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Impact of Data Dependent Model Selection on Inference

Mamun Mahmud

Abstract

Many continuous variables may have non-linear effects on the outcomes of interest.
For example, the effect of serum cholesterol on the logit of the probability of coro-
nary heart disease mortality is stronger in the low to moderate range of observed
cholesterol values than in the upper tail of their distribution (Abrahamowicz et al.,
1997). If so, it is often not obvious how to represent the functional relationship
between the covariate and the outcome. One common approach is to estimate dif-
ferent models, each using a different function of the covariate of interest (typically
corresponding to different parametric transformations), and then to select the one
that fits the data best. However, this approach can be considered as a specific case
of the general problem of data-dependent model selection. As the model selection
uncertainty is typically not accounted for, such approach is likely to induce some
bias at the step of statistical inference.

In this thesis, I consider the problem of accounting for model uncertainty in
a parametric regression model with focus on the uncertainty involved in selection
of the optimal transformation of a continuous predictor in the Cox proportional
hazards model (Cox, 1972). I use the minimum AIC approach to select a posteriors
the optimal transformation of a continuous predictor. First, I review literature

on criteria and methods for selecting the “best-fitting” model based on the results
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obtained from a sample, in Chapter 1. Then, in Chapter 2, I discuss the general
problem of model selection uncertainty on inference and summarize research in this
area. Next, I evaluate the impact of the data-dependent model selection approach
on type I error rate through simulations. In simulations, I generate data, assuming
both linear and non-linear dependence of hazard on a continuous covariate as well as
no association. The generated data are then used to estimate a series of models with
various functional form, to assess the impact of model selection on type I error and
on statistical power. Some of the above methodological problems are then illustrated

in the analysis of a real-life dataset including several cardiovascular risk factors.
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Chapter 1

Review of Criteria and Methods
for Model Selection

1.1 Introduction

A large part of statistical research focuses on modelling data. On the other hand, one
of the most important problems confronting an investigator in statistical modelling
is the choice of an appropriate model to characterize the underlying data. This
determination can often be facilitated through the use of an information-theoretic
criterion, which judges the propriety of a fitted model by assessing whether it offers
an optimal balance between “goodnessof fit” and parsimony.

There is substantial statistical literature discussing model selection, which is the
practice of selecting a model to fit the data at hand. A typical approach to data
analysis involves three main steps. First, postulate the class of competing models
using a modern computing power, then typically select the single model which is
best according to some predetermined criteria, and finally, make inference as if the

selected model is the true model. It is well known that, when a model is formulated



and fitted to the same set of data, inferences made from it will be biased and over-
optimistic when they ignore the data analytic actions which preceded the inference
(Chatfield, 1995).

In epidemiological studies, a common problem is to determine the specific math-
ematical relationship between the value of a continuous covariate and the risk of
disease occurrence. Evaluation of various statistical methods to describe accurately
associations between exposures and disease are constantly being explored. As com-
plexity of relationships investigated in empirical sciences increases, we will need to
rely more on model selection criterion. However, different choices of a model selec-
tion criterion may produce different models. Moreover, even with the same criterion,
the “optimal” model may vary from sample to sample. Thus, while model selection
may be desirable or even necessary in many applications, there is uncertainty about
which model to use for making valid inference regarding model parameters. There-
fore, it is important to explore the implications of model selection on traditional
inference about model parameters.

However, there has been relatively little exploration of the practical implication
of their effects. Given the analytical methods are generally not available to study
the effects of data-dependent procedures, a variety of computational methods have
been tried. Simulation methods are one obvious avenue when the model selection
procedure is simple and clearly defined. In this thesis, I will evaluate the impact of

data-dependent model selection on statistical inference through simulation studies



as well as through an empirical study.
1.2 Overview of the Thesis

In this thesis, I discuss the problem of model uncertainty in the context of censored
survival model, that evolves due to data dependent a posterior:i model selection and
its probable impact on subsequent inference. In Chapter 1, I review the literature on
criteria and methods for model selection with a look on its importance in regression
analysis. Chapter 2 presents a detailed overview of the the issues related to model
selection uncertainty that arises due to the model building process. Chapter 3
consists of two parts. First part discusses the model selection problem in the context
of choosing the optimal transformation of a continuous covariate in Cox proportional
hazards regression; second part presents the simulation studies I carried out to
evaluate the impact of model selection. Chapter 4 mainly speaks about the analysis
of the simulated and the real life data-sets. Finally, Chapter 5 is a discussion of
the conclusions I reach in this thesis. The S-Plus code I created for this thesis is

presented in the appendix A.



1.3 The Importance of Model Selection in the Re-
gression Analysis

Statistical models are useful in the empirical sciences for understanding the inher-
ent structure of data, description of the data and for making inference. In recent
years, the problem of model selection recognized in literature can be stated as fol-
lows: Given a data set, how do we choose the “best approzrimating” model among
a class of competing models, possibly with different numbers of parameters, by a
suitable model selection criterion? (Bozdogan, 1987). Success in the analysis of real
data and the resulting inference often depend importantly on the choice of the “ap-
prozimating model”. In the biological sciences, such analysis is required to be based
on a parsimonious model that provides an accurate approximation to the structural
information in the data at hand. This should not be viewed as searching for the
“true model” but rather coming up with the “best approzimating” model. As such
model selection is essentially concerned with the “art of approzimation” (Akaike,
1974).

Box and Jenkins (1970) suggested that the principle of parsimony should lead to a
model with “the smallest possible number of parameters for adequate representation
of the data”. Parsimony is the concept that a model should be as simple as possible
with respect to the number of included variables, model structure and number of
parameters. Parsimony is a desired characteristic of a model used for inference

and it is usually operationalized as a suitable trade-off between bias and variance



Figure 1.1: The Principle of Parsimony

Variance

Bias 2

Many
Number of Parameters

of parameter estimators. In general, magnitude of the bias decreases and variance
increases as the dimension of the model, i.e. the number of estimated parameters
(K), increases (Figure 1.1).

All model selection methods are based to some extent on the principle of par-
simony (Breiman, 1992; Zhang, 1994). In understanding the utility of an approx-
imating model for a given data set, it is convenient to consider two undesirable
possibilities: under-fitted and over-fitted models. The terms under and over-fitted
models are used in relation to a “best approrimating model”. An under-fitted model
would ignore some important replicable structure in the data and thus fail to iden-
tify effects that were actually supported by the data. As a consequence, bias in

the parameter estimation is often substantial and the sampling variance is typically



underestimated, both factors resulting in poor coverage probability (Burnham and
Anderson, 1998). On the other hand, over-fitted models, as judged against a best
approximating model, are often free of bias in the parameter estimators, but provide
estimated sampling variances for the same that are needlessly large (i.e. the preci-
sion of the estimator is poor, relative to what could have been accomplished with
a more parsimonious model). Shibata (1989} argued convincingly that under-fitted
models pose a more serious problem in data analysis and inference than over-fitted
models. In fact, the best approximating model is achieved by properly balancing the
errors of under-fitting and over-fitting. The proper balance is achieved when bias
and variance are controlled to achieve confidence interval coverage at approximately
the nominal level and when interval width is at a minimum. Achieved confidence
interval coverage is a convenient index of whether the accuracy of both parameter es-
timators and measures of precision are adequate. Proper model selection procedures
attempt to identify a model in which the error of approximation and the error due to
random fluctuations are well balanced (Shibata, 1983, 1989). Some model selection
methods, e.g. Bayesian Information Criterion (BIC) (Schwarz, 1978) are parsimo-
nious but tend to select models that may be too simple (i.e. under-fitted); thus bias
is large, precision is over-estimated and achieved confidence interval coverage is well
below the nominal level. Such instances are not satisfactory for inference because
apparent high precision of the estimates is misleading, given their substantial bias

(Burnham and Anderson, 1998).



The impact of model selection on inference has most often been viewed in the
context of hypothesis testing. Sequential testing has most often been employed,
based on either step up (forward) or step down (backward) methods (Burnham and
Anderson, 1998). Procedures using model selection testing schemes are based on
subjective o levels (commonly 0.05 or 0.01); however Rawlings (1988) recommends
o = 0.15 in the context of stepwise regression. The multiple testing problem is
serious if many tests are to be made and the tests are not independent (Westfall
and Young, 1993).

A substantial limitation in the use of hypothesis testing for model selection is
that traditional likelihood ratio tests (LRT) are defined only for nested models; so
tests between models that are not nested are problematic. Some authors argue that
hypothesis testing is a poor basis for model selection (Akaike, 1974; Sclove, 1994).
Akajke (1974) noted, “The use of a fixed level of significance for the comparison of
models with various numbers of parameters is wrong, since it does not take into ac-
count the increase of the variability of the estimates when the number of parameters
1s increased”. In fact, the significance level should be related to sample size and the
degrees of freedom, if the hypothesis testing is to be somehow used as a basis for
model selection (Akaike, 1974). However, in the hypothesis testing approach, the
a-level is usually kept fixed regardless of sample size or degrees of freedom. This
practice of keeping a-level constant implies asymptotically inconsistent results in

hypothesis testing. For example, if the null hypothesis is true and « is fixed (at, say,



0.05), then even as degrees of freedom approach oo, we still have a 0.05 probability
of rejecting the null hypothesis, even with an almost infinite sample size. Yet, to
be consistent, the statistical procedures in this simple context should converge on
truth with probability 1 as the sample size (n) tends to infinity.

If goodness of fit tests can be computed for all alternative models even if some
are not nested within others, then one could use the model with the fewest number
of parameters that “fts” the best i.e. yields p > 0.05 or 0.10 for the test of the null
hypothesis of adequate fit. However, increasingly better fits can often be achieved by
using models with more parameters and this can make the arbitrary choice of o very
critical. A large « level leads to over-fitted models and their resulting problems. In
fact, there is no theory to suggest that this approach will lead to selected models with
good inferential properties (i.e. an adequate bias vs. variance trade-off or acceptable
coverage and/or width of the confidence interval). In addition, other problems may
be encountered such as over- or under-dispersion and low power (Burnham and
Anderson, 1998).

Truth in the biological sciences and medicine is inherently complicated and we
can not hope to find the “true” model from the analysis of a finite amount of data.
Thus, inference about truth must be based on a good “approzimating model”. Like-
lihood and least square methods provide a rigorous inference, if the model structure
is given. However, in most real-life applications, the model is not given. Thus the

critical issue is “what model to use”? This is the model selection problem. The em-




phasis then shifts to the careful a priori definition of a set of candidate models.
Information-theoretic approach provides a simple way to select a “best” approxi-
mating model from the candidate models. In fact, information theory based on
Kullback-Liebler (K-L) information provides a sound theoretical basis for model

selection, while likelihood ratio test (LRT) doesn’t.
1.4 Selection Criteria

As far as a model yields a good approximation, a simpler model is better than a
complex one both for understanding the underlying phenomenon and for various
applications. The principle is the same for selecting a statistical model. Complex-
ity of a model is restricted both by the size of observation and by the number of
parameters included in the model. Needless to say, complete specification might be
possible if an infinite number of observations were available for a quite simple sys-
tem. Otherwise, a practical procedure is, starting from a simple model, to increase
the complexity until a trade-off between the error of approximation and the error
due to random fluctuations is obtained (Shibata, 1989). To do this systematically,
a convenient way is to introduce a formal criterion to compare models. In the next
sections, I shall discuss various criteria based mainly on information theory as well

as some re-sampling procedures.



1.4.1 Cross-Validation

Cross-validation has been suggested and well studied as a basis for model selection
(Mosteller and Tukey, 1968; Stone, 1974, 1977; Geisser, 1975). Different procedures
are used for Cross-Validation. In the simplest case, the data are divided into two
subsets, the first subset is used for model fitting and the second is used for model
validation (sometimes the second subset has only one observation). Then a new
subset is selected, and this whole process is repeated a large number of times. Also
then some criterion is chosen such as minimum squared prediction error (MSPE), as
a basis for model selection. There are several variations on this theme, e.g. leaving
out one (or more) observation at a time, a model is fitted to the remaining points and
used to predict the deleted points. Thus, within-sample prediction errors provide
an assessment of prediction quality of the models. The sum of squares of these
errors can also be used to make a choice between different models. There are several
variations of this approach (Craven and Wahba, 1979; Burman, 1989; Shao and Tu,
1995; Zhang, 1993a; Hjorth, 1994). These methods are quite computer intensive
and tend to be impractical if more than about 15 — 20 models must be evaluated
or if sample size is large. Still, cross-validation offers an interesting alternative for

model selection.
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1.4.2 Criteria Specific for Linear Regression: Adjusted R?
and Mallow’s C,

The selection of models using the adjusted R? statistic and Mallow’s C, are related
for least squares problems (Saber, 1977). The adjusted coefficient of multiple deter-
mination RZ has been used in model selection in a least square setting and is defined

as

(n—1)
(n —p)’

RZ=1-(1-FR?
where R? is the usual coefficient of multiple determination and p is the number of
parameters in the model of n observations (Draper and Smith 1981). While R?
automatically increases as a new parameter is introduced, Rg does not and can be
compared for models containing different numbers of parameters. The models giving
the highest }_?.3, closest to one, are taken as the best fitting. Thus under this method,
one selects the model in which the adjusted statistics is largest.

Mallow’s C, statistic (Mallows, 1973, 1995) is used in least square regression
with normal residuals and a constant variance. In this special case, it provides a
ranking of the candidate models, which is the same as the ranking under Akaike
Information Criterion (AIC, see the next section) (Atilgan, 1996). Mallow’s C, can
be formulated as a direct adjustment of the residual sum of squares (RSS) based on

p variables in the model. It takes the form:

__RSS

5—2

Cp +2p —n,

where 62 is an estimate of the underlying variance ¢?, usually based on fitting all

11



the regressors. For a correct model E(Cp) = p, hence a large deviation of C, from

the line C, = p suggests a wrong model and consequent bias in the fitted model.
1.4.3 Akaike Information Criterion (AIC)

The first information theoretic criteria to gain wide-spread acceptance as a model
selection tool was the AIC (Akaike, 1973, 1974, 1977, 1978a, 1978b, 1981a, and
1981b). Akaike developed this information-theoretic, or entropic AIC criterion,
which takes model complexity into account, for the identification of an optimal
parsimonious model from a class of competing models. This criterion, used in the
non nested case, has been based on the likelihood function with best estimates of
the parameters and an adjustment for the number of parameters. It attempts to
balance the need for a model which fits the data very well to that of having a simple
model with few parameters. Akaike’s information-theoretic approach has led to a
number of alternative methods having desirable properties for the selection of best
approximating models in practice (see Burnham and Anderson, 1998).

Kullback and Liebler (1951) derived an information measure that happened to
be negative of Boltzman’s entropy, which is nowadays known as the Kullback-Liebler
(K-L) distance. The K-L distance (see Section 2.2 for details) can be conceptualized
as a directed “distance” between two models, say “true” model f and candidate g
(Kullback, 1959). Akaike proposed the use of this Kullback-Liebler (K-L) distance as
a fundamental basis for model selection. He found a relation between the relative K-

L distance and Fishers maximized log likelihood function and on this basis proposed

12



the famous criterion
AIC = —2logL(f|y) + 2K, (1.1)

where L(f|y) is the likelihood of the parameters 6 given the data y, K is the number
of parameters used in the model, and § is the MLE of 6. The first term in (1.1)isa
measure of inaccuracy, badness of fit, or bias when maximum likelihood estimators
of the parameters of the model are used. The second term, on the other hand, is a
measure of complexity or the penalty for the increased unreliability in the first term,
which depends upon the number of parameters used to fit the data. So, the addition
of twice the number of parameters is a penalty to correct for the expected reduction
in estimation bias with increasing number of parameters (Bozdogan, 1987). This
criterion will decrease as variables are added to the model. At some point, the
criterion will increase and this is a signal that the added variables are unnecessary.

Thus, when there are several competing models, the parameters within the mod-
els are estimated by the method of maximum likelihood, and the value of the AIC's
are computed and compared to find a model with the minimum AIC value. This
procedure is called the minimum AIC procedure and the model with the minimum
AIC is called the minimum AIC estimate (MAICE) and is chosen to be the best
model (Bozdogan, 1987). Therefore, the best model is the one with least complex-
ity, or equivalently, the highest information gain. In applying AIC, the emphasis
is on comparing the goodness of fit of various models with an allowance made for

parsimony.
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Although AIC is an asymptotically unbiased estimate of relative K-L distance,
it is not true without assuming that true f is in the set of candidate models. To
compare models, it is recommended to compute differences (rather than the actual

AIC values),
Ai'—‘AIC,;—minAIC, (1.2)

over all candidate models 7 ( = 1,2, ...... ,R, R being the number of candidate
models) in the set. Here A; is an estimate of the difference between the K-L distance
between a given model ¢ and the AIC optimal model. These A; values are easy to
interpret and allow a quick comparison and ranking of candidate models and are
also useful in computing Akaike weights (see Section 2.4 for details). The larger is
A;, the less plausible is the fitted model 7. Thus, model selection becomes a simple
function minimization, where AIC is the criterion to be minimized.

However, AIC may perform poorly if there are too many parameters in relation
to the size of the sample (Suguira, 1978; Sakamoto et al., 1986). Suguira (1978)

derived a second-order variant of AIC that he called cAIC:
cAIC = —2log L(6) + K[logn + 1]. (1.3)

where, L(0) is the likelihood of parameter 6. Note that cAIC(k) is similar to the
Schwarz’s (1978) criterion of K log n (i.e. BIC, see Section 1.2.5), and that the
term [K log n + K has the effect of increasing the “penalty term”. Consequently,
the minimization of cAIC leads, in general, to lower dimensional models than those
obtained by minimizing AIC.

14



Hurvich and Tsai (1989) further studied this small sample (second-order) bias

adjustment which led to a criterion that is called AIC.:

- n

Al = — 2K(————
Cc 2log L(6) + (n—K—l)

2K (K +1)

= AIC+ n—K-—-1'

(1.4)

If n is large with respect to K (number of parameters), then the second order
correction is negligible and AIC should perform as well as AIC.. Burnham et al.
(1994) suggested that AIC,. has to be used when the ratio % is small (say < 40).
If the ratio & is sufficiently large, then AIC and AIC, are similar and will tend to
select the same model. However unless the sample size is large with respect to the
number of estimated parameters, use of AIC, is recommended.

AIC selection is objective and represents a very different paradigm to that of
hypothesis testing and is free from the arbitrary o levels, the multiple testing prob-
lem, and the fact that some candidate models might not be nested. AIC allows a
ranking of models and the identification of models that are nearly equally useful,
versus those that are poor explanations for the data at hand. The AIC is reminis-
cent of the adjusted R? in least-squares regression, in that both are attempting to

adjust the fit of the model for the number of parameters included.

1.4.4 Quasi-Likelihood and Takeuchi’s Information Crite-
rion (TIC)
In the case of over-dispersion found in count data (i.e. when sampling variance

exceeds theoretical model-based variance), one needs to model the over-dispersion
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and then use generalized likelihood inference methods. Quasi-likelihood (Wedder-
burn, 1974) theory is a basis for the analysis of over-dispersed data (Williams, 1982;
McCullagh and Pregibone, 1985; Moore, 1987; McCullagh and Nelder, 1989). Prin-
ciples of quasi-likelihood suggest simple modifications to AIC and AICc. According

to Lebreton (1992):

and
A 2K (K
QAICe = —{2log L(@)/¢} +2K + === _(Ktll)
= oaro+STLH as

where ¢ is the variance inflation factor, estimated from goodness of fit of x? statistic.
When no over-dispersion exists (¢ = 1), then formulae for QAIC and QAIC, reduce
to AIC and AIC,, respectively.

TIC (Takeuchi’s information criterion) allows for substantial model misspecifi-
cation, i.e. applies in situations where perhaps none of the candidate models ap-
proximates well the “¢rue” f. In this case there is a more general bias adjustment
term to allow —2log L(f) to be adjusted to be an asymptotically unbiased estimate

of relative K-L, thus
TIC = —2log L(8) + 2tr[J(O)I(6) Y], (1.7)

where the matrices J(6) and I(@) involve first and second mixed partial derivatives
of the log likelihood function, and ‘tr’ denotes the trace of the matrix.
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AIC is equivalent to TIC only when tr[J(§)I(§)~'] = K. The benefit of TIC
is that one achieves asymptotic unbiasedness for K-L model selection. One might
consider always using TIC as this reduces the concern about the adequacy of the set
of candidate models. If over-dispersion is found in count data, then the log-likelihood
could be divided by an estimated variance inflation factor, giving a criterion called
QTIC (Burnham and Anderson, 1998).

Linhart and Zucchini (1986) proposed a further generalization and Amari (1993)
proposed a network information criterion (NIC) potentially useful in training sam-
ples in neural network models. Shibata (1989) developed a complicated criterion,
based on the theory of penalized likelihoods and called it RIC (regularized infor-

mation criterion).
1.4.5 Bayesian Approaches

Bayesian researchers have taken somewhat different approaches and assumptions
and have proposed several alternative methods for model selection. Some of these
are difficult to implement and very computer intensive (Laud and Ibrahim, 1995;
Carlin and Chib, 1995).

Several criteria have been developed based on the assumption that an exactly
“true model” exists among the candidate models being considered and the model
selection goal is to select the true model. Implicit is the assumption that true model
is of fairly low dimension. Here, the criteria are derived to provide a consistent

estimator of the order or dimension (K) of this “true model” and the probability
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of selecting this “true model” approaches 1 as the sample size increases. Bozdogan
(1987) provides an insightful review of many of the “dimension consistent’ criteria.
‘The best known of the “dimension consistent” criteria was derived by Schwarz (1978)

in Bayesian context and is termed as BIC (Bayesian Information Criterion):
BIC = —2log L(8) + K log(n). (1.8)

In the context of binary or censored responses, there is a debate about what n should
be in the BIC approximation to the Bayes factor: the number of subjects or number
of event? However, Volinsky (1997) provided evidence that n should be the total
number of uncensored cases (deaths or events).

BIC arises from a Bayesian viewpoint with equal priors on each model and very
non-informative priors on the parameters, given the model. The purpose of the
BIC is to select the optimal model for simple prediction. BIC is not an estimator
of relative K-L. It provides a consistent estimate of the true order of the model at
the expense of assuming that a true model exists and is low-dimensional (Rissanen,

1989; Sclove, 1987).

1.4.6 Other Criteria

Rissanen (1989) proposed a criterion, called minimum description length (MDL),
based on coding theory which is another branch of information theory. Hannan and
Quinn (1979) derived a criterion (HQ) for model selection where the penalty term
was a(n) = clog[log(n)], n being the sample size and c a constant to be greater than

2 (Bozdogan, 1987). Their objective was to provide a consistent criterion in which
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a(n) is an increasing function of n at a rate as slow as possible. But this criterion has
very little use in practice. Bozdogan (1987) proposed yet another criterion called

CAICF (C for consistent and F for Fishers information matrix):
CAICF = —2log L(6) + K {log(n) + 2} +log [I(8)], (1.9)

where log |I(d)| is the natural logarithm of the determinant of the estimated Fishers

Information Matrix.
1.5 Summary and Discussion

In summary, for statistical inference, it is recommended to employ the class of
information-theoretic criteria that are estimates of relative K-L information such
as AIC or AICc for general use in the selection of a parsimonious approximating
model (Burnham et al., 1998). If we want to avoid over-fitting, then we should use
the consistent criteria cAIC and CAICF, sometimes at the cost of considerable
under-fitting bias in smaller samples. Of course, as the number of observations
gets large, for the consistent criteria, the probability of under-fitting on over-fitting
will diminish. This suggests that one should use these consistent criteria for large
samples. When the sample size is not very large, the dimension consistent criteria
tend to select under-fitted models, which may result in considerable bias, over-
estimated precision and associated problems in inference. Therefore, if we want
to avoid under-fitting a model, then we should use AIC. If count data are found

to be over-dispersed, then QAIC and QAIC¢c are useful. For large samples, TIC
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might offer an improvement over AIC or AIC,. TIC is an asymptotically unbiased
estimate of relative K-L information.

Many model selection criteria have been developed in recent years. Though hy-
pothesis testing is widely used for model selection, there are problems in developing
a general approach based on these tests. Relatively speaking, the concepts and prac-
tical use of the information-theoretic approach to model selection are simpler than
those of statistical hypothesis testing, and much simpler than some of the Bayesian
approaches to data analysis (e.g., Laud and Ibrahim, 1995; Carlin and Chib, 1995).
It is well known that the classical theory of hypothesis testing focuses on deter-
mining whether observations from a given sample are consistent with some stated
hypothesis or not. Thus, in the hypothesis testing tradition, frequently ignoring
power considerations, we choose an arbitrary significance level ¢, for example the
celebrated 5%, 2.5%, or 1%, and then try to determine (at least approximately) a
critical value, from the standard tables of the test procedures, to make our decision.
In these testing procedures there is no provision to penalize for over-parameterization
since usually an unstructured saturated model is used as a reference (Akaike, 1987).

By contrast, when we use AIC, cAIC, or CAICF, the ”level of significance” is
adjusted in such a way that the corresponding probability of rejection of a simpler
model decreases as degrees of freedom or complexity increases. This connection
between model selection criteria and the level of significance a, provides us with

a way to test the validity of different restrictions of a model. Also, it gives us
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a yardstick in comparing every possible model and choosing the model giving the
smallest probability of incorrect rejection of null hypothesis (i.e. Type I error) to
be the best fitting model. This fact justifies the comparison of the model selection
criteria in a class of models which are not nested and thus cannot be compared
by the classical likelihood ratio tests. In my thesis, I will adopt this idea to select
a parsimonious model and explore the behavior of Type I error while choosing the
model a posteriori.

In the next Chapter, I will discuss in detail the issues related to model selection

uncertainty which arises due to model building process.
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Chapter 2

Model Selection Uncertainty

2.1 Introduction

“Model selection uncertainty” refers to the inference problems that arise when the
same data are used for both model selection and inference related to this the a
posteriori selected model. It is argued that model selection uncertainty should be
fully incorporated into statistical inference whenever estimation is sensitive to model
choice and that choice is based on the data used to estimate the model (Buckland et
al., 1997). If model selection uncertainty is ignored, precision is often over-estimated,
achieved confidence interval coverage is below the nominal level, type I error rates in
hypothesis testing are inflated, and predictions are less accurate than expected. The
understanding that the model selection process might have a significant effect on
the analysis leads to the acceptance of model selection uncertainty as an important
aspect of data analysis.

Model uncertainty generally depends on two main inherent error sources: the

model formulation error and input data errors. These types of errors may be es-
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pecially important in the case of statistical modelling since there is no type I error
assumptions imposed on a model structure. For every data set, a variety of po-
tentially applicable model forms may exist and there is no universal model type
to apply. In every case, a choice shall be made taking into account specific needs
and available resources. It is suggested that the statistical model structure should
be selected in the iterative way, when the created model is tested among possible
alternatives, as proposed by Harvey (1981).

It should always be kept in mind that there is often considerable uncertainty in
the selection of a particular model as the “best” approximating model. In realistic
situations, there exist a best approximating model and other models that are poorer
approximations due only to the finite amount of data available. Thus, one of the
major source of uncertainty is the limited size of the sample. When we seek to
fit models to our data, we shall begin to see how this uncertainty occurs. We
should consider the consequences of limitations on the amount and quality of data
available. At the center of this consideration is the idea of sampling variability.
The observed data are conceptualized as random variables; their values would be
different if another independent sample was available. It is this sampling variability
that results in uncertain statistical inference from the particular data set. However,
the effect of sampling variation is not only to reduce the precision with which we can
fit the models, but also to limit the precision with which the “optimal” model may

be identified. In fact, the existence of sampling variability means that the future
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samples will vary from past samples and hence the model selected using the past
samples may be different from the model that could be selected in a new sample.
sampling vartability thus causes uncertainty at all stages of modelling (Gilchrist,
1984).

Though literature on model selection methods has increased substantially in the
past 15 — 20 years, relatively little appears in the literature concerning the proper-
ties of parameter estimators in situations where a data-dependent model selection
procedure has been used (Hurvich and Tsai, 1990; Goutis and Casella, 1995). Thus,
little is known about the impact of using the same data to both select a proper
model and to estimate the model parameters and their precision. Gilchrist (1984),
Breiman (1992) and Chatfield (1995) gave insights into the problems when the same
data are used both to select the model and to make inferences from the model.

If a best approximating model has been selected from a reasonable parsimonious
set of candidate models, bias in the model parameter estimation might be small.
However, there is uncertainty about which model to use. The model selection un-
certainty is the component of variance in the estimation that reflects that model
selection merely estimates the best approximating model, based on the single data
set. A different model (in the fixed set of models considered) may be selected as
the best for a different data set. For example, sampling variance of an estimator
6 given a model is usually estimated as Var(f|model). However, if the model was

selected from the same data, the actual sampling variance of § has two components:
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1) Var(@jmodel) and 2) a variance component due to not knowing the a priori best
approximating model (and therefore having to estimate this). Generally speaking,
the variance will increase, as might be expected, from the additional uncertainty
due to the model selection process.

If one uses a method such as AIC or cross-validation to select a parsimonious
model given the data, and then estimates a conditional sampling variance given the
selected model, the estimated precision will then likely be over-estimated, because
the variance component due to model-selection uncertainty has been omitted. The
standard errors (S.E.) computed conditionally on the model will be too small, con-
fidence interval will be too narrow and achieved coverage will be below the nominal
level (Chatfield, 1995; Rencher and Pun, 1980; Hurvich and Tsai, 1990; Potscher,
1991; Goutis and Casella, 1995; Kabaila, 1995).

The problem with model selection uncertainty shows a certain analogy to using
the multiple coefficient of determination R? in multiple linear regression. Though
R? can be estimated using standard least square (LS) regression theory based on a
sample of n independent observations, it would not be the same with another sample
of n independent observations. In fact, R? for a model is expected to be lower in an
independent sample than in the sample from which the model was estimated. This
is because the regression coefficients tend to be tailored for a particular data set.

On the other hand, the increasing complexity of empirical questions investigated

through multi-variable modelling makes it less and less likely that the user will be

25



able to specify the model a priori. This implies that applied research will have to
rely increasingly on models that are selected a posteriori. Therefore, the search for
optimal methods for coping with model selection uncertainty is one of the priorities
of current research on statistical inference. In the following sections, I shall review
the effects of model uncertainty such as narrower confidence interval and biases in
parameter estimates due to data-based modelling, and will also discuss the ways of
assessing and overcoming the effects of model uncertainty through simulation studies

and model averaging.
2.2 Confidence Subset of Models

Confidence subset of models can be defined to aid in identifying a subset of good
models. The interpretation of a confidence interval of size (1 — ) for a parameter of
interest is very clear; i.e. in repeated samples from the process, 100(1 — a)% of the
data sets will generate a confidence interval that includes the true parameter value.
This idea extends to that of generating a confidence subset of the models considered
such that, with high relative frequency over samples, the subset of models contains
the actual Kullback-Liebler (K-L) best model (defined below) among the entire set of
models considered. The point is to make this subset as small as possible (analogous
to narrow confidence intervals).

By K-L best model we mean the model with the shortest K-L distance between
the true model f and candidate models g. To define K-L distance, let us suppose z

denote the data being modelled and @ denote the parameters in the approximating
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model g. Also let the function g(z|f) be the approximating model g for data z given
the parameters 6. Then the K-L distance is defined as (for continuous function) the

integral

I(f,9) /f(:z: log{ JE(IH)) dz.

K-L (1951) developed this quantity from “Information Theory”. Here, I(f,g) can
be termed as the “information” lost when model g is used to approximate the reality
(i.e. “¢ruth f”). Hence according to this measure, one may seek an approximating
model that loses as little “information” as possible; which is equivalent to minimizing
I(f,g) over the candidate models in the set. An equivalent interpretation to mini-
mizing I(f, g) is that we seek an approximating model that is the “shortest distance”
away from truth.

Similar to confidence interval for a parameter based on a model and data, there
exists the concept of a confidence set on the actual K-L best model. Several ap-
proaches were proposed to estimate the confidence subset of models based on infor-

mation theory. I will discuss them in the following sections.
2.2.1 Method Based on Akaike Weight (w;)

Akaike weights are the estimates of the relative likelihood of each fitted model in the
set of models considered. After estimating the likelihood for each model (M;, i =
1,2,...,R, where R is the number of models considered) given the data z, these

likelihoods are normalized as follows to obtain the Akaike weight.
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Specifically, the critical value for a confidence set of plausible models in terms of
AIC difference (A;) can be determined by extending the concept of the likelihood of
the parameters given both the data z and model M; (i = 1,2, ..., R), i.e. L(f|z, M),
to a concept of the likelihood of the model given the data , i.e. L(M;|z). Therefore,
from Buckland et al., (1997) we can write, L(M;|z) = C L(f|z, M;), where C is any
arbitrary constant, L(f|z, M;) is the likelihood function of the parameter § given

the data z and the model M;. Moreover, from the definitions,

Ai = AIC’,—mmAIC’

= —2log L(f|z, M;) + C.
We have therefore,

L(f|z, M;) exp[—%Ai], hence

L(Mifz) o expl-3A (2.1)

Now, to compare any model ¢ with model j, the usual practice is to compute the
relative likelihood as %{%{% For a better interpretation of the relative likelihood,
Burnham and Anderson (1998) suggested to normalize the L(M;|z) so as to obtain a
set of positive “Akaike weights” w; such that 37 w; = 1. Thus the Akaike weights,

commonly denoted as w;, becomes,

_ _ oxp[—3A] 9.9
Z?=1 exp[—:,,_l-Ar]. 22

Therefore the idea is, given that there are R models with one of them being the best,

)

it is convenient to restrict the relative likelihoods to sum to 1. Obviously, for the
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estimated K-L best model (say M;), we will have A = 0 and exp[—1A,] = 1. So
the odds for the ith model actually being the K-L best model is exp[—%A;] which can
be defined as the “relative likelihood”. By defining the Akaike weights (w;) in this
way, it is ensured that two models with the same value for AIC are given the same
weight, whether or not they have the same penalty (number of parameters). This
idea of the likelihood of the model given the data and the resulting model weights
has been suggested in several articles mostly by Akaike (Akaike, 1978b, 1979,1980,
1981b, 1983b; Bozdogan, 1987; Kishino et al., 1991).

Now, for the construction of the confidence set of models a rational (but not
unique) approach is to sum these Akaike weights (w;) from largest to smallest until
that sum is just greater than or equal to (1 — &), « being the level of significance.
Then the corresponding subset of models is a type of confidence set on the K-L best
model (Burnham and Anderson, 1998). In this approach, the Akaike weights (w;)
are being interpreted as posterior probabilities (i.e. given data and the set of prior

models) that model 7 is the K-L best model.

Interpretation of w; Through an Example

From the equation (2.2), it is clear that, the bigger the value of A; is, the smaller the
w; is and the less likely that model 7 is the actual K-L best model as illustrated on a
hypothetical example in Table 2.1. It can be seen that for the 7 hypothetical models
considered (ranked in order of increasing AIC i.e. decreasing goodness of fit), the

normalized Akaike weights (normalized w;) and the relative likelihoods (exp[—3Ai])
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Table 2.1: Relationship between AIC differences (4;), Relative Likelihood
exp[—3A;] and Normalized Akaike weights for 7 hypothetical models

| Model No. | A; | exp[—3A;] | Normalized w; |

1 0 1.00000 0.43166
2 1.5} 0.47237 0.20390
3 1.7 0.42741 0.18450
4 3.1| 0.21225 0.09162
5 43| 0.11648 0.05028
6 5.6 | 0.06081 0.02625
7 7.2 1 0.02732 0.01179

are inversely proportional to the AIC differences (A;). I have normalized the Akaike
weights (w;) to show this proportional relationship. In this example, the best model
among the candidate model is the model number 1 according to the rank provided
by the normalized Akaike weight. However, note that the selected best model is
only about twice as likely as each of the two next models. Thus, there will be a lot
of variation in the selected best model from sample to sample. By contrast, e.g.,
models 6 and 7 have very low Akaike weights and are rather unlikely to be selected

as the “best” models in any sample.

Bayesian Approach and Akaike Weights

In general, Akaike weights provide a better measure of the model plausibility than
sampling theory based relative frequencies of model selection (Burnham and Ander-

son, 1998). Again, there is a Bayesian basis for interpreting the Akaike weight w; as

being the probability that model M; is the K-L best model, given the data. Given
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L(M;|z), i.e. the likelihood of the model M; in a given sample, we can compute the
posterior probability that model M; is the K-L best model, provided that a specific
prior probability distribution of the alternative models has been specified. That is,
we must first specify a prior probability distribution 1, 7, ...., 7g in which 7; reflects
our belief that model M; will be the best K-L model. These probabilities 7; must
be specified independently of results of fitting any models to the data. So, 7; is
the one’s prior degree of expected belief that model M; is the true model or the

degree of expected correctness of the model (Newman, 1997). Given a specific prior

probability distribution, generalized Akaike weight (Kishino et al., 1991) becomes

L(Mi|z)7:

T SE LM, [z)r (2.3)

1

There may be occasions when unequal prior probabilities can be specified, based on
substantive knowledge, justifying the use of (2.3) rather than its special case (2.2)
in which all 7; = % implying a non-informative prior.

However, the computation of weights w; for the K-L best fitted model M; does
not represent a true Bayesian approach. A Bayesian approach to model selection
requires both the prior 7; on the model, and a prior probability distribution on the
parameters 6 in model M; for each model. Then, the derivation of posterior results
requires complex integration (usually only achievable by Monte Carlo methods)
(Raftery et al., 1993; Madigan and Raftery, 1994; Carlin and Chib, 1995). In fact,
prior probability in (2.3), under information-theoretic approach to model selection,

is not exactly the same as that of the Bayesian approach to model selection. The
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Bayesian approach generally assumes that one of the models in the set of R models
is true, or assumes that the weighted average of these R models corresponds to
the true model, if model averaging is to be used. In contrast information-theoretic
approach assumes that true model f is in the set of models and that 7,7, 73, ..., g
is a probability distribution of our prior information on the K-L best model for the
data. In most applications, we believe that the issue can’t be which model structure
is true, because it is likely that none of the models considered is exactly true (Kapur
and Kesavan, 1992). Rather, the issue is which model, when fitted to the data (i.e.
when @ is estimated), is the best model for the purpose of representing the finite

information in the data.
2.2.2 Method Based on Cut-off A;

Based on the sampling distribution of AIC difference (4;), i = 1,2, ..., R, there is
another way to develop the confidence set of models (Burnham and Anderson, 1998).
Here the model producing minimum AJC is expected to be the K-L best model in
the set of R candidate models. Roughly speaking, in the same spirit as 6 is the
MLE of 8, the model corresponding to the biggest A; can be considered as the best
model. In a sampling theory context, A; can be considered big if it is at or beyond
the 95th percentile of the sampling distribution of a statistic analogous to (4 —é). To
illustrate this idea, let index & corresponds to the actual expected K-L best model
in the set, then Ay =AIC, —minAIC, where A is a conceptual pivotal value whose

sampling distribution is independent of any unknown parameters. This observable
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random variable Ay is in fact, analogous to (0—63), which can often be used, after
normalizing, as a pivotal value for the construction of a confidence interval on 6
(Burnham and Anderson, 1998).

The sampling distribution of A has substantial stability and an alternative rule
of thumb for an approximate 95% confidence set on the K-L best model is the
subset of all models M; having A; less than or equal to some value, roughly between
4 to 7 (Burnham and Anderson, 1998). Such a subset of the models considered
would include the actual K-L best model in 95% of all samples. Thus, according to
Burnham and Anderson (1998), as long as observations are independent and sample
sizes are large for any model 7 with A; < 2, there is no credible evidence that the
model ¢ should be ruled out as being the K-L best model for the population of all
possible samples. For a model with 2 < A; < 4, there is weak evidence that the
model is not the K-L best model. If a model has 4 < A; < 7, there is strong
evidence that the model is not the K-L best model, and if 7 < A; < 10, there is
definite evidence that the model is not the K-L best model. Finally, in any situations
if a model has A; > 10, there is strong evidence that this model is not competitive
as the K-L best model (Burnham and Anderson, 1998). Thus, models with A; > 10

would not be generally included in the confidence set.
2.2.3 Method Based on Relative Likelihood

A third reasonable basis for defining a confidence set of models is motivated by

the likelihood based inference (Edwards, 1992; Royall, 1997), which is analogous to
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profile likelihood interval on a parameter given a model. Here the confidence set of
models is all models i (i = 1, 2, ..., R) for which the ratio %‘Z(T'I% is “small” (such as
3, Royall, 1997), where L(M;|z) is same as defined before and k is the index of the
best model in the set. This criterion translates exactly into being the same as the
set of all models for which A; is less than or equal to some fixed cut-off point. For

example, the cut-off value of A; for which L(M;|z) x exp[—1A;] is small, is 0.135

(for A; = 4), 0.082 (for A; = 5) or 0.050 (for A; = 6).
2.2.4 Summary

Thus, there are three approaches to find a confidence set of models. The first is
based directly on Akaike weights (w;), summing as the probability of each model
being the actual best model given the data (Burnham and Anderson, 1998). The
second approach uses a cut-off A; motivated by the idea of the sampling distribution
of the approximate pivotal A, (using the 95th percentile of this distribution as the
cut-off). The third approach relies on relative likelihood. The first two methods are
more popular and the third one, based purely on relative likelihood, is rarely used

(Berger and Wolpert, 1984; Edwards, 1992; Azzalini, 1996; Royall, 1987).

2.3 Methods of Assessing Model Selection Uncer-
tainty

It is likely that in selecting a parsimonious model for a given problem there will

be substantial amount of sample to sample variation in the performance of alter-
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native models on a given model selection criterion such as AIC or BIC, implying
substantial model-selection uncertainty. Statistical inference should take this un-
certainty at the model selection stage into account and should not be just based
conditionally on the selected best model. Part of this inference process involves
ranking the fitted models from best to worst and then going a step further for cal-
ibrating the relative plausibility of each fitted model (M) by a weight of evidence
(w;) relative to the selected best model (Burnham et al., 1995). Then, using the
full set of models and associated information such as conditional sampling variances
and model weights, we can produce unconditional inferences over the entire set of
models, such as unconditional sampling variances or model-averaged parameter es-
timates. Thus, model-selection uncertainty is a methodological problem in it’s own
right, well beyond just the issue of what is the best model. Therefore, instead of
ignoring the uncertainty encountered while choosing a model, a better and logical
approach might incorporate this uncertainty in subsequent inferences.

There are three general approaches to assess the model selection uncertainty; 1)
Monte-Carlo simulation studies #z) the bootstrap applied to a given set of data and
417) wtilizing the set of AIC differences (A;) from the set of models fitted to the data.
Monte-Carlo and bootstrap are computer intensive. Whereas Monte-Carlo implies
generating a large amount of simulated data sets, methods based on bootstrap and
A; values use a single data. set.

'The fundamental idea of the model based sampling theory approach to statis-
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tical inference is that the data arise as a sample from some conceptual probability
distribution f and hence uncertainties of our inferences can be measured if we can
estimate f. There are different ways to construct a non-parametric estimator of f
from the sample data. The Bootstrap technique as well as AIC can efficiently allow

insight into model uncertainty.
2.3.1 General Comments on Bootstrap

The bootstrap is a type of Monte Carlo method applied case by case and based
on realized data (Mooney and Duval, 1993). The most fundamental idea of the
bootstrap method is that we compute measures of our inference uncertainty from
the estimated sampling distribution of f. However, in practice bootstrap means
using some form of re-sampling with replacement from the actual data z to generate
B bootstrap samples z*. Often the data consists of n independent units and then
suffices to take a simple random sample of size n with replacement from the n units
of data to get one bootstrap sample. Each sample gives an estimate of the unknown
population parameter. The average of these values is called the bootstrap estimator
and their variance is called the bootstrap variance. Thus, the set of B bootstrap
samples is a proxy for a set of B independent real samples from f. From the set
of results obtained in B bootstrap samples, we measure our inference uncertainties
regarding the population. The bootstrap can work well for large sample size (n)
but may not be reliable for small samples (e.g., n < 20) regardless of how many

bootstrap samples are used (Burnham and Anderson, 1998).
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2.3.2 AIC Differences (A;), Model Selection Probability, and
the Bootstrap

Using the bootstrap method we can estimate the sampling distribution of model-
selection frequencies and the distribution of AIC difference (4;). In this method,
the role of the actual (unknown) K-L best model is played by the model selected as
the best from the data analysis. Let My be the best model, on average, under the
AIC selection criterion. For each bootstrap sample, we fit each of the R models,
compute the corresponding AIC*’s, and then find the single A} = AIC} —minAIC*
(* refers to the bootstrap sample). Here the minAIC and the value of AICy vary by
sample; but k£ doesn’t change over the bootstrap replications. For example, model
Ms might be the actual best model to always use (k = 6). Thus AIC} is always the
AIC value, from the given bootstrap sample for model &, which is the selected AIC
best model for the data. The model producing min ATC* varies by bootstrap sample.
However, it is often the model &, that is the best model in a bootstrap sample, thus
A*r = 0 otherwise, A*; > 0 i.e. when model k doesn’t produce minAIC*.

The B bootstrap replications provide B values of A*, that are independent,
conditional on the data. The percentile of the empirical probability distribution
function of A*; across B bootstrap samples provide the estimate of the percentile
of the sampling distribution of A, and hence provide a basis for a confidence set on
the K-L best modei for the actual data.

For a (1 — «@)100% confidence set on the K-L best model, first we order the
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A% (smallest to largest) value to find A% for b = [(1 — @)B]. For the actual
data analysis results, the subset of the R models M; having A; < A*[1—q)p) is the
desired confidence set. The number B of bootstrap replication needs to be 10,000
or higher for reliable results (Burnham and Anderson, 1998). Other information
can be gained from these bootstrap results about model selection uncertainty, in
particular, the frequency of selection of each of the R models. Thus, the estimator
of the relative frequency of model selection in the given situation is #; = %, where
b; is the number of replications in which model ¢ is selected as the K-L best model.
These estimated selection probabilities are useful for assessing how much sampling
variation there is in the selection of the best model; they directly quantify model
selection uncertainty. These estimated selection probabilities are similar, but not
identical in meaning, to the Akaike weights (w;), which also quantify strength of
evidence about model selection uncertainty.

For each bootstrap replication we can compute the Akaike weights w} (* refers
to bootstrap replication) and then average these over the B replications to get w*;
(Burnham and Anderson, 1998). Comparison of w;, @w*; and 7#; is informative, each
of which provides information about the sampling uncertainty in model selection.

In fact, the theoretical measure of model-selection sampling uncertainty is the set
of true unknown selection probabilities 7y, 7o, ....., Tg. Either 7; (from the bootstrap)
or the Akaike weights w; may provide a basis to estimate the uncertainty about

model selection, given a single sample.
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2.3.3 Monte Carlo

The Monte Carlo method is a universal numerical method of approximately solving
mathematical and physical problems by the simulation of random quantities and/or
by random sampling (Sobol, 1994). One attractive feature of this method is the
simple structure of the computation algorithm. As a rule, a program is written to
carry out one random trial, and is then repeated NV times, each trial being indepen-
dent of the others. Finally the results of all trials are averaged. In this method, the
model generating the data is assumed to be included in the set of candidate models
(Burnham and Anderson, 1998). Practically, in Monte Carlo investigations, 10, 000
to 100, 000 independent samples are generated from the “true” model. Then, one
applies model selection to each sample and summarizes resulting relative frequencies
of models selected and other information of interest, such as variation of the A; and
unconditional variances of parameter estimators. The important difference between
bootstrap and Monte Carlo is that while both approaches imply direct observation
of the sample to sample variation in model selection, Monte Carlo technique requires
specifying the “frue” data-generating model, whereas bootstrap relies entirely on

the sample data.

2.4 Uncertainty in Parameter Estimates Associ-
ated With Model Selection

Parameter estimation uncertainty is conceptually separable from model selection

uncertainty. Given a correct model an MLE is reliable and we can compute a
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reliable estimate of its sampling variance and a reliable confidence interval (Royall,
1997). If the model is selected entirely independently of data at hand and is a good
approximating model, and if n is large, then the estimator of the sampling variance
is essentially unbiased and any appropriate confidence interval achieves its nominal
coverage. This would be the case if we use only one model selected on a prior: basis,
and this model g fits well the data generated under the true model f.

However, in the case of data-based model selection, the selection process is ex-
pected to introduce an added component of sampling uncertainty into any estimated
parameters, which leads to too small classical estimates of sampling variances. These
classical estimates are conditional on the model and do not reflect model selection
uncertainty. Confidence intervals based on such a conditional model can be ex-
pected to have coverage rate lower than nominal coverage (Hurvich and Tsai, 1990;
Abrahamowicz et al., 1996).

Consider a scalar parameter § which may be used in all or only in some of the
models considered, but is in the selected model and therein has unknown value 6;
given model M;. Here, the subscript 7 denotes the model used to estimate 8 with the
understanding that this parameter means the same thing in all models in which it
appears. Consider a true value of , which would be estimated from the true model
f, even though 6 need not to literally appear in f. Given model M;, the MLE §;
has a conditional sampling distribution, and hence a conditional sampling variance

Var(6;| M;).
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The ideas of classical sampling theory can be used to derive the theoretical
sampling variance of 7] resulting from the two-stage process of (i) model selection,
and (ii) estimating = §; given that model M; was selected (Buckland et al., 1997).
Repeating this process m times on independent samples produces a direct estimate of
the unconditional sampling variance, unconditional meaning the variance estimate
does not dependent on one model being absolutely correct. Thus, the estimated
unconditional variance becomes

m -
Var(§) =3 (6; - 0)/(m - 1), (2.4)
j=1
where 5 is the simple average of all m estimates. This variance estimator represents
the total variation in the set of m values of §; hence both within- and between-
model variation is included. This set of m values of § can be partitioned into R
subsets, one for each model wherein the ith subset contains all the 8’s computed
from the samples in which the model M; was selected. Then, we can compute, from
the ith subset of the § value, an estimate of the conditional sampling variance of 6
when model M; was selected. Burnham and Anderson (1998) gave the formula for
estimating Var(#) as a weighted combination of conditional variances, plus a term
of variation among 6y,.....,0z. The weights involved are in fact the model selection
probabilities. Relevant formulas are shown in Section 2.4.1. If a given parameter
appears only in some of the models, the basis for unconditional inference about that
parameter can be based on just the relevant models (Buckland et al., 1997). An

example is variables selection in multiple linear regression of a dependent variable
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Y On p regressors, Ij, Tz,...,Tp. Lhere are 2P possible models, but each regressors
appears only in a half of these models (i.e. 2°~! models). Thus, if parameter ;,
corresponding to regressor variable z;, is in the selected best ATC model, we must
restrict ourselves to just the subset of models that contain §; in order to directly

estimate the unconditional sampling variance of Bj (Burnham and Anderson, 1998).

2.4.1 Including Model Selection Uncertainty in Estimating
Sampling Variance

The variance component due to model selection uncertainty should be incorporated

into estimates of precision to obtain correct unconditional standard errors of regres-

sion parameters. These estimators of unconditional variance are also appropriate

in cases where one wants a model-averaged estimate of the parameter of interest.

Assume that 6 appears in all models considered; then we define a model-averaged

parameter value 6, as 6, = Zfilm-ei, where 7; is the probability of selecting model

R

M; in repeated sampling. So the estimator of 8 is §, = Zi:ﬂfiéi- Here 6, is not
necessarily the same as @, which could be estimated only if the true model f was
known. Under classical sampling theory, 6 arrived at the two stage process of model
selection and the parameter estimation given the model, is by definition an unbi-
ased estimator of 6,. Therefore, the unconditional sampling variance of § has to be
measured with respect to 6,. The theoretical unconditional sampling variance of the
estimator of @ is given by

R
Var(f) =3 m [Var(éilM,-) + (6: — a,,)z] . (2.5)

=1
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The quantity Var(d;|M;) + (6; — 6,)? is just the mean square error (M SE) of 6;
given model i. Thus, in one sense, the unconditional variance of 8 is just an average

MSE across the R models (Burnham and Anderson, 1998). Specifically,
E[(0; — 6.)%|M;] = Var(:|M;) + (6: — 6.)>.

This quantity can be considered as the sampling variance of 6; given model M;, when
67,- is being used as an estimator of ,. By averaging across models, we get formula
(2.5) which incorporates model selection uncertainty into the estimated variance of
4. Accordingly, to get an estimator of Var(f), estimated values could be plugged in
(2.5) to get
R
Var(@) = > [Var(@ish) + (0: — 6a)%] . (26)

i=1
Ignoring the fact that m; and Var(f;|M;) are estimated, we can evaluate E[@(é)]
to bias-correct Vc;-(é) (Burnham and Anderson, 1998). The result involves the

sampling variance of the model averaged estimator Var(éa), and is given by

R
E[Var(§)] = Var(f) + >_m:Var(§:|M;) — Var(6,),
=1
Hence,

R
Var(9) = Var(8.) + Y _mE(6: — 6a)>. (2.7)

i=1
From (2.7) it is clear that the use of 17(;'(9) = Var(d,) + S8 m:(8; — 6,)2 may con-
siderably inflate the variance compared to @(é) = 175'(9:,) (Burnham and Ander-

son, 1998).
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However, if our goal is to estimate 6,, then the model averaged 6, is to be
preferred to §; because it will have a smaller sampling variance.

From Buckland et al., (1997), we can write the unconditional sampling variance

of 6, as
R 2
Var(f,) = [Z wi\/Var(éi[Mi) + (6; — ea)z} , (2.8)
=1
with the corresponding estimator as
R 2
Var(6,) = [Zﬁ,.\/ Var (0| M;) + (6; — 9;)2] : (2.9)
i=1

Thus, we can say that the Akaike weights (w;) or bootstrap probabilities (7;) that
are used to rank and calibrate models can also be used to estimate unconditional
precision where interest is in the parameter € over R models. In terms of Akaike

weights (w;) the estimated variance of § becomes
R 2
Var(8) = [}:wi\/ Var(GiM:) + (6 — 6.)? | - (2.10)

=1

These estimators include a term for the conditional sampling variance Var(6;|M;)
and incorporate a variance component for model selection uncertainty (éi — 0:1)2.
The standard practice of the conditioning on a single selected model ignores model
uncertainty which leads to the under-estimation of uncertainty in subsequent in-
ferences. A Bayesian approach to this problem involves averaging over all possible
models while making inferences about quantities of interest. Thus, in order to incor-
porate model selection uncertainty into inference, we can consider the philosophy of

model averaging by weighting the alternative models, rather than selecting between
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them. Going one step further, we assume that the fitted models are in some sense
a random sample from an infinite set of possible models, each of which provides a

valid estimate of the parameter in its own right.

2.5 Variable Selection in Multiple Regression and
Model Uncertainty

Variable selection is often the main focus of model selection in the context of multiple
regression models. It has been acknowledged by many authors (e.g., Kleinbaum et
al., 1988; Neter et al., 1990) that different subset selection strategies can indicate
different “best” models. This is due to several factors, including the order in which
the variables are entered into the model and the criterion used to evaluate the
models. This situation clearly indicates the existence of model uncertainty. In fact,
choosing a single model from the set of models indicated by a variable selection
procedure and making inferences as if this model was the true model disregards
model uncertainty.

One important issue to be cared for here is to quantify the evidence for the
importance of each variable, or each relevant subset of variables. As for example,
let us consider that we have 10 models corresponding to different combinations of a
number of possible regressor variables. Now we assume that the selected best model
includes z; and has an Akaike weight of only 0.3 (see Equation 2.2 in Section 2.2.1).
There is a lot of model-selection uncertainty here, and hence there would seem to

be only a weak evidence for the importance of variable z; based on the selected best
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model. But to quantify the importance of z; we must consider the Akaike weights
(w:) of all other models that include z;. It might be that all models that exclude
71 have very low Akaike weights; which would suggest that z; is a very important
predictor here. To measure this importance one has to sum the Akaike weights (or
the bootstrap probability #;) for all relevant models.

Although model selection is widely recognized as central to good inference, para-
doxically it has seldom been integrated fully into inference (Buckland et al., 1997).
For example, there are many methods in multiple regression for identifying an ap-
propriate subset of covariates. Once covariates are selected, subsequent inference is
usually conditional on the selected model. The reason that inference is generally
conditional on the selected model is the complexity of unconditional inference.

It is well known that model selection stage can severely affect the validity of stan-
dard regression procedures. Rencher and Pun (1980) demonstrated that a model,
selected by the best subset regression method, tends to have an inflated value of
R?. Breiman (1988) showed that models selected by various data-driven methods
can produce strongly biased estimates of mean squared prediction error. Reviews
of some of the difficulties induced by variable selection were given by Bancroft and
Han (1977) and Miller (1984). The latter author showed that if one starts with a
model selected from the data, then regression estimators may be biased and standard
hypothesis tests may not be valid.

Hurvich and Tsai (1990) discussed, as follows, the impact of model selection on
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Table 2.2: Coverage Rates for Confidence Intervals, Conditional on Selected Model
with Nominal Rate (1 — o), n = 20, Correct Model, p; = 3

| Model No. (p) | (1—a)=0.90 | (1-a)=0.95| (1 —a)=10.99 |

3 0.901 0.955 0.987

4 0.672 0.836 0.918

5 0.717 0.804 0.913

6 0.622 0.865 0.946

7 0.568 0.727 0.885
OCR? 0.806 0.900 0.960

Z — score® -7.006 -5.130 -6.742
ICR® 0.910 0.952 0.973

2 Overall Coverage Rate
b Z-score is based on normal approximations to binomial distributions under null hypothesis of

nominal coverage rate
¢ Initial Coverage Rate
Source : Hurvich and Tsai (1990), Table 1, pp 215.

inference in multiple linear regression. A common practice is that once a model
has been selected, one analyses the data as if they were a fresh data set. Thus,
conditionally on the event of having selected a particular model, the distribution of
the data may be substantially different from their unconditional distribution. The
authors presented Monte Carlo evidence that such a difference does indeed exist and
explored the impact of this difference on the coverage rates of confidence intervals for
the regression parameters. Specifically, they performed 500 realizations generated

from 3 normal linear regression models

Y = Xof +e¢, (2.11)

where Y is an n x 1 vector of observation, X, is an n x py matrix of explana-
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tory variables, §; is a py dimensional parameter vector, and € is an n x 1 vec-
tor of ¢.i.d. standard normal random variable. The three models generated were
n = (20,30,50), po = (3,4,4), Bo = [(1,2,3)";(1,2,6);(1,2,3,6)]. In each case, 7
candidate variables were stored in an n x 7 matrix X of i.i.d standard normal ran-
dom variables. The candidate model of dimension p consisted of the first p columns
of X. For each realization, AIC and BIC (see Chapter 1 for details) criterion
were employed to select a value of p (dimension or order of models). The study
was focused mainly on the three interpretations of coverage rates, namely nominal,
conditional and overall interpretation. The authors found that conditional coverage
rates were much smaller than the nominal coverage rates when the model was known
in advance. Some of these results are reproduced in Table 2.2 which shows the con-
ditional coverage rates for nominal 90% 95% and 99% confidence region (based on
percentage point of F’ distribution) with the models selected by AIC. It is clear from
the results of Table 2.2 that when the correct model is selected (p = py), the condi-
tional coverage rates are close to nominal rates, while for over-fitted model (p > pq),
the conditional rates are substantially smaller than the nominal rates (results not
shown here). So the obvious impact is that conditional rate tends to be substan-
tially below the nominal rates when the model is over-fitted. It was also shown that
under-fitting (p < po) results in zero conditional coverage rates (not shown here).
Given these results, the authors suggested that model selection and inference should

be performed on separate parts of data (i.e. “data splitting”) and argued that this
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approach would ensure same conditional and nominal coverage rates.
2.6 Model Selection In Survival Analysis

Despite their importance for biostatistics, only a small proportion of the model
selection research has focused on survival regression models. The censoring, typ-
ical of survival data, adds another level of complexity, possibly compounding the
potential bias in failing to account for model uncertainty. Some authors (Elston
and Johnson, 1994; Forthofer, 1995) stated that stepwise methods are often used
for variable selection in survival regression models. Kalbfleisch and Prentice (1980)
emphasized for careful attention while choosing variables in the model, and for its
importance to account for prognostic factors in the model even when there is no
significant statistical evidence of their connections to the response in the data at
hand. Flemming and Harrington (1991) employed a standard variable selection pro-
cess in their classic example of the analysis of prognostic factors in primary billiary
cirrhosis (PBC) dataset. First, they calculated a Rao test statistic for each variable
individually. Next, a step down procedure eliminates 5 of the 11 original variables.
A likelihood ratio test verified that the removal of those five variables was not sig-
nificant (p = 0.2). The logarithms of the remaining variables were then included
and another stepwise procedure led to the transformation of 3 of the remaining 5
variables. The final model contained 5 variables, including the three transformed
ones. However, in all these applications of model selection in survival analysis, the

variance of the regression parameters are under-estimated by not accounting for the
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uncertainty in the model selection procedure.

Altman and Anderson (1989) described a bootstrap experiment of stepwise meth-
ods for Cox’s model. They performed a stepwise selection to a on PBNC dataset
(different from Flemming and Harrington) and identified 6 of the 17 independent
variables as significant. Applying stepwise to bootstrap samples of the data, they
tested the “stability” of the model selection process. One hundred applications of
stepwise on bootstrap samples of the data resulted in widely different sets of sig-
nificant variables. Each of the 17 variables was significant in at least one of the
bootstrap runs, while 4 of the 6 “significant” variables from the full analysis were
found to be significant in fewer than 75% of the bootstrap runs. This could be inter-
preted as an evidence that all of the variables are important, but some have stronger
evidence from the data than the others. It seems unwise to throw away variables
because they do not meet arbitrary “significance level”. These results demonstrate
the instability of variable selection in Cox’s model. The analyses of Kuk (1984) and
Raftery et al. (1995) also showed that model uncertainty plays a large role in Cox’s
model.

However, the problems related to a posteriori model selection have to be bal-
anced against the potential benefits. In a study, Abrahamowicz et al., (1996) used
regression splines (Ramsay, 1988; Wegman and Wright, 1983) to model the hazard
ratio as a flexible function of time to overcome the restrictive proportional hazards

assumption. To determine the flexibility of the spline estimate, they used both
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a priori fixed model (model with highest degrees of freedom) and the minimum
AIC model selection approaches. It was clear that minimum AIC criterion tended
to select more parsimonious models, reduced over-fitting bias, and stabilized the
estimates. On the other hand, the coverage rates of the AIC-optimal models were
found to be well below the nominal level, thus reflecting the inability of conventional

inference to account for additional variance due to a posterior: model selection.

2.7 Summary

Model selection should not be considered just as the search for the best model.
Rather the basic idea ought to be to make more reliable inferences based on the
entire set of models that are considered a priori. This would imply ranking and
calibrating the set of models and possibly determining a confidence subset of models
for the K-L best model. Parameter estimation should use all the models within the
confidence subset by averaging over models. Finally, unconditional variances should
be used to quantify the uncertainty about parameters of interest unless the selected
best model is strongly supported.

In general, there is a substantial amount of model selection uncertainty in many
practical problems. Such uncertainty about model structure and associated param-
eter values, arises to the K-L best model, whether one uses hypothesis testing, infor-
mation theoretic criterion, dimension-criteria, cross validation, or various Bayesian
methods (Burnham and Anderson, 1998). Usually, the uncertainty reported for

values such as future predictors or parameter estimates consists only of the uncer-
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tainty associated with the statistical distributions embedded in the model. Ignoring
the uncertainty associated with the model selection procedure results in an under-
estimation of all uncertainty and leads to over-confidence in reported conclusions
(Volinsky, 1997).

Model selection uncertainty can be quantified in two basic ways: it can be based
on the differences in AIC values for the set of models considered, or it can be
directly based on the bootstrap methods. If there is substantial model selection
uncertainty and if the sampling variance is estimated conditionally on the selected
model, the actual precision of estimated parameter will likely be over-estimated
and the achieved confidence interval coverage will be below the nominal level (e.g.
Abrahamowicz et al., 1996; Hurvich and Tsai, 1990). Estimation of unconditional
variances can be made using either Akaike weights (w;) or bootstrap selection prob-
abilities. The bootstrap provides direct, robust estimates of the model selection
probabilities m;. Thus, when there may be suitable analytical or numerical estima-
tions of conditional (on a given model) sampling variances, the bootstrap may be
used to get unconditional measures of precision. Otherwise, Akaike weights will help
estimating unconditional sampling variances. In any case, a carefully thought out
set of a priori models should eliminate model redundancy problems and is a central
part of a sound strategy for obtaining reliable inferences (Burnham and Anderson,
1998).

The importance of identifying a small number (R) of candidate models defined
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prior to detailed analysis of the data cannot be overstated. In the case of all possible
combinations of possible regressors, if one has p candidate variables, then R = 27 so
that with large p the number of candidate models can exceed the size of the data
set.

Finally, investigators should explain what procedure was actually employed in
the model selection. Was it based on objective model-selection inference applied to
a prior: identified set of candidate models? Alternatively, was the selected model
a result of a subjective strategy of seeking a model that fits well the data by in-
troducing new models into consideration as data analysis progresses? In the former
case, either ATC or its variants is recommended, as needed. In the latter case, if the
strategy can be implemented in a computer algorithm, then the use of bootstrap-
ping is suggested to asses the model selection uncertainty (Burnham and Anderson,
1998).

In Chapter 3, I will discuss the model selection problem in the specific area of
selecting the “optimal” functional form of the dose-response relationship in Cox’s

proportional hazards model (1972).

93



Chapter 3

Model Selection Problems in the
Context of Choosing the Optimal
Transformation of a Continuous
Covariate in Cox’s Regression

3.1 Introduction

Prognostic models are tools which are intended to predict the average course of
a disease given the values of covariates known as prognostic factors. Prognostic
factors may be represented by binary, categorical or continuous covariates. Though
continuous variables are common in all fields of application, it is often unclear how
to handle them as explanatory variables in regression models. The researcher faces
with the challenge of building a reliable regression model, must decide how to deal
with the continuous factors. In the following sections, I discuss various issues related
to the use and modelling of continuous covariates in regression analysis along with

the simulation study I carried out for my thesis.
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3.1.1 Representation of the Effect of a Continuous Covari-
ate as a Specific Area Where Data-Dependent Model
Selection is often Employed

In epidemiology, various strategies can be used for analyzing the effect of a quanti-
tatively measured (continuous) exposure variable, on the risk of developing a certain
disease. Examples of exposure variables commonly measured on a continuous scale
include the number of cigarettes smoked per day or during a lifetime, alcohol intake,
ionizing radiation, dietary energy intake, and arsenic concentration in water. A com-
mon problem in the statistical analysis of clinical studies is the selection of these
variables in the framework of a regression model, which might influence the outcome
variable. Investigations of the stability of a selected model are often called for, but
usually are not carried out in a systematic way. Since analytical approaches are ex-
tremely difficult, data-dependent methods might be an useful alternative (Sauerbrei
and Schumacher, 1992).

A large part of clinical research consists of studies of prognostic factors, which
identify covariates that are related to survival or can predict disease outcome. It is
often the case that potential prognostic variables are continuous in nature and the
functional relationship of the covariate with survival is explored, to evaluate how the
risk of death varies, as the value of the covariate changes. Identification of a group of
independent prognostic variables may be done through various modelling techniques,
such as stepwise procedures. Once identified as a prognostic variable, a continuous

covariate may need to be dichotomized or categorized, which is often done by using an
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“optimal” cut points i.e. cut points that maximize risk difference, or other statistic
related to model’s fit, for a given sample (Schulgen et al., 1994). But this method
may over-estimate the prognostic importance of the variable resulting in invalidating
the obtained p values. So, there will be a considerably higher risk of detecting a
significant effect of a variable that is in reality not prognostic, resulting in an inflated
type I error rate (see for example Halpern, 1982). Indeed, data-dependent decisions
related to the choice of the “optimal” categorization of a quantitative variable are
likely to induce “optimistic” bias. However, the absence of a simple method that
gives a good representation of different forms of curvilinear relationships may be
one reason for the common practice, especially in medical statistics, of converting
continuous variables into ordinal variables with two or more categories (Royston and
Altman, 1994).

In fact, common practice of handling continuous prognostic variable in clinical
and epidemiological studies is still limited to very simplistic methods. Inclusion of
simple linear terms and categorization are currently the most widely used strategies
to deal with continuous covariates in multiple regression models (Brenner and Blet-
tner, 1997). Although during the past decade, alternative strategies, such as poly-
nomial regression or spline regression (Ramsay, 1988; Ramsay and Abrahamowicz,
1989; Maclure and Greenland, 1992; Greenland, 1995) for dealing with continu-
ous covariates in multiple regression models have received increased attention, they

are seldom used in practice. Existing alternatives such as cubic splines and non-
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parametric smoothers have a large potential but have also important drawbacks;
they are computationally intensive, they do not yield compact expressions for pre-
diction, thus can’t be fitted by using standard regression software and there may be
difficulty in explaining them to the non-expert users (Royston and Altman, 1994).

Fractional polynomials provide another methodology that can extract impor-
tant prognostic information which the traditional approaches may miss. Although
fractional polynomials have been used by various researchers on an ad hoc basis
(e.g., Isaacs et al., 1983; Guo et al., 1988) and recently by Sauerbrei and Royston
(1999), only few references were found in the standard text books on regression.
For example, Snedecor and Cochran (1967) mentioned the addition of ‘terms like
V'Z, log(Z) or %, if the data had required it’, but they didn’t elaborate further. Sim-
ilarly, Draper and Smith (1981) discussed briefly reciprocal, logarithmic and square-
root transformations of covariate, but did not pursue the topic. Atkinson (1985)
described how constructed variables may be used to detect the need of covariates’
transformation but did not consider fractional polynomials as such.

From the above overview, it is clear that the selection of the continuous covariate
is related to the standard problem of model selection in regression analysis. In
general, the interpretation of results from any exposure-response analysis depends
on the choice of both the exposure functions and the model (Vacek, 1997). In the
following section, I will discuss the usual approaches to modelling the effects of

continuous covariates in epidemiology.
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3.1.2 Overview of Conventional Approaches to Modelling
the Effects of Continuous Covariates in Epidemiology

A challenge in epidemiological studies is to determine the form of the relationship
between a given continuous risk factor and the risks of a disease. Various approaches
have been described for analyzing continuously measured exposure in this context.
Exposure can be modelled continuously or it can be categorized. In conventional
general linear models, the effect of continuous covariates are typically assessed as-
suming linearity of true dose-response curve, possibly after adding an approximate
link such as logit for binary outcomes (McCullagh and Nelder, 1989). Identification
of a linear dose-response relationship can add support to a causal association based
on classic criterion of causation (Hill, 1965). Not all associations, however, are linear
in nature. One way to avoid the linearity assumption, often adopted in epidemiolog-
ical studies is to categorize continuous variables. Categorization has the advantage
that it is easy to interpret and is more robust with regard to outliers and model
misspecification, but it has the possible disadvantage of loss of efficiency (Breslow
and Day, 1980, 1987; Zhao and Kolonel, 1992). However, owing to imprecise mea-
surement and lack of prior knowledge about the functional shape of the relation
between exposure and risk of disease, the strategy used most commonly for ana-
lyzing quantitative exposure seems to be categorization or even dichotomization of
exposure (Schulgen et al., 1994). The analysis of the resulting categorical variables

implies assumption of a constant effect within the defined categories of exposure
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(Brenner and Blettner, 1997).

Another approach is to assume that the effect of exposure has a special functional
shape on the (log) odds ratio or (log) relative risk of developing the disease; exposure
then can be analyzed as a continuous covariate in a regression model. While the
latter approach avoids the definition of cut-points, the assumption of a linear or
quadratic effect, or any other pre-specified functional shape, over the whole range of
exposures may be questionable (Schulgen et al., 1994). Categorization of continuous
covariates has been proposed to allow for more flexible modelling of the shape of
covariate-risk association in such situations (Rothman, 1986).

However, as noted by others (Brown et al., 1994; Weinberg, 1995), there are lim-
itations too, when using categorized exposure. As an alternative, parametric models
like polynomial or more flexible fractional polynomial and spline regression models
has been suggested (Royston and Altman, 1994). Though in recent years fractional
polynomials came to the forefront of dose-response analysis, it has been argued that
spline regression has the advantage over more traditional linear regression methods,
in that it may be regarded as an approximation to non-parametric regression and
therefore is relatively insensitive to the subjective choices of modelling parameters
such as number of pieces or order of spline (Greenland, 1995). On the other hand,
non-parametric models (e.g. generalized additive models) may well fit the data but
can be difficult to interpret due to fluctuations in the fitted curve. In conclusion,

while both the methods of fractional polynomials and of the spline regression can
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be valuable when important non-linearities are anticipated, they are rarely used in
studies of health effects of alcohol, serum cholesterol, nutrients and other prognostic

factors.

3.1.3 Overview of Conventional Regression Models For Pre-
dicted-Response Relationships

Because of the inability to experimentally control for the differences between val-
ues of important factors observed in individual study participants, confounding is a
major concern in most epidemiological and clinical studies, except the randomized
controlled trials (Rothman, 1996). For this reason, multiple regression models are
commonly applied in clinical and epidemiological studies, to prevent from confound-
ing bias. Two models have come to the forefront as they accemmodate the types of
responses that commonly occur in clinical/epidemiological studies: binary responses
such as in-hospital death or presence/absence of a certain condition, and censored
continuous responses such as the time until death or until a therapeutic response.
Such data are typically analyzed using logistic regression models and Cox’s propor-
tional hazards model (1972), respectively. These models provide powerful analytic
tools that yield valid statistical inferences and make reliable predictions if various
underlying assumptions are satisfied. Two types of assumptions underlying a variety
of regression models concern the distribution of the response variable and the nature
or shape of the relationship between the predictors and the response (Harrell et al.,

1988).
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In several types of modelling situations, for example linear regression and logistic
regression, we may find transformations of the continuous independent variables (or
covariate) desirable. The multiple logistic regression model belongs to the broad
family of parametric generalized linear models that rely on the assumption that the
effects of continuous predictors, possibly after applying some conventional trans-
formation, are linear (linearity assumption) (McCullagh and Nelder, 1989). The
linearity assumption simplifies both model estimation and interpretation of results,
since it allows for summarizing the effects of a continuous predictor by a single pa-
rameter (e.g., in the logistic model, the logarithm of odds ratio corresponds to a
one unit increase in the predictor value). However, the linearity assumption may be
too simple to represent the effect of some risk factors correctly. In many practical
applications, there is no a priori justification for this assumption. In the case of
departure from linearity, for a given risk factor, parametric logistic regression esti-
mate will under-estimate its effect over some range of values and over-estimate the
effect over some other range (Abrahamowicz et al., 1997). To address these issues,
various flexible non-parametric statistical methods for estimating the true shape of
the regression function or for assessing whether a postulated shape is correct are
employed.

One of the main challenges in the non-parametric regression is to determine the
“optimal” degree of flexibility, which also determines the bias/variance trade-off

(Abrahamowicz et al., 1996; Ramsay, 1988). In fact, two common approaches are
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possible. First, the model may be fixed a priori, to ensure the flexibility sufficient to
approximate all functions of potential interest (Gray, 1992; Ramsay, 1988). Second,
a postertort model selection criterion such as AIC can be used to find a reason-
able trade off between model parsimony and fit to the data at hand and to reduce
the risk of over-fitting bias (Abrahamowicz et al., 1992; Sleeper and Harrington,
1990). In this thesis, I use the latter approach that is to rely on the minimum
AIC to select a posteriori the “optimal” transformation of a continuous predictor
in proportional hazards model, and then estimate the impact of this approach on
type I error through simulations.

Before presenting the simulations, I briefly discuss the logistic regression and

Cox’s proportional hazards regression model in the next two sub-sections.
3.1.4 Logistic Regression Model

Logistic regression is a flexible statistical modelling approach for binary responses
that permits many types of inferences, including treatment comparisons and pre-
diction. It has a major advantage over older methods such as discriminant analysis
in that it allows for a direct estimation of probability with no assumptions about
distributions of the variables (Harrell et al., 1988). A brief description of the model
follows.

Let Z = (Z1, 2, ...., Z,)' be a vector of predictor or dependent variables. For a
binary response variable Y with values 0 or 1, the logistic regression model (Cox,

1958) is stated in terms of probability that the event ¥ = 1 occurs given the de-
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scriptor value of 2’ = (21,22, -..., 2p):

1

Prob{Y =1|Z =z} = e G T AT

(3-1)

where, [ is an intercept and 8’ = (64, fa, -...... ,Bp) is the vector of regression coef-
ficients corresponding to the descriptors.
The logistic model can be restated as a linear model by using the logit of

Prob(Y = 1|Z = z), where logit denotes log [55]:
logit [Prob{Y = 1|Z = z}] = G + F'z. (3.2)

When the relationship is not linear, one can employ transformations of the covariate
to satisfy the linearity assumption (Hosmer and Lemeshow, 1989)
Other versions of logistic model are available for ordinal or polytomous responses

(Hosmer and Lemeshow, 1989).

3.1.5 Proportional Hazards Regression Model

There exist many ways of incorporating independent variables into a model that uses
hazard rate as the dependent variable, including parametric models like exponential
and Weibull models (Kalbfleisch and Prentice, 1980). Cox (1972) developed an
important and widely used semi-parametric method called the proportional hazards
(PH) model. Cox’s model is a popular choice for the analysis of censored survival
data because it is semi-parametric, i.e. avoids the need to specify the unknown
distribution of the time to event (i.e. survival time), conceptually appealing, and

efficient against PH alternatives. The fundamental assumption of Cox’s model is
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that hazards are proportional, i.e. their ratios remain constant over the entire follow-
up time, where the constant is determined solely by their covariate vector. Another
basic assumption of the PH model is that the conditional log hazard function is
an additive function of time and of the vector of covariates. That is, the modelled
response is the hazard rate of failure, with a log hazard ratio (HR) that is linear
in the covariates. However, this assumption is violated when covariate effects are
best represented by smooth, nonlinear functions. In Section 3.2, where I introduce
the design of my simulation study, I describe a flexible survival model that does not
require linearity of the covariate function.

Survival data typically arise in a clinical trial setting. Patients enter the trial
at random times during the accrual phase of the study, and their times to failure
are observed (Sleeper and Harrington, 1990). When the data are analyzed, the
observation times of all patients who have not yet failed are considered censored.
The data collected on each patient (i = 1,2, ...,n) are of the form (¢;, é;, z;), where
ti, 0; and z; are defined as follows. The datum ¢; (survival time) equals min(7;, C;),
where T; and C; are independent random variables denoting the “true failure time”
and censoring time, respectively. The indicator §; takes value 1 if failure is observed
(i.e. if T; < C;) and O otherwise, and the vector z; contains covariates or prognostic
factors (21, Zoi, --.--, Zpi, p being the number of covariates) that are thought to

affect survival.
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The PH model introduced by Cox (1972) is typically written as:
A(t|z) = Ao(t)exp(8'z), (3:3)

where A(t|z) is the conditional hazard rate of failure given z at time ¢ (i.e. in-
stantaneous risk of death), Ag() is the ‘baseline’ hazard (i.e. hazard function for a
“standard” individual, when all elements in the covariate vector z equal zero), and
B is the corresponding vector of regression coefficients. These coefficients can be
estimated by partial likelihood approach, and the inverse of the observed Fishers
information matrix provides an estimate of their variances and covariances. We can
linearize the above model by dividing both sides of the Equation (3.3) by A\g(t) and
then taking natural logarithm of both sides as

A(tlz)
Ao(t)

Here, § in the fitted PH model is the estimated change in the log of the HR when

log = f'z. (3.4)

the value of z is increased by 1 unit.
Cox’s model can also be stated in terms of the survival function that describes

the probability that the event will not occur before time ¢, thus
S(t|z) = Pr[T > t|z] = So(t)=P¥'?, (3.5)

where Sg(t) is the underlying baseline survival function for the “standard” individ-
ual.

The most general form of the PH model is

A(t|z) = Ao(t)explg(z)], (3.6)

65



where g is an unspecified function (Hastie and Tibshirani, 1986). Although this
model does not restrict the log HR to be linear in z, it is usually difficult to estimate
g(z) and to interpret the influence of any single covariate on survival. An additive
regression model (Stone, 1985) provides more structure but allows a different, arbi-
trary function for each covariate. In the case of the Cox model, the log hazard ratio

may have p components, each represented by an arbitrary function as:

A(tlz) = do(B)exp(d_ g5(2)] (57)

where functions g;(z;) may change their analytical form depending on the covariate
i=12,...,p.

In many instances a covariate transformation g can be approximated reason-
ably well by a polynomial. However, splines, i.e. piecewise polynomials, are well
known for their success in interpolating and their usefulness in providing a smooth
approximation to a covariate function of unspecified form (Wold, 1974). When a
continuous covariate affects the log hazard in a smooth fashion, a spline function is a
natural choice for approximating the covariate transformation (Sleeper and Harring-
ton 1990). O’Sullivan (1988) and Gray (1992) used smoothing splines to estimate
nonlinear covariate effects in the Cox model, while Sleeper and Harrington (1990)
used regression splines. The generalized additive model (GAM) of Hastie and Tib-
shirani (1987) provides a powerful method for detecting nonlinear covariate effects
in data. All regression models with response density belonging to the exponential

family are in the GAM class. However, inference on GAM estimates is not well
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developed, particularly in the case of the Cox’s model (Sleeper and Harrington,
1990). Similar inferential problems occur in other spline-based models for flexible
estimation of the covariate effects in the PH model (Kooperberg et al., 1995).
Traditionally, in the PH model and in some other survival analysis models, the
dependence of the survival time on covariates is modelled fully parametrically, so
that the conditional hazard regression function can be estimated independently on
the baseline hazard function (Cox and Oakes, 1984; Kalbfleisch and Prentice, 1980).
In summary, the above review indicates that there is an increasing interest in
modelling nonlinear effects of continuous covariates in Cox’s model. Such modelling
can reveal new practically important aspects of the covariate effect on hazard (see
e.g. Sleeper and Harrington, 1990; Gray, 1992; Abrahamowicz et al., 1997). It
can also reduce problems related to the arbitrary categorization of a continuous
predictor (Schulgen et al., 1994). However, flexible non-parametric methods based
on smoothing or regression splines such as GAM (Hastie and Tibshirani, 1990) create
difficult problems with the inference about the estimates (Kooperberg et al., 1995;
Abrahamowicz et al., 1996). For this reason, a common practice is to estimate
several alternative models, each using a different parametric transformations of the
covariate of interest and then to select a posteriori the transformation that offers an
optimal fit according to a criterion such as minimum AJC or maximum likelihood
(Quantin et al., 1999). However, this common approach can be considered a specific

case of the general problem of data-dependent model selection and, therefore, is likely
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to induce some bias at the step of statistical inference, as discussed in Chapter 2 of

this thesis. In the next section, I investigate this issue through a simulation study.
3.2 Design of the Simulation Study

The problem considered here is to account for model selection uncertainty in the
setting of Cox’s model, with focus on the uncertainty involved in the selection of
the “optimal” transformation of a continuous predictor. In this setting, my aim is
to evaluate the impact of model selection on the type I error and statistical power
through simulation studies.

In this section, I describe the design of the numerical study that I have carried
out. I generated the survival data assuming two different situations. The first part
of simulation, in which hazard was independent of the covariate of interest, focused
on the type I error rate. The second part, where covariate was assumed to affect the
hazard according to a pre-specified parametric function, investigated issues related

to statistical power. The data generation procedure is described as follows.
3.2.1 Data Generation Procedure

Here, I describe in a general way, how I simulated the data sets conditionally on
the chosen covariate values and/or censoring pattern. We considered the case of
only one covariate. A covariate value z;, a survival time 7}, an observed event time
t;, and a censoring time C; are associated with each individual i (i = 1,2, R

Let F, F;, and F, be the distributions of the survival time, the covariate, and the
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censoring time, respectively. The survival data sets in our simulation studies were

generated according to the following steps:

1. Get one set of data (t;,6;,2), i = 1,2, ....,n, as follows: First generate the
covariate values z; from F, then the “true” survival times 7T: from F and
the censoring times C; from F,. Next form the data points (t:, 0s, z;), where
t; = min(T;, C;) and 6; = I(T; < C;), which equals 1 if the subject i is dead at

t; and 0 if it is censored.
2. Repeat step 1 m times, to form the m simulated samples.

For each combination of relevant parameters, I generated m = 1000 independent
samples.
From the foregoing description of the simulated data set, it is clear that the

following factors affect our simulation:

1. The covariate distribution F,
2. The survival time distribution F'

3. The regression parameter vector 3, corresponding to log HR associated with

unit a increase in the covariate
4. The form of the censoring distribution F,
5. The average percent censoring

6. The sample size n
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7. The particular dose-response function g, linear or non-linear, expressing the

effect of covariate on the log hazard.

3.2.2 Considered Configurations

From the previous seven points following configurations were considered;

1. F} uniform (0, 1) distribution

2. F standard exponential distribution, with Ag(¢) = 1 for all ¢£. This distribution

is a special case of the Cox model (Equation 3.3).

3. B = 0 (HR=1) for the type I error and different parameter values for the

power, which are resulting from the point seven below.
4. F, exponential distribution

5. F, with mean (3), where A = 1.5, resulting in approximately 37% average

amount of censoring

6. n =100 and n = 300

7. The different functional forms of the covariate considered are described below.

Form of The Dose-Response Curve

In the case of dependence of hazard on z, the hazard function can be expressed as

log A(tlz) =1 + g(2), (3.8)



where g is the function expressing the form of the dose-response curve. The function
g includes the parameter of association between the covariate and survival time.
Obviously, here the distribution of the time of death is an exponential with mean

—L1
At/z)"

I used the following 3 functions of z. The first function has a linear form.
g9(z) = (z —v), (3.9)

where v is used for scaling purpose only, and is fixed to 0.5. The following two

functions have nonlinear form. The first function is a quadratic function:
9(2) = c(z —v)?, (3.10)

where v is fixed to 0.5 as above and ¢ varies from ¢ = 2 to ¢ = 4, in order to
investigate whether the results depend on the strength of the covariate effect, which
influences the empirical statistical power of all tests. The second nonlinear function

is a linear spline (bi-linear function):

0 if z2<v
9(z) = { 4(z — v) otherwise (3.11)

where v represents a threshold intensity and again is fixed to 0.5, below which
exposure has no effect. Here, fixing v at zero yields the corresponding function g(z)
to have no threshold, since covariate z is positive (z ~ U(0,1)).

Figure 3.1 shows the five functions representing the alternative dose-response

relationships considered in our simulations.
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Figure 3.1: Functions Representing the Linear and Non Linear Dose-Response Re-
lationship
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There is a practical consideration behind choosing these particular functions.
The linear dose-response function (Function 3.9) corresponds to a standard assump-
tion underlying most of Generalized Linear Models. In the case of simulations,
when this function is assumed to actually represent the “true” form of the associa-
tion, it is interesting to investigate what is the impact of considering additional func-
tional forms, in terms of statistical power. In other words, I will assess “what price”,
in terms of loss of power, the data analyst is expected to “pay” for considering ad-
ditional models, which in this case are not expected to systematically improve fit to
data.

By contrast, the simulations in which g(z) assumes a non-linear form (Function
3.10 and 3.11) will help assessing to what extent different hypothesis testing proce-
dures based on a posteriori selection of the “optimal” model may help detecting a
statistically significant association.

The quadratic U-shaped function (Function 3.10) was selected to mimic the
effects of those continuous covariates for which the risks are the lowest in the middle
range, corresponding to “typical” or “normal” values, and increase in both tails
of the distribution. This occurs often in clinical and epidemiological studies and
a classic example is the effects of Body Mass Index (BMI) on cardiovascular risks
(Abrahamowicz et al., 1997; see also Chapter 4). Indeed, both obese individuals
(high BMI) and those under-weighted (low BMI) have increased risks.

Finally, the broken line (linear spline) form (Function 3.11) is considered to
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represent a frequent situation when increasing values of a risk factor does not affect
the outcome in the low to middle range of its distribution, but beyond a certain

threshold the risks start to increase sharply.

3.2.3 Details of the Data Generation Algorithm

In this section, I describe how I simulated the survival time and censoring time
distributions, which are exponential. The details of the procedure is as follows.

Let us consider a continuous random variable Y with distribution function F,.
Also let U be a uniform(0, 1) random variable. Now, according to the well known
inverse transformation method (Ross, 1997), one can generate the random variable
Y from the continuous distribution function F, by generating a random number U,

and then setting,
Y = F~Y(U) (3.12)

Our assumption of a constant failure rate (i.e. hazard is constant throughout the
time) implies an exponential density function of survival time (T'). Therefore, our
survival model is one parameter exponential distribution (exp(}\)), from which we
can generate the survival data by utilizing the relationship (3.12).

So, if T ~ exp(A), then for any time point ¢ > 0, the corresponding probability

density function (p.d.f.) and cumulative distribution functions (c.d.f.) are,

f(&) = e

74



and

F(t) =1—e™,
respectively. Using (3.12), we can write

t = F(u),
which leads to
u=F(t)=1—e™.
Hence,
At = —log(1 — u).

Since (1 —u) ~ U(0,1), I generated ¢ using

t= —%log(u). (3.13)

Now, under exponential model, survival function associated with hazard A(t|z) = A

can be written as
SEHA) =1~F(t))=1— (1 —e™™) =,

So, the survival time (T) corresponding to S(¢/\) = u can be determined (using

3.13) as the solution to the equation S(¢/A) = u and hence

T= —i—log(u). (3.14)

75



Under the assumption stated above, the survival time for an individual with covari-
ate z is generated by substituting A in Equation (3.14) by the hazard rate function

conditional on the covariate

A(tz) = Ao(t)explg(z)], (3.15)

where g is an arbitrary function of z, which may be linear or non-linear. Using

similar arguments, censoring time C was generated as
1
C = — — log(u), (3.16)
Ac

where A is an arbitrary parameter of the censoring distribution (we considered
1.5). It should be emphasized that although both T; and C; are generated from an
exponential distribution, these two values are completely independent of each other
because the uniform variate u is generated each time separately. Thus, random right
censoring, independent of z and T values, is introduced by generating censoring
times C; from an exponential distribution, whose parameter is set so as to obtain
moderate censoring (here 37%).

The final survival data was constructed by comparing the corresponding individ-
ual T; and Cj values: if T; > C; then the individual is censored at time C;, otherwise
the individual dies at time T;.

We generate all the random variables using S-Plus (1995) statistical package.
The program code used to generate and to analyze the simulated data, is included

in Appendix A.
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3.2.4 Data Analytical Procedures

All the simulated samples were analyzed using the same general approach. First,
seven different versions of Cox model, each corresponding to a different functional
transformation of the covariate g(z), were fitted to each generated sample. Since,
there were no substantive grounds to select the “correct” functional form of the co-
variates g(z) a priori, we considered the following seven simple parametric functions
often used in epidemiological research: z, 2%, 23, exp(z), log z, v/z, L. Then, under
the PH assumption, we tested the hypothesis of no association between the covariate
and hazard separately for each transformation, by using the likelihood ratio (LR)
test, which asymptotically follows x? distribution with 1 degree of freedom (d.f.).
Conventional significance level of o = 0.05 was used for all tests.

The main focus of the analysis was on testing the null hypothesis of no associa-
tion between the covariate and hazard (HR=1), and on comparing the performance
of various testing procedures. First, we compared the procedure based on one model
at a time with a two-step procedure in which at the first step the minimum AIC
model was selected and then the LR test was carried out using this “best AIC”
model’s results. Using the first approach, for each combination of relevant simu-
lation parameters, we obtained the distribution of 1,000 p-values of the LR test,
each corresponding to one simulated sample, separately for each of the 7 functional
forms of the covariate. In addition, the overall distribution of all 7,000 models and

sample-specific p-values was obtained by pooling the results obtained with 7 sepa-
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rate models. In the second approach, the distribution of 1, 000 p-values was obtained
using for each sample only the model that turned out to be the best fitting model
for that sample, according to AIC criterion. It should be noted that the minimum
AIC-based selection implied that for different samples the p-values represented, in
fact, the models based on different functional forms of the covariate transformation.
In addition to estimating the overall distribution of p-values, I also estimated the
proportion of p-values smaller than the nominal significance level of & = 0.05; to-
gether with the corresponding 95% confidence intervals. For simulations in which
the covariate has no effect on hazard (HR=1), this proportion represents the actual
size of the test, i.e. the empirical type I error rate generated by a given testing pro-
cedure. In simulations where the covariate does influence the hazard (HR # 1), this

proportion allows us to estimate the empirical power of various testing procedures.

Preliminary Investigations of Somme New Approximate Approaches to Hy-
pothesis Testing Based on Model Averaging

In survival analysis, data-dependent model selection is commonly employed in ana-
lyzing the data and in making inference about the parameters of interest. In Chapter
2, I have reviewed the problems that data-dependent model selection techniques in-
duce at the step of statistical inference and demonstrated that it is essential to
account for model uncertainty. A suitable model averaging provides a framework to
account for the model uncertainty and to improve estimation and inference. In fact,

combining the results of many models allow the statisticians to take advantage of

78



the strength of different models and directly address the model uncertainty inherent
in a postertori selecting a single model. For instance, Breiman (1996) suggested to
use a type of averaging to stabilize the inferences.

In view of this recommendation, I considered a simple approach to model averag-
ing based on Akaike weights (w;) that were discussed in Section 2.2.1. Specifically,
I employed two versions of the model-averaged LR test. First, the un-weighted

statistic was calculated as:
1
LRun.—weigh.ted = ? Z LRJ (317)
j=1

where LR; indicates the value of the conventional LR statistic for the jth model.

Next, the weighted statistic was calculated based on AIC weights:
1J
L-Rweighted = ? ijLRj, (318)
Jj=1

where

_ exp[—=34]
Wi = —x 0 .
ZT:]_ exp [_ EAT]

Each of these two statistics (Equation 3.17 and 3.18) were calculated for each gen-

erated sample.

The theoretical distributions of the two resulting test statistics under the null
hypothesis of no association are unknown. In this preliminary investigation, their
empirical distributions, estimated from the results of simulations with no effect of
the covariate, will be compared with the chi-square distribution with 1 degree-of-

freedom. This comparison will help assessing to what extent such simple approaches
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to model averaging may reduce problems related to the inflation of the type I error

rate due to a posteriori model selection.
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Chapter 4

Results

4.1 Results of the Simulations Study

Employing the procedure described in Chapter 3, I generated 1000 samples for dif-
ferent combinations of relevant parameters, including both the case of no association
between covariates and hazard, and the case when the covariate does influence the
hazard. Then the data from each simulated sample were analyzed using 7 different
versions of Cox’s model corresponding to the 7 functions of the covariate considered

(see Section 3.2.4). The results are presented in the following sections.

4.1.1 Assessing the Impact of Model Selection on Type 1
Error Rate

Table 4.1 summarizes the results of simulations in which the covariate does not have
any effect on the hazard (HR = 1.0), for the first of the two approaches described in
section 3.3.4. Each of rows of Table 4.1 corresponds to a different model, which uses
a particular parametric function to represent the covariate effect. For each model

and two different sample sizes considered (n = 100, 300), first 4 columns of Table

81



4.1 show the observed type I error rate, corresponding to the LR test, at the nominal
significance level of a = 0.05.

The first two columns of Table 4.1 correspond to the first approach mentioned in
section 3.2.4 (Unselected Model). So the results obtained are the type I error rates
calculated from the distribution of 1,000 p-values of each sample with 7 different
functions of covariates considered. As expected, for each model the rates are quite
similar to the nominal rate of 0.05. The last two rows show the overall fype I error
rates, pooled from all the 7,000 estimates (7 x 1000 simulations) and the corre-
sponding 95% confidence interval. The overall rate agrees well with the nominal
test size as the 95% confidence interval includes 0.05 for both sample sizes.

The middle part of Table 4.1 shows the model-specific type I error rates (based
on the 2nd approach mentioned in Section 3.2.4), calculated based on only those
samples for which a given model was selected as the minimum AJC model. This
simulates the situation in which, first the 7 different models are estimated for the
same data, and then the minimum AJC model is used for testing the null hypothesis
of no association. In a clear contrast to the left part of Table 4.1, in the case of
data-dependent AIC-based model selection, the type I error rates for all models are
much higher than the nominal 0.05 rate. In fact, the observed overall proportion
of incorrect rejections across all models is about 0.14 — 0.15, regardless of sample
size, i.e. is almost 3 times higher than expected for & = 0.05. The fact that the

95% confidence interval for the proportion of Hy rejections begins at, or above, 0.10
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Table 4.1: Observed Type I Error Rates of The LR Test For The Nominal Size
a = 0.05 and Proportion of Samples Where a Given Model Was Selected as the
Best AIC Model

Unselected Model Best AIC Model Approach
Model Approach
Observed Type I Observed Type I Proportion of Samples
Error Rate Error Rate When the Model is Selected
n=100 | n=300 n=100 | n=300 n =100 | n = 300

z 0.06 0.05 0.17 0.11 0.06 0.06
z? 0.05 0.06 0.17 0.18 0.05 0.07
VA 0.05 0.07 0.12 0.11 0.26 0.22
expZ 0.06 0.06 0.33 0.32 0.01 0.02
log Z 0.05 0.05 0.13 0.18 0.14 0.18
> 0.08 0.07 0.17 0.15 0.40 0.37
vZ 0.05 0.05 0.12 0.09 0.08 0.08
Overall 0.059 0.057 0.148 0.144 1.00 1.00
95% C.I. | 0.044-0.074 | 0.043-0.071 | 0.126-0.170 | 0.100-0.180
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implies that the inflation of type I error rate due to AIC based model selection is
statistically very significant.

The last two columns of Table 4.1 provide some insight into the problem. They
show the proportion of times that each covariate function was selected as the best
AIC model. For the 1000 samples, it is found that the function % occurred most
frequently (40%), followed by Z* (26%) and log Z (14%) and changing the sample
size (n) did not affect these proportions. The fact that each of the 7 models is selected
as the minimum AJC in at least one sample indicates considerable model uncertainty
(It should be noted that in the case of Hy being true, this uncertainty is ” inherent”
as none of the model is better than any other). Thus, the model selected for inference
about association between the covariate and hazard varies from sample to sample.
More importantly, the model is not selected at random but so as to minimize the
AIC criterion, i.e. to maximize the fit to data, in terms of the log likelihood.
Therefore, LRT statistics are systematically higher than among un-selected samples
and, as a consequence, the corresponding p-values are systematically lower than
expected.

This systematic bias in the distribution of p-values for the sample size n = 300
is illustrated in Figure 4.1. The Figures show four distributions of p-values for
the LR statistics in the simulations where the covariate has no effect on hazard
(corresponding to results in Table 4.1). The Figure 4.1a shows that the distribution

of all 7,000 p-values, pooled from 1, 000 simulations and 7 models, is quite close to
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the uniform distribution, which is expected given that the null hypothesis is true. By
contrast, Figure 4.1b shows that the distribution of 1, 000 p-values corresponding to
minimum AJC models in subsequent samples is substantially skewed to right, the
low p-values are systematically over-represented while the high p-values are very
rare. Overall, all the results clearly indicate that regardless of sample size, data
dependent a posteriori model selection, is prone to considerable inflation of type

error rates because of the failure to account for model selection uncertainty.
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Figure 4.1: Figures Showing Systematic Bias in the Distribution of p-values
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[Figure 4.1c: Histogram for 1,000.p-Values.Corresponding to
Best AIC(Welghted) Models
1 [] 1

y - (3

15

10

Percent

Figure 4.1d: Histogram for 1,000 p-Values Corresponding to
. Best AIC.(Un-Weighted) Mpdels

15

10

Percent

00 02 04 086. 08 10
P-Values

87



4.1.2 Preliminary Evaluation of Two Simple Model Aver-
aging Approaches to Testing the Hypothesis of No
Association

Given, on one hand, the serious inflation of type I error due to a posteriori model
selection (Table 4.1 and Figure 4.15) and, on the other hand, the practical difficulties
of specifying the “correct” functional form of the dose-response curve, it is impor-
tant to search for alternative approaches to hypothesis testing in the presence of
model uncertainty. Therefore, in this section we evaluate two very simple heuristic
approaches that are quite easy to implement and yet may be expected to reduce
the magnitude of type I inflation (see Section 3.2.4 for the description of the two
approaches). Table 4.2 compares the overall type I error rates, for the simulations
with no covariate effect, obtained with four testing procedures. The two left-most
parts of the Table 4.2 simply replicate the overall results from Table 4.1, based on
un-selected testing and AJC-based model selections, respectively. The third part
of Table 4.2 shows that the weighted version of model averaging based on Akaike
weights (see Section 3.2.4) is able to reduce the observed type I error rate to half
of the level obtained with the best AIC model-based testing (0.08 vs. 0.15). The
rate yielded by the weighted approach is still too high, as indicated by the lower
bound of the 95% confidence interval exceeding 0.05 but the overall type I level is
much more acceptable than is the case of testing based on the minimum-ATC model.
The right most part of Table 4.2 show that the un-weighted version of model av-

eraging, in which the test statistic is constructed by simply taking the arithmetic
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Table 4.2: Proportion of Simulated Samples, Where H, was Rejected at o = 0.05,
When There is No Covariate Effect: Effect of Model Averaging on Type I Error

Model Averaging
n | Unselected Model | Best AIC Model Weighted Un-weighted

100 0.059 0.148 0.08 0.03
(0.044 —0.074)* | (0.126-0.170) | (0.065-0.099) | (0.023-0.045)

300 0.057 0.144 0.08 0.03
(0.043-0.071) (0.100-0.180) | (0.060-0.094) | (0.017-0.037)

2 95% Confidence Interval for the Proportion of p-values < 0.05

mean of model-specific LR statistics, yields type I error which is actually too low,
i.e. significantly lower than the nominal 0.05 rate. This demonstrates that the true,
unknown theoretical distribution of the un-weighted mean LRT statistic does not
conform with the chi-square distribution with one degree-of-freedom, indicating the
need for further analytical work on such distributions. This is confirmed by the
distributions of all 1,000 p-values generated by weighted and un-weighted model

averaging approaches, shown in Figure 4.1¢ and 4.1d, respectively.

4.1.3 Comparison of the Statistical Power of Different Test-
ing Procedures

Now, we proceed to assume that there has been an association between the covari-
ate and hazard. These associations can be linear or nonlinear. In simulations we
now compare statistical power yielded by different testing procedures. The power

is determined by computing the proportion of samples in which the test statistic
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exceeded the critical value for the x2 test at & = 0.05. In the case of linear as-
sociation (Equation 3.9 Section 3.2.2), results are shown in Table 4.3 in the same
order/pattern as in Table 4.1. First two columns show the empirical power calcu-
lated based on 1000 simulations for varying sample sizes (n = 100, 300) along with
the confidence intervals. Results in subsequent columns indicate the empirical power
of the AIC based model selection. It is clear that empirical power is considerably
higher in the samples where a given model was selected as the best AIC model,
and sharply increases as the sample size increases. The last two rows of Table 4.3
indicate that the overall power of the tests based on the minimum AIC models is
significantly higher than the power of the test based on unselected models, as the
confidence intervals for the corresponding proportions of rejection of Hy do not over-
lap. It should be also noted that the empirical power of the tests based on particular
non-linear models is only marginally lower than that of the “correct” linear model.

In the case of non linear associations described in Section 3.2.2, the general pat-
tern of results was similar to that presented in Table 4.3. Table 4.4 summarizes
the results of all simulations in which the covariate did affect the hazard and com-
pares the overall empirical power of the four testing procedures. In the case of
unselected testing without AIC selection, the reported proportions were calculated
based on the results of 7,000 tests (7 models x 1,000 samples). Each of the three
other testing procedures yields a single test statistic for each sample. Accordingly,

their results are based on 1,000 tests. Table 4.4 shows that, as expected, testing
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Table 4.3: Comparison of the Empirical Power of the Two Testing Procedures in
the Case of a Linear Association Between Covariate and log Hazard

l | Empirical Power? |
| Model [ Unselected Model |  Best AIC Model |
| | n=100 | n=300 [ n=100 [ n=300 |

Z 0.44 0.90 0.66 0.92
Z2 0.40 0.87 0.49 0.91
Z® 0.35 0.81 0.45 0.88
expZ 0.43 0.89 0.70 0.91
log Z 0.43 0.85 0.66 0.97
= 0.31 0.42 0.55 0.88
vZ 0.44 0.90 0.58 0.95
| Overall | 0402 | 0806 | 0571 | 0929 |

| 95% C.1.° | 0.370-0.430 | 0.786-0.834 | 0.540-0.602 | 0.913-0.945 |

# Proportion of Samples in Which Hy of No Association was Rejected Based on LR test with
a = 0.05
b Confidence Interval
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Table 4.4: Comparison of the Empirical Power of the four Testing Procedures For
Different Sample Sizes and Forms of Dose-Response Curve (a = 0.05)

| “True” | | Empirical Power® |
| Dose-Response | n [ | Model Averaging |
| Curve l | Unselected Model | Best AIC Model [ Weighted | Un-weighted |
Linear: 100 0.520 0.672 0.600 0.535
(Z —0.5) (0.489-0.551) (0.643-0.701) | (0.570-0.630) | (0.504-0.566)
300 0.870 0.982 0.980 0.963
(0.849-0.891) (0.974-0.990) | (0.970-0.999) | (0.951-0.975)
Quadratic: 100 0.070 0.215 0.130 0.037
2(Z — 0.5)2 (0.054-0.086) (0.190-0.240) | (0.110-0.150) | (0.025-0.049)
300 0.098 0.323 0.190 0.045
(0.081-0.119) (0.204-0.352) | (0.160-0.210) | (0.032-0.058)
Quadratic: 100 0.090 0.284 0.160 0.045
3(Z —0.5)2 (0.072-0.108) (0.256-0.312) | (0.140-0.180) | (0.030-0.056)
300 0.150 0.531 0.330 0.077
(0.128-0.172) (0.500-0.562) | (0.300-0.360) | (0.060-0.094)
Quadratic: 100 0.110 0.392 0.240 0.045
4(Z — 0.5)2 (0.091-0.129) (0.362-0.422) | (0.210-0.270) | (0.032-0.088)
300 0.220 0.733 0.540 0.123
(0.194-0.246) (0.706-0.760) | (0.510-0.570) | (0.103-0.143)
Threshold: 100 0.870 1.000 1.000 0.990
Linear Spline (0.849-0.891) (1.000-1.000) | (1.000-1.000) | (0.984-0.996)
300 0.910 1.000 0.963 1.000
(0.892-0.928) (1.000-1.000) 1.000-1.000 | (1.000-1.000)

# Point Estimate of the proportion of samples when Hp is rejected at the nominal significance level
a = 0.05, with the 95% confidence interval in brackets.
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the hypothesis of no association based on the minimum AIC model (2nd column)
systematically increases statistical power compared to the test based on unselected
Model (1st column). However, this comparison is not valid because, as demonstrated
in Table 4.1, the size of the test based on best A7C model is substantially inflated.
In this context, it is interesting to assess the empirical power of the modified testing
procedures proposed in Section 3.2.4, that reduce the impact of a posteriori model
selection on type I error, due to model averaging. The second last column of Table
4.4 shows that the weighted version of model averaging yields typically power that
is substantially better than that of the un-selected test and only slightly lower than
that of the best AIC-based procedure.

In summary, the results of our simulations confirm that the inflation of type I
error due to a posteriori model selection creates a serious problem in the context of
selecting the appropriate functional form of the dose-response relationship. In fact,
the actual type I error rates may be 3 times higher than the nominal significance
level even if the “best fitting” model is chosen, based on criteria such as AIC, from a
set of less than ten candidate models (Table 4.1). Our results also show that a simple
adjustment based on model averaging may substantially reduce the magnitude of
type I error inflation (Table 4.2), although the exact distributions of the resulting
test statistics remain to be identified through further numerical and/or analytical
work. In view of our results, the model averaging approach which assigns Akaike

weights to competing models, based on their fit to data, seems to offer an interesting
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trade-off between the type I error rate, that is only slightly inflated, and empirical

power that is substantially higher than in unselected testing.

4.2 Real Life Illustration

In epidemiology, prognostic models that identify risk factors for various diseases are
one of the main investigative tools. Coronary heart disease (CHD) is a major cause
of mortality and morbidity in Western societies. To control the incidence of CHD,
several interventions and clinical guidelines have been developed by changing the
levels of modifiable risk factors. In general, risks are calculated corresponding to
different levels of risk factor, to predict the effect of an intervention. The validity
of such predictions depends on the accuracy of the estimation of the dose-response
functions describing how the risks change depending on the level of different contin-
uous risk factors (Abrahamowicz et al., 1997). This provides a practically important

setting to illustrate problems investigated in our simulations.
4.2.1 Data Description

In this section, we present a secondary analysis of the public use data provided
by Lipid Research Clinics (LRC) Program Prevalence and Follow-up Studies (1972-
1976). The analysis is restricted to men who did not take lipid-lowering medications
and the resulting data set includes 2,512 individuals (aged between 29 to 89). The
median follow-up time was reported as 12.6 years (with interquartile range, 1.2

years). The outcome of interest is the CHD death. During the follow-up 94 CHD
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deaths occurred in this data set. Our main analysis focus on the effects of coronary
heart disease mortality of male participants. Nine standard prognostic factors for
CHD were investigated: age, systolic blood pressure (SBP), body mass index (BMI),
total serum cholesterol level (TC), high density lepoprotein (HDL), smoking status
(SMK), glucose intolerance (GLU), history of CHD (DEFCHD) and treatment of
blood pressure with medication (BPMED). The last four factors are binary variable
(presence/absence). Details of the data set is found elsewhere (LRC study, 1974).

The adjusted and unadjusted effects of various forms of continuous risk factors
like TC, BMI, HDL, ratio of TC to HDL (TC/HDL) were estimated using the
parametric multivariable Cox proportional hazards regression model.

For ease in calculations, all the continuous independent variables were trans-
formed to the interval [1, 2], except BMI which was transformed to have the mean
at zero. However, 1 was added to transformed BMI when necessary to avoid zero
values which would prevent the use of logarithms and negative power transforma-
tions.

The purpose of this study is to empirically investigate the problems related to
a posterior: model selection and to assess the performance of the model averaging

procedures.

4.2.2 Parametric Modelling of Individual Risk Factors

The results of separate Cox’s models for the adjusted effects of TC, SBP, BMI,

TC/HDL, and Age are shown in Tables 4.5 — 4.9.
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For each Table, the first column gives the AIC values corresponding to different
functional forms of covariate, while the second and third column give the LR tests
and the corresponding p-values. The three rows at the bottom of each Table show
the results of testing based on the best AIC, the weighted and unweighted testing
procedures.

For most of the risk factors presented in Tables 4.5 — 4.9, all the tests are con-
sistent in yielding the evidence of a highly significant effect on CHD mortality,
regardless of the model. Thus, in those cases it won’t be useful to consider other
models than the linear conventional model (1st row), as long as the interest is only
in establishing the statistical significance of the association. This is understandable
given that TC, SBP, age or TC/HDL ratio are all very well established and very
potential predictors of CHD morbidity and mortality.

By contrast, the evidence of the association between BMI and CHD mortality
is less strong and in that case it may be more important to enhance the efficiency
of testing the dose-response relationship. Whereas the conventional linear model
(1st row) and most other models show definitely non-significant results (all p-values
> 0.35), the quadratic model yields a marginally significant effect of BMI (p < 0.10).
Figure 4.1 shows the estimated quadratic relationship between BMI and log hazard
of CHD death. The shape of the curve is similar to that obtained by Abrahamowicz
et al. (1997) using smoothing splines. Subjects in the middle range of BMI value

have the lowest risk while the risks increase in both tails of the distribution. Al-
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Figure 4.2: Plot of Body Mass Index (BMI) Against Log of Hazard Ratio
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though the p-value is somewhat higher than the conventional cut-off of 0.05, this
may be explained by a relatively low statistical power of our analyses, based on only
94 CHD deaths.

The pattern of results showed in Table 4.7 indicates that 6 out of 7 conventional
parametric models considered in our study would “miss” the potentially interesting
finding that there may be a systematic association between BMI and the risk of
CHD. In other words, in order to “detect” this association, it was essential to select
the quadratic transformation of BMI. The fact that the quadratic model was identi-

fied as the “best-fitting” model by the AIC criterion shows the potential usefulness
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of this criterion in situations where the true functional form of the dose-response
curve is unknown and the effect of interest is rather weak. However, as demon-
strated by simulation in Section 4.1, the p-value yielded by the test based on the
AIC-selected model is not valid and may considerably lower than the actual sig-
nificance level. In this situation the performance of the weighted version of model
averaging approach to testing is of interest as it has been show in our simulations to
reduce the type I error rate inflation (Table 4.2). Table 4.7 shows that the weighted
model averaging testing procedure gives a rather ambiguous result for BMI with
p-value of 0.27 that is substantially lower than p-values for most parametric models
but higher than p-value for the best-fitting quadratic model. It will be important to
investigate the relationships between p-values yielded by different testing procedures
in a broader range of situations, to see if, in selected situations, model averaging may
lead to a practically meaningful change of conclusions. We believe that our results,

presented in this section, provide sufficient motivation for such further endeavours.
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Table 4.5: Results For the Cox PH Model With Different Functional Forms of TC

| Model | AIC* | LR® | p — value |
VA 1248.958 | 14.5113 | 0.0001
72 1250.538 | 12.9318 | 0.0003
Z3 1252.208 | 11.2616 | 0.0008
expZ 1251.275 | 12.1948 | 0.0005
log Z 1247.492* | 15.9779 | 0.0001
L 1255.008 | 8.4617 | 0.0036
VZ 1248.210 | 15.2599 | 0.0001
Best AIC* 1247.492 | 159779 | 0.0001
Weighted 14.8291 | 0.0001
Un-Weighted 12.9427 | 0.0003

2 AIC Value
b Likelihood Ratio for Testing the Hypothesis of No Association (LR ~ x12d.f)

Table 4.6: Results For the Cox Model With Different Functional Forms of SBP

|  Model | AIC* | LR® |p-—value |
Z 1248.959 | 9.5145 | 0.0020
Z2 1249.371 | 9.1016 | 0.0026
Z3 1249.920 | 8.5534 | 0.0034
expZ 1249.572 | 9.7995 | 0.0028
logZ 1248674 | 9.9859 | 0.0017
L 1248.487* | 5.3153 | 0.0235
vVZ 1248.802 | 9.6715 | 0.0031
Best AIC* 1248.487 | 5.3153 | 0.0235
Weighted 9.4716 | 0.0021
Un-Weighted 9.3611 | 0.0022

2 AIC Value
b Likelihood Ratio for Testing the Hypothesis of No Association (LR ~ x1%2 d.f.)
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Table 4.7: Results of the Cox Model With Different Functional Forms of BMI

| Model | AIC* | LR® |p— value [
YA 1248.958 | 0.0301 0.8622
VA 1246.198* | 2.7907 0.0948
zZ3 1248.140 | 0.8489 0.3569
ExpZ 1248.986 | 0.0026 0.9594
log Z 1248.844 | 0.1442 0.7041
% 1248.956 | 0.0322 0.8576
VZ 1248912 | 0.0763 | 0.7823
Best AIC* 1246.198 | 2.7907 0.0948
Weighted 1.2008 | 0.2732
Un-Weighted 0.5607 | 0.4540

2 AIC Value
b Likelihood Ratio for Testing the Hypothesis of No Association (LR ~ x12 d.f)

Table 4.8: Results of the Cox Model With Different Functional Forms of TC/HDL

[ Model | AIC® | LRP | p — value |
z 1250.357 | 24.2154 | 0.0000
Z? 1251.902 | 22.6701 | 0.0000
Z3 1253.768 | 20.8046 | 0.0000
expZ 1249.138 | 25.4345 | 0.0000
log Z 1249.498 | 26.3534 | 0.0000
L 1248.219* | 24.8646 | 0.0000
vVZ 1248.219 | 24.8646 | 0.0000
Best AIC* 1247.884 | 55.8964 | 0.0000
Weighted 25.2525 | 0.0000
Un-Weighted 24.2539 | 0.0000

2 AIC Value
b Likelihood Ratio for Testing the Hypothesis of No Association (LR ~ x12d.f)
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Table 4.9: Results of the Cox Model With Different Functional Form of Age

| Model | AIC* | LR® |p— value |
Z 1248.958 | 54.8223 | 0.0000
72 1251.595 | 52.1854 | 0.0000
73 1254.778 | 49.0026 | 0.0000
ExpZ 1252.907 | 50.8737 | 0.0000
log Z 1246.987 | 56.7939 | 0.0000
L 1245.738* | 58.0429 | 0.0000
VZ 1247.884 | 55.8964 | 0.0000
Best AIC* 1245.884 | 58.0429 | 0.0000
Weighted 55.8964 | 0.0000
Un-Weighted 7.9852 | 0.0047

2 AIC Value
b Likelihood Ratio for Testing the Hypothesis of No Association (LR ~ x:2 d.f.)
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Chapter 5

Conclusions

In this thesis, I considered the problem of accounting for model uncertainty in the
context of inference about the parameters of Cox’s model, specifically addressing the
issue of uncertainty involved in selecting the optimal transformation of a continuous
covariate. I focused on the minimum AJC approach to select a posteriori the optimal
transformation of a continuous predictor. In a simulation study, I investigated the
type I error rate and the statistical power of likelihood ratio (LR) tests corresponding
to different approaches including the minimum AJC and a new simple procedure.
An empirical example was also discussed to illustrate the methodological problem
considered.

The results showed that a posteriori model selection based on AIC leads to in-
flation of type I error rate, indicating the presence of model selection uncertainty.
Therefore, a simple approach was proposed that consisted in averaging the LR statis-
tics of all the candidate models. Two versions of the resulting statistic were consid-

ered: the unweighted and the weighted, where the weights are the Akaike weights
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assigned to the different competing models. The theoretical distributions of these
statistics under the null hypothesis are unknown but, as a preliminary investiga-
tion, the empirical distributions derived from the simulations were compared to a
chi-square distribution with one degree of freedom. It was found that the weighted
approach is able to reduce the inflation of type I error halfway down compared to
the AIC based model selection approach. The un-weighted test also yielded type I
error rate lower than the test based on the minimum AIC model, but still too high,
which does not support the chi-square distribution with one degree of freedom of
the test statistic considered. This result indicates the importance of further analyt-
ical and numerical investigations in this regard. The results also showed that the
proposed weighted version of model averaging has an empirical power slightly lower
than that of the best AIC-based procedure, but better than that of the unselected
test procedure. In view of these results, the proposed testing procedure seems to
offer an interesting trade-off between the type I error rate and empirical power
The analysis of real data on coronary heart disease illustrated the usefulness of
the Akaike based approach in the situations where the true functional form of the
dose-response curve is rather unknown and the association of interest is weak. This
analysis of real data confirmed also the need of further investigation on the theo-
retical distribution of the test statistic yielded by the proposed weighted averaging

procedure.

103



Bibliography

[1]

[6]

Abrahamowicz, M., Berger, D. R., and Grover, S.A.(1997) Flexible Modelling
of the Effects of Serum Cholesterol on Coronary Heart Disease Mortality. Amer-
ican Journal of Epidemiology, 145, 8, 714-729.

Abrahamowicz, M., Ciampi, A. (1991) Information Theoretic Criterion in Non-
parametric Density Estimation: Bias and Variance in the Infinite Dimensional

Case. Computational Statistics and Data Analysis, 21, 239-247.

Abrahamowicz, M., Ciampi, A., and Ramsay, J.0.(1992) Non-parametric Den-
sity Estimation for Censored Survival Data: Regression-Spline Approach. Cana-

dian Journal of Statistics, 20, 171-185.

Abrahamowicz, M., Mackenzie, T., and Esdaile, J.K.(1996) Time-Dependent
Hazard Ratio:Modelling and Hypothesis Testing with Application in Lupus

Nephritis. Journal of American Statistical Association, 91, 1432-9.

Akaike, H. (1973) Information Theory as an Extension of The Maximum Likeli-
hood Principle. Second International Symposium on Information Theory (Eds:
B.N. Petrov, and F. Csaki). Akademiai Kiado, Budapest, 267-281.

Akaike, H. (1974) A New Look at the Statistical Model Identification. IEEE

Transactions on Automatic Control AC, 19, 716-723.

104



[7] Akaike, H. (1977) On Entropy Maximization Principle. P.R. Krishaiah (ed.),

Applications of Statistics. Biometrica, 27-41.

[8] Akaike, H. (19782) A new look the Bayes Procedure. Biometrica, 65, 53-59.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Akaike, H. (1978b) A Bayesian Analysis of the Minimum AIC procedure. Annals

of the Institute of Statistical Mathematics, 30, 9-14.

Akaike, H. (1979) A Bayesian Extension of the Minimum AIC Procedure of
Autoregressive Model Fitting. Biometrica, 66, 237-242.

Akaike, H. (1980) Likelihood and the Bayes Procedure (with discussion. In J.
M. Bernardo, M.H. De Groot, D.V. Lindley, and A.F.M. Smith (eds.) Bayesian

Statistics, University Press, Valencia, Spain, 143-203.

Akaike, H. (1981a) Likelihood of a Model and Information Criteria. Journal of

Econometrics, 16, 3-14.

Akaike, H. (1981b) Modern Development of Statistical Methods. In P. Eykhoff
(ed.). Trends and Progress in System Identification. Pergamon Press, Paris,

169-184.

Akaike, H. (1983b) Information Measures and Model Selection. International
Statistical Institute, 44, 277-291.

Akaike, H. (1987) Factor Analysis and AIC. Psychometricka, 52, 317-332.

Amari, S. (1993) Mathematical Methods of Neurocomputing (Eds: O.E.
Bandorff-Nielson, J.L. Jensen, and W.S. Kendall). Networks and Chaos-
Statistical and Probabilistic Aspects. Chapman and Hall, New York.

105



[17] Altman, D. G. (1993) Categorizing Continuous Variable. British Journal of
Cancer, 64, 975.

[18] Altman, D. G., Anderson, P. K. (1989) Bootstrap Investigation of the Stability
of a Cox’s Regression Model. Statistics in Medicine, 8, 771-783.

[19] Atkinson, R. (1985) Plots, Transformation and Regression, Oxford: Oxfrod

Scientific.

[20] Atilgan, T. (1996) Selection of Dimension and Basis for Density Estimation
and Selection of Dimension, Basis and Error Distribution of Wildlife. Journal

of Applied Ecology, 33, 339-347.

[21] Azzalini, A. (1996) Statistical Inference-Based on the Likelihood.Chapman and
Hall, London.

[22] Bancroft, T.A., and Han, C.P. (1977) Inference Based on Conditional Specifica-
tion:A note and a Bibliography. International Statistical Review, 45, 117-281.

[23] Berger, J. O., and Wolpert, R. L. (1984) The Likelihood Principle. Institute of

Mathematical Statistics Monograph, 6.

[24] Boucher, K.M., Slattery, M.L., Berry, T.D., Quesenberry, C., and Anderson,
K. (E1998) Statistical Methods in Epidemiology: A Comparison of Statisti-
cal Methods to Analyze Dose-Response and Trend Analysis in Epidemiologic
Studies.Journal of Clinical Epidemiology, 51, 12, 1223-1233.

[25] Bozdogan, H. (1987) Model Selection and Akaike’s Information Criterion (AIC):
The General Theory and Its Analytical Extensions. Psychometrika, 52 345-370.

106



[26]

[29]

[30]

[31]

[32]

[33]

Bozdogan, H. (1988) A New Model-Selection Criterion (Eds: H.H. Bock), Clas-
sification and Related Methods of Data Analysis. North-Holland Publishing
Company, Amsterdam, 599-608.

Box, G.E.P., and Jenkins, G.M. (1970) Time Series Analysis: Forecasting and
Control. Holden-Day, London, 17.

Breiman, L. (1988) Sub model Selection and Evaluation in Regression. The
Conditional Case and Little Bootstrap, Technical Report 169, University of

California, Berkeley, Department of Statistics.

Breiman, L. (1992) The Little bootstrap and other Methods for dimensionality
in regression: X-fixed Prediction Error.Journal of The American Statistical

Association, 24.

Breiman, L. (1996) Heuristics of Instability and Stabilization in Model Selec-
tion.The Annals of Statistics, 24, 2350-2383.

Brenner, H., and Blettner, M. (1997) Controlling for Continuous Confounders

in Epidemiologic Research. Epidemiology, 8, 429-434.

Breslow, N.E. and Day, N.E. (1980) Statistical Methods in Cancer Research.
The Analysis of Case-Control Studies. Lyon, France: International Agency for
Research on Cancer, (IARC Scientific Publication No. 32), 1.

Breslow N.E., and Day, N.E. (1987) Statistical Methods in Cancer Research.
The Design and Analysis of cohort studies. Lyon, France: International Agency
for Research on Cancer, (IARC Scientific Publication no. 82), 2.

107



[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Brown, C.C., Kipnis, V., Freedman, L.S., Hartman, A.M., Schatzkin, A., and
Watcholder, S. (1994) Energy Adjustment Methods for Nutritional Epidemi-
ology: The Effect of Categorization. American Journal of Epidemiology, 139,
323-338.

Buckland, S.T., Burnham, K.P., and Augustin, N.H. (1997) Model Selection:
An Integral Part of Inference. Biometrics, 53, 603-618.

Wildlife. Journal of Applied Ecology, 30, 478-495.

Burnham, K.P., and Anderson, D.R. (1998) Model Selection And Inference: A

Practical Information Theoretic Approach. Springer-Verlag.

Burnham, K.P., Anderson, D.R., and White, G.C. (1995) Selection Among

Open Population Capture-Recapture Data. Biometrics, 51, 888-898.

Burman, P. (1989) A Comparative Study of Ordinary Cross-Validation, V-
hold Cross-Validation and Repeated Learning-Testing Methods. Biometrica,
76, 503-514.

Burnham, K.P., Anderson, D.R., and Whilte, G.C. (1994) Evaluation of the
Kullback-Liebler Discrepancy for Model Selection in One Population Capture-

Recapture models. Biometrical Journal, 51, 888-898.

Carlin, B.P., and Chib, S. (1995) Bayesian Model Choice Via Markov Chain
Monte Carlo Methods.Journal of The Royal Statistical Society, Series B 57,
473-484.

Chatfield, C. (1995) Model Uncertainty, Data Mining and Statistical Inference.
Journal of the Royal Statistical Society, Series A 158, 419-466.

108



[42] Cox, D.R. (1958) The Regression Analysis of Binary Sequences. Journal of the
Royal Statistical Society, Series B, 20, 215-242.

[43] Cox, D.R. (1972) Regression Models and Life Tables. Journal of the Royal
Statistical Society, Series B, 34, 187-220.

[44] Cox, D.R., and Oakes, D. (1984) Analysis of Survival Data. Chapman and Hall,

London.

[45] Craven, P., and Wahba, G. (1979) Smoothing Noisy Data with Spline Functions:
Estimating the Correct Degree of Smoothing by the Method of Generalized
Cross Validation. Numerical Mathematics, 31, 377-403.

[46] Draper, N.R., Smith, H. (1981) Applied Regression Analysis (2nd ed.), New
York, John Wiley.

[47] Draper, D. (1995) Assessment and Propagation of Model Uncertainty (with
discussion).Journal of Royal Statistical Society, Series B; 57, 45-97.

(48] Edwards, A.W.F. (1992) An Account of the Statistical Concept of Likelihood

and Its Application to Scientific Inference. Cambridge University Press, London.

[49] Efron, B., and Tibshirani R.J. (1993) An Introduction to Bootstrap. New York,

Chapman and Hall.

[60] Elston, R.C. and Johnson, W.D. (1994) Essentials of Biostatistics, F.A. Davis
(ed.).

[61] Forthofer, R.N. (1995) Introduction to Biostatistics: A Guide to Design, Anal-

ysis, and Discovery. Academic Press.

109



[52]

[53]

[54]

[55]

[57]

[58]

[59]

[60]

Flemming, T.R., and Harrington, D.P. (1991) Counting Process and Survival
Analysis, John Wiley and Sons, New York.

Geisser, S. (1975) The Predictive Sample Reuse Method with Approaches to
Calculating Marginal Densities.Journal of The American Statistical Associa-

tion, 85.
Gilchrist, W. (1984) Statistical Modelling, John Wiley and Sons, New York.

Guo, S., Roche, A.F., and Moore, W.M. (1988) Reference Data For Head Cir-
cumference and 1-month increments, From 1 to 14 month of Age. Journal of

Pediatrics, 113, 490-494.

Goutis, C.W.J., and Casella, G. (1995) Frequentist Post-Data Inference. Inter-
national Statistical Theories and the Use of Model Selection Criteria. Journal

of Econometrics, 67, 173-187.

Gray, R.J. (1992) Flexible Methods for Analyzing Survival Data Using Splines,
With Applications to Breast Cancer Prognosis. Journal of the American Sta-
tistical Association, 87, 942-951.

Greenland, S. (1995) Dose-Response and Trend Analysis in Epidemiology: Al-

ternatives to Categorical Analysis. Epidemiology, 6, 356-365.

Halpern, J. (1982) Maximally Selected Chi-Square Statistics For Small Samples.

Biometrics, 38, 1017.

Hannan, E.J., and Quinn, B.G. (1979) The Determination of the Order of an
Auto-regression. Journal of The Royal Statistical Society, Series B, 41, 190-195.

110



[61] Harrell, F.E., Jr., Lee, K.L., and Pollock, B.G. (1988) Regression Model in
Clinical Studies: Determining Relationships Between Predictors and Response.
Journal of National Cancer Institute, 80, 1198-1202.

[62] Harvey, A.C.(1981) Time Series Models, Phillip Allen, Oxford.

[63] Hastie, T., and Tibshirani, R. (1986) Generalized Additive Models (With Dis-

cussion). Statistical Science, 1,297-318.

[64] Hastie, T., and Tibshirani, R. (1987) Generalized Additive Models: Some Ap-

plications.Journal of the American Statistical Association, 82,371-386.

[65] Hastie, T., Tibshirani, R. (1990) Generalized Additive Models.Chapman and
Hall, New York.

[66] Hill, A. B. (1965) The environment and disease: Association or causation? Proc

R Soc Med, 58, 295-300.

[67] Hjorth, J.S.U. (1994) Computer Intensive Statistical Methods: Validation,

Model Selection and Bootstrap. Chapman and Hall, London.

[68] Hosmer, D.W., and Lemeshow, S. (1989) Applied Logistic Regression. John
Wiley and Sons, New York.

[69] Hurvich, C.M., and Tsai, C.L. (1989) Regression and Time Series Model Selec-
tion in Small Samples. Biometrika, 78, 499-509.

[70] Hurvich, C.M., and Tsai, C.L. (1990) The Impact of Model Selection on Infer-

ence in Linear Regression. The American Statistician, 44, 214-217.

111



[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

Isaacs, D., Altman, D.G., Tidemarsh, C.E., Valmer, H.B., and Webster, A.D.B.
(1983) Serum Immunoglobin Concentration in Preschool Children Measured by
Laser Nephelometry: Reference Ranges For IgG, IgA, IgM. Journal of Clinical
Pathology, 36, 1193-1196.

Kabaila, P. (1995) The Effect of Model Selection on Confidence Regions and
Prediction Regions. Econometric Theory, 11, 537-549.

Kalbfleisch, J.D., and Prentice, R.L. (1980) The Statistical Analysis of Failure
Time Data.John Wiley and Sons, New York.

Kapur, J.N. and Kesavan, H.K. (1992) Entropy Optimization Principles with

Applications. Academic Press, London.

Kishino, H.H., Kato, H., Kasamatsu, F., and Fujise, Y. (1991) Detection of
Heterogeneity and Estimation of Population Characteristics from Field Survey
Data: 1987/88 Japanese Feasibility Study of The Southern Hemisphere Minke
Whales.Annals of the Institute of Statistical Mathemtaics, 43, 435-453.

Kleinbaum, D.G., Kupper, L., and Muller, K.E. (1988) Applied Regression
Analysis and Other Multivariable Methods, 2nd edition, Boston: PWC-Kent
Publishing Company.

Kooperberg, C., Stone, C.J., and Truong, Y.K. (1995) Hazard Regression. Jour-
nal of the American Statistical Association, 90, 78-94.

Kuk, A.Y.C. (1984) All Subsets Regression in a Proportional Hazards Model.
Biometrika, 71, 587-592.

112



[79] Kullback, S., and Liebler, R. A. (1951) On Information and Sufficiency. Annals
of Mathematical Statistics, 22, 79-86.

[80] Kullback, S. (1959) Information Theory and Statistics. John Wiley and Sons,
New York.

[81] Laud, P.W., and Ibrahim, J.G. (1995) Predictive Model Selection. Journal of
The Royal Statistical Society, Series B, 57.

(82] Lebreton, J.D., Burnham, K.P., Clobert, J., and Anderson, D. R. (1992) Mod-
elling Survival and Testing Biological Hypothesis Using Marked Animals: A
Unified Approach with Case Studies.Ecological Monograph, 62, 67-118.

[83] Lehmann, E.L. (1983) Theory of Point Estimation. John Wiley and Sons, New
York.

[84] Linhart, H., and Zucchini, W. (1986) Model Selection. John Wiley and Sons,
New York.

[85] (1974) Lipid Research Clinics Program. Manual of Laboratory Operations, Na-
tional Institutes of Health.NIH Publications No. 75-628, 1.

[86] Maclure, M., and Greenland, S. (1992) Tests for Trend and Dose-Response:
Misinterpretations and Alternatives.American Journal of Epidemiology, 135,

96-104.

[87] Madigan, D., and Raftery, A.E. (1994) Model Selection and Accounting for
Model Uncertainty in Graphical Models Using Occam’s Window.Journal of The
American Statistical Association, 89, 1535-1546.

[88] Mallows, C. L. (1973) Some Comments on C,. Technometrics, 12, 591-612.

113



[89] Mallows, C. L. (1995) Some Comments on C,. Technometrics, 37, 362-372.

[90] McCullagh, P., and Pregibone, D. (1985) Discussion Comments On the Paper
by Diaconis and Efron. Annals of Statistics, 13, 898-900.

[91] McCullagh, P., and Nelder, J.A. (1989) Generalized Linear Models. 2nd Ed.,
Chapman and Hall, New York.

[92] Miller, A. J. (1984) Subset Selection in Regression. Chapman and Hall, New
York.

[93] Mooney, C. Z., and Duval, R.D. (1993) Bootstrapping: A Non-parametric Ap-

proach to Statistical Inference, Sage Publications, London.

[94] Moore, D.F. (1987) Modelling the Extraneous Variance in The Presence of
Extra-Binomial Variation. Journal of The Royal Statistical Society, 36, 8-14.

[95] Mosteller, F., and Tukey, J.W. (1968) Data Analysis, Including Statistics. (Eds:
G. Lindzey, and E. Aronson). Handbook of Social Psychology, Vol. 2. Addison-
Wesley, Reading, MA.

[96] Neter, J., Wasserman, W., and Kutner, M.H., (1990) Applied Linear Statistical
Models (3rd ed.). Irwin.

[97] Newman, K. (1997) Bayesian Averaging of generalized linear models for passive
integrated trans ponder tag recoveries from salmonids in the Snake River.North

American Journal of Fisheries Management, 17, 362-377.

[98] O’Sullivan, F. (1988) Nonparamteric Estimation of Relative Risk Using Spline
and Cross Validation.SIAM Journal on Scientific and Statistical Computing, 9,
531-542.

114



[99] Potscher, B.M. (1991) Effects of Model Selection on Inference. Econometric
Theory, 7, 163-185.

[100] Quantin, C., Abrahamowicz, M., Moreau, T., Bartlett, G., Mackenzie, T.,
Tazi, M, A., Lalonde, L., and Faivre, J. (1999) Variation Over Time of the
Effects of Prognostic Factors in a Population-based Study of Colon Cancer:
Comparison of Statistical Models. American Journal of Epidemiology, 150, 11,
1188-1200.

[101] Raftery, A.E., Madigan, D., and Hoeting, J. (1993) Model Selection and Ac-
counting for Model Uncertainty in Linear Regression Models. Technical Report

No. 262, Department of Statistics, University of Washington, Seattle.

[102] Raftery, A.E., and Madigan, D. (1994) Model Selection and Accounting for
Model Uncertainty in Graphical Models Using Occam’s Window.Journal of The
American Statistical Association, 89, 1535-1546.

[103] Raftery, A.E., Madigan, D., and Volinsky C.T. (1995) Accounting For Model
Uncertainty in Survival Analysis Improves Predictive Performance (with Dis-
cussion).In J. Bernardo, J. Berger, J., A. David, and A. Smith (Eds.). Bayesian
Statistics, 5, pp 323-349, Oxford University Press.

[104] Ramsay, J.O. (1988) Monotone Regression Splines in Action: with Discussion.
Statistical Science, 3, 425-461.

[105] Ramsay, J.O., Abrahamowicz, M. (1989) Binomial Regression With Mono-
tone Splines: A Psychometric Application. Journal of the American Statistical

Association, 84, 916-25.

115



[106] Rawlings, J. O. (1988) Applied Regression Analysis: A Research
Tool. Wadsworth, Inc., Belmont, CA.

[107] Ross, S, M. (1997) Simulation. 2nd edition, Academic Press, New York.

[108] Royston, P., and Altman, D.G. (1994) Regression Using Fractional Polyno-
mials of Continuous Covariates: Parsimonious Parametric Modelling. Applied

Statistics, 43, 429-467.

[109] Royall, R. M. (1997) Statistical Evidence: A Likelihood Paradigm. Chapman
and Hall, London.

[110] Rissanen, J. (1989) Stochastic Complexity in Statistical Inquiry. World Scien-

tific, Series in Computer Science, 15.

[111] Rencher, A.C., and Pun, F.C. (1980) Inflation of R? in Best subset Regression.
Technometrics, 22, 49-53.

[112] Rothman, K.J. (1986) Modern Epidemiology. Boston: Little, Brown.

[113] Saber, G.A.F. (1977) Linear Regression Analysis. John Wiley and Sons, New
York.

[114] Sakamoto, Y., Ishiguro, M., and Kitagawa, G. (1986) Akaike Information
Criterion Statistics. KTK Scientific Publishers, Tokyo.

[115] Sauerbrei, W. and Schumacher, M. (1992) A Bootstrap Re-Sampling Proce-
dure For Model Building: Application To The Cox’s Regression Model. Statis-
tics in Medicine, 11, 2093-2109.

116



[116] Sauerbrei, W. and Royston, P. (1999) Building Multivariable Prognostic and
Diagnostic Models: Transformation of The Predictors Using Fractional Poly-
nomials. Journal of The Royal Statistical Society, Series A, 162, 71-94.

[117] Schulgen, G., Lausen B, Olsen, J.H., and Schumacher, M. (1994) Outcome-
Oriented Cut-Points in Analysis of Quantitative Exposure. American Journal
of Epidemiology, 140,172-184.

[118] Schwarz, G. (1978) Estimating the Dimension of a Model. Annals of Statistics,
6, 461-464.

[119] Sclove, S.L. (1987) Application of Some Model-Selection Criterion to Some
Problems in Multivariate Analysis. Psychometrika, 52, 333-343.

[120] Sclove, S.L. (1994) Small-sample and Large Sample Statistical Model Selection
Criteria. In P. Cheeseman, and R. W. Oldford (eds.). Selecting Models From
Data, (Eds: P. Cheeseman, and R. W. Oldford). Springer-Verlag, New York.

[121] Shao, J., and Tu, D. (1995) The Jackknife and Bootstrap. Springer-Verlag,
New York.

[122] Shibata, R. (1983) A Theoretical View of The Use of AIC: From Data to
Model, (Eds: O.D. Anderson). Springer-Verlag, London.

[123] Shibata, R. (1986) Consistency of Model Selection and Parameter Estimation:
Essays in Time Series and Allied Processes, (Eds: J. Gani, and M.B. Priestly).
Journal of Applied Probability, Special Volume 23A.

[124] Shibata, R. (1989) Statistical Aspects of Model Selection: From Data To
Model, (Eds: J.C. Willems). Springer-Verlag, London.

117



[125] Sleeper, L.A., and Harrington, D.P. (1990) Regression Splines in the Cox
Model With Application to Covariate Effects in Liver Disease. Journal of The
American Statistical Association, 85, 941-949.

[126] Snedecor, G.W., and Cochran, W.G. (1967) Statistical Methods, 6th Ed.,

Iowa, Iowa State University Press.
[127] Sobol, M. (1994) A Primer for the Monte Carlo Method. CRC Press.
[128] S-PLUS (1995) S-PLUS Version 4.0 Seattle, WA: MathSoft.

[129] Stone, M. (1974) Cross-validatory Choice and Assessment of Statistical Pre-
dictions (With Discussion). Journal of The Royal Statistical Society, Series B
39, 111-147.

[130] Stone, M. (1977) An Asymptotic Equivalence of Choice of Model by Cross-
Validation and Akaike’s Criterion.Journal of The Royal Statistical Society, Se-
ries B 39, 44-47.

[131] Stone, C.J (1985) Additive Regression and Other Nonparamteric Mod-
els.Annals of Statistics, 13, 689-705.

[132] Suguira, N., (1978) Further Analysis of the Data by Akaike’s Information
Criterion and the Finite Corrections. Communications in Statistics: Theory and

Methods. A7, 13-26.

[133] Volinsky, C.T., (1997) Bayesian Model Averaging for Censored Survival Mod-
els. Unpublished Ph.D. Thesis, University of Washington.

[134] Vacek, P.A. (1997) Assessing the Effect of Intensity When Exposure Varies
Over Time. Statistics In Medicine, 16, 505-513.

118



[135] Wedderburn, R. W. M. (1974) Quasi-Likelihood Functions, Generalized Linear
Models, and The Gauss-Newton Method. Biometrika,61, 439-447.

[136] Wegman, E.J., and Wright, J.W., (1983) Spline in Statistics. Journal of The
American Statistical Association, 78, 351-366.

[137] Weinberg, C.R. (1995) How Bad is Categorization? (Editorial), Epidemiology
6, 345-347.

[138] Westfall, P.H., and Young, S.S. (1993) Re-sampling-Based Multiple Testing:
Examples and Methods For P-Value Adjustment. John Wiley and Sons, New
York.

[139] Williams, D.A. (1982) Extra-Binomial Variation in Logistic Linear Models.
Applied Statistics, 31, 144-148.

[140] Wold, S. (1974) Spline Functions In Data Analysis. Technometrics, 16, 1-11.

[141] Zhang, P. (1993a) Model Selection Via Multi-Fold Cross-Validation. Annals
of Statistics, 20, 299-313.

(142] Zhang, P. (1994) On the Choice of Penalty Term in Generalized FPE Criterion:
Selecting Models From Data (Eds: P. Cheeseman, and R.W. Oldford). Springer-
Verlag, New York.

[143] Zhao L.P., and Kolonel, L.N. (1992) Efficiency Loss From Categorizing
Quantitative Exposures into Qualititative Exposures in Case-Control Stud-

ies.American Journal of Epidemiology, 136, 464-74.

119



Appendix A

S-PLUS Code For The Simulation
Study

A.l Simulation for the Unselected Models

# Hazard function doesn’t depend on Covariate
# To generate 1000 samples with sample size n=100,300.
nsims <- 1000
n <~ 100
aicmat <- matrix(data=0, nrow=nsims, ncol=7)
pvalmat <- matrix(data=0, nrow=nsims, ncol=7)
set.seed(9949149)
for (i in 1:nsims) {
res <- aic.f(n)
aicmat[i,] <- res$aic
pvalmat(i,] <- res$pval
}
Status <- function(z, y) {
ifelse(z > y, 0, 1)
}
Time <- function(z, y) {
ifelse(z > y, y, z)
}
# Function to return AIC and P-VALUE
aic.f <- function(n) {
u <~ runif(n)
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tm <- (-0.5)*log(u) # t = Failure Time
st <- runif(n) # st=Survivor Function
ct <- (-1/1.5)*log(s) # ct = Censoring time generated from exp(1.5)
di <- Status(tm,ct) # Storing the status variable
fi <~ Time(tm,ct) # Storing the observed survival time variable
# Generating 7 different functions of covariates
x <- runif(n) # x = Covariate values
X2 <—- x"2
x3 <~ x~3
x4 <- exp(x)
x5 <- log(x)
x6 <- 1/x
x7 <- sqrt(x)
# Storing the survival data
survdat <- data.frame(fi,di,x,x"2,x"3,exp(x),log(x),1/x,sqrt(x))
# Fitting the Cox PH model for the all 7 forms of covariates
coxfitl <- coxph(Surv(fi, di) ~ x, survdat)
coxfit2 <- coxph(Surv(fi, di) ~ x~2, survdat)
coxfit3 <- coxph(Surv(fi, di) ~ x~3, survdat)
coxfit4 <- coxph(Surv(fi, di) ~ exp(x), survdat)
coxfits <- coxph(Surv(fi, di) ~ log(x), survdat)
coxfit6 <-coxph(Surv(fi, di) ~ I(1/x), survdat) # Note I(1/x)
coxfit? <-coxph(Surv(fi, di) ~ sqrt(x), survdat)
# Calculating AIC for each of the 7 models
aic <~ c(-2*coxfit1$loglik[2] + (2 * 1), -2*xcoxfit2$loglik[2] + (2 * 1),
-2*coxfit3$loglik[2] + (2 * 1), -2xcoxfitd4$loglik[2] + (2 * 1),
-2*coxfit58loglik[2] + (2 * 1), -2*coxfit6$loglik[2] + (2 * 1),
-2*xcoxfit7$loglik[2] + (2 * 1))
# Calculating Likelihood Ratio Statistics(LRT) for each of the 7 models
<- 2*c((coxfit1$loglik[2]-coxfit1$loglik[1]), (coxfit2$loglik [2]
coxfit2$loglik[1]), (coxfit3$loglik[2]-coxfit3$loglik[1]),
(coxfit4$10glik[2]-coxfit4$loglik[1]),(Coxfit5$loglik[2]—
(coxfit7$loglik[2]-coxfit7$loglik [1]))
pval <- (1-pchisq(lrt,c(1,1,1,1,1,1,1)))
return(list (Maic"=aic,"pval"=pval,"lrt"=1rt))
}

# To find the frequency distribution of the p-values for 20 intervals
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p <- round(pvalmat,2)

pgroupl <- cut(pl,1], breaks=c(0,0.05,0.10,0.15,0.20,0.25,0.30,0.35,
0.40,0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80,0.85,0.90,0.95,1.0)
,include.lowest=T) # same for 20 intervals

# Storing the values for individual models

mi<-cbind(table (pgroupi))

m2<-cbind (table(pgroup2))

m3<-cbind(table(pgroup3))

m4<-cbind (table(pgroup4))

m5<-cbind (table (pgroup5))

m6<—-cbind (table (pgroup6))

m7<-cbind(table (pgroup7))

freq.table<-cbind (ml,m2,m3,m4,mS,m6,m7)

allfreq <- cbind(freq.table,apply(freq.table,1,sum))

# To calculate the percentage distribution of p values
perct.tablel<-round((cbind(freq.table[,1]))/sum(cbind(freq.tablel,1],)),2)
perct.table2<-round((cbind(freq.table[,2]))/sum(cbind(freq.tablel,2],)),2)
perct.table3<-round ((cbind(freq.table[,3]))/sum(cbind(freq.tablel,3],)),2)
perct.table4<-round((cbind(freq.table[,4]))/sum(cbind(freq.tablel[,4]1,)),2)
perct.table5<-round((cbind (freq.table[,5]))/sum(cbind(freq.table[,5],)),2)
perct.table6<-round{(cbind(freq.table[,6]))/sum(cbind(freq.table[,6],)),2)
perct.table7<-round((cbind(freq.table[,7]))/sum(cbind(freq.tablel,73,)),2)
perct.table <- cbind(perct.tablel,perct.table2,perct.table3,perct.table4,
perct.tableb,perct.table6,perct.table?)
# To calculate the percentage distribution of p values according to
the group(overall)
finperct.table <- apply(freq.table,1,sum)
finpct <- matrix(data=0,nrow=20,ncol=1)
for (i in 1:20) {
finpct[i,] <- (cbind(finperct.table) [i,])/sum(finperct.table)

}
finpct <- round(cbind(perct.table, finpct),2)
# To find the 95% C.I. for overall proportion
CITAB <~ matrix(data=0,nrow=20,ncol=2)
for (i in 1:20) {CITAB[i,] <-
(cbind ((finpct[i,8]-sqrt((1-finpct[i,8])*(finpct[i,8])/nsims)*1.96),

122



(finpct[i,8]+sqrt ((1-finpct[i,8])*(finpct[i,8])/nsims)*1.96)))}
fintable <- cbind(finpct,round(CITAB,4))

dimnames (allfreq)<- 1list(NULL,c("mi","m2","m3","m4","m5","m6",
"m7","TOTAL"))

dimnames (fintable)<-1ist (NULL,c("m1","m2","m3","m4", "m5", "m6" , "m7",
“"ALL","LB","UB"))

# Final Results

fintable<-round(fintable,3)

allifreq

fintable

#Percentage of censoring

sum(di) /100

A.2 Simulation for the Best AIC models

# Hazard function doesn’t depend on Covariate.
# To generate 1000 samples with sample size n=100,300.
nsims <- 1000
n <~ 100
aicmat <- matrix(data=0, nrow=nsims, ncol=7)
pvalmat <- matrix(data=0, nrow=nsims, ncol=7)
set.seed (9949149)
for (i in 1i:nsims) {
res <- aic.f(n)
aicmat[i,] <- res$aic

pvalmat[i,] <- res$pval

}

# To create a vector of minimum AIC and corresponding p-values
is.min <~ function(x) x==min(x)
mins <- function(x)
(1:1length(x)) [is.min(x)]
index <- apply(aicmat,1,mins)
pvalaic <- index # p values corresponds to min AIC
for (i in 1:nsims) pvalaic[i] <- pvalmat[i,index[i]]
Status <- function(z, y) {
ifelse(z > y, 0, 1)
}
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Time <- function(z, y) {
ifelse(z > y, y, z)
}
# Function to return AIC and P-VALUE
aic.f <- function(n) {
u <- runif(n)
tm <- (-0.5)*log(u) # t = Time to event
st <- runif(n)
ct <= (-1/1.85)*log(st) # c = Censoring Time with exp(1.5)
di <- Status(tm,ct) # Storing the status variable
fi <~ Time(tm,ct) # Storing the survival time variable
X <- runif(n) # x = Covariate values
# Generating different covariates
X2 <- x72
x3 <~ x73
x4 <- exp(x)
x5 <- log(x)
x6 <- 1/x
x7 <- sqrt(x)
# Storing the survival data
survdat <- data.frame(fi,di,x,x"2,x"3,exp(x),log(x),1/x,sqrt(x))
# fitting the Cox PH model for the all 7 forms of covariates
coxfitl <- coxph(Surv(fi, di) ~ x, survdat)
coxfit2 <- coxph(Surv(fi, di) ~ x~2, survdat)
coxfit3 <- coxph(Surv(fi, di) ~ x~3, survdat)
coxfit4 <- coxph(Surv(fi, di) ~ exp(x), survdat)
coxfit§ <- coxph(Surv(fi, di) ~ log(x), survdat)
coxfit6 <-coxph(Surv(fi, di) ~ I(1/x), survdat) # Note I(1/x)
coxfit7 <-coxph(Surv(fi, di) ~ sqrt(x), survdat)
# Calculating AIC for each of the 7 models
aic <~ c(-2%coxfiti$loglik[2] + (2 * 1), -2xcoxfit28loglik([2] + (2 * 1),
—2*coxfit38loglik[2] + (2 * 1), -2*coxfit4$loglik[2] + (2 * 1),
-2xcoxfit58loglik[2] + (2 * 1), -2xcoxfit6$loglik[2] + (2 * 1),
—-2xcoxfit7$loglik[2] + (2 * 1))
# Calculating Likelihood Ratio Statistics(LRT) for each of the 9 models
1rt <- 2*c((coxfit1$loglik[2]-coxfit1$loglik[1]), (coxfit2$loglik[2]
-coxfit28loglik[1]), (coxfit3$loglik [2]-coxfit3$loglik([1]),
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(coxfit4$loglik[2]-coxfit4$loglik[1]), (coxfit5$loglik[2]-
(coxfit7$loglik[2]-coxfit7$loglik[1]))
pval <~ (1-pchisq(lrt,c(1,1,1,1,1,1,1)))
return(list("aic"=aic, "pval“=pval))
}
# To find the distribution (%) of minimum AIC according to different models
freq.ind <- table(index)
perct <- round(freq.ind/nsims,2)
finout <- rbind(freq.ind, perct)
pvalfin <- signif(pvalaic,2)
# To find the distribution of the p-values
pgroup <~ cut(pvalfin, breaks=c(0,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,
0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80,0.85,0.90,0.95,1.0),
include.lowest=T) # 20 intervals
freq.table<-table(pgroup, index)
# To calculate the percentage distribution of p values
perct.tablel<-round((cbind(freq.table[,1]))/sum(cbind (freq.tablel[,1]1,)),2)
perct.table2<-round((cbind(freq.table[,2]))/sum(cbind (freq.tablel[,2],)),2)
perct.table3<-round((cbind(freq.table[,3]))/sum(cbind (freq.table[,3],)),2)
perct.table4<-round((cbind(freq.table[,4]))/sum(cbind (freq.tablel,4]1,)),2)
perct.table5<-round((cbind(freq.table[,5]))/sum(cbind(freq.table[,51,)),2)
perct.table6<-round((cbind(freq.table[,6]))/sum(cbind (freq.tablel[,61,)),2)
perct.table7<-round((cbind(freq.table[,7]))/sum(cbind (freq.table[,71,)),2)
perct.table <- cbind(perct.tablel,perct.table2,perct.table3,perct.table4,
perct.table5,perct.table6,perct.table7)
# To calculate the percentage distribution of p values according to the
group (overall)
finperct.table <- apply(freq.table,1,sum)
finpct <- matrix(data=0,nrow=20,ncol=1)
for (i in 1:20) {
finpct[i,] <- (cbind(finperct.table)[i,])/nsims}}
finpct <- cbind(perct.table, finpct)
# To find the 95% C.I. for overall proportion
CITAB <- matrix(data=0,nrow=20,ncol=2)
for (i in 1:20) {CITAB[i,] <-
(cbind ((finpct[i,8]-sqrt((1-finpct[i,8])*(finpct[i,8])/nsims)*1.96),
(finpct[i,8l+sqrt((1-finpct[i,8])*(finpct[i,8])/nsims)*1.96)))}
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fintable <~ cbind(finpct,round(CITAB,4))

# Final Results

allfreq <- cbind(freq.table, totfreq <- apply(freq.table,1,sum))
dimnames (allfreq) <-1ist(NULL,c("mi","m2","m3","m4","m5","m6","m7",
“"TOTAL"))

fintable <- round(fintable,3)

dimnames (fintable) <-1ist(NULL,c("mi","m2","m3","m4","m5","m6","m7",
“"ALL","LB","UB"))

allfreq

fintable

finout

cat ("Percentage of censoring:","\n")

sum(di) /100

\section{ Simulation for Weighted and Unweighted Averaging Modell}
\begin{verbatim}

# Required additional codes to calculate the Type I Error and
Empirical Power for the Weighted and Unweighted Averaging Model

# To calculate the Akaike weights, weighted LR test and
corresponding p-values

minaic <~ min(aic)

aicdiff <- round((aic-minaic),4)

sumdiff <- sum(exp((-1/2)*(aicdiff)))

wi <- exp((-1/2)*(aicdiff))/(sumdiff)

Irtw <- sum(lrt*wi)

pvalw <- (1-pchisq(lrtw,1))

# To claculate the un-weighted LR test and corresponding p-values
lrtuw <- sum((1/7)*(1rt))

pvaluw <- (1-pchisq(lrtuw,1))

A.3 Additional Code for the calculation of the
Empirical Power

# Codes to calculate the Empirical Power when there is covariate effect
(l1inear \& non linear).
# Function to return AIC and P-VALUE
Status <- function(z,y) {
ifelse (z >y, 0, 1)
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}
Time <- function(z, y) {
ifelse$(z > y, y, z)

}

aic.f <- function(n) {

X <- runif(n)
fx <- (x-0.5)
fx <- c*(x-0.5)"2%

of covariate
Imda <- exp(1+fx)
st <- runif(n)
tm <- (-1/1lmda)*log(st)

# x=Covariate values

# A Linear function of covariate x

# Quadratic function of covariate; ¢=2,3 or 4
fx <- ifelse (x<0.5,0,4*(x-0.5)) # A Non Linear (bi-spline) function

# lmda= Log HR which depends on the covariate
# st=Exponential Survival
# tm
<- (-1/1.5)*log(st) # ct = Censoring Time exp(1.5)
# Storing the status variable
# Storing the observed survival time variable

Failure Time

# Generating $7$ different function of a single covariate

ct
di <~ Status(tm,ct)
fi <- Time(tm,ct)
x1l <- x
X2 <~ x72
x3 <- x°3
x4 <- exp(x)

x5 <- log(x)
x6 <- 1/x

X7 <- sgrt(x)
# Storing the survival data

survdat <- data.frame(fi,di,x,x"2,x"3,exp(x),log(x),1/x,sqrt{x})
# Fitting the Cox PH model for the all 7 forms of the covariate
coxfitl <- coxph(Surv(fi,

coxfit2 <- coxph(Surv(fi, di)
coxfit3 <~ coxph(Surv(fi, di)
coxfit4 <- coxph(Surv(fi, di)
coxfitS <- coxph(Surv(fi, di)
coxfit6 <- coxph(Surv(fi, d4i)
coxfit7? <- coxph(Surv(fi, di)

# Calculating AIC for each of
aic <-

~

~

-

di) ~ x, survdat)
x~2, survdat)
x~3, survdat)

exp(x), survdat)
log(x), survdat)
I(1/x), survdat)
sqrt(x), survdat)

\# Note I(1/x)

the 7 models

c(-2*coxfit1$loglik[2] + (2 * 1), -2*coxfit2$loglik[2] + (2 * 1),
—2xcoxfit3$loglik[2] + (2 * 1), -2*coxfit4$loglik[2] + (2 * 1),
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—2xcoxfit5$loglik([2] + (2 * 1), -2¥coxfit6$loglik[2] + (2 * 1),
-2xcoxfit7$loglik[2] + (2 * 1))

# Calculating Likelihood Ratio Statistics(LRT) for each of the 9 models

lrt <- 2*c((coxfit1$loglik[2]-coxfiti1$loglik([1]), (coxfit2$loglik[2]-
coxfit28loglik[1]), (coxfit3$loglik[2]~coxfit3$loglik[1]),
(coxfit4$loglik[2]-coxfit4$loglik[1]), (coxfitS$loglik[2]-
coxfitb$loglik[1]), (coxfit6$loglik [2] ~coxfit6$loglik([1]),
(coxfit7%loglik[2]-coxfit7$loglik[1]))

pval <- (1-pchisq(lrt,c(1,1,1,1,1,1,1)))

return(list(‘ ‘aic"=aic, ¢ ‘pval"=pval, ‘ ‘lrt=1rt"))

A.4 Drawing the Histograms

# Codes used to draw the Histogram

histogram(~pvalmat, nint = 20, aspect = 1, ylim=c(0,15), xlim=c(0,1.0),
xlab = "P-values")

title("Histogram for 7,000 p-values, pooled from 7 models and 1,000
samples")

segments (0,0.346,1.0,0.346)

histogram(“pvalaic, nint = 20, aspect = 1, ylim=c(0,15), xlim=c(0,1.0),
xlab = "P-values")

title("Histogram for 1,000 p-values corresponding to best AIC models")
segments (0,0.346,1.0,0.346)

histogram(“pvalaicaw, nint = 20, aspect = 1, ylim=c(0,15), xlim=c(0,1.0),
xlab = "P-values")

title("Histogram for 1,000 p-values corresponding to Weighted models")
segments (0,0.346,1.0,0.346)

histogram(“pvalaicuw, nint = 20, aspect = 1, ylim=c(0,15), xlim=c(0,1.0),
xlab = "P-values")

title("Histogram for 1,000 p-values corresponding to Un-Weighted models")
segments (0,0.346,1.0,0.346)
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