INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand cormer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9” black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Beli & Howell information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

IMPLEMENTING REAL-TIME REACTIVE SYSTEMS
FROM OBJECT-ORIENTED DESIGN SPECIFICATIONS

LiZHONG ZHANG

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOrR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CoxNCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

AtcusT 2000
© LizHONG ZHANG, 2000

i~l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et)
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
Our file Notre référence
The author has granted a non- L’auteur a accord€ une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
¢lectronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-54340-4

Abstract

Implementing Real-Time Reactive Systems from Object-Oriented

Design Specifications

Lizhong Zhang

Real-time reactive systems are among the most difficult systems to design and imple-
ment because of their size and complex functional and timing requirements. TROM-
LAB is a framework for a rigorous development of consistent design that satisfy an
authoritative specification of requirements, validate the design through simulation,
and verify the design for safety properties through a formal verifier. This thesis adds
one more significant component to TROMLAB by providing a methodology for auto-
matic generation of code in real-time Java for reactive systems designed in TROM-
LAB framework. The correctness and efficiency of the implementation are illustrated
on the implementation of the design for a generalized rail-road crossing problem, a

bench-mark case study in the real-time systems community.

111

A cknowledgments

A warm thank you goes to my supervisor, Dr. V. S. Alagar, who guided this work

with good advice, patience and understanding, and provided good technical support.

On a personal level, I thank my brother Liqiang, for his support and help. I wish
to thank my parents for their financial and spirit support. Without their support, I

cannot finish it.

iv

Contents

List of Figures vii
List of Tables X
1 Introduction 1
1.1 Real-time reactive systems oo L.
1.2 Research Goals Lo
2 Reactive Model - TROM Methodology 6
2.1 Introductlon L oLl 6
2.2 First Tier - Larch Formalism 6
2.3 Second Tier - TROM Formalism 8
2.4 Composite Classes it 10
2.5 Third Tier-SCS 12
2.6 Design Refinement L. 13
2.6.1 Behavioral Inheritance 13
2.6.2 Extensional Inheritance 15
2.6.3 Polvmorphic Inheritanceo L. 16
3 Implementing TROM Models 17
3.1 Introduction 17
3.2 Environment Assumptionsot e et 17
3.3 Real-Time Run-Time Library 18
3.3.1 Real-time Reactive Model 19
3.3.2 Task Scheduling and Message Passing Algorithm. 20
3.3.3 A Real-time Run-time Libraryof Java 22

3.4 Mapping TROM Models into RT-Environment
3.4.1 Abstract Data Type Implementation
3.4.2 TROM Implementation Model

3.5 Composite Class i i

System Implementation,

3.7 Svstem Refinement
4 Automated Code Generation
4.1 Introduction e e e e e e e
4.2 Descriptionof the AST
4.3 Implementing Abstract Syntax Tree of LIL
14 From TROM ToCode
4.4.1 Transition Class Generation
4.4.2 State Class Generation
4.4.3 Reactive Class Generation
4.4.4 Svstem Class Generation«
5 Case Study: The Railroad Crossing Problem
5.1 Introduction L.
5.2 The Railroad Crossing Problem, ...
5.2.1 An Informal Description
5.2.2 Train-Gate-Controller Model
5.3 Implementation of Train-Gate-Controller
5.3.1 Abstract Data TypeClasses
5.3.2 Reactive Object Classes
3.33 SystemClass
5.4 Automatic Code Generation
6 Conclusions and Future Work
Bibliography

Appendix A

Appendix B

vi

41
41
42
43
44
45
49
30
o1

53
33
33
33
94
39
29
62
78
81

86

89

92

98

List of Figures

[N

=1 O Ot 4 W

L e e e e T R S T o Y 0+)
0 ~] O Ul e W= O

(VI]
o o

21

TROMLAB architecture
Research goals in the context of TROMLAB
An overview of TROM methodology
Set traito
Template for System Configuration Specification.
Class definition of Arbiter,
Class definition of User
Template for Composite Class Construction
A composite class with fiveclasses.
Specification for Composite Class Class3
Template for System Configuration Specification.
Arbiter System e e e e
A Reactive Model Lo
Task Scheduling and Message Passing Algorithm
Relationship between design framework and implementation framework
State Diagram of A Printer
Refinement of State Diagram of A Printer
Behavior of a TROM reactiveobject
Class diagram of Common Reactive Class
Class diagramof event
Reconsider the state diagram L.
Class diagram of State
Class diagramof Port, ...
Class diagram of Transition
Class diagram of TimeConstraint
Refinement of Reactive Model

vii

-1 O N

A_l

[AR AN A B S | B] B 1 B] B] S &) B O]
O 00 ~1 & U WY~ O

Class Diagram of Reactive Object
High level AST structure with subset of components shown
Larch/Java specification for Set
High level AST structure of LIL.
Pseudo-code for the whole code generation
Pseudo-code for every transition class generation.
Translating assertions between attributestocodes
Pseudo-code for translating a signature to a functioncall
Pseudo-code for the algorithm to decide the executed order
Pseudo-code for the algorithm of state class generation
Pseudo-code for the algorithm of reactive class generation
Pseudo-code for the algorithm of system class generation
Train-Gate-Controler System Class Diagram
Statechart Diagram for Train
Formal specification for GRC Train
Statechart Diagram for Controller
Formal specification for GRC Controller
Statechart Diagram for Gate
Formal specification for GRC Gate
Collaboration diagram for subsystem TrainGateController
Formal specification for subsystem TrainGateController
Implementation for R1 of Train
Implementation for R2 of Train
Implementation for R3of Train
Implementation for R4 of Train
Refinement for GRC Train
Implementation for State idleof Train
Implementation for State toCrossof Train
Implementation for State crossof Train
Implementation for State leaveof Train
Implementation for Train
Implementation for Rl of Gate

Implementation for R2of Gate

Implementation for R3of Gate, 71

Implementation for R4 of Gate 72
Implementation for State openedof Gate 72
Implementation for State toCloseof Gate 73
Implementation for State closed of Gate 73
Implementation for State toOpenof Gate 74
Implementation for Gate L. 74
Implementation for R1 of Controller. 76
Implementation for R2 of Controller. 76
Implementation for R3 of Controller. 7
Implementation for R4 of Controller. 7
Implementation for R5 of Controller 78
Implementation for R6 of Controller 79
Implementation for R7 of Controller 79
Implementation for State idle of Controller 80
Implementation for State activate of Controller. 80
Implementation for State monitor of Controller 80
Implementation for State deactivate of Controller 81
Implementation for Controller 82
Implementation for Train-Gate-Controller System 83
Implementation Phase 84
Formal specification for subsystem TrainGateController2 85

ix

List of Tables

=1 O O = W N =

o0

10
11
12
13
14

Grammar of an acceptable post-condition.

Grammar for generic reactive class specification

Grammar for generic reactive class title

Grammar forevents
Grammar for states
Grammar for attributes. . . .

Grammar for LSL traits . . .

Grammar for attribute functions.

Grammar for transition specifications

Grammar for time constraints

Grammar for subsystem configuration

Grammar for include section .

Grammar for instantiate section

Grammar for configure section

Chapter 1

Introduction

1.1 Real-time reactive systems

Reactive systems interact continuously with their environment through stimulus and
response. Their stimulus-response behaviors are regulated by strict time constraints
for the real-time aspect. Such systems are widely and increasingly used throughout
society. Examples of such systems include air traffic control, nuclear power reactor,
telecommunication system and strategic defense system. These systems must satisfy

two important requirements:

e stimulus synchronization: the process is always able to react to a stimulus

from the environment;

e respounse synchronization: the time elapsed between a stimulus and its re-

sponse is acceptable to the relative dynamics of the environment so that the

environment is still receptive to the response.

Generally, the behavior of a reactive system is infinite: the process in a reactive
system is usually continuously and non-terminatingly responding to the stimuli from
its environment. The correct behavior of non-realtime systems is founded on the
functional correctness of the result. By contrast, real-time reactive systems require
both the functional correctness of the result and its timing correctness. Hence safety
of such systems, which concerns prevention of risks to human life or property, relies on

good analysis of the functional and timing properties of those systems. Nevertheless,

real-time reactive systems are large and complicated and consequently understanding

or describing the behavior of such systems becomes very difficult.

Timed Reactive Object Model (TROM) formalism is introduced in [Ach95] for de-
scribing functional and timing properties of real-time reactive systems with formal
notations. Formal notations are easy to understand and adequate to deal with com-
plexity in modeling and designing. Further they can lead to rigorous validation and
verification of the modeled systems. Moreover, tools for supporting TROM formal-
ism have been developed. TROMLAB is a framework for applying TROM formalism
and constructing real-time reactive systems in concordance with the process model.

Figure 1 is an overall architectural view of TROMLAB.

CRAPHICAL USER INTERFACE

I

SIMULATION TOOL

OBIECT MODEL
STIPORT

VALDATION

5 Pomnyx Cass heaciery
Tree — o .

: TML/ROSE TOOL I Deftrgern
N : Semansc
* ARG
H
A N
H Canutexy
: canr
STESYSTEM MODEL

Izeactve s Bacx

Teme
Manager

STTPORT

NN
HEHA,

BROWSER REASONING SYSTEM
B Imarzxe
1L Loy . ! ety
[] : | vy [l FE
i : = itres
. LSLLrany , |Deend Quavizg. . y
' S t T=x Ty
1 !
'
i
H

L s L 7

Figure 1: TROMLAB architecture

The following components of TROMLAB are currently operational:

e Interpreter - [Tao96] A parser, syntax checker and internal representation

constructor;

e Simulator - [Mut96] A tool that simulate a subsystem based on the internal

representation and enables a systematic validation of the specified system;

e Browser - [Nag99] A tool that help users navigate, query and access various

system components for reuse during system development;

2

e UML-RT Support - [Oana99] A translator to generate TROM specification
from Real-time UML;

e Verification Assistant - [Pop99] A tool to generate PVS theory from TROM

specification for proving timing properties;

e Graphical User Interface - [Sri99] A visual modeling and interaction facility

for a developer using the TROMLAB environment;

e Reasoning System - [Hai99] A tool to provide a means of debugging the sys-
tem during animation by facilitating interactive queries of hypothetical nature

on system behavior.

1.2 Research Goals

The objective of my research work is to give an object-oriented implementation
methodology for implementing real-time reactive systems designed with TROM. Also
a code-generation tool is developed in this thesis. TROM formalism is a kind of
Model-based Software Engineering (MBSE) technique where those reusable resources
are designed for flexibility and will not easily fail as changes occur in functionality,
performance or technology. Accordingly, an object design model named Time Re-
active Object Model is given in TROM formalism. As a result, an object-oriented
implementation model which corresponds to the design model must be given in this
thesis at the same time in order to generate application programs easily and make
them reusable. Figure 2 shows my research goals in the context of TROMLAB, an
environment designed and implemented at Concordia for a rigorous development of

real-time development of real-time reactive systems.

The main contributions of this thesis are:

1. Providing an object-oriented TROM implementation model that matches with
TROM design model.

[\

. Extending the abstract data model for making the code generation easy.

[V

. Developing TROM implementation support libraries.

1SN

. Developing a code-generation tool.

Moreover, in this thesis Java is chosen for implementing abstract data libraries and
TROM implementation support libraries. However, the standard Java language is not
suitable enough for TROM environment since it lacks a standard thread scheduling
algorithm. Thread synchronization becomes less tractable when the number of sig-
nals increases. Therefore, a Real-Time Java(RT-Java) class library for solving these
problems is developed. The train-gate-controller case study, a benchmark example

studied by real-time reactive system community, is implemented in RT-Java.

The structure of this thesis is as follows. Chapter 2 presents the TROM design
methodology and the concepts that will be used in the later chapters. Chapter 3
presents an object-oriented implementation methodology for TROM. Chapter 4 de-
scribes the design details of the automatic code generation tool. Chapter 5 presents
a case study using an example that demonstrates our implementation methodology
and the usefulness of the tool. The thesis ends with Chapter 6 which presents the

conclusions to be drawn from this thesis work and also presents the future work angle.

o o e e o e = = = = = T~ = . o e =~ —————_—————— = ———_———————— ———— —_——y

Time Reactive Object
Model(TROM)

System Configuration
Specification

Abstract Data Model

L R T T R e e e h Rt NP

Abstract Data Model Extension

TROM
Implementation Model

Extended Abstract Data Model

Code Generation
[

Code Generarion

Abstract Data Type
Librares

TROM implementation
Support Libraries

Generated Source Code

Real-ime Run-time
Libraries

Compile/Link

Target Code

Figure 2: Research goals in the context of TROMLAB

Chapter 2

Reactive Model - TROM
Methodology

2.1 Introduction

TROM methodology that is an object-oriented modeling technique for real-time re-
active systems was introduced in [Ach95]. It introduces a three-tiered framework as
the language for design specification. Figure 3 shows an overview of this method-
ology. The tiers independently specify systems configured with abstract data types,
reactive classes, and reactive objects. This chapter introduces the basic concepts and

terminologies used in the rest of this thesis.

2.2 First Tier - Larch Formalism

In the design framework of TROM, this tier specifies the data abstractions used in
the class definitions of the second tier by means of one of the languages of Larch, the
Larch Shared Language (LSL). An abstract data type is defined as LSL trait. Larch

provides a two-tier approach to specification of program interfaces:

e In the interface tier, a Larch Interface Lauguage (LIL) is used to describe the

behavior of a program module written in a specific programming language.

e In the shared tier, the Larch shared Language (LSL) is used to specify state-
independent, mathematical abstractions that can be referred to in the interface

Requi ts specification in PVS
Allen’s Temporal Logic(ATL)

Tool
Validation _—l l_. Formal Verification

Animation

: Subsystem i S Confguratio L.} Sysiem Theory: :
! Computations ' ' Synch. Axioms in ATL |
: : : :
' TROM : Timed Reactive | | TROM theory: :
: Computations : Object Model ; I Axiomsin ATL :
H . H } h
' . ' ' .
: . H i :
) H i '
: . Larch Shared : i :
. Data Mode! - - First order :
E : Language (LSL) : i Logic '
'''''''''''''''''''''''') 3- Tiered Design """"""_’""""t"“"’l
Operational Semantics Specification Logical Semantics

Figure 3: An overview of TROM methodology

tier.

In the present implementation of TROMLAB, only LSL traits are included. Figure 4
defines a trait that specifies Set data type.

Trait: Set(e, S)
include: Integer, Boolean
Introduce:
creat : ->S;
insert : e, S->S;
delete : e, S->5;
size : S->Int;
member : e, S->Bool;
isEmpty : S->Bool;
belongto : e, S->Bool;
end

Figure 4: Set trait

=]

2.3 Second Tier - TROM Formalism

A TROM object has a single thread of control. Communication mechanism between
TROMs is based on synchronous message passing, also known as rendezvous. A mes-
sage passing between a TROM and its environment is represented by an interaction.
An interaction of a TROM with its environment occur at a port associated with the
TROM. Each port has a unique port-type. A state is an abstraction denoting an en-
vironmental information or a system information during a certain interval of time.
A state can be either simple or complez. A complex state has an initial state and a
set of simple and complex substates. A TROM class has a unique initial state. An
event denotes an instantaneous activity. The events are classified into three types:
Incoming, Outgoing and Internal. The attributes of a TROM class are of two kinds:
(i) abstract data types imported from the first tier, and (ii) port types.

A formal definition of the different components of a reactive object as described above

is presented next.

A reactive object is an 8-tuple (P, £, ©, X, £, &, A, T) such that:

e P is a finite set of port-tvpes with a finite set of ports associated with each
port-type. A distinguished port-type is the null-type P. whose only port is the

null port o.

e £ is a finite set of events and includes the silent-event tick. The set £ — {tick} is
partitioned into three disjoint subsets: &;, is the set of input events, £, is the
set of output events, and &, is the set of internal events. Each e € (£;, U&out),
is associated with a unique port-type P € P — {P.}.

e O is a finite set of states. §y € O, is the initial state.

e X is a finite set of typed attributes. The attributes can be of one of the following
two types: i) an abstract data type specification of a data model; ii) a port

reference type.

L is a finite set of LSL traits introducing the abstract data types used in X.

® is a function-vector (®,, ®,;) where,

— &, : © — 29 associates with each state € a set of states, possibly empty,
called substates. A state @ is called atomic, if $;(f) = 0. By definition,
the initial state 6y is atomic. For each non-atomic state &, there exists a

unique atomic state 8* € ®,(8), called the entry-state.

— &, : © — 2% associates with each state § a set of attributes, possibly
empty, called the active attribute set. At each state 8, the set . (d) =
X — ®,.(0) is called the dormant attribute set of 6.

e .\ is a finite set of transition specifications including A;,;;. A transition speci-
fication A € A — {Minit}, is a three-tuple : < (6,0'); e(Cport): Cen => Cpost >3

where:

— 6.0 € © are the source and destination states of the transition;

— event e € £ labels the transition; ¢por: is an assertion on the attributes in A’
and a reserved variable pid, which signifies the identifier of the port at which
an interaction associated with the transition can occur. If e € £, U {tick},
then the assertion ¢ is absent and e is assumed to occur at the null-port

C.

— iZen is the enabling condition and ¢pest is the postcondition of the transi-
tion. (en 1S an assertion on the attributes in X specifving the condition
under which the transition is enabled. ¢z is an assertion on the attributes
in X, primed attributes in ®,,(6’) and the variable pid and it implicitly

specifies the data computation associated with the transition.

For each 8 € O, the silent-transition Az € A is such that,
Asg = (6,0); tick; true => Vz € $,:(0) : z =z’;
The initial-transition A is such that Ajms - (6o); Create(); Cini

where ;nit 1S an assertion on active-attributes of 6.

e T is a finite set of time-constraints. A timing constraint v; € T 1is a tuple
(Miy el [L, u], ©;) where,

— A; # s Is a transition specification.

— el € (Eout U &int) is the constrained event.

— [[,u] defines the minimum and maximum response times.

— ©; C O is the set of states wherein the timing constraint v; will be ignored.

The grammar of the formal class specification, based on the above formalism is given

in Appendix A. Figure 5 shows the template for a class specification.

Class < name >
Events:
States:
Attributes:
Traits:
Attribute-Function:
Transition-Specifications:
Time-Constraints:

end

Figure 5: Template for System Configuration Specification.

Figure 6 shows a TROM class description for an arbiter specification. An arbiter
allocates shared resources to processes requesting them. The arbiter modeled in
Figure 6 puts the requests for a resource received from processes into a set and
allocates the resource to the next process waiting in the set. The specification uses
the functions insert and delete from the signature of the trait Set(@ U, USet), imported
into the Arbiter class, to add and delete requests mode at a port of type @U. The
attribute hold in class Arbiter denotes the most recent port at which the resource
was granted. Input and output events are marked by the suffix symbols “?” and
“I” respectively. Internal events are unmarked. The output event Grant! is time
constrained and must occur within 2 units of time from the instant the input event
Reg? and Ret? have occurred. Figure 7 shows a TROM class for a user of the services
of the arbiter. The attibute arb in class User denotes the most recent port at which

a resource was received.

2.4 Composite Classes

A TROM object has a single thread of control. This simplifies system designs, but

limits the scope of containing design complexity. Composite class is introduced to

10

Class Arbiter [QU]

Events: Req?U, Grant!U, Ret?U

States: *idle, allot, wait

Attributes: rqSet: USet; hold:@U
Traits: Set[@U, USet]
Attribute-function:

allot — {rgSet}; wait — {rgSet. hold};

Transition-Specifications:

R, : (idle, allot); Req?(true);
true =—> rqgSet’ = insert(pid, {});
Ry : (allot, wait); Grant!{(pid € mgSet);
true => rgSet’ = delete(pid, rgSet)) A (hold™ = pid);
R : (allot, allot), (wait, wait); Req?(not pid € rqSet);
true =>rgSet” = insert(pid, rgSet);
Ry : (wait, allot); Ret? (pid = hold);

= isEmpty(rgSet) = rgSet™ = rqSet;
Rs - (wait, idle); Ret? (pid = hold);
isEmpty(rqSet) —> true;
Time-Constraints:
TC, : (Ry, Grant, [0.2], 0)
TCq = (Ry, Grant, [0,2], 0)
end

Figure 6: Class definition of Arbiter

Class User [@A]

Events: Req!/A, Grant?4, Ret!/A
States: *idle. wait. hold
Attributes: arb:@A
Attribute-function:

wait — {arb};
Transition-Specifications:
Ry : (idle, wait); Req!(true);
true => arb’ = pid;
Ry : (wait, holdy; Grant?(pid = ard);
true = true; Grant?
R3 : (hold, idle); Req!(pid = arb);

true = true;
Time-Constraints:
TCy : (Ra, Ret, [0,20],)
end

Figure 7: Class definition of User

11

minimize design complexity and to promote modularity at subsystem level. TROM
classes and composite classes can be composed to obtain a new composite class by
glueing the compatible port types. Figure 8 show the syntax for describing a composite

classes.

CompositeClass<identifier>{<listofport-type>]
Incarnations:
Connectors:

end

Figure 8: Template for Composite Class Construction

The template includes the keyword CompositeClass introducing the name of the com-
posite class, and sections labeled with the keywords Incarnations, and Connectors. An
incarnation of a class is the class specification in which the port-type parameters may
be renamed. The Incarnations section lists the incarnations of classes that participate
in a composition. When several incarnations of a class participate in a composition,
the port types that become available for external communication must sometimes be
renamed in order to resolve ambiguity in port-type identifiers. Conflict in port type
identifiers may also arise when incarnations of different composite classes participate
in a composition. The Connectors section lists the connectors that glue compati-
ble ports for internal communication between the components. Figure 10 gives the

specification of the composite class shown in Figure 9.

2.5 Third Tier - SCS

A System Configuration Specification (SCS) describes the system architecture by suc-
cinctly specifving the interaction relationship that can exist between the objects in
a system. The template in Figure 11 shows the syntax for subsystem configuration

specifications.

The syntax includes the keyword sf SCS to introduce the identifier for the system,
and sections labeled with the keywords Include, Instantiate, and Configure. The In-
clude clause is for importing other subsystems. The Instantiate clause defines reactive

objects by parametric substitutions to cardinality of ports for each port type, and

12

Figure 9: A composite class with five classes

initializing the values of attributes in the initial state of the object. The Configure
clause defines a configuration obtained by composing objects specified in the Instan-
tiate clause and the subsystem specifications imported through the Include clause.
Figure 12 shows a subsystem configuration for an arbiter system involving two users
and one arbiter. The Arbiter objects have two ports of type @U; each User object
has one port of type @A.

2.6 Design Refinement

A design can be refined by adding more details, which may require adding more
states, transitions, and strengthening time constraints. The refined design, which
is more detailed than the original design, must preserve essential properties of the
original design and aid the implementation process. However, the design obtained
from an unconstrained inheritance principle does not guarantee the preservation of
properties in the derived TROM. Towards remedying this, three forms of constrained

inheritances based on subtyping are introduced in TROM.

2.6.1 Behavioral Inheritance

The TROM object A obtained by refining the TROM object A’ according to the
folloving criteria inherits the behavior of TROM A'.

13

CompositeClass Class3[@QFE;, QFE,, @F]
Incarnations:
s: Classl[@QF; for @QE, @D|
t: Classl[@QE, for @QE, @D]
u: Class2[@A, @B, @F]
v, w: Class3[@C]
Connectors:
5.@D < u. @A
t.@D < u.@QA
v1.@C < u.@B
w.@C < u.@B
end

Figure 10: Specification for Composite Class Classd

Subsystem < name >
Include:
Instantiate:
Configure:

end

Figure 11: Template for System Configuration Specification.

Subsystem ArbiterSystem
Include:
Instantiate:
ar, :: Arbiter[@U : 2].Create();
us,, usy :: User[@A : 1].Create();
Configure:
ar;.@Qu; & us;.Qay;
ar;.Qu, > us,.Qay;
end

Figure 12: Arbiter System

14

1. Attribute redefinition: the data model of an attribute may be redefined, provided
there exist coercion functions for each attribute from the refined trait to the

original trait.
2. Transition redefinition: Redefinition of an inherited transition specification may
be done such that:

e The post-condition may be strengthened.

e The port-condition of a transition involving any event e € &£,; may be

strengthened.

The enabling-condition of a transition involving any event e € &£,,; may be

strengthened.

The initial attribute-constraint, (7;,;; may be strengthened.

3. Time-constraint redefinition: the minimal time delay may be increased or the

maximal time delay may be decreased.

2.6.2 Extensional Inheritance

The goal of extensional inheritance is to provide design refinements that preserve
behavior. The TROM object A obtained by refining a TROM object A’ satisfving the

following constraints is an extensional inheritance of A’.

1. Possible Redefinitions:

e Any redefinition as permitted in Behavioral inheritance.
e The source state 8 of a transition may be redefined to any substate of 6.
e The enabling-condition of any inherited transition may be strengthened.

e The port-condition of any inherited transition may be strengthened.
2. Possible Additions:

e FEvent addition: New events may be added, enriching inherited port-types.

e State addition: A new state may be added only to make an existing simple

state as a complex state.

e Attribute addition: New attributes and traits may be added.

e Transition addition: An added transition can have only new events and
new states. The superstate of the source state and the destination state

should be the same.

e Time-constraint addition: An added time-constraint can only constrain a

new event.

2.6.3 Polymorphic Inheritance

The TROM A is a polymorphic inheritance of the TROM object A’, if the following

conditions are satisfied:

1. Possible Redefinitions:
e Any redefinition as permitted in Behavioral inheritance.
2. Possible Additions:
e Port addition: New port-types may be added. This necessarily introduces

new events.

e State addition: New states may be added without decomposing any atomic

state.
o Attribute addition: New attributes and traits may be added.
e Transition addition:

— An added transition can only involve new events.

— An added transition involving an event e € £; can only have newly

added states for both source and destination states.

o Time-constraint addition: An added time-constraint can only constrain an

new event and can only be triggered by a new transition.

See Achuthan [Ach95] for examples on design refinements. A detailed design obtained

through one or more kinds of refinements is more suitable for code generation.

16

Chapter 3

Implementing TROM Models

3.1 Introduction

An object-oriented implementation of reactive systems specified according to the
TROM notations is discussed in this Chapter. The goal of the implementation phase
is to automate the code generation process so that the resulting program is correct
and efficient. The program is correct in the sense that the functional and timing
constraints in the implemented program is consistent with the implicit functionality
specified in the transition specifications and the timing constraints specified for the
time-constrained events. The efficiency comes in two forms - the code is junk-free and
the execution of the program conforms to the timing requirements in the presence of
appropriate resources. A good implementation must also seamlessly mesh with the
design. This quality depends upon the expressive power of the programming language

that can implement the design notations.

3.2 Environment Assumptions

Implementing TROM models require transforming TROM model specifications into
implementations based on concepts supported by real-time implementation environ-
ments. Unfortunately, there does not exist a general real-time implementation envi-

ronment for all of real-time reactive systems. In this section, we will give the basic

assumptions about the target environment and the implementation programming lan-

guage, which suits our implementation methodology.

An implementation environment consists of two parts: a programming environment
(including a programming language) and a platform run-time environment (usually an
operating system kernel on a specific hardware platform). The primary assumption
about this environment is that it supports some type of concurrent programming
paradigm. This paradigm may be supported directly in the language (as in Smalltalk)
or it may be supported through a suitable run-time library. For example, the C++
language does not support concurrency, but it is still possible to write concurrent
application in C++, provided that a multitasking run-time library is included with
the application. The following assumptions should be satisfied by this environment

as well:

e Programming Language — An object-oriented language will be used for imple-

mentation.

e Multitasking — Some form of lightweight concurrency unit or thread is sup-

ported by the underlying kernel.

e Thread Synchronization — In TROM model, thread synchronization is unnec-

essary, since there is no shared memory between TROM objects.

e Interprocess Communication — An asynchronous message passing is supported

at least.
e Scheduling — Priority scheduling is supported.

e Memory Model — All memory references are local to a TROM object.

3.3 Real-Time Run-Time Library

There are many programming languages that are used all over the world. Many
major programming languages, such C++, do not provide any facilities for concur-
rent programming. Some extended languages, such as Smalltalk, and Java, provide
high-level concurrent programming facilities. Communication mechanisms in those

languages that support concurrent programming may be different since there is no

18

general standard on the “right” facilities for concurrent programming. For example,
communication mechanisms should be based on message passing, updating shared
data or both paradigms? Moreover, a program written in a specific programming
language may have different behaviors in different operating systems since thread
scheduling may depend on the operating system. So the implementation relating
to thread and interprocess communication depends on the programming language
chosen for implementing the system, the operating system selected for running the

system, and the hardware environment.

As mentioned above, the purpose of this thesis is not to give a general standard on
the facilities for concurrent programming. What we want is to separate high-level im-
plementation from the environment. We develop a real-time run-time library over the
programming language chosen for implementing the system. In this library, an object
interface for creating a thread and starting a thread should be given and an interpro-
cess communication mechanism should be provided too. Moreover, it would be done
to make the svstem run exactly the same manner in different operating systems as in
this library if it is possible. This library can be re-used in the implementations of all

of real-time reactive systems that are implemented with this programming language.

3.3.1 Real-time Reactive Model

A reactive model at the implementation level, that makes reactive systems have the
same behaviors in different operating systems is shown in Figure 13. In this model,
a super thread has the highest task priority, and takes control of task scheduling and
message passing of other threads. Every thread controlled by the super thread is a
TROM reactive object. When a thread wants to send an event to another thread,
this event is sent to the outgoing message queue. The super thread will send this
event to the inner event queues of both the sender and the receiver, and decide
the executed sequence of threads. If the algorithm of task scheduling and message
passing is given, the behaviors of reactive systems will become independent of any
programming language and operating system. A global clock is defined for providing

a logical clock to every thread in this model as well.

19

Super Thread

I Thread scheduler j outgoing event queue

[7 Event Dispatcher l,,,—/{ [l ,
[AN

inner event quey inner event queu¢

[1]

Thread 1 Thread n
Global Clock

Figure 13: A Reactive Model

3.3.2 Task Scheduling and Message Passing Algorithm

Task scheduling is a major feature of real-time reactive systems. There are two ways
to classify schedulers. A scheduler can be categorized as static or dynamic. Also it
can be categorized as non-preemptive or preemptive. Static schedulers create the task
execution pattern, or schedule, off-line and the latter is then used to dispatch tasks
at run-time. In contrast, dvnamic schedulers determine the schedule online, based on
specific task characteristics. In a non-preemptive scheduler, a scheduled task keeps
the processor until it decides to relinquish it voluntarily. On the other hand, in a
preemptive scheduler, a scheduled task may be suspended, or preempted, so that the

processor can be allocated to another task.

There are some task scheduling algorithms that may be appropriate for our reactive
model, but they are not the best choice for the TROM model. In TROM model,
communication mechanism between TROMs is based on synchronous message passing,
also known as rendezvous. Therefore, the sender of a message should react with this
message after the receiver of this message finishes its reaction of this message, or both
of the sender and the receiver react with this message together. Moreover, messages
happened in a TROM reactive system are partially ordered. This implies that it
is unnecessary that two messages should have an executed order. The scheduling

20

algorithm for TROM should satisfy the requirement of synchronization and keep the
partial order of messages. A non-preemptive dynamic scheduling algorithm combined

with message passing is introduced later in this section.

There exists a two-level task priority in our scheduling algorithm, which is named
TROM scheduling algorithm. The threads that have a lower priority imply these
reactive objects are in a stable state that the reactive objects are waiting for the
event from the environment or will fire an event when some conditions are satisfied.
The threads that have a higher priority mean these reactive objects have an event
to deal with. The primary assumption of this algorithm is that the computation
time of a state or a transition, which is triggered by an event, must be less than the
time slice assigned by the super thread. In another word, every thread only finishes
a computation of a state or a transition in a time slice. Therefore, under a uni-
processor environment, the physical time of a logical clock time unit must be bigger

than (threads’ number * time slice + communication time + scheduling time).

Initially, all of the reactive objects in a reactive system just have lower priority. They
are put into the lower priority task queue. When one of them fires an event, the super
thread will pick up this event. First, it will find the receiver of the event in the lower
priority task queue. Then it will put this event into the inner message queue of the
receiver and remove the receiver from the lower priority task queue and append it
into the higher priority task queue. Later it will find the sender of the event in the
lower priority task queue. Finally it will put this event into the inner message queue
of the sender and remove the sender from the lower priority task queue and append
it into the higher priority task queue. When a thread finishes its execution, the super
thread will suspend this thread, append it into the lower priority task queue, and
try to get the next task from the higher priority task queue. If the higher priority
task queue is empty, the super thread will get the next task from the lower priority
task queue. Then remove it from the queue and resume this thread. Therefore, we
can conclude the receiver and the sender are synchronous. The above description is
Jjust the simplest case in the system. The real algorithm is more complicated than it
is presented. The pseudo code of the whole algorithm is shown in Figure 14. This

algorithm suits the uni-processor environment.

21

while true
/" Message Passing */
for i = 1 to Messages’ Number in the outgoing message queue step 1
receiver = receiver of Message[i];
sender = sender of Message(il:
i=1:
while } < i
if receiver = receiver of Message[j!
or receiver = sender of Message[j]
or sender = receiver of Message[j} then
break:
endif
i=i+ L
end while

if j == 1 then
sender-task = 0:
receiver-task = 0O:
for k = 1 to tasks’ number in the lower priority task queue step I
if task’s name = receiver then
receiver-task = k;
endif

if task’s name = sender then
sender-task = k:
endif

if sender-task <> 0 and receiver-task <> 0
put message into the inner message quecue of task[receiver-task;:
remove this task from the lower priority task queue:
append this task into the higher priority task queue:

put message into the inner message queue of task{sender-task:
remove this task from the lower priority task queue:
append this task into the higher priority task queue;

remove the message from the outgoing message queue.
break:
endif
endfor
end if
end for

/= Task Scheduling ~/

if the higher priority task queue is not empty then
currentTask = the first task in the higher priority task queue:
remove this task from queue:

eise
currentTask = the first task in the lower priority task queue:
remove this task from queue:

endif

resume current Task:

sieep:

/* Activated by currentTask </
append currentTask into the lower priority task queue:
end while

Figure 14: Task Scheduling and Message Passing Algorithm

3.3.3 A Real-time Run-time Library of Java

Java is chosen as the programming language for the case study since it is a pure
object-oriented language. A real-time run-time librarv of Java is developed in the

thesis. The library has 4 major components:

RTSuper - implements a super thread which takes control of task scheduling and

message passing services.

RTThread - implements a general thread.

TimeManager - implements a global clock for providing the logical time.

MessageQueue - implements a message queue.

If some other object-oriented programming languages are used, the detail of imple-
mentation may be different. All of the methods we provide can be applied with minor

changes.

3.4 Mapping TROM Models into RT-Environment

After the real-time run-time library is provided, the rest of our work for implement-
ing TROM models is to map TROM models into this real-time environment (RT-
Environment). In TROM methodology, there is a three-tiered design framework as
the language for design specification. This three-tiered design framework describes the
svstem level architectural details and the component level behavioral details by means
of formal notations. Therefore, to translate the design seamlessly, our methodology
also has a three-tiered implementation framework. Figure 15 shows the relationship

between design framework and implementation framework.

System Configuration Specification System Implementation
Timed Reactive Object Model TROM Implementation Model
Abstract Data Model(LLSL) Abstract Data Type Implementation
3 - Tiered Design Framework 3 - Tiered Implementation Framework

Figure 15: Relationship between design framework and implementation framework

In the three-tiered implementation framework, the system that consists of reactive
objects, the reactive object classes, and abstract data types used in objects are im-

plemented in separate tiers. The lower tier implements Abstract Data Model. The

23

middle tier implements Timed Reactive Object Model. The top-most tier implements
System Configuration Specification. For implementing a system more efficiently and
quickly, we have to give some rules that make the implementations of the tiers to

have low-coupling among themselves.

3.4.1 Abstract Data Type Implementation

This tier implements Abstract Data Model. Abstract Data Model specifies the data
abstractions used in the system by means of one of the languages of Larch, the Larch
Shared Language (LSL). An abstract data type can be defined as LSL trait. If we
directly implement an abstract data type from a LSL trait, we will get various im-
plementations from different programmers. The programmers who implement the
second tier cannot begin their work until the implementation of this tier is finished.
So we provide interface specifications and function specifications written in the pro-

gramming language of the implementation before the implementation begins.

Fortunately, Larch has an interface tier, where a Larch Interface Language (LIL) is
used to describe the interface and behavior of a program module written in a specific
programming language. An interface specification, which defines an interface between
program components, is written from the point of view of clients who will use the
module. The specification of a function in the interface documents its behavior. This
can be understood without reference to other functions in the interface. The body
of a function consists of a number of clauses. Most function specifications contain
requires, modifies, and ensures clauses. The requires clause defines pre-conditions on
the state and parameters. The ensures clause defines post-conditions on the state and
parameters. The modifies clause states what a function is allowed to change. If there

is no modifies clause, then nothing may be changed in this function.

Since LIL is formal, we suggest to extend the abstract data model with Larch Inter-
face Language. When the language for the implementation is decided, we suggest to
select the specific Larch Interface Language for this language to describe the interface
and behavior of a program module. Therefore, the programmers of this tier can focus
on how to implement the behavior and the programmers of the second tier will have
the interface and behavior descriptions of abstract data types before abstract data

models are implemented. Also, the reusability of the implementation of abstract data

24

types is increased. Furthermore, because Larch Interface Language is using a pre-
condition and post-condition method to describe the behavior of a program module,
test cases can be generated following the behavior description and the verification
of this program module may be possible. In TROM design model, transition spec-
ification is described by using the assertions on the attributes, which are abstract
data types and port types. These assertions are either between attributes or using
function signatures among abstract data types in Larch. If every signature has an
independent function which implements it, automatic code generation for transition

may be possible.

3.4.2 TROM Implementation Model

This tier implements Timed Reactive Object Model. In TROM design model, a reac-
tive object is modeled as a TROM. A TROM is a finite state machine augmented with
ports, attributes, logical assertions on the attributes, and timing constraints. There-
fore, an implementation of a reactive object is an implementation of a finite state
machine. This implementation must satisfy the augments with ports, attributes,

logical assertions on the attributes, and timing constraints as well.

In TROM design model, a TROM consists of 8 elements, such as a set of ports, a set of
events, a set of states, a set of attributes, a set of traits, a set of attribute functions,
a set of transitions, a set of time constraints. These 8 elements make the function
and timing properties of a TROM more precisely. But not all of these 8 elements are
the attributes of a TROM reactive object in the implementation view, since some of
these 8 elements describe the implied properties of a TROM reactive object, such as
a set of attribute functions, a set of events and a set of traits. Therefore, a TROM

reactive object in our implementation model consists of these elements:
e a set of ports

e a set of states

a set of typed attributes

e a set of transitions

a set of time constraints

High Level Behavior

Ir general, the basic elements of a finite state machine are events, states and transi-
tions. An event can trigger a transition. A transition is an action, which is sending
messages, changing encapsulated data values, and so on. An action also can be taken
in a state. A state machine is classified as Mealy machines if actions are associated
with transitions and as Moore machines if actions are associated with states. TROM

model have characteristics of both Mealy machines and Moore machines.

Actually, finite state machines in TROM are extended by adding ports and timing
constraints. Two finite state machines interact with each other through their ports.
Timing constraints regulate the occurrence of events. But the behavior mode of a
TROM finite state machine is still the same as a general finite state machine. In other

words, actions are still taken in transitions and states.

In our scheduling algorithm, the computation time of transitions and states is re-
stricted by the size of a time slice. If the computation time of a transition is longer
than a time slice, this transition can divide into several transitions that everyone fits
in a time slice. If the computation time of a state is longer than a time slice, this
state can be refined as a complex state. For example, figure 16 shows a state diagram
of a printer. A printer is idle when it is waiting for a job. There should be some code
for checking whether a new job is coming. Assume the execution time of this code
is bigger than a time slice. The idle state can be refined as a complex state. The
execution time of every substate of the new idle state is less than a time slice. The
new state diagram is shown in figure 17. Actually, the printing state can be refined

too.

Receive-a-job

Idle Printing

Finish-a-job

Figure 16: State Diagram of A Printer

Furthermore, the types of actions of a transition and actions of a state are different

in TROM design model. Actions of a transition may change some values of attributes

26

[Tdle | Finish-a-job

Printing

L J Receive-a-job

Figure 17: Refinement of State Diagram of A Printer

in a reactive object and the current state of the reactive object. Actions of a state
may not change any values of attributes in a reactive object and just wait for the
environment event or fire a event when some conditions are satisfied. Therefore, states
are considered as choicepoints. That is, the next state can only be determined after

some preliminary calculations are performed or some environments are changed.

Combining with the above issues, Figure 18 graphically shows the implementation
behavior of a TROM reactive object. In a time slice, a TROM reactive object will
check whether an event has been received. If so, this event will trigger a transition,

and actions of this transition are taken. If not, actions of current state are taken.

Although events are sent to the outgoing queue and are received from the inner queue
in the reactive model, events are still sent/received through ports in our implemen-

tation model. Therefore, “check event” means checking ports.

When an event arrives, a search of candidate transitions takes place te determine
which one will be selected. Transitions are evaluated sequentially. A transition that

satisfies all of the conditions shown as below will be selected:
e The source state of this transition is the current state of the reactive object.
e The triggering event of this transition is the same as the arrived event.

e The port at which the event arrived must satisfy the port condition of this

transition.

e The values of attributes in the source state of the reactive object must satisfy

27

Initialize reactive object

There ts anevent Noevent

Check Evemt?

Trigger the transition Current state action

Figure 18: Behavior of a TROM reactive object

the enable condition of this transition.

The search terminates and the actions of this transition are taken. If no transitions
can be satisfied by the event, the event is discarded and the state of the reactive

object remains unchanged.

In implementation view, a timing constraint is a {izmer which provides the occurrence
of a reactive event. This event should occur in a certain state of a TROM. There-
fore, it may be necessary to check whether a timer is satisfied in actions of a state.

Unconstraint internal events also occur in state actions.

Common Reactive Class

As discussed above, every TROM reactive object has the same high level behavior.
Only the detailed behaviors, actions of transitions and states, are different. Also
every TROM reactive object has some common attributes. A Common Reaction
Class (CRC), which has the common attributes of reactive objects and implements

the same high level behavior of reactive objects, is introduced in this section.

In TROM design model, a TROM reactive object has a single thread of control. There-
fore, a CRC is a subclass of real-time thread (RTThread) which is defined in the

28

real-time run-time library. Figure 19 shows the class diagram of CRC. Some abstract

data types are introduced as shown below:

e Transition - the abstract data type for transition.

e Transitions - a subclass of set, defines a set class for transition.

e State - the abstract date type for state.

e TimeConstraint - the abstract date type for time constraint.

e TimeConstraints - a subclass of set, defines a set class for time constraints.
e Port - the abstract data type for port.

e Ports - a subclass of set, defines a set class for ports.

e Event - the abstract date type for event.

Common Reactive Class (CRC)

protectexd String Name:
public Port PID:
protected Ports PTS:
protected State mainState:
protected Transition TSS:
protected TirneConstraints TCS:

public void setName(String n)
public Strings getName(String n)
public Ports getPorts()
public State getState()
public TimeConstraints getTimeConstraints()
public void addPort(Port p)
public void add Hransition(Transition t)
public void add TimeConstraint(TimeConstraint t)
public voidt addState(State s)
public void transitionHandler(Event e)
public void enable’TimeConstraint(String tn})
public Event checkPorts()

public TimeConstraint checkTimeConstraints()
public void run()

Figure 19: Class diagram of Common Reactive Class

Then attributes of a reactive object in our implementation model, such as a set of
transitions, a set of states, a set of ports, and a set of timing constraints, are defined

as date members of CRC. CRC is the kernel of our implementation model. Every

29

TROM reactive object class is a subclass of CRC and has different values for the data

members. Every TROM reactive object class can also have its own data members.

The data member Name is for keeping the reactive object’s name. The date member
PID keeps the most recently used port. These two are the common attributes of

TROM reactive objects.
The descriptions of methods in CRC are shown below:

e setName, getName, getPorts, getState, get TimeConstraints, get Transitions: pro-

vide the access points for those date members.

e addState, addTransition, addPort, addTimeConstraint: provide methods re-

spectively for increasing state, transition, port, and time constraint.
e checkPorts: implements checking event.

e transitionHandler: implements selecting a transition and take the actions of the

transition.
e enableTimeConstraint: implements starting timer.
o checkTimeConstraints: check whether a timer is satisfied.

e run: implements the high level behavior of reactive objects.

Event

Although event is not considered as an element of a reactive object in our implemen-
tation model, the abstract data type event still needs to be provided because a TROM
reactive object is event-driven. An event has its name. For a parameterized event,
a set of parameters should be the date member of event. Figure 20 shows the class

diagram of event.

Those functions, such as setName, getName, setPTS, and getPTS, provide the access

points for the data members of event.

30

Event

Name : String
PTS : Parameters

void setName(String n)
String getName()
void setPTS(Parameters pts)
Parameters getPTS()

Figure 20: Class diagram of event

Attribute

Actually, we can define a set of attributes as a data member in CRC in the same way
as we define other elements. But the drawback of this approach is that it will decrease
the performance of reactive objects since there is no way to access an element in a
set by the name of the element directly. Instead, we define those attributes as public
data members of the reactive object class. Therefore, these attributes can be accessed

directly in order to get better system overall performance.

State

In our implementation model, the hierarchy of nested states is supported. So there are
two types of states: atomic and compler. To simplify the implementation, the whole
reactive object can be considered as a big complex state, which is named “main”. For
example, in Figure 21, A is the original design and B is the state diagram which is
used in the implementation. Therefore, the current state of a reactive object becomes
the current state of “main”. Moreover, if the current state of “main” is complex, this
state also has its own current state. So the nested states are implemented. Figure 22

shows the class diagram of State.

The descriptions of the data members and the methods of port class are shown as

below:
e Name: the name of state.

e Status: a Boolean value to check whether this state is a initial state or not.

31

A (B)

Figure 21: Reconsider the state diagram

e currentState: the current substate of a state. If this state is atomic, it will be

equal to null.
e Substates: a set of states which are the substates of this state.

e setName, getName, setStatus, getStatus, setcState, getcState, setSubstates, get-

Substates: access points for the data members.
e Atomic: returning true when this state is atomic.
e :in:tialcState: setting the initial substate of this state as the currecnt.
e addState: adding a new substate.
e replaceState: replacing the old substate with the new substate.
e run: a virtual function for actions of the state.

We do not allow any action to take place in the complex state, since it is impossible
to decide whether it is the action of this state or the current substate of this state.
Furthermore, if there are any actions in the complex state, we can always refine this
state, make the actions of this state to be the actions of one of the substates of this
state. Every state of a reactive object is a subclass of State class, and provides the

implementation of the actions of the state.

State

Name : String
Status : boolean
currentState : State
Substates : States

void setName(String sn)
String getName()
void setStatus(boolean ins)
boolean getStatus()
void setcState(String ssn, String dsn)
State getcState()
boolean iscState(String sn)
void setSubstates(States sts)
States getSubstates()
boolean Atomic()
void initialcState()
addState(String sn, State s)
boolean replaceState(State s)
void un(CRC crc)

Figure 22: Class diagram of State

Port

A port is the only access point for a bi-directional communication channel between
TROMs in our implementation model. Each port has a unique port-id (PID). Also the
link information should be kept in a port object. Figure 23 shows the class diagram
of Port.

Port

PID : String
connectTrom : String
comnnectPort : String

void setPID(String n)
String getPID()
void setconnectTrom(String cT)
String getconnectTrom()
void setconnectPort(String cT)
String getconnectPort()
void Send(CRC crc, Evente)
Event Receive(CRC crc)

Figure 23: Class diagram of Port

The descriptions of the data members and the methods of port class are shown as

33

below:
e PID - port id.
e connectTROM - which TROM this port connect to.
e connectPort - which Port of that TROM this port connect to.

e setPID, getPID, setconnectTrom, getconnectTrom, setconnectPort, getconnect-

Port - access points for the data members.
e send - implementing sending an event.

e receive - implementing receiving an event.

Transition

A transition is a computation triggered by a specific event. Actions of a transition
are the other kind of detailed actions of a reactive object. It will change some values
of the attributes of the reactive object, also it will change the current state of the
reactive object. Every transition has a pre-condition. A transition is triggered only
the pre-condition of this transition is satisfied in our implementation model. After
the actions of the transition are taken, the values of the attributes of the reactive
svstem should satisfy the post-condition of the transition. Figure 24 shows the class

diagram of Transition.

The descriptions of the data members and the methods of port class are shown as

below:
e Name: the name of the transition.

sourceSN: the name of the source state of the transition.

destinationSN- the name of the destination state of the transition.

triggering_event: the event which triggers the transition.

setName, getName, setsourceSN, getsourceSN, setdestinnationSN, getdestinna-
tionSN, settriggeringevent, getiriggeringevent: access points of the data mem-

bers.

34

Transition

Name : String
sourceSN : String
destinationSN : String
triggering_event : Event

void setName(String sn)
String getName()
void setsourceSN(String ssn)
String getsourceSN()
void setdestinnationSN(String dsn)
String getdestinationSN()
void settriggeringevent(Event te)
Event gettriggeringevent()
boolean Enable(CRC crc, Event e)
boolean PortCondition(CRC crc, Evente)
void Computation(CRC crc, Event e)

Figure 24: Class diagram of Transition

e FEnable: a virtual function, returning true when the enable condition is satified.

e PortCondition: a virtual function, returning true when the port condition is

satified.

e Computation: a virtual function, updating the values of the attributes and the

current state.

Therefore, Transition class is an abstract base class. Every transition of a reactive
object is a subclass of this class, provides the implementation of Enable, PortCondi-

tion, and Computation functions, and initializes Name, sourceSN, destinationSN and

triggering_event.

Time-Constraint

A time-constraint in the implementation is a tzmer. A timer is activated by a tran-
sition. When the setting time is arrived and the TROM is in a certain state, an
event should be fired. In other words, a reaction is triggered after the setting time

is arrived. Therefore, if there is a time constraint in a state, the codes for checking

whether a timer arrives will be part of the actions of this state. Figure 25 shows the

class diagram of TimeConstraint.

TimeConstraint

Name : String
Trigger_Trans_Name : String
constrained_event : Event
lower_bound : int

upper_bound : int
Trigger_State_Name : String
disable_staets : StateNames
Status : boolean
Enable_Time : long
Fire_Time : long

void setFireume(long 1)
void active(String trans_name)
void disactive()
boolean isFire(State s)
boolean inDisableState(State s)

Figure 25: Class diagram of TimeConstraint

The descriptions of the data members and the methods of TimeConstraint class are

shown as below:
e Name: the name of the time constraint.

o Trigger_Trans_Name: the name of the transition which activates the time con-

straint.
e constratned_event: the event that should be fired after the setting time is arrived.
o [ower_bound: the lower time bound of the time constraint.
e upper_bound: the upper time bound of the time constraint.
e Trigger_State_Name: the name of state where the event can be fired.
e disable_states: the set of the disable states.
e Status: the status of the timeconstraint whether it is active or not.
e Enable_time: the time which enables the time constraint.

36

e Fire_time: the time which the event should be fired.
e setFiretime: sets the fire time.

e active: activates the time constraint.

e disactive: disactivates the time constraint.

e isFire: returns true when the constrainted event should be fired.

3.5 Composite Class

To minimize design complexity and to promote modularity at subsystem level, com-
posite class, a composition at the class level, is introduced in TROM design model.
Apparently, we can generate the composing state machine by producing the state
machines of the components of the composite class. But this may not be the best
way, since the work to generate the composing state machine is too complicated. For
example, consider a composite class having three components, where every compo-
nent has four states. The composing state machine of this composite class may have
4 x:4=4 = 64 states. The more components a composite class has and the more states
every component has, the more complicated the composing state machine becomes.

It will not be possible to manually generate the composing state machine.

Our method to implement a composite class is based on the subsystem level imple-
mentation. Every reactive system has a super thread for task scheduling and message
passing in our reactive model. Therefore, a composite class has a thread that sched-
ules its internal reactive objects and passes messages between its internal reactive
objects and the environment. To the whole reactive system, this thread is also a
reactive object, and the information about the components is hidden. The time slice
assigned to this thread must be bigger than (number of the components * normal
time slice for a simple reactive object + communication time + schedule time). Fig-
ure 26 shows the reactive model after the refinement. The thread n in the diagram
is a composite class object. The threads inside the thread n may be either a simple

reactive object or a composite class object.

Using this method, the internal components of a composite class is just under the

control of the thread of the composite class object, and will know nothing about

37

Super Thread

[Thread scheduler J outgoing event queue

Event Dispatcher J.—/l—l r |
~

-
/

o

-
inner event queucﬁ:

Thread | Thread n
Global Clock J

inner event quey

Figure 26: Refinement of Reactive Model

the whole reactive system. The whole reactive system just communications with the
thread and don’t need to care about the inside of this composite class object. A class
named RTComposite is developed in our real-time run-time library for Java. The class

has the properties of both RTSuper and RTThread.

3.6 System Implementation

A reactive system has a group of reactive objects. These objects and the interaction
relationship are described as SCS in TROM design model. In the implementation, ev-
ery reactive object should be created and initialized. And the interaction relationship
should be provided too. Moreover, every reactive system has a super thread. Figure
79 shows the class diagram of a reactive system. PortPara class is for the interaction

relationship between the reactive objects.

3.7 System Refinement

A system may need to be refined for some reasons. In TROM design model, only three

forms of constrained inheritances based on subtyping, such as behavioral inheritance,

38

Reactive System

¢

RTSuper Reactive Object PortPara

v

Figure 27: Class Diagram of Reactive Object

extensional inheritance, and polymorphic inheritance, are allowed. Therefore, the
new reactive object class must be a subclass of the original reactive object class.

The major behaviors of the design refinement are:

e Attribute redefinition - The data model of an attribute is redefined. In other

words, the data type of an attribute can be changed.

e Transition redefinition - The post-condition, port-condition, and enabling-condition

of a transition is strengthened.

e Time-constraint redefinition - The minimal time daly is increased or the maxi-

mal time delay may be decreased.
e Event addition - New events are added.
e Port addition - New port-types are added.
e State addition - New states are added.
e Attribute addition - New attributes are added.

e Transition addition - New transitions are added.

39

e Time-constraint addition - New time-constraints are added.

These behaviors makes the final implementation to change. In our implementation
model, abstract data types, such as Ports, State, Transitions, and TimeConstraints,
are introduced. Obviously, port addition, state addition, transition addition, and
time-constraint addition mean adding an element into a set. The functions for adding
a new element are already provided. So we do not need to do anything for these four
behaviors. Event is not an independent element in our implementation model. Adding
a new event implies a transition is added. Therefore, a transition addition implements
an event addition. Transition redefinition and time-constraint redefinition mean an
old transition or an old time-constraint should be replaced with a new one. So, the
functions for replacing a transition and a time-constraint are provided in abstract data
types, Transitions and TimeConstraints. Attributes are defined as data members of
a reactive object. So attribute redefinition means an attribute should be overridden
with a new data type in the new reactive object class. Attribute addition means a

new attribute should be introduced in the new reactive object class.

40

Chapter 4

Automated Code Generation

4.1 Introduction

In Chapter 3, an implementation model for TROM design model is presented. In this
chapter, we deal with the problem of automatic code generation, which means au-
tomating the translation of formal specifications into an implementation for a desired
target environment. In this thesis, the target environment is Real- Time Java (RT-
Java), which is Java platform plus the real-time run-time library for Java. TROM

support library and Abstract Data Tyvpe libraries are also parts of the environment.

Automatic code generation is one of the most promising concepts in the software
development process, because it allows for design models to retain their usefulness
throughout the product’s life-cycle. However, automatic code generation is not a
deeply researched area. There does not exist a general strategy developed in this

area.

In our case, the problem of automatic code generation can be restated as automatically
merging the implementation model and generating the detail actions, such as actions
of transitions and actions of states. The design and the implementation details of the

automatic code generation are presented in later sections.

41

4.2 Description of the AST

Internally, TROM specifications are represented by an abstract syntar tree (AST).
This specification was syntactically checked as the AST is constructed. The AST, as
its name implies, is a tree of links of all components of TROM classes and subsystems
with access methods to all of these components. Therefore, instead generating code
from formal specifications directly, codes can be generated from AST. Figure 28
shows the high level structure of the AST with the components used by the generator

developed.
AST
LSL_traitlist
Tromclasslist
- r =
SCSlist TROMclass
SCSSimEv
Class name
port list
event list
state list r . .)
ambute list Transition specification /\
Islmitlist Trnsition label Next transition specification
anribute function list E is initial tmasition
ansiton specificatdon list ————1 source state
tme constraint list destination s@ie
\ trigger eveat
L J port condition
enabling condition
post conditicn
\ J
Next Tromclass
-
(Time coustraint RS
Next tme constraint
time constraint label
ransition specification label
constrained event
scs lower bound
upper boud
SCS rame disabling swre list
include list L
S

instantiate list
configure list

(

Next SCS ~ = = Pointer / reference

Figure 28: High level AST structure with subset of components shown
The development of the interpreter to construct the AST was originally done in the

C++ environment [Ta096] and then ported to Java [Sri99]. The code generator tool

was done with the latest version.

4.3 Implementing Abstract Syntax Tree of LIL

The Larch Interface Language (LIL) is quoted for increasing the reusability of ab-
stract data types and decreasing the association between Abstract Data Type Imple-
mentation and TROM Implementation Model in our implementation methodology.
Furthermore, if the assumption that every signature in LSL trait has an independent
function to implement it is accepted, automatic code generation for transitions are
possible since every transition is described by using the assertions between attributes

or using function signatures among abstract data types in Larch.

Based on this assumption, we can extract the information about the correspond-
ing relationships between functions and signatures from LIL specifications. In our
case, Java is chosen as the programming language. So, Larch/Java is chosen as the
Larch Interface Language. However, the interface language Larch/Java has not been
studied. Based upon the relationship between C++ and Java, we have designed the
syntax and semantics of Larch/Java language from Larch/C++ [LEA99].

Figure 29 shows a Larch/Java specification for Set. The syntax of Larch/Java consists
of two parts. The first part borrows from Java for declaring class name and functions.
The second part borrows from Larch/C++ for describing the behaviors of functions.
You may notice that all sentences of the second part begins with “//@” in Figure 29.
Adding this identity before the behavior specifications makes the implemented code
and the behavior specifications to exist in the same file since the sentences beginning
with “//” are comments in Java. Therefore, the reusability of abstract data types is

increased.

Our syntax parser and checker for Larch/Java will ignore all of the sentences except
the declarations for class name, functions, and the sentences begin with “//@”. The
internal representation of a Larch/Java specification is similar to the AST of TROM.
Figure 30 shows the high level structure of the AST of Larch/Java with the compo-

nents used by the code generator.

43

public class Set

{
//? uses Set(Set for S, Object for E);
Set()
{
//Q modifies self;
//®@ ensures self’ = create();
}
public void add(Object o)
{
//@ modifies self;
//Q ensures self’ = insert(o, self”);
}
public void remove(Object o)
{
//@ requires member(c, self”);
//C modifies self;
//Q easures self’ = delete(o, self”);
}
public int size()
{
//Q ensures result=size(self”);
}
public boolean member(0bject o)
{
//Q ensures result=mexber(oc, self”);
}
public boolean isEmpty()
{
//Q@ ensures result = isEzpty(self~);
}
}

Figure 29: Larch/Java specification for Set

4.4 From TROM To Code

In Chapter 3, the implementation model of the TROM has been described. Based
on this model, it is quite possible to automatically map TROM specifications into an
implementation. In this section the mechanization of automatic code generation is

explained.

Reactive objects have similar high level behavior, however they differ in their detailed
behaviors, such as actions of transitions and actions of states. Therefore, the code
generation consists of four parts, such as transition class generation, state class gen-
eration, reactive class generation, and system class generation. Figure 31 shows the

algorithm of the code generation algorithm.

44

AST
UlLchsshist

LIlclass
Class pame

implemented_LSLirait

FuncrionLast

Next LILclass

LSLParameter

Parameter Name

Next LSLParameter

Figure 30: High level AST structure of LIL

4.4.1 Transition Class Generation

Transition classes are subclasses of the class Transition. The subclasses have more
detailed information that are necessary for implementing transition specifications.
We generate Transiiion classes by extracting appropriate information of the transi-
tion specifications in a TROM specification. The name of transition, the source and
destination states, and triggering event labeling the transition are easy to extract
from a transition specification. The predicates in a post-condition implicitly describe
the action associated with a transition. Program code for an action is an operational
translation of these predicates. Moreover, the port-condition and the enabling con-
dition from a transition are translated to provide the choice points in the program

description. Figure 28 shows the algorithm for generating a Transition class.

A predicate in TROM is an assertion either between attributes or between signa-

tures used among abstract data types. Generally, an assertion between attributes is

create AST for TROM
create AST for LIL

for each transition in the AST do
generate the transition class for this transition

end for

for each state in the AST do
generate the state class for this state
end for

for each TROM in the AST do
generate the reactive class for this TROM
end for

generate the system class

Figure 31: Pseudo-code for the whole code generation

generate the class declaration
generate the constructor function
generate the Portcondition function
generate the Enable function
generate the Computation function
generate the end of the class

Figure 32: Pseudo-code for every transition class generation

a comparison between attributes. Therefore, transforming this kind of assertions is
to replace attributes in TROM specification with attributes defined in TROM imple-
mentation. Figure 33 shows an example of the translation of this kind of assertions.
Although the two predicates have the same operator “=", the generated codes are

different since the semantics of pre-condition and post-condition are different.

Translating an assertion using signatures among abstract data types is more compli-
cated. First of all, we have to find out the function that corresponds to the signature
used in the predicate. Based on the assumption that every signature has an indepen-
dent function for implementing it, we can search the signature in the AST of LIL to
find out the corresponding function. Second, we have to translate the signature to a

function call. The relationships between parameters of the function and parameters

46

cr = pid ===> ((Train)crc).cr.equals(((Train)crc) .PID)
cr’ = pid ===> ((Train)erc).cr = ((Train)ecrc).PID;

Port Condition
Post Condition

Predicates Java Codes

Figure 33: Translating assertions between attributes to codes

of the signature must be found out. Figure 34 shows the pseudo code of the algorithm.

search the function which corresponds to the signature
get the parameter list of the function
get the parameter list of the signature

for each parameter in the parameter list of the signature do
search this parameter in the parameter list of the function

if this parameter can not be found
in the parameter list of the function then

generate the object’s name
output ‘‘.’’
end if
end while

output the name of the function
output ¢ €(”’

for each parameter in the parameter list of the function do
search this parameter in the parameter list of the signature
generate the parameter

if not the last parameter in the parameter list of the function then
output €¢,’’
endif
endwhile

output ¢)??

Figure 34: Pseudo-code for translating a signature to a function call

A pre-condition of a transition and a post-condition of a transition may be a conjunc-
tion of a group of predicates. For a pre-condition, it may not change any attributes
of a reactive object, so the executed order of predicates is not relevant. But for a
post-condition, the executed order must be considered. For example, consider a post-
condition A’ = head(Q) A Q' = tail(Q), where Q is a queue. The signature head gets
the first element of the queue, and the signature tail removes the first element from

47

the queue. Assume function head and tail correspond to the signatures head and tail.
A’ = head(Q) can be translated to A = Q.head(), and @’ = tail(Q) can be translated
to Q.tail(). Therefore, we must assure A = Q.head() is executed before Q.tail(). So
we must assure A~ = head(()) is generated first in the code generation. An algorithm

is provided to solve this problem. Figure 35 shows the pseudo code of the algorithm.

Create a empty queue named pre-queue
for each predicate
find out which attributes are used in the predicate
and which attributes are modified in the predicate

put the predicate plus these information into pre—queue
end for

Create a empty queue named post—queue
while pre—queue is not empty

get the first predicate of pre-queue

if the attributes that will be modified in this predicate

are not used in other predicates
put this predicate into post—queue

else put this predicate into pre-queue again.
end while
/* the predicates are ordered and are put in post-queuex*/

Figure 35: Pseudo-code for the algorithm to decide the executed order

In the algorithm, we determine the attributes that are used but not modified in a
predicate and the set of attributes that are modified by the predicate. The post-
condition can be a single predicate or a conjunction of several predicates; it cannot
contain a disjunction. For example, if the post-condition is of the form A’ = 1V
A’ = 2, the action is non-deterministic and consequently no code for a deterministic
computation can be generated. However, both conjunctions and disjunctions may
be present in the enabling condition and the port-condition. Another important
requirement for mechanical code generation is that the predicates explicitly provide
sufficient information for an implementation. As an example, the predicate inSet’ =
insert(pid, inSet) explicitly states the modification of the attribute inSet due to the
invocation of the operation corresponding to the abstract term insert, whereas the
predicate member(pid, inSet’) implicitly asserts the same action, but provides no clue

as to the operation that effects the modification. The mechanical code generator works

48

without assistance when explicit specifications are given. Therefore, the grammar of

an acceptable post-condition for automatic code generation is defined in Table 1. The

attribute on the left side of “=" is the attribute that will be modified. The attributes
on the right side of “=" are the attributes that will be used.
post-condition | ::= | <predicate> { <l_op> <predicate> }
lop = | <AND>
predicate := | <att_name>“"’ <b_op> <factor>
b_op = | =
factor := | <att_name> | <LSL_term>
LSL_term := | <LSL_func_name> “(” <arglist>*)”
arg list = | <arg> { ¢7 <arg> }
arg = | “pid” | <att_name> | <LSL_term>
att_name := | String
AND =] “&”

Table 1: Grammar of an acceptable post-condition

4.4.2 State Class Generation

State classes are subclasses of the class State. The subclasses provide sufficient in-
formation for implementing a state. States are considered as choicepoints in our
implementation model. Therefore, actions of a state are to decide which state is the
next state. The behavior of waiting for an event from the environment is already
abstracted as the high level behavior of a reactive object. The behaviors of checking
some conditions and then firing an internal/outgoing event are actions of a state. So
generating code for the actions of a state is to find out which events should be fired

in this state and under which condition the event should be fired.

The information about which events should be fired /received in a state can be attained
from transition specifications in TROM design model. By checking the type of events,
the incoming events can be removed. An internal/outgoing event may be either a
time-constraint event or an unconstraint event. A time-constraint event means that
the event occurs only when the setting time is arrived. An unconstraint event means

that the event occurs as soon as the enabling condition of the transition triggered by

49

this event is satisfied. Figure 36 shows the algorithm of state class generation.

generate the class declaration
generate the constructor function
generate the declaration of the run function

for each transition do
if the source state of this transition = this state then
if the type of the triggering event of this transition
is not incoming then
found = false
for each time-constraint do
if the constraint event of this time-constraint
= the triggering event then
generate codes for the time-constraint event
found = true
end if
end for

if found = false then
generate codes for the unconstraint event
end if
end if
end if
end for

generate the end of the run function
generate the end of the class

Figure 36: Pseudo-code for the algorithm of state class generation

4.4.3 Reactive Class Generation

A reactive class is a subclass of Common Reactive Class (CRC). Generating a reactive
class is to translate attributes in TROM design model into data members of this
reactive class and generate the codes for adding ports, states, transitions, and time-
constraints into this reactive class. So, the algorithm is simple and is shown in Figure
37.

generate the class declaration

for each attribute in this TROM specification do
generate a data member from this attribute

end for
generate the declaration of the comstructor function

for each attribute in this TROM specification do
generate codes for initializing the data member
end for

for each port in this TROM specification do
generate codes for adding this port
end for

for each state in this TROM specification do
generate codes for adding this state
end for

for each transition in this TROM specification do
generate codes for adding this transition
end for

for each time-constraints in this TROM specification do
generate codes for adding this time-constraint
end for

generate end of the constructor function
generate end of the class

Figure 37: Pseudo-code for the algorithm of reactive class generation

4.4.4 System Class Generation

A reactive system consists of a group of reactive objects. The code of a system class
defines the connections between reactive objects and initializes these reactive objects.
A system class can be generated from a SCS specification since all the necessary

information is in the SCS specification. The algorithm is shown in Figure 38.

generate the class declaration

generate the declaration of the main function

for each TROM object in SCS do
generate codes for defining the connections between reactive objects
generate codes for creating this object

end for

generate codes for starting this systenm

generate the end of the main function

generate the end of the class

Figure 38: Pseudo-code for the algorithm of system class generation

ot
[SV]

Chapter 5

Case Study: The Railroad

Crossing Problem

5.1 Introduction

This chapter will demonstrate our implementation methodology and the application
of the automatic code generation. We consider an example of a railroad crossing
problem. This problem has been defined as a benchmark problem by the real-time
reactive system community and has been discussed previously in [Ach95], and [AM98]

as a case study to illustrate the expressivity of the TROM formalism.

In this section, the example will first be outlined informally followed by its formal
descriptions in the TROM notation. Then our implementation methodology will be
applied to implement this example. Finally we will comment on the discrepancies
between the automatically generated codes and the manually generated codes and

provide some justification.

5.2 The Railroad Crossing Problem

5.2.1 An Informal Description

A railroad crossing system consists of a collection of trains and a collection of gates
servicing the roads crossing the train tracks. The gate should remain closed whenever

a train goes past the crossing. In order to control the gates there exists a collection

53

of controllers such that one controller controls each gate. A controller closes its
associated gate when it gets a “nearing signal” from a train and opens the gate once
all the trains crossing the gate have left. A controller does this by receiving signals
from the trains and transmitting necessary control signals to its associated gate.
Furthermore, more than one train can cross a gate simultaneously, through multiple
parallel tracks; a train can independently choose the gate it will cross, probably based
on its destination. The entities interacting in the system are trains, controllers, and
gates. The safety property is that the controller is active and the gate remains closed

until all the trains crossing it leave the gate.

A train sends a Near message to a controller indicating that it is approaching the
gate associated with this controller. While leaving the gate, the train informs the
controller by an Ezit message. A typical time constraint on the train is that the Ezit
message must be sent within a window of 2 to 6 time units after sending the Near

message.

A controller, upon receiving a Near message from a train, sends the Lower message
to the gate it is controlling, indicating that the gate has to be lowered. The controller
keeps monitoring trains entry and leave the gate until receives an Ezit from the last
train to leave the gate. Then the controller sends a Raise message to the gate. There
are two time constraints associated with the controller. The controller should respond
by sending: i) a Lower message to the gate within 1 time unit after receiving the Near
message from the first train to entry the gate; ii) a Raise message to the gate within

1 time unit after receiving the Fzit message from the last train to leave the gate.

A gate responds to a Lower message and a Raise message by closing and opening the
gate, respectively. There is a maximum delay constraint of 1 time unit for closing the

gate and a maximum delay constraint of 1 time unit for opening the gate.

5.2.2 Train-Gate-Controller Model

There are three types of interacting entities: Train, Gate and Controller. The behav-
ior of the systems components are modeled using generic reactive classes as shown in
Figure 39. Each of the GRC classes has a UML statechart diagram for describing the
behavior of this GRC.

<<GRC>> <<PortType>>
Train P —— @C
<<PortType>>cr: @C events : Set = {Near!, Exit!}
<<PortType>> <C<Gt?o?> <<PortType>>
@G ® ontroller - : ®P
events : Set = {Lower!,Raise!} <<DataType>>inSet : Set{@P,PSel] :events : Set = {Near? Exit?}
<<PortType>> <<GRC>>
@5 * Gate
events : Set = {Lower? Raise?}

Figure 39: Train-Gate-Controler System Class Diagram

Figure 40 and 41 show the statechart diagram and the formal specification for Train.
Initially, a Train is in state Idle. When the train approaches a Gate, event Near is
sent to the controller associated with the gate. The train goes into state foCross.
The attribute cr denotes that further interaction of the train should be at the port it
chose, until it exits the gate. Within 2 to 4 time units the train enters the gate. An
internal event In is sent to signify the start of the action of crossing the gate. The
train enters into state Cross. Also an internal event Qut is sent at the end of the
action of crossing the gate. The train goes into state Leave. Then event Ezit is sent

to the controller. The train is idle again.

In the beginning, the controller is in state i¢dle. When the input event Near from
the train is received, the controller goes into state active. The attribute inSet is
introduced for denoting the set of ports at which an interaction involving Near has
occurred, and implicitly underscores those train objects crossing the gate at that
instant. The controller sends the event Lower to the gate within 1 time unit, then
enters into state monitor. In state monitor, the controller deals with the trains’ enters
and exits. Until the last train in the gate leaves, the controller goes into state deactive.
With 1 time unit, the controller sends the event Raise to the gate. Figure 42 and 43

show the statechart diagram and the formal specification for Controller.

Figure 44 and 45 show the statechart diagram and the formal specification for Gate.
A gate is opened in state opened and closed in state closed. When the gate receives

event Lower/Raise, the action to close/open the gate is taken. The events Down and

7 N . Near / cr'=pid && TCvar1=0 & ; N
| idie TCvar2=0 -~ toCross :
1 >
A
Exit[pid=cr && true &&
TCvar2<=6]
: In[true && true && TCvari>=2 &
TCvari<=4]
N ;
leave < Out cross

Figure 40: Statechart Diagram for Train

Class Train [@C]
Events: Near!@C, Out, Exit!@C, In
States: *idle, cross, leave, toCross
Attributes: cr:@C
Traits:
Attribute-Function: idle — {}: cross — {} ;leave — {}; toCross — {cr}:
Transition-Specifications:
R1: <<idle,toCross>; Near(true); true => cr/=pid;
R2: <toCross,cross>; In(true); true == true;
R3: <cross,leave>: Qut(true); true = true;
R4: <leave,idle>: Exit(pid=cr); true = true;
Time-Constraints:
TC2: R1, Exit, [0, 6], {};
TC1: Rl, In, [2, 4], {}:
end

Figure 41: Formal specification for GRC Train

Near[{{member(pid,inSet)) && true]
/ inSet'=insert(pid,inSet)
N

/ %
\‘ :‘ _‘
\\ g H
. N ~ Near/ inSet'=insert(pid,inSet) . i Y <
i idle : 8&TCvar1=0 < activate
4 /L P
A L true && true && TCi 1>=0 &
Raise[true && true && owerf true TCvr:z <=1] var
TCvar2>=0 & TCvar2 <= 1]
Near[{member(pid,inSet)) && |
true]/ inSet’ = insert(pid,inSet) | ™
Y
r~ \ ~,
deactivate monitor

T,

Exit{ member(pid,inSet) &&

7 size(inSet) = 1]/ inSet’ = 7y
delete(pid,inSet) && TCvar2 =0 i

Exit] member(pid,inSet) &&
size(inSet) > 1]/inSet’' =
delete(pid,inSet)

Figure 42: Statechart Diagram for Controller

(3]
~]

Class Controller [@P, €G]
Events: Lower!@G, Near?@P, Raise!@G, Exit?@P
States: *idle, activate, deactivate, monitor
Attributes: inSet:PSet
Traits: Set[@P,PSet]
Attribute-Function: activate — {inSet}: deactivate — {inSet}; monitor — {inSet};
idle — {}:
Transition-Specifications:
R1l: <activate,monitor>; Lower(true);
true == true;
R2: <activate,activate>; Near(!(member(pid,inSet))):
true == inSet/=insert(pid,inSet);
R3: <deactivate,idle>; Raise(true):
true — true;
Rd: <monitor,deactivate>; Exit(member(pid,inSet)):
size(inSet)=1 = inSet/=delete(pid,inSet):
R3: <monitor,monitor>; Exit(member(pid,inSet)):
size(inSet)>1 == inSet/=delete(pid,inSet);
R6: <monitor,monitor>; Near(!(member(pid,inSet))):
true = inSet/=insert(pid,inSet);
RT: <idle,activate>; Near(true):
true == inSet/=insert(pid,inSet);
Time-Constraints:
TC1: R7, Lower, [0, 1], {};
TC2: R4, Raise, [0, 1], {};
end

Figure 43: Formal specification for GRC Controller

Up denote the end of the actions.

£ Lower / true && TCvar1=0 !
opened ~ toClose i
~ e '\ 4
A
Up[true 8& true && TCvar2 >=1 &
TCvar2<=2]
: Down[true && true && TCvar1>=0
& TCvar1 <=1]
/ N
toOpen I/ i

Raise / true && TCvar2=0 dosed

.

v

Figure 44: Statechart Diagram for Gate

The Railroad subsystem which has 5 trains, 2 controllers, and 2 gates is the example
of reactive systems considered for mechanical code generation. Figure 46 shows the
collaboration diagram for the subsystem. Figure 47 shows the formal notation for the

subsystem.

5.3 Implementation of Train-Gate-Controller

The code generation algorithm discussed in Chapter 4 is applied to the Train-Gate-
Controller design specifications. The code generator by the algorithm very nearly

matches the manual code.

5.3.1 Abstract Data Type Classes

In Train-Gate-Controller model, only one abstract data type Set is introduced. So
our work of this tier is to implement the class Sef, using the interface and behavior

specifications of Set is shown in Figure 29.

Class Gate [@S]

Events: Lower?@S, Down, Up, Raise?@S
States: *opened, toClose, toOpen, closed
Attributes:

Traits:

Attribute-Function: opened — {}; toClose — {}; toOpen — {}; closed — {};

Transition-Specifications:

R1l: <opened,toClose>; Lower(true); true ==> true;

R2: <toClose,closed>; Down(true);
R3: <closed,toOpen>; Raise(true);

true — true;
true =— true;

R4: <toOpen,opened>; Up(true); true = true;

Time-Constraints:
TC1: R1, Down, [0, 1], {}:
TC2: R3, Up, [1, 21, {}:
end

Figure 45: Formal specification for GRC Gate

train1 - Train train2 : Train

traind : Train traind : Train

train5 : Train

: <
@01 @C ceiec i@ca:@c: |@ca:@c! |[@cs:@c! ‘@cs:@cC!
{@P1-@P: {@P2:@P: (@P3:@P: {@P4:@P| i@P5:@P: i@P6:@P!
""""""""""" e e — P
‘\‘S firemeen /'/ :" ~

:Controller1 ; Controlier:

{@S1: @S
ate 1 ate

s -

§ Controller2 : Controller

Figure 46: Collaboration diagram for subsystem TrainGateController

60

SCS TGC

Includes:

Instantiate:
Gate2::Gate[@S:1];
Gatel::Gate[@S:1];
Controllerl::Controller{@P:3, @G:1};
Controller2::Controller[@P:3, @G:1};
trainl::Train[@C:1]:
train2::Train[@C:1];
train3:Train[@C:2];
traind::Train[@C:1]:
train3::Train[@C:1};

Configure:
Gatel.@S1:@S « Controllerl.@G1:QG;
Controller2.@G2:@G < Gate2.@S2:@S;
Controller1.@P2:@P « train2.@C2:QC:
Controller1.@P1:@P « trainl.@C1:QC;
Controller1.@P3:@P « train3.@C3:@C;
Controller2.@P5:@P « train4.@C5:@C;
Controller2.@P6:@P > traind.@C6:QC;
Controller2.@P4:@P & train3.@C4:QC;

end

Figure 47: Formal specification for subsystem TrainGateController

61

5.3.2 Reactive Object Classes

In Train-Gate-Controller model, there are three types of reactive objects: Train,

Gate, and Controller. We discuss the implementations of these three types of reactive

objects in the later of this section.

5.3.2.1 Trawn

First of all, we implement every transition in Train. Then the implementations of the

states in Train are provided. Finally, the train class is given.

Transition There are four transitions in Train.

1. Transition R1: The port condition and enabling condition are true. So
Function PortCondition and Enable just return true. The post condition
is cr'= pid. So the attribute cr is changed in Function Computation. Also
the function should change the current state to toCross. Figure 48 shows
the implementation of R1.

2. Transition R2: The port condition, enabling condition, and post condition
are true. So Function PortCondition and Enable just return true. Func-
tion Computation change the current state to cross. Figure 49 shows the
implementation of R2.

3. Transition R3: Function PortCondition and Enable return true. Func-
tion Computation changes the current state to leave. Figure 50 shows the
implementation of R3.

4. Transition R4: Function PortCondition returns true under pid is equal
to cr. Function Enable returns true. Function Computation changes the

current state to idle. Figure 51 shows the implementation of R4.

State There are four states in Train.

1. State idle: There is only an outgoing event Near that can happen in this
state. This event is an unconstraint outgoing event. So the event can only
happen at a port that satisfies the port condition of the transition R1 when
the enabling condition of R1 is satisfied. Unfortunately, the specification

62

public class Train_Ri extends Transition

{
Train_R1()
{
super("R1", "idle", "toCross”, new Event(“Near"));
}
public boolean Enable(CRC cxc, Event e)
{
return(true);
}
public boolean PortCondition(CRC crc, Event e)
{
return(true);
}
pudlic void Computation(CRC crc, Eveat e)
{
((Train)crec).cr = crec.PID;
crc.getState() .setcState(sourceSN, destinationSN);
b
}

Figure 48: Implementation for R1 of Train

public class Train_R2 extends Transition

{
Traiz_R2()
{
super(“"R2", "toCross", "cross", new Eveat("In"));
}
public boolean Enable(CRC crc, Event e)
{
retura(true);
}
public boolean PortCondition(CRC crc, Event e)
{
return(true);
}
public void Computation(CRC crc, Event e)
{
crc.getState() .setcState(sourceSN, destinationSN);
}
}

Figure 49: Implementation for R2 of Train

63

public class Train_R3 extends Transition

{
Train_R3()
{
super("R3", "cross", "leave", new Eveat("Out"));
}
public boolean Enable(CRC crc, Event e)
{
return(true);
}
public boolean PortCondition(CRC crc, Event e)
{
return(true);
}
public void Computation(CRC crc, Event e)
{
crc.getState() .setcState(sourceSN,destinationSN) ;
}

Figure 50: Implementation for R3 of Train

pudlic class Train_R4 exteands Transitioxn

{
Train_R4()
{
super("R4", “leave", "idle", new Eveat("Exit"));
}
public boolean Enable(CRC crc, Eveat e)
{
return(true);
}
public boolean PortCondition(CRC crc, Event e)
{
if (((Train)crc).cr.equals(((Train)crc).PID))
return(true);
return{false);
¥
public void Computation(CRC crc, Event e)
{
crc.getState() .setcState(sourceSN, destinationSN);
b
}

Figure 31: Implementation for R4 of Train

64

Train lacks of detailed information under which the event is fired in a
specific port. We refine the transition specification by introducing a new
abstract data type Sensor, which has two functions ¢rigger and seleciPort.
Function trigger returns true when the event should be fired. Function
selectPort returns a port id where the event is fired. A new at.tribute q,
which is a Sensor, is introduced in Train. Then the transition R1 becomes:
<idle,toCross>; Near(pid=selectPort(q)); trigger(q) = crr=pid:
In other words, the original R1 means the event Near will be broadcasted
at all of the ports after the train enters state idle. Figure 52 shows the
refined Train specification and Figure 53 shows the implementation of the

state idle with the new design.

State toCross: There is only an internal event In that can happen in this

state. This event is a time-constraint event. Therefore, the event is fired

[\

at the null port when the setting time is arrived. Figure 54 shows the
implementation of state toCross.

3. State cross: There is only an internal event Qut that can happen in this
state. This event is a non-time-constraint event. Figure 35 shows the
implementation of state cross.

4. State leave: There is only an outgoing event Ezzt that can happen in this
state. This event is a time-constraint event. Therefore, the event is fired
when the setting time is arrived. Figure 56 shows the implementation of

state leave.

Reactive Class In Train, there are one attribute, one port-type, four states, four
transitions and two time-constraints. Figure 57 shows the implementation of

Train.

5.8.2.2 (Gate

Transition There are four transitions in Gate.

1. Transition R1: Function PortCondition and Enable return true. Function
em Computation changes the current state to foClose. Figure 38 shows

the implementation of R1.

Class Train [@C]
Events: Near!@C, Out, Exit!@C, In
States: *idle, cross, leave, toCross
Attributes: cr:@C, q: Sensor
Traits: Sensor
Attribute-Function: idle — {}; cross — {} ;leave — {}; toCross — {cr};
Transition-Specifications:
R1: <idle,toCross>; Near(pid=selectPort(q)); trigger(q) = crr=pid;
R2: <toCross,cross>; In(true); true == true;
R3: <cross,leave>: Qut(true); true = true;
R4: <leave,idle>; Exit(pid=cr); true = true;
Time-Constraints:
TC2: R1, Exit, [0, 6], {}:
TC1: R1, In, [2, 4], {}:
end

Figure 52: Refinement for GRC Train

class Train_idle extends State

{
Train_idle()

{

super(“idle”, true, new States());

}

public void run(CRC crc)

{
if ((Train)crc).q.trigger()

{
Port p = ((Train)crc).q.selectPort();

p-Send(crc, new Event("Near"));
}

}
b

Figure 53: Implementation for State idle of Train

66

class Train_toeCross extends State

{
Train_toCross()
{
super("toCross", false, new States());
}
public void run(CRC crc)
{
int j = crc.getTimeConstraints.searchTimeConstraint("TC1");
if(crc.getTimeConstraints.TimeConstraintAt(j) -isFire())
{
iat i = crc.getPorts().searchPort("null™);
crc.getPorts() .portit(i) .Send(crc, new Event("In"));
crc.getTimeConstraiats.TimeConstraintAt(j) -disactive();
}
}
}

Figure 54: Implementation for State toCross of Train

class Train_cross extends State

{
Train_cross()
{
super("cross", false, new States());
}
public void run(CRC crc)
{
int i = crc.getPorts().searchPort("aull®);
crc.getPorts() .portAt(i) .Send(crc, new Event("Out”, "Internal”, "null"));
}
}

Figure 55: Implementation for State cross of Train

class Train_leave extends State

{

Train_leave()

{
}

super("leave"”, false, new States(});

public void run(CRC crc)

{

int j = crc.getTimeConstraints.searchTizeConstraint(“TC1");

if(crc.getTineConstraints.TimeConstraintAt(j) .isFire())

{

((Train)crc) .cr.Send(crc, new Event("Exit", “€C", "Outgoing"));
crc.getTimeConstraints.TimeConstraintAt(j) .disactive();

V]

Figure 56: Implementation for State leave of Train

Transition R2: Function PortCondition and Enable return true. Function
em Computation changes the current state to closed. Figure 59 shows the

implementation of R2.

Transition R3: Function PortCondition and Enable return true. Function
em Computation changes the current state to toOpen. Figure 60 shows

the implementation of R3.

Transition R4: Function PortCondition and Enable return {rue. Function
em Computation changes the current state to opened. Figure 61 shows the

implementation of R1.

State There are four states in Gate.

1.

State opened: In this state, the gate just waits for an event Lower from
the environment. So there is no action in this state. Figure 62 shows the

implementation of state opened.

. State toClose: There is only an internal event down that can happen in

this state. This event is a time-constraint event. Therefore, the event is
fired when the setting time is arrived. Figure 63 shows the implementation

of state toClose.

68

class Train extends CRC
{

Port cr;

Seasor q;

Train(String n, PortParas pps, Supervisor sp)

{
super(n, sp);

cxr = null;
q = new Sensor();

PortPara pp;
pp = (PortPara)pps.elementAt(0);
for (int i = 0; i < pp.getPortNum(); i ++)
addPort(nev Port(pp.-getportID(i), pp.getConnectTrom(i), pp.getConnectPort(il));
addPort(new Port("null"”, Name, "null"));

addState("main", new Train_idle(});
addState("main", new Train_teCross());
addState("main”, new Train_cross());
addState("main", new Train_leave());
mainState.initialcState();

addTransition(new Train_R1());
addTransitica(mnew Train_R2());
addTransition(new Train_R3());
addTransition(new Train_R4()});

addTimeConstraint (new TimeConstraint(
“TCi", "Ri", new Event("In"), 2, 4, "toCross", new StateNames());

addTizeConstraint (new TimeConstraint(
“TC2", "R1", new Event("Exit"), O, 6, "leave", new StateNames());

}

public void display_attributes(PrintStream out)

{

out.println(" There is 1 attribute in this TROM object.\n");
out.println(" 1th Attribute Name : cr");
out.println(” Attribute Value: “ + cr);

}

Figure 57: Implementation for Train

69

public class Gate_Rl exteads Transition

{

}

Reactive Class In Gate, there are one port-type, four states, four transitions and

two time-constraints. Figure 66 shows the implementation of Gate.

Gate_Ri1()
{

super("R1", "opened", "toClose"”, new Event("Lower”));

}

public boolean Enable(CRC crc, Event e)
{

retura(true);

}

public boolean PortCondition(CRC crc, Event e)
{

return(true);
}
public void Computation(CRC crec, Event e)
{
crc.getState() .setcState(sourceSN, destinationSN);
}

Figure 58: Implementation for R1 of Gate

3. State closed: In this state, the gate just waits for an event Raise from
the environment. So there is no action in this state. Figure 64 shows the

implementation of state closed.

4. State toOpen: There is only an internal event up that can happen in this
state. This event is a time-constraint event. Therefore, the event is fired

when the setting time is arrived. Figure 65 shows the implementation of

state toQOpen.

5.8.2.8 Controller

Transition There are seven transitions in Controller.

1. Transition R1: Function PortCondition and Enable just return true. Func-

tion Computation changes the current state to monitor. Figure 67 shows

the implementation of R1.

70

public class Gate_R2 extends Iransition

{

}

Gate_R2()
{
super ("R2", "toClose", "closed", new Eveat("Down"));
}
public boolean Enable(CRC crc, Event e)
{
return(true);
}

public boolean PortCondition(CRC c¢rc, Event e)
{

return(true);
b4
public void Computation(CRC crc, Event e)
{
crc.getState() .setcState(sourceSN, destinatioaSN);
b

Figure 59: Implementation for R2 of Gate

public class Gate_R3 extends Transition

{

}

Gate_R3()
{
super("R3", "closed", “toUpea", new Event("Raise"));
}
public boolean Enable(CRC crc, Event e)
{
return(true);
}

public boolean PortCondition(CRC crc, Event e)
{

return(true);
}
public void Computation(CRC crc, Event e)
{
crc.getState() .setcState(sourceSN, destinationSN);
}

Figure 60: Implementation for R3 of Gate

71

public class Gate_R4 extends Tramsition

{
Gate_R4()
{
super{“R4", "toOpen", "opened", new Event("Up"));
}
public boolean Enable(CRC crc, Eveat e)
{
return(true);
}
public boolean PortCondition({CRC crc, Event e)
{
returan(true);
}
public void Computation(CRC crc, Eveat e)
{
crc.getState() .setcState(sourceSN, destinationSN);
b
}

Figure 61: Implementation for R4 of Gate

class Gate_opened exteads State

{
Gate_opened()
{
super("opened", true, new States());
}
public void run(CRC crc)}
{
}
b

Figure 62: Implementation for State opened of Gate

class Gate_toClose exteands State

{
Gate_toClose()
{
super(“toClose", false, new States());
}
public void run(CRC crc)
{
int j = crc.getTimeConstraints.searchTimeConstraint("TCL");
if(crc.getTimeConstraints.TireConstraintiAt(j) .isFire())
{
int i = crc.getPorts().searchPort("null”);
crc.getPorts() .portAt(i).Sead(crc, new Event("Down", "Intermal", "null"));
crc.getTimeConstraints.TizmeConstraintAt(j) .disactive();
>
}
¥

Figure 63: Implementation for State toClose of Gate

class Gate_closed extends State

{
Gate_closed()
{
super("closed", false, new States());
¥
public void run(CRC crc)
{
¥
I

Figure 64: Implementation for State closed of Gate

class Gate_toUpen extends State

{
Gate_tolpen()
{
super(“to0pea"”, false, new States(});
}
public void run(CRC cxc)
{
int j = crc.getTimeConstraints.searchTimeConstraint("TC2");
if(crc.getTimeConstraints.TimeConstraintAt(j).izFire())
{
int i = crc.getPorts().searchPort("null");
crc.getPorts() .portAt(i).Send(crc, new Event("Up", "Intermal", "aull"));
crc.getTimeConstraints.TimeConstraintAt(j) .disactive();
}
X
b
}

Figure 65: Implementation for State toOpen of Gate

class Gate extends CRC

{
Gate(String n, PortParas pps, Supervisor sp)
{

super(a, sp);

PortPara pp;
pp = (PortPara)pps.elementAt(0);
for (iat i = 0; i < pp.getPortNum(); i ++)
addPort(new Port(pp.getportID(i), pp.getConnectTIrom(i), pp.getConnectPort(i)));
addPort(new Port("aull"”, Name, "null"));

addState("main”, new Gate_opened());
addState("maia", new Gate_toClose());
addState("main", new Gate_closed());
addState("main", nev Gate_toOpen());
mainState.initialcState();

addTransition(new Gate_R1());
addTransition(new Gate_R2());
addTransition(new Gate_R3());
addTransition(new Gate_R4());

addTineConstraint(new TimeConstraint("TCi", "R1", new Event("Down", "Internal", "null"), 0, 1,
"toClose", new StateNames())):;

addTimeConstraint(new TimeConstraint(“TC2", “R3", new Event("Up", "Intermal”, "null"), 1, 2,
"toUpen", new StateNames()));

Figure 66: Implementation for Gate

Transition R2: Function PortCondition returns true only pid is not the

3
'

member of Set inSet. Function Enable returns true. Function Computation
inserts pid into inSent and keeps the current state. Figure 68 shows the

impelementation of R2.

3. Transition R3: Function PortCondition and Enable just return true. Func-
tion Computation changes the current state to idle. Figure 69 shows the

implementation of R3.

4. Transition R4: Function PortCondition returns true only pid is the member
of Set inSet. Function Enable returns true only the size of inSet is 1.
Function Computation removes pid into inSent and changes the current

state to deactivate. Figure 70 shows the impelementation of R4.

5. Transition R3: Function PortCondition returns true only pid is not the
member of Set inSet. Function Enable returns true. Function Computation
inserts pid into inSet and keeps the current state. Figure 71 shows the

impelementation of R3.

6. Transition R6: Function PortCondition returns true only pid is the member
of Set inSet. Function Enable returns true only the size of inSet is bigger
than 1. Function Computation removes pid into inSent and keeps the

current state. Figure 72 shows the impelementation of R6.

-

7. Transition R7: Function PortCondition and Enable just return true. Func-
tion Computation inserts pid into inSet and changes the current state to

monitor. Figure 73 shows the implementation of R7.

State There are four states in Controller.

1. State idle: In this state, the controller just waits for an event Near from
the environment. So there is no action in this state. Figure 74 shows the

implementation of state idle.

2. State activate: There is only two types of events that can happen in this
state. One is the incoming event Near. The other is the internal event
Lower. Lower is a time-constraint event. Therefore, the event is fired
when the setting time is arrived. Figure 75 shows the implementation of

state activate.

=]
(S]]

class Controller_R1 exteands Transition

{
Controller_R1()
{
super("R1", "activate”, “monitor", new Event("Lower", "aull"”, "gpull"});
}
public boolean Enable(CRC crc, Event e)
{
return(true);
}
public boolean PortCondition(CRC crc, Event e)
{
return(true);
}
public void Computation(CRC crc, Event e)
{
crc.getState() .setcState(sourceSN, destinationSN);
}

Figure 67: Implementation for R1 of Controller

class Controller_R2 extends Transition

{
Coatroller R2()
{
super("R2", "activate"”, “"activate”, pew Event("Near", "null", “null"));
}
public boclean Emable(CRC crc, Event e)
{
return(true);
}
public boolean PortCondition(CRC crc, Eveat e)
{
if(1(((Controller)crc).inSet .rember(crc.PID)))
return(true);
else
return(false);
}

public void Computation(CRC crc, Event e)

{
((Controller)crc) .inSet.add(crc.PID);

crc.getState() .setcState(sourceSN, destinationSN);

3

Figure 68: Implementation for R2 of Controller

class Controller_R3 extends Transition

{
Controller_R3()
{
super("R3", "deactivate", "idle", new Event("Raise"”, "pull", "aull"));
}
public boolean Enable(CRC crc, Event e)
{
return(true);
}
public boolean PortCondition(CRC crc, Event e)
{
return(true);
}
public void Computation(CRC crc, Event e)
{
crc.getState() .setcState(sourceSN, destinationSN);
}
}

Figure 69: Implementation for R3 of Controller

class Controller_R4 extends Transitioan

{
Controller_R4()
{
super("R4"”, "monitor”, "deactivate"”, new Event("Exit", "aull", "“aull"));
}
public boolean Enable(CRC crc, Event e)
{
1f£(((Controller)crc) .inSet.size() == 1)
return(truel;
else
return(false);
}
public boolean PortCondition(CRC crc, Event e)
{
if(((Controller)crc).inSet .member(crc.PID))
return(true);
else
return(false);
}
public void Computation(CRC crc, Event e)
{
((Controller)crc) .inSet.remove(crc.PID);
crc.getState() .setcState(sourceSN, destinationSN);
}
}

Figure 70: Implementation for R4 of Controller

class Controller_R5 extends Transition
{
Controller_RS()

{
super ("R5"”, "monitor", "monitor”, new Event("Near", “"null", "null"));
}
public boolean Enable(CRC crc, Event e)
{

return(true) ;

}

public boolean PortCondition(CRC crc, Event e)

{
if(1(((Controller)crc).inSet member(crc.PID)))

return(true);
else
return(false);

¥

public void Computation(CRC crc, Event e)

{
((Controller)crc) .inSet.add(crc.PID);
crc.getState() .setcState(sourceSN, destinationSN);

}
}

Figure 71: Implementation for R5 of Controller

3. State monitor: In this state, the controller just waits for two types of
events, Near and FErit, from the environment. So there is no action in this

state. Figure 76 shows the implementation of state monitor.

4. State deactivate: There is only an outgoing event Raise that can happens
in this state. This event is a time-constraint event. Therefore, the event is
fired when the setting time is arrived. Figure 77 shows the implementation

of state deactivate.

Reactive Class In Gate, there are one attribute, two port-type, four states, seven
transitions and two time-constraints. Figure 78 shows the implementation of

Controller.

5.3.3 System Class

The Railroad subsystern that we implemented has 5 trains, 2 controllers, and 2 gates.

Figure 79 shows the implementation of this system.

class Controller_R6 exteands Transition

{

Controller_R6()
{
super("R6", "monitor", “"monitor", new Event("Exit", "null",
}
public boolean Enable(CRC crc, Event e)
{
if(((Controller)crc).inSet.size(} > 1)
return{true);
else
return(false);
}
public boolean PortCondition(CRC crc, Event e)
{
if(((Controller)crc).inSet .member(crc.PID))
retura(true);
else
return(false);
}
public veid Computation(CRC crc, Event e)
{
((Coatroller)crc) .inSet.remove(crc.PID);
crc.getState() .setcState(sourceSN, destinationSN);
}

Figure 72: Implementation for R6 of Controller

class Controller_R7 extends Transition

{

Controller_R7()

“auil®)) H

{
super("R7", "idle", "activate", new Event("Near”, "null", "null"));
}
public boolean Enable(CRC crc, Event e)
{
return(true) ;
}
public boolean PortCondition(CRC crc, Event e)
{
return(true);
}
public veid Computation(CRC crc, Event e)
{
((Controller)crc) .inSet.add(cxrc.PID);
crc.getState() .setcState(sourceSN, destinationSN);
}

Figure 73: Implementation for R7 of Controller

79

class Controller_idle extends State

{
Controller_idle()
{
super("idle”, true, new States());
}
public void run(CRC crc)
{
¥
}

Figure 74: Implementation for State idle of Controller

class Controller_activate exteands State

{
Controller_activate()
{
super("activate®, false, new States());
}
public void run(CRC crc)
{
int j = crc.getTimeConstraints.searchTimeConstraint("TC1");
if(crc.getTimeConstraints.TimeConstraintAt(j) .isFire())
{
for(int i = 0; i < crc.getPorts().size();: i ++)
{
if(crc.getPorts() .portAt(i).getType() .equals ("€S"))
((Train)crc) .portAt(i) .Send(crc, new Event("Lower"));
¥
crc.getTimeConstraints.TimeConstraintAt(j) .disactive();
}
}
b

Figure 75: Implementation for State activate of Controller

class Controller_monitor extends State

{
Controller_monitor()
{
super("monitor", false, new States());

}

public void run(CRC crc)

{

}

}

Figure 76: Implementation for State monitor of Controller

80

class Controller_deactivate extends State

{
Controller_deactivate()

¢ super("deactivate"”, false, new States());

}

public void run(CRC czc)

¢ int j = crc.getTimeConstraints.searchTimeConstraint("TC2");
if(crc.getTimeConstraints.TimeConstraintAt(j) .isFire())

{

for(int i = 0; i < crc.getPorts().size(); i ++)

{
if(crc.getPorts() .portAt(i) .getType() .equals("QS"))
((Train)crc) .portAt(i) .Send(crc, new Event("Raise"));

}

crc.getTimeConstraints.TimeConstraintit(j) .disactive();

}
}
b

Figure 77: Implementation for State deactivate of Controller

5.4 Automatic Code Generation

Our automatic code generation tool requests users input TROM specification file
(*.trom), subsystem specification file (*.scs), and Larch/Java specification file (*.java).

The codes are automatically generated from them.

In our case study, the codes generated by the tool are identical to manually generated
codes. This is due to the fact that the code generation algorithms completely follow
our implementation methodology. Therefore, our tool can be considered as a helpful

assistant for implementing real-time reactive systems.

It is probable that in some cases the generated code may not work since the specifi-
cations may lack detailed information. For instance, if we do not give the condition
when a train should fire a Near event and at which port should the event be fired
in our case study, the whole svstem can not work. The detailed information may be
implemented manually. However, after the automatic code generation tool is devel-
oped, this work can become a requirement to refine the original design. When the
generated codes fail to work, the programmers will require the designers to give more
detailed information by refining the original design, then generate the codes again and

test them. By iteratively refining the design, the final implementation can be fine

81

class Controller exteads CRC

{
public Set inSet;
Controller(String n, PortParas pps, Supervisor sp)
{
super(n, sp);
inSet = new Set();
int i, j;
PortPara pp:
for(j = 0; j < pps.size(); j ++)
{
pp = (PortPara)pps.elementAt(j);
if(pp.getPortType() .equals("QP"))
for (i = 0; i < pp.getPortNum(); i ++)
addPort(new Port(pp.getportID(i}, pp.getConnectTrom(i), pp.getComnectPort(i)));
if(pp.getPortType() .equals("QG"))
for (i = 0; i < pp.getPortNum(); i ++)
addPort(nev Port(pp.getportID(i}, pp.getConnectTrom(i), pp-.getConnectPort(i)));
}
addPort(new Port("null”, Naze, "“aull"});
addState("zmain", new Coatroller_idle());
addState("main", new Controller_activate());
addState("main”, new Controller_deactivate());
addState(“"main", new Controller_monitor());
mainState._initialcState();
addTransition(new Coatroller_R1i(});
addTransition(new Coatroller_R2());
addTransition(new Controller_R3());
addTransition(new Controller_R4());
addTransition(new Controller_RS5());
addTransition(new Controller_R6());
addTransition(new Controller_R7());
addTizeConstraint(new Controller_TCvari());
addTimeConstraint(new Controller_TCvar2(});
}
public void display_attributes(PrintStream out)
{
out.println(" There is 1 attxribute in this TROM object.");
out.printla(" ith Attribute Name : inSet");
out.printlin(" Attribute Value: " + inSet);
}
}

Figure 78: Implementation for Controller

82

class TCG
{
public static void =zain(String argd)
{
RTSuper rtsuper = new RTSuper();

PortParas pps;
PortPara pp;

PPs = nev PortParas();

PP .-setPortType("SC");

PP-setPortNu=(1});

Pp.setConnection(0, "Ci”, "Coatrollerl®, "P1"};
Train tratal= nev Train("trainl®, pps, rtauper);

PPs = new PortParas();

PP-3etPortType("SC™);

PP.setPortiu=(1);

pp.setConnecrion(0, "C2", "Controlleri™, "P2");
Train train2= new Train("train2”, pps, rtauper);

PPS = nev PortParas();

PP-sesPorsType("eC”};

FP-3esPort¥uz(2};

PP.3etConnection(0, "C3", “Controlleri”, "P3");
PP.setConnection(l, “C4", "Coantroller2”, "P4");
'Tain train3= new Trata("zra:in3”, pps, rtsupes);

pPPs * nev PortParas();

Pp.3etPortType("0C™);

pp.setPortiuz(l);

Pp.3etCocnection(0, "C5", "Controller2”, "P5");
Train trainde nev Trzin("train§”, pp2, rtsuper);

PPs = pew PortParas();

Pp-setPoreTypa("CC™);

PP-setPortiux(l);

PP.3atConnectioa(0, "C6”. "Controller2”, "P6"};
Train trainS= new Train("train5”, pps, rtsuper);

PP3 = new PortParaz();

PP-3etPortType ("GP");

Pp.setPortiuz(3);

Pp.setCoaneccion(0, "P2", "trein2", "C2");

PP-setConnection(l, "P17, ™eraizi”, "C1");

PP.3etCocnection(2, "P3”, "train3”, ~C37);

PP .-3etPortType("CC™);

PP -setPorzXuxz(l);

PP-setCoonection(d, "G1”, "Gatel”, "S17};

Controller Controlleri® new Controller("Controlleri”, pps, rtsuper};

PP = nev PorzParas();

pp.setPortType("CP");

Pp-setPortiu=(3);

PP-setConnection(0, "P5", “traing”, "C5");

PP-setConnection(l, "PE", "trainb”, "C67};

pp.setConnecticn(2, "P4", "train3™, "C4&");

PP-setPorzType("eC");

pp.-setPortiu=(1};

pp-sezConnection(0, "G2", "Gate2", "S27};

Coantroller Controller2= new Controller("Controller2”, pps, rtsuper);

PP® = new PortParas(};

PP-setPortType("eS™);

FP.setPort¥ux(1);

pp.setConnection(0, "S1”, "Comtrollerl”, "G1");
Gate Catel= nev Cate("Catel™, pps, rtsuper);

PpP3 = nev PortParas();

PP-setPortType ("CS™);

PP-setPortNu=(1);

pp.setConaection(0, "S2", "Coatroller2”, "G2");
Gate Gate2= nev Gate("Cate2", pps, rtsuper);

rtauper.start();

s

Figure 79: Implementation for Train-Gate-Controller System

83

tuned. In most of cases, lack of detailed information is associated with unconstraint
events. The designers have to find out these events and refine them to give more
precise information on where and when they can occur. The main contribution of
this tool is to reduce the implementation time and increase the quality of code. The

whole implementation phase becomes as shown in Figure 80.

Refine the Automatic code Test Corect
- . - ———————t
specifications generation

[3

Figure 80: Implementation Phase

The design notation scales up easily, that is, a large system can be specified succinctly
in TROM notation. In Figure 81, Train20 crosses Gatel, Gate2, Gate3, Gated, and
Gated. An implementation of the object Train20 will inherit from the code Train
class and refine the data member sensor to provide the addition information on the
sequence of gates that the train has to cross. As an example, give Sensor is refined
to the Vector <2, 3, 5, 4, 1>, then Train20 will cross Gate2, Gate3, Gates, Gated,
Gatel in that order. However, if Train20 does not cross all the gates, it is sufficient
to give the order in which it is crossing the other gates. As an example if in the
subsystem Train20 crosses Gate2 and Gated in that order, and crosses no other gate,
then Sensor is refined to Vector <2,3>. To sum up for correct implementation of the
system from system specification, it is necessary to provide the additional information

on the exact ordering in which train will cross the gate.

844

SCS TrainGateController2

Includes:

Instantiate:
Gatel::Gate[©S:1
Gate2::Gate[QS:1]
Gate3:Gate[GS:1]:
Gateq::Gate[@S:11:
Gate5:Gate[ES:1]:
Controlierl::Controller[GP:7, &G
Controller2::Controlles{&P:8, @G
Controller3::Controller[@P:8, @G
Controller4::Controller{@P:7, ©@G
Controller5::Controller{QP:6, &G
trainl:Train[@C:1];
train2:Train[€@C:17;
train3:: Train[@C:1}:
traingd::Train[@C:3]:
trainS: Train[&C
trainé::Train[@C:
train7:: Train[GC:1
train8::Train{&C:4
train9::Train{@C
trainlQ:Train[¢
trainll:Train[@C:
trainl2:Train{QC:
trainl3:: Train{&C:
trainld:Train[@C:
trainlS: Train[@C:
trainl6: Train[QC:
trainl7:Train[@C:
trainl & Train{@C:
train19:Train{QC:
train20: Train[€C:

Configure:

Gatel 5S1:GS « Controller1.8G1:4G:
Gate2 g$S52:4S ++ Controller2.84G2:4G;
Gatre3.§353:§S «+ Controller3. 6G3:€G:
Gate4.€854:49S — Controller4. €G4:4G:
Gate5.855:4S « Controller5.€GS:8G:
trainl.€C1:€C + Controller] . GPI:'4P:
train2. & C2:@C + Controllerl . @P2:GP:
train3.QC3:@C — Controllerl . 8P3:&P:
traingd. €C4:4C ~ Controller! . GP3:4P;
traind.@C5:@¢C ~ Controller2. GP8: 8 P:
traing.8C6:QC « Controller3. GP16:GP;
train5.€C7:¢C «— Controller]l. GPS:QP;
train5.8C&:&C — Controller2. GP9: G P
train6 §C:GC +~ Controller2. GP10:QP;
train7.8C10:4C — Controlles2. @P11:GP:
train8.@C11:8C « Controller2. EP12:QP:
train8 G C12:8C «~ Controller3.EP17:QP:
train8. 8C13:§C « Controller4. @P24:QP:
train8.QC14:4C « Coutroller5.GP31:QP;
train9.8C15:8C +~ Controller2. ¢P13:4P;
train9.8C16:8C — Controller3.@P18:&P;
trainl0.€C17:@C «— Controller3.&P19:GP:
trainll.8C18:QC + Controller3.EP20:4P:
trainl2.8C19:8C « Controller3.4P21:¢P:
trainl2.@C20:8C «+ Controllerd. GP25:4P:
trainl3.€C21:&C «~ Controller2. @P14:GP:
trainl13.4C22:QC +~ Controller4. @P26:QP:
train14.4C23:@C — Controllerd. QP27:QP;
trainl5.8C24:@C + Controller4.GP28:QP:
train16.8C25:8C +~ Controller4. &©P29:4P:
trainl6.8C26:GC «+ Controller5.&P32:4P;
trainl7.@C27:&C «~+ Controllerl.&P6:QP:
trainl7.8€C28:@C ++ Controller3.4P22:QP;
trainl7.8C29:QXC « Controller5.&P33:QP:
trainl8.&6C30:&C ~ Controller5.8P34:€P;
trainl9.4C31:2C «~ Controller5.QP35:QP;
train20.@C32:QC «~ Controllerl . GP7:QP:
train20.9C33:€C « Controller2.&@P15:8P;
train20.Q9C34:QC « Controller3.QP23:GP:
train20.QC35:QC « Controller4. &P30:GP;
train20.@C36:4C +~ Controller5.@P36:QP:

end

Figure 81: Formal specification for subsystem TrainGateController2

Chapter 6
Conclusions and Future Work

Real-time reactive svstems are time-critical. Hence efficiency of implementation is
more important than in other systems. Responding to situations where all the timing
constraints cannot be met and meeting the timing requirements that may change
dynamically are two of the most difficult issues to satisfy in an implementation. In
practice, it is impossible to design and implement systems which will guarantee that
the appropriate output will be generated at the appropriate time under all possible
conditions. It is also impossible to make available all necessary computing resources
in order to guarantee the appropriate output under all possible conditions. In large
industrial applications real-time systems are usually constructed using processors with
considerable spare capacity, thereby ensuring that “worst-case behavior” does not
produce any unwelcome delays during critical periods of the system’s operation. In
this thesis, such limiting factors have not been considered. We have focused on two

major implementation issues:
e using Real-time Java as a high-level implementation language
e automating the code generation in Real-time Java from TROM specifications

The correctness of the implementation with respect to the TROM specifications are
informally justified through the mapping between the models in the specification
tier and the models in the implementation tier. The logic behind the algorithms
that generate code from the specifications closely follow the operational and logical
semantics for TROM - based systems [Ach95]. A formal proof of correctness of the

implementation may be too hard to work out, and is definitely outside the scope of

86

this thesis. However, the implemented code can be tested against the specification

by the testing method that has recently been developed [AOMO0].

The language Java was a natural choice of implementation for the following reasons:

OO The design notation is object-oriented and Java is a pure OO language. This
makes the mapping of the design constructs to the language constructs, in an
automatic code generation exercise, easy to comprehend, maintain, and verify.
The verification process can be only informal, yet it will be convincing due to

the seamless meshing of the conceptual boundaries.

Security The run-time support system and Java compiler can automatically detect

programming errors.

Portability The program is independent of the hardware on which it runs; however
the hardware resources that the program should manipulate (such as environ-

mental objects) are closely tied to the program behavior.

Testability The modularity that is present in the design is preserved in the imple-
mentation model. Consequently, it is easy to identify the component in the
implementation that can be tested with test data associated with the test tem-
plates generated from a design specification component. In addition to unit
testing, concurrent and communicating sequential activities can be tested with
the test templates generated from the subsystem configuration specification for
which the unit under test is the implementation. A simulator [Hai99] to sim-
ulate and reason about system activities has been implemented in Java. The
simulator and our implementation can be run in parallel, and abnormal as well
as “normal” system behavior created by the simulator can be automatically fed
to the implementation to test the corresponding behavior in the implemented

system.

Evolution The Java implementation can be easily enhanced as the design evolves

due to changing requirements and design refinements.

Language design is still an active research area. Although the design should natu-
rally lead to an implementation, often the expressive power of modern programming
languages do not match current design methodologies. Some of the concurrent pro-

gramming languages used for implementing real-time systems are Ada, Modula-2,

87

Occam 2, and C. The use of Java in this thesis should be noted as one of the first
attempts to implement real-time reactive systems. Moreover, an automatic code gen-
erator from a formal specification into Java has not been reported in literature. So,

on both counts the work presented in this thesis is quite new.
Some of the future extensions to our work include the following:

1. Integrating the Java code generator with the simulator and test generator pro-

grams within the TROMLAB environment;

2. Enhancing the code generation corresponding to transition specifications to han-

dle parameterized events in the specification;

3. Empirically evaluating the Java code generator for large size problems, where

both the number of objects and the number of interactions are large.

4. Incorporate forward and backward error recovery schemes and provide fault

treatment.

88

Bibliography

[AAMOI6]

[AAR93)

[Ach93]

[AMO8]

[AOMO0]

[GHO3)

[Hai99]

[HL94]

V. S. Alagar, R. Achuthan, and D. Muthiayen. TROMLAB: A software
development environment for real-time reactive systems. Technical Re-
port, Department of Computer Science, Concordia University, Montréal,
October 1996 (first draft), June 2000 (revised).

R. Achuthan, V. S. Alagar, and T. Radhakrishnan. TROM - an object
model for reactive system development. In The 1995 Asian Computing
Science Conference, ASIAN 93, Thailand, December 1995.

R. Achuthan. A Formal Model for Object-Oriented Development of Real-
Time Reactive Systems. PhD thesis, Department of Computer Science,
Concordia University, Montréal, Canada, October 1995.

V. S. Alagar and D. Muthiayen. Specification and verification of complex
real-time reactive systems modeled in UML. Technical Report, Depart-

ment of Computer Science, Concordia University, Montréal, June 1999.

V. S. Alagar, O. Ormandjeva and M. Zheng. Specification-Based Test-
ing of Real-Time Reactive Systems. In TOOLS USA (to appear), Santa
Barbara, CA, July 2000.

J. V. Guttag and J. J. Horning. Larch: Languages and Tools for Formal
Specifications. Springer Verlag, 1993.

G. Haidar. Simulated reasoning and debugging of TROMLAB environ-
ment. Master’s thesis, Department of Computer Science, Concordia Uni-

versity, Montréal, Canada, December 1999.

C. Heitmeyer and N. Lynch. The generalized railroad crossing: A case

study in formal verification of real-time systems. In Proceedings of the

89

[KAROO]

[LEA99)

[Mut96]

[Mut98]

[Nag99]

[Oana99]

[ORS92]

[Pop99]

15th IEEE Real-Time Systems Symposium, RTSS 94, pages 120-131, San
Juan, Puerto Rico, December 1994.

P. Karvelas. Schedulability analysis and automated implementation of
real-time object-oriented design models. Master’s thesis, Department of

Computer Science, Concordia University, Montréal, Canada, April 2000.

G. T.Leavens. Larch/C++ Reference Manual. http://www.cs.iastate.edu
/~leavens/larchc+-+manual/lcpp_toc.html.

D. Muthiaven. Animation and formal verification of real-time reactive
systems in an object-oriented environment. Master’s thesis, Department
of Computer Science, Concordia University, Montréal, Canada, October
1996.

D. Muthiaven. Real-time reactive system development — a formal ap-
proach based on UML and PVS. In Proceedings of Doctoral Symposium
held at Thirteenth IEEFE International Conference on Automated Software
Engineering. ASE98, Honolulu, Hawaii, October 1998.

R. Nagarajan. Vista - a visual interface for software reuse in TROMLAB
environment. Master’s thesis, Department of Computer Science, Concor-

dia University, Montréal, Canada, April 1999.

O. Popista. Rose-GRC translator: Mapping UML visual models onto
formal specifications. Master’s thesis, Department of Computer Science,
Concordia University, Montréal, Canada, March 1999.

S. Owre, J. M. Rushby, and N. Shankar. PVS: a prototype verification
system. In Proceedings of 11th International Conference on Automated
Deduction, CADE, volume 607 of Lecture Notes in Artificial Intelligence,
pages 748-752, Saratoga, New York, 1992. Springer Verlag.

F. Pompeo. A formal verification assistant for TROMLAB environment.
Master’s thesis, Department of Computer Science, Concordia University,

Montréal, Canada, March 1999. Under preparation.

90

[Rat97]

[Rat98a]

[SGW94]

[Srigg]

[Ta096]

Rational Software Corporation. UML Notation Guide, Version 1.1,
September 1997.

Rational Software Corporation. Rational Rose 98 FEnterprise Edition Rose
Extensibility Interface, February 1998.

B. Selic, G. Gullekson, and P.T. Ward. Real-Time Object-Oriented Mod-
eling. Wiley, 1994.

V. Srinivasan. An intelligent graphical interface system for TROMLAB.
Master’s thesis, Department of Computer Science, Concordia University,
Montréal, Canada, December 1999.

H. Tao. Static analyzer: A design tool for TROM. Master’s thesis, De-
partment of Computer Science, Concordia University, Montréal, Canada,
August 1996.

91

Appendix A

GRC and SCS Grammar

GRC | ::= | <class> <events> <states> <attributes> <traits> <att_funcs>
<tran_specs> <time_constraints> end

Table 2: Grammar for generic reactive class specification

In the grammar, a class (see Table 3) is described by the keyword Class, followed by
a string denoting the class name, followed by a list of port types in square brackets .
The list of port types is composed of one or several port type names, represented as

strings starting with the symbol @ and separated by a comma.

class = | Class <class.name> [<port_types>| NL

port_tvpes = | <port_type_.name> | <port_type.name>, <port_types>
class_name = | String

port_tyvpe_name | ::= | @String

Table 3: Grammar for generic reactive class title

Events (see Table 4) are introduced by the keyword Events, followed by the list of
events. The list of events can contain one or several events, separated by comma.
Each event can be an internal event, an input event or an output event. Internal
events are represented by a string for the event name. Input events are represented
by a string as event name, followed by the character ? and the string for the port
tvpe at which the event occurs. Qutput events are represented by a string as event
name, followed by the character ! and the string for the port type at which the event

occurs.

States (see Table 5) are introduced by the keyword States, followed by the state set.
The state set is comprised of the initial state, followed by a list of one or several
states, separated by comma. A state is represented by a string for the name. If the

state is complex, the name is followed by its substates, represented as a state set,

within curly braces.

92

events ;= | Events: <event_list> NL

event_list = | <event> | <event>, <event_list>

event ::= | <inputevent> | <outputevent> | <interevent>
inputevent ;= | <event_name> 7 <port_type_name>
outputevent 1= | <event_name> ! <port_type.name>
interevent 1= | <event_name>

event_name ::= | String

port_type_name | ::= | @String

Table 4: Grammar for events

states := | States: <stateset> NL

state_set = | *<state>, <state list>

state_list = | <state> | <state>, <state_list>

state n=| <state_name> | <state_name><state_set>
state_name | == | String

Table 5: Grammar for states

Attributes (see Table 6) are introduced by the kevword Attributes, followed by the
list of attributes. The list of attributes is comprised of one or several attributes,
separated by a semi-colon. Attributes of type port tvpe are represented by a string
for the attribute name, followed by colon and by the port type name, which starts
with the character @. Attributes of tvpe data type are represented by a string for

the attribute name, followed by a colon and by the LSL trait type name.

LSL traits (see Table 7) are introduced by the keyword Traits, followed by a list of
traits. The list of traits is comprised of one or several traits. A trait is represented

as a string for the trait name, followed in square brackets by the argument list and

attributes := | Attributes: <att_list>NL

att_list ;== | <attribute> | <attribute>;<att list>

attribute = | <att_name> : <port_type.name> |
<att_name> : <trait_type_name> |
<att_name> : Integer | <att_name> : Boolean

att_name ::= | String

trait_type_name | ::= | String

port_type_name | ::= | @QString

Table 6: Grammar for attributes

93

traits 1= | Traits: <traitlist> NL

trait_list = | <trait> | <trait>, <trait_list>

trait == | <trait.name>[<arg list>,<trait.type_name>] |
<trait_name>[<trait_type.name>]

arg_ list o= | <arg> | <arg>, <arglist>

arg ::= | <trait_type_name> | <port_type_name>

trait_name ::= | String

trait_type_name | ::= | String

port_type_name | ::= | @String

Table 7: Grammar for LSL traits

att_funcs := | Attribute—Function: <att_func_list>
att_funclist | ::= | <att_func>; | <att_func>;<att_func_list>
att_func ;= | <state_name> — <att list> NL

att_list := | <att_name> | <att_name>,<att_list> | empty
att_name := | String

state_name = | String

Table 8 Grammar for attribute functions

the trait type name. The argument list is comprised of one or several arguments. An
argument is either a trait type name or a port type name starting with the character

Q.

The attribute function (see Table 8) is introduced by the keyword Attribute-Function,
followed by a list of attribute function applications. The list of attribute function
applications has one or several attribute function applications, separated by a semi-
colon. Each attribute function application is comprised of the state name as a string,
followed by the keyword —, followed by an attribute list, between curly braces. An

attribute list is comprised of zero or several attribute names, separated by a comma.

Transition specifications (see Table 9) are introduced by the keyword Transition-
Specifications, followed by the list of transition specifications, separated by semi-colons
and new lines. The list of transition specifications is composed of one or several tran-
sition specifications, separated by new lines. A transition specification consists of a
name, followed by a colon, one or several state pairs, separated by semi-colons, a trig-
gering event, an assertion, the implication operator — and another assertion. A state
pair consists of two state names, in brackets, separated by a comma. The triggering

event is an event name followed in brackets by an assertion. An assertion is either a

94

tran_specs = | Transition—Specifications: NL <tran_spec_list>

tran_spec_list = | <tran.spec> NL | <tran_spec> NL <tran_spec_list>

tran_spec = | <tran.spec_name>: <state_pairs> <trig.event>
<assertion> — <assertion>;

state_palirs = | <state_pair>; | <state_pair>; <state_pairs>;

state_pair = | (<state_name>,<state_name>)

trig.event = | <event_name>(<assertion>)

assertion = | <simple_exp> | <simple_exp> <b_op> <simple_exp>

b_op =|=l#[>12]<[<

simple_exp = | <term> | <term> <OR> <term>

term = | <factor> | <factor> <AND> <factor>

factor = | <NOT> <factor> | pid | <att_name’ > | <att_name>
| true | false | <LSL_term> | (<assertion>)

LSL_term = | <LSL_func_name>(<arg.list>)

arg_list = | <arg>|<arg>,<arglist>

arg = | pid | <att.name> | <LSL_term>

att_name/ = | String

att_name = | String

state_name := | String

event_name = | String

LSL_func_name | = | String

OR =]

AND =| &

NOT ="

Table 9: Grammar for transition specifications

simple expression or two simple expressions with a binary operator between them. A
binary operator is one of: =, #, <, <, >, >. A simple expression is either a term or
two terms with the | logical operator. A term is either a factor, or two factors with
the & logical operator. A factor can be the logical operator ! followed by a factor,
or the reserved variable pid, or a primed attribute, an attribute, logical expressions
true or false, an LSL term or an assertion in brackets. An LSL term consists of a
LSL function name, followed by an argument list in brackets. An argument list is
composed of one or several arguments. An argument is either the reserved variable
pid, or an attribute name or an LSL term. A primed attribute is an attribute (from

the attribute function) followed by the character .

Time constraints (see Table 10) are introduced by the keyword Time-Constraints,

followed by one or several constraints, separated by semi-colons and new lines. A

95

time_constraints | ::= | Time—Constraints: NL <constraints>
constraints = | <constraint>; NL | <constraint> ; NL <constraints>
constraint = | <time_cons_name>: <tran_spec_name>, <event_name>,
<min_type><min>,<max><max_type>,<states>
states = | <state_name>|<state_name>,<states> | empty
state_name = | String
time_cons_name | ::= | String
tran_spec_name = | String
event_name = | String
min = | NAT
max = | NAT
min_type =1 (1]
max_type s=1)1]
Table 10: Grammar for time constraints
SCS ::= | SCS <scs_name> NL <include> <instantiates> <configure>
end
scs_.name | ::= | String

Table 11: Grammar for subsystem configuration

constraint has a name followed by colon and the name of the constraining transition
specification, the name of the constrained event, the lower and upper bounds, and
a list of disabling states. The lower and upper bounds are preceded and followed,
respectively, by the open or closed interval indicators. The list of disabling states is

comprised of zero, one or several state names, separated by a comma.

The configuration specification should respect the following grammar, introduced in
[Tao96].

A subsystem configuration specification (see Table 11) is introduced by the keyword
SCS, followed by its name as a string, a new line and the following sections: Includes,

Instantiates, Configure, all followed by the keyword end.

The include section (see Table 12) is introduced by the keyword Includes, followed by
a list of subsystem names and a new line. The list of subsystem names is composed

of one or several subsystem names, separated by a semi-colon.

The instantiates section (see Table 13) is introduced by the keyword Instantiate, fol-

lowed by an instance list and a new line. An instance list is composed of one or several

96

include := | Includes: <scs.name_list> NL
scs_name_list | ::= | <scs.name>; | <scs_name_list>
scs_name = | String

Table 12: Grammar for include section
instantiates = | Instantiate: <inst_list> NL
inst_list = | <instantiate>; NL | <instantiate>; NL <inst_list>
instantiate = | <obj_name>::<grc_name>[<port_card list>]
port_card_list = | <port_card>|<port_card>,<port_card_list>
port_card = | <port_type_name>:<cardinality>
obj_name = | String
port_tyvpe_name | ::= | @String
grc_name = | String
cardinality = 1| NAT

Table 13: Grammar for instantiate section

instances. An instance consists of an object name, followed by two colons, a generic
class name and, in square brackets, by a port cardinality list. The port cardinality
list is composed of one or several port cardinalities. A port cardinality is represented

by a port type name, followed by a colon and a natural number for the cardinality.

The configure section (see Table 14) is introduced by the keyword Configure, followed
by the object port list. The object port list is composed by one or several object
port links, separated by a semi-colon. An object port link is composed of an object
name, followed by a period, a port name starting with character @ and its port type,
the composition operator <>, another object name, followed by a period, and a port

name starting with character @ and its port type.

Configure: <obj_port_list>
<obj_port link>; NL | <obj-port_link>; NL
<obj_port.list>;

configure
obj_port_list

obj_portldink :i= | <obj_name>.<port_name>:<port_type_name> <>
<obj.name>.<port_name>:<port_type_name>>

obj.name = | String

port_name = | @String

port_type.name @String

Table 14: Grammar for configure section

97

Appendix B

Grammer of Larch/Java

The syntax of Larch/Java is combination of two styles: the first style has Java notation
for declaring names and functions; the second style has Larch/ C++ notation for
describing the behavior of the functions. The syntax accepted by- the LIL parser in

this thesis is shown below:
Larch_Java_Specification ::= CompilationUnit

CompilationUnit ::= [PackageDeclaration]
(ImportDeclaration)=
(TypeDeclaration)=

PackageDeclaration ::= ‘‘package’’ Name °°;’’

€t .2

ImportDeclaration ::= ‘‘import’’ Name [¢.’’ ‘‘x’’] ;

TypeDeclaration ::= ClassDeclaration |

InterfaceDeclaration |

€€.a
B

ClassDeclaration ::= (“‘abstract’’ | ‘‘final’’ | ‘‘public’’)=

UnmodifiedClassDeclaration

UnmodifiedClassDeclaration ::= ‘‘class’’ IDENTIFIER
[€‘extends’’ Name]
[‘‘implements’’ Namelist]
ClassBody

ClassBody ::= “‘{’’ (ClassBodyDeclaration)* °‘}*’

NestedClassDeclaration ::= (‘‘static’’ | ‘‘abstract’’ | ‘‘final’’ |
‘‘public’’ | ‘‘protected’’ [‘‘private’’)=

UnmodifiedClassDeclaration

ClassBodyDeclaration ::= Ipnitializer |
LarchUsesDeclaration |
NestedClassDeclaration |
NestedInterfaceDeclaration |
ConstructorDeclaration |

MethcdDeclaration

€c .2
B

LarchUsersDeclaration ::= ‘‘uses”’ LarchTraitList()

98

LarchTraitList ::= IDENTIFIER [‘°(’’ LarchRenaming “°)’’]
LarchRenaming ::= IDENTIFIER ‘‘for’’ IDENTIFIER (°°,”’ IDENTIFIER ‘‘for’’ IDENTIFIER)=*

InterfaceDeclaration ::= (“‘abstract’’ | ‘‘public’?’)=
UnmodifiedInterfaceDeclaration

NestedInterfaceDeclaration ::= (‘‘static’’ | ‘‘“abstract’’ | “‘final’’ |
‘‘public’’ | ‘‘protected’’ | ‘‘private’’)=
UnmodifiedInterfaceDeclaration

UnmodifiedInterfaceDeclaration ::= ‘‘interface’’ IDENTIFIER
[‘‘extends’’ NameList]
¢¢{’’ (InterfaceMemberDeclaration)= €¢}*°’

NestedClassDeclaration |

InterfaceMerberDeclaration

NestedInterfaceDeclaration |

MethodDeclaration
MethodDeclaration ::= {(‘‘public’’ | ‘‘protected’’ | ‘‘private’’ | ‘‘static’’ | ‘‘abstract’’
| ““final®’ | ‘‘native’’ | ¢‘synchronized’’)=
ResultType

MethodDeclarator [‘‘throws’’ NameList]
(Block | “¢;’?)

MethodDeclarator ::= IDENTIFIER FormalParameters (‘“[’’ “‘]’?)=
FormalParameters ::= ‘‘(’’ [FormalParameter (‘‘,’’ FormalParameter)x] ¢¢)’?
FormalParameter ::= [‘‘final’’] Type VariableDeclaratorID
CoastructorDeclaration ::= [‘‘public’’ | ‘‘protected’’ | ‘private’’]
IDENTIFIER FormalParameters [‘‘throws’’ NamelList]
“{:)
(BlockStatement)*
€eys
Initializer ::= [‘‘static’’] Block

Type ::= PrimitiveType (¢°[’’ ‘‘]1’*)=

PrimitiveType ::= ‘‘boolean’’ | ‘‘char’’ | “‘byte’’ | ‘‘short’’ |
ffint’’ | “‘long’’ | “‘float’’ | ‘‘double’’

ResultType ::= “‘void’’ | Type
Name ::= IDENTIFIER (‘‘.’’ IDENTIFIER)=
NamelList ::= Name (°‘,’’ Name)=

Block ::= ““{’’ (BlockStatement)= ‘‘}’’

99

BlockStatement ::= Statement |
UnmodifiedClassDeclaration |
UnmodifiedInterfaceDeclaration
Statement ::= LarchRequiresCiause |
LarchModifiesClause |
LarchEnsuresClause
LarchRequiresClause ::= ‘‘requires’’ [LarchPredicate] ‘¢;’’
LarchModifiesClause ::= ‘‘modifies’’ [IDENTIFIER (‘“,’’ IDENTIFIER)=] “*¢;’’
LarchEnsuresClause ::= ‘‘ensures’’ [LarchPredicate] “*;’’
LarchPredicate ::= LarchlogicalTerm
LarchLogicalTerm ::= LarchEqualityTerm (LarchLogicallpr LarchEqualityTerm)=
LarchEqualityTern ::= LSLEquality | LSLFunctiozn
LSLEquality ::= IDENTIFIER [LarchStateFunc] LarchEq0pr IDENTIFIER ‘‘(’’ {LarchParameters] “°)’’
LSLFunction ::= IDENTIFIER ‘(’’ [LarchParameters] °‘°)’’
LSLParameters ::= IDENTIFIER (LarchStateFuanc] (°‘,’’ IDENTIFIER ([LarchStateFunc])=
LarchlogicalOpr ::= ‘‘\and’’ | ““\ox’’ | “‘\implies’’ | “¢/\?* | ““\/** | ‘<=

LaIcthOpr 1= ff=r3 l Cbmm > I “\eq)I I LIRS 2% i ‘t’!=’: I “\neq:’

LarchStateFunc ::= “‘~?’ | “‘\pre’’ | ‘‘\post’’

100

