INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
800-521-0600

UMI
A Comparison of Training Techniques: ADALINE, Back Propagation and Genetic Algorithms

Wei Yang

A Major Report
In
The Department
Of
Computer Science

Presented in Partial Fulfillment of the Requirements For the Degree of Master of Computer Science at Concordia University Montreal, Quebec, Canada

March 2000
©Wei Yang, 2000
The author has granted a non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author’s permission.

L’auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L’auteur conserve la propriété du droit d’auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

0-612-47857-2
ABSTRACT

A Comparison of Training Techniques:

ADALINE, Back Propagation and

Genetic Algorithms

Wei Yang

This study is in the area of neural network architectures and training algorithms. The emphasis is placed on the comparisons of ADALINE, Back Propagation and Genetic Algorithms in training neural networks. Concrete examples are developed to illustrate and reveal the fundamental theories of neural networks, and demonstrate the strengths and weaknesses of ADALINE, Back Propagation and Genetic Algorithms. An object-oriented approach is applied in the overall analysis and design of the neural network architectures. The Object-oriented programming with C++ is used to facilitate the development and implementation of the neural network architectures and training algorithms.
Acknowledgements

I have been fortunate to have an extremely kind and considerate advisor, Dr. Peter Grogono, who gives me a lot of helps in guiding me throughout the project. I want to say thanks to Dr. Peter Grogono.

I would also like to thank Dr. Rajjan Shinghal for his time and helps in examining this paper.
5.3.4.1 Training Stage ... 40
5.3.4.2 Save Training Results Stage ... 42
5.3.4.3 Load and Run Stage ... 43
5.3.4.4 Outputs .. 44

6. SUMMARY OF COMPARISON BETWEEN ADALINE AND BP 47

7. GENETIC ALGORITHMS .. 48

7.1 BASICS OF GENETIC ALGORITHMS ... 48
7.2 OO ANALYSIS FOR GENETIC ALGORITHMS 49
7.3 DESIGN AND IMPLEMENT GENETIC ALGORITHM CLASSES IN C++ 50

8. TRAINING RECURRENT NEURAL NETWORKS WITH GENETIC ALGORITHMS .. 53

8.1 OBJECT ORIENTED ANALYSIS OF RECURRENT NEURAL NETWORK WITH GA .. 53

9. USING GA TO TRAIN RECURRENT NEURAL NETWORK FOR XOR PROBLEM .. 55

9.1 EXECUTION OUTPUT FOR THE XOR PROBLEM WITH GENETIC ALGORITHM .. 56

10. SUMMARY OF COMPARISON BETWEEN BP AND GA 58

REFERENCES ... 60

APPENDIX SOURCE LISTINGS AND OUTPUT FILES 62
1. Introduction

My project focuses on:

- Object oriented design and implementation of Neural Networks;
- Neural Networks with and without hidden layers (ADALINE vs. Backpropagation Algorithms);
- Neural Networks with and without feedback (recurrent vs. non-recurrent Neural Network);
- Applying Genetic Algorithm in solving Neural Network problems;
- Comparisons between ADALINE and Backpropagation, and between Backpropagation and Genetic Algorithm.

1.1 Scope

The purpose of this project is to study the common neural network architectures, find out their strength and weakness with implementation of practical examples, using Object Oriented methodology in C++. Neural networks can be formalized, realized as objects, and used in countless applications. In this project, we are mainly interested in the study of the foundations from which any neural network architecture can be constructed, and relatively detailed studies of several neural network architecture such as ADALINE, Back propagation (BP), and recurrent neural networks and their comparisons as well.

We are going to develop several concrete examples to illustrate and reveal the fundamental theory, major difference and possible incorporations among these neural network architectures and algorithms.
2. Neural Networks Paradigm

2.1 Biological Basis for Neural Networks

Studies over the past few decades have shed some light on the construction and operation of our brains and nervous systems. All living organisms are made up of cells. The basic building blocks of the nervous system are nerve cells, called neurons. The major components of a neuron include a central cell body, dendrites, and an axon. Figure 2.1 shows a conceptual diagram of a neuron; it is a sketch of only one representation of a neuron. The signal flow goes from left to right, from the dendrites, through the cell body, and out through the axon. The signal from one neuron is passed on to another by means of a connection between the axon of the first and a dendrite of the second. This connection is called a synapse. Axons often synapse onto the trunk of a dendrite, but they can also synapse directly onto the cell body.

![Conceptual diagram of a neuron](image)

Figure 2-1 Conceptual diagram of a neuron
2.2 Neural Network

A Neural network is an information processing system that has certain performance characteristics in common with biological neural networks. The neural networks have been developed as generalizations based on the assumptions that:

- Information processing occurs at many simple elements called neurons (or nodes);
- Signals are passed between neurons over connection links;
- Each connection link has an associated weight, which, in a typical neural network, multiplies the signal transmitted;
- Each neuron applies an activation function (usually nonlinear) to its network inputs to determine its output signal;

A neural network is characterized by:

- Its pattern of connections between the neurons (called its architecture);
- Its method of determining the weights on the connections (called its training, or learning, algorithm);
- Its activation function.

Neural networks can be applied to a wide variety of problems, such as storing and recalling data or patterns, classifying patterns, performing general mappings from input patterns to output patterns, grouping similar patterns, or finding solutions to constrained optimization problems.

2.2.1 Abstraction of Neural Networks

In general, a neural network is a collection of simple, analog signal processors, connected through links. Schematically, a neural network is represented in the form of a directed
graph, where the nodes represent the *processing elements*, the arcs represent the modulating connections, and arrowheads on the arcs indicate the normal direction of signal flow. Processing elements are larger structures known as *layers* where each layer performs an analog integration of its inputs to determine its *activation value*.

Figure 2.2 illustrates the typical model of a neural network processing unit (also called *neuron* or *node*). In this figure, it shows the structure of an abstract neuron with n inputs. Each input channel i can transmit a real value X_i. The *primitive function* f computed in the body of the abstract neuron can be selected according to purpose for the specific network architectures. Usually the input channels have an associated weight, which means that the incoming information X_i is multiplied by the corresponding weight W_i. The transmitted information is integrated at the neuron (usually just by adding the different signals) and the primitive function is then evaluated.

\[
X_1 \quad W_1 \\
X_2 \quad W_2 \\
\vdots \\
\vdots \\
X_n \quad W_n \\

f \quad \rightarrow \quad f(W_1X_1 + W_2X_2 + \cdots + X_nW_n)
\]

Figure 2.2 An abstract neuron

If we conceive of each node in a neural network as a primitive function capable of transforming its input into a precisely defined output, then neural networks are nothing but networks of primitive functions. Different models of neural networks differ mainly in
the assumptions about the primitive functions used, the interconnection pattern, and the timing of the transmission of information.

Typical neural networks have the structure shown in Figure 2.3. The network can be thought of as a function Φ which is evaluated at the point (x, y, z). The node implements the primitive functions f_1, f_2, f_3, f_4 which are combined to produce Φ. The function Φ implemented by a neural network will be called the network function. Different selections of the weights $\alpha_1, \alpha_2, \ldots, \alpha_5$ produce different network functions. Therefore, three elements are particularly important in any model of neural networks:

- The structure of the nodes;
- The topology of the network;
- The learning algorithm used to find the weights of the network.

![Figure 2.3 Functional model of a neural network](image)

2.2.2 Types of Neural networks

There are many types of neural network architectures and associated algorithms such as ADALINE, Backpropagation (BP), Self-Organizing, BAM (Bi-directional Associative Memory), and so on. They can also be classified as either feed-forward or recurrent
networks (i.e. nets without and with feedbacks). These algorithms are also called network architectures as every algorithm has its associated network topology and links. In this project, we mainly concentrate on ADALINE, Backpropagation and recurrent neural networks, and exploit the differences in the networks with or without back propagation, and with or without feedback. Figure 2.4 illustrates the ADALINE and Backpropagation neural network schematics.
Figure 2.4 ADALINE and Backpropagation neural network schematics.

Figure 2.5 illustrates the recurrent network with two hidden-layer neurons whose outputs feed back to each neuron in the hidden layer (not just feeding forward to the output-layer neurons). Problems with continuous input data require neural networks with feedback loops between neuron layers.

![Diagram](image)

Figure 2.5 A Recurrent network with two hidden-layer neurons
3. Object Oriented Design & Implementation of Neural Networks

Observing that although different neural network may have different functionality of the nodes (neurons) and the links, the structure or topology of each neural network is based on a common network model. This commonality makes neural networks ideal for object-oriented implementations.

In this project, we use objected-oriented design with object-oriented programming implementation in C++. To create a set of base classes capable of implementing several kind of neural network architectures, characteristics common to each architecture must be recognized. The common attributes can be generalized as the fact that every neural network architecture is composed of a set of interconnected nodes that accept input, processes this information in some way, and produce an output which may be passed to other nodes.

3.1 Mathematical Abstraction of Neural Network

A neural-network formalization is simply a mathematical representation of a neural network model. We apply the generic neural-network formalizations which were introduced by Fiesler (1992) and extended by Rogers and Satyadas (1994) to formalize the ADALINE and Backpropagation neural networks.
3.1.1 Neural Network Formalization

A neural network can be defined with the following 3-tuple:

\[\text{Neural Network} \quad \text{NN} = (S, P, T) \]

where

- \(S \) is the pattern set, used for training, testing or operating the network;
- \(P \) is the network parameters;
- \(T \) is the Network’s topology.

3.1.2 Pattern Set Formalization

The formalized pattern set can be expressed as:

\[\text{Pattern Set} \quad S = \{I, O\} \]

where \(I \) is a set of input patterns, \(O \) is a set of corresponding desired output patterns.

The input and output pattern sets can also be further decomposed as:

\[I = \{P_{kj}\} \]

where \(k \) is input number and \(j \) is the input pattern component (a group of inputs in an input pattern).

\[O = \{O_{kj}\} \]

where \(k \) is the desired output pattern and \(j \) is the desired output pattern component.

3.1.3 Network Parameter Formalization

The parameter set \((P) \) in \(\text{NN} = (S, P, T) \) contains various parameters used in the neural network’s training, testing and running. The parameter set would include learning rate,
momentum term (a factor, which can take values between 0 to 1, used for updating weights), maximum number of *training iterations*, *tolerance* etc.

3.1.4 Network Topology Formalization

The last element in neural network \(NN = (S, P, T) \) is its topology \(T \). It defines the framework \(F \) and interconnecting link \(L \) between the network nodes.

\[
\text{Topology } T = (F, L)
\]

Where the framework \(F \) is the set of layers in the network.

\[
\text{Framework } F = \{C1, C2, ..., Cn\}
\]

Where the layer \(Ci \) is a set of nodes \(n \), each identified by its layer \(i \) and its position \(j \) within its layer.

\[
\text{Layer } Ci = \{n_{ij}\}
\]

3.2 Design and Implementation of Neural Network *with Classes* in C++

Design of the formalized neural network is generalized with two base classes. One base class represents the node (or neuron), and one presents link (or connection) of the general neural network. We name them as *Base_Node* class and *Base_Link* class. The Class diagrams are shown in Figure 3.1. These two classes are interdependent and all other classes which implement different algorithms are derived directly or indirectly from them.
In these class diagrams, we omit some common neural network architectures, such as, SON (Self-Organizing Network) and BAM (Bi-directional Associative Memory), which are not of interest for this project.
3.2.1 Class Interface and Responsibilities

1) Class Base_Node

Responsibility:

Class Base_Node is the neural network node which manages the receiving of input values and distribution of the processed information to other nodes in network. One of the primary responsibilities of the Base_Node class is to maintain connectivity between the network nodes. This task is implemented by using doubly linked list LLList objects through their two-way pointers. As the Base_Node class is a higher abstraction of neural network node, it defines several virtual functions which can be overridden by its child classes.

Class Interface:

class Base_Node {
 private:
 static int ticket;
 protected:
 int id; // Identification Number
 double *value; // Value (s) stored by this node
 int value_size; // Number of Values stored by this node
 double *error; // Error value (s) stored by this node
 int error_size; // Number of Error values stored by this node
 LLList in_links; // List for input links
 LLList out_links; // List for output links
 public:
 Base_Node (int v_size=1, int e_size=1); // Constructor
 ~Base_Node (void); // Destructor
 LLList *In_Links (void);
 LLList *Out_Links (void);
 virtual void Run (int mode=0);
 virtual void Learn (int mode=0);
 virtual void Load (ifstream &infile);
 virtual void Save (ofstream &outfile);
 inline virtual double Get_Value (int id=NODE_VALUE);
 inline virtual void Set_Value (double new_val, int id=NODE_VALUE);
 inline virtual double Get_Error (int id=NODE_ERROR);
 inline virtual void Set_Error (double new_val, int id=NODE_ERROR);
inline int Get_ID ()
inline virtual char *Get_Name ()
void Create_Link_To (Base_Node &to_node, Base_Link *link)
virtual void Print (ofstream &out)

friend void Connect (Base_Node &from_node, Base_Node &to_node,
 Base_Link *link)
friend void Connect (Base_Node &from_node, Base_Node &to_node,
 Base_Link &link)
friend void Connect (Base_Node *from_node, Base_Node *to_node,
 Base_Link *link)
friend int Disconnect (Base_Node *from_node, Base_Node *to_node)

friend double Random (double lower_bound, double upper_bound)

};

2) Class Base_Link

Responsibility:

Each link object helps to maintain connectivity in the network by storing pointer to a
source node object and to a destination node object. The pointer to Base_Node object is
of the type of “pointer to Base_Node”. The Base_Link class also provides a value set so
that values can be maintained in the link objects. This ability is necessary for most Neural
network models since the values or weights associated with the links are significant to the
network state.

Class Interface:
class Base_Link {
 private:
 static int ticket;
 protected:
 int id; // ID number for link
 double *value; // Value (s) for Link
 Base_Node *in_node; // Node instance link is coming from
 Base_Node *out_node; // Node instance link is going to
 public:
 Base_Link (int size=1); // Constructor
~Base_Link (void); // Destructor for Base Links
virtual void Save (ofstream &outfile) ;
virtual void Load (ifstream &infile) ;
inline virtual double Get_Value (int id=WEIGHT) ;
inline virtual void Set_Value (double new_val, int id=WEIGHT) ;
inline virtual void Set_In_Node (Base_Node *node, int id) ;
inline virtual void Set_Out_Node (Base_Node *node, int id) ;
inline virtual Base_Node *In_Node (void) ;
inline virtual Base_Node *Out_Node (void) ;
inline virtual char *Get_Name (void) ;
inline virtual void Update_Weight (double new_val) ;
inline int Get_ID (void) ;
inline virtual double In_Value (int mode=NODE_VALUE) ;
inline virtual double Out_Value (int mode=NODE_VALUE) ;
inline virtual double In_Error (int mode=NODE_ERROR) ;
inline virtual double Out_Error (int mode=NODE_ERROR) ;
inline virtual double Weighted_In_Value (int mode=NODE_VALUE) ;
inline virtual double Weighted_Out_Value (int mode=NODE_VALUE) ;
inline virtual double Weighted_In_Error (int mode=NODE_VALUE) ;
inline virtual double Weighted_Out_Error (int mode=NODE_VALUE) ;
inline virtual int Get_Set_Size (void) ;
} ;
4. Implementing ADALINE Neural Network

The ADALINE typically uses bipolar (1 or −1) activation for its input signals and its target output (although it is not restricted to such values). The weights on the connections from the input units to the ADALINE are adjustable. The ADALINE also has a bias, which acts like an adjustable weight on a connection from a unit whose activation is always 1. In general, an ADALINE can be trained using the delta rule. This learning rule minimizes the mean squared error between the activation and the target value. This allows the net to continue learning on all training patterns, even after the correct output value is generated (if a threshold function is applied) for some patterns. After training, if the net is being used for pattern classification in which the desired output is either a +1 or a −1, a threshold function is applied to the net input to obtain the activation. If the net input to the ADALINE is greater than or equal to 0, its activation is set to 1; otherwise it is set to −1. Any problem for which the input patterns corresponding to the output value +1 are linearly separable from input pattern corresponding to the output value −1 can be modeled successfully by an ADALINE unit.

4.1 Object Oriented Implementation of ADALINE Network

4.1.1 ADALINE Network Node Class

In ADALINE neural network, there are three basic types of nodes, i.e. Input_Node, Bias_Node, ADALINE_Node (note we only name output node as ADALINE_Node). Recall the class hierarchy shown in Figure 3.1. The Input_Node of ADALINE network
can be derived from Base_Node, and furthermore the Bias_Node of ADALINE network can be derived from Input_Node as it is a special kind of input node whose value is always a constant. This class hierarchy is shown again in the Figure 4.1.

![Class Hierarchy Diagram](image)

Figure 4.1 Class hierarchy for Base_Node, Input_Node and Bias_Node

The Input_Node and Bias_Node can be applied in many other neural network architectures. They are not the unique features of ADALINE network, so we generalize them as common nodes for neural network and define them in head file "common.h". It can be used for a general purpose for neural network architectures. The next stage is to design the output node class, which is a unique feature of ADALINE neural network. We name it ADALINE_Node, and put its class declaration in a separate header file.

The class definitions and interfaces are as following.

```cpp
class Input_Node : public Base_Node   // The Input Node class is a generic
{                                      // Input Node. It can be used with
    public:                          // most networks.
```
Input_Node (int size=1) : Base_Node (size, size)
{
 for (int i=0; i<size; i++)
 {
 error[i]=0.0;
 value[i]=0.0;
 }
};
virtual char *Get_Name (void)
{
 static char name[]="INPUT_NODE";
 return name;
};

// The Bias Node Class is a node that always produces the same output.
// The Bias Node's default output is 1.0
class Bias_Node : public Input_Node
{
 public:
 Bias_Node (double bias=1.0) : Input_Node (1) // Constructor
 {
 value[0]=bias;
 }
 virtual void Set_Value (double value, int id=0) {}; // Disable Set_Value
 virtual double Get_Value (int id=0) { return value[0]; };
 virtual char *Get_Name (void)
 {
 static char name[]="BIAS_NODE";
 return name;
 }
};

However the ADALINE_Node has its unique feature, and should be defined according to
the ADALINE network architecture. As the ADALINE_Node is a kind of feedforward
node, we can derive it from Feed_Forward_Node. This class hierarchy is shown in Figure
4.2.
As we know, in addition to ADALINE network, Backpropagation network is also a kind of feed forward neural network. They share the common features in this aspect. That is why we need to develop a Feed_Forward_Node class. The definition and interface of Feed_Forward_Node class is in file "base.h" and is shown as following:

```cpp
// This derived class provides a generic feed-forward neural-network node which
// can be used by the ADALINEs and Backprop networks.
class Feed_Forward_Node : public Base_Node
{
    protected:
        virtual double Transfer_Funcion ( double value ) ;

    public:
        Feed_Forward_Node ( int v_size=1, int e_size=1 ) ; // Constructor
        virtual void Run ( int mode=0 ) ;
        virtual char *Get_Name ( void ) ;
    };
```

The ADALINE_Node class can be derived from Feed_Forward_Node class. The definition and interface of ADALINE_Node class is in file "adaline.h" and is shown as following:
// ADALINE processing Node
class ADALINE_Node : public Feed_Forward_Node {
 protected:
 virtual double Transfer_Function (double value) ;

 public:
 ADALINE_Node (void) ;
 ADALINE_Node (double lr) ;
 virtual void Learn (int mode) ;
 virtual char *Get_Name (void) ;
};

For ADALINE_Node class, we need to override the Transfer_Function as ADALINE uses a threshold function \(f(x) \).

\[
 f(x) = \begin{cases}
 -1.0 & \text{if } x < 0 \\
 1.0 & \text{otherwise}
 \end{cases}
\]

We will do a similar override of this function by a Sigmoid function for Backpropagation Neural network later.

Now we summarize our design and implementation issues of the ADALINE network nodes. In design, we derive Input_Node class directly from Base_Node class, and derive Bias_Node from Input_Node. However, we derive ADALINE_Node from Feed_Forward_Node (which is derived from Base_Node). In implementation, we put the declarations of Input_Node class and Bias_Node in one header file "common.h", which can also be used for other kind of neural network architectures, and put the declaration of ADALINE_Node in "adaline.h", which serves only for ADALINE network.
4.1.2 ADALINE Link Class

ADALINE Link Class can be derived from Base_Link class. In the constructor, the weight value is initialized by a random number ranging from \(-1.0\) to \(1.0\). The class interface is as following.

class ADALINE_Link : public Base_Link // Link for ADALINE Node
{
 public:
 ADALINE_Link (void) ;
 virtual void Save (ofstream &ofile) ;
 virtual void Load (ifstream &ifile) ;
 virtual char *Get_Name (void) ;
};

4.2 Training ADALINE Network with Example of Open-To-Buy

4.2.1 Open-To-Buy Example Description

To demonstrate the ADALINE network’s capability of learning, we suppose that there is a Supply Chain store. The purchasing department maintains the budget available for annual or monthly purchasing, which we call “Open-To-Buy”. The three major elements influencing the Open-To-Buy are Company’s net income or loss (here call it Company Income), funds from the financing institutions or the loan being paid back (here call it Banking Amount), and a certain amount money to be reserved as the company’s contingency (here call it Contingency). The Contingency is a constant value. The Company Income and Banking Amount has different factors affecting the Open-To-Buy, we assume that the factors are as followings:

\[
\frac{4}{3} \text{CompIncome}, \quad \frac{1}{2} \times \text{BankingAmount}, \quad \text{Contingency}
\]
For easy processing, we assume that any input values for CompIncome and BankingAmount are being divided by a certain constant and thus be restricted to the range of (-1.0 – +1.0), and the Contingency is just a constant 1/3. So:

\[\text{CompIncome} = (-3/2 * \text{BankingAmount} + 1) / 4 \]

We say the "Open-To-Buy" can only be opened when the company has a total net income which is greater or equal to \((-3/2 * \text{BankingAmount} + 1) / 4\), otherwise it will be closed.

\[\text{CompIncome} \geq (-3/2 * \text{BankingAmount} + 1) / 4 \quad \text{Open} \]
\[\text{CompIncome} < (-3/2 * \text{BankingAmount} + 1) / 4 \quad \text{Closed.} \]

We are going to train the ADALINE network with a limited number of data points of inputs to solve this problem. Training the ADALINE network involves presenting the input patterns in the training set to the network, running the network to get an output, and adjusting the link values, that is the weights, if the network produces a value other than the desired output. Training is completed when the number of training set patterns the network gets wrong is below a predetermined tolerance. In Open-To-Buy problem, the tolerance is 0. Recall that we chose only the input values with absolute value less than 1.

This equation can be shown as in figure 4.3.

![Diagram](#)

Figure 4.3 Input patterns for "Open-To-Buy", which is in the Rectangle region
4.2.2 Selecting ADALINE Training Set for Open-To-Buy Example

We use a random number generator to get values of the two inputs x and y, further we restrict these values to be in the range of from -1.0 to +1.0.

Inputs:

- \(\text{InputX} = \text{randomly chosen value from } -1.0 \text{ to } +1.0 \) (represents BankingAmount)
- \(\text{InputY} = \text{randomly chosen value from } -1.0 \text{ to } +1.0 \) (represents ComplIncome)

Threshold Value:

\[\text{THValue} = \left(-\frac{3}{2} \text{InputX} + 1 \right) / 4 \]

Desired Outputs:

- 1.0 if \(\text{InputY} < \text{THValue} \) (represents Open-To-Buy should be closed)
- 0 if \(\text{InputY} >= \text{THValue} \) (represents Open-To-Buy is open)

Tolerance:

0

4.2.3 Creating ADALINE training Set for Open-To-Buy Example

We write a C++ program to generate the training set by using the random number generator.

CODES FOR GENERATING TRAINING SET:

```cpp
void main() {

double InputX, InputY, THValue, DesiredOutput;
ofstream fout ("LinearTrnSet1.txt");
/*
 fout<<" "<<" Input X Value"<< " ";
 fout<<"Input Y Value"; 
 fout<<"Desired Outputs"<<endl;
 fout<<"------------------------------------------------"<<endl;
*/
//This part just shows the output format, and will not be included
//in the real training set file, so it is commented out.

for (int i=0; i<250; i++) {

  //RAND_MAX=32767 which is the max integer value
  InputX = (double) rand () / (double) RAND_MAX) * 2.0 - 1.0;
  InputY = (double) rand () / (double) RAND_MAX) * 2.0 - 1.0;
  THValue = ((-3.0/2.0) * InputX+1) / 4;
```

22
if (InputY<THValue)
 DesiredOutput=1;
else
 DesiredOutput=-1;
fout<<setiosflags (ios::right) <<setw (3) <<"i<<" ";
fout<<setw (18) <<InputX <<setw (20) <<InputY;
fout<<setw (10) <<DesiredOutput<<endl;
}
fout.close () ;

we select 250 pairs of x, y inputs as training patterns for our example. The training set is stored in the file “OTBTmSet.txt”, the partial output is as following:

GENERATED TRAINING SET:

<table>
<thead>
<tr>
<th>Input X Value</th>
<th>Input Y Value</th>
<th>Desired Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.997497</td>
<td>0.127171</td>
</tr>
<tr>
<td>1</td>
<td>0.613392</td>
<td>0.617484</td>
</tr>
<tr>
<td>2</td>
<td>0.170019</td>
<td>0.0402539</td>
</tr>
<tr>
<td>3</td>
<td>-0.299417</td>
<td>0.791925</td>
</tr>
<tr>
<td>4</td>
<td>0.64568</td>
<td>0.49321</td>
</tr>
<tr>
<td>5</td>
<td>0.651784</td>
<td>0.717887</td>
</tr>
<tr>
<td>6</td>
<td>0.421003</td>
<td>0.0270699</td>
</tr>
<tr>
<td>7</td>
<td>-0.39201</td>
<td>-0.970034</td>
</tr>
<tr>
<td>8</td>
<td>-0.817194</td>
<td>-0.271096</td>
</tr>
<tr>
<td>9</td>
<td>-0.705374</td>
<td>0.668203</td>
</tr>
</tbody>
</table>

... ... Inputs from 10 to 239 are omitted

240	-0.518906	0.0428785	1
241	0.804550	-0.787164	1
242	0.805292	-0.11655	1
243	-0.839778	0.564196	1
244	-0.656423	0.94879	1
245	0.551744	0.740776	1
246	-0.578722	-0.0867641	1
247	-0.992492	0.501267	1
248	-0.771905	0.190588	1
249	-0.377728	0.985229	1

Figure 4.4 Training set for Open-To-Buy example (file "OTBTmSet.txt")
4.2.4 Constructing ADALINE network

To solve this Open-To-Buy problem, we should construct an ADALINE network. In this example we chose 4 nodes, i.e. two input nodes, one bias node and one output node.

Recall that these ADALINE Nodes are subclass of Base Nodes. The structure constructed for this example is as in Figure 4.5.

![Figure 4.5 Structure of constructed ADALINE network to solve Open-To-Buy example](image)

4.2.5 Training the ADALINE Network to Solve the Open-To-Buy Problem

Training ADALINE network involves several steps:

1) Presenting the training set input patterns to the network

2) Running the network to get an output, and adjusting the link values if the network produce a value which is not as desired

3) Training is complete when the number of the training set patterns the network gets wrong is below the tolerance
// Train ADALINE
int iteration=0;
int good=0;

// Train until all patterns are good
while (good<250) {
 good=0;
 for (int i=0; i<250; i++) {
 Node[0]->Set_Value (data[i]->In (0)); // Set Input Node Values
 Node[1]->Set_Value (data[i]->In (1));

 Node[3]->Run (); // Run ADALINE Node

 if (data[i]->Out (0) !=Node[3]->Get_Value ())
 // If ADALINE produced an error, then perform learning function
 Node[3]->Learn ();
 Break
 }
 else good++;
}
cout << iteration << ". " << good << "/250" << endl;
iteration++
}

After the network is successfully trained, it can solve the proposed problem with desired results.
Partial outputs for the training set presented to ADALINE network:

<table>
<thead>
<tr>
<th>ID</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>ID</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>ID</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>ID</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
</tr>
</tbody>
</table>

... Inputs 11 to 229 are omitted ...

<table>
<thead>
<tr>
<th>ID</th>
<th>231</th>
<th>232</th>
<th>233</th>
<th>234</th>
<th>235</th>
<th>236</th>
<th>237</th>
<th>238</th>
<th>239</th>
<th>240</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>241</td>
<td>242</td>
<td>243</td>
<td>244</td>
<td>245</td>
<td>246</td>
<td>247</td>
<td>248</td>
<td>249</td>
<td>250</td>
</tr>
</tbody>
</table>

Figure 4.6 Partial outputs for the training set presented to ADALINE network (file OTB.out)
Figure 4.7 Number of iterations the training set has been presented to the ADALINE network (file OTB.out)

Figure 4.7 is the partial output generated by the ADALINE network. The first integer is the number of iterations the training set has been presented to the ADALINE network during the training. From the above output result, we can find the total number of iterations is 151, i.e. the learning of the network stops at 151st iterations. The second number contains the number of patterns the ADALINE network has correctly learned.
after an iteration of the pattern set. We can see from the output, once this number becomes 250, the training stage finishes. We can also see that this number is not simply approaching 250 throughout iterations, this is due to the delta rule applied to the ADALINE network training. The delta rule uses the error produced by the ADALINE to correct link values so the correct answer will be produced next time the input pattern is presented. Unfortunately, when the link value is adjusted to give the correct output for the current input pattern, it may cause other input patterns that were producing correct outputs to produce incorrect outputs.

After the training, the training results containing the Nodes and Links for ADALINE network is saved into the disk file. In Adaline1.net file, each data is mapping to a specific data member of ADALINE Nodes and Links. The following file is created through training the ADALINE network, in which the information of trained results is stored. This file will be further loaded into the memory again to initialize the ADALINE nodes and links for solving the Open-To-Buy problem.

1) Information stored for ADALINE Nodes in file “Adaline1.net”

<table>
<thead>
<tr>
<th>Content in file</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>id</td>
</tr>
<tr>
<td>1</td>
<td>value_size</td>
</tr>
<tr>
<td>-0.377728</td>
<td>value[i]</td>
</tr>
<tr>
<td>1</td>
<td>error_size</td>
</tr>
<tr>
<td>0</td>
<td>error[i]</td>
</tr>
<tr>
<td>1</td>
<td>id</td>
</tr>
<tr>
<td>1</td>
<td>value_size</td>
</tr>
<tr>
<td>0.985229</td>
<td>value[i]</td>
</tr>
<tr>
<td>1</td>
<td>error_size</td>
</tr>
<tr>
<td>0</td>
<td>error[i]</td>
</tr>
</tbody>
</table>
2) Information Stored for ADALINE Links in file Adaline1.net

<table>
<thead>
<tr>
<th>Link Id</th>
<th>value[WEIGHT]</th>
<th>In_Node Id</th>
<th>Out_Node Id</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-4.02549078222297</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>-4.10841864101352</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2.08660847804193</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

After the information necessary for the ADALINE network Nodes and Links is stored in the disk file with the contents shown above. An ADALINE network can be created in the memory first and subsequently be loaded by retrieving the data from the adaline1.net file.

The next step is to run the ADALINE network. The running results are shown in the following outputs.
Pattern: 0 Input: 0.997497 0.127474 ADALINE: 1 Actual: 1 Desired: 0 Y
Pattern: 1 Input: 0.613492 0.617481 ADALINE: 1 Actual: 1 Desired: 0 Y
Pattern: 2 Input: 0.170019 0.040125 89 ADALINE: 1 Actual: 1 Desired: 0 Y
Pattern: 3 Input: 0.798417 0.791925 ADALINE: 1 Actual: 1 Desired: 0 Y
Pattern: 4 Input: 0.64868 0.499214 ADALINE: 1 Actual: 1 Desired: 0 Y
Pattern: 5 Input: 0.651784 0.718879 ADALINE: 1 Actual: 1 Desired: 0 Y
Pattern: 6 Input: 0.421003 0.027690 95 ADALINE: 1 Actual: 1 Desired: 0 Y
Pattern: 7 Input: 0.920241 0.970031 ADALINE: 1 Actual: 1 Desired: 0 Y
Pattern: 8 Input: 0.817194 0.274099 ADALINE: 1 Actual: 1 Desired: 0 Y
Pattern: 9 Input: 0.705374 0.668203 ADALINE: 1 Actual: 1 Desired: 0 Y
Pattern: 10 Input: 0.97705 0.3490315 ADALINE: 1 Actual: 1 Desired: 0 Y
Pattern: 11 Input: 0.761834 0.990661 ADALINE: 1 Actual: 1 Desired: 0 Y
Pattern: 12 Input: 0.982177 0.244241 ADALINE: 1 Actual: 1 Desired: 0 Y
Pattern: 13 Input: 0.633259 0.412369 ADALINE: 1 Actual: 1 Desired: 0 Y
Pattern: 14 Input: 0.203528 0.21331 ADALINE: 1 Actual: 1 Desired: 0 Y
Pattern: 15 Input: 0.667531 0.526094 ADALINE: 1 Actual: 1 Desired: 0 Y

... Patterns 16 to 234 are omitted

Pattern: 235 Input: 0.450056 0.796479 ADALINE: 1 Actual: 1 Desired: 0 Y
Pattern: 236 Input: 0.963561 0.239961 ADALINE: 1 Actual: 1 Desired: 0 Y
Pattern: 237 Input: 0.441551 0.849669 ADALINE: 1 Actual: 1 Desired: 0 Y
Pattern: 238 Input: 0.264931 0.389089 ADALINE: 1 Actual: 1 Desired: 0 Y
Pattern: 239 Input: 0.562731 0.685126 ADALINE: 1 Actual: 1 Desired: 0 Y
Pattern: 240 Input: 0.549896 0.142578 85 ADALINE: 1 Actual: 1 Desired: 0 Y
Pattern: 241 Input: 0.804589 0.754774 ADALINE: 1 Actual: 1 Desired: 0 Y
Pattern: 242 Input: 0.505292 0.116555 ADALINE: 1 Actual: 1 Desired: 0 Y
Pattern: 243 Input: 0.897758 0.564196 ADALINE: 1 Actual: 1 Desired: 0 Y
Pattern: 244 Input: 0.656423 0.945879 ADALINE: 1 Actual: 1 Desired: 0 Y
Pattern: 245 Input: 0.551744 0.740776 ADALINE: 1 Actual: 1 Desired: 0 Y
Pattern: 246 Input: 0.378222 0.0567641 ADALINE: 1 Actual: 1 Desired: 0 Y
Pattern: 247 Input: 0.992492 0.501267 ADALINE: 1 Actual: 1 Desired: 0 Y
Pattern: 248 Input: 0.471905 0.490588 ADALINE: 1 Actual: 1 Desired: 0 Y
Pattern: 249 Input: 0.377728 0.9852291 ADALINE: 1 Actual: 1 Desired: 0 Y

Figure 4.8 Outputs of the running result of ADALINE network (file OTB.out)
4.3 Analysis of ADALINE with Example of XOR Problem

The XOR problem is an interesting example because it reveals the capability of the neural network architectures in solving problems. The XOR logic problem has a very straightforward input pattern:

<table>
<thead>
<tr>
<th>Input</th>
<th>Pattern</th>
<th>Desired Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 4.9 Input pattern for XOR problem

Taking the functions of the two variables as an example we can gain some insight into this problem. The following figure shows all 16 possible Boolean functions of two variables f_0 to f_{15}. Each column f_i shows the value of the function for each combination of the two variables x_1 and x_2. The function f_0, for example, is the zero function whereas f_{14} is the OR logic function.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>f_0</th>
<th>f_1</th>
<th>f_2</th>
<th>f_3</th>
<th>f_4</th>
<th>f_5</th>
<th>f_6</th>
<th>f_7</th>
<th>f_8</th>
<th>f_9</th>
<th>f_{10}</th>
<th>f_{11}</th>
<th>f_{12}</th>
<th>f_{13}</th>
<th>f_{14}</th>
<th>f_{15}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4.10 All possible functions for XOR input patterns

From our proceeding example, we are clearer about the ADALINE network algorithm. The ADALINE-computable function are those for which the points whose function value is 0 can be separated from the points whose function value is 1 using a line. Figure 4.11 shows two possible separations to compute the OR and AND functions.
Figure 4.11 Separations of input space corresponding to OR and AND

It is clear that two of the functions in Figure 4.10 can not be computed in this way. They are the function XOR and Identity (f_6 and f_9). It is intuitively evident that no line can produce the necessary separation of the input space. This can also be shown analytically.

Let w_1 and w_2 be the weights of a ADALINE with two inputs, T is its threshold. If the ADALINE compute the XOR functions, the following 4 inequalities must be fulfilled:

\[
\begin{align*}
 x_1 &= 0 & x_2 &= 0 & w_1x_1 + w_2x_2 &= 0 & \Rightarrow & & 0 < T \\
 x_1 &= 1 & x_2 &= 0 & w_1x_1 + w_2x_2 &= w_1 & \Rightarrow & & w_1 \geq T \\
 x_1 &= 0 & x_2 &= 1 & w_1x_1 + w_2x_2 &= w_2 & \Rightarrow & & w_2 \geq T \\
 x_1 &= 1 & x_2 &= 1 & w_1x_1 + w_2x_2 &= w_1 + w_2 & \Rightarrow & & w_1 + w_2 < T
\end{align*}
\]

Since T is positive, according to the first inequality, w_1 and w_2 are positive too, according to the second and the third inequalities. If we combine the second and the third inequalities, we can get $w_1 + w_2 \geq T$. This is a contradiction with the last inequality $w_1 + w_2 < T$. This contradiction implies that no ADALINE capable of computing the XOR function exists. This kind of property is usually called as Linear Separability. So XOR is not linear separable, thus it can not be solved by ADALINE. However, We will show that the Backpropagation network algorithm can easily solve the XOR problem. We will revisit the XOR problem later.
5. Implementing Backpropagation Neural Network

The backpropagation neural network offers a mechanism which is based on finding the outputs at the last (or output layer) of the neural network and calculating the errors or differences between the desired outputs and the current outputs. When the output is different from the desired output, changes are made in the weights, in proportion to the error between the desired output and the actual output. In Backpropagation Neural Networks, the algorithm involves making the corrections to the weights from the last-but-one layer to the last layer first, then using the calculations involved in these corrections as the basis for calculating the corrections for the next layer back... until the input layer is reached. That is the unique feature of Backpropagation Neural Network with other multi-layer networks. The basic structure of a Backpropagation Neural Network is shown in the Figure 5.1.

![Diagram of Backpropagation Neural Network](image)

Figure 5.1 The basic structure of a Backpropagation neural network
5.1 Object-Oriented Implementation of BackPropagation Networks

5.1.1 Backpropagation Neural Network Node Classes

In designing our Backpropagation Neural Network class, we will make the use of the existing classes. The Input_Node used for ADALINE network can be used here for Backpropagation Neural Network without any modification. Similar to ADALINE_Node, the other kinds of nodes of Backpropagation Neural Network can also be derived from Feed_Forward_Node class. We show this class hierarchy in the following diagram.

![Class hierarchy for Backpropagation(BP) Neural Network nodes](image)

Figure 5.2 Class hierarchy for Backpropagation(BP) Neural Network nodes
The class definitions and interfaces are listed as following.

Class BP_Node
class BP_Node : public Feed_Forward_Node {
 protected:
 virtual double Transfer_Function (double value) ;

 public:
 BP_Node (int v_size=1, int e_size=0) ;
 // Default of 1 value set member (NODE_VALUE)
 virtual char *Get_Name (void) ;
};

Class BP_Output_Node
class BP_Output_Node : public BP_Node {
 public:
 BP_Output_Node (double lr, double mt, int v_size=3, int e_size=1) ;
 // default of 3 value set members (NODE_VALUE,
 //LEARNING_RATE, MOMENTUM)
 // default of 1 error set member (NODE_ERROR)
 protected:
 virtual double Compute_Error (int mode=0) ;
 virtual void Learn (int mode=0) ;
 virtual char *Get_Name (void) ;
};

Class BP_Middle_Node
class BP_Middle_Node : public BP_Output_Node {
 public:
 BP_Middle_Node (double lr, double mt, int v_size=3, int e_size=1) ;
 // default of 3 value set members (NODE_VALUE,
 //LEARNING_RATE, MOMENTUM)
 // default of 1 error set member (NODE_ERROR)
 virtual char *Get_Name (void) ;

 protected:
 virtual double Compute_Error (int mode=0) ;
};
5.1.2 Backpropagation Neural Network Link Class

The back propagation link class can be derived from Base_Link. It should define enough value set members in the link objects to hold the link value (weight) and the link value’s previous change (delta). It should also override the save() function. The class definitions and interfaces are listed as following.

```cpp
Class BP_Link
class BP_Link : public Base_Link
{
    public:
        BP_Link ( int size=2 );
        // default of 2 link value set members (WEIGHT, DELTA)
        virtual void Save ( ofstream &outfile ) ;
        virtual void Load ( ifstream &infile ) ;
        virtual char *Get_Name ( void ) ;
        virtual void Update_Weight ( double new_val ) ;
};
```

5.2 Application of BP with Example – XOR Problem Revisited

We revisit the XOR problem encountered in our ADALINE network to study how the Backpropagation Neural Network objects can be used to solve XOR problem, whereas ADALINE can not.

We saw that ADALINE essentially carries all logical functions AND, OR, or NOT. So, If some function beyond the capability of an ADALINE can be expressed as a combination of these basic logical functions, then it could be implemented by using more than one ADALINEs. For instance, we could say that the XOR function differs from the OR
function in that it excludes the case of both inputs being on. So we can say that XOR is simply:

\[(X1 \text{ OR } X2) \text{ AND (NOT (X1 AND X2))}\]

So, if we get one ADALINE to do the OR \((X1 \text{ OR } X2)\), others to do the NOT \((X1 \text{ AND } X2)\), and another to do the AND of these two, then XOR can be implemented. This gives us an insight of developing a multi-layer neural network to solve the problem which can not be solved by a ADALINE network.

As we mentioned earlier, the transfer function is a nonlinear function that, when applied to the net input of a node, determines the output of that node. Its domain must generally be all real numbers, as there is no theoretical limit to what the net input can be (however, in practice we can easily limit the input by limiting the weights, and often do). The range of the transfer function (i.e. values it can output) is usually limited. The most common limits are 0 to 1, while some range from \(-1\) to 1. The ADALINE network uses a simple threshold function. If the weighted sum of inputs is less than the threshold, the output is 0. Otherwise the output is 1. To facilitate the BP algorithm, we shall introduce the Sigmoid function. In our example we use the most commonly employed sigmoid function:

\[f(x) = \frac{1}{1+e^{-x}} \]
5.3 Solving XOR Problem by Using Backpropagation Neural Network

5.3.1 XOR Problem training Set

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 5.3 XOR Problem training Set

5.3.2 Creating training Set for XOR Problem

The following code segment is for creating the training set to be presented to BP network for training

```c
// Create Training Set - XOR problem
Pattern *data[4];
    // sizes id   input    output
    // -----  ---  -----  -----  
  data[0]=new Pattern (2,1, 1, 0.0,0.0, 0.0) ;
  data[1]=new Pattern (2,1, 2, 0.0,1.0, 1.0) ;
  data[2]=new Pattern (2,1, 3, 1.0,0.0, 1.0) ;
  data[3]=new Pattern (2,1, 4, 1.0,1.0, 0.0) ;
```

5.3.3 Constructing BP Network for XOR Problem

To solve XOR problem with BP algorithm, we need to construct a Backpropagation neural network with one input layer, one output layer and one hidden layer (middle layer). The topology of our BP neural network is shown as Figure 5.4.
To realize this topology, the C++ implementation is:

```c
// Create BP Network
Base_Node *Node[6];
Base_Link *Link[9];

// 1) create nodes

// Input layer
Node[0]=new Input_Node;
Node[1]=new Input_Node;

// Middle layer nodes
// Learning rate 0.4, Momentum 0.9
Node[2]=new BP_Middle_Node ( 0.4, 0.9 ) ;
Node[3]=new BP_Middle_Node ( 0.4, 0.9 ) ;
Node[4]=new BP_Middle_Node ( 0.4, 0.9 ) ;
// Output layer node
Node[5]=new BP_Output_Node ( 0.4, 0.9 ) ;

// 2) Create Links—connecting

// Create Links for Network
for (int i=0; i<9; i++)
    Link[i]=new BP_Link () ;
```

Figure 5.4 Backpropagation neural network for XOR problem
// Connect Network with links
int curr=0; for (i=2; i<=4; i++)
 for (int j=0; j<=1; j++)
 Connect (Node[j], Node[i], Link[curr++]) ;
for (int j=2; j<=4; j++)
 Connect (Node[j], Node[5], Link[curr++]) ;

5.3.4 Training the BP network to Solve the XOR Problem

5.3.4.1 Training Stage

The BP network should be trained until all patterns in the training set produce an error
less than 50%. Since the XOR problem has a binary output, an error tolerance of less than
50% is adequate to determine a correct output. We can see it clearer from the plot of
sigmoid function, the desire outputs could take values of 0.0 or 1.0, the sigmoid function
can generate two categories of outputs: one has the values ranging from 0.0 to 0.5 and
the another has the values ranging from 0.5 to 1.0. These two categories can map the
desired output of 1.0 and 0.0. For example, if the network generates an output of 0.34567
for input pattern (0.0, 0.0), the error is (0.34567-0.0 = 0.34567) < 0.5 , this output is
fallen into the first category, can be mapped to the desired output 0.0, thus should be
acceptable.

![Sigmoid Function and the output mapping](image)

Figure 5.5 Sigmoid Function and the output mapping
Training a BP network involves several steps:

1) Set input values

2) The forward pass then is performed by executing the Run () operation on each node in the middle and output layers.

3) When the forward pass is complete, the desired output for the output node is loaded with the Set_error (..) operation.

4) The backward pass is performed by executing the Learn () operation on the nodes in the output and middle layers.

The detailed implementation of training is shown as following.

```
// Train Backprop Network
long iteration=0;
int good=0;
double tolerance=0.5;
double total_error;

while (good<4)  // Train until all patterns are correct
{
    good=0;
    total_error=0.0;

    for (int i=0; i<4; i++)
    {
        Node[0]->Set_Value ( data[i]->In ( 0 ) );  // Set Input Node values
        Node[1]->Set_Value ( data[i]->In ( 1 ) );

        for (int j=2; j<=5; j++)               // Forward Pass
            Node[j]->Run () ;

        Node[5]->Set_Error ( data[i]->Out ( 0 ) );  // Set Error Values

        for (j=5; j>=2; j--)                  // Backward Pass
            Node[j]->Learn () ;

        if (fabs ( Node[5]->Get_Value () -data[i]->Out ( 0 ) ) <tolerance)
            good++;
    }
```
total_error+=fabs (Node[5]->Get_Error ())
}

 // Print status every 1000 iterations
if (iteration%1000==0) cout << iteration << "." << good << "/4" << " Error: " << setprecision (15) << total_error << endl;
iteration++;

5.3.4.2 Save Training Results Stage:

After the training the BP network, the training result should be stored in a disk file.

// Save Backprop
 ofstream outfile ("XOR-BP.net") ;
 for (i=0; i<6; i++) // Save Nodes
 Node[i]->Save (outfile) ;

 for (i=0; i<9; i++) // Save Links
 Link[i]->Save (outfile) ;

 outfile.close () ;

The content of the saved disk file “XOR-BP.net” contains the data for the BP network Nodes and Links:

```
1 1
1 0

1
1 1
1 0

2
3 6.027104201110118
1 0.000135714285718
3 0.000000000000009
1 -6.840619140625797

4
3 0.000116470617653
1 -6.869549565918402
5
3 0.499999999999999
1 -0.124999999999999

Figure 5.6 Stored Data for Nodes
```
5.3.4.3 Load and Run Stage

Before loading and running the BP network for the XOR problem, the Nodes and Links objects should be created first.

```java
// Create Backprop
Node[0]=new Input_Node;
Node[1]=new Input_Node;
Node[2]=new BP_Node;  // Only BP_Nodes are required
Node[3]=new BP_Node;  // since there will be no learning
Node[4]=new BP_Node;
Node[5]=new BP_Node;

for (i=0; i<9; i++)  // Create Links for Network
    Link[i]=new BP_Link () ;

curr=0;  // Connect Network
for (i=2; i<=4; i++)
    for (int j=0; j<=1; j++)
        Connect ( Node[j],Node[i],Link[curr++]) ;

for (j=2; j<=4; j++)
    Connect ( Node[j],Node[5],Link[curr++]) ;
```

Then the BP network data is loaded from the disk file XOR-Bp.net, and the running BP network is performed.
// Load Backprop
 ifstream infile ("XOR-BP.net") ;
 for (i=0; i<6; i++)
 Node[i]->Load (infile) ;

 for (i=0; i<9; i++)
 Link[i]->Load (infile) ;

 infile.close () ;

// Run Backprop Network
 for (i=0; i<4; i++)
 {
 Node[0]->Set_Value (data[i]->In (0)) ; // Set Input Node Values
 Node[1]->Set_Value (data[i]->In (1)) ;

 for (int j=2; j<=5; j++) // Forward Pass
 Node[j]->Run () ;

 double out=Node[5]->Get_Value () ; // Get output layer's output

 cout << "Pattern: " << setw (3) << i << " Input: (" << data[i]->In (0) << "," << data[i]->In (1) << ") Backprop: (" << out << ") Actual: (" << data[i]->Out (0) << ") " << endl ;
 }

5.3.4.4 Outputs

The output training and running of BP network to solve the XOR problem is in file "XOR-BP.out". It contains the output reflecting the training process and the final running result. In figure 5.8, the output is displayed every 1000 iterations, so we did not get the output of the iteration which the training is stopped. We modify the condition of displaying outputs and get the outputs of the last two iterations: (25743. 3/4 Error: 0.1255836237785777) and (25744. 4/4 Error: 0.125583590719234). We find both the training and the running results are satisfactory.
<table>
<thead>
<tr>
<th>Epoch</th>
<th>Output</th>
<th>Error</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.24</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>2000</td>
<td>0.4</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>4000</td>
<td>0.4</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>6000</td>
<td>0.4</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>8000</td>
<td>0.4</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>10000</td>
<td>0.4</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>12000</td>
<td>0.4</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>14000</td>
<td>0.4</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>16000</td>
<td>0.4</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>18000</td>
<td>0.4</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>20000</td>
<td>0.4</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>22000</td>
<td>0.4</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>24000</td>
<td>0.4</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>25000</td>
<td>0.4</td>
<td>0.00</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Figure 5.8 Training output for XOR problem
<table>
<thead>
<tr>
<th>Pattern:</th>
<th>Input:</th>
<th>Backprop:</th>
<th>Actual:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0, 1</td>
<td>0.0000</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>0, 1</td>
<td>0.0000</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0, 1</td>
<td>0.0000</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0, 1</td>
<td>0.0000</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 5.9 Running results output for XOR problem
6. Summary of Comparison Between ADALINE and BP

Generally speaking, we can say Backpropagation Neural Network is an extension of ADALINE network. The major differences of the architectures between them lie in the hidden layer. A BP network can have one or more hidden layers. There are several major differences between ADALINE and BP network.

- Linear separability

From XOR problem, we can see that the layered structure of BP network allows it to escape the ADALINE's linear separability limitation making it a much more powerful tool.

- Output

From our XOR problem and Open-to-Buy example, we can see that ADALINE can only give a binary output either -1 or 1 (may be 0, 1) as shown in Figure 4.8. However, a BP network does not have this limitation. It can have any number of outputs whose values fall within a continuous range. So a BP network is ideal for solving the problems involving classification, projection, interpretation and generalization.

- Inputs mappings

A single layer ADALINE network is severely limited in the mappings it can learn; a multi-layer BP network can learn any continuous mapping to an arbitrary accuracy. So of BP networks can be applied to solve problems in many areas. Applications using such networks generally involve mapping a given set of inputs to a specified set of target outputs.
7. Genetic Algorithms

7.1 Basics of Genetic Algorithms

Genetic algorithms (GAs) are search algorithms that reflect in a primitive way some of the processes of natural evolution. As such, they are analogous to neural networks' status as primitive approximations to biological neural processing.

Genetic algorithms are inspired by the study of genetics; they borrow terms from genetics and simulate the adaptive behavior of biological systems. The smallest data item that encodes information is the gene. Problem information is encoded by a sequence of genes; this ordered collection is the chromosome. The position of a specific gene in a chromosome is the locus. We allow the information in genes to mutate, that is, the information can occasionally change randomly. Mutations usually involve small changes. Another type of variation is the crossover, in which a random locus is chosen where two genes are split; the two genes then exchange the portion occurring after the locus. The formula specifying how well a given chromosome solves the formulated problem is called the fitness. Fitness is represented by a function of one argument (a chromosome) that returns a fitness value. The population is a set of chromosomes with initial random values that are used to solve a problem. The number of generations is the number of times the population is varied and the fitness values calculated in solving a problem. A complete description with directions for mutations, crossovers, and the number of generations is called an experiment.
The series of operations carried out when implementing a GA paradigm is:

1. Initialize the population,
2. Calculate fitness for each individual in the population,
3. Reproduce selected individuals to form a new population,
4. Perform crossover and mutation on the population, and
5. Loop to step 2 until some condition is met.

7.2 OO Analysis for Genetic Algorithms

To model the Genetic Algorithms, we set up four basic class, bit_vector, gene_sequence, chromosome and genetic_experiment. The relationships among these classes are in the forms of aggregation and “is-a”. Chromosome is a subclass of gene_sequence, and gene_sequence is a subclass of bit_vector class. Genetic_experiment consists of chromosome. The class diagram is shown in Figure 7.1.

Figure 7.1 Class diagram for genetic algorithm architecture
7.3 Design and Implement Genetic Algorithm Classes in C++

The class responsibilities and interface definitions are as followings.

Class gene_sequence:

In Genetic Algorithms, individual gene in a chromosome is usually represented by a single bit. Since bit_vector objects are useful for other applications besides genetic algorithms, we design a separate class that supports setting and testing individual bits in a compact vector of bits.

```cpp
class gene_sequence : public bit_vector {
    public:
        gene_sequence ( int size = 1 ) ;
        ~gene_sequence () ;
        virtual float fitness () = 0; // abstract base class
};
```

Class chromosome:

Class chromosome is derived from class gene_sequence, adding behavior for mutation and genetic crossovers.

```cpp
class chromosome : public gene_sequence {
    public:
        chromosome ( int size = 1 ) ;
        chromosome ( chromosome & chromosome_to_copy ) ;
        ~chromosome () ;
        void mutate ( float mutation_rate ) ;
        void copy ( chromosome & chromosome_to_copy ) ;
        // perform "in place" without creating a new chromosome:
        void crossover ( chromosome & other_chromosome ) ;
        // Define the following member function in your application:
        float fitness () ;
        void print ( int index = 0, float fitness = -999.9 ) ;
    private:
        RandomSequence random_seq;
};
```
Class genetic_experiment:

The class genetic_experiment controls a set of chromosomes during an experiment, including finding a single chromosome with the largest fitness value.

class genetic_experiment {

 public:
 genetic_experiment (int chrom_size = -1,
 int population_size = -1,
 float mutation_rate = 25.0, // 25 %
 float crossover_probability = 0.3);
 ~genetic_experiment () ;
 int chromosome_size () { return size_of_chromosome; }
 int number_of_chromosomes () ;
 virtual void initialize_population () ;
 void solve () ;
 float current_best_fitness () ;
 chromosome * const current_best_chromosome () ;

 private:
 chromosome **chromosomes;
 int size_of_population;
 int size_of_chromosome;
 int current_best_chromosome_index;
 float mut_rate;
 float cross_prob;
 float *fitnesses;
 void sort_by_fitness () ;
 RandomSequence randoms;

};

Class bit_vector

class bit_vector {
 public:
 bit_vector (int num_bits = 1) ;
 ~bit_vector () ;
 unsigned int operator[] (int bit_index) ;
 int number_of_on_bits () ;
 void operator+= (int bit_to_turn_on) ;
 void operator-= (int bit_to_turn_off) ;
 int operator==(const bit_vector &other) ;
 void set_to_zero () ;
 void set_to_one () ;
 int size ()
 {
 return number_of_bits;
 }

}
protected:
 unsigned int * data;
 int number_of_bits;
 int number_of_ints;
};

The detailed implementation of `Bit_vector` class is included in source listings in the Appendix. `Bit_vector` class will be used later for our recurrent network class (Figure 2.5), whereas, in this project, we will concentrate on the paradigm of how genetic algorithm can be applied for training recurrent neural network. We will then model the neural network in genetic algorithm architecture. In this project, we only study the genetic algorithm applied to recurrent neural network, rather than studying the general genetic algorithm and thus the detailed implementation for `Genetic_experiment`, `Chromosome` and `Gene_sequence` classes are omitted. The classes needed for training recurrent neural networks will be developed in later chapter.
8. Training Recurrent Neural Networks with Genetic Algorithms

Problems with continuous input data require neural networks with feedback loops between neuron layers, which are called recurrent neural networks. We will study how to search for a set of weights for a recurrent neural network by treating the set of weights as a chromosome, and use a genetic algorithm to find a fit chromosome that minimizes the error for a given set of neural network training data. A typical recurrent neural network is shown as figure 2.5.

8.1 Object Oriented Analysis of Recurrent Neural Network with GA

We model the neural network by applying the GA algorithm along with the feedback feature. This is a totally different architecture from that seen till now, so we need to define the classes based on this architecture rather than simply using the Base classes for feed forward ADALINE. There are three classes that should be defined, they are genetic_recurrent_network class, RandomSequence class and bit_vector class. They are derivations (however we do not implement the inheritance here) of the more general Genetic Algorithm classes defined in chapter 7 (Figure 7.1). For instance, in Figure 7.1, the member function fitness() for gene class is a virtual function, and should be overridden by chromosome's fitness() member function, where the fitness() member function for the class genetic_recurrent_network is not an override function, but it is an application dependent one. The class diagram is shown in Figure 8.2.
Figure 8.2 The class diagram for recurrent neural network

Figure 8.1 shows the class diagram for class genetic_recurrent_network. An instance of this class contains static allocation of two-dimensional weight arrays and a set of single large bit vectors (chromosomes). The population is a set of these large single bit vectors. The public member function copy_bit_weights_to_floats() unpacks the bit vector for a specified member of the chromosome population into the two dimensional floating point bit arrays. The genetic learning is implemented by genetic crossover and mutation on these bit vectors. The fitness member function evaluates each chromosome by using the two dimensional weight arrays as temporary storage to implement a neural network for each member of the chromosome population. We reuse a single set of two dimensional floating point weight arrays to evaluate all chromosomes in the population.
9. Using GA to Train Recurrent Neural Network for XOR Problem

To support genetic learning for XOR problem, we need to map a single-bit vector into the set of two-dimensional floating-point weight arrays. The size of the neural network is set by the following constant definitions:

```
const int NUM_INPUTS = 2;  // number of input nodes is two
const int NUM_HIDDEN = 6;  // number of nodes in hidden layer is six
const int NUM_OUTPUTS = 1; // number of output node is one.
```

The topology of the neural network is set up by defining:

```
#define USE_I_TO_O  // input to output nodes
#define USE_H_TO_H  // hidden to hidden nodes
#define USE_O_TO_H  // output to hidden nodes
```

The recurrent neural network with above macro definition is shown in the following Figure.

![Diagram of Recurrent Neural Network for XOR Problem](image)

Figure 9.1 Recurrent neural network for XOR problem
If we just want implement the topology as in Figure 8.1, i.e. without the connection from input node to output node directly. We can define the second two macros without the first one:

#define USE_H_TO_H // hidden to hidden nodes
#define USE_O_TO_H // output to hidden nodes
(no connection from input to output directly)

9.1 Execution Output for the XOR Problem with Genetic Algorithm

The followings are partial output of the XOR problem.

This output shows the start of an XOR genetic training experiment.

![Figure 9.2 Output of start of an XOR genetic training experiment](image)

After 5 generations, the error is still large, and the best set of neural network weights in the chromosome population can not solve the XOR problem.

![Figure 9.3 Output for generation 5 for XOR genetic training experiment](image)
In this part of output, after 75 generation the error is smaller, but the best set of weights in
the chromosome population still has not learnt to map (1, 1) to (0). The last pattern of
inputs are 0.2 and 0.2, the output is 0.0160713.

Figure 9.4 Output for generation 75 for XOR genetic training experiment

In above figures of output, it shows that the best set of weights after 1000 generations has
improved very little. We can see that although Genetic Algorithm is a tool to solve neural
network problems, it is not efficient to solve the XOR problem. This result shows that the
network required to solve the XOR problem is a simple, non-recurrent, three-layer
network, i.e. the Backpropagation Algorithm we used in the proceeding XOR example.
So in practice, we would not recommend using GA to solve the XOR problem.
10. Summary of Comparison between BP and GA

Genetic algorithm forms a good basis for solving some learning, optimization, and search, problems. Genetic algorithms are particularly appropriate for quickly finding good solutions to problems, but not necessarily the best solution for a given problem specification.

The advantage in using genetic algorithms lies in the ability to design arbitrarily connected neural networks, and train them, without requiring a formal scheme for adapting the connection weight values for a set of training data.

Clearly, the sample XOR program with GA do a poor job at training simple (non-recurrent) neural networks compared with the backward error propagation algorithm. However, using Genetic Algorithms to train highly recurrent neural networks looks promising.

In this project, the example we developed does not challenge the abilities of the genetic algorithm in training recurrent neural network. It just demonstrates that genetic algorithms can be applied to train recurrent neural network.

Genetic Algorithms are a kind of evolutionary computing. Backpropagation is a common algorithm for neural network computing. They can be combined together to make a more efficient way to solve neural network problems in the following ways.
- Using genetic algorithms to evolve optimal values for neural network parameters such as the number of nodes, connectivity, weights, learning rate, and momentum. Genetic algorithms can offer a mechanism to find out an optimal topology through neural network evolution.

- Using neural networks to obtain good quality initial populations for genetic algorithms.

- Using Backpropagation with genetic learning to decrease training times

- Using genetic algorithms and neural networks in parallel to solve the same problem, in order to increase the confidence in the correctness of the solutions obtained independently by each method.
References

Appendix Source Listings and Output Files
```cpp
#include<iostream.h>
#include<fstream.h>
#include<math.h>
#include<stdio.h>
#include<stdlib.h>
#include<iomanip.h>

void main()
{
    double InputX, InputY, VTVValue, DesiredOutput;
    ofstream fout("OTBTrnSet.txt");
    /*
     * fout<<"" "" Input X Value"" "" Input Y Value"" "" Desired Outputs"" <<endl;
     * fout<<"--------------------------------" <<endl;
     */

    for(int i=0; i<250; i++) {
        // RAND_MAX=32767 which is the max integer value

        InputX=((double)rand())/(double)RAND_MAX)*2.0-1.0;
        InputY=((double)rand())/(double)RAND_MAX)*2.0-1.0;
        VTVValue=((3.0/2.0)*InputX+1)/4;

        if(InputY<VTVValue)
            DesiredOutput=1;
        else
            DesiredOutput=-1;

        fout<<setiosflags(ios::right)<<setw(3)<<i<<"
        "<<setw(18)<<InputX<<setw(20)<<InputY<<setw(10)<<DesiredOutput<<endl;
    }

    fout.close();
}
```
// File base.h

// This header file contains the base classes for the neural network nodes
// and links. It also contains the commonly used doubly linked list class

#ifndef BASE
#define BASE

#define NODE_VALUE 0
#define LEARNING_RATE 1
#define NODE_ERROR 0
#define WEIGHT 0

class Base_Node; // Forward declaration so links can use the base node type
class Base_Link // Base Neural-Network Link class
{
private:
 static int ticket;

protected:
 int id; // ID number for link
double *value; // Value(s) for Link
 Base_Node *in_node; // Node instance link is coming from
 Base_Node *out_node; // Node instance link is going to
 int value_size;

public:
 Base_Link(int size=1); // Constructor
 ~Base_Link(void); // Destructor for Base Links
 virtual void Save(ofstream &outfile);
 virtual void Load(ifstream &infile);
 inline virtual double Get_Value(int id=WEIGHT);
 inline virtual void Set_Value(double new_val, int id=WEIGHT);
 inline virtual void Set_In_Node(Base_Node *node, int id);
 inline virtual void Set_Out_Node(Base_Node *node, int id);
 inline virtual Base_Node *In_Node(void);
 inline virtual Base_Node *Out_Node(void);
 inline virtual char *Get_Name(void);
 inline virtual void Update_Weight(double new_val);
 inline int Get_ID(void);
 inline virtual double In_Value(int mode=NODE_VALUE);
 inline virtual double Out_Value(int mode=NODE_VALUE);
 inline virtual double In_Error(int mode=NODE_ERROR);
 inline virtual double Out_Error(int mode=NODE_ERROR);
 inline virtual double Weighted_In_Value(int mode=NODE_VALUE);
 inline virtual double Weighted_Out_Value(int mode=NODE_VALUE);
 inline virtual double Weighted_In_Error(int mode=NODE_VALUE);
inline virtual double Weighted_Out_Error(int mode=NODE_VALUE);
inline virtual int Get_Set_Size(void);
inline virtual void Epoch(int mode=0);

//---------

class LLList // Linked-List Support Class
{
private:

struct NODE
{
 NODE *next, *prev;
 Base_Link *element;
};

NODE *head,*tail,*curr;
int count;

public:
 LLList(void);
 ~LLList(void);
 int Add_To_Tail(Base_Link *element);
 int Add_Node(Base_Link *element);
 int Del_Node(void);
 int Del(Base_Link *element);
 int Find(Base_Link *element);
 inline void Clear(void);
 inline int Count(void);
 inline void Reset_To_Head(void);
 inline void Reset_To_Tail(void);
 inline Base_Link *Curr(void);
 inline void Next(void);
 inline void Prev(void);
};

//===--
Base_Link::Get_Set_Size(void)
{
 return value_size;
}

//===--
Base_Link::Base_Link(int size) // Constructor
{
 id=++ticket;
 value_size=size;
 if (value_size<=0) value=0;
 else value=new double[value_size];
 for (int i=0; i<value_size; i++) // initialize value set to zero
 value[i]=0.0;
 in_node=out_node=NULL;
}

//===--
Base_Link::~Base_Link(void) // Destructor for Base Links
{
 if (value_size>0) delete[] value;
}

//===--

65
```cpp
void Base_Link::Save( ofstream &outfile )
{
    outfile << id << endl;
    outfile << value_size; // Store value set
    if (value) delete []value;
    value=new double[value_size];
    for (int i=0; i<value_size; i++)
        outfile << " " << setprecision(18) << value[i];
    outfile << endl;
}

void Base_Link::Load( ifstream &infile )
{
    infile >> id;
    infile >> value_size;
    if (value) delete []value;
    value=new double[value_size]; // Load value set
    for (int i=0; i<value_size; i++)
        infile >> value[i];
}

double Base_Link::Get_Value( int id ) { return value[id]; }

void Base_Link::Set_Value( double new_val, int id ) { value[id]=new_val; }

void Base_Link::Set_In_Node( Base_Node *node, int id ) { in_node=node; }

void Base_Link::Set_Out_Node( Base_Node *node, int id ) { out_node=node; }

Base_Node *Base_Link::In_Node( void ) { return in_node; }

Base_Node *Base_Link::Out_Node( void ) { return out_node; }

char *Base_Link::Get_Name( void )
{
    static char name[]="BASE_LINK";
    return name;
}

void Base_Link::Update_Weight( double new_val )
{
    value[WEIGHT]+=new_val;
}

int Base_Link::Get_ID( void ) { return id; }

void Base_Link::Epoch( int code ) {};

int Base_Link::ticket=-1; // This static variable is shared by all
                          // links derived from the base link class. Its
                          // purpose is to give each link created from
                          // the base_link class a unique identification
                          // number.

class Base_Node // Base Neural-Network Node
{
    private:
        static int ticket;
};
```
protected:
 int id; // Identification Number
 double *value; // Value(s) stored by this node
 int value_size; // Number of Values stored by this node
 double *error; // Error value(s) stored by this node
 int error_size; // Number of Error values stored by this node

 LLList in_links; // List for input links
 LLList out_links; // List for output links

public:
 Base_Node(int v_size=1, int e_size=1); // Constructor
 ~Base_Node(void); // Destructor
 LLList *In_Links(void);
 LLList *Out_Links(void);
 virtual void Run(int mode=0);
 virtual void Learn(int mode=0);
 virtual void Epoch(int code=0);
 virtual void Load(ifstream &infile);
 virtual void Save(ofstream &outfile);
 inline virtual double Get_Value(int id=NODE_VALUE);
 inline virtual void Set_Value(double new_val, int id=NODE_VALUE);
 inline virtual double Get_Error(int id=NODE_ERROR);
 inline virtual void Set_Error(double new_val, int id=NODE_ERROR);
 inline int Get_ID(void);
 inline virtual char *Get_Name(void);
 void Create_Link_To(Base_Node &to_node, Base_Link *link);
 virtual void Print(ofstream &out);

 friend void Connect(Base_Node &from_node, Base_Node &to_node,
 Base_Link *link);
 friend void Connect(Base_Node &from_node, Base_Node &to_node,
 Base_Link &link);
 friend void Connect(Base_Node *from_node, Base_Node *to_node,
 Base_Link *link);
 friend int Disconnect(Base_Node *from_node, Base_Node *to_node);

 friend double Random(double lower_bound, double upper_bound);

};

//---------------
Base_Node::Base_Node(int v_size, int e_size) // Constructor
{
 id=++ticket;
 if (v_size<=0) { value_size=0; value=NULL; } // Create value storage
 else
 {
 value_size=v_size;
 value=new double[v_size];
 }

 for (int i=0; i<v_size; i++)
 value[i]=0.0;

 if (e_size<=0) { error_size=0; error=NULL; } // Create error storage
 else

```c++
{
    error_size=e_size;
    error=new double[e_size];
}

for (i=0; i<e_size; i++) // Set all errors to zero
    error[i]=0.0;

Base_Node::~Base_Node( void ) // Destructor
{
    if (value_size>0) delete[] value;
    if (error_size>0) delete[] error;
}

LList *Base_Node::In_Links( void ) { return &in_links; };

LList *Base_Node::Out_Links( void ) { return &out_links; };

void Base_Node::Run( int mode ) {};

void Base_Node::Learn( int mode ) {};

void Base_Node::Epoch( int code ) {};

void Base_Node::Load( ifstream &infile )
{
    infile >> id;
    infile >> value_size;
    if (value) delete [] value;
    value=new double[value_size]; // Load value set
    for (int i=0; i<value_size; i++)
        infile >> value[i];
    infile >> error_size;
    if (error) delete [] error; // Load error set
    error=new double[error_size];
    for (i=0; i<error_size; i++)
        infile >> error[i];
}

void Base_Node::Save( ofstream &outfile )
{
    outfile << setw(4) << id << endl;
    outfile << value_size; // store value set
    for (int i=0; i<value_size; i++)
        outfile << " " << setprecision(18) << value[i];
    outfile << endl;
    outfile << error_size; // store error set
    for (i=0; i<error_size; i++)
        outfile << " " << setprecision(18) << error[i];
    outfile << endl;
}

double Base_Node::Get_Value( int id ) { return value[id]; };

void Base_Node::Set_Value( double new_val, int id ) { value[id]=new_val; };
```

68
double Base_Node::Get_Error(int id) { return error[id]; }

void Base_Node::Set_Error(double new_val, int id) { error[id]=new_val; }

int Base_Node::Get_ID(void) { return id; }

char *Base_Node::Get_Name(void)
{
 static char name[]="BASE_NODE";
 return name;
}

void Base_Node::Create_Link_To(Base_Node &to_node, Base_Link *link)
{
 out_links.Add_To_Tail(link);
 to_node.In_Links()->Add_To_Tail(link);
 link->Set_In_Node(this, id);
 link->Set_Out_Node(&to_node, to_node.Get_ID());
}

void Connect(Base_Node &from_node, Base_Node &to_node, Base_Link *link)
{
 from_node.Create_Link_To(to_node,link);
}

void Connect(Base_Node &from_node, Base_Node &to_node, Base_Link &link)
{
 from_node.Create_Link_To(to_node,&link);
}

void Connect(Base_Node *from_node, Base_Node *to_node, Base_Link *link)
{
 from_node->Create_Link_To(*to_node,link);
}

int Disconnect(Base_Node *from_node, Base_Node *to_node) // Remove link
{
 LList *out_links=from_node->Out_Links();
 int flag=0;
 out_links->Reset_To_Head();
 for (int i=0; i<out_links->Count(); i++) // for each output link
 {
 if (out_links->Curr()->Out_Node()==to_node)
 {
 flag=1;
 break;
 }
 out_links->Next();
 }

 if (flag==1) // link exists, delete it from both nodes
 {
 out_links->Curr()->Out_Node()->In_Links()->Del(out_links->Curr());
 out_links->Del_Node();
 return 1;
 }
} else
 return 0; // link not found
};

// Generating Random Number

double Random(double lower_bound, double upper_bound) // Generate Random Number
{
 return ((double)((rand()%RAND_MAX))/(double)RAND_MAX)*
 (upper_bound-lower_bound)+lower_bound;
};

// Printing Base Node

void Base_Node::Print(ofstream &out)
{
 out << "Node ID: " << id << " Node Name: " << Get_Name() << endl;
 out << "Value Set: ";
 for (int i=0; i<value_size; i++)
 out << value[i] << " ";
 out << endl;
 out << "Error Set: ";
 for (i=0; i<error_size; i++)
 out << error[i] << " ";
 out << endl;
 in_links.Reset_To_Head();
 for (i=0; i<in_links.Count(); i++)
 out << " In Link ID: " << in_links.Curr()->Get_ID()
 << " Link Name: " << in_links.Curr()->Get_Name()
 << " Source Node: " << in_links.Curr()->In_Node()->Get_ID()
 << " Value Set: ";
 for (i=0; i<in_links.Count(); i++)
 out << " In Link ID: " << in_links.Curr()->Get_ID()
 << " Link Name: " << in_links.Curr()->Get_Name()
 << " Dest Node: " << in_links.Curr()->Out_Node()->Get_ID()
 << " Value Set: ";
 for (i=0; i<in_links.Count(); i++)
 out << " In Link ID: " << in_links.Curr()->Get_ID()
 << " Link Name: " << in_links.Curr()->Get_Name()
 << " Dest Node: " << in_links.Curr()->Out_Node()->Get_ID()
 << " Value Set: ";
 for (i=0; i<in_links.Count(); i++)
 out << " In Link ID: " << in_links.Curr()->Get_ID()
 << " Link Name: " << in_links.Curr()->Get_Name()
 << " Dest Node: " << in_links.Curr()->Out_Node()->Get_ID()
 << " Value Set: ";
 out << endl;
 in_links.Next();
}

out_links.Reset_To_Head();
for (i=0; i<out_links.Count(); i++)
 out << " Out Link ID: " << out_links.Curr()->Get_ID()
 << " Link Name: " << out_links.Curr()->Get_Name()
 << " Dest Node: " << out_links.Curr()->Out_Node()->Get_ID()
 << " Value Set: ";
 for (i=0; i<out_links.Count(); i++)
 out << " Out Link ID: " << out_links.Curr()->Get_ID()
 << " Link Name: " << out_links.Curr()->Get_Name()
 << " Dest Node: " << out_links.Curr()->Out_Node()->Get_ID()
 << " Value Set: ";
 out << endl;
 out_links.Next();
}

out << endl;
}

// This static variable is shared by all
// links derived from the base link class. Its
// purpose is to give each link created from
// the base link class a unique identification
// number.

int Base_Node::ticket=-1; // This static variable is shared by all
// links derived from the base link class. Its
// purpose is to give each link created from
// the base link class a unique identification
// number.

70
double Base_Link::In_Value(int mode) { return in_node->Get_Value(mode); } // These Base_Link members
double Base_Link::Out_Value(int mode) { return out_node->Get_Value(mode); } // must be defined after the
double Base_Link::In_Error(int mode) { return in_node->Get_Error(mode); } // Base_Node class because
double Base_Link::Out_Error(int mode) { return out_node->Get_Error(mode); } // they reference specific

double Base_Link::Weighted_In_Value(int mode) { return in_node->Get_Value(mode)*value[WEIGHT]; }
double Base_Link::Weighted_Out_Value(int mode) { return out_node->Get_Value(mode)*value[WEIGHT]; }
double Base_Link::Weighted_Out_Error(int mode) { return out_node->Get_Error(mode)*value[WEIGHT]; }
double Base_Link::Weighted_In_Error(int mode) { return in_node->Get_Error(mode)*value[WEIGHT]; }

class Feed_Forward_Node : public Base_Node { // This derived class provides
 // a generic feed-forward
 // neural-network node which
 // can be used by the ADALINES
 // and Backprop networks.

protected:
 virtual double Transfer_Function(double value);

public:
 Feed_Forward_Node(int v_size=1, int e_size=1); // Constructor
 virtual void Run(int mode=0);
 virtual char *Get_Name(void);
};

double Feed_Forward_Node::Transfer_Function(double value) { return value; }

void Feed_Forward_Node::Run(int mode)
{
 in_links.Reset_To_Head();
 double total=0.0;
 int cnt=in_links.Count();
 for (int i=0; i<cnt; i++) // For each node's input link
 {
 total+=in_links.Curr()->Weighted_In_Value();
 in_links.Next();
 }
 value[mode]=Transfer_Function(total);
};

char *Feed_Forward_Node::Get_Name(void)
{
 static char name[]="FEED_FORWARD_NODE";
 return name;
};
class Base_Network : public Base_Node // Base Network Node
{
 protected:
 int num_nodes; // Number of nodes in Network
 int num_links; // Number of links in Network
 Base_Node **node; // Array of base nodes
 Base_Link **link; // Array of base links

 virtual void Create_Network(void);
 virtual void Load_Inputs(void);
 virtual void Save_Nodes_Links(ofstream &outfile);
 virtual void Load_Nodes_Links(ifstream &infile);

 public:
 Base_Network(void); // Constructor
 ~Base_Network(void); // Destructor
 virtual void Epoch(int code=0);
 virtual void Print(ofstream &outfile);
 virtual char *Get_Name(void);
};

void Base_Network::Create_Network(void) {};

void Base_Network::Load_Inputs(void) {};

void Base_Network::Save_Nodes_Links(ofstream &outfile)
{
 outfile << num_nodes << endl;
 outfile << num_links << endl;
 for (int i=0; i<num_nodes; i++) // Store all nodes
 node[i]->Save(outfile);
 for (i=0; i<num_links; i++) // Store all links
 link[i]->Save(outfile);
}

void Base_Network::Load_Nodes_Links(ifstream &infile)
{
 infile >> num_nodes;
 infile >> num_links;
 Create_Network();
 for (int i=0; i<num_nodes; i++) // Load all nodes
 node[i]->Load(infile);
 for (i=0; i<num_links; i++) // Load all links
 link[i]->Load(infile);
}

Base_Network::Base_Network(void) : Base_Node(0,0) // Constructor
{
 num_nodes=0;
 num_links=0;
 node=NULL;
 link=NULL;
};

Base_Network::~Base_Network(void) // Destructor
void Base_Network::Print(ofstream &outfile)
{
 for (int i=0; i<num_nodes; i++) // Print each node in network
 node[i]->Print(outfile);
}

char *Base_Network::Get_Name(void)
{
 static char name[]="BASE_NETWORK";
 return name;
}

void Base_Network::Epoch(int code)
{
 for (int i=0; i<num_nodes; i++) // Run Epoch for each node in network
 node[i]->Epoch(code);

 for (i=0; i<num_links; i++) // Run Epoch for each link in network
 link[i]->Epoch(code);
}

// Linked-List Constructor

LList::LList(void)
{
 curr=head=tail=NULL;
 count=0;
}

// Linked-List Destructor

LList::~LList(void) { Clear(); }

int LList::Count(void) { return count; }

// Clear out the contents of a list

void LLList::Clear(void)
{
 NODE *i=head, *temp;

 while (i!=NULL)
 {
 temp=i;

i=i->next;
 delete temp;
}
curr=head=tail=NULL;
count=0;
}

//---
// Add an element to the tail of a list

int LLList::Add_To_Tail(Base_Link *element)
{
 curr=NULL;
 return Add_Note(element);
}

//---
// This function add a node before the node curr points to. If curr is NULL then the node is added to the tail of the list.

int LLList::Add_Note(Base_Link *element)
{
 NODE *temp=new NODE;
 if (temp==NULL)
 {
 cout << "Unable to allocate Node..." << endl;
 }

temp->element=element;

 if (temp==NULL) return 0;

 if (curr==NULL) // Add to tail of list
 {
 temp->prev=tail;
 temp->next=NULL;
 if (tail==NULL) // Empty list
 {
 head=temp;
 tail=temp;
 }
 else
 {
 // Non-Empty list
 tail->next=temp;
 tail=temp;
 }
 }
 else if (curr==head) // Add as head of list
 {
 temp->prev=curr;
 temp->next=NULL;
 if (head==NULL) // Empty List
 {
 head=temp;
 tail=temp;
 }
 else
 {

head->prev=temp; // Non-Empty List
head=temp;
}
}
else
{ // Add to Middle of List
temp->prev=curr->prev;
temp->next=curr;
curr->prev->next=temp;
curr->prev=temp;
}
cnt++;
return 1;
}

// Function to verify existence of element in list and returns position
int LLList::Find(Base_Link *element)
{
 NODE *temp=head;
 int cnt=1;
 curr=NULL;
 while (temp!=NULL)
 {
 if (temp->element==element)
 {
curr=temp;
 return cnt;
 }
 cnt++;
 temp=temp->next;
 }
 return 0;
}

// Deletes an element anywhere in a list (first occurrence)
int LLList::Del(Base_Link *element)
{
 if (!Find(element)) return 0;
 return Del_Node();
}

// This function deletes the current node in the list (curr)
int LLList::Del_Node(void)
{
 if (curr==NULL) return 0; // If list is empty, do nothing
 delete curr->element; // Free link object

 if (curr==head) // Delete first node in list
 {
 if (head==tail) tail=NULL;
 else head->next->prev=NULL;
 head=curr->next;
 }
}
else if (curr == tail) // Delete last node in list
 {
 tail->prev->next = NULL;
 tail = curr->prev;
 }
else // Delete node in middle of list
 {
 curr->next->prev = curr->prev;
 curr->prev->next = curr->next;
 }

delete curr;
curr = NULL;
count--;
return 1;
}

//---
// Resets current node position (curr) to head of list

void LList::Reset_To_Head(void) { curr = head; }
//---
// Resets current node position (curr) to head of list

void LList::Reset_To_Tail(void) { curr = tail; }
//---
// Returns the Current element pointed to in the Container

Base_Link *LList::Curr(void)
{
 if (curr == NULL) return NULL;
 else return curr->element;
};
//---
// Advances current node

void LList::Next(void)
{
 if (curr->next == NULL) curr = head;
 else curr = curr->next;
}
//---
// Move the current node backwards

void LList::Prev(void)
{
 if (curr->prev == NULL) curr = tail;
 else curr = curr->prev;
}

#endif BASE
// File pattern.h - Input/Output Pattern Class

#ifndef PATTERN
#define PATTERN

#include<stdio.h>
#include<stdlib.h>
#include<fstream.h>
#include<stdarg.h>

class Pattern
{
 private:
 double *in_set; // Pointer to input pattern array
 double *out_set; // Pointer to output pattern array
 int id; // Pattern Identification Number
 int in_size, out_size; // Input and Output pattern sizes

 public:
 Pattern(int in, int out);
 Pattern(int in, int out, int data_id);
 Pattern(int in, int out, int data_id,
 double *in_array, double *out_array);
 Pattern(int in, int out, ifstream &infile);

 ~Pattern(void);

 virtual inline double In(int id);
 virtual inline double Out(int id);

 virtual inline void Set_In(int id, double value);
 virtual inline void Set_Out(int id, double value);

 virtual inline int In_Size(void);
 virtual inline int Out_Size(void);

 virtual void Save(ofstream &outfile);
 virtual void Load(ifstream &infile);

 virtual void Print(void);
 virtual inline int Get_ID(void);

 virtual void Copy(Pattern &in);
};

// Constructor
Pattern::Pattern(int in, int out)
{
 in_size=in;
 out_size=out;
 in_set=new double[in_size];
 out_set=new double[out_size];
}

}
Pattern(Pattern(int in, int out, int data_id, ...))
{
 in_size=in;
 out_size=out;
 in_set=new double[in_size];
 out_set=new double[out_size];

 id=data_id;
 va_list vl;

 va_start(vl, data_id);
 for (int i=0; i<in_size; i++)
 in_set[i]=va_arg(vl, double);

 for (i=0; i<out_size; i++)
 out_set[i]=va_arg(vl, double);

 va_end(vl);
};

://---

Pattern(Pattern(int in, int out, int data_id,
 double *in_array, double *out_array))
{
 in_size=in;
 out_size=out;
 id=data_id;

 in_set=new double[in_size];
 for (int i=0; i<in_size; i++)
 in_set[i]=in_array[i];

 out_set=new double[out_size];
 for (i=0; i<out_size; i++)
 out_set[i]=out_array[i];
};

://---

Pattern(Pattern(int in, int out, ifstream &infile))
{
 in_size=in;
 out_size=out;
 infile >> id;

 in_set=new double[in_size];
 out_set=new double[out_size];

 Load(infile);
};

://---

// Destructor - Release in/out arrays

Pattern::~Pattern(void)
{
 if (in_set) delete []in_set;
 if (out_set) delete []out_set;
};
// Function to get Input Pattern array values

double Pattern::In(int id) { return in_set[id]; };

// Function to get Output Pattern array values

double Pattern::Out(int id) { return out_set[id]; };

// Function to set input pattern value

void Pattern::Set_In(int id, double value) { in_set[id]=value; };

// Function to set output pattern value

void Pattern::Set_Out(int id, double value) { out_set[id]=value; };

// Function to return input pattern size

int Pattern::In_Size(void) { return in_size; };

// Function to return output pattern size

int Pattern::Out_Size(void) { return out_size; };

// Function to return pattern identification number

int Pattern::Get_ID(void) { return id; };

// Function to save pattern to disk

void Pattern::Save(ofstream& outfile)
{
 outfile << id << "\n";
 for (int i=0; i<in_size; i++)
 outfile << in_set[i] << "\n";

 for (i=0; i<out_size; i++)
 {
 outfile << out_set[i];
 if (i!=out_size-1) outfile << \n;
 }
 outfile << endl;
};

// Function to Load a pattern from disk

void Pattern::Load(ifstream &infile)
{ }
for (int i=0; i<in_size; i++)
 infile >> in_set[i];

for (i=0; i<out_size; i++)
 infile >> out_set[i];

char ch;
ch=infile.peek();
while (ch!='\n' || ch==EOF)
{
 ch=infile.get();
 if (ch==EOF) break;
 ch=infile.peek();
}

// Function to print pattern

void Pattern::Print(void)
{
 cout << "ID: " << id << " In: ";
 for (int i=0; i<in_size; i++)
 cout << in_set[i] << " ";
 cout << " Out: ";
 for (i=0; i<out_size; i++)
 cout << out_set[i] << " ";
 cout << endl;
}

// Function to copy pattern

void Pattern::Copy(Pattern &orig)
{
 int i;

 if (orig.In_Size()==in_size)
 for (i=0; i<in_size; i++)
 in_set[i]=orig.In(i);

 if (orig.Out_Size()==out_size)
 for (i=0; i<out_size; i++)
 out_set[i]=orig.Out(i);
}

#endif


```cpp
#include "base.h"

#ifndef COMMON
#define COMMON

//@- ------------------------------------------------------------------------

class Input_Node : public Base_Node // The Input Node class is a generic
{ // Input Node. It can be used with
     // most networks.
   public:
     Input_Node( int size=1 ) : Base_Node(size, size) // Default of one value
     { // set member (NODE_VALUE)
       for (int i=0; i<size; i++) // and one error set
       { // member (NODE_ERROR)
         error[i]=0.0;
         value[i]=0.0;
       }
     }

     virtual char *Get_Name( void )
     {
       static char name[]="INPUT_NODE";
       return name;
     }

   };

//@- ------------------------------------------------------------------------

class Bias_Node : public Input_Node // The Bias Node Class is a node that
{ // always produces the same output.
     // The Bias Node's default output is 1.0
   public:
     Bias_Node( double bias=1.0 ) : Input_Node(1) // Constructor
     { value[0]=bias; }
     virtual void Set_Value( double value, int id=0 ){} // Disable Set_Value
     virtual double Get_Value( int id=0 ) { return value[0]; }

     virtual char *Get_Name( void )
     {
       static char name[]="BIAS_NODE";
       return name;
     }

   };

//@- ------------------------------------------------------------------------

#endif
```
// ***
// File adaline.h
//
// This header file contains the ADALINE classes
//
//***

#ifndef ADALINE
#define ADALINE

#include "base.h"
#include "common.h"
#include "pattern.h"

// **
class ADALINE_Node : public Feed_Forward_Node // ADALINE processing Node
{
 protected:
 virtual double Transfer_Function(double value);

 public:
 ADALINE_Node(void);
 ADALINE_Node(double lr);
 virtual void Learn(int mode);
 virtual char *Get_Name(void);
};

// **
double ADALINE_Node::Transfer_Function(double value) // Threshold
 // Transfer Function

 if (value<0) return -1.0;
 else return 1.0;
};

// **
ADALINE_Node::ADALINE_Node(void): Feed_Forward_Node(2,1) {}; // Constructor

// **
ADALINE_Node::ADALINE_Node(double lr):Feed_Forward_Node(2,1) // Constructor with
 // Learning Rate

 value[LEARNING_RATE]=lr;
 // specified
};

// **
void ADALINE_Node::Learn(int mode) // ADALINE learning function

 error[NODE_ERROR]=value[NODE_VALUE]*-2.0;
 Base_Link *link;
 in_links.Reset_To_Head();
 int cnt=in_links.Count();
 double delta;
 for (int i=0; i<cnt; i++) // for each input link
 {
 link=in_links.Curr();
 delta=value[LEARNING_RATE]*link->In_Value()*error[NODE_ERROR]; // Delta rule
 link->Update_Weight(delta);
 in_links.Next();
 }
};

// **
char *ADALINE_Node::Get_Name(void)

82
{
 static char name[]="ADALINE_NODE";
 return name;
};

//---
class ADALINE_Link : public Base_Link // Link for ADALINE Node
{
 public:
 ADALINE_Link(void);
 virtual void Save(ofstream &outfile);
 virtual void Load(ifstream &infile);
 virtual char *Get_Name(void);
};

//---
ADALINE_Link::ADALINE_Link(void) : Base_Link() // Constructor
{
 value[WEIGHT]=Random(-1.0,1.0); // Automatically initialized
} // weight value to random number

//---
void ADALINE_Link::Save(ofstream &outfile)
{
 outfile << setw(4) << id << " " << setprecision(18)
 << value[WEIGHT] << " " << setw(4) << In_Node()->Get_ID() << " "
 << setw(4) << Out_Node()->Get_ID() << endl;
}

//---
void ADALINE_Link::Load(ifstream &infile)
{
 infile >> id;
 infile >> value[WEIGHT];
 int dummy;
 infile >> dummy; // Skip over node IDs
 infile >> dummy;
}

//---
char *ADALINE_Link::Get_Name(void)
{
 static char name[]="ADALINE_LINK";
 return name;
};

//---

#endif ADALINE
7. File OTBTmSet.txt contains the outputs of the training set to be present to ADALINE network for solving the Open-To-Buy example.

84
<table>
<thead>
<tr>
<th></th>
<th>-0.318033</th>
<th>-0.361187</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>182</td>
<td>-0.26487</td>
<td>0.122001</td>
<td>1</td>
</tr>
<tr>
<td>183</td>
<td>0.604785</td>
<td>0.613758</td>
<td>-1</td>
</tr>
<tr>
<td>184</td>
<td>0.051077</td>
<td>0.222025</td>
<td>1</td>
</tr>
<tr>
<td>185</td>
<td>0.596362</td>
<td>0.801202</td>
<td>-1</td>
</tr>
<tr>
<td>186</td>
<td>-0.710379</td>
<td>0.240353</td>
<td>1</td>
</tr>
<tr>
<td>187</td>
<td>-0.195166</td>
<td>-0.492599</td>
<td>1</td>
</tr>
<tr>
<td>188</td>
<td>-0.72692</td>
<td>0.710379</td>
<td>-1</td>
</tr>
<tr>
<td>189</td>
<td>-0.867672</td>
<td>-0.144381</td>
<td>1</td>
</tr>
<tr>
<td>190</td>
<td>0.146702</td>
<td>-0.395428</td>
<td>1</td>
</tr>
<tr>
<td>191</td>
<td>0.0561028</td>
<td>-0.548875</td>
<td>1</td>
</tr>
<tr>
<td>192</td>
<td>-0.3773</td>
<td>-0.778741</td>
<td>1</td>
</tr>
<tr>
<td>193</td>
<td>0.616077</td>
<td>-0.710583</td>
<td>1</td>
</tr>
<tr>
<td>194</td>
<td>-0.431501</td>
<td>0.57622</td>
<td>-1</td>
</tr>
<tr>
<td>195</td>
<td>0.79046</td>
<td>0.579277</td>
<td>-1</td>
</tr>
<tr>
<td>196</td>
<td>0.487946</td>
<td>0.230446</td>
<td>-1</td>
</tr>
<tr>
<td>197</td>
<td>-0.277749</td>
<td>0.713309</td>
<td>-1</td>
</tr>
<tr>
<td>198</td>
<td>-0.543016</td>
<td>0.727165</td>
<td>-1</td>
</tr>
<tr>
<td>199</td>
<td>-0.541324</td>
<td>-0.5009</td>
<td>1</td>
</tr>
<tr>
<td>200</td>
<td>0.086819</td>
<td>0.969665</td>
<td>-1</td>
</tr>
<tr>
<td>201</td>
<td>-0.892392</td>
<td>-0.837153</td>
<td>1</td>
</tr>
<tr>
<td>202</td>
<td>0.0493484</td>
<td>-0.146397</td>
<td>1</td>
</tr>
<tr>
<td>203</td>
<td>-0.810463</td>
<td>-0.482460</td>
<td>1</td>
</tr>
<tr>
<td>204</td>
<td>0.783074</td>
<td>-0.534471</td>
<td>1</td>
</tr>
<tr>
<td>205</td>
<td>-0.7069</td>
<td>-0.749809</td>
<td>1</td>
</tr>
<tr>
<td>206</td>
<td>0.863277</td>
<td>-0.839778</td>
<td>1</td>
</tr>
<tr>
<td>207</td>
<td>-0.905432</td>
<td>-0.882565</td>
<td>1</td>
</tr>
<tr>
<td>208</td>
<td>-0.327189</td>
<td>0.829402</td>
<td>-1</td>
</tr>
<tr>
<td>209</td>
<td>-0.202795</td>
<td>-0.124434</td>
<td>1</td>
</tr>
<tr>
<td>210</td>
<td>-0.89331</td>
<td>0.674348</td>
<td>-1</td>
</tr>
<tr>
<td>211</td>
<td>0.068453</td>
<td>0.684194</td>
<td>-1</td>
</tr>
<tr>
<td>212</td>
<td>-0.387946</td>
<td>-0.204627</td>
<td>1</td>
</tr>
<tr>
<td>213</td>
<td>-0.488174</td>
<td>-0.991333</td>
<td>1</td>
</tr>
<tr>
<td>214</td>
<td>0.0511795</td>
<td>0.809064</td>
<td>-1</td>
</tr>
<tr>
<td>215</td>
<td>0.202612</td>
<td>-0.517808</td>
<td>-1</td>
</tr>
<tr>
<td>216</td>
<td>0.171117</td>
<td>-0.489731</td>
<td>1</td>
</tr>
<tr>
<td>217</td>
<td>0.368023</td>
<td>0.890561</td>
<td>-1</td>
</tr>
<tr>
<td>218</td>
<td>-0.129002</td>
<td>0.78045</td>
<td>-1</td>
</tr>
<tr>
<td>219</td>
<td>-0.985656</td>
<td>0.881954</td>
<td>-1</td>
</tr>
<tr>
<td>220</td>
<td>0.203101</td>
<td>-0.572314</td>
<td>-1</td>
</tr>
<tr>
<td>221</td>
<td>0.153156</td>
<td>-0.71516</td>
<td>1</td>
</tr>
<tr>
<td>222</td>
<td>-0.555145</td>
<td>-0.333985</td>
<td>1</td>
</tr>
<tr>
<td>223</td>
<td>-0.991455</td>
<td>-0.164159</td>
<td>1</td>
</tr>
<tr>
<td>224</td>
<td>-0.815505</td>
<td>0.319864</td>
<td>1</td>
</tr>
<tr>
<td>225</td>
<td>0.710196</td>
<td>-0.870296</td>
<td>1</td>
</tr>
<tr>
<td>226</td>
<td>0.62212</td>
<td>0.324117</td>
<td>-1</td>
</tr>
<tr>
<td>227</td>
<td>0.382977</td>
<td>0.605396</td>
<td>-1</td>
</tr>
<tr>
<td>228</td>
<td>0.0602741</td>
<td>0.372158</td>
<td>-1</td>
</tr>
<tr>
<td>229</td>
<td>-0.714469</td>
<td>0.379009</td>
<td>1</td>
</tr>
<tr>
<td>230</td>
<td>0.455794</td>
<td>0.555467</td>
<td>-1</td>
</tr>
<tr>
<td>231</td>
<td>-0.937864</td>
<td>0.737358</td>
<td>-1</td>
</tr>
<tr>
<td>232</td>
<td>0.289041</td>
<td>0.631329</td>
<td>-1</td>
</tr>
<tr>
<td>233</td>
<td>-0.829096</td>
<td>0.103977</td>
<td>1</td>
</tr>
<tr>
<td>234</td>
<td>0.89581</td>
<td>-0.882443</td>
<td>-1</td>
</tr>
<tr>
<td>235</td>
<td>-0.450056</td>
<td>-0.709647</td>
<td>1</td>
</tr>
<tr>
<td>236</td>
<td>0.963561</td>
<td>0.239967</td>
<td>-1</td>
</tr>
<tr>
<td>237</td>
<td>-0.41551</td>
<td>0.848966</td>
<td>-1</td>
</tr>
<tr>
<td>238</td>
<td>-0.264931</td>
<td>0.38908</td>
<td>-1</td>
</tr>
<tr>
<td>239</td>
<td>-0.562732</td>
<td>-0.688162</td>
<td>1</td>
</tr>
<tr>
<td>240</td>
<td>-0.518096</td>
<td>0.4628785</td>
<td>1</td>
</tr>
<tr>
<td>241</td>
<td>0.804859</td>
<td>-0.707164</td>
<td>1</td>
</tr>
<tr>
<td>242</td>
<td>0.805292</td>
<td>-0.11655</td>
<td>1</td>
</tr>
<tr>
<td>243</td>
<td>-0.839778</td>
<td>0.564196</td>
<td>1</td>
</tr>
<tr>
<td>244</td>
<td>-0.656423</td>
<td>0.94879</td>
<td>-1</td>
</tr>
<tr>
<td>245</td>
<td>0.551744</td>
<td>0.740776</td>
<td>-1</td>
</tr>
<tr>
<td>246</td>
<td>-0.578722</td>
<td>-0.9067841</td>
<td>1</td>
</tr>
<tr>
<td>247</td>
<td>-0.592492</td>
<td>0.503267</td>
<td>1</td>
</tr>
<tr>
<td>248</td>
<td>-0.771905</td>
<td>-0.190588</td>
<td>-1</td>
</tr>
<tr>
<td>249</td>
<td>-0.377728</td>
<td>0.985229</td>
<td>-1</td>
</tr>
</tbody>
</table>
#include<stdio.h>
#include<fstream.h>
#include<iostream.h>
#include<iomanip.h>
#include<conio.h>
#include<iostream.h>
#include<assert.h>
#include"adaline.h"
#include"common.h"

void main(void)
{
 srand(1);
 int i;

 // Load Training Set
 Pattern *data[250];
 ifstream infile("OTBTrnSet.txt");

 if (infile.fail())
 {
 cout << "Unable to open pattern file..." << endl;
 exit(0);
 }

 for (i=0; i<250; i++)
 {
 data[i]=new Pattern(2,1,infile);
 data[i]->Print();
 }
 infile.close();

 // Create ADALINE
 Base_Node *Node[4];
 Base_Link *Link[3];

 Node[0]=new Input_Node; // Create Nodes for Network
 Node[1]=new Input_Node;
 Node[2]=new Bias_Node;
 Node[3]=new ADALINE_Nnode(0.45); // ADALINE node with learning rate of 0.45

 Link[0]=new ADALINE_Link; // Create Links for Network
 Link[1]=new ADALINE_Link;
 Link[2]=new ADALINE_Link;

 Connect(Node[0],Node[3],Link[0]); // Connect Network
 Connect(Node[1],Node[3],Link[1]);
 Connect(Node[2],Node[3],Link[2]);

 // Train ADALINE
 int iteration=0;
int good=0;
while (good<250) // Train until all patterns are good
{
 good=0;
 for (int i=0; i<250; i++)
 {
 Node[0]->Set_Value(data[i]->In(0)); // Set Input Node Values
 Node[1]->Set_Value(data[i]->In(1));
 Node[3]->Run(); // Run ADALINE Node
 if (data[i]->Out(0)!=Node[3]->Get_Value()) // If ADALINE
 { // produced an error
 Node[3]->Learn(); // error, then
 break; // perform
 } // learning funct.
 else good++; // Continue loop
 }
 cout << iteration << ". " << good << "/250" << endl;
 iteration++;
}

// Save ADALINE
ofstream outfile("adaline1.net");
for (i=0; i<4; i++) // Save Nodes
 Node[i]->Save(outfile);
for (i=0; i<3; i++) // Save Links
 Link[i]->Save(outfile);
outfile.close();
for (i=0; i<4; i++) // Destroy Network
 delete Node[i];
for (i=0; i<3; i++)
 delete Link[i];

// Create ADALINE
Node[0]=new Input_Node; // Create Nodes
Node[1]=new Input_Node;
Node[2]=new Bias_NODE;
Node[3]=new ADALINE_NODE;
Link[0]=new ADALINE_LINK; // Create Links
Link[1]=new ADALINE_LINK;
Link[2]=new ADALINE_LINK;

Connect(Node[0],Node[3], Link[0]); // Connect Network
Connect(Node[1],Node[3], Link[1]);
Connect(Node[2],Node[3], Link[2]);

// Load ADALINE
infile.open("adaline1.net");
for (i=0; i<4; i++) // Load Nodes
Node[i]->Load(infile);
for (i=0; i<3; i++) // Load Links
 Link[i]->Load(infile);
infile.close();

// Run ADALINE

char As Desired;
for (i=0; i<250; i++)
{
 Node[0]->Set_Value(data[i]->In(0)); // Set Input Node values
 Node[1]->Set_Value(data[i]->In(1));

 Node[3]->Run(); // Run ADALINE node

 As Desired="Y";
 if (Node[3]->Get_Value()==data[i]->Out(0))
 cout<<"Pattern: "<<setw(3)<<i<<" Input: ("<<setw(10)
 « data[i]->In(0) «<<setw(10)<<" Actual:"<<setw(10)
 « Node[3]->Get_Value() ""
 <<setw(3) « data[i]->Out(0) «" Desired(?)": "<<setw(4)<<As Desired<<endl;
}

// Destroy Network
for (i=0; i<4; i++)
 delete Node[i];
for (i=0; i<3; i++)
 delete Link[i];
// File adaline1.net which contains the training results saved, and to be used for loading the
// data of nodes and links needed for adaline network to run to solve the Open-To-Buy example

<table>
<thead>
<tr>
<th>ID</th>
<th>In1</th>
<th>In2</th>
<th>Out1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-0.377728</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0.45</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>-3.533626522296</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-8.12242215101353</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2.08660847804193</td>
<td>2</td>
</tr>
</tbody>
</table>

// File OTB.out contains the outputs of presenting training set to ADALINE.
// the number of iterations the training set has been presented to the
// ADALINE network during the training, and the running results for
// the Open-To-Buy example

<table>
<thead>
<tr>
<th>ID</th>
<th>In1</th>
<th>In2</th>
<th>Out1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.997497</td>
<td>0.127171</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>-0.613192</td>
<td>0.627481</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>0.170091</td>
<td>-0.0402539</td>
<td>Out: 1</td>
</tr>
<tr>
<td>3</td>
<td>-0.294127</td>
<td>0.791925</td>
<td>Out: -1</td>
</tr>
<tr>
<td>4</td>
<td>0.645168</td>
<td>0.493231</td>
<td>Out: -1</td>
</tr>
<tr>
<td>5</td>
<td>-0.631784</td>
<td>0.717887</td>
<td>Out: -1</td>
</tr>
<tr>
<td>6</td>
<td>0.431003</td>
<td>0.0270699</td>
<td>Out: 1</td>
</tr>
<tr>
<td>7</td>
<td>-0.392613</td>
<td>-0.970031</td>
<td>Out: 1</td>
</tr>
<tr>
<td>8</td>
<td>-0.817194</td>
<td>-0.271096</td>
<td>Out: 1</td>
</tr>
<tr>
<td>9</td>
<td>-0.705374</td>
<td>-0.668203</td>
<td>Out: 1</td>
</tr>
<tr>
<td>10</td>
<td>0.97705</td>
<td>-0.108615</td>
<td>Out: -1</td>
</tr>
<tr>
<td>11</td>
<td>-0.761834</td>
<td>-0.990861</td>
<td>Out: 1</td>
</tr>
<tr>
<td>12</td>
<td>-0.982177</td>
<td>-0.24424</td>
<td>Out: 1</td>
</tr>
<tr>
<td>13</td>
<td>0.0633259</td>
<td>0.142369</td>
<td>Out: 1</td>
</tr>
<tr>
<td>14</td>
<td>0.203528</td>
<td>0.214331</td>
<td>Out: -1</td>
</tr>
<tr>
<td>15</td>
<td>-0.697331</td>
<td>0.32689</td>
<td>Out: -1</td>
</tr>
<tr>
<td>16</td>
<td>-0.596222</td>
<td>-0.295755</td>
<td>Out: 1</td>
</tr>
<tr>
<td>17</td>
<td>-0.885922</td>
<td>0.215369</td>
<td>Out: 1</td>
</tr>
<tr>
<td>18</td>
<td>0.566637</td>
<td>0.605213</td>
<td>Out: -1</td>
</tr>
<tr>
<td>19</td>
<td>0.0397665</td>
<td>-0.3961</td>
<td>Out: 1</td>
</tr>
<tr>
<td>20</td>
<td>0.751946</td>
<td>0.453152</td>
<td>Out: -1</td>
</tr>
<tr>
<td>21</td>
<td>0.913802</td>
<td>0.851436</td>
<td>Out: -1</td>
</tr>
<tr>
<td>22</td>
<td>0.0787072</td>
<td>-0.715323</td>
<td>Out: 1</td>
</tr>
<tr>
<td>23</td>
<td>-0.0759385</td>
<td>0.529344</td>
<td>Out: -1</td>
</tr>
<tr>
<td>24</td>
<td>0.724479</td>
<td>0.580798</td>
<td>Out: 1</td>
</tr>
<tr>
<td>25</td>
<td>0.559533</td>
<td>0.687567</td>
<td>Out: -1</td>
</tr>
<tr>
<td>26</td>
<td>0.993591</td>
<td>0.999939</td>
<td>Out: -1</td>
</tr>
<tr>
<td>27</td>
<td>0.222999</td>
<td>0.215125</td>
<td>Out: 1</td>
</tr>
<tr>
<td>28</td>
<td>-0.667974</td>
<td>-0.495438</td>
<td>Out: 1</td>
</tr>
<tr>
<td>29</td>
<td>0.680288</td>
<td>-0.952513</td>
<td>Out: 1</td>
</tr>
<tr>
<td>30</td>
<td>-0.248268</td>
<td>-0.814753</td>
<td>Out: 1</td>
</tr>
<tr>
<td>31</td>
<td>0.154411</td>
<td>-0.88757</td>
<td>Out: 1</td>
</tr>
<tr>
<td>32</td>
<td>-0.982421</td>
<td>0.83758</td>
<td>Out: -1</td>
</tr>
<tr>
<td>33</td>
<td>-0.448225</td>
<td>-0.454207</td>
<td>Out: 1</td>
</tr>
<tr>
<td>34</td>
<td>0.375817</td>
<td>0.382366</td>
<td>Out: -1</td>
</tr>
<tr>
<td>35</td>
<td>0.675222</td>
<td>0.452986</td>
<td>Out: -1</td>
</tr>
<tr>
<td>36</td>
<td>-0.0301218</td>
<td>-0.589282</td>
<td>Out: 1</td>
</tr>
<tr>
<td>37</td>
<td>0.487472</td>
<td>-0.0630818</td>
<td>Out: 1</td>
</tr>
<tr>
<td>38</td>
<td>-0.0840785</td>
<td>0.898312</td>
<td>Out: -1</td>
</tr>
<tr>
<td>39</td>
<td>0.488876</td>
<td>-0.783441</td>
<td>Out: 1</td>
</tr>
<tr>
<td>40</td>
<td>0.190096</td>
<td>-0.22953</td>
<td>Out: 1</td>
</tr>
<tr>
<td>41</td>
<td>0.470016</td>
<td>0.237933</td>
<td>Out: -1</td>
</tr>
<tr>
<td>42</td>
<td>0.14481</td>
<td>-0.277322</td>
<td>Out: 1</td>
</tr>
<tr>
<td>43</td>
<td>-0.59889</td>
<td>-0.549791</td>
<td>Out: 1</td>
</tr>
<tr>
<td>44</td>
<td>-0.149993</td>
<td>0.409762</td>
<td>Out: -1</td>
</tr>
<tr>
<td>45</td>
<td>0.0342112</td>
<td>0.97998</td>
<td>Out: -1</td>
</tr>
<tr>
<td>46</td>
<td>0.503098</td>
<td>-0.308678</td>
<td>Out: 1</td>
</tr>
<tr>
<td>47</td>
<td>-0.667078</td>
<td>0.314615</td>
<td>Out: 1</td>
</tr>
<tr>
<td>48</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>49</td>
<td>0.399516</td>
<td>0.0096133</td>
<td>Out: 1</td>
</tr>
<tr>
<td>50</td>
<td>0.705008</td>
<td>0.899167</td>
<td>Out: -1</td>
</tr>
<tr>
<td>51</td>
<td>-0.716849</td>
<td>0.810236</td>
<td>Out: -1</td>
</tr>
<tr>
<td>52</td>
<td>0.385788</td>
<td>-0.391962</td>
<td>Out: 1</td>
</tr>
<tr>
<td>53</td>
<td>-0.146886</td>
<td>-0.859249</td>
<td>Out: 1</td>
</tr>
<tr>
<td>54</td>
<td>0.933226</td>
<td>0.366375</td>
<td>Out: -1</td>
</tr>
<tr>
<td>55</td>
<td>-0.693533</td>
<td>0.754509</td>
<td>Out: -1</td>
</tr>
<tr>
<td>56</td>
<td>0.643361</td>
<td>0.164098</td>
<td>Out: -1</td>
</tr>
<tr>
<td>57</td>
<td>-0.617298</td>
<td>-0.444215</td>
<td>Out: 1</td>
</tr>
<tr>
<td>58</td>
<td>0.634838</td>
<td>-0.049705</td>
<td>Out: 1</td>
</tr>
<tr>
<td>59</td>
<td>-0.688894</td>
<td>0.00784326</td>
<td>Out: 1</td>
</tr>
<tr>
<td>60</td>
<td>0.464034</td>
<td>-0.188618</td>
<td>Out: 1</td>
</tr>
<tr>
<td>Pattern</td>
<td>Input</td>
<td>Actual</td>
<td>Desired</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>229</td>
<td>(-0.714669, 0.379009)</td>
<td>1</td>
<td>y</td>
</tr>
<tr>
<td>230</td>
<td>(0.465794, 0.555467)</td>
<td>-1</td>
<td>y</td>
</tr>
<tr>
<td>231</td>
<td>(-0.937864, 0.737358)</td>
<td>-1</td>
<td>y</td>
</tr>
<tr>
<td>232</td>
<td>(0.289041, 0.413129)</td>
<td>-1</td>
<td>y</td>
</tr>
<tr>
<td>233</td>
<td>(-0.829096, 0.103977)</td>
<td>1</td>
<td>y</td>
</tr>
<tr>
<td>234</td>
<td>(0.89521, -0.882443)</td>
<td>1</td>
<td>y</td>
</tr>
<tr>
<td>235</td>
<td>(-0.450056, -0.709647)</td>
<td>1</td>
<td>y</td>
</tr>
<tr>
<td>236</td>
<td>(0.943561, 0.239967)</td>
<td>-1</td>
<td>y</td>
</tr>
<tr>
<td>237</td>
<td>(-0.41551, 0.846966)</td>
<td>-1</td>
<td>y</td>
</tr>
<tr>
<td>238</td>
<td>(-0.264931, 0.38908)</td>
<td>-1</td>
<td>y</td>
</tr>
<tr>
<td>239</td>
<td>(-0.562731, -0.688162)</td>
<td>1</td>
<td>y</td>
</tr>
<tr>
<td>240</td>
<td>(-0.518906, 0.0428785)</td>
<td>1</td>
<td>y</td>
</tr>
<tr>
<td>241</td>
<td>(0.804659, -0.787164)</td>
<td>1</td>
<td>y</td>
</tr>
<tr>
<td>242</td>
<td>(0.805292, -0.11655)</td>
<td>1</td>
<td>y</td>
</tr>
<tr>
<td>243</td>
<td>(-0.439778, 0.564196)</td>
<td>1</td>
<td>y</td>
</tr>
<tr>
<td>244</td>
<td>(-0.656423, 0.96879)</td>
<td>-1</td>
<td>y</td>
</tr>
<tr>
<td>245</td>
<td>(0.551744, 0.740776)</td>
<td>-1</td>
<td>y</td>
</tr>
<tr>
<td>246</td>
<td>(-0.578722, -0.0867641)</td>
<td>1</td>
<td>y</td>
</tr>
<tr>
<td>247</td>
<td>(-0.992492, 0.501267)</td>
<td>1</td>
<td>y</td>
</tr>
<tr>
<td>248</td>
<td>(-0.771905, -0.190588)</td>
<td>1</td>
<td>y</td>
</tr>
<tr>
<td>249</td>
<td>(-0.377728, 0.985229)</td>
<td>-1</td>
<td>y</td>
</tr>
</tbody>
</table>
/* file backprop.h - Backprop base classes */

#ifndef BACKPROP
#define BACKPROP

#include "base.h"
#include "common.h"
#define DELTA 1
#define MOMENTUM 2

class BP_Node : public Feed_Forward_Node
{
protected:
virtual double Transfer_Function(double value);

public:
BP_Node(int v_size=1, int e_size=0); // Default of 1 value set member (NODE_VALUE)
virtual char *Get_Name(void);
};

class BP_Link : public Base_Link
{
public:
BP_Link(int size=2); // default of 2 link value set members (WEIGHT, DELTA)
virtual void Save(ofstream &outfile);
virtual void Load(ifstream &infile);
virtual char *Get_Name(void);
virtual void Update_Weight(double new_val);
};

class BP_Output_Node : public BP_Node
{
public:
BP_Output_Node(double lr, double mt, int v_size=3, int e_size=1);
 // default of 3 value set members (NODE_VALUE, LEARNING_RATE, MOMENTUM)
 // default of 1 error set member (NODE_ERROR)
protected:
virtual double Compute_Error(int mode=0);
virtual void Learn(int mode=0);
virtual char *Get_Name(void);
};

class BP_Middle_Node : public BP_Output_Node
{
public:
BP_Middle_Node(double lr, double mt, int v_size=3, int e_size=1);
 // default of 3 value set members (NODE_VALUE, LEARNING_RATE, MOMENTUM)
 // default of 1 error set member (NODE_ERROR)

virtual char *Get_Name(void);
protected:
virtual double Compute_Error(int mode=0);
};
double BP_Node::Transfer_Function(double value)
{
 return 1.0/(1.0+exp(-value)); // Sigmoid Function
}

BP_Node::BP_Node(int v_size, int e_size): Feed_Forward_Node(v_size,e_size) {};

char *BP_Node::Get_Name(void)
{
 static char name[]="BP_NODE";
 return name;
}

BP_Link::BP_Link(int size): Base_Link(size)
{
 value[WEIGHT]=Random(-1.0,1.0); // Weight random value between -1.0 and 1.0
 value[DELTA]=0.0; // Initialize previous change to 0.0
}

void BP_Link::Save(ofstream &outfile)
{
 outfile << setw(4) << id << " " << setprecision(18)
 << value[WEIGHT] << " " << setw(4)
 << In_Node()->Get_ID() << " "
 << setw(4) << Out_Node()->Get_ID() << endl;
}

void BP_Link::Load(ifstream &infile)
{
 infile >> id;
 infile >> value[WEIGHT];
 int dummy;
 infile >> dummy; // Skip over connecting node IDs
 infile >> dummy;
}

char *BP_Link::Get_Name(void)
{
 static char name[]="BP_LINK";
 return name;
}

void BP_Link::Update_Weight(double new_val)
{
 double momentum=Out_Node()->Get_Value(MOMENTUM);
 value[WEIGHT]+=new_val+(momentum*value[DELTA]); // Update weight with current change
 // and percent of last change
 value[DELTA]=new_val; // Store current change for next time
}

BP_Output_Node::BP_Output_Node(double lr, double mt, int v_size, int e_size):
 BP_Node(v_size,e_size)
{
 value[LEARNING_RATE]=lr;
 value[MOMENTUM]=mt;
}
double BP_Output_Node::Compute_Error(int mode)
{
 return value[NODE_VALUE]*(1.0-value[NODE_VALUE])* // Compute output node error
 (error[NODE_ERROR]-value[NODE_VALUE]);
}

void BP_Output_Node::Learn(int mode)
{
 double delta;
 error[NODE_ERROR]=Compute_Error();

 in_links.Reset_To_Head();
 Base_Link *link;
 int cnt=in_links.Count();

 for (int i=0; i<cnt; i++) // For each input link
 {
 link=in_links.Curr();
 delta=value[LEARNING_RATE]*error[NODE_ERROR]*link->In_Value(); // Delta Rule
 link->Update.Weight(delta);
 in_links.Next();
 }
}

char *BP_Output_Node::Get_Name(void)
{
 static char name[]="BP_OUTPUT_NODE";
 return name;
}

BP_Middle_Node::BP_Middle_Node(double lr, double mt, int v_size, int e_size)
{
 BP_Output_Node(lr,mt,v_size, e_size){};
}

char *BP_Middle_Node::Get_Name(void)
{
 static char name[]="BP_MIDDLE_NODE";
 return name;
}

double BP_Middle_Node::Compute_Error(int mode)
{
 double total=0;
 out_links.Reset_To_Head();
 int cnt=out_links.Count();
 for (int i=0; i<cnt; i++) // For each of the node’s output links
 {
 total+=out_links.Curr()->Weighted_Out_Error();
 out_links.Next();
 }
 return value[NODE_VALUE]*(1.0-value[NODE_VALUE])*total;
}

#ifndef
#include <stdio.h>
#include <fstream.h>
#include <iostream.h>
#include <stdlib.h>
#include <conio.h>
#include <assert.h>
#include <time.h>
#include <stdlib.h>
#include "backprop.h"
#include "common.h"
#include "base.h"
#include "pattern.h"

void main(void)
{
 srand(1);

 // Create Training Set - XOR problem
 Pattern *data[4];
 // sizes id input output
 // ----- -- ----- -----
 data[0]=new Pattern(2, 1.0.0.0. 0.0.);
 data[1]=new Pattern(2, 1.0.1.0. 1.0.);
 data[2]=new Pattern(2, 1.0.0.0. 1.0.);
 data[3]=new Pattern(2, 1.0.1.0. 0.0.);

 // Create Backprop Network
 Base_Node *Node[6];
 Base_Link *Link[9];

 Node[0]=new Input_Node; // Input layer nodes
 Node[1]=new Input_Node;
 Node[2]=new BP_Middle_Node(0.4, 0.9); // Middle layer nodes
 Node[3]=new BP_Middle_Node(0.4, 0.9); // Learning rate 0.4, Momentum 0.9
 Node[4]=new BP_Middle_Node(0.4, 0.9);
 Node[5]=new BP_Output_Node(0.4, 0.9); // Output layer node

 for (int i=0; i<9; i++) // Create Links for Network
 Link[i]=new BP_Link();

 int curr=0; // Connect Network with links
 for (i=2; i<=4; i++)
 for (int j=0; j<=1; j++)
 Connect(Node[j].Node[i].Link[curr++]);

 for (int j=2; j<=4; j++)
 Connect(Node[j].Node[5].Link[curr++]);

 // Train Backprop Network
 long iteration=0;

}
int good=0;
double tolerance=0.5;
double total_error;

while (good<4) // Train until all patterns are correct
{
 good=0;
total_error=0.0;

 for (int i=0; i<4; i++)
 {
 Node[0]->Set_Value(data[i]->In(0)); // Set Input Node values
 Node[1]->Set_Value(data[i]->In(1));

 for (int j=2; j<=5; j++) // Forward Pass
 Node[j]->Run();

 Node[5]->Set_Error(data[i]->Out(0)); // Set Error Values

 for (j=5; j>=2; j--) // Backward Pass
 Node[j]->Learn();

 if (fabs(Node[5]->Get_Value()-data[i]->Out(0))<tolerance)
 good++;

 total_error+=fabs(Node[5]->Get_Error());
 }

 // Print status every 1000 iterations
 if (iteration%1000==0) cout << iteration << ".
 " << good << "/4"
 ". Error: " << setprecision(15) << total_error << endl;
 iteration++;
}

// Save Backprop
ofstream outfile("XOR-BP.net");
for (i=0; i<6; i++) // Save Nodes
 Node[i]->Save(outfile);

for (i=0; i<9; i++) // Save Links
 Link[i]->Save(outfile);

outfile.close();

// Destroy Network
for (i=0; i<6; i++)
 delete Node[i];
for (i=0; i<9; i++)
delete Link[i];

// Create Backprop
Node[0]=new Input_Node;
Node[1]=new Input_Node;
Node[2]=new BP_Node; // Only BP_Nodes are required
Node[3]=new BP_Node;
Node[4]=new BP_Node; // since there will be no learning
Node[5]=new BP_Node;

for (i=0; i<9; i++) // Create Links for Network
 Link[i]=new BP_Link();

curr=0; // Connect Network
for (i=2; i<=4; i++)
 for (int j=0; j<=1; j++)
 Connect(Node[j],Node[i].Link[curr++]);

for (j=2; j<=4; j++)
 Connect(Node[j],Node[5].Link[curr++]);

// Load Backprop
ifstream infile("XOR-BP.net");
for (i=0; i<6; i++)
 Node[i]->Load(infile);

for (i=0; i<9; i++)
 Link[i]->Load(infile);

infile.close();

// Run Backprop Network
for (i=0; i<4; i++)
{
 Node[0]->Set_Value(data[i]->In(0)); // Set Input Node Values
 Node[1]->Set_Value(data[i]->In(1));

 for (int j=2; j<=5; j++) // Forward Pass
 Node[j]->Run();

double out=Node[5]->Get_Value(); // Get output layer's output

 cout << "Pattern: " << setw(3) << i << " Input: ("
 << data[i]->In(0) << ","
 << data[i]->In(1)
 << ") Backprop: (" << out
 << ") Actual: (" << data[i]->Out(0) << ")" << endl;
}

// Destroy Network
for (i=0; i<6; i++)
 delete Node[i];
for (i=0; i<9; i++)
 delete Link[i];
}
// File "XOR-BP.net" contains the data for the BP network Nodes and Links for solving
// XOR problem with Backpropagation neural network

//**
1 1 1
1 0 0
1 1 1
1 0 0
2 6.02710922411746e-005 0.4 0.9
1 0.000137123827712989
3 0.0001110551528329315 0.4 0.9
1 -6.8406179162355e-005
4 0.00011163761027813 0.4 0.9
1 -6.8695496595081e-005
5 0.4999999968422045 0.4 0.9
1 -0.124999992105511
0 -4.89288599033693 0 2
1 -4.82361066015608 1 2
2 -11.309592798329 0 3
3 2.2041328978632 1 3
4 2.19493896226648 0 4
5 -11.295106262584 1 4
6 -18.202039667836 2 5
7 4.928434698383 3 5
8 4.92329928025148 4 5

//**
// File XOR-BP.out contains the training and running results output for XOR problem

//**
0. 2/4 Error: 0.463308447694839
1000. 3/4 Error: 0.170356930544738
2000. 3/4 Error: 0.138043219435865
3000. 3/4 Error: 0.132362087638176
4000. 3/4 Error: 0.130080369249295
5000. 3/4 Error: 0.128861501475946
6000. 3/4 Error: 0.128106497769808
7000. 3/4 Error: 0.127594143905471
8000. 3/4 Error: 0.127224204503693
9000. 3/4 Error: 0.126944806644006
10000. 3/4 Error: 0.126726461653785
11000. 3/4 Error: 0.126551187089369
12000. 3/4 Error: 0.126407402081706
13000. 3/4 Error: 0.12628731482148
14000. 3/4 Error: 0.126185490654964
15000. 3/4 Error: 0.12609802288945
16000. 3/4 Error: 0.126022062029402
17000. 3/4 Error: 0.125955323486466
18000. 3/4 Error: 0.125896233126942
19000. 3/4 Error: 0.125843428941118
20000. 3/4 Error: 0.125795840841505
21000. 3/4 Error: 0.125752580711317
22000. 3/4 Error: 0.12571288866616
23000. 3/4 Error: 0.12567604753797
24000. 3/4 Error: 0.125641378331542
25000. 3/4 Error: 0.125602084024552

Pattern: 0 Input: (0,0) Backprop: (0.0151400955259262) Actual: (0)
Pattern: 1 Input: (0,1) Backprop: (0.986527917178414) Actual: (1)
Pattern: 2 Input: (1,0) Backprop: (0.986540531239183) Actual: (1)
Pattern: 3 Input: (1,1) Backprop: (0.499999930865445) Actual: (0)
// File: bit_vec.h used for training recurrent network using GA

#ifndef bit_vec_h
#define bit_vec_h

#include <iostream.h>

const BITS_PER_INT = 8 * sizeof(unsigned int);

class bit_vector {
 public:
 bit_vector(int num_bits = 1);
 ~bit_vector();
 unsigned int operator[](int bit_index);
 int number_of_on_bits();
 void operator+=(int bit_to_turn_on);
 void operator-=(int bit_to_turn_off);
 int operator==(bit_vector &other);
 void set_to_zero();
 void set_to_one();
 int size()
 {
 return number_of_bits;
 }
 }

 protected:
 unsigned int * data;
 int number_of_bits;
 int number_of_ints;

};
#endif
File: bit_vect.cpp

```cpp
#include "bit_vect.h"

bit_vector::bit_vector(int num_bits)
{
    number_of_ints = (num_bits + (BITS_PER_INT - 1)) / BITS_PER_INT;
    number_of_bits = num_bits;
    data = new unsigned int[number_of_ints];
    set_to_zero();
}

bit_vector::~bit_vector()
{
    delete [] data;
}

unsigned int bit_vector::operator[](int bit_index)
{
    return ((data[bit_index / BITS_PER_INT] &
             (1 << (bit_index % BITS_PER_INT)))
           != 0);
}

int bit_vector::number_of_on_bits()
{
    int ret_val = 0;
    for (int i=0; i<number_of_bits; i++)
        if (data[i / BITS_PER_INT] & (1 << (i % BITS_PER_INT)))
            ret_val++;
    return ret_val;
}

extern "C" { void exit(int); }

void bit_vector::operator+=(int bit_to_turn_on)
{
    #ifndef FAST
    if (bit_to_turn_on < 0 || bit_to_turn_on >= number_of_bits)
    {
        cerr << "error: bit_to_turn_on= " << bit_to_turn_on << "\n";
        exit(1);
    }
    #endif
    data[bit_to_turn_on / BITS_PER_INT] |= (1 << (bit_to_turn_on % BITS_PER_INT));
}

void bit_vector::operator-=(int bit_to_turn_off)
{
```
#ifndef FAST
 if (bit_to_turn_off < 0 || bit_to_turn_off >= number_of_bits)
 {
 cerr << "error: bit_to_turn_off=" << bit_to_turn_off << "\n";
 exit(1);
 }
#endif
 data[bit_to_turn_off / BITS_PER_INT] &=
 (~(1 << (bit_to_turn_off % BITS_PER_INT)));
}

int bit_vector::operator==(bit_vector &other)
{
 #ifndef FAST
 int size_other = other.size();
 if (number_of_bits != size_other)
 {
 cerr << "bit_vector::operator== size mismatch\n";
 exit(1);
 }
 #endif
 for (int i=0; i<number_of_bits; i++)
 {
 if ((*this)[i] != other[i])
 {
 return 0;
 }
 }
 return 1;
}

void bit_vector::set_to_zero()
{
 for (int i=0; i<number_of_ints; i++)
 data[i] = 0;
}

void bit_vector::set_to_one()
{
 for (int i=0; i<number_of_ints; i++)
 data[i] = 1;
}
#ifndef randseq_h
#define randseq_h

#define randomize() srand((unsigned)time(NULL))
#define random(num) (rand()%num)

class RandomSequence
{
 public:
 RandomSequence(float randomSeed = 10.0);
 int rndINT(int low, int high);
 double rndFP(double low, double high);

 private:
 void next_random_sequence();
 double rand_util();
 float randomseed;
 int random_counter;
 int rncalcflag;
 double oldrand[55];
};

#endif

//***
// File: randseq.cpp utility class to generate random integers and floating point numbers
//***
#define USE_LIBRARY 1

#include "randseq.h"
#include <math.h>
#include<time.h>
#define random(num) (rand()%num)
#define randomize() srand((unsigned)time(NULL))

#if defined USE_LIBRARY
#include <stdlib.h>
#endif

static float initialSeed = 0.7123152;

RandomSequence::RandomSequence(float randomSeed)
{
 if (randomSeed < 0.0) randomSeed = -randomSeed;
 if (randomSeed > 0.999) randomSeed *= 0.1;
 if (randomSeed > 0.999) randomSeed *= 0.1;
if (randomSeed > 0.999 || randomSeed < 0.01)
{
 initialSeed *= 0.9842134;
 randomSeed = initialSeed;
 if (initialSeed < 0.1) initialSeed *= 0.99991;
}

#ifndef USE_LIBRARY
 randomize();
 float rr = rand();
 rr = rr / 70000.0;
 initialSeed = rr;
#endif

int ran_index, ii;
double new_random, prev_random;

oldrand[54] = randomSeed;
for (int k=0; k<54; k++) oldrand[k] = 0.1 + (float)k * 0.016;
new_random = 0.000000001;
prev_random = randomSeed;
for(ran_index = 1; ran_index <= 540; ran_index++)
{
 ii = (21*ran_index)%54;
 oldrand[ii] = new_random;
 new_random = prev_random-new_random;
 if(new_random<0.0) new_random = new_random + 1.0;
 prev_random = oldrand[ii];
}

next_random_sequence();
ext_random_sequence();
ext_random_sequence();
ext_random_sequence();

random_counter = 0;

}

void RandomSequence::next_random_sequence()
/* Create next batch of 55 random numbers */
{
 int ran_index;
 double new_random;

 for(ran_index = 0; ran_index < 24; ran_index++)
 {
 new_random = oldrand[ran_index] - oldrand[ran_index+31];
 if(new_random < 0.0) new_random = new_random + 1.0;
 oldrand[ran_index] = new_random;
 }

 for(ran_index = 24; ran_index < 55; ran_index++)
 {
 new_random = oldrand[ran_index] - oldrand[ran_index-24];
 if(new_random < 0.0) new_random = new_random + 1.0;
 oldrand[ran_index] = new_random;
 }
}
int RandomSequence::rndINT(int low, int high)
{
 int ret_val;
 if(low >= high) {
 ret_val = low;
 } else {
 ret_val = (int)((rand_util() * (high - low + 1)) + low);
 if(ret_val > high) ret_val = high;
 }
 return(ret_val);
}

double RandomSequence::rndFP(double low, double high)
{
 return (rand_util() * (high - low)) + low;
}

double RandomSequence::rand_util()
{
#if !defined USE_LIBRARY
 random_counter++;
 if(random_counter >= 55)
 {
 random_counter = 1;
 next_random_sequence();
 }
 return oldrand[random_counter];
#else
 return ((float)(random(10000))) * 0.0001;
#endif
}

/***/
// File: genetic.cpp program for solving XOR problem by using
// genetic algorithm to train recurrent neural network
/***/
#include "bit_vect.h"
#include "randseq.h"
#include <math.h>
#include <iostream.h>

const float MIN_VAL = -10.0;
const float MAX_VAL = 10.0;

const int NUM_INPUTS = 2;
const int NUM_HIDDEN = 6;
const int NUM_OUTPUTS = 1;
const int POPULATION = 500;
//define USE_I_TO_O
#define USE_H_TO_H
#define USE_O_TO_H

float sigmoid(float x)
{
 return (1.0 / (1.0 + exp(-x))) - 0.5;
}

//geneic.recurrent_network class
//------------------------------

class generic.recurrent_network
{
 public:
 generic.recurrent_network(int bits_per_value);
 ~generic.recurrent_network();
 float fitness(); // for weights copied to float weight arrays
 float train(int number_of_generations); // return best fitness
 void copy_bit_weights_to_floats(int population_index);
 float solve();

 private:
 int bit_size;
 int int_range;
 int num_bits_per_chromosome;
 bit_vector **population;
 // float storage for weights (a chromosome with a specified
 // population index can be copied into these arrays to make
 // writing the fitness() function easier):
 float i_to_h[NUM_INPUTS][NUM_HIDDEN];
 #ifdef USE_I_TO_O
 float i_to_o[NUM_INPUTS][NUM_OUTPUTS];
 #endif
 #ifdef USE_H_TO_H
 float h_to_h[NUM_HIDDEN][NUM_HIDDEN];
 float hidden_sums[NUM_HIDDEN];
 #endif
 #ifdef USE_O_TO_H
 float o_to_h[NUM_OUTPUTS][NUM_HIDDEN];
 #endif
 float h_to_o[NUM_HIDDEN][NUM_OUTPUTS];

 float inputs[NUM_INPUTS];
 float hidden[NUM_HIDDEN];
 float outputs[NUM_OUTPUTS];

 void propagate();

 float *fitnesses;

 void initialize_population();
 void sort_by_fitness();

 RandomSequence ran_seq;
};

static int powers_of_two[] = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768};

genetic_recurrent_network::genetic_recurrent_network(int bits_per_value)
{
 bit_size = bits_per_value;
 int_range = powers_of_two[bit_size];
 population = new bit_vector*[POPULATION];
 num_bits_per_chromosome = bit_size*(NUM_INPUTS*NUM_HIDDEN + NUM_HIDDEN*NUM_HIDDEN)
 #ifdef USE_H_TO_H
 + NUM_HIDDEN*NUM_HIDDEN
 #endif
 #ifdef USE_I_TO_O
 + NUM_INPUTS*NUM_OUTPUTS
 #endif
 #ifdef USE_O_TO_H
 + NUM_OUTPUTS*NUM_HIDDEN
 #endif
 + NUM_HIDDEN*NUM_OUTPUTS);
 for (int i=0; i<POPULATION; i++)
 population[i] = new bit_vector(num_bits_per_chromosome);
 fitnesses = new float[POPULATION];

 initialize_population();
 for (i=0; i<POPULATION; i++)
 {
 copy_bit_weights_to_floats(i);
 fitnesses[i] = fitness();
 }
 sort_by_fitness();
}

genetic_recurrent_network::~genetic_recurrent_network()
{
 delete [] population;
 delete [] fitnesses;
}

// This function converts a specified chromosome (bit vector) in the population to the floating point weights.
void genetic_recurrent_network::copy_bit_weights_to_floats(int population_index)
{
 bit_vector*b = population[population_index];
 int start_bit = 0;
 int i, j, k, val;
 float f_val;

 // input to hidden weights:
 for (i=0; i<NUM_INPUTS; i++)
 {
for (j=0; j<NUM_HIDDEN; j++)
{
 val = 0;
 for (k=0; k<bit_size; k++)
 if ((*b)[k+start_bit])
 val += powers_of_two[bit_size - k - 1];
 f_val = val;
 f_val = (f_val / ((float)int_range))
 * (MAX_VAL - MIN_VAL) + MIN_VAL;
 start_bit += bit_size;
 i_to_h[i][j] = f_val;
}

#endif USE_I_TO_O

// input to output weights:
for (i=0; i<NUM_INPUTS; i++)
{
 for (j=0; j<NUM_OUTPUTS; j++)
 {
 val = 0;
 for (k=0; k<bit_size; k++)
 if ((*b)[k+start_bit])
 val += powers_of_two[bit_size - k - 1];
 f_val = val;
 f_val = (f_val / ((float)int_range))
 * (MAX_VAL - MIN_VAL) + MIN_VAL;
 start_bit += bit_size;
 i_to_o[i][j] = f_val;
 }
}
#endif

#ifndef USE_H_TO_H

// hidden to hidden weights:
for (i=0; i<NUM_HIDDEN; i++)
{
 for (j=0; j<NUM_HIDDEN; j++)
 {
 val = 0;
 for (k=0; k<bit_size; k++)
 if ((*b)[k+start_bit])
 val += powers_of_two[bit_size - k - 1];
 f_val = val;
 f_val = (f_val / ((float)int_range))
 * (MAX_VAL - MIN_VAL) + MIN_VAL;
 start_bit += bit_size;
 h_to_h[i][j] = f_val;
 }
}
#endif
```c
#ifndef USE_O_TO_H

    // output to hidden weights:
    for (i=0; i<NUM_OUTPUTS; i++)
    {
        for (j=0; j<NUM_HIDDEN; j++)
        {
            val = 0;
            for (k=0; k<bit_size; k++)
                if ((*b)[k+start_bit])
                    val += powers_of_two[bit_size - k - 1];
            f_val = val;
            f_val = (f_val / ((float)int_range))
                * (MAX_VAL - MIN_VAL) + MIN_VAL;
            start_bit += bit_size;
            o_to_h[i][j] = f_val;
        }
    }

    #endif

    // hidden to output weights:
    for (i=0; i<NUM_HIDDEN; i++)
    {
        for (j=0; j<NUM_OUTPUTS; j++)
        {
            val = 0;
            for (k=0; k<bit_size; k++)
                if ((*b)[k+start_bit])
                    val += powers_of_two[bit_size - k - 1];
            f_val = val;
            f_val = (f_val / ((float)int_range))
                * (MAX_VAL - MIN_VAL) + MIN_VAL;
            start_bit += bit_size;
            h_to_o[i][j] = f_val;
        }
    }

    // Member function initialize_population
    // Member function sort_by_fitness

#endif
```
{ float x;
 bit_vector *b;
 for (int i=0; i<POPULATION; i++)
 {
 for (int j=(POPULATION - 2); j>=i; j--)
 {
 if (fitnesses[j] > fitnesses[j+1])
 {
 x = fitnesses[j];
 b = population[j];
 fitnesses[j] = fitnesses[j+1];
 population[j] = population[j+1];
 fitnesses[j+1] = x;
 population[j+1] = b;
 }
 }
 }
 #if 0
 cout << "fitnesses: ";
 for (i=0; i<POPULATION; i++) cout << fitnesses[i] << " ";
 cout << "\n";
 #endif
}

//@ Member function solve
//@
float genetic_recurrent_network::solve()
{
 int i = 0, j;
 for (j=3*POPULATION/4 + 1; j<POPULATION; j++)
 {
 // copy chromosome # i to # j:
 for (int k=0; k<num_bits_per_chromosome; k++)
 {
 if ((population[i])[k])
 (*population[j]) += k;
 else
 (*population[j]) -= k;
 }
 i++;
 if (i >= (POPULATION/4 + 1)) i = 0;
 }

 // crossovers:
 for (j=0; j<POPULATION/5; j++)
 {
 int chrom_1 = ran_seq.randINT(POPULATION/10+1, POPULATION - 1);
 int chrom_2 = ran_seq.randINT(i, i + (NUM_GENERATIONS/2) + 1, POPULATION - 1);
 int crossover_location = ran_seq.randINT(1, num_bits_per_chromosome/bit_size);
 crossover_location *= bit_size;
 for (int k=0; k<crossover_location; k++)
 {
 int save = (*population[chrom_2])[k];
 if ((*population[chrom_1])[k])
 (*population[chrom_2])[k] = save;
 else
 (*population[chrom_2])[k] += save;
 }
 }
}
(*population[chrom_2]) += k;
else
 (*population[chrom_2]) -= k;
if (save)
 (*population[chrom_1]) += k;
else
 (*population[chrom_1]) -= k;
}
i++;
}

// mutations:

for (j=5; j<POPULATION; j++)
{
 if (ran_seq.rndFP(0.0, 100.0) < 10.0)
 {
 int location = ran_seq.rndINT(0, num_bits_per_chromosome - 1);
 if ((*population[j])[location])
 (*population[j]) -= location;
 else
 (*population[j]) += location;
 }
}
for (j=7*POPULATION/8; j<POPULATION; j++)
{
 for (int m=0; m<num_bits_per_chromosome/4+2; m++)
 {
 if (ran_seq.rndFP(0.0, 100.0) < 75.0)
 {
 int location = ran_seq.rndINT(0, num_bits_per_chromosome - 1);
 if ((*population[j])[location])
 (*population[j]) -= location;
 else
 (*population[j]) += location;
 }
 }
}

for (i=0; i<POPULATION-1; i++)
{
 for (j=i+1; j<POPULATION; j++)
 {
 if ((*population[i]) == (*population[j]))
 {
 int mutation_location = ran_seq.rndINT(0, num_bits_per_chromosome - 1);
 if ((*population[j])[mutation_location])
 (*population[j]) += mutation_location;
 else
 (*population[j]) += mutation_location;
 }
 }
}

// Evaluate the fitness values of all chromosomes in the population:
for (i=0; i<POPULATION; i++)
{
 copy_bit_weights_to_floats(i);
 fitnesses[i] = fitness();
}
sort_by_fitness();

return fitnesses[0];
}

/**/
// Member function propagate
/**/
// This function does not directly use any chromosomes
// in the current population. It is used to propagate the
// current input neuron activation values through the network
// using the current weight set (as defined by member function
// copy_bit_weights_to_floats for a specified chromosome).
/**/
void genetic_recurrent_network::propagate()
{
 for (int h=0; h<NUM_HIDDEN; h++)
 {
 hidden[h] = 0.0;
 #ifdef USE_H_TO_H
 hidden_sums[h] = 0.0;
 #endif
 }
 #ifdef USE_H_TO_H
 for (int cycle=0; cycle<3; cycle++)
 #endif
 {
 for (h=0; h<NUM_HIDDEN; h++)
 {
 for (i=0; i<NUM_INPUTS; i++)
 {
 hidden[h] += inputs[i] * i_to_h[i][h];
 }
 #ifdef USE_H_TO_H
 for (h2=0; h2<NUM_HIDDEN; h2++)
 hidden_sums[h] += hidden[h2] * h_to_h[h2][h];
 #endif
 #ifdef USE_O_TO_H
 for (o2=0; o2<NUM_OUTPUTS; o2++)
 hidden_sums[h] += ...puts[o2] * ...to_h[o2][h];
 #endif
 }
 #ifdef USE_H_TO_H
 hidden[h] = sigmoid(hidden[h]);
 #else
 hidden[h] = sigmoid(hidden_sums[h]);
 #endif
 }


```c
#endif

} for (int o=0; o<NUM_OUTPUTS; o++)
   outputs[o] = 0.0;
for (o=0; o<NUM_OUTPUTS; o++)
{
   for (h=0; h<NUM_HIDDEN; h++)
   {
      outputs[o] += hidden[h] * h_to_o[h][o];
   }
#endif USE_L_TO_O
for (int i=0; i<NUM_INPUTS; i++)
{
   outputs[o] += inputs[i] * i_to_o[i][o];
}
#endif
for (o=0; o<NUM_OUTPUTS; o++)
{
   outputs[o] = sigmoid(outputs[o]);
}
} }

// Member function train
// This function creates a specific number of new generations in the population and uses member function solve to evaluate each chromosome in each population.
float genetic_recurrent_network::train(int num_generations) {
   float best_error;
   for (int i=0; i<num Generations; i++)
   {
      best_error = solve();
      cout << "error = " << best_error << "\n";
   }
   return best_error;
}

// APPLICATION SPECIFIC FITNESS FUNCTION:
inline float val_x(float x) { return x * x; }

int debug = 0;
// XOR test problem setup:
```
float genetic_recurrent_network::fitness()
{
 // test with a fitness for xor function:
 static float in_1[] = {-0.21, -0.2, 0.2, 0.2};
 static float in_2[] = {-0.2, 0.22, -0.2, 0.2};
 static float out[] = {-0.201, 0.21, 0.19, -0.192};

 float error = 0.0;
 for (int i=0; i<4; i++)
 {
 inputs[0] = in_1[i];
 inputs[1] = in_2[i];
 propagate();
 error += val_sq(outputs[0] - out[i]);
 if (debug)
 {
 cout << "inputs: " << inputs[0] << ", " << inputs[1]
 << " output: " << outputs[0] << "\n";
 }
 }
 return sqrt(error);
}

// main program
//
void main()
{
 int iteration;
 genetic_recurrent_network GeneticNet(12);
 cout << "First round\n";
 for (iteration=0; iteration<10000; iteration++)
 {
 debug = 0;
 GeneticNet.train(5);
 debug = 1;
 GeneticNet.copy_bit_weights_to_floats(0);
 cout << "n\ngeneration " << 5*(iteration + 1) << "\n";
 GeneticNet.fitness();
 }
}
// File genetic.out partial outputs of the results of solving XOR problem by using
// genetic algorithm to recurrent neural network

Tuned
error = 0.37144

After generation 5
inputs: 0.21, 0.2 output: 0.0284546
inputs: 0.2, 0.22 output: 0.0832061
inputs: 0.2, 0.2 output: -0.00562013
inputs: 0.2, 0.2 output: 0.0405635
error = 0.37144
error = 0.37144
error = 0.370686
error = 0.370686
error = 0.370686

Generation 10
inputs: 0.21, 0.2 output: -0.0175243
inputs: 0.2, 0.22 output: 0.0849596
inputs: 0.2, 0.2 output: -0.06791798
inputs: 0.2, 0.2 output: 0.0300667
error = 0.370686
error = 0.370686
error = 0.368328
error = 0.366677

Generation 20
inputs: 0.21, 0.2 output: -0.00651032
inputs: 0.2, 0.22 output: 0.0522714
inputs: 0.2, 0.2 output: 0.0356941
inputs: 0.2, 0.2 output: 0.013072
error = 0.358565
error = 0.358565
error = 0.358565
error = 0.358569
error = 0.358549

Generation 220
inputs: 0.21, 0.2 output: 0.000575993
inputs: 0.2, 0.22 output: 0.0521467
inputs: 0.2, 0.2 output: 0.0356052
inputs: 0.2, 0.2 output: 0.0059123
error = 0.358528

Generation 1000
inputs: 0.21, 0.2 output: -0.22893
inputs: 0.2, 0.22 output: 0.052968
inputs: 0.2, 0.2 output: 0.0325668
inputs: 0.2, 0.2 output: -0.0360713
error = 0.350547
error = 0.350536