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The Book-to-Market Ratio and Schwert-Seguin Type Tests of Volatility

Stephen G. Dimmock

Abstract

This thesis integrates 2 areas of financial research; research on the book-to-market (BM)
anomaly and research on time-varying capital asset pricing models (CAPM). Fama and
French (1992) introduced the BM anomaly to the academic literature and suggested that
it might be driven by changes in economic variables missed by the static CAPM. Using
the methodology developed in Schwert and Seguin (1990) this thesis directly tests the
possibility that the BM is driven by changes in equity market volatility. This thesis does
not find evidence to support the hypothesis that the BM effect is driven by changes in

volatility.
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1. Introduction

In the past decade, the book-to-market ratio (BM) anomaly has received a great deal of
attention from academics. This anomaly states that firms with a low BM ratio (value
firms) earn larger returns than predicted by the capital asset pricing model (CAPM).
Despite this anomaly’s persistent significance in many different data samples, there is not
an accepted theoretical reason for its existence. In their well known article on the BM
anomaly, Fama and French (1992) suggest that “Examining the relationship between the
returns on these portfolios and economic variables that measure variation in business
conditions might help expose the nature of the economic risks captured by size and book-
to-market...” (pg. 450).  Daniel and Titman (1997) suggest that a possible reason for
the existence of the BM anomaly is that it “proxies for distress and that distressed firms
may be more sensitive to certain business cycle factors” (pg. 2). This thesis directly tests
the relationship between BM-sorted portfolios and one of the business cycle variables,
aggregate stock market volatility, that could potentially explain some of the economic

risks captured by the BM variable.

This thesis tests the relationship between the BM-sorted portfolios and aggregate market
volatility using the methodology developed in Schwert and Seguin ( 1990) and further
modified in Koutmous, Lee and Theodossiou (1994) and Episcopos (1996). Schwert and
Seguin (1990) studies, 1) the relationship between aggregate volatility and the
variances/covariances of various size-sorted stock portfolios and 2) the effect of changing

market volatility on test of the CAPM, specifically whether non-proportional



heteroskedasticity implies that beta, the CAPM’s measure of risk, varies over time. They

study both questions for the sample period 1927-1986.

There are a number of contributions that this thesis makes to the literature. First, this
thesis extends the evidence on both questions for size-sorted NYSE portfolios into the
period 1987-1997. This allows us to compare and contrast the earlier results with those
for the 1990s. This is especially important given the unusual and strong bull market

during the 1990s.

Second, the relationship between aggregate market volatility and the variances/
covariances is tested for BM-sorted portfolios of all CRSP stocks for the period 1990-
1997. Size-sorted portfolios are also studied from the same stocks for the purpose of
comparison. This is the first volatility study on BM-sorted portfolios and represents an

original contribution to the literature.

Third, one possible explanation for the BM anomaly is that it represents time-varying risk
missed by the static CAPM. This test shows whether there is any relationship between
time-varying risk and the BM anomaly. This has not been previously tested in the

literature.

Fourth, to the author’s knowledge, there are no previous studies of volatility and the
variances/covariances of BM-sorted portfolios or of conditional capital asset pricing

models, such as the one developed in Schwert and Seguin (1990), and BM-sorted



portfolios. Consequently, this study will be the first to examine how the BM ratio is
related to equity volatility as well as extending previous work on size. Previous work on
the anomaly such as Chan, Hamoa and Lakonishok (1991), Fama and French (1992) and
Kothari, Shanken and Sloan (1995) focus primarily on the expected risk adjusted returns
instead of the effect of time-varying aggregate market volatility on the volatility patterns
and pricing as we do. Thus, this is the first study to consider the second moment of

returns, rather than the first moment, in the BM anomaly literature.

A number of articles have shown the importance of taking time-varying volatility and
covariances into consideration when testing the CAPM for a variety of different types of
portfolios. Empirical estimates of pricing relationships are found to improve for many
types of portfolio sorts such as asset class sorted portfolios (Bollerslev, Engle and
Woolridge (1988)), size-sorted portfolios (Schwert and Seguin (1990)), industry-sorted
portfolios (Episcopos (1996)) and country-sorted portfolios (Koutmous, Lee and
Theodossiou (1995) and Ferson and Harvey (1991)). Based on the pricing improvements
found in these articles, there is reason to believe that using a conditional CAPM will

result in better asset pricing results.

Finally, this paper studies the sensitivity of the empirical results to the choice of the
estimation methodology. This thesis uses a variety of methods to control for statistical
problems found in the data such as heteroskedasticity and autocorrelation. Specifically,
the thesis estimates all models for the different data samples, using 1) Glesjer (1969)

regressions for both weighted least squares (WLS) and Hansen’s (1982) t-statistic



correction, 2) generalized autoregressive conditional heteroskedasticity (GARCH) and 3)
exponential generalized autoregressive conditional heteroskedasticity (E-GARCH).
Econometrically, this thesis adds to the literature as it is the first opportunity for direct
comparison between these different conditional volatility methods. Schwert and Seguin
(1990) use the Glesjer regressions, but not the GARCH and E-GARCH methods.
Koutmous, Lee and Theodossious (1994) use the GARCH method and Episopos (1996)
uses the E-GARCH method. To the author’s knowledge, there has not been any
comparison between these methods and their effectiveness for studies of asset pricing

models while holding the variation in the data and data sorting criterion constant.

Section 2 examines the related literature for this project. Section 3 introduces the data
sets used and Section 4 examines the methodology. Section 5 contains the results of tests

and Section 6 concludes.



2. Literature Review

2.1 Size and Book-to-Market (BM) Anomalies

Size is one of the best-known and oldest anomalies in the finance literature. Banz (1981)
is the first article to examine the size effect. This article finds that small stocks earn
significant abnormal returns. The article also shows that it is possible to earn abnormal
arbitrage returns by selling short large or medium capitalization stocks and investing the
proceeds in a portfolio of small cap stocks. Using leverage, the betas of the short
portfolio and the portfolio of small cap stocks are made to be identical. Even with
identical betas, the portfolio of small cap stocks provides significantly higher returns.
While this study presented the size effect to the academic community, it did not try to

explain possible economic reasons for its existence.

Rosenberg, Reid and Lanstein (1985) find that there are significant abnormal returns to a
strategy of buying value stocks (high BM ratio) and selling growth (low BM ratio). They
examine a zero investment portfolio that is funded through short selling growth stocks
and investing the proceeds in value stocks. They control for betas, momentum, size,
volume, earnings per share, price earnings ratio, leverage, volatility of earnings and
several other factors. This paper, published in a practitioner journal, was largely ignored
until substantively the same findings were published in an academic journal by Fama and

French (1992).



Chan, Hamao and Lakonishok (1991) examine BM, size and other factors in the Japanese
equity markets. They find that the BM ratio is a significant predictor of stock returns
while controlling for market effects. Their model of returns is estimated using seemingly
unrelated regressions as well as the Fama and Macbeth (1973) methodology.
Interestingly, they find weak evidence of a reverse size effect, but any significance of this

effect disappears when the BM ratio is introduced into the model.

Serious academic attention to the BM factor began with Fama and French (1992). This
paper examines the predictive power of beta, the BM ratio, earnings per share (EPS) and
leverage. They find that their empirically estimated beta has almost no predictive power
for stock returns in contrast to the predictions of the CAPM. Fama and French (1992)
conclude by recommending that a 2-factor model of stock returns, based on size and the
BM ratio, be used instead of the CAPM. They suggest several possible explanations for
their findings. One of which is that BM proxies for business cycle specific risk. This

thesis explicitly tests one version of this hypothesis.

In a continuation of their earlier article, Fama and French (1993) show that there are
common factors in the return on stocks and bonds. Differences in returns for size and the
BM-sorted portfolios have explanatory power not only for stock returns, but also for bond
returns. From this, they postulate that there are common risk factors in the returns on
stocks and bonds. In this article, they suggest the use of a 3-factor model based on size,

BM and an overall market factor.



Fama and French (1995) show that size and BM ratio are important predictors of firm
earnings. They find that small firms and low BM firms have higher earnings growth than
large firms and high BM firms. This suggests a rational basis for the predictive power of
size and BM in stock returns. Because these factors are capable of predicting real
economic factors pertinent to the firm, they should be able to predict the stock price,

which should be a reflection of these real economic factors.

Fama and French (1996) examine a large number of asset pricing anomalies. They test
for asset pricing anomalies while controlling for the Fama-French 3-factor model. They
find that, after controlling for these 3-factors only the short-term momentum strategy of
Jegadeesh and Titman (1993) remains an anomaly. Many of the other anomalies

disappear as they are based on variables that are highly correlated with either size or BM.

In their articles on the BM, effect Fama and French (1992, 1993) state that BM must
proxy for risk factors not measured by the CAPM. Daniel and Titman (1997) directly test
this hypothesis. The authors develop and test 3 models. First is a factor model that
extracts mathematical factors from the stock returns and also has a BM variable included.
This tests if the BM factor proxies for risk factors missed by covariance-based measures
of systematic risk. Second is a model identical to their first model except without the
inclusion of the BM ratio. Finally the authors create a “characteristics based” model; this
model prices a stock’s visible characteristics, such as accounting ratios, and ignores its
covariances with other stocks. The authors find that after controlling for characteristics,

loadings on risk based factors do not contribute significant information to the pricing or



equities. However, they find that after controlling for risk based factors characteristics
still provide significant information for pricing. On the basis of this the authors conclude

that prices are driven primarily by characteristics, not systematic risk.

Elfkhani, Lockwood and Zaher (1998) examine the size and BM effect in the Canadian
stock market. They find that there is not a significant relationship between returns and
beta during the period 1975-1992 or in any of the sub periods that they test. However,
they find a strong size effect, both in January and the rest of the year. They also find that
there is a significant relationship between the BM ratio and returns. However, the results

are not significant outside of January in all sub periods.

Other international evidence on the BM effect is presented in Fama and French (1998).
In this article, the authors show that there is a BM premium in the equity returns of 13
developed countries. They also show that there is value premium in the returns of stocks
in 16 developing countries. The authors argue that this supports the argument that the

BM anomaly is not sample specific and is not the consequence of data mining.

Kothari, Shanken and Sloan (1995) is one of the first serious critiques of Fama and
French (1992). In this article, the authors argue that the results of Fama and French are
inflated due to a survivorship bias and the sample used. Fama and French conduct their
tests on data extracted from the COMPUSTAT database. However, COMPUSTAT is
known to have a high survival bias in its earliest years, as these were backfilled using

data only on firms that survived. Another survival issue is that because COMPUSTAT is



a commercial database, it does not include information on firms that it considers to be too
small to be worth following. Using industry group data from Standard and Poors, the
authors find that BM ratio is only weakly correlated to returns. Unlike Fama and French
(1992), the authors find that beta has explanatory power, but they cannot reject that there
are other factors such as size and BM ratio that help to explain the cross section of

returns.

Loughran (1997) questions the practical importance of the BM ratio for finance
practitioners. He examines the predictive power of the BM ratio after controlling for firm
size, exchange and the January effect. He finds that the BM ratio has no predictive power
for the largest size quintile that represents the vast majority of stock capitalization. He
also finds that the BM ratio only has significant predictive power in the month of

January.

2.2 Volatility and Asset Pricing

Shiller (1981) is the article that begins the volatility literature for equity prices. He
argues that stock market volatility is too Ligh to represent rational behavior. Assuming a
constant discount rate, the expectations of future dividends would have to vary
dramatically over short periods of time and often be highly inaccurate, to justify the
volatility of equity prices. Based on this analysis, it is suggested that the high volatility

of equity prices is evidence against market efficiency.



French, Schwert and Stambough (1987) empirically examine the relationship between
volatility and stock prices. By regressing the market risk premium on expected market
volatility, calculated using an autoregressive integrated moving average (ARIMA)
process, and on the unexpected component of market volatility (the error term from their
ARIMA estimates), they find that there is a strong negative relationship between
unexpected volatility and returns. They do not find a statistically significant relationship
between expected volatility and returns. To further validate their findings, the authors
also estimate the risk premiums and volatility using a generalized autoregressive model in

mean (GARCH-M). The results support their findings with the ARIMA model.

Schwert (1989) examines the reasons why equity volatility changes over time. He tests
the relationship between volatility and such variables as inflation, various monetary
variables, industrial production, recessions (measured with a dummy variable), leverage,
lagged values of volatility and trading volume. The results show that all of the above
variables affect stock volatility, but the relationship with industrial production is weak.

Overall the most important factor is lagged equity volatility.

Haugen, Talmor and Torous (1991) use a model that identifies specific days on which
volatility shifts. By measuring the returns before and after the shifts, they show that
when market volatility increases, prices go down and when volatility decreases, prices go
up. Their work supports the basic intuition behind much of the volatility literature. If

stock prices are equal to the present values of future dividends and if an increase in
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volatility is equivalent to an increase in risk and discount rates, then prices must fall so

that the shares provide the higher returns demanded by investors.

2.3 Time-Varying Asset Pricing

In the late 1980s and early 1990s, a number of authors began to consider various models
that would, ideally, allow for improved forecasts of asset prices by allowing for time-
varying risk premiums or covariances. Bollerslev, Engle and Woolridge (1988) is one of
the first articles to model changes in beta. The authors derive a multivariate GARCH-
CAPM, in which both the error terms and the beta are constrained to be autoregressive
conditional. Testing this model on 3 asset classes, bonds, stocks and bills, they find that

it is an improvement in terms of mean variance efficiency over a constant beta CAPM.

Harvey (1989) develops an asset-pricing model with time-varying covariances. His
model shows that covariances are time-varying and predicTable. This model holds the
expected return on market constant and allows the beta terms to vary. He finds evidence
in favor of his model, but he does not directly test its performance against the static

CAPM.

Harvey (1991) refines the model developed in Harvey (1989) and uses it to measure time-
varying betas in financial markets throughout the world. He finds that a single source of
risk, the non-diversifiable exposure to a worldwide equity index, adequately accounts for

the cross sectional variations in returns. However, size and BM ratio are not included in

11



the tests. He finds that there is a consistent, but time-varying, price for risk throughout
the world with the exception of Japan. Japan appears to have had a much higher price of

risk throughout the period.

Ferson and Harvey (1991) examine changes in the market risk premium throughout time.
What differentiates this article from much of the work in this area is that the authors
allow for both time-varying covariances, as in the two articles by Harvey discussed
above, but they also allow the market risk premium to vary over time. They find that
allowing for time-varying risk premiums is more important in explaining asset price

performances than time-varying betas.

2.4 Volatility and Time-Varying Asset Pricing

Schwert and Seguin (1990) examine the effect of heteroskedasticity in equity markets.
They begin by testing if the covariances between stocks are related to aggregate market
volatility. Using NYSE size-sorted portfolios, they find that the covariances between the
returns of portfolios of size-sorted stocks are positively related to aggregate market
volatility. As the covariances between asset returns are a major input into determining
prices through the CAPM, the authors develop a model that takes into account changes in
aggregate market volatility. This article effectively ties together the literature on
volatility in asset pricing and the literature on time-varying risk premiums through the

development of a model that explicitly prices changes in aggregate market volatility.

12



Koutmous, Lee and Theodossiou (19994) further refine the heteroskedastic CAPM,
developed in Schwert and Seguin (1990). Instead of using weighted least squares (WLS),
generalized method of moments (GMM) and autoregressive estimates of market volatility
to control for heteroskedasticity and autocorrelation, this paper uses a generalized
autoregressive conditional heteroskedasticity (GARCH) model. The main advantage of
using the GARCH methodology is that it is not necessary to use generated regressors in
the estimation of the model. Thus, there is less measurement error. The authors use this
methodology to test the reactions of various international stock markets to changes in the
volatility of an international stock index. They find that the relative price of risk
increases for Australia, Germany and Switzerland and decréases for the United States and

Japan during periods of high World volatility.

Episcopos (1996) uses the model developed by Schwert and Seguin (1990), but
implements the exponential GARCH (E-GARCH) methodology to control for
heteroskedasticity and autocorrelation. In addition to not requiring the use of generated
regressors, the E-GARCH methodology allows for asymmetrical volatility.! This model
is used to test the reactions of industry based sub indices of the Toronto Stock Exchange
300 (TSE 300) index. He finds differences between the reactions of different industry
groups to changes in aggregate market volatility, indicating that differences in the price
of risk between industry groups increase during periods of high market volatility.
However, there is no clear relationship between the industry groups, whose relative price

of risk increases and those whose price of risk decreases.

! In a study of different models of stock volatility, Pagan and Schwert (1990) find that the E-GARCH
model approximates market volatility better than any other model in out of sample tests.

13



2.5 Relationship Between the Literature and This Thesis

This thesis connects the literature on the BM anomaly with the literature on volatility
dependent conditional CAPMs. From the work on time-varying betas and covariances
and the literature on volatility, Schwert and Seguin (1990) developed a CAPM that takes
into account the changes in pricing arising from changes in volatility. Later articles

further refine and improve this model.

We use this model to test the suggestion of Fama and French (1992), who state that the
BM ratio may proxy for business cycle related variables. Although there are numerous
business cycle related variables, this thesis concentrates on one of them, aggregate market
volatility, and tests to see how the pricing of BM-sorted portfolios is changed when time-

varying equity volatility is explicitly accounted for.
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3. Data

This thesis uses three data samples. The first sample presents portfolios® taken from the
intersection of the COMPUSTAT and Center for Research in Securities Prices (CRSP)
databases. COMPUSTAT is used to obtain market value and BM ratio information about
the firms. CRSP is used to obtain the returns of these firms. This sample is created to
test the importance of using a conditional CAPM for the pricing of BM-sorted portfolios.
Size-sorted portfolios are also created using the same stocks for the purposes of
comparison. Second and third samples of New York Stock Exchange (NYSE) size-
sorted portfolios are also formed during the periods 1987-1997 and 1980-1986. These
samples are used to extend the work of Schwert and Seguin (1990) into the 1990s and

ensure that our results are comparable with their results.

3.1 Sample 1: BM-Sorted Portfolios and Size-Sorted Portfolios from the

COMPUSTAT Database for the Period 1990-1997

Our sample includes all stocks traded on the New York Stock Exchange (NYSE),
American Stock Exchange (AMEX) and National Association of Securities Dealers
Automated Quotation System (NASDAQ) that have data available on both

COMPUSTAT and CRSP except for financial firms (all firms with SIC codes in the

? Lo and MacKinlay (1990) show that sorting portfolios into groups on the basis of a variable that is known
to be correlated with returns introduces a bias in favor of rejecting the asset pricing model being tested.
The bias increases with the number of portfolios created. This point should be remembered when viewing
our results.
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600s). The financial firms are removed because they have unusually high leverage and
are consequently not directly comparable with non-financial firms. This will help keep
results comparable with Fama and French (1992) and Loughran (1997). This sample is
taken from the same data as Fama and French (1992), but begins immediately after the

sample used in their article ends.

BM ratio is taken from the COMPUSTAT database and is calculated, as in Loughran
(1997), as fiscal year end book value of equity (COMPUSTAT item # 60) plus fiscal year
end book value of deferred taxes (item # 74). BM ratio is calculated only annually while
returns are calculated monthly. This is because accounting data, such as book value, are

not available on a monthly basis.

On the basis of their BM ratio, firms are placed into one of five different portfolios. Each
portfolio contains the same number of firms. Thus, the first portfolio contains the 20% of
firms with the lowest BM ratio, the second portfolio contains the 20% of firms with the

next lowest BM ratios, and so on. This procedure is accomplished using the “Categorize”

function in SPSS.

Market value is taken as the firm’s market value at fiscal year end. The use of fiscal year
end data is consistent with Fama and French (1992) and further with Kothari, Shanken
and Sloan (1995). Other articles typically use December 31 market capitalization.
However, both Kothari, Shanken and Sloan (1995) and Fama and French (1992) find that

the use of fiscal year end versus calendar year end is irrelevant as both measures lead to
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essentially identical results. Firms that are missing either market value or book value of
equity in the COMPUSTAT database are excluded from the study. Firms that do not
have a value for book value of deferred taxes, but have both other COMPUSTAT
variables are included in the study because deferred taxes are usually very small in
comparison to the other variables. The sorting of these portfolios is accomplished in the
same way as for the BM-sorted portfolios, but with market capitalization used in place of

the BM ratio.

After sorting into portfolios, the issue CUSIP numbers, taken from COMPUSTAT, were
entered into CRSP’s msxport and dsxport functions, where equally weighted portfolio
returns, including dividends, were calculated on a daily and monthly basis. There are a

total of 91 monthly observations in this sample.

3.2 Sample 2: NYSE Size-Sorted Portfolios for the Period 1987-1997

This sample is composed of NYSE stocks divided into five equal size portfolios on the
basis of their year-end market value. The market value figure is taken from the CRSP
database along with their returns. The December 31 year-end market value figures are
used as the basis for forming portfolios for which returns are calculated in the following
year. Equally weighted returns, including dividends, for these portfolios are calculated
through the msxport program of CRSP. Excess returns are calculated by subtracting the
30-day T-bill rate from the CRSP output. T-bill rates are obtained from the Ibbotson

(1998) yearbook.
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This sample is calculated in the same way as the Schwert and Seguin (1990) sample and

begins in 1987 immediately following the end of their sample in 1986 for a total of 120

observations. This sample will be the basis for extending their work.

3.3 Sample 3: NYSE Size-Sorted Portfolios for the Period 1980-1986

This sample is created in the same way as Sample 2, but covers the period from 1980-

1986 for a total of 60 observations. The primary purpose of this sample is to be used as

a basis for direct comparison with the Schwert and Seguin (1990) results to ensure that all

models have been programmed correctly. As this sample is primarily a check sample and

the results for it are covered in Schwert and Seguin (1990), there will be little discussion

of it in the results section.

3.4 Summary Statistics For the Samples

Summary statistics of the three samples are given below.

Sample 1 -NYSE, AMEX and NASDAQ 1990-1997

Panel A: Size-sorted Data

Small 2 3 4 Large
Mean 0.0324 0.01569 0.0129 0.0105 0.0116
Return
Standard 0.0589 0.0532 0.0512 0.0467 0.0522
Deviation

18




Panel B: BM-Sorted Portfolios

Growth 2 3 Value
Mean 0.0120 0.0118 0.0142 0.0160 0.0212
Retum
Standard 0.0550 0.0469 0.0416 0.0411 0.0427
Deviation

As can be seen above returns decrease with size and increase with BM ratio. Volatility
decreases with size except for the portfolio of largest stocks, which breaks this pattern by
having quite a high standard deviation. The standard deviations of the BM-sorted
portfolios are decreasing as the BM ratio increases except for the value portfolio, which
shows a slight increase. The standard deviations are smaller for the BM-sorted portfolios
than the size-sorted portfolios, indicating that there is more non-systematic risk

diversified away within the BM-sorted portfolios than within size-sorted portfolios.

Sample 2 -NYSE 1987-1997

Small 2 3 Large
Mean 0.01261 0.0069 0.0070 0.0077 0.0077
Returmn
Standard 0.0616 0.0452 0.0453 0.0444 0.0415
Deviation
Sample 3 — NYSE 1980-1986

Small 2 3 Large
Mean 0.019 0.0119 0.010 0.010 0.009
Return
Standard 0.054 0.048 0.047 0.046 0.045
Deviation
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Both Samples 2 and 3 show the same pattern of higher returns and higher volatility for
smaller stocks. They differ from the size-sorted portfolios of Sample 1 in that the
portfolio of largest stocks does not have higher volatility and returns than the next largest

portfolio.

Except for the smallest size portfolios, Sample 3 has higher standard deviations and
higher mean returns than Sample 2. Thus, the conclusions of the portfolio theory hold for
portfolios 2 through Large in comparing both samples. The small stock portfolio, on the
other hand, presents inconsistent results with the predictions of the portfolio theory. This
inconsistency, however, appears to be consistent with the well-documented size effect.
Overall, these tables provide casual evidence in favor of time-varying returns and

volatility.

3.5 Portfolio Sort Information

As can be seen from the table below, value stocks are also likely to be smaller stocks.
This indicates that much of the size effect and BM anomaly may be driven by the same
firms. These findings are consistent with Loughran (1997), who finds that many small
firms are also value firms. A year by year breakdown of the portfolios’ sorts is presented

in Appendix 1.
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Average Number of Firms in Groups for Sample 1 for Period 1990-1997

Value 1 2 3 | Growth
Small
258 125 96 90 160
2
204 132 121 122 158
3
166 157 143 131 139
4
109 162 161 166 135
Large
75 158 179 180 127
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4. Methodology

4.1 The Models

This thesis estimates two models, introduced in Schwert and Seguin (1990). The first
model is concerned with estimating the relationship between conditional portfolio return
covariances and the market’s variance, o>, . After introducing this model, we develop
the second model, which is a version of the CAPM that takes the relationship between the
variance of the market portfolio returns and asset return covariances into account, and

then discuss the implications of this model for asset pricing.

4.1.1 Time-Varving Covariances

The first model is given as:
Covt-l(Ri[aRjt) = g + W O':u—l (1)
Equation (1) states that the conditional covariance between asset i and j, calculated as in

section 4.2, depends on a constant £ and a slope coefficient, , that relates to the market

variance, o, . Economically, this states that covariances between asset returns vary with
the aggregate market variance. This relationship has been hypothesized by a number of
authors, including Black (1976) and Christie (1982). They suggest that assets with
exposure to the market experience greater changes in covariances than other firms,
although they do not directly test this intuition. Schwert and Seguin (1990) test this
intuition for size-sorted stocks, but there is not any research on covariance changes

between BM-sorted portfolios.
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In the CAPM, the beta term represents the amount of non-diversifiable risk for an asset.
It allows an analyst to find the additional return that an investor can expect to receive for
assuming an additional unit of risk. Beta is given by the covariance of an asset’s returns
with the returns on the market portfolio divided by the variance of the returns on the
market portfolio. Thus, the second model is a version of the CAPM that takes into
account the covariance relationship shown in equation (1). If both covariances and the
market variance vary through time, but in a proportional manner, i.e. in equation (1), & is
insignificant and  is significant, then beta is not time-varying. Ifboth & and y are
significant, then the relationship is not proportional and the traditional CAPM can be
improved upon by taking the relationship in equation (1) into account. The underlying
intuition here is that although both the variance and the covariance are changing through
time, if they move through time proportionally, they will maintain a proportional
relationship. Beta, the relationship between the covariance between asset returns and
market returns and market variance, is constant if this relationship is proportional. The
model is developed following the method shown in Schwert and Seguin (1990 pg.1139-

1140).

4.1.2 Time-Varying Capital Asset Pricing Model

In the traditional CAPM:

Rit= «; + ﬂiRmr + €y (2)
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The beta for asset i is given as:

g =z @3)

am!

where o, is the covariance between the return on asset i and the return on the market

portfolio.

As shown in Luenberger (1998, pg. 150), equation (3) can be written as:

R — 4)

where there are j other assets in the market portfolio, and w; represents the market weight
of asset j.
If the covariance is as given in equation (1) then equation (4) can be rewritten as:

Zwi(f'*“//o':u)
ﬁir =+

()

2
O e

A key point to notice here is that the beta in equation (5) is now time-varying and is

different in each period t.

If the sum of the weights is constrained to equal one and the average weighted beta is

also constrained to equal one, then as shown in Appendix 3, equation (5) reduces to:

By=—ty ©)
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Thus, if equation (1) is assumed to hold, the beta is composed of two portions; a constant
part, similar to the traditional beta, and a second part that varies with the level of
volatility. If, however, the constant term in equation (1) is equal to 0, then the first term
of equation (6) disappears and the traditional CAPM holds. The conditional CAPM,

given by this model, as shown in Appendix 3, is:
Ri= a,+ B iuRm ‘*’ﬂ;z (Rmt/o',i, e @)

As shown in Appendix 3, the S, coefficient should, if the model holds perfectly, be
identical to the £ in the first model. If & is significant, it indicates that covariances and
aggregate market variance do not change through time proportionally. Thus, the £, term

adjusts the traditional CAPM to take into account the changes to the measure of risk that

occurs through time due to changes in variances and covariances.

4.2 Standard Deviation and Covariance Calculations

For all data sets, the daily returns of stocks in all portfolios were calculated. They are
used as input for calculating estimates of monthly standard deviations of the overall

market. These estimates of monthly deviations were calculated using the method of

French, Schwert and Stambough (1987):
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Nt Ne-1

Sm=D, P2 Lifin 8)

i=1 7=l
where r; is the return on the CRSP market portfolio on day i, N is the number of trading
days in the month and s_, is the estimated monthly variance of returns on the CRSP

market portfolio.

Schwert and Seguin (1990) use daily returns, where they are available, arguing that more
frequent sampling results in more accurate estimates of volatility. Where daily returns

are not available, they estimate aggregate monthly standard deviation.
S = NTI2{Jry —ry|~ 1} 9)

where y; is the mean of the series lr,., - rﬁl , where r; is the return on portfolio i1 in month

t, and ry, is the risk free rate in month t. Tests, not reported in this thesis show that
equations (8) and (9) give substantially the same results. The risk free rates used in this

calculation are taken from Ibbotson Associates (1998).

The conditional covariances between the returns on the size-sorted and BM-sorted
portfolios are a necessary input in this thesis. These conditional covariances are

estimated following the method in Schwert and Seguin (1990). It is given as:

CoveiRi, Rjt) = [(Tic - 1) - /UR.'] * [(I'jz - Ig) - ,URj] (10)

26



where R;; represents the excess return to portfolio i in month t and x,, represents the

mean of value of R; for all times t.

4.3 Controls for Heteroskedasticity and Autocorrelation

This thesis uses four estimation procedures to control for the problems of autocorrelation
and heteroskedasticity in different ways. Heteroskedasticity may be a problem in studies
of this type. Although it results in unbiased parameter estimates, the variance estimates
may be biased upwards, which results in unreliable t-statistics. That is, the t-statistics are
biased downwards. Autocorrelation may also be a problem While it does not bias
parameter estimates, it can cause the estimated variance to be substantially smaller than

the true variance. This inflates the F-statistics and t-statistics.

Multiple methodologies are used to control for these statistical problems for a number of
reasons. First, using a number of methodologies allows for comparisons between
methods, which, in turn, ensures that relationships identified exist and are not
methodologically dependent. Second, related studies use a variety of methodologies;
using all of the methods employed in related studies, while holding the variation in the
data constant, enhances comparability between studies. Finally, and most importantly, as
Davidian and Carroll (1987) argue, the assumed variance function contains important

information in addition to being a means of controlling problems of heteroskedasticity.
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4.3.1 GARCH and E-GARCH Estimations

The first two estimation procedures belong to the autoregressive conditional
heteroskedasticity (ARCH) family introduced by Engle (1982). ARCH models
simultaneously control for heteroskedasticity and autocorrelation. Both the generalized

ARCH model (GARCH) and the exponential GARCH (E-GARCH) model are used.

The GARCH model was introduced in Bollerslev (1986). GARCH models assume that
the heteroskedasticity is dependent on lagged values of the squared error term and lagged
values of the estimated variance. This thesis uses a GARCH (1,1) model, which means
that one lag of the squared error term and one lag of the estimated variance are included
in the estimation procedure. The two models to be estimated using the GARCE (1,1)

estimation method are:

COV(RiI: RJ[) = 5y’+ l//”' S:" +e& ij[ (1 la)

hy= oy + ¢ijl gijz':-l + 7 hij+ M (11b)
Ri= @;+ BiRm+ B2 Rea/ 2, J+en (12a)
St = Tp + Pnei, + Vi Sic1+ Vit (12b)

where h, and s; are the estimated variances at time t of equations (11a) and (12a). The

data for market variance, &, , are obtained by squaring the results of equation (8). In the
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GARCH equations (11b) and (12b), the first parameter represents the constant portion of
volatility. The second parameter shows the amount of h, or s, that is determined by the
previous time period’s squared error term and the final parameter shows the amount of
the present time period’s estimated variance that can be predicted from the previous time
period’s estimate of the variance. The final terms, 7, and v, represent the error in

estimation of the variances of the two models. The terms in equations (11a) and (12a) are

as defined in discussing equations (1) and (7) in Section 4.1.

The model iterates between the two equations, minimizing the joint variance of part a and
b of the equations, until further iterations become unnecessary. For the remainder of the

paper, a reference to the GARCH or E-GARCH model indicates a (1,1) model.

The E-GARCH methodology, developed by Nelson (1991), is also used to estimate the
two models. Similar to the GARCH method, the E-GARCH model also assumes that the
variance of the error term at time t is dependent on lagged values of the squared error
term and lagged estimates of the variance. However, the E-GARCH assumes that the
variance of the function is an asymmetric function of lagged squared error terms and
variances. This is consistent Christie (1982) and Black (1976), who argue that stocks
prices react more strongly to volatility increases than volatility decreases. The two

models, estimated using the E-GARCH procedure, are as follows:
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Cov(RiRj) = &; + v 50, + &, (13a)

In(hije) = @ i1 + @1 8(Zige-1) + ¥ i1 InChier) + 7, (13b)

8@ = 0y, +[|z;] - Blz:] (13c)

Zie= &/ \/Z (13d)

Ri= a;+ BuRm+Bi2 Rt/ 52, e (14a)
In(si) = @2 + 2 g(Zi1) + ¥ i2 In(Sin1) + Vie (14b)
g(zy) = Gy +1* [lz,.,l - Elzl.,l] (14c)
zo=eul \Jh, (14d)

where h;and s, are the variances of the models at time t. @ is the constant portion of
volatility. ¢ is the portion of variance that is dependent on lagged values of error terms,
but through a different process than with the GARCH model. y represents the part of
variance at time t that is dependent on one lag of the estimate of the previous periods
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if z, follows a standardized

variance. The expected value of z, z,[ ,isequal to (2/x)

normal distribution. When z; is positive the function g(z,) is equivalent to (8 -1); when it
is negative, g(z;) equals (6 +1). Because the function gives different values for positive
and negative surprises in volatility, the model allows for asymmetrical responses to these

two types of volatility changes.
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Pagan and Schwert (1990) find that the E-GARCH model is the best parametric model
for modeling stock prices. While there are non-parametric models that outperform the E-
GARCH model within sample, the E-GARCH model outperforms all of these models
out-of-sample. It should be noted that Pagan and Schwert (1990) do not examine the
weighted least square (WLS) method and OLS with Hansen’s (1982) t-statistic correction

that are also used in this thesis.

Similarly, Koutmous et. al. (1994) use GARCH estimation, but do not consider the WLS
and Hansen corrected estimation. Episcopos (1996) uses E-GARCH estimation, but does

not compare his results with other methodologies.

4.3.2 Methods Using Generated Regressors

In the remaining two methods, WLS and Hansen’s (1982) correction, generated
regressors are used to control for autocorrelation. WLS and Hansens’s (1982) t-statistic
correction are used to control for heteroskedasticity. Following Schwert and Seguin
(1990), we use a 12" order WLS autoregressive model, and obtain estimates of the

aggregate market standard deviation:

12
=y + D Bi5,_; +&: (15a)

i=]

le.| =70 +7.6,, +w (15b)
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where if y, is significant, it indicates that heteroscedasticity exists and is dependent on
the level of aggregate market standard deviations. If y, is also significant, it indicates

that the heteroscedasticity is non-proportional.

The standard deviation at time t is estimated using ordinary least squares (OLS). The
absolute values of the error terms from this regression are estimated in the Glesjer (1969)
regression, where they are assumed to be dependent on the aggregate level of market
standard deviation. The inverse of the predicted values from this regression at time t are
multiplied against all terms on the right side of the equation at time t to weight these

terms. This process is repeated for a total of three iterations.

The disadvantage of using generated regressors is that it introduces estimation error from
the first stage into the second stage, that is, in estimating either equation (1) or equation
(7). This may lead to the variance of the second stage being underestimated. This biases
the t-statistics upwards. To eliminate this problem, all t-statistics for the WLS estimates
and Hansen’s (1982) method are adjusted using the methods of Murphy and Topel

(1985).

4.3.3 WLS and OLS with Hansen’s Correction Estimations

WLS estimation begins with estimating the models using ordinary least squares. Then,
the square of the error term is estimated using Glesjer (1969) regressions. In the Glesjer

regressions, the error term is dependent on the aggregate market variance. The predicted
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error term is used as a weight for all terms in the original model, which is then re-
estimated. This process is repeated for a total of three iterations. The WLS equations for

the two models are as follows:

Cov(Ri, Rj)) =&; +y;s2, + 5 (16a)
5;‘,27 =T, +5§ils:n + 17, (16b)
Ri= a;+ BuRm+ B2 Ru/s., )+en (17a)
e =, +0,5,, +Vy (17b)

Equations (16a) and (17a) are as given in equations (1) and (7). Part b of the equations
are similar to the correction discussed for equation (15b), where heteroskedasticity is

assumed to be time-varying and dependent on the aggregate market variance.

Neter, Kutner, Nachsteim and Wasserman (1996) show that heteroskedasticity can be
dependent on any of the underlying variables. Tests, not reported in this thesis, using the
covariances and portfolio returns (the dependent variables) instead of aggregate market
variance (the independent variable) in the Glesjer regressions showed that there is no

relationship between heteroskedasticity and the level of covariance.

GMM estimation, developed by Hansen (1982), is a non-linear estimation method that
gives consistent parameter estimates, but does not require that the variables be normally

distributed. The version of this method used in this thesis and in Schwert and Seguin
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(1990) gives the same parameter estimates as OLS estimation, but it adjusts the t-
statistics. Heteroskedasticity results in estimates of the conditional variance that are
larger than the true variance. This results in the t-statistics being biased downwards. By
taking into account this heteroskedasticity, Hansen’s (1982) correction resuits in reliable

t-statistics.

The tables reporting the WLS and OLS results with the Hansen correction, the corrected
t-statistics are presented in parenthesis beneath the parameter estimatés. Beneath these t-
statistics, are new t-statistics calculated using the adjustment of Murphy and Topel (1985)
are reported. The Murphy and Topel (1985) adjustment follows immediately in the next

section.
4.4 The Murphy Topel Adjustment

Murphy and Topel (1985) present a method of adjusting two stage econometric models,
such as the WLS and GMM estimations in this thesis. In our model, the first stage is the
12" order autoregressive model of monthly standard deviations in equation (15). The
second step is the estimation of the portfolio covariances or the conditional CAPM.
Because the first stage estimates contain sampling error, the second stage estimated
standard errors are biased downwards. This results in inflated t-statistics that must be

adjusted downwards to be properly interpreted.
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Their article presents two methods of adjustments. The first method assumes that the
first stage and second stage error terms are uncorrelated. However, as Murphy and Topel
(1985) point out, when the two stages are estimated from the same or contemporaneous
data, this assumption may not be correct. Because of this possibility, they derive a
generalized method that allows for correlations between each stage’s error terms. If there
is no correlation between error terms, the second model gives results that are identical to
the first model. Since the market index is derived from data that includes the individual
portfolio data used for returns and covariance estimates, we use the second model.

Estimates using the first model, not reported here, are essentially the same.

Their adjustment, as shown in Murphy and Topel (1985, pg. 376), is as follows:

2=00" +0;'[OR7(9)0, - QR (6)Q, - O,R™(6)0,10;" (18)
where;
z = the adjusted variance/covariance matrix
Q,=n"'Z'Z
Qi=n"'ZF*

Q:=n" > Z.4,1'(§;x,)
i=1

X = the data used in the first step estimation
Z = predictions from the first stage equation used in the second step
F = the predictions from the second stage model

F*=the first derivative of the F matrix
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n = the number of observations
u =estimated residual from the second step

R= the information matrix

=2"! stage variance before adjustment

The first term on the right is the unadjusted variance/covariance matrix and the remainder

is the adjustment.

4.5 Information Content of the Assumed Variance Function

There are three assumed variance functions estimated using three different methods, the
GARCH, E-GARCH and Glesjer regressious. Davidian and Carroll (1987) argue that the
variance function is itself of interest, not only for its ability to control heteroskedasticity.
In the GARCH regressions, the error term is assumed to be dependent on its own squared
lagged values and lagged estimates of the variance of the error terms. The E-GARCH
model is similar, but assumes that increases in volatility are of more significance than
decreases in volatility. The Glesjer regression used here, assumes that the error term is

dependent on the level of market variance in the present period.

The Glesjer method is rarely used in studies of financial markets. Its statistical
performance and properties relative to the ARCH family estimation procedures have not
been examined. While Schwert and Seguin (1990) benefit extensively from the Glesjer

regressions, they do not contrast its performance and properties, while holding the
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variation in data constant, against the ARCH family estimations. While this thesis does
not study the statistical performance property issues in detail, it gives a first glimpse of
the differences in the estimation results between different procedures, while holding the

variation in the data constant. This is another contribution of the thesis to the literature.
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5. Results and Interpretation
5.1 Estimates of Market Standard Deviations

The resuits of the estimates of market standard deviations, estimated using WLS as in
Schwert and Seguin (1990, pg. 1133), and subsequently used as generated regressors in
the OLS and WLS estimates are shown in Table 1. For all samples the number of
observations is considerably lower than that in the Schwert and Seguin (1990) sample.
They have over 600 observations, while the samples used in this thesis have between 60
and 120 observations. Panels A and B of Table 1 show that there is far more
autocorrelation for the NYSE sample during the period 1987-1997 than for the NYSE,
AMEX and NASDAQ sample covering the period 1990-1997. This difference is likely
driven either because the years 1987-1990 have higher autocorrelation or else because the
NYSE has higher autocorrelation than the other exchanges. There is higher serial
correlation for the period 1980-1986 than for the 1987-1997 period for NYSE stocks.
This is consistent with the findings of Schwert and Seguin (1990), who note that

autocorrelation is declining over time.
5.2 Variance Dependent Covariances

These models test the relationship between the conditional covariances of portfolios and
the aggregate market variance. Ifthe y term is significant, it indicates that the
covariance at time t is dependent on the aggregate market variance. If the & is also

significant, it indicates that while the covariance is dependent on the market variance, it is
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not a completely proportional relationship and that the market variance alone does not

completely explain the covariance.

5.2.1 Conditional Covariances of Size-Sorted NYSE Portfolios for the Period 1987-1997

There is a significant positive relationship between market variance and covariances,
shown in Tables 2-5. The Glesjer regression results, shown in Tables 4 and 5, have
insignificant constants, and significant or marginally significanty after the Murphy-
Topel adjustment. This indicates that the covariances and variances of the portfolios are
fully dependent on the aggregate market variance. The GARCH and E-GARCH results,
shown in Tables 2 and 3, show highly significant constants, £, and highly significant
market variance coefficients, . The R? are much higher than for the Glesjer

regressions.

Although the estimation methods give different significances, the general pattem is
similar. The coefficient estimated for y for small stock portfolios is larger than for other
portfolios whose coefficients decrease as size increases. This is also consistent with the
predictions of Black (1976). The covariances of smaller stocks also increase by a greater
amount than for larger stocks. The major implication of this is that small stocks are more

sensitive to changes in market variance.

As discussed in the methodology section, if the intercept term in equation (1) is

significant, then there is evidence in favor of using the conditional CAPM. Based on
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these results, it is expected that the conditional version of the CAPM will improve
estimates of portfolio returns for the GARCH and E-GARCH methods, but not the

Glesjer methods.

Schwert and Seguin (1990, pg. 1134) show that a significant relationship between
portfolio returns and market variance could cause the regressions in this section to be
misspecified. To ensure that this is not a problem, regressions of portfolio returns on
market variance were run using OLS. They show that there is not a significant

relationship between portfolio returns and market variance.

The GARCH and E-GARCH results, shown in Tables 2 and 3, show that there is strong
autocorrelation during this period. The squared, lagged error term coefficient, ¢, is
significant for all portfolios. The lagged estimated variance coefficient, y, is significant
in most, but not all, of the regressions. For the Hansen-corrected and WLS estimates the
constant portion of volatility, @, is insignificant in all cases. The market variance
coefficient, &, is significant in all cases. This shows that much of the heteroskedasticity

in the portfolio return covariances is driven by changes in the market variance.

Tables 14-17 show results for size-sorted NYSE stock portfolios, covering the period
1980-1986. The GARCH and E-GARCH results show a significant relationship between
the portfolios’ return covariances however the coefficients are smaller than for the

Schwert and Seguin (1990) sample and the 1987-1997 sample. The WLS and Hansen

estimates of i, the relationship between covariances and market variance, are all

40



insignificant. A possible explanation for these findings is the relatively small sample

size.

5.2.2. Conditional Covariances for BM-Sorted Portfolios for the Period 1990-1997

All estimation procedures, shown in Tables 6-9, suggest that there is a significant,
positive relationship between portfolio covariances and market volatility. The E-
GARCH methodology, shown in Table 7, did not work well with numerous regressions,
failing to converge even when the maximum number of iterations was increased to 150.

Thus, the results will not be discussed here.

The Glesjer results, in Tables 8 and 9, show that some ¢ are significant until the
Murphy-Topel adjustment. After the adjustment the significance disappears in all cases.
The GARCH results, shown in Table 6, show that the constant terms are not significantly
different from O, indicating that covariances vary through time proportionally to market
volatility. The fact that the constants are not significant and that the covariances are
proportional to market volatility suggests that the time-varying coefficient in the CAPM

model will not be significant.

The results in Tables 6-9 support the intuition of Black (1976) who stated that when

volatility changes, all stocks move in the same direction and that the higher beta stocks,
such as value stocks, move by a greater amount. The y coefficients are generally larger

for value stocks’ covariances and decline for the growth stock covariances such as
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covariances (4,5) and (3,5). The variance of value stocks increases by a much greater

amount than for other portfolios which generally decline as the BM ratio decreases.

As shown in Table 1, Panels A and B, there is less autocorrelation for this sample than
for the sample in the previous section. As a result, the GARCH terms, ¢ and y, which
depend on squared lagged error terms and lagged estimates of the ervor term’s variance
respectively, are less significant than in the previous sample. The Glesjer regressions
show, that, after the Murphy-Topel adjustment, the current aggregate market variance
mainly determines the current period error term, as the constant term is generally

insignificant.

5.2.3 Volatility Dependent Covariances Size-Sorted Portfolios for the Period 1990-1997

The volatility dependent covariances for this sample, shown in Tables 10-13, are similar
to the BM results. For all estimation methods, the covariances are time-varying and are
positively related to market variance. Consistent with the arguments of Black {1976) and
the empirical findings of Schwert and Seguin (1990), the smaller stock portfolios’

covariances generally increase by a larger amount when market variance increases.

For this sample, the WLS estimates, shown in Table 13, have intercepts that are
significant and negative. None of the other estimation methods produce significant
intercepts. Because of this, as shown in the methodology section, the time-varying term

in the WLS estimates of the conditional CAPM should be significant. The fact that only
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one estimation method results in a significant intercept coefficient indicates that this

finding may be methodologically dependent.

5.2.4 Comparisons Between Size-Sorted and BM-Sorted Portfolios for the Period 1990-

1997

The general pattern of results for size-sorted and BM-sorted portfolios is quite similar.
The portfolios that report anomalously high returns, the value stocks and small caps, have
greater sensitivity to changes in market variance. However, there is a greater spread in
the size of the y coefficients, the measure of sensitivity to changes in market variance,

for value versus growth stocks than for small caps versus large caps.
5.3 Conditional CAPM

In the conditional version of the CAPM, shown in equation (7), the & term should be not
significantly different from O if the CAPM adequately explains returns. If the CAPM
does not adequately explain returns, there will be either abnormal gains to that portfolio,
represented by a positive «, or abnormal losses, represented by a negative alpha. The £,
term is the traditional CAPM beta that represents the amount of risk, assuming constant
covariances and constant market variance. The 3, term represents the part of the asset’s

return that is time-varying and dependent on the market’s variance.
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5.3.1. Conditional CAPM for Size-sorted NYSE Stocks for the period 1987-1997

This sample is a direct extension of Schwert and Seguin (1990), which ends in 1986
while this sample begins in 1987. All estimation methods give quite similar results. The
conditional CAPM results, in Tables 18-21, show that only the portfolio of largest firms
and the next to smallest have a significant £, coefficient. If the model developed in the
methodology held perfectly, we would expect to see significant coefficients for all
portfolios estimated using GARCH and E-GARCH methods. The largest stocks have a
positive coefficient, while the next to largest have a negative coefficient, as shown in
Tables 18 and 19. This provides some evidence that, consistent with Schwert and Seguin
(1990), the beta spread for size-sorted portfolios increases during periods of high market
volatility with the smaller stocks becoming relatively more risky. However, because only
two of the five portfolios have significant time-varying coefficients, this evidence must

be regarded as weak.

This sample provides weak evidence of a reverse size effect as small stocks consistently
have negative alphas, while the large stock portfolio consistently has positive alphas.
However, there is no significance to these results. As with the eariier size-sorted sample,
[, successfully explains the vast majority of returns providing, evidence in support of the

CAPM.

The Hansen-corrected betas for the 1987-1997 period are less significant and smaller than

those in the Schwert-Seguin study. The WLS estimates are also smaller and less



significant in our study, but not by a great margin. In general, the results suggest that
covariances and asset prices are less dependent on the aggregate market variance than

they were during previous decades.

5.3.2 Conditional CAPM for BM-Sorted Portfolios for the Period 1990-1997

This model directly tests one version of the Fama and French (1992) suggestion that BM
proxies for some type of business cycle risk, specifically it tests for the relationship
between BM-sorted portfolios and market variance. The results for the conditional
CAPM, shown in Tables 22-25, does not work well for BM-sorted portfolios as can be
seen from the £, column in these tables. For all estimation methods, the time-varying
term has no consistent significance through the various estimation methods. There is also
no discernable pattern of negative or positive signs associated with this term. This is to
be expected, given the insignificant alphas in the tests of the covariance model. Although
both covariances and variance are time-varying, their movements through time are
proportional to one another. Therefore, although they both change, their relationship
remains constant through time and the static CAPM captures virtually all of the pricing

information.

The Glesjer estimation methods do not show a value premium, but the GARCH and E-

GARCH methods do. For all methods, £, has a large amount of explanatory power in
contrast to the findings of Fama and French (1992). Although the value premium, shown

in the significant alphas, is evidence against the CAPM holding perfectly, the large R?
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and highly significant S, term contradict the findings of Fama and French (1992) who
claim that beta has little explanatory power. In general, our results are more consistent
with Fama and French (1993) that states that the traditional CAPM beta provides useful

information, but can be supplemented with the additional factors of size and BM.

We do not find evidence that suggests the BM effect is driven by time-varying volatility.
However, market volatility is only one of many business cycle variables; so, these
findings cannot be considered evidence against the suggestion of Fama and French

(1992). They merely fail to provide evidence for one specific version of this hypothesis.

5.3.3 Conditional CAPM for Size-Sorted Portfolios for the Period 1990-1997

Interestingly, only the GARCH method, shown in Table 26, shows a significant size
premium. Other methodologies show no evidence of this size premium. A possible
explanation for this is the findings of Shumway and Warther (1999), who report that,
after controlling for the survival bias in the CRSP tapes, there is no evidence of a size
premium at any time in history. Their article notes that the survival bias in CRSP data
has been reduced since 1987. Consequently, our sample should not have a significant

survival bias.
With the GARCH and E-GARCH methods, shown in Tables 26 and 27, respectively, the

small stock portfolio time-varying coefficient is negative. The larger stock coefficients

are positive; this is consistent with the findings of Schwert and Seguin (1990). However,
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the WLS estimates in Table 29 have the opposite pattern; large stocks’ f3, coefficient is
negative, while the small stock portfolio coefficient estimate is positive. Overall, the
results suggest that there is not a reliable f3, coefficient for any of the portfolios. Any

significance that arises seems to be mostly a product of methodology.

The WLS estimates of this model, shown in Table 29, show some significance in the
time-varying risk premium coefficient, however other estimation methods, shown in
Tables 26-28, are generally not significant. This is consistent with or earlier findings that

show only WLS estimates of the covariance relationship find a significant intercept term.

Consistent with the BM-sorted portfolios, we find that S, has a great deal of explanatory
power. The lowest R is over 0.70 and the highest is over 0.97. This strongly contradicts
the findings of Fama and French (1992), who claim that beta has no explanatory power.
Overall, the findings of the size-sorted portfolios and BM-sorted portfolios suggest that

the traditional CAPM generally works during this sample period.
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6. Conclusion

This thesis has examined the relationship between aggregate market variance and the
covariances of BM and size-sorted portfolios. It has also examined the pricing of these
portfolios when this relationship between portfolio covariances and the market variance
is explicitly modeled. We find that for BM-sorted portfolios and size-sorted portfolios
during the 1990s, formed from the intersection of the COMPUSTAT and CRSP
databases, there is evidence of time-varying covariances in response to changes in
aggregate market variance. However, for these portfolios, the changes to covariances and
volatility are proportional through time and, consequently, the static CAPM performs

well.

Fama and French (1992) suggest that the BM anomaly could represent a relationship
between time-varying economic risk and equity returns that is missed by the static
CAPM. We test one version of this possibility by estimating returns to BM-sorted
portfolios taking into account the time-varying nature of volatility. The results do not

support the possibility that changes in volatility drive the BM effect.

This thesis also extends the work of Schwert and Seguin (1990) into the 1990s. We find

that market volatility continues to drive covariance changes. However, we do not find

evidence of a size effect.
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This thesis has also compared a variety of methods for controlling common statistical
problems that arise in financial studies. While GARCH and E-GARCH models are the
most common methods for controlling autocorrelation and heteroskedasticity
simultaneously, our results indicate that autocorrelaﬁon 1s a less of a problem in the past
decade than it has been previously. The aggregate level of market volatility drove much
of the heteroskedasticity in the 1990-1997 sample. In this situation, WLS appears to be a

more effective method of controlling heteroskedasticity.

This thesis suggests a number of interesting ideas for future research. First, as noted in
the thesis, market variance is only one business cycle related variable that could drive the
BM premium. There are numerous other variables such as interest rates, GDP or
monetary conditions that could be driving the BM effect. Secondly, the different
estimation procedures used in this thesis gave differing results for various tests. A study
of different estimation methods and their effects on tests of asset pricing models would be

of interest for empirical financial studies.
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Appendix 1: Size and Book-to-Market Sorts by Year

1990
Value 1 2 3 | Growth
Small
97 101 122 153 129
2
178 135 114 89 87
3
167 145 128 97 55
4
123 146 125 117 66
Large
38 76 114 147 92
1991
Value 1 2 3 | Growth
Small
222 94 65 66 120
2
149 86 83 97 152
3
113 145 102 a7 109
4
74 126 142 117 110
Large
65 119 145 158 80
1992
Value 1 2 3 | Growth
Small
245 87 80 61 124
2
173 92 79 102 151
3
133 116 124 102 121
4
63 145 122 143 123
Large
54 119 152 166 105
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1993

Value 1 2 3 | Growth
Small
270 104 78 59 142
2
166 103 112 118 155
3
136 139 137 100 142
4
87 1563 130 164 120
Large
64 131 175 165 118
1994
Value 1 2 3 | Growth
Small
283 127 91 77 a1
2
187 133 125 115 168
3
137 151 149 138 1
4
104 180 155 171 147
Large
73 158 189 172 134
1995
Value 1 2 3 | Growth
Small
306 147 107 94 167
2
191 154 138 149 189
3
167 163 159 147 184
4
126 168 181 194 151
Large
93 188 190 204 143
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1996

Value 1 2 3 | Growth

Small

344 181 112 93 236
2

268 173 162 170 191
3

217 194 173 186 196
4

131 193 222 219 200
Large

83 224 240 234 182
1997
Value 1 2 3 | Growth

Small

296 158 109 120 272
2

317 182 158 138 171
3

256 205 169 184 152
4

163 218 214 205 160
Large

128 246 230 195 162
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Appendix 2

Table 1 Estimates of Market Standard Deviations Based on 12 Lags

12
&m1=ao + Zﬂisl—i +&y

i=1

Igr[=7o +y16-ml +U

This model shows that &,,, the autocorrelation free estimated market standard deviation
at time t, is a function of 12 lags of the market deviation as measured by equation (8).
The error term is assumed to be a function of a constant, 7o, and the estimated market
standard deviation at time t. The autocorrelation free estimated market standard
deviation is estimated using WLS where the inverse of the ¢, | are used as weights for
three iterations between the equations.

Panel A: Estimates of the market standard deviation based on 12 lags used for BM and
size-sorted portfolios for the period 1990-1997.

Beta t-statistic R® Overall Model
Significance

Intercept 0.026487 2.893 0.1970 0.1105

Lagl 0.230188 1.092

Lag? 0.095147 0.872

Lag3 0.079449 0.722

Tagd 20.133077 1.968

Lag5 -0.023110 -0.253

Lag6 0.069623 0.672

Lag7 20.143289 1.569

Lag? ~0.093418 1134

Lag9 -0.066758 -0.782

LaglG 0.205856 1.881

Lagll -0.115841 -1.311

Lagl2 0.106585 0.967
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Panel B: Estimates of the market standard deviation based on 12 lags used for NYSE
size-sorted portfolios for the period 1987-1997.

Beta t-statistic R” Overall Model
Significance

Intercept 0.010788 1.468 0.4893 0.0001

Lagil 0.231062 1.936

Lag2 -0.145176 -1.603

Lag3 0.289052 2.305

Lag4 0.010545 0.105

Lag5s 0.047690 0.511

Lag6 -0.112425 -3.781

Lag7 0.011600 0.152

Lag8 0.027707 0.330

Lag9 0.246363 2.032

LaglO 0.015698 0.172

Lagll 0.113445 0.965

Lagl2 0.015522 0.162

Panel C: Estimates of the market standard deviation based on 12 lags used for the NYSE
size-sorted portfolios during the period 1980-1986.

Beta t-statistic R* Overall Model
Significance
Intercept 0.013723 1.538 0.6898 0.0001
Lagl -0.080655 -0.640
Lag2 0.311868 2.083
Lag3 0.266214 2.105
Lag4 0.101914 0.766
Lag5 0.002865 0.0.026
Lag6 -0.027636 -0.238
Lag7 0.246584 1.749
Lag8 -0.066217 -0.570
Lag9 -0.040282 -0.400
Lagl0 -0.175244 -2.528
Lagll 0.110627 0.845
Lagl2 -0.007287 -0.064
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Table 2

Time-varying covariances for NYSE stock size-sorted portfolios during the period 1987-
1997, using GARCH estimation.

Cov(RiRj)) = &; +y,; 82, +¢,,

U

= 2
h,= w; + ¢q EL TV ht-l+77,jz

Cov(Ri1,R;) is the covariance, as calculated in equation (10), of the excess returns to
portfolios i and j at time t. The model shows that this covariance is dependent on the
aggregate market variance at time t. The variance of the error term at time t, h,, is
assumed to be dependent on the lagged squared error terms and lagged variances of the
error term. The 1 indicates the smallest stock portfolio and the 5 indicates the largest
stock portfolio. Thus, Cov14 would be the covariance between the small stock portfolio
and the next to largest portfolio.

& Vi (2 &; Vi R

Covll -0.005246 0.278743 0.000001 2.630098 0.145069 0.5261
-18.714) | (31.071) (1.879) (6.180) (6.299)

Covl2 -0.003925 0.205026 0.000001 3.818365 0.002024 0.7092
(-17.527) (26.157) (3.422) (6.168) (0.150)

Covli3 -0.005516 0.265731 0.000002 2.538332 0.001966 0.8034
(-28.233) | (52.047) (2.468) (5.757) (0.207)

Covl4 -0.004799 0.242695 0.000002 1.970734 0.010760 0.7944
(-20.595) (37.739) (4.390) (4.971) (0.404)

Covls -0.003713 0.193655 0.000001 0.820510 0.353369 0.7878
(-9.870) (23.799) (3.475) (3.639) (4.280)

Cov22 -0.005027 0.237918 0.000001 2.946785 0.000000 0.8055
(-32.223) | (56.878) (3.341) (6.794) (0.000)

Cov23 -0.004916 0.238964 0.000002 2.063586 0.017002 0.8106
(-18.878) (40.402) (4.450) (5.362) (0.373)

Cov24 -0.004384 0.217671 0.000001 2.533654 0.025727 0.7991
(-22.833) (41.213) (3.351) (5.879) (0.718)

Cov25 -0.003930 0.199696 0.000001 1.382857 0.234490 0.8060
(-16.752) | (34.840) (2.244) (3.936) (2.916)

Cov33 -0.004882 0.248309 0.000001 1.086559 0.299588 0.8110
(-13.256) (30.356) (3.243) (3.087) (3.154)

Cov34 -0.004258 0.222014 0.000001 1.541579 0.282926 0.8016
(-16.450) (34.109) (1.737) (4.160) (4.243)

Cov35s -0.004054 0.206512 0.000000 0.952500 0.378930 0.8074
(-16.342) (36.857) (1.697) (2.905) (4.388)

Cov44 -0.003766 0.200630 0.000000 1.674367 0.293374 0.7901
(-13.931) | (28.091) (1.299) (4.180) (4.430)

Cov45s -0.004129 0.198636 0.000000 0.221212 0.795803 0.8115
(-13.726) (37.320) (0.704) (2.544) (12.318)

Cov55 -0.003388 0.169018 0.000000 0.148839 0.847986 0.7924
(-12.968) (41.305) (1.134) (2.751) (21.928)
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Table 3

Time-varying Covariances for size-sorted NYSE stocks for the period 1987-1997, using E-GARCH
estimation.

CovRiRi) = &; + W; 62, +ei
Inhy) = @y + P gy(zr) + ¥ Inlhg)+ Niie
gi(zi) = @5+ [Izijll - Elzijr,]

Zij = eijt/ “’ hil'f

Cov(R;i,R;o) is the covariance, as calculated in equation (10), of the excess returns to portfolios i and j at
time t. The model shows that this covariance is dependent on the aggregate market variance at time t. The
variance of the error term at time t, h,, is assumed to be dependent on the lagged squared error terms and
lagged variances of the error term. However, the variance of the error term is assumed to respond
asymimetrically to changes in volatility with past increases in the functions variance causing a greater
reaction than decreases in the variance function. The 1 indicates the smallest stock portfolio and the 5
indicates the largest stock portfolio. Thus, Cov14 would be the covariance between the small stock

portfolio and the next to largest portfolio.

&y Vi o @; Vi 9,7 R

Covll -0.004118 | 0.208811 -3.955061 | 2.276709 0.617438 | -0.426474 0.4445
-0.025) | (1.25) (-23.676) | (13.629) | (3.696) | (-2.553)

Covi2 | -0.005300 | 0.251649 -5.648018 | 1.547464 0.485099 | -0.126983 0.8085
(-0053) | (2.516) | (-56.480) | (15.475) | (4.851) | (0.2041)

Covl3 -0.005762 | 0.262856 -5.486022 | 0.773617 0.533011 | -0.935461 0.8048
(-16.414) | (28901) |(-3.543) | (4.429) | (4.042) | (=4.773)

Covl4 | -0.005009 | 0.237676 -4.543096 | 0.853575 0.619256 | -0.904345 0.8224
(-16.291) (26.339) (-3.995) (5.041) (6.440) (-4.864)

Covl5 | -0.004129 | 0.190660 -5.916508 | 0.529037 0.507467 | -1.450121 0.7924
(-11.419) | (16.120) | (4.082) | (3.676) | (4.255) | (-3.814)

Cov22 | -0.005302 | 0.237657 -7.958385 | 1.018393 0.323535 | -0.761222 0.8079
(-17.193) | (32.360) | (4.468) |(5.032) | (2.135) | (-6.531)

Cov23 -0.00522 0.240050 -6.368413 | 0.889026 0.462998 | -0.763263 0.8159
(112.613) | (129.090) | (3.625) | (4.364) | (3.166) | (-5.080)

Cov24 | -0.004626 | 0.218679 -5.074874 | 0.968126 0.577545 | -0.766442 0.8039
(-15371) | (26.115) | (-3.789) | (4.489) | (5.143) | (-4.285)

Cov25 | -0.004158 | 0.198926 -3.866558 | 0.904566 0.683419 | -0.527138 0.8276
(-12.664) (20.481) (-2.629) (3.159) (5.698) (-2.150)

Cov33 -0.004143 | 0.191286 -9.987838 | 1.902118 0.138018 | -0.763348 0.7589
(-11.842) | (18.163) | (-9.298) |(6.683) | (1.610) | (-14.617)

Cov34 | -0.004514 | 0.220190 -3.78458 0.958117 0.670682 | -0.727822 0.8074
(-15.729) | (27.080) | (-3.594) |(4.508) | (7.297) | (4.346)

Cov3s -0.004196 | 0.203256 -3.358180 | 0.828566 0.726333 | -0.561457 0.8137
(-13.038) [ (21.061) |(2.381) |(2.870) |(6276) | (-2.432)

Cov44 | -0.004130 | 0.20388 -3.314539 | 1.001029 0.723246 | -0.717787 0.7979
(-24.984) | (30.291) | (-3.030) |(4.387) | (7.883) | (-5.468)

Cov45 -0.003870 | 0.192116 -0.875817 | 0.485707 0.927666 | -0.323863 0.8072
(-11.649) (18.298) (-0.834) (2.357) (10.907) | (-1.039)

Cov5s5 -0.003702 | 0.175280 -18.70206 | 0.376977 -0.52430 | -0.954692 0.7952
(-11.815) (19.879) (-12.809) (3.176) (-4.476) (-2.596)
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Table 4

Time-varying covariances of size-sorted NYSE portfolios during the period 1987-1997, using Hansen’s
(1982) t-statistic correction.

Cov(RiRy) = &; + l,l/,JO' + £

£y =w; +5,6L, +e;,

Cov(Ri,R;) is the covariance, as calculated in equation (10), of the excess returns to
portfolios i and j at time t. The model shows that this covariance is dependent on the
aggregate market variance at time t. The squared error term at time t is assumed to be
dependent on the aggregate market variance at time t. The first t-statistics, directly below
the parameter estimates, are estimated using Hansen’s (1982) t-statistic correction while
the t-statistics below these are Hansen’s (1982) t-statistics adjusted using the method of
Murphy and Topel (1985) to control for the generated regressor problem. The 1 indicates
the smallest stock portfolio and the 5 indicates the largest stock portfolio. Thus, Cov14
would be the covariance between the small stock portfolio and the next to largest
portfolio.

Sy Vi Ty 8y R

Covll 0.0018488 0.981846 0.0000493 0.053385 0.0132
(2.24) (1.93) (0.90) (1.35)
(0.85) (1.89) (0.45) (1.34)

CoviZ 0.0009758 0.75926 -3.553E" 0.040631 0.0178
(2.42) (1.75) (-0.02) (1.20)
(0.60) (1.72) (-0.00) (1.19)

Covi3 0.000998 0.668198 4 568E " 0.037401 0.0134
(2.56) (1.59) (-0.02) (1.16)
(0.69) (1.57) (-0.01) (1.15)

Covid 0.000873 0.625607 -1.216E° 0.033631 0.0138
(2.42) (1.57) (-0.07) (1.15)
(0.66) (1.56) (-0.02) (1.14)

Covlis 0.000861 0.488400 1.353E° 0.019815 0.0177
(2.92) (1.59) (0.13) (1.12)
(0.82) (1.57) (0.03) (1.11)

Cov22 0.000827 0.617854 -2.191E° 0.033129 0.145
(2.39) (1.57) (-0.13) (1.14)
(0.63) (1.55) (-0.03) (1.13)

Cov23 0.000869 0.570108 -1.849E° 0.031321 0.0119
(2.44) (1.47) (-0.12) (1.13)
(0.72) (1.45) (-0.03) (1.12)

Cov2d 0.0008546 0.532080 -1.742E° 0.028114 0.0114
(2.40) (1.44) (-0.08) (1.12)
(0.75) (1.42) (-0.03) (1.11)

Cov2s 0.000718 0.471432 9112E° 0.01968 0.0149
(2.39) (1.48) (-0.01) (1.11)
(0.71) (1.46) (-0.00) (1.10)

Cov33 0.0009949 0.536712 -1.340E° 0.029805 0.0099
(2.67) (1.40) (-0.09) (1.12)
(0.87) (1.39) (-0.02) (1.11)
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Cov3d 0.000984 0.500169 ~5.194E" 0.026697 0.0096
(2.65) (1.37) (-0.04) (1.11)
(0.92) (1.36) (-0.01) (1.10)

Cov3s 0.000841 0.451482 4553E" 0.018798 0.0128
(2.60) (1.43) (0.05) (1.11)
(0.86) (1.41) (0.01) (1.10)

Covad 0.00105107 0.463697 5.739E " 0.23831 0.0090
(2.77) (1.33) (0.05) (1.10)
(1.05) (1.32) (0.00) (1.09)

Covas 0.000936 0.419439 1.407E° 0.016753 0.0118
(2.80) (1.39) (0.16) (1.10)
(1.02) (1.38) (0.04) (1.09)

Cov55 0.00095198 0.388435 2.041E° 0.011814 0.0161
(3.09) (1.44) (0.33) (1.12)
(1.11) (1.42) (0.08) (1.11)
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Table 5

Time-varying covariances of NYSE size-sorted portfolios data for the period 1987-1997, using WLS
estimators.

A2
Cov(RiRj) = & + W0, + &5

2
&

it

= 52
=w; +0;6,, te;

Cov(Ri,Rjy) is the covariance, as calculated in equation (10), of the excess returns to
portfolios i and j at time t. The model shows that this covariance is dependent on the
aggregate market variance at time t. The squared error term at time t is assumed to be
dependent on the aggregate market variance at time t. WLS estimation involves using the
predicted values of the second equation as weights for the terms in the first equation and
then re-estimating the first equation. We iterate between the equations 3 times. The first
t-statistics, directly below the parameter estimates, are estimated using WLS while the t-
statistics below these are WLS t-statistics adjusted using the method of Murphy and
Topel (1985) to control for the generated regressor problem. The 1 indicates the smallest
stock portfolio and the 5 indicates the largest stock portfolio. Thus, Cov14 would be the
covariance between the small stock portfolio and the next to largest portfolio.

S Vi o Oy R

Covil -0.00019 2.317089 0.001296 0.954429 0.0629
(-0.229) (2.814) (1.060) (5.527)
(-0.039) (2.704) (0.562) (4.810)

Covi2 -0.000074 1.398764 0.000599 1.01642 0.0875
(-0.191) (3.363) (0.661) (4.825)
(-0.026) (3.180) (0.265) (4.326)

Covi3 ~0.000050 1.316975 0.000493 1.040476 0.0865
(-0.144) (3.342) (0.564) (4.829)
(-0.018) (3.162) (0.265) (4.329)

Covid ~0.00000875 1.160313 0.000429 1.050405 0.0737
(-0.025) (3.064) (0.512) (4.508)
(-0.004) (2.923) (0.186) (4.093)

Covis 0.000342 0.804581 0.000347 0.986980 0.0411
(0.830) (2.249) (0.474) (3.678)
(0.200) (2.192) (0.162) (3.442)

Cov22 0.000103 1.036664 0.000271 1.068764 0.0601
(0.268) 2.747) 0.317) (4.100)
(0.048) (2.644) (0.116) (3.721)

Cov23 0.000132 1.002975 0.000229 1.077136 0.0561
(0.335) (2.649) (0.272) (4.097)
(0.063) (2.557) (0.097) (3.778)

Cov2a 0.000174 0.925036 0.000231 1.075286 0.0489
(0.437) (2.463) (0.285) (3.951)
(0.089) (2.695) (0.098) (3.662)

Cov2s 0.000178 0.792081 0.000295 1.005908 0.0466
(0.505) (2.401) (0.426) (3.736)
(0.108) (2.014) (0.136) (3.489)
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Cov33 0.000251 0976421 0.000144 1.075189 0.0517
(0.610) (2.537) (0.170) (4.063)
(0.123) (2.455) (0.061) (3.751)

Cov3d 0.000311 0.896690 0.000170 1.075830 0.0439
(0.736) (2.328) (0.207) (3.917)
(0.165) (2.265) (0.072) (3.634)

Cov35 0.000265 0.797092 0.000277 1.005227 0.0447
(0.718) (2.351) (0.399) (3.843)
(0.159) (2.286) (0.118) (3.397)

Covad 0.000438 0.824993 0.000183 1.069782 0.0365
(0.978) (2.115) (0.225) (3.758)
(0.251) (2.067) (0.078) (3.772)

Covas 0.000392 0.748524 0.000289 0.992680 0.0381
(0.974) (2.162) (0.421) (3.736)
(0.246) (2.111) (0.134) (3.489)

Covs5 0.000471 0.687192 0.000357 0.896276 0396
(1.197) (2.207) (0.591) (3.643)
(0.319) (2.153) (0.184) (3.370)
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Table 6

Time-varying covariances for BM-sorted portfolios during the period 1990-1997, using
GARCH estimation.

- a2
Cov(RisRjp) = 5,7 +y 6, &
— 2
h,= w; + ¢., LtV ht-l+77,j:

Cov(Ri,R;r) is the covariance, as calculated in equation (10), of the excess returns to
portfolios i and j at time t. The model shows that this covariance is dependent on the
aggregate market variance at time t. The variance of the error term at time t, h,, is
assumed to be dependent on the lagged squared error terms and lagged variances of the
error term. The 1 indicates value and the 5 indicates growth. Thus, Cov14 would be the

covariance between the value portfolio and portfolio 4.

S Vi T é5 Vs R

Covll 0.000774 4.212632 0.000028 3.67TE~ 2.378E™ 0.2587
(0.537) (4.156) (11.657) (0.000) (0.000)

Covli2 0.000177 3.058695 0.000002 1.314981 0.227726 0.3311
(0.421) (9.145) (2.118) (5.432) (4.152)

Covli3 0.000425 3.151135 0.000012 -1.540E~ -3.898E~ 0.3102
(0.464) (4.425) (9.967) (-0.000) (-0.000)

Covi4g 0.000280 2357571 0.000007 0.386621 -4.726E" 0.2688
(0.474) (3.527) (10.611) (2.546) (-0.000)

Covls 0.00066 2.665738 0.000025 3.722E* 0.0000787 0.1344
(0.419) (2.613) (13.330) (0.000) (0.000)

Cov22 0.000546 2.743067 0.000006 0.424491 7.2874E" 0.3817
(0.962) (8.363) (5.839) (3.185) (0.170)

Cov23 0.000397 2460031 0.000005 0.307200 5.2085E™" 0.3674
(0.809) (9.935) (6.217) (3.042) (0.001)

Cov24 0.000394 2.142629 0.000004 0.26759 3.188E" 0.3335
(0.935) (8.246) (6.750) (2.784) (0.012)

Cov25 0.000402 1.858604 0.000008 0.329929 6.435E 0.1990
(0.600) (3.511) (12.914) (2.538) (0.000)

Cov33 0.00045 2.222848 0.000005 0.252551 -5484E* 0.3364
(0.905) (9.644) (6.680) (2.839) (-0.000)

Cov34q 0.000449 1.934772 0.000004 0.196269 2.039E™* 0.3096
(1.018) (8.322) (7.522) (2.637) (0.023)

Cov3s 0.000617 1.973426 0.000010 1.644E™~ -5.098E~ 0.1716
(0.742) (4.019) (12.900) (0.000) (-0.000)

Cov44 0.00055 1.654221 0.000003 0.15241 2.750E™ 0.2650
(1.309) (6.818) (7.396) (1.898) (0.150)

Cov45 0.000680 1.522766 0.000007 0.144975 2.0192E™ 0.1495
(0.918) (3.107) (11.410) (1.754) (0.265)

Covss 0.001030 1.77212 0.000025 -6.752E~ 3.453E° 0.0655
(0.660) (1.949) (1.949) (-0.000) (0.000)
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Table 7

Time-varying Covariances for BM-sorted portfolios during the period 1990-1997, using E-GARCH
estimation.

Cov(RwR) = &; + W G, +eye

In(hy) = Ty + ¢,j gi(z1) + Vi In(hye.)+ it

'Elzlel]

gii(zi) = G + [,Z,]-,
Z,'j( = e;,-,/ 4 ’ h!-’-r

Cov(RiRy) is the covariance, as calculated in equation (10), of the excess returns to portfolios i and j at
time t. The model shows that this covariance is dependent on the aggregate market variance at time t. The
variance of the error term at time t, h,, is assumed to be dependent on the lagged squared error terms and
lagged variances of the error term. However, the variance of the error term is assumed to respond
asymmetrically to changes in volatility with past increases in the functions variance causing a greater
reaction than decreases in the variance function. The 1 indicates value and the 5 indicates growth. Thus,

Cov14 would be the covariance between the value portfolio and portfolio 4.

& Vi @ 5 P Y i 0 R’

Covll | 0.000582 | 3.501688 | -13.71116 | -0.44898 | -0.200614 | -3.239723 | 0.2392
(1.665) (10.660) | (-8.884) (-1.375) (-1.454) (-1.358)

Covl2 | Did not
converge

Covl3 | 0.000462 | 2.901327 | -17.31158 | -0.82828 | -0.466323 | -.336197 0.3072
(1.476) (11.291) | (-13.258) | (-3.199) (-4.216) (-3.695)

Covi4 | Did not
converge

Covl5 | 0.000082 | 2.117487 | -19.22280 | -1.48344 | -0.584805 | -1.319718 | 0.0863
(-0.001) (21.175) | (-192.228) | (-14.834) | (-5.848) (-13.197)

Cov22 | 0.000495 | 2.891196 | -11.64014 | 0.291482 | 0.005859 | 0.944087 | 0.3864
(1.311) (7.923) (-3.815) (0.880) (0.023) (0.651)

Cov23 | 0.000386 { 2.601092 | -15.12801 | 0.002814 | -0.264354 | 176.47266 | 0.3727
(1.176) (8.178) (-7.673) (0.190) (-1.595) (0.200)

Cov24 | 0.000446 | 2.209701 | -14.40853 | 0.196994 | -0.183332 | 1.695118 | 0.3372
(1.560) (7.488) (-6.443) (1.841) (-1.010) (1.888)

Cov25 | Did not
converge

Cov33 | 0.000387 | 2.359286 [ -17.11313 | 0.093224 | -0.423711 | 4.262233 | 0.3398
(1.334) (7.586) (-8.381) (0.301) (-2.542) (0.276)

Cov34 | Did not
converge

Cov35 | Did not
converge

Cov44 | Did not
converge

Cov45 | Did not
converge

Cov55 | 0.000300 | 1.055184 | -21.72495 | -3.29682 | -0.734172 | -1.006535 | -
(1.855) (19.223) | (-194.162) | (-32.739) | (-14.437) | (-11.763) | 0.0011
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Table 8

Time-varying covariances of BM-sorted portfolios for the period 1990-1997, using Hansen's (1982) t-
statistic correction.

a2
Cov(RiRy) = &; +!//,.jO' +&;
8,” =@, +5,6, ey

Cov(Rii,Rj) is the covariance, as calculated in equation (10), of the excess returns to
portfolios i and j at time t. The model shows that this covariance is dependent on the
aggregate market variance at time t. The squared error term at time t is assumed to be
dependent on the aggregate market variance at time t. The first t-statistics, directly below
the parameter estimates, are estimated using Hansen’s (1982) t-statistic correction while
the t-statistics below these are Hansen’s (1982) t-statistics adjusted using the method of
Murphy and Topel (1985) to control for the generated regressor problem. The 1 indicates
value and the 5 indicates growth. Thus, Cov14 would be the covariance between the
value portfolio and portfolio 4.

& Vi (28] J; R

Covll -0.001706 4.663705 -0.0000876 0.106417 0.0812
0.91) (2.27) (-1.75) (1.89)
(:0.07) (2.12) (:0.16) (1.80)

Covl2 -0.00121599 3.592723 -0.000035 0.045669 0.0935
(:0.92) (2.52) (2.31) (2.70)
(-0.06) (2.32) (-0.15) (2.46)

Covl3 -0.00161548 3.649244 -0.000037 0.045682 0.1066
-131) (2.68) (-2.16) (2.39)
(-0.08) (2.44) (-0.15) (2.22)

Covli4 -0.0012969 3.133038 -0.000025 0.032902 0.0998
(-1.25) (2.72) (-2.00) (2.30)
(-0.08) (2.66) (-0.14) (2.14)

Covls -0.00229 4.14658 -0.0000769 0.090088 0.0840
(-1.39) (2.24) (-1.45) (1.51)
(-0.10) (2.83) (-0.16) (1.46)

Cov22 -0.00085668 3.008087 -0.0000186 0.027110 0.0922
(-0.81) (2.64) (-2.18) (2.74)
(-0.05) (2.62) (-0.13) (2.49)

Cov23 -0.00114484 2.953941 -0.0000173 0.023833 0.1094
(-1.23) (2.89) (-2.39) (2.82)
(-0.07) (2.58) (-0.14) (2.54)

Cov24 -0.000917 2.552783 -0.00001 0.016051 0.1043
(-1.20) (3.02) (-2.09) (2.75)
(-0.07) (2.38) (-0.12) (2.49)

Cov25 -0.00147 3.043274 -0.00002456 0.030792 0.1085
(-1.46) (2.70) (-1.96) (2.18)
(-0.09) (2.70) (-0.15) (2.04)

Cov33 -0.001311 2.951288 -0.00001595 0.021406 0.1259
(-1.53) (3.10) (-2.42) (2.79)
(-0.08) (2.59) (-0.14) (2.52)
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Cov3d -0.0011295 2.622935 9.907E° 0014414 | 0.1285
(-1.59) (3.33) (-2.14) (2.69)
(-0.08) (2.46) (-0.13) (2.45)

Cov3s -0.001734 3214922 ~0.0000275 0.033531 | 0.1191
(-1.65) (2.73) (-1.68) (1.81)
(-0.10) (2.85) (-0.16) (1.73)

Covad -0.0009597 2388204 -5.605E° 0.00967 0.1279
(-1.60) (3.63) (-1.70) (2.58)
(-0.08) (2.25) (-0.11) (2.37)

Covas -0.0015057 2915515 -0.000019 0.024592 | 0.1220
(-1.65) (2.86) (-1.61) (1.80)
(-0.10) (2.71) (-0.15) (1.72)

Covs5 ~0.00247273 | 4.091624 ~0.00007 0.081916 | 0.0924
(-1.51) (2.23) (-1.29) (1.33)
(-0.11) (2.05) (-0.16) (1.30)
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Table 9

Time-varying covariances of BM-sorted portfolios during the period 1990-1997, using WLS estimation.

~2
Cov(RiRj) = fy +YiO &

2

g

=@, +06.6% +
g = @5 T0;0, +ey

Cov(Ri,Ry) is the covariance, as calculated in equation (10), of the excess returns to
portfolios i and j at time t. The model shows that this covariance is dependent on the
aggregate market variance at time t. The squared error term at time t is assumed to be
dependent on the aggregate market variance at time t. WLS estimation involves using the
predicted values of the second equation as weights for the terms in the first equation and
then re-estimating the first equation. We iterate between the equations 3 times. The first
t-statistics, directly below the parameter estimates, are estimated using WLS while the t-
statistics below these are WLS t-statistics adjusted using the method of Murphy and
Topel (1985) to control for the generated regressor problem. The 1 indicates value and
the 5 indicates growth. Thus, Cov14 would be the covariance between the value portfolio
and portfolio 4.

S Vi Ty Sy R

Covll 20.002053 5.186712 -0.000899 1.145078 | 0.1989
(-2.699) (4.701) (-0.935) (5.268)
(-0.075) (3.678) (-0.147) (3.930)

Coviz -0.002037 4535145 -0.000277 1.005984 | 02584
(-3.903) (5.568) (-0.504) (6.687)
(-0.085) (4.050) (-0.052) (4.425)

Covi3 -0.001438 3512612 -0.000552 1.160825 | 0.1818
(-2.571) (4.447) (-0.891) (5.523)
(-0.078) (3.552) (-0.090) (4.033)

Covid -0.001711 3573222 -0.000173 1.016474 | 03342
(-5.238) (6.684) (-0.348) (5.690)
(-0.091) (4.424) (-0.032) (4.097)

Covis -0.002178 4.094881 -0.000467 1.212979 | 0.1997
(-4.079) (4.712) (-0.575) (4.481)
(-0.010) (3.683) (-0.073) (3.569)

Cov2z -0.000895 3.035281 -0.000207 1.013189 | 0.1369
(-1.320) (3.758) (-0.348) (4.870)
(-0.056) (3.170) (-0.039) (3.756)

Cov23 ~0.000711 2.506255 -0.00035T 1.115158 | 0.1634
(-1.555) (4.169) (-0.620) (4.705)
(-0.054) (3.405) (-0.065) (4.135)

Cov24 -0.000828 2.447893 -0.0000367 0.963293 0.1474
(-1.567) (3.923) (-0.078) (4.552)
(-0.064) (3.267) (-0.007) (3.605)

Cov2s -0.000434 1.890234 -0.000434 1.890234 | 0.1612
(-1.646) (4.135) (-1.646) (4.135)
(-0.044) (3.387) (-0.044) (3387)

Cov33 0.000285 1.297909 -0.001044 1.582120 | 0.0769
(0.933) (2.723) (-1.146) (3.219)
(0.042) (2.473) (-0.125) (2.826)
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Cov3d -0.000471 1.952137 -0.000142 0999333 ] 0.1280
(-1.065) (3.615) (-0.278) (3.795)
(-0.046) (3.083) (-0.027) (3.192)

Cov3s -0.001344 2.685607 -0.000191 1.127495 | 02083
(-3.535) (4.839) (-0.356) (4.289)
(-0.095) (3.742) (-0.032) (3.470)

Covad -0.000863 2278128 0.000163 0.780695 | 0.1506
(-1.682) (3.973) (0.419) (3.957)
(-0.072) (3.296) (0.039) (3.287)

Covas 0.0000569 1.289263 -0.001107 1.777803 | 0.0834
(0.193) (2.846) (-1.326) (3.457)
(0.008) (2.564) (-0.118) (2.983)

Covs5 -0.001556 3.001458 -0.000306 1.233796 | 0.1961
(-3.994) (4.660) (-0.351) (3.166)
(-0.098) (3.658) (-0.047) (2.790)
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Table 10

Time-varying covariances for size-sorted portfolios during the period 1990-1997, using
GARCH estimation.

a2

Cov(Ri,Rj) = 5;, +Y;0, t&;
— 2

h( - ZD’D. + ¢!l- 6"_1 + },lj ht'l+’7(fr

Cov(Ri,Rjy) is the covariance, as calculated in equation (10), of the excess returns to
portfolios i and j at time t. The model shows that this covariance is dependent on the
aggregate market variance at time t. The variance of the error term at time t, h, is
assumed to be dependent on the lagged squared error terms and lagged variances of the
error term. The 1 indicates the smallest stock portfolio and the 5 indicates the largest
stock portfolio. Thus, Covl4 would be the covariance between the small stock portfolio
and the next to largest portfolio.

E; Wi @ b Vi R

Covil 0.002584 3430492 | 0.000184 | -7.858E= 1778E ™" 0.0345
(0.510) (1.210) (13.108) (-0.000) (5188.78)

Covl2 0.001486 3.092958 0.000073 2.12E~ -6.9276E™ 0.0680
(0.543) (1.706) (13.670) (0.000) (-0.000)

Covl3 0.001139 2.96188 0.000047 6.39E~ -2.595E*F 0.0934
(0.543) (2.048) (13.908) (0.000) (-0.000)

Covid | 0.00068 2.608022 | 0.000021 | 44151EZ T39E" 0.1482
(0.526) (2.481) (12.962) (0.000) (3.635)

Covi5 | 0.000556 1932527 | 0.000002 | 1.022730 0.197405 0.2058
(1.128) (3.620) (2.552) (2.358) (1.029)

Cov22Z | 0.00097 3103713 | 0.000032 | 43634E = 1.6038E " 0.1438
(0.616) (2.555) (12.089) (0.000) (10.838)

Cov23 0.000727 3.11588 0.000021 -7.6514E~ 2.2756E " 0.2023
(0.598) (3.558) (12.396) (-0.000) (15.304)

Cov2d | 0.000477 2.50943 0.000009 | 0.308734 C1.O9IE™ 0.2869
(0.529) (3.287) (7.267) (2.098) (-0.000)

Cov25 | 0.000207 2.05666 0.000004 | 0.438705 235E" 03433
(0.540) (6.330) (8.363) (3.238) (-0.000)

Cov33 0.000701 3225565 | 0.000015 | 1.5096EZ TTI5EZ 0.2705
(0.757) (6.284) (12.180) (0.000) (0.000)

Cov34 | 0.000515 2.872728 | 0.000008 | 0.13635 1.274E 03408
(0.687) (7.200) (7.692) (2.125) (0.004)

Cov35 | 0.000445 2299194 | 0.000005 | 0.220682 1218E" 03679
(0.843) (7.854) (6.241) (2.238) (-0.000)

Cov44 0.000534 2.954613 0.000009 -7.031E~ 2433E"° 0.3522
(0.700) (6.225) (9.804) (-0.000) (1.135)

Covd5 | 0.000481 2452646 | 0.000006 | 1.851E> 1.050E" 03368
(0.761) (5.282) (12.136) (0.000) (0.334)

Cov55 | 0.000629 2015875 | 0.000005 | -3.133E= 0.0000041 0.2790
(1.086) (4.304) (12.526) (-0.000) (0.001
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Table 11

Time-varying covariances for size-sorted portfolios during the period 1990-1997, using E-GARCH
estimation.

CovRiuRy) = &5 + W Gr + e
In(hyg) = @; + @; gi(z) + ¥ In(ha)+77;,
gii(zi) = Oy + [lzml - Elz"f'l]

Zi = e;,-,/ 4 ' h':l"

Cov(R;,Ry) is the covariance, as calculated in equation (10), of the excess returns to portfolios i and j at
time t. The model shows that this covariance is dependent on the aggregate market variance at time t. The
variance of the error term at time t, h,, is assumed to be dependent on the lagged squared error terms and
lagged variances of the error term. However, the variance of the error term is assumed to respond
asymmetrically to changes in volatility with past increases in the functions variance causing a greater
reaction than decreases in the variance function. The 1 indicates the smallest stock portfolio and the 5
indicates the largest stock portfolio. Thus, Cov14 would be the covariance between the small stock
portfolio and the next to largest portfolio.

& Vi @5 b Vi 6; R

Covll | 0.000342 2.25377 -1.407022 4.943747 0.69118 -0.525855 | 0.0185
(0.003) (22.524) (-14.070) (49.437) (6.912) (-5.259)

Cov12 | -0.000208 | 2.693452 0.519043 0.519043 0.952739 -1.014834 | 0.0176
(-0.928) (12.095) (1.165) (1.165) (21.385) (-11.288)

Covl3 | 0.000666 2.527296 -3.025375 2.293873 0.704435 | -0.134612 | 0.0800
(4.471) (12.264) (-3.828) (8.918) (10.226) (-1.546)

Covl4 | 0.000355 2.123109 -2.718293 1.603610 0.731500 -0.373683 | 0.1261
(2.021) (62.747) (-2.861) (7.998) (8.409) (-3.794)

Covl5 | 0.000179 1.899310 -2.998942 1.087724 0.727492 | -0.424624 | 0.1959
(8.762) (1674.046) | (-2.252) (3.852) (6.409) (-3.606)

Cov22 | 0.000710 2.633192 1.597414 0.144467 1.148478 -4.356073 | 0.1312
(1.010) (3.891) (4.182) (8.086) (30.035) (-10.475)

Cov23 | 0.000509 2.234422 -0.435422 1.827567 0.906285 | -0.672933 | 0.1607
(0.005) (22.344) (-4.354) (18.276) (9.063) (-6.729)

Cov24 | Did not
converge.

Cov25 | Did not
converge.

Cov33 | Did not
converge.

Cov34 | Did not
converge.

Cov35 | 0.000381 2.413644 -13.677536 0.006053 -0.132315 | 57.21335 | 0.3701
(1.277) (7.596) (-3.795) (0.081) (-0.443) (0.088)

Cov44 | -0.000259 | 3.144026 -7.019190 -1.900759 | 0.463285 | -0.592316 | 0.3191
(-0.003) (31.440) (-70.192) (-19.008) (4.633) (-5.923)

Cov45 | 0.000468 2.489664 -19.689638 -0.000058 | -0.646546 | 3833.2456 | 0.3367
(1.345) (7.504) (-7.875) (-0.142) (-3.106) (0.164)

Cov55 | Did not
converge.
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Table 12

Time-varying covariances for size-sorted portfolios during the period 1990-1997 using Hansen’s (1982) t-
statistic correction.

~2
Cov(RiRi) = & +¥;6,,, + &5

2 a2
Ep =T '*‘5,70'...: +e;

Cov(Ri,R;) is the covariance, as calculated in equation (10), of the excess returns to
portfolios i and j at time t. The model shows that this covariance is dependent on the
aggregate market variance at time t. The squared error term at time t is assumed to be
dependent on the aggregate market variance at time t. The first t-statistics, directly below
the parameter estimates, are estimated using Hansen'’s (1982) t-statistic correction while
the t-statistics below these are Hansen’s (1982) t-statistics adjusted using the method of
Murphy and Topel (1985) to control for the generated regressor problem. The 1 indicates
the smallest stock portfolio and the 5 indicates the largest stock portfolio. Thus, Cov14
would be the covariance between the small stock portfolio and the next to largest
portfolio.

S Vi @ Iy R

Covll -0.004297 8.008736 -0.000532 0.617956 0.01362
(-0.91) (1.53) (-1.13) (1.16)
(-0.89) (1.45) (-1.12) (1.22)

Covi2 -0.0028519 5.603728 -0.000204 0.240961 0.0577
(-0.98) (1.74) (-1.20) (1.25)
(-0.95) (1.62) (-1.18) (1.20)

Covl3 -0.002423 4.854167 -0.0001286 0.153901 0.0645
(-1.06) (1.92) (-1.22) (1.29)
(-1.03) (1.76) (-1.21) (1.24)

Covl4 -0.001809 3.713342 -0.000054 0.067147 0.0770
(-1.20) (2.24) (-1.37) (1.51)
(-1.14) (2.00) (-1.19) (1.43)

Covl5s -0.0011443 2.567592 -0.000019 0.024855 0.0867
(-1.23) (2.50) (-1.76) (2.09)
(-1.14) (1.43) (-1.75) (1.89)

Cov22 -0.001850 4.29994 -0.000085 0.103747 0.0696
(-0.97) (2.06) (-141) (1.53)
(-0.94) (1.87) (-1.38) (1.45

Cov23 -0.001676 3.942405 -0.000056 0.069491 0.0815
(-1.09) (2.34) (-1.50) (1.67)
(-1.03) (1.87) (-1.46) (1.56)

Cov24 -0.001413 3.335623 -0.000028 0.037055 0.0973
(-1.26) 2.72) (-1.91) (2.23)
(-1.16) (2.32) (-1.88) (1.99)

Cov2s -0.001064 2.551569 -0.000013 0.018311 0.1062
(-1.34) (2.91) (-2.17) (2.64)
(-1.27) (2.43) (-1.26) (2.27)

Cov33 -0.001405 3.750872 -0.000038 0.049782 0.0920
-1.07) (2.63) (-1.72) (2.00)
(-1.01) (2.26) (-1.64) (1.82)
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Cov3a -0.0013701 | 3.45126 -0.0000238 0.032326 0.1115
(-1.24) (2.91) (-2.51) (3.02)
(-1.16) (2.43) (-2.20) (2.49)

Cov3s -0.0010959 | 2.771651 -0.0000142 0.019564 0.1171
(-1.22) (2.87) (-2.43) (3.00)
(-1.14) (2.41) (-1.38) (2.48)

Covad -0.001475 3.50403 -0.0000227 0.030119 0.1287
(-1.27) (2.87) (-2.25) (2.81)
(-1.17) (2.41) (-2.12) (2.37)

Covas -0.00126475 | 2.976417 -0.0000177 0022797 0.1313
(-1.20) (2.69) (-1.85) (2.27)
(-1.14) (2.30) (-1.70) (2.02)

Covs5 ~0.00092 2.545885 -0.000014 0.018424 0.1200
(-0.92) (2.46) (-1.58) (1.98)
(-0.88) (2.15) (-1.36) (1.81)
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Table 13

Time-varying covariances of size-sorted portfolios during the period 1990-1997, using WLS estimation.

a2
Cov(RyRy) = 5;, TY;0., t&;
82

— ke 2
=0 +5,70'm, +e;

Cov(Rii,R;:) is the covariance, as calculated in equation (10), of the excess returns to
portfolios i and j at time t. The model shows that this covariance is dependent on the
aggregate market variance at time t. The squared error term at time t is assumed to be
dependent on the aggregate market variance at time t. WLS estimation involves using the
predicted values of the second equation as weights for the terms in the first equation and
then re-estimating the first equation. We iterate between the equations 3 times. The first
t-statistics, directly below the parameter estimates, are estimated using WLS while the t-
statistics below these are WLS t-statistics adjusted using the method of Murphy and
Topel (1985) to control for the generated regressor problem. The 1 indicates the smallest
stock portfolio and the 5 indicates the largest stock portfolio. Thus, Cov14 would be the
covariance between the small stock portfolio and the next to largest portfolio.

Sy Vi @ j 0 R”

Covil 0.000789 1478634 ~0.007806 4924749 | 0.0025
(0.399) (0.476) (-1.282) (2.071)
(0.398) (0.473) (-1.275) (1.875)

Coviz ~0.001747 4446581 ~0.000849 1395789 | 01171
(-1.929) (3.435) (-0.479) (3.107)
(-1.661) (2.712) (-0.479) (2.542)

Covi3 -0.002455 4821425 ~0.000194 1.159520 | 0.1856
(-3.239) (4.504) (-0.165) (3.576)
(-2.647) (3.155) (-0.163) (2.780)

Covid -0.001755 3612531 0.000136 1.088478 | 02331
(-3.995) (5.202) (0.174) (3.889)
(-2.767) (3.369) (0.017) (2.920)

Covis -0.001107 2521371 0.0000976 1.055233 | 0.1670
(-2.369) (4.225) (0.196) (4.358)
(-2.026) (3.054) (0.196) (3.103)

Cov22 -0.002143 4.542441 ~0.000334 1.163698 | 0.2084
(-3.255) | (4.840) (-0.349) (4.333)
(-2.526) (3.264) (-0.348) (3.094)

Cova3 ~0.001957 4174312 ~0.000089 1.046811 | 0.3337
(-6.362) (6.677) (-0.113) (4.382)
(-3.217) (3.686) (-0.113) (3.11)

Covia ~0.001489 3370515 -0.000065 1.044950 | 0.2869
(-4.523) (5.984) (-0.113) (4.970)
(-2.834) (3.556) (-0.112) (3.303)

Cov2s ~0.000845 2316452 ~0.000151 1.082764 | 0.1916
(-2.297) (4.592) (-0.334) (4.878)
(-1.974) (3.185) (-0.323) (3.276)
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Cov33 ~0.002070 4414091 -0.000123 0977629 | 0.3567
(-6.121) (7.025) (-0.194) (5.331)
(-3.265) (3.741) (-0.191) (3.403)

Cov3d ~0.001683 3.771865 -0.000194 1.005318 | 0.3473
(-5.764) (6.881) (-0.386) (6.098)
(-2.973) (3.719) (-0.345) (3.579)

Cov3s ~0.001032 2.706740 -0.000224 1.029982 | 0.2827
(-3.926) (5.922) (-0.510) (5.492)
(-1.823) (2.669) (-0.482) (3.444)

Covaa ~0.001264 3.296046 -0.000296 1.021314 | 0.3213
(-4.786) (6.491) (-0.556) (5.467)
(-2.440) (3.654) (-0.053) (3.437)

Covas -0.000537 2.256960 -0.000436 1.128876 | 0.3213
(-1.262) (4.057) (-0.785) (4.566)
(-1.270) (2.989) (-0.771) (3.176)

Covss -0.00003211 1.687457 -0.000606 1.206778 | 0.0805
(-0.061) (2.792) (-0.955) (3.848)
(-0.019) (2.367) (-0.932) (2.902)
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Table 14

Time-varying covariances for size-sorted portfolios of NYSE stocks during the period 1980-1986, using
GARCH estimation.

- -2
COV(Rit,Rjt) = 5,, TYiO e T &5
2
h=a; + ¢; & +y;hutny

Cov(Ri,R;y) 1s the covariance, as calculated in equation (10), of the excess returns to
portfolios 1 and j at time t. The model shows that this covariance is dependent on the
aggregate market variance at time t. The variance of the error term at time t, h,, is
assumed to be dependent on the lagged squared error terms and lagged variances of the
error term. The 1 indicates the smallest stock portfolio and the S indicates the largest
stock portfolio. Thus, Cov14 would be the covariance between the small stock portfolio

and the next to largest portfolio.

&y Vi @ b Vi R*

Covll -0.003604 0.177641 0.0000129 -1.768E™~ -3.753E* 0.3198
(-1.994) (5.894) (8.770) (-0.000) (-0.000)

Covl2 -0.003112 0.151420 0.000008 -3.877E~ -1.776E~ 0.3571
(-2.419) (6.637) (8.756) (-0.000) (-0.000)

Covl3 -0.003203 0.151108 0.0000063 -6.493E -1.819E™* 0.4139
(-2.948) (7.601) (7.761) (-0.000) (-0.000)

Covl4 -0.003098 0.142819 0.0000056 3.464E™” -1.330E~ 0.4141
(-3.084) (7.597) (7.592) (0.000) (-0.000)

Covl5s -0.002766 0.126118 0.0000042 1.716E™ -2.506E™~ 0.4257
(-3.140) (7.013) (5.839) (-0.000) (-0.000)

Cov22 -0.002958 0.142626 0.0000061 4.632E~ 0.0000028 0.3935
(-2.755) (6.679) (6.754) (0.000) (0.001)

Cov23 -0.003213 0.147835 0.0000049 -2.564E° 0.000075 0.4628
(-3.199) (7.138) (5.792) (-0.000) (0.079)

Cov24 -0.003211 0.145116 0.0000046 0.008303 0.001071 0.4647
(-2.941) (6.429) (0.058) (0.051) (0.000)

Cov25 -0.003387 0.153816 0.0000020 0.519801 4.493E~" 0.4597
(-4.120) (8.173) (2.990) (1.640) (0.000)

Cov33 -0.003454 0.155511 0.0000043 1.716E™ 0.0000648 0.5188
(-3.619) (7.968) (5.268) (0.000) (0.082)

Cov34 -0.003642 0.164837 0.0000032 0.25366 -1.321E™ 0.5137
(-3.951) (8.314) (2.915) (0.927) (-0.000)

Cov3s -0.003690 0.166361 0.0000012 0.410918 0.291195 0.4899
(-5.591) (11.064) | (1.151) (1.628) (1.116)

Cov44 -0.003643 0.168864 0.0000023 0.593602 1.401E™' 0.4874
(-4.659) (9.500) (2.947) (1.777) (0.000)

Cov45s -0.003448 0.163034 0.0000006 0.489367 0.404825 0.4671
(-5.641) (10.977) (1.078) (2.030) (2.196)

Cov3ss -0.003340 0.157423 0.0000003 0.292639 0.648517 0.4505
(-6.374) (11.560) (0.597) (1.279) (2.549)
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Table 15

Time-varying Covariances for size-sorted portfolios of NYSE stocks for the period 1980-1986, using E-
GARCH estimation.

Cov(RwRy) = &; + W G e * i
In(hy) = @; + @y gi5(z) + ¥ InChyer)*+ 77,
gi(za) = O 5+ [z - Elz,-,-,[]

Zije = €5/ -\’ h,‘j,

Cov(Ry,R;) is the covariance, as calculated in equation (10), of the excess returns to portfolios i and j at
time t. The model shows that this covariance is dependent on the aggregate market variance at time t. The
variance of the error term at time t, h,, is assumed to be dependent on the lagged squared error terms and
lagged variances of the error term. However, the variance of the error term is assumed to respond
asymmetrically to changes in volatility with past increases in the functions variance causing a greater
reaction than decreases in the variance function. The 1 indicates the smallest stock portfolio and the 5
indicates the largest stock portfolio. Thus, Cov14 would be the covariance between the small stock

portfolio and the next to largest portfolio.

&E; Vi @ &5 Vi 65 R”

Covll | Did not
converge.

Covl2 | 0.005190 0.189609 | -18.515341 | -1.118721 | -0.547330 | 0.083869 0.2962
(-339.570) | (38.588) | (-6.550) (-2.488) (-2.368) (0.433)

Covl3 | 0.005231 0.190148 | -17.907598 | -0.998351 | -0.473192 | 0.219418 0.3516
(-10.268) (14.752) | (-7.721) (-3.333) (-2.504) (0.949)

Covi4 | 0.004240 0.161973 | -8.834083 -1.211993 | 0.28323 0.467340 0.3858
(-30.699) (38.174) | (-3.939) (-3.249) (1.581) (2.255)

CovlS | Did not
converge.

Cov22 | Did not
converge.

Cov23 | 0.001618 0.098027 | -6.386317 -1.589353 | 0.498928 | -0.012640 0.4051
(-0.016) (0.980) (-63.863) (-15.894) (4.989) (-0.126)

Cov24 | 0.001832 0.107120 | -17.25045 1.291948 -0.382928 | -0.266424 0.4339
(-6.039) (29.412) | (-6.528) (2.733) (-1.861) (-1.972)

Cov25 | 0.003223 0.142586 | -18.935587 | 0.779491 -0.503407 | 0.14316 0.4833
(-0.032) (1.426) (-189.356) | (7.795) (-5.034) (0.143)

Cov33 | Did not
converge.

Cov34 | 0.002328 0.121650 { -20.650672 | 0.815284 -0.647565 | -0.172791 0.5024
(-0.015) (0.795) (-134.962) | (5.328) (-4.232) (-1.129)

Cov35 | 0.003423 0.157725 | -4.848172 0.656628 0.616533 | -0.145937 0.5010
(-6.377) (10.475) | (-1.526) (2.345) (2.448) (-0.465)

Cov44 | 0.003395 0.151137 | -23.119459 | 0.86448 -0.851378 | 0.161527 0.5118
(-1.096) (2.677) (-231.195) | (8.684) (-8.554) (1.583)

Cov45 | Did not
converge.

Cov55 | Did not
converge.

77




Table 16

Time-varying covariances for size-sorted portfolios of NYSE stocks during the period 1980-1986, using
Hansen’s (1982) t-statistic correction.

a2
COV(RiuRjt) = 5 i + V/ijo'mr + gg'ir

2 _ ~2
Ep =T +5,.j0'm +ey,

Cov(Ri,R;y) is the covariance, as calculated in equation (10), of the excess returns to
portfolios i and j at time t. The model shows that this covariance is dependent on the
aggregate market variance at time t. The squared error term at time t is assumed to be
dependent on the aggregate market variance at time t. The first t-statistics, directly below
the parameter estimates, are estimated using Hansen’s (1982) t-statistic correction while
the t-statistics below these are Hansen’s (1982) t-statistics adjusted using the method of
Murphy and Topel (1985) to control for the generated regressor problem. The 1 indicates
the smallest stock portfolio and the 5 indicates the largest stock portfolio. Thus, Cov14
would be the covariance between the small stock portfolio and the next to largest
portfolio. :

ij Vi “y o i R

Covlil 0.001735 0.599099 0.000013 0.000549 0.0036
(1.85) (1.10) (1.38) (0.22)
(1.58) (0.82) (0.41) (0.22)

Covl2 0.001259 0.629061 8.122E™ 0.00103 0.0084
(1.55) (1.24) (1.32) (0.66)
(1.30) (0.95) (0.26) (0.66)

Covl3 0.0013986 0.446992 7.581E™ 0.000444 0.0037
(1.90) (1.01) (1.66) (0.34)
(1.76) (0.82) (0.24) (0.34)

Covl4 0.001179 0.449586 5.752E° 0.000707 0.0058
(1.69) (1.05) (1.58) (0.65)
(1.50) (0.86) (0.18) (0.64)

Covls 0.001234 0.219885 5211E° -0.000108 0.0008
(1.92) (0.58) (2.20) (-0.11)
(1.79) (0.49) (0.16) (-0.10)

Cov22 0.000953 0.716252 5.210E™ 0.001453 0.0185
(1.26) (1.44) (1.30) (1.29)
(1.06) (L.11) (0.16) (1.27)

Cov23 0.00113465 0.526213 5.975E” 0.000512 0.0094
(1.67) (1.27) (1.79) (0.49)
(1.46) (1.05) (0.19) (0.49)

Cov24 0.000937 0.570493 4.789E™ 0.00059 0.0155
(1.44) (1.43) (1.77) (0.66)
(1.34) (1.20) (0.15) (0.66)

Cov25 0.00109 0.292262 4.860E™ -0.000245 0.0035
(1.80) (0.85) (2.30) (-0.29)
(1.63) (0.74) (0.15) (-0.29)

Cov33 0.001414 0.338026 6.893E™ -0.000075 0.0024
(2.12) (0.90) (2.09) (-0.07)
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(2.06) .77 (022) (-0.07)
Cov3a 0.001232 0.384905 5.728E° 0.000055 0.0055
(1.91) (1.05) (2.10) (0.06)
(0.18) (0.90) (0.18) (0.06)
Cov3s 0.001434 0.121591 6.096E° 0.000717 0.0003
(2.18) (0.34) (2.48) (-0.75)
(2.12) (0.29) (0.19) (-0.75)
Covad 0.001128 0.43612 5200E° 0.00005 0.0097
(1.71) (1.15) (1.99) (0.05)
(1.64) (0.98) (0.16) (0.05)
Covas 0.001433 0.133839 6.106E° -0.00090 0.0001
(2.07) (0.36) (221) (-0.77)
(1.90) (0.31) (0.19) (-0.76)
Covs5 0.001854 0315186 7.786E° -0.002003 0.0031
(2.36) (-0.38) (2.24) (-1.26)
(1.23) (-0.22) (0.25) (-1.26)
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Table 17

Time-varying covariances for size-sorted NYSE portfolios during the period 1980-1986, using WLS
estimation.

~2
COV(RiuRjt) = é: i + Wijo-ml + 8!]'!

2
8,-1-,

—_ S 22
=w; +0;0,, te;

Cov(Ri,R;;) is the covariance, as calculated in equation (10), of the excess returns to
portfolios i and j at time t. The model shows that this covariance is dependent on the
aggregate market variance at time t. The squared error term at time t is assumed to be
dependent on the aggregate market variance at time t. WLS estimation involves using the
predicted values of the second equation as weights for the terms in the first equation and
then re-estimating the first equation. We iterate between the equations 3 times. The first
t-statistics, directly below the parameter estimates, are estimated using WLS while the t-
statistics below these are WLS t-statistics adjusted using the method of Murphy and
Topel (1985) to control for the generated regressor problem. The 1 indicates the smallest
stock portfolio and the 5 indicates the largest stock portfolio. Thus, Cov14 would be the
covariance between the small stock portfolio and the next to largest portfolio.

—

& Vi o 0 R

Covlil 0.001665 0.651027 0.001502 0.416742 0.0112
(1.228) (0.723) (0.614) (0.451)
(0.821) (0.404) (0.575) (0.418)

Covl2 0.000839 0.93222 0.000924 0.554414 0.0288
(0.747) (1.168) (0.756) (1.035)
(0.224) (0.707) (0.496) (0.761)

Covl3 0.001296 0.521132 0.000913 0.486227 0.0119
(1.245) (0.745) (0.568) (0.560)
(0.380) (0.502) (0.449) (0.501)

Covi4 0.000943 0.619980 0.000749 0.575465 0.0189
(0.996) (0.941) (0.590) (0.857)
(0.303) (0.638) (0.396) (0.803)

Covls 0.001368 0.12878 0.001750 -0.042592 0.0014
(1.708) (0.256) (0.433) (-0.016)
(0.531) (0.197) (0.437) (-0.016)

Cov22 0.000368 1.143803 0.000668 0.566615 0.0522
(0.383) (1.592) (0.793) (1.485)
(0.116) (1.028) (0.229) (0.895)

Cov23 0.000943 0.663819 0.000866 0.472217 0.0222
(1.001) (1.022) (0.696) (0.742)
(0.306) (0.698) (0.494) 0.619)

Cov24 0.00074 0.711931 0.000853 0.443378 0.0297
(0.857) (1.186) (0.865) (0.825)
(0.262) (0.843) (0.612) (0.792)

Cov25 0.001245 0.188166 0.001773 -0.147595 0.0035
(1.654) (0.404) (0.677) (-0.086)
(0.514) (0.321) (0.665) (-0.086)

Cov33 0.001534 0.255170 0.001503 0.150672 0.0040
(1.645) (0.431) (0.475) (0.091)
(0.508) (0.309) (0.473) (0.091)
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Cov3a 0.001367 0.291913 0.001671 0.01681 0.0063
(1.590) (0.541) (0.711) (0.013)
(0.493) (0.404) (0.682) (0.013)

Cov35 0.001908 -0.19499 -0.001123 1.707912 0.0053
(2.583) (-0.496) (-0.397) (0.983)
(0.807) (-0.416) (-0.240) (0.739)

Covaa 0.001254 0.349543 0.001655 -0.016339 | 0.0101
(1.534) (0.684) (0.899) (-0.016)
(0.476) (0.523) (0.955) (-0.016)

Covds 0.001908 -0.182546 -0.001420 1.839358 0.0052
(2.674) (-0.488) (-0.474) (1.011)
(0.839) (-0.415) (-0.277) (0.751)

Covss 0.002774 -0.71298 0.000018 0952297 0.2664
(4.934) (-4.087) (0.023) (2.147)
(1.550) (-3.928) (0.006) (0.994)
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Table 18

Heteroskedastic CAPM for NYSE size-sorted portfolios during the period 1987-1997,
using GARCH estimation.

Ri=a;+ filRm+ 2 (Rmt/&:" Yen
2
Su=@; + §,€°+ ¥, s 1HVie

This model shows the return on a portfolio, i, at time t is a function of the return on the
market and the return on the market divided by the estimated market variance at time t.
The variance of the error term at time t, h,, is assumed to be dependent on the lagged
squared error terms and lagged variances of the error term.

a; B JZ @i @; Vi R

Small -0.001428 | 1.111597 0.000011 0.000150 1.098462 0.011517 0.7865
(-1.392) | (21.700) (0.299) (3.607) (4.908) (0.188)

Size 2 -0.000407 | 1.018999 -0.000044 0.000050 0.066188 2.794E"¢ 1 0.9732
(-0.475) | (68.102) | (-2.374) (5.604) (0.972) (0.000)

Size 3 -0.001624 | 0.997895 0.000012 0.000032 0.483319 -8.985E"° | 0.9703
(-2.131) (70.325) (0.716) (4.761) (2.075) (-0.000)

Size 4 -0.000081 | 0.997937 0.000008 0.000042 0.751436 5.712E° 0.9392
(-0.123) | (59.318) (0.407) (4.020) (3.650) (0.000)

Large 0.000884 0.863062 0.000068 0.000141 0.467188 -2.602E" | 0.8452
(0.639) (28.968) (2.434) (5.207) (2.965) (-0.000)
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Table 19

Heteroskedastic CAPM for size-sorted NYSE stocks during the period 1987-1997, using
E-GARCH estimation.

Ri= a;+ BilRm+i2 R/ 0'3.: )teir
Inthy) = @; + ¢, gi(z1) + ¥; In(hir1)+ 77,
8i(zi) = O+ [z - Elz,|]

Zi=¢ei/ \/71—,,-

This model shows the return on a portfolio, i, at time t is a function of the return on the
market and the return on the market divided by the estimated market variance at time t.
The variance of the error term at time t, h,, is assumed to be dependent on the lagged
squared error terms and lagged variances of the error term. However, the variance of the
error term is assumed to respond asymmetrically to changes in volatility with past
increases in the functions variance causing a greater reaction than decreases in the
variance function.

ai Pa Ba @i @i Vi g; R

Small | -0.002014 | 1.06163 | 0.000013 | -3.304310 | 0.965194 | 0.570479 | -0.358928 | 0.7770
(-1.567) (28.240) | (0.382) (-2.807) (5.667) (3.818) (-3.185)

Size 2 | -0.000349 | 1.00444 | -0.00003 | -17.4315 | 0.23712 | 0.769739 | -0.706014 | 0.9732
(-0.463) | (44.989) | (-2.383) | (-10.772) | (1.204) | (-4.694) | (-0.892)

Size 3 | -0.001203 | 0.99055 | 0.000014 | -4.009177 | 0.763557 | 0.584544 | 0.257103 | 0.9703
(-0.012) | (9.906) | (0.000) | (-40.992) | (7.636) | (5.845) | (2.571)

Size 4 | 0.000200 | 0.99180 | 0.000021 | -5.900650 | 0.899318 | 0.371042 | 0.299167 | 0.9387
(0.267) (40.190) | (1.076) | (-2.126) | (3.284) | (1.262) | (1.663)

Large | 0.000417 | 0.85354 | 0.000079 | -8.196912 | 0.670693 | 0.027352 | 0.147072 | 0.8464
(0.332) (27.241) | 3.011) | (-4.118) | (3.574) |(0.116) | (0.804)
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Table 20

Heteroskedastic CAPM estimates for NYSE size-sorted portfolios during the period
1987-1997, using Hansen’s (1982) t-statistic correction.

Ri= a;+ B ilRme +fi (Rmt/&,il req

gl=w, +

~2
G, t+e,

mr

This model shows the return on a portfolio, i, at time t is a function of the return on the
market and the return on the market divided by the estimated market variance at time t.
The squared error term at time t is assumed to be dependent on the aggregate market
variance at time t. The first t-statistics, directly below the parameter estimates, are
estimated using Hansen’s (1982) t-statistic correction while the t-statistics below these
are Hansen’s (1982) t-statistics adjusted using the method of Murphy and Topel (1985) to
control for the generated regressor problem.

ai B, B @i S R
Small -0.00037 1.22210 0.903490 | 0.00073 0.011255 | 0.7980
(-0.17) (12.75) (0.94) (3.57) (0.27)
(-0.12) (12.19) (0.94) (3.46) 0.27)
Size 2 -0.00141632 | 0.988368 | 0.031951 | 0.0000629 | -0.000687 | 0.9720
(-1.60) (39.45) 0.11) (6.03) (-0.34)
(-1.58) (39.42) 0.11) (5.95) (-0.34)
Size 3 -0.00116045 | 0.990683 | -0.043455 | 0.0000631 | 0.0045683 | 0.9705
(-1.29) (37.56) (-0.11) (4.07) (1.22)
(-1.29) (37.51) (-0.11) (3.16) (1.20)
Size4 0.0000279 0.955264 | -0.086572 | 0.000126 0.000525 | 0.9416
(0.03) (30.27) (-0.19) (3.16) (0.07)
(0.03) (30.15) (-0.19) (2.81) (0.07)
Large .00292002 0.843585 | -0.805415 | 0.000276 0.003516 | 0.8450
(2.13) (19.09) (-1.39) (3.97) (0.26)
(1.17) (16.41) (-1.39) (3.81) (0.26)
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Table 21

Heteroskedastic CAPM for NYSE size-sorted portfolios during the period 1987-1997,
using WLS estimation.

Ri= &+ fuRm+ fi2 Rl 61, )Feir

&; =@; +3,62, +e,

The model shows that this covariance is dependent on the aggregate market variance at
time t. The squared error term at time t is assumed to be dependent on the aggregate
market variance at time t. WLS estimation involves using the predicted values of the
second equation as weights for the terms in the first equation and then re-estimating the
first equation. We iterate between the equations 3 times. The first t-statistics, directly
below the parameter estimates, are estimated using WLS while the t-statistics below these
are WLS t-statistics adjusted using the method of Murphy and Topel (1985) to control for
the generated regressor problem.

a; B B R
Small 0.002211 1.10938 0.030404 0.9090
(0.886) (33.029) (0.050)
(0.886) (33.014) (0.050)
Size 2 -0.002166 1.033392 0.199725 0.9916
(-2.387) (114.155) (0.679)
(-2.096) (92.673) (0.679)
Size 3 -0.002459 1.048097 0.434952 0.9951
(-3.107) (154.044) (1.765)
(-1.799) (66.608) (1.765)
Size 4 -0.001580 0.953580 0.602366 0.9780
(-1.550) (68.258) (2.057)
(-0.853) (39.552) (2.057)
Large 0.003097 0.863793 -1.233037 0.9385
(1.964) (41.515) (-2.792)
(0.869) (19.075) (-2.792)

85




Table 22

Heteroskedastic CAPM for BM-sorted portfolios in during the period 1990-1997, using
GARCH estimates.

Ri= a;+ BiRm+LBi2 (ant/&:,: e
2
Si=@; + @, + y.sqHVie

This model shows the return on a portfolio, i, at tine t is a function of the return on the
market and the return on the market divided by the estimated market variance at time t.
The variance of the error term at time t, h,, is assumed to be dependent on the lagged
squared error terms and lagged variances of the error term.

ai ,Bi B i i i Vi R

Growth | -0.007299 | 1.271473 | 5.048E™" [ 0.000157 | 0.199396 | -1.217E® 0.9439
(-4.332) (41.328) (0.108) (4.798) (1.117) (-0.000)

2 -0.004425 | 1.086335 | 2.244E” 0.000051 0.589462 | 0.116147 0.9458
(-3.828) (56.881) (0.525) (2.094) (2.762) (0.598)

3 0.000482 | 0.933086 | 2.724E~ 0.000027 | 0.487888 | 2.878E " 0.9760
(0.604) (63.643) (2.185) (4.584) (9.231) (0.000)

4 0.003567 | 0.848546 | -1.496E° | 0.000074 | 9.099E | -1417E~ 0.9521
(3.038) (45.909) (-0.696) (5.793) (0.000) (0.000)

Value 0.011128 | 0.849356 | -5.504E~ | 0.00009 0.853486 | -1.015E™ 0.8766
(7.399) (23.306) (-1.291) (3.070) (2.038) (-0.000)
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Table 23

Heteroskedastic CAPM of BM-sorted portfolios for the period 1990-1997, using E-
GARCH estimation.

Ri=a;+ fuRm+fi2 (Rmt/a:u )ei
In(hy) = @; + @, 8i(z1) + ¥, InChy)+17,
gi(zi) = Gic + [lzi(l - EIZ,-,I]

Zi=¢ey/ \/Z

This model shows the return on a portfolio, i, at time t is a function of the return on the
market and the return on the market divided by the estimated market variance at time t.

The variance of the error term at time t, h,, is assumed to be dependent on the lagged

squared error terms and lagged variances of the error term. However, the variance of the

error term is assumed to respond asymmetrically to changes in volatility with past
increases in the functions variance causing a greater reaction than decreases in the
variance function.

ai ﬂi ﬂiz i P Vi 0 R

Growth | 0.00729 | 1.237332 | 5.436E" | 8.492083 | 0.001609 | 0.002407 | 0.000414 | 0.9439
(-4.089) | (10.509) (0.064) (-85.352) | (0.015) (0.039) (0.035)

2 0.00453 | 1.058379 1.853E~ 8.898199 | 0.000001 0.000001 0.000001 | 0.9467
(-0.045) | (10.584) (0.000) (-88.982) | (0.000) (0.000) (0.000)

3 0.00057 | 0.931798 | 3.573E~ -9.98675 0.000004 | 0.000186 | -0.000180 | 0.9765
(-0.006) | (9.318) (0.000) (-99.867) | (0.000) (0.002) (-0.002)

4 0.00355 | 0.850788 | -1.751E™ [ 9.479362 | 0.000024 | 0.002628 | 0.000466 | 0.9521
(0.036) | (8.508) (-0.000) (-94.794) | (-0.000) (0.026) (0.005)

Value 0.01242 | 0.890391 | -9.028E” | 8.450076 | 0.780757 | 0.004270 | -0.403615 | 0.8745

(0.124) | (8.904) (-0.000) (-84.501) | (7.808) (0.043) (-4.036)

87




Table 24

Heteroskedastic CAPM for BM-sorted portfolios during the period 1990-1997, using
Hansen’s (1982) t-statistic correction.

Ri=a,+ fuRm+ B2 (Rmt/&,ir )ren
a2

£ =w,+6,6

3 mt

+e,

This model shows the return on a portfolio, i, at time t is a function of the return on the
market and the return on the market divided by the estimated market variance at time t.

The squared error term at time t is assumed to be dependent on the aggregate market
variance at time t. The first t-statistics, directly below the parameter estimates, are
estimated using Hansen’s (1982) t-statistic correction while the t-statistics below these

are Hansen’s (1982) t-statistics adjusted using the method of Murphy and Topel (1985) to

control for the generated regressor problem.

i B B @ i Si R”
Growth | -0.003532 1.187011 | -3.655186 -0.000080 | 0.252147 | 0.9385
(-0.64) (32.91) (-0.74) (-0.74) (2.43)
(-0.54) (19.84) (-0.74) (-0.06) (2.25)
2 0.0000734 0.980077 | -3.971943 -0.000294 | 0.490729 |0.9117
(0.01) (16.63) (-0.73) (-1.25) (1.85)
(0.01) (12.49) (-0.72) (-0.11) (1.77)
3 0.0038565 0.873783 | -3.607587 -0.000064 | 0.146828 | 0.9477
(1.13) (22.86) (-1.21) (-0.87) (1.81)
(0.79) (14.41) (-1.20) (-0.08) (1.73)
4 0.00389057 | 0.779203 | -0.719193 -0.000106 | 0.199524 | 0.9293
(1.29) (21.10) (-0.27) (-1.23) 2.11)
(1.26) (20.45) (-0.27) (-0.10) (1.99)
Value 0.0018054 0.827204 | 4.914907 -0.000259 | 0.387736 | 0.9056
(0.31) (17.64) (0.93) (-1.37) (1.99)
(0.24) (10.41) (0.93) (-0.10) (1.99)
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Table 25

Heteroskedastic CAPM for BM-sorted portfolios during the period 1990-1997, using
WLS estimation.

— ~2

Ri= &+ fuRm+Fi2 Rm/ o, ) e
2 __ 5 a2

& =w; +0,0, te,

The model shows that this covariance is dependent on the aggregate market variance at
time t. The squared error term at time t is assumed to be dependent on the aggregate
market variance at time t. WLS estimation involves using the predicted values of the
second equation as weights for the terms in the first equation and then re-estimating the
first equation. We iterate between the equations 3 times. The first t-statistics, directly
below the parameter estimates, are estimated using WLS while the t-statistics below these
are WLS t-statistics adjusted using the method of Murphy and Topel (1985) to control for

the generated regressor problem.

ai B A R
Growth -0.003248 1.18731 -3.905807 0.9385
(-0.658) (36.592) (-0.961)
(-0.524) (19.644) (-0.960)
2 -0.005403 1.097598 0.152720 0.9693
(-1.158) (49.017) (0.040)
(-1.157) (48.824) (0.040)
3 0.003816 0.905226 -3.929096 0.9549
(1.141) (42.925) (-1.441)
(0.757) (16.321) (-1.440)
4 0.004199 0.805846 -1.292874 0.9425
(1.242) (37.830) (-0.468)
(1.167) (26.649) (-0.460)
Value 0.010190 0.776024 -1.918677 0.9443
(2.505) (36.685) (-0.582)
(2.501) (23.669) (-0.581)
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Table 26

Heteroskedastic CAPM for size-sorted portfolios during the period 1990-1997, using
GARCH estimation.

Ri= a;+ B iRm+ B2 R/ 52, )€
2
Su=@; + @, + y.sHVi

This model shows the return on a portfolio, i, at time t is a function of the return on the
market and the return on the market divided by the estimated market variance at time t.
The variance of the error term at time t, h,, is assumed to be dependent on the lagged
squared error terms and lagged variances of the error term.

&i ﬂi ﬂ i2 @i : Vi R

Small 0.018651 1.024532 | -1.177E° 0.000439 | 0.634994 5.573E" 0.7826
(6.018) (21.660) | (-1.710) (3.879) (3.095) (0.000)

Size2 | -0.001301 | 1.086859 | -4.678E” 0.000165 | 4.136E™ 0.00006 0.9426
(-0.771) (43.900) | (-0.979) (6.752) (0.000) (0.000)

Size 3 -0.005238 | 1.062123 | 1.992E~ 0.000056 | -6.659E~ -2.329™ 0.9796
(-5.748) (73.835) | (0.974) (5.961) (-0.000) (-0.000)

Size4 | -0.006333 | 0.949130 | 5.097E" 0.000147 | 0.037867 0.383166 0.8967
(-2.774) (23.376) | (0.633) (0.202) (0.242) (0.131)

Large -0.003315 | 0.763328 | 1.040E™ 0.000363 | 0.240211 -9.694E™’ 0.7421
(-1.322) (18.170) | (1.540) (5.330) (1.803) (-0.000)
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Table 27

Heteroskedastic CAPM for size-sorted portfolios during the period 1990-1997, using E-
GARCH estimation.

Ri=a;+ fiuRm+ B2 (Rmt/o'i: e
Inthy) = @; + @, 8i(z1) + 7; InChi)+77,
gi(zi) = O+ [|z,| - Elz,|]

Zip =€/ \/-}:

This model shows the return on a portfolio, i, at time t is a function of the return on the
market and the return on the market divided by the estimated market variance at time t.
The variance of the error term at time t, h,, is assumed to be dependent on the lagged
squared error terms and lagged variances of the error term. However, the variance of the
error term is assumed to respond asymmetrically to changes in volatility with past
increases in the functions variance causing a greater reaction than decreases in the
variance function.

&i B B @i P Vi 6; R”

Small | 0.01701 | 0.994140 | -1.52297 | 7.079535 | 0.839552 | 0.014202 | -0.486678 | 0.7579
(0.170) | (9.941) | (-0.00) | (-70.795) | (8.396) | (0.142) (-4.867)

Size2 | 0.00130 | 1.086859 | -4.678E° | 8.678738 | 0.00001 | 0.00001 | 0.00001 | 0.9426
(-0.013) | (10.869) | (-0.000) | (-86.787) | (0.000) | (0.000) (0.000)

Size3 | 0.00523 | 1.062108 | 1.937E° | 9.749335 | 0.000245 | 0.000133 | -0.000242 | 0.9796
(-0.052) | (10.621) | (0.000) | (-97.493) | (0.002) | (0.001) (-0.002)

Size4 | 0.00637 | 0.945497 | 5.210E™ | 8.243756 | 0.000001 | 0.000001 | 0.000001 0.8967
(-0.064) | (9.455) (0.000) (-82.438) | (0.000) (0.000) (0.000)

Large | 0.00277 | 0.732534 | 1.035E° | 7.602994 | 0.000001 | 0.000001 | 0.000001 | 0.7439
(-0.028) | (7.253) | (0.000) | (-76.030) | (0.000) | (0.000) (0.000)
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Table 28

Heteroskedastic CAPM for size-sorted portfolios during the period 1990-1997, using
Hansen’s (1982) t-statistic correction.

Ri= a;+ fiuRm +Fi2 Rt/ G, :., )ten

2 —
£y =T; + 0.6

7 me

+ e,.j,

This model shows the return on a portfolio, i, at time t is a function of the return on the
market and the return on the market divided by the estimated market variance at time t.
The squared error term at time t is assumed to be dependent on the aggregate market
variance at time t. The first t-statistics, directly below the parameter estimates, are
estimated using Hansen’s (1982) t-statistic correction while the t-statistics below these
are Hansen’s (1982) t-statistics adjusted using the method of Murphy and Topel (1985) to

control for the generated regressor problem.

ai 181'[ ﬂil Wi 5i Rz
Small | 0.002159 1.125047 | 9.971379 | -0.001288 | 1.190579 | 0.7775
(0.18) (9.88) (0.91) (-1.39) (1.84)
(0.14) (6.15) (0.91) (-0.20) (1.76)
Size2 |-0.004462 | 1.067766 | 2.090386 | 0.0000599 | 0.079275 | 0.9413
(-1.02) (29.84) | (0.55) (1.17) (1.67)
(-0.78) (17.45) | (0.55) (0.14) (1.61)
Size3 | -0.000928 | 1.071846 | -3.480462 | 0.0000929 | -0.030959 | 0.9799
(-0.35) (5227) | (-1.73) (2.75) (-1.18)
(-0.28) (32.17) | (-1.73) (0.56) (1.16)
Size4 | -0.00184057 | 0.967305 | -3.21049 | -0.000277 | 0.454357 | 0.8950
(-0.29) (17.08) | (-0.56) (-1.26) (1.92)
(-0.22) (10.31) | (-0.55) (-0.12) (1.83)
Large | 0.005071 0.768036 | -5.370812 | -0.000361 | 0.750863 | 0.7346
(0.60) (10.48) | (-0.72) (-1.03) (1.93)
(0.46) (6.30) (-0.72) (-0.09) (1.83)
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Table 29

Heteroskedastic CAPM for size-sorted portfolios during the period 1990-1997, using
WLS estimation.

Ri= &+ ﬂ itRmt +ﬂ i2 (Rmt/&,;l., )tei
2

€t

=@; +6,6, +e,

The model shows that this covariance is dependent on the aggregate market variance at
time t. The squared error term at time t is assumed to be dependent on the aggregate
market variance at time t. WLS estimation involves using the predicted values of the
second equation as weights for the terms in the first equation and then re-estimating the
first equation. We iterate between the equations 3 times. The first t-statistics, directly
below the parameter estimates, are estimated using WLS while the t-statistics below these
are WLS t-statistics adjusted using the method of Murphy and Topel (1985) to control for
the generated regressor problem.

@i By B R
Small 0.008223 0.961036 5.438959 0.8853
(0.900) (23.638) (0.726)
(0.781) (11.745) (0.726)
Size 2 -0.006118 1.025907 3.90666 0.9566
(-1.468) (43.182) (1.145)
(-1.091) (18.233) (1.144)
Size 3 -0.000613 1.069923 -3.722458 0.9804
(-0.247) (65.939) (-1.817)
(-0.141) (20.882) (-1.815)
Size 4 0.004518 0.979126 -8.736970 0.9418
(1.056) (34.642) (-2.427)
(0.480) (8.332) (-2.427)
Large 0.005273 0.931225 -6.342947 0.9321
(0.776) (31.265) (-1.170)
(0.578) (10.581) (-1.169)




Table 30

Heteroskedastic CAPM of NYSE size-sorted portfolios for the period 1980-1986, using
GARCH estimates.

Ri= a;+ fiuRm+fi2 R/ 62, )Fei
S = @, + ¢,' eZ + Vi St-1+Vit

This model shows the return on a portfolio, 1, at time t is a function of the return on the
market and the return on the market divided by the estimated market variance at time t.
The variance of the error term at time t, h,, is assumed to be dependent on the lagged
squared error terms and lagged variances of the error term.

@i B; B D @i Vi R”

Small 0.005602 1.140759 | -0.000094 | 0.000359 | -2.734E™~ 0.017704 0.8720
(1.522) (16.535) | (-0.738) (0.000) (-0.000) (0.000)

Size 2 -0.000283 | 1.020110 | -0.000015 | 0.000069 | 0.012839 -2.531E~" | 0.9685
(-0.235) (23.313) | (-0.263) (4.201) (0.067) (-0.000)

Size 3 -0.002012 | 1.022381 | -0.000012 | 0.000024 | -2.275E~ 5.635E~ 0.9890
(-3.074) (56.553) | (-0.400) (5.170) (-0.000) (0.000)

Size 4 -0.001905 | 0.964660 | 0.000022 0.000068 | 7.569E~ 9.306E~ 0.9674
(-1.338) | (30.463) |(0.394) | (6.288) | (0.000) (0.000)

Large -0.001382 | 0.853138 | 0.000099 0.000268 | -5.615E™~ 95I13E* | 0.8676
(-0.541) | (15393) |(1.089) |(5468) |(-0.000) | (-0.000)
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Table 31

Heteroskedastic CAPM on Size-sorted NYSE stocks during the period 1980-1986, using
E-GARCH estimation procedure.

Ri= a;+ BiuRm+ B2 R/ 02, )+ei
]-n(hit) = w; + ¢,-gi(Zz-1) + Y ln(hit-l)'*'ﬂ,';
gi(zi) = O+ [|z,] - Elz,|]

Zip = €3/ \/Z

This model shows the return on a portfolio, i, at time t is a function of the return on the
market and the return on the market divided by the estimated market variance at time t.
The variance of the error term at time t, h,, is assumed to be dependent on the lagged
squared error terms and lagged variances of the error term. However, the variance of the
error term is assumed to respond asymmetrically to changes in volatility with past
increases in the functions variance causing a greater reaction than decreases in the
variance function.

X B; B @i i Vi 0; R
Small | 0.00694 | 1.10799 | 0.0000834 | 7.298387 | 1.526406 | 0.100661 | 0.2513 0.8613
(0.069) | (11.080) | (0.001) (-72.984) | (-15.264) | (1.007) | (2.513)

Size 2 | 0.00077 | 1.01778 | -0.0000065 | 7.914634 | 0.927172 | 0.176703 | 0.6820 | 0.9684
(-0.792) | (39.868) | (-0.153) (-4.377) | (-1.929) { (0.938) | (1.953)

Size 3 | 0.00200 | 1.02141 | -0.0000285 | -6.15570 | 0.564662 | 0.426630 | 0.6621 0.9888
(-3.653) | (47.438) | (-1.100) (-2.473) (-1.910) | (1.833) (1.843)

Size 4 | 0.00236 | 0.96357 | -0.0000214 | 9.855831 | 0.764006 | 0.019980 | 0.1276 | 0.9660
(-2.149) | (20.057) | (-0.394) (-1.320) (-2.019) | (-0.026) | (-0.327)

Large | 0.00188 | 0.90488 | 0.0000665 | 9.593754 | 0.431582 | 0.162984 | 0.03096 | 0.8663
(-0.019) | (9.049) | (0.001) (-95.938) | (-4.316) | (-1.630) | (-0.310)
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Table 32

Heteroskedastic CAPM on NYSE size-sorted stocks for the period 1980-1986, using
Hansen’s (1982) t-statistic correction.

Ri= a;+ BuRm + B2 R/ 62, )+eir

2 ~2
& =@; +0,6

ij~ me + eijf

This model shows the return on a portfolio, i, at time t is a function of the return on the
market and the return on the market divided by the estimated market variance at time t.
The squared error term at time t is assumed to be dependent on the aggregate market
variance at time t. The first t-statistics, directly below the parameter estimates, are
estimated using Hansen’s (1982) t-statistic correction while the t-statistics below these
are Hansen’s (1982) t-statistics adjusted using the method of Murphy and Topel (1985) to
control for the generated regressor problem.

a; ﬂ“ ﬂiz T ; ’ Ji R~
Small 0.004636 | 1.086024 | 0.689496 0.0003396 | 0.019431 | 0.8704
(1.36) (15.36) | (0.37) (2.37) (0.30)
(1.32) (1433) | (0.37) (2.31) (0.26)
Size 2 -0.000568 | 1.011105 | 0.178777 0.0000427 | 0.017703 | 0.9684
(-0.37) (40.09) | (0.20) (2.09) (1.35)
(-0.36) (38.60) | (0.20) (1.18) (0.51)
Size3 -0.001749 | 1.014844 | -0.15616 0.000028 | -0.00249 | 0.9890
(-1.77) (60.26) | (-0.44) 4.71) (-1.33)
(-1.71) (56.58) | (-0.44) (3.89) (-0.51)
Size 4 -0.00028 0.975889 | -1.043720 0.000047 | 0.012815 | 0.9677
(-0.19) (37.86) | (-1.17) (2.45) (0.94)
(-0.14) (20.06) | (-1.17) (1.79) (0.48)
Large 0.0020367 | 0.912138 | 0.331608 0.0000255 | 0.01093 0.8656
(-0.63) (15.40) | (0.20) (3.61) (0.34)
(-0.62) (15.04) | (0.20) (1.14) (0.29)
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Table 33

Heteroskedastic CAPM for NYSE size-sorted portfolios for the period 1980-1986, using
WLS estimation.

Ri= &+ BiuRm+ iz R 62, e
aw—w +6.62 +ey

J~ me
The model shows that this covariance is dependent on the aggregate market variance at
time t. The squared error term at time t is assumed to be dependent on the aggregate
market variance at time t. WLS estimation involves using the predicted values of the
second equation as weights for the terms in the first equation and then re-estimating the
first equation. We iterate between the equations 3 times. The first t-statistics, directly
below the parameter estimates, are estimated using WLS while the t-statistics below these
are WLS t-statistics adjusted using the method of Murphy and Topel (1985) to control for
the generated regressor problem.

ai By B R
Small 0.005620 1.097690 0.182914 0.9350
(1.917) (27.783) (0.153)
(1.910) (26.340) (0.153)
Size 2 0.000058 1.00890 -0.205888 0.9673
(0.035) (40.988) (-0.264)
(0.035) (38.915) (-0.264)
Size 3 -0.001649 1.015905 -0.227508 0.9885
(-1.668) (69.833) (-0.491)
(-1.582) (59.401) (-0.491)
Size 4 -0.000636 0.966980 -0.799586 0.9689
(-0.439) (41.118) (-1.205)
(-0.358) (24.543) (-1.205)
Large -0.003805 0.920901 1.412484 0.8761
(-1.299) (20.055) (1.016)
(-1.102) (12.738) (1.016)




Appendix 3

From the Methodology section equation 7 is:

2wi(&+yor)
ﬂi[ = = 2

ol

mt

This can be rewritten as:

N
Z (ij + ijo'fxr)
IBi! = = 2

ol

mt

Since the sum of the weights must equal one, this reduces to:

+yol,
;3 _StYo.,

The risk premium given by equation 5 is;

s

2
(o3

mt

Ri= (R, ) +V)

From equation 6 it is easy to see that the traditional CAPM, by substituting S, for y and
B, for £, can be rewritten as:

R
Ri=a+ B,R,, + P, —=+¢&

2

mt
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