le

() =1 (3-10)

Since z(t) is a zero-mean Gaussian process with variance o’, z (IT, ) is also zero-
mean Gaussian with variance o,° given by (see Appendix 3.1.3 for derivation) [13] :

V¢
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&= m ™
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&=1, J=0\ n,;

3.1.5 : Probability of Bit Error

In deriving the probability of bit error, we may solely consider the in-phase component of
re(1T,) . This is due to the assumption that the data symbols a: : are assumed independent and
equiprobable. This is a fair assumption in this analysis since the QPSK system we are dealing with
is uncoded. It is also because the in-phase and quadrature components of z:(17,) are independent
and identically distributed (i.id.) so the probability of bit error is symmetric about both
components [10-11]. Thus, under the assumption that we have perfect phase synchronization on
the desired #* channel (¢h =0) and the desired symbol is the o™ , we obtain :
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a,,. u(0)
f:(lz;) = Ak . +Za‘,’ .u(aT. —11;)

f [v'(ar; ~iT;)-cos$, || G-12)
L2 _VQ(a]; _i];).sm¢'J
A )< S : T,
PR [v'(an—ir.)-siu. Fa )
e’

-k [

+v@(al, —il;)-cos g, |

where the in-phase and quadrature companents of the ICI from the ¢” channel, respectively, are:

(1

[1(rn,-2'T)-

J=0
IZZ ...... SIAIRB-H-Y2n)-T,-il, -7 ] ; k=0, keven
§=1, =, L] J

gl(&+ u)T)- cos(n(k —q) - ;n,)
L

Vl(ﬂ; —iT;)=< . , (3-13)
(_l)n,-l', . !-I(h('b ./ 7;)) .
I, =0
¥ AR B -O-22n)-T,-iT, -y )} ; kodd
§=1‘ ny L] J
gl(§+ u)1]-cos(x(k —q) - g:n,)
H(h(”/ -2’ T:))'
J=0
fz ...... YinIQ'B, -O-32'n)-T,-iT, -7 1t ; k=0, keven
&I, ny L) J
g((€+ﬂ,)1’.]-sin(x(k-q)-§n,)
ve(al, -il,) =1 . , (3-19)
(_l)n.-ﬁ .H(h(nj .24 7;)) .
J; 4=0
3 SR B, -0-F2/n) T,-iT, -y 1} ; kodd
&=l n J
gl + ﬂ.)T,]-sin(fr(k-q)—§n,)

To be able to compute (3-13) and (3-14), we need to expand the cos(:) and sin(-) terms in
those expressions, respectively. They may be expanded using simple trigonometric identities and
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simplified using the fact that the operations in the stages of the M-MCDD may be interchanged
without loss of generality since we are concerned mainly with the final numerical result [6-7] [34].
It will be seen later on how (3-15) and (3-16) contribute to the effect of aliasing through each stage

of demultiplexing. Thus, the expansion of these terms yields:

2i +

+moms(z-(k -q)-n)

cos(r-(k-gq)-).n,) =
J=0

0% [ _ sin(x-Gc—g>-n,)

2

=]

~+l—I;= [cos(z-(k—q)-n,)

2+
sin(x-(k—q)-inj)m
J=0

2+

=0

\

(1/2)—1(1+1J - )__‘ {Hh COS(II»' (k-q)-n.)-

2 l.s'm(;!'-(‘:—q)-n,,)
2i~1

—1)/2 tor (k- -n,

) (lﬂ).(—l)f'.{l L jcoste- k=)o)

(uz)-l I+1 H:'_osin(zr-(k—q)-n.)-
) I

pory H_szmcos(n"(k—q)m.)

+D* [, sin(z- (k- q)-n,)

a-n12(] 4+ 1 g Sin(7 - (k-g)-n.)-
Z( + J =Y {rr q)-n,

I, costxr-(k~q)-n.)

};Ieven

G-15)

"

[, sin(x-(k-g)-n.)

};Ieven

(3-16)

};w

The in-phase component of z,(1T, ) follows from (3-10) in a similar manner and is :
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(#2'B, -H- 2'n) T}
J
’2(—1)’"‘2 ...... 21 lLI(h(n,-ZJT;))- + ;. k=0, k even
J=0

8§+ p)T ] cox(a(k +3) 'EJI'!,)

z,(T) =5 . 3
42'B,-H-2.2'n) T} G-17)
2
ST ZJ ™" -T1(mn, -2'T))- b 3 kodd
&= L] L] I=0

8l(§ + p )T )-cos(x(k +1) - ),:"J)

From (3-12), we can denote the combined ISI from the ¥* channel and the ICI by the
nterference variable n :

{v'(ar.,-im-cow, 1

“|-veat, - i%)-sing

=4, .a,, -uad, -iT,)+Y A, - bt 3-18

n ; £ "As, ’ 5 ng vi(af, —iT})-sin¢, (3-18)
¥ {+v°(ad, ~iT,)-cosd, ||

Thus, the sufficient statistic becomes the in-phase component of 7, (17, ) and is compactly
denoted as :
rl(T) = A, -a, . -u(0)+n +z{(T,) (3-19)
If we average the bit error rate over the desired data symbol a:. .€ {-/,+1/} bearing m
mind that the p.d.f of 7 is even [10-11], we obtain the probability of bit error as (see Appendix
3.1.4 for derivation):
B = TP.',, S, (m)-dn = T{ Tf Q(i“-'%o):i) -f(n)-dr.}-f.,(n)~dn (3-20)

- {(~-T/2

The expression given in (3-20) must be evaluated numerically in order to characterize the
performance of the M-MCDD. The problem in finding its analytical solution is that the probability
density function of the interference, f;(7) , is unknown and virtually impossible to find. We thus
rely on numerical approximation techniques to evaluate the integral given in (3-20) [2].

The numerical approximation techniques considered to evaluste the performance of the M-
MCDD in the presence of ACI are the Gauss Quadrature Rule technique [10-12] [15] [17] and the
Fourier Series Expansion technique of Norman Beaulieu {16]. Ultimately, one of the two
techniques will be chosen to carry out the performance evaluation of the M-MCDD. Their
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candidacy will be based on the CPU time requirements. From both techniques, we will look at the
overall BER results relative to ideal QPSK demodulation and their relative numerical accuracy.
The Gauss Quadrature Rule technique is considered because its weights and abscissas can be
obtained easily, thus generating BER curves generally requires little CPU time [2] [10-12] [15]
[17]. On the other hand, the Fourier Series Expansion technique of Besulieu is a candidate method
because it uses the characteristic function of the interference. This, unlike the probability density
function of the interference, can be obtained much easier meaning a lower level of CPU processing
power is required to generate the BER curves (2] [16].

3.2 : The Gauss Quadrature Rule Technique

3.2.1 : Concept

The Gauss Quadrature Rule (GQR), proposed by Golub and Welsch [15], has been one
technique adopted for the numerical approximation. For purposes of completeness, a step-by-step
description of the GQR algorithm which was suggested by Benedetto ef a/. [10-12] is given below.

The approximation of P, is based on evaluating the Q(x) function at specified points and
taking a linear combination of these values. If we consider the expression in (3-20) with a fixed
timing offset and a closed interval 7 € [a,b] on which 5 is well-defined and non-zero, (3-20)
may be approximated by [2] [10]:

[ A5 1 - dn 2w, o 2425 621

=1 o

The x; are called the abscissas of the formula and the w; are called the weighis.
Together, the set {w,,x, }, is called a Gauss Quadrature Rule (GQR) corresponding to the
weight function f;,(7) , as such formulas were first studied by Gauss. The weight function f,(7)
must satisfy several conditions for the approximation of (3-17) to be valid. The function f,(n)
must be non-negative and integrable over 7 € [a,b] with [10]:

| £.(mdn>o0 G-22)

and the integrals:
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[inl" £,(men (G-23)

must be definite’ and finite.

The central problem is to find the weights and abscissas of the quadrature rule. The

algorithm of Benedetto et al. {10-12] due to Golub and Welsch [15] computes the set {w,,x,}.,

using the first 2Af+/ moments of the interference. The algorithm proceeds as follows:

L.

The unknown weight function, f;, (1), can be approximated by a set of polynomials z, (x),
2z (%), ...... that are orthonormal with respect to f,(7) . These polynomials satisfy a three-

term recursive relationship [15], that is:

nz. M=z .(mM+a, -z, (M+p,-2,(n) (3-24)
It is possible to find the coefficients a; and S for the recurrence relation by knowing only
the first 2Af+/ moments of the interference. |
First, form an (M+1) by (M+1) Hankel matrix of the moments, denoted by X :

X= {xlj}l‘:f:ll » Xy = Ml+,/—2 3-25)

" where:

&
M, =[n"-f,0p-dn (3-26)

is the ¥* moment of the interference for 0<k <2M .

Next, we perform the Cholesky decomposition, that is, X=Y'Y of the Hankel matrix to
obtain an upper triangular matrix Y of the form:

-1
P Xy "zylu LY,
Y= 4 , y= \,x,, =D N '3', Si<j) B2D
k=1 1l

Once the upper triangular matrix Y is found, the coefficients a; and S, of the three-term
recursive relationship are given by:

! Definite in this sense means positive, non-zero and well-defined in the interval 7 € [a,b] [19]
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Y Y- N

@, =2t Yow g M (3-28)
Yo Yy
Y1+ ,

B, =2rret , j=12,...M-1 (3-29)
Yy

with Yoo =] and Yo.1 =0.

5. The weights and abscissas of the quadrature rule are then found from the eigenvalues and
eigenvectors of the symmetric tridiagonal matrix Z of the form :

a B 0 . 0
B a, B, 0 ... 0
0 fra, p, 0 0

Z=|0 0 B, a, B, ...... 0 (3-30)

E ﬂ-—z a.-l [ ot}
ﬂ.—l a-

-

6. Ifwelet u; ; denote the first component of the /* orthonormalized eigenvector of Z and let
A; denote the corresponding ;* eigenvalue, then:

a2
g -uj_,-lt«{(J

t=‘1/

¥

(3-31)

o]

where M, is the mean or zeroth moment of the interference.

3.2.2 : Evaluation of the Moments of the Interference

The moments of the interference can be computed in a recursive manner using a method
due to Prabhu [29]. Consider that the interference variable 7 is the sum of K separate
interference terms,

”=Z n (3-32)

and let 7, denote the partial sum of the first n terms,
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Ya = Z 7, (3-33)

It is then possible to show that the following recursion holds [29]:
L (k
Ely:)= ZUED".-J- E(n™) (3-34)
=0

where E[] denotes expectation. The ” moment is then given by :
k (K . .
M, = Elrk]= Z(,—)E[}"K-ll' Elnk"] (3-35)
i=0

In evaluating the moments of the interference M, , we must evaluate the moments of the
individual terms of the interference. There are two sets of terms involved in the computation of the
individual moments; one set for the intersymbol interference (ISD), E/n% ], and one for the

interchannel interference (ICI) on the ¢” channel, E/n%,,J [10-11] [16]. Since both involve an

infinite number of interfering symbols, they will have to be truncated in order to obtain an
expression which is computationally tractable [2]. Let R =m; + m. be the number of ISI terms
which contribute significantly to the interference. Also, le¢ R, =my + m, + I be the
corresponding number of significantly interfering ICI terms on the ;* channel. Here, m,; and
m,; represent the number of interfering symbols below and above the & desired symbol on the
<h

j/* channel, respectively. Likewise, m, and m, are the number of interfering symbols on the
desired channel. The interference variable 77 of (3-18) is then approximated by :

v (a, —iT;)-cosé, |

a .

avm, awme | ¥ | —ve(al, —iT,)-sing
=Y 4,-a,,-ual, -iL)+Y 4, 3 oo T (3-36)

t=‘¢:-;-, q=k 1=a-m , b v (ﬂ; “IT;)'SIB¢'

\ “ | +v9(al, —iT,) cosé, |
=m+n
and the total number of interference samples is given by:
K=R+)_R, G-37)
ok

The first summation term in 7’ represents the ISI and may be denoted by 7, . Similarly,
the second term represents the ICI and may be denoted as 7, . If we examine the individual ISI
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and ICI terms of 7’ (ie. for fixed i ), we can derive the expression for the moments of the
individual interference terms. It is possible to evaluate the moments of the ISI and ICI individuaily
since the data symbols a,.; and b, ; areiid [10-11]. Thus, it can be seen straightforwardly
from (3-36) that the individual moments for the ISI are (see Appendix 3.2 for derivations):
I
Enz)=+-4Y [(a.,-wad, i)Y £r,)-dy, (3-38)
. &, -In

and the individual moments for the ICI on the ¢* channel are (see Appendix 3.2 for derivations):

N P

v/ (aT, —iT,) -cos¢é, |

a -
2 T2 Rl (al, -iT,)-sin¢
Elnf, =% A; 4 - ' . f(r,)-dy,-dé, (3-39
2,94 8 v‘.§" ;!-{2 —b v’(aT; —iTL)-sin¢' f e q 1( )

Y _+v°(d; _,'];).‘;ost’AL

.~

In both cases, since the data symbols a: ; are equiprobable and chosen from the set
{-1,+1} , it can be seen straightforwardly that the odd order moments will be zero {2] [10-11].
Since only the even order moments remain from (3-38) and (3-39), we can simplify them to obtain
for the ndividual IST moments (see Appendix 3.2 for derivation) :

r2

Eln)= A [(waT, -iT))"” f(r,)-dr, (3-40)

-T2

and for the mdividual ICI moments (see Appendix 3.2 for derivation) :

wrn (vi(ad, —iT;)-(OOS¢, +$in¢,)
20 Y=o, 4%
Ena =4y | {+v°(a7; ~iT,)-(cos¢, ~sin ¢,

0 -T2
¢ Te

)} f(r,)-dy,-d¢, (3-41)

, respectively.

3.2.3 ;: Evaluation of the Truncation Ervors from the GQR Technique

There are two types of truncations errors that occur in using this method to evaluate the
probability of bit error for the M-MCDD : one is due to using the first 2Af+/ moments and the
second is due to the truncation of the infinite series of interfering symbols in 7 [2].

It can be shown that the truncation error due to using 2M+/ moments to evaluate P, is
(10, thm. 1] {30, pp. 782, 787, 934] (see Appendix 3.3 for derivation) :
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2 _ 32
Rul<C- | o HHOEY). 16r,).a, (342)

2n 40’
, where & is a fixed value in the range of the interference variable 7 and:
eM+)-[1.6
V27 @My -0
and B=1.086435 [10]. To maximize the bound of (3-42), we must maximize ¢, and this can be
shown to occur when (see Appendix 3.3 for derivation) :

x|

€ pauax =MaX ZIA -u(aT, -iT,)|

(3-43)

3G44)

+42 E A, max Zlv (a7, -tT)l |ve(aT-1T)|

7. ina-m,
It is also useful to define the minimum value of & for purposes which will be clarified
later on. Thus, the minimum value of & can be expressed as (see Appendix 3.3 for derivation):

& paay =—min ZIA -u(al, - il )|

7t eg-m
ma

-v2 2 A, min Z]v (aT, -1T)| Ivc(aT -IT)I

7, (ag-m;,

(34S5)

The second type of truncation error is due to considering a limited number of interfering
symbols on the desired channel and on the interfering channels. This truncation error is more
difficult to classify however, it has been shown how the effect of this truncation error on the
probability of bit error can be bounded within a certain range [11]. First, we define the collection
of interfering symbols ot considered by the truncated series of (3-36) as:

[V’(aﬁ -iT)-cosé,
“| v(al, ~i;)-sing
A, -a,, -u(ad, —iT,)+ Y A, 4 ' (346)
Z.t " Z Z;: vi(ad, -i1,)-sin¢,
] k [ 24 +ve(ﬂ; _i];).cos‘q-d

such that n = n%n”. For a fixed timing phase, 7, it has been shown that the true probability of
bit error lies in the interval [11, Eq. 49] :



B47)

2\ V2, ’

S( ..f%) -“ A'u(O)—”-uz Sy (r)-dn’
o/ Uo'( _i)
o,
, where o;° is a quantity such that [11] :
2

E{exp(Aq")}Sexp(i‘i--af) , forVA (348)

It should be noted that (3-47) is valid as long as the cye pattern remains open or the peak
distortion is less than one [11]. Thus, it is possible to show that the value of o,° can be obtained
and upper bounded by (see Appendix 3.3 for derivation):

o} =max A} 3 |u(af, i)’

~<a-m,

>a+m,
. 2
max >4 ¥ ’Vlfzar;r_m.;'(w“”“m.")
i O, %) (cosd, ~sing, ) (349)

< max A, ‘<§k4(aT, -i)|’
i>a+m,

+ T A2 -max T @, ~iL,) + v (-
o=k ! a-myp,
ba*-"

If we choose the number of interfering samples, X, in (3-37) to be large enough such that
o, remains small, the upper and lower bounds on the probability of bit error stated by (3-47) will
converge. It is known that if o’/ o’ ~ 107 , the separation between the upper and lower bounds
will be to the order of 0.05dB [11].

3.3 : Beaulieu’s Fourier Series Expansion Technique
3.3.1 : Concept

In Beaulieu’s Fourier Series Expansion (FSE) Technique, the complementary distribution
function of the noise is approximated by a Fourier Series of the form [2]:
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0() = 3 cae™= +60x) (3-50)

, where &x) represents the error in using the FSE to approximate O(x) . If (3-50) is substituted
into the probability of bit error expression of (3-20), assuming that the noise has a variance of one,
that is 0o’ = 1 , we can rewrite the bit error rate expression as [31]:

(T2 [ ra
}’. = I{ I (Zc.eﬁ.(l‘.i(o)"ﬂ) +8(A‘u(0)—r’))-fU‘).dY‘}.f”(ﬂ).d”

—- \ ~T/2 ‘m=-=

+a0 T2 +0
=X { femane -f(r,)-dr.}- fe==- 1, -dn (3-51)

n=—a -ri2 —

o f T2
+f { | 4,0 - n)f (r.)dr.}-f,(n)dn

=172

—o

The characteristic function of the interference variable, 7, is denoted by @, (@) and is
defined as [31]:

&, @)= Efe") = [e=r- f,0nn (3-52)

- By substituting (3-52) into (3-51), the probability of bit error can consequently be
expressed as :

o TN
P=3c, { [er=e -f(r.)-dr.}@.,(-mw)

vo T2 ¢339
+ I{ I S(A,u(o)" 'l)f(h)dr.}'fn('l)d”

- (~-T/2
To have (3-53) become computationally tractable, we must limit the range of the
interference and truncate the infinite Fourier Series. If the ISI is finite, then 77 is bounded, that is

a<n<b[10-11]. Also, we can truncate the Fourier Series to M+ ] terms, thus we write [16]:

" o)
F, = Zc- { Ie}..‘..“» 'f(h)'dh}'¢»(""“’)
m=0 -2

s (02 @54
+I{ I &(A,u(0)- 'l)f(h)dh}'fu(’”d”

a -T2

In Beaulieu’s FSE technique, the coefficients c. in the Fourier Series representation of
Q(x) have been determined such that the error term &%) is bounded. In this method, the Fourier
Series is combined with a Chemoff Bound and is summarized by Figure 3-1 and the following
inequality [16]):
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E{P(z-2,)}>0z,)- Xz, +I) = 0Oz,)=E{P(z-z)}+a (3-55)

@ <OF~|z) (3-56)
, where z() is the noise process having zero mean and unit variance, Q() is the complementary
distribution function of the noise and P(-) is a square wave of period 7 which is used to gate the
probability density function of z(), f; (2). P() and its Fourier Series representation is given as
[16]:

1 ; IT<z<85 ) (Zm 7
P(2)={0 ; S zc(l+DT = P(z):-;-+329—m£‘-—) G-57)
% N 2=L{— :'.'u
for I=0, I, £2, 13, ...
422
™" ™" Pz2) pzzy) E{ P(z-20)}
RS A
&(Z)/

0 2L

Figure 3-1. The function, P(z), used to gate the p.d.f. of the noise, /: () [16].

By combining (3-55) through (3-57), it has been shown that the Fourier Series
approximation to Q(x) is given by [16]:

00y =4-1 3 T sin(mwx) + o(2) (3-58)
m=1 m
- oud
, where:
le=)] < 0% - 1) (3-59)
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E{P(z-2,)}>0z,) -z, +5) = Hz)=E{P(z-z)}+a (3-55)
, where :

a <% -l) (3-56)
, where z(-) is the noise process having zero mean and unit vaniance, Q() is the complementary
distribution function of the noise and P(-) is a square wave of period T which is used to gate the

probability density function of z(>), £ (2). P(J) and its Fourier Series representation is given as
[16]:

1 ; IT<z<@4L o (2mc/ T
P@)={0 ; T, (+DF = P(z)=-1-+5zi"’—(—-ﬁu G-57
N o 2 = m
2 ’ Z=T m~ add
forI=0, £, £2, 13, ...
A 2(z)
™ ; 2 Pzz) Pezz)  E{Pzz)
= \ /.
fz(z)/
______-d/
-> Z
0 Z

Figure 3-1. The function, P(z), used to gate the p.d.f. of the noise, f; (z) [16].

By combining (3-55) through (3-57), it has been shown that the Fourier Series
approximation to QO(x) is given by [16]:

-m'e’n2

O(x)=1-2 f: d .sin(me x) + &(x) (3-58)
m=] m
moded
, where:
|eCe)| < O(F - 1)) (-59)



, and the normalized frequency is @ =27 /T . Also, (3-58) will be truncated so as to include the
first M terms of the series. The advantage to this approach is that while 7, (7) is very hard to find,
the characteristic function, @, (), may be easily obtained [16].

3.3.2 : Final Bit Error Rate Expression

If we can assume with no loss of generality that the probability density functions f{%) and
f{n) are evenly distributed, we can rearrange the index of summation for the probability of bit error
from (3-54), so we have [16]:

T Mmatu(0) | _
A TS {c_ -e P, (-mw)

P,,=c°+ZI

m=1 _T/2

. -d
+C_- .e“ﬁ.l.u(o) . 0”(’”@)} f(rb) ) 4
(3-60)

-T2

+f { fea,u0 - rl)f(r.)dn} - f,(mdn

Furthermore, if f{7)) is even, @,(-ma) = P,(ma) and by substituting the coefficients for
the Fourier Series of Q(x) from (3-58) and the error upper bound of (3-59) into (3-60), we obtain
the final probability of bit error expression as [16}]:

-mi@ir2

IY4 T
Pb=%-%ze { ISin(mwAk“(o))'f(}'*)'dh}'4’,,(—"'(0)
=

m -T2

(3-61)
+R,, +8+A4

, where Ry, # and A all represent truncation errors which will be discussed in detail in the next

section. The magnitude of the error in Beaulieu’s FSE technique is thus bounded by [2]}:

lerror] < [Rad + |B| + |Al (3-62)

3.3.3 ;: Evaluation of the Truncation Errors From Beaulieu’s Method

We first define the truncation error § which represents the error associated with using the
Fourier Series approximation for Ofx) [2]. To obtain # in (3-61), we substitute (3-59) into (3-60)
and once simplified, the expression for £ is upper bounded by [16]:

T2

18 < [OG - Au© - £) @)y, (3-63)

-T2
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In (3-63), the upper bound has been maximized by appropriately choosing the maximum
value of the interference, & ;max > given by (3-44) [11].

The second truncation error, Ry , is the error associsted with using M terms in the
summation for the Fourier Series as opposed to an infinite series [2]. The resulting upper bound
for Ry, is (see Appendix 3.4 for derivation) :

V=T 2»\4)
M T _

The third and final truncation error, 4 , is due to using a finite number of interference
terms, K , defined by (3-37), in the characteristic function for the interference [2]. To derive the
form of A, we need to know the truncated characteristic function based on using a finite number of
interfering symbols and then subtract it from the ideal characteristic function of (3-52). The upper
bound on 4 is thus (see Appendix 3.4 for derivation) :

R,

(3-64)

=a-m q=k =a—-my
fza

l4s2,:--{“fff4: e -+ T A S el - o, —x‘r.)l’}
(3-65)

3 e - sin(mo 4,u(0) - &, (-ma)

m=]
= odd

Although the truncation error of (3-65), by definition, is identical to the truncation error of
(3-47) from the GQR technique, they in fact will be different in value [2]. This is because the
truncation error of (3-65) involves the characteristic function of the interference while that of
(3-47) is derived from the interference variable, n” , of (3-46) [2] [11].



3.4 : Numerical Results for the Effects of Adjacent Channel Interference
3.4.1 : Discussion of Numerical Algorithms
3.4.1.1 : The Gauss Quadrature Rule (GQR) Algorithm

The computational algorithm which uses the Gauss Quadrature Rule (GQR) technique to
evaluate the M-MCDD is summarized by Figure 3-7. In that flow diagram, we see several major
blocks which constitute the general part of the algorithm implemented in MATLAB [32]. Due to
spacial constraints, Figure 3-7 is split into two parts. Figure 3-7(a) shows the first three blocks of
the algorithm while the subsequent portion is shown by Figure 3-7(b).

The first major part is a preparation stage needed to define the coefficients and arrays
involved and to allow the user to give some input to some important parameters. At first, the user
is prompted to enter some values. The values which are user-defined are Nferms (number of terms
in the GQR), Ltap (number of non-zero filter taps per halfband filter), /tap (number of filter taps in
the channel detection filter), mL, mU (number of interfering symbols below and above the desired
symbol, respectively), / (the number of stages for the M-MCDD) and £ (the position of the desired
channel). These parameters are constrained to a certain range according to the limitations of the
program, which will be elaborated later on in the discussion. Within this stage of the program,
coefficients and arrays are also defined. Some of the important coefficients defined are f;
(normalized frequency spacing between the carriers) set at 1.5 times the symbol rate of the signals
(f.=1.5-f, ) and bera (rolloff factor for the root raised cosine response used for the transmit and
channel detection filters) set at 0.5. Although £, and befa were not varied in the analysis, from
previous work, it is expected that if we increase the channel spacing and lower the rolloff factor,
the resulting performance of the M-MCDD would improve [2]. That is, for a given filter length,
the amount of signal-to-noise ratio (SNR) needed to achieve a specified performance level would
decrease. Also, to simplify the algorithm, base_offset (the base timing offset) was set to 1/3. With
this set value, the signals are all assumed to be time synchronized with the group demodulator.
With perfect timing and a channel spacing of f; =1.5, there are only two possibilities for the timing
parameters 4 and 4 , shown in (3-4) and (3-5), respectively. These possibilities are (2] :
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B, -T.=I-T, and p,-T,=0 (3-66)
or
T,

T,
ﬂ,-7:=1-T.—7‘ and p; -1, == 3-67)

Normally, the probability of bit error is computed for each state and then an average is
taken but because in initial trials it was seen that the probability of bit error was unchanged from
one state to the other, only the latter state was used in the computation thus also saving
computation time [2]. This accounts for the base timing offset of 1/3. We also define the size of
the arrays for the filter coefficients, the moments and the magnitude of the interfering symbols.

In the next block, three sets of filter coefficients are computed. These filter coefficients are
for the transmit filter, halfband filter, and channel detection filter. The transmit filter and channel
detection filter both have a root raised cosine spectrum [2]. Ideally, the cascade of these filters
would produce a full raised cosine spectral response [23-24]. The root raised cosine filters are first
specified in the frequency domain and then an inverse fast Fourier Transform (FFT) is used to
obtain the time domain impulse response coefficients. A large inverse FFT of 8192 frequency
samples was used in order to better approximate the true impulse response [2] [32]. It is then
truncated to the desired number of filter taps or transmit filter coefficients, as the case may be. For
simplicity, the coefficients have also been normalized to have unit energy so that 0,” = & in (3-
11) [2]. In the case of the channel detection filter, a hamming window is applied to reduce the size
of the sidelobes [9] [25]. By doing this, we effectively reduce the amount of ICI. Once this
windowing is applied, it is necessary to rescale these channel detection filter coefficients to have
unit energy, as is indicated within the second block in Figure 3-7(a) [2]. Figures 3-2 and 3-3
demonstrate the generation of the channel detection filter coefficients for the cases Itap=12 and
Itap=15, respectively. Also shown in these figures is the corresponding frequency response of the
filters [9). Likewise, Figure 3-4 shows the transmit filter spectrum for the case Liap=9 and
Itap=15.
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Figure 3-2. Channel detection filter coefficients and spectrum using ltap=12. [9]
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Figure 3-3, Chamnel detection filter coefficients and spectrum using Jrap=15. [9]
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Figure 3-4. Transmit filter spectrum from the scenario Lrtap= 9 and ltap=15. [9]

The halfband filter coefficients were produced by FIR3 which is an FIR filter design
algorithm created by Burrus [32-33]. This technique was adopted because of its claim that no
complex windowing technique was needed to produce an FIR filter impulse response and also,
FIR3 was seen to be more numerically stable and closer to the true impulse response than the other
algorithms inherent in MATLAB, such as FIR] and FIR2 ' [32-33]. In this design technique,
points of the filter spectrum are specified and using an inverse FFT, the time domain samples are
obtained [32]. To produce the halfband filter response, four evenly spaced frequency domam
samples were used since they produced the time domain samples closest to the true halfband filter
impulse response. Because there are (Ltap-1)/2 filter taps below and above the center tap of each
halfband filter, respectively, the center tap is set to be (Ltap+1)/2, corresponding to the tap h(0) .
The transmit filter and channel detection filter have also been offset accordingly to be aligned with
the center tap of the halfband filters. For purposes of illustration, the values of Liap were limited
between S and 13. There were not any numerical limitations in exceeding the specified range for
Ltap. Table 3-1 shows the numerical generation of the halfband filter coefficients using FIR 3 and
compares the result to the true filter coefficients (Ltap=a0) [25] [32-33]. Figures

* By stability, we mean the number of filter taps which FIR3 can generate is much larger than the other
algorithms available [32-33]. s



3-5 and 3-6 show the coefficients graphically along with the corresponding spectrum for Lrap=5
and Ltap=13, respectively.

Table 3-1. Comparison of actual and FIR3 halfband filter coefficients, h(nT) [25] [32-33].

n || o 1 3 5 7 9 11
—w |[7.0711e-01[4.5016e-01]-1.5005e-01]9.0032¢-02|-6.4308¢-025.0018¢-02]-4.0923¢-02
= 7.6275¢-01]4.5072¢-01}-7.7151e-0 - - - -
= 7.5665e-01]4.5332¢-01/-8.9710e-02] 1.4016e-02 - - -
= 7.4870e-01|4.55940-01|-1.0517¢-01|2.7726e-02|-4.0322e-03 - -
=11 [|7.4360e-01{4.5711e-01}-1.1445e-01/3.7310e-02}-9.4372¢-031.2562¢-03 -

13 [17.3998e-0114.5767e-01}-1.2066e-01|4.4390e-02{-1.4345¢-02 3.3404¢-03|-4.1048¢-04

From Table 3-1, as Ltap increases, we see that the generated coefficients converge to the
true values. Figures 3-5 and 3-6 demonstrate this further and the spectrums show a difference of
40dB in stopband rejection between Ltap=5 and Ltap=13 therefore an assumably large difference
in adjacent channel crosstalk between the two cases [9] [26].

From the illustrations of the halfband filter and channel detection filter coefficients, we see
that the step incrementation of Ltap is two while for that for Jtap is three, respectively. For Ltap,
this incrementation is clear however, the step increase in /fap has been used here based on previous
analysis of other MCDDs and is solely intended for purposes of illustration of the numerical results
[2] [27]). It should be noted, however, that any conclusions drawn upon conceming Lfap and Itap
in the numerical results do not take into consideration this difference in incrementation.

The third major block is used to produce the intersymbol interference (ISI) and
interchannel interference (ICI) coefficients on a symbol-per-symbol basis. These interference
values are needed to produce the moments of the interference [2]. The first step is to produce the
desired symbol, x0, which is assumed to be the center symbol on the k* channel since we assume
mL=mU. Because of the decimation factor of 2/ involved in each j* stage of demultiplexing, the
computation of all the coefficients are done in three parts, one for the part corresponding to the
zeroeth coefficient of the halfband filter or the ceuter tap, another part for the positive coefficients
above the center tap and a third part for the negative coefficients below the center tap. The next
step is to compute the interference on this desired symbol. To do so, a loop with a variable based
on Nchannel (the total number of channels to be demultiplexed) is performed. If the * channel
comes up, we compute the u(’) array, corresponding to the ISI. With all other interfering channels,
we compute vI(>) and vQ(/ for the ICI. The interference coefficients are computed in a manner
similar to how the desired symbol was computed.
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Figure 3-5. Halfband filter coefficients and spectrum from FIR3 using Ltap=>5. [9) [25] [32-33]
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The subsequent steps are summarized in Figure 3-7(b). Thus, the next step computes the
maximum interference and noise adjustment factor according to (3-44) and (3-11), respectively.
As mentioned, if the filter coefficients are scaled so as to have unit energy, the noise adjustment
factor should theoretically come out to one since 0;° = o [2]. Numerically, we expect it to come
out to be very close to one.

What follows is the computation of the moments of the interference consisting of a few
main steps. We first initialize the interference array so that the zeroeth moment is equal to one and
all other moments are equal to zero. We then compute the interference of each ISI term according
to (3-40), assuming a fixed timing offset. The individual ICI terms are then calculated according
to (3-41), also assuming a fixed timing offset. In initial computations, the phase offset was
assumed to be random to see what effect it would have on the performance. As a result, the phase
offset was left as a random component. To integrate over the random phase, a NI/=200 point
integral was used with the altemate extended Simpson’s Rule [2]. The total moments are then
computed by collecting the moments of the individual symbols in Prabhu’s Technique, specified in
section 3.2.2 [29]. This method produces Nrerms non-zero moments, not including the zeroeth
moment equal to one, but a 2*Nterms+! length array is retuned containing also the zero-valued
odd order moments. The weights, abscissas and the coefficient C of (3-43) used to compute the
truncation error due to using only Nrerms number of points in the GQR, are all computed from the
GQR subroutine, described in section 3.2.1. The GQR subroutine has the 2*Nterms+1 array of
the moments as an input parameter [15]. Once the weights and abscissas are obtained, the bit error
rate (BER) and truncation error, R,, , from (3-21) and (3-42), respectively, are easily obtained.
Here, it is assumed that only BERs above 107 are significant and if the BER for a particular SNR
falls below 10™° | the computation will not proceed. Although the error associated with the
truncated series of (3-36) has not been computed. However, the total number of interfering
symbols, K, in (3-37) has been selected to be large enough such that this error, shown in (3-47), is
considered negligible [11]. As it will be discussed in section 3.4.2.2, K is chosen to be 167
interfering symbols over eight channels. That implies approximately twenty-one symbols per
channel.
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3.4.1.2 : Limitations of the GQR Algorithm

The GQR algorithm, although useful and effective in computing the performance of the M-
MCDD, has its own limitations. For the number of interfering symbols, its optimum range is
between ten and fifty. Any value below ten produced BERs of value zero and anything above fifty
caused an insignificant change in the BER, that is accurate to four decimal places. Also, the
number of points in the GQR, Nterms, could not exceed twenty-six or else the program would not
execute. This was because the symmetric tridiagonal matrix Z of (3-30) could not produce the
eigenvalues and eigenvectors to give the weights and abscissas, respectively. However, it was
found that exceeding eighteen terms was unnecessary, even for low BERs, since any value of
Nterms exceeding 18 would cause an underflow in the double precision arithmetic {2].

3.4.1.3 ;: The Beaulieu Fourier Series Expansion (FSE) Technique

For reasons which will be clarified later, the algorithm based on Beaulieu’s Fourier Series
Expansion (FSE) technique was developed primarily to verify the results of the GQR technique,
that is, to verify the probability of bit error and to see if a comparable CPU time requirement and
accuracy may be observed [16]. Therefore, in this program, the amount of input parameters to be
specified by the user is limited to only Ltap and Itap for the number of non-zero filter taps for the
halfband filters and number of filter taps for the channel detection filter, respectively. Of the
possible values to choose from, there are a total of seven scenarios which the user may look at and
compare to the previous results of the GQR algorithm. The general flow diagram of the technique
is shown in Figure 3-8, making use of the first three blocks from Figure 3-7(a) of the GQR
algorithm. The Beaulieu FSE algorithm is quite similar to the GQR algorithm, the only major
exception being the computation of the BER and truncation error. This part of the Beaulieu FSE
algorithm will now be elaborated [2] [16].

To compute the BER and truncation errors using this method, we run through a loop for
each SNR value and another inner loop for each value of M (the number of terms in the Fourier
Series of Q(-)), which is a function of the SNR. Because an integration must be performed for the
characteristic function of the interference, for each iteration, this algorithm is expected to take
much more computation time to achieve the same end as the GQR algorithm [2]. This increased
requirement in CPU time will be seen later on.



RSy A 3 £ ‘(‘;%\ '
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Figure 3-7(a). Threc initial stages common to both the GQR and Beaulieu FSE algorithms.
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For each iteration, we first compute the three truncation errors which are CFTruncError
(the error due to using a finite number of interfering symbols in the characteristic function),
FourierApproxError (the error due to using the Fourier Series as an approximation to Q(-)) and
SeriesTruncError (the error due to using a finite number of terms, M, in the Fourier Series of
Q()). Actually, CFTruncError is computed near the end of the loop but at the beginning of this
block, a parameter needed to compute this error is calculated. To compute FourierApproxError ,
we must specify the value of 7, that is, the period of the square wave gating function [16].
Likewise, for SeriesTruncError , we must specify the value of M. The criterion used to choose the
values of M and T are further discussed in section 3.4.2.2 on numerical accuracy.

Once M and T are caiculated, we go through each iteration of the Fourier Series up to A to
obtain the final BER and truncation error. Through each loop, we compute the characteristic
function to update P, and CFTruncError , according to (3-61) and (3-65), respectively. Since the
computation of the characteristic function is in the frequency domain while for the moments it is in
the time domain, the computation of the characteristic function of the interference is similar to that
of the corresponding moments [31]. Therefore, we compute the characteristic function for the
individual ISI terms and then for the individual ICI terms. Just as was the case with the moments,
we integrate over the random phase using the alternate extended Simpson’s Rule [2]. In this
calculation, however, instead of using Prabhu’s Method as was done for the moments, we multiply
each individual characteristic function to obtain the final characteristic function. This can be done
because of the assumption of the data symbols to be identically and independently distributed
(i.i.d) [10-11]. Once we complete all M iterations of the Fourier Series, we arrive at the final
CFTruncError value and that of the BER for a specific SNR. This process continues for each
SNR value and the calculation is complete once all the truncation errors and BERs are computed
for every value of SNR, that is for 0dB < SNR < 15dB, or the BER becomes insignificantly small.
In this algorithm, BER<10" is considered insignificantly small.
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3.4.2 : Performance Results of the M-MCDD
3.4.2.1 : Computation and Organization of Results

Each expression containing the terms cas(m(k-q)-in,)&d sir(x-(k—q)-in,) requiring
numerical computation will have to be put in a calculable fo:t;n Substituting (3-15):1d (3-16) into
each of these expressions containing the cos(-) and sin(-) terms, respectively, will give a final set of
equations which are computable by various software packages. As mentioned in section 3.4.1.1,
the software package chosen to carry out the numerical computation was MATLAB. That is,
MATLAB was used to code the GQR technique. With MATLAB, the algorithm for the GQR
could be made more compact by creating subroutines as user-defined functions. There are also
many ‘“canned” routines inherent to MATLAB which can be used to make the code of the
algorithm more compact [32]. One clear disadvantage of MATLAB, however, is its lack of speed
when executing FOR loops. It would be possible to reduce CPU time requirements of the
algorithm by using MEX files which would contain these FOR loops computed in C language [32].
Such a possibility, however, was not investigated.

Theperfémnnceanalysisnumﬁcalmuhswﬂlbepmmtedontwofrans. In section
3.4.2.2, we will present the numerical accuracy of these results. To show the numerical accuracy
of the performance results, we shall look at the results from the GQR technique and the Beaulieu
FSE in terms of relative accuracy of the BER, and relevant truncation errors. We will also
compare the CPU execution time. Also, the accuracy of the results will be investigated by varying
several important parameters of the algorithms, namely, mL, mU (the number of interfering
symbols), k (desired channel position) and M (number of terms). From the discussion, it will be
shown how the value of these parameters were set in order to determine the system performance of
the M-MCDD.

In section 3.4.2.3, we present the results of the system performance based on the GQR
technique using associated values of the parameters determined in section 3.4.2.2. This section will
show how the values of Ltap and Jtap can be chosen based on a desired BER performance and
degradation in SNR relative to ideal QPSK demodulation one would like to achieve while keeping
the computational complexity at an acceptable level. System performance results will be presented
using BER curves, isometric contours and computational complexity. These results will be used to
specify the design criteria of the M-MCDD through illustrative examples.
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3.4.2.2 : Numerical Accuracy

Tables 3-2 and 3-3 show the results from two scenarios for both the GQR and Beaulieu
FSE Technique for Ltap=9 , Itap=3 and Ltap=5 , Itap=9, respectively. The remaining parameters
were kept at the following values: mL=mU=10, 1=3, k=4, f, =1.5 and beta=0.5. The
corresponding BER curves resulting from both algorithms are shown in Figures 3-9 and 3-10
depicting the information shown in both tables, respectively.

From the BER curves of Figures 3-9 and 3-10, we see that the results from the GQR and
Beaulieu FSE technique are very close. We can also make observations as to the numerical results
weobmhushgbahtedmiqusbamshmhdd:nmrpmposeknammmctwomof
results. From previous literature, it is expected that a lower relative truncation error can be
achieved with the Beaulieu Technique than with the GQR technique but from these numerical
results, this is not the case [15-16]. Thecurvesﬁ’antheGQRwereproducedushguptoeiglnem
terms, depending on the SNR, since the BER curve would not change substantially by using more
terms whereas for the Beaulieu Technique, many more terms were required. Using more terms
would directly affect the CPU time requirements for the algorithms therefore the CPU time
required for the Beaulieu Technique is much higher than that required for the GQR.

From Tables 3-2 and 3-3, only one truncation error for each technique is reported. In the
case of the GQR, only the truncation error Ry, , for using a limited number of points in the GQR, is
repoﬂedbeausethedherﬂmaﬁmemr,ﬁatisforushgaﬁmﬂednumberofhtaferhg
symbols, is expected to be very small from previous work thus insignificant in value. The
truncation error R), in the GQR can also be regarded as the error for only using 2Af+-/ moments to
evaluate P, [2]. As for the Beaulieu FSE Technique, only the truncation error due to using a finite
number of interfering symbols in the characteristic function of the interference, 4, is reported since
the remaining two truncation errors, namely the error due to using the Fourier Series to
approximate Q(-) and the error due to using A terms in the Fourier Series expansion for Q(), were
calculated through the Beaulieu FSE algorithm and determined not to contribute to the overall error
magnitude since they were insignificantly small in value. Another factor contributing to the overall
error in both algorithms is the error due to using the alternate extended Simpson’s Rule for the
numerical integration over the random phase [2]. This error was not taken into account in the
computation of the truncation errors.



Table 3-2. Comparison of results from GQR and Beaulieu FSE for the case Ltap=9 and Itap=3.

R (CPU time — 8:58.5167) Beaulicu FSE (CPU time — 11:43:38.0833 )
Eb/NodB)|| M Py Ry (Mgeau ,T) Py A

0 3 9.3448¢-02 | 5.3211e-022 (13,20) 8.1384e-02 | 2.1177e-002
1 4 7.259%¢-02 | 2.0666e-021 (17,22 6.3403e-02 | 2.2889¢-002
2 4 5.4562¢-02 | 3.8995e-021 (21,29) 4.8251e-02 | 2.3803e-002
3 4 3.9634e-02 | 2.9655¢-021 (27,28) 3.5966e-02 | 2.3819e-002
4 S 2.7849¢-02 | 7.1836e-022 (33,31 2.6372e-02 | 2.2986e-002
5 5 1.8979¢-02 | 4.1217e-023 (41,35) 1.9133e-02 | 2.1477¢-002
6 6 1.2607e-02 | 3.8579¢-025 (51,39 1.3830e-02 | 1.9539¢-002
7 6 8.2210e-03 | 3.6836e-028 (63,43) 1.0036e-02 | 1.7429¢-002
8 6 5.3087e-03 | '1.9868e-032 (79,49) 7.3654e-03 | 1.5355e-002
9 7 3.4280e-03 | 2.8763e-038 (97,54) 5.5019¢-03 | 1.3458¢-002
10 9 2.2349e-03 | 4.3804e-046 || (123,61) | 4.2046e-03 | 1.1807e-002
11 10 1.4836e-03 | 2.1579¢-056 || (155,68) | 3.2982e¢-03 | 1.0421e-002
12 12 1.0095¢-03 | 7.7910e-070 || (197,77) | 2.6602¢-03 | 9.2850e-003
13 17 7.0716e-04 | 3.1806e-087 || (245,86) | 2.2061e-03 | 8.3699¢-003
14 17 5.1110e-04 | 1.3960e-109 }| (307,96) | 1.8791e-03 | 7.6402e-003
15 18 3.8206e-04 | 3.4060e-138 || (387,108) | 1.6405e-03 | 7.0619e-003

BER

Eb/MNo (dB)

Figure 3-9. Comparison of GQR and Beaulieu FSE algorithm for the case Ltap=9 and ltap=3.
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Table 3-3. Comparison of results from GQR and Beaulieu FSE for the case Liap=5 and ltap=9.
Beaulieu FSE (CPU time — 11:25:16.2333 )

GQR (CPU time — 13:26.3333)

Eb/No(dB)|]| M Py Ry (Mgeau,T) Py A
0 3 8.3385e-02 2.1067e-027 (13,20) 7.2091e-02 | 1.1005e-002
1 4 6.1466e-02 8.2147¢-026 17,22) 5.3069¢-02 1.1737e-002
2 4 4.2841e-02 2.8279¢-024 (21,25) 3.73550-02 1.1872¢-002
3 4 2.7968¢-02 8.3216e-023 (27,28) 2.5071e-02 1.1331e-002
4 5 1.6930e-02 | 2.0099¢-021 (33,31 1.6026e-02 1.0166e-002
5 5 9.4060e-03 3.7860e-020 41,35) 9.7683e-03 8.5632¢-003
6 6 4.7507e-03 5.2147e-019 (51,39) 5.7000e-03 | 6.7829¢-003
7 6 2.1645e-03 4.8434e-018 (63,43) 3.2072e-03 | 5.0778e-003
8 6 8.8558e-04 | 2.7392e-017 (79,49) 1.7580e-03 | 3.6236e-003
9 7 3.2547e-04 8.2961e-017 (97,54) 9.5082e-04 | 2.4934e-003
10 9 1.0815e-04 1.1446e-016 | (123,61) 5.1462e-04 1.6770e-003
11 10 3.2949¢-05 5.8691e-017 (155,68) 2.8274e-04 1.1184¢-003
12 12 9.3997¢-06 8.655%-018 (197,77 1.5977e-04 | 7.4961e-004
13 17 2.5809e-06 2.6592e-019 (245.86) 9.3851e-05 | 5.1101e-004
14 17 7.0391e-07 1.1336e-021 (307,96) 5.7759-05 3.5757e-004
15 18 1.9696e-07 | 4.0218e-025 |} (387,108) | 3.7411e-05 | 2.5842e-004

BER

EbNo (dB)

Figure 3-10. Comparison of GQR and Beaulieu FSE algorithm for the case Ltap=5 and Itap=9.

62




If we look at the truncation errors of each algorithm, we can make several observations
from Tables 3-2 and 3-3. We find that the truncation error associated with the GQR slowly
approaches zero for low BERs while the error associated with the Beaulieu technique does not go
below 10° . Thus, in the case of the Beaulieu FSE technique, for BERs which are below 10, this
would serve to indicate a lack of numerical accuracy. Unfortunately, at these points we wish a
high level of numerical accuracy since errors can occur quite easily for low BERs. It should be
noted that it would be possible to achieve a slightly better accuracy if more interfering symbols
were used in the characteristic function, but this was not done. As mentioned, mL and mU were
fixed at ten interfering symbols each for both techniques. In the case of the GQR, we can see a
high level of accuracy relative to the BER values since the truncation error is much smaller than
the corresponding BER.

Generally, we see that the number of GQR terms required to achieve the desired level of
accuracy for the GQR technique is small while the number of terms required in the Fourier Series
for the Beaulieu FSE technique is quite large. In the case of Beaulieu’s FSE technique, there are
two parameters that need to be determined for each SNR to set the number of terms in the Fourier
Series. The first value is 7, that is, the period of the square wave gating function [16]. The value
of 7 was chosen such that [2]:

1A <5 - 4,u0) +§m)<Q(8- ,%' (3-68)

, referring to (3-63) with a fixed timing offset. The value of Mzey may then be chosen as a
function of the value of T. Thus, the value of Mg,y was chosen such that [2]:

2z-T ZnM) E,
<A T <o 47 (3-69)

o

Ry

, referring to (3-64). The reason why the bound in (3-68) was set at O@-JE, /N,) to choose the
value of T was that from previous work done, it was observed that by choosing 7" too small, the
Fourier Series would not converge. Thus, to keep the value of 7 small while allowing the series to
converge, the conservative approach of (3-68) is used [2]. In general, it is better to use a larger T
value and use more terms in the Series rather than using smaller parameters to try to save time but
then we would have to rerun the lengthy algorithm because the program would fail. Although this
criteria for choosing T allows the Series to converge, it is not optimum, that is, it may be possible
to find a smaller T value and a smaller number of terms, Mpes , such that the Series would
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converge, but such values of 7 and Mgy were not sought after [2]. The values of Mpgy and T
are also used in calculating the truncation errors SeriesTruncError and FourierApproxError ,
respectively, as mentioned in section 3.4.1.3.

In the case of the GQR, although the truncation error is very small, it is possible to make
this error smaller by increasing the number of terms in the GQR however, the probability of bit
error will eventually not change if Nrerms is ncreased beyond a certain level. Thus, to determine a
sufficient number of terms in the GQR, it is more useful to look at the convergence of the BER for
a particular SNR value instead of attempting to minimize the corresponding truncation efrror.
Therefore, in order to achieve the level of precision required for the probability of bit error, the
number of GQR points had to be chosen for each signal-to-noise (SNR) as shown in Table 3-4 and
Figure 3-11 for the case Ltap=9 and ltap=12. The number of GQR points, A , was chosen by
determining when P, was precise to four decimal places [2]). In the results from the GQR that
follow, it may be noticed that the number of terms used for each SNR correspond for each case of
Ltap and Itap chosen. Please note that the above method for determining M was used for each case
and the fact that they all correspond is simply coincidence.



Table 3-4. Variation in BER for Liap=9 and Itap=12 to determine the choice for M.

Note that bolded BERs indiateconvggmcefora particular SNR value.
P; Pb Py Pb Pb Pb
Nterms || SNR=10dB | SNR=11B | SNR=12B | SNR=13B | SNR=14B | SNR=15B
3 2.7178e-05 | 4.2416e-06 | 4.3879¢-07 | 2.6535¢-08 | 8.0492¢-10 | 1.0176e-11
4 2.0821e-05 | 5.3519¢-06 | 7.1143e-07 | 6.2917e-08 | 3.1998¢-09 | 7.873%¢-11
S 3.0062e-05 | 5.5923e-06 | 8.2848¢-07 | 9.2179¢-08 | 6.8088¢-09 | 2.8116e-10
6 3.0049e-05 | 5.6052¢-06 | 8.5134¢-07 | 1.0460e-07 | 9.769%4¢-09 | 5.9674e-10
7 3.0047e-05 | 5.6024¢-06 | 8.5175¢-07 | 1.0704e-07 | 1.1136e-08 | 8.8456e-10
8 3.0047e-05 | 5.6022¢-06 | 8.5128¢-07 | 1.0701e-07 | 1.1440e-08 | 1.0402¢-09
9 3.0047¢-05 | 5.6023e-06 | 8.5128¢-07 | 1.0693e-07 | 1.1435¢-08 | 1.0836e-09
10 3.0047¢-05 | 5.6023¢-06 | 8.5129¢-07 | 1.0693e-07 | 1.1419¢-08 | 1.1419¢-08
11 3.0047¢-05 | 5.6023¢-06 | 85129¢-07 | 1.0693¢-07 | 1.1419¢-08 | 1.0813e-09
12 3.0047e-05 | 5.6023¢-06 | 8.5129¢-07 | 1.0693¢-07 | 1.1420e-08 | 1.0809e-09
13 3.0047e-05 | 5.6023¢-06 | 8.5129¢-07 | 1.0693¢-07 | 1.1420e-08 | 1.0811e-09
14 3.0047¢-05 | 5.6023¢-06 | 8.5129¢-07 | 1.0693¢-07 | 1.1420e-08 | 1.0812e-09
15 3.0047e-05 | 5.6023¢-06 | 8.5129¢-07 | 1.0693¢-07 | 1.1420e-08 | 1.0811e-09
16 3.0047¢-05 | 5.6023¢-06 | 8.5129¢-07 | 1.0693e-07 | 1.1420e-08 | 1.0811e-09
17 3.0047¢-05 | 5.6023¢-06 | 8.5129¢-07 | 1.0693¢-07 | 1.1420¢-08 | 1.0811e-09
18 3.0047¢-05 | 5.6023¢-06 | 8.5129¢-07 | 1.0693¢-07 | 1.1420e-08 | 1.0811e-09
19 3.0047¢-05 | 5.6023¢-06 | 8.5129¢-07 | 1.0693¢-07 | 1.1420e-08 | 1.0811¢-09
20 3.0047e-05 | 5.6023¢-06 | 8.5129¢-07 | 1.0693e-07 | 1.1420e-08 | 1.0811e-09
10™ T r . T — v
SNR = 10d8B 3
' -
10° SNA = 11dB
— ¥ :
104 b . SNR=12dB )
. [ SNR = 13dB
107 F -l
& /
@ SNR = 14dB
10t —— 1
/ SNR=15d8B ]
10 3 —F—
10" 3 * is the point 1
q where convergence 3
| is achieved
'o j 1 1 ! i ¥
2 4 6 10 12 14 18 18 20
Ntsrms

Figure 3-11. Variation in BER for Ltap=9 and Itap=12 to determine the choice for M.
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From the results, the advantage which the GQR has over the Beaulieu FSE technique is its
lower CPU time requirements. Because of this, we choose the GQR as our preferred method to
evaluate the performance of the M-MCDD. While the GQR technique generally requires minutes
to compute a BER curve, the Beaulieu FSE technique requires many hours to do the same job. The
main reason for the large difference in CPU time between both techniques, other than the large
difference in the number of terms required by each algorithm, is that in the GQR technique, all the
numerical integrations are performed with the computation of the moments of the interference [2]
[15]. The moments are computed fairly quickly since use is made of Prabhu’s Technique and once
these moments are obtained, the weights and abscissas are found and the BER curve is generated
[29]. For the Beaulieu FSE technique, however, a numerical integration must be performed to
determine the characteristic function of the interference for each term in the Fourier Series and at
each SNR value [2] [16]. Thus, the total number of integrations that are needed for each scenario
is the sum of all the My values from each table. With the amount of time required for each
numerical integration being ten to fifteen seconds on average, it is no wonder that the emtire
Beaulieu algorithm requires ten to eleven hours of CPU time to compute!

Based on the results of the GQR algorithm using up to Nrerms=18 GQR points, we will
look at the effect of varying the parameters mL, mU and k on the numerical accuracy. For the
results which follow and for the system performance, it is assumed we have an /=3 stage M-
MCDD used to demultiplex an eight channel MF-TDMA signal (Nchannels=8). As for the value
of the desired channel, £, it was observed that varying £ between one and eight had no effect on the
performance of the M-MCDD. Although this may seem unusual, it is likely due to the initial
assumptions made on the composite input signal, that is, the fact that the frequency spacing
between the carriers is uniform. For the results which follow, it is assumed that the desired channel
is in the middle of the eight channel MF-TDMA signal, that is, k=4.

The values of mL and mU affected the BER in a direct manner. That is to say, if more
interfering symbols were introduced into the demodulated output, the BER would increase but
increasing mL and mU beyond fifty would cause an insignificant change in the BER. Likewise, if
fewer interfering symbols were used, the BER would be lower, however the numerical results
would be less accurate. The minimum values of mL and mU was ten because any values less than
ten caused numerical instability in the BER and truncation error. Tables 3-5 and 3-6 show the
effect of varying mL and mU on the BER and accuracy, respectively. Particularly, mL and mU are
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varied between ten and fifty for the scenario Ltap=9 and Jtap=9. Also, Figure 3-12 graphically
depicts the increase in the BER from mL=mU=10 to mL=mU=50 according to what is shown
numerically in Table 3-5.

Table 3-5. Comparison of BERs using different mL and mU for the case Ltap=9 and Itap=9.

mL=mU=10 mL=mU=20 mL=mU=30 mL=mU=50
CPU time — 17:31.3 | CPU time — 34:01.9 | CPU time — 54:32.1 | CPU time — 88:56.7
Eb/No (dB) Pg Py Pb Pb

0 8.2199e-02 8.4742¢-02 8.6132¢-02 8.6248e-02
1 6.0164e-02 6.2959¢-02 6.4491e-02 6.4620e-02
2 4.1493e-02 4.4394e-02 4.5994e-02 4.6129e-02
3 2.6666e-02 2.9480e-02 3.1050e-02 3.1183e-02
4 1.5772e-02 1.8293e-02 1.9727e-02 1.9849e-02
5 8.4710e-03 1.0532e-02 1.1742e-02 1.1846e-02
6 4.0742e-03 5.5941e-03 6.5317e-03 6.6137e-03
7 1.7315e-03 2.7334e-03 3.3975e-03 3.4570e-03
8 6.4279e-04 1.2297e-03 1.6601e-03 1.6999¢-03
9 2.0685e-04 5.1245e-04 7.6899¢-04 7.9377e-04
10 §5.7597e-05 2.0009e-04 3.4238e-04 3.5688e-04
11 1.3961e-05 7.4481e-05 1.4913e-04 1.5724e-04
12 2.9918e-06 2.7017e-05 6.4835e-05 6.9255e-05
13 5.8146e-07 9.7891e-06 2.8724e-05 3.1119e-05
14 1.0608e-07 3.6329e-06 1.3216e-05 1.4532e-05
15 1.8919¢-08 1.4126e-06 6.4149¢-06 7.1603e-06
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Table 3-6. Comparison of Ry, using different mL and mU for the case Liap=9 and ltap=9.

mL=mU=10 mL=mU=20 mL=mU=30 mL=mU=50

CPU time — 17:31.3 ] CPU time — 34:01.9| CPU time — 54:32.1 | CPU time — 88:56.7

Eb/No (dB) Ru R Rnm R

0 2.4383e-029 1.4466e-027 4.0645e-029 1.3541e-033
1 1.1561e-027 1.7432e-026 7.7046e-029 1.6558¢-034
2 5.0909¢-026 1.3683e-025 5.8930e-029 4.0181e-036
3 2.0423e-024 6.2615e-025 1.4378e-029 1.2728e-038
4 7.2871e-023 1.4524e-024 8.3253e-031 3.1072¢-042
5 2.2431e-021 1.4323e-024 7.8822e-033 3.0098e-047
6 5.7341e-020 4.8128e-025 7.6354e-036 5.0170e-054
7 1.1600e-018 4.1690e-026 4.1937¢-040 5.0264e-063
8 1.7481e-017 6.5542e-028 6.2117e-046 8.0517e-075
9 1.8182e-016 1.2021e-030 9.7362e-054 3.8934¢-090
10 1.1857e-015 1.4750e-034 4.9731e-064 6.9682¢-110
11 4.2967e-015 6.0096e-040 1.8793e-077 3.2869¢-135
12 7.4299¢-015 3.3669e-047 8.1257e-095 1.4681e-167
13 5.0624e-015 8.5494e-057 3.8338e-117 9.4283e-209
14 1.0678e-015 2.4328e-069 1.0244e-145 4.4698e-261

15 5.1478e-017 1.335%9e-085 3.7411e-182 st sunderflow®***

BER

1

10

EbMNo (dB)

15

Figure 3-12. Comparison of BERs using different mL and mU for the case Ltap=9 and Itap=9.
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We notice from these tables and Figure 3-12 that when the number of interfering symbols
increases, the BER also increases however, at the same time, the associated truncation error is
lower especially for larger SNR values. We also notice from these results that although we obtain
a better accuracy by using a larger number of interfering symbols, as mL and mU approach fifty,
the BER experiences a smaller increase. From Figure 3-12, we easily see that there is little
difference in BER between the case mL=mU=30 and mL=mU=50. If we were to surpass fifty, the
BER would not change significantly. This slower increase in the BER as mL and mU increase is
due to the decaying values of the interfering symbols as they diverge further from the desired
symbol. To show this decay in value, Figure 3-13 shows the change in the profile of the ISI as mL
and mU increase from thirty to fifty. Likewise, Figures 3-14 and 3-15 show a similar change in
profile of the ICI in its in-phase and quadrature components, respectively, for an adjacent channel.

ampiitude of desired symbol : uO = 1.1916e-006
x 10 x10* x10*
7t : 7+ 1 rds .
es} 1 6Sf 8.5 .
af 8t 8l :
é"s.s . 1 55.5 - r§5.5 . 1
T T T
El k-1 X
st sf st .
ast . 4st - 4 S} .
4+ 4+ 4+ .
3%, uo 50 3% ) 50 3% w0 50
imerlering symbol on the desired channel (4th channei)

Figure 3-13. Decay of the ISI coefficients as mL and mU increase from 30 to 50.
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0.7t 1 0.7 1 0.7

°f ) 50 °%0 0 50 0% ) 50
imarfaring symbol on an adjacent channel (St channel)

Figure 3-14. Decay of the in-phase ICI coefficients as mL and mU increase from 30 to 50.
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2210 22210
2- - 2- -
18t - 18} :

| vQ{-iTb) |
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imarering symbol on an adjacart channet (Sth channel)

Figure 3-15. Decay of the quadrature ICI coefficients as mL and mU increase from 30 to 50.
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From Figures 3-13 to 3-15, we see the large decay in value of the interfering symbols as
mL and mU approach fifty. In fact, if in Figures 3-13 to 3-15, we were to increase mL and mU
beyond fifty, we would see an even larger decay in the extreme interfering symbols which in effect
would not contribute significantly to the overall interference. Since the value of the interference
has a direct effect on the outcome of the BER curve, it can be seen why there is little difference
between the case mL=mU=30 and mL=mU=50 in Figure 3-12 and why any value beyond fifty
would give the same result. However, using a larger number of interfering symbols significantly
increases the CPU time requirements since there are more iterations to go through in the algorithm
to compute the total interference. Therefore, in choosing a proper number of interfering symbols to
analyze the system performance of the M-MCDD, we must cousider the trade-off that exists
between the CPU time and the numerical accuracy, based on P, and R, , when the number of
interfering symbols is increased. Thus, for the results that follow, the case of mL=mU=10 was
chosen since the results for both the BER and Ry, for the scenarios investigated were reasonably
accurate compared to higher mL and mU values while the CPU time required to compute such
cases was fairly short. Despite the fact that in the case of Ltap=9 and ltap=9 it was seen that
mL=mU=30 was a wiser choice based on BER, R, accuracy and CPU time requirements, for a

majority of the remaining scenarios mL=mU=10 was seen to be better for the same reasons.

3.4.2.3 : System Performance

The types of filter taps associated with the M-MCDD which will be used in its design are
the non-zero filter taps per halfband filter (Liap) and the channel detection filter taps (lrap). We
will use various design tools to evaluate the system performance of the M-MCDD. First, we will
look at BER curves showing the results of the performance analysis of the M-MCDD as Lap and
Itap vary, respectively, and how the CPU timing requirements of the GQR algorithm is dependent
upon the number of filter taps selected. We will then look at the theoretical computational
complexity of the M-MCDD as a function of Liap and Itap. The computational complexity is
based on analytical results of the ISI and ICI and those theoretical results will be used to verify the
actual CPU time requirements of the GQR algorithm. We will also look at a set of isometric
contours which will show the proper combinations of Ltap and Itap to achieve a specific
performance and various degradation levels. The desired BER performance levels which will be
looked at are 10, 10 , and 10. Using these design tools, illustrative examples will be given to
show how we can select the proper number of filter taps to achieve the desired performance and
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degradation levels, relative to an ideal demodulation of QPSK signals, while maintaining an
acceptable level of complexity.

Before discussing how these numerical results may be used to select the number of filter
taps, a comment on the overall system performance will be made. Compared to the performance of
previously analyzed structures, the M-MCDD exhibits more degraded performance [2] [6-7]. The
M-MCDD is at a slight disadvantage in comparison to the SSM and PPM because the performance
of the M-MCDD is affected by aliasing [2] [6]. Referring to the process shown by Figure 2-10, as
the multicarrier signal is processed through each stage, the decimation process not only affects the
portion of the spectrum in the interval [0, 7] but the part of the spectrum contaming the error
terms within /7 27] is folded over on top of the desired spectrum [6] [25-26]. This aliasing effect
is present in every stage of demultiplexing. As a result, the interference is literally added on top of
itself through each stage therefore, this will tend to degrade the performance of the M-MCDD [6].
This aliasing effect is shown qualitatively by Figure 3-16, which demonstrates the process shown
by Figure 2-10 also taking into consideration the aliasing error caused by imperfect filtering,
channel separation and decimation [6] [26]. This aliasing effect may manifest itself quantitatively
in the analysis of the M-MCDD through (3-15) and (3-16) showing the expansion of the cos(-) and
sin(-) terms of the ICI expressed in (3-13) and (3-14), respectively. (3-15) and (3-16) contribute
numerous summation terms to the ICI, cumulatively through each stage. This cumulative
summation was not present in either the SSM nor the PPM. Thus, it may be responsible for the
higher BERs seen for the M-MCDD compared to the SSM and PPM [2] [6].
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Figure 3-16(a-c). The effects of aliasing due to imperfect filtering and decimation [6] [26].

NumeﬁcalmultsofﬂneBERandmmcationerrorfromtbeGQRalgorithm for varying
Ltap and Itap values are shown in Tables 3-7 and 3-8, respectively. Table 3-7 shows the variation
in performance as Lfap increases from eleven to thirteen while keeping /tap constant at nine.
Similarly, Table 3-8 shows the variation in performance as Jtap increases from nine to twelve while
keeping Ltap constant at nine. In all four cases, the number of tenms in the GQR is shown for each
value of SNR from 0dB to 15dB. Also, the truncation error is observed to be relatively unchanged
inbodntablesalﬂ;wghasﬁghtdecmseinmmutimeﬂormbeobserved,dq)mdingmthe
SNR, as Ltap and Itap increase for those particular cases. Between Tables 3-7 and 3-8, the only
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exception is for the higher SNRs, where we notice an increase in truncation error. This goes
against our expectations, that is, for larger filter lengths, we expect a performance closer to ideal
QPSK with truncation errors of smaller magnitude. This is especially true for very low BERs, that
is generally, below 10°, however in these cases, we observe the opposite occurring. BER curves
are given in Figures 3-17 and 3-18 showing a summary of the numerical results which are partially
shown in Tables 3-7 and 3-8, respectively. Figure 3-17 shows the variation in performance as a
function of Ltap keeping Itap=9. Likewise, Figure 3-18 shows the variation in performance as a
function of Jrap keeping Ltap=9. Each figure shows five different BER curves corresponding to
different filter tap values.

Table 3-7. Variation in performance of the M-MCDD as Liap increases keeping ltap=9.

Ltap=11 and Itap=9 Ltap=13 and Itap=9

Eb/No (dB)|] M Py Rum Py Rwm
0 3 8.1610e-02 1.3034e-030 8.1120e-02 5.9466e-032
1 4 5.9519¢-02 6.7748e-029 5.8981e-02 3.2579¢-030
2 4 4.0827e-02 3.3487e-027 4.0272e-02 1.7208e-028
3 4 2.6026e-02 1.5539e-025 2.5496e-02 8.6804e-027
4 5 1.5209¢-02 6.6590e-024 1.4745e-02 4.1321e-025
5 5 8.0239¢-03 2.5816e-022 7.6597e-03 1.8286e-023
6 6 3.7594e-03 8.8227e-021 3.5074e-03 7.3823e-022
7 6 1.5381e-03 2.5725e-019 1.3876e-03 2.6548¢-020
8 6 5.4090e-04 6.1422e-018 4.6479e-04 8.2541e-019
9 7 1.6134e-04 1.1402e-016 1.2936e-04 2.1365e-017
10 9 4.0490e-05 1.5421e-015 2.9472e-05 4.3911e-016
11 10 8.5430e-06 1.3997e-014 5.4499e-06 6.7498e-015
12 12 1.5296e-06 7.6902¢-014 8.1904e-07 7.1981e-014
13 17 2.3729e-07 2.2456e-013 1.0141e-07 4.8444e-013
14 17 3.2954¢-08 2.9592e-013 1.0635e-08 1.8263e-012
15 18 4.2764e-09 1.4321e-013 9.8479¢-10 3.3197e-012
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Table 3-8. Variation in performance of the M-MCDD as Jrap increases keeping Ltap=9.

Ltap=9 and Itap=9

Ltap=9 and Itap=12

Eb/No (dB) M Pb RM P. RM
0 3 8.2199¢-02 2.4383e-029 8.1149e-02 4.6402e-032
1 4 6.0164e-02 1.1561e-027 5.9013e-02 2.5386e-030
2 4 4.1493¢-02 5.0909¢-026 4.0305¢-02 1.3385e-028
3 4 2.6666e-02 2.0423e-024 2.5527e-02 6.7369e-027
4 5 1.5772¢-02 7.2871e-023 1.4772¢-02 3.1980e-025
5 5 8.4710e-03 2.2431e-021 7.6809¢-03 1.4102e-023
6 6 4.0742e-03 5.7341e-020 3.5220e-03 5.6681e-022
7 6 1.7315e-03 " 1.1600e-018 1.3962¢-03 2.0270e-020
8 6 6.427%e-04 1.7481e-017 4.6905¢-04 6.2581e-019
9 7 2.0685¢-04 1.8182e-016 1.3110e-04 1.6056e-017
10 9 5.7597e-05 1.1857e-015 3.0047¢-05 3.2633e-016
11 10 1.3961e-05 4.2967e-015 5.6023e-06 4.9463e-015
12 12 2.9918e-06 7.4299¢-015 8.5129e-07 5.1825e-014
13 17 5.8146e-07 5.0624e-015 1.0693e-07 3.4111e-013
14 17 1.0608e-07 1.0678e-015 1.1420e-08 1.2505e-012
15 18 1.8919¢-08 5.1478e-017 1.0811e-09 2.1943e-012

BER

EbNo (dB)

10

Figure 3-17. Performance of the M-MCDD as a function of Ltap for Irap=9.
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Figure 3-18. Performance of the M-MCDD as a function of Irap for Ltap=39.

The trade-off seen in the selection of the number of filter taps from Figures 3-17 and 3-18
is that if we wish the performance of the M-MCDD to converge to that of ideal QPSK
demodulation, we must increase the filter complexity. That is to say, if we require more accurate
results, we need to increase filter complexity which consequently increases the overall
computational complexity of the entire M-MCDD. The computational complexity will be shown
numerically later in this section. In terms of the execution of the GQR algorithm, an increased
filter complexity means more CPU time and power to process. This will also be shown later on.

As for the selection of Ltap and Itap, the first observation from Figures 3-17 and 3-18 is
that although for most of the BER curves the improvement is gradual, as the number of filter taps
increase, we see a clear disadvantage in using /tap=3 channel detection filter taps. Clearly, the
degradation in performance associated with Jtap=3 is too great and consequently, one should avoid
using this small 2 number of filter taps when designing the channel detection filter. A more general
observation from Figures 3-17 and 3-18 is that an increase in Itap resulted in a more significant
improvement in performance compared to an increase in Liap. To demonstrate this, Table 3-9 has
been compiled based on the data given in Tables 3-7 and 3-8. It shows the relative improvement in
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performance in dB as Ltap and Itap increase, respectively. To obtain the specific P, points in
Table 3-9, linear interpolation was used in Tables 3-7 and 3-8 [34].

Table 3-9. Improvement in performance in dB associated with increasing Lzap and ltap [34].

Ltap=11 - Ltap=13 Lrap=9
Itap=9 Itap=9 — ltap=12
P, =102 0.10 0.23
P, = 10" 0.20 042
P, = 10" 0.25 0.54
P, = 10 0.44 0.86
P, =107 0.68 1.00

From Table 3-9, we observe that for a fixed performance level, an increase in Itap results
in almost double the improvement in dB as does the equivalent increase in Lrap. One way to
explain this observation in terms of the computational algorithm is that the summation through Itap
is an outer loop in the algorithms while the summation through Ltap is an inner loop, referring to
equations (3-8) and (3-9), for example. To further support this observation, we see a larger
improvement in performance when increasing between Itap=3 and Itap=15 for Ltap=9 than by
increasing between Ltap=5 and Liap=13 for Itap=9, referring to Figures 3-18 and 3-17,
respectively. Thus, we see a clear advantage if we increase Itap over Liap, that is, a larger
improvement in performance of the M-MCDD.

There is, however, a disadvantage associated with increasing /fap. From Table 3-10 and
Figure 3-19, we can compare the increase in CPU time requirements for the GQR algorithm as
Ltap and Itap increase individually. Clearly, there is a larger increase in CPU time when Itap is
increased than when Liap is increased. Therefore, the disadvantage of increasing Jtap over Ltap is
a more substantial increase in CPU time requirements for the GQR algorithm to execute. The
reason for this occurrence, again, is due to the summation of /rap being an outer loop while that of
Ltap is an inner loop. We would therefore expect more iterations or computations if /tap were to
increase as opposed to Lrap. This phenomenon brings us back to the trade-off that was previously
stated, that is, performance versus complexity. Although this applies for an increase of Liap
and/or Itap, it is more accentuated as /fap increases.



Table 3-10. CPU time requirements for various Liap and Itap values.

Ltap Itap CPU time (min : sec) Ltap Itap CPU time (min : sec)
5 9 13 :26.3333 9 3 08 : 58.5167
7 9 14:17.1167 9 6 13:05.1833
9 9 17 : 31.2667 9 9 17 : 31.2667
i1 9 22 :34.2000 9 12 25:20.3333
13 9 25:24.2500 9 15 29 : 00.4000

m l. 1] T L 1 4 T T
25
20
CPU time
(minutes)
15— e K R e
----- T - — - increasing Ltap
—— increasing Itap
10 : : T 1
6 ; A L
Ltap 6 7 9 11 13
Itap 3 6 9 12 6

Figure 3-19. Comparison of CPU time for the GQR algorithm as Ltap and Itap vary.

This increase in CPU time can be verified by looking at the theoretical computational
complexity. The computational complexity, which is based on the number of operations, that is the
total number of additions and multiplications, required to compute the ISI and ICI, referring to
(3-8), (3-13) and (3-14), respectively [6]. In general, we can analyze the complexity to determine
the total number of operations required to compute the interference. So given the fact that
mL=mU=10 and !=3 were fixed for the performance of the M-MCDD, the complexity can be
determined as a function of Liap and Itap. Thus, the total number of operations required to
compute the interference has been determined to be (see Appendix A3.5 for more detail) :

M, =(36,435- Itap - Liap) - (46,845 Itap) — 314 (-70)
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The complexity of the M-MCDD of (3-70), based on different Liap and Itap values, is
shown in Table 3-11 and summarized graphically in Figure 3-20. If we compare the computational
complexity of Figure 3-20 to the CPU time requirements of Figure 3-19, we see that they are very
close in shape. This similarity between both sets of curves should serve to verify both results. The
computational complexity of the M-MCDD, based on the computation of the interference, is indeed
comparable to the CPU timing requirements for the GQR algorithm since a majority of the
computation time of the GQR algorithm goes towards computing the ISI and ICI. Using these
values for the computational complexity, we can determine how much complexity we are willing to
endure for the possible values of Lrap and Itap given in the isometric contours.

Table 3-11. Computational complexity for various Ltap and Itap values.

Ltap Itap | number of operations (M,,) || Ltap Itap | number of operations (M., )
s 9 1,217,656 9 3 842,896
7 9 1,873,486 9 6 1,686,106
9 9 2,529,316 9 9 2,529,316
11 9 3,185,146 9 12 3,372,526
13 9 3,840,976 9 15 4,215,736
x 10°

45 T T T T T T T

35
3 :
number
of 2.5 :
operations :
(Mop) :
* 2 ;
(,’ - — - increasing Ltap
15 : —— increasing itap
B o PRSP PRS0 SURIOOTRUNE SUUTRURING UUUHRUB S i
Lo'ss : 7 ' 9 ; T:l : 13
lttggs 6 9 12 16

Figure 3-20. Computational complexity of the interference as a function of Ltap and ltap.
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We will now use the isometric BER x SNR contours to interpret the results from Tables
3-7 and 3-8 and Figures 3-17 and 3-18, respectively, in order to effectively choose the values of
Ltap and Itap based on desired performance and degradation levels. It should be noted that the
isometric contours summarize data from many more scenarios than what is shown by Tables 3-7
and 3-8 and Figures 3-17 and 3-18. Figures 3-21 through 3-23 show three examples of isometric
contours for different BER performance levels. Table 3-12 shows the same data but in numerical
form.

Table 3-12. Values of Ltap and Itap to achieve performance and degradation level.

Ltap Jtap)|| 1 dB degradation 1.5 dB degradation 2 dB degradation
P,=10" (119 5,12) (7,15) L) (1,9) 5,12) G.,6)
P, = 10" (13,9) (11,12) (9,15) (13,6) 9,9) (7.12) 9.6) (5,9)
P,=10° (13,12) (11,15) (11,9 ,12) (11,6) (7.9
: E 2 : : “
Y SRS A feeeomeceeans SN AUV S Pb=10  constant
B . . . M — 1 dB
----- 16dB
; : : : : x %% 2dB
12f----- proneneneene Frorene AR : -
g
r € 8 0 12 18 8

Figure 3-21. Isometric contour for P,=10" and various degradation levels.
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Figure 3-23. Isometric contour for P,=10 and various degradation levels.
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The manner in which these isometric contours were compiled was basically the same as
how the data for Table 3-9 was obtained, that is, by observing performance analysis results for
many different scenarios. The difference is that in these figures, the amount of degradation in dB
was measured by observation from the BER curves, such as those shown by Figures 3-17 and
3-18, whereas the amount of improvement in dB, shown in Table 3-9, was determin<d by linear
interpolation of the numerical resuits of Tables 3-7 and 3-8 [34). Another important difference is
that Table 3-9 shows the relative improvement in performance between two specific M-MCDD
scenarios while the isometric contours show the amount of degradation relative to ideal QPSK
demodulation.

The isometric contours will tell us what choices of Ltap and Irap, as a pair of values, are
available to satisfy the design criteria. What remains to be seen is how one can use these isometric
contours along with the other results to specifically choose Ltap and Itap among several possible
pairs. If we wish to suffer less degradation in performance compared to ideal QPSK demodulation,
it is better to keep Irap larger than Liap. On the other band, keeping /tap larger than Liap will
cause a larger computational complexity of the M-MCDD. The trade-off here in choosing Ltap
and Jtap is performance and/or degradation improvement versus complexity. The difference in
increasing Itap over Liap is that an increase in /tap has a greater effect on the performance and
complexity as opposed to an increase in Liap. Thus, this trade-off is more profound with an
increase in Itap.

Some illustrative examples will now be provided on how to choose Lrap and Irap taking
into consideration this trade-off that exists.

Example 3-1.

Our objective is to achieve the best possible performance level. We specify a degradation
level of 1.5dB (A = 1.5dB) and we are willing to endure a complexity in the range of 2-10° to
2.5-10° operations (2-10° < M,, < 2.5-10°). Table 3-13 below summarizes the result of a search
through Table 3-12 for the possible combinations. Also, (3-70) has been used to calculate the
complexity.

Table 3-13. Possible Ltap and ltap combinations to satisfy conditions in Example 3-1.

I ____(Lwap,ltap) M,
P,=10* (11,6) 2,123,326
P,=10" (1,12) 2,498,086
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So, if we wish to achieve the best performance level, clearly our choice is (7,12).
However, from Table 3-13, we see that (11,6) gives us a lower complexity but at a worse
performance level. This shows the trade-off that exists between performance and complexity.

Example 3-2.

In the next example, our objective is to achieve the lowest possible degradation level We
specify a performance level of 10”° (P, = 10" ) and we are willing to endure a complexity in the
range of 1.5-10° to 2.5-10° operations (1.5-10° < M,, < 2.5-10°). Table 3-14 summarizes the
possibilities.

Table 3-14. Possible Lrap and Itap combinations to satisfy conditions in Example 3-2.

1l (Ltap Itap) M,
A=15dB (7,12 2,498,086
A=2.0dB (9,6) 1,686,106

From Table 3-14, (7,12) will give us the lowest level of degradation however, (9,6) gives
us a much lower complexity level at a higher degradation level. This shows the trade-off between

degradation and complexity.

Example 3-3.

This final example will be somewhat more involved. Here, we will try to achieve the best
possible performance and/or degradation levels with the lowest possible complexity. We are
looking for performance levels between 10 and 10° (10 < P, < 10°) and degradation levels
between 1dB and 1.5dB (1dB <A <1.5dB). We also specify a maximum complexity level of 4-10°
operations (M, <4-10%), which is quite a loose requirement.

First, we try to see if we can satisfy the best performance and degradation levels according
to the specifications. Table 3-15 shows the complexity levels for the combinations satisfying a
performance level of P,=10* and a degradation level of A=1dB.
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Table 3-15. Lrap and Itap combinations to satisfy best performance and degradation levels.

1 (Ltap ltap) M.,
P,=10°,A=1.0dB (13,12) 5,121,406
P,=10%,A=1.0dB (11,15) 5,308,786

From Table 3-15, we see that the complexities are larger than M,, =4-10° operations so
this does not satisfy our design criteria. We therefore have to look at the best possible performance
or degradation levels, that is, P, = 10° or A=1.0dB, respectively. Table 3-16 summarizes the
possible scenarios that meet our specifications.

Table 3-16. Ltap and Itap combinations to satisfy best performance or degradation levels.

Bolded values indicate the criteria of the problem satisfied
B (Ltap ltap) M,
P,=10",A=1.0dB (13,9) 3,840,976
P,=10¢,A=15dB (11,9) 3,185,146
(P, =10¢,A=15dB 9,12) 3,372,526

From Table 3-16, we see that (13,9) satisfies the lowest degradation level and (11,9) best
satisfies P, = 10° as the desired performance level due to its lower complexity. However, if our
objective is to achieve the lowest complexity of the two, we choose the (11,9) scenario which, at
the same time, achieves the best possible performance level.

3.4.2.4 : Summary of the Numerical Results

The numerical results for the performance analysis was presented on two fronts. On one
hand, we presented the numerical accuracy of the results. The accuracy was shown by obsprving
the results of the GQR technique and those of the Beaulieu FSE technique [15-16]. The BER and
truncation errors from both techniques were observed. The BER curves were very close in value.
Looking at the truncation errors, that of the GQR becams exponentially lower in value with SNR
while that of the Beaulieu FSE remained at a high level. We preferred the GQR technique over the
Beaulieu FSE technique based on its relative speed of execution. It was found that the GQR
technique took significantly less CPU time than the Beaulieu FSE.

Following this, we presented the system performance of the M-MCDD based on the BER
curves generated by varying Liap and Itap. As a first point, it was noted that the M-MCDD was
at a slight disadvantage to the SSM and PPM because, unlike these previously analyzed structures,
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the performance of the M-MCDD was affected by aliasing. Therefore, in comparison to the SSM
and PPM, the performance of the M-MCDD is more degraded [2] [6-7] [25-26]. Although the
analysisdidnotdirealytakeintoacmmmeeﬁ'ectofaliasing,asshowninl’igure3-l6,wesaw
from (3-15) and (3-16) numerous summation terms resulting from the stages of demultiplexing.
'l'hsesummatimtermswerenotpresmtinpmviwsmalytialworkmtheSSMandPPM[l] [2).
Thus,mndiscussimincludedhowﬂlishfaetmayhavebemwheretheaﬁashgaﬂ'eaedthc
analysis however, this cannot be proven.
Alsowithinthissectim,itwasshownhawthenumberofﬁltertapscaﬂdbechosmbased
on desired performance and degradation levels, relative to ideal QPSK demodulation, and
maximum allowable computational complexity. To facilitate the choice of Liap and Itap using this
cﬁteﬁa,d:emfonmﬁonintheBERcuweswasmﬂodmdsmmaﬁudusingBERxSNR
isometric contours. ThesegraphsshWthepropercboicesforLtapandItaptoachievethedesired
performance and degradation levels. Also,atableandgnphof!heeompmaticmlcouplexityof
the GQR algorithm was shown. It was based on the total number of additions and multiplications
needed to compute the ISI and ICIL. From the results, we saw a trade-off in selecting the values of
Ltap and Itap. To improve the performance relative to ideal QPSK demodulation, we are better off
increasing Itap since we can see a larger improvement in performance by increasing /tap compared
to a corresponding increase in Lrap. If we do decide to increase Jrap over Liap, however, we
wmldbeintroducmgcomplexitymmesymatafasterrae. The trade-off between
performance and complexity actually exists for varying Itap as well as Ltap values however,
mmmglzapm.gmreﬁeampe:fommcemdmlemym&smmminL:ap.
To summarize, the value of ltap and Ltap should be chosen so as to satisfy the performance and/or
degradation requirements, with respect to ideal QPSK demodulation, while not exceeding the
maximum allowable computational complexity.
Pnaiuﬂyspeaking,todlooseﬂ:evaluesofuapmdlmp,wem refer to the
medwdologyweusedintheexamplespresauedatthemdofﬂxisseaim. A designer should
spedfywhaismedesigxcruﬁadsmddmis,masep«fommce,degadaﬁmkwk
and/or maximum complexity levels. At the same time, the objective or intent of the design should
be made clear. Thismnsdntdnmmustbecnccriteﬁaﬂmisapﬁoritymuﬁsfyingmrd:e
others. Forexanple,adesimetﬂwuldbeclwinspecifyingtheobjecﬁve,beitthebestpossible
WWMLWMMMMWWW. Specifying one design
objeaiwwiﬂusuuymsuhmmeormompossﬂ:kmﬁuthamsaﬁsfyﬂlesm
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howewr,mepossibﬂhismmomﬁmhedifmomthmmedsignobjeaiwisspedﬁed. Thus,
basedonthedsignintmtmdtheworsecasecriteﬁaspeciﬁed,wemayrefettodnenumeﬁaldﬂa
and choose the possibilities for the design. Our final choice would ultimately be based on which
scenario achieves the better design criteria.



Chapter Four
Effects of Filter Coefficient Quantization

4.1 : Model of Halfband Filter With Quantized Coefficients

To introduce the model used for the quantized halfband filter coefficients, we first look at
the discrete Fourier Transform (DFT) for the halfband filter. It is [9]:

L
H(jo) = Y h(nT,)-e™= @1)

n=-L

where k(nT, ) has been defined as the halfband filter impulse response [27]. Now suppose that the
coefficients of h(nT, ) are quantized, resulting in a new set of coefficients 4(n7,) defined by:
h(nT,) =h(nT,) + K (nT)) “-2)
The DFT for the quantized system is [9): |

A(jw)= iﬁ()ﬂ} )-e = =H(jw)+H(jw) @4-3)

n=-L

h(nT,) non—rendam

where:

BGwy= 3 (L) e

n=-L

R (aT,) nan—random “44)

Here, the quantity /(nT,) represents the sequence of quantization error random variables
with zero mean and variance A° //2, where A represents the quantization step size. Its
corresponding system function is represented by the DFT H(jw), defined by (4-4), assuming of
course that A (nT,) is non-random [9] [31]. The set h(n7,) is sampled from the quantization error
random process 5 (f) whose model is assumed to have the following properties:

1. The quantization error sequence #(nT,) is a sampled from a stationary random process, 4 (f) .
2. h(nT,) is uncorrelated with the unquantized halfband filter sequence, h(n7,) .
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3. The random variables of the quantization error process are uncorrelated. The quantization
error is thus a white-noise process.
4. The probability distribution of the quantization error process is uniform over the range of
quantization error. Thus, the quantization error is also a stationary process [31).
Theﬁequmcyrespmseofthequanﬁndsystanislheaﬂymlaedtoﬂnequanﬁnﬁm
errors in the impulse response. Thus,mequanﬁudsystunmyberqmamdbyﬁgtm4-2,
which showsthemquantizedsystuninpanﬂelwithd:equmtiuﬁmmsym 9] [14}). ¥
B-bits of quantization are used to represent the halfband filter, we will need (B+1) length words
(including the sign bit). In that case, 7 (n7,) can be represented by a uniform distribution with
zero mean and variance 22 7/12, as illustrated by Figure 4-1 [9] {31].

N S(FGT))

[ f(FT))- 4 =1 2, E{R(T)} =0
{Ren)) = 5

S 2

281 - | 281 '7("7}‘- fimd

Figure 4-1. Distribution of the quantization noise process assuming B-bits of quantization [9] [31].
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4.2 : Analysis of Quantization for the M-MCDD Structure

4.2.1 : Output Signal from Channel Detection Filter

In this situation, the halfband filter coefficients are quantized thus replaced by the system
represented by Figure 4-2 while the input MF-TDMA signal is kept the same as is indicated by
(3-1) and (3-2). So, after the channels are demultiplexed, the output from the channel detection
filtering stage assuming quantized halfband filter coefficients, is (2] [14] [25-26):

1,
ARUT) =718, + u)T1= Y 5,18, - HT.)- el§+ 4 )T]

&1,

4-5)

where g(1) is the impulse respanse of the channel detection filter and §; and u; are the basepoint
index and the fractional interval, defined by (3-4) and (3-5), respectively [2]. The output of the
channel detection filter stage is quantized since its input, 7, (n7,), which is the ¥ channel output
signal from the M-MCDD, is also quantized due to filtering through the quantized halfband filters
[91.

The first step in analyzing the M-MCDD structure in the presence of quantization noise is
to derive the form of the A* desired output channel. If we follow the same procedure as was done
to derive (3-6) further assuming that the spectral characteristics of the DAF approximate those of
and the quantized halfband filter coefficient processes at every stage,
hy(n,-2'T)| ¥j,j =0,,-,1 , have the same stochastic characteristics, we obtain {14] [31]:

h(nT,)

4 'lLI(A ; ) h
h,(n,-2'T)
. & L, | k=0,
(“1) N;L ...... n‘;L< I ! j.(h;‘)-tn, > keven
L-x((Z m— 22"1,)7;) -e e
ﬁ‘ (mT‘) = , . -:=° ) i 4-6)
e 1162
(—1) nfz"l- ...... nzl.‘ ! J'(‘*?‘)"Z" : kw
T x@m-Y2n)1)-e
- L Fo

where T.=2'.T, is the sampling period at the output of the demultiplexer and the halfoand filter
has exactly 2L+/ taps. We take note that from (4-2), the quantized coefficients, i(n, -2/T,), are

represented by h,(n,-2’T,) in (4-6) in order to show that the error processes in each stage are
independent. Therefore, we can subsequently represent the error processes k(n,-2’T,) uniquely
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from each stage by & (n,-2’T;) for Vj, j=0,1,..., 7 [31]. Thus, if we substitute (4-2) into (4-6) and

make use of the fact that the filtering operations in every stage are identical due to the modular
nature of the process, we can conclude without loss of generality that (see Appendix 4.1.1 for
derivation) [1] [6] [13]:

$.(nT) = y,(mL) +7,(mT,)+ y; (mT.)

C)

where y,(mT.) is the real valued output of the M-MCDD assuming no quantization and is
represented by (3-6). ¥, (mT.) is the output of the M-MCDD resulting from quantization error
and is represented by (see Appendix 4.1.1 for derivation):

5’1('"72) =19

......

'l—ll(ﬁ;("l -2/ T'))

/=0
J-r(h—;-)-in,
1=0
@V § (R
=0

I3
Jak+ )Y n,

~9

I
.x((2'm—22’n,)1‘,)-e
{ 1=0

U
x((2'm-Y.2'n)T)-e

“4-3)

k odd

and finally, y;(mT.) is the output corresponding to the cross-product between quantization and
interference. It is denoted as (see Appendix 4.1.1 for derivation) :
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Combining (3-1), (3-2), (4-5) and (4-6), we arrive at an expression for the quantized final
output from the channel detection stage, similar to the form of (4-7), assuming K" desired channel
and & desired symbol (see Appendix 4.1.2 for derivation) :

where :

A,(T) =r(T,) +F,(T,) +r/(T;)

4-10)

r.(IT,) is the real valued final output assuming no quantization and represented by (3-7)
7.(IT,) is the final output due to quantization error
r/(IT,) is the cross product result between interference and quantization noise.



4.2.2 : Effect of Quantization on the Final Output

As was done in section 3.1.5, we may consider solely the in-phase component of 7,(/7,)
if the system is assumed uncoded [10-11]. Thus, the latter two terms, #’(/7,) and ;' (IT,), of (4-
10) may both be combined to effectively represent the total effect of quantization on the output of
the channel detection filter. These two quantities may be expressed by (see Appendix 4.1.2 for
derivation) :

iaa

FIUT) = 4, -[a,_,, 70+ a,, @, -iT, )]

v/ (aT, -iT,)-cosé, ||
Gas” V(Q(c:T :;) sn:; @11
252 EE-D £ A Y
q=k [ b Vl(az; —iT;)-Slﬂ¢'
™ |+9%aT, -iT}) -cos, |
ol ’ [} ;
r (1) = A, -[am u'(0)+ ). a,, -u'(d, —ﬂ;)]
( [v'! (T, -iT,)-cosg, || @12)

a .
q __v.a(aq; —iT;) -sin¢q_

- s +2!'(IT,)
|, [v@h-mysmg, [
*“ | +v%(af; -iT;)-cos¢, |

+Z‘4¢ Z

q=k i

The result in (4-11) represents the effect of quantization alone while (4-12) represents the
effect of the cross-products between both quantization and interference [14]). Once both results
from (4-11) and (4-12) are combined to represent the total effect of quantization on the final
output, they may be combined into a single quantization noise variable, 7, , which may be denoted
as :

n, =F'UL) +r (T,) ='A.|:¢h.., @0+ a,,-7'(d, -'72)]

i=a
,

..9”(“7; —il,)-cosé, 1 4-13)
L4 -_~:Q(‘ﬂ; _,'];).sin¢'-

A, DS n _L+~" T,
ek vy -im) sing, |

o=k {

¥ [+, -iT) - cosg, ||
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where the combinations of ISI, ICI on the ¢* channel and Gaussian noise with quantization noise,
respectively, are represented by (see Appendix 4.1.2 for derivation):

1126, -9 -2 2'n)-T, ~iT, - 7.]]
J k=0,

Y. Yl + u)T ] [’ keven

'h'lj’(nj '211;)

wWial -iT) =+ r ) (4-14)

'(al, -ily) h‘[(z’(pl—5)—22”1,)'7;"'7;"711
J

)2 IS WL (DA  } ; kodd
h*(n,-2°T)

L

f (1,128, -9~ 32'n)-T,~iT, - 7,]|
& ! k=0,
;; ------ Ziel@ L costate-a)-Zn) 5y
A% n, -2/ T)) J
v'i(al, —iT,) =1 , (4-15)
(h,12'(B, -0 -3 2'n)-T,-iT, -7 ]|
1 J
Y T elE+ u)L ) cos(mtk ~q)- En) ¢ i kodd
&=L ny L
\'h:p(nj -2'T) )
(128, -D-X2n)-T,-iT,~7,]]
: ! k=0,
)2 MRS X L QBRI R L I S
A (n,-2'T)
v'e(al, —iT}) = @-16)
(128, -O-3.2n)-T,~iT, - 7,]]
I, ’ J
S F T BlG+ uIT ) sinCetk ~g)-Tn) | kodd
§=I, my L]
L‘”T("J -2'T)




(28, -5)- Y. 2'n) T}
J
I, 1 k=0
_1y5:—¢ . . =). > ?
ST Sl G mT e mk e 3n )5 00
#*(n,-2'T)
3'(T) = @17
(2", -9 -2 2/n)-T))
. J
I,
Sy Y -g[(éwl)m-w{ﬂ(k’r%)-zm)* ; k odd
&=1I, no L{3 ’
P (n,-2'T)

, where :

and :

b J . (1 4 -1+ Y] 2 117 4
e, 2T =[]Fe, - 20)+ X [k, -2 ) T1(E e, -2'T)) @19
=0

a=} a J=0 J=e

wren, -2 1) =" [I(E o, 2'T)
J=0

4-19)

+(" ey e, 20) 1160, -2'1)

a=l J=0 J=a

4.2.3 : Probability of Bit Error Analysis

The interference variable, 7, from (3-18) and the quantization noise variable, 7, , from

(4-13) may be used to compactly represent 7/ (/T,), which is the in-phase component of (4-10).
As a result, we obtain the sufficient statistic which differs from the sufficient statistic of (3-19) in

that we

have now taken into consideration the effects of quantization noise for the halfband filter

coefficients. The sufficient statistic, resulting from the in-phase component of the final output and
is useful in deriving the probability of bit error, becomes [14]:

FlUT) = A, -a,,-u(0) +n +n, +z,(T) (4-20)

It can be shown that both 7, and 7 can be well-approximated by Gaussian random

variables (see Appendix 4.1.4 for explanation). If from this point on we may assume that both
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variables are standardized, that is, both have a zero mean and a variance of one, then both
variables are well-approximated by a standard normal distribution. Thus, we represent 7 and 7, ,
respectively, by [31]:

n—m (1) ) . ( ﬂ,—m‘(ﬂ,) J 4-21
(mz(n)-m,’(rr) ) —m () @20

where m; () and m; () are the first and second moments about the origin, respectively. For each
variable, m, () and m; () are denoted by the i ® moment equation with i=1,2 [31] :

m(m=fn'-f,(mdn @22)

mn)= [n, £, (n,)dn, @-23)

If we average the bit error rate over the desired data symbol a;, . {-/,+1} , similar to
how (3-20) was derived, bearing in mind that the marginal probability density functions of 7 and
n, are even [10-11] and for a fixed timing offset on the desired channel, the probability of bit
error in the presence of interference and quantization noise may be represented by (see Appendix
4.1.3 for derivations) :

R = _’[_‘[th.m -f(n,n,)-dndn, =_‘[_‘[Q( = )0' - ’7’) -f(m,n,)-dndn,  (4-24)

(-4

As was done in solving the probability of bit error of (3-20), we must resort to numerical
techniques to solve (4-24). The reason for this is that the joint probability density function,
f(n.1,) , is unknown and virtually impossible to find due to the innumerable number of interference
terms [2]. Because 7 and 7, may be well-approximated by Gaussian random variables, we can
expand f{7,7, ) in terms of standard normal density functions. Thus, a Gram-Charlier Series
expansion of f{n.7, ) has been chosen to solve (4-24) [19-22]. The advantage which the Gram-
Charlier Series possesses is that its coefficients can be generated quite easily and recursively using
the moments of the interference and quantization noise. Also, this technique can compute the
probability of bit error efficiently without the need of exhaustively going through all interfering
symbols [21-22]. ‘



4.3 : Gram-Charlier Series Expansion

4.3.1 : Expansion of Joint Probability Density Function
The joint probability density function may be expanded using an orthogonal polynomial
expansion denoted by [18] :
fmn) =1, 1, (1,)- 3 ¢aPra(m- P, o(n,) (4-25)
20

where the polynomials P(>) are orthogonal with the joint probability density function and the
coefficients c, must be determined. If both marginal density functions can be approximated by
standard normal Gaussian density functions (see Appendix 4.1.4 for explanation) and the jomnt
dmsﬁyﬁmaimisassunndmbeweﬂ-appmthtedbyanw-dimmsimﬂjm&usshn
distribution, then the quantities from (4-25) may be expressed as [18] [31]):

RQ

Po(m=Hym) ; P o(n)=Hy(n) ; €a="pr (4-26)

where R represents the correlation between 7 and 77, and is defined by [31] :
R= ”n-n, -f(n,n,)-dndn, @27
and Ho(%) is the £2* Hermitian polynomial defined as [18] :

o 2 ad°( =
—_—f— 02 e 2
H,(x)=(-1D)"-e 57 (e J (4-28)

4.3.2 : Expansion of Marginal Probability Density Functions
4.3.2.1 : Representation and Series Expansion
The marginal density functions may be found from the jont interference-quantization noise
density function as [31] :

fym= [ f(n,n,)dn, @-29)



fo )= [ f(mn,)dn (4-30)

We may represent the marginal density functions by Gram-Charlier Series, both of similar

form, since f,(7) and f, (1,) are well-spproximated by Gaussian densities (see Appendix 4.1.4

for explanation). If the joint density is well-approximated by a jointly Gaussian density function,
we can express both marginal densities in the following series representation [18-19] :

fn(n)=f(n)-{l+g(-l)' -‘:—’!-H,(n)} 4-31)
= b
fr, (n.)=f(n.)-{1+z_;(—n' -r—'!-H,(n,)} 4-32)

where the reference function is the standard normal law [19] [31] :

f(x)=J—;;-e'%;—wSx5+w (4-33)

The coefficients a, and b, may be calculated recursively through the relationships [19] :

. .
a, = (-1’ -m,(r;)-Z(—l)" (’w) .c,-a,_, ; a,=la =a,=0 ; 3<i<wo (4-34)
w=l

‘ .
b,=(—l)'-m,(qq)—-Z(—l)"-(') c.-b.. ; b, =1b=b=0 ; 3siso (435)
w=t

w

where [31] :
_ (a-DN ;aeven
efe e
and [14] [18] :
(a-DN=(@-1)-(a-3)----5-3-1 “4-37)

4.3.2.2 : Convergence of the Gram-Charlier Series Method

For the numerical computation of f,{7) and f 7, ) through the Gram-Charlier Series
representation, it is necessary to verify that the series converge. A sufficient, but not necessary,
condition for the convergence of the Gram-Charlier Series is known to be [20] :

L4 %
E{e‘}«w ; E{e‘}«n (4-38)
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It can be shown in a straightforward manner that the above expressions are true (see
Appendix 4.2 for proof).

4.3.3 : Upper Bound on the Q-function
The Q-function from (4-24) may be upper bounded using an exponential function [23] :

Au@-n-n,) 1 1 [A (4 (0)—n- q')
Q( )<2 exp{ 2 pe } (4-39)

o, .

(4-39) can be expanded straightforwardly to obtain a function of 77 and another function of
Ne. - A third term in the expansion is a function of both variables and is not separable by
straightforward means. Once this third term is expanded using a Taylor Series, the final result on
the upper bound of the Q-function is (see Appendix 4.3 for derivation) [34] :

4.4 Lu(0)-n— q) Z(.-1)" _l.(%u(o)_,’)’ .(ﬁz'_u(O)_”).
c, 2 o, o,

. _l.(%uw)—m]’ .[f;—u(O)—n, )
P 2 o, o,

(4-40)

4.3.4 : Final Expression for the Probability of Bit Error

Once (4-25), (4-26), (4-31), (4-32) and (4-40) are substituted into the probability of bit
error expression of (4-24) , a final expression may be obtained representing an upper bound for the

probability of bit error. Thus, assuming that 7| >0 and |n,|>0 [14] :

' (3 u(O)-n)z} (—‘;" u(O)—n)'

ew ——— .

R { 2( % % - f(mpd
T ] f(mydn

b = r ar
2 ,Ha(”)-{l-f-Z(“l) '_T'Hr(”)}
}’b < < r -W
S { (ﬁ;-u(O) 17,) } (%u(o)-'l.)
exps—— : o

¢ (441)

2 o, A
e f(n,)dn,

—

B -H,,(n.)-{1+2°‘,(—1)' -%-H,(n.)}
\ r=3 )
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4.3.5 : Evaluation of the Moments for the Quantization Noise

4.3.5.1 : Moment Evaluation

The moments of the quantization noise can be derived in a2 manner similar to that used to
derive the moments of the interference bearing in mind that there is an added level of randomality in
the halfband filters’ quantization error. If we truncate the number of interfering symbols on the
desired channel and on the interfering channels to R =m; +m, +/ and Rp = mg +mo +1 ,
respectively, to give a total number of interfering symbols K=R+3R, , then 7, becomes® :

arm,
n, =4, ) a,, -i'(al, —il})
1=a-m;
ameo [ a  -[v'(ad, —iT}) -cosg, —v'®(al, —iT,) -siné,] “4
{ Qu ’ s e J ‘ e }+Ek’l(ITb)

A, -
+Q§ 0t X b, -[''(al, —iT;)-sin ¢, +V'®(ad, —iT,)-cosé,]

{=a-m; o

If, for fixed i , we can denote the ISI companent by 7. and the ICI component on the
Q" channel by 7,25 , we can derive the expressions for the moments of the quantization noise
individually. As was the case for the interference, it would be possible to evaluate the moments of
the ISI and ICI individually since the data symbols ap; and bg; are iid [10-11]. These
individual moments would be combined by Prabhu Technique, indicated by (3-32) through (3-35),
to arrive at the final moments for the quantization noise [29]. Furthermore, since oaly the even
order moments are non-zero [14] and using Schwartz’s Inequality to separate the interference and
quantization noise variables, we obtain (see Appendix 4.4 for derivation) [34] :

[ (1/2
j(uu(‘ﬂ; '-’.IA":))W2 'f(}'t)drt
-1 k=0,
ZVA:ZG:J -4 gaei gest vi2 s k even
o ... S (nem, -2°T))'} dh---dh
J J
(2% U m ”
B} < s
(12
[@utat, -iT))* - f@r)ar,
274 a4 e ; kodd
“ . I I {Z"'Z("T(": .217;)) } dh---dh
L2+ 27+ U n

* Please note that when the context of discussion involves quantization, we use g to represent the
quantization variable. Thns,soasnottoconﬁlscmchoiceofvatiauesﬁompwviouschapters,the
channel representation is given as O when not discussing the ¥* channel. Also, quadrature components
are shown as @. 100



27 - 4
091
2 7t m
E {’I:.z.o.a } <9
-
il
L -2 -2"

2 (uu(ad, —iT,)
g, {-!n{'ae.t 'bw -w(al, -i];)} ’f(}'q)d7o}

) rn uu(aT; —iI;) vi2
i {I {"'a.« -w(ar.-ir.)} S "}

----E (r* @, 24))} dh.--dh ;

, where, for simplicity of representation, the following quantities have been defined :

=1, a,

w(dd, -iﬁ):iz...

§=1 n,

I,
$3.5
§=I, ny L
,and :
, where the total number of halfband

g (S +u)T]

21

g’ [(§+u)T.]-cosQra(k — Q) - %Zn,)

2[R/ (B, - O~ X.2'n,)-T,)- g [(§ + uT.]]

| (m+ 30

\ J

(2212 (B, - O~ X.2'n,)- T} ' A& + uT.]]
J

{h}[(z’(ﬁ, -9-32'n)-T,-iT, -7,]
J

{hf{(z'w, ~9-Y2/n)-T,-iT, -7,]
J

1 1
L{—2-(1 + eos(Zfr(k + -2—) . },:"’))}

w=B-h -1
filter coefficients which are quantized are :

b =QL+1DI+D)
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(4-46)

447

(4-48)

(4-49)



, and Ltap is chosen such that the total number of filter taps per halfband filter is 2L+1 for LeN
[34). (4-49) is obtained by considering a single arbitrary channel path through the M-MCDD. For
example, to obtain ynT,) , we go through he. halfband filter coefficients, referring to Figure 2-4,
including the effect of the DAF.

We can simplify (4-43) and (4-44) knowing that only the even order moments are non-zero
[14]). In that case, (4-43) and (4-44) respectively become :

Vf(""(an ~iL)) - f(r.)dy,
2P¢l 'Akzv . =72 §
I I {z ...... z hb(n ij)) }
E{r],u}_
(12
[ Qe - iT)) - £ r)dy s
9¥-1 .Akzv .J‘:"z‘ o
T (g 2|
[ 2% 27
’ e 2 £ |[uu(ad, —iT) |7 (uu(ad, —iT,)
A I {{—w(abr P )} +{+w(a3;. _iT})
."j:.'rjﬂ {Z Z(hlp(n ZJT) j dh---dh
{”¢394}<‘

2‘!

~

--dh

k=0,
k even

(4-50)

k odd

k=0,

k even

u -~ v . v (4_51)
T2 u(al; ’7;) uu(a]} —ﬂb)

lzv l .

. ._r/z{{ W(azg —in)} {+w(a7; _in)} } f() Q)drq

o {Z X, 2’T>)’}vdi»‘

k odd

As for the Gaussian noise component, it is possible to simplify since the even order
moments of a Gaussian random variable are known, given that z(>) ~N(0, &’ ) [31]. Thus, the even
order moments become (see Appendix 4.4 for derivation) :
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3-8 -t

e e | ay P

E{(z"(ﬂ’) }5<

4.3.5.2 : Correlation Between the Interference and Quantization Noise

As for the correlation between 7 and 7,

ff: T Z("'f(",'ZJT.))z} dh..-di

vi2
Z(ay(n,.zfr,))’} dh’---dh
LY

T Tean ™ ray="ds--ae

k=0,
' keven

"7 T(z(aT))m (f(z) Aeclhiohiod g gy

; kodd

“4-52)

, it is seen to consist of two individual

components. Using the same arguments as previous, these two components are (see Appendix 4.5

for derivation) :

—1'12

(vt ”‘4 -w(al, ~iT,)- Jual, 1)} f(r,)dr,

E{"U "lq.u}SJ

-T2
]

T/l
[{42 -wat; -i%)- JuakaT, =iT)}- f(r 1)y,

-2t

e f JZ ...... 2 (A%, -2'T)) -dR'--dR

, wXal,
vi(ad, -iT})- (w(d;

/2
2"‘;.4;- f

-T2

gt

------ S0re, 0]

E{’lu : ’lq.u} =9

+v¥(al, ~il})- ( (uu(al}

V(T - ‘T"J [t =)

T2
5|
et -m +v¥(al, - tT)J (

I -;‘:'( ...... ;("?("/ .2/1.'))1
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' keven
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) S(rod)dr
~T )47 g
~w(aT, —iT,
" k=
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k even
+w(al, tT))
: 'f(rg)dre
uw(al, —il})
~waT, ~iT,
.dh---dh k add

4-53)
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4.3.5.3 : Computation of Quantization Moments and Correlation

Use has been made of certain recursions and known facts to effectively compute the
correlation and moments of the quantization noise. Thus, in calculating (4-43) through (4-54), use
can be made of the fact that the odd order moments are all zero and that the even order moments of
a normal distribution with zero mean and variance o° and that of a uniform distribution are known
and well-defined. In the case of a uniform distribution, since the probability density function is
simply a constant within the range of the values of the random variable, the integral expression is
quite trivial in its solution. In both cases, the moments of z()~N(0.0’) and

R() ~Uniform(0,2%2/12) to compute (4-43) through (4-54) can be expressed as [31] :

+ax

[41Q' B, -9-T2'n) - T) f@dz=A-DN-0* ; 1sis<K, (@455
e J

iy 0 ; @odd
IEI’('IJ 217‘;)_&-(;)(15: 9 #(-8-D
-8t . +l

. peven @5P32K)  @56)

, where in the above integrals £, j, and n; are set to a fixed value. Also, we assume that we are
using only the first 2X; moments of the interference and the first 2K; moments of the quantization
error, corresponding to the upper bounding of each Gram-Charlier series to the 2K * term. The
truncation of the Gram-Charlier Series for the probability of bit error expression of (4-41) will be
discussed in the next section.

4.3.6 : Truncation Errors From the Gram-Charlier Series Expansion

4.3.6.1 : Truncated probability of Bit Error Expression

In order to evaluate the probability of bit error, we have to truncate the series expressions
shown in (4-41). We will assume that we are using the following [14):

the first 2K; +/ moments of the interference
— the first 2K, +/ moments of the quantization
the first 2K;+/ terms of the orthogonal expansion
~ the first M+ terms of the Taylor Series Expansion

!
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The reason for truncating each Gram-Charlier Series to 2K, terms is in order to keep each
upper bound at an even value, since only the even order moments of the interference and
quantization are non-zero [13-14]. Also, analogous to the discussion in chapter three on the

interference, we are using K; in place of M.

As a result of these truncations, we experience truncation errors [2]. In particular, the
effects of two truncation errors in the numerical calculation of P, will be discussed : the error due
to the truncation of each Gram-Charlier Series [35] and the error due to the truncation of the
Taylor Series representation of O(>) [30]. The expression for the probability of bit error can be

numerically evaluated by considering :

' -1 %uw)-n)' _(‘T'u<0)-n]"
(-1)"-R""T‘ 2\ o, o,

2-m\s2 e
-H,(n)- {1+z(-n L H(n)}

Z 4 ; -
w=02=0 __1_(-—22-14(0) - f]’J ) (T'll(o) -1,
) :"I-‘ 2 g, /

= | Halny) {HZ(—D = H(n,)}

>-f(n) dn

-f(n,) dn,

\

+Ry +Rip , +Rir, ,,

where : Ry is the truncation error due to using only (M+ 1) terms in the Taylor Series.

4-57)

R;, is the truncation error from upper bounding each Gram-Charlier Series to 2K; terms

$n and¢, are fixed values of the interference and quantization error, respectively.

The expressions for the truncation errors will be given in section 4.3.6.4.

4.3.6.2 : Computation and Simplification of Bit Error Expression

To compute the BER in the presence of quantization noise, we will put (4-57) in a simpler
form. First of all, to numerically evaluate (4-57), we use Schwartz’s Inequality to separate the

interference from the quantization [34]. From this, we obtam:
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[ [ 1(%u@- n) (Tum)—n)'

= a(n) {1+)j( y = H(n)} J{¢) dn

r=3

[ [ 1(%u@-n,)] (@ -2,
M 2K, g0 Sog.xux exp _5 o, ) o,
:2;.4 2 ;,L' ox,

" | Halny)- {“Z(-D -4, (n.)}-f(n,)dn,

4-58)

P

Focusing on the quantization part of (4-58), if we take isolate the term corresponding to
m=0 and £2=0, we further simplify (4-57) for numerical evaluation :

{ (% £40 - nJ}(Tuﬁ»—n)'

Ha(n) - {HZ(—D 3 H(n)} i{0) dn
\

1 2K, [ Sne mar 1 iz'—ll(O)—r" 2 ) br 2
I+Z-Z( I exp{—-z—(—————-] }-(-l) ';!*'H,(ﬂ,)'f('l,)dﬂ,} 4-59)

2K,

h< Z(m')

r=3 Sng.a g,
( 2 ~ 2
: 1{ 3u@-n,) | (Fu©@-n,
2 2 o ) o
h;; var | )] ’
=xae " [ Haln,) {HZ(—D’ —=-H(n )} f(n,)dn,

So, from the upper bound on the BER of (4-59), we see we have two distinguishable parts.
From (4-59), we can say : ‘
Fy <by, - Aprr,, (4-60)

_1(%:«(0)— n)’ ,(%u(m— n]'
1 ‘T' 2 o, o,

é(m!)*'
H o (m)- {1+Z(-1) L3 H(rl)} 7 () dny

, where :

2

(4-61)

~
i
1M
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represents the BER due to interference only and :

$vq sar A 2
14+ g{‘ _( B,,{_l(_L(g’:i) } 1y = 7, n,)- 7y drr,}
e 2%, fogsar ﬂp{__;_(%‘“(:’)‘ﬂz) },(.%“(2)“";) 4-62)
22 J

-l 4 (Q') Sy aem < b
»e0.02a0 .Ha(”')'{l+2(—l)";L,.Hr(”q)}.f(”') d”'

o0 =0
represents the BER degradation due to the presence of quantization noise. In section 4.4.1

"
SEppe—

we will discuss shortcuts in computing the BER expression using the above simplification process

4.3.6.3 : Maxima and Minima of the Quantization Noise

The maxima and minima of the interference and the quantization noise are used in the
probability of bit error expression of (4-57) thus need to be defined. The maxima and minima of

the interference were derived previously and are as indicated by (3-44) and (3-45), respectively.

The maxima and minima of the quantization noise, respectively, can be expressed as (see Appendix
4.6 for derivation) :

,,q_m, —max z..IA e (@D, —iT, )|

=a-my

(4-63)
+23 4, max S ol - iT)| + Fil (@t —iT;)| + max 7T,

e ica-m ,

Snpaan = —mm ZIA,, af, -iT})|

t=qg-my

a+m,

~VZX A, min Z[~”(¢d‘ i) +[v8 (e, —iTy)| + min %' (T})

f=a—m; ,

4-64)

, where u_ (af, —il}),V v v (al, =il}),V V2 (af, -il,) and max Z!' (IT,) are the maximum
values of the ISI, ICI on the ¢" channel and Gaussian noise, respectively, with respect to the
halfband filter coefficient quantization error,

I‘;;(n_'-z-’T,). Likewise, ﬁqm(an -in),

v!l(al, -iT,), v!%(al, ~iT,) and minZ;'(IT,) are the minimum values of the IS, ICI on the
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q® channel and Gaussian noise, respectively. Thaequantitiesare(seeAppﬁdix4.6for

explanation) :

T (o, —iTy) =~y aT, —iT}) =

§=1, = »

[ e

J=0

"y L

™)

LA ”

§=1, ng L
4

11(rer,-2'7,))

Y- ARB -H-22'n) T, —iT, -7.]
J

L1+ & -gl(§+u,)T.]
+§( . )§< {

Y AR B -OH-22'n) T, ~iT, -7,]
J
(€ +p)T,]

s

" (e, -2/ 7))
Yl B -H-22'n) T, ~iT, ~7.]
ng ng_, J
L1+ N\& -8l(§+u,)T.]
+;( a )&z&‘ L
@)
3. AIRB,--22'n) T, —iT, —7,]
n, L J
| | 8l(¢+4,)T.]
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J
1

k=0,
k even

(4-65)

25435 T I B, - - T 2'n,) T, ~ 1T, - 7,12+ u)T.]

]




V&(dTg —if) =V (al, —il}) =

2 hI2' (B, -:)—Zzln,)-r, —iT, -y ,)- 8l(E+u,)T.]
2-8 -1
e-ng -cos(n(k —q)- Zn )
r[(h(n, -2'T))
J=0
Y AQB -O-322'n) T, —iT, -7 b
ny . J
+Z(I+IJIZ4 :g[(é*'ﬂl)nl'cos(’r(k—q)'?nj) ‘ - k=0 ,
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If the timing phase can be assumed to be constant on the desired channel and the
interfering channels, then it is easy to see from (3-44), (3-45), (4-63) and (4-64) that :
Sosax = ~Cnaan (4-69)

Sneriaxr == aav (4-70)

4.3.6.4 : Expressions for the Truncation Errors

The upper bound on the truncation error for using only the first 2K; terms in each of the
Gram-Charlier Series can be maximized by considering (3-44) and (4-63), respectively. Thus, the
maximum truncation error in this case has been shown to be [35] :

(—(—‘,& u(0) — &, 0 )’

T2
|R;‘I.,,|<C;- I exp )-f (r)dr, 4-71)

2
=TI 460
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where [35] :
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The truncation error for using only (M+/) terms in the Taylor Series for Q) is (see
Appendix 4.7 for derivation) {30, pg. 880] :
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4.4 : Performance Results of the M-MCDD Resulting From Filter
Coefficient Quantization

4.4.1 : Discussion of Gram-Charlier Series Expansion Algorithm

The algorithm used to evaluate the amount of degradation in performance due to halfband
filter coefficient quantization using the Gram-Charlier Series Expansion technique is shown in
Figure 4-3. Only the major deviations from the GQR algorithm will be discussed here and these
deviations are within the loops for the calculation of the interference and quantization coefficients
(Figure 4-3(a)), the computation of the moments and correlation (Figure 4-3(b)) and the final
calculation of the BER (Figure 4-3(b)).

First, we will observe how the calculation of the quantization coefficients were integrated
into the program so as to save as much processing power as possible. It should be noted that the
block diagram in Figure 4-3 for the computation of the interference and quantization coefficients is
greatly simplified yet contains all the essential information of what the algorithm is doing. As was
stated, the ISI and ICI were computed to be able to calculate the moments of the interference.
Similar to the calculation of the moments of the interference, where the vectors u/./, V/[.], V°[.] are
precomputed to save computation time, similar functions can be defined to ease the computation of
the moments of the quantization noise. Various linear combinations of (4-45) and (4-46) can be
used in calculating the ISI, ICI and Gaussian noise aggregated with the quantization noise as well
as the correlation between the interference and quantization noise. In addition, time can be saved
since the vectors defined by (4-45) and (4-46) may be computed within the same loops as those
used to compute the ISI and ICI of the interference. The effects of quantization on the desired
symbol are computed using the quantities ug0_max and uu0 . These are placed within the arrays
uq _max/-] and uuf-] , respectively, after the first mL interfering symbols below the desired
symbol. Most of the remaining quantities computed are needed to determine #’, (), V.. ()

,¥/2() according to (4-65), (4-66) and (4-67), respectively. The quantities used to calculate
) o () are ug_max[-] , tmp_sum and uq_max_tmp. For Vn',ﬁx (), the quantities vg/ max(-] ,
tmp_suml and vgl max tmp are used. Likewise, for V.2 (), the quantities vgQ max/-] ,
tmp_sumQ and vgQ max_tmp are used. The quantities zg_max , tmp_sum_z and zq_max_tmp are
used in computing max 7}/ (T, ) of (A4-73) from Appendix 4.6. In tum, max z;' (IT,) is used to
compute &, . and &, ., indicated by (4-63) and (4-64), respectively. This calculation is
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shown in Figure 4-3(a) within the module entitled ‘compute zq_max’. The maximum value of the
Gaussian noise aggregated with quantization noise is computed within the ICI loop but is only
executed if the first interfering symbol below the desired symbol is being computed. The reason
why this calculation was placed within the ICI loop is the need for the decimation factor, 2’ , and
the calculation of cos(z(k +1)-Y n,), indicated by (3-15).

The computation of the moments of the quantization and the correlation between the
interference and quantization is a new part of this algorithm which was not present in the GQR
algorithm. The quantization array for the moments is defined at first. This quantization array is
computed using MAPLE_V and corresponds to the calculation of the following integral in the case
k=0 and k even [36] :

sat gb w2
[ {z ...... 5 {rven, .zfm}’} - i @-79)
AR -

ny
, where n¥(n, -2/T,)is defined by (4-18). (4-75) is used in computing the moments (4-43) through
(4-54). There were certain limitations that were encountered in the calculation of (4-75) from
above which will be discussed shortly. Using this array and uu/-/ and w/-] of (4-45) and (4-46),
respectively, we can calculate the ISI, ICI and Gaussian noise moments of the quantization. Unlike

the calculation of the ICI moments of the interference, no randomality with the phase offset was
assumed in the calculation of the ICI moments of the quantization. As for the Gaussian noise

moment, the portion aggregated with quantization noise corresponding to:

, where zz(aT}), defined by (4-47), was computed using MATLAB but making use of (4-55) ,

(z (aT} ))wz . ( f(z))u:-l,-lxmxzux) dz---dz 4-76)

4=

the integration process was not needed [32]. To compute the correlation between the interference
and quantization, a new array, u_tmp/-] , needed to be defined and this array included the desired
symbol, 0, in its (mL+1)* position. In contrast, the ISI array, /-] , did not include the desired
symbol. The final moments are then compiled using Prabhu’s Method [29]. Since the correlation
is a second order moment, the third component of the output vector was chosen since it
corresponded to the value of the correlation [31].

As was seen in section 4.3.6.2, the BER in the presence of quantization noise was put in a
simpler and a more programmable form. It will now be shown how it is possible to simplify the
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algorithm based on the results from the interference only scenario and by precomputing some
necessary BER coefficients. Consider the expression for Py, of (4-61). For an ideal infinite
quantization scenario, we eliminate all forms of quantization noise and we are therefore in the
presence of interference only. Therefore, for infinite quantization, that is for B> «, & ppdeax of

(4-63) approaches zero thus &nprav of (4-64) also approaches zero. Therefore, as B— « , the
integrals in the A, , expression of (4-62) approach zero, thus A4gcp, —1 and so the BER for

an interference only scenario can be represented simply by (4-61). Because the performance of the
M-MCDD due to interference has been analyzed using the GQR technique, it would be desirable to
make use of these previous results here. Therefore, the results from the GQR have been used in
this algorithm to represent the results of the BER expression of (4-61). Of course, it is expected
that the true numerical results of (4-61) would agree with those of the GQR algorithm but this has
not been verified. This portion of the GQR algorithm to compute the infinite quantization BER is
indicated in Figure 4-3(b).

What remains to be computed is the BER degradation of (4-62) to determine the amount of
degradation in the BER due to quantization noise for a finite value of B. Since (4-62) requires
solving complex integral expressions involving Hermite polynomials, Apgz , Was numerically

evaluated using MAPLE_V [36]. Because the remaining part of the algorithm is programmed in
MATLARB, at first it seemed necessary to have an interaction between MATLAB and MAPLE V.
It seemed necessary to be able to interact between both numerical evaluation tools because we
would need to import and export several variables to and from MAPLE_V, respectively. For
example, to compute (4-62), MAPLE_V would require the values of b , R, &, v and u0 and

the result of the program, to be sent back to MATLAB, would be the array of BER degradation
coefficients. Unfortunately, these two numerical tools are not easily compatible therefore
importing and exporting variables between both is not done easily. Also, each execution of the
MAPLE_V algorithm took in excess of three hours which is even longer than the execution time
for the overall MATLAB program [32] [36]! Therefore, instead of creating a direct interface
between MATLAB and MAPLE _V, another altemative was thought of which would effectively
eliminate the need for this interface. What was done to make the overall Gram-Charlier Series
algorithm work swiftly and smoothly was that a limited number of scenarios were selected and the
MATLAB program was executed for each one using the corresponding parameters. For each
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scenario, the output values of the necessary variables of the MATLAB program were used as a
new, set of input parameters to the MAPLE_V algorithm, which was then executed. Once all the
scenarios of interest were investigated, a matrix of BER degradation coefficients, representing the
outputs of the MAPLE_V algorithm, was compiled. Therefore, by having such a matrix which
could easily be loaded by the main program in MATLAB, in addition to eliminating the need for an
interface between MATLAB and MAPLE V, we also save a great deal of CPU time [32] [36]. A
total of approximately eleven scenarios were selected and the selection was based on performance
with respect to infinite quantization and CPU time requirements of the GQR. For example, the
scenarios involving ltap=3 were not selected.

4.4.2 : Limitations of the Gram-Charlier Series Expansion Algorithm

There are a few limitations in the main algorithm which may have affected the outcome of
the numerical results. The effect of these limitations on the results will be further outlined in the
next section. The lack of optimization of the number of terms used in the Taylor Series expansion
of O(), represented by M , may have affected the overall accuracy. Also, a likely contributing
factor to the final outcome of this algorithm is the lack of higher order moments because the
program makes use of the moments of the quantization noise in order to generate the BER
degradation coefficients. In fact, due to limited resources, we were limited to the fourth order
moments for the quantization noise. This is due to the long computation times and lack of system
resources in computing (4-75) and (4-76). The integral expression of (4-75) to compute the
quantization array for the moments was computed using MAPLE_V for various Ltap values while
keeping B as an open variable. Due the length of time required to calculate the quantization array
for the scenarios of interest, in some cases up to 30 minutes, they have been precomputed using
MAPLE V [36]. The portion of the Gaussian noise moment of the quantization noise,
corresponding to (4-76), encountered a situation similar to the quantization array of (4-75).
Typically, to evaluate the higher order moments of 2;7(IT;) , (4-76) would have to be expanded in
order to make its computation simpler but by doing so, the algorithm to compute the moment
would become very lengthy in terms of size and time. For example, a fourth order moment of
z,/(T,) would typically take around 40 minutes to compute while a sixth order moment would

take over 10 hours to compute!
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The MAPLE _V algorithm, used to compute (4-62), also has several limitations which
should be mentioned. These limitations stem from the fact that the computation of each integral
expression in MAPLE_V takes a significant amount of time (36]. In fact, in more complicated
cases, it would not be unusual to have a single integral take several minutes to compute. Thus, n
general it took on average three hours for each execution of this algorithm but this is also
considering the limited number of iterations that the loops were allowed to go through to calculate
the individual integrals. The value of 7 in (4-62) was only run up to and including four while n
the other iterative loop, only the case of m=Af and £2=3 was calculated since the correspanding
integral in particular involved a lengthy computation. Unlike what was done in the Beaulieu FSE
Technique, where the corresponding value of Af was selected based on an upper bounding of the
associated truncation error, in this case the value of M was initially fixed for each SNR value m
the scenarios investigated and no optimization for the value of M was done although the algorithm
executed properly and satisfactory results were obtained for the values of M initially selected.
Since only the halfband filter coefficients were quantized, the BER degradation would mainly be
affected by the parameters associated with the halfband filters, in this case, B and Lrap. The value
of Itap, however, does still have a role in this analysis. The effect of all these parameters on the
numerical results will be clarified in the next section.

Despite these limitations with the MAPLE V algorithm, there are some advantages
compared to previous calculations. Unlike the quantization array for the moments as described by
(4-75), the computation of the complex integral expressions of (4-62) went smoothly. The main
reason being that these integral expressions do not expand to as many terms as was the case in
(4-75), therefore there was less memory needed, and there was a single variable of integration in
this case. In (4-75), depending on the scenario, it would not be unrealistic to have 50 numerical
integrations to perform. Although from (4-75) we see that the integration is straightforward,
MAPLE_V has difficulties in performing them [36].

117



YRR,

Etw

o ‘- w" gﬁ
1}5-

s

: continued in Figure 4-3(b)
v

Figure 4-3(a). First half of flow diagram for the Gnm-Charher Series Expansion Algorithm.
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! continued from Figure 4-3(a)
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Figure 4-3(b). Second half of flow diagram for the Gram-Charlier Series Expansion Algorithm.
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4.4.3 : Numerical Results of the M-MCDD Considering Quantization
4.4.3.1 : Organization of Results

The analytical tool using the Gram-Charlier Series technique has produced performance
degradaﬁmmwesmwd:epmceofqumﬁnﬁmnoisemulﬁngﬁanthenumdal
quantization of the halfband filter coefficients. These degradation curves show the amount of
degndlﬁmmSNR,mlaﬁwwmﬁnhequaninﬁm,forulyhgnumbasofqumﬁnﬁmbisper
halfband filter coefficient, B. From these degradation curves, we will first look into the numerical
accumcyofthersuhs,maningdlemmuﬁmemrsandCPUﬁmewiﬂbemlyud. We will
then extend the evaluation of the system performance of the M-MCDD by looking at the amount of
degndaﬁonasaﬁmcﬁmofthenumberofqumﬁmionbnsfotdiﬂ'emnscmaﬁos. Thus, for a
fixed scenario, if we know the degradation level we are willing to endure, we can successfully
select the number of quantization bits. As mentioned in the previous section, however, there were
limiting factors which may have affected the overall accuracy. As a result, the upper bound on the
BER is not smooth for performance levels between 10 and 10, thus in evaluating the amount of
degradaﬁm,mlwkaaﬁxedSNRforﬁnhequanﬁnﬁmMofaﬁxedperfonmcelwd.
Also, observations will be made from the degradation curves as to the effect of the values of Liap,

Itap and B on the degradation for finite quantization.
4.4.3.2 : Presentation of BER Curves

Degmdaﬁmcumwmnowbepmmdformreediﬁarmmosmshowtheeﬁ‘eaof
finite quantization on the performance of the M-MCDD. Table 4-1 and Figure 4-4 show the
numerical and graphical depiction, respectively, of the performance degradation due to the presence
of quantization noise for the scenario Ltap=13, Itap=9. We recall that Ltap are the non-zero taps
perhalfbandﬁltetwhileltapmdleﬁhersupsinthechanneldetectionﬁlter. In this case, the
number of quantization bits per halfband filter coefficient, B, is increased from four to eight to
showthereducﬁmhperfommeedegndaﬁmmunmgﬁommmcmsehd:equmﬁnﬁmm
levels. ByincreasingB,wearelinlitingthemaxinnnnerror,referringtoﬂxep.d.ﬁinl?igure#l.
Also,dievahwofthequauﬁuticnamywiﬂbesmaﬂerwithanincmseh&referringto(4-75).
Table 4-1 shows also the number of points taken in the Taylor Series Expansion, M, for each SNR
and also the truncation error and CPU time associated with choosing the number of quantization
bits as B=4 and B=8. Likewise, Figure 4-4 shows the corresponding BER curves for finite
quantization for the cases between B=4 and B=8 to show the reduced degradation levels. Also
dxownforcamaﬁmmmemuhsformﬁnheqmnﬁuﬁmmkingﬁommeGQRtedmiqw
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and also the ideal QPSK demodulation BER curve. Similarly, the results of two other scenarios
are shown for comparison to the Lrap=13 , Itap=9 case. These two scenarios are Liap=9 ,
Itap=12, shown in Table 4-2 and Figure 4-5, and Ltap=9 . Itap=15, shown in Table 4-3 and
Figure 4-6.
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Table 4-1. Degradation in BER due to filter quantization for the scenario Lrap=13 and Itap=9.

B=w B=4 B=8
CPU time — 126 : 38.9667 || CPU time — 143 : 27.4833
Eb/No(dB)] M Py Py Ru Py Rum
0 4 8.1120e-02 || 9.7791e-02 | 1.5200e-04 || 8.1121e-02 | 1.5652¢-04
1 6 5.8981e-02 || 8.4512e-02 | 1.4554e-55 || 5.8983e-02 | 1.5164e-55
2 8 4.0272e-02 || 6.3503e-02 | 3.2364¢-107 || 4.0274e-02 | 3.4119e-107
3 10 2.5496e-02 || 4.5547e-02 | 1.8753¢-159 || 2.5497e-02 | 2.0003e-159
4 12 1.4745¢-02 || 3.1722e-02 | 3.0504e-212 || 1.4747e-02 | 3.2922e-212
5 14 7.6597e-03 || 2.0981e-02 | 1.4674¢-265 || 7.6613e-03 | 1.6024e-265
6 16 3.5074e-03 1.2546e-02 | 2.1695¢-319 || 3.5087e-03 | 2.3972¢-319
7 18 1.3876e-03 || 6.6461e-03 |**underflow**|| 1.3886e-03 |**underflow*®
8 20 4.6479¢-04 || 3.5551e-03 |**underflow**|| 4.6564e-04 |**underflow**®
9 22 1.2936e-04 1.5310e-03 {**underflow**|| 1.2994e-04 |**underflow®*
10 24 2.9472¢-05 || 6.4171e-04 [**underflow®*|| 2.9916e-05 |**underflow®*
11 26 5.4499¢-06 || 2.8949¢-04 |**underflow**|| 5.9229¢-06 |**underflow®*
12 28 8.1904e-07 1.6952¢-04 |**underflow**|| 1.5863¢-06 |**underflow**
13 30 1.0141e-07 1.7775¢-04 [**underflow*®|| 1.4280e-06 |**underflow**|
14 32 1.0635¢-08 || 8.9800e-05 [**underflow**|| 7.1970e-07 |{**underflow**®
15 34 9.8479-10 || 4.9617¢-05 |**underflow**|| 3.9761e-07 |**underflow**

BER

Eb/No (dB)

Figure 4-4. Degradation in BER using B=4 to B=8 quantization bits for Ltap=13 and Itap=9.
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Table 4-2. Degradation in BER due to filter quantization for the scenario Liap=9 and ltap=12.

B=w B=4 B=8
CPU time — 124 : 56.1167 || CPU time — 142 : 38.7167
Eb/No (dB) M P|, P. RM P. Rn
0 4 8.1149¢-02 8.5623¢-02 1.6614¢-02 8.1150e-02 | 1.7466e-02
1 6 5.9013e-02 6.6328e-02 1.0401e-52 5.9014e¢-02 | 1.1155e-52
2 8 4.0305e-02 4.7203e-02 | 1.5122¢-103 || 4.0306e-02 | 1.6546e-103
3 10 2.5527-02 3.1759e-02 | 5.7288e-155 || 2.5528e-02 | 6.3950e-155
4 12 1.4772¢-02 2.0400e-02 | 6.0925e-207 || 1.4774e-02 | 6.9384e-207
5 14 7.6809e-03 1.2446e-02 | 1.9162e-259 || 7.6822¢-03 | 2.2263e-259
6 16 3.5220e-03 6.9988e-03 | 1.8523e-312 || 3.5230e-03 | 2.1957e-312
7 18 1.3962¢-03 3.5556e-03 |**underflow*®|| 1.3970e-03 |**underflow**
8 20 4.6905¢-04 1.8393¢-03 |**underflow**|| 4.6975¢-04 |**underflow®*
9 22 1.3110e-04 7.8409e-04 {**underflow**|| 1.3157¢-04 [**underflow**
10 24 3.0047e-05 3.2816e-04 |**underflow*®|| 3.0413e-05 |**underflow**
11 26 5.6023e-06 1.4887e-04 |**underflow**|| 5.9971e-06 |**underflow**
12 28 8.5129e-07 8.8102¢-05 {**underflow**}| 1.5267¢-06 |[**underflow**
13 30 1.0693e-07 9.3713e-05 |**underflow**]| 1.3523¢-06 |**underflow**
14 32 1.1420e-08 4.8213e-05 |**underflow**]| 6.9364¢-07 |**underflow**,
15 34 1.0811e-09 2.7236e-05 |**underflow**|| 3.9178e-07 |**underflow®*

BER

Eb/No (dB)

Figure 4-5. Degradation in BER using B=4 to B=8 quantization bits for Ltap=9 and ltap=12.
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Table 4-3. Degradation in BER due to filter quantization for the scenario Lrap=9 and Itap=15.

B=wo B=4 B=8
CPU time — 142 : 07.0167 || CPU time —» 163 : 26.7000
Eb/No (dB)| M Py Py Rum Py Rae
0 4 8.0375e-02 8.4807e-02 | 1.9245¢+01 || 8.0376e-02 | 1.9612¢+01
1 6 5.8166e-02 6.5376e-02 | 2.0252e-48 5.8168e-02 | 2.0795¢-48
2 8 3.9434¢-02 4.6184¢-02 | 4.9493e-98 3.9436e-02 | 5.1203e-98
3 10 2.4698¢-02 3.0727e-02 | 3.1518e-148 || 2.4699e-02 | 3.2854¢-148
4 12 1.4053e-02 1.9407e-02 | 5.6342e-199 || 1.4054e-02 | 5.9176e-199
5 14 7.1231e-03 1.1542e-02 | 2.9786e-250 || 7.1243e-03 | 3.1521e-250
6 16 3.1440e-03 6.2476e-03 | 4.8400e-302 || 3.1449e-03 | 5.1608e-302
7 18 1.1777e-03 2.9991e-03 [**underflow**]|| 1.1783e-03 |**underflow**
8 20 3.6399¢-04 1.4273¢-03 |**underflow®*]| 3.6453e-04 [**underflow**|
9 22 9.0134e-05 5.3906e-04 [**underflow®®|| 9.0458e-05 [**underflow**
10 24 1.7375¢-05 1.8976e-04 [**underflow**|| 1.7586e-05 |**underflow**
11 26 2.5418e-06 6.7544e-05 [**underflow®®|| 2.7210e-06 |**underflow**
12 28 2.7705e-07 2.8673e-05 [**underflow*®]| 4.9685e-07 |**underflow**
13 30 2.2340e-08 1.9579¢-05 |**underflow®®}| 2.8252¢-07 |{**underflow**®
14 32 1.3440e-09 5.6745e-06 |**underflow*®}| 8.1637e-08 |**underflow*®
15 34 6.2002e-11 1.5619e-06 |**underflow*®]|] 2.2468e-08 |**underflow*®

BER

EbNo (dB)

Figure 4-6. Degradation in BER using B=4 to B=8 quantization bits for Ltap=9 and Ttap=15.
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4.4.3.3 : Numerical Accuracy

We will first make some observations as to the numerical accuracy common to all three
scenarios presented in the previous section. The truncation error due to using a finite number of
terms in the Taylor Series, R/, in all three scenarios is seen to become exponentially smaller with
an increase in SNR until, at 7dB, we see an underflow in its value. The only unusual observation
is in the case of Ltap=9 , Itap=15 at 0dB, referring to Table 4-3. At that particular point, we see
that Ry, actually exceeds the value of P, . Because all the truncation errors are relatively small,
this may either indicate an instability in R,, for 0dB or possibly that P, is inaccurate at this SNR
value. But because in the other scenarios the truncation error is not as large at 0dB, we may side
with the fact that there is some instability in R,, for Ltap=9, Itap=15 at 0dB. We can also make
observations for the CPU time requirements of the Gram-Charlier Series algorithm. First of all, in
comparing the CPU times from Tables 4-1 through 4-3 for either B=# or B=8 with those of the
corresponding scenarios in Table 3-10 for the GQR technique, we see that the difference in CPU
times between Tables 4-1 through 4-3 is proportional to the difference in CPU times in Table 3-10.
This is expected because the Gram-Charlier Series algorithm makes use of the GQR program to
generate the infinite quantization BER and also the moments of the quantization noise are
generated in a manner similar to those of the interference in the GQR algorithm. Thus, a similar
proportion of CPU times is expected between both algorithms. Secondly, we note that in the
Gram-Charlier Series algorithm, the number of quantization bits, B , is used as a constant in
generating the moments of the quantization noise therefore it is not expected that the CPU time
would vary greatly with the selection of B. Indeed, from Tables 4-1 through 4-3, we see that in
comparing B=4 to B=8 in each case, there is not a significant increase in CPU time. The CPU
time is seen to increase slightly but for the most part, the percentage increase is relatively small.
Also, as mentioned in section 4.4.2, the number of points used in the Taylor Series was fixed for
each SNR since satisfactory resuits were obtained. Perhaps more accurate results could have been
obtained, as well as a smoother BER curve for higher SNRs, if the number of points were
increased but this was not looked into.

4.4.3.4 : System Performance

Before looking into the choice of B and how we may go about this, we will make some
observations on the effect of Ltap and Itap on these numerical results based on what is shown for
all three scenarios. First, we compare the cases of Ltap=13 , Itap=9 and Ltap=9 , Itap=12 for a
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change in the value of Ltap. In comparing Figures 4-4 and 4-5, respectively, we see that there is
more degradation in the case of Ltap=13 if we compare between B=4 and B=x. However, at
the same time, as B increases from four to eight, we see a larger improvement in performance in the
case of Ltap=13 until at B=8, in both cases, the BER curves are almost the same. This can also
be verified by looking at Tables 4-1 and 4-2, respectively. The B=a BERs in the Ltap=I3 case
are slightly smaller in value but the corresponding B=4 BERs are higher valued, thus creating a
larger difference between B=4 and B=w inthe Litap=I3 case. In both cases, for B=8, we see
little difference. What this indicates is that there is a direct effect of Ltap on the BER due to
quantization. As the value of Liap increases, we are introducing more halfband filter coefficients
which need to be quantized. Quantization noise will result when each halfband filter tap is
numerically quantized to B significant bits [9]. Thus, because there are [/ stages of
demultiplexing, for a larger value of Ltap, more quantization noise appears at the output of the
channel detection filter [14]. Thus, as Liap increases, we see a significant increase in degradation
due to quantization. This is more apparent for B=4. But if we were to increase B from four to
five, the amount of quantization noise for each coefficient would be reduced by as much as half,
referring to Figure 4-1 [9] [31]. Therefore, if we were to have more coefficients, the reduction in
total system quantization noise between B=4 and B=5 would be larger. That is why a larger Liap
value results in a more significant improvement in performance between B=4 and B=5. If we then
g0 to higher B values, the reduction in quantization noise decreases until we get to B=8 where, in
comparing the cases Lrap=13 and Ltap=9, we see very little difference in BER.

We can now compare the cases of Itap=I/2 and Itap=15 with Ltap=9 constant to see
the effect of increasing Itap. In comparing Tables 4-2 and 4-3, respectively, for the B=o BER,
we see the performance is improved in the case of Jrap=1!5. By interpolation, we can see
approximately 0.82dB improvement at 10”. Likewise, if we compare the B=4 curve in both cases,
we can see a 1dB improvement at 10™®. We look at 10™ in this case because at this BER, the
curves are not distorted. In the case of the B=8 curves, because there is no distortion at 10~°, we
compare the two and see a 0.836dB improvement at 10° [34]. From this, we can see that there is
an improvement in performance in the finite quantization BER which is consistent with the
corresponding improvement in the B=c0 BER. Qualitatively, if we were to compare both sets of
results for the difference between B=4 and B=a, we would see no significant difference between
the two. This, together with the fact that we observe no difference in improvement with an increase
in B between both scenarios, means that increasing Irap in this analysis does not affect the finite
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quantization BER as does L/ap but rather creates a significant improvement in the BER values for
B=o. This significant improvement for B=c. will decrease the finite quantization BER values
correspondingly. We recall that this was one characteristic of /tap observed in Chapter Three,
meaning that an increase in Itap created a more significant improvement in performance compared
to an increase in Ltap. This means that /tap affects the overall performance rather than just mainly
the degradation due to quantization, which is what was observed with Ltap. We can also observe
that an increase in Irap will cause the finite quantization BER curves to be less distorted for
SNRs above 12dB.

To summarize the effects of increasing Ltap and ltap on the degradation and to further
summarize more of the results of the Gram-Charlier Series algorithm, three degradation versus B
curves have been compiled. These curves depict the degradation in SNR with respect to the
corresponding infinite quantization, that is, the additional SNR required to achieve a desired
performance level, versus the number of quantization bits per halfband filter coefficient. To
evaluate how much degradation with respect to infinite quantization is experienced as B is varied,
we look at a specific M-MCDD scenario, that is, for one value of Ltap and Itap as well as a fixed
performance level. The degradation versus B curves, shown in Figures 4-7 to 4-9 were generated
by observing performance degradation curves, such as those shown in Figures 4-4 through 4-6.
Table 4-4 summarizes the degradation as a function of Lap, Itap and B while Figures 4-7 through
4-9 each show the corresponding plots for varying Lrap values (Ltap=35, 9 and 13) while keeping
Itap at the constant value of nine, twelve and fifteen in each plot, respectively. In each of these
plots, because of the distorted BER curves for finite quantization, we look at the amount of
degradation at a fixed SNR of 13dB. At 13dB, the BERs vary between 10” and 10™.

Table 4-4. Degradation (relative to B=0) in dB due to finite quantization for SNR=13dB.

Itap=35 Ltap=9 Ltap =13

B 4] 5] 6] 7] 8 4| s1e6] 7] 8 4| s5]6] 7] 8

Eﬂgﬂ 2.95[1.75]1.46]1.30[1.24|[{4.00]{2.20}1.65|1.40]1.28][4.21|2.37| 1.80| 1.45{1.32
p

=12 |[2.82]1.72|/1.45|1.27|1.14{|3.83|2.13}1.58|1.32|1.18}|4.10{2.30|1.70|1.37|1.22
=15 |]2.65/1.49{1.23/1.04/0.96{)3.35/1.86]1.36]/1.10/1.00]/3.85/2.06/1.54]|1.20}1.06
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Figure 4-7. Degradation in performance relative to B=co for various Ltap values keeping Itap=9.
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Figure 4-9. Degradation in performance relative to B=a for various Ltap values keeping Itap=15.

From each of these plots, we clearly see that the degradation decays expcnentially with B.
We can also verify the fact that for small B values (ie. B=4), there is a significant degradation in
performance as Ltap increases but as B increases, this change in degradation decreases umtil at
B=8, we see very little difference in degradation between the Ltap values. This value of B can be
considered large enough so as not to make a significant difference in degradation with an increase
in Ltap. Also, for large Ltap values (ie. Ltap=13), we clearly see a larger improvement in
performance from B=4 to B=5 compared to the smaller Ltap values. In the case of Irap, between
all three curves, we see no difference in the relative shape of the different Lrap curves but only in
their relative position. That is, as ltap increases, we generally see less degradation in performance
however, it does not make a difference in improving performance between values of Ltap. The
reason why we see less degradation in performance is because the smaller B=a BER values cause
the finite quantization curves to be lower on the BER scale as well. Therefore, an increase in ltap
does not affect the finite quantization as does an increase in Ltap. Depending on the value of B, an
increase in Ltap has a more direct effect on the degradation due to quantization than does an
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increase in /tap. Also, because as B—»x we expect no quantization error, in all three plots, we
expect the degradation to slowly approach zero as B—»x. This can be seen by observing Figures
4-7 through 4-9.

Apart from verifying the effects of varying Ltap and ltap on the degradation due to
quantization, the degradation vs. B plots of Figures 4-7 through 4-9 can be used as design tools
when having to select the value of B. Two specific examples will now be provided based on the
examples provided in Chapter Three on how to choose Ltap and Itap. In these examples, it has
been assumed that the desired SNR Ievel is fixed at 13dB for finite quantization and at this level,
the BER can be anywhere between 10° and 10™. Recall, this was the assumption used in
generating Figures 4-7 to 4-9.

Example 4-1.

We look back to Example 3-3 where we try to achieve the best possible dation and
performance levels. The desired levels were 1dB to 1.5dB and 10™ to 10, respectively. If we
remove the restriction of a maximum complexity level, we can then focus on achieving P, =10 and
A=1dB. From Table 3-15, we can then choose the combination Ltap=13 , Itap=12 since its
complexity level is lower.

Now, if we assume we have finite halfband filter coefficient quantization, then we must
also tolerate a further degradation relative to infinite quantization. We will specify a maximum
tolerable degradation of 1dB due to quantization, that is A, =1dB, giving us a total of 2dB
degradation relative to ideal QPSK demodulation (A =2dB) . Thus, at this degradation level, we
see from Table 4-4 that the minimum degradation we can achieve is A, =1.22dB and this is when
using B=8 quantization bits. Since this is closest to the specified 1dB degradation, we can indeed
choose B=8 for the scenario Ltap=13 , Itap=12. Therefore, using Ltap=13 , Itap=12 with B=8
quantization bits, we can achieve a performance level of P, =10 with A, =2.22dB degradation
relative to ideal QPSK demodulation.

Example 4-2.
Also from Example 3-3, if we do specify a maximum complexity level of M,,=4-10°
operations while trying to achieve the best possible performance level, we can choose Ltap=9 ,
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Itap=12. This scenario, according to Table 3-16, achieves P, =10° with A=1.5dB degradation.
We note from Table 3-16 that Lrap=11 , Itap=9 is also a possibility since this also achieves
P, =10 however, we choose the former scenario in accordance with the data available in Table
4-4, also noting that there is not much savings in complexity in choosing the latter case.

If we now assume that we have finite halfband filter coefficient quantization using between
B=4 and B=8 bits and that we want the degradation due to quantization to be less than A, =1.5dB,
giving us a total of A, =3dB degradation relative to ideal QPSK demodulation, the possible choices
for B from Table 4-4 are summarized in Table 4-5 below.

Table 4-5. Degradation levels for different B values for Ltap=9 , Itap=12.
B |l A Agp - Ay

6 1.58 -
7 1.32 0.26
8 1.18 0.14

So, we would be able to choose B=6 , 7 or 8 to achieve no more than A, =3dB total
degradation. In the case of B=6, we achieve slightly over 3dB, that is, A,=3.08dB. The deciding
factor may be the cost of having each of the three B values implemented and, depending on the
design specifications, to see which altemative is more feasible. However, judging by the reduction
in degradation as we increase the number of quantization bits, it is shown from Table 4-5 that there
is more improvement by increasing from B=6 to B=7, giving 0.26dB improvement, than by
increasing from B=7 to B=8, giving only 0.14dB improvement. Therefore, using this criteria, we
may choose B=7 quantization bits giving a slightly reduced degradation compared to B=6 while
not using as many quantization bits as in the case of B=8. Thus, if we choose B=7 quantization
bits for the scenario Ltap=9 , Itap=12, we can achieve P, =107 at A,=2.82dB degradation relative
to ideal QPSK demodulation.

To summarize the results of both examples, Table 4-6 is compiled below.

Table 4-6. Summary of the results from Examples 4-1 and 4-2.

Example || (Ltap, Itap) | B P, A Ay | A= A+A
4-1 (13,12) 8 [10°]| 1dB | 1.22dB| 2.22dB
4-2 9,12) 7 | 10°]15dB| 1.32dB | 2.82dB
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4.4.4 : Summary of Numerical Results

To summarize the effect of Liap and Itap on the finite quantization BER analysis, we look
at the degradation vs. B curves of Figure 4-7 through 4-9. We clearly see the degradation in
performance as Ltap is increased due to the augmented quantization noise to the entire system
resulting from more halfband filter taps. At the same time, for increasing Ltap values, we see the
larger improvement in performance as B is increased from four to eight by the decreasing slope of
the curves. Infact,weseeamoresigﬁﬁcantinprovemmtinperformanceforsmallvalu&s of B as
B increases. We also see that as B approaches eight, the change i degradation decreases,
especially for smaller Ltap values. This is expected because as B increases, we are introducing
less and less quantization noise per halfband filter coefficient. Once the value of B reaches eight,
we don’t see a great change in degradation. In fact, it was found that there was no need to increase
B beyond eight since we would not make any significant observations regarding performance. At
the same time, even if Ltap increases from five to thirteen, the amount of degradation will not
increase substantially for B=8. From this analysis, however, it is expected that if B was allowed to
approach infinity, the amount of quantization noise which would be added to the system would
become smaller and smaller until no quantization noise would be present. This would mean that at
B=oo,theam0\mtofdegradationrelaﬁvetoinﬁnitequantiuﬁonw0\ﬂdbe0d8foranyvalueof
Ltap chosen. The effect of Itap on the BER performance due to quantization is not the same as that
of Ltap. Comparing any two Itap cases, we observe no difference in a relative change of Lrap and
B. An increase in Itap, however, did decrease the overall degradation but this is expected to be due
to the vast improvement in the infinite quantization BER. This was actually an observation made
in Chapter'lhreeaswecomparedanmcmseinltapversusanincmseinLtap. The effect of a
change in Ltap and/or B on the quantization is therefore more direct than the effect of a change in
Itap. That is not to say that their change has more of an impact on the overall degradation but
rather we can observe more of a relative difference in degradation due to quantization if Ltap
and/or B were to change than if Itap were to change, referring to Figures 4-7 through 4-9.
Logically,thiswouldbeexpectedsinceﬁlequanﬁnﬁmnoisemﬂlesystemoonmﬁ’mna
quantization of the halfband filter coefficients, whose quantity is affected by Lrap. Also, B affects
the level of quantization of these coefficients. The value of Itap would have an impact on the
overall performance of the M-MCDD. More specifically, it mainly effects the infinite quantization
BER as opposed to the degradation due to quantization. All of this is supported by the numerical
results presented.
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As for the execution time of the algorithm, we can generally say that the CPU time
required for the Gram-Charlier Series algorithm was quite large, aithough all attempts were made
to minimize the CPU time as much as possible. In several of the more complicated cases, for
example, Ltap=11, Itap=15 and Ltap=13, Itap=12 both with B=8, over three hours of CPU time
was required to execute the algorithm. This length of CPU time, however, is not reflected in the
results shown in Tables 4-1 through 4-3. For the simpler scenarios such as Lap=5 or 7 with
Itap=3 or Itap=6 and B=4, it would take up to forty minutes of CPU time to complete the
algorithm. In contrast, from Table 3-10, the execution time for the GQR algorithm was seen m
general not to exceed thirty minutes. As for the accuracy of this method, we see that only the
truncation error due to using M+/ terms in the Taylor Series for Q(:), Ry , has been calculated
[30]. This is because truncation errors due to the upper bounding of each Gram-Charlier Series
were initially calculated and observed to be small relative to R,,. Although these truncation errors
were not presented in Tables 4-1 to 4-3, we can predict their magnitude by making an observation
for the truncation error Ry, . We see that it falls significantly with an increasing SNR. In fact, for
SNRs above 6dB, we see an underflow occurring in R, . This shows a high level of accuracy in
the corresponding BER results, except possibly at 0dB SNR where R,, was seen to exceed a value
of one in Table 4-3. In that case, an instability in R,, at 0dB may be observed. This accuracy for
higher SNRs may be of some surprise since we easily see the distortion of the upper bound on the
finite quantization probability of bit error for SNR values above 11dB. The reasons for this
distortion will be discussed next. |k was also observed that the analytical tool using the Gram-
Charlier Series technique worked best when Itap was greater than nine. If Itap was selected to be
less than nine, error floors would occur in the finite quantization BER curve.

From the results presented in Figures 4-4 to 4-6, we see that the upper bound on the BER
for finite quantization is somewhat distorted for high SNRs since at these SNRs, the BERs do not
decay logarithmically. There are several factors which may contribute to this occurrence. A
contributing factor from the analysis may be the numerous inequalities that were used over and
over again. Inequalities such as Schwartz’s Inequality were used so many times in order to
separate the interference and quantization variables [34]. Thus, this may have affected the upper
bound for certain portions of the curve or for various SNR values. This also may have to do with
the number of terms chosen in the Taylor Series expansion, since the number of terms was fixed
and was not optimized. A lack of higher order moments for the quantization, kowever, could very
well be the main contributing factor. We were generally limited to the fourth order moments in the
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calculation of the Gaussian noise moment of (4-52) and the ISI and ICI quantization moments,
represented by (4-50) and (4-51), respectively, due to our limited resources.

To conclude, we now have the tools with which we may choose the number of quantization
bits per halfband filter tap, B , knowing the values of Ltap and Itap to achieve the performance and
degradation levels we want. We may then choose the value of B based on the maximum amount of
degradation in the performance of the M-MCDD due to quantization noise we are willing to accept
for BERs below 10~. Particularly in this analysis, we can conclude that the preferred values of B
to choose from are between five and seven. Generally speaking, if we use B=4, we will suffer too
much degradation compared to taking B a step higher to B=J. At the same time, if we compare
B=7 to B=8, we see that there is very little improvement in performance if we select B=8. Kitis
absolutely necessary to minimize the degradation levels at the expense of potentially incurring a
higher design cost, it would be better to use B=8, however this may not be merited. If one is
willing to experience a slightly higher level of degradation, it would be recommended to keep B=7
in order not to potentially drive up design costs unnecessarily.
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Chapter Five

Conclusion

The M-MCDD has been chosen as the preferred structure for the implementation of on-
board processing (OBP) satellite communication systems because of its modularity, compactness,
low structural and computational complexity and low power consumption, in comparison to
previously designed multicarrier demodulators (MCD), namely the Single Stage Method (SSM)
and Polyphase/FFT Method (PPM) [1-2] [6-7]. Although the concept of the M-MCDD as a group
demodulator and the analytical techniques discussed in this thesis are well known [6-8] [10-12]
[15-22] [25-26], the contribution of this research lies in the application of these analytical
techniques to evaluate the performance of the M-MCDD [13-14]. This research has provided two
key contributions which served to evaluate the performance of the M-MCDD. These two
contributions are the presentation of the numerical accuracy of the results and the presentation of
the system performance of the M-MCDD. Conclusions based on these resuits will be given.

The first contribution is that we have studied the numerical accuracy of the results
provided. These numerical results were obtained through an AWGN analysis to evaluate the
performance of the M-MCDD in the presence of ACI and also in the presence of quantization noise
[9-11] [13]. Analytical techniques were needed because introducing interference and quantization
noise into the demultiplexed output made solving the probability demsity functions virtually
impossible because of the infinitely large amount of interfering symbols which needed to be
considered [10-12].

Althwghanalysiswaschomasthemethodtoobtahthenumerical results, there were
actually two possibilities in effectively choosing the filtering requirements for the M-MCDD. The
other possibility was to use simulation [2] [13]. The reason why analysis was chosen as the
preferred method of evaluation for the M-MCDD is because simulation, which has been the
method used to date, is known to be very time consuming. This is especially true for evaluation at
low bit error rates [2). The development of analytical tools for performance evaluation is a
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valuable asset since an analytical tool is significantly faster and more accurate than a simulation
program {13). Having said this, however, we did not go through and compare actual numerical
results between simulation and analysis.

Thus, from the analysis, we have developed analytical tools to evaluate the derived
probability of bit error expressions numerically. Particularly, the candidate analytical techniques
which have been studied to evaluate the performance of the M-MCDD in the presence of ACI were
the Gauss Quadrature Rule (GQR) Technique [10-12] [15] [17] and the Beaulieu Fourier Series
Expansion (FSE) Technique [16]. The GQR technique was chosen as a candidate because the
weights and abscissas, needed to determine the BER, could be generated quite easily thereby
requiring a low level of processing power in its execution [2] [10-12] [15] [17}. The Beaulieu FSE
technique was also considered because it involved a computation of the characteristic function of
the interference, which is easily obtainable in contrast to the p.d.f. of the interference, which is next
to impossible to obtain [2] [16]. These two techniques were compared in terms of their speed of
execution. This comparison was done to determine which of the two techniques was better suited
to carry out the performance analysis of the M-MCDD [2]. From the numerical accuracy of the
results presented, it was concluded that the GQR Technique was undoubtedly better suited for the
performance evaluation due to its relatively low CPU time requirements. We also looked at the
BER curves and error measurements resulting from both techniques. From the numerical
accuracy, we can also see how the parameters involved in the performance evaluation of the M-
MCDD were selected. For example, Nterms, mL and mU were chosen so as to achieve the best
possible accuracy while keeping the CPU timing requirements as low as possible 2]

To evaluate the performance of the M-MCDD in the presence of quantization noise as well
as AWGN, the AWGN in the presence of interference was extended to investigate the effect of
using finite halfband filter coefficient quantization on the BER performance of the M-MCDD. The
Gram-Charlier Series Expansion Technique [14] [17-22] was used to evaluate the degradation in
performance due to the presence of quantization noise. It was chosen due to its simplicity in
generating its coefficients mathematically from the moments of the quantization, thereby requiring
a low amount of CPU time in generating the BER results [21-22]. Overall, the analytical tools
allowed us to evaluate the performance of the M-MCDD as a function of the number of non-zero
halfband filter taps, Ltap, the number of channel detection filter taps, /tap, and the number of
quantization bits per halfband filter coefficient, B. And although there were limitations cited to
several techniques which may have affected the performance results of the M-MCDD, the results
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obtained were considered acceptable. That is to say, compared to theory, the analytical model
behaved as expected. As the number of filter taps were increased, the performance of the M-
MCDD converged to the ideal case.

The numerical results were also presented on another front, namely to determine the
system performance of the M-MCDD based on a desired performance and degradation level.
Therefore, the second contribution of this research is that we have provided tools with which a
designer may choose the number of filter taps per haifband filter and channel detection filter as well
as the number of quantization bits per halfband filter coefficient. The halfband filters and channel
detection filter, which are a part of the M-MCDD, are FIR filters therefore their lengths or number
of taps is finite [2] [6-7] [9]. Thus, the design problem we are faced with is how to effectively
choose the number of filter taps required for the halfband filters (Ltap) and channel detection filter
(Itap) in order to achieve a target performance. In addition, since infinite word length or real-
valued filter coefficients areimpossibletomlize,wearerequiredto know the finite number of
quantization bits per halfband filter tap to achieve a desired degradation level relative to the infinite
quantization scenario [9] [28]). Thus, using the numerical results, the number of filter taps and
quantization bits per halfband filter coefficient could be chosen.

The BER curves have been compiled to form design tools such as BERxSNR isometric
contours and degradation versus B curves. Thus, using the isometric contours, we may choose the
values of Ltap and Itap as a pair in order to achieve the performance level and degradation level
relative to ideal QPSK. Also, computational complexity was used as a design criteria and a trade
off was seen between performance improvement and complexity in the selection of Ltap and ltap.
Thus, we can also choose from the possible pairs of values of Ltap and Jrap by referring to the
complexity involved in computing the BER of the M-MCDD. That is to say, from the performance
and degradation levels we wish to achieve, we may have several candidate Liap and ltap pairs to
choose from. If we specify a maximum level of computational complexity of the M-MCDD we
wish to achieve, the choices may be more limited, making our decision much more focused. And,
once the values of Ltap and Itap are chosen, we may choose the number of quantization bits per
halfband filter coefficient in order to achieve the degradation level relative to infinite quantization,
by referring to the curves depicting the degradation in SNR versus the number of quantization bits,
B.

From the numerical results, we have made some general conclusions as to the better
choices for the filter taps and quantization bits. We have concluded that using small lengths for the
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channel detection filter should be avoided due to the high level of degradation in performance
associated with these filter lengths. For example, using a filter length of three resulted
exceptionally high degradation, relative to ideal QPSK, compared to using filter lengths of six or
larger. When choosing the halfband filter lengths, we did not find any outlying values that caused
significant degradation in performance, unlike what was observed conceming the length of the
channel detection filter. Also, for the number of quantization bits, it was concluded that using four
quantization bits per halfband filter coefficient resulted in very high degradation compared to using
five bits, while using eight quantization bits showed negligible improvement in performance
compared to using seven bits. Thus, it would not merit using eight bits as opposed to seven bits
due to the higher design cost that potentiaily may be incurred in using that many number of bits.
Therefore, the best range of bits to choose from, in general, was between five and seven.

In summary, the theme of the research behind this thesis is how to design a Multistage
Multicarrier Demultiplexer/Demodulator (M-MCDD) group demodulator for the implementation
of on-board processing (OBP) satellite communication systems [1] [6-8]. We achieved the two
main objectives stated at the beginning of this thesis. On one hand, we evaluated the performance
of the M-MCDD in the presence of AWGN and ACI to develop an analytical model. This model
was used to effectively choose the filtering requirements of the M-MCDD. Secondly, the effect of
finite word length halfband filter coefficients on the performance of the M-MCDD was investigated
in order to extend this analytical model. We were then able to effectively choose the number of
quantization bits per halfband filter tap. To summarize these objectives, the interest was to design
the M-MCDD based on the number of filter taps and quantization bits per halfband filter tap in
order to achieve a desired level of performance and degradation.
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Appendix

Details of Derivations

This appendix provides the detailed derivations for Chapters Three and Four. For

convenience, the section is numbered as Ax.y.z where x is the chapter number, y is the major

chapter section and z is the particular section being dealt with. It includes the following

sections:

A3 : Derivations from Chapter Three
This part contains the derivations from Chapter Three on the topics:

A3.1l:
A3.2:
A33:
A34:
A3S:

Details of the derivations from various sections of the AWGN Analysis
Derivation of the Moments of the Interference

Details on the Truncation Errors From the GQR Technique

Details on the Truncation Errors of the Beaulieu FSE Technique
Details on the Computational Complexity of the M-MCDD

Ad : Derivations From Chapter Four
This part contains the derivations from Chapter Four on the topics:

Ad.1:

A42:
A43:
Ad4:
A45:
A4.6:
A4.7:

Details of Quantization Noise Analysis from various sections for the Probability
of Bit Error

Proof of the Convergence of the Gram-Charlier Series

Expansion of the Upper Bound on Q(-)

Derivation of the Moments of the Quantization Noise

Derivation of the Correlation Between the Quantization and Interference
Derivation of the Maxima and Minima of the Quantization Noise

Derivation of the Truncation Error For the Finite Taylor Series of Q(")
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A3 : Derivations From Chapter Three

A3.1 : Details of the AWGN Analysis

A3.1.1 : Noiseless &* output (Derivation of (3-6) )

Figure A-1 presents a more general yet simplified M-MCDD model from Figure 2-4
havinglstagswhichwasusedtoderivethenoiselessk‘outputehmelandtheﬁnalomputsignal.

x a2 Ta)) =
ys 1 (®T¢)
x.1 (2" Ta))
poreenn
‘ %1 (@2 Ts)) =
x21 (n(2Ts)) x2.1(n(4Ts)) y: 2 (8Te)
X211.((4T3))
b ccecen
= xe.11 ((2Ts))
x’11 (aTs)
X112 (M(2Ts))
t
1 oo
!
! X220((4Ts))
! 4 M2 :
| X (2T ) Xi21((4Ts)) : i 2@ Ta) =
| YI(lch)
! i
i LA
; ! 0t @2 T
. : xi' s 7 Ta)) =
! 1 yo(nT:)
' : !
1 : !
v v v
stage 1 fage2 e
sampling freq. : fs/2 sampling freq. : fs/4 amplmgﬁeq j,—-j}/Z'

Figure A-1. The general /-stage M-MCDD used in the analysis of the final output [1] [6] [13].
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From the M-MCDD structure presented in Figure A-1, we can equate the output from
stage i to the correspanding input to stage i+/. Using the notation presented in Figure A-1, we can
see that:

x:_/,ﬂ(n -2'T) = X, 20 2'T) (A3-1)

x,,(n2T)=x,,,,(n- 2'T) (A3-2)

, where 1< j<2'"!. Thus, if we rearrange the indices from (A3-1) and (A3-2) to generalize the
output from stage i and noting that the desired output channel is modulated unto the carrier
fi = (k+3)f. , we obtain for the highpass and lowpass output from stage / , respectively
(consequently the same as the input to stage i+/ ):

%,y (- 2'T)
=D~ - i{xd‘%‘J((m. 2 =n-27)- I;). } _ highpass oufpf‘t
—|(-1)"*"" h(n-27'T)- oD from stage i
X,.5(m-2"T)) =5 (A3-3)
xd_%j,t. (m-2'T))

=T Z from stage i

n=-L h(n . Zl-l T ) . ejz(bv%).n

& {x.{'%'](('"'zt -”'ZH)‘T,)'} _ lowpass output

, where 1<b<2'. We will consider the effect of the DAF later so we will derive the desired
output in terms of x; (/). Once the effect of the DAF is substituted, we will obtain the form of the
desired output in terms of x(>). Thus, if we proceed through the first stage by substituting /=/ into
(A3-3), bearing in mind that we can have either a highpass or lowpass output, respectively, we
obtain :

(x,,(m-2T,) = x,, 4 (m-2T,)
D" i {(_1)""r' -h(n, -T,)- . } _ highpass output
| x, (@m~n)-T)- "™ from stage 1
i=1=q (A3-4)
x,,(m-2T))=x,,(m-2T))
— (D" - i {h(n, -T)- , } _ lowpass output
| x,(@m=n)-T,)-e** ™[~ from stage |
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If we now similarly proceed through the second stage, we will look at two cases. In the
first, we will proceed from the highpass output from stage one, through M, , while in the second
case, we will proceed from the lowpass output of stage one, through M;; . Thus in each case, we

respectively get :
’xl.l (m-4T) = Xy 4 (m-4T))
— (=D~ - i {(-—l)..,-zr. -h(n, -2T))- : } _ highpass output
| x,,((4m - 2n,) - T))- "4 from stage 2
i=2 (Mz.l) =9

x3,(m-4T)=x,,,(m-41))

T X  lowpass output
x,,((4m—2n,)- T,)- e from stage 2

L my=—L

Ix(k+3)n;

L
= (-1~ Y h(n,-2T)-x,,((4m—2n,)-T,)-e

m=—Lnm=-L

t. & [(=D*"-h(n,-T,))-h(n, -2T)-
= ._.l -~ |
D Z 2 {x,', ((4m -n, —2n,)- T,) . e_r-(k,;ml,,,z)}

(x,,(m-4T,)=x,, ; (m-4T))

~ (D) i (=D™*" -h(n, -2T,) - _ highpass output
X322 ((4’" -2n,)- T,) - ej‘(‘";h: from stage 2

n =—L

i=2 (M,,) =]

x,,(m-4T))=x,,,(m-4T))

=(-D~- i {h("2 -21)- , } _ lowpass output
x,,((4m-2n,)-T,)- et from stage 2

ny=-L

.

= (—l)" . ih(nz . 27;) . x2.2((4m __2"2) . 7;) .eJl(h»;')nl
nay=-L
t L [(h(n -1,)-h(n,-2T))-
=(-1)" - .
D Z z {xm(@m—n, —2nz)-T,)-e"""7"""""}

ay==Ln=-L

(A3-5)

(A3-6)

This process holds for every stage thereafter until i=/. It is possible to reverse the order of
decimation and filtering without loss of generality due to the linearity of the system however, in this
analysis, decimation is assumed to precede filtering through each stage. Therefore, from (A3-5)
and (A3-6), we see that the (-1)'" factor present in the highpass output from every stage
disappears, except from the final stage creating two distinguishable cases in the end. Thus, to
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simplify the remainder of the analysis, only the lowpass outputs from each remaining stage will be
looked at. Thus, proceeding recursively through stage /-/, we get for each stage:

i=3=>4

(x,4(m-8T,)=x,,,(m-8T))
— (=)~ i h(n, -4T.)- _ highpass output
) x,,(8m—4n,)-T,)- /"t from stage 3

(-D™% -h(n, -T,)-h(n, -2T,)-h(n, -4T,) -
=(-D" - ,
> Zzz{xl.l ((8"' —n, —2n, —4n,)- T,) -e"“’?)("""‘“’”}

n B A

(A3-7)
X, g(m-8T)=x,,,(m-8T)
- (D" i h(n,-4T))- _ lowpass output
- s | x5,4((8m —4n,)- T,)-e’" ™ > from stage 3
h(n, -T.)-h(n, - 2T.) - h(n, -4T.) -
=(-DH"- —_
b nz.guzx{xm ((8"1—"1 —2n, —4n,)- I;)'e"(b;)("‘m’m”

X,y (- 27T = X, g (M 27'T)

| 27T
=D Y qx. (@7 m-2"n)-T) ;

AL g=-L

highpass output
from stage | -1

.e_/x(k 2y

("l)n"r' 'h(nl - T:)’h("z 'ZT:)'”h(nl-l 202 T;) )
=(-D~ ZZZ xl,l((zl_lm —-n - 2"2--"—2[-2",_') y 7:)

LT PyRT—
i=l-1= (A3-9)
Xy ars (m- 2 T)= xl—l.z"’.l.(m 2" )
i h(n,  -2"T)- lowpass output
=7 3 Axian (@m =20 1)  from stage 1 -1
- e Juk+d )y

h(n, -T))-h(n, -2T,)---h(n,_, -2"T))-
=(=D" ZZZ xu((ZHm—nl -2n,—=2"n, )" T,)

n R /BN kel
.ejx( ety y)

L -
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Thus, after stage /, we obtain the desired output signal which in general can be expressed

as
r ’ 1
h(n,-2'7'T))-
P> ZH( ) [, k=0,
/A n=-L I} ! -1 1‘("?‘)"2"1 ’ k even
x,((2'm=-Y2"n)T)-e
L 4=1 J
Y (mT) = < (A3-9)
r 1 3
" T 1(atn, -2 1))
- L L 4=1 )
(-1 EL ...... ZL . g [ k odd
X, (@'m-32"n)T)-e
L . 4=1 J

, where 7. = 2T, . Now, we must take into account the effect of the DAF to be able to arrive at an
expression in terms of the MF-TDMA sampled input signal, x(n7,). If we assume that x(7) is
bandlimited to NB from the start then we can say :

' 1
X, @'m=-Y2"n )T} =x((2'm-3_2""'n)T) (A3-10)
sl J=1

, referring to the quantities in Figure A-1. This signal passes through the DAF whose impulse
response has been assumed to be approximated by a prototype FIR halfband filter (see Chapter two
for more detail), thus [13]:

x,,(T,) = {xi,*h}nT)) A3-10)
L L
= Y h(pT,)-x},(n-T, - p-T,)= 2 W(pL)-x(n-T,- p-T)
=L p=-L

If we substitute (A3-11) into (A3-9) and rearrange the original expression so that all
filtering operations are accounted for, we get :

( ¢ L L
Y hn,T,) Y h(n,2T) 3 ...
L e | k=0,
L 1 /x(b;rﬁn, > keven
Y h(n,2'T)-x(2'm-Y 2'n)T,)-e =
{ m=-L J=0 )
Ye(mT) =5 , . ) 7 (A3-12)
/4
Y ()" -h(n,T,) Y h(n,2T) 3. ...
-~ n=-L n=-r m=-L
(._l) . 1 4 ; kodd
J4 1 ;.(t.%)-z;.,
=Y h(n,2'T,)-x((2'm-_2'n)T,)-e
L L m=-L J=0 J
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Once (A3-12) is simplified, (3-6) is obtained.

A3.1.2 : Final Output and Interference Terms (Derivation of (3-7) )

First, we manipulate (3-1) and (3-2) in order to obtain the same index as is indicated by
x(-) in (3-6). With the proper index, (3-2) becomes :

r

1 < A, -€
engnn)-3
= == ((2' ZZJn )- T] Ye)

S

Azrf.((z‘-— éz’n,)-r,)oa., +#:]
10

s (m25-2n,25 ) 0, 001
10

/
== (((2' 22"1,)'7",)"'72—70
=0

‘ 1 (A3-13)
j[Zl(l?—‘)-f‘ (.'rc' In, 'T:]‘Gu +oe]
A, -e e

= !
= h,(((Z'm-ZZ’",)-T,) —ily —74)
. ‘,=°

]
— (k)3T
Ak e Jn( ;);_-:'; .ej(a.‘+‘.) .
L

=(-D"- 1
“Z"’ h,(((z’m—zzj",)'t) =i, —7s)

J=0

If we use the same index in (3-1) and then substitute (A3-13), we obtain:

x((2’m—i2’n_,)-7;)=§s,((2' ZZJn )- TJ {(2' ZZJn )- T]
J=0 k=0

J=0 J=0

- 3 .
Jx(k+3) ;:c"'

A e

=S - 2 -h,(((Z’m—iZ’nj) : T,J —iT, = 7,)

FE2s J=0

+z{(2’m—i2’nj)- T;) (A3-14)

3
—ju(k+d)-En,
10

. e.f("u +8:)

v

. e e

=(-D"~ 'Z‘ =-=.jy (((21 ZZ"n )- T) }'k)

J=0

V"




Next, we substitute (A3-14) into (3-6). To simplicity the analysis, we will consider only
the lowpass outputs from the final stage since the steps to follow for the corresponding highpass
outputs are exactly the same. The lowpass outputs from the final stage are represented by the first
form of (3-6), for k=0 and k even. Therefore, from that part of the analysis, we get:

Y. (mT)=(-1)" i ...... i IL[(;,("] 2T, )) emh;‘)-gm

ng=-L m=-L t=0

g

_/a“ e —jx(h-—) 2"1

ZA -eft .
4 (=D= -4 k=0 '""’ h (((21 ZZJn )- T) )

+z((2’m—i2’nj)-7;)
\ =0

ag

3/
(¢ A (A3-15)
[1(rn, -2°T)))-
J=0
'A .e'*"
L L
= Z ...... < Nt Ja., ' ! P . 3
me=—L meoL 24 - -h(@2'm 22 nj).T; —iT, - 7,)- !
k=0 Z =
== z(k-q)Zn
L \ € J
!
N
+-D7- Y )3
ny=-L n=-L

Z((z' 221n )- T) saD T

From (A3-15), if we isolate the desired term for the ¥ channel, we obtain for y; (m7_) :
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IL[ h(n,-2’T,))
Vi(mT) =4, - -3 ™3 ... 3 "( J

| hQ2m=Y2'n)-T,~iT, -y,]
J

lL[(h(nJ .2'T))

+ZA el . zelﬁq;z ...... Z h,[(ZIM-sznJ).]:—i];-yq]>(A3_l6)
J

Jatk-q} 3 n,
s

€

-~ 7

§ (CORZA

+(-D Z Z " sathe )3 m,
" A@'m-32'n) T)-e
J

From (A3-16), if we substitute the appropriate indices according to those defined in (3-3),
we obtain:

]‘I(h(n -2°T,))

2B, ~HT]= A4, e e 3. Z s=0
~ h[(2'(ﬂ, 5)-221",)’7:-—‘17;—71]

h(n, -2'T))
+4,-e” -Ze""’*z ...... z ]f:[( )

s ~ |- ("B, - ;)—ZJZZ’n,)-T, —iT, -7.] (A3-17)
ﬁ (h(n, -2 T))) |
+Z.A e . Zeﬁuz Z ;;,o[(z’(ﬂ, —5)—57:2’",)1 -k -y, 1;
x'ej“bq).znj
[1(kn, -2'T))-
+(-DOP Y ” stk T, [

M AQ'B-9-22'n) Tle
J

, where the first term in (A3-17) represents the @® desired symbol on the k™ desired channel, the
second term represents the ISI on the &* channel, the third term represents the ICI on all other
interfering channels and the final term is the Gaussian noise. Substituting (A3-17) into (3-3) gives
us for the output of the channel detection filter :
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]L! (h(n, -27T))) W
r.(T)=A4, -e* -e’“~~-f:z ...... PR 'jh-,[(2’(ﬂ, ~8H-Y2'n)-T,—al, -7,]1}
o ) -8l(&+n)T.] j
f[ (hn, -2’ T)) \
+A, e Y ™ ﬁ:z ...... PR -;:[(2’(/9, ~&5-3.2'n)-T,~-iT, - 7.1}
.o ) -gl(&+ u)T] j
l_:_[ (b, -2'T)) 1 (A3-18)
+ZkAq -’ Ze"gz ...... )R -;,o[(Z’(ﬂ, —g)-zj:zlnj)-r, —iT, -7, 1}
et mor1e T

(1 3

[1(Ats, -2/ 7))

I, s=0
+ DY@ B - -3.2'n) )
J

jt(ko;’)-znl

-8l(c+u)T.]-e !

Once we repeat the above steps for the highpass outputs from the final stage, we will have
two distinguishable cases for (A3-18), one for k=0 and k even and another for £ odd. From there,
we may define (3-8) and (3-9) as the intersymbol interference (ISI) on the ¥* channel and the
interchannel interference (ICI) on all other interfering channels, respectively. Also, we may define
(3-10) as the output WGN process resulting from the £* channel. Once these quantities are defined
and substituted into (A3-18), we obtain (3-7) exactly.

V-

A3.1.3 : Output Noise Variance (Derivation of (3-11))

In order to derive (3-11), we will focus on the form of the lowpass outputs from the output
WGN process of (3-10), corresponding to k=0 and k even. In the case of the highpass outputs,
because we are looking at the second order moment about the origin, the (-1)*" factor will
disappear thus for both cases the final result will be the same . Since z(?) is a stationary Gaussian
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process, we assume that 2(2) ~N(0,o’ ). Since z(1) has a mean of zero, the variance is simply
obtained by considering the second order moment about the origin, thus {31]:
E@z})=E(z, -z,) =0,
( 4Q'(B,-£)-3.2'n)-T.]
J
> Y D ] (b, -2 7))
e m

L 4=0

v

j:(kv—’)-Zn

-8l(5, + 4, )T ]-e ’ (A3-19)
A2' (B, - &) - Zz’n)T] r

?;(—l)"f"‘x 3 oo ST (ke -2 1))

L4 n; J=0

= E<

v

ke
:g[(gz +/‘1)T:]'e !

Next, we get :

s [ (b, -2/ T)) - [T e -2'T)
j=0 I=0

E(zk'z;)=z:z-"z zz'z*gl(él +u )T} g[(f-v +.”1)T] r (A3-20)
e z[(z 8,-6)-Z2'n,) T}

z[(z (B, -&:)- szn) T]

Since z(1) is also a white process, the correlation function for z(?) is [31]:

R (S, -&,) ={a 6(§l —52) > e =6 (A3-21)

0 . other

Once (A3-21) is substituted into (A3-20) and substituting & = & = &, we get :

o =0 -3 |gl¢+pITY

X(ZIW 2T,

From (A3-22), the cross-terms of the halfband filter coefficients fall out due to the
equivalent noise bandwidth of i(n,-2/7,) [27]. Without these cross-terms, the form of (3-11) is
seen from (A3-22).

(A3-22)

j=

+ZZh(n -2'T,)-h(n; - 2’T)J

n .l
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A3.1.4 : Derivation of the Probability of Bit Error (Derivation of (3-20) )

In order to show that (3-20) is true, we start from the sufficient statistic of (3-19). From
(3-19), the variable 7 is random with respect to the carrier phase ¢, and timing phase y, . The"
variable u(0) is random with respect to the timing phase 7; . Since ai o is also randomly chosen
between {£/} with equal probability, it can be shown that :

Pt = Byo i (A3-23)

We will prove (A3-23) by looking at two cases : ar o = -/ and ax o = +/. In the first
case, for a. o = -/, assuming a constant carrier phase, we have :

T2
Pyos = [ Pr{-a, - w@+ 7 +2[(5) 20} £(r.)dy,
-T2
T2

= [PefziUT) 2 4, -w(@ -1 }- F(r )y,
-2 (A3-24)

= [PefN©.0) > 4, -0 -1 }- 107,
= rf Pr{N 1) =

-1

A -u@)-n
(¢ 2

o

}'f(n)dh

thus :

- f Q(—A‘“—f)—"i)-f(n)-dr. (A3-25)

8 1.7y 3 =1
-I/2 o

Now, fora; o = +1 :

T2

By = | Pr{a, - u@+n +2[UT)<0}- f(r)dy,

-T72
T/2

[PrfeiCn) <-4, -w@ -7 }- f &y,

A (4320
Jee{N©. 0 <-4, -u@® -1 } - f(r )y,

-T2

T2

f Pr{N(o,l) S i“ff)#} £y,

-T2

o
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Since it was assumed earlier that the data symbols a;. ; are independent and equiprobable,
7 may therefore be a positive or negative quantity with a probability of 3 thus 7 has an even
probability density function [10-11]. It thus follows from (A3-26) that :

Pyreo = ]’ Q(i%’)—_—”) f(r,)-dy, (A3-27)
A .
So since :
By, = %’(l’qu...-,. +.11|,,...,=-.) (A3-28)
we have that :
Py, = IQ(L‘S”—‘—") Sy, (A3-29)

where f{7:) is the p.df of the timing phase on the desired % channel. To obtain the
unconditional probability of bit error, we must average over the probability density function of the
interference. Let f,(7]) be the p.d.f. of the interference 77. Thus, the unconditional probability of
bit error becomes :

PFI I Ax0 -2 S -dyy - f(m)-dn (A3-30)
ol-Tn2 o,

If in (A3-30) we assume that we have a fixed timing offset ;. , we see straightforwardly
that (A3-30) becomes the probability of bit error expression that is shown by (3-20).

A3.2 : Derivation of the Moments of the Interference
(Derivation of (3-38) through (3-41) )

First, we start with the truncated expression for the interference variable of (3-36) and
define 77, asthe ISI and 7, as the ICI. These two quantities, respectively, are :

n= Y A -a,, - ual, —il}) (A3-31)
& [ a,.-v(aT, -iT)-cosé, —v°(al, ~il,) sing,]
= A - -
: ; ! l=§;ﬁ{—bq.l -[v'(a]; —ﬂ;)'sm¢q +VQ(aI; "'TZ)'°°5¢J} (4332
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If we look at 7’ from (3-36) on a symbol by symbol basis, that is, for fixed i and fixed ¢”*
channel in the case of the ICI, we can say:

=M, Mgy =1 e (A3-33)

From (A3-31), we can see easily how (3-38) was derived. Now, we will show why the odd

order moments are zero. Of course, one should expect this result since the data symbols a; ; are

equiprobable and chosen from the set {-/,+1} [10]. Thus, if the order of o from (3-38) is odd, we

have:

rn
14ty fa, -ut(al, -i%)- F(r,)-d,
&, -In2
1 12 ‘ . (A3-34)
=147 - [(w (@l — i) ~u* (aT, ~iT))- £ (1)) -dy,

-T2

E[ni]

As for the even order moments of the ISI, as shown in (340), this can be easily derived.
Consider the order of the moment to be p”=2p, thus :

T2

Elni)=+-AP- [24%(@, -iT) f(r.)-dr,
-T2

(A3-35)

T2

= 47 [(ual, ~T))* - £ r,)-dy,

-T2

We see that this is exactly the form of (3-40). As for the moments of the ICI, we also see
quite easily how (3-39) could be derived by simply considering all the random quantities from
(A3-32). We will show why the odd order moments are zero. First, consider an arbitrary term in
the polynomial presented in (3-39), that is to say [34]:

s | o -v!(aT; —iT,) -cosg, —v°(al, —iT)-sing,]|”
3, |-b,, V' (aT, —iT,)-sing, +v°(aT, —iT,)-cosg,]
ey .(p\_ 5 @ (@ ~iT) cosg, Vo, ~iT;)-sin 4,1
B) .5 b2, v, -iT,)-sing, +v° (aT, ~iT;)-cosd,V’

(A3-36)

, where 0< f< p. If we consider 5 odd then, we obtain for the individual terms :

[ 10-8 )

[V(af, -iT})-cos¢, |~ [V(al; ~iT;)-sing,

~V9(al; ~iT;)-sing, | | +v%(aT; ~iT;)-cos,
; - ., = ~.p=0 (A3-37)

[V(af, —iT})-cos¢, |’ [V(al, ~iT;)-sing, ]|
| —v?(aT; -iT})-sing, | | +v°(al; —iT})-cosg, |

-a” .
a!.‘

A

B
+a,,” -
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and if we consider S even, we have p—fodd thus :
[viaf,-iT)-cosg, T, [V, ~iT)-sing, T
-ve(aT, —iT,)sing, * | +v(af, -iT;)-cos ¢,
P,
v'(al, ~iT,)-cos¢, |77 [V/(al,~il,)-sing, g
—v?(aT, -iT)-sing, ¥ [#v°(aT, —iT})-cos¢, | |

~

L =0 (A3-38)

thus, the odd order moments are zero. As for the even order moments, we will show how (3-41)
was derived. First, for the case where § is odd, we have p—f odd also thus we may refer to
(A3-38) to see why the result will be zero. As for the case where S is even, we have p—f even
also thus we have : _
) (p) (v’(an ~iT,)-cos g, )‘”’ [v'(ar,, ~iT,)-sin ¢, }" 330
)\ —ve(at, -iT,)-sing,) \+ve(at, -iT)-cosg, (A3-39)
Once, we consider all values of S that is for 0< < p, we obtain the polynomial
expression :
(v'(ar,, ~iT,)-cos ¢, —v°(aT, -iT,) -sing, )
+v!(al, —iT,)-sin ¢, +v°(al, —iT,) -cos @,
_ vi(aT, —iT;)-(cos¢q +sin¢q)
+v@(af, ~iT;)-(cosg, - sing,
Thus, if we substitute (A3-40) for the polynomial expression in (3-39) and consider the
order of the moment to be p’=2p, we obtain (3-41) exactly.

» (A340)
)

A3.3 : Details on the Truncation Errors From the GQR Technique
(Derivation of (3-42), (3-44), (3-45), (3-49) )

First, we will derive the truncation error due to using only the first 24~/ moments of the
interference. To proceed, we must make use of the following theorem to arrive at an upper bound
for the truncation error [10,thm 1]:

ol T/2 A u O _
P, = j{ I 4—“_&_”)'."(}'&)"{7::}'./;(”)"1”

-T2 60

M 2 0) —
sz‘ { I Q(ﬁ'%’f'—)'f(n)'dh}'FRu

=1 -rn

—

(A341)
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, where:

R, K.:{ -2ZM)! -!/zQ = f(r)-dr, (A3-42)
and:
kz=[18 (A343)

=1

Here, S represents the coefficients of the three-term recursive relationship of (3-24),
O™ () represents the (2M)™ derivative of the complementary distribution function [30], o, ° is
the output noise variance defined in (3-11) and £ is a quantity which lies in the range of the
interference variable 7. Assuming that the interference is bounded, we have a<&<b[2]. So, if
we substitute (A3-43) into (A3-42), we get :

S (re)-dy, (A349)

R - gﬂl . sz Q(lM)(Aku(o)— ’IJ
M M)

-T2 °

The definition of the complementary distribution function is {31]:

0(x) = [ 2(r)-dt (A345)
, where :
Z _ 1 -2
0=z (A3-46)

The n™ derivative of the complementary distribution function is given by [30, p. 934] :
0" (x)=-Z""(x) =(-D)"-Z(x)-H,_ (x) (A347)
, where H,, (x) is the n® Hermite polynomial which satisfies the recursive relationship {30, p.782] :
H_  (x)=x-H (x)+n-H,_ (x) (A3-48)

If we substitute (A3-47) into (A3-44) while making use of (A3-46), we obtain :
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I-Iﬂl ri/2 2A¢
_ D™ f A4,u0) - 5) ( A,u(0) - :) , .
R, = (ZM) _!ﬂ zu Z( . 24¢-1 o, f(r)-dy,
Hﬂ.’ 212 . (A349)
o T ~(4,4(0) -9 ) (A.u(O) —.:J , ,
= QM) a_:u kR J—Z;exp( 20: Hp . Sr)-dr,
A
Hﬂlz T2 2
_ . —(4,u(0) - 9 ) 1 (A.u(m - 6) _ d
JZ_IZ-(ZM)!- 0’:“ -r/zexp( 20_: 2M-1 o —= |- f(r.)-dy.,
The following upper bound on H, (x) is known [30, p. 787] :
|H.(x)| <B-e=" -Jn! (A3-50)

, where B~/.086435. (A3-50) is then substituted into (A3-49) and thus, the truncation error is
bounded by :

—(4,u(0)-¢)’

.| BJeM+).[1“ 8 = “"( 207 )
< ot -

U amamy ot 1) xp((A 4(0) - é))

f()-dy,  (A3-5])

40

Once (A3-51) is simplified, its form will correspond exactly to that of (3-42). To
maximize the upper bound of (3-42), we must maximize & thus we will now show that (3-44) is
true [2]. We first maximize the ISI term in (3-36), corresponding to (A3-31). To do so, we
maximize the random quantities present in (A3-31). Its maximum value is :

max 1, = max af]A -u(ad, —iT,)| (A3-52)

=a-m
za

Next, we maximize the ICI term of (3-36), corresponding to (A3-32), thus :

am V' (aT; ~iT,) - (cos g, +sing, )
P LA 2, tv%ar.—ir.)-(ww.—siw.).

(R t=a-m; ,

(A3-53)

We can now maximize (A3-53) with respect to ¢, . It is easily seen that (A3-53) is
maximized if |@, | = 774 and by setting this value, (A3-53) becomes :
max 1, =23 A, max fjv'(ar ~il})| +v(ad, -iT})| (A3-54)

q=k =a—-my
Summing together (A3-52) and (A3-54) will give us (3-44). To minimize the interference,
we must minimize the ISI and ICI components likewise. To do so, it is easy to see from (A3-31)
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that we must minimize with respect to the timing phase on the ¥* channel. Also, the ISI is
minimum if all interfering symbols are most negative, therefore:
@,
min 1, = —min Y |4, -u(ad, —iT,) (A3-55)
¢t gza-m
The same applies to the ICI component of (A3-32). We minimize with respect to the
timing phase, set the interfering symbols to their most negative value and set |d, | = 74 to
maximize the magnitude of the ICI. By doing so, the minimum ICI value is :

a—rm,
min 1, =—N2 -3 A, min S It -in)|+ e, -im)| (A3-56)
= ! rFa-e,

Finally, summing together (A3-55) and (A3-56) will give us (3-45).

We will now derive the form of the second type of truncation error, that is, the truncation
error due to considering a limited number of interfering symbols on the desired channel and on the
interfering channels [2]. We first start with the upper bound of (3-48) [11]. If we expand the left-
hand side of (3-48) using (3-46), we obtain :

[ (4 ZAk -a,, -u(al, —il}) )
iaom
( [V (af}, -iT,)-cosé, Bl
E{exP(A'l")}=E* exp Dau ~v?(af, —iT,)-sin @ 1
+4-Y 4_- 4 - it
; ! kz. v/ (al, —iT,)-sin @,
i>aem, _qu . 0 i

. | | +vC (ad, —17;)-cos¢q_J)

. . " (A3-57)
[Texe(4- 4, -a,, -utat, -i1,))
o
vi(al, -iT,)-cosg, ||
— a .
=5 | ve(at, - i) -sing, || |[
T IT e} 4-4, -t
g2k i<a-m;, V’(d; "‘IT;) -sin ¢'
l>a¢-u ._b"‘ .
i +v4(al, —il,)-cosé, |
If the data symbols are independent, we get from (A3-57) [31]:
Efexp(an}= [1E{ew(4-n)} T TT Elexe(4- Ms0a)} (A3-58)
I<a-my; gk (<a-m;

H>a+my >a+m,
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, where 77,; and 17,,; have been defined as the ISI of the interference in (A3-31) and the ICI of the
interference in (A3-32), respectively, for fixed i . The first expectation may be upper bounded as
[11}:

Efexp(An, )} < exp(%z Efn’ })

(A3-59)
A!
=exp(— A - I(l‘(aT —’T)) S d)'t)
-T2
, and if » is fixed, (A3-59) becomes :
2
E {exp(Anu )} < exp(AT A; -lu(al, -iT.)I’] (A3-60)
The ICI from (A3-58) may be upper bounded in a similar fashion [11] :
2

Efexp(4n,, )} Sexp(—42—- E{rf })

cosd, (A3-61)

+5in¢.) S(r)-7(4,)
cosé, ) dy,-d9,
—sing,

V(] -fm-(

Az 24 T2

——— 2-
=4,

=exp
s 7 |+V(aT, —iT;)-[

As was done for the ISI in (A3-59), we may fix y, and ¢, and so (A3-61) becomes :

v/ (al, ~iT,)-(cos$, +sing,) |

(A3-62)
e (ad, —iT,)- (cos¢,, —sin ¢.)

> A

Efexp(An,, )} sexp[i‘i A?

So, if we substitute (A3-60) and (A3-62) into (A3-58), we get :
[ [42 Yjutaz, - 1))}

f<x—my
>a+m,

+3 A4 Y

=k <a-m; ,

I>a¢.._'

AZ
E{exp(A17")} < exp; >

v/(al, —iT,)-(cosg, +sing,) [ || A3

+v9(aT, —iT,)- (cos¢ sin¢')

If we then compare the form of (3-48) to that of (A3-63), we see straightforwardly, for
fixed y, and ¢, :
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o? = A} Ylu(ad, -iT)f’
i<a-my
H>a+m,

vi(al, ~iT,)-(cos g, +sing,) | (a3-e8

Az
+§ ..Kg:u +v(d, _ﬂ;)-(cosqi' —sinf.)
>a+m, ,

In order for (A3-64) to be unconditioned on y, and ¢, , we choose their maximum values in
order to maximize o;” . Thus, using the maximum values of 7, and ¢, , we must find :

o} =max A} 3 ju(a, —iT,)[

i< x—-my
i>a+m,

I . . 2 (A3-65)
ey TA T v/ (af, -iT,)-(cos$, +sing,)
7, 72, ! +v°(aT, —i7;)-(oos¢, -sin¢q)

q=zk

ot
Once we choose ¢, appropriately, as was done previously, we will have the upper bound
of (349).

A3.4 : Details on the Truncation Errors of the Beaulieu FSE Technique
(Derivation of (3-64), (3-65) )

First, we observe the derivation of the truncation error, R, , due to using only M terms in
the Fourier Series. This truncation error is easily defined as the terms neglected in the finite
summation of the probability of bit error expression of (3-61) [2] [16]. R,/ is thus defined as :

0 e--’-’/: T )
Rl=|-% 2 { ] snn(mwA,,u(O))-f(r.)-dr.}-d),,(—mw) (A3-66)
s m S I
We can upper bound this truncation error as follows [16] :
+a -miotn2 o _aleln2 +o
|RulS-2—- > ¢ <—2’;-Ie dcz<m2w-je'“x'z’z -da
roge W & o (A3-67)
< J2rn-T ) 2;:M)
~-M T

From (3-63) and (A3-67), we see a tradeoff between M and T. (3-63) indicates that in
order to keep S small, we need to increase 7. However, (A3-67) indicates that by increasing 7, we
need to increase M also to keep R,, small. But from the bit error rate expression of (3-61) we see
that by increasing M, we are taking into account more terms in the Fourier Series thus more time
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would be required to compute the bit error rate. Thus, for a better accuracy, we need to increase
computation time significantly. The problem is to find the best values for M and T for a specified
level of accuracy. As it was discussed in section 3.4.2.2, it is possible to make an optimum choice
forbothAMand T.

To understand how the truncation error, 4 , due to using only a finite number of
interference terms was derived, we will first look into the truncated characteristic function, that is,
giving consideration to a finite number of interfering symbols. Assuming that data symbols are
transmitted independently, the characteristic function of the interference, @, (a, is the product of
an infinite number of symbois on the desired and interfering channels [10] [31]. If we consider K
interfering symbols in total, given by (3-37), the characteristic finction can be approximated by :

a+ N-] a+m,,
o (-moy = [0, -ma)-[] [] 2. ma) (A3-68)
- o R

s whe_rethe ISI characteristic function of each ISI term can be easily seen from (A3-31). It is
represented by [31]:

TR
®, (-mw)=Efe ™" }= [cos(mo 4, -u(a, -iT,))- F(r,)-d7, (A3-69)

-T2
Likewise, the characteristic function of each ICI term can be easily seen from (A3-32) and
thus is [31]:

¢n:.u (-maw)= E{e B }
( 4 (V’(an —il})-cosé, J\ ‘
26 T12 ma 4, - —ve(aT, —iT,)-sing, J (A3-70)

‘ . - f(r,)-dy, -dé,
o -T2 vi(ad, —ily)-sing,
$ Yo . mwA -
* \~v%(al, -iL)-cos 9,

Now we can use (A3-68) in the probability of bit error expression of (3-61), thus :

=L
ix

P

M -miei2 72
P,:—.-;.—%Ze { jsin(ma)A,,u(O))‘f(h)'dh}‘w;(‘”'a’)

m -T2

=1 (A3-71)
+R, +p+4

The truncation error 4 is defined in a similar manner to Ry, . 4 simply represents the

difference between the ideal characteristic function of (3-52) and the truncated characteristic

function of (A3-68). Thus, A is defined as:
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M -mie?r2 I
l4=23 % — { f sin(mwA.u(O))-f(r.)-dr.}-(¢,(—mw)-0;(—mw))

-T2

m=t
-

(A3-72)

rl
m odd

, where @7 (-mw) is the characteristic function comprising all the interfering symbols not included

A -w’e?/2 T
=13 { [ sin@ma 4,u0)- £(r,) -dr.} - @, (-ma) (P, (-mw) - 1)

=712

in the truncated characteristic function. It is defined as :

N-1
o, (-ma)= [ @, -ma)-[]1 [12..,, mo) (A3-73)
e o R Ay
We also note that :
@, (w) =D, (-mw)- O, (-mw) (A3-74)

, It can be shown how (A3-72) may be simplified [16]. To do so, we will assume that the
timing and phase offsets are fixed. Assuming fixed timing and phase offsets, the characteristic

functions for the ISI and ICI from (A3-69) and (A3-70), respectively, become :
@, (-mw)=cos{a,) (A3-75)

(—ma)) =—. (eos(b' J) eos(c,, 4 )) : (A3-76)

, where :
a, =mw A, -u(al, —il,)
b, =mow4,-{v' (aT, —iT,)-(cos$, +sing,) +v° (ol ~iT,)-(cos$, —sing, )} (A3-T7)
¢, =mo 4, -{v' (@, ~iT,)-(cosd, —sin¢,) ~ve (aT, ~iT;)-(cosd, +sing, )}

Thus, (A3-73) becomes [34}):

o7 -may=1- [Leosa) [] IT (codt,.) +codc.,)) (A3-78)

I<a-m; =0 j<a-m; ,
>a+m, =k Jram, .
Using the fact that [16] :
Hcos(a,)zl-— Za: AR (A3-79)
k=l k=1

, we get
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(- 34

@7 (-mer) - ll<— Sa: +— > S+ 2 el (A3-80)

1=a—my =k (ca-m , =k iza-m ,
za

If we substitute (A3-80) into (A3-72), we obtain for 4 :

Za
A —-’-‘/2 (=a-m;
A== Z .sin(mwA,u(o)).a>;(—mw) = v [ 3D

Likewise, if we substitute (A3-77) into (A3-81) and simplify the expression by taking the
quantities within the parentheses out of the summation over m, we get an expression closer to that
of (3-65). htis:
 aom,

> A} -u(aT, -il})

=a-m;
iza

1 a+em, , V'(tﬂ; —i];)'(COS¢,+$in¢q) 2
- ¥ 42
POER 5 20 4 vt |

2 A3-
are, , {v'(aT -iT)-(cos¢ -sin¢) } (A3-82)

1
-3 4
2 ; > -ve(al, ~iT,)-(cosg, +sing,)

8¢~-"

M
. Zm -e™""? .sin(mew 4,u(0)) - @, (-mw)
odd
Once the squared ICI terms in (A3-82) are expanded and simplified, the form of (3-65) for
A is obtained.

A3.5 : Details on the Computational Complexity of the M-MCDD
(Derivation of (3-70) )

The computational complexity of the M-MCDD, used to help determine the values of Lrap
and Itap, is based on the total number of operations (additions and multiplications) needed to
compute the ISI of (3-8) and the ICI of (3-13) and (3-14) in its in-phase and quadrature
components, respectively [6]. The procedure to derive (3-70) is to first look at the number of
operations needed to compute the ISI and then to look at the number of operations to compute the

165



ICI. First, for the ISI of (3-8), we assume a fixed interfering symbol we are trying to compute.
From (3-8), we see that there are two non-trivial multiplications per iteration. Now, the question is
how many iterations does (3-8) go through. To determine the total number of iterations, we must
bear in mind that there are Lfap non-zero filter taps per halfband filter thus the total number of
filter taps (including the zero filter taps) per balfband filter is 2Ltap-3, that is Liap-2 filter taps on
each side plus a zero-position filter tap. Refer to Figure 2.9 for more detail [27]. When we go
through the n, loop in (3-8), there is no decimation present. Therefore, we have Liap iterations
which result in the non-trivial multiplications. When we go through all other 7; iterative loops,
where we have decimation, all the halfband filter taps are non-zero so there are 2Liap-3 iterations
which result in the non-trivial multiplications. Therefore, from the n, loop where there are Liap
iterations to consider, there are exactly 2Lfap non-trivial multiplications and Lap-/ additions
giving a total of 3Lrap-1 operations from this loop. From all other iterative loops where there are
2Ltap-3 iterations to consider, there are exactly 4Lrap-6 non-trivial multiplications and 2Lap-4
additions giving a total of 6Lfap-10 operations from each of these loops. Therefore, the total
number of operations from the n; loops where 0 <j </, including the / additions from one iteration
to the next, is 3.Lup-1+1/-(6Liap-10)+1. We then go through ltap iterations, therefore the
number of operations after /rap iterations, including the Jrap-/ additions from one iteration to the
next, is fup-(3- Liap-1+1-(6Liap-10)+ )+ Itap-1. If we then comsider all mL+mU interfering
symbols on the desired ¥* channel, the total number of operations to compute the ISI of (3-8)
becomes :

Mg, =(mL+mU)-{Itap -[(61 + 3)- Liap - (91 + 1) + Irap — 1} (A3-83)

As for the ICI, we will consider the in-phase component of (3-13) and the quadrature
component of (3-14) separately. In both cases, we see that we have / non-trivial multiplications per
iteration due to the cos(-) and sin(-) of (3-15) and (3-16), respectively. In addition, some terms in
(3-15) and (3-16) require one extra non-trivial multiplication therefore, to simplify the analysis, we
can say that in each of these iterations, we can have up to one more non-trivial multiplication.
Therefore, for the in-phase and quadrature components, there is a maximum of /+/ non-trivial
multiplications per iteration. The difference lies in the fact that for the in-phase component there
are (1+1)/2 additional iterations imposed by cos() of (3-15), and for the quadrature component
there are (I-1)/2 sdditional iterations imposed by sin(:) of (3-16). This is true because since we

166



assume /=3 in the numerical analysis, we therefore look at the / odd component of (3-15) and
(3-16). Through each n; loop, for simplicity, we will denote these required additions by x. For the
in-phase and quadrature components of (3-13) and (3-14), respectively, we go through the »;
iterations, similar to what was done for the ISI. For the n, loop where there is no decimation,
there are Ltap {(1+2)(x+1)+3}-1 operations, while for all other loops where there is decimation,
there are (2Ltap-3)-{(1+2)(x+1)+3)-1 operations for each iterative loop. Therefore, the total
number of operations resulting from the n; loops is
Liap-{(1+2)x +1)+ 3}~ 1+1-{(2Ltap-3)-{(1 +2)(x +1)+3} -1} +1. When we go through the ltap
iterations for each and finally consider all of the mL+mU+! interfering symbols from each of the
interfering channels, we obtain for the total number of operations to compute the in-phase and
quadrature components of the ICI of (3-13) and (3-14), respectively :

. Luap-(I* +41* +21+6))

tap -

M, o =(2' _1).(mL+mU+l)- P -(a}l’ +4 +181+l) It (A3-84)
+ltap — 1

p Ltap-(l3 +3? +-'2?-I+4)-w
tap -

H3r-gr-2a-1 | (A3-85)
+ltap -1

M, =(2' =1)-(mL + mU +1)-

s

If we sum together (A3-83), (A3-84) and (A3-85) and then simplify, we obtain for the
computational complexity of the M-MCDD to compute the interference :

M, =[(mL+mU)-(61+3) +(2' ~1)-(mL+mU +1)-(28° +90" +241+10)|- Itap - Liap
= 1[9-(mL +mU) +(2' ~1)-(mL+mU +1)-15(l +2)]- Ieap (A3-86)
~[(nL +mU)+2.(2" ~1)-(mL +mU +1)]

If we thus substitute mL=mU=10 and /=3, as was assumed for the performance of the M-
MCDD, we obtain the expression of (3-70).
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A4 : Derivations From Chapter Four

A4.1 : Details of Quantization Noise Analysis for Probability of Bit Error

A4.1.1 : Output of the M-MCDD (Derivation of (4-7), (4-8), (4-9) )

From the M-MCDD structure presented in Figure A-1, the output from the A* desired
channel has been determined and is indicated by (A3-9). It does not iiclude the effect of the DAF
prior to the M-MCDD or the substitution of the MF-TDMA input signal. From (A3-9), if
h(n,-2'"'T,) are quantized to become h(n,-2/'T,), the resulting output from the M-MCDD is

quantized and can be represented by :

(L L L A
Y h(T) D h(n,2T) Y ...
—l)- y =L =L n=~L - k=0,
( L i j:(kb—;)-iul > keven
e 2B (M2'T) - x, (@'m=) 2'n,)T,)-e
A T _ [ m=-L =0 J
Ve(mI) =1 r L i~ L . L )
> ) A T) Y h@2T) Y.
n ==L ry=—L ==L
(D" -3 . b : kodd
L . § jl(k-o-%)-an
e R (n2'T) - x,(2'm=-Y2"n)T,))-€
. .‘a—[_ j=° 4
\ (A4-1)

r l .
o L[(h,(nj.zhm) o
SUIPITED I , o [
m=-L m=-L J'(k*;)‘zﬂl
T @ m=- 2 0 )T) e T

4=
I (S A § (A 4)
" Z E : ~ > ; kodd

:
n=—L n=~L Jl(‘#;’)-an

/
x,(2'm=-).2""n)T) e ~
4 J=1

If we may substitute (4-2), as described in section 4.1, into (A4-1) we obtain :
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. B
[1(ktn, -2 1)+, (n, -2 T)
L& . |13 Y 1% k=0,
(_l) ”‘;L """ "‘ZL‘ 1 jt(ko%)—inl 7 keven
x,(2'm=)2""n)T)-e =
P (mT.) =4 . T (A4-2)
T G A § (LR AR g A
) D N < 4 . kodd
( l) n.;t. n,;l. ! ooy om, ’
X @'m- sz-l"] )T,)-e -
\ st

taking note that, from (4-2), the error processes h(n,-2+'7T,) are represented by &, (n,-2-'T))

because of the uniqueness of each error process from each stage. From (A4-2), we may expand the

product :

1

[1(an, -2 1) + (0, -2 1)) =
J=l
!

=[](nen, 2"‘T))+I'I(" (n, -2 T)) +h ) H(” ®,27T))  (ae3)

=t

+ [T, 27 T))- [T tn, -2 T)) o
J=l =3

Assuming that the filtering operations in every stage are identical, due to modularity, and

that the error processes in each stage are also stochastically identical, we can conclude without loss
of generality that [6-7] [31]:

Ij(h(n, 27T+ By, 27 T)) =
=]}j(ﬁ';(ﬂ/ ‘2!-17:))+(0 -I:l[(h(nj '21-17;))'111(;1("1 .2/~|7;))
+(8) 100, 27 2) TR 27 ) e

(111) I'I(Mn -21'T)- n(h (, 2"‘T))+ h(n .27))

(Ad44)

[, 222 +5,0n, 27 1) = () Lo, -zf-'m)- e -21)

(A4-5)
+[’[(h (n,- zf°'r))+ (h(n,-2T))
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If we substitute (A4-5) into (A4-2), we see that (4-7) may be obtained where (3-6), (4-8)
and(4-9)eqnedirectlyﬁomﬂlesubsdtutimimo(A4-2). Also, use is made of the fact that the
DAFanbeapptoxﬁnnedbyahalﬂ:mdﬁkermge,smﬁhrwmoseusdmthelsubsqum
stages of the M-MCDD [13].

A4.1.2 : Quantization Output of the Channel Detection Stage
(Derivation of (4-10) to (4-12), (4-14) to (4-17) )

InAppmdix3.l.2,wesawhowr,(ITb)wasdeﬁvedfordxecaseofinﬁnitequantintim
and for the lowpass outputs from the final stage, that is k=0 and k even. Now, we will go through
and show how (4-11) and (4-12), along with their respective components, were derived. For this
deﬁvaﬁm,wewﬂlakofocusmthek=0mdkewnasesheetbesamaq)smbewm
obtainﬂaehneruse,dmisfordzehighpassmnpmsﬁuntheﬁmlsuge(kodd). Therefore,
following from (4-8) and (4-9), if we appropriately substitute the mput MF-TDMA signal as
described by (3-1) and (3-2) and isolate the desired term for the #* channel similar to what was
done for (3-7) in Appendix 3.1.2, we obtain for each quantization component of j,(mT.),

respectively :

III h,(n :2°T)
3’}("'7;)=Ak-e-"~.zeﬂ.,z ...... Z /=o(1 7 )

" [AIQ'm-32'n)-T, ~iT, -y,]
J

1
H(";;(”J '217;))
J=0
+§A¢ .eJ" oZe""J ;....-.Z J'(“')'Z"J

" AI@m=-32'n)T,~iT, -y ]e
F

(A4-6)

+(-D" Z ...... ZIII(};;(,,J .24 7;))_2[(21’"_221”!) .I;].emr;‘)-;.,
"y y

u 4=0
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YimT) = 4,-e* - emY .Y {2(1: l)n("(” 27))- I'I(" @ 2T>)}

C = . -h,[(z'm—Zyn,)-,-rr,-y,]

. {Z(lzl)n(h( ,-2'T))- n(h o, 2!1‘))}

+ZA i Ze"z (A4-7)
~ % A[2'm —Zzln)r-rr 7,
1+1
(52 it 2 ) 1, 21}
+(-D" ;Z‘ .
A(2'm-3 2'n)-T]-e ; .
4

From (4-5) and (4-7), we see easily how (4-10) can be obtained. Thus, each of the

quantization components of (4-10) comes out as :

RUT)=3 58, -OT.)- g€ +u,)T.] (A4-8)
=1
RUT)=3yi[(B, - OT.1- g€+ )T.] (A4-9)

, respectively. (4-11) and (4-12) may both be obtained in a similar manner, that is, by substituting
(A4-6) and (A4-7) into (A4-8) and (A4-9), respectively, and using appropriate indices. Thus, if we
substitute the appropriate indices according to those defined in (A4-8) and (A4-9), we obtain:

nh(n 2’T)
V(B -OT.]=4, -e* -e*Y ... "°( )
- ~ | A1 (B, -5~ Zz'n)T -al, -7,]

h,(n,-2'T,)
+A4,-e* .Y e Z ...... P EI( " )

Y- 4 o °h [(2 (ﬁ’ g) zzjnj) T iT -711

I‘[(lT,(n, 2'T)))
+ZA e’ Ze"'z ...... Z h[(2‘([3,—5)—;2’731)-7',—1‘[',-;',]

InE-qr 3 a,
’

1 (A4-10)

v

€

IL[(E(”J 'ZJT'))

+(-D) @¢-o .z ...... z ~° JatkeirY s, ’
ng ) .z((zl(ﬁ’_g)_zzlnj).n].e ;
4
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vil@B, - aT1=

{;(l:l)r[(h( n,-2'T,)- [‘[(h @, 2’T))}

=A, e .Y
~ s AlRB-9- Zrnp T, -al, ~7.]

o gy g B 25 116 0]

ia - .;.,[(2'(,3,-;)-221;:,)2—:7’. 7.l

[{Z(l“) [1(rer, -2°7))- ['[(h (n,-2'T))

+ 3 A, e Y ™Y LY IARNB,-H-D.2n)-T, ~iT, -7 ,]
Pyl i LY a J
{'emn-n;-,
I+1
{Z( . )H(h(n -2/T,))- ]'[(h (n, 211))}
' . J=a

+ (- ; ; —

2{Q2'(B, -9 - Z2’n)T]e 7

}‘ (A4-11)

Substituting (A4-10) and (A4-11) into (A4-8) and (A4-9), respectively, gives us for the

output of the channel detection filter resulting from finite quantization :

117, -27))
RUT) =4, -e* -e"‘“iz ------ Z‘-:,o[(z'cﬂ, -9-Y2/n)-T,-al, -7,]
o ) L-g[(§+ﬂ,)T,] J
{lil(l?;(n, -2'T))) 1
+ A, e .Ze*vlz'z ...... R :[(2'(/9, -9-2.2'n) T, ~iT, - 7,1}
oo ) L-s[(-f +u)T] I
116, 27)
+ZA e’ . Ze"’ ‘_Z’; ...... ;';,[(2'(;9, —5)—-;2111,)-7; -iT, -7,]
PR e

[ @, -2/ 1)) 542 B, -H~ X 2'n)-T)
J=0 )]

&by Y - Jx(kelyY n,

'8[(5"'#,)1:]'3 ’
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(A4-12)

—




1,
CCAEYRVIIED 3 3
$=1 my

a=l

h[2' (B, -
gl(&+u)T]

n

=1

{Z(zzl)l—[(h(,, -2'T)) ['[(h (n,- 217))}

-zzjnj) 7: a’l-h]
J

{Z(’:l)n(h(n .2/T))- [‘[(h (n, 2/7))}

NP a0 3 30 X LI CICRR R X IR A S I
§=6 LA -
8l(&5+u,)T.]
) (A4-13)
([ (14155 1 R
{Z( ‘ )g(h("’ 2T)-T1(E e, -Z’T,))}
g e 33 TG -9-S2n) Tl -y,
&=hon, » -

£+ )T )¢

ok-qr Y n,

7

1, {i(lzl]ﬁ(h(n’ .2/ [)).ILI(;“,;(,,j .20 7;))}
+¥ e 3 L3 70 s=e

=g n x>,

QB -O-Y2/n) T,)-g(E+u)T.]e 7
J

Once we define (4-14) through (4-17), including the case for the highpass outputs (k 0dd),
the in-phase components of (A4-12) and (A4-13) become (4-11) and (4-12), respectively. Please
note that from (4-11) and (4-12) the quantities i#(a7, —i7,) and u’(al; —iT,) have been combined
—i7,) have been combined to
represent (4-15) and (4-16) in their in-phase and quadrature components, respectively.

to represent (4-14) and the quantities vV(aZ, —i7,) and v'(ad,

A4.1.3 : Derivation of the Probability of Bit Error (Derivation of (4-24) )

To derive the probability of bit error expression of (4-24), we follow the same steps as was
done to derive (3-20). The difference in this derivation is the presence of the quantization noise
variable, 7, . We note for the derivation that the variable 72, is random with respect to the carrier

phase ¢, , the timing phases 7 and » , the quantization noise k(n,-2’T,) and the Gaussian
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noise, z() *. We also note that since the distribution for 77 and 7, is approximately Gaussian (see
Appendix 4.1.4 for details), the p.df’s fy7) and fp (7, ) are even functions. Therefore, both
7 and 7, may be positive or negative quantities with a probability of 3 [31). Throughout the
derivation, we must assume a fixed value for # and 7, . Then to obtain the unconditional
probability of bit error, we must average over the joint p.d.f. between the interference 7 and the
quantization noise 7, , f{7.7,) [31]. If we assume that we have a fixed timing offset »: , the
unconditional probability of bit error will become the expression that is shown by (4-24).

Ad.1.4 : Explanation for 7, and 77 being approxzimately Gaussian Distributed

First of all, for 77, we see easily from the form of (3-18) that it is a sum of the ISI and ICI
components therefore according to the Central limit Theorem, we see how 77 can be approximately
Gaussian distributed [31). It is more difficult to see how 7, can be Gaussian distributed since
there are products between the uniformly distributed random variables, h,(n,-2/7,), representing
the quantization noise from each haifband filter. To show that 7, is approximately Gaussian
distributed, we must show that 7,'(/T,) and r;’(/T,) are approximately Gaussian. This may be
done by looking into the random components of each of (4-11) and (4-12), respectively. Assuming
that the random variables in the set, 4 (n,-2/T,); v/ , are statistically independent and identically
distributed (i.i.d), we can solve for the p.d.fs of the ISI and ICI of the quantization noise,
represented by (4-14) through (4-16), respectively [31]. These p.d.f's may be obtamed by solving
the following transformation :

Y=X+X*+ X+ et X + X" (A4-19)

, with X~Unifom{0,%). First, for the transformation ¥’ = X', we get [34):

N A ast (-_1) . 1)‘
f"(y)—Zi y s <y S(A (A4-15)
Through convolution of (A4-15) /+/ times according to the form of (A4-14), we obtain

for the p.df’s of &'(af, -iT,), V"' (al, —iT,) and ¥'%(a7, -i7,) [31] [34):

* Please note that when the context of discussion involves quantization, we use g to represent the
quantization variable. Thus, so as not to confuse our choice of variables from previous chapters, the
channel representation is given as O when not discussing the k* channel. Also, quadrature components
are shown as @ 174



P23 s

2(1#!)3 Z :'_l I+t

T WY 2.2
a+nt” W Z; (A4-16)

£,0)=

According to the Central Limit Theorem, we know that ¥"(af, -iT,),V'’ (af, —iT,) and
5'%(al, —iT,) are approximately Gaussian distributed with zero mean, judging from the form of
(4-14) through (4-16), respectively [31]. This fact is also supported by the form of (A4-16). As
for the distribution of Z/(/7,) from (4-17), we see that there is a product between a stationary

Gaussian random variable and the sum of quantization random variables. This sum has already
been determined to be approximately Gaussian with zero mean from the distributions of (4-14)
through (4-16). According to the Central Limit Theorem for products, the product between the two
zero mean Gaussian random variables is approximately lognormally distributed, assuming the
Gaussian noise and the quantization noise are statistically independent [31]. In both cases for
F'(IT,) and r;'(IT;), represented by (4-11) and (4-12), respectively, we must try to determine
their approximate distributions given that we have a Gaussian random variable summed with a
lognormal random variable. Although difficult to obtain, we can use the Central Limit Theorem to
say their distributions are approximately Gaussian with non-zero means [31].
Since we have shown that (4-11) and (4-12) can be approximately Gaussian distributed,
we can say that 7, is also approximately Gaussian with non-zero mean since it is the sum of both
F/(IT,)and ! (IT,) [31].

A4.2 : Convergence of the Gram-Charlier Series (Proof of (4-38) )

If we expand the exponential terms in both expectations of (4-38) through a Taylor Series
expansion, the conditions set in (4-38) may be simplified by considering [20] [34] :

L «
E{e ‘ } {l-o 4? l'} 24‘ it E{”u} (A4-17)
Eletl-k 2 Tl $ 1 gl (A4-18)
4‘ " ‘04' ‘i! ’
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so that the conditions for the convergence of the Gram-Charlier Series representations of f(7) and
S {71 ) become [20]:

2kl <= (A4-19)
and :

- |

2B} < (A4-20)
, respectively.

Since the range of values for both variables includes sufficiently small quantities (ie.
Spacx ad &, oy «l),itis sufficient to show [34]:

Jim E{n*} -0 (A4-21)
Jim E{n¥} -0 (Ad-22)

for (A4-19) and (A4-20) to hold, respectively.

To show that (A4-21) is true for the case of the interference variable, 7 , we will refer to
our actual numerical observations. We note from our observations that the filter coefficients of
h(-), h. () and g() are very small in value. They are sufficiently small to the point where we can
say, for the ISI and ICI coefficients :

[utaT, -iT)«1 , |Wad, -iT;)|«] (A4-23)

, respectively.

Therefore, from the interference moment expressions of (3-40) and (3-41), we have higher
powers of u(aTls -iTs ) and v(aTs -iT, ) , respectively, which will become exponentially small as
p —> © , where p is the order of the moment associated with (3-40) and (3-41). Thus, for (3-40)
and (3-41), this implies :

Jim E{nt,} >0 (A4-24)
and :
Jim E{n?,}—>0 (A4-25)

, respectively. Thus, from (A4-24) and (A4-25), we see that (A4-21) is true.
To show that (A4-22) is true for the case of the quantization noise variable, 7, , we must
consider the quantization error component which does not exist in 7 . We must show that the
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quantization noise moments of (4-43), (4-44) and (4-52) become exponentially small as p - «,
where p is the order of the moment associated with (4-43), (4-44) and (4-52). To do so, we will -
consider the quantization error component for the lowpass outputs from the final stage (k=0 and £
even) inherent in each of these three components of the quantization noise moments. The same can
be said for the highpass outputs from the final stage (k odd). We can say that (A4-22) holds iff :

2-8-3 3-8 2 P2 - -
Jime [ {Z---Z(hf(n,-z’t))} dh---dh (0 (A4-26)

-8l _p-Eed "y "
where we are considering only the even order moments of the quantization noise. For B2/, we see
that the range of values for /,(n, -2/7,) with j fixed is sufficiently small (ie. F:'(nj ;zfz)lsz"" «l ).
Thus, higher powers of ,(n, -2/7,) will become exponentially small. Since the finite sum of these
values is also exponentially small, (A4-26) must hold. Therefore, (A4-22) is true. .

Having shown (A4-21) and (A4-22) are true, it thus follows that (A4-19) and (A4-20) are
true, respectively, and the expression presented in (4-38) is satisfied [20] [34). This subsequently
implies that the Gram-Charlier Series representations for f;(n) and f (7, ) converge numerically
[20].

A4.3 : Expansion of the Upper Bound on Q(-) (Derivation of (4-40) )

From (4-39), we see that the Q-function may be upper bounded by an exponential
function. We can expand this exponential function straightforwardly as [23] :

2 ' +2_(%u(0)—q)_(%u(0)-n,]

c

c

(%um)-n)’ +(‘T'u(0)—n.J’
{ 1 (A,u(O)—n—r],)z} 1 o, o,
expq——- =exp{—

o

o

(Ad4-27)

. - 3
1 %u(O)—n)z . _l{%u(o)—n.}z
GXP{ 2 ( o, P 2 o,
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From the first term of (A4-27), we have a function of 77 . Likewise, the middle term is a
function of 7, . However, the third term is a joint function of both 7 and 7, and is not separable
by straightforward means. We must expand this joint function in the form of a Taylor Series. Its
series expansion yields [34] :

_ %u(o)—n) (~u(0) '1.) =)~ (Tu(m—n)',[%um)—n.)'
exp{ ( - § - - (A4-28)

[

Once (4-39), (A4-27) and (A4-28) are combined, we see very easily that the expression we
have is identical to (4-40).

A4.4 : Derivation of the Moments of the Quantization Noise
(Derivation of (4-43), (4-44), (4-52) )

For this derivation, only the lowpass outputs from the final stage (k=0 and k even) will be
considered since the same derivation can be done for the highpass outputs from the final stage (k
odd). So, from (4-42), we have the truncated quantization noise variable. If we look at (4-42) on a
symbol by symbol basis, that is for fixed i , we have :

My = Myss + Myags + 2 UL =11, g (A4-29)

Now, we shall proceed to derive the ISI moment of the quantization noise, specified by
(4-43). The v* moment of the ISI for fixed interfering symbol comes from (4-42). It is expressed

as

LA M £
Eln: =447 -2 [ [ [(aw, -@Cal, —iB)) f(r,)-dy, -dh---dh (A4-30)

a, _2-l-l _z-l-l =T/2
Y T SR £

In the analysis, it is assumed that the input quantization noise, timing phase, carrier phase
and Gaussian noise are independent. Using the same argument as in section 3.2.2 and knowing
that the input quantization noise is evenly distributed, the odd order moments of 1,,; will be zero
[31]. We can thus consider the even order moments only. (A4-30) may be simplified to become :

b S S 7 ]

En)=4;r-2"Yal,- [ | [@(a& -iT)) f(r.)-dy, -dh--di (A4-31)

o, —9-8-1 _a-8-1 _T/2
* 1[ 25_ 1
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The integral expression of (A4-31) is a joint function of timing phase and quantization
noise. In order to make the expression of (A4-31) computable, we must separate these variables.
Schwartz’s Inequality may be used to separate these variables [34]. First of all, we substitute
(4-14) into the integral expression of (A4-31) to give :

e v (o hIQ' B -9~-32'n)-T.~i -r. )\ f¢.
f I 22- ! dh-
~ | gl(&+uIT) -0, -2°T)

bl Sl (1
K K T

. ). (A4-32)
&= on --dh

According to Schwartz’s Inequality, we can separate two variables using the following
upper bound [34] :

3 (@)<Y a* - 30 (A4-33)

Thus, applying (A4-33) to (A4-32) gives us the following upper bound for (A4-32)

v/2

S(re)-dy,

RIQ'B, -9-X2’n) T, ~il, -nl}
J
dh.--di (A4-33)

-8 [(§+uIT]
_2-‘-I _z—l-x -T2
K 5

Y X (re o, -2 T))

We can now separate the variables in (A4-34) to give us two distinct parts to the equation;
one for the timing phase and one for the quantization error. Thus :

§=i, my

o ( R B -O-32'n) T -iT,~y )"

I[ZZ ...... z{ ) T }] fG.)-dr,

-rr2{ $=h ~ |- &+ u)T.] (A4-35)
T s s, 2 ny ) e

If we substitute (A4-35) into (A4-31), we now have an upper bound for the ISI moment of
the quantization noise which is exactly (4-43). As for the moments of the ICI of the quantization
noise, the same idea is used. As was the case for 7, , since the input quantization noise is evenly
distributed, the odd order moments of 17,2o; will also be zero. We can thus consider the even
order moments only [31]. To determine the ICI moments of the quantization noise, we refer to the
ICI portion of (4-42) for the 0 * channel (Q%). It can thus be expressed as :
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[V"(aﬁ ~iT,)-cosp, ||

wrp e v | 9| gean ity sing, || firg)-dy

v _ . v e e

E[I)._,_QJ]—-,‘;-Z' l.Ae.Z I oo I [V’I(af; ~iT,)-sing, ] d¢qdﬁdf;(A4‘36)
o4

-0—' 0 -T2 _z-l-l _2-'—!
e, %2 re K . ~r@ .
+V'Y(al, -il,) cos¢,

For the sake of simplicity of the analysis, we will assume that the carrier phase is a
constant value. We will set its non-random value to §-x to maximize the upper bound [34]. In this
case, (A4-36) simplifies to become :

vl -iT) |’
E[ § ] 2,_[ ( 1 )v o Z 7 B S St aQJ- —V"(a’; _,’1;) 'f(rg)'drg
r’q.Z,QJ - ﬁ (4 :g, I P AR v:l(az; _iz;) .J;...d‘;'
es T¢ K ® [°3] +F'.(a7; _iI;)

(A4-37)

Now, similar to the ISI moment derivation, we must try to express the integral expression
of (A4-37) in two separate entities : one for the timing phase and the other for the quantization
error. The first step is to substitute (4-15) and (4-16) into the integral expression of (A4-37).
Since (4-15) and (4-16) are the in-phase and quadrature components of the ICI of the quantization
error, respectively, they only differ in the complex components contained by V'(af, —iT,) , that is
the cos(-) and sin(-) terms. The real components are common between (4-15) and (4-16). We can
use this fact to simplify the expression to become :

YA '8[(5‘*/‘:)7;]"7’,'(",‘2/7',)
e {cos(:r(k -0)-Zn) ]
' )

-sin(:r(k-Q)-}j‘,n/

[ (. {h,uz’(ﬂ,-:)—Zz'n,rr,—m—rgl}"'
.. J
L

iz it e

£33

wl, ~

I\ Sf(ro)-dr
i (A4-38
W@ B, -2y T, -y )| dd D
J
&+ pu )10 (n, -2'T))
(¥ cos(;t(k—Q).;,,j)
. +sin(ﬂ(k-Q)'§:"/)

<

T2 2 g3t
Yo & 5

-b
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From (A4-38), we can simplify by grouping under the common summation, thus :

L

......

w8+ u )T 1A (n,-2'T)
[ (cos(atk-0)-Zn))
%es”| —sin(x(k-0)-En,)
4
(eos(;t(k-—Q)-;n,)
os°

+sm(:r(k-Q)1>;m )l

{h.[(z’(ﬂ. -9-Y2'n)-T,-iT, -rgl}‘ ’
s

\

¢ 'f(’g)'drg

—~ o~

- (A4-39)

Now, as the previous case, we use Schwartz’s Inequality, expressed in (A4-33), to
separate the variables. (A4-39) thus becomes upper bounded by [34] :

[

T2 2-9t 2-:-t
=772 atit oA
ro & &

8 S+ m)T]
( [cos(:r(k-Q);n,)
es”

' cos(:t(k—Q)-§n,)
\ @’ +sin(r(k-Q)-Tn,
Vi

T (430, 2T)

LY

\
-sin(r(k-Q)-Zn, )]

[hf[(z’(ﬂ, -9-32/n)-T, i1, -rgl}’
1
“

)

3 vi2

'f(yg)'drg

dh...di  (A4-40)

We shall look at the portion of (A4-40) containing the cos(-) and sin(-) terms in order to

simplify it. If we expand the square of this bmomial, we get :

’
GQJ'[

b, -
\

2
aQ,l

cos(x(k—Q)-Zn,) | )
4 +b2
- sin(e(k ~0)- En,) e
WS("("'Q)'ZJZ",)
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( [cos(:r(k—Q)-Zj:nj) ]’ )
- sin(z(k - 0)-Zn,)
[oos(z(k-Q)-g:n,) ]
+sin(r(k~Q)-En,)

{coS(x(k—Q)?n,)

cos(r(k~0)-En,)

(A441)
~sin(x(k~0)-Zn, ]

+sin(z(k-Q)->;n,)] )



We shall expand each of the terms of (A4-41) as was done for (A4-40). The expansion
term by term yields for the right-hand side of (A4-41) :
( \

cosz(ir(k—Q)-'zI:n,)
a;, - +sin2(7r(k—Q)-§;nJ)

P N Nt
: ! -si(m(k-Q)-Zn
aQJ —sin(n(k—Q)-Z/',n,) \( § J J\
cos(x(k~0Q)-Zn,) \° (A4-42)
2 J 2 k-0)-
e Lm(z(k—g)-zn,)] cor (=05
! N5 +b;, | +sin’(x(k—-Q)-Zn,)
b= Tn) cos(r(k - Q)
2.a. b . - x(k - Q)-
A4 P0u "Sin(’t(k-Q)’§"/)j +2.[ - ;n,)}
cos(z(k—0)-£n,) - sin(7( -Q)-F;In,)J
( inCrk - 0)-Z,) cos’ (k- 0)-Zn))
+sin(z(k-Q)-Tn 2-a b -
K 7 1)} zaQJ le —Sinz(”(k-Q)'§nj)
Using trigonometric identities, we can simplify (A4-42) further [34] :
( \
cos” (7(k - Q)-Zn,)
aj, - +sin2(7t(k—Q)-ZjZ",)
[cos(;r(k -0)-Zn, )}
=24
L -sm(ﬁ(k-Q)'gn,) ) . \
s )
aéJ+b;J (Ad-43)

cos’ (x(k = Q)-Zn,) cos(z(k-Q)-Zn,)
+b3, - +sin2(n(k—Q)'zj:",) = -2.(aé" —bé’).[-sm(ﬂ(k-g)‘i;”/)]
/
+2'[eos(ﬁ(k-Q)'2,:"z)] cos* (x(k - 0)-En,)
sin(w(k—-0)-Zn,)|| | -2-a,,-b,, '(-sinz(z(k—Q)j'Z" )}
cos’(n(k-Q)-Zn,) ) Y
~2-ag,-b,, {‘ sin’(z(k—Q)TZn )]
7 ]
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But we know that both ap: and by, are chosen from the binary set {£/} with equal
probability thus the right-hand side of (A4-43) is simplified to its final form :

4 3\

2

a,

J+b(2?.‘
cos(n(k — Q) -Ej:n,) cos’ (x(k ~Q)- zn,)
2 2 _p? . =722 . .
2(00" bQJ) -sin(;t(k—-Q)-?n,) 2 2"04 bQ.l —sin’(fr(k—Q)-an)
! (Ad-44)
)]
J

cos’(ﬂ(k“Q)’;"!)
=2-|1-a,, by, - —sin*(r(k - Q)-Tn,)
J

If we substitute (A4-44) into (A4-40) and separate the integrations according to their variables, we
get :

cos’(n(k — Q) - ;nj)
—sin’ (z(k — Q) ');.",

\

: {hf[(z'(ﬂ,—@—zzfn,)-r.—fr. -rg]}
ves J

=l m o2 (&E+ IT.
(J") . g (E+u,)T.] £ o)
2) - ! {+ag, by, L dy
-T2 e
el o, RAQ'B,-5H-Y2'n)-T,-iT, -7,]] ) (A4-43)
7
EpRRD2 £ [&+u )T, ] sin’* (atk ~Q)-Zn,)
1, RIQ B, -5 -3 2'n )T, ~iT, -7,
- Z 7
A -g’[(§+#,)l]-cosz(fr(k—Q);n,) )
. Izj. { ,,,,,, Z(hy(”l'le,)):} .dh---dh

Finally, substituting (A4-45) into (A4-37) will give an upper bound for the ICI moment of
the quantization noise which corresponds exactly to (4-44), using one further trigonometric
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identity not stated in (A4-44)*[34]. To derive the moments for the Gaussian noise aggregated with
the quantization noise, we proceed in a manner similar to what was done previously. Thus, to find
the moments of Z;’(/7,), we first use (4-17) :

f (4B, - H-X2'n,)-T.] '
J
{,
el ) =B S0 T T s+ uTl cof w45y 2m, ) |} hete)
§=4 - L] J
A% (n,-2°T)
L t .
Again, we use Schwartz’s Inequality from (A4-33) and it gives us [34] :
- \ vi2)

( QB -H-22'n)-T]
J
v 2 2 1
EfE @) |se T e [(:+u,)m-°°5(fr<k+5)~§"/) L (A4-47)

RAEILAURS)

) n /
Y

Since we initially assumed that the Gaussian noise and the quantization noise were
independent, we can separate the expectations in (A4-47), thus [31]:
(. 2128, -9 -2 2'n,) T)]
Bl an) ) <B| XX T ’

ETT ) g ie s wT ) oost (w4 )20, )

vi2

(A4-48)

. E{Zz ...... T (hm, 2T, ))’)m}

n, "

From (A4-48), we see that for the Gaussian noise component we have exactly
(2L+1)(A+1)@~I, +1) random variables. For this portion, we must average the expression over
(2L+1)(1+1)(@>I; +1) normal distributions of zero mean and variance & since z(1) ~N(0,o’ ) and
z(1) is a stationary and white random process. In the quantization noise component, we must
average the expression over (2L+/)(l+1) uniform distributions with zero mean and variance
2% /12 since h(:) ~Uniform(0,2%° /12) and () is also stationary. Since the p.d.f. of a uniform
distribution is simply a constant over the range of the random variable, for the joint p.d.f. of the
expression we must average over is 222" /"?) | gince process /1 (:) was assumed to be white [31].

* The last trigonometric identity needed to compilete the derivation is [34] :
005°(X)-sin’(x)=cos(2x)
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Following these final steps, we obtain the upper bounded moments of the Gaussian noise
aggregated with quantization noise, shown i (4-52).

A4.S : Derivation of the Correlation Between the Quantization and

Interference (Derivation of (4-53), (4-54) )

Similar to the previous derivation, only the lowpass outputs from the final stage (k=0 and
k even) will be considered. Thus, to prove the expressions for the correlation between the
interference and quantization noise, as expressed in (4-53) and (4-54), we will first look at the
interference and quantization noise on a symbol by symbol basis (ie. for fixed / ) [2]. In both
cases, we shall refer to (3-36) and (4-42), respectively. For the interference, we may express the
ISI as n,; and the ICI as 7,0, , as is indicated by (A3-31) through (A3-33), respectively. For the
quantization noise, we can express the ISI portion by 7,;; and the ICI portion by 7,20 , thus :

My = Moy + Me2gu +23"UT) (A4-49)
where :
Ness = A4 -0y, i’ (al, —iT}) (A4-50)
and :
ag, - [V (al, —iT,)-cosg, — ' (al, —iT,)-siné,]
Teras = 4o '{-bg, V(e ~1T;) -sin g, + 9% (T, ~iT,)- oos¢91} 43D
and /' (IT,) is given by (4-17).

First of all, to find the correlation between 7’ and r,;, we first look at the Gaussian noise
term in (A4-49). Because Z'(IT,) has zero mean, it has no effect on the overall correlation thus
it can be discarded. Secondly, we assume that the data symbols from one channel to the next are
independently distributed (ie. Efa,; - ax; }=0 , E{b,; - by, }=0 ., Efag; - by; }=0 and
Efb,; -ai; }=0), thus the correlation is simplified to [31]:

E{'f”;} = E{'lu ) ’h.u} "'E{’h.o.c "71.1.0.1} (A4-52)

In other words, correlation exists only among the ISI components and ICI components of
the interference and quantization noise but not between both components. This is due to
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First, we will try to derive an upper bound for (A4-58). If we substitute (4-14) into
(A4-58), we get :

A} -u(al, -iT})
hIQ'B, ~-9-2.2'n)-T,-iT, -7,1|| (A4-60)
J
* |gl(§+u)T)- 45 (n, -2'T)

If we use Schwartz’s Inequality as expressed in (A4-33) on the summation of (A4-60), as
was done previously, we obtain for an upper bound of (A4-60) [34] :
r N

A; -u(ad, —iT,)

R Q'(B,-H-D.2'n) T, -iT, -y,]
J r (A4-61)

Eln, -n,.) SE|- Jﬁjz ...... z{

€'+ u)T]

= Zhre, 2]

Since the timing phase and the quantization error are assumed to be statistically
independent, (A4-61) may be expressed as [31]:

A; -u(ad, —iT,)

E{n, ..} <E JZZ ..... Z{hfl(?-’(ﬂ, ~9-32n) T -i%, -7.]

shoen g+ 4T } (A4-62)

E{ 3. ;(n?(n,-2’ﬂ))z}

From (A4-62), if we average the first expectation over the timing phase and the second
expectation over all the quantization error variables, we will obtain (4-53) exactly. In the second
expectation, we average over (2L+/)(1+]) uniform random variables thus the joint p.d.f. over
which we must average is 2°?**/**" since the error process, & (n,-2/T,), is white and stationary
[31].

Now, we will try to derive an upper bound for (A4-59). First of all, we will expand the
multiplications in (A4-59). This expansion yields :
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r( \ N 9

vi(al, -iT,) -V (al], -iT})-cos® ¢,
+v®(af, —iT,)-v'*(al, -iT;)-sin’ ¢,
vi(ad, -iT}))-v'®(al, -iT}) ) .

e ) st -conse
\ \+¥a, -iT,) -V (al, —iT,) Y,
. \[[  (A4-63)

E{'h.o.l "’,,z,g,} = EX Aé .

v/ (af, —iT;)-7"!(al, -iT;) -sin @,
+ +® (o, ~iT,)-7"®(aT, ~iT,) - cos* 4,

‘ s el 4 -1
{v (aly —i1,)- V' (al, i) )'Sin¢g'°°s¢0)
\ J

+®(at, ~il,)-¥*(aT} - iT;)

We can simplify (A4-63) using trigonometric identities, thus [34] :

_ gl (v -iT) -7, ~iT,) )
E{'h.o.t ’L,.z.o.:} _E{Ao (+v'(d7; ~i})-¥'*(ad, -iT) aeen

If we substitute (4-15) and (4-16) into (A4-64), we obtain :
(V! (aT, -iT}) : Y]
(h,[Q2'(B, -O-2.2/n))-T, -iT, - 7,]
J

3T Y glE+ p T ] cosCrtk - 9)-Zn,)
L.hr(n’ 2'T) S8
+v¥(al, -iT,) (A4-65)
(h[Q'(B,-O-Y.2'n,)-T, =i, ~7,)]
I, /

-ZZ.-----Z«-g{(¢+u,)r,1-sin(n(k—g>->;n,)

=l ny »

\ :h/b(nj '217‘:)

v

E{":.Q: "ha.@x} =E{A;-

v

/]

From (A4-65), we split the expectation into two parts, each one corresponding to one term
in the summation. Next, we apply Schwartz’s Inequality of (A4-33) to each expectation giving us
an upper bound for (A4-65) [34] :
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( W

v/ (aT, -iT,)
: RHQ'(B,-D-D.2'n)-T,-il, -y ]
EiNg, Ny1o, i <EJAS-|- o 3
Urias Mo, < £\ 4 §§ ;{-g’[(§+#,)£]-m’(ﬂ(k-Q)-gm)
3. Y (v, -2/ 1))
[ \ ¥V~ = /)
[ V) (A4-66)
ve (a, —iT})
; RHQ'(B, -O-.2'n,)-T,-iT, -7 ,]
+E{AL 3T 7 >
ELom  m -g’[(¢+ﬂ,)71]-sm’(rr(k—Q)-;n,)
A3 T (re o, 2/ T))
\ n [ y,

From (A4-66), we can split each expectation into two parts due to the independence
between the timing phase and the quantization noise [31]. Furthermore, we can take the
quantization noise as a common factor between both summations and regroup to obtain only two
summations multiplied by eachother. Thus, (A4-66) reduces to :

[ (v/(af, -iT}) \
& 'hf[(Z'(ﬂl—5)_22/,5),1:_”;_’,9]1
° ZZ"'Z‘ ) J ,
=rw w18 (E+ u )T ]-cos (tr(k—Q)-%‘,n,)
E{”z.e.z y "qJ.QJ} SESA4;- (e, -iT) | v
& 'hf[(zl(ﬂ’-g)—zzjnl)'t‘ﬂ;“79]’
° . < J [
L Z’:; Z &[G+ p L] -sin*(x(k - Q) Zn)) )

If we average both expectations in (A4-67) over the timing phase and the quantization
error variables, respectively, as was done previously, then the final result will be (4-54). In this
case, however, we must take a finite sum of the first expectation in (A4-67) over all the interfering
channels, that is, all channels except for the ¥* . Also, we use two trigonometric identities to
obtain
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an expression in terms of uu(-) and vv(-)* [34]. Once that is done, the expression will be identical
to (4-54).

A4.6 : Derivation of the Maxima and Minima of the Quantization Noise
(Derivation of (4-63), (4-64) )

5,'wwasneededhordertomaximiutheupperbamdsoftheuuncaﬁonenorsgivmby
(4-72) and (4-74). To derive ¢, .., We must analyze the maxima of 77, , 7;> and z''(T), as
was done for the interference counterparts in Appendix 3.3. To do so, we must make use of the
coefficient rounding error as explained by Liu, to upper bound the quantization error from each
haifband filter [28]. If we assume we have B bits of quantization and if &, is a fixed value in the

range of the filter coefficient quantization error, then the rounding error can be upper bounded by
[28]:

l&s| <27 (A4-68)

Thus, the maximum values for n,, and 7., are:

max 11, = maxZ|A -, (aT, —iT})| (A4-69)

t=a-my;

and :

maxnmn,, = ZA max Z (A4-70)

e (e 15 (cosd, + )
ro Se tmamy o +v"(¢lT —iT,)- (COS¢Q —5m¢g)

, respectively. To maximize with respect to ¢, in (A4-70), we can set ¢, to a constant non-
random value of }-x, thus (A4-70) becomes :

ma 1, =23, Ag ma Sz (at;, i)+ Pt e, -i) (A4-T1)

7o i=a-m o
, where @ (aT, —iT,),v!! (aT, —iT,) and ¥'%(aT, —iT,) are the maximum values of the ISI
and ICI, respectively, with respect to the haifband filter coefficient quantization error, 4,(n,-2'T)).
These quantities are formed by first observing (4-14), (4-15) and (4-16), respectively.

* The two trigonometric identities nceded to complete the derivation are [34]:
cos’(x)=3-{1+c08(2x)} and sin’(x)= 3-{1-cos(2x)}
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With the maximum rounding error in (A4-68), the maximum values of the ISI and ICI are as
expressed in (4-65) (4-66) and (4-67), respectively [28]. For the maximum value of z;'(/7,), we
assume that z(?) ~N(0, &) is bounded by [31]:

(A4-72)

where & is a fixed value in the range of z(). (A4-72) holds iff & remains within the 99.95%
confidence interval of z() [31]. Thus, using the maximum rounding error in (A4-68), the
maximum value of Z’(/T,) for the lowpass outputs from the final stage (k=0 and k even) is [28]:

max?’,"(ﬂ')—

2-'°'| ‘2_1‘:(-1)" z- Zg((§+/t,)T] cos(x(k+—) zn)

e

[T(rn, -2/T))

=0

=0+ 3()) £3-F 412---'1[

{g[(«fw,)T,] }] , |(A4-73)

1
-oos(;r(k+5)-);,n/)

\ /

.

A similar result is obtained for the latter case, that is for k odd. Thus, if we add (A4-69),
(A4-71) and (A4-73), we will have (4-63). As for the minimum value of the quantization noise,

&oaan » it may be derived if we are looking for the minimum values of 7,; and 7, . Thus, to

minimize these quantities, we must minimize 7,; and 77,> with respect to the timing phases, set
the ISI and ICI components to their most negative values, respectively, and choose
', (af, -iT,), V. (al, —iT,) and V. 2(al, -iT,) which are the minimum values of the ISI and
ICI, respectively, with respect to the halfband filter coefficient quantization error, 4, (n,-2’T,).
These minimum values can be seen from the corresponding maximum values of (4-65), (4-66) and
(4-67). If we set the rounding error of (A4-68) to its most negative value, in this case
Era =270, RIS easily seen that these minimum values are simply the negative of (4-65), (4-66)
and (4-67), these being the corresponding maximum values. Therefore, the minimum values for
N1 and 175> are [28] :
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atm,
min 1, = —min 2|A -7, (aT, —iT})| (A4-74)

s=a~my

and :
ame [Vil (af; ~iT;) - (cosdy, +sing,)
minn, ,=-) A, min A4-75
i~ AR A .=§,q+v"(¢ﬂ' ~i7;)-(cos$, —sin ) ( )
, Tespectively. By setting |¢, | = /4, we set the ICI to its most negative value by maximizing its
magnitude. Therefore, (A4-75) becomes :
min 1, =~J23 4, min S @, -in)| + 78 o -iT)| (A4-76)

Te =g-m; ¢

To minimize Z;'(/T,), we set & to its minimum value and in this case, its most negative
valueis & =-3.291-0 [31]. Setting this value in (A4-73) gives us the minimum value of 3;’(/7;)

for the lowpass outputs from the final stage (k=0 and k even) and if we add it to (A4-74) and
(A4-76), we get the first half of (4-64). Similarly, for k odd, we can repeat the above and obtain
the second half of (4-64).

A4.7 : Derivation of the Truncation Error for the Finite Taylor Series of
Q(-) (Derivation of (4-74) )

(4-71) and (4-72) express the truncation errors for only using the first 2K; terms in each
Gram-Charlier Series for the marginal distributions of the interference and quantization,
respectively [35]. The truncation error for considering only the first 2K; terms in the orthogonal
polynomial expansion of the joint probability density function has been considered negligible
compared to (4-71) and (4-72). This is due to the fact that the coefficient of (4-73) for this
particular truncation error would involve the joint interference-quantization moments and for
purposes of analysis, the higher order joint moments are much smaller than the marginal moments
thus this truncation error would be considered negligible [18].

To derive the truncation error for using only the first (AM+ 1) terms in the Taylor Series for
Q(-), we consider the integral form of R,, [30, pg. 880] :
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VeV,
— rd : ("1)“ M M
R“ - ! d’.ihl (e - M) 'V'I .W’h -dt
—pMt . . (A4-7T7)
= () .w:l 1.'/,: 1
M+ .
, where :
2 u(0) -
v, =—’—a—§” (A4-78)
Fu(0)-¢&
2 q
Vo, =——c;:—" (A4-79)
,and & and &, represent fixed values in the range of the interference and quantization,
respectively. Thus, combining (A4-77) through (A4-79), we may arrive at a final expression for
Ry as:
M+ M+l
IR |=I(_1)M+l '(—Aziu(O)-éq) l.(%"‘u(o)—gn'\
M |(M+l)! . o, . o, )
M+l 7 \M’I
__ 1 f%u(O)-;”J [FuO@-¢, (A4-30)
M+Dt o, \ o, J
M+l M+l
1 [({pu@-g)) (HEe@-¢)
M+ o, o,

If we choose the values of &, and &, to be maximum, as is indicated by (3-44) and
(4-63), respectively , then we will maximize the right-hand side of (A4-80) and we will have the

exact same expression as (4-74).
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