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Abstract

A STATE SPACE MODEL FOR INFLATION
Anthony Tippa
Evidence has shown that the constant parameter assumption in Wilkie's [nflation
model may be too restrictive. [n this work we investigate the model proposed by
Arsad (1999). where the mean level of inflation is assume to follow an AR(1) process.
We compare the result obtained when prior knowledge of the initial parameter state
is assumed known thus Bayesian analysis is applied and that obtained using classical

approach.
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Chapter 1

Introduction

1.1 Outline of the thesis

The first chapter of the thesis reviews Wilkie's U.K. stochastic asset model. A very
brief introduction to the model is made, for detailed descriptions of the model see
Wilkie (1986, 1995). In Chapter 2 we introduce the state space model and Kalman
filter technique. Methods used in estimating the parameters of the model are treated
in Chapter 3, while Chapter 4 deals with the application of the state space model to

inflation and a summary of the results is given.

1.2 Wilkie’s Model

The Wilkie’s Model was the first comprehensive stochastic investment model in the
actuarial profession to be published. It was proposed in 1986 by the U.K. actuary

David Wilkie, who developed work carried out by the Maturity Guarantees Working
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Figure 1.1: The “Cascade” structure of Wilkie’s model

Party of the Institute of Actuaries. The original model is made up of four intercon-

nected models, namely:

e price inflation model.

share dividend yield model,

e share dividend model.

Consols yield (long-term interest rate) model.

These models are essentially conventional ARIMA transfer function models. The
model has been extended to include other interest rates and other asset returns
[Wilkie (1995)]. Inflation is postulated as the driving force for other series. The
relationships between the variables are based on a blend of statistical evidence and
economic beliefs. The interdependence is shown pictorially in Figure 1.1, where the

arrows indicate the direction of influence for times s, t such that 0 < s,¢t,s+1¢ < 1.



1.2.1 Price Inflation Model

In Wilkie's model, price inflation is assumed to be a factor influencing the returns on
the assets in the model. The model uses a first-order autoregressive AR(1) process
for the continuously compounded rate of inflation. Such a model can be written as

[see Wilkie (1986)]:

L — Hg = aQ[it_l - ,U.Q] + 0g€qt , (1.2.1)

where i, = log (Q:/Q:-1), Q: is the level of the inflation index, eg, is an i.i.d. standard

normal variable, and ug. ag, and o are parameters to be estimated.

1.2.2 Wage Inflation Model

The wage inflation model can be represented by the following equation:

Jo = pw + Wivrie + Wiadeoy + o [Ji-) — pw

N
o
N’

-Wwit— — n/—wg‘it_.[] + ‘/VQ[it—lllQ] (1 .

+ow(peqe + mﬁm] ,
where J; = log (W/W;-.), W, is the level of the wage (or earnings) index at time ¢,
thus J; is the rate (strictly force) of wage inflation over the year (¢t — 1,¢), ew, is an
i.i.d. standard normal variable, and pw, aw, Wwi, Wi, Wo and ow are parameters

to be estimated.



1.2.3 ARCH Inflation Model

Engle (1982) uses auto-regressive conditional heteroscedasticity (ARCH) models to
generalise the implausible assumption of a constant variance. ARCH models have
non-constant variances conditional on the past, but constant unconditional variances.
Essentially, the variance of the current stochastic disturbance is assumed to depend
on the magnitudes of residuals; this can be extended so that the variance depends
on the actual value of the series in the previous period, thereby capturing the notion
that there is more variability at higher levels of inflation. Engle finds that the ARCH
effect is significant for a series of quarterly U.K. inflation data.

Wilkie (1995) noted that the residuals eg(t) may not be independent, and that
allowing for heteroscedasticity may be necessary. To allow for the apparent non-

stationary in the variance o'g’g, he endeavoured to fit an ARCH model of the form:

Iy = bg + QQ[i¢_1 - /JQ] + oqi€qe (1.2.3)

05, = 0% + fgli-1 — pol*. (1.2.4)

1.2.4 Share Dividend Yield Model

Wilkie’s share dividend yield model is of the form
111 }/t = Yu/’it + YN; y (125)
where

Yne = Ilnpy + ay[Yy -1 — lnpy] + oyeye (1.2.6)



and Y] is the dividend yield on ordinary shares at time ¢, Yy is an AR(1) process and

Ly, ay, gy, and Yy, are parameters to be estimated.

1.2.5 Share Dividend Model

If we define K, as the logarithm of the increase in the share dividends index from

year t — 1 to year t, Wilkie’s share dividend model is of the form:

Dp
[—(i-Dp)B

K, = Dy ( ) it + Dxi, + KD (1.2.7)

+DyYg-1 + DgDgey + Dge

where the backwards step operator B is defined by BX, = X, |, K; =InD,~In D,_,,
the dividend residuals Dg, can be written as Dg, = opep,, €p, is a sequence of
independent identically distributed unit normal variate, and Dy, Dp, Dx and up
are parameters to be estimated. The term in parentheses (1.2.7) involving Dp rep-
resents an infinite series of lag effects, with exponentially declining coefficients Dp,

Dp(1 - Dp). Dp(1 — Dp)?. and so on.

The sum of the coefficients is unity, so that part of the formula represents the lagged
effect of inflation with unit gain. This means that if retail prices rise by one percent
this term will also rise by one percent. It can alternatively be described as the carried
forward effect of inflation, D, ., where

Dy¢=Dpir+(1—Dp) Dago—y

from which it can be seen that the amount that enters the dividend model each



year is Dp times the current inflation rate, plus (1 — Dp) times the amount brought

forward to the next year.

1.2.6 Long-term Interest Rate (Consol Yield) Model

The long-term interest rate model is made up of a real component Cy . and a com-

ponent representing investors’ inflationary expectations. The model is of the form:
Ct=CA"1t+CNt 3 (128)

where

Cp ,
. = P 9
Cue=Cw (1 - C'D)B> iy (1.2.9)

and

In CNt =In He + (C..u B+ C,.\g B? + CA;; Bs)(ll’l CNt —1In .U'C)

+Cy’ Y[;g + Océ€c ;-

C, is the long-term interest rate and ec, is a sequence of independent identically
distributed unit normal variates, and pc, Ca1, Ca2, Ca3,Cw,Cp, Cy, and o¢ are
parameters to be estimated. The term in parentheses in Cp has a similar form to the
Dp term in the dividend model, though the parameter value is different. It represents
the current value of expected future inflation as an exponentially weighted moving

average of past rates of inflation.



1.2.7 Short-term Interest Rate (Bank Rate) Model

The short-term interest rate model is defined by the following equation:
InB; =InC, — up —ap[lnC_y —In By — pug| — opeg: (1.2.10)

where B, is the short-term interest rate, g, is a sequence of independent identically

distributed unit normal variates and pg, og, ap are parameters to be estimated.

1.2.8 Index-linked Yield Model

The index-linked yield model is defined by the following equation:
InR, =Inpug+ ag(ln R_y —Inpg)+ Rec 0cect + TreR: (1.2.11)

where R, is the real vield on index-linked securities, and €¢g, is a sequence of inde-
pendently distributed unit normal random variables and pg, ogr, o¢, agr, and Rpg¢

are parameters to be estimated.

1.2.9 Property Yield Model

The property vield model is defined by the following equation:
In Z, =uz+az[ln2¢_1 _.UZ] +oz€z: , (1.2.12)

where Z, is the property yield, €z, is a sequence of independently distributed unit

normal random variables and pz, 0z, and az are parameters to be estimated.



1.2.10 Property Income Model

If we define L, as the logarithm of the increase in the property income index from

year t—1 to year ¢t. The property income model is defined by the following equations:

Ly = EMt + E'\f i + UE + EBzdzezg + Og€z, , (1.2.13)

where

E :
Ey = Ew (1 T —DED)B> i (1.2.14)

and Eyr, is the property income index, while ez, is a sequence of independently
distributed unit normal random variables and ug, og, Ex, Eyw, Ep, and Egy are

parameters to be estimated.



Chapter 2

State Space Model and the

Kalman filter

In this chapter we shall define the state space model and consider three fundamental
problems associated with it. These are all concerned with finding best (in the sense
of minimum mean-square error) linear estimates of the state vector #, in terms of the

observations ;. i, .... and a random vector ¢.

Estimation of 8, in terms of

1. idg,..., %, defines the prediction problem
2. 1ig, ..., i; defines the filtering problem, and

3. ig, ..., i, defines the smoothing problem (in which it is assumed that 7 > t).

Each of these problems can be solved recursively using an appropriate set of Kalman
recursions which will be established in this chapter.

9



2.1 The Kalman Filter

In 1960, R.E. Kalman published his famous paper describing a recursive solution to
the discrete-data linear filtering problem [Kalman (1960)]. Since that time, due in
large part to advances in digital computing, the Kalman filter has been the subject
of extensive research and application. The Kalman filter is commonly employed by
control engineers and other physical and social scientists in such diverse areas as the
processing of signals in aerospace tracking and underwater sonar, and the optimal
control of economic system. Detailed discussion of the Kalman filter theory can be

found in Harvey (1989).

The Kalman filter is based on a state space model. The unknown state of the system
is denoted by #,, and is referred to as the state vector. The measurements i, consist
of linear combinations of the state variables corrupted by a sequence of uncorrelated
random errors 7,. In the state space form, we write the system equation and the

measurement equation, respectively, as
O, =ap + b + €, (2.1.1)
and
fe=by+ Ay + 10 . (2.1.2)
Here
i is an V; x 1 observed vector ,

b, is an N; x 1 vector ,

10



6, is an Vg x 1 vector representing the state of the process at time ¢ ,

a; is an Ny x 1 vector

Q, is an V; x N state transition matrix that relates 6,_, to 6,,

¢, represents a vector of serially uncorrelated disturbances with mean zero and

covariance matrix (', i.e E(¢;) = 0 and Var(e,) = C,

ne is a vector of serially uncorrelated disturbances with mean zero and covari-

ance matrix R, i.e E(m) = 0 and Var(n,) = R, ,

A, is an .Vy x :Vy linear connection matrix between the output i, and state 6,.

The specification of the state space system is completed by the assumption that
the disturbances 1, and ¢, are uncorrelated with each other in all time periods, and
uncorrelated with the initial state, that is

E(nes) =0 for all s,t = 1,....T,
and

E(m6y) =0forallt =1,..T.
Once a model has been put in a state space form, the way is opened for the application
of the Kalman filter algorithms. The Kalman filter is a recursive procedure for com-
puting the estimate of the state vector at time ¢, based on the information available
at time t. This information consists of the observations up to and including i;. This

estimate may be improved as additional observations of the process become available.

11



In certain engineering applications the Kalman filter is important because of on-line
estimation. The current value of the state vector is of prime interest (for example,
it may represent the co-ordinates of a rocket in space) and the Kalman filter enables
the estimate of the state vector to be continually updated as new observations be-
come available. At first sight. the value of such a procedure in economic applications
would appear to be limited. New observations tend to appear at rather less frequent
intervals and the emphasis is on making predictions of future observations based on
a given sample. The state vector does not always have an economic interpretation
and, in cases where it does, it is more appropriate to estimate its value at a particular
point in time using all the information in the sample, not just part of it. These two
problems are known as prediction and smoothing respectively. It turns out that the

Kalman filter provides the basis for the solution of both of them.

Another reason for the central role of the Kalman filter is that when the disturbances
and the initial state vector are normally distributed, it enables the likelihood func-
tion to be calculated via what is known as the prediction error decomposition. This

opens the way for the estimation of any unknown parameter in the model.

Let I, = {41, %, ... &} and ét-m_l denote the optimal estimator of §,_; based on the
information available up to and including %;,—;. Let P,_,;_; denote the covariance

matrix of the estimation error, that is

P_yjt-1 = E[(6;—1 — ée-1|¢—1)(0t-1 - ét—-l|t—l)T] . (2.1.3)

12



Under the normality assumption, the initial state vector 6, has a multivariate normal
distribution with mean églo and covariance matrix Pog. Th disturbances 7, and ¢, also
have multivariate normal distributions for ¢ = 1,...,T and are distributed indepen-
dently of each other and of #y. In many cases, we begin the estimation problem with
no prior measurements. Thus, in this case, if the process mean is zero, the initial esti-
mate is zero and the associated error covariance matrix is just the covariance matrix
of 4 itself. The system matrices together with éOiO and Py are assumed to be known

in all time periods and so do not need to be explicitly included in the information set.

Assuming initial values émo and Pyjo are available, the optimal estimator of 8, and

the corresponding covariance matrix of the estimation error are
Oy = ar + Qubr-j-1 (2.1.4)
and
Py, = QtPt—llt—ng' + R . (2.1.5)

These two equations are known as the prediction equations. With the assumption
of a prior estimate ém—u we now seek to to use the measurement #; to improve the
prior estimate. We choose a linear blending of the noisy measurement and the prior

estimate to obtain the updating equations, which are
Oy = Oy + Ki(ie — Abye—r — br) (2.1.6)
and
Pyt = Py — KeAePye— (2.1.7)

13



Enter prior estimate ;_,j,, and
its error covariance P;_;;_,

Compute Kalman gain:

K¢ = Py AT (At Py AT + C) 71

Project ahead : Update estimate with
Brpe—1 = by measurement i, :
Pyi-1 = WP + R, Oyt = Brje—1 + Ko (ie — Aebye—1)

Compute error covariance
for updated estimate:
Py =T - K d)

Figure 2.1: A complete picture of the operation of the Kalman filter.
where
étlt is the updated estimate ,
Ry= Py ATF7 ! is known as the Kalman gain ,
Fo = APy AT+ C .

We now have the needed quantities at time ¢, and the measurement i; can be as-
similated just as in the previous step. Equations (2.1.4) (2.1.5), (2.1.6) and (2.1.7)
comprise the Kalman filter recursive equations. It should be clear that once the loop
is entered, it can be continued ad infinitum. The pertinent equations and the se-
quence of computational steps are shown pictorially in Figure 2.1. This summarizes

14



what is now known as the Kalman filter.

2.1.1 Example

Let us introduce the example considered by Phadke (1981) in the context of statistical
quality control. Here the observation i, is a simple (approximately normal) transform
of the defectives observed in a sample obtained at time ¢, while 8, ; and 85, represent,
respectively. the true defective index of the process and the drift of this index. We

then have as the observation equation
=0 +m
and as the system equations

O =00y +€py

Orr = 0201 + €2y
In vector notation. this system of equations becomes

0,=086,_, +¢

0. 01 €1+ €2
g, = , Q= , and € = (2.1.8)
02‘1 01 €2t

Q does not change with time.

To further simplify the above model, we can remove the drift parameter. This yields

0, =0,_, + €

15



In this situation, A, = Q, = 1; if we further specify that Pyo =1, R, = 1, C; = 2,
we can easily demonstrate inductively that Fy,_, = Q,Pt_m_lQT + R; = 2, and from

(2.1.7), Py, = 1. In (2.1.6), then, our recursive relationship becomes

1

By = ét-l|t—l + 3(2} - ét—l|t—l)

1, -
= 3(% + 0 1e—1)

t—1
= (
J=0

. Lia
P, + (;)tgolo . (2.1.9)

N —

2.2 Kalman Prediction

In the context of the state space model. one of the traditional uses of the model
is to predict future values of the unobservable state vector 8, (or to predict future
values of i;). This model provides a convenient computational method for recursively

obtaining predicted values.

Let Oronr = E{frialiv, - it h=12,3,..
denote the minimum MSE linear predictor of fr.,, with covariance matrix

Prowr = E{(0r+h — Or+nr) (O14n — Orsnr) ]
So that under normality the conditional distribution of fr,, given iy, ..., i is normal

with conditional mean 07,7 and covariance matrix Pryxr.

To evaluate éT+h|T and Pr.ur we simply repeatedly apply the Kalman prediction

16



equations (2.1.4) and (2.1.5). This gives the h-step prediction equations.

Orinr = arsn + Qrenbron—yr (2.2.10)
and

Pronr = QrenPron—yrQren + Rrsn (2.2.11)

17



2.3 Kalman Smoothing

Another problem of interest with the state space model framework, particularly in
applications to economics and business, is to obtain “smoothed” estimates of the
past values of the state vector #, given observations iy, ...,i7 through some fixed
time T. One convenient method to obtain the desired estimates, known as the fized-
interval smoothing algorithm, makes use of the Kalman filter estimates étlt- The
smoothing algorithm produces the minimum MSE estimator of the state vector 6,
given observations through time T, éL[T = E[8,)i,, ..., ir]. The covariance matrix of 6,
conditional on all T observations is denoted by
Pyr = E[(8 — 8yr)(6: — 8yr)']

The fixed-interval smoothing algorithm consists of a set of recursions which start with
the final quantities, éTIT and Pryr, given by the Kalman filter and work backwards.

The equations are
élIT = étll + Pt‘(ét+l|T - Qt+lét|t) (2.3.12)

and

/

Pyr = Py + P/ (Pepyr — Popp) Y (2.3.13)

where

P; = Py P, t=T-1,..,1
The algorithm therefore requires that 9,“ and P, be stored for all ¢ so that they can

be combined with é,+1|T and Py ;.

18



Chapter 3

Parameter Estimation

3.1 Prediction Error Decomposition of the Likeli-

hood

The system matrices in a state space model usually depend on a set of unknown pa-
rameters W. The parameters are estimated using a maximum likelihood estimation
procedure. here the Kalman filter technique is used to construct the likelihood func-
tion. The conditional probability density function is used to write the joint density

function [Harvey (1989)] as

T
L(i.6) = [T fGl-0) (3.1.1)

where f(i;|I;-,) denotes the distribution of %;, conditional on the information available

at time ¢t — 1. That is

Loy = {de—y,de—2, on Bi )

19



Note that given [;_,.
Ly ~ N(Atém—l + by, F})

therefore, the conditional p.d.f of #; given I,_, is given by

L= ! e'%ZT:l(it‘-4¢ét|t-l'bt)’Ft-l(i""“étlt-l_b‘). (3.1.9)

|12

Let 0, =i, — A,ém_l — b, then the likelihood becomes

1
L=— e~} Sl o FT (3.1.3)

ST T
21) % [Lomy [F]'?

and therefore the log-likelihood is

NT 1 <& | <
log L = ——log 2 — 52 log |Fy| — ;jZ[/tF,“z},. (3.1.4)
t=1 t=1

Uy is known as the vector of prediction errors.

If prior information is available on all elements of 8, then 6, has a proper prior dis-
tribution with known mean 6y, and bounded covariance matrix Pyo. The Kalman
filter then vields the exact likelihood function of the observations i, via the predic-
tion error decomposition [Harvey (1989)]. Unfortunately, genuine prior informaticn
is rarely available. This has led some statisticians to conclude that Kalman filter
techniques are only appropriate if (a) one is able to adopt a Bayesian approach in
which a proper prior distribution for 6y is always specified, or (b) the sample size is
so large that the specification of initial conditions is unimportant. As discussed in
[Harvey (1989)], such a conclusion is unwarranted. We know that for a univariate
series the Kalman filter can always be initialised with the mean and covariance ma-
trix of the unconditional distribution of #; when 8, is stationary. This is valid even if

20



the matrices A,, R; and b, in the measurement equation are not time-invariant. For
non-stationary state vectors with d non-stationary components, in a time-invariant
model, observability of the d non-stationary components is sufficient for the con-
struction of a proper distribution for 4. When this is the case, the joint distribution
of igst, ..., ir conditional on i, .... 44 is given by the prediction error decomposition,
with summations running from ¢t = d + 1 instead of t = 1. If 4y, ..., 14 are regarded as

being fixed. the joint density function is an unconditional one.

Once an algorithm for computing the likelihood has been found, it must be max-
imised with respect to the unknown parameters ¥. This will normally be carried
out by some kind of numerical optimisation procedure. However, in maximising the
likelihood function it is usually advantageous to exploit any linearities in order to
reduce the dimension of the search. In general, this is done by recognising that
the model is linear in a subset of parameters. This means that if the remaining
parameters are held constant, ML estimates of the first set of parameters may be
obtained directly, without resorting to an iterative procedure. These estimates may
be substituted into the likelihood function, and the resulting concentrated likelihood
function maximised with respect to the second set of parameters only. For example,
let F, = F a constant matrix, we can compute the ML estimate of F' and then we

concentrate F out of the likelihood.

21



Differentiating log L with respect to 2 is not straightforward. However, by making

use of the results

or'dz 315
51 = It (3.1.5)
and
dlog|A| ) .
e (4)7, (3.1.6)

the derivatives of log L with respect to the elements of the inverse of Q are readily

obtainable. Thus

dlogL T . le~
OF -1 = EF - :5 Z hy,, (317)
t=1
having used the fact that
T T T
-;loglFl = —;log|F‘l|‘l = T)-log|Q—l| . (3.1.8)

Because of the invariant property of ML estimators, the ML estimator of F is equal
to the inverse of the ML estimator of F~!. Thus setting (3.1.7) to a matrix of zeros
and solving will yield the ML estimators of both F~! and . In fact it is F which is

of primary interest. and the ML estimator is given directly as
F=1" Z vv,. (3.1.9)
Maximising log L is equivalent to minimising S. With
T
S=Tlog|F|+ Y v F'n, (3.1.10)

t=1

since
Zu;ﬁ"lut = tr(F"lZutV;) = NT. (3.1.11)

22



It follows from (3.1.10) that maximising the concentrated likelihood function is equiv-
alent to minimising a generalised sum of squares function. In general, in order to
obtain the maximum likelihood estimates we need to compute the information ma-

trix.

3.2 Information Matrix

The information matrix provides an estimate of the covariance matrix of the maxi-
mum likelihood estimation and is also featured in algorithms used to compute these
estimates. The prediction error decomposition likelihood function,(3.1.2), has the
important property that it yields an information matrix which depends on the first
derivatives only. The next section shows how these derivatives may be obtained ei-

ther numerically or analytically when the model is in the state space form.

Expressions for the score vector and the information matrix for (3.1.2) are obtained

as follows. First write the log-likelihood function in the form

logL =) L

t=1

where [, is the logarithm of the conditional density function of 7; given I,_,, i.e.

For any symmetric matrix A, the derivatives of the determinant and the inverse with

respect to a variable, z, are

oA _,0A,
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and

oAt 64
=-A4"t 2.
o 8z (3.2.13)
Differentiating [, with respect to the i-th element of ¥, therefore gives
1 1 0F v, ._ _,OF, _ 0 )
— 3t [Ft awi] - - { ddfl F7 'y, — u,F) awj F7 v, + u,F, 0@] (3.2.14)
Taking the trace of the last term allows this expression to be re-written as
O _ 1[0 L o\ i :
a—wl = 2 H:F awl} [[ - Ft I/gl/l]} - (512: F‘t V. (3215)
Differentiating (3.2.15) with respect to the j-th element of ¥ gives
8218 _ ]. - aFt -1 '
Jude, = 2 tr [& {F ] /dv,] [I - F, z/tut]
1 L OF _\0F _,
——=tr |:F't a_L/,tFt %{Ft U!.l/t]
1 _ aFt _ allt ' Bl/t
Fl—F!
5 [ t Byt [awj My,
Pv, ., But oF ! v, ._, Oy
- F, F! 2.1
duow;, b T By oy, L Bui b oy (32.16)

The ij-th element of the information matrix is by definition

82 log L] LI R
-E =-E ,
[810,8111, [tz:; 61/)181/}1

but its evaluation in the present context is simplified considerably by noticing that

E(l) =E [E:-l(lt)] 1 (3.2.17)
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where E,_, is the expectation operator at time ¢—z. Now consider taking expectations
of the terms in (3.2.16) conditional on the information at time ¢ — 1. The only
random variables are the elements of the innovation vector, v;, and their first and
second derivatives. However, the derivatives are fixed with respect to the expectation

operator at time ¢ — 1. This follows because
v =y — Et—[(it),

and so

8Vt _ a .
o a—w'let-l(&e)-

The conditional expectation of v, is zero and therefore

!

dv, d
Eir [ BZ- ut] = 8;1 Eri(v) = 0. (3.2.18)

A similar result holds for terms involving v, and its second derivatives. The net effect
on the conditional expectation of (3.2.16) is that the third, fourth and fifth terms
disappear. In addition the first term disappears because the conditional expectation
of utu; is F, and for the same reason the second term simplifies. This leaves the

following expression for the ij-th element of the information matrix

1 _0F, __, OF,
Itj(d))zé-z |:tl' [Ft l_a?t_Ft lb_w_t]]
i j

t

al/g I _lal/g Lo
+E [Z (5@) F, %} , i,j=1..,n. (3.2.19)

3

Dropping the expectation operator from the second term gives an expression which
is asymptotically equivalent to (3.2.19) and which may, in some cases be easier to
evaluate.
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3.3 Derivatives of the Likelihood Function

As was shown in the previous section the i-th element in the score vector is

dlogL 1 _19F, -1, vy o -
a'd}i ——5 : {tl’[[Ft BE] (I—F't l/tVt):l —%Ft Vy ¢, z—l,...,n

(3.3.20)
Evaluating the score vector therefore requires the evaluation of the N; x Ny matri-
ces of the derivatives, 9F,/dw;, and the N; x 1 vectors of derivatives duv,/dvy; for
t =1,....7 and : = l.....n. These same derivatives may then be used to compute

the information matrix via (3.2.19).

The derivatives of F; and v, for the state space form (2.1.1) and (2.1.2) may be evalu-
ated numerically or analytically. Computing them numerically requires n additional
passes of the Kalman filter. For i = 1,...,n a small amount, J;, is added to ¥;, and
the Kalman filter is run with this new value but with all the other elements in ¥
remaining at their original values. This yields a new set of innovations and their co-
variance matrices, v{" and F. The expressions 6, ‘[v{") — v] and 6] [F") — F}] are
then numerical approximations to the required derivatives. Of course, numerically
evaluating the derivatives is only useful if they are to be used in computing the in-
formation matrix. If all that is required is the score vector, the numerical derivatives

of the log-likelihood function can be evaluated directly.

The derivatives of F; and v, may be evaluated analytically by programming n sets

of recursions to run in parallel with the Kalman filter. These recursions all have a
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common form, which is set out below. The i-th set of recursions yields the quantities
needed to calculate the derivatives of F; and v, with respect to the i-th element of

Y. Since

U = it - -'1t0t - bg, t= 1, ,T y (3.321)

the vector of derivatives with respect to ¥; is

vy by, 3-1¢ db, .
R MO VAL S Vel (3.3.22)
and so a recursion is needed to provide d8y,-,/dv;. Similarly
oF _ 04, 9Py, 84,  OR ‘
T = 0, — Py '1 4, 5w, -1 APy lawi + 50, (3.3.23)

and so a recursion is also needed for the derivatives of Py,_;.
The recursions for the derivatives of 8,,_; and Py,_, are obtained by differentiating
the Kalman filter prediction equations (2.1.4),(2.1.5) and updating equations (2.1.6),

(2.1.7). Differentiating the prediction equations yields

39:[:-1 o, a9t—1|t—1 30:
= +Q 3.24
20 - o, “ou T By, (3:3:24)
and
aP,, - N aP, R, acC
S = g Pt U S WPy g+ 5, (3:3.29)
while for the updating equations
by 0By 3Pz|z U e OA, __
B0 = au T aw At Pueigp
' 3F 31/
— Py AF! az,/;t F 'y + Py A 5 ¢i (3.3.26)
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and

0Py _ Pyt 3ch: L 34

_10F 94
+Pt1t 1-1F dth 4:Pz|t 1 —Pllt 1’1 Fta_'l’/jf.ljtlt—l
oP,
P A FT A (3.3.27)

A
fort = 1.....T. Equations (3.3.24),(3.3.25),(3.3.26) and (3.3.27) together with (3.3.22)
and (3.3.23) provide the required derivatives. The starting values depend on the

starting values for the Kalman filter proper.

3.4 Bayesian Analysis

In this thesis we compare results obtained using the Bayesian approach and that ob-
tained using classical method. At this juncture we give a brief discussion of Bayesian
analysis. For a detailed description of the Bayesian statistics see [Berger (1989) or

Lee (1999)].

Bayesian analysis is performed by combining prior beliefs about various possible hy-
pothesis and then modify these prior beliefs in the light of relevant data which we
have collected in order to arrive at posterior beliefs, from which all decisions and

inferences are made.
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The Posterior Distribution
Suppose that vou are interested in the values of ¥ unknown quantities
6 = (6,,0s,....6;) ,
(where k can be one or more than one) and that you have some a priori beliefs about

their values which vou can express in terms of the p.d.f 7(8).

Now suppose that vou obtain some data relevant to their values. More precisely,
suppose that we have n observations

X = (X),.X, ---x-‘{n) N
which have a probability distribution that depends on these k£ unknown quantities as
parameters, so that the p.d.f (continuous or discrete) of the vectors X depends on the
vectors ¢ in a known way. Usually the components of § and X will be integers or real
numbers, so that the components of X are random variables, and so the dependence

of X on 6 can be expressed in terms of a p.d.f. f(X|6).

You then want to find a way of expressing your beliefs about # taking into account
both your prior beliefs and the data. Of course, it is possible that prior beliefs about
# may differ, but very often these agree on the way in which the data is related to 6
[that is, on the form of f(X|8) |. If this is so, posterior beliefs will differ (i.e. beliefs
after the data has been obtained), but it will turn out that if enough data is collected,

then posterior beliefs will usually become very close.

The basic tool is Bayes’ theorem for random variables (generalized to deal with

29



random vectors). From this theorem we know that

f(61X) o 7(8) f(X]0).
Now we know that f(X|#) considered as a function of X for fixed 8 is a density, but
we will find that we often want to think of it as a function of @ for fixed X. When
we think of it in that way it does not have quite the same properties - for example,
there is no reason why it should sum (or integrate) to unity. Thus in the extreme
case where f(X|f) turns out not to depend on 8, then it is easily seen that it can
quite well sum (or integrate) to oc. When we are thinking of f(X]|6) as a function
of 8 we call it the likelihood function. We sometimes write

L(81X) = f(X]6).

Sometimes it is more natural to consider the log-likelihood function

L(#1X) = log!(6]1X).
We note that. because of the way we write Bayes’ theorem with a porportionality
sign, it does not alter the result if we multiply {(§|X) by any constant or indeed more
generally by any term which is a function of X alone. Accordingly, we can regard
the definition of the likelihood as being any constant multiple of f(X|#) rather than
necessarily equalling f(X|f) (and similarly the log-likelihood is undetermined up to

an additive constant).

Sometimes the integral
[ 1(81X)d6
(interpreted as a multiple integral [ [ ... [...d61df,...d6 if £ > 1 and interpretzd as

a summation or multiple summation in the discrete case), taken over the admissible
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range of 8, is finite, although we have already noted that this is not always the case.

When it is, it is occasionally convenient to refer to the quantity

1(01X)
TiaxX)de

We shall call this the standardized likelihood, that is, the likelihood scaled so that the
area, volume or hypervolume under the curve, surface or hypersurface is unity. To

learn more about Bayesian statistical inference [see Berger (1989) and Lee (1999)].
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Chapter 4

State Space Representation of the

Inflation Model

4.1 Inflation Model

Empirical evidence has shown that the mean level of inflation may not be constant
over certain periods [see Huber (1997)] which contradicts Wilkie’s constant mean
model. In this thesis we consider a model proposed by Arsad (1999), where the

mean level of inflation is assumed to follow an AR(1)process.

Let ug in equation (1.2.1) changes with time, so we can replace pq with ug,. That

is

it = pge—1 + a1(te—1 — Bqe—1) + TQ1€QLt (4.1.1)
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and suppose ¢, is also an AR(1) process with mean p, that is

Qe = b+ a(poe-1 — 1) + 0gaEQa: - (4.1.2)

Where €y, is an i.i.d unit standard normal variate. Let 8, = ¢, —p and 0y = pg: — p,

then from equation (4.1.2) we get

O = by + 0Qa€qQat » (4.1.3)

and we can rewrite equation (4.1.1) as
p— = pgr — pp+ay(le—y — p+ 1 — poe) +0qieqQu ,
with
O = O 1 + oy (O1e—1 — O2—1) + 0Qi€QLe

which gives

Oie = ey + (1 — )1 + 0qi€que - (4.1.4)

Equations (4.1.3) and (4.1.4) can be written in the state space form as

01 ap - Ore-1 oor O €Que
= + ,  (4.1.5)
B 0 a1 0 o0g2 €Q2t
where
61 ap 1—-a 0Q1€Q1t
t9t = . Qt = , € = (416)
B 0 TQ2€Qat
and
i = (1,000, + . (4.1.7)
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4.2 Parameter Estimation

As discussed in Chapter 3. The likelihood function for a univariate model can be

written as

T u e
log L = — log2r — leog ] - 5> 5,07 0 (4.2.8)
t=

t=1
Arsad (1999) proposes a Bayesian approach by incorporating prior distributions for

elements of  (that is o, and a») and the variances o2, o2. His choice of priors are

beta(2.2) distribution for o, and @y. While o7 and o2 follows gamma(2,5000) and

gamma(2.20000) respectively.

The probability density function for «; is given by

aj(l-ai) :
m—, lf 0 S (e 31 S 1

flay) = (4.2.9)
0. ifa,<0ora; >1

The value of B(2.2) can be calculated from the formula

D(r)T(s)

BT}

(4.2.10)

where ['(¢) is the gamma function. The probability density function for a is

az(l-az} :
=22 ff0<a; <1
B(2,2) g =
flag) = ( (4.2.11)

0, ifag<0oras;>1

While the p.d.f. for o} is given by

2,—500007 )
G e if o} >0
flo?) = (4.2.12)

0, ifo?2 <0
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and the p.d.f. for o3 is

2 2
(20000)? g2 ¢ ~ 2000003

, ifad2>0
flo3) = @ : (4.2.13)

0, if o2 <0

Thus the posterior density is

1 _
T _e
(2m)7 [T, 13

T 'a-1,
Te=1 1Y e

ol

L(a,. .0}, 03)i) «

xa(l — ap)ay(l - az)a;lze—soooﬁage-zooowij (4.2.14)

The log-posterior density is hence

(S]]

T T
9 I . ]. 1 N "
log L(a). ay,07.05)i) = —- E log || — 5 E 5,7 0, + log ay
t=1 =

t=1

+log(l — ;) + log ay + log(1l — a)

+loga? — 500007 + log o3 — 2000003 + constant. (4.2.15)

Where the constant of proportionality is equal to log K and K is given by

1
K =

L el p _1T s'a-1,
.I;) jO JOOC fooc (2")2:1_117. _—Iﬂgl’;e PINRTAL U'Oﬁl(l —al)ag(l —0!2)
RiD § FESY :

9 _= 2, _ 2
x gre~ 300071 5202000073 doy) dovydo?do? (4.2.16)
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4.3 Results

The parameters of both models are estimated using the SAS software. We call the
model using the Bayesian approach Model II and the other using the classical method
Model I. The data set used is a simulated inflation data with 200 repetitions. The
graph of the data set is shown in figure 4.1. A summary of the results obtained is
given in table 1.1.

The first column contains the parameters to be estimated. In the second column
we have the exact values of the parameters. While in columns 3 and 4 we have the

estimates of the parameters using classical and Bayesian approach respectively.

As can been seen from the results, there is no significant difference in using either
method. However, the Bayesian approach tends to be closer to the true values (ex-
cept in the estimate of u) than the classical method. An explanation could be that
an appropriate prior distribution for the initial state is been specified, as a result the

Kalman filter vields an almost exact likelihood function of the observations.

The model thus obtained can be use for filtering, prediction and smoothing depending

on the interest of the user.
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inflation

1.0

-0.0 0.2 0.4 0.6 08

0.2

Parameters | Exact Model I Model 11
Q) 0.4 0.571178 0.5020872
Qn 0.5 0.418059 0.4993201
o) 0.1 0.146985 0.1187586
op) 0.2 0.11782 0.14915
I 0.5 0.115363 0.1170604

Table 4.1: A summary of Estimation Results

Fiigure 4.1: A graphical representation of the inflation data

50

100
time
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Conclusions

In this thesis we investigated the model for the rate of inflation proposed by Arsad,
which is an extension of the Wilkie AR(1) model. The proposed extension is to
allow the mean of the inflation in Wilkie AR(1) process to change according to an
AR(1) process. The use of the state space model formulation and the application
of the Kalman filter has the advantage that it allows the mean reversion level of
inflation to be handled as unobservable variables. We compared results obtained
when the prior initial state is assumed known to that without any prior knowledge
of the initial state. Our results suggest that there is no significant difference between

both methods. especially if appropriate prior distributions are used.
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Appendix

A1l: Model using Classical Analysis (Model I)

/200 e oo K oK K K K oK oK K R K K KK R KKK K K K R KR Rk Rk R R ok ok

/* S A S PROGRAM */
/* */
/*  TITLE: KALMAN FILTER MODEL FOR INFLATION */
/*  MODEL: MODEL I */
/* DATA: SIMULATED DATA SET */

/****************************************************************/

title ’Likelihood Evaluation of SSM’;

%let DATASET = WORK.TEST;

#let ALPHA1L = 0.4;
%“let ALPHA2 = 0.5;
%let MU = 0.5;
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%let SIGMAL = 0.1;

Ylet SIGMA2 = 0.2;

%let NOBS = 200;

%let BETA = 0.9999;

J */
/*- create test data set ——=——————-—mmm—mmm—— e */
[ R m e e e m e x/

data &DATASET,;

/*- initialize random seeds --------------==---=-------—-—oooo--oo */

seedl 123456,

seed?

654321,

/*- initialize state variables =----------------===--===--------o-- */

lagmut

]
(@]

lagy = 0;

do time = -100 to &NOBS;

/*- normally distributed random components ---—-=-==-===-==---= */

epsilonl = rannor( seedl )*&SIGMAL;



epsilon?2 = rannor( seed2 )*ZSIGMA2;

/*- states equation  ==--------———-—-————oo——————oo——ooo */

mut = &MU + ZALPHA2x(lagmut - &MU) + epsiloni;

/*- observation equaition -=-=--—-=-----------—---—-——--—---—o—o-oo */

y = lagmut + ZALPHA1*(lagy -lagmut) + epsilon2;

lagmut = mut;

lagy = y;

if time > 0 then output;

end;

drop seedl seed2 lagmut lagy;

proc print data=test; run;

proc iml;
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start make_ome( alphal, alpha2 );

ome = j( 2, 2, 0);

ome(l, 1] = alphal;
ome[l, 2] = 1 - alphatl;
ome(2, 2] = alpha2;
omegat=ome;

return( omegat );

finish make_ome;

ettt el b T Lt ottt x/
/*- make variance matrix -- ----—--—==-—-------o-------———--oo- */
e ettt et Rt */

start make_var( sigmal,sigma2 );

vec = j(3,3,0);

vec[1,1] (sigmal) **2;

vec(2,2]

(sigma2) **2;

vec[3,3]

(sigma2) **2;

var = vec;
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return( var );

finish make_var;

start lik(y,a,b,omega,h,var,z0,vz0);

nz = ncol(h); /*- number of state variables -x/
ny = nrow(y); /*- number of observations -%/
k = ncol(y); /*- number of measurement variables -=*/

const = k*log(8xatan(1));
if ( sum(z0=.) | sum(vz0 = . ) ) then

call kalcvf(pred,vpred,filt,vfilt,y,O,a,omega,b,h,var);
else

call kalcvf(pred,vpred,filt,vfilt,y,O,a,omega,b,h,var,zO,sz);

et = y - pred*h‘;
suml = 0;

sum? = 0;

do i =1 to ny;

vpred_i = vpred[(i-1)#*nz+1:i*nz,];
et_i = et(i,];

omegat = h*vpred_i*h‘ + var[nz+1:nz+k,nz+1:nz+k];
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suml = suml + log(det(omegat));

sum2 sum2 + et_i*inv{omegat)*et_i‘;
end;

return(-const-.5*(suml+sum2)/ny);

finish 1lik;
R e ettt T L */
/*- objective function -x/
T et T ettt S T x/

start fun( parm ) global(y);

alphal = parm[1];

alpha? = parm(2];

sigmal = parm(3];

sigma2 = parm[4];

mu = parm(5];

/*- create the state-space model system matrices ---------- */
/*- you can make the time-invariant or time varying ---------- x/

T = nrow(y);

omega = make_ome( alphal, alpha2 );

j(nrow(omega),1,mu);

w
1]

=2
"

{1 0};
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/%=

var = make_var( sigmal, sigma2 );
b = j(nrow(h),1,0);
/*- starting values -- these can be tweaked ------—=---==------ */

z0 = j(1,nrow(omega),0);

vz0 = le-2# I(nrow(omega));

/*- compute the log-likelihood -------------------c-————-=---—- =/
logl = lik(y,a,b,omega,h,var,z0,vz0);

return(logl);

finish fun;

............................................................... */
read the data set -x/
_______________________________________________________________ */
use &DATASET;
read all var {y};
T = nrow(y);

—— ——— ————————————- *x/
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/*- starting value for optimization

x0

j(1,5,0);

x0[1]

&ALPHA1L;

x0[2]

&ALPHAZ2;

x0{3]

&SIGMAL;

x0{4]

]
o
-

x0[5]

[]
o
S

/*- constraints

/* 0O<alphal<l, O<alpha2<l, sigmal>0, sigma2>0, -inf<mu<inf =/

ble = {-4BETA -%BETA 1le-6 le-6 -1el0 AN

&BETA &BETA 1lel0 1elQ 1tel0 RN

/*- optimize objective function using conjugate-gradient method
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/*- other NLP* calls may be used -*/

call nlpcg( rc, xr, "FUN", x0 ) blc=blc opt=opt;

print rc xr;

quit;

Output of the Program for Model 1

Optimization Start

Parameter Estimates

Parameter Estimate Gradient Lower BC Upper BC
1 x1 0.400000 -6.54225 -0.99990 0.99990
2 X2 0.500000 -7.01796 -0.99990 0.99990
3 X3 0.100000 47.78141 1E-6 1E10
4 X4 0.100000 85.19007 1E-6 1E10
5 X5 0.400000 -46.57058 -1E10 1E10

Value of Objective Function = -7.190203525
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Conjugate-Gradient Optimization
*** Termination Criteria #**=*
Minimum Iterations

Maximum Iterations

Maximum Function Calls.
ABSGCONV Gradient Criterion .
GCONV Gradient Criterion
ABSFCONV Function Criterion .
FCONV Function Criterion

FCONV2 Function Criterion .

FSIZE Parameter .

ABSXCONV Parameter Change Criterion .

XCONV Parameter Change Criterion
XSIZE Parameter .
ABSCONV Function Criterion

*x*x (Other Control Parameters *x*x

Line Search Method 2: Starting Alpha .

Line Search Precision LSPRECISION .

DAMPSTEP Parameter for Line Search

MAXSTEP Parameter for Line Search

FD Derivatives: Accurate Digits in Obj.F.

Singularity Tolerance (SINGULAR)

Constraint Precision (LCEPS)

400

1000

0.0000100

1E-8

. 2.2204E-16

1.3408E154

1.00000

0.10000

15.65356

1E-8

1E-8



Linearly Dependent Constraints (LCSING) . . . . . 1E-8

Releasing Active Constraints (LCDEACT)

Conjugate-Gradient Optimization
Automatic Restart Update (Powell, 1977; Beale, 1972)
Gradient Computed by Finite Differences
Number of Parameter Estimates 5
Number of Lower Bounds 5

Number of Upper Bounds §

Optimization Start: Active Constraints= 0 Criterion= -7.190 Maximum Gr
Optimization Results: Iterations= 71 Function Calls= 159 Gradient Calls= 94
Active Constraints= 0 Criterion= -0.76904823

Maximum Gradient Element= 0.0000821316 Slope= -1.58998E-7

NOTE: GCONV convergence criterion satisfied.

Optimization Results

Parameter Estimates

Parameter Estimate Gradient Active BC
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RC

X1

X2

X3

X4

X5

0.571178

0.418059

0.146985

0.117819

0.115363

-0.0000708

-0.0000821

-0.0000339

-0.0000790

0.0000230

Value of Objective Function = ~0.769048227

XR

0.5711784 0.4180591 0.1469846 0.117819 0.1153634

[
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A2: Model Using a Bayesian Approach (Model II)

/8 39030 3 3 e ko o o o ko ok o 3 o o K oK ok A K ok R R Sk K ook R Kk K S o K K KK R K R R kR Rk

/* S A S PROGRAM x/
/* TITLE: KALMAN FILTER MODEL FOR INFLATION */

/= MODEL: MODEL II ~/
/* DATA: SIMULATED DATA SET */

/****************************************************************/

title ’'Likelihood Evaluation of SSM’;

#let DATASET = WORK.TEST;

#let ALPHAL = 0.4;

%let ALPHA2 = 0.5;

%hlet MU = 0.5;

#let SIGMA1 = 0.1;

%let SIGMA2 = 0.2;

%let NOBS = 200;

%#let BETA = 0.9999;

T Sttt */
/*- create test data set -—~==—-—===--m-e-———--—oo-m———————o—oooo-ooo */
Rttt et */

data &DATASET,



/#*- initialize random seeds -=——==-=———=—————mm——mmmme e mm———— o x/

seedl = 123456;
seed2 = 654321;
/*- initialize state variables —----—=-—--—==-——————mm——emem—m———— */
lagmut = 0O;
lagy = 0;

do time = ~-100 to &NOBS;

/*- normally distributed random components -----———-------==--= */

epsilonl = rannor( seedl )=*&SIGMA1;

!

epsilon2 = rannor( seed2 )=*&SIGMA2;

/*- states equation  -—-----=======--———-—-—-oo——o—---ooo */
mut = &MU + ZALPHA2*(lagmut - &MU) + epsilonl;
/*- observation equaition -----======----—---———--=----oooooosooo- *x/

y = lagmut + &ALPHAlx(lagy -lagmut) + epsilon2;

lagmut = mut;
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lagy = y;

if time > O then output;

end;

drop seedl seed2 lagmut lagy;

proc print data=test; run;

proc iml;

T et *x/
/*- make state transition matrix -- -------=-------------- -x/
Tt T */

start make_ome( alphal, alphal );

ome = j( 2, 2, 0 );

ome[1, 1] = alphal;
ome[l, 2] = 1 - alphal;
ome[2, 2] = alpha2;
omegat=ome;
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return( omegat );

finish make_ome;

/R e e e e e e */
/*- make variance matrix -- ----—--——--—smmmm——mmmmmm - */
T e e PR P */
start make_var( sigmal,sigma2 );
vec = j(3,3,0);
vec[1,1] = (sigmal)=**2;
vec[2,2] = (sigmal2)=*x2;
vec[3,3] = (sigma2)=*x2;
var = vec;
return( var );
finish make_var;
e e SRttt */
[H——mmm compute the log-likelihood -—-= =%/
Y- ——— B */
start lik(y,a,b,omega,h,var,z0,vz0);
nz = ncol(h); /*- number of state variables -x/



ny = nrow(y); /*- number of observations -*/

-
[t}

ncol(y); /+*- number of measurement variables -=*/
const = k*log(8+*atan(1));
if ( sum(z0=.) | sum(vz0 = . ) ) then
call kalcvf(pred,vpred,filt,vfilt,y,0,a,omega,b,h,var);
else
call kalcvf(pred,vpred,filt,vfilt,y,0,a,omega,b,h,var,z0,vz0);
et = y - pred*h®;

0;

suml

sum?2 0;
x = {1,0};

{0,1};

vy

{1,0,0};

XX

yyy = {0,1,0};

alphal Xx‘ * omega * X;

alpha2 = yy‘ * omega * yy;

sigmal = xx' * var * xx;

sigma2 = yyy‘ * var * yyy;

do i =1 to ny;
vpred_i = vpred[(i-1)*nz+1:i*nz,];
et_i = et[i,];

omegat = hxvpred_is*h‘ + var [nz+1:nz+k,nz+1:nz+k];

suml = suml + log(det(omegat));

sum?2

]

sum2 + et_i*inv(omegat)*et_i°;

~1

(@]



end;
return(-const-.5*(suml+sum2)/ny + log(alphal) + log(i- alphal) + log(alpha2)
+ log(l - alpha2) + log(sigmal**2) + log(sigma2**2)- 5000*(sigmal=**2)

- 2000*(sigma2**2) + 167.27024);

finish lik;
L ettt i b */
/*- objective function -*/
Y it ettt D it *x/

start fun( parm ) global(y);

alphal = parm(1];

alpha2 = parm(2];

sigmal = parm(3];

sigma2 = parm(4];

mu = parm([5];

/*- create the state-space model system matrices =  -—===-=---- */
/*- you can make the time-invariant or time varying --———----~ */

T = nrow(y);

omega = make_ome( alphal, alpha2 );

j(nrow(omega),1,mu);

w
1}

o
(]

{1 0};
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var = make_var( sigmal, sigma2 );

o
1}

j(nrow(h),1,0);

/*- starting values -- these can be tweaked
z0 = j(1l,nrow(omega),0);

vz0 = le-3 # I(nrow(omega));

/*- compute the log-likelihood -------==----

logl = lik(y,a,b,omega,h,var,2z0,vz0);

return(logl);

finish fun;

use &DATASET;
read all var {y};

T = nrow(y);




/*- starting value for optimization

x0

j(1,5,0);

x0[1] &ALPHAL;

x0(2] &ALPHA2;

x0(3] &SIGMAL;

x0 (4]

It
(@]
-

x0[5]

I
(@]
S

/*- constraints

/* 0O<alphal<l, O<alpha2<l, sigmal>0, sigma2>0, -inf<mu<inf =/

blc = {-&BETA -%BETA 1le-6 le-6 -1el0 N

&BETA &BETA 1ei0 1el0 1lel0 Cy

/K e e e e m o ———m— e

/*- options -- maximize

T et
opt = j(1,11,.); optl1] = 1; opt(2] = 4;

2t ettt bt s

/*- optimize objective function using conjugate-gradient method
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/*~ other NLP* calls may be used ~*/

call nlpeg( rc, xr, "FUN", %0 ) blc=blc opt=opt;

print rc xr;

quit;

Output of the Program for Model II

Optimization Start

Parameter Estimates

Parameter Estimate Gradient Lower BC Upper BC
1 X1 0.400000 -5.69964 -0.99990C 0.99990
2 X2 0.500000 -7.04350 -0.99990 0.99990
3 X3 0.100000 67.82400 1E-6 1E10
4 X4 0.100000 118.31079 1E-6 1E10
5 Xb 0.400000 -46.59158 -1E10 1E10
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Value of Objective Function = 138.10735097

Conjugate-Gradient Optimization

**x* Termination Criteria ***

Minimum Iterations . . . . . . . . . . . . . . . 0
Maximum Iterations . . . . . . . . . . . . . . . 400
Maximum Function Calls. . . . . . . . . . . . . 1000
ABSGCONV Gradient Criterion . . . . . . . . . . . 0.0000100
GCONV Gradient Criterion . . . . . . . . . . . . 1E-8
ABSFCONV Function Criterion . . . . . . . . . . . 0
FCONV Function Criteriom . . . . . . . . . . . . 2.2204E-16
FCONV2 Function Criteriom . . . . . . . . . . . . 0
FSIZE Parameter . . . . . . . . . . . . . .« . . . 0
ABSXCONV Parameter Change Criterion . . . . . . . 0
XCONV Parameter Change Criteriom . . . . . . . . 0
XSIZE Parameter . . . . . . . . . .« . o . . . .o 0
ABSCONV Function Criteriom . . . . . . . . . . . 1.3408E154

**x%x (Qther Control Parameters x***
Line Search Method 2: Starting Alpha . . . . . . 1.00000
Likelihood Evaluation of SSM 21

17:17 Tuesday, January 4, 2000

Line Search Precision LSPRECISION . . . . . . . . 0.10000



DAMPSTEP Parameter for Line Search

MAXSTEP Parameter for Line Search e e e 0
FD Derivatives: Accurate Digits in Obj.F. . . . . 15.65356
Singularity Tolerance (SINGULAR) . . . . . . . . 1E-8
Constraint Precision (LCEPS) . . . . . . . . . . 1E-8
Linearly Dependent Constraints (LCSING) . . . . . 1E-8

Releasing Active Constraints (LCDEACT)

Conjugate-Gradient Optimization
Automatic Restart Update (Powell, 1977; Beale, 1972)
Gradient Computed by Finite Differences
Number of Parameter Estimates 5
Number of Lower Bounds 5

Number of Upper Bounds 5

Optimization Start: Active Constraints= 0 Criterion= 138.107

Maximum Gradient Element= 118.311

Optimization Results: Iterations= 21 Function Calls= 59 Gradient Calls= 28
Active Constraints= 0 Criterion= 145.59069

Maximum Gradient Element= 0.00269949 Slope= -0.00160718
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NOTE: GCONV convergence criterion satisfied.

NOTE: At least one element of the (projected) gradient is greater than le-3.

Optimization Results

Parameter Estimates

Parameter Estimate Gradient  Active BC
1 X1 0.502087 0.0003492
2 X2 0.499320 -0.00270
3 X3 0.118759  -0.0000563
4 X4 0.149150 0.0006025
5 X5 0.117060 0.0005157

Value of Objective Function = 145.59068903

RC XR

6 0.5020872 0.4993201 0.1187586  0.14915 0.1170604
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