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Abstract

A Practical Model Checking Approach Using FormalCheck
Leila Barakatain

Verification of industrial designs is becoming more challenging as technology advances
and demand for higher performance increases. One of the most suitable debugging aids is
automatic formal verification, which tests behaviors under all possible executions of a sys-
tem. However, automatic formal verification is limited by the state explosion problem.
This thesis presents a practical verification approach using FormalCheck, which helps
reducing the state space explosion problem when verifying the high level descriptions of
practical systems. This approach relies on the design’s built-in hierarchy as the mechanism
to conquer its complexity during verification. Then an assume guarantee paradigm is used
to verify functional units built on top of instantiated and previously verified modules. We
applied this approach to an industrial design (Transmit Master/Receive Slave (TMRS)
Telecom System Block) as a case study. The TMRS was thoroughly verified and inconsis-
tencies in the design with respect to its specification were uncovered through model
checking. The main contributions of this thesis are, (1) the application of a variety of
model checking techniques to a real size design and (2) proposing a number of improve-

ments to the design flow which can accelerate the whole verification process.
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Chapter 1

Introduction

1.1 Motivation and Goal

Industrial designs are becoming more and more complex as technology advances and
demand for higher performance increases. In today's red-hot economy, staying on sched-
ule to hit a narrow window of market opportunity often means the difference between
product dominance and product death. With the volume and complexity of logic required
to satisfy function-hungry consumers comes exponential growth in the difficulty of mak-
ing sure it all works. The validation of a design involves checking that the physical design
does indeed meet its specification [22]. The mere scale of complexity of newer designs,
makes it likely that the designer will fail to anticipate some possible interactions between
different components of the system.

In a traditional design flow, validation is accomplished through simulation and testing.

Some errors inside a design may exhibit nondeterministic behaviors, and therefore, will



not be reliably repeatable. This makes testing and debugging using simulation difficult.
Also, exhaustive testing for nontrivial designs is generally infeasible, therefore, testing
provides at best only a probabilistic assurance. Formal Verification [22], in contrast to test-
ing, uses rigorous mathematical reasoning to show that a design meets all or parts of its
specification. For that reason, formal verification is on the critical path for today's IC
designers, no matter what type of system they are building [21].

Formal verification has problems of its own class too. The major problem with auto-
matic formal verification is that a large amount of memory and time is often required,
because the underlying algorithm in these methods usually involves systematic examina-
tion of all reachable states of the system to be verified. As the number of reachable states
increases rapidly with the size of a system, the basic algorithm by itself becomes impracti-
cal: the number of states for a system is often too large to check exhaustively within the
limited time and memory that is available. This phenomenon is known as the state space
explosion problem [12].

The goal of this thesis is to introduce and apply practical model checking approaches,
which offer some solutions to alleviate the state space explosion problem for verification
of high level descriptions of real systems, and to suggest improvements in the design flow
which can accelerate the verification process.

There are different academic and commercial model checking tools available. In this
work we chose FormalCheck [5] as the verification tool for the following reasons.

1. FormalCheck supports both VHDL and Verilog (the two hardware description lan-
guages widely used in industrial designs), unlike many formal verification tools (spe-

cially the academic ones), which use some special hardware description language.



2. The automatic reduction algorithms of FormalCheck allow it to verify larger designs
than any other model checker in the market.

3. An important feature in a model checker is that constraints can be assumed to prove
properties. In FormalCheck, both constraints and properties can be expressed in the
same format, therefore, turning around constraints into properties to be proven and
vice versa is very easy.

4. Usually to verify a design, a proper working environment has to be built for the target
design. In FormalCheck this environment can be defined using the facilities provided
by FormalCheck.

5. FormalCheck provides some semi-automatic techniques to reduce the state space

explored during the verification process.

1.2 Background and Related Work

1.2.1 Formal Verification

From the early 1980s until the mid-1990s, digital logic simulation alone handled nearly all
functional and timing verification in IC design. As chips grew from tens of thousands of
gates in the '80s to more than 1 million today, simulation run time stretched from a few
hours to days, or even weeks. The volume of stimulus patterns (vectors) required to check
every logic function and timing path threatened to overwhelm even the best-funded devel-
opment organizations. Consequently, reliance on simulation as the sole source of verifica-
tion has proven impractical [21].

Formal hardware verification attempts to overcome the weakness of non-exhaustive

simulation by proving the correspondence between some abstract specification and the



design in hand. There are 3 different techniques of formal hardware verification [22],
namely:

* Deductive Methods (Theorem Proving)

e Equivalence Checking

* Model Checking

1.2.2  Verification Techniques

One of the earliest approaches to formal hardware verification was to describe both the
implementation as well as the specification in a formal logic. The correctness result was
then obtained by proving in the logic, that the specification and implementation were suit-
ably related [39]. Theorem provers were developed to handle most of the tedious applica-
tion of proof rules, and to make sure that each step in a proof is correct [43]). Among the
best known interactive theorem provers are the Boyer-Moore Theorem Prover ‘Ngthm’
[6], PVS [32] and the Cambridge HOL System [18]. One of the main strengths of the the-
orem proving approach is its ability to provide effective means to guarantee the correct-
ness of safety critical systems, in which the consequences of an error outweighs the time
and the financial investment required to construct the proof.

Unfortunately, theorem proving based verification requires a large amount of effort on
the part of the user in developing specifications of each component and in guiding the the-
orem prover through a large number of lemmas. Therefore, for designs that are not safety
critical, the assertional proof and automated theorem proving techniques are too expen-
sive. Furthermore, if a system contains an error, it is impossible to construct a proof, and

often, no useful diagnostic information is generated.



On the other hand there are automatic formal verification techniques which are based
on state enumeration. Although these techniques are specialized for finite-state systems,
they are easy to use and provide useful diagnostic messages if the system fails to observe
the required properties. Both Equivalence Checking and Model Checking are of this type.
Zafiropulo et al. [45] originally proposed the state enumeration method for protocol verifi-
cation.

Equivalence Checking is used to prove functional equivalence of two design represen-
tations modeled at different levels of abstraction [40]. Equivalence Checking can be
divided into two categories: Combinational Equivalence Checking and Sequential Equiva-
lence Checking.

In Combinational Equivalence Checking, the functions of the two circuits to be com-
pared are converted into canonical representations of Boolean functions [8], typically
Binary Decision Diagrams (BDDs) or their derivatives, which are then structurally com-
pared. Since current designs are mainly clock-driven synchronized, to perform the Combi-
national Equivalence Checking between two different sequential models, a design has to
be divided into pieces. Then each register (or flip-flop) of one model has to be mapped into
the other model and their combinational circuits have to be compared between every two
consecutive registers. The drawback of this type of verification is that it cannot handle the
Equivalence Checking between RTL and behavioral model. Usually RTL and behavioral
models are developed separately and should have the same outputs at certain clock cycles,
but it is impossible to map each register in the RTL model to one in the behavioral model.
As an example, Verity [23] is a verification system aimed at checking equivalence between

RTL specification and gate or transistor level implementation for large, hierarchically



structured designs. Examples of Combinational Equivalence Checking tools are Cadence
Affirma, Synopsys Formality, IBM Boole Eye, etc.

In Sequential Equivalence Checking, given two sequential circuits using the same state
encoding, their equivalence can be established by building the product finite state machine
and checking whether the values of two corresponding outputs are the same for any initial
states of the product machine. Sequential Equivalence Checking only considers the behav-
ior of the two designs while ignoring their implementation details such as latch mapping.
Therefore, Sequential Equivalence Checking is able to verify the equivalence between
RTL and behavioral model. The drawback of this technique is that it cannot handle a large
design due to state space explosion problem. MDG [13] and VIS [7] are examples of
Sequential Equivalence Checking tools.

Model Checking is an algorithm that can be used to determine the validity of formulas
written in some temporal logic with respect to a behavioral model of a system. Model
Checking is based on the state space exploration technique, and uses the reachability state
graph as a Kripke structure, which encodes the set of all possible sequences of states for a
system over computation trees. Examples of Model Checkers are SMV [28], VIS [7],
SPIN [20], Mure [15], RuleBase [4], and FormalCheck [5] [24].

Model Checking tools are effective as debugging aids for industrial designs, and since
they are fully automated, minimal user effort and knowledge about the underlying technol-
ogy is required to be able to use them. However, there are two drawbacks with Model
Checking. The first, the state space explosion and how to avoid it, and the second is the
difficulty of judging whether the verified property completely characterizes the desired

behavior of the system.



In the verification techniques explained above, a verifier faces the trade-off between
choosing an automated technique, which is in general subject to limitations in applicabil-
ity, and more general but also more work-intensive approaches. This trade-off can be
avoided by combining Model Checking and Deductive Reasoning if possibl_e. In this
method, one can apply automated techniques to subsysterns or simpler obligations and
then use deductive approaches to combine the results thus obtained into an overall correct-
ness result. STeP [27] is an example of an integrated system (integrates Model Checking

and Theorem Proving) for reasoning about reactive systems.

1.2.3 Related Work

In this section, several case studies of mostly industrial designs of protocols and commu-
nication hardware is presented, in order to provide a sense of how designs have been veri-
fied in practice and the techniques the researchers used to avoid the state space explosion.
Comparing these case studies provides insight into the scope and limitations of currently
available techniques of formal verification.

Chen et al. at Fujitsu Digital Technology Ltd. [10] exploited symbolic model checking
to detect a design error in an ATM (Asynchronous Transfer Mode) circuit. The circuit con-
sists of about 111K gates and supports high-speed switching operations at 156 MHz.
When the circuit was manufactured it showed an abnormal behavior under certain circum-
stances. Using SMYV, they identified the error by checking some properties. To avoid state
space explosion, they abstracted the width of addresses from 8 bits to 1 bit, and the num-
ber of addresses in a Write Address first-in-first-out (FIFO) from 168 to 5. However, in

some cases a property could not be verified because of this reduction and a detailed gate



level model was needed for certain blocks to pinpoint the source of the error.

Harkness and Wolf [19] applied symbolic model checking to the Summit bus converter.
The bus converter provides a communication link between a high-speed processor bus and
a low speed I/O bus. They informally abstracted away aspects of the design that were con-
sidered unimportant to the verification conditions they had in mind. Model checking was
then applied to an abstracted model of the design, which was formalized in SMV to dem-
onstrate the presence of deadlock on the systems link queues in earlier versions of the
design, as well as the absence of deadlock in a revised version.

Eiriksson and McMillan [16] described the verification of the cache coherence protocol
for a Silicon Graphics multiprocessor using SMV model checker. To make the verification
tractable, the high level specification was kept as abstract as possible and dependent vari-
ables were eliminated.

Eisner [17] described the verification of the cache coherent non-uniform memory
access (CC-NUMA) cache coherence protocol using RuleBase. CC-NUMA is a distrib-
uted shared memory multi—processof. The author made an abstract model of the protocol
which supported 5 out of 16 commands and 1 out of 4 configuration bit settings, which
was the smallest configuration deemed to be meaningful in this project. The specification
was manually translated into a formal model in the (SMV-like) RuleBase language. The
results of this verification was finding a coherency bug inside the design.

Pong et al. [36] modeled the S3.mp cache coherence protocol in the Murg language
and systern. They modeled only one memory block and it was assumed that other blocks
do not interfere. The symmetry of the model was exploited to group equivalent symmetric

states. Using these abstraction methods, several protocol errors were detected and cor-



rected. Numerous other coherence protocols have been verified, including those for
Gigamax by McMillan and Schwalbe [29], Futurebus+ by Clark et al. [11], and SCI archi-
tectures by Stern and Dill [41].

Lu and Tahar [25] verified a 4x4 ATM switch fabric using VIS. Since they did not suc-
ceed in using the original fabric to check the properties (due to state space explosion) they
abstracted the model by reducing the datapath from 8 bits to 1 bit. After this reduction in
the model, they succeeded verification of the properties, but the verification time of each
property was unreasonably long. To make this process more efficient, they used property
division and latch reduction techniques, which allowed them to verify a number of safety
and liveness properties of the abstract model in reasonable CPU time. In [3], we reverified
the 4x4 ATM switch fabric of [25] using FormalCheck and compared the results of the
two experiments. We were able to verify both the abstracted model and the model with 8
bit datapath with very reasonable amount of CPU time and memory usage.

The efficiency of state exploration and model checking methods depend heavily on the
size of the reachability state graph. As observed from the above examples of verifications,
the authors had to manually make an abstraction of their model to be able to perform veri-
fication on their design. The reduction capabilities in FormalCheck makes it more attrac-
tive compare to other automatic formal verification tools (this will be explained in Chapter
3).

So far, the only work reported in the open literature using FormalCheck is the work of
Xu et al. [44], where they verified a Frame Multiplexer/Demultiplexer (FMD) Chip from
Nortel Semicinductors. The FMD chip is part of a system used in multiplexing/demulti-

plexing framed data between various channels and a SONET line. The authors constructed



(in Verilog) a non deterministic model of the user which mimics the normal operating
environment. The model abstraction was done by applying automatic and semi-automatic
reduction facilities provided in FormalCheck. The authors succeeded detecting two design
errors in the implementation of the FMD model.

Writing extra code to mimic the working environment is not very reliable, and it can
add to the state space explored during the verification. In this thesis it is explained how to
use FormalCheck, so that not only the model abstraction and reduction can be done by this
tool, but also the normal operating environment of the design can be defined inside For-

malCheck as well.

1.3 Scope of the Thesis

This thesis first describes a practical verification approach using FormalCheck. The
approach introduces model checking early in the design cycle in order to minimize the
overall verification effort. It relies on the built-in hierarchy of the design as the mechanism
to conquer its complexity during verification. This approach minimizes state space explo-
sion problems by concentrating the bulk of the verification effort to RT level modules suit-
able for model checking. Also it suggests a semi-formal verification, by exploiting the
benefits of both simulation and model checking to achieve better test coverage. Later,
some modifications to the design flow are suggested, which can help accelerating the veri-
fication process. To complete the discussions about model checking, we explore different
abstraction and reduction techniques available in the open literature. At the end, the pro-
posed approach and abstraction techniques are applied to verify the Transmit Master/

Receive Slave TMRS Telecom System Block (TSB) from PMC-Sierra Inc. [34], as a case
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study.

The rest of the thesis is organized as follows: Chapter 2 is a brief introduction to For-
malCheck and its automatic and semi-automatic reduction techniques. Chapter 3 intro-
duces a step by step model checking approach based on FormalCheck. Chapter 4 gives a
description of the Transmit Master/Receive Slave (TMRS) Telecom System Block (TSB)
and applies the proposed verification approach on the target TSB. Conclusions and ideas

on future work are presented in Chapter 5.
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Chapter 2

Introduction to FormalCheck

FormalCheck [9] is a model checking tool commercialized by Cadence to be used to aug-
ment conventional simulation techniques. It is used to verify synthesizable Register Trans-
fer Level (RTL) VHDL or Verilog design models using the model checking method. The
patented reduction algorithms of FormalCheck, allow it tc handle larger designs than any
other model checker on the market. In [9] it is reported that properties on designs of up to
5,000 latches and 100,000 combinational variables have been verified with this tool. For-
malCheck provides an intuitive graphical interface to simplify the verification process.
This chapter presents a brief overview of FormalCheck and explains the facilities provided

in this tool which makes the process of formal verification much easier and more efficient

than other model checking tools available.!

1. The material in this chapter are based on the information in FormalCheck User’s guide [5].

12



Project

l

Design Files Project File Compiled Database Files
l
HDL Source Include Files

| l | | |

Constraint Library Queries Macros State Variables Reduction Seeds
| ] | 1
Property Constraints Run Options Reduction Options Reduction Seed

Figure 2.1 : The organization of a FormalCheck project

2.1 Definition of Basic Terms in FormalCheck

Applying FormalCheck to verify a design involves first creating a project. A FormalCheck

project is a container (directory structure) that holds all information relevant to verification

including (refer to Figure 2.1):

* pointers to the design model file

* information needed to compile the design, including the HDL language used, top level
entity name and hierarchical dependencies

* queries containing properties and constraints

* current status of queries and the results of queries already verified.

2.1.1 Properties, Constraints and Queries in FormalCheck

A model checker verifies that a design model exhibits specific behaviors (properties) that

are required by the design specification. Properties that form the basis of a model

13



checker’s queries fall into two categories: safety and liveness. Safety properties describe
behaviors that can be shown to be false by a finite simulation trace. Safety properties use
one of the two formats: the always format and the never format. Liveness properties
describe behaviors that are eventually exhibited. Liveness properties cannot be checked
with a simulation tool, unless the maximum number of steps before the fulfillment of the
eventuality is known. Liveness properties use one of the three formats: the Eventually for-
mat, the Eventually Always format, and the Strong Liveness format.

By default, a model checker attempts to verify properties under all possible input sce-
narios. However, many designs are intended to function properly only under more con-
strained circumstances. Therefore the default check could return irrelevant failures.
Constraints can be used to limit the input scenarios used in verification, and as a result,

limit the state space of the design model that is verified (Figure 2.2) [9].

Simulation Model Checking
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Figure 2.2 : The explored state space in simulation and model checking

Properties and Constraints simply express behaviors. The difference is that a property

ensures that a behavior occurs, and a Constraint assumes that the behavior occurs for the
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purpose of verification. Each behavior is defined in terms of one to three conditions,
namely: Fulfilling Condition, Enabling Condition, and Discharging Condition. A Fulfill-
ing Condition is required for all behaviors. In FormalCheck, a Fulfilling Condition needs
to be qualified and by default this condition is checked over the entire state space. A Veri-
fication Window can be specified by adding an Enabling Condition and/or Discharging
Condition (Figure 2.3). Commonly, the behavior described by a Fulfilling Condition is not
required until after it is triggered by an event. This event is defined by adding an Enabling
Condition. The requirement for a Fulfilling Condition may be canceled by a Discharging
Condition. Once discharged, the Fulfilling Condition is not required to occur unless it is

retriggered by an Enabling Condition.

e L LS L L LY

e Verification Window when
"Fulfiil at Discharge” is not used

je——— Verification Window when
"Fulfill at Discharge” is used

Enabling
Condition

Disabling
Condition

Figure 2.3 : Verification Window

The Verification Window is defined to begin immediately after the Enabling condition
becomes true, and it terminates immediately upon the Discharging Condition becoming
true (Figure 2.3). The Verification Window can be further controlled (for Never, Always,
and Eventually behaviors) by using the settings Fulfill Delay, Duration and Of Edge. The
Fulfill Delay field postpones the beginning of the verification window beyond the asser-

tion of the Enabling Condition until a given number of occurrences of an event (defined by
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a Boolean expression) in the Of Edge field. The Verification Window remains open for a
given duration in the Duration field.

FormalCheck works by checking a query. A query is a group of properties that are to be
checked together subject to specified Constraints. Constraints that are marked as “default”
are automatically added to a new query when it is created. Several queries, each contain-
ing a different set of properties and Constraints, can be defined for a project. However, it is

recommended to include only one property per each query.

2.1.2 Query Result and Status

There are eight possible results that a query can have: New, Failed, Verified!, Running, Ter-

minated, Scheduled, No Error, and Vacuous.

* New, indicates a new query on which no verification attempt has been run yet.

* Failed, indicates the previous verification attempt ended in finding an error in the
query. In this case an error track is available for debugging. In FormalCheck a back-
referencing utility permits the user to click on an error in the error track waveform, and
get a pop-up window of the VHDL or Verilog source, with the cursor on the assign-
ment which gave the indicated variable the indicated value [9] [24].

e Verified!, indicates the query was previously verified.

* Running, indicates a verification attempt is currently underway.

* Terminated, indicates the verification attempt was stopped by the user or by an abnor-
mal condition. Termination usually occurs when the verification run hits a time or
memory limit set by the user or when the verification runs out of memory. A query ter-

mination can also be caused by errors. In case of a query termination, the “verify.*”
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files should be viewed for more information. These files are found under the specific
project and query directory.

Scheduled, indicates the query has been scheduled for verification.

No Error, indicates no failures were found. This result is not the same as Verified!.
This result is obtained when Auto-Restrict is chosen as the algorithm for verification
run (this will be explained in Section 2.2.1). If the result is No Error then Formal-
Check should be re-run using the Symbolic State Enumeration or Explicit State Enu-
meration algorithms for full verification.

Vacuous, indicates that the Enabling Condition of some property was never satisfied,
thus the Fulfilling Condition was never checked. Vacuity also can occur due to over-
constraining the property. In that case FormalCheck automatically performs a check to
detect some forms of Constraints conflict [9].

There are two possible values for a query’s status: Current and Qutdated. Current indi-

cates that the verification result accurately reflects the latest compiled version of the

design model and the query. Outdared indicates the verification result is out of date as a

result of new compiled version of the design model or new version of the query.

2.1.3 State Variables

Boolean expressions are adequate to capture a behavior at some specific point in time.

Often the condition to be checked is actually the culmination of a sequence of events.

Such sequential conditions are defined in terms of State Variables. A State Variable con-

sists of a name, range, initial value and its defined behavior. The behavior of the State

Variable is defined using “If then else” constructs. Each additional state doubles the state
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space, therefore, the range of a State Variable should be defined as narrow as possible to

avoid adding unnecessary states to the verification. In general, State Variables are used for

the following reasons:

I. To count events: A State Variable can be used to count events such as clock edges.
However, counting clock edges is not a common function for user defined State Vari-
ables any more, since it is automated with the “edgeof’ feature (Section 2.1.1).

2. To parallelize serial data or to detect complex sequences of events: Parallelizing a
serial data can be used to detect flags on a serial channel.

3. To be used as a memory element: A State Variable can be defined to remember the pre-

vious value of a signal.
2.2 Run Options in FormalCheck

FormalCheck provides run options that are used to select which algorithms are used in a
verification run. Proper use of run options will ensure an efficient verification run. Run
options in FormalCheck include verification algorithms, deadlocks, run time, and

advanced options.

2.2.1 Algorithms

FormalCheck provides three algorithms to perform verification, namely, Symbolic State
Enumeration (using ordered Binary Decision Diagrams, BDDs [8]), Explicit State Enu-
meration, and Auto-Restrict. Symbolic State Enumeration is the default algorithm in For-
malCheck. This algorithm is generally useful for verifying models with a very large set of

states. However, the BDDs can become intractably large, especially when the design
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model includes many arithmetic expressions.

Explicit State Enumeration is generally useful for verifying models with fewer than
1000 primary input values per state and which may contain a large number of arithmetic
expressions. It may succeed in other cases in which Symbolic State Enumeration runs out
of memory, as long as the number of input values per state is not large and the total num-
ber of states is limited to 10 million. If errors are likely to be found in the design model,
then this algorithm may find the errors faster than Symbolic State Enumeration.

The Auto-Restrict Algorithm attempts to narrow down the portion of the design in
which a failure of the query (if any) is likely to be found, and performs the analysis there.
It can dramatically accelerate the discovery of a failure. However it is very important to
note that if no failures are found when using this option, it may not guarantee that the
design model is verified. In such cases, FormalCheck reports “No Errors” instead of the
usual “Verified!”, and the verification has to be re-run using the Symbolic State Enumera-
tion or Explicit State Enumeration algorithms for full verification. Auto-Restrict is useful

when other algorithms run out of memory.

2.2.2 Deadlocks

A deadlock state is a state from which the only transition is back to itself L By default,
FormalCheck does not consider deadlocks as errors. Choosing this option will treat dead-
locks as errors and report any that are found. Selecting this option might increase the veri-

fication time. Note that a deadlock is not possible if the query is subject to a clock

1. This is the definition of deadlock in FormalCheck. In literature a deadlock state is a state from which
there are no transitions at all.
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Constraint. The perpetual motion of the clock precludes the possibility of a deadlock state.

2.23 Run Time

By Default there are three cases that the verification run will stop:
 after finishing exhaustively checking the entire design model
* when an error is found in the design model
* when the available memory is exhausted.
By choosing the run time option a time limit, in CPU minutes, can be placed on the ver-

ification run.

2.24 Advanced Options

There are three different options that can be added to the run options of a query.

* “-L” specifies a limit on memory used. The verification begins a wrap-up sequence
when the memory limit is reached. (The wrap-up sequence generates results and
reports that can be used for troubleshooting.)

* “-#hardlimit=" stops verification without the wrap-up sequence. When this option is
used, a limit equal to the user accessible physical memory is recommended.

e “-DVACCHECK?” is used to check for a query that is vacuous because its Constraints
are identically false on the design model or the query is over-constrained. “-DVAC-
CHECK?” removes properties from the verification and checks only Constraints in con-
junction with the design model. If the result of this check is “Verified” then

Constraints are conflicting with each other (or query is vacuous). If the result of this
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check is “Failed” then the existing Constraints are okay (query is not vacuous).
23 Modes of Verification

FormalCheck is designed to operate in one of two ways during the design process: the
Debug Mode and the Regression Mode. The Debug Mode is used during the early stages of
the design process to verify a small portion of the design. FormalCheck is used to edit a
VHDL or Verilog model, compile it, verify a query, debug any errors, and repeat. Typi-
cally only one query is verified at a time.

The Regression Mode is used only when the entire design is presumed correct. In this
case, the design is close to completion and no known bugs exist. FormalCheck is used to
compile a complete design, verify multiple queries to check all behaviors in the specifica-
tion, and identify any unexpected errors. FormalCheck uses a patented algorithm which
seeks to replace verification with a checksum computation to make sure the latest design
fix did not affect the previously verified properties. When this succeeds, the entire verifica-
tion of hundreds of queries can complete in a few minutes, consuming very little computa-

tional resources.
24 Reduction Algorithms in FormalCheck

FormalCheck uses a patented localization reduction algorithm to reduce the size of the
design model relative to the property being tested. The localization reduction algorithm
may significantly reduce the verification run time and the computing resources required
for verification. By default, a /-Step version of this algorithm is used. The I-Step algo-

rithm makes automatic reductions based on circuit topology and requires no additional
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input from the user. This is a good starting point, however for more computational inten-
sive designs the 1-Step reduction may not be enough. Complex designs may require the
Iterated reduction algorithm. The Irerated algorithm can take several iterations to reduce
the design model but will generally result in a smaller reduced model than if the 1-Step
algorithm is used. The Iterated algorithm takes longer to reduce the design model but the
computer memory required maybe significantly less. The Iterated reduction algorithm
does not work with the Auto-Restrict verification algorithm.

A Reduction Seed can be supplied to specify the starting point for the algorithm (refer
to Section 2.5). A good starting point allows faster completion but does not affect the log-

ical cutcome.

2.5 Reduction Seeds

The Iterated reduction algorithm seeks to find a portion of the design model on which it is
sufficient to run the verification. This portion by construction will be such that if the query
is verified on this portion, it is guaranteed to be true on the original model. Conversely, if
the query is falsified on this portion, then the algorithm expands the error track to an error
track of the original 1-Step reduction model.

The Iterated algorithm iterates through a succession of intelligent guesses at a suitable
reduced model. The closer the starting point for the algorithm is to a portion of the design
model that is sufficient to check the query, the faster the algorithm will run. Therefore it is
useful for the user to make an educated guess at what a sufficient portion could be. A suf-
ficient portion is one which contains sufficient logic to check the query. A reduction seed

is not required but is recommended when performing Iterated reduction.
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The user designates a candidate portion of the design model by marking its boundary
signals Start As Input, which in effect disconnects those signals from the driving expres-
sions and turns these signals into primary inputs. If it turns out that some driving expres-
sions in fact are needed to verify the query, then the algorithm will reinstate them, cutting

the design model signals at an alternate point instead.

2.6 Electronic Scissors

Similar to Reduction Seeds, Electronic Scissors are user defined designations of design
model signals that are forever disconnected from their driving expression, and thus treated
as primary inputs. These signals are designated as Make Input. This provides the user with
a means to isolate a portion of the design model. Signals thus designated retain this desig-
nation, and this designation may be used with both the 1-Step and the Iterated algorithms.
If FormalCheck returns the status “Verified!”, it means it would also have returned *“Veri-
fied!” if the query had been run on the full model (without any signals designated Make
Input). However, if FormalCheck returns an error track, this may be an artifact of the

reduction, and not be possible in the unreduced model.
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Chapter 3

A Practical Model Checking Approach

In this chapter a practical model checking approach using FormalCheck is described,
which introduces model checking early in the design cycle in order to minimize the overall
verification effort. It relies on the built-in hierarchy of the design as the mechanism to con-
quer its complexity during verification. This approach minimizes state explosion problems
by concentrating the bulk of the verification effort to Register Transfer Level (RTL) mod-
ules suitable for model checking. Then, considering the structure of the design in hand, a
pattern is used to verify functional units (cores) built on top of instantiated and previously
verified modules. In [37] the idea of verifying the functional units of a system using For-
malCheck was introduced very briefly. In this thesis, the idea of verifying the cores of a
system advances into much more details by concentrating on different possible structures
of a design and offering solutions of how to deal with each one of them.

While performing model checking, it is often quite difficult to judge whether the veri-

fied property completely characterizes the desired behavior of the system, so in this chap-
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ter we will explain how to validate the verification results in FormalCheck. The other
problem in model checking is the state space explosion problem and how to avoid it. Later
in this chapter, we will talk about some reduction and abstraction methods in order to
reduce the state space explored during the verification process.

The time spent for the verification of a product is as much or may be more than the time
spent to design it. In this chapter we are proposing several improvements in the design
flow which can result in preventing bugs from being introduced into the design, as well as
making the verification process faster. Considering the strengths and weaknesses of both
simulation and model checking, we suggest a semi-formal verification approach, which
exploits the positive features of both techniques to achieve much better test coverage of

designs.
3.1 Basis of the Proposed Approach

Most design processes rely on hierarchy as the mean of dealing with complexity. Gener-
ally these processes consist of developing a specification for the entire chip and then,
repeatedly partitioning the specification into smaller and more manageable functional
building blocks. These functional building blocks are usually further partitioned into much
smaller design units represented as synthesizable hardware components at the RTL. Once
the design units are verified for basic functionality, they are combined to implement func-
tional building blocks, often referred to as cores. These cores represent the actual imple-
mentation for distinct levels of functionality directly derived from the architectural
partition of the chip. Finally, these cores are combined to assemble the entire chip (Figure

3.1).
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Figure 3.1 : Hierarchy in high level design process

A typical design flow relies on a top-down partitioning phase where the specifications
are broken down into focused areas of functionality (cores and design units). This top-
down partitioning phase is followed by a bottorn-up implementation phase (Figure 3.1). At
the implementation phase, designers mix and match legacy components, third-party IP
cores, and newly developed pieces of logic to create their designs. During this phase,
designers not only spend most of their time writing RTL code, but simulating and debug-
ging the interfaces between the third-party solutions and their own designs.

Using a model checker (in our case FormalCheck) early in the design cycle addresses
the functional verification problem as the implementation phase evolves, that is, in a bot-
tom-up fashion. As each design unit becomes available, a model checker is used to assess
their correct functionality. Properties assumed at the inputs of each design unit/core are
verified on the components driving them. This horizontal verification is followed up by a
vertical verification phase, where properties already proven (or provable) at lower levels in
the chip hierarchy are assumed to conduct the verification of properties at higher levels.
The vertical verification was first introduced very briefly in [37] and was claimed that it

was applicable to all types of design structures. In this thesis we describe the vertical veri-
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fication in detail. We explain this approach considering different possible structures of a
design, and how to verify the properties of each specific structure. We will also explain
that the vertical verification is applicable to most of the design structures, however, there
are some specific cases, where the application of vertical verification will lead to a circular

behavior (refer to Section 3.3).

3.2 Horizontal Verification

As design units are created, a model checker is used to evaluate their functionality under
all possible scenarios allowed within their operating conditions. The goal is to attain a
high level of confidence on the correct functionality of each design unit as a stand alone
entity. When using FormalCheck, this is verified by ensuring that all properties in a design
unit hold true (Verified!) within the Constraints set forth by assuming certain environmen-
tal conditions. For example, consider the design unit shown in Figure 3.2. The property of
A (P,) is verified assuming the legal environmental conditions.

Prove
Assume (Legal Env.) ————F,

éﬁ%ﬁl —— A —— Qutput

Figure 3.2 : A design unit

An important feature in a model checker is that properties can be assumed to prove
other properties. This feature allows for easy verification of interfaces. Turning around

assumed properties (Constraints) into properties to be proven and vice versa, facilitates the
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verification of interfaces by providing the means to ensure that assumptions made on the
inputs of a design unit are validated as properties held by the designing unit driving it. In
the case of two interacting design units, properties on one design unit are assumed to hold
while verifying the properties of the other design unit. This case is explained in more

details in Section 3.3.

33 Vertical Verification

An important feature in FormalCheck is that the properties can be assumed (Constraints)
to prove other properties. FormalCheck supports assuming lower level properties (sub-
properties) along with the legal environmental conditions to conduct the verification of
larger property. This capability of being able to verify a property based on the sub-proper-
ties being implied supports a vertical verification process exploiting the built-in hierarchy
of the chip [37].

In vertical verification, properties that are already proven at lower levels in the hierar-
chy of the chip, are assumed to conduct the verification of properties at higher levels. At
this level, when verifying a property of one component we must make assumptions about
the behavior of the other components. Let’s start with the simplest case. Assume the
design units inside a functional building block (core) have linear dependencies. For exam-

ple, consider the dependencies between blocks A and B of the core shown in Figure 3.3.

Legal
Env.

- A = B —» Qutput

Figure 3.3 : Linear dependency between design units A and B
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To verify the property of B (Pg), The following steps should be followed.

* The property of A (P,) should be verified along with legal environmental conditions.

This part is usually done when verifying the design units.

Prove
Assume (Legal Env.) ————F,

* The property of B (Pp) is verified, assuming the property of A (P, is turned to a Con-
straint) and the legal environmental conditions.

Assume (Legal Env. and Ej) ProV—e»PB

For more detailed example of this kind refer to Chapter 4, Section 4.2.3, Property_6A.

In some cases the relationship between the design units of a core is not linear and the
two design units are interacting. For e);ample, consider the two blocks C and D of the core
shown in Figure 3.4. The interacting blocks can have two different kinds of structure. One
type of structure is when there is one way dependency between blocks C and D, meaning
only the internal output signal of block C depends on the value of the signal coming from
D (and not vice versa). In that case, to verify the property of D the following steps should

be followed.

Legal o -
Erer = D » Output

Figure 3.4 : Interacting design units
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* Properties on design unit D (Pp) are assumed to hold (Constraint), while verifying the
properties of design unit C (P¢).

Assume (Legal Env. and B;) _Prove Pc

* Conversely, properties in design unit D (Pp) are proven assuming that the properties of
design unit C (P¢) hold (Constraint).

Assume(Legal Env. and P ) _Prove _ Pp

For more detailed example of this type of verification, refer to Chapter 4, Section 4.2.3,
Property_5.

The other type of interacting blocks are the ones that have two way dependency
between blocks C and D, meaning the internal output of one block (block C) depends on
the internal output of the other block (block D), and vice versa. In this case the solution
explained above, results in circular behavior. The danger with such circularity is if the
assumed properties are false we could get trivially satisfied properties, but we cannot
deduce the implementations are false [1]. This circularity can be broken by induction over

time [30], which is out of the scope of this thesis.

34 Validating the Verification Results

The last step of a verification process is to validate the verification results of the queries to
make sure the design environment was captured properly. Usually, proper capture of the
design environment is one of the most problematic steps. This step is limited not just to the

proper definition of Clock and Reset pins, but includes the specification of all combina-
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tional and sequential input Constraints required to establish a reasonable interface to ver-
ify the design. Underconstraining the inputs leads to spurious failures, requiring tedious
iterations of the environment model. What is worse, if the environment overconstrains the
inputs, then potentially fatal input sequences will be overlooked. Since verification
addresses all possible behaviors, the issue of a correct and adequate environment model is
more critical, and thus requires more precision than the conventional approach used for
simulators [38].

FormalCheck performs a number of automatic checks to find likely instances of an
overconstrained design, however, it cannot detect all possibie scenarios that can cause the
overconstrain condition. We recommend performing sanity checks on queries that are
reported as *“Verified!”. The first step for sanity check is to validate the Constraints of a
verified query by running the -DVACCHECK on it. This check is independent of proper-
ties and therefore should only be done once for any set of Constraints. The other indicator
is to analyze the size of the nominal and reachable state space and average variable cover-
age. For instance if the amount of reached space or the State Variable average coverage is
noticeably small, the query should be suspected for overconstrain condition. Other clues
for the source of overconstrain can be found in the Missing Values report (in Query Man-
ager) of FormalCheck. A common indicator is when there are values that some signal
never attains.

Adding a Discharging Condition to a property, results in the reduction of the state space
being explored during the verification. Defining the verification window too short can
cause the property to be trivially verified, therefore, properties which include Discharging

Condition should be carefully reviewed for the overconstrained condition as well.
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3.5 Reduction and Abstraction Methods

The efficiency of state exploration and model checking methods depends heavily on the
size of the reachable states. The more extensive the reachable states, the more time and
memory it takes to verify a system. The biggest obstacle of model checking is often
unmanageably huge number of reachable states. FormalCheck relies on the localization of
a property into a portion of the design that is relevant to what is being verified. However,
such localization by itself may not succeed in performing the verification unless assisted
by the user. As the complexity of functional building blocks increases, the default setting
used by most formal verification tools may be insufficient. One needs some reduction and
abstraction methods in order to reduce the state space explosion problem. Common
abstraction techniques are model abstraction using symmetry [31), datapath abstraction
[331, environment abstraction [37], and property decomposition [12].

Finite state concurrent systems frequently contain replicated (symmetrical) compo-
nents. It is possible to find symmetry in memories, caches, register files, bus protocols,
network protocols, or any design that has a lot of replicated structure. The idea of model
abstraction using symmetry is based on the observation that having symmetry in the sys-
tem implies the existence of nontrivial variant groups that preserve both the state labeling
and the transition relation. Such groups can be used to define an equivalence relation on
the state space of the system. The smaller model produced by this relation is often smaller
than the original model. Thus, it can be used to verify any property of the original model
[12] [31]. Therefore, the idea beiﬁnd model abstraction using symmetry is to remove the
redundant structure of a design and perform model checking only on required circuits

[26]. The critical aspect of symmetry reduction in verification is detecting symmetries. As
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an example consider a network circuit which is capable of transferring data cells coming
form 32 external channels. If a smaller model which supports 8 external channels can be
brought out from the original model, which has the same state labelling and the transition
relations as the original model, then the smaller model can be used to verify the properties
of the original model. In [26] symmetry reduction was performed on an already abstracted
ATM switch model. In our case study in Chapter 4, we applied this reduction technique to
reduce a real size design.

Datapath abstractions are used to minimize the impact of datapaths on the perfor-
mance of model checking engines. Usually, the majority of the state holding devices (reg-
isters and latches) are in the datapath. The basic idea behind this technique is to identify
the datapath storage elements that do not contribute to the control flow of the design [33].
The user simply restricts the verification of a property to a handful of different and inter-
esting scenarios. For example, consider a network protocol which is capable of transfer-
ring data cells with different lengths, and the cell length is determined by the information
included in the first bytes of the data cell (header). The length of the cell usually affects the
computational parts of the design and does not change the control flow of the finite state
machine (FSM) of the design. Therefore, the minimum cell length can be used in order to
reduce the state space.

Proper capture of the design environment includes the specification of all combina-
tional and sequential input Constraints required to establish a reasonable interface to ver-
ify the target design [38]. By environment abstraction, the user instructs the model
checker what areas in the design must be excluded and replaced by assumptions of their

behavior. This technique simplifies the complexity of the verification task. In Formal-
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Check, environment abstraction is possible using Reduction Seeds, Electronic Scissors,
and Constraints (Refer to Chapter 2 Sections 2.1.1, 2.5 and 2.6). For example assume in
the target model there is a test block in addition to the main block which controls the main
functionality of the model. Also assume only the verification of the main block is of inter-
est. In that case, the test block can be removed using the Electronic Scissors. The inputs of
the main block which are fed by the test block, can be set to neutral constant values using
Constraints in FormalCheck.

Many finite state systems are composed of multiple processes running in parallel. The
specifications for such systems can often be decomposed into properties that describe the
behavior of small parts of the system [12]. Property decomposition is the process where a
property is broken up into several sub-properties such that verification of sub-properties

guarantees the verification of the original property [37].

Current Signal Process 1 Next State

Process 2 Control Signal

Figure 3.5 : Parallel processes

For example, assume the objective design unit contains two parallel processes (Figure
3.5). One process handles the state transition, and the other one produces the control sig-
nals (notice that each specific control signal has to be asserted for a specific state of the
system, therefore, these two processes are not considered independent). Also assume the
user wants to verify a property which concludes the next state and the control signal that

has to be asserted at the same time for that specific state of the FSM. This property can be
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divided to two properties, one which checks for the next state of the FSM and the other
one checks for the control signal that the system produces for that specific state. For a
more detailed example refer to Chapter 4, Section 4.2.3, Property_1.

The reduction techniques expressed in this section were applied to reduce the industrial

design TMRS [34], discussed in Chapter 4.

3.6 Recommendations to Accelerate the Verification Process

Designers of today’s massive new circuits face a pair of conflicting goals. They must
increase verification coverage and quality to ensure single-pass success. They also must
find ways to contain the expansion of verification time, effort, and cost. One of the biggest
concerns of companies is “What kind of changes in the design flow can accelerate the ver-
ification process?”.

To find a way to reduce the time spent for verification, including simulation and formal
verification, first we have to answer this question: Where do bugs come from? Bugs can be
introduced to the design through several channels [14] such as:

* Incorrect specifications
e Misinterpretation of specifications
* Misunderstanding between designers
* Missed cases
* Protocol non-conformance
* Resource conflicts, etc.
The only way to detect bugs inside a design is to define the right queries (for model

checking) and/or to write the proper test benches (for simulation) to uncover them. Test
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processes and methodologies can considerably reduce the risk of reléasing systems which

could fail in the field. In [42] the author introduces smart testing to improve the quality of

functional testing (simulation) and validation. In this part of the thesis we propose

improvements in the design flow which result in preventing bugs from being introduced

into the design, as well as making the verification process faster. We are mainly focusing

on model checking and ways to improve the design flow, in order to ease and accelerate

the query definition and verification process. These enhancements are listed in following.

The first and probably most important improvement in the design process is having a
good quality (clear, complete, and up-to-date) specification for each product life cycle
step. Applying the hierarchical verification methodology explained in this chapter will
contribute to this improvement. As mentioned before, the model checking of the
design units starts as soon as mgy are ready. At that time, the specifications for the
embedded design unit is still fresh in designer’s mind. Therefore, applying a model
checker at the early stages of the design cycle results in the formal documentation for
each design unit.

The specification for the different integration levels should use the same signal names.
Also, the lower level specifications should be built on the higher level specification
functional definitions, rather than redefining them.

It is a well known fact that the detail available in the specification of the targeted
design is usually not enough to fully verify the functionality of it, therefore, a test plan
should be created early in the product design and verification cycle. A test plan identi-
fies all the features whose functionality must conform to the specification. Taking this

approach will notably ease defining suitable queries for verification of the design
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model.

*  Each specification should contain the complete functionality requirement at that par-
ticular integration level. The more source documents one has to use to define the que-
ries, the higher the probability that the functionality of the model will be
misunderstood, therefore, the chance of defining wrong queries will be higher.

» The automated reduction and abstraction algorithms provided by the model checker
should be used as much as possible. Reductions and abstractions that are done manu-
ally can be complicated, error-prone and slow. Of-course the apparent effectiveness of
the model checkers depends on the size of the design. Therefore, the manual abstrac-
tion should only be used, if the automated reduction and abstraction algorithms cannot
reduce the model efficiently to avoid the state space explosion.

* Designs usually are modified in some point in time. Properties verified on the earlier
version of the design should be reused (with minor modifications) to verify the behav-
ior of the new design. Since the properties usually do not contain the cycle by cycle
implementation details found in test vectors or test benches, they are more easily

reused when verifying a modified version of the previous work.

3.7 Combining Simulation and Model Checking

Many designers hope that model checking will be a solution to the problems involved with
simulation, such as increasing test coverage of design, and shortening the time to market.
Model checking will help (indeed, it will be essential) in niches where it is particularly
effective, however, it does not replace traditional functional simulation. Model checking is

used to expand these verification techniques.
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Since datapaths increase the number of selection variables per state, datapaths and
computational intensive designs tend to rapidly cause state space explosion. Also, in a lot
of instances the data values do not affect the control of the design. Hence, model checking
is most effective when used for the verification of control-oriented designs such as control
logic, finite state machines (FSMs) and protocols. On the other hand simulation is better
suited for datapath analysis and computation results analysis. When verifying a system,
the verification engineer has two questions in mind: (1) does the system work properly
when legal inputs are present?, (2) what is the behavior of the system in case of the pres-
ence of illegal inputs? Depending on the data content implied by the chip level property,
design verification engineers set apart properties suitable for model checking from those
properties requiring traditional simulation methods for their verification.

For example, consider a network block, which transfers data cells of a certain length.
Also, assume this block has to assert a control signal named Start_Of_Cell, when transfer-
ring the first byte of a data cell. The first thing the verification engineer would possibly
verify is, (assuming legal environment) when there is a good cell available to transfer, the
Start_Of_Cell signal will eventually be asserted. This type of properties which check the
control parts of the design (such as control signals, FSM, etc.) can be verified using model
checking.

The next thing the verification engineer wants to verify is the behavior of the system
when there is a bad cell in the stream of in-put data cells. Is the model capable of skipping
the bad cell and going back to the normal mode of operation or will it have a lock up situ-
ation? This type of property is véry hard or even impossible to verify by model checking
for the following reasons.

1. When defining this type of property, a bad cell has to be introduced to the model. Usu-
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ally there is a FSM which indicates if the received cell is good or not. Since the infor-
mation about the cell is provided inside its header, either the datapath or the assumed
property of it has to be present to verify the behavior of this FSM. Therefore, the
design verification engineer might face state space explosion.

2. Assuming unlimited amount of memory is available and state space explosion is not an
issue, the other problem that the verification engineer will face is defining a property,
which expresses the following behavior:

- The bad cell will be skipped and the system will be back into normal mode of
operation and it wont fall into a lock up situation.
- The bad cell will be skipped but the following good cells are guaranteed to be
transferred properly.
To define and verify the above behavior, a sequence of events need to be provided,
consequently, defining this property for a model checker will be very hard.

3. Assume the verification engineer succeeds defining and verifying this property. The
next step of verification is sanity check. Model checkers provide useful diagnostic
messages if the system fails to observe the required properties, however, for the prop-
erties that are reported as “Verified” there are no waveforms or diagnostic messages.
Making sure that the verified property completely characterized the desired behavior
and was not verified trivially will be very hard and time consuming, specially when
dealing with illegal inputs.

Considering the problems explained here, time, resources, and energy needed to define
and verify these types of properties, one can easily decide that simulation is a better

approach for this type of verification.

39



3.8 Conclusion and Summary

In this chapter a practical verification approach applicable at the RT level using Formal-
Check was presented. In this approach sub-properties are assumed whiie conducting the
proof for chip level properties. This approach for verification is possible since the proper-
ties of a complex design rest upon the properties of its embedded components and their
interactions. In case the embedded components have two way dependencies, the applica-
tion of this method can lead to circular reasoning. In this type of situation induction over
time is implied.

The model checking process is started by design engineers to verify the functionality of
each design unit. Applying a model checker at the early stages of the design cycle results
on the formal documentation for each design unit. As the design units are combined to
implement cores of functionality, designers and verification engineers start working
together. Designers define and verify fundamental properties within the core itself while
verification engineers use some of these properties to verify their interfaces to third-party
IP cores.

Changes on chip level specification should trigger a controllable and predictable
amount of changes on previously verified properties. In FormalCheck, a property immune
to the latest design fix re-verifies in a matter of minutes, regardless of how long it took to
verify the first time. However, if the outcome of a previously verified property is affected
by the latest design fix, FormalCheck re-starts the verification for such property from
scratch.

Since model checkers cannot handle all design styles, a sound hierarchical verification

approach relies in their inter-dependence with simulation. Simulation is used primarily on
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the data path oriented and computational intensive parts of the design while model check-
ing is intended for use on the control intensive parts. Both technologies are very capable of
finding bugs associated with safety properties. However, only model checking has the
ability of providing a definite answer on properties dealing with eventualities.

In this chapter we also proposed some improvements in the design flow which are capa-
ble of preventing bugs from being introduced into the design, as well as making the overall
verification process faster. By focusing on model checking aspect of verification, some
suggestions are made to enhance the design flow, in order to ease and accelerate the query
definition and verification process.

In the verification approach described in this chapter, usually the verification of the
design units is assuming no state space explosion problems. This problem arises when try-
ing to verify a core. This methodology was applied to a real size circuit, the Transfer Mas-
ter/Receive Slave (TMRS) Telecom System Block (TSB) from PMC-Sierra Inc. [34].

In the next chapter, we present the methods and results on formal verification of the
TMRS. We briefly explain the functionality and the structure of the TMRS when in
receive slave SCI-PHY [35] mode of operation, and then construct a signal cross-reference
between the TMRS and the target protocol in order to match their interface signals. To
avoid state space explosion, we perform environment abstraction and datapath abstraction
techniques presented in Section 3.5. Also, an abstracted model of the TMRS is built using
symmetry to speed up the verification process. After establishing a proper environment,
we consider 13 queries of the TMRS, including liveness properties and safety properties.
Property decomposition was performed to uncover a bug inside the design. In this experi-
ment, we discovered several mismatches between the TMRS design, its specification, and

the SCI-PHY protocol.
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Chapter 4

Model Checking of TMRS Using FormalCheck: A Case
Study

In the previous chapter a practical verification approach was explained. This chapter pre-
sents a case study which exercises this methodology. The design units (the basic building
blocks at RT level) are usually not very large, and as a result state space explosion is not a
problem in the verification of each design unit. This problem is frequently encountered
when verifying the design at the higher levels of the implementation like verifying a core
or a whole chip.

This chapter presents the methods and results on formally verifying the implementation
of the Receive Slave SCI-PHY (Saturn Compatible Interface for ATM-PHY devices) [35]
mode of the Transmit Master/Receive Slave (TMRS) design [34] using FormalCheck [5].
The TMRS Telecom System Block (TSB) (designed by PMC-Sierra Inc.), was chosen to
be verified as a research case to experiment the benefits of formally verifying the control

blocks of a design using FormalCheck over using simulations to find bugs. This megacell

42



implements the output port of a cell interface. It can be configured to operate either as a
bus master or a bus slave. The TMRS supports SCI-PHY Level 2 [35] protocol and ANY-
PHY (proprietary protocol of PMC-Sierra). SCI-PHY Level 2 protocol is a superset of
UTOPIA (Universal Test & Operations PHY Interface for ATM) Level 2 protocol [2].
The TMRS is made of two major modules namely “Internal Register CBI interface”
and “SCAN Interface”. The SCAN module is responsible for the main functionality of the
TMRS block, whereas the CBI (Configuration Block Interface) module handles the con-
figuration and the test route of it. In this experience the verification of the SCAN module

was of interest.

4.1 The TMRS Telecom System Block

The TMRS [34] implements the output port of a cell interface. It can output the cell data
either in 8-bit or 16-bit wide format at clock rates up to 52 MHz. Data transfers are cell-
based, that is an entire cell is transferred to one PHY device before another is selected. It
outputs cells on SCI-PHY compatible interface.

The 8-bit wide, variable data structure in SCI-PHY interface is shown in Figure 4.1. A »
user defined (UDF) byte is included in the data structure to allow Header Error Control
(HEC) generation to be performed either in the ATM layer device or the PHY layer
device. The prepended bytes are used by ATM switch cores in system specific ways to
route the cell through those cores [35].

The TMRS block is designed to interface directly to a Multi-channel Cell FIFO (MCF).
It directly supports up to 32 logical channels each corresponding to a physical layer ATM

device. Each logical channel corresponds to a FIFO channel in the external FIFO. When
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the TMRS is operated as a bus slave, it autonomously multiplexes the traffic from up to 32
logical channels and presents them as a single cell stream. The logical channel is identified

by the first word of the cell data received from the FIFO.

Bit 7 Bit0
Word 0 Extended PHYID[4:0]
(optional) Address
Word 1 User Prepend
(optional)
Word 2 User Prepend
(optional)
Word 3 User Prepend
(optional)
Word 4 User Prepend
(optional)
Word S Hi
Word 6 H2
Word 7 H3
Word 8 H4
Word 9 HS /UDF
(optional)
Word 10 PAYLOAD1
Word 57 PAYLOAD48

Figure 4.1 : 8-bit SCI-PHY Cell Format

4.1.1 The TMRS Icon and Pin Descriptions

The Icon of the TMRS is presented in Figure 4.2. In this study only the control part of
TMRS (not the data-path) in Receive-Slave SCI-PHY mode is of interest, therefore we

only describe the control pins used in this mode of operation.
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OCA_OEB signals are used.

Figure 4.2 : TMRS Icon

tocol, otherwise it supports ANY-PHY protocol.
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The Output Port Master Select (OMASTER) pin determines the direc-
tion of the output port control signals. When OMASTER is low, the output port of the
device in which the TMRS is integrated is a bus slave and complies with the SCI-PHY or

ANY-PHY receive protocol. The TMRSSEL, OAVALID_I, OENB_I, OCA_O, and

cell transfer operations. This pin is only used when the TMRS is configured as a slave, i.e.,



OMASTER is low. If the TMRSSEL is sampled high when OAVALID_I is high, the
TMRS is enabled for polling. The TMRS is selected for a cell transfer when TMRSSEL
and OENB_I were sampled high in the previous clock cycle and OENB_I is sampled low

in the current clock cycle. The cell transfer is performed while OENB_I is maintained low.

OAVALID I: The Output Port Address Valid (OAVALID_I) output indicates that the
bus master is asserting a valid PHY address for polling purposes. In SCI-PHY mode,
OAVALID_I is active high. In slave mode (OMASTER is low), the OCA_O output is
driven on the clock cycle following OAVALID_I and TMRSSEL being sampled high. If
OAVALID_1 is sampled low, OCA_O becomes high impedance. The TMRS supports poll-

ing in contiguous cycles if OAVALID_I is held high.

OENB I: The active low Output port Enable (OENB_I) input is used to initiate
the transfer of cells from the cell output port to a PHY device when TMRS is in Slave
mode. In SCI-PHY mode, when OENB_I is sampled low and the TMRS is selected, a
word is output on bus ODAT[15:0] on the following first clock cycle. The selection occurs
when OENB_I and TMRSSEL were last sampled high. To t;;nsfer a complete cell
OENBL_I has to be maintained low for the period of cell transfer. The period varies
depending on the bus width and cell format. OENB_I can be deasserted any time during

the cell transfer to perform word level flow control, but it is assumed that no other devices

will be selected when OENB_I is reasserted.

OCA O: The Output Cell Available (OCA_O) output provides cell level flow
control. OCA_O is only used if the MASTER input is low (Slave mode). The TMRS indi-

cates the presence of a cell to transfer via the OCA_O output. When OAVALID_I and
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TMRSSEL are asserted, OCA_QO is driven to high if at least one line of the CMTY[31:0]
status bus is low and the prefetch of the next FIFO is finished. In SCI-PHY mode, the
OCA_O assertion occurs on the first clock cycle following OAVALID_I and TMRSSEL
assertion. If all CMTY[31:0] lines are high or the prefetch of the next FIFO is not finished,
OCA_O is deasserted. Note that the CMTY line conesponding to the FIFO of the current

transfer is always masked (i.e., always considered to be set to high).

OCA QOEB:  The Output Cell Available Output Enable (OCA_OEB) is an active low
signal intended to be wired directly to an active low pad output enable. It is used to control
the direction of the OCA pin at the device level. In Slave mode (OMASTER low),
OCA_OEN becomes low if the TMRS is selected for polling; otherwise, OCA_OEB is

high.

OBUSS8: The Output port Bus width select (OBUSS) selects the interface bus
width. When OBUSS is high, only ODAT[7:0] present valid data and ODAT[15:8] are

forced low. When OBUSS is low, all ODAT[15:0] inputs are used.

OFCLK: The Output FIFO Clock (OFCLK) is used to read words from the
TMRS cell output port. OFCLK must cycle at a 52 MHz or lower instantaneous rate. All

output port SCI-PHY bus timing is relative to the rising edge of OFCLK.

CMTY[31:0]: The Channel Empty bus (CMTY[31:0]) input reports the cell availabil-
ity of external FIFOs or of an external FIFO channel. A logic low on a line of the
CMTY[31:0] indicates the corresponding channel of the FIFO has at least one complete

cell available to transfer. CMTY{[31:0] is sampled on the rising edge of OFCLK.
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SYSCLK: The System Clock (SYSCLK) input is used to synchronize the FIFO

interface. SYSCLK must cycle at a 52 MHz or lower instantaneous rate.

oSocC: The Output Start Of Cell (OSOC) marks the start of the cell on the
ODAT[15:0] bus. When operating in SCI-PHY mode, OSOC assertion indicates that the
first word of the cell structure is present on the ODAT[15:0] stream. When operating in

Slave mode, OSOC is valid when OENB_I was asserted in the previous cycle.

ODAT QEB: The Output Data Enable (ODAT_OEB) is an active low signal intended

to be wired directly to an active low pad output enable for the ODAT[15:0] bus, OSOC and

OPRTY signals.

PRELEN[1:0]: The Prepend Length (PRELEN[1:0]) bits determine the number of

prepended bytes or words in each cell. The prepended bytes/words are added in addition to
the address prepend used in Slave or ANY-PHY mode. When OBUSS is high, PRELEN
can have the values 0, 1, 2, and 4, which is the number of prepended bytes. When OBUSS8

is low, PRELEN can have values 0, 1, and 2, which is the number of prepended words.

HECUDEF: The HECUDF bit determines whether or not the HEC/UDF octets are
included in the cell received from the FIFO. When set to high (the default), the HEC and
UDF octets are included. When set to low, the third word of the 27-word ATM cell is omit-
ted and a 26-word cell (plus appended words) is transferred. If OBUSS is high, the fifth
byte of the 53-octet ATM cell is omitted and a 52-byte cell (plus appended bytes) is trans-

ferred.

INADDUDF: The INADDUDF output indicates the state of the INADDUDF bit in

the configuration and status register. This bit relocates the word identifying the logical
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channel in the H5/UDF field when operating in SCI-PHY slave mode. When this bit is set

to high and the 8-bit cell format is used, the logical channel is identified in the HS byte

(Figure 4.1).
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Figure 4.3 : Block diagram of the TMRS
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4.1.2 Block Diagram of the TMRS

The TMRS consists of two major blocks, the CBI block and SCAN block (Figuré 43). It
consists of about 7500 gates. The CBI block is used only for the configuration and test
interface and the SCAN block drives the main functionality of the TMRS. The SCAN
block of TMRS consists of four main blocks, namely, Datapath, Polling controller, FIFO
interface controller and Transfer controller. The Polling controller block handles the con-
trol signals related to the polling of the TMRS in the Receive Slave mode and polling the
PHY devices in Transmit Master mode. The FIFO interface controller block decides if any
of the 32 FIFOs have a cell available and also decides which FIFO channel should be
selected. The Transfer controller block determines when the transmission of a cell starts,

and the Datapath block actually handles the transmission of data.

4.1.3 SCI-PHY Receive Slave Operation

When operating in Receive Slave SCI-PHY mode, the TMRS works as a single PHY!.
The TMRS will respond to a polling request when OAVALID_I and TMRSSEL pins are
asserted. The TMRS autonomously reflects the cell availability of all FIFO channels as
indicated by the CMTY[31:0] input bus. To compensate for the Multichannel Cell FIFO
latency, the TMRS prefetches the first five bytes/words of the next non-empty FIFO before
the next transfer occurs. So if it cannot finish the prefetch cycle before the end of the cur-

rent transfer, OCA_O will not be asserted upon a polling request, even if some FIFOs are

1. The physical layer (PHY) provides for transmission of cells over a physical medium connecting two
ATM devices.
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non-empty. When a polling request occurs simultaneously with a cell being transferred,
the TMRS will mask the CMTY line associated with the FIFO of the current transfer.
Upon a polling selection, OCA_OEB signal is synchronous to the OCA_O.

A cell transfer is affected by the assertion of OENB_I. The TMRS is selected for trans-
fer when the TMRSSEL input is high on the clock cycle prior to OENB_I assertion. The
first word of the cell data received from the FIFO identifies the logical channel. Alterna-
tively if INADDUDF field in the control register is set to one, the word identifying the
FIFO channel is placed in the H5/UDF field (Figure 4.1). Upon selection, the TMRS
transfers a cell from the next available FIFO channel. The TMRS services non-empty

FIFO channels in a round robin fashion.

4.2 Model Checking of the TMRS Based on SCI-PHY Level 2 Protocol

The SCI-PHY protocol was defined within the SATURN Group [35] as a standardized
cell-based interface between ATM layer and PHY layer devices to support single-PHY
and multi-PHY applications. SCI-PHY Level 2 is an extension of SCI-PHY, that leaves all
of the basic specifications and operations unchanged, but adds two important interface
specifications (1) a Physical Medium Dependant (PMD) to Transmission Convergence
(TC) interface specification that is. compatible with all major vendors of 155 and 622
Mbit/s PMD and TC devices, and (2) an ATM Layer to Switch interface specification that
provides a general purpose “extended-cell” format that will accommodate most ATM
Layer implementations [35].

To be able to match the TMRS interface signals with SCI-PHY Level 2 interface sig-

nals, we based our verifications on the following environment assumptions.
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1. The interface signal RCA in SCI-PHY is assumed to be the output of a buffer which its
inputs are OCA_O and OCA_OEB, two interface signals of the TMRS. It is assumed
that the OCA_O signal is the input of the buffer and the OCA_OEB is an active low

enable signal of that buffer, as shown in Figure 4.4.

OCA O RCA

OCA_OEB

Figure 4.4 : The OCA_O and OCA_OEB signals in the TMRS, and RCA signal in SCI-PHY protocol

2. TMRSSEL input of the TMRS is assumed to be one of 32 output bits of a 5x32

decoder, which decodes RADDR[4:0] of SCI-PHY interface signal, as shown in Fig-

ure 4.5.

TMRSSEL| MRS

RADDRI[0] —
RADDR([1] —>
RADDR[2] —>
RADDR[3] —>
RADDR[4] —

AmMmogonmuo

TMRSSE TMRS

Figure 4.5 : RADDR[4:0] bus to TMRSSEL signal
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Table 4.1 gives the name cross-reference between the TMRS pins when in Receive
Slave SCI-PHY mode, and Receive interface signals in SCI-PHY protocol. Other TMRS
interface signals are set to specific values to work in Receive Slave SCI-PHY mode. They

are explained in Section 4.2.1.2.

Table 4.1: SCI-PHY Signal Cross-Reference

SCI-PHY Receive TMRS Receive Slave
RFCLK OFCLK

RRDENB OENB_I

RSOC 0soC

RCA OCA_O, OCA_OEB
RDAT[15:0] ODAT[15:0]
RxPRTY OPRTY
RADDR(4:0] TMRSSEL

RVALID OAVALID_I

4.2.1 Environment for the SCAN Block

State space explosion is a well-known problem in FSM-based verification approaches
[12]. In digital hardware designs, the state space increases exponentially with the number
of latches of a design. Because model-checking algorithms are based on state space explo-
ration, their efficiency is also limited by this phenomenon. In this section, we describe our
methodology of how to deal with the state space explosion in the model checking.

The SCAN block of TMRS consists of four main blocks (Figure 4.3), namely, Datap-
ath, Polling controller, FIFO interface controller and Transfer controller, where the Polling
controller, FIFO interface controller and Transfer controller were of interest in our study.
In order to make the proper environment for these three blocks and also avoid the state

space explosion, we used the following techniques: model abstraction, environment
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abstraction using Electronic Scissors and Reduction Seeds, and datapath abstraction using

Constraints in FormalCheck.

4.2.1.1 Model and Environment Abstractions

As explained before, we were only interested in the verification of the control blocks of

TMRS. To reduce the state space and speed up the verification, we tried to trim the TMRS

block by eliminating the blocks that did not have any or very little effect on the three con-

trol blocks. The abstractions and reductions adopted are as following:

As the SCAN block of the TMRS was the core to be verified, we separated this block
from the rest of the TMRS design, hence, we eliminated the CBI block which is used
for configuration and test purposes.

The INPUT_MUX module was excluded from the rest of the SCAN block using Elec-
tronic Scissors in FormalCheck. Then, assumptions were made about the behavior of
this component to create a proper design environment for verification of the control
blocks. To do so, we modeled the outputs of this block using Constraints and State
Variables. These Constraints and State Variables are expressed in Sections 4.2.1.2 and
42.1.3.

The majority of the state holding registers and latches are in datapath, therefore, the
DATAPATH module of the SCAN block was removed using Electronic Scissors in
FormalCheck.

Aside from the state space explosion problem, the other problem we were facing was
defining proper queries. The origin of these problems were as following: (1) we had to

consider two or sometimes three different specifications to be able to define one query,
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(2) the signal names in the specification of the TMRS did not always match with the
ones in the design. This inconsistency made it extremely difficult to observe the cor-
rect behavior of signals, (3) the specification of the TMRS was not up to date. To speed
up the process of defining correct queries and as a result reducing the overall verifica-
tion time, we made an abstracted model of the SCAN block using symmetry reduction
technique. The abstracted model supports only 8 PHY devices. Once the verification
of the queries for the abstracted model succeeded, the same queries on the model of
TMRS which supports 32 PHY devices, were verified.

In the verification of TMRS, we used the Iterated algorithm for the properties which
were consuming too much of memory. Also to reduce the memory usage even more in
those properties, we introduced Reduction Seeds (refer to Chapter 2, Section 2.5). By
defining some of the signals as Reduction Seeds, we are reducing the explored state
space for model checking and hence improving performance. Assigning Start as Input
reduction value to an element will initially free it. It starts as a primary input but For-
malCheck can make it active again if it is determined that the logic driving the design
element cannot be pruned. The Iterated reduction algorithm was used for most of the
properties, when verifying the original model of the TMRS. The reduction algorithms

and Reduction Seeds used for each one of the properties are explained in Section 4.2.3.

4.2.1.2 Defining Proper Environment and Datapath Abstractions

In FormalCheck a query is made up of both properties and Constraints, where the Con-

straints establish the operating environment for the design. In formal verification all reach-

able states are explored. By adding Constraints to the properties we reduce the state space
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explored in verification and therefore improve the overall performance, which means less

CPU time and/or memory usage [9]. On the other hand, some of the datapath elements do

not contribute to the control flow of the design, therefore, placing restrictions on the data

values of these elements will reduce the reachable state space as well. In our experiment,

we defined a number of Constraints as default on all of the properties used to verify the

TMRS.

We can classify these Constraints into two main categories.

L. The class of Constraints which establish an operating environment

A clock Constraint on OFCLK signal, starting with high for one crank! and then
low for one crank.

A Clock Constraint on SYSCLK signal, the same as OFCLK.

A Reset Constraint on RST signal, starting with high for two cranks and then goes
to low forever.

A Group Constraint named SCIPHY_Slave. This group is used to drive the TMRS
to SCI-PHY slave mode. The two signals under this group, ANYPHY and OMAS-
TER signals, are set to low.

A Group Constraint named STABLE_INPUTS. This Constraint was defined to
create a suitable environment for the TMRS. By adding this Constraint the input
signals to TMRS will stay stable for the whole duration of the OFCLK and they
only change with the rising edge of OFCLK. The signals included in this group are
as following:

1. CMTY[31:0] (or CMTY[7:0] in the abstracted model of the TMRS)

1. In FormalCheck, a crank is considered as the propagation delay of a flip-flop. Since there is no concept
of the absolute time, FormalCheck uses a crank as the unit of time and observes the events relative to this

unit.
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2. OENB_I input signal

3. TMRSSEL input signal

4. OAVALID_I. We have defined two Constraints on this signal: (1) OAVALID_I
has to be stable during one clock cycle to meet the required timing limits. (2)
Based on SCI-PHY Level 2 standard, “To avoid contention while polling, the
ATM layer device shall present a valid address no more than once every other
RFCLK period. It is recommended that RADDR[4:0] be set to OxIF when
invalid. When supporting 32 PHY links, RAVALID is asserted simultaneously
with a valid address on RADDR[4:0] [35]. That means in the TMRS, the
OAVALID_I signal should not stay high for two consecutive clock cycles. This
is the second Constraint for this signal.

Since the INPUT_MUX block was eliminated from the design by the Electronic

Scissors, we had to use Constraints on the outputs which where used by the control

blocks of the SCAN block. These general Constraints are as following:

1. We had to define two State Variables, which we named Oavalid_I_Reg and
TMRSSEL_Reg (refer to Section 4.2.1.3), to model the behavior of
INPUT_MUX block. Then, we used two general Constraints, which were
named Oavalid_I_Reg and TMRSSEL_Reg as well, to map the State Variables
to the corresponding output signals of the INPUT_MUX block.

2. OMASTER_Noreg, OBUS8_Noreg, and ANYPHY_Noreg. These Constraints
simply connect the Omaster, Obus8, and Anyphy input signals, to the
Omaster_Noreg, Obus8_Noreg, and Anyphy_Noreg (the outputs of the

INPUT_MUX block), respectively.
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II. The class of Constraints which perform datapath abstractions

* A Group Constraint named Default_Mode. This group is limiting the TMRS to
work in the 8-bit mode and to transfer cells with the minimum length possible. The
constrained signals in this group are:
1. HECUDF set to high.
2. INADDUDF set to low.
3. OBUSS set to high.
4. PHYDEV set to 31 (set to 7 for the abstracted model of the TMRS).

5. PRELEN set to “00”.

4.2.1.3 State Variables

State Variables can be used as memory elements to either capture a sequence of events or
just to be used as a latch. In our experiment, the two State Variables, Oavalid_I_Reg and
TMRSSEL _Reg, were defined to model the behavior of two outputs of the INPUT_MUX
block. A third State Variable, WasSelected, was used to detect the selection of the TMRS
by master right after completing a cell transfer, when it is not in back-to-back transfer

mode. These State Variables are defined as following.

®* Oavalid_I_Reg: Range 0 to 1 Initial: 0
If (not @RstDone) then Oavalid_I_Reg := 0;
elsif ((@CLKrising) and (@RstDone))} then Oavalid_I_Reg := Oavalid_I;
else Oavalid_I_Reg := Oavalid_I_Reg:;
end if;
¢ TMRSSEL_Reg: Range 0 to 1 Initial: O
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If (not @RstDone) then TMRSSEL_Reg := 0;

elsif ((@CLKrising) and (@RstDone)) then TMRSSEL_Reg := Tmrssel;
else TMRSSEL_Reg := TMRSSEL_Reg:;
end if;
®* WasSelected: Range 0 to 1 Initial: 0
if ((@TMRSselected) and (@CLKrising) and (@RstDone))
then WasSelected := 1

elsif ((@TransferDone) and (Oenb_I = 1) and (@WaitSelectedState))

then WasSelected := 0
else WasSelected := WasSelected:
end if;

4.2.2 Expression Macros

Often, the same complex expression is needed in several behaviors. FormalCheck supports
expression reuse through Macros. Any expression that is given a user supplied name
becomes a Macro, and is globally available [S]. We created some expression Macros

inside FormalCheck to make the properties more comprehensive. The following lists the

Macro names and also their contents!.

1. @CLKrising: scan:OFCLK = rising

2. @FIFOnotEmpty: scan:Polling_Sm_Inst:Allfifoempty =0

3. @PrefetchDone: scan:Transfer_SM_Inst:Prefetch_Not_Rdy =0
4. @RCAhigh: (scan:Oca_0O = 1) and (scan:Oca_Oeb = 0)

1. The @ sign in front of a Macro shows that this is a Macro not a signal.
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5. @RstDone:
6. @TMRSpolled:

7. @TMRSselected::

8. @TransferDone::

9. @Larch4State:

10. @StartTxState:

11. @TMRSselectedLastCC:

12. @ WaitSelectState:
13. @IncCptState:

14. @MiddleOfTx:

4.2.3 Properties

scan:Rst =0

(scan:Tmrssel = 1) and (scan:Oavalid_I = 1)
(scan:Oenb_I = 0) and
(scan:Transfer_Sm_Inst:Oenb_I_Reg = 1)

and (scan:Tmrssel_Reg = 1)
(scan:Transfer_Sm_Inst:Rec_Cpt =
scan:Transfer_Sm_Inst:Cell_Length)
scan:Transfer_Sm_Inst:Slave_State = Sms_Latch4
scan:Transfer_Sm_Inst:Slave_State = Sms_Start_Transf
((scan:Transfer_Sm_Inst:Tmrssel_Reg2 =1) and
(scan:Transfer_Sm_Inst:Oenb_I_Reg2 = 1)) and
(scan:Transfer_Sm_Inst:Oenb_I_Reg = 0)
scan:Transfer_Sm_Inst:Slave_State = Sms_Wait_Sel
scan:Transfer_Sm_Inst:Slave_State = Sms_Inc_Cpt
(scan:Transfer_Sm_Inst:Rec_Cpt /=

scan:Transfer_Sm_Inst:Cell_Length)

After establishing a proper environment, we consider 13 queries of the TMRS, including

liveness and safety properties. Each query contains only one property and the Constraints

are all global, except for one (which will be explained on the spot). The following proper-

ties have been defined using the SCI-PHY Level 2 protocol, the specification of the

TMRS, and the test benches already written to test this design. Usually a test plan can help

60



defining proper queries, but since there was not a test plan written for this design we tried
to take advantage of the test benches. The comment lines in the test benches helped us

understand the properties that the verification engineer had in mind to perform functional

simulation.

Table 4.2 shows a brief description of the properties established to verify the Receive
Slave SCI-PHY mode of the TMRS, the sources of these properties, and the status of the
TMRS (Polled, Selected, Cell Transfer, etc.). In this section, we only talk about the prop-
erties for which we performed Property Decomposition or Vertical Verification techniques
on them. Experimental results of the verification of these properties for the abstracted and
complete TMRS models are summarized in Tables 4.3 and 4.4, respectively. To obtain a
complete description of all properties and the reduction techniques used for each one, refer

to Appendix A.

Table 4.2: Properties of Receive Slave SCI-PHY mode of the TMRS

Property Source(s) Brief Description of Property ';‘MRS
tatus
Property_1 SCI-PHY Doc. OENB_I=0 & TMRS Selected then OSOC =1 & Selected
Test bench @StartTxState
Property_1A SCI-PHY Doc. TMRSselectedLastCC & @ WaitSelectState then Selected
Test bench @StartTxState
Property_1B SCI-PHY Doc. OENB_I =0 & TMRS Selected & (@Latch4State or Selected
Test bench @WaitSelectState) then OSOC = 1 & @ WaitSelect-
State
Property_2 SCI-PHY Doc. If TMRS is polled and all CMTY/[31:0] lines are high  Polled
TMRS Spec. or the prefetch of the next FIFO is not finished,
OCA_O will be deasserted
Property_3 TMRS Spec. In Back To Back Transfer Mode: @TransferDone & Selected
OENB_I = 0 & AllFifoEmpty = 1 then ODAT_OEB =
1
Property_4 SCI-PHY Doc. No PHY shall drive RCA (OCA_O) upon sampling ANY
RAVALID (OAVALID_I) low
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Table 4.2: Properties of Receive Slave SCI-PHY mode of the TMRS

Property Source(s) Brief Description of Property TMRS
Status
Property_5 SCI-PHY Doc. @TMRSpolled & (more cell available to transfer & Polled
TMRS Spec. @PrefetchDone) then OCA_O =1
Property_SA TMRS Spec. If there is a cell available to transfer then Eventually ANY
@PrefetchDone
Property_5B SCI-PHY Doc. @TMRSpolled & (assuming @ PrefetchDone) then Polled
TMRS Spec. OCA_O=1
Property_6 TMRS Spec. In Back To Back Transfer Mode: @TransferDone & Selected
OENB_I =0 & New_Cell_Transf_Rdy = 1 then Even-
tually OSOC =1 & @StartTxState
Property_6A TMRS Spec. In Back To Back Transfer Mode: @ TransferDone & Selected
OENB_I =0 & New_Cell_Transf_Rdy = I then Even-
tually @StartTxState
Property_6B TMRS Spec. In Back To Back Transfer Mode: @TransferDone & Selected
OENB_I =0 & New_Cell_Transf_Rdy =1 then Even-
tually OSOC =1
Property_7 SCI-PHY Doc. TMRS always expects a complete cell transfer but Cell
TMRS Spec. supports transfer interruption by deassertion of Transfer
Test bench OENB_I
Property_8 SCI-PHY Doc. If master selects the TMRS before the prefetchcycleis  Selected
done, the TMRS will not start a cell transfer in the next
C.C.
Property_9 SCI-PHY Doc. When operating in the Slave mode the TMRS moni- Cell
TMRS Spec. tors the input signal OENB_I to validate the data trans- Transfer
fer
Property_10 SCI-PHY Doc. TMRS Selected & OENB_I =0 then ODAT_OEB =0 Selected
TMRS Spec.
Property_11 TMRS Spec. TMRS not Selected & @TransferComplete then Transfer
ODAT_OEB =1 Done

Property_1: According to the SCI-PHY protocol: “When RRDENB is sampled low by
the PHY layer device, the RSOC signal will be accepted by the ATM layer device on the
next rising edge of RFCLK” [35]. We expressed this property for the TMRS as following:
“If OENB_I is sampled low by the PHY layer device, and the TMRS is selected (TMRS-

SEL and OENB_I signals were sampled high in the previous clock cycle), on the next ris-
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ing edge of OFCLK the transmission of a full cell will start and the OSOC signal will be
set to high”. In FormalCheck, this property is expressed as follows.

Property: property. 1

Type: Always

After: (@TMRSselected) and (@WaitSelectedState) and (BCLKrising)

Always: OSOC = 1 and @StartTxState

Options: Fulfill Delay: 0 Duration: 1 Count of @CLKrising

Tables 4.3 and 4.4 report that the verification of Property_1 was “Terminated”. Based
on the specification of the TMRS “the START_TRANSEF state, starts the transfer by
asserting OSOC signal”, therefore, Property_l1 expects the FSM to move to
START_TRANSEF state and the OSOC signal to be set to high in the same clock cycle. By
examining the *“verify.out” file, it was observed that no transition was enabled for this
property during the verification process. This means the Enabling Condition was irrelevant
to the Fulfilling Condition. The Transfer_Slave state machine is actually made of two par-
allel processes (state machines), one of them generates the OSOC as well as other control
signals, and the other one determines the state of the Transfer_Slave state machine in the
next clock cycle. To discover the cause of termination, this property was decomposed to
the following two properties, Property_lA which checks for the state transition to
START_TRANSF state, and Property_1B which checks for the assertion of the OSOC

signal. These two properties are stated as following.

Property_lA: If the TMRS is in the WAIT_SEL state and the TMRS was selected in the

previous clock cycle (TMRSSEL_REG?2 and OENB_I_REG?2 signals are sampled high),
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and OENB_I signal was sampled low in the previous clock cycle (OENB_I_REG is low),
on the next rising edge of OFCLK the TMRS will be in START_TRANSF sate. In Formal-

Check, this property is expressed as follows.

Property: property 1A
Type: Always
After: (@TMRSselectedLastCC) and (@WaitSelectState) and (@CLKrising)

Always: @StartTxState

Options: Fulfill Delay: 0 Duration: 1 Count of @CLKrising

Property_1B: If the TMRS is in the LATCH4 or WAIT_SEL states and OENB_I signal is
sampled low and the TMRS is selected (TMRSSEL_REG and OENB_I_REG signals are
sampled high), on the next rising edge of OFCLK the transmission of a full cell will start
(the OSOC signal will be set to high) and the TMRS will be in WAIT_SEL sate. In For-

malCheck, this property is expressed as follows.

Property: property. 1B

Type: Always

After: {@TMRSselected) and (€Latch4State or @WaitSelectState) and
(@CLKrising)
Always: Osoc = 1 and @WaitSelectState

Options: Fulfill Delay: 0 Duration: 1 Count of 2CLKrising

The verification of Property_lA and Property_1B revealed the origin of the problem,
which caused terminating the .veriﬁcation of Property_1. The Transfer_Slave state
machine proceeds to START_TRANSEF state one clock cycle after the OSOC signal (Out-
put Start Of Cell) is asserted. Therefore, the OSOC signal and START_TRANSEF state are

not synchronous.



Property_3: In Receive Slave SCI-PHY back-to-back transfer mode, when the external
master device does not deassert OENB_I at the end of a transfer, the TMRS remains
selected for another cell transfer. If all FIFOs are empty the TMRS will deassert
ODAT_OEB and will wait to be reselected [34]. In FormalCheck, this property is
expressed as follows.

Property: property._3

Type: Always

After: (@TransferDone) and (Oenb_I = 0) and

(Polling Sm_Inst: Allfifoempty = 1) and (@RstDone)

Always: Odat_Oeb =1

Options: Fulfill Delay: 0 Duration 1 count of @CLKrising

It is observed from Tables 4.3 and 4.4, that the verification of Property_3 failed in both
models. This means even after a cell transfer is done and there are no more cells to trans-
fer, ODAT_OEB will still be asserted. This problem was taken into consideration by the
designer of the TMRS and was fixed. In the new version of the design, when in the back-
to-back transfer mode, after completing a cell transfer the ODAT_OEB will stay asserted
and the data on the ODAT bus will be the byte/word which was transferred last. The mas-
ter is capable of determining the end of a cell (by counting the number of bytes/words it

has received), so the master waits for the assertion of the OSOC signal (from the TMRS).

Property_5: According to the SCI-PHY protocol: “Each PHY link shall have a unique
address corresponding to a value between 0 and 31. Upon sampling its address with the

rising edge of the RFCLK, a PHY must drive RCA to indicate whether it has an entire cell
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in its buffer” [35]. In TMRS this property is expressed as following: “When Oavalid_I and
TMRSSEL are asserted (TMRS is polled), OCA_O is driven to high in the next clock
cycle, if at least one of the CMTY[31:0] status bus is low and the prefetch of the next
FIFO is finished” [34]. In FormalCheck, this property is expressed as follows.

Property: property. S

Type: Always

After: (@TMRSpolled) and (@FIFOnotEmpty) and (@PrefetchDone) and

(€CLKrising) and (@RstDone)

Always: @RCAhigh

Options: Fulfill Delay: 0 Duration: 1 Count of @CLKrising

In Property_S, the Polling and Transfer controllers are interacting blocks. The Transfer
controller uses the internal output of the Polling controller to determine whether a cell is
available, and asserts its internal output to the Polling controller when the prefetch cycle
of that cell is done. When the TMRS is polled by the master, the Polling controller uses
the internal output of the Transfer controller to assert/deassert the RCA signal. The verti-
cal verification described in Section 3.3 could be applicable for this property in case of
state explosion. To verify Property_5 using sub-properties, we need to add the following

State Variable and Constraints.

1. A State Variable Named New_Cell_Available. This State Variable becomes 0 when
there are no more cells (besides the one that is currently being transferred) available,
and 1 when there is at least one more cell to transfer. This State Variable was defined
to be able to describe the New_Cell_Tx_Rdy Constraint. It will be explained more

later.
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2. Since Property_5 is verified under the condition that there exists a cell to transfer, a
Constraint named Channel_Not_Empty has to be defined. This Constraint makes sure
that there is a FIFO that has a cell to transfer (besides the cell that is currently being
transferred).

3. A Constraint to assume the property of Polling_Sm block (this Constraint is verified as

Property_6A1). This Constraint is defined as following:

Constraint: New_Cell Tx R4Ay

Type: Always

After: New_Cell Available = 1 and @CLKrising

Assume Always: Polling Sm_Inst:New_Cell_Transf Rdy = 1
Unless: New_Cell_Available = 0

Options: (None)

In FormalCheck when defining the Fulfill Delay to slide the verification window (refer
to Chapter 2), it is mandatory to define the Duration of the Verification Window as well.
New_Cell_Transf_Rdy signal becomes high after two clock cycles and, it stays high unless there
are no more cells available to transfer. Since the duration of the New_Cell_Transf Rdy signal
being high is not known, we could not use the Fulfill Delay option, therefore, we defined the
State Variable New_Cell_Available to specify the behavior of New_Cell_Transf_Rdy sig-

nal. Now we can define the property of Transfer controller (Property_5A) as following.

Property_SA: Prefetch of a cell will eventually be done, assuming there is at least one
cell available and the New_Cell Transf_Rdy is asserted (the assertion of

New_Cell_Transf_Rdy happens two clock cycles after a cell is available).
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Property: property S5A

Type: Eventually

After: (@CLKrising) and (@RstDone)
Eventually: @PrefetchDone

Options: (None)

After verifying the property of Transfer controller block (Property_5A), this property is
assumed to verify the property of Polling controller (Property_5B). Therefore, turning

Property_S5A to a Constraint we have:

Constraint: PrefetchIsDone

Type: Eventually

After: (Polling Sm:New_Cell_Transf Rdy = 1) and (ECLKrising) and (@RstDone)
Assume Eventually: @PrefetchDone

Unless: Polling Sm:New_Cell_Transf Rdy = 0

Options: (None)

Then, assuming the PrefetchIsDone Constraint, Property_5B is defined as following.

Property_5B: When Oavalid_I and TMRSSEL are asserted, OCA_O is driven to high in
the next clock cycle, if at least one of the CMTY[31:0] status bus is low and assuming the

prefetch of the next FIFO is finished. In FormalCheck, this property is expressed as follows.

Property: propefty;SB

Type: Always

After: (@TMRSpolled) and (@FIFOnotEmpty) and (@CLKrising) and (@RstDone)
Always: @RCAhigh

Options: Fulfill Delay: O Duration: 1 Count of @CLKrising
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The verification of Property_5 was done with no state space explosion problem. However
for experimental purposes, Properties SA and 5B were verified for the abstracted model of
the TMRS. As we can see, the application of the vertical verification on Property_5 was
possible, because of the one way interdependencies between the Polling and Transfer con-

troller blocks in this case.

Property_6: Based on the TMRS specification, “in Receive Slave SCI-PHY back-to-back
transfer, when the external master device does not deassert OENB_I at the end of a trans-
fer, the TMRS remains selected for another cell transfer” [34]. Hence, when the external
master does not deassert OENB_I at the end of a transfer, and at least one of the FIFOs
have a cell to transfer, the TMRS will eventually start transmitting the new cell.

We acquired from Property_1, that the OSOC signal and START_TRANSEF state of the
Transfer_Slave state machine are not synchronous. Accordingly, we had to decompose
Property_6 to two properties to be able to check for both the START_TRANSF state of the
FSM (Property_6A) and the OSOC signal (Property_6B), while in back-to-back transfer
mode. The queries of these two properties contain another Constraint, named BackTo-
BackTx, in addition to the default Constraints explained in Section 4.2.1.2. This Con-
straint puts the TMRS in the back-to-back transfer mode. Also to make matters easier, we
assumed no interruptions from the master will occur while transferring a cell, as well as
after the completion of a cell transfer (since a cell transfer with interruptions from the
master was verified through other queries, this assumption is considered safe). The Back-

ToBackTx Constraint is expressed in FormalCheck as follows.
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Constraint: BackToBackTx

Type: Always

After: (@IncCptState) and (@CLKrising)
Assume Always: Oenb_I = 0

Unless: (@StartTxState) or (@WaitSelectState)

Options: (None)

In FormalCheck, Propery_6A and Property_6B are expressed as following.

Property_6A:

Property: property._ 6A
Type: Eventually

After: (@TransferDone) and (Transfer_Sm_Inst:New_Cell Transf Rdy = 1) and
(@Clkrising)
Eventually: @StartTxState

Options: (None)

Property_6B:

Property: property. 6B
Type: Eventually

After: (@TransferDone) and (Transfer_Sm_Inst:New_Cell Transf Rdy = 1) and
(€Clkrising)
Eventually: (Osoc = 1) and (@LatchNext2State)

Options: (None)

The relationship between the Polling controller and Transfer controller in Property_6A

and Property_6B is linear, therefore, the vertical verification (refer to Section 3.3) could be
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applied in case of state explosion. To do so, each one of these properties can easily be
divided to two sub-properties, one of which will be the property of Polling controller block
(Property_6A1 and Property_6B1), and the other one the property of Transfer controller

block (Property_6A2 and Property_6B2). These properties are explained as following.

Property_6A1:

Property: property_ 6Al

Type: Always

After: (New_Cell_ Available = 1) and (@Clkrising)
Always: Polling_Sm:New Cell_Transf Rdy = 1
Unless: New_Cell_Available = 0

Options: (None)

Property_6B1 is exactly the same as Property_6Al, therefore we avoid rewriting this
property. Now assuming there is a cell available in the FIFO (Constraint
Channel_Not_Empty) and assuming Property_6Al (Constraint New_Cell_Tx_Rdy),

Property_6A2 and Property_6B2 should be verified.

Property_6A2:

Property: property_6A2

Type: Eventually

After: (@TransferDone) and (@Clkrising)
Eventually: @StartTxState

Options: (None)
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Property_6B2:

Property: property._6B2

Type: Eventually

After: (@TransferDone) and (@Clkrising)
Eventually: (Osoc = 1) and (@LatchNext2State)

Options: (None)

As we can see applying the vertical verification when the blocks have linear dependencies,
1s very straightfdrward. Properties 6A1 (6Bl), 6A2, and 6B2 were verified on the

abstracted model of the TMRS.

4.2.4 Experimental Results

All verifications in this work were executed on a HP9000 (440MHz) with 6144 MB RAM
and HP-UX11 operating system. For the rest of this chapter, we will call the model of the
TMRS which supports 32-PHY devices, the original model, and the model of the TMRS
which supports 8 PHY devices, the abstracted model to simplify the text. As mentioned in
Section 4.2.1.1, we first designed an abstracted model of the TMRS (which supports 8
PHY devices) and verified it. After completing the verification of the abstracted model of
the TMRS, we verified the original model of the TMRS using reduction techniques. The
experimental results are shown in Tables 4.3 and 4.4, respectively. These tables include the
reduction algorithm used for each query, the result (status) of the verification, the number
of reached states, the number of states in the model, the average state coverage, the CPU

time (real time) in seconds, and the memory usage in megabytes.
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As shown in Tables 4.3 and 4.4, the 1-Step reduction algorithm was used for the verifi-
cation of Property_3 in both models. The reason for that is, when the Iterated algorithm
was used the result of the verification was “Terminated”, but with 1-Step algorithm the
verification would finish with no problem. This shows that the Iterated algorithm is not
powerful enough to reduce the model efficiently for all kinds of queries, and in that case
the user has no choice but using the I-Step algorithm. It must be added here that, if a query
is verified using the Iterated algorithm, the verification result is guaranteed to be valid.

Properties 1A, 1B, 2, 4, 5, 6A, 6B, and 7 consume less CPU time and memory for the
original model compared to the abstracted model. The reason for that is, we used the Iter-
ated algorithm and Reduction Seed for the original model, whereas for the abstracted
model the default (1-Step algorithm) was used. Thérefore, the reduction algorithm used
for each property is an important key to reduce the CPU time and the memory usage. Also
we can see that if the properties are verified under the same conditions, by increasing the
number of PHY devices supported by the TMRS, the number of State Variables and the
memory usage will increase. The CPU time for property checking is related to different
parameters such as memory usage, number of State Variables, and the reduction method
used for that specific property. Feedbacks from the internal blocks can increase the CPU

time also.
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Table 4.3: Verification results of model checking on the abstracted model of TMRS

Reduction Status States State State Var. Real Time Memory
Properties  Algorithm Reached  Variables Avg. (seconds) Uﬁs;ge
Coverage (MB)
Property_1 Iterated  Terminated N/A N/A N/A N/A N/A
Property_1A 1-Step Verified 5.09e+09 114 97.37% 493 34.61
Property_1B 1-Step Verified 5.09e+09 114 97.37% 189 34.59
Property_2 1-Step Verified 5.09e+09 114 97.81% 126 34.73
Property_3 1-Step Failed 3.28e+08 115 95.22% 160 36.23
Property_4 1-Step Verified 5.09e+09 114 97.81% 84 34.20
Property_5 1-Step Verified 5.09e+09 115 97.39% 256 36.82
Property_5SA 1-Step Verified 1.81e+06 55 93.64% 32 22.93
Property_5B I-Step Verified 9.58e+05 42 96.43% 21 22.12
Property_6 1-Step Terminated N/A N/A N/A N/A N/A
Property_6A 1-Step Verified 3.83e+08 114 98.25% 161 29.90
Property_6Al 1-Step Verified 1.32e+06 42 97.62% 16 22.14
Property_6A2 1-Step Verified 3.31e+05 56 93.75% 20 2293
Property_6B 1-Step Verified 3.83e+08 114 98.25% 256 29.51
Property_6B1 1-Step Verified 1.32e+06 42 97.62% 16 22.14
Property_6B2 I-Step Verified 3.31e+05 57 93.86% 31 22.94
Property_7 1-Step Verified 5.09e+09 114 98.25% 208 34.74
Property_8 I-Step Verified 5.09e+09 114 97.37% 34 5.27
Property_9 1-Step Verified 5.45e+09 115 97.39% 23 5.27
Property_10 1-Step Verified 4.61e+03 20 97.50% I8 21.68
Property_11 1-Step Verified 5.14e+09 116 97.41% 136 34.63

74




Table 4.4: Verification results of model checking on the original model of TMRS

Reduction Status States State State Var. Real Memory

Properties  ALgorithm Reached Variables  Avg. Time Usage
Coverage (seconds) MB)
Property_1 Iterated  Terminated N/A N/A N/A N/A N/A
Property_1A Iterated Verified 2.93e+18 195 97.95% 29 7.22
Property _1B Iterated Verified 2.94e+18 195 97.95% 31 7.22
Property_2 Iterated Verified 4.12e+25 193 99.48% 21 7.21
Property_3 1-Step Failed 1.76e+18 251 97.41% 10370 126.79
Property_4 Iterated Verified 293e+18 196 98.21% 76 42.50
Property_5 Iterated Verified 2.93e+18 197 97.97% 73 38.87
Property_6 Iterated Terminated N/A N/A N/A N/A N/A
Property_6A Iterated Verified 2.06e+17 195 98.46% 86 42.03
Property_6B Iterated Verified 2.06e+17 195 98.46% 92 43.16
Property_7 Iterated Verified 293e+18 195 98.46% 73 42.50
Property_8 Iterated Verified 293e+18 195 97.95% 72 37.79
Property_9 Iterated Verified 3.09¢+18 196 97.96% 69 38.33
Property_10 Iterated Verified 2.93e+18 195 98.21% 75 38.96
Property_11 Iterated Verified 2.94e+18 196 98.21% 380 38.90

4.2.5 Further Errors Found

In our study and during the verification process, we found several errors in the specifica-

tion of the TMRS. These errors are not only related to the Receive Slave SCI-PHY mode

of TMRS, but also to the other modes such as Transmit Master for SCI-PHY/ANY-PHY

and Receive Slave ANY-PHY modes of operation. These errors were found by property

checking and also by code inspection. The errors are listed as following:

* The following fundamental mismatch was found between the specification of the
TMRS [34] and the SCI-PHY protocol [35].

According to the SCI-PHY protocol “To ensure backwards compatibility with single-
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PHY devices, the PHY for which a cell transfer is in progress shall not be polled until
completion of the cell transfer” [35]. The TMRS was basically designed to be polled
while transmitting a cell, so naturally it is not compatible with single-PHY devices. In
Receive Slave SCI-PHY mode the TMRS relies on the master device. If the master
device is not compatible with single-PHY devices and it polls the TMRS during a cell
transfer, the TMRS will reply and it will not care about being backwards compatible
with single-PHY devices.

In the Transmit Master SCI-PHY/ANY-PHY mode the following error in the specifi-
cation of the TMRS [34] was found.

The Master Transfer state machine is missing the “Prefetch #3 State” and
“Prefetch_Next_FIFO 3 states.

In the Receive Slave SCI-PHY/ANY-PHY mode the following eight errors in the spec-
ification of the TMRS were found.

- The Slave Transfer state machine is missing “Latch_3”, “Latch_4”, and

“Prefetch_Next_FIFO _3” states.

- The Slave Transfer state machine shows while in “Empty_Pipe” state,
if new_cell_transfer_rdy = 0 => Next_State = Load_Pipe_Cache_Pre_State

whereas in the TMRS design we have,

if new_cell_transfer_rdy = 1 => Next_State = Load_Pipe_Cache_Pre_State

- The Slave Transfer state machine shows while in “Empty_Pipe” state,

Wait_State

if transfer_end = 0 => Next_State
whereas in the TMRS design we have,

if transfer_end = 1 => Next_State = Wait_State
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- The Slave Transfer timing diagram for SCI-PHY and ANY-PHY are missing “Pre #3”,

“Latch #3”, and “Latch #4” states.

- The Slave Transfer state machine shows, while in “Start_Trans” state,
if ANY-PHY = 0 and Transf_En = 1 => Next_State = INC_CPT_State

but this FSM does not specify the case of ANY-PHY = 1.

- The Slave Transfer timing diagram (ANY-PHY) is showing “Asser_OSOC” state,

which does not exist in the TMRS design.

- The Slave Transfer timing diagram (ANY-PHY) shows that the OSX signal is asserted
while in “Start_Transfer” state. In reality the OSX signal is asserted while in

“Wait_Sel” state.

- The Slave Transfer timing diagram (ANY-PHY) shows that the OSOC signal is
asserted while in “Asser_OSOC?” state. In reality this signal will be asserted while in

“Start_Transfer” state.

* Inthe Icon specification of the TMRS [34], we found the following errors:

- The CBI[15:0] bus is shown as an input bus, whereas it is an I/O bus.
- ODAT[15:0] data bus is shown as I/O bus, whereas it is actually an output data bus.

- Signals SCAN_IN and SCAN_EN are shown as input signals to the SCAN block and
also SCAN_OUT is shown as an output signal from this block. These signals are

defined in the code of the TMRS, but they have never been used inside the SCAN

block.

All of the suggested modifications over the specification of the TMRS, which were
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specified in this section, were considered acceptable by the designer of the TMRS, and the

specification was revised to reflect these corrections.

4.3 Conclusions

In this study, we explored the model checking for the Receive Slave SCI-PHY mode of
operation of the TMRS TSB. The main contributions of this work are (1) appliéation of
the verification approach described in Chapter 3 on a real size design, (2) the establish-
ment of the abstracted model of the TMRS, (3) the definition of a suitable environment
inside FormalCheck for the TMRS interface signals, (4) the abstraction of the model using
Electronic Scissors in FormalCheck, (5) the definition of a set of properties on the TMRS
in FormalCheck, (6) the application of reduction techniques and Reduction Seeds to the
model to reduce the state space, (7) the verification of the original model of the TMRS, (8)
the discovery of several mismatches between the TMRS design, its specification, and the
SCI-PHY protocol, and (9) the uncovering of some errors in the specification of the
TMRS.

FormalCheck provides various algorithms to perform verification, such as “Symbolic
State Enumeration” (using ordered Binary Decision Diagrams or BDDs), “Explicit State
Enumeration” and “Auto Restrict” options [5]. To verify large circuits and to avoid the
state space explosion there are several techniques to use: (1) choosing the suitable run
option can reduce the run time when verifying large circuits, (2) using a suitable reduction
method and reduction seed in FormalCheck can reduce the state space. The only drawback
to using the reduction seed is that the person who is verifying the design has to know the

design well enough to be able to introduce reduction seeds. The danger behind over con-
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straining a design is false verification results (3) If the automatic reduction techniques fail

in reducing the state space, an abstracted model of the circuit needs to be developed.

Using the Iterated reduction algorithm in FormalCheck does indeed make the verifica-
tion much faster than the 1-Step algorithm and the verification results are guaranteed to be
valid for the entire design. The only problem with this algorithm is that it does not seem to
be able to reduce the design efficiently for all kinds of queries. Using this algorithm for
some queries can cause the verification result to be “Terminated”, whereas using the 1-
Step algorithm, even though in a longer time, will proceed to complete the verification of

the same queries (provided having enough resources to avoid state space explosion).

Table 4.5: Detailed time frame of the verification of the TMRS case study

Verification phases (‘TVZZE)

Reading documents (SCI-PHY, UTOPIA, and TMRS Spec.) for 25
model checking purposes

Reading the code for model checking purposes 3
Verifying FSM and Timing Diagrams 2
Making the abstract model of TMRS 0.5
Defining properties and verifying the abstract model 3
Verifying the original model 2
Total (model checking) 13

Human time is a very important factor in verification. In this study as shown in Table
4.5, a lot of time was spent for understanding the specifications to define the right queries
and also a lot of time was spent for understanding the implementation to be able to apply

the features of FormalCheck like Reduction Seeds, Constraints and State Variables. Since
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the designer has a thorough knowledge of the design and the specification, assuming he/
she is trained to use FormalCheck, it would take him/her only 2-3 weeks to define the que-
ries and formally verify this design. According to the designer of the TMRS, the RTL
model was made in 4 weeks, while writing test benches and running simulation took about
3 months.

The “Back Reference” feature in FormalCheck can help the designer debug the prob-
lems found during verification. The trick to finding these problems is to isolate which
sequence of events caused the erroneous behavior. This is time-consuming with simula-
tion, because it is difficult for designers to sort through all the events and determine which
ones matter. FormalCheck can automatically find a minimal sequence of events that cause

the error, when a user asserts a property that expresses that the error condition should

NEveEr occur.
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Chapter 5

Conclusion and Future Work

The aim of model checking is to obtain an economic advantage by catching bugs reliably
and early in the design process. Although automatic formal verification is reliable in
catching bugs, the state space explosion problem limits its use. In order to increase the
effectiveness of the verification process, model checking and simulation should comple-
ment each other. Model checking shines when verifying state machine oriented (control
logic) modules and protocols, while HDL simulators are good for data intensive designs
(such as ALUs, adders, and multipliers) and datapath analysis.
This thesis practices a practical verification approach that is easy to use and safe to
apply. The contributions of this work are summarized as follows:
* The validity of the hierarchical verification methodology was demonstrated by verify-
ing a real size integrated circuit using FormalCheck. In this practice the queries were
verified in reasonable amount of time, for both the abstracted model and the whole

design.
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The manual reductions can be error prone. Therefore, the verification results of a man-
ually abstracted model of a design are not 100% reliable. In our experiment, the state
space explosion problem was avoided during verification of the original design by
using the automatic reduction algorithms, introducing reduction seeds, and environ-
ment abstraction using facilities provided by FormalCheck. Since, no manual reduc-
tion techniques were used while verifying the original model, we can claim that the
verification results are guaranteed to be correct.

Usually, the time spent for verification (including simulation and formal verification)
of a product is as much, or may be more than the time spent to design it. Therefore,
one of the concerns of the companies is to find a way to reduce the time spent on veri-
fication while delivering a reliable product. In this work, several fundamental changes
in the design flow were proposed in Chapter 3, which are capable of accelerating the
verification process.

One essential difference between the approach proposed in this thesis and the one
applied in [44] is that, the authors constructed a non-deterministic model of the envi-
ronment in an HDL language to mimic the normal operating environment. Their solu-
tion actually results in adding to the whole reachable state space, which we are trying
to avoid. The proposed verification approach suggests using the facilities provided in
FormalCheck (such as Constraints, and if necessary State Variables) to define the
proper operating environment. In the verification of the TMRS a suitable operating
environment was defined for the design model using mostly Constraints and only three

State Variables. This method reduces the reachable state space instead of adding to it.
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Another difference between the approach proposed in this thesis and the one presented
in [44] is that the authors used State Variables to make the formulation of the proper-
ties easier. They used State Variables to memorize the value of the signals in the previ-
ous clock cycle, instead of using Enabling Condition. Each extra State Variable
doubles the reachable state space, therefore usage of State Variables should be avoided
unless absolutely necessary. In the verification of the TMRS Enabling Condition, Ful-
fill Delay option, and Macros were used to make properties easier to formulate and
easier to understand.

We also suggested a semi-formal verification approach which exploits the positive fea-
tures of simulation and model checking to achieve better test coverage of designs.
Considering the fact that datapaths and computational intensive designs tend to cause
state space explosion, and in a lot of instances the data values do not affect the control
of the design, hence, simulation is better suited for datapath analysis and computation
results analysis. On the other hand, model checking is most effective when used for the
verification of control-oriented designs such as control logic, finite state machines
(FSMs) and protocols.

Even though the reduction algorithms of FormalCheck allow it to handle larger designs

than most model checkers on the market, it still has limitations. One of the limitations is

that in some cases if the user does not specify the Reduction Seeds for the Iterated algo-

rithm, it will not find the smallest model automatically. The other limitation of the Iterated

algorithm is that, it cannot be used to reduce the model for all kinds of queries. In some

cases using this algorithm causes the verification to be terminated. In those cases the only

option is to use the 1-Step reduction algorithm which is time consuming, and if the model
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is 100 big it could lead to state space explosion. Therefore, some improvement in the Iter-
ated algorithm would lead to higher verification quality when using FormalCheck. Also, if
manual abstraction of a model is needed due to the limitations of this tool, the verification
results have to be validated using simulation. Therefore, if the counter-examples in For-
malCheck could be translated to test programs automatically, it could speed up the verifi-
cation and debugging process.

Even though defining properties in FormalCheck seems to be very easy (since the user
does not have to know a temporal logic like CTL), there are times that it can be challeng-
ing because of the limitations in FormalCheck. One of the limitations in defining proper-
ties is when a user chooses to use the Fulfill Delay option, he/she is demanded to define
the Duration of that behavior as well. Consider a property which the Verification Window
has to start few clock cycles after the Enabling Condition is fulfilled and continues to be
true until a Discharging Condition is present. This type of property is very hard to define
in FormalCheck. Therefore, some advancements in defining a Verification Window is
required.

This thesis presented some practical approaches to model checking. Future work is
needed to investigate the compositional verification in order to handle the formal verifica-

tion of interacting blocks with two way dependencies.
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Appendix A

Properties of the TMRS

In this section the complete description of the properties defined for the verification of the

Receive Slave SCI-PHY mode of the TMRS is presented.

Property_1: According to the SCI-PHY protocol: “When RRDENB is sampled low by
the PHY layer device, the RSOC signal will be accepted by the ATM layer device on the
next rising edge of RFCLK” [35]. We expressed this property for the TMRS as following:
“If OENB_I is sampled low by the PHY layer device, and the TMRS is selected (TMRS-
SEL and OENB_I signals were sampled high in the previous clock cycle), on the next ris-
ing edge of OFCLK the transmission of a full cell will start and the OSOC signal will be

set to high”. In FormalCheck, this property is expressed as follows.
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Property: property. 1l
Type: Always

After: (@TMRSselected) and (@WaitSelectedState) and (@CLKrising)
Always: OSOC = 1 and @StartTxState

Options: Fulfill Delay: 0 Duration: 1 Count of @CLKrising

Reduction options:

Reduction Technique: Iterated
Reduction Seed: New (User defined seed)
Start as input: Fifo_Ctl_Inst

Make input: Datapath_Inst and Input_Mux_Inst

This property was decomposed to the following two properties, Property_1A which
checks for the state transition to START_TRANSEF state, and Property_1B which checks

for the assertion of the OSOC signal. These two properties are stated as following.

Property_1A: If the TMRS is in the WAIT_SEL state and the TMRS was selected in the
previous clock cycle (TMRSSEL_REG2 and OENB_I_REG? signals are sampled high),
and OENB_I signal was sampled low in the previous clock cycle (OENB_I_REG is low),
on the next rising edge of OFCLK the TMRS will be in START_TRANSEF sate. In Formal-

Check, this property is expressed as follows.

Property: property 1A
Type: Always

After: (@TMRSselectedLastCC) and (@WaitSelectState) and (@CLKrising)

Always: @StartTxState

Options: Fulfill Delay: 0 Duration: 1 Count of @CLKrising
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Reduction options:
Reduction Technique: Iterated
Reduction Seed: New (User defined seed)
Start as input: Fifo_Ctl_Inst

Make input: Datapath_Inst and Input_Mux_Inst

Property_1B: If the TMRS is in the LATCH4 or WAIT_SEL states and OENB_I signal is
sampled low and the TMRS is selected (TMRSSEL_REG and OENB_I_REG signals are
sampled high), on the next rising edge of OFCLK the transmission of a full cell will start
(the OSOC signal will be set to high) and the TMRS will be in WAIT_SEL sate. In For-

malCheck, this property is expressed as follows.

Property: property. 1B

Type: Always

After: (@TMRSselected) and (@Latchd4State or @WaitSelectState) and
(CLKrising)

Always: Osoc = 1 and @WaitSelectState

Options: Fulfill Delay: 0 Duration: 1 Count of @CLKrising

Reduction options:
Reduction Technique: Iterated
Reduction Seed: New (User defined seed)
Start as input: Fifo_Ctl_Inst

Make input: Datapath_Inst and Input_Mux_Inst
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Property_2: According to the SCI-PHY protocol: “Each PHY link shall have a unique
address corresponding to a value between 0 and 31. Upon sampling its address with the
rising edge of the RFCLK, a PHY must drive RCA to indicate whether it has an entire cell
in its buffer” [35]. For TMRS, this property is expressed as following: “When
OAVALID;I and TMRSSEL are asserted (TMRS is polled) and all CMTY[31:0] lines are
high or the prefetch of the next FIFO is not finished, OCA_O will be deasserted” [(34]. In
FormalCheck, this property is expressed as follows.

Property: property. 2

Type: Always

After: (@TMRSpolled) and (Polling_Sm_Inst:Allfifoempty = 1) and (@RstDone)

and (@CLKrising)

Always: (not @RCAhigh)

Options: (None)

Reduction options:

Reduction Technique: Iterated
Reduction Seed: New (User defined seed)

Start as input: Transfer_ Sm_Inst

Make input: Datapath_Inst and Input_Mux_Inst

Property_3: In Receive Slave SCI-PHY back-to-back transfer mode, when the external
master device does not deassert OENB_I at the end of a transfer, the TMRS remains
selected for another cell transfer. If all FIFOs are empty the TMRS will deassert
ODAT_OEB and will wait to be reselected [34]. In FormalCheck, this property is

expressed as follows.
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Property: property. 3

Type: Always

After: (@TransferDone) and (Oenb I = 0) and
(Polling_Sm_TInst: Allfifoempty = 1) and (@RstDone)

Always: Odat_Oeb = 1

Options: Fulfill Delay: 0 Duration 1 count of @CLKrising

Reduction options:

Reduction Technique: 1-Step
Reduction Seed: New (User defined seed)

Make input: Datapath_Inst and Input_Mux_Inst

Property_4: According to the SCI-PHY protocol: “No PHY shall drive RCA upon sam-

pling RAVALID low " [35]. In FormalCheck, this property is expressed as follows.

Property: property_ 4
Type: Never

After: (Oavalid_I = 0) and (@RstDone) and (@CLKrising)
Never: @RCAhigh

Options: (None)

Reduction options:
Reduction Technique: Iterated
Reduction Seed: New (User defined seed)
Start as input: Fifo_Ctl_Inst

Make input: Datapath_Inst and Input_Mux_Inst
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Property_S: According to the SCI-PHY protocol: “Each PHY link shall have a unique
address corresponding to a value between O and 31. Upon sampling its address with the
rising edge of the RFCLK, a PHY must drive RCA to indicate whether it has an entire cell
in its buffer” [35]. In TMRS this property is expressed as following: “When Oavalid_I and
TMRSSEL are asserted (TMRS is polled), OCA_O is driven to high in the next clock
cycle, if at least one of the CMTY[31:0] status bus is low and the prefetch of the next

FIFO is finished” [34]. In FormalCheck, this property is expressed as follows.

Property: property. 5

Type: Always

After: (@TMRSpolled) and (GFIFOnotEmpty) and (@PrefetchDone) and
(@CLKrising) and (@RstDone)

Always: @RCAhigh

Options: Fulfill Delay: 0 Duration: 1 Count of @CLKrising

Reduction options:

Reduction Technique: Iterated
Reduction Seed: New (User defined seed)
Start as input: Fifo_Ctl_Inst

Make input: Datapath_Inst and Input_Mux_Inst

In Property_5, the Polling and Transfer controllers are interacting blocks. The Transfer
controller uses the internal output of the Polling controller to determine whether a cell is
available, and asserts its internal output to the Polling controller when the prefetch cycle
of that cell is done. When the TMRS is polled by the master, the Polling controller uses

the internal output of the Transfer controller to assert/deassert the RCA signal. The verti-
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cal verification described in Section 3.3 could be applicable for this property in case of

state explosion. To verify Property_5 using sub-properties, we need to add the following

State Variable and Constraints.

1.

A State Variable Named New_Cell_Available. This State Variable becomes Q0 when
there are no more cells (besides the one that is currently being transferred) available,
and 1 when there is at least one more cell to transfer. This State Variable was defined
to be able to describe the New_Cell_Tx_Rdy Constraint. It will be explained more
later.

Since Property_5 is verified under the condition that there exists a cell to transfer, a
Constraint named Channel_Not_Empty has to be defined. This Constraint makes sure
that there is a FIFO that has a cell to transfer (besides the cell that is currently being
transferred).

A Constraint to assume the property of Polling_Sm block (this Constraint is verified as

Property_6A1). This Constraint is defined as following:

Constraint: New_Cell Tx Rdy

Type: Always

After: New_Cell_Available = 1 and @CLKrising

Assume Always: Polling Sm_Inst:New_Cell_Transf Rdy = 1
Unless: New_Cell_Available = 0

Options: (None)

In FormalCheck when defining the Fulfill Delay to slide the verification window (refer

to Chapter 2), it is mandatory to define the Duration of the Verification Window as well.

New_Cell_Transf_Rdy signal becomes high after two clock cycles and, it stays high unless there
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are no more cells available to transfer. Since the duration of the New_Cell_Transf_Rdy signal
being high is not known, we could not use the Fulfill Delay option, therefore, we defined the
State Variable New_Cell_Auvailable to specify the behavior of New_Cell_Transf_Rdy sig-

nal. Now we can define the property of Transfer controller (Property_5A) as following.

Property_SA: Prefetch of a cell will eventually be done, assuming there is at least one
cell available and the New_Cell_Transf Rdy is asserted (the assertion of

New_Cell_Transf_Rdy happens two clock cycles after a cell is available).

Property: property. S5A

Type: Eventually

After: (@CLKrising) and (@RstDone)
Eventually: @PrefetchDone

Options: (None)

Reduction options:
Reduction Technique: Iterated
Reduction Seed: New (User defined seed)
Start as input: Fifo_Ctl_Inst

Make input: Datapath_Inst, Input_Mux_Inst and Polling Sm

After verifying the property of Transfer controller block (Property_SA), this property is
assumed to verify the property of Polling controller (Property_5B). Therefore, turning

Property_5A to a Constraint we have:
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Constraint: PrefetchIsDone

Type: Eventually

After: (Polling_Sm:New_Cell_Transf Rdy = 1) and (@CLKrising) and (€RstDone)
Assume Eventually: @PrefetchDone
Unless: Polling_Sm:New_Cell_ Transf Rdy = 0

Options: (None)

Then, assuming the PrefetchIsDone Constraint, Property_5B is defined as following.

Property_SB: When Oavalid_I and TMRSSEL are asserted, OCA_O is driven to high in
the next clock cycle, if at least one of the CMTY[31:0] status bus is low and assuming the

prefetch of the next FIFO is finished. In FormalCheck, this property is expressed as fol-

lows.

Property: property 5B

Type: Always

After: (@TMRSpolled) and (@FIFOnotEmpty) and (@CLKrising) and (@RstDone)
Always: @RCAhigh

Options: Fulfill Delay: 0 Duration: 1 Count of @CLKrising

Reduction options:
Reduction Technique: Iterated
Reduction Seed: New (User defined seed)
Start as input: Fifo_Ctl_Inst

Make input: Datapath_Inst, Input_Mux_Inst and Transfer_Sm
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Property_6: Based on the TMRS specification, “in Receive Slave SCI-PHY back-to-back
transfer, when the external master device does not deassert OENB_I at the end of a trans-
fer, the TMRS remains selected for another cell transfer” [34]. Hence, when the external
master does not deassert OENB_I at the end of a transfer, and at least one of the FIFOs
have a cell to transfer, the TMRS will eventually start transmitting the new cell.

We acquired from Property_1, that the OSOC signal and START_TRANSEF state of the
Transfer_Slave state machine are not synchronous. Accordingly, we had to decompose
Property_6 to two properties to be able to check for both the START_TRANSF state of the
FSM (Property_6A) and the OSOC signal (Property_6B), while in back-to-back transfer
mode. The queries of these two properties contain another Constraint, named BackTo-
BackTx, in addition to the default Constraints explained in Section 4.2.1.2. This Con-
straint puts the TMRS in the back-to-back transfer mode. Also to make matters easier, we
assumed no interruptions from the master will occur while transferring a cell, as well as
after the completion of a cell transfer (since a cell transfer with interruptions from the
master was verified through other queries, this assumption is considered safe). The Back-

ToBackTx Constraint is expressed in FormalCheck as follows.

Constraint: BackToBackTx

Type: Always

After: (@IncCptState) and (@CLKrising)
Assume Always: Oenb_I = 0

Unless: (@StartTxState) or (@WaitSelectState)

Options: (None)

In FormalCheck, Propery_6A and Property_6B are expressed as following.
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Property_6A:

Property: property. 6A
Type: Eventually

After: (@TransferDone) and (Transfer_Sm Inst:New_Cell Transf Rdy = 1) and
(€Clkrising)
Eventually: @StartTxState

Options: (None)

Reduction options:
Reduction Technique: Iterated
Reduction Seed: New (User defined seed)
Start as Input: Fifi_Ctl_ Inst

Make input: Datapath_Inst and Input_Mux_Inst

Property_6B:

Property: property. 6B
Type: Eventually

After: (@TransferDone) and (Transfer_Sm Inst:New_Cell Transf Rdy = 1) and

(@Clkrising)

Eventually: (Osoc = 1) and (@LatchNext2State)

Options: (None)

Reduction options:
Reduction Technique: Iterated
Reduction Seed: New (User defined seed)
Start as Input: Fifi Ctl_Inst

Make input: Datapath_Inst and Input_Mux_Inst
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The relationship between the Polling controller and Transfer controller in Property_6A
and Property_6B is linear, therefore, the vertical verification (refer to Section 3.3) could be
applied in case of state explosion. To do so, each one of these properties can easily be
divided to two sub-properties, one of which will be the property of Polling controller block
(Property_6A1 and Property_6B1), and the other one the property of Transfer controller

block (Property_6A2 and Property_6B2). These properties are explained as following.

Property_6A1:

Property: property 6Al1l

Type: Always

After: (New_Cell_Available = 1) and (€Clkrising)
Always: Polling_Sm:New_Cell_Transf_Rdy = 1
Unless: New Cell_Available = 0 .

Options: (None)

Reduction options:

Reduction Technique: Iterated
Reduction Seed: New (User defined seed)
Make input: Input_Mux_Inst, Transfer Sm Inst, and Fifo_Ctl_Inst, and

Datapath_Inst

Property_6BI1 is exactly the same as Property_6Al, therefore we avoid rewriting this
property. Now assuming there is a cell available in the FIFO (Constraint
Channe]l Not_Empty) and assuming Property_6Al (Constraint New_Cell_Tx_Rdy),

Property_6A2 and Property_6B2 should be verified.
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Property_6A2:

Property: property. 6A2

Type: Eventually

After: (@TransferDone) and (@Clkrising)
Eventually: @StartTxState

Options: (None)

Reduction options:
Reduction Technique: Iterated
Reduction Seed: New (User defined seed)
Start as Input: Fifi_Ctl_Inst

Make input: Datapath_Inst, Input_Mux_Inst, and Pollins_Sm_Inst

Property_6B2:

Property: property_ 6B2

Type: Eventually

After: (@TransferDone) and (@Clkrising)
Eventually: (Osoc = 1) and (@LatchNext2State)

Options: (None)

Reduction options:
Reduction Technique: Iterated
Reduction Seed: New (User defined seed)
Start as Input: Fifi_Ctl_Inst

Make input: Datapath_Inst, Input_Mux_Inst, Polling Sm_Inst
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Property_7: According to SCI-PHY protocol: “The ATM layer device may pause the
transfer at any time by deasserting RRDENB” [35]. In TMRS this property is expressed as
following: “The Slave Transfer State Machine always expects a complete cell transfer but
supports transfer interruption by deassertion of Oenb_I" [34]. In FormalCheck, this prop-
erty is expressed as follows.

Property: property._7

Type: Eventually Always

After: (not @TransferDone) and (Oenb I =1) and (@RstDone) and (@CLKrising)

Eventually Always: @TransferDone

Unless: (OCenb_TI =1)

Options: (None)

Reduction options:

Reduction Technique: Iterated
Reduction Seed: New (User defined seed)
Start as input: Fifo_Ctl_Inst and Polling Sm_Inst

Make input: Datapath_Inst and Input_Mux_Inst

Property_8: According to SCI-PHY protocol: “When RCA transitions high, the ATM
layer device can read a full cell from the PHY layer device. When the empty RCA deas-
sertion option is implemented, RSOC is valid only when the RCA signal is coincidentally
asserted and RRDENB was asserted low in the previous cycle” [35]. In TMRS we express
this property as following: “If the master selects the TMRS before the prefetch cycle is fin-
ished, the TMRS will not start a cell transfer in the next clock cycle”. In FormalCheck,

this property is expressed as follows.
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Property: property 8
Type: Never

After: (not @PrefetchDone) and (@TMRSselected) and (@CLKrising) and
(@RstDone)

Never: Osoc = 1

Options: Fulfill Delay: 0 Duration 1 count of @CLKrising

Reduction options:
Reduction Technique: Iterated
Reduction Seed: New (User defined seed)
Start as input: Fifo_Ctl_Inst

Make input: Datapath_Inst and Input_Mux_Inst

Property_9: According to SCI-PHY protocol: “When RRDENB is sampled low by the
PHY layer device, the RDAT bus will be accepted by the ATM layer device on the next ris-
ing edge of RFCLK. When RRDENB is sampled high by the PHY layer device, no trans-
fer is performed in the subsequent RFCLK cycle” [35]. In TMRS this property is
expressed as following: “When operating in Slave mode the TMRS monitors the input sig-
nal Oenb_I to validate the data transfer” [34]. Therefore, if transferring a cell is inter-
rupted by Oenb_I being set to high, the Odat_Oeb signal will be set to high in the next
clock cycle. In FormalCheck, this property is expressed as follows.

Property: property._9

Type: Always

After: (not @TransferDone) and (Oenb_I =1) and (@RstDone) and (@CLKrising)

Always: Odat_Oeb = 1

Options: Fulfill Delay: 0 Duration 1 count of @CLKrising
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Reduction options:
Reduction Technique: Iterated
Reduction Seed: New (User defined seed)
Start as input:Fifo_Ctl_TInst and Polling Sm_Inst

Make input: Datapath_Inst and Input_Mux_Inst

Property_10: According to SCI-PHY protocol: “When RRDENB is sampled low by the
PHY layer device, the RDAT bus will be accepted by the ATM layer device on the next ris-
ing edge of RFCLK” [35]. In TMRS when operating in Slave mode, this property is
expressed as following: “ODAT_OEB is low when OENB_I was asserted low in the previ-
ous clock cycle, and the TMRS is selected for a cell transfer” [34]. In FormalCheck, this

property is expressed as follows.

Property: property._ 10

Type: Always

After: (@TMRSselected) and (@RstDone) and (@CLKrising)
Always: Odat_Oeb = 0

Unless: (Oenb_I =1)

Options: Fulfill Delay: 0 Duration 1 count of @CLKrising

Reduction options:
Reduction Technique: Iterated
Reduction Seed: New (User defined seed)
Start as input: Fifo_Ctl_Inst and Polling_Sm_Inst

Make input: Datapath_Inst and Input_Mux_Inst

106



Property_11: This property expresses the reverse case of Property_10. When TMRS is
not in back-to-back transfer mode, if a cell transfer is complete but the TMRS is not

selected by the master again, the Odat_Oenb will be deasserted unless it is selected again.

In FormalCheck, this property is expressed as follows.

Property: property 11

Type: Always

After: (WasSelected = 0) and (@RstDone) and (@CLKrising)
Always: Odat_Oeb = 1

Unless: (WasSelected = 1)

Options: (None)

Reduction options:
Reduction Technique: Iterated
Reduction Seed: New (User defined seed)

Start as input: Fifo_Ctl_Inst

Make input: Datapath_Inst and Input_Mux_Inst

exasperation
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