INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or ccpy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper ieft-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9 black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

CONCORDIA PARALLEL C: DESIGN AND
IMPLEMENTATION

A1 KoNGg

A THESIS
N
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FoRr THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

SEPTEMBER 2000
© A1 Kong, 2000

i~

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence

Our file Notre rélérence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-54335-8

iel

Canadi

Abstract

Concordia Parallel C: Design and Implementation

Ai Kong

This thesis focuses on the design and implementation of Concordia Parallel C
(CPC) and its compiler Concordia Parallel C Compiler (CPCC).

The Concordia Parallel Programming Environment (CPPE) is a novel parallel pro-
graming environment supporting virtual-architecture parallel programming paradigm,
program and library development, simulated execution, syntax/semantics/performance
debugging, and simulation of various multiprocessors and multicomputers. A parallel
program written in CPC will be compiled by CPCC into a virtual code version, then
interpreted by Concordia Parallel Systems Simulator (CPSS).

We extend the C language with features supporting parallel computing as well
as selected features of C++ to facilitate parallel library writing. We adopt Abstract
Syntax Trees (AST) as the internal code representation of our CPCC front-end, from
which various program transformations can be performed, and code for various target

parallel systems can be generated. The current back-end generates virtual code for
CPSS.

il

Acknowledgments

I would like to take this opportunity to express my deepest gratitude to my supervisor,
Dr. Lixin Tao, for not only his constant guidance and encouragement, but also his
technical support to help me work from home.

Sincere thanks to the members of our CPPE research team, Dr. Lixin Tao,
the team leader; Hosseine Hassan(CPCC), Hoang Uyen Trang Nguyen and Thien
Bui(CPSS), and Jing Zhang (Visual performance debugger) who each contributed to
the implementation of our programming environment.

I'm grateful to the professors and staffs in Computer Science department at Con-
cordia for the wonderful courses and services. I would especially like to thank Ms.
Halina Monkiewicz, who were always friendly and prompt in providing assistance.

My good friends and partners are difficult not to mention. I am thankful to Jing
Zhang, Mao Zheng, Ji Lu, Fan Cheng, Lisha Kang, Lin Chen, Jaya Narain, Ximin
Wang for giving me encouragement, advice and assistance.

Finally, I have to thank my family, for their understanding and continuous en-
couragement and support. My husband, Jiawei, was always there to provide various
kinds of suppoprt, technical or non-technical. My newborn daughter, Rosa, was so
cooperative. I would also like to dedicate this work to the memories of my father and

to my mother, their expectation encouraged me never to give up.

iv

Contents

List of Figures
List of Tables

1 Introduction
1.1 Motivation . .

1.2 Design Objectives
1.3 Thesis Contributions and Our Approach

1.4 Thesis Outline

2 Survey

2.1 Parallel Programming Paradigms

2.2 Parallel Programming Models

2.3 Parallel Programming Languages

3 The CPC Language Design
3.1 Virtual Architecture Approach
3.2 Differences Between the Sequential Part of CPC and ANSIC.
3.2.1 Function Definition

3.2.2 Names

...............................

323 CallByReference.
324 Comments . . - . .« . ot e e e e
3.3 Parallel Features of the CPC Language
3.3.1 Process Creation and Termination

3.3.2 Process Communication Via Channel Variables
3.3.3 Virtual Architecture Definition

ix

B,

00 ~ i =

12
12
13
16

3.3.4 Mapping Processes to Virtual Processors
3.3.5 CPCBuiltin Functions

4 CPCC Front End

4.1
4.2
4.3

4.4

4.6
4.7

4.8
4.9

Ledcal Analysis . - . - . - - . . o o 0 i i it e e e e e
Syntax Analysis L .
Symbol Table
4.3.1 Symbol Table Entries.
Concept of CPC AST e
441 Nodesin CPCAST
4.4.2 Graphical Representation of Nodes
Data Declarationsin CPC AST
4.5.1 Scalar Types and Pointers
4.5.2 Arrays L e e e e e
4.5.3 Aggregate Type — Structures and Unions
4.54 Enumerations L oo
455 Typedefs. L L
4.5.6 Physical vs. Virtual Architecture
457 Channels.
Expressions in CPC AST
Statements in CPC AST
4.7.1 Compound Statement
4.7.2 Process Creation and Mapping Statements
Function Definitions in CPCAST
CPC AST Type Check—Semantic Analysis.

5 Code Generation

5.1
5.2
5.3
5.4
5.5

Tasks f CPCC Backend
Execution Environment
Virtual Codes
Storage Allocation
Statement Tramnslation
5.0.1 Process Creation

9.5.2 Process Communication — Channel expression

5.5.3 Virtual Architecture,
56 AComplete Example o

CPC preprocessor
Conclusion

CPC Builtin Functions
CPC Yacc Grammer

CPC language manual
C.1 Multiprocessors VS. Multicomputers
C.2 The CPC language features«
C.2.1 Process and Process communication
C.2.2 Virtual Architecture and Two Level Mapping
C.3 Notation o o i i i i e e e e e e e e e e e e e
C.4 Function definition e
C4l Symtax - . . . ot i e e e e e e e e e
C42 Example Lo e
C.h Names o o o it i e e e e e e e e e e e e e e
C6 Comments . . - - -« v v v i e e e e e e e e e e e e e e e e e
C.6.1 Example e e e e e e
C.7T Callbyreference i i
C.7.1 Example oL
C.8 Inclusion of additional CPCsource files

C.82 Examples e
C9 Runtimelibrary
C.10 Process creation i i i i e e e e e e e e e
C.10.1 forkStatement i
C.10.2 joinstatementt i
C.10.3 forall Statement i i i e e
C.11 Process Communication via Channel Variables
C.11.1 Declarations of Channel Variables

C.11.2 Binding Channel Variables to New Processes 130

C.11.3 Read and Write on Channel Variables. 133
C.12 Parallel Architecture Definition 136
C.121 Symtax e e e e e e e e e e e e e e e e e 137
C.122 Examples oo i e e e 138
C.13 Mapping Processes to Virtual Processors 139
C.13.1Syntax - - e e e e 139
C.13.2 Examples e 139
C.14 A complex CPC example: Matrix Multiplication 140
A Complete Example 142
D.1 CPC source program . . - . - « « v v v v v v ittt e e e e e e 142
D.2 CPCC frontend generated file 143
D.3 CPC backend generated file 154

List of Figures

1 CPPE overview o o o o i v i it e e e e s e e e e e e e 4
2 Mappingexample Lo 24
3 Graphical representation of nodes and values 54
4 Scalar declarations and pointers oL, 56
53 Array Declarations L ol e 57
6 Structure and union Declarations 59
7 Enumeration Declarations 61
8 Constant Expressions oo 64
9 Compound Statement oo 67
10 Fork Statement L L e 69
11 Forall Statement ¢ . . o ittt e e 75
12 Astackframe o L e e e e e e e e 79
13 Traversetree o & . o i i e e e e e e e e e e e 82
14 traversesymbol L L e 83
15 Tracetype - . . . - o o o o i i e e e e e e e 84
16 Storage allocation . . . - L. e 85
17 Nested Function Definition 115
18 CPCcomment. . . . v v v v v e e e et e e e e e e e e e e e e e e 116
19 CallByReference e 117
20 Include Statement 118
21 Fork Statement e e e e 120
22 JOIN statement+« v v i i i e e e e e e e e e 121
23 Another example on JOIN Statement 122
24 FORALL Statement0 124
25 Nested FORALL Statement 125
26 ForallIndex o i o e e e e 125

ix

Matrix Multiplication . . - . - . « « . . . o ..o oo 128

Channel Declaration - -« « « o v v v i i e 129
Complex Channel Declaration 130
Array of Channel Lo 131
Channel Binding - oo oo 132
More exampleson bindingo oo 132
Channel Write« . ¢ o o o i i et e e e e e e 133
Channel Read o o o o o L e 134
Channel Variables o 134
Channel Empty Test o ot i i ot 135
ImsertionSort . . . - v o o e e e e e e e e e e e e 136
Architecture Declaration 138
Architecture Dimension« 138
Mapping« .« . o e e e e e e 140
Matrix Multiplicationo 141

List of Tables

= W N

Mapping table for process to physical processor. 23
Mapping table for physical processor to processes. 24
Identifiers and their returned tokens. 44
Storage Class . . . « « v 4 v i i e e e e e e e e e e e e 63

Chapter 1
Introduction

Parallel programming is in general difficult and error-prone.

The basic concept behind the parallel computer is to simply have more than one
processor in the same computer. Parallel computers may have as few as 10 processors
or as many as 50,000. The key feature that makes them parallel computers is that all
the processors are capable of operating at the same time(1].

For many processors to be able to work together on the same computational
problem, they must be able to share data and communicate with each other. There
are currently two major types of parallel computers: shared memory multiprocessors
and message-passing multicomputers.

In shared memory multiprocessors, all the individual processors have access to
a common shared memory, allowing the shared use of various data values and data
structures stored in the memory.

In message-passing multicomputers, each processor has its own local memory,
and processors share data by passing messages to each other through some types of
processor communication networks. A processor has direct access only to its own
local memory module, and not to the memory modules attached to other processors.
However, any processor can read data values from its own local memory and send that
data to any other processor. Therefore, the data can be freely shared and exchanged
between the processors when desired.

There is a wide variety of different types of communication network topologies
that have been developed for multicomputers, such as hypercube, mesh, ring, and

torus. The goal of these topologies is to try to reduce the cost and complexity of the

network, while supporting rapid communications between processors.

A partitionable parallel system is based on a fixed topology from which a parti-
tion is granted to the user upon request. Size of this partition depends on the system
availability at the time of the request. Systems in which the topology may also change
statically or dynamically are called reconfigurable systems.

The programming of multiprocessors is actually much easier because it more
closely resembles the programming of uniprocessor systems, with which we are al-
ready familiar. Multicomputer programming is more complex than multiprocessor
programming because the program must do explicit message-passing between proces-
sors. Partitionable and reconfigurable systems make programming on these systems
even more difficult because the programmer is not aware of the system size and
topology at programming time. In these systems a user’s request for a partition is
submitted after an executable image of the parallel program is built. The granted
partition may differ between different runs of the same program depending on the
requested size, system load, the maximum system size, and the scheduling policy.

Users verify the correctness and observe the performance of parallel programs
through trial runs. However, the performance of a parallel program is affected by
the system topology and system size. Each application may have many possible algo-
rithms, and each algorithm may be more suitable for a particular parallel architecture
than for others. Even within the same parallel platform, the performance of a parallel
program may vary for different partitions. It may be high on small size systems, but
degrade tremendously as system size increases. Therefore, users expect to evaluate
parallel architectures and the performance of parallel programs on these architectures
efficiently. In other words, they expect their programs to be portable not only across
different parallel platforms and parallel architectures, but also across different parti-
tions within the same parallel platform. Otherwise, it would be inefficient to optimize
the parallel programs’ performance.

Portability means that an application is portable across a class of environments
to the degree that the effort required to transport and adapt it to a new environment
in the class is less than the effort of redevelopment. In this thesis it has two levels of

meanings:

e Source code level portability
This kind of portability means that the source code of a program is portable

2

across different systems to the degree that the effort required to port the pro-
gram to the new system and run it on the new system is less than the effort to

redevelop the program and rerun it on the new system.

e Executable code level portability

The executable code level portability is useful for partitionable and reconfig-

urable parallel system.

This portability means that the executable code for a parallel application is
portable across different partitions within the same platform to the degree that
the effort required to transport and execute the executable code on a new par-
tition is less than the effort of recompiling the parallel application, relinking,

and reexecuting.

CPPE (Concordia Parallel Programming Environment) is being studied and de-
veloped in our group with the aim to provide users with simulated parallel systems for
developing portable parallel programs, evaluate parallel architectures, and optimize
performance of parallel programs on these architectures.

CPPE has three main components: CPC (Concordia Parallel C) language, CPCC
(Concordia Parallel C Compiler), and the CPSS (Concordia Parallel Systems Simu-
lator).

CPC is an extended version of ANSI C, which supports virtual architectures,
process creation, and high-level channel abstractions of message passing. A virtual
architecture in CPC is the architecture most natural and efficient to program do-
main. Its processors are called virtual processors. CPCC is the compiler for CPC
language in CPPE. It is divided into the frontend and backend. CPCC frontend
performs lexical analysis, syntax analysis, semantic analysis on the CPC programs,
and transformation of the CPC source code to an intermediate representation — an
Abstract Syntax Tree (CPC AST); CPCC backend traverses the CPC AST built by
the frontend, allocate storage to all the variables and generate code for a target ar-
chitecture or generate virtual code for our CPSS. CPSS performs instruction level
simulation of various parallel systems and their communications subsystems. We
illustrate the structure of CPPE in Figure 1.

The research effort of this thesis focuses on the design and implementation of CPC

(Concordia Parallel C) language, aiming to provide a necessary parallel language in

CPCC frontend

CPCC backend

virtual codes

commands
parameters from
the user

cess -
y
applicadon output

debugging information
performance statistic

Figure 1: CPPE overview

which the CPPE users can develop portable parallel programs.
In this chapter, we will discuss the motivation of this research, our design objec-
tives, our approach to meet the objectives and the thesis contributions. Finally, we

will present the thesis outline.

1.1 Motivation

Program development is costly without the added difficulty of parallel programming.

There are many factors that affect the performance of a parallel program. In order
to improve parallel programs’ performance, reduce the cost in detecting and overcom-
ing performance bottlenecks, users expect their parallel programs to be portable, so
that they can evaluate the parallel program performance effectively. However, the
parallel programs for the real parallel system may not be portable due to any of the

following reasons:

1. Parallel programs lack source code level portability.

In sequential environments, the source code level portability is not difficult to
achieve, especially for programs written in a popular high-level sequential lan-
guage, such as C language. When a new sequential machine appears, if a
compiler of the language can be implemented for the new machine to translate
the programs written in the specific high-level language into the new machine
instructions, all of the programs in the high-level language will be portable to
the new machine. Therefore, if each sequential machine implements its own
compiler for the specific high-level language, then all the software written in

this language will be portable across these sequential machines.
However, source code level portability is not trivial for parallel environments.

In the development of many parallel systems, the effort:has tended to focus
on the hardware, leaving the software under-developed and primitive. The
result is a tight coupling among the machine, the compiler, and the associated
language. In other words, the machine is designed for a particular architecture,
the language is designed to match the machine capability, and the compiler
translates directly from the language syntax to the machine function. The
system built by these components contains specific details that help make the
system efficient. However a disadvantage is that the parallel program tuned to
this system may lose the source code level portability.

An example is the Connection Machine CM-2[2] and its C* language[9]: the
where construct is an excellent match for the SIMD control mechanism in the
hardware, but implementing this language abstraction on an MIMD may involve

more overhead.

Parallel systems differ from each other in CPU instruction sets, processor sizes,
communication network topologies, communication subsystems, hardware syn-
chronization techniques, and whether to support broadcasting. Unlike in se-
quential environments, it is impossible for a compiler to resolve these complex

differences to support the source code level portability.

Since a parallel program is tuned to a specific parallel svstem and not portable
to other parallel systems, to compare performance of a parallel program among
several parallel systems, the user has to redevelop the parallel program for each

of the systems.

(91}

2. Partitionable and reconfigurable paraliel systems may not support ezecutable
code level portability.

According to Amdahl’s laws[1], there is a performance limitation to each parallel
application, no matter how many processors are used. Usually, an application
program uses only a partition in the partitionable or reconfigurable parallel

system.

Each of the partitionable or reconfigurable machines has a processor manager
in its operating system. To run a parallel program on a partitionable or recon-
figurable parallel system, the user should first compile and link his program for
a partition with desired size and topology, and get the executable code for it.
Then the user applies from the processor manager for the desired subsystem
to run the executable code. The executable code can be executed only on this

subsystem.

However, the processor manager may grant a different subsystem to the user.
The processor manager makes the decision whether to satisfy the user or modify
the user’s request according to a certain policy. Many factors should be taken
into account for this policy, such as optimizing system utilization to reduce the
number of idle processors, or optimizing the response time. For example, after
a user gets the executable code for an 8*8 mesh, he may then apply for an 8*8
mesh subsystem to run his executable. But, he may be assigned a 5%6 mesh

subsystem or an 8*8 mesh subsystem situated in a different position.

When the granted subsystem mismatches with the subsystem the user requested,

the user has to use the following two possible solutions to solve the problem.

The first solution is to recompile and relink his program to get the executable
code for the granted subsystem. However, the system is dynamic. After the
user spends some time to recompile and relink his application to get the new ex-
ecutable code for the granted subsystem, the system status may have changed.
The user has to reload the executable code and reapply for the granted subsys-
tem. Unfortunately, this time he may be assigned a totally different subsystem.
The executable code still cannot run. Therefore, this solution is infeasible.

Another solution is to reserve the granted subsystem. Recompile and relink his

program for this subsystem, get the executable code for this subsystem, run the

executable code on this subsystem, then release this subsystem. In this way, we
can achieve the ezecutable code level portability. The major disadvantage of this
solution is the waste of the expensive parallel system resource. The execution
time of the program will be much longer than expected, the performance of the
parallel program will be reduced instead of improved, the cost to achieve the
ezecutable code level portability will overcome the benefit from it.

1.2 Design Objectives

To help users evaluate parallel programs performance efficiently, the most important
objectives considered in the design and implementation of the CPC language are as

follows.

1. Ease of use: CPC language should be easy to learn, to program; CPC programs
should be easy to read, to maintain and to verify.

2. Essential parallel features: Like all the other parallel languages, CPC language
must support specification of parallelism, starting and stopping parallel execu-

tions, and coordinating the parallel executions.

3. Source code level portability: To get the highest performance of a parallel pro-
gram, the user has to compare performance of the parallel program for different
parallel systems, therefore it is expected that CPC programs have source code
level portability, so that users do not need to redevelop their programs for a

different parallel system.

4. Executable code level portability: To help the user fine-tune his program and
optimize the performance effectively, we hope the CPC executable code could
run on different subsystems within the same platform, so that the user need not
recompile his source code, and the executable code could be portable to other
subsystems. In other words, we hope the CPC program to be able to run on a
partition with different size and topology without recompilations.

5. Efficiency: Communication among processors is much more expensive than in-
struction execution. It is desirable that CPC communicating processors can be

situated as close as possible to minimize the distance between these processors,

7

reduce communication overhead and communication latency, reduce the CPC

program execution time, and make CPC programs more efficient.

1.3 Thesis Contributions and Our Approach

Contributions of this thesis include CPC language design and implementation.

We have based the CPC language design on the virtual architecture approach. The
virtual architecture in CPC is the architecture most natural and efficient for a problem
domain. The virtual architecture of an algorithm captures the communication pattern
of the algorithm. CPC program is described on a virtual architecture with desired
size and topology. At run time, the virtual architecture program will be mapped
to the available physical architecture. The virtual architecture information in the
CPC program will be used by the CPC compiler and run-time system to perform
mapping of the computation to the physical processors. With the mapping, the virtual
architecture will be independent from the physical architecture which helps make
the CPC programs portable. Suitable mapping of the regular communications can
reduce the communication overhead of the program. Virtual architecture algorithm
is easy to implement since the programmer can describe the algorithra on the virtual
architecture matching that of the algorithm and let the compiler and runtime system
perform the necessary translation to account for the mapping of the computation and
handle the communication among the virtual processors.

Now let’s see how our approach meet our design objectives:

CPC language is based or the popular programming language C and enhanced
with new features to support portable parallel programming. The CPC language
preserves most existing sequential features of the C language. CPC language will
be easy to learn since most of the users are familiar with C language. It will not
be difficult for them to learn some essential parallel features in order to program in
CPC.

New features of the CPC allow users to express parallelism, to create and terminate
processes, to synchronize executions of processes, to communicate among parallel
processors via channel variables. Therefore, the CPC language has the essential
parallel features. The CPC language supports both shared-memory and message-
passing programming paradigms.

CPC is a good candidate for explicit parallel programming that can be used to
design, express, and implement efficient portable parallel algorithms.

New features of the CPC also allow users to declare virtual architectures and
to map parallel processes to virtual processors which in turn will be mapped to
physical processors at runtime. The user can choose a virtual architecture with the
size and topology that is most natural and efficient to his algorithm. Since the virtual
architecture of an algorithm is generally representative of the communication pattern
of the algorithm, the CPC program will be easy to describe on the virtual architecture.
The declaration is similar to that of a data type. The choice for a virtual architecture
depends on the user’s domain knowledge.

The virtual architecture approach provides the user with a high-level abstraction
of the communication pattern, allowing the user to concentrate on the resolution of
their problems without sacrificing performance. CPC virtual architecture algorithm is
easy to implement since the virtual architecture allows the user to solve their specific
problems in a way that best fits the model of his application. Therefore, the virtual
architecture approach will make CPC program easy to write , easy to verify, easy to
understand and easy to maintain. That is, CPC language is easy to use.

As we mentioned before, to support source code level portability of parallel pro-
grams is not trivial. To achieve the CPC programs source code level portability, we
divide CPC compiler (CPCC) into frontend and backend. The frontend is architec-
ture independent and is a shared frontend. It will first translate the CPC source
code into an abstract syntax tree (CPC AST) which retains all the information, such
as type and program structure, virtual architecture and process to virtual processor
mapping scheme. It will not be attached to specific system configurations. The back-
end is architecture dependent. Different architectures should have different backend.
In CPPE, we have various backends for different platforms. Since the CPC program
is based on virtual architecture which is independent from any physical architectures,
the CPC program will not be tuned to a specific physical architecture. Therefore,
CPC programs have source code level portability.

When a user compiles the CPC source code for a platform, the compiler takes two
inputs: virtual topology which the CPC source code is programmed on, physical topol-
ogy which the executable code will be executed on. After compilation and linking,
the executable code will be generated. When the system loads the executable code,

each physical processor will get a mapping table. Physical processors are processors
that constitute the physical machine. The mapping table is created by the runtime
system according to the mapping function in the mapping library or specified by the
user. It contains the information about processor’s physical ID and virtual proces-
sors which the physical processor should run. As a result, the virtual processors are
dynamically mapped to physical processors to execute the code. Therefore, with the
support of mapping schemes, virtual architecture become independent from physical
architecture, and CPC executable code is portable. In other words, CPC programs
have the executable code level portability.

Since the virtual topology algorithm is generally representative of the communica-
tion pattern of that algorithm, it is desirable to map the neighboring virtual processors
as close as possible in the target physical topology. We can either store the optimized
mapping functions in the mapping library or the user can design his own mapping
functions. The runtime system will use the mapping function selected by the user or
by default to map the prccess to the physical processors. The freedom in the choice
of a mapping function allows the CPC user to minimize communication cost among
communicating processes, to balance the workload among physical processors and to
improve the efficiency of the CPC program.

To implement the CPC language, or to design the CPCC, the challenge is the
design of the right data structures for intermediate representation which can efficiently
hold all the necessary information in the source program and which can be easily
transformed to machine code by the compiler backend, so we can easily relate run-
time data to source code lines. As we described above, we choose abstract syntax
tree as our intermediate representation.

CPC AST is a complete intermediate language which will make program trans-

formation and systematic type checking easier.

1.4 Thesis Outline

This thesis is a description for the design and implementation of CPCC. This first
chapter expresses motivation for CPC and CPCC design and provides an overview of
the CPCC.

Chapter 2 will survey parallel languages and parallel language compilers.

10

Chapter 3 will describe the design of CPC, which is based on C, extended by
machine-independent parallel constructs, such as fork and forall. CPCC is an
explicit parallel language that can be used for both sequential and parallel program-
ming.

Chapter 4 will describe the design of CPCC front-end and introduce how to create
the complete abstract syntax tree, the CPC AST, to keep all the information in CPC
source code. In this chapter, the data structures of the CPC AST will be described
in more details. We describe the structure of four types of tree nodes, and how to
build the ASTs for data declarations, expressions, statements, and functions in CPC.

Chapter 5 will describe the design of CPCC back end. It introduces the virtual
codes, the storage allocations for CPC variables and the translations of the CPC
statements to virtual codes.

Chapter 6 will describe the design of the CPCC preprocessor.

Finally, concluding remarks are given in Chapter 7.

11

Chapter 2

Survey

2.1 Parallel Programming Paradigms

A parallel programming paradigm describes the method in which processor nodes
are coordinated in executing their tasks and in sharing data when running a parallel

program. It usually performs the following tasks:
e Decompose the task into smaller tasks

e Assign the smaller tasks to processors to work on simultaneously
e Coordinate work and communicate when necessary

The parallel paradigm has the following components:
e Environment. Parallel environment often includes the processor, connection
topology and memory architecture.

The processors access data through memory, passing data back and forth be-

tween the processors through the connection topology.

In a high level of abstraction, processors are classified into:

— SISD - Single Instruction Stream, Single Data Stream
— SIMD - Single Instruction Stream, Multiple Data Stream
— MIMD - Multiple Instruction Stream, Multiple Data Stream

12

The popular connection topologies include hypercube, mesh torrus, ring, and
line.
There are two primary memory architectures: shared memory and distributed

memory.

e Program. This category includes the parallel language, the programming model,

and algorithmic implementation.

When writing code, the programming model underlies the syntax or language
with which the algorithm is implemented.

2.2 Parallel Programming Models

Different programming paradigms trade off between ease of programming and effi-
ciency of programs depending on the target architecture. An algorithm may be easy
to describe in one language but more difficult in another. On the other hand, the
efficiency of the algorithm depends on how well the programming language matches
that of the underlying architecture. A closer match results in higher efficiency, at the
expense of more programming effort. A programming paradigm with mismatched lan-
guage and architecture allows the user to describe the algorithm in a more abstract
level but may result in less inefficient execution. There is no simple way to calcu-
late the relative weight of each factor contributing to the efficiency of programming.
Effective programming models are expected for ease and efficiency of programming.

Parallel languages are designed to support the programming models. So far, nu-
merous parallel languages [1, 3, 4, 7, 9, 15, 17] have been studied, designed and
integrated into parallel environments.

Usually, parallel programming language do not offer direct access to the hard-
ware but establish, as an abstract view of the hardware, a programming model which
can more or less efficiently be emulated by the hardware. E.g., physical wires may
be abstracted by logical channels, as in Occam [15, 16] and CSP [17], or a virtual
shared memory may be simulated on top of a distributed memory message passing
system. There are several models of parallel programming that can be used in parallel

applications. For example:
e Shared Memory Parallel Programming Model

13

With this programming model, all tasks share a common address space, which
they read and write asynchronously. Various mechanisms such as locks and
semaphores may be used to control access to the shared memory. Although this
programming model is more suitable for multiprocessors, it can be implemented
on top of multicomputers. Implementation of this programming model on mul-
ticomputers requires analysis by the compiler as to the location of data so that

appropriate send and receive can be inserted in the program for communication.

Message-Passing Based Parallel Programming Model

With this programming model, the programmer views the program as a collec-
tion of processes with private local variables. The communication among these
processes is done using primitives such as send and receive. Message passing
programs are more difficult to write, however they can be optimized and can

run more efficiently on multicomputers.

Over the last ten years, substantial progress has been made in casting significant
parallel applications into message passing paradigm for distributed memory
parallel computers. CPC also falls into this model.

Data Parallel Programming Model

The main feature of the data parallel programming is that many data items are
subject to the same processing. Many data parallel languages have been de-
veloped to support this kind of parallelism. Data parallel imperative languages
have been designed especially to program SIMD (Single Instruction Multiple
Data) computers, e.g., pipelined vector processors or the CM2[2], since the syn-
chronous execution of the instructions is supported by the hardware. Examples
of such languages are HPF,HPF1,Hig93, MODULA-2%7] and C¥* [9, 10, 11].
A more relaxed form of data parallel programming is one that doesn’t require
synchronization at each instruction. This form is called Single Program Multi-
ple Data. (SPMD) programming paradigm. In SPMD, synchronization is done
only at communication points which are implicit in the algorithm. SPMD pro-
grams are suitable for multicomputers since the programming paradigm closely
matches the underlying architecture. Examples of SPMD programming lan-
guage include HPF and CPC.

14

Independently from the specific paradigms considered, in order to execute a pro-
gram which exploits parallelism, the programming language must supply the means

to:

e Identify parallelism, by recognizing the components of the program execution

that will be (potentially) performed by different processors;

It is custom to separate the approaches to parallel processing into explicit versus
implicit parallelism.

Explicit parallelism is characterized by the presence of explicit constructs in the
programming language, aimed at describing (to a certain degree of detail) the

way in which the parallel computation will take place. A wide range of solutions
exists within this framework. CPC is one of them.

Implicit Parallelism allows programmers to write their programs without con-
cern about the exploitation of parallelism. Exploitation of parallelism is instead

automatically performed by the compiler and/or the runtime system.

Explicit parallelism allows to code a wide variety of patterns of execution, giving
a considerable freedom in the choice of what should be run in parallel and
how. Users can manage the parallelism, detect the components of the parallel

execution, and guarantee a proper synchronization.
For example, OCCAM describes parallelism explicitly, on the other hand, HPF,
C* identify parallelism by their compilers implicitly.

e Start and stop parallel executions;

For example, fork in Multipascal and CPC can be used to spawn a child process

to start parallel execution.

e Coordinate the parallel executions (e.g., specify and implement interactions

between concurrent components).

For example, OCCAM uses physical channels to provide communications among

processes.

CPC supports virtual architecture programming based on explicit message passing

parallel programming model.

15

2.3 Parallel Programming Languages

Below, we review some of the existing parallel languages and systems.

e OCCAM
OCCAM is the first language that is based upon the concept of parallel, in

addition to sequential, execution, and to provide authentic communication and
synchronization between concurrent processes. It’s based on the CSP program-
ming model{17].

OCCAM enables an application to be described as a collection of processes,
where the processes execute concurrently, and communicate with each other
through channels. OCCAM simplifies the writing of concurrent programs by
taking most of the burden of synchronization away from the programmer. The
PAR construction in OCCAM is used to start parallel processing. Communi-
cations between different parts of a program is built into the language itself —
by physical channels which are one-way, point to point links among processors.
Communication over a channel can only occur when both input and output
processes are ready, so communication is synchronized. It is not possible to
give a generally applicable recipe for terminating PAR processes, the detail will

vary from case to case.

OCCAM bears a special relationship with the INMOS Transputer, a high per-
formance single-chip computer whose architecture facilitates the construction of
parallel processing systems. The main implementations of the language are cur-
rently on INMOS Transputer which were designed with the CSP programming
model. The Transputer reflects the OCCAM architectural model, and may be
considered an OCCAM machine.

OCCAM language uses physical channel, which is a one-way, point to point
link from one processor to another, to communicate. Therefore, OCCAM users
must know the low level detail of the underlying architecture, which makes the
OCCAM language difficult to use.

OCCAM programs are efficient for the Transputer, since the Occam program-
ming model matches well the Transputer architecture model. But it is not easy
to port the OCCAM programs to other architectures. Users have to rewrite the

programs for different physical architectures.

16

e HPF

High Performance Fortran is an extension of Fortran 90 to support the data-
parallel programming model on MIMD and SIMD parallel computers using
Fortran. HPF retains the usual programming paradigm: a parallel HPF pro-
gram, like a sequential program, sees a global address space, and the control
flow through the program is (conceptually) identical to the one of a normal

Fortran program. The most important extensions are:

— Logical architecture declaration directives
In HPF, logical processor templates are declared using the PROCES-
SOR directive. This directive may only appear in the specification part
of the program. The NUMBER_OF_PROCESSORS and PROCES-
SORS_SHAPE may be used to inquire about the total number and the

shape of the actual physical processors used to execute the program.

— Data distribution directives
The distribution of data on the available processors can be explicitly spec-
ified, the user can declare several logical architectures of the same size in
a single program. For each parallel phase, the user can then distribute
the data onto a logical architecture using the DISTRIBUTE compiler
directive. After completing a phase of the parallel program, the REDIS-
TRIBUTE compiler directive may be used to reshuffle the data to the

appropriate locations to be used in the next parallel phase cf the program.

— Parallel Constructs
The FORALL construct, the INDEPENDENT directive on DO loops, start
and stop processes; new Intrinsic and an HPF_LIBRARY module will co-
ordinate the parallel processes. All of these extend the possibilities of
Fortran 90 to express parallelism.

-BExisting compilers for HPF convert the user’s program to the message passing
form. The mapping of the logical processors to the physical processors is con-
sidered a compiler dependent issue in HPF and the communication libraries.
The programmer does not have the freedom to specify a mapping which suits
the parallel algorithm. The HPF language does not support directives which

relay the communication pattern of the program to the compiler so that proper

17

mapping of the computation to the physical processors can be performed. User-
defined mapping of the computation to the physical processors is recommended
as an extension in the HPF language specification. Current implementations
of the HPF language such as [6] do not support this feature. When the physi-
cal architecture is changed, the user must recompile and relink their program.
Therefore, HPF is inconvenient for the user to port the program across physical

architectures with different topology or size.

Multi-Pascal

Multi-Pascal is an extension of the programming language Pascal, with the
addition of features for creation and interaction of parallel processes. It is
designed to be machine independent, and can run on a wide variety of parallel

computers.

Multi-Pascal has features that allow the dynamic creation of parallel processes
on the physical processors. Multi-Pascal uses channel variables to transmit data

from one process to another.

Multi-Pascal does not support the virtual architecture programming. The user
needs to declare the physical architecture and specify the process-to-processor
mapping in their application program. There is no run-time mapping. More-
over, the user is forced to organize the program to match the available physical
architecture which may not be a natural structure to the application, hence the
algorithm may be not easy to implement. This also limits the portability of
the Multi-Pascal programs. It is impossible for the user to run the same Multi-
Pascal application program on a different platform. The user has to rewrite the

program to do that.

CPC
As we already know, CPC is an explicit parallel language based on C. It has

the process creation/termination statements, such as fork/forall; processes com-
municate via channel variables. CPC users can declare the virtual architecture
most suitable to the algorithms, the virtual architecture can be mapped to the
available physical architecture at run time. Users have the freedom to specify
the mapping functions as late as the program loading time.

18

The special feature of CPC is that CPC supports virtual architecture program-
ming. With virtual architecture, CPC language is easy to learn, easy to use,
and portable across different platforms and different partitions within the same

platform.

19

Chapter 3

The CPC Language Design

CPC (Concordia Parallel C), which is an extension of ANSI C, supports explicit con-
structs that declare virtual architectures, forks processes, synchronizes executions of
processes, and divides processes into groups and map processes to physical proces-
sors. It can also manage communications among processes by sending and receiving
messages via channels. Channels and processes can be created dynamically. The
CPC language supports both shared-memory and message-passing programming par-
adigms.
CPC language has the following principal features:

e virtual architecture programming

The CPC user can write an application in the virtual architecture with the
desired size and topology, which is most natural and efficient to the program
performance. The user can select a mapping function from the mapping li-
brary or design his own mapping function to map parallel processes to physical

processors at run time.

e portable parallel programming

With the virtual architecture approach and the CPC AST, CPC programs are
portable across different platforms and also across different partitions within

the same platform.

e ANSI C compatibility

CPC is based on the ANSI C, and preserves most of the existing sequential

20

features of the C language. Except for a few additions of C++ features and

enhancements, CPC sequential sytax is compatible with ANSI C syntax.

explicit parallel programming

CPC is extended from the ANSI C, the extensions allow the user to express par-

allelism, to declare virtual architecture and to map process to virtual processors.

channel communication

In CPC, a new type of variable, the channel variable, is designed to help coor-

dinate process interaction and communication.

C++ style comment and call-by-reference

The CPC user is allowed to use C++ style comment and call-by-reference in
the CPC program.

no limit on the length: of an identifier

There is no length limit on the CPC identifier.

nested function definition

The CPC user is allowed to nest a function definition inside a function. The
normal scoping rule applies.

ease to use

The CPC language is easy to learn. CPC programs are easy to read, maintain,
and verify.

3.1 Virtual Architecture Approach

Virtual architecture approach is the main feature of the CPC language.

The CPC application programs can be written using the virtual architecture ap-

proach. In this approach, the user writes the program in the virtual architecture,

which has the most suitable topology and size for the problem in question, which

captures the communication patterns among processes. At run time, the compiled

program will be mapped to a physical topology specified by the user, which can be
different from the virtual topology.

21

Virtual architecture approach provides the user with a high level of abstraction
of the communication pattern, allows the user to concentrate on the resolution of
the problems without sacrificing performance. Therefore the user need not worry
about the architectural features of the target system. The virtual architecture is the
most natural to the algorithm and most efficient to the algorithm performance, the
program will be easy to implement, easy to read, easy to verify, and easy to maintain.

The total number of virtual processors needed by a CPC source program is de-
fined by the user, not limited by the physically available processors in a real parallel
machine. So the virtual architecture and virtual processors give CPC users more
flexibility in programming.

For a particular algorithm, the execution delays resulting from communications
will depend on the specific topology. The topology and size of the physical architec-
ture may not match that of the virtual architecture. To solve the mismatch between
virtual topology and physical topology, reduce the communication delay and program
execution time, the virtual architecture approach allows the CPC user to select map-
ping functions available in the mapping library or design his own mapping functions,
so that the virtual processors can be mapped to the available physical processors at
run time according to the mapping function.

After mapping, the two communicating processes should be situated as close to-
gether as possible. The mapping can minimize communication cost among commu-
nicating processes, and balance the workload among physical processors.

There are two levels of program mapping. The first level is the mapping from
processes to virtual processors. The second level is mapping from virtual processors

to physical processors.

1. Process-to-virtual-architecture mapping. The mapping can be one-to-one or
many-to-one. Often in the application program the user specifies the ID of the
virtual processor on which a process will run. The virtual processor will be

mapped to a physical processor at run time.

If the user does not provide a virtual processor for a new process, at run time,
the process is mapped directly to a physical processor, bypassing the virtual
processor level since a virtual processor is not needed in this case. The physical
processor allocated to the new process is determined by the processor man-
ager. The default allocation criteria is to balance the workload among existing

22

process ID | physica. processor ID
0 0
1 0
2 0
3 0
4 1
5 1

Table 1: Mapping table for process to physical processor.

physical processors.

2. Virtual-to-physical-architecture mapping. At run time, the user can specify
the desired physical architecture for running the compiled virtual-architecture
program. This mapping is accomplished by mapping the virtual processor ID to
a physical processor ID. A virtual-to-physical mapping table is used to store the
mapping pattern. The mapping library provides different mapping functions,
which will maximize the resemblance between a virtual architecture and an
available physical architecture in terms of their communication behavior, so that
the advantage of a particular virtual architecture for an application program,
such as the minimized communication cost, can be appreciated by the available
physical architecture. Mapping functions include random mapping and user-

defined mapping.

We can see, by means of an example, how parallel processes are mapped to physical
processors. For instance, assume that the user declares a virtual architecture of ring
topology with 3 processors (number 0,1,2), and he/she has 6 processes running in
parallel. At runtime, he may get a subsystem of line architecture with 2 processors
(number 0, 1). Then his mapping tables could be as shown in Table 1 and Table 2.
Figure 2 indicates the two level mappings for this example.

With the mapping, the virtual architecture will be separated from the physical
architecture; the CPC source code is portable to different parallel systems; and the
CPC executable code of a virtual architecture is portable to different partitions within
a platform. CPC programs have the executable code level portability.

With virtual architecture approach, CPC turns out to be a good candidate for

explicit parallel programming that can be used to design, express, and implement

23

virtual physical
Processors PIOCeSSorIs

————

processes

architecture : ring line

Figure 2: Mapping example

Physical processor ID | process ID
0 0,1,2,3
1 4,5

Table 2: Mapping table for physical processor to processes.
efficient portable parallel algorithms.

3.2 Differences Between the Sequential Part of CPC
and ANSI C

Because the CPC language preserves most existing sequential features of the popular
C language, we will only discuss the major differences between the sequential part of
CPC and ANSI C in this section.

24

3.2.1 Function Definition
The syntax for function definition is different from ANSI C in three aspects:

e The function return type cannot be omitted.

e In a function call statement, the pair of parenthesis following the function name
in ANSI C can be omitted in CPC if there is no argument for the function.

e Function definition can be nested. For example,

include "cpc.h"

void main { //omit the "()" after main
int x;
int £(@int y) { //define a nested function
int z;
z = 2;

return y+z;

}

x=1; x=£f(x) +2; }

This feature allows the user to redefine the function which may exist in the
CPC parallel library in a certain scope, thus avoiding naming conflicts of library
programs with user programs. This will make the CPC parallel library reusable
and portable.

The normal scoping rule applies. A user can declare a function inside a com-
pound statement before the first statement of this compound statement. In this
way, the user can nest a function within a function. The nested function can use
the arguments and variables of the outer function. The outer function cannot
use the arguments and variable of the nested function. The nested function is
unknown outside of the outer function.

25

3.2.2 Names

CPCC sets no limit to the length of a name of any identifier. Even though ANSI C
standard sets no limit to its identifiers, most C/C++ compilers do. CPCC achieves

this flexibility with even more efficient pointer-based comparisons among identifiers.

3.2.3 Call By Reference

The CPC supports the C++ style call-by-reference.

Arguments to a function are means of passing data to the function. Many pro-
gramming languages pass arguments by reference, which means they pass a pointer to
the argument. As a result, the callee function can change the value of the argument.
When passing argument by value, the calice function can change the value of the
parameter copy, but it cannot change the value of the argument of the caller.

In ANSI C, an array used as a parameter is always call-by-reference. In CPC, all
parameters use call-by-value, unless there is an & before the parameter. For remote
function calls, call-by-value parameters are used to pass initial data from the caller to
the callee, and call-by-reference parameters are used to pass computing results back
from the callee to the caller.

3.2.4 Comments

To insert a comment into a CPC program, the user, as with the ANSI C, can surround
it with double-character symbols /* and */. But in CPC, comments in this style may
extend over one or more lines, and the user is allowed to insert another comment of

this style inside it. The C++ style comments are also supported.

3.3 Parallel Features of the CPC Language

Parallel features of the CPC support the creation of processes, the mapping of
processes to virtual processors, and communications between processes through chan-
nel variables. Parallel features also synchronize executions of processors.

The CPC user can specify the virtual architecture on which the program will run.
The user can declare it at the start of the program. The virtual architecture will then

26

be mapped to a physical architecture at run-time. The physical architecture can be
the same as or different from the virtual architecture.

3.3.1 Process Creation and Termination

The most important building block of parallel program is the process. Computational
activity takes place when a process is assigned to a processor in the underlying parallel
computer. Ordinary sequential computer programs can be understood as a special
case of parallel programs, in which there is just one single process and one single
processor. When such a sequential program starts to run on a computer, the processor
starts to execute the body of the main program, starting from the first statement.
Thus, this main program can be considered as the process being executed by the
Drocessor.

In CPC programs, the program execution begins in exactly the same way: the
main program becomes the first process and is assigned for execution to the first
processor. The main program may contain any of the ordinary kind of statements that
are found in sequential programs, such as assignments and loops. However, in CPC
there is also a completely new kind of statement not found in sequential programs: a
process creation statement. fork and forall are such statements, whose execution will
cause new processes to be created and assigned to processors for execution. This is
how parallel activity is initiated in the program: an existing process that is already
running on a processor executes a process creation statement. The created process
is sometimes called the child process, while the creator process is called the parent
process.

When a CPC program begins its execution, the main program becomes the first
process and is assigned for execution to the first virtual processor. Existing processes
that are already running on a processor can execute a process creation statement such

as fork or forall to create child processes .

fork statement

Fork statement is the most powerful statement in CPC to create a new process. It
is able to turn an individual statement into a child process which is useful in many
circumstances.

For example, in the following program segment

27

fork for (i=0; i<=10;i++) A[i] = i;

the fork statement will create a new child process, which will execute the enclosed for
statement. The parent will continue execution immediately without waiting for the
child in any way. Although the parent process does continue with its execution while
its fork children are still running, the parent is not permitted to terminate until all
its children have finished. If the parent reaches the end of its code while one or more
of its children are still running, the parent will be suspended until all the children
terminate. Only then will the parent be allowed to finish. This implementation
prevents a premature termination by process 0 while some of its children are still
running.

The substatement in fork statement, which will be executed by the new process,
can be any valid statement in CPC, such as a single statement, a function call, a

compound statement. Following are examples of how to use fork statement.

#include "cpc.h"

//The "<statement>"s in the following comments represent the right
//side <statement> in the first rule of the fork syntax.

channel int CI;

void mul(int i){

}

void main {

int 1i,j;

fork; //The <statement> contains no operation
fork i = (i>10)? 1 : i+1; //The <statement> is a single statement
fork [; CI] i = CI;

fork { //The <statement> is a compound statement
if (1> 10) i = 1;
else i++;

}

fork (i+j); //The <statement> is an expression

fork printf("Hello world"); //The <statement> is a function call

fork [i; CI] mul(i);

fork fork mul(i); //The <staetment> is another fork statement
//omitting the first <opt_expr> in the second rule

fork[; CI] (i = CI, i+j);

//omitting the second <opt_expr> in the second rule

fork[i;] sqrt(i);

}

The general syntax of fork is as follow:

<statement> FORK <opt_mapping> <statement>

<opt_mapping>::= [<opt_expr> ; <opt_expr>]
<opt_expr>]

@ <opt_expr> ; <opt_expr>]
@ <opt_expr>]

-

<opt_expr> ; <opt_expr>]

-~

|
(o T e T e T o W e T

<opt_expr>]

NIL

where statement on the right hand side in the first rule can be any CPC valid
statement, such as compound statement, expression or even no operation. The first
opt_expr in each rule of opt_mapping should always be any CPC valid integer-valued
expression, it represents the processor number. If there is an @ in front of it, it
represents the virtual processor number, if there is an A in front of it, it represents
the physical processor number. The second opt_expr in each rule of opt_mapping, if
it exists, should be an expression with an valid left value in CPC. It’s possible to omit
either one of the opt.exprs. The fork statement creates a new child process, which
will execute the statement on a virtual processor or physical processor specified by
the user or by default.

We will discuss the semantics for opt_mapping in Section 3.3.4 and Section 3.3.2.

29

join statement

Sometimes, it may be desirable for a parent to wait at some point for the termination
of one or all of its fork children. join statement in CPC is designed for this purpose.
If the parent has only one fork child, then a join statement executed by the parent
will force it to wait for the child to terminate. If the child has already terminated,
then the execution of join will have no effect on the parent- One may think of the
join as the opposite of a fork. fork separates a child process from its parent, and
join brings the terminated child back together with its parent.

For example, in the following

fork mul(j);
for (i=0; 1i<10; i++)
ali] = i;

join;

the parent will execute the for loop after forking the child. After finishing this loop,
the parent will suspend execution at the join to wait for the termination of its child,
then continue to execute the statements right after join. If the child has already
terminated, the parent will continue its the execution after join without wait.

The execution of each join by the parent will match one single fork child ter-
mination. If the parent has multiple fork children, it may execute multiple join

statements to wait for them all to terminate. In the following program,

#include "cpc.h"

void main{

int i;

for (i=0; i<10; i++)

30

fork sqrt(i);
for (i=0; i<10; i++)

join;

the first for loop creates 10 fork child processes. Each child calls function sqrt.
Then in the following for loop, the parent executes the join statement 10 times, thus
waiting for the termination of all 10 children. Without this second loop, the parent
would just continue execution in parallel with all of its children. However, once the

parent reached its end, it would not terminate until all children had terminated.

forall statement

The following is an example of forall statement,
forall (i from O to 9) c[i] = alil + b[il;

which will create 10 copies of the enclosed assignment statement cfi] = ali] + b[¢] and
make each one a separate parallel process with its own unique value of the index
variable 7.

Forall statement can create multiple child processes at the same time. It is a
parallel form of a normal for loop in which all the loop iterations are executed in
parallel rather then sequentially. Each iteration of a forall statement creates a child
process which will run in parallel with other children created by the same forall. The
program code for each process is the same, just a copy of the body of the forall loop.
After finishing the creation of processes, the parent process suspends its execution,
goes to sleep and waits until all of its children terminate. Only then will the parent
continue its execution with the statement following the forall statement. This is
one of the differences between forall statement and fork statement.

There is always an overhead associated with creating a process, mapping it to
a particular processor where it will be executed, and terminating a process. If the
process grain is too fine, the overheads may outweigh the speedup gained by paral-
lel processing. For this overhead to be justified, the duration or execution of each

process, sometimes called the granularity of the process must be much larger than

31

the creation overhead. Usually, with larger granularity processes, we can make good

use of more processors to speedup the program. But for the following example,
forall (i from O to 99) alil=i;

assume a process creation time is 8 time units in the system, and the duration of
each process is 8, then the total elapsed time since the start of the forall statement
will be 8%100+8=808 time units. If we replace the forall statement with a for
statement, then no child process will be created, therefore the total execution time will
be 100*8=800 time units. Not only has the forall failed to speed up the execution,
but actually lengthened the execution time due to the process creation time.

To help overcome this granularity problem with forall statement, grouping
option is provided in CPC. It can be used in forall statement to group together a
certain range of index values in the same process. The grouping size should be chosen
so as to balance the program speedup and process creation/termination overheads.
If the grouping index is omitted as the above example, then the default group size

is 1. Now let’s look at the following example:

forall (i from 1 to 100 grouping 10)
add(alil);

the added notation grouping 10 causes the index values to form groups of size 10
in each process. Thus, only 10 processes are created. The first process sequentially
iterates through the index values 1 to 10, the second process iterates through 11 to
20, and so on.

A process terminates when it reaches the end of its code. Processes of the same
parent may terminate at different time. This is due to slight variations in processor
speeds, processor loads, or other environmental influences. In any case, the parent
process executing the forall will always wait for all the child processes to terminate
before executing the statement that follows the forall.

Following is the general syntax of the forall statement:

<statement> FORALL (<non_comma_expr> FROM <expr> TO <expr>
<opt_grouping>) <opt_mapping> <statement>
GROUPING <expr>

NIL

<opt_grouping>

32

<opt_mapping> [<opt_expr> ; <opt_expr>]

[<opt_expr>]
[@ <opt_expr> ; <opt_expr>]

[@ <opt_expr>]

::= [- <opt_expr> ; <opt_expr>]
::= [~ <opt_expr>]

::= NIL

where non_comma_expr must be a single expression, expr must be any valid integer-
value expression, none of them can be omitted. expr in the second rule must be a
valid CPC integer-valued expression, it can be omitted. The first opt_expr in each
rule of opt_mapping should always be any CPC valid integer-valued expression, it
represents the processor number. If there is an @ in front of it, it represents the
virtual processor number, if there is an A in front of it, it represents the physical
processor number. The second opt_expr in each rule of opt_mapping, if existing,
should be valid left-value expression in CPC. It’s possible to omit either one of the
opt-expr. The statement on the right hand side can be any valid statement in CPC,
such as expression, compound statement, function call, etc.

As stated in section 3.3.1, we will discuss the semantics for opt mapping in Sec-
tion 3.3.4 and Section 3.3.2.

Now let’s look at some examples.

#include "cpc.h"

// The "statement"s in the following comment represent the second

// statement on the right side of the first rule.

int £(@int j) {
return j*10;

}

channel int c¢[200];

void main() {

33

int 1i,j;
int al10] [20];

forall (i from 1 to 10) //The statement is a single statement
printf ("Hello world!\n");

//The statement is a function call

forall (i from 1 to 10) [i; cli]] £(i);

forall (i from 1 to 5) [i;] //The statement is another fork statement

fork £(i);
forall (i from i+1 to 2%i) //The statement is a compound statement
{ int j;
J = ixi;
}
forall (i from 1 to 9) // nested forall loops

forall (j from 1 to 10) [; cli*jl] sqrt(i*j);
forall (i from 1 to 10 grouping 5) //with the <opt_grouping>
printf("Hello !\n");
//0mit the second <opt_expr> in the third rule
forall(i from O to 9 grouping 1)
(i;1 £(1;
//0mit the first <opt_expr> in the third rule
forall (i from 1 to 10) [; c(il] £(i);
//A complete example of forall statement
forall(i from O to 9 grouping 5) [i;c[il] printf("Perfect!\n");

3.3.2 Process Communication Via Channel Variables

This section describes communication channels, the declaration of channel variables,
reading and writing channel variables, binding channel variables to processes.
Communication channels provide an abstraction for communications of values be-

tween two processes. The channel variables abstract message sending and receiving

34

among processes. A process pl can communicate with another process p2 by “send-
ing” a message through a channel variable. Process p2 will “receive” the message
from the same channel variable.

A message being sent is abstracted by a write to a channel variable. A message
received is represented by a read from the channel variable. Conceptually, a channel
acts like a first-in-first-out queue of values (messages) of the same data type. The
capacity of the queue buffer is assumed to be unlimited.

Declarations of Channel Variables

A CPC user can declare a channel variable as follows:

channel int ci;
// "ci" is a single channel variable of type "int"
channel char cc;

// "cc" is a single channel variable of type "char"
The user can also define an array of channel and a channel of array, for instance:

channel int Arr0£fChnl[50];

// "ArrOfChnl" is an array of 50 channels each of type "int"
typedef int partition(2][2]

channel partition ChnlOfArr;

// "ChnlOfArr" is a channel of an array which has int type element

Multidimensional arrays of channels are also permitted.

The only operations that can be performed with a channel of array is reading
or writing a whole array from the channel. It is not permitted to read or write one
element in the array. So the expression ChnlOfArr[1] [1] is not a valid expression
in the above example. To get at the 3rd element in the array, one must first read
the whole array from the front of channel Chnl0fArr into an ordinary variable of the
same array type such as a, and then use the expression a[1]{0].

Nested channels are not allowed: a channel may not contain any channels. A
“channel of channel” is not permitted by the rule that the type must be a valid type
in the C language because channel is not a valid type in C. For example, we cannot

have a channel of structure where one field of the structure is another channel.

35

It is also permitted in CPC to have a channel whose component type is a pointer,

as in the following example:

channel int x;

channel *dnchan;

dnchan = ChannAlloc(l,1);

In the CPC language, channel variables are declared in just the same way as
variables are declared. Channel variables are usually declared as global variables. We
may have a channel variable ¢ that is local to a function. However this channel would
be useless because no processes other than the original owner of ¢ can access ¢ (due
to the lexical scope rule of the C language). Thus the original owner cannot use ¢
to communicate with the other processes. That is why channel variables should be
declared as global variables so that all processes can see these channel variables.

The general syntax for channel declaration is as follows:

<def> CHANNEL TYPE_QUAL <decl_list>;

CHANNEL TTYPE <decl_list>;

where TYPE_QUAL can be any valid type such as int, char, TTYPE can be typedef type

for declaring a single channel variable or array of channel.

Binding Channel Variables to New Processes

Each channel variable has a unique owner process. Every process can write to a

channel variable. But only the owner of the channel variable can read from it.
When any process is created with any of the usual CPC statements (fork or

forall), a binding may be included to assign one or more of the channels to the

created process. For example,

channel int c[200];
channel int CI;
main()

{ int i;

36

fork [1; CI] ChildCodeQ); //assign channel CI to new process
//assign channel c[i] to the ith new process
forall(i from O to 9 grouping 5) [i;c[il] printf("Perfect!\n");
}

Binding channel variables to a new process means to assign channel variables to
a specific process. In this way the process can receive messages from other processes
through the channels. However each process may read values only from its own
assigned channels. A channel reference can be an array of channels designed to
facilitate the binding of many channels (of the same component type) to a new process.
For example, instead of binding 20 channels (of the same component type) to a
process, we could declare an array of 20 channels, and then bind that array to the
process. Any channel in the array may then be used by that process to receive
messages. The array of channels can be an entire array, or one or more dimensions of
a multi-dimensional array (e.g. one row of a 2D array, one plan of a 3D array), such
as “MulArrOfChnl” in the following example.

typedef int partition[2]([2]
typedef channel partition pchan;
pchan MulArr0fChnl[3] [3]

Recall the general sytax for fork or forall in section 3.3.1 and section 3.3.1 respec-

tively, the syntax for binding channel variables is as follows:
<opt_mapping> ::= [<opt_expr> ; <opt_expr>]

::= [<opt_expr>]
[@ <opt_expr> ; <opt_expr>]

::= [@ <opt_expr>]

::= [~ <opt_expr> ; <opt_expr>]
::= [~ <opt_expr>]

::= NIL

where the second opt_expr, if existing, in each rule of opt_mapping represents the
channel which will be assigned to the new created process. It should be any CPC
expression with a valid left value.

37

Reading from and Writing to Channel Variables

Channels are written by using their names on the left side of an assignment statement,

and read by using their names on the right side of an assignment statement as in the

following example:

C = // C is written by process P1

i
i=0¢C; // C is read by process P2

In the first statement, P1 writes a value j to the end of queue in channel C. In
the second statement, P2 reads a value from the front of the queue of values stored
in channel C and writes this value into variable i. The type of variable i and j must
match that of channel C. For example, if C is CHANNEL int, then both i and j must
be of type int. Each write to a channel will add a new value to the internal queue,
and each read will completely remove a single value from the internal queue.

Note that each time a channel is read, it produces a different value. This is because
values are queued inside the channel during writing, and removed during reading. Let
CI be a channel of integer. The assignment “n = CI + CI” is not equivalent to “n =
CI = 27,

Any process may write values to any channel, provided that the channel variable
is accessible by the process according to C lexical scope rules. However, each process

may read values only from its own assigned channels.

Channel Empty Test

When a process executes a read operation to a channel that is currently empty, the
execution of that process is automatically delayved until a value is written into the
channel by another process. In the above example, if the P2 executes the assignment
“i = C” while the channel C is empty, the execution of P2 will be automatically
suspended. Later when some other processes, e.g. P1, finally writes a value into
channel C, then the execution of P2 will be automatically resumed at this same
assignment. Now that there is a value in that channel, the assignment will execute
successfully, and P2 will continue to execute the next statement. However, the writer
process will never be suspended; channels are supposed to have unlimited capacity

and can hold any number of values. Channel writes are thus non-blocking.

38

To determine if a given channel currently contains any values, a Boolean-type
expression may be created by using the name of the channel followed by a question

mark, as in the following example for channel C:

if (C?)
i = C;
else

printf("Channel is empty");

The expression “C?” will evaluate to TRUE if the channel C currently contains any
values and FALSE if the channel is empty. The owner process may evaluate this
Boolean expression “C?” without fear of being delayed. The process executing the

“C?" operation will not be suspended if the channel is empty.

3.3.3 Virtual Architecture Definition

As the CPC language supports both shared-memory and message-passing program-
ming paradigms, an architecture declaration is needed for a message-passing program.
The declaration is similar to that of a data type in C language. If the architecture
declaration is absent in a program, the program is treated as a shared-memory pro-
gram. The virtual architecture is specified with the keyword arch at the beginning
of the program as in the following examples. The architecture of a multicomputer
system is defined by the topology and the size of the system. For example, we can

define the virtual architecture as follows:

arch shared S(100]; //shared-memory with 100 processors
arch fullconnect F[25]; //fullconnect with 25 processors
arch line L[10]; //line with 10 processors

arch ring R[20]; //ring with 20 processors

arch hypercube H[5]; //hypercube with 275 = 32 processors

The general syntax for the architecture declaration is as follows:

39

<def>

ARCH ARCH_TYPE <var_decl> ;

<pnew_name>

<var_decl>
<var_decl> [<const_expr>]
NAME

<new_name>

where ARCH-TYPE is one of the following topologies: shared, line, ring, mesh, torus,
hypercube, and fullconnect. Shared topology means that the program is intended
for execution on a shared-memory multiprocessor. In a fullconnect topology, each
processor is connected to every other processor. Name is the name of the architecture,
const-expr must be any valid expression representing an integer constant. shared,
line and ring should be declared as one dimentional arrays, const-expr represents
the size of the architecture. Mesh and torus should be declared as multi-dimensional
arrays. To multiply the values of each const-expr in the declaration will get the sys-
tem size of this architecture. Hypercube should also be declared as an one dimentional

array, the const-expr in this declaration represents the system dimension number.

3.3.4 Mapping Processes to Virtual Processors

In order to minimize communication cost among communicating processes, CPC users
are allowed to map parallel processes to the processors of the virtual architecture.
Therefore, communicating processes can be mapped to processors sitting close to
each other.

The user can include his mapping in the process creation statement. In that
statement, the user can specify the absolute ID of a virtual processor on which the
newly created process will run, so that this child process can be mapped to the
physical processor at run-time; or the user can specify the absolute ID of a physical
processor to run the newly created process.

Following are two examples of the mapping used by fork and forall respectively.

for (i = 0; i < n; i++)
fork [i;] £(i);

forall (k from 1 to 10)
fk-1; 1 £(k);

40

The general syntax for mapping is as follows:

<opt_mapping> [<opt_expr> ; <opt_expr>]

[<opt_expr>]

[@ <opt_expr> ; <opt_expr>]

[@ <opt_expr>]

[-~ <opt_expr> ; <opt_expr>]
::= [~ <opt_expr>]
::= NIL

Referring back to the general syntax of forall and fork statements in section 3.3.1
and section 3.3.1 respectively, we see that each primitive is ended by an statement
which will be compiled into the parallel code to be executed by the new child.

The first opt_expr in each rule for opt_mapping represents the mapping of new
process to processors. If there is an @ in front of the opt_expr, then the newly created
child will be mapped to a particular virtual processor, the value of opt_expr is the
virtual processor ID; if there is a symbol A in front of the opt_expr, then the newly
created child will be mapped to a particular physical processor, and bypassing the
virtual architecture, the value of opt_expr represents the physical processor ID. If @
or A is missing, opt_expr represents the virtual processor ID. So the opt_expr must
be specified using any valid CPC integer-valued expression. The second opt_expr in
each rule for opt_mapping, if existing, represents the binding of channel variable to
the new created process, which we already discussed in section 3.3.2.

Process-to-virtual-processor mapping is optional. If the user does not specify the
virtual processor ID for a new child, then at run time, the child process will be
mapped to a default virtual processor. The mapping objective is to minimize the

communication cost and balance the load among physical processors.

3.3.5 CPC Builtin Functions

CPC has a library of builtin functions to help users in programming, such as the basic
arithmetic computation function, sin and cos; file open and close functions, fopen and

fclose; and string operation functions, strcpy, stremp. Message-passing functions are

also supported by this library, such as vsend and vrecv. Please refer to appendix A
for prototypes of these library functions.

42

Chapter 4

CPCC Front End

CPCC is divided into two parts: a front end and a back end.

In order to provide particular fast compilation, CPCC frontend must generate
efficient intermediate representation for its back end to manipulate. The CPCC
frontend must be designed indepently of specific platforms so it can be reused to
support code generation for any system architectures.

A CPC Abstract Syntax Tree (AST) structure is designed for this purpose. It
is intended as an intermediate representation for the CPC language. CPC AST has
a syntax matching well to the ANSI definition. All information in the source code
are represented by four types of tree nodes and their interconnection. The biggest
advantage should be that CPC AST allows us to build the CPCC frontend and
backend independently, and keep all the information from the source code. CPCC
frontend and CPC AST are designed to accept different backend modules to generate
codes for different machines.

To use CPC AST, users must write a backend. The additional degree of freedom
that CPCC frontend provides is that it allows integration of new backends to the
CPCC which translate CPC code into specific target languages. One can easily take
CPCC and redo its backend to produce a compiler for CPC language on a different

machine.

43

identifier | token type
void TYPE
main NAME
{ LC
int TYPE
i NAME
; SEMICOLON
i NAME
= EQUAL
10 ICON
; SEMICOLON
} RC

Table 3: Identifiers and their returned tokens.

4.1 Lexical Analysis

The CPCC lexical analyzer takes a stream of characters from CPC source file and
produces a stream of names, keywords and punctuation marks; it discards white space
and comments between the tokens. A lexical token is a sequence of characters that
can be treated as an unit in the grammar of a programming language. CPC language
classifies lexical tokens into a finite set of token types.
Given a program :
void main{
int i;
i = 10;
}
the lexical analyzer will return the stream as shown in table 3, where the token type
of each token is reported with its semantic value (represented by character string)
attached to it, giving auxiliary information in addition to the token type. We use
Lex to implement our lexical analyzer for the CPC language.

4.2 Syntax Analysis

Yacc is a classical and widely used parser generator. A yacc specification is divided

into three sections, separated by %% marks:

44

parser declarations
%%
‘grammar rules

%%

programs

The parser declarations include a list of terminal symbols, nonterminal sym-

bols and so on. The grammar rules are productions of the forms like
expr: expr PLUS expr { semantic actions}

where expr is a nonterminal producing a right-hand side of expr+expr, and PLUS is
a terminal symbol (token). The semantic action is written in ordinary C++ and will

be executed whenever the parser reduces using the rule.

4.3 Symbol Table

To compile a C-like language, it is convenient to build a symbol table. The symbol
table is the primary data structure used to maintain all the symbols (or identifiers) in
a program, along with all their attributes. In CPCC, the symbol table is implemented
by two independent hash tables—Symbol_tad and Struct_tab.

External chaining hash scheme is the best for symbol table implementation. Hash
the identifier into a list head, and chain on collisions. Each collision chain forms a
first-in-last-out stack matching the scope rules for nested language blocks.

The symbol table has the following properties:

e Bach lexical identifier is stored once only in the symbol table.

e Each lexical identifier is associated with exactly one level, which records the

scope level of the declaration of that identifier.

o A list of declarations in the same level is kept, with the usual simple algorithm:
add symbols to table; remove symbol from table; search in reverse order; reverse

the list; some pointers to these lists such as Local struct_list are pushed into

45

stacks on block entry and popped off from stacks on block exit; the local symbol
lists are removed from symbol tables when exiting from the corresponding block.

The reason for having the two tables is to keep the structure, union and enumer-
ation tags of CPC in a different name space from the other identifiers. Both could
easily be combined if the tags were marked as such and the supporting functions such
as look up, add, and delete recognized the different entries, but the two tables provide
a more distinct separation. The rest of this discussion refers to both as one entity,

the symbol table.

4.3.1 Symbol Table Entries

Each symbol table contains a number of doublely-linked lists of elements. Symbols
are identified by names.

Symbol_tab and Struct_teb will be made with indicated hash function and indicated
size at the beginning of the CPCC parser. Both of them will be cleared at the end of
the execution of the CPCC front end.

Routines for creating symbol table entries, adding entries to the sybmbol table,
removing entries from the symbol table, and looking up the symbol table are provided

to support manipulation and management of the symbol tables.

4.4 Concept of CPC AST

The abstract syntax of the CPC language is described using the commonly known
BNF (Backus-Naur Form) notation. A complete grammar is provided in Appendix B.

CPCC will produce an abstract syntax tree — CPC AST as the intermediate
representation of CPC source code according to its syntax. CPC AST is the central
data structure in CPCC front end. Because a tree structure can be easily restructured,
it is a suitable intermediate form for optimization compilers and from which code
generation is performed. It represents the abstract structure of the particular input

source program and is built by actions of the scanner and parser in CPCC frontend.

46

4.4.1 Nodes in CPC AST

CPC AST is constructed by nodes of the following four types : SYMBOL, LINK,
VALUE, and STMT nodes. Each type of nodes represents a different structure com-
ponent. Nodes of the same type share a common structure. The definitions of these
nodes are included in the file tree.h. Each node represents an occurrence of either
a nonterminal or a terminal symbol of the CPC abstract syntax. All the nodes and
their interconnection in the CPC AST represent all the information in CPC source
code. There is one Root pointer pointing to a SYMBOL node in each CPC AST.

SYMBOL nodes represent identifiers. LINK nodes represent type structures.
VALUE nodes represent expressions made up of constants or other symbols in the
statements of the code. STMT nodes represent the statements of the code.

In the following subsections, we will introduce these four types of nodes respec-

tively.

SYMBOL nodes

Identifier symbols may be declared in any scope. Symbols are identified by names.
Each symbol also has a set of flags to record various attributes. Symbol nodes, the
primary important structure in the symbol table, contains the basic information about
the identifier that it represents, along with pointers to other attributes. A variable or
function symbol contains a pointer to the type of the variable. The type determines
the amount of storage used to hold- the variable as well as the interpretation of its
contents. There are different kinds of symbols such as variables and functions. A
SYMBOL node is defined as :

struct SYMBOL {
char *pame;
SYM_CODE code;
unsigned level 8
unsigned implicit : 1;
unsigned duplicate : 1
unsigned param_type: 1;
unsigned is_forall_index: 2;

unsigned funcall_mode: 2;

47

LINK *type;

LINK *etype;

SYMBOL *sSyms ;

SYMBOL *return_args;

VALUE *val;

STMT *compound ;

SYMBOL *next;

char *filename;

int lineno;

int size;

int offset;

int id_index;

int type_index;
};

SYMBOL nodes represent identifiers, which may be a variable, a function, a user-
defined type, an enumeration element, or a bit field. Every SYMBOL node contains
the same fields as the SYMBOL common structure illustrated above. Different SYM-
BOL node may use different fields, depending on the SYMBOL’s type — variable,
function, type definition, enumeration, enumeration element, structure, union, bit-
field, architecture. We can distinguish the SYMBOL’s type by its code field.

The SYMBOL node defines several fields that are used by all kinds of symbols.
The most obvious of these is the symbol name. Each symbol has a name that should
be unique within the same scope where it is defined. Because the name of a symbol
alone is generally insufficient to uniquely identify it, the symbols are also given level
to specify its declaration scope, code to differentiate different types of symbol nodes
— such as a variable symbol or function symbol, next to point to the next symbol
on the same level, duplicate to record if this symbol is redefined, is_ref_param to
record if it’s a call-by-reference or call-by-value parameter. Each item is also on a
linked list with all other declarations on the same level. The level of a declaration is
the same as its scope depth, so a global variable has a level of 0, and if a function
name is at level n, then the parameters and its top-level local variables of the function

are at level n41. For a function symbol, there are pointers to its compound body.

48

SYMBOL nodes are also used as symbol table entries. SYMBOL nodes go to
Symbol-tab if their code values are S_. VAR, S FUNCTION, S.TYPEDEF'. Others go

to Struct-tab. For example, in the declaration:
int £({int x);

£ is an identifier representing a function, x is an identifier representing a variable, we
will create a SYMBOL node named ‘x’ to represent variable x, the value of its code
field is S_ZVAR, type field will be used to point a LINK node of type ‘int’. We will
also create a SYMBOL node named ‘f’ to represent function f, the value of the code
field is S FUNCTION, a syms field will be used to point to the SYMBOL node ‘x’.
Both SYMBOL node 'x’ and SYMBOL node ‘f’ also go to Symbol_tab.

LINK Nodes

LINK nodes are used to represent type structures.

Every variable must be declared before it is used. A variable symbol contains
a pointer to the type for the variable. The type determines the amount of storage
used to hold the variable as well as the interpretation of its contents. A declaration
provides the compiler with these information. For example, to declare 7 to be of

integer type, we can write:
int i;

where the word int is a reserved word to specify a particular data type. There
are dozens of reserved words to specify data types in CPC. Specifiers — int, float,
char, double, long, short, signed, unsigned, void, enum, struct, union, typedef, const,
volatile, fixed, extern, auto, register, static, channel — represent basic types, qualifiers
and storage classes respectively. These specifiers can be expressed by LINK nodes.

Besides the basic types, there are some special types of variable — pointer, array
and function. They are also represented by LINK nodes.

Like the SYMBOL nodes, all the LINK nodes share the common structure illus-
trated below:

struct LINK {
unsigned linkType :1;

union {

49

SpecifierType s;
DeclaratorType 4;
} select ;
LINK #*next;
int type_index;

};

From above structure, we know LINK nodes are divided into two types: declarator
type and specifier type. The type of a LINK node is identified by the value of the
field linkType (DECLARATOR or SPECIFIER). When a LINK node is created, by
default, the value of linkType is SPECIFIER. If it is a declarator, then the value of
‘linkType’ will be changed to DECLARATOR. in the future. Each type of the LNIK
node also has a field next, which is a pointer to another LINK node. The main
difference between the structures of two type nodes exists in the select field. Now
we will discuss this field for both types.

DECLARATOR type

If the LINK node represents a declarator, then it will contain the following two fields:
dcl_type: The type of the declarator. Its value can be DCL_POINTER, DCL_ARRAY,
DCL_FUNCTION, or DCL_CHANNEL.

num_ele: If dcl_type has value DCL_ARRAY, this field specifies the number of
elements in this array.

The names of the declarator types are self-explanatory. A declarator of type
DCL.CHANNEL is the first link node for a type chain in which the specifier has
CHANNEL as its storage class. This redundancy of information allows the user to
specify channel as a storage class while internally the scope of a channel can be easily

determined.

SPECIFIER . type

If the LINK node represents a specifier, then it will contain the following six fields:
noun: [ts value can be SP_INT, SP_.CHAR, SP_FLOAT, SP_.DOUBLE, SP_VOID,
SP_STRUCTURE, SP_UNION, SP_.ENUMERATION, SP_TYPEDEF, LINE, RING,

50

MESH, TORUS, HYPERCUBE, FULLCONNECT, or SHARED. The values with
prefix SP (SPecifier) correspond to C’s type specifiers. The other values specify the
topology of virtual architectures.

sclass: It specifies the storage class of this object. Its value can be FIXED, EXTERN,
AUTO, REGISTER, STATIC, or CHANNEL. All these values correspond to C’s
storage classes except CHANNEL, which denotes that this tvpe is used to define a
channel type.

type_qual: It specifies the extra type attributes. Its value can be NONE, CONST,
or VOLATILE. NONE means no type qualifier.

Jlong: If this field is true, the type has attribute long.

~unsigned: If this field is true, the type has attribute unsigned.

sym: If the specifier noun is structure, union, or enumeration, sym will be a pointer
to the symbol node which represents the specifier noun in the structure table. If the
specifier noun is typedef, sym will be a pointer to the symbol node which represents
the new type in the symbol table.

VALUE nodes

VALUE nodes are used to represent expressions in statements. A VALUE node is
defined as follow:

struct VALUE {
VALUE_CODE code;

SYMBOL *Sym;

char *string;
LINK *type;
VALUE *str_next;
VALUE *expril;
VALUE *expr2;
VALUE *expr3;
VALUE *next;
char *filename;
int lineno;
int number;
int const_index;

VcType vc_type;
CAST_CODE vc_cast;

int factor;

int size;

int is_channel;
int C_EXPR_top;
int is_parameter;

};

code field specifies the particular type of value node, for example V_INT_CST rep-
resents an integer constant, V_MULTI represents the operator *, V_IDENTIFIER
represents an identifier with its name in string field. So we can distinguish VALUE
nodes by code field together with the string field. sym is also in a VALUE node to
point to a symbol node representing the identifier or function for this VALUE node.

An expression consists of one or more operands and zero or more operators linked

together to compute a value. For instance:
xX+1;

is a legal expression that results in the sum of x and 1. The variable x is also an
expression, as is the constant 1.

The above expression will then be expressed by VALUE nodes. The type of this
VALUE node is represented by the value of the field code — V_PLUS. It also has two
other fields pointing to two other VALUE nodes named °x’ and ’1’ respectively.

STMT node

STMT nodes represent statements which may be an expression, a compound, a return,
a goto, a if-then, a if-then-else, a while, a do, a for, a break, a continue, a switch, a
case, a default, a fork, or a forall statement.

A STMT node is defined as follow:

struct STMT {
STMT_CODE code;
SYMBOL *struct_list;
SYMBOL *symbol_list;

SYMBOL *undecl;

STMT *stmt;
STMT *else_stmt;
VALUE *exprl;
VALUE *test, *expr2;
VALUE *at_expr, *port_expr, *group_expr;
char *goto_label;
char *1abel;
STMT *next;
char *filename;
int lineno;
int code_index;

};

Every STMT node contains the same fields as the STMT common structure. Dif-
ferent STMT node may use different fields, depending on the STMT’s type, such as
expression, return, for, while. Each statement has a code field that indicates its type
— C_NOP represents an empty statement, C_.COMPOUND represents a compound
statement, etc. For a compound STMT node, struct_list, symbol_list, stmt will
be used to point to the compound statement’s local struct symbols, local symbols,
local statement list respectively. For a goto STMT node, goto_label will be used
to represent label of the goto_-target stmt, stmt will be used to point to goto_target
stmt. For a fork STMT node, at_expr, port._expr, and stmt will be used to point

to its at_expr, port-expr and statement respectively. For example:

X++;

2

x is an expression statement. A STMT node of type expression will be created
to represent this statement, the value of the code field of this STMT is C_EXPR,
another field expr will also be used to lead to a VALUE node — named ‘post-inc’.

For the following statement,
forall [i from 1 to 10] j = i * 2;

we will create a STMT node of type ‘forall’, the code field of this node will be
expressed as C_FORALL. Other fields exprl, test, expr2, stmt are also used to

53

point to VALUE nodes representing i, 1, 10, and STMT node representing expression

statement j =1 * 2 respectively.

4.4.2 Graphical Representation of Nodes

CPC AST provides CPCC with a complete intermediate representation of the input
source CPC program, on which transformations can be done much more easily.

Now we will expain how the four types of nodes are represented graphically in
CPC AST.

(c) Stmt node (d) Value node

Figure 3: Graphical representation of nodes and values

We use the four types of icons with solid boundaries in Figure 3 to represent the
four different types of tree nodes — SYMBOL, LINK, VALUE, STMT nodes. We
will give each tree node a name written inside the icon. Usually it is the abbreviation
of value of the name field or code field of this node.

We use other icons with dotted boundaries to represent values of certain fields in
a tree node (not tree node themselves). The values are written inside these icons.

We use solid arrow line starting at the boundary of a tree node to represent a
pointer field in the tree node pointing to another non-NULL tree node, with the field
name attached to the arrow line, ending at the boundary of the pointed tree node.

We use a line attached by the field name to represent a field in this node with
certain value, starting from the boundary of the tree node,ending at the boundary

54

of the icon for that value. In this way we can refer to all the fields necessary for the
examples without cluttering the icons with compartments.

From next section to the end of this chapter, we will explain the way the major lan-
guage constructs in CPC (including C) are represented in CPC AST and graphically
illustrate with examples.

4.5 Data Declarations in CPC AST

4.5.1 Scalar Types and Pointers

Every variable in CPC language must be declared before it is used. A declaration
provides the compiler with information about how many bytes should be allocated
and how those bytes should be interpreted. The reserved words for scalar data types
in CPC are: char, const, int, float, double, short, long, signed, unsigned,
void, volatile, arch.

Char, int , float , double, enum are basic types. The others are qualifiers that
modify a basic type in some way.

Figure 4 shows some scalar declarations and their corresponding node structures.

For example, for the scalar declaration
int x;

we will create a LINK node to represent the scalar type int, for the variable x; we
will create a SYMBOL node and link it on the symbol_list in this scope, then LINK
node for int will be linked to the type chain of SYMBOL node x.

It is usually a good idea to group declarations of the same type together for easy
reference and for simplifying the tree structure. We will create a SYMBOL node for
each variable in this group declaration, and link them one by one, but they will share
the same LINK node to represent their types. For example

float y, z;
If there are more than one types in a declaration, for example :

long int 1i;

55

we will first create a LINK node A for long, then create a LINK node B for int,
and then copy the initialized fields from LINK node B to LINK node A, and discard
LINK node B. This procedure will be continued if more qualifying keywords for this
type specifier int exist. So A will keep all the information for the combined types.
In this way, we can save memory.

If there is an asterisk preceding the variable name in a declaration, e.g. variable p
in Figure 4, then a pointer variable is declared. For a pointer variable, after creating
the SYMBOL node for the variable, we will create a LINK node to represent the
pointer declarator and add it to the end of its type chain, then link the specifier
linked list to the end of the type chain.

Figure 4: Scalar declarations and pointers

4.5.2 Arrays

Users declare an array by placing a pair of brackets after the array name. To specify
the size of an array, enter the number of elements within the brackets.
Figure 5 shows some array declarations and their corresponding node structures.

For an array variable, like a pointer variable, after creating a SYMBOL node for

Figure 5: Array Declarations

this variable, we will create an array declarator LINK node and record the array size
information in its num._ele filed. Link it to the array SYMBOL node’s type chain,
right in front of the specifier linked list.

If an array has been initialized at the declaration, we will create an init_unit
VALUE node and one VALUE node for each initialized array element. Link all these
VALUE nodes one by one and attach to the array SYMBOL node’s val chain.

4.5.3 Aggregate Type — Structures and Unions

Aggregate type struct can serve as groups of mixed data and aggregate type union
enables user to interpret the same memory locations in different ways. The syntax of
a structure declaration can be fairly complex. The form of declaration we have used:
declaring a tag name and then using the tag name to declare actual variables, is one

of the most common ways. It is also possible to declare a struct without using a tag

57

name. Users can also declare a tag name together with variables.
For example, to declare a structure to hold one’s vital statistics, we can write:

struct vitalStat

{

char name([20], SIN[9];

int month, day, year;

+;

struct vitalStat vs;

vitalStat vs2; // C++ style: struct tab is also type name

OR

struct

{
char name[20], SIN([9];
int month, day, year;

} vs;
OR

struct vitalStat

{
char name[20], SIN[9];
int month, day, year;
} vs;

The rule of using tag name is the same for union and enum type declarations.

Figure 6 shows some struct declarations and their corresponding node structures.
Unions are represented in the same way.

The algorithm for adding structure and union declaration to CPC AST is as follow:

Search the Struct_tab symbol table;
If there is no symbol named the same as this tag
in the same nesting level as this declaration
Create a new SYMBOL node for this tag, and set its type to

be ‘struct’ type or ‘union’ type according to the declaration.

o8

Figure 6: Structure and union Declarations

If there is no tag name in this declaration, create a unique
name for it, such as tagl00, tagll, ...
Insert this SYMBOL node to Struct_tab table;

If this is a global declaration
link the SYMBOL node to the head of Global_struct_list;

Else link the SYMBOL node to the head of Local_struct_list;
If this is a redefinition
Give error information
Discard the structure or union’s
elements symbol chain for this new declaration
Else

Link the structure or union’s elements symbol chain for the

59

new declaration to the tag SYMBOL node
If it is an illegal structure definition, give error
information.
Create a new °‘struct’ or ‘union’ LINK node for specifier
-- struct or union
Let the ‘sym’ field of this LINK node point to
the corresponding tag SYMBOL node in Struct_tab

4.5.4 Enumerations

In addition to integer, floating-point, and pointer types, the scalar types also include
enumeration types which enable users to declare variables and the set of named con-
stants that can be legally stored in the variable. Starting with the enum keyword
followed by a tag name (can be ignored), followed by the list of constant names en-
closed in braces, followed by the names the enum variables, we can declare an enum

type variable. For example:

enum colorType {red, blue, green, yellow} color;

colorType houseColor = blue; // C++ style

Figure 7 shows how to represent an enumeration declaration in CPC AST.
The algorithm for adding this enumeration specifier type to CPC AST is as follow:

For each constant element in the enumeration declaration
Create a SYMBOL node for it.
Set its type to be enumerator element type,
Link these SYMBOL nodes one by one.
Search the Struct_tab table
If there is no symbol named the same as this tag
in the same nesting level as this declaration
Create a new SYMBOL node for this tag, and set its type to
be ENUM type. If there is no tag name in this declaration,
create a unique name for it, such as $enum00, $enumli,
Insert this SYMBOL node to Struct_tab table;
If this is a global declaration

60

symbol_list — struct_list

Figure 7: Enumeration Declarations

Link the node to the- head of Global_struct_list;
Else link the node to the head of Local_struct_list;
If this is a redefinition
Give error information
Discard the enumeration element symbol chain of the
new declaration
Else
Link. the enumeration element symbol chain of the new
declaration to the tag SYMBOL node
Add these SYMBOLs to Symbol_tab table;
Create a new ‘enum’ LINK node for specifier —-- enum
Let the ‘sym’ field of this LINK node point to the corresponding
tag SYMBOL node in Symbol_tab

61

4.5.5 Typedefs

Like C language, CPC allows users to create their own names for data types with
the typedef keyword. Syntactically, a typedef is exactly like a variable declaration
except that the declaration is preceded by the typedef keyword. For example:

typedef short int USHORT;

makes the name USHORT synonymous with short int rather than a variable that

bhas memory allocated for it.
As before we’ll create a LINK node to represent specifier short int and a SYM-
BOL node to represent symbol USHORT. We will initialize the code field of the Link

node to S.TYPEDEF, and link it to the end of the symbol’s type chain. Search the
Symbol_tab table. If it’s a multiple typedef or redefinition, discard this SYMBOL
node; otherwise, add this SYMBOL node to the CPC AST and the related table.

4.5.6 Physical vs. Virtual Architecture
CPC users can declare physical and virtual architecture :

phyArch line 1[5];
arch mesh m[{2] [2];

The virtual architectures are used to support our virtual-architecture program-
ming paradigm. The physical architecture declarations are only for the convenience
of using the CPSS simulator. If a physical architecture is declared in source code,
the CPSS will configure itself to simulate the specified physical architecture during
simulated execution, and users do not need to manually configure CPSS for the same
purpose.

The CPC AST for these declarations is similar to that of an array, except we use
line or mesh specifier LINK node instead of int or char specifier LINK node.

4.5.7 Channels

The scope and duration of a variable is called its storage class. The keywords of
storage class are presented in Table 4.
From above table, we can see that CPC has one more storage class—channel than

the C language.

62

["auto | channel | extern | register | static | volatile |

Table 4: Storage Class

In CPC. interprocess communication channels are abstracted by channel variables,
and message send and receive are abstracted by assigning values to the channel vari-
ables and reading values out of channel variables. A channel variable has its basic
type plus its channel attribute. The basic type can be any type or user defined type.
A channel variable can be a component of a normal C compound variable. Typedef
can also be used to define channel types. But along any type chain there can be at
most one channel link.

Usually, storage class is processed just like the type specifier, but channel will be

handled as a special case. Consider the following two declarations:
static int i;
and

channel int i;

For the first declaration, after creating two LINK nodes for type specifier int and
storage class static, the value of the initialized field in int LINK node will be copied
to the static LINK node, and original int LINK node will be discarded. So only one
LINK node can describe a specifier together with its storage class. But for the second
declaration, its storage class is a channel. In this case, we should create two LINK
nodes to represent int and channel respectively, none of them will be discarded. The
channel LINK node will be added at the beginning of type chain, but after array

declarators if there exists.

4.6 Expressions in CPC AST

An ezpression in CPC consists of one or more operands and zero or more operators
linked together to compute a value. A constant expression, a variable, a function
call, an operator can all be represented by a VALUE node. Each VALUE node has a
type field pointing to a LINK node (this Link node can be shared by other VALUE

63

node) to represent its type in CPC AST. The smallest expression units are constants,
identifiers, and function calls. Operators can be used to build compound expressions.

Figure 8 shows some constant expressions and their node structures.

~

next

(2) Constants (b) Node structures

Figure 8: Constant Expressions
Now we will describe how to build the CPC AST for an expression in CPC.

When the expression is an unary expression:

If it is a constant
Create a VALUE node for it, set its type to be a constant type
(such as int, float, or char.)

If it is a variable

64

If

Create a VALUE node for it, set its type to be an identifier type
Search the Symbol_tab
If there is no symbol named the same as this variable
Create a new SYMBOL node to represent it, mark it as an implicit
variable and create an int LINK node to represent its type
Link the SYMBOL node to the head of Local_undecl list
Add this SYMBOL node to Symbol_tab
Give error information: Identifier is not defined
If this variable symbol represents enumeration element,
Change the type of the VALUE node to be a enumeration constant
If this variable symbol represents a function
Create a new function call VALUE node, let its ‘expr’ field
point to the variable VALUE node
it is a unary operator followed by an expression
Create a new operator VALUE node
Build a VALUE node for the expression
Let the ‘expr’ field of the operator VALUE node point to
the expression VALUE node

When the expression is a binary expression:

If

it is a binary operator plus two expressions
Create an operator VALUE node
For each of the two expressions, build a VALUE node
to represent it.
Let the ‘expril’ and ‘expr2’ fields of operator VALUE node point

to the two expression VALUE nodes respectively.

4.7 Statements in CPC AST

Statement in CPC can be expressed by an expression, compound statement, control-

flow statement, and parallel statements. Statements in one block are linked to the

65

statement list stmt for this block.

When a new statement is generalized, we first create a STMT node with a specific
type (for example, switch, return, if then else) for it. If there are expressions in this
statement, the STMT node will use its fields expr or exprl or expr2 to point to
the corresponding VALUE nodes of the expressions; if there exists s substatement in
this statement, the STMT node will use the field stmt to point to the STMT node

for the substatement.

4.7.1 Compound Statement

We have three linked lists —stmt, symbol list, struct_list for each compound statement
in CPC AST to hold information in the compound statement. For our convenience
and efficiency, we use two stacks to store the Local_struct_list, and Local undecl for a
block, when we enter a new block, we just push the Local_struct_list, and Local undecl
of the old block into the stacks, and then empty the two lists so they can be reused
in current block. When it is the time to exit the current block, we pop the stacks
to get old Local_struct_list, and Local_undecl to restore the context for the old block.
Figure 9 shows an example compound statement containing some simple statements.
Now we will describe how to build CPC AST for a compound statement.

Increase the nesting level by 1

Push the current two lists -—- Local_struct_list, Local_undecl, into

struct_stack and undecl_stack respectively

Initialize them to NULL (so that they can be reused in this compound

statement) .

Create a new compound statement STMT node for this compound

statement.

Link the local symbols dynamically to corresponding local symbol lists
such as ‘Local_struct_list’, ‘Local_undecl’ while building CPC AST
for the list of local declarations in this compound statement.

Link the local statements dynamically to corresponding local statement
list while building CPC AST for the list of local statements in this

compound statement.

Before exiting a compound statement

66

symbol_lest

Decrease the nesting level by 1

Remove all the local symbols in this compound statement from both the
symbol_tab and the struct_tab

Let the ‘struct_list’ field in the compound STMT node point to the
reversed ‘Local_struct_list’,

Let the ‘undecl’ field in the compound STMT node point to the
reversed ‘Local_undecl’,

Let ‘symbol_list’ field in the compound STMT node point to the local
declarations’ CPC AST

Let ‘stmt_list’ field in the compound STMT node point to the local
statements’ CPC AST

67

Pop‘Local_struct_list’, ‘Local_undecl’ from struct_stack and
undecl_stack respectively to restore the context before entering

this compound statement

4.7.2 Process Creation and Mapping Statements

fork and forall statements are process creation statements in CPC. They have some
special features in their syntax. They may have a mapping expression and forall may
have a grouping expression.

Fields at_expr and port_expr in fork or forall STMT node will point to VALUE
nodes for its mapping expression and channel variable assignment expression respec-
tively. Field mapType will record the information of this mapping type as the
‘phyMap’ or ‘LocalVirMap’. Field group_expr in forall STMT node will point to
the VALUE node for its grouping expression.

When the mapping expression in the fork or forall statement is not empty, we
will create a STMT node for this mapping expression, set the at_expr, port_expr
and mapType fields in this node, then copy these fields to the related fields in the
fork or forall STMT node, then discard the mapping STMT node.

Figure 10 shows how to represent a fork in CPC AST.

Figure 11 shows how to represent a forall in CPC AST. Also refer to Figure 9.

4.8 Function Definitions in CPC AST

We create a function SYMBOL node to represent the identifier of a function name
in a function declaration, and a function LINK node will be added to the head of
its type chain. If there is a parameter list for this function, let the sym field of this
function SYMBOL node point to the linked parameter SYMBOL list. Now we will
describe the algorithm for the function definition:

Create a function SYMBOL node and a function LINK node.

Add the new specifiers LINK node for this function to the function SYMBOL
node type chain

Search the Symbol_tab

If there is a symbol named the same as this function name

68

Figure 10: Fork Statement

in the same nesting level as this functien declaration
If the two function declarations are different
Give "Inconsistent decl and def for function" error information
Discard the symbol chain and link chain in the existing SYMBOL node
Copy the new symbol chain and link chain from the new function
SYMBOL node to the existing SYMBOL node
Discard the new function SYMBOL node
Else add the symbol of the function identifier to the Symbol_tab

Increase the nesting level by 1
Add symbols of this function’s arguments to the Symbol_tab

69

After processing the parameter list for this function declaration,
Decrease the nesting level by 1
After processing the compound statement for this function,

Remove symbols of the function’s arguments from the Symbol_tab
Let the stmt field in the function SYMBOL node point to the
compound STMT node

Nested function definition are also supported in CPC.

4.9 CPC AST Type Check—Semantic Analysis

At this point, we know how to build a CPC AST for a CPC program. There is still
one more thing to do to complete the CPC AST—Semantic Analysis. We have to go
through the existing CPC AST to check if the tree is semantically right; to add more
information to the tree to make it complete; to reduce the tree when it’s possible; to
make the CPC AST simple and convenient for the code generation.

We will traverse the tree recursively to check all the SYMBOL nodes, VALUE
nodes, and STMT nodes.

First, we will check for semantic errors in all the symbols in a source CPC program,
such as whether each variable has a type and type specifier, whether each function
has a return type, whether each struct or union or enumeration has one or more field.
A SYMBOL node in CPC AST represents an identifier in the CPC source program.
To check all the symbols, we have to go through the SYMBOL nodes in the CPC
AST one by one. The algorithm for checking a SYMBOL node is as following:

If the SYMBOL node represents a variable
If the variable doesn’t have a type and type specifier
Give error information

If the variable has a value, check its value

If it represents a function
If the function doesn’t have a type, type specifier or return type

Give error information

70

If the function has parameters
Check the function'’s parameter symbols
Set the offset of each parameter
If the function returm type is a function
Check the argument symbols of the return function

If the function body is not empty, check the compound statement

If it represents a typedef
If the typedef doesn’t have a type and a type specifier

Give error information.

If it represents an enumeration
If the enumeration has no fields
Give error information.
For each element in this enumeration

Set the offset of the element

If it represents a structure or union
If the structure or union has no fields
Give error information.
else
Check all the field symbols in the struct or union
For each element in this struct or union
Set the offset of the element.

If it represents a bitfield
If the bitfield has no width

Give error information.
If it represents an architecture

If the architecture doesn’t have a type or is not defined as an array

Give error information.

71

If it is defined as SHARED, FULLCONNECT, LINE, RING, HYPERCUBE
but not a 1-D array,

Give error information.

From above algorithm, we can see that in order to check the semantic errors in a
symbol, sometimes we should also check the related value and statement.

To check a value, for example, when there is a function call, we will check whether
the function has been defined, whether the argument types match the parameter
types in the function definition. We also need to check whether there is access to the
component of a channel variable, and whether the types of expressions in a compare
or conditional operation match with each other. A value in a CPC source program is
represented by a VALUE node in CPC AST.

The algorithm for checking value is as follow:

If the value is a constant or for an identifier, we don’t need to

check it anymore.

If the value is a function call
If the identifier of the value is not defined as a function

Give error information.

If there is arguments in a function call
and no parameter in the function definition

Give error information.

If types of arguments in the function call don’t match
the parameter types in the function definition
or the number of arguments is not equal to the number of
parameters in the function definition

Give error information

If it is one of the following operators : pre-increase, pre-decrease,

post-increase, post-decrease, address of

72

If the expression for this operation does not have a left-value

Give error information.

If it is an operator of indirect addressing
If the expression does not have a pointer type
Give error information
If it is an operator of ‘->’ or ‘.’
If the expression is a channel type
Give error information:
"Access to component of a channel variable is forbidden in CPC language"
If the left value of -> is a pointer to a struct/union
or the left value of ‘.’ is a struct/union
If the right values are not valid fields of a struct/union

Give error information

If it is an operator of array access
If the expression has a channel type

Give error information:
11

"Access to component of a channel variable is forbiddem in CPC language

If it is a conditional or compare operator

Check whether the expression types match with each other

If it is an assignment operator
Check whether the expression types match with each other
If this assignment does not combine channel read
and channel write, check whether the expression on the left of

the assignment has a left-value.

To check the statements in CPC source program is to guarantee that the state-

ments are legal statements in CPC language. For example, the expression in swiich

73

and case statements must be integer_valued expression, fork and forall at expression
should also be integer_valued expression, port expression should be valid channel

expression.

74

symbol list

Figure 11: Forall Statement

75

Chapter 5
Code Generation

The frontend of CPCC produces an abstract syntax tree CPC AST on which the
static semantic analysis has already been performed. This analysis includes type
checking and scope resolution. The abstract syntax tree can be traversed by the
backend, and subsequently manipulated. In this chapter, we describe the backend of
CPCQC, including the data structures and execution environments, virtual codes and
the algorithm employed by CPCC backend.

5.1 Tasks of CPCC Backend

The CPCC code generator has two main tasks: it has to allocate storage for all static
data such as constants and initialized data, and for all variables other than those
which will be allocated dynamically during program execution. The second task is
the generation of the virtual codes for CPSS.

The intermediate representation for CPC source code — CPC AST, is an input
tree to CPCC backend. If there is a subtree in the input tree that matches a rewriting
rule, the subtree is replaced by a sequence of matched instructions. The virtual code
is generated by a process in which the input tree is reduced by recursively finding

subtrees in the input tree.

76

5.2 Execution Environment

CPCC backend will create a file, which has the same name as the source code file, but
with the suffix “.cod”. This file contains a vcode table, an identifier table, a block
table, a channel/pointer table, a real constant table, a string table, an array table,
a breakability table, a source code table, a table of virtual architecture specification
and also some other information like DEFINED LEVEL O FUNCTIONS, DEFINED LEVEL
0 VARIABLES. These tables will be used by CPSS to support the mapping of the
virtual processors to the physical processors and the debugging environment.

e The vcode table will hold the information about the line number of the vcode,
the related source code line number for this vcode, the function number of this

vcode, the mnemonic of this vcode, and the two auguments for the vCode.

e The table of virtual architecture specification will hold the information about
the virtual topology, dimension, and number of virtual processors.

e Identifier table is designed to hold the information about the identifier name,
size, static level, object category, and also parameter type (call-by-reference or

call-by-value) if it is a parameter.

e Block table is designed to hold the information about the size of all parameters
in this function, the size of all parameters and local variables in this function, the
identifier table indices for the last identifier and last parameter in this function.

e Array table is designed to hold information about the upper bound and lower
bound of the index, element type, array size, etc. Channel/pointer table is
designed to hold information about the channel/pointer variable name, size,

type, etc.
e String table is designed to store all the C string constants.

e Source code table is designed to hold the CPC source code and put a line number
in front of each line.

e Breakability table is designed to hold for each source code line number the first

vCode line number of its generated vCode program, so that when the user set a

7

breakpoint, the debugger can follow the pointer to the vCode table and retrieve

the starting and ending vCode line numbers for a breakable source line.

In CPC language, local variables are created on function entry and destroyed on
function exit, so we can use stack to hold them. Stack in CPCC backend is a data
structure that supports two operations, push and pop. A complete activation record of
a function will be pushed on the stack upon invocation. and popped off upon exiting
from the function. We treat the stack as a big array S[]. Some special pointers
are kept with respect to the stack, one is current stack top pointer T, one is the
activation record bottom pointer B, and we also have a current frameI'op pointer,
all stack accesses are relative to these pointers. The area on the stack devoted to the
local variables, parameters, return address, and other temporaries for a function is
called the function’s activation record or stack frame. The positive difference between
the pointer B and the current frameTop is the frame size of the current function.
Figure 12 shows a typical stack frame layout.

Suppose a function g() calls a function f(), we say g is the caller and fis the
callee. On entry to f, the stack pointer points to the first argument that g passes to f.
On entry, fis allocated a frame by simply subtracting the frame size from the stack
pointer B.

CPC language allows nested function declarations, so the inner functions may use
variables declared in outer functions.

To make this work, the inner function must have access not only to its own frame
but also to the frames of its outer function. We use static link to accomplish this in
CPCC.

Whenever a function fis called, it can be passed a pointer to the frame of the
function statically enclosing f; this pointer is the static link. Thus a global array
display(] should be maintained for static links. This array contains, in position i, a
pointer to the frame of the most recently entered function whose static nesting depth
is 1.

For each function call, a stack frame is allocated in S[|. B holds the base address
for the stack frame, pointing to the first word of Link.

Link contains 9 words. Link words link the related stack frames together. The
meaning of each of the 9 link words are defined as follows:

e B+0: Return value of the current function call.

78

frameTop
local stack
T
local variables
parameters
link
B

Figure 12: A stack frame

B-+1: Return address of the calling function (value of PC of caller).

B+2: Static link — the value of B for the stack frame the function of which
contains directly the declaration of the function for the current stack frame. It

is also the display value for the previous lexical level.
B+3: Dynamic link — the value of B for the caller’s stack frame.
B+4: Identifier table index for the function.

B+5: Reference counter for the current frame (initialized to 1). It equals to

number of stack frames that are referring to this frame.
B+6: Size of this stack frame.
B+7: Value of T for the caller’s stack frame.

B+8: Value of stackTop for the caller’s stack frame.

The parameters are allocated space above the 9 link words. The local variables
are allocated space above the parameters. Each parameter or local variable V is

represented by a relative address which is a pair of integers (level(V), offset(V)),
where level(V) denotes the lexical level in which V is declared, and offset(V) denotes
the offset of V relative to B, the starting address of the current stack frame.

The active stack frame at a lexical level is the stack frame for the function declared
at this level and called the latest. An array display|] is used to speed up the address

79

calculation for variables from their offset format. For any integer i>=0, display(i]
holds the value of B of the active stack frame at lexical level i.

Given variable V with relative address (level(V), offset(V)), its absolute address
in S[] is display[level(V)] + offset(V).

The collection of the 9 link words, the words for parameters, and the words for
local parameters is called the activation record for the function.

Above the activation record is a local stack for evaluation of expressions within
the current function body. Variable T points to the stack top. T is initialized to
point to the word immediately below the local stack area. frameTop holds the index
for the last word of the stack frame, which bounds the growth of the local stack.

Fach process has a unique local stack for the evaluation of expression in case the
body of the process is an expression. Variable base holds the starting address of this
local stack and never changes value during the life of the process.

The variables B, T, frameTop, base, and PC (program counter) are all defined in
a process descriptor.

Some constants:

LINK_SIZE: number of words in a link (=9)

STACK_SIZE: size of a local stack (=30)

S[T] refers to the stack top. Given variable V, we use level(V) to denote the nesting
level of the block in which V is declared, and offset(V) the displacement of V in its
stack frame from the beginning of the stack frame (B). Given the level number P of
the currently active block, the starting address of the stack frame (B) for this block
is display[P]. The address of a variable V on stack is display[level(V)] + offset(V).

5.3 Virtual Codes

The CPC AST generated by the CPCC front end must be translated into assembly
language or machine language. The CPC AST does not correspond exactly to machine
languages, so we must translate by specific translation rules.

Finding the appropriate virtual instructions for CPSS to implement CPC AST is
the job of the instruction selection phase of CPCC.

Virtual code is the target language chosen for CPSS. It has the following features:

o low level

80

® casy to generate

e can be written in an architecture-independent manner

Now we explain some of them:
LDAddr means loading address of variable V onto stack.
Dereference will replace the pointer by a value pointed to by the pointer.
NewForkChild will begin a new fork process.
ForkJump is a special jump with Fork. After execution of this instruction, the accu-
mulation of sequential execution time for this process will be resumed.
NewFrame will set up a new stack frame for a function on the stack.
LDCHwOffset will load value onto stack from channel with offset.
STChannel will store value from top of stack into channel.
BeginParallel will begin a parallel execution.
NewForallChild will begin new forall body process.
EndParallel will end the parallel execution.
BeginForallLoop will begin FORALL loop.
EndForallLoop will end FORALL loop.
DadLDForallIndexVal will load forall index value onto the stack from index id.
SonLDForallIndexVal will load value of forall index onto stack from child process’
base.
JOIN V-operation on join semaphore.
MVChannVar will assign the owner of a channel var to a new processor.
SeqOn will resume the accumulation of sequential time.

SeqO0ff will stop accumulating sequential time.

5.4 Storage Allocation

In CPCC backend, we will first allocate storages to all the external variables and
functions. For each function, we have to allocate space to its parameter and nested
functions recursively, then allocate space for its local variables and generate codes
for all the statements in its compound statement. If the scope level is 0, we will

generate initialization codes for starting execution. Starting at the root of a CPC

81

AST, the entire tree will be traversed and the virtual codes for CPSS will be generated

recursively.
There is one entry for each identifier in the identifier table, one entry for each
function in the block table, one entry for each 1-D array in the array table, and one

entry for each channel or pointer variable in channel table.

Initialize all the tables;

Process virtual architecture declaration to compute the number of processors

Process constants and types, collect functions

Assign offsets to external variables

!-—---—---------z-ﬁ"?"""""”g': @_ﬁ“‘&h‘ SERme(RPO t;-goﬁseti _1);::

e N T A T s e e e M A O PR S

If there is a *main’ function, generate virual codes for variable initilaization and starting execution
For each function ’s’ in the function table
If it is a duplicate function in the function table, remove it from the function table and continue
Create an entry for this function in the block table

If the functon has parameters

Trace the list of parameters for the function and create entries in identifier table for them

Recursively assign offsets to local varibles

CARS A R G

mpound(s-xompoun

Lo e 3.:‘:..-'-*‘-*

For each function ’s’ in the function table

Translate each statement in the function body to virtual codes

A e]

If there is no return statement, generate virtual codes for exiting the function

Figure 13: Traverse tree

Figure 13 is the algorithm for traverse and AST tree. With this algorithm, the
whole CPC AST will be traversed and storage will be allocated to varibles, and vir-
tual code for each CPC statement will be generated accordingly. This algorithm is
composed by some other algorithms like travers_symbol, trace_type, assignAddr.
These algorithms are deiscribed in Figure 14, Figure 15, Figure 16 respectively.

Trace_stmt is used to translate statement to virtual code, we will give some examples

82

———— makes depth-first search to process constants and types

for (;s; s=->next){

If this SYMBOL node is an ARCH type, continue
If this SYMBOL node is a FUNCTION type
If it has a compound or it represents an external function
Create an entry for this function in the function table
If the SYMBOL represents 'main’ function

Copy its index in the function table to 'mainFuncTabIndex

If it has no compound, continue

P LA 2 A :;.._
P Irace=type(Sype)a
s St

e

I T = S D
valie(s:>Valtie): = —=Process constants

3
e SA TR TA oy Mty
e i

1=,

’;i—»’l‘raverse symbols, statements and values in this block

1M

Figure 14: traverse symbol

to see what vcodes are generated for a CPC statement in the next section.

5.5 Statement Translation

CPCC uses standard groups of instructions, often called a translation rule, which can
be simply incorporated into the code generator whenever a particular STMT unode is

encountered in CPC AST.
Now let’s see what virtual codes are generated through the statement translation

rules by some examples.

83

If node t is nil or has been processed, return
If node trepresents a declarator
If it is a pointer or channel type LINK node
Create an entry for it in channel table
Retum
If it is an array type LINK node
Create an entry for it in array table

{ race :type(t->next): i
. LT T _’

Return
If it is a function type LINK node

g;ugqé;type(r:ang;t)g":}

If node t represents a specifier

If it is a scarlar type, reurn

If t is a union or struct type
Create an entry for the tag in identifier table

for (s = =>SYM->syms; s; s =s->next){
Create an entry for s in identifier table

}
Return
If tis a typedef type

| mace tpe(e>SYM>iype)-

Retum
Else give error information("wrong type")

Figure 15: Trace type

5.5.1 Process Creation
Fork

For a fork statement
fork [10; c2] f2(al);

the following virtual codes will be generated:
SequentialTimeOff—Stop accumulating sequential time
LoadIntegerLiteral— load integer 10
LoadAddress—load address of c2

84

If(!s) return;

For (; s: s=s->next) {

If s is an external functon

{ -assign adde:compound(s->compound, offseti 1) - |

If s is not a variable, continue:
If s has been defined as an extemnal variable and the current scope level is higher than 0

Create an entry for s in identifier table

If the ¢ STMT node is empty or is not a compound type, continue

for (st=c->stmt; stz st=st->next) {

If STMT node — st is for a compound

£, assign_adds cothpound(st, offset; forExtedial) .}

If STMT node - st->stmt is not empty and is for a compound

N

! adsign; addrr compound(st->stme, offsel. forExternal) -: i

t

If STMT node — st->stmt is not empty and is for a compound

{dssign-addr_compound(st->¢lse_stmt, offset; forExternal) 37}

Figure 16: Storage allocation

MoveChannelVarToNewProc—assign the owner of a channel variable c2 to a new
processor

CreateNewForkChild— Begin new fork process

ForkJump—resume the sequential execution time for this process

NewFrame—set up a new stack frame for £2

LoadAddress—load address of a1

LoadBlock—Iload block of £2

WakeupProcess—Child process wakes up parent after argument evaluation
Call—call function £2(al)

UpdateDisplay-—Update display table

85

ForkChildEnd—End forked process

Forall

Tor a forall statement

forall(i from O to 9 grouping 1)
{1i;e3[i1] £(4i, a1lil);

the following virtual codes will be generated:

LoadAddress—load address of variable i

LoadIntegerLiteral—load integer O on stack top

LoadIntegerLiteral—Iload integer 9 on stack top

LoadIntegerLiteral—Iload integer 1 on stack top

BeginParallel—begin parallel processing

BeginForallLoop—Begin FORALL loop

DadLoaDForallIndexVal—Load forall index value i onto the stack from index id
LoadAddress—Iload base address for array ¢3

DadLoaDForallIndexVal—Load forall index value i onto the stack from index id
ArrayIndexing—pop i and base address for array c3, push c3[i] on stack
MoveChannelVarToNewProc—assign the owner of a channel variable c3(i] to a new
processor

CreateNewForallChild—DBegin new forall process

Jump—jump

NewFrame—create a new stack frame for this child

SonLoadForallIndexVal—Load forall index value i onto the stack from index id
LoadAddress—Iload base address for array al

SonlLoadForallIndexVal—Load value of forall index i onto stack from child process’
base

ArrayIndexing—pop i and base address for array al, push alfi] on stack
WakeupProcess—Child process wakes up parent after argument evaluation
Call—call function £(i, ai[il)

UpdateDisplay—update display table

TestGroupIncForallIndex—Test FORALL grouping and increment index at the end
of FORALL process

86

ForallChildEnd—End forall child process
EndForallloop—End FORALL loop
EndParallel—stop parallel processing

5.5.2 Process Communication — Channel expression
Read Channel

For a channel read statement
y = c3[x];

the following virtual codes will be generated:

LoadAddress—- load base address for array ¢3 on stack top

LoadValue—load value x on the stack top

ArrayIndexing—-pop x and base address for array c3, push c3{x] on stack
LoadCHwAdrOnStack— load absolute address of the channel variable on stack
Dereference— replace stack top pointer by value of c3[x]

LoadAddress— load address for y on stack

Store— assign value of c3[x] to y and pop off 2 arguments from top

‘Write Channel

For a channel read statement
c2 = a;

the following virtual codes will be generated:

LoadAddress—Iload address of variable a on stack top

CopyToNewBlock— Allocate a new stack block and copy the existing block of a into
it

LoadAddress—load address of c2 on stack top

StoreChannel— Store value a into channel

Binding Channel Variable To Processes

Please refer to the examples in section 5.5.1 and 5.5.1.

87

5.5.3 Virtual Architecture
Virtual Architecture Declaration

We don’t generate vcode for the virtual architecture declaration, instead this informa-
tion is stored in the virtual arch spec table. At run time, CPSS will map the virtual

processors to physical processors based on this table and the mapping function.

Process-to-virtual-processor Mapping

Refer to the examples in Section 5.5.1.

5.6 A Complete Example

Please refer to appendix D.3.

88

Chapter 6
CPC preprocessor

CPC preprocessor is a separate program that runs before the compiler, with its own
simple, line-oriented grammar and syntax. It’s designed to suit our own needs, to
make CPCC a complete and portable. Briefly, the preprocessor has the following
functions:

e Macro processing: CPC macros allow a user to define shorthands for longer

constructs.

e Inclusion of additional C source files: CPC users can include header files into

their program texts.

e Conditional compilation: CPC users are able to conditionally compile sections

of CPC source code contingent on the value of an arithmetic expression.

All preprocessor directives begin with a pound sign (#) which must be the first
non-space character on the line. They may appear anywhere in the source file : before,
after, or intermingled with regular CPC language statements. However, the pound
sign (#), which denotes the beginning of a preprocessor directive, must be the first
non-space character on the line.

Unlike CPC statements, a macro command ends with a newline, not a semicolon.

To span a macro over more than one line, enter a backslash immediately before the

newline, as in :

#define stack_clear(stack) ((p_##stack) = (stack + \
sizeof (stack)/sizeof (*stack)))

89

The following preprocessor directives are supported : Fdefine, #tinclude , Fundef,
#if, Zifdef, #ifndef, #endif
Macro substitution

A macro is a name that has an associated text string, called the macro body. In the

following declaration,
define max 100

maz is the macro name, and 100 is the macro body.
When a macro name appears outside of its definition (referred to as its invocation),
it is replaced with its macro body. The act of replacement is referred to as macro

expansion. For example, having defined above, you might write:
int line[max];

During the preprocessing stage, this line of code would be translated into:
int line(100];

We also support the operator(#+#) that pastes two tokens. For example, if there

is a macro
#define pop(stack) (*p_##stack++)

then the sequence pop(ident) will be expanded to (*p-ident-+-+).

Conditional compilation

The preprocessor enables user to screen out portions of source code that they don't
want to compile. This is done through a set of preprocessor directives that are similar
to the if and else statements in the CPC language. The preprocessor versions are
#if |, #else, #elseif, #endif.

Comment removal

Like ANSI C, to insert a comment into a CPC program, you can surround it with
double-character symbols /* and */. Comments in this style may extend over one
or more lines, and you can also insert another comment of this style inside it. C++

style comments are also supported.

90

Algorithm for preprocessor

For each source file to the preprocessor, we will create a new file after preprocess,
which will be the input file to the CPCC front end. We have a definition table to
store each macro in the user progarm. If there is a new definition, we will create a
new entry for it. If it is a redefinition, we replace the old definition with the new one.
If there are parameters in the definition, they will be recorded in the entry for this
definition. Before we describe the algorithm for CPC preprocessor, we explain the
major data structure first.
The data structure of the entry for definition table is defined as follow:

struct Definition {
char name [MAX_TOKEN_LENGTH], // macro name

def [MAX_DEF_LENGTH] ; // macro body
int map[MAX_PLACE_HOLDER_NUM];

// the i-th position in def is for the map(i]-th arg
int numParam; // number of parameters
int numPlaceHolder; // number of place holders

+;

For example, if the macro is
#define max(x,y) if (x >= y) m = x; elsem =y;
then the fields in the entry for this macro have the following values:

name : max

def :if (>)Ym=; elsem-=;

The jth position in def where the parameter should be inserted in the future is
recorded as the index j of the array map, and mapij] records the index of the parameter
which should be substituted. In this example, map[5] has the value 1 (parameter x),
map[10]is equal to 2 (parameter y) and numPlaceHolder = 4 (number of parameters
appeared in the definition).

The algorithm for CPC preprocessor is as follow:

91

void process_file(char fileName){
FILE =*fdIn; // file descriptor of the current file
int lineNum = O; //line number
char 1line{MAX_LINE_LENGTHl; // buffer for the current line

while the next line in the input file is not empty
lineNum++;
process_line(fdIn, fileName, lineNum, line);

output this new “ine to temperary file

process_line{
If the line doesn’t begin with a #
getToken;
while not at the end of the line{
Look up the definition table
If there is a match
If this definition need parameters
If the followed tokens in this line doesn’t match these
parameters, process_error
Replace these tokens with its definition
getToken;
+

If the line begins with a #include
Get the name of the file which the user wants to include

process_file(included file)

If the line begins with a #define
Create an entry for this macro
Look up the definition table
If it has been defined, cover the old definition by the new one

Else enter the new one

If the line begins with a #undef
Get the symbol to be undefined
Look up the definition table
If the symbol has been defined before, delete it from the

definition table

If the line begins with a #ifdef
If the symbol in the sentence had been defined
process_ifdef (TRUE)
Else process_ifdef (FALSE)

If the line begins with a #ifndef
If the symbol in the sentence has not been defined
process_ifdef (TRUE)
Else process_ifdef (FALSE)

93

Chapter 7
Conclusion

Performance levels for single processor systems are reaching their limits as it becomes
increasingly difficult and expensive to shorten clock cycles. To go beyond such limits,
designers are turning to parallel architectures as a cost effective way to significantly
increase processing power by several orders of magnitude. But, impeded by the
portability of parallel programming and some other factors, the parallel systems do
not grow rapidly as expected. The parallel language and its compiler are the main
aspects that affect the portability. Our research effort focuses on providing ease-to-use
and portable parallel programming language CPC and its compiler CPCC.

In this thesis, we have presented the design and implementation of the CPC
language. The CPC language is designed as an explicit parallel programming lan-
guage. It is based on C, and it provides new parallel features to create and terminate
processes, and to communicate between processes via channels. CPC is based on the
virtual architecture aproach. The virtual architecture of an algorithm captures the
comunication pattern of the algorithm. With virtual architecture approach, the CPC
user can declare the most natural and efficient architecture in the CPC program, so
that the communication pattern best fits the algorithm, therefore improve the pro-
gram performance. CPC program is described on a virtual architecture with desired
size and topology. At run time, the virtual architecture program will be mapped to
the available physical architecture. The virtual architecture information in the CPC
program will be used by the CPC compiler and run-time system to perform map-
ping of the computation to the physical processors. With the mapping, the virtual
architecture will be independent from the physical architecture which helps make the

94

CPC programs portable. Suitable mapping of the regular communications can reduce
the communication overhead of the program. CPC users have the freedom to specify
the mapping functicns.Virtual architecture algorithm is easy to implement since the-
programmer can describe the algorithm on the virtual architecture matching that of
the algorithm and let the compiler and runtime system perform the necessary trans-
lation to account for the mapping of the computation and handle the communication
among the virtual processors.

The CPC language makes CPPE an excellent environment for developing and

fine-tune parallel programs, because

e The CPC language is easy to learn.
CPC language is an explicit message passing language based on C, it won’t be
difficult for the user to learn some essential extensions regarding how to declare
a virtual architecture, how to create and terminate a process, how to map
processes to virtual and then to physical processors, and how to communicate
among processes. Therefore, CPC language is easy to learn, especially for C

programimers.

e The CPC language is ease to use.

The virtual architecture approach let the user describe the algorithm on the
virtual topology matching well with the algorithm. Users can solve their specific
needs in a way that best fits the model of their application. This makes CPC
programs most natural to the communication pattern. Therefore CPC program

is easy to write, and CPC language is easy to use.

e CPC programs are efficient.

The virtual architecture captures the communication pattern of the CPC pro-
gram, and the mapping scheme can minimize the communication cost, balance
the workload among physical processors. This can improve CPC program per-

formance greatly, and make CPC programs efficient.

e CPC programs are portable across different platforms.

CPC compiler has been divided into frontend and backend. Intermediate rep-
resentation, CPC AST, is generated by the frontend to keep all the information

of the source program, such as data declarations, expressions, and statements.

95

The backend is a code generator which will traverse the CPC AST recursively
to allocate storage and generates codes for target architecture. The frontend
is shared and reusable. With CPC AST and a new backend, it is convenient
to translate CPC code into real machine languages, for all the desired target
machines. Therefore, CPC program is portable across different platforms.

CPC program is portable across different partitions of a parallel system.

When the system loads the executable code, each physical processor will get a
mapping table. With the two level mapping, a mapping table will be created
at run time when the system loads an executable image. It contains the infor-
mation about processor’s physical ID and IDs for the virtual processors that
the physical processor should run. As a result, the virtual processors are dy-
namically mapped to physical processors to execute the code. Therefore, with
the support of a mapping table, a virtual architecture becomes independent of
physical architectures, CPC executable code is portable among subsystems, and

CPC source code is portable across different platforms.

96

Appendix A

CPC Builtin Functions

Protypes for CPC builtin functions are as follows:

int printf(char format, ...);

int fprintf(int fp, char *format, ...);
void scanf(char *format, ...);

void fscanf(int fp, char *format, ...);

int fopen(char *filename, char *mode);
void fclose(int £d);

int getchar(void);

int fgetc(int £p);

int abs_id(void);

void cart_id(int &array[]);

int min(int, ...);
float fmin(float, ...);
int max(int, ...);
float fmax(float, ...);

int abs(int);
float fabs(float);
float sin(float);
float cos(float);
float tan(float);
float sqrt(float);
int odd(int);

97

int

int
float
float
float
float
float
int
void
void
void
void

void

float

void

void
void
void
void
void
int

vold
void
void
void
void
void

void

even(int)
floor(float);
ceil(float);
exp(float);
pow(float, float);
log(float);
log10(float);
atof(const char *);
*malloc(int num_of_words);
free(int start_add);
delay(int);
join(void);

lock(int *);

unlock(int *);

rand(void);

srand(int seed);

vsend(int vpid, char *buf, int size);
vrecv(char *buf, int size, int vpid);
strcmp(char *strl, char *str2);
strcat(char *to_str, char *from_str);
strcpy(char *to_str, char *from_str);
strlen(char *str);

barrier(int nbrProcesses);
globalMaxInt(int src, int *dest);
globalMaxFloat(float src, float *dest);
globalMinInt(int src, int *dest);
globalMinFloat(float src, float *dest);
globalAnd(int src, int *dest);
globalOr(int src, int *dest);

98

void
void
void
void
int

void

veid

globalPrefixInt (int src, int *dest, int sequenceNum);
globalPrefixFloat(float src, float *dest, int sequenceNum) ;
send(char *msg, int size, int tag, int dest);

receive(char *msg, int size, int tag);

probe(int tag, int size);

bcast(char *msg, int size, int tag, int root);

who (int *numProc, int *me, int *host);

typedef channel int CHANNEL([1]; /* [1] : trick to force generating

CopyBlock when writing to channelx*/

CHANNEL *ChannAlloc(int num_chann, int chann_size)

typedef struct

int v_topo

int num_dim

int dim_size[20]
} *ARCHITECTURE

ARCHITECTURE VtopoCreate(int topo, int num_dim, ...);

#define LINE

#define RING 1
#define MESH 1
#define TORUS 1
#define HYPERCUBE 1
#define FULLCONNECT 1
#define SHARED 1

typedef int spinlock;

99

void virtual_processor(int &array(]);
void physical_processor(int &array[]);
int clock(void);

int seqtime(void);

void seqon(void);

void seqoff(void);

void timeOn(void);

void timeQOff(void);

#define stdin
#define stdout

#define stderr

100

Appendix B

CPC Yacc Grammer

program : deflist

|| deflist def
specifiers

: type-class_qual

| specifiers type_class_qual
type : type.specifier

|| type type_specifier
type-class_qual

: type-specifier

|| CLASS

| TYPE.QUAL
type_specifier

: TYPE

|| enum_specifier

l| struct_specifier

| TTYPE
var_decl

: new_name

|| var_decl LP RP

101

new._name

decl_ list

decl

funct_decl

name_list

var_list

|| vardecl LP var.list RP

|| var.decl LB RB

|| var_decl LB const_expr RB
Il STAR var_decl

|| LP var_decl RP

b

: NAME

: decl
| decldist COMMA decl

: var_decl
|| var_decl EQUAL initializer
| funct_decl

b

: STAR funct_decl

|| funct_decl LB RB

|| funct_decl LB const_expr RB
|| LP funct_decl RP

| funct_decl LP RP

|| funct_decl LP var list RP

| newname LP RP

|| new name LP name.list RP
|| new name LP varlist RP

3

: new_name
|| name_ list COMMA new_name
| name_list COMMA ELLIPSIS

102

%prec SIZEOF

: param_declaration

|| varldist COMMA param_declaration

| varldist COMMA ELLIPSIS
param.declaration

: tvpe var_decl

| type AND var_decl

| abstract_decl

abstract_decl
: type abs_decl
abs_decl
T €
|| LP abs_decl RP-LP RP
|| LP abs_decl RP LP var.list RP
|| STAR abs_decl
|| abs_decl LB RB
[| abs_decl LB const.expr RB
|| LP abs_decl RP

struct_specifier
: STRUCT opt-tag LC struct_def list RC
|| STRUCT tag
opt_tag : tag
I
tag : NAME
[| TTYPE
struct_def _list
: struct_def_list struct_def

103

| €
struct_def
: specifiers struct_decl list SEMI
struct-decl_list
: struct.decl
|| struct_decl list COMMA struct_decl
struct.decl
: var.decl
i| var_decl COLON const_expr Y%prec COMMA
| COLON const_expr %prec COMMA

enum _specifier
: ENUM tag LC enumerator.list RC
| ENUM tag
|| ENUM LC enumeratorlist RC

enumerator_list
. enumerator

| enumerator list COMMA enumerator

enumerator

: new.name

|| new_name EQUAL const_expr
compound_stmt

: LC def_list stmt_list RC

def : TYPEDEF specifiers var_decl SEMI

|| specifiers decl list SEMI
|| specifiers SEMI

104

[| specifiers funct_decl c.style_param def list compound_stmt

| specifiers new_name compound._stmt

| ARCH ARCH_TYPE var_decl SEMI
cstyle_param def list

: c_style_param._def_list c_style_param_def

| /* epsilon */

cstyle_param def
: specifiers c_style_param_decl list SEMI

cstyle_param _decl_list

: var_decl

| cstyle_param_decl list COMMA var_decl
stmt_list

: stmt_list statement

| e
opt_mapping

: LB opt_expr SEMI opt_expr RB

|| LB opt_expr RB

Il e

opt_grouping
: GROUPING expr
[l €

b

statement
: SEMI
|| compound_stmt
|| expr SEMI
|| RETURN SEMI

105

|| RETURN expr SEMI

| GOTO target SEMI

|| target COLON statement

|| IF LP expr RP statement

|| IF LP expr RP statement ELSE statement

| WHILE

i DO

|| FOR LP opt_expr SEMI opt_expr SEMI opt_expr RP statement
|| BREAK SEMI

| CONTINUE SEMI

| SWITCH LP expr RP compound_stmt

[| CASE const_expr COLON

I| DEFAULT COLON

|| FORK opt_mapping statement

|| FORALL LP non_comma_expr FROM expr TO expr
opt_grouping RP opt_mapping statement

target : NAME

unary : LP expr RP
| ICON
|| FCON
|| CHARCON
| NAME
|| string_const Yoprec COMMA
|| SIZEOF LP string_const RP %prec SIZEOF
|| SIZEOF LP expr RP %prec SIZEOF
|| SIZEOF LP abstract_decl RP %prec SIZEOF
| LP abstract_decl RP unary %prec UNOP
|| MINUS unary %prec UNOP
|| UNOP unary
|| QUEST unary
| unary INCOP

106

| INCOP unary
| AND unary
|| STAR unary
|| unary LB expr RB
| unary STRUCTOP NAME
| unary LP expr RP
|| unary LP RP
expr : expr.reverse
expr.reverse
: non_comma_expr
|| expr_reverse COMMA non_comma._expr
non_comma_expr
: non_comma.expr QUEST non_comma._expr
COLON non.comma._expr
| non_comma.expr ASSIGNOP non_comma_expr

|| non_comma._expr EQUAL non_comma._expr

| or_expr

or_expr : or ist

orlist : orlist OROR. and_expr
|| and_expr

and_expr : and.list
and_list : and_list ANDAND binary
|| binary

binary

: binary RELOP binary
|| binary EQUOP binary

107

%prec UNOP
%prec UNOP
Z%prec UNOP
%prec STRUCTOP

%prec EQUAL

|| binary STAR binary
|| binary DIVOP binary

| binary SHIFTOP binary

|| binary AND binary

| binary XOR binary

| binary OR binary

| binary PLUS binary
| binary MINUS binary

i| unary

opt_expr

: expr

[l e
const_expr

: expr.reverse
initializer

: non_comma. expr

|| LC initializerlist RC
initializer list

string_const

: initializer

|| initializer list COMMA initializer

?

: STRING
|| string_const STRING

b

%prec COMMA

%prec COMMA

The abbreviations of operators in CPC abstract syntax are defined as follows:

STRUCTOP :

INCOP
UNCP
DIVQOP
SHIFTOP
RELOP
EQUOP

ASSIGNOP :

109

-~

<L=

>o>=

Appendix C

CPC language manual

C.1 Multiprocessors VS. Multicomputers

The basic concept behind the parallel computer is to simply have more than one
processor in the same computer. The use of multiple parallel processors in the same
computer system introduces some additional requirements on the architecture of the
computer. For many processors to be able to work together on the same computa-
tional problem, they must be able to share data and communicate with each other.
There are currently two major architectural approaches to fulfilling this requirement:
shared memory and message passing.

In shared memory computers, usually called multiprocessors, all the individual
processors have access to a common shared memory, allowing the shared use of various
data values and data structures stored in the memory. All of the processors can
compute in parallel, and each is able to access the central shared memory. Each
processor continues to read data from the shared memory, compute new values, and
write them back to the shared memory. This computational activity is performed by
all the processors in parallel.

In message passing computer architectures, usually called multicomputers, each
processor has its own local memory, and processors share data by passing messages
to each other through some type of processor communication network. Multicomputer
can provide a large local memory for each processor and a communication network
for processor interaction via message-passing. A processor has direct access only to

its own local memory module, and not to the memory modules attached to other

110

processors. However, any processor can read data values from its own local memory,
and send data to any other processor. Therefore, the data can be freely shared and

exchanged among the processors when desired.

C.2 The CPC language features

CPC (Concordia Parallel C) language is based on the popular programming language
C and enhanced with new features to support parallel programming. The CPC lan-
guage preserves most existing sequential features of the C language. Parallel features
of the CPC support the creation of parallel processes, the definition of parallel archi-
tectures, process communications through channel variables and mapping of parallel
processes to physical processors. The CPC language supports both shared-memory
and message-passing programming paradigms. This document will describe the dif-
ferences between the CPC and ANSI C, and the parallel features supported in the
CPC.

CPC is a good candidate for explicit parallel programming, and can be used to
design, express, and implement efficient portable parallel algorithms. It offers special
features, such as the virtual architecture approach, which provide the user with a high
level of abstraction of the communication pattern, allowing the user to concentrate
on the resolution of their problems without sacrificing performance. Therefore the
user need not worry about the architectural features of the target system.

Because the CPC language was not designed with a particular architecture in
mind, it allows users to solve their specific needs in a way that best fits the model of

their application.

C.2.1 Process and Process communication

CPC is designed to be machine-independent and can run on a wide variety of parallel
computers, including multiprocessors with shared memory and multicomputers based
on message-passing between processors with local memory.

To create programs for parallel computers, a useful conceptual tool is the notion
of a process, which is essentially a sequence of operations that can be performed by
a single processor. The process can be used as the basic building block of parallel

programs: each processor executes a particular process at any given time.

111

CPC has the features that allow the dynamic creation of parallel processes to run
on the physical processors.

Since a multiprocessor has a shared memory that is accessible to all the processors.
CPC allows data to be shared by parallel processes through the use of shared variables
(or global variables), which are a software abstraction of the shared memory found in
multiprocessor computer hardware.

In case of multicomputers, each processor has a local memory, but there is no
shared memory. The processors in a multicomputer use a network of communication
channels to send messages to each other during computation. Intermediate data
values produced during the course of a computation can be transmitted to other
processors through these communication channels. As a software abstraction of these
communication channels, CPC has channel variables. A channel variable can be used
to transmit data from one process to another. A process can write a data value into
a channel variable, from which it can be read by another process running in parallel.
Channel variable in CPC is a conceptual software entity that allows communication
between parallel processes via “messages” that are transmitted through the channels.

Because multicomputer have no shared memory, they require a different style of
parallel programming. Instead of simply placing data values into the shared memory
to be later retrieved by other processors, data values must be explicitly sent to other
processors by using messages. This style of parallel programming is often called
“messages-passing” style. Since CPC has channel variables as a built in feature, the
language can be used for writing message passing style programs for multicomputers.

Actually, channel variable can be also implemented on multiprocessors by using
the shared memory. In these shared memory multiprocessors, channel variables also
serve an important function to help processes synchronize with each other and ex-
change data values.

The CPC language is adaptable to both the shared-memory parallel programming

paradigm and the message-passing parallel programming.

C.2.2 Virtual Architecture and Two Level Mapping

The overall pattern of the direct processor connections is usually called the multicom-
puter topology. Line, ring, mesh, torus and hypercube are some of the most important
multicomputer topologies. For a particular algorithm, the execution delays resulting

112

from communications will depend on the specific topology. In order to improve pro-
gram performance, reduce the communication delay and program execution time,
we introduce virtual architecture to CPC language. Virtual architecture is the main
feature of the CPC language.

In the CPPE (Concordia Parallel Programming Environment), we identify two
kinds of processors: wvirtual processors and physical processors. The user writes an
application using the architecture most natural and efficient to program performance.
This architecture is referred to as virtual architecture, and its processors are called
virtual processors.

In the application programs, users can declare virtual architecture, which captures
the communication patterns among processes. The topology and size of the physical
machine may not match that of the virtual architecture. Processors constituting
the physical system are physical processors. At run time, the virtual processors are
mapped to the available physical processors.

The mapping objectives are to minimize communication cost among communicat-
ing processes, and to balance the workload among physical processors. After mapping,
the two communicating processes should be situated as close to each other as possible.

There are two levels of program mapping. The first level is the mapping from
processes to virtual processors. The second level is mapping from virtual processors

to physical processors.

1. Process-to-virtual-architecture mapping. The mapping can be one-to-one and
many-to-one. Often in the application program the user specifies the ID of the
virtual processor on which a process will run. The virtual processor will be

mapped to a physical processor at run time.

o

Virtual-to-physical-architecture mapping. At run time, the user can specify
the desired physical architecture for running the compiled virtual-architecture
program. The user is asked to select a mapping function provided by the CPSS
mapping library, or specify a mapping function himself.

C.3 Notation

Throughout this manual, the syntax of the CPC language is described using the
commonly known BNF (Backus-Naur Form) notation.

113

Any symbol or string of characters not otherwise covered below is called a terminal
symbol in the sense that it represents itself. A terminal symbol is considered to be a
single indivisible symbol.

A sequence of one or more words enclosed in a pair of angular brackets is called a
non-terminal symbol and is used to name a syntactic construct of the language. Each
non-terminal symbol is defined in terms of terminal and non-terminal symbols.

The symbol ::= is used in the definition of non-terminal symbols. Tz2 non-
terminal symbol appearing on its left is defined as consisting of any of the sequences
of terminal and non-terminal symbols appearing on its right. Note that a sequence
may be empty, thus supporting an optional syntactic component.

Some conventions that improve readability of the grammar have been adopted:
e All keywords and special symbols are in uppercase.

e A prefix opt designates a non-terminal which is optional when used on the right
side of a definition.

e The suffix list denotes a list of objects separated by commas.
e The non-terminal name refers to a CPC identifier.
e The non-terminal statement refers to a CPC executable statement.

e The non-terminal expr refers to a CPC expression.

The grammar displayed in this section has been simplified to more easily explain
the subject at hand. Thus, a concatenation of these pieces of grammar will not
necessarily provide a sensible grammar for the entire language. However, a complete
grammar is provided in Appendix B.

We will describe the differences between the CPC and ANSI C first, then describe
the new features in CPC starting from section C.10.

C.4 Function definition

C.4.1 Syntax

The syntax for function definition is different from ANSI C in three aspects:

114

e Function type can’t be omitted

° ctions can be defined inside a compound statement before the first statement

cf this compound statement.

e If there is no argument for a function, the pair of parenthesis followed by the
function name in ANSI C can be omitted in CPC.

CPC supports nested function definition, which will make CPC much more pow-

erful in supporting parallel libraries.

C.4.2 Example

The example was in Figure 17.

include "cpc.h”

void main { //omit the "()" after main
int x;

' int finty) { //define a function inside a compound statement
ntz;

Figure 17: Nested Function Definition

C.5 Names

CPCC sets no limit to the length of any identifier.

115

C.6 Comments

Like ANSI C, to insert a comment into a CPC program, you can surround it with
double-character symbols /* and */. Comments in this style may extend over one
or more lines, and you can also insert another comment of this style inside it. C++

style comments are also supported.

C.6.1 Example

Examples is in Figure 18

// This is an example of C++ style comment——//
/* This is an example of C style commnet —/* nested comment */—— */

void f({
nt x;

x=1;

Figure 18: CPC comment

C.7 Call by reference

Parameters to a function are means of passing data to the function. Many program-
ming languages pass arguments to parameters by reference, which means they pass
a pointer to the argument. As a result, the called function can change the value of
the argument. When passing argument by value, the called function can change the
value of the copy, but can’t change the value of the argument in the caller routine.
In ANSI C, array parameters always use call-by-reference. CPC supports C++
style call-by-reference. In CPC, all parameters use call-by-value, unless there is an
‘&’ before the parameter name. Array parameters can use either call-by-reference or
call-by-value. The former is mainly used for a parallel process to return an array of

values. The latter is mainly used to pass initial values to a new process.

116

C.7.1 Example

Example is in Figure 19.

i #include "cpc.h"

void f(int &a[]) {
, printf("%d\n", a[99]); |

} :
I 5 1

int main() {
int a[100];
a[99] = 100;
: } fa);

Figure 19: Call By Reference

C.8 Inclusion of additional CPC source files

C.8.1 Syntax
The general syntax for #include is:

#include "filename"

OR

#include "pathname/filename"

The file can be any valid CPC source file. The preprocessor will look for the file in
the specified directory. If the pathname has not been specified in the command, the

117

preprocessor will search the file in the current directory. An environment variable
“CPPE” can be used to set the include search path.

C.8.2 Examples

#include "cpc.h"
include "include/include_file I.c”
include "include_file 2.c"

Figure 20: Include Statement

Figure 20 is an example of CPC include statement.

C.9 Run time library

The following runtime library functions are available: printf(), fprintf(), scanf(), fs-
canf(), fopen(), fclose(), getchar(), fgete(), absid(), cart_id(), min(), fmin(), max(),
fmax(), abs(), fabs(), sin(), cos(), tan(), sqrt(), odd(), even(), floor(), ceil(), exp(),
pow(), log(), atof(), malloc(), free(),delay(), join(), lock(), unlock(), vsend(), vrecv(),
strecmp(), strcat(), strepy(), strlen(), barrier(), globalMaxInt(), globalMaxFloat(),
global MinInt(), globalMinfloat(), globalAnd(), globalOr(), globalPrefixInt(), global-
PrefixFloat(), send(), receive(), probe(), beast(), who()

C.10 Process creation

The most important building block of a parallel programs is the process. Computa-
tional activities take place when a process is assigned to a processor in the underlying
parallel computer.

In CPC, there are process creation statements whose execution will cause com-
pletely new processes to be created and assigned to processors for execution. The

“main” program in CPC becomes the first process and is assigned for execution to

118

the first processor. The main program may contain any of the ordinary kind of state-
ments that are found in sequential programs, such as assignments, loops, conditionals,
and I/0O statements. However, in CPC there is also the possibility of a completely
new kind of statement not found in sequential progranis: a process creation state-
ment. There are certain statements in CPC whose execution will cause completely
new processes to be created and assigned to processors for execution. This is how
parallel activities are initiated in the program: an existing process that is already
running on a processor executes a process creation statement. The created process
is sometimes called the child process, while the creator process is called the parent
process.

A process can create child processes using either fork statement or forall statement

in a CPC program.

C.10.1 fork Statement
Syntax

In CPC, fork is useful to turn an individual statement into a child process. By
preceding any statement with the fork operator, it becomes a child process running
in parallel with its parent.

The general syntax of fork is as follow:

<statement> FORK <opt_mapping> <statement>

<opt_mapping>::= [<opt_expr> ; <opt_expr>]
::= [<opt_expr>]
::= [@ <opt_expr> ; <opt_expr>]
::= [@ <opt_expr>]

[© <opt_expr> ; <opt_expr>]

]

[-~ <opt_expr>]
NIL

where statement on the right hand side in the first rule can be any CPC valid
statement, such as compound statement, expression or even no operation. The first
opt_expr in each rule of opt_mapping should always be any CPC valid integer-valued
expression, it represents a processor number. If there is an @ in front of it, it represents

a virtual processor number, if there is an A in front of it, it represents the physical

119

processor number. The second opt_expr in each rule of opt_mapping, if existing,
should have valid left value. It is possible to omit either one of the opt_exprs.

Example

- #include "cpc.h”

i //The "<statemeat>"s in the following comments represent the right
“//side <statement> in the first rule.

channel int CI; ,
i void mul(int){

i void main {
int i,j;

fork; /The <statement> contains no operation
fork i=(i>10)? 1 :i+1; /The <statement> is a single statement
fork [; Cl}i=CI;

fork { //The <statement> is a compound statement
: Ifi>10)i=1;
i else i++;
i
i fork (i+}); //The <statement> is an expression

fork printf{"Hello world"); //The <statement> is a function call
fork {i; CI] mul(i);
: fork fork mul(i); /fThe <staetment> is another fork statement
| //omitting the first <opt_expr> in the second rule
fork[; CI] (i =CI, i+j);
t //omitting the second <opt_expr> in the second rule
- fork(i;] sqr(d;
I}
|

Figure 21: Fork Statement

Figure 21 is an example with various fork statements to illustrate how to use fork

statements.

Semantics

Each fork statement creates a new child process, which will execute the statement
after the “fork” operator. The parent will continue execution immediately without
waiting for the child in any way. Although the parent process does continue with
its execution while its fork children are still running, the parent is not permitted to
terminate until all its children have finished. If the parent reaches the end of its

120

code while one or more of its children are still running, the parent will be suspended
until all the children terminate. Only then will the parent be allowed to finish. This
implementation prevents a premature termination by process 0 while some of its
children are still running.

We will discuss the semantics for opt_mapping, that is how to map a process to a
processor and how to bind channel variables to a process, in section C.13 and section

C.11.2 respectively.

C.10.2 join statement

Sometimes, it may be desirable for a parent to wait at some point for the termination
of one or all of its fork children. join statement in CPC is designed for this purpose.
If the parent has only one fork child, then a join statement executed by the parent
will force it to wait for the child to terminate. If the child has already terminated,
then the execution of join will have no effect on the parent. One may think of the
join as the opposite of a fork. Fork separates a child process from its parent, and

join brings the terminated child back to its parent. In the example in Figure 22,

fork mul(j);

for (i=0; i<10; i++)
a[i] =1;
join;

Figure 22: JOIN statement

the parent will execute the for loop after forking the child. After finishing this loop,
the parent will suspend execution at the join to wait for the termination of its child,
then continue to execute the statements right after join. If the child has already
terminated, the parent will continue its the execution after join without wait.

The execution of each join by the parent will match one single fork child ter-
mination, if the parent has multiple fork children, it may execute multiple join

statements to wait for them all to terminate. In the example in Figure 23, the first

121

#include "cpc.h”

void main{
int i;

for (i=0; i<10; i++)
fork sqrt(i);

for (i=0; i<10; i++)
join;

Figure 23: Another example on JOIN Statement

for loop creates 10 fork child processes. Each child calls function sqrt. Then in the
following for loop, the parent executes the join statement 10 times, thus waiting
for the termination of all 10 children. Without this second loop, the parent would
just continue execution in parallel with all of its children. However, once the parent
reached its end, it would not terminate until all children had terminated.

C.10.3 forall Statement
Syntax

Following is the general syntax of the forall statement.

<statement> FORALL (<non_comma_expr> FROM <expr> TO <expr>
<opt_grouping>) <opt_mapping> <statement>
GROUPING <expr>

NIL

<opt_mapping> ::= [<opt_expr> ; <opt_expr>]

<opt_grouping> ::

]

[<opt_expr>]
[@ <cpt_expr> ; <opt_expr>]

]

::= [@ <opt_expr>]
::= [= <opt_expr> ; <opt_expr>]
::= [~ <opt_expr>]

122

::= NIL

where non_comma_expr must be a single expression, expr must be any valid integer-
value expression, none of them can be omitted. expr in the second rule must be a
valid integer-valued expression, it can be omitted. The first opt_expr in each rule
of opt_mapping should always be valid integer-valued expression, it represents the
processor number. If there is an @ in front of it, it represents a virtual processor
number, if there is an A in front of it, it represents a physical processor number.
The second opt_expr in each rule of opt_mapping, if existing, should have valid left
value. It’s possible to omit either one of the opt_exprs. The statement on the right
hand side of the first rule can be any valid statement in CPC, such as expression,
compound statement, function call, etc.

As stated in section C.10.1, we will discuss the semantics for opt_mapping in

section C.13 and section C.11.2.

Examples

Figure 24 is an example with various it forall statements to illustrate how to use

forall statement.

Nested forall Loops

forall statements may be nested to offer greater parallelism as shown in the following
example.

In the example in Figure 25, the outer forall incurs the creation of 10 processes,
one for each value of 7. Each of these child processes will consist of an instance of
the inner forall loop, with the appropriate value of 2. When each member of this first
generation is executed, it will then spawn 5 more processes, one for each value of
index j. Thus a total of 50 processes will be created in the second generation. The
parent process will then have 10 children and 50 grandchildren.

Scope of forall Indices

Although children of a process do not have access to variables belonging to the the
parent process, the forall index is an exception. The child processes can reference the

123

#include "cpc.h”

/[The "statement”s in the following comment represent the second
// statement on the right side of the first rule.

it fint j) {
return j*10;
1
s
channel int c{200];
void main(} {
int i,j;
int a[10]{20};

forall (i from 1 to 10) //The statement is a single statement
printf("Hello world\n");
//The statement is a functon call
forall (i from 1 to 10) [i; c{i]] fi);
forall (i from 1 to 3) [i;] //The staetment is another fork statement
fork f(i);
forall (i from i+1 to 2*i) //The statement is a compound statement

o timtj;
j=1%;

}
forail (i from I to 9) // nested forall loops
forall (j from I to 10) [; c[i*j]] sqru(i*j);
forall (i from I to 10 grouping 5) //with the <opt_grouping>
printf("Hello 1\n");
//Omit the second <opt_expr> in the third rule
forall(i from O to 9 grouping 1)
{i;]1 f();
//Omit the first <opt_expr> in the third rule
forall (i from 1 to 10) [; cfi]] f(i);
/TA complete example of forall statement
forall(i from 0 to 9 grouping 5) [i;c[i]] prind("Perfect!\n");;

Figure 24: FORALL Statement

forall index as if the loop were a normal for loop.

In the example in Figure 26, the forall index 7 is defined at the start of the main
program. Outside of the forall statement, the variable 7 behaves like any ordinary
integer variable. However, within the forall body, the index ¢ behaves as if it were
defined as a local variable within the forall . Since the loop iterations are to be
executed in parallel, one single index variable 7 is insufficient—all the values of 7 from
1 to 10 must be available simultaneously. This is automatically handled in CPC
implementation by providing each processor with its own local copy of the index <.
That is, processor 1 has a local 7 with value 1, processor 2 has a local 7 with value 2,

124

#include "cpc.h"
void main() {
intij;
int a[101[5];

forall (i from 1 to 10) // nested forall loops
forall (j from 1 to 5) a[i-1]{j-1] =1*j;

e

Figure 25: Nested FORALL Statement

void main() {
inti, k;

forall (i from 1 to 10)

printf("Process %d\n”, i); // this access to i is allowed
printf("Value of k = %d\n", k); // access to k is not allowed
// will generate run-time error: reference to a non-local

}
}

Figure 26: Forall Index

and so on. The body of the forall loop is the code of every child process. Although
each child process will execute the same code, the result will be different due to the
differing values of the local index value i. The child processes are allowed to read
variable 7 in their code (the first printf statement).

Although the child processes are allowed to access the forall index, there is a
restriction: references to the forall index must be “read” only. In other words, each
child process can see only a unique value of the index. Once a process is created and
assigned its unique value of the forall index, this value cannot be changed within the
process. Any attempt to alter the value of this index in an assignment statement will
result in a compiler error. Similarly, inside the forall body, the forall index cannot be

passed by reference to a function, or used as the target of an I/O read operation (e.g.

125

scanf). The forall index may, however, be used in any context that does not change
its value. It can be used, for example, in a CPC expression, to index an array, or be

passed by value to a function.

Semantics

forall statement is a parallel form of the normal for loop. Each iteration of a forall
statement creates a child process which will run in parallel with other children created
by the same forall. The program code for each process is the same, just a copy of the
body of the forall loop.

A process terminates when it reaches the end of its code. Processes of the same
parent may not terminate at the same time. This is due to slight variations in
processor speeds, processor loads, or other environmental influences.

After finishing the creation of processes, the parent process suspends its execution,
goes to sleep and waits until all of its children terminate. Only then will the parent
continue its execution with the statement following the forall statement. This is one
of the differences between forall statement and fork statement.

An important issue that arises with the forall statement is the duration or ex-
ecution time of each process, sometimes called the granularity of the process. In
any computer system, there is always an overhead associated with creating a parallel
process, dispatching it to a particular processor where it will be executed, and ter-
minating the process. For this overhead to be justified, the duration of the process
must be much larger than the creation overhead. If the process grain is too fine, the
overheads may outweigh the speedup gained by parallel processing.

Assume a process creation time is 8 time units in the system, and the duration of
each process is 8, then the total elapsed time since the start of the forall statement
will be 8%1004+8=808 time units. If we replace the forall statement with a for state-
ment, then no child process will be created, therefore the total execution time will be
100*8=800 time units. Not only has the forall failed to speed up the execution, but
actually lengthened the execution time due to the process creation time.

To help overcome this granularity problem with forall statement, grouping option
is provided in CPC. It can be used in forall statement to group together a certain
range of index values in the same process. The grouping size should be chosen so as

to balance the program speedup and process creation/termination overheads. If the

126

grouping index is omitted as in the above example, then the default group size is 1.

Now let’s look at the following example:

forall (i from 1 to 100 grouping 10)
£(1);

the added notation grouping 10 causes the index values to be formed into groups
of size 10 in each process. Thus, only 10 processes are created. The first process
sequentially iterates through the index values 1 to 10, the second process iterates
through 11 to 20, and so on.

We will discuss the semantics of opt.mapping, that is how to map a process to a
processor and how to bind a channel variable to a process in section C.13 and section

C.11.2 respectively.

Example: Matrix Multiplication

Now let’s look at a complete CPC program for Matrix multiplication.

Matrix multiplication is used frequently in many of the numerical techniques com-
mon in scientific and engineering computing. A matrix in this context is simply a
two-dimensional array of real numbers. Multiplying two matrices involves a complex
pattern of multiplying and adding numbers from the two matrices.

In the example in Figure 27, function seqMultiply is the sequential matrix mul-
tiplication, and function ParallelMatrizMultiply_1 is a simple parallel version of seg-
Multiply.

C.11 Process Communication via Channel Vari-

ables

In this section, we begin to consider the issue of process communication and interac-
tion. We describe a special feature of the CPC programming language called channel
variable, which is used for process communication and synchronization.

A channel variable, as its name implies, collects data values from writer processes
and “channels” them into reader processes. The message forwarding and routing
are done by the underlying network simulator, and completely transparent to the

programmer.

127

#include "cpc.h”
#define N 8

void printMarrix(float x[NJIND) {
inti, j;
for (i=0; i<Nj; i++) {
for (j=0; j<N; j++) !
print("%. 2\t ", x(1]GD; :
printf{™n");
}
, print{Ma");
void ParallelMartrixMultiply_1
(float &a{N][N], float &b[N][N], float &c{NJINT) {

e i, j;

void VectorProduct(int i, intj) {
nt ks
float sum;

sum =0.0; i
for (0; k<N; k++)

sum = a(i]{k]*b{k]0}
cfi]i] = sum;

}

forall (i rom 0 to N1)
forall (j from 0 to NT)
VestorProduct(ij);

void main() {
float a[N][N], b{N]IN], <{N][NJ;

inti, j;

for (i=0; i<N; i++)
! for (j=0; j<N; j++)
f a[i]fi] = mnd0Q*5;
for (i=0; i<N; 1+-+)
for G=0: j<N: j+=+)
; b{ilG] = rand0"5;
: ParallciMarrixMultiply_1(a, b, ¢);
: printMatrix(c);

Figure 27: Matrix Multiplication

Conceptually, a channel acts like a first-in-first-out queues of values (messages)
of the same data type. As values are written to the channel, they are saved in a
queue until they are read by some other process. The capacity of the queue buffer is
assumed to be unlimited. Channel variables allow parallel processes to exchange and

share data values in a controlled and abstract way.

C.11.1 Declarations of Channel Variables
Syntax
The general syntax for channel declaration is as follows:

<def> ::= CHANNEL TYPE_QUAL <decl_list>;

128

::= CHANNEL TTYPE <decl_list>;

where TYPE_QUAL can be any valid type such as int, float, char, enum, array, and
structure, TTYPE can be typedef type for declaring a single channel variable or array
of channel. The type is the data type of messages written to or read from the channel.

For instance, if the type is int, every message stored in the channel is of type integer.

Examples

typedef enum {Red, Green, Blue} Colors;
typedef char arrayChar{10];
. typedef struct
{ arrayChar name;
float mark;
} structStudent;

// The channel type is a scalar type in CPC
channel int ci;

channel float cf;

channel char cc;

channel enum { positive, negtive } ce;

// The channel type is a typedef type in CPC
channel Colors CE;

channel arrayChar CA;

channel structStudent CS;

t /] Using typedef to create a new name for channel type
| typedef channel int chanint; //channel of integer
typedef char arrChar{20];
typedef channel arrChar chanArrChar;
//channel of array; the array is 20 characters long
chanlnt myChanint; [/fvariable of defined type chanint
chanArrChar myChanArrChar; //variable of defined type chanArrChar

Figure 28: Channel Declaration

Channel types may appear at any level of a structured type.

In the example in figure 28, chanArrChar is channel of array; and arrayChan is
array of channel. Multidimensional arrays of channels are also permitted.

The only operations that can be performed with a channel of array is reading
or writing a whole array from the channel. It is not permitted to read or write one
element in the array. So the expression chanArrChar(5] is not valid CPC syntax. To

129

channel int arrayChan[10]; //array of 10 channels
/leach channel is a list of integer values
typedef struct
{ int processID;
channel int mailbox; //structure field is of type channel
} structProcess;

Figure 29: Complex Channel Declaration

get the fifth element in the array, one must first read the whole array from the front of
channel chanArrChar into an ordinary variable such as a; and then use the expression
af5].

Nested channels are not allowed: a channel may not contain any channels. A
“channel of channel” is not permitted by the rule that the type must be a valid type
in the C language because channel is not a valid type in C. For example, we cannot
have a channel of structure where one field of the structure is another channel.

In the CPC language, channel variables are usually declared as global variables.
We may have a channel variable ¢ that is local to a function. However this channel
would be useless because no processes other than the original owner of ¢ can access ¢
(due to the lexical scope rule of the CPC language). Thus the original owner cannot
use ¢ to communicate with the other processes. That is why channel variables should

be declared as global variables so that all processes can see these channel variables.

C.11.2 Binding Channel Variables to New Processes

The channel declarations in Figure 30 will be used for examples in this section, as-
suming that the channels are global variables.

To bind channels to a new process means that one or more channels can be assigned
to a new process by preceding the new child’s code (the statement) with the names

of the channels to be assigned.

130

channel int CI, CJ, CK; //channel of integer
channel float arrayCF[10]; /larray of 10 channels
channel int arrayCI[20]; //array of 20 channels
channel char arr3Dchan{5][4]{8]; //3D array of (5x4x8=)160 channels
typedef struct

{int ID;

float mark;

} StudentStruct

channel StudentStruct myRecord;

Figure 30: Array of Channel

Syntax

Binding channel variable will happen only when new processes are created, so it is
related only with fork and forall statements. It is used to assign a channel variable
to a specific process, so that the process can receive messages from other processes
through the channel. Any process may write values to any channel, but each process
may read values only from its own assigned channels. When any process is created
with one of the CPC fork or forall statement, the binding may be specified to assign
one or more of the channel variables to the newly created process.

Recall the general sytax for fork or forall in section C.10.1 and section C.10.3

respectively, the syntax for binding channel variables is as follows:

<opt_mapping> [<opt_expr> ; <opt_expr>]

[<opt_expr>]

[@ <opt_expr> ; <opt_expr>]

[@ <opt_expr>]

[= <opt_expr> ; <opt_expr>]
::= [~ <opt_expr>]
::= NIL

where the second opt_expr, if existing, in each rule of opt_mapping represents the
channel variables that will be assigned to the newly created process. It should be one

or more comma-separated channel variables.

131

Example

i channel int c[200];
! channel int CT;

¢ mainQ

v {inti;

//assign channel CI to new process
fork [1; CI] ChildCode(Q;

//assign channel of array cfi] to the ith process

forall(i from O to 9 grouping 3) [i;c[i]] printf("Perfect!\n");
]

!

Figure 31: Channel Binding

A channel reference can be an array of channels to facilitate the binding of many
channels of the same component type to a new process. For example, instead of
binding 20 channels (of the same component type) to a process, we could declare an
array of 20 channels, and then bind that array to the process. Any channel in the
array may then be used by that process to receive messages. The array of channels
can be an entire array, or one or more dimensions of a multi-dimensional array (e.g.

one row of a 2D array, one plane of a 3D array). The examples are in Figure 32:

void f{};
void main()
{mti;

fork [; arrayCI] fO; /assign 20 channels

fork [; arr3Dchanf1]] f{); //assign 32 channels (1 plane)

forall(i from 1 to 4) [i;arr3Dchan[1][0]] f0;//assign 8 channels (1 row)
}

Figure 32: More examples on binding

132

C.11.3 Read and Write on Channel Variables

Channels are written by using their name on the left side of an assignment statement,
and read by using their name on the right side of an assignment statement. A channel
may be written by many writers but read only by one reader, namely the owner of
the channel.

Any process may write values to any channel, provided that the channel variable
is accessible by the process according to C lexical scope rules. However, each process
may read values only from its own assigned channels.

If the channel is empty, the reader is suspended until some other process writes a
value into the channel. However, a writer process will never be suspended; channels
are supposed to have unlimited capacity and can hold any number of values. Channel

writes are thus non-blocking.

Channel Write

writer()
{ .
inti;
StudentStruct tempRecord;

//Write to channels whose component type is a basic type
Cl=0;
Cl=i+1;
arrayCF[1] = 3.1416;

/fWrite to a channel whose component type is a composite type
tempRecord.ID = 12345;
myRecord = tempRecord; //channel write

Figure 33: Channel Write

Examples of channel writes are shown in Figure 33. Note that it is not permitted
to use a subscript with a channel of array. The only operations that can be performed
with a channel of array is reading or writing a whole array from the channel. It is not
allowed to read or write one element in the array. The rules are similar for a channel

of structure: one may not read or write a single field of the structure.

133

Channel Read

reader()
{inti;
float f;
StudentStruct bufferRecord;

/fAssume that this reader owns the channels used below

// Read from channels whose component type is a basic type
i=CJ;
f=2* arrayCF[1]/ 3;

// Read from a channel whose component type is a composite type
bufferRecord = myRecord: //channel read
bufferRecord.mark++;

}

Figure 34: Channel Read

Any channel variable name can be part of an expression on the right side of an
assignment statement, as shown in figure 34:

As stated earlier, for a channel of structure, it is not permitted to read a single
field of the structure. In the above example, to read field mark, one must first read
the whole structure from the front of channel myRecord into an ordinary structure
variable such as bufferRecord, and then use the expression bufferRecord.mark.

The same rules apply to a channel of array. Channel variables may be used in any

anotherReader()
{inti, j;
//Assume that this reader owns the channels used below
if (CK) i++;
else i=0;
if (arrayCF[5] > arrayCF[6] * 2) i=];
}

Figure 35: Channel Variables

expression in the program, provided that the component type matches the context
in the expression. The general rule is that wherever an ordinary variable of a given

type may be used in an expression, a channel variable with that same component

134

type may be used. For example, channel variables may be used as array indices or in
boolean expressions, as examples in Figure 35:

An exception to the above rule is that channel variables are not allowed in I/O
statements such as printf or scanf.

Note that each time a channel is read, it produces a different value. This is because
values are queued inside the channel during writing, and removed during reading. Let
CI be a channel of integer. The assignment (n = CI + CI) is not equivalent to (n =
CI * 2).

Channel Empty Test

It occurs in many parallel programs that one process is computing some values that
are to be used by other parallel processes. To handle this situation, a channel variable
in CPC has the property that it can be “empty”. If the channel is empty, the reader
is suspended until some other process writes a value into the channel. So the channel
has the ability to delay a reader process until the necessary values are supplied by a
writer process. Each channel has unlimited capacity for storing any number of values.

Therefore, writer processes are never delayed.

if (ch?)
n =ch; //read the channel
else
printf{"Channel currently empty");

Figure 36: Channel Empty Test

To avoid this suspension when the channel is empty, the reader can test to deter-
mine whether the channel currently contains any values. This is achieved by using a
boolean-valued expression containing the name of the channel variable followed by a
question mark, as in the example in Figure 36:

The expression “ch?” will evaluate to 1 (true) if channel ch currently contains

any values and O (false) if the channel is empty.

135

Example: InsertionSort

#include "cpc.h"”
#define N 100

arch fullconnect F{101];
int list[N], sorted[N];
channel int pipechan[N}];

int jk;

void Pipeprocess(int me, int &sorted([]){
int internal, newitem, i;

internal = pipechan{me]; // read first item from the left

for (i=0; i<N-me-1; [++){
newitem = pipechan[me]; /! read new item from the left
if (newitem < internal})
{

pipechan[me+1] = internal; // send internal to the right
internal = newitem;

else pipechan[me+1] = newitem; // send newitem to the right
}
sorted[me] = intemal; // return my final sorted list item
printf("sorteditem= %d \n", sorted[me]); }
void main {
for (5=0; j<N; j+H){
list[j] = N-j;
sorted[j] =0;

}
for (j=0; j<N; j++)
fork[;pipechan{j]] Pipeprocess(j, sorted);
for (k=0; k<N; k++)
pipechan[0] = list[k];
join;
for (j=0; j<N; j++)
printf("%d %d Y%ed\n", j, sorted(j], list[j1);

Figure 37: InsertionSort

Now let’s see a complete example program InsertionSort in Figure 37, in which

precesses use channel variable to communicate with each other.

C.12 Parallel Architecture Definition

The CPC language allows users to specify the virtual architecture in the CPC pro-
gram. The virtual architecture will then be mapped to a physical architecture at

136

run-time. The physical architecture can be the same as or different from the virtual
architecture.

As the CPC language supports both shared-memory and message-passing pro-
gramming paradigms, an architecture declaration is needed to identify a message-
passing program. If the architecture declaration is absent in a program, the program
is treated as a shared-memory program. The virtual architecture is specified with
the keyword arch at the beginning of the program as in the following examples. The
architecture of a multicomputer system is defined by the topology and the size of the

system.

C.12.1 Syntax

The general syntax for the architecture declaration is as follows:

<def> = ARCH ARCH_TYPE <var_decl>
= phyARCH ARCH_TYPE <var_decl>;
<var_decl> ::= <new_name>

<var_decl> [<const_expr>]
NAME

<new_name> ::

where ARCH-TYPE is one of the following topologies: shared, line, ring, mesh, torus,
hypercube, and fullconnect. Shared topology means that the program is intended
for execution on a shared-memory multiprocessor. In a fullconnect topology, each
processor is connected to every other processor. Name is the name of the architec-
ture, const-expr must be any valid expression representing an integer constant. it
shared,line and ring should be declared as one dimensional array, const-expr repre-
sents the size of the architecture. mesh and torus should be declared as multidimen-
sional array. Multiplying the values of all the const-exprs in the declaration will
get the system size of this architecture. Hypercube should also be declared as one di-
mensional array, the const~expr in this declaration represents the system dimension
numbers.

In the case when CPC users want to bypass the virtual architecture for their
programming convenience, they have the freedom to specify a physical architecture
in the CPC program. In that way virtual architecture will be bypassed, processes will
be mapped to physical processor directly. The second rule of def is designed for this

137

purpose.

C.12.2 Examples

arch shared S{100]; //shared-memory with 100 processors
arch fullconnect F{i]; /if i = 25, fullconnect with 25 processors
arch line L[10]; /fline with 10 processors

arch ring R[20]; /fring with 20 processors

arch hypercube Hf5}; //hypercube with 2°5 =32 processors

Figure 38: Architecture Declaration

Examples of virtual architecture declaration are in figure 38. We can define a

physical architecture as following:
phyArch line 1[10];

A physical architecture is declared only to make the CPSS simulation of a physical
architecture more convenient.

If the topology is shared, line, ring or fullconnect, the size of the architecture is the
total number of processors. If the topology is hypercube and the number of dimensions
of the hypercube is 5, then the size of the architecture is 2*2%2*2*2=32.

For a mesh (or torus), the size of the architecture is to multiply the size of each
dimension of the mesh (or torus). The minimum number of dimensions of a mesh or

torus is 2. Examples are shown in Figure 39

arch mesh twoDmesh[5][7]; // 5x7 mesh arch mesh
mymesh[3][5][10][8][12]; // 3x5x10x8x12 mesh arch torus
threeDtorus{10][10][10]; /f square 10x10x10 torus

Figure 39: Architecture Dimension

138

C.13 Mapping Processes to Virtual Processors

C.13.1 Syntax

The general syntax for mapping is as follows:

<opt_mapping> ::= [<opt_expr> ; <opt_expr>]
<opt_expr>]

@ <opt_expr> ; <opt_expr>]
@ <opt_expr>]

-~

<opt_expr> ; <opt_expr>]

-~

|
o N B B e B

<opt_expr>]
NIL

Users are allowed to map parallel processes to the processors of the virtual architecture
to optimize program performance by reducing communication latency. Communicat-
ing processes should be mapped to processors sitting close to each other.

Referring back to the general syntax of forall and fork statements in section C.10.1
and section C.10.3 respectively, we see that each forall or fork ends by a statement
which will be compiled into the parallel code to be executed by the new child. The
first opt_expr in each rule of opt_mapping represents the mapping of new process to
processors. If there is an @ in front of the opt_expr, then the newly created child
will be mapped to a particular virtual processor, the value of opt_expr is the virtual
processor ID; if there is a A in front of the opt_expr, then the newly created child
will be mapped to a particular physical processor, bypassing the virtual architecture,
and the value of opt.expr represents the physical processor ID. If both @ and A
is missing, opt_expr represents the virtual processor ID. So the opt_expr must be
specified using any valid CPC integer-valued expressions. The second opt_expr in
each rule of opt_mapping, if existing, represents the binding of channel variables to

the newly created process, which we already discussed in section 3.3.2.

C.13.2 Examples

Two examples of the mapping in figure 40 are used by fork and forall respectively.
As indicated in section C.10.1 and section C.10.3, the mapping is optional. If
the user does not specify the virtual processor ID for a new child, at run time, the

139

for (i = 0; i <n; i++)
fork [i;] f(i);
forall (k from 1 to 10)
[k-1;] f{k);

Figure 40: Mapping

CPSS will map the child to a default virtual processor. The mapping objective is to

minimize communication cost and balance the load among physical processors.

C.14 A complex CPC example: Matrix Multipli-
cation

Figure 41 is a complex example on matrix multiplication, it will cover most of the

features of the CPC language.

140

tiaclode “cpe.a”
tdatine X 8
arch corus T(X] (¥];

1
void segealify(float u(!lml. £loat ib[X][X]., fioac &c(WIIN]) |
tne L. 3, k2
flcat sum;

for (isQ; 1<E; Lee)
for (J=0: 3<X; Jev) |
som = 0.0;
for (Xe0; k<CH: kee
sum o= -(L!Kkl'blkl 31z
c{L][I] = sum;

]
void princacrix{ficsc x(Wl1{N]} {
inc L. 3:

for (1=0: L1<N: 1+e) {
for (j=Q; $CN: jee)
ce("s.20\E 7, x(L1 {30} 5
priacf{"\n")
H
¥
void maitiply(int row, int col, flost =myA, float myS. float Lmainl) |
int Ater, abowve, lefr;

float myC;

14 (zow>d} Aben-ml: /7 up neighbor
olas -x1l;

12 {(eol>)) x.n « cal 1; // laft asighbor
slse laft = X I;

e - 0

for (itar=d; itar<d: itarss) (
Achan[row] [laft] = =myA; 7/ sesod syA in lafrwazd rozation
Bchan{abowe] [col] o nyS: // sand wyS in upward rotation

ayA ® achan(row|[coll; /7 Teceive nDew myA
=y$ = Behan(row][coll: // Tecaive zew wyS
1
=AinC » wyC;: // Sand final valus to main procsss
}
void pultify(floec sa{N]{N], float O[NNI, Loat Lc(WI(NI) {
int L, 3
forall {i from 0 to X1)
forall (3 Zrom O to N1)
fock [LeNe3; Achan(L](3], Behan(j(3]l
muleiply(t, 3. af{t][(3*1) O W1, B{(ie3) ¥ BI{3]. c(a)[31);
wm =matn ()
float l('l('l. (NI (W), <{WI[¥]:
int 4. 30

tine0fL() ;
foz (LwQ; L<H: L)
fox (3m0: 3<M; 34}
a(4)[3] = rand(})=S;
for {1=0: 1Qf: 1e4)
for (jw0; 3QL: o+
BIL]{3] = rand()*S:
Timmda () ¢
puleify(a, b, c);
Tina0Le() :
printdatrix(c) ;

Figure 41: Matrix Multiplication

141

Appendix D
A Complete Example

The source program is named example.c, the CPCC fronteend will generate the file

example.lst and the CPC backend will generate example.cod.

D.1 CPC source program

#include "cpc.h"
arch ring m[11];
channel int ci;

typedef int int10{10];

channel inti10 c2;
channel int ¢3[10];

void f(int x, int& y)

{
if (x==9) c3[0] = x;
else c3[x+1] = x;
y = c3[x]1;

}

142

void £2(int al[10])
{
c2 = a;
printf("Last fork process finished!");

b

void main()

{
int i, j, al([10];

for (i=0; i<10; i++) ailfil = ix*i;
for (i=0; i<10; i++) fork [i+1;c3[i]] £(i, ailil]);
for (i=0; i<10; i++) join();

for (i=0; i<10; i++) printf("all(¥d]

%d\n", i, ailil);

forall(i from O to 9 grouping 1)
(i;c3[i1] £(i, allil);

for (i=0; i<10; i++) printf("al(%d] = %d\n", i, allil);

fork [10; c2] f2(al);
¥

D.2 CPCC frontend generated file

This fileis named as exampl.lst, its content is shown as following.

(= Global symbol list x)
Function[0] printf : Oint FIX (size=2) (line 4 in "cpc.h")
Parameter[1] format : ~“char AUT (size=1, offset=0) [vall
Parameter{1] ... : int AUT (size=0, offset=1) [vall]

143

Function [0]
Parameter[1]
Parameter (1]

Parameter (1]

Function([0]
Parameter[1]

Parameter[1]

Function[0]
Parameter (1]
Parameter 1]

Parameter(1]

Function[0]
Parameter[1]

Parameter[i]

Function[0]

Parameter[1]

Function{0]

Parameter[1]

Function[0]

Parameter[1]

Function{0]

Parameter[1]

Function[0]
Parameter[1]

fprintf

fp
format

()int FIX

: int AUT
: “char AUT

: int AUT

scant

format

(O void FIX

: “char AUT

: int AUT

fscanf

fp
format

(Ovoid FIX

: int AUT

“char AUT

: int AUT

fopen
filename

mode

fclose
fd

getchar

(Jint FIX

: “char AUT
: “char AUT

(Ovoid FIX

: int AUT

Qint FIX

: void AUT

fgetc
fp

absVirProsor :

()int FIX

: int AUT

(Oint FIX

: void AUT

cartVirProsor :

array

(Jint AUT

144

(O void FIX

(size=3) (line 5 in "cpc.h")
(size=1, offset=0) [vall
(size=1, offset=1) [wval]
(size=0, offset=2) [vall
(size=2) (line 6 in "cpc.h")
(size=1, offset=0) [vall
(size=0, offset=1) [vall

(size=3) (line 7 in "cpc.h")
(size=1, offset=0) [vall

(size=1, offset=1) [vall
(size=0, offset=2) [vall]

(size=2) (line 8 in "cpc.h")
(size=1, offset=0) [vall
(size=1, offset=1) [vall

(size=1) (line 9 in "cpc.h")
(size=1, offset=0) [vall

(size=0) (line 10 in "cpc.h") --
(size=0, offset=0) [vall

(size=1) (line 11 in "cpc.h")
(size=1, offset=0) [vall

(size=0) (line 12 in "cpc.h")
(size=0, offset=0) [vall

(size=0) (line 13 in "cpc.h")
(size=0, offset=0) [ref]

Function [0]

Parameter([1]

Function [0]

Parameter (1]

Function [0]

Function (0]

Function (0]

Function[0]

Function (0]

Function [0]

Function [0]

Parameter (1]

Function[0]

Parameter [1]

Function (0]

Function[0]

Function [0]

Parameter [1]

Parameter([1]

Function[0]

absPhyProsor : (Qint FIX
: void AUT

cartPhyProsor : (Qvoid FIX

array : [(Jint AUT
phyTopo : QOint FIX
virTopo : Qint FIX

nbrPhyProsor : (Qint FIX

nbrVirProsor : (int FIX

phyDimNbr : ()int FIX

virDimNbr : (Qint FIX

phyDimSizes : (Qvoid FIX
array : [(Oint AUT

virDimSizes : (Qvoid FIX

array : Oint AUT

localProcessID : (Qint FIX

processID : (Qint FIX

min : Qint FIX

: int AUT

: int AUT
fmin : Ofloat FIX

145

(size=0) (line 14 in "cpc.h")
(size=0, offset=0) [vall

(size=0) (line 15 in "cpc.h")
(size=0, offset=0) [ref]

(size=0) (line 16 in "cpc.h")

(size=0) (line 17 in "cpc.h")

(size=0) (line 18 in "cpc.h")

(size=0) (line 19 in "cpc.h")

(size=0) (line 20 in "cpc.h")

(size=0) (line 21 in "cpc.h")

(size=0) (line 22 in "cpc.h")
(size=0, offset=0) [ref]

(size=0) (line 23 in "cpc.h")
(size=0, offset=0) [ref]

(size=0) (line 24 in “cpc.h™)
(size=0) (line 26 in "cpc.h")
(size=2) (lime 27 in "cpc.h")

(size=1, offset=0) [vall

(size=0, offset=1) [val]

(size=2) (line 28 in "cpc.h")

Parameter[1]

Parameter[1]

Function[0]
Parameter (1]

Parameter[1]
Function[0]
Parameter[1i]

Parameter (1]

Function[0]

Parameter[1]

Function[0]

Parameter 1]

Function[O]

Parameter (1]

Function[0]

Parameter [1]

Function[0]

Parameter 1]

Function[0]

Parameter{1]

Function[0]

Parameter (1]

Function[0]

max

fmax

abs

fabs

sin

cos

tan

sgrt

odd

even

: float AUT
: int AUT

()int FIX

: int AUT
: int AUT

() float FIX

: float AUT
: int AUT

QO int FIX

: int AUT

()float FIX

: float AUT

(O float FIX

: float AUT

() float FIX

: float AUT

() float FIX

: float AUT

()float FIX

: float AUT

()int FIX

: int AUT

QO int FIX

146

(size=1, offset=0) [val]
(size=0, offset=1) [val]

(size=2) (line 29 in "cpc.h")
(size=1, offset=0) [vall
(size=0, offset=1) [vall]

(size=2) (line 30 in “cpc.h")
(size=1, offset=0) [val]

(size=0, offset=1) [vall

(size=1) (line 31 in "cpc.h")
(size=1, offset=0) [vall

(size=1) (line 32 in "cpc.h")
(size=1, offset=0) [val]

(size=1) (line 33 in "cpc.h")
(size=1, offset=0) [vall

(size=1) (line 34 in "cpc.h")
(size=1, offset=0) [vall

(size=1) (line 35 in "cpc.h")
(size=1, offset=0) [vall

(size=1) (line 36 in "cpc.h")
(size=1, offset=0) [vall

(size=1) (line 37 in "cpc.h")
(size=1, offset=0) [vall

(size=1) (line 38 in "cpc.h")

Parameter[1]

Function[0]

Parameter[1]

Function{0]

Parameter{i]

Function{0]

Parameter[1]

Function [0]
Parameter{1]

Parameter (1]

Function[0]

Parameter[1]

Function{0]

Parameter (1]

Function({0]

Parameter{i]

Function[0]

Parameter (1]

Function (0]

Parameter[1]

Function[0]

Parameter (1]

: int AUT

floor

QO int FIX

: float AUT

ceil

(Jint FIX

: float AUT

exp

(Ofloat FIX

: float AUT

pow

(Ofloat FIX

: float AUT
: float AUT

log

()float FIX

: float AUT

logl10

(Ofloat FIX

: float AUT

atof

: “char AUT CONST

malloc

num_of_words

free
start_add

delay

()float FIX

(O -int FIX
int AUT

(Ovoid FIX

: int AUT

(Ovoid FIX
int AUT

147

(size=1, offset=0) [vall

(size=1) (line 39 in "cpc.h")
(size=1, offset=0) [vall]

(size=1) (line 40 in "cpc.h")
(size=1, offset=0) [vall

(size=1) (line 41 in "cpc.h")

(size=1, offset=0) [vall

(size=2) (line 42 in "cpc.h")

(size=1, offset=0) [vall
(size=1, offset=1) [vall

(size=1) (line 43 in "cpc.h")

(size=1, offset=0) [vall]

(size=1) (line 44 in "cpc.h")

(size=1, offset=0) [vall

(size=1) (line 45 in "cpc.h")

(size=1, offset=0) [vall

(size=1) (line 46 in "cpc.h")
(size=1, offset=0) [vall

(size=1) (line 47 in "cpc.h")
(size=1, offset=0) [vall

(size=1) (line 48 in "cpc.h")
(size=1, offset=0) [vall

Function[0]

Parameter(1]

Function{0]

Parameter[1]

Function([0]

Parameter (1]

Function{0]

Parameter[1]

Function([0]

Parameter[1]

Function[0]
Parameter[1]

Parameter[1]

Function[0]
Parameter{1]

Parameter{1]

Function[0]
Parameter{1]

Parameter([1]

Function{0]

Parameter[1]

Function[0]

Parameter[1]

join

(Ovoid FIX

: void AUT

lock

(Ovoid FIX

: Tint AUT

unlock

rand

(Ovoid FIX
~int AUT

()float FIX

: void AUT

srand

seed

strcmp
stri
str2

strcat
to_str

from_str

strcpy
to_str

from_str

strlen

str

barrier

nbrProcesses

(Ovoid FIX

: int AUT

Ovoid FIX
~“char AUT
“char AUT

Ovoid FIX
~char AUT

~char AUT

(Ovoid FIX

: “char AUT
: “char AUT

()int FIX

: “char AUT

(Qvoid FIX
: int AUT

148

(size=0) (line 49 in "cpc.h")
(size=0, offset=0) [vall

(size=1) (1line 50

in "cpc.h")

(size=1, offset=0) [vall

(size=1) (line 51

in "cpc.h")

(size=1, offset=0) [vall

(size=0) (line 53 in "cpc.h")
(size=0, offset=0) [vall

(size=1) (line 54

in "cpc.h")

(size=1, offset=0) [val]

(size=2) (line 56
(size=1, offset=0)
(size=1, offset=1)

(size=2) (line 57
(size=1, offset=0)
(size=1, offset=1)

(size=2) (line 58
(size=1, offset=0)
(size=1, offset=1)

in "cpc.h")
[vall
[vall

in "cpc.h™")
[vall
[vall

in "CPC .h“)
[vall
[vall

(size=1) (line 59 in "cpc.h")

(size=1, offset=0)

(size=1) (line 60
(size=1, offset=0)

(vall

in "cpc.h")
[val]

Function{0]
Parameter (1]

Parameter[1]

Function[0]

Parameter({1]

Parameterf{1]

Function (0]
Parameter[1]

Parameter (1]

Function[0]

Parameter[1]

Parameter[1]

Function([0]
Parameter{1]

Parameter{1]
Function{0]

Parameter[1]
Parameter[1]
Function[0]

Parameter{1]
Parameter([1]

Parameter([1]

Function{0]

globalMaxInt : ()void FIX (size=2) (line 61 in "cpc.h")
src - int AUT (size=1, offset=0) [vall
dest ~int AUT (size=1, offset=1) [vall]
globalMaxFloat : (Jvoid FIX
(size=2) (line 62 in "cpc.h")

src : float AUT (size=1, offset=0) [vall
dest ~“float AUT (size=1, offset=1) {[vall
globalMinInt : (Jvoid FIX (size=2) (line 63 in "cpc.h")
src int AUT (size=1, offset=0) [vall
dest ~int AUT (size=1, offset=1) [vall
globalMinFloat (Ovoid FIX

(size=2) (line 64 in "cpc.h")
src : float AUT (size=1, offset=0) ([vall
dest ~float AUT (size=1, offset=1) [vall
globalAnd (Ovoid FIX (size=2) (line 65 in "cpc.h")
src int AUT (size=1, offset=0) [vall
dest ~int AUT (size=1, offset=1) [vall]
globalOr (Oveoid FIX (size=2) (line 66 in "cpc.h")
src : int AUT (size=1, offset=0) [vall
dest : “int AUT (size=1, offset=1) [vall
globalPrefixInt : ()void FIX

(size=3) (line 67 in "cpc.h")

src int AUT (size=1, offset=0) [vall
dest ~int AUT (size=1, offset=1) [vall
sequenceNum : int AUT (size=1, offset=2) [vall
globalPrefixFloat (Jvoid FIX

149

Parameter{1]
Parameter[1]

Parameter[1]

Function{0]

Parameter({1]
Parameter([1]
Parameter([1]

Parameter{1]

Function[0]
Parameter([1]
Parameter (1]

Parameter[1]

Function[0]
Parameter{1i]

Parameter{1i]

Function[O0]
Parameter[1]
Parameter([1]
Parameter (1]

Parameter[1]

Function[0]
Parameter (1]
Parameter([1]
Parameter([1]

Parameter[1]

Function[0]

src
dest

sequenceNum :

send
msg
size
tag
dest

receive
msg
size

tag

probe
tag

size

becast
msg
size
tag

root

virSend
msg
size
tag
dest

virReceive

: float AUT
: "float AUT
int AUT

(Ovoid FIX
: “char AUT
: int AUT
: int AUT
: int AUT

(Ovoid FIX
“char AUT
: int AUT
: int AUT

QOint FIX
: int AUT
: int AUT

(Ovoid FIX
“char AUT
: int AUT
int AUT
: int AUT

(Ovoid FIX
“char AUT
: int AUT
: int AUT
int AUT

(Ovoid FIX

150

(size=3) (line 68 in "cpc.h")
(size=1, offset=0) [vall
(size=1, offset=1) [vall
(size=1, offset=2) [vall

(size=4) (line 69 in "cpc.h")

(size=1, offset=0) [vall
(size=1, offset=1) [vall
(size=1, offset=2) [vall
(size=1, offset=3) [vall

(size=3) (line 70 in "cpc.h")

(size=1, offset=0) [vall
(size=1, offset=1) [vall
(size=1, offset=2) [vall

(size=2) (line 71 in "cpc.h")
(size=1, offset=0) [vall]
(size=1, offset=1) [val]

(size=4) (line 72 in "cpc.h")

(size=1, offset=0) [vall
(size=1, offset=1) [vall]
(size=1, offset=2) [vall]
(size=1, offset=3) [vall

(size=4) (line 73 in "cpc.h")
(size=1, offset=0) [vall]
(size=1, offset=1) [vall
(size=1, offset=2) [vall
(size=1, offset=3) [vall

(size=3) (line 74 in "cpc.h")

Parameter (1]
Parameter([1]
Parameter([1]

Function[0]
Parameter[1]

Parameter([1]
Function[0]
Parameter[1]
Parameter[1]
Parameter [1]
Parameter([1]
Typedef [0]

Function[0]

Parameter([1]

Parameter(1]
Typedef [0]
Function[0]
Parameter[1]
Parameter[1]
Parameter{1]

Typedef (0]

Function[0]

msg
size

tag

virProbe
tag

size

virBcast
msg

size

tag

root

CHANNEL

ChannAlloc

num_chann

chann_size

ARCHITECTURE :

VtopoCreate :

topo

num_dim

spinlock

~“char AUT

: int AUT
: int AUT

QQint FIX
int AUT
int AUT

(O void FIX

“char AUT
int AUT
int AUT

: int AUT

() ~ [CHANNEL] typedef FIX

(size=1, offset=0) [vall]

(size=1,

(size=1,

(size=2) (line 75 in "cpc.h")

(size=1,

(size=1,

(size=4) (line 76 in "cpc.h")

offset=1) [vall
offset=2) [vall

offset=0) [vall
offset=1) [vall

(size=1, offset=0) [vall]

(size=1,
(size=1,

(size=1,

: <>[1]int CHANNEL

offset=1) [vall
offset=2) [vall
offset=3) [vall

(size=1)

(size=2) (line 81 in "cpc.h")

offset=0) [val]
offset=1) [vall

(size=1)

(size=3) (line 88 in "cpc.h')

offset=0) [vall
offset=1) [vall

(size=0, offset=2) [vall]

int AUT (size=1,
int AUT (size=1,
~[$tag00] struct FIX
()[ARCHITECTURE]typedef FIX
: int AUT (size=1,
int AUT (size=1,
: int AUT
: int FIX (size=1)
(void FIX

virtual_processor :

151

(size=0) (line 99 in "cpc.h")

Parameter([1]

Function[0]

Parameter(1]

Function[O]

Parameter [1]

Function[0]

Parameter[1]

Function([0]

Parameter{1]

Function[0]

Parameter (1]

Function[0]

Parameter[1]

Function[0]

Parameter[1]
Architec[0]
Variable [0]
Typedef (0]
Variable[0]

Variable[O]

Function[0]

array

physical_processor :

array

clock

seqtime

seqon

seqoff

timeln

timeOff

cl
inti10
c2

c3

Hh

(Jint AUT

{(Jint AUT

()int FIX

: void AUT

()int FIX

: void AUT

O void FIX

: void AUT

(Ovoid FIX

: void AUT

QOvoid FIX

: void AUT

(Ovoid FIX

: void AUT

(11]ring

: <>int CHANNEL

[(10lint FIX

(size=0, offset=0) [ref]

()void FIX
(size=0) (line 100 in "“cpc.h")

(size=0, offset=0) [ref]

(size=0) (line 101 in "cpc.h")
(size=0, offset=0) [val]

(size=0) (line 102 in "cpc.h")
(size=0, offset=0) [vall

(size=0) (line 103 in "cpc
(size=0, offset=0) [val]

(size=0) (line 104 in "cpc

(size=0, offset=0) [vall

(size=0) (line 105 in "cpc
(size=0, offset=0) [vall

(size=0) (line 106 in "cpc
(size=0, offset=0) [vall

(line 5 in

(size=10)

: <>{int10]typedef CHANNEL
(line 8

{10]<>int CHANNEL

(Jvoid FIX

152

(line 10

(size=2) (line 12

"learn3.c")

.h")

.h")

.hll)

.hll)

in "learn3.c™")

in "learn3.c")

in "learn3.c")

Parameter(1] x . int AUT (size=1, offset=0) [vall]

Parameter[1] y : int AUT (size=1, offset=1) [ref]

{ (* Start of compound statment *)

(*--—-Statement list——x*)
if (x == 9)
c3[0] = x;
else
c3l(x + D] = x;
y = c3[x];
} (x End of compound statment *)

Function[0] £2 : Ovoid FIX (size=10) (line 19 in "learn3.c")

Parameter[1] a {10]lint AUT (size=10, offset=0) {vall

{ (* Start of compound statment *)

(*—---Statement list--x*)
c2 = a;
printf("Last fork process finished!");

} (* End of compound statment *)

Function[0] main : Ovoid FIX
(size=0) (line 25 in "learn3.c")

{ (> Start of compound statment x*)
(*~-—-Symbol list-———-— *)

Variable[1] 1 : int AUT
(size=1, offset=0) (line 27 in "learn3.c")

Variable[1] j : int AUT
(size=1, offset=1) (line 27 in "learn3.c")

Variable[1] ail : [10]int AUT
(size=10, offset=2) (line 27 in "learn3.c")

(*—-——-Statement list-—*)

153

for (i = 0; i < 10; i++)

atfi] = (1 * i);
for (i = 0; 1 < 10; i++)

fork [(i + 1); port c3([il]

£((1, a1(i]));

for (i = 0; i < 10; i++)

joinQ;
for (i = 0; i < 10; i++)

printf (("a1([%d] = %d\n", i, allil));
forall i from O to 9

[i; port c¢3[il]; group 1]

£((1, a1lil));
for (i = 0; i < 10; i++)

printf (("a1l%d] = %d\n", i, allil));
fork [10; port c2]

f2(al);
} (¢ End of compound statment *)
(% Global structure list *)
struct{0] $tagl0 (size=22)
v_topo : int (size=1, offset=0)
num_dim : int (size=1, offset=1)
dim_size : [20]int (size=20, offset=2)

D.3 CPC backend generated file

This file is named as example.cod, its content is asfollowing.

DEFINED LEVEL O FUNCTIONS

Name Signature ID Table Index
f f(int,int&)void 8
£2 £2([10]int)void 11
main main()void 13

154

<<>>

DEFINED LEVEL O VARIABLES

Name Type ID Table Index
cl <>int 5
c2 <>[{int10]typedef 6
c3 [10]<>int 7
<<>>
EXTERNAL FUNCTIONS
Name Signature ID Table Index
<<>>
EXTERNAL VARIABLES
Name Type ID Table Index
<<>> .
00O
VCODE Table
198
Line Sourceline F X Y Mnemonic
0 -1 19 0 13 NewFrame
1 -1 20 0 8 Call
2 -1 21 0 0 Halt
3 14 1 9 LoadValue
4 14 6 0 9 LoadIntegerLiteral
5 14 34 0 0 Equal
6 14 16 0 13 Jumpz
7 14 1 9 LoadValue
8 14 0 20 LoadAddress
9 14 6 0 0 LoadIntegerLiteral
10 14 24 0 ArrayIndexing
11 14 53 2 1 StoreChannel

12
13
i4
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

15
15
15
15
15
15
15
16
16
16
16
16
16
16

21
21
21
21
22
22
22

29
29
29
29
29
29
29
29
29

15

> W b

(&)}

70

36
16

>

H O O O » O K O 0O O H ONOOIKMMOWIDNOROOIRERL ONOUOO RO MmO

20

20

[

> O

[

20

10

e
O O O

O O O O O O O o N

n =
© W O o

156

Jump

LoadValue
LoadAddress
LoadValue
LoadIntegerLiteral
Add

ArrayIndexing
StoreChannel
LoadAddress
LoadValue
ArrayIndexing
LoadCHwAdrOnStack
LoadAddress
Dereference

Store
ExitProcedure
LoadAddress
CopyToNewBlock
LoadAddress
StoreChannel
LoadIntString
BuiltinFunc(printf)
PopStack
ExitProcedure
LoadIntegerLiteral
LoadAddress

Store

PopStack

LoadValue
LoadIntegerLiteral
LessThan

Jumpz

LoadValue

45
46

48
49
50

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
€8
69
70
71
72
73
74
75
76
77

29
29
29
29
29
29
29
29
29
29
29
29
29
29
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30

o

48

> W

B O

68

46

70
15

70

36
16
69

>

46

24
67
57
13
19

O O O » O r+ O O O +r O O O © F O + FH O O O N H O O O + N O =+ Hr» O

[y
= O

O O © O + O U O o

o
o

O O O W O

10

94

20

86

157

LoadValue

Multiply
LoadAddress
LoadValue
ArrayIndexing
Store

LoadValue
DuplicateStackTop
LoadIntegerLiteral
Add

LoadAddress

Store

PopStack

Jump
LoadIntegerLiteral
LoadAddress

Store

PopStack

LoadValue
LoadIntegerLiteral
LessThan

Jumpz
SequentialTimeOff
LoadValue
LoadIntegerLiteral
Add

LoadAddress
LoadValue
ArrayIndexing
MoveChannelVarToNewProc
CreateNewForkChild
ForkJump

NewFrame

78
79
80
81
82
83

85
86
87
88
89
80
91
82
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31

70

36

16

14

68

46

70
15

O O NN+ O O O r O O O O O = 1 O O O NPT O O O HrH O O O O O K KB

[y
=

[

O O 0 O v O W O r O W o v

6

w

© O O W O

10

111
21

O O O O =+ O O

88

158

LoadValue
LoadAddress
LoadValue
ArrayIndexing
WakeupProcess

Call

UpdateDisplay
ForkChildEnd
LoadValue
DuplicateStackTop
LoadIntegerLiteral
Add

LoadAddress

Store

PopStack

Jump
LoadIntegerLiteral
LoadAddress

Store

PopStack
LoadValue
LoadIntegerLiteral
LessThan

Jumpz
BuiltinFunc(join)
LoadValue
DuplicateStackTop
LoadIntegerLiteral
Add

LoadAddress

Store

PopStack

Jump

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

133

134
135
136
137
138
138
140
141
142
143

32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
34
34
34
34
34
34
35
35
35

BN

W

24

14
70

68

46

70
15

55
61
79

79

_ O B+ O O O O O + O O Nk O O O - O WO OO H rrHr O O O O +» O Fr +» O

0 O O W O

10

135
30

'—L
[N

O O O O + O W O O O O

115

o = W O W

189

20

159

LoadIntegerLiteral
LoadAddress

Store

PopStack

LoadValue
LoadIntegerLiteral
LessThan

Jumpz
LoadIntString
LoadValue
LoadAddress
LoadValue
ArrayIndexing
Dereference-
BuiltinFunc(printf)
PopStack

LoadValue
DuplicateStackTop
LoadIntegerLiteral
Add

LoadAddress

Store

PopStack

Jump

LoadAddress
LoadIntegerLiteral
LoadIntegerLiteral
LoadIntegerLiteral
BeginParallel
BeginForallLoop

‘DadLoaDForallIndexVal

LoadAddress
Dadl.oaDForallIndexVal

35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
37
37
37
37
37
37
37
37
37
37
37
37
37
37
37
37
37

24
67
59
15
19
63

63
24
65
20
71
64
60
62
56

70

>

36
16

bW N

0

O O O O B H » O O O +» O

(o0}

B, O WO O ¥ » OO OO » O + » O O O O

15

o ® - O B

11

10

(@)

141

O O O W O O

10

184

11

160

© O O O o ©

ArrayIndexing
MoveChannelVarToNewProc
CreateNewForallChild
Jump

NewFrame
SonLoadForallIndexVal
LoadAddress
SonLoadForallIndexVal
ArrayIndexing
WakeupProcess

Call

UpdateDisplay
TestGroupIncForalllndex
ForallChildEnd
EndForallLoop
EndParallel
LoadIntegerLiteral
LoadAddress

Store

PopStack

LoadValue
LoadIntegerLiteral
LessThan

Jumpz

LoadIntString
LoadValue

LoadAddress

LoadValue
ArrayIndexing
Dereference
BuiltinFunc(printf)
PopStack

LoadValue

177 37 68 0 0 DuplicateStackTop
178 37 6 0 1 LoadIntegerLiteral
179 37 46 0 0 Add
180 37 1 9 LoadAddress
181 37 2 0 Store
182 37 70 0 0 PopStack
183 37 15 0 164 Jump
184 39 69 0 0 SequentialTimeOff
185 39 0 10 LoadIntegerLiteral
186 39 0 10 LoadAddress
187 39 67 10 0 MoveChannelVarToNewProc
188 39 57 0 1 CreateNewForkChild
189 39 13 0 197 ForkJump
190 39 19 0 11 NewFrame
191 39 3 1 11 LoadAddress
192 39 25 0 10 LoadBlock
193 39 65 0 10 WakeupProcess
194 39 20 0 1e Call
195 39 71 0 1 UpdateDisplay
196 39 58) 0] ForkChildEnd
197 -1 22 0] 0 ExitProcedure
Physical Arch Spec (topo, dim, #_of_proc)
-1
Virtual Arch Spec (topo, dim, #_of_proc)
10 1 11 ring
11
Identifier Table
16
name obj ref lev siz forl 1lnk adr typ tnam cref chflg
1 $tag00 lvari 4 O 22 0 0 7 stru O 0

161

2 v_topo S comp -1 O 1 0 0 0 2 int 0 0
3 num_dim Scomp -1 O 0 2 1 2 int 0 0
4 dim_size Scomp 2 0 20 0 3 2 &5 arra O 0
5cl lvari 3 O 1 0 1 9 6 chan O 1
6 c2 lvari 4 0 10 0 5 10 6 chan O 1
7 c3 lvari ¢ 0O 1% 0 6 20 5 arra O 0
8 £ 4 func 1 O 0 7 0 wvoid O 0
9 x 1 vari -1 1 0 0 9 2 int 0 0
10y 1 vari -1 1 0 9 10 2 int 1 0
11 £2 4 func 0 0 0 8 28 0 wvoid O 0
12 a 1 vari 1 10 0 0 8 &5 arra O 0
13 main 4 func 0 0 0 11 36 0 void O 0
14 1 1 vari -1 1 0 13 9 2 int 0 0
15 j 1 vari -1 1 1 0 14 10 2 int 0 0
16 a1 lvari 6 1 10 0 15 11 5 arra O 0
Array Table
elref elsize size low high inxtyp eltyp elchflag eltypnam
1 -1 1 1 0 0 2 2 0 int
2 -1 1 20 0 19 2 2 0 int
3 -1 1 10 0 9 2 2 0 int
4 5 1 10 0 9 2 6 0 chan
5 -1 1 10 0 9 2 2 0 int
6 -1 1 10 0 9 2 2 0 int

Block Table

last lastpar psize vsize

0 8 -1 -1 30
11 10 11 11

162

13 12 19 19
3 16 -1 9 21

Channel/Pointer Table

(2]

eltyp eltypname elref elsize

1 5 arra 1 1
2 7 stru 1 22
3 2 int -1 1
4 5 arra 3 10
5 2 int -1 1

Real Constant Table
0

Index Constant

String Table
57
*xLast fork process finished!
Source code
40

Line Contents

#include “"cpc.h"

arch ring m{11];

channel int ci;

typedef int int10[10];

0 N O 0 W N

channel inti10 c2;

163

9
10 channel int c3{10];

11

12 void f£(int x, int& y)
13 {

14 if (x==9) c3[0] = x;
15 else c3[x+1] = x;
16 vy = c3[x];

17

18

19 void f2(int al10])

20 {

21 c2 = a;

22 printf("Last fork process finished!");
23 }

24

25 void main()

26 {

27 int i, j, ai[10];

28

29 for (i=0; i<10; i++) alfil = ix*i;
30 for (i=0; i<10; i++) fork [i+1;c3[i]] £(i, a1lil);
31 for (i=0; i<10; i++) join(Q);

32 for (i=0; i<10; i++) printf("all%d]

%d\n", i, ai(il);

33

34 forall(i from O to 9 grouping 1)

35 [i;c3[i1] £(i, a1lil);

36

37 for (i=0; i<10; i++) printf("ail[%d]l = %d\n", i, ailil);
38

39 fork [10; c2] f2(al);

40 }

164

Breakability Table

41
Line VC_index_value
1 3
2 3
3 3
4 3
5 3
6 3
7 3
8 3
9 3
10 3
11 3
12 3
13 3
14 7
15 3
16 20
17 28
18 28
19 28
20 28
21 28
22 32
23 36
24 36
25 36
26 36
27 36
28 36
29 36

165

59

S4
111
135
135
1358
160
160
184
184
197
198

166

Bibliography

(1] Bruce P. Lester. The Art of Parallel Programming
[2] Hillis, W.D. The Connection Machine. Cambridge, MASS. The MIT Press, 1986.

[3] C. Koelbel et al. The High Performance Fortran Handbook. The MIT Press,
1994.

[4] K.Reeuwijk, W. Denissen, H. Sips, and E. Paalvaast. An implementation frame-
work for HPF distributed arrays on message-passing parallel computer systems.
IEEFE Transactions on Parallel and Distributed Systems, 7(9):897-914, Sept 1996.

[5] High Performance Fortran Forum. High Performance Fortran Language Specifi-
cation, May 1993.

[6] FORGE High Performance Fortran. Applied Parallel Research, Sacramento, Cal-
ifornia. October 1995.

[7] Michael Philippsen and Markus U. Mock. Data and Process Alignment in
Modula-2*. In C.W. Kebler(Ed.): Automatic Parallelization — New Approaches
to Code Generation, Data Distribution and Performance Prediction, pages 177-
191. Wiesbaden: Vieweg, 1994.

[8] K.-C Li and H. Schwetman. Vector C: A Vector Processing language. Journal of
Parallel and Distributed Computing, 132-169, 1985.

[9] J. R. Rose and G. L. Steele Jr. C*: An Extended C Language for Data Parallel
Programming. In Proceedings Second International Conference on Supercomput-
ing, Vol. 2, pages 2-16, San Francisco, CA, May 1987.

[10] Michael J. Quinn and Philip J. Hatcher. -Data-Parallel Programming on Multi-
computers. IEEE Software, 7(5):69-76, September 1990.

167

[11] Philip J. Hatcher and Michael J.Quinn. Data-Parallel Programming in MIMD
Computers. MIT Press, 1991.

[12] Judith Schlesinger and Maya Gokhale. DBS Reference Manual. Technical Report
TR-92-068, Supercomputing Research Center,1992.

[13] ANSI American National Standard Institute, Inc., New York. American National
Standard for Information Systems, Programming Language C. ANSI X3.159-
1989,1990.

[14] Peter A. Darnell Philip E. Margolis. Software Fngineering in C.

[15] The Occam Programming Manual. Englewood Cliffs, N.J. Prentice Hall. Inmos,
1985.

[16] G.Jones and M. Goldsmith. Programming in Occam 2. Prentice-Hall, 1988.

[17] C.A.R. Hoare. Communicating Sequencial Processes. Prentice-Hall International

Series in Computer Science, 1985.

[18] Karp, A., and Babb, R. G. A comparison of 12 parallel Fortran dialects. IEEE
Software (September), pp. 52-67. 1988

[19] Arthur B.Pyster. Compiler Design and Construction.

[20] Jean-Paul Tremblay, Paul G. Sorenson. The theory and practice of compiler writ-

ng.

[21] Sangyeun Cho, Jenn-Yuan Tsai. High-Level Information - An Approach for In-
tegrating Front-End and Back-End Compilers.

[22] David A. Padua. Outline of a Roadmap for Compiler Technology.

[23] Christopher W. Fraser. A Retargetable Compiler for ANSI C, SIGPLAN Notices
26, 10(Oct. 1991), 29-43.

[24] Christoph W. Kebler, Helmut Seidl. “The Fork95 Parallel Programming Lan-
guage: Design, Implementation, Application”, Int. Journal of Parallel Program-
ming 25(1), Feb. 1997, pages 17-49

168

[25]

Mohammad R. Haghighat and Constantine D. Polychronopoulos. Symbolic
analysis for parallelizing compilers. Volume 18, No. 4 (July 1996). ACM Trans-
actions on Programming Languages and Systems. Pages 477-518

Designing and Building Parallel Programs, by Ian Foster.
http://www-unix.mcs.anl.gov/dbpp/

Parallel Functional Programming: An Introduction Next: Introduction Par-
allel Functional Programming: An Introduction Kevin Hammond Depart-
ment of Computing Science, University of Glasgow, Gl. http://www.dcs.st-

and.ac.uk/ kh/papers/pasco94/pasco94.

169

