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ABSTRACT

Performance Analysis of Wireless ATM Multiplexing System

Xiaomei Zhang

Wireless ATM is a direct result of the success of ATM on wired networks.
Applying ATM over wireless channels is challenging since ATM was originally
designed for band-width rich and nearly error-free medium, while in wireless envi-
ronment, the radio channel is both bandwidth limited and the bit-error-rate is time-
varying. It is therefore important to obtain good understanding of the statistical
ATM multiplexing of the aggregate traffic on wireless channels.

In this thesis, we study the effects of channel error characteristics on a
wireless ATM multiplexing system. The main characteristic of such a channel is
that its error behavior is time-varying, with periods of low error rate (Good) trans-
mission alternating with periods of high error rates (Bad) transmission. This vari-
ability is modeled as a two-state Markov chain with two states corresponding to
Bad and Good states, respectively. The channel is modeled as being synchro-
nous with the basic time unit being the slot. The transitions from Bad to Good
states, and vice versa occur at the slot boundaries. We assume that during a
Good state, the channel transmits a packet, while in a Bad state no packet is

transmitted. The arrival process is modeled as the superposition of independent
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binary Markov sources, each source alternates between On and Off periods. In
the source Off state, no data is emitted while, in the On state, the source gener-
ates a random number of packets in a slot each of which fits into a channel slot.
We present a discrete-time queuing analysis of such a system. Based on imbed-
ded Markov chain analysis, a functional equation relating the joint probability gen-
erating function (PGF) of the system between two consecutive slots under the
assumption of an infinite buffer is presented. The functional equation is trans-
formed into a suitable form ‘which makes it possible to derive the steady-state
expressions for the marginal PGF’s of the queue length, the state of the channel
and the number of On sources. Then some performance measures such as mean
queue length and mean packet delay are calculated. The relationship between the
autocovariance of the channel state and the performance is also demonstrated.
Finally, some numerical results are presented to show the effects of the wireless

channel error characteristics on the behavior of the ATM multiplexing system.
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Chapter 1

Introduction

Alexander Graham Bell’s invention of the telephone over one hundred years ago
launched a revolution in communications that enabled people to communicate
efficiently over distance. Today, a new revolution - the wireless communication
revolution - is taking place, which is taking us from a world where telephone sub-
scribers were constrained to communicate over fixed telephone lines, to one

where a tetherless and mobile communications environment has become a real-

ity.
1.1 The Evolution of Wireless Networks

The field of wireless communication is growing at an explosive rate, covering
many technical areas and its sphere of influence is beyond imagination. The
worldwide activities in this growth industry are perhaps an indication of its impor-
tance. The demand of wireless communications is anticipated to expand steadily,

the current annual activities exceed $100 billion.

Basically, wireless networks include voice-oriented wireless telephony net-

works and data-oriented wireless data networks. This split between voice-oriented



and packet-data oriented wireless systems appears similar to the voice-network

and data-network seen in wired networks.

Mobile cellular networks and cordless telephone, for instance, are wireless
telephony systems. Cellular system allows the subscriber to place and receive
telephone calls over the wireline telephone ne'@ork wherever cellular coverage is
provided. The basic cordless telephone provides a wireless counter-part to the
standard telephone. Wireless data systems are designed for packet-switched
rather than circuit-switched operation. Operators of wide-area messaging systems
use licensed spectrum, and sell services to customers. Conversely, wireless local
-area networks(WLANS) are usually privately owned, operated, and provide high-
rate data communication over a small area. Figure 1.1 distinguishes the various

categories of wireless networks [4].

Wireless Network

Voice Oriented (sochronous Trans.) Data Oriented (asynchronous Trans.)
Cordless Cellular Wireless LAN Mobile Data
(Low Power, Local) (High Power, Wide) (High speed, Local) (Low speed, Wide)

Comparision of Technical AspectsJ

Figure 1.1 Categories of Wireless Networks



Whether wireless telephone systems or data systems, wireless networks
are characterized by limited channel bandwidth. Because of this main problem,
efforts in wireless communications have been focused on radio technology and
channe!l resource management, where the goal is to increase bandwidth effi-
ciency and radio channel capacity to meet the demands of users in wireless net-

works.

First and second generation wireless networks currently provide support
for circuit-switched voice services as well as low-rate circuit-switched and packet-
switched data services. In the 1980s, many cellular networks were implemented,
such as Advanced Mobile Phone System (AMPS) in North America, Nordic
Mobile Telephone (NMT) and Total Access Communications System (TACS) in
Europe. All of these first-generation’ cellular systems use analog frequency mod-
ulation (FM) for speech transmission and frequency shift keying (FSK) for signal-
ing. Individual calls use different frequencies, this way of sharing spectrum is
called FDMA. As the celiular subscribers increase dramatically, these networks

are already reaching their capacity limits [1].

At the beginning of the 1990s, several digital technologies were introduced
to increase spectrum efficiency and enhance wireless communications by adding
attractive and innovative features and services such as data transmission. Thus,
wireless networks have evolved from simple first-generation analog network sys-
tems to second-generation digital network systems. Digitalization allows the use
of TDMA and CDMA as alternatives to FDMA. Digital systems can support more

users per base station per Mhz of spectrum [2]. It is claimed that the capacity



gains of digital systems is of ten times that of analog systems, which allow wire-
less network operators to provide service more economically. Second-generation
digital cellular systems consist of Global System for Mobile Communications
(GSM) in Europe, 1S-136 or Digital AMPS (DAMPS) and IS-95 or North America
CDMA (NA-CDMA) in North America, and Personal Digital Cellular (PDC) in
Japan, etc. GSM, 1S-136 and PDC are TDMA based systems, whereas, 1S-95
relies on CDMA as its air interface. By the end of 1999, the number of subscribers

has reached near 200 millions.

During the same period, in the other wireless areas also we saw great
progress. The extraordinary success of the cordless-telephone spurred new stan-
dardization efforts for digital cordless and CT-2 TelePoint in the United Kingdom,
wireless PBX, DECT in Sweden, the advanced cordless phone in Japan and the
concept of Universal Digital Portable Communicator in the United States. The suc-
cess of the paging industry led to development of low-speed wide-area packet
data systems (Mobile Data) for commercial applications requiring longer mes-
sages. Motivated by the desire to provide portability and to avoid the high costs of
installation and relocation of wired office information networks, Wireless LAN were
suggested as an alternative. The FCC (Federal Communications Committee)
announcements on unlicensed ISM (Industry, Science, Medicine) bands facilitate
the development of a wide array of commercial devices from wireless PBX’s and

wireless LAN's to wireless devices using spread-spectrum technology.

The stated goal of wireless networks is ubiquitous communication. That is,

to enable telecommunication services (voice, data, video and so on) without



restrictions on time, the user's terminal (such as a simple handheld device or a
laptop computer), location in the world, point of access to the network, access

technology, or transport method.

The current second-generation wireless networks in use are not capable of
efficiently supporting the growing requirements of video or Internet demands.
Wireless networks have been evolving into the third-generation Personal Commu-
nication Networks (PCN) that can support muitimedia services to mobile users.
Although initial PCS (Personal Communication System) proposals have generally
focused on voice-communication-related services, it is recognized that these sys-
tems will be required to evolve towards supporting a wider range of telecommuni-
cation applications involving packet data, video, and muitimedia. At the same
time, wireless local-area networks (WLANs), which were initially designed for con-
ventional data, face a growing requirement to support computer applications
incorporating image and/or video transfer. Thus the demand for multimedia-capa-
ble muiti-service wireless networks is driven by parallel trends towards integration
of voice, video, image and data in both telecommunication and computing envi-

ronments [5].

The need to provide high-speed data services to support multimedia appli-
cations is driving the industry to look for solutions in broadband technologies.
Many standards agencies around the world are working toward determining the
next standard for this third-generation wireless system. international Mobile Tele-
communications in the year 2000 (IMT2000) is the third-generation specification

under development by the ITU that will handle heterogeneous traffic ranging from



low-bit-rate voice signals to high-bit-rate data and image communications over
wireless networks. It will provide up to 384kbps in wide areas and up to 2Mbps in
limited local areas between service providers and end-users [7]. IMT-2000 effort
envisions the provision of Asynchronous Transfer Mode(ATM) services in the wire-
less network, and as discussed in [5], wireless ATM maybe viewed as a general

solution for the third-generation PCN capable of supporting multimedia.

1.2 Wireless ATM

Due to the success of ATM on wired network, wireless ATM is a direct result of the
ATM ‘everywhere’ movement. It combines the advantages of both the wireless
and the ATM networks. Wireless networks provide mobility or portability to the end
users while the wired ATM networks allow broadband multimedia services with
Quality of Service (QoS). The ATM Forum Wireless ATM Working Group is cur-

rently involved in defining the baseline of Wireless ATM sysiem.

1.2.1 ATM basics

ATM is the technique that is becoming the common nominator for all types of ser-
vices and networks. From the service point of view, ATM can combine the trans-
mission of both speech and computer data into the wired networks, while scaling
well into different network types such as LANs and WANSs, and it is independent of
the bit rate of physical medium. It is a connection-oriented, packet-switched net-

work.

In ATM networks, the data is divided into small, fixed length units called



cells. The cell is composed of 48 user bytes plus a 5-byte header containing the
routing information and other cell-related information (priority, type). ATM does not
provide any error detection operations on the user payload inside the cell, and
also provides no retransmission services, and only few operations are performed
on the small header. The small, fixed-sized cells allow fast and efficient multiplex-
ing of sources with different QoS constraints. Due to its low queuing delay and
delay variance, ATM technology networks are well suited for muitimedia applica-
tions, and can handle any kind qf traffic from circuit-switched voice to bursty video

streams at any speed.

At ATM switches, capacity is shared by grouped sets of connections to
save bandwidth through multiplexing efficiency. Thus, the switch needs to know
the type of traffic generated by each new connection. Data streams are character-
ized by: destination, traffic type, bit-rate and QoS. If a new connection can be
admitted without any adverse effect on the pre-established connections then it is
admitted. If not, the request is turned down and the user has to place a new

request with easier to meet characteristics.

There are five types of services that characterize connections in ATM net-
works. They are: CBR (constant bit rate), rt-VBR (real-time variable bit-rate), nrt-
VBR (non-real-time variable bit-rate), ABR (available bit-rate) and UBR (unspeci-

fied bit-rate) [47].



1.2.2 Basic Concept of Wireless ATM

There are several factors that tend to favor the use of ATM cell transport for wire-
less networks, including: flexible bandwidth allocation and service type selection
for a range of applications; efficient multiplexing of traffic from bursty data/multi-
media sources; end-to-end provisioning of broadband services over wireless and
wireline networks; suitability of available ATM switching equipment for inter-cell
switching; improved service reliability with packet switching techniques. By pre-
serving the essential characteristics of ATM transmission, wireless ATM systems
offer improved performance and quality of service, which are not attainable by
other wireless communication systems like cellular systems, cordless networks or
wireless LANSs. In addition, wireless ATM access provides location independence,
which removes a major limiting factor in the use of computers and powerful tele-

communication equipment over wired networks.

The general aim with most wireless ATM proposals is to design an inte-
grated services wireless network that provide tetherless extensions of fibre-optic
based ATM network capabilities in a relatively transparent, seamless, and efficient
manner. This means that the proposed systems need to maintain uniformity of
service classes (CBR, VBR, ABR and UBR), bit rates, and QoS levels associated
with ATM [6]. It is recognized that there may be quantitative differences in achiev-
able service characteristics due to the fundamental limitations imposed by the
available wireless radio medium, but these are hoped to be kept to a minimum via
innovative technical approaches [5]. Table 1 summarizes typical targets for wire-

less ATM service capabilities (based on access radio channel speeds



~10Mbps)[8].

Table 1: Typical service requirements for wireless ATM

Traffic class Application Bit-rate range QoS requirement
CBR voice 32kbps - 2Mbps low cell loss
digital TV low delay jitter
VBR video conference 32kbps - 2Mbps(avg) | low delay jitter

Multimedia comm. | 128kbps-6Mbps(peak) | statistical mux
' moderate cell loss

ABR and UBR | interactive data 1 - 10Mbps low cell loss
client-server high burst rate

Wireless ATM has the following components: WATM terminal, wireless ter-
minal adapter, wireless radio port, mobility enhanced ATM switch and fixed ATM
network. WATM terminal is the end-user device, and WATM terminal adapter (TA)
is the wireless ATM network interface between Wireless ATM network and end
user device. They both belong to the radio access part. They communicate with
wireless radio port (also termed base station). The wireless radio port is con-
nected with mobility enhanced ATM switch, which is the access switch with mobil-
ity support capabilities. Wireless radio port acts as an ATM-level bridge, and may
also incorporate switching to deal with multiple radio and network ports. Mobility
enhanced ATM switch will finally connect to fixed ATM switch[9]. Figure 1.2 shows

the baseline reference model now under consideration within the ATM forum.

Clearly, in wireless ATM, statistical multiplexing has to be extended to the
air interface. This can be done by using a TDMA scheme to divide the physical

channel into slots that are able to carry one or several ATM cells. One basic



approach is to use the standard ATM cell for network level functions, while a wire-
less header/trailer is added on the radio link protocol layers. ATM services with
QoS are provided on an end-to-end basis, and standard ATM signaling functions

are terminated at Wireless ATM terminals [9].

Radio Access Part Fixed Network -
Radio Link WATM Mobil
obue
WATM || WATM ! %[ radio port ATM ATM | _| ATM
terminal TA (base station) Switch Network host

Figure 1.2 Wireless ATM Reference Model

In order to support ATM services, a high-speed radio modem (~10-
25Mbps) is needed. Note that the use of a transmission bit-rate below the nominal
B-ISDN specification of 155.5 Mbps for Wireless ATM accessvis similar in spirit to
several current ATM forum proposals which aim to standardize a lower bit-rate
(e.g. 25/50 Mbps) for twisted-pair copper access. Also new special wireless ATM
medium access control (MAC), data link control and radio resource control are
needed, responsible for radio link layer for wireless ATM access. In order to sup-
port mobility, appropriate extensions need to be added to the higher-layer control/
signaling functions, which include handover, location management, routing,

addressing and traffic management [10].
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1.2.3 Wireless ATM Challenges

There are significant challenges for the design of wireless ATM [7, 11]. The two

main issues under consideration are:
1. Limited Spectrum

The radio spectrum, and therefore the bandwidth available for wireless ser-
vices, is generally limited by regulation. Thus, unlike wireline communications
wherein an increasing user population can easily be served by deploying addi-
tional wire (or fiber) facilities, the available radio spectrum cannot be arbitrarily
expanded, so in wireless networks, high bit rate transmission is hard to achieve
and available frequencies are a rare resource. However, ATM was designed for
bandwidth-rich media, and it effectively trades off bandwidth for simplicity in
switching. Every ATM cell carries a header with an overhead of about 10%, this
overhead is considered too high in the wireless environment, the inefficiency of

the system may outweigh the advantages of wireless access.
2. Time-Varying Quality of the Wireless Links

Unlike the wireline networks, wherein the physical link between a remote
user terminal and the end-office switch are of time-invariant high quality, the wire-
less link is subject to severe time-varying impairments arising from inherent user
mobility and unavoidable changes caused by motion of the surrounding environ-
ment. These impairments are manifested in a time-varying bit error rate (BER)
performance of the wireless link, with the BER often too high to meet the needs of

the applications. Main causes of these time-varying impairments are muitipath
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propagation, shadow fading, distance-dependent signal power path loss, and co-
channel interference. Considering the fact that ATM was designed for media (optic
fiber) whose bit error rate is very low, it is questionable whether it will ever work in

the very noisy and time-varying wireless environment.

Currently, a number of research activities are focusing on the topic of wire-
less ATM to resolve the problems discussed above. These projects include, for
instance, project Magic WAND (Wireless ATM Network Demonstrator) which
belongs to ACTS program funded by the European Union [12], WATMnet by NEC
[10], BAHAMA (a wireless ATM LAN) by Bell Laboratories [13] and so on. If these
challenges are overcome, there will be significant advantages of wireless ATM,
which will provide users ubiquitous ATM services across wireline and wireless

interfaces.

1.3 Wireless ATM Performance Issues

Since Wireless ATM is shown to be a promising area, it is important to determine

the performance that can be expected from a Wireless ATM system.

1.3.1 Statistical Multiplexing in Wireless ATM

One can view a Wireless ATM network as a collection of nodes that are connected
by a set of wireline and wireless transmission links. Based on the cell header infor-
mation, ATM cells are switched from a source node to their destination node, fol-
lowing the store and forward packet-switching principle. When a cell reaches a

network node, it is temporarily stored there until the transmission channel to the
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next node becomes available. In wireless networks, since the quality of the wire-
less transmission channel is time-varying, when the BER is too high to meet the
service requirements, the channel is not available to transmit data. For those cells

which cannot be transmitted immediately, buffer space has been provisioned at

each switching element.

In wireless ATM network, several traffic sourées will be accessing a single
link, which is the same as in wired ATM network. A key advantage of ATM is the
efficient sharing of link capacities through statistical multiplexing of traffic streams.
In other words, buffering is required to absorb traffic fluctuations when the instan-
taneous rate of the aggregate incoming streams exceeds the limited capacity of
the outgoing wireless link, whose capacity is further reduced by the unreliable

radio transmission.

In wireless ATM, broadband services must also be regarded as being simi-
lar to those provided in the wired ATM network, which means QoS guarantees
should be provided to the users of the network. This counterbalances the muiti-
plexing gain. QoS are often expressed in terms of packet loss, delay, delay jitter
and so on. For example, voice traffic has the rate of several kilobits per second
and is delay sensitive, while high speed data traffic, used for instance in file trans-
fer, is of a few megabits per second and is loss sensitive. Therefore, in order to
‘provide QoS, not only correct buffering has to be designed, but also efficient

admission, bandwidth allocation and flow control policies are needed.

To deal with the above higher-level network management issues, it is

essential to acquire good understanding of the statistical multiplexing of the
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aggregate traffic on the wireless ATM link.

From a modeling point of view, the choice of a connection-oriented fast-
packet switching (with fixed-length packets) technique in a B-ISDN naturally leads
to the choice of a slotted time axis with synchronized message transmission in the
modeling of an ATM system [14]. In addition, the multiplexing of voice, data and
video sources on wireless ATM links give rise to a discrete-time queuing problem,
at the multiplexer’s level, which involves a probabilistic discrete-time server and a
special correlated discrete-time arrival process. It is obvious that the queuing per-
formance depends on the combined effect of arrival and channel statistics. Thus,
source characterization in ATM, as well as modeling of wireless channel are

important for wireless ATM network performance analysis.

1.3.2 The Binary Markov On/Off Traffic Model

As mentioned above, wireless ATM networks must support various communica-
tion services, such as data, voice and video, each having different traffic charac-
teristics. To evaluate the performance of such networks, appropriate source

modeling is required.

There have been many models proposed in the literature for characterizing
individual data traffic sources or a superposition of muiltiple sources. For instance,
we have Poisson arrival process (continuous time case), geometric inter-arrival
process (discrete time case) for data traffic, Interrupted Poisson Process (IPP) for

voice traffic and Markov Modulated Poisson Process (MMPP) for data, voice and
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video traffic. A good review on traffic modeling can be found in [15].

Among those traffic models that have been used for the ATM sources, the
most versatile one is the two-state Markov On/Off model. In this model, each
source is characterized by ON (corresponding to active bursts) and OFF (corre-
sponding to silence duration) periods, which appear in turn. During the silent peri-
ods, no cells are generated. Even though more complicated models, such as the
three state model [16], have been proposed for more accurate modeling, analysis
of a queuing model with these processes can be very complex and may not be
tractable, therefore, these models have rarely been applied in mathematical anal-
ysis. On the other hand, the binary On/Off model is very popular and has been
often used for the modeling of ATM traffic. For instance a binary Markov model
has been successfully applied for the voice source [17, 18]. In addition, in [19], a
video source is modeled as a birth-death process, which consists of the superpo-
sition of a number of independent and identical On/Off mini-sources. The CCITT
has also provided parameter values for the On/Off sources that are to be used as

traffic models for typical ATM sources. This is illustrated in Table 2 [20].

Because of its versatility and flexibility, the binary Markov source has been
chosen as the basic model for the characterization of input traffic sources. Hence
this thesis will be mainly concerned with the analysis of statistical multipiexing in
Wireless ATM whose input processes consists of the superposition of many iden-

tical independent traffic streams generated by binary Markov sources.
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Table 2: Parameter Values for Typical Traffic Sources, by CCITT

Representative Service ?:iaﬁ[;r: tolifgflti: Averager;zl artival
Connectionless data ’ 200 700 Kbits/s
VBR video 2 25 Mbits/s
Connection-oriented data 20 25 Mbits/s
Background data/video 3 1 Mbits/s
VBR video/data 30 21 Mbits/s
Slow video 3 6 Mbits/s

1.3.3 Wireless Channel Model

In studying wireless communication systems, we need a model that captures the
characteristics of the radio channel. As stated earlier on, the quality of wireless
channel suffers from time-varying degradations such as fading, shadowing and
interference, which lead to periods of correct transmission alternating with periods

of high error rates.

Early work in modeling wireless channels focused on the stochastic behav-
ior of channel at the physical layer [21, 22, 23], measured by received signal
strength or bit error rate. Such physical-layer models can not be directly used to
evaluate higher-layer network performance, such as queuing delay and loss. For
example, a few bit errors within a packet, which is the basic data unit at the wire-
less link layer, will cause the loss of the entire packet. It is therefore imperative to

develop packet-level wireless channel models, which can be used by network
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engineers to simulate and analyze the high-layer performance of wireless net-

works.

Two Markov models have been used as the packet-level wireless channel

model, these are Gilbert-Elliot model and Hidden Markov Channel Model [24].

1) Gilbert-Elliot model

This model was proposed by Gilbert [25] and Elliot [26]. They study a two-
state Markov chain to describe the channel. In their channel model, each state
corresponds to a specific channel quality which is either noiseless or totally noisy,
as “good’ state or “bad” state respectively. This two-state channel model can be
easily extended to a N-state Markov model with N > 2 for more accuracy [27, 28],
where each state represents a different level of fading. Previous studies [29] and
[30] show that these Markov chains provide a good approximation in modeling the
error process at the packet level in fading channels. Based on the observation that
mean residency time in states with high BER is longer than a single packet trans-
mission time, which results in correlated packet losses, the authors in [31, 32]
used the two-state Markov model to capture packet loss characteristics of the
wireless links in their simulation study. In [33, 34], the Markov models were also

used for the channel modeling of the system.
2) Hidden Markov Channel Model

The Gilbert-Elliot model can be seen as a special case of the more general

Hidden Markov model (HMM). A HMM is a doubly stochastic process with an
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underlying stochastic process that is not observable but hidden. That is, by simply
observing the output sequence, the state that generated the output cannot be
determined at any given time. Recently, the HMM has been used to obtain

extremely accurate models for the mobile channel [35].

In our analysis, we will assume that the channel behavior can be character-
ized by simple two-state Markov model, which has been commonly adopted [28]
to match the average Good (success) and Bad (fail) periods of packet transmis-

sion on the wireless channel.

1.3.4 Steady-State Analysis of Wireless ATM Statistical

Multiplexing

The wireless ATM research has aiready been active for some time. There are
many papers written on wireless ATM. Some of them concentrated on the over-
view of issues and concepts in wireless ATM, the others described specific system
architectures and reported on experiences based on designing such systems.
Performance analysis of wireless ATM system is somehow limited, especially for
statistical multiplexing behavior from the discrete-time queueing point of view. In
this thesis, we present a performance analysis to study the wireless channel error

characteristics on the wireless ATM multiplexing system.

Several techniques have been proposed to study the statistical multiplexing
in ATM. In [37], the fluid approximation method was applied to analyze an infinite
buffer ATM multiplexer, which is loaded with the superposition of statistically inde-

pendent and identical On/Off sources. A Matrix-Analytic approach is used for a
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discrete-time queuing analysis of an ATM mulitiplexer in [38]. In [39], a Markov
Modulated Poisson Process (MMPP) has been used to approximate the arrival
process to a MMPP/G/1/K queue to derive the queue size. [40] and [41] have
shown that a diffusion process provides a good approximation for the superposi-
tion of On/Off sources in ATM multiplexers. In [42], a model with binary On/Off
Markov sources was presented and a discrete-time queueing analysis was devel-
oped, using a generating function approach. The functional equation describing
the ATM multiplexer derived in [42] was solved in [43, 44] and the PGF of the

queue length was obtained.

So far, in all the queueing analyses mentioned above the servers are
assumed to be deterministic, which means the server is always available. This
corresponds to the situation in wired ATM networks. In this thesis, we extend the
performance analysis technique developed in [42, 43, 44] to the case of wireless
ATM multiplexing system. Our objective is to study the combined effect of arrival
and channel statistics on the performance of ATM multiplexér. Since the wireless
channel is not always available due to the burst errors, the server in the queueing
model will not be deterministic but probabilistic, which means it will alternate
between Good and Bad state. Therefore, in this thesis, we \)vill assume the two-

state Markov model for the wireless channel.

1.4 QOutline of the Thesis

The intent of this thesis is to obtain some understanding of how the characteristics

of the wireless links affect an ATM multiplexing system with correlated arrival traf-

19



fic. The rest of the thesis is organized as follows:

Chapter 2 describes the queueing analytical model for the wireless ATM
multiplexing system. The two-state Markov model is chosen for both the traffic

model and wireless channel model.

Chapter 3 derives a functional equation relating the joint probability gener-
ating function (PGF)‘fbf the system between two consecutive slots through an
embedded Markov chain analysis. The functional equation is transformed into a
suitable form which makes it possible to derive the steady-state expressions for
the marginal PGFs of the queue length, the state of the channel and the number

of On sources. The mean queue length and the mean packet delay are also given.

Chapter 4 studies the characteristics of the queueing system fed by corre-
lated arrivals with a server not always available by presenting and discussing the

numerical results of the queueing behavior.

Chapter 5 summarizes the research work and concludes the results.
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Chapter 2

System Model

In this chapter, we describe the model of wireless ATM system under consider-
ation. The channel model, source mode! and finally the queueing model will be

given, as well as the definition of the main notations.

2.1 System Description and Notations

Shown in Figure 2.1, we consider a wireless ATM multiplexing system shared by
m mutually independent and identical binary Markov traffic sources, each alternat-
ing between On and Off states, and the output wireless link itself alternates
between Good and Bad states. Also we assume that there is a buffer shared by all
the sources, and it is used for the temporary storage of the packets before they

are transmitted on the shared output wireless link.

As a result, the system is modeled as a discrete-time queuing system with
infinite queue length and a single stochastic server. The time-axis is divided into
equal slots and packet transmission is synchronized to occur at siot boundaries. It
is assumed that a packet can not Ieavg the buffer at the end of the slot during

which it has arrived and that a packet transmission time is equal to one slot.
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Let us make the following definitions:

i, © Number of packets in the system at the end of slot %.
b,: Number of packets that arrive during slot &.

m: Number of sources in the system.

)

B

N
— ¢ o —-
N

\
\ Buffer
/

)

(

Figure 2.1: An Wireless ATM Multipiexing System Shared by m Homogeneous Traffic Sources

2.2 Channel Modeling Description and Notations

As stated earlier on, Markov chains provide a good approximation in modeling the
error behavior of wireless channel, and the simple two-state Markov model has
been commonly adopted to match the average good and bad periods of packet
transmission on the wireless fading channel.

The shared outgoing wireless channel in our system corresponds to the
server in the queuing analytical model and it is also modeled as a two-state
Markov chain to characterize its burst error behavior. The channel switches

between Good and Bad states. Since the error behavior of the wireless channel is
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time-varying, it will not always be available to transmit packets. We declare the
channel to be in a Bad state when transmission is likely to fail due to errors, and in
a Good state when transmission is likely to be successful. We assume that during
a slot, if the channel is in Good state, it will transmit a packet if there are packets in
the queue, while in the Bad state the channel will not transmit any packets
whether there are packets in the queue or not. At the end of each slot, a transition
from a Good to a Bad state occurs with probability (1 —y), while the probability of
a transition from a Bad to a Good state is (1 — o), as shown in Figure 2.2. As a
result, the number of siots that the channel spends in Good state is geometrically

distributed with parameter y, and the number of slots that the channel spends in

Bad state is geometrically distributed with parameter c.

1-y
Y Bad c

1-o

Figure 2.2 The two-state Markov Channel Model

Let us also define the following random variables,

n,: the state of the channel during slot £ (‘1’ for Good and ‘0’ for Bad chan-
nel).

gs: itassumes the value of ‘1’ if the channel remains Good in the next slot
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and ‘0’ otherwise, given that the channel is Good in the present slot.

h .. it assumes the value of ‘1’ if the channel becomes Good in the next

S
slot and ‘0’ otherwise, given that the channel is Bad in the present
slot.

We note that g, and &, are similarly two sets of identically independent distributed
(i.i.d.) Bernoulli random variables, and the corresponding probability generating
functions (PGFs) of g, and & are:
g(z) = l-y+yz (2.1a)
h(z) = oc+(l-0)z (2.1b)
thus the random variables n, _; and n, are related as,
1-n

g
Meer1 = D, 8+ 3, by (2.2)

s=1 s=1

In (2.2), we assume that a summation is empty if its upper limit is smaller
than the lower limit. The first term in (2.2) represents the channel that was in Good
state during slot £ and remains in Good state during slot k+1, while the second
term represents the channel that was in Bad state during slot £ and becomes

Good in the next slot.

2.3 Source Modeling Description and Notations

Because of the simplicity and capability to capture some of the correlation behav-
ior, binary Markov sources have been widely used as basic building blocks to

model broadband traffic, including voice and video.
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We assume the arrival process of the system consists of m mutually inde-
pendent and identical On/Off Markov ftraffic sources, each source alternating
between On and Off states, as shown in Figure 2.3. During an On slot each
source generates at least one packet, while during an Off slot no packet is gener-

ated. State transitions of the sources are synchronized to occur at the slots’
boundaries. A transition from an On to an Off state occurs with probability (1 — )
at the end of a slot, thus the number of slots that the source spends in On state is
geometrically distributed with parameter o. Similarly, the probability of a transition
from an Offto an On state is (1 —-B) at the end of a slot, and the number of slots
that the source spends in Off state is also geometrically distributed with parameter
B. When a and B are high, then packets have tendency to arrive in clusters,

alternatively when o and 8 are low, packet arrivals are more dispersed in time.

1-B

Figure 2.3 The On-Off Markov Source Model

Let us define the following Bernoulli random variables,

c,: it assumes the value of ‘1’ if a source remains On in the next slot and
‘0’ otherwise, given that the source is On in the present slot.



d.: it assumes the value of ‘1’ if the source becomes On in the next siot
and ‘0’ otherwise, given that the source is Offin the present slot.

We can see that ¢;’s and d;’s are also two sets of i.i.d. Bernoulli random vari-
ables, and the corresponding PGFs of ¢, and d; are:
c(z) =1l-a+a0z (2.3a)

d(z) = B+(1-B)z (2.3b)

Let us also define:

a,: Number of On sources in the system during slot .

fj,«: Number of packets generated by the j’zh On source during slot £.

All the f;,’s are assumed to be iid. random variables with PGF

f(z) = E[z/++]. We also note that since, in this case, each source generates at
least one packet per slot during an On state with PGF f{z), then f(0) = 0. This
also implies that if the random variable i, is zero then a, must also be zero, since

packets can not leave the buffer at the end of the slot during which they have
arrived. Thus if the buffer is empty at the end of slot %, all the sources should have

been in Off state during slot k. The number of packet arrivals during slot & is given

by,
a;
b= > fix 2.4)
i=1

and the random variables a,,; and a, are related by,
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ag m—a,
Ay, = ch-i- 2 d (2.5)

s=1 s=1

In (2.5), we also assume that a summation is empty if its upper limit is
smaller than the lower limit. The first term represents the number of sources which
were in On state during slot £ and remain in On state during slot k+1, while the
second term represents the number of sources which were in Off state during slot

k and change to On state during next siot.

2.4 Queuing System Model

The queuing system under consideration can be modeled as a discrete-time

three-dimensional Markov chain. The state of the system is defined by the triplet
(i np ap) , Which denotes the length of queue at the end of slot %, the state (Good

or Bad) of the channel during slot £ and the number of the On-sources at the end

of slot k in the system.

We focus now upon the number of packets in the queue at departure
epochs, i.e., those time instants when a transmission is completed. Given the
number of packets in the system at the end of slot &, the number of packets in the
system at the end of slot £+1 depends only on new arrivals and not on past occu-

pancies. Thus the succession of packet states forms an embedded Markov chain.

By definition from Section 2.1 we can assume that at the end of time slot £,

the k’th departing packet leaves a non-empty system with i, packets. At this
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epoch transmission of the next packet begins if the channel is Good during slot
k+1 (i.e. n, , = 1), otherwise (i.e. n,_; = 0) it will not transmit any packets.

While this is in progress packets continue to arrive from those On-sources. The

number of such arrivals is b, , ;, by definition from Section 2.1. Thus, the state of
the system can be described by the following equation,
lpe1 = =My +bp
If the departure of the k’zh packet leaves the system empty, the (k+1)'th

departing packet has arrived to an empty queue, consequently it leaves behind

only those packets that have arrived during slot k+1, thus we have,

el = bryy
then the state of the system can be summarized by,

Lew1 = (p=np DT+ by (2.6)

where the notation (x)T denotes max (x, 0).
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Chapter 3

Performance Analeis of the Wireless
ATM Multiplexing System

In this chapter, we will present a performance analysis of the wireless ATM multi-
plexing system. The objective of the analysis is to determine the PGF of the
queue length distribution, as well as distributions of the state of the channel and

the number of On-sources. We will also present mean queue length and mean

delay.

3.1 The Embedded Markov Chain Analysis

As stated in Section 2.4, the considered queuing system can be modeled as a dis-

crete-time three-dimensional Markov chain. The state of the system is defined by

the triplet (i, n,, a;). Let Q,(z, r, y) denotes the joint probability generating func-

tion (PGF) of the queue length, i, , the state of the channel, n, and the number of

the On-sources, q,, i. e.,
1 m

Qu(z, 1, y) = E[ar™y®] = 3 N N 2irlyip,(i, 1, j) (3.1a)
i=0l=0j=0
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i.e., the joint probability that at the end of slot %, the queue length equals i, the

state of the channel is I (‘0" or ‘1") and the number of the On-source is j. So
O +1(z, r, y) is given by,
Op+1(z 1, y) = E[gft+1rr1y%e] (3.1b)
Substituting for i, ; from (2.6) in (3.1b) gives,
Qi+ 1(z, 7, y) = Elgieeirietyn] = E[20 e+ beeiphiory@in]
then substituting for 5, ., from (2.3), we have,

P81
(h=me ) + ij.ku
Qr.1(zry) = Elz j=1 rites1yeet (8.1c)

Let us consider the right hand side (RHS) of (3.1c) by conditioning on Ip,
n.,1 and aq;,, for the moment. This will enable us to take the expectations with

respect to the random variables f ke J = 1,2, a, . Taking the constant

factors outside the expectation symbol we have,

9|

(g=re, )P+ ij.k«-x
) n .
E|z j= ity S i, ng 1 @y

G+t

2fj.k+l

. t N
= Z(‘k nk+l) rnk+lyak4-lE Zi=1 I lk’nk‘i-l’ ak+1
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Since f; ., are mutually independent,

zfj,k+l

: t a [
Z(lk Rgye1) r”uly kelf| zi=1 | e+ 1 Qg 1

= z('}‘"ux)f,ﬂuxyak+1[f(z)]ak+1
thus (3.1c¢) becomes,
O 1(z 1 y) = E[h= e Peni[yf (2)]%+1] (3.1d)
Next substituting for ¢, ; from (2.5) in (3.1d), we have,

ﬂk ﬂl—dk
Ce+ d,

Qk+ I(Z’ r, y) = E Z(ik_nk+l)frnk+l[yf(z)]:=l s=1 (3_1e)

Next let us consider the RHS of (3.1e) again by conditioning on i, , n,,,
and a, . This will make it possible to take the expectations with respect to the ran-

dom variables c; and 4. Taking the constant factors outside the expectation sym-

bol we have,

a m-ay
T
- + 4
E z(lk Rgyy) retyf(z)]s=t s=1 I LMy 10 G

ak M’ﬂk
. Zc:-(- d,
- z(lk—nk+l) rnk-t-lE [yf(z)]_\-gl s=1 I ik’nk-i- 1 ak
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Since the random variables ¢, and 4 are mutually independent, we have,

Gk m-ak

co+ d,

e Bl [yf ()]s e | Leles 10 Gk

= (e et (e (yf (2)) 1A (3f (2)) 1™~ %
where c(z) and d(z) have been defined in (2.3a) and (2.3b) respectively. Thus
(3.1e) changes to,

Orr1(z 1 y) = E{2 e i (yf (2))1%[d(f (2))]™ %}

= [d(yf(z))]"‘E{z("t-"u0*,%l[c(yf(z))}“t}

d(3f ()
= [d(f ()] E{2em e i) ey ey (3.2)
where,
- cQf(z)) 3.3
Y= 307G (3:3)

Next we will remove the operator (x)™ in (3.2). We see that the expectation

in (3.2) depends on the random variables i,, a, and through =, _, defined in (2.2)
on n,., g, and kg, Since the last two variables are independent of the other ran-

dom variables, and also from the definition of expectation given in (3.1a) we may
write,
) © 1 m )
E[z(ik_’lk+l)fr”k+lyak] = Z Z z E[Z(i-’-‘k+l)tr’-lk+lY‘l]pk(i, L
i=0l=0j=0
1 0 1 m

o m
= Z Z 2 E[Z(i—'—i"*l)frﬁ“"Yj]pk(i, 1, i)+ 2 2 2 E[Z(i_’-l’"x)frﬁ’”le]pk(l., L, )
i=1l

0j=0 i=0l=0j=0
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where, (3.4)

ﬁk‘(‘l = nk+llnk=l
We may remove the (x) operator in (3.4), since 7, , ;, may only take the values of
‘0’ and ‘1’, thus (3.4) becomes,

E[zCe—nes Dt e Y]

o 1 m 0 1 m i

=Y ¥ Y E e p i L+ Y S S EL0 e Y ]p (i 1, )
=11=0j=0 i=0l=0j=0
o 1 m Ve ; . 0 1 m _ ; — .

= _Z > .Z E[z‘@ ¥ ]pk(i, I J)+-2 > 2 E[r* ¥ 1p.(i,1,j) (3.5)
i=1l=0j=0 i=0l=0j=0

Let us define,
(3.6)

~
I
Ny

From (2.2) we have,

Neep = "k+1l,,k=1 = ng‘*' Zhs

s=1 s=1

Substituting above in (3.5) results in,

E[z(i‘-n"* x)f,-’lu 1y %]

1] 1=

o 1 m Zg,-i»z 1 m Zg, 2 .
=3 Y Y E|ziR=t = v pu(i L ) + E Y N E[r e ¥ pe(is L, J)

i=1l=0j=0 i=0l=0j=0

{ -1

4 1~
1 m g+ Y k| 0 1 m &+ ) kol
ZiE anx 21 Ypeli, L)+ 3 Y E rnzl 2: Y pe(i, 1, j)
=0 i=0l=0j=0
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By taking the expectation with respect to random variables g and &, the above

equation becomes,

1 m

: w 1 m 0 L
E[z(:g-ng.x)f,nk.xyag] = 2 Z zz,-[g(R)][[h(R)]l-lepk(i’ Lt Z Z z [g(r)]l[h(r)]l lyjpk(i’ L)
i=1[=0j=0 i=0l=0j=0

(3.7)
where g(R), h(R), g(r) and h(r) are determined from (2.1a) and (2.1b) through

substitution of z = r or R in the corresponding equations. Next, let us make the

following definitions,

N @9
Substituting V and W into (3.7) gives,
E[zl% M) ey
o 1 m 0 1 m .
=y 2 S Zh(R)V' Y pi(i, |, j)+'ZOIZszoh(r)WIYka(i’ L J)
o &S L

Substituting above equation into (3.2) we have,

Qk+ 1(2’ r,y)

1 m 1 m
= [d(yf(z))Jm{ > Y SRRV p L )+ 2 Y 3 W'Y p, J)}

=11=0j=0 i=0l=0j=0

) 1 m 0 1 m )
= [d(yf(Z))]"‘{h(R) >3 SVYpGLp+rd Y S S wWYp G, j)}
i=1l=0j=0 i=0l=0j=0

The first summation in above is Q,(z,r, y)|,_ y=Y defined in (3.1a) except that

in the outermost summation, the lower limit is ‘1’ instead of ‘0’. Next, we will com-
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plete this PGF by adding and subtracting the missing term. Thus the above equa-

tion can be rewritten as,

o 1 m
Oii1(zny) = [d(yf(Z))]”'{h(R) SIS VYL
: i=0l=0=0

0 1

m 0 1 m .
-hRY Y YV Lp+rn S S S Wp G, j)}

i=0l=0=0 i=0l=0j=0

1 m
= [d(yf(z))]M{h(R)Qka, V,9)-k(R) Y, 3 V'Yp(0,1, j)

[=0j=0

1 m
+h(n Y ¥ w'r'p 0,1, j)}

{=0j=0

(3.9)

As we stated in Chapter 2, a packet can not be transmitted before the end
of the slot that it has been generated. Thus if the queue length is zero at the end
of a slot, there can not be any packet arrivais during that slot, since an On source
generates at least a single packet during that slot. Thus we make the observation

that there cannot be any sources in the On state during a slot at the end of which

the queue length is zero. This means thatif i = 0, then j = 0, so,
pk(O, l: J) = pk(o: la O)

and (3.9) becomes,

1 1
Qo2 ry) = [d(yf(z))]”‘{h(R)Qk(z, V,Y)=h(R) T V1p,(0,1,0)+ h(r) T W'p,(0, 1, 0)}

=0 =0

= [dOf@NI{AR)Q (2, V, ¥) + [h(")Wo—h(R)Vo]Pk(O, 0,0) + [A(r)W - A(R)V]p(0, 1,0)}
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Substituting for Vv and W defined in (3.8) results in,

Qi+ 1(z. 1, ¥) = [dFE@)NI™{R(R)Q,(z, V, ¥) + [A(r) —R(R)]p,(0, 0, 0) + [g(r) — g(R)1p(0, 1,00} (3.10)

Equation (3.10) is the functional equation of the queue length, the state of
the channel and the number of On sources in the system, as defined by i, n,
and a, respectively. It describes the system at the embedded points and relates

the joint PGF of the system at any two consecutive embedded points.

3.2 Transforming the Functional Equation into
A More Tractable Form

In the above section we have obtained the functional equation describing the sys-

tem, (3.10), but it is not mathematically tractable because on the right side of the
equation we have a Q,(z, V, Y) instead of Q,(z, r, ). In this section, we will trans-

form (3.10) into another form which lends itself to a solution. First let us develop a

number of preliminary results that are needed for the transformation.

3.2.1 Preliminary Results

3.2.1.1 Definitions

Let us make the following definitions,

X(k+1) = X(DXK)],_, k>0 (3.11a)
with, X(0) =1 (3.11b)
X(1) = d(yf(2)) = B+(1-B)yf(2) (3.11c)
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Also we define,
B(k+1) = B(L)B(R)|,_, k>0

with B(0) = 1

B(1) = [df )1
From the above we have,
B(k) = [X(B)1™

Next let us make the following recursive equations,

H(k+1) = H)H®&)| _, k>0
G(k+1) = H(1)G(k)|__,, k>0
H(k+1) = H(L)H®E)| _, k=1
Glk+1) = H()G(K)|, _ k=1

where V has been defined in (3.8), and also assume the initial conditions,
H() =1
G(0) = r
H(l) = h(R) = o+ (1-0)R
G(1) = g(R) = 1-Y+YR
H(1) = h(r) = 6+ (1 -0)r

G(1) = g(r) = 1—y+yr

where R =

NN

(3.12a)
(3.12b)

(3.12¢)

(3.12d)

(3.13a)

(3.13b)

(3.13c)

(3.13d)

(3.14a)
(3.14b)
(3.15a)
(3.15b)
(3.15¢)

(3.15d)

, defined by (3.7). The RHS of (3.15a-d) are obtained from (2.1a)

and (2.1b) through substitution of z = r or R in the corresponding equations.
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From definition (3.8) and (3.15a&b) we have,

_ G()

V= g (3.16a)
_ &)

w = &) (3.16b)

Let k= 0, and substituting (3.14) into (3.13a) and (3.13b), and then substi-
tuting V obtained in (3.16a) we have,

H(1) = H()H(0)|, _, = H(1) (3.17a)

G(1) = H(1)GO)| _, = H(l)-% = G(1) (3.17b)

which shows that (3.13a&b) are consistent with (3.14).
In the following sections, we will determine X(k), B(k), H(k), G(k), H(k)

and G(k) explicitly.

3.2.1.2 Determining X(k) and B(k)
From the definition of (3.10) it is possible to show that X(k) satisfies the recurrence

relationships given below,

X(k+1) = [B+af()I1X(k)+ (1 —a-B)f(2)X(k-1) k=1

The above recurrence formula can be proved through induction, see
[38,39]. It is a homogenous linear difference equation, with constant coefficients,
and have the following characteristic equation,

AM—B+of()A-(1-a-B)f(z) =0

The roots of the above equation are given by,
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A, = B* of (D)F(B + ocf(z;))2 +4(1 - - B)f(2) 3.18)

For X(k) and B(k) defined in (3.11) and (3.12), it is possible to show that (see

Appendix | in [41]),

X(k) = C/As+CAk (3.19a)

B(k) = (CAf+ cpb™ (3.19b)
where C,, C, are “constants” that may be determined from the initial conditions.
From (3.11a&b) and (3.19a) we have,

X(0) = C;+Cy =1

X(1) = CA +Cyhy = B+ (1-B)yf(2)

Solving the above two equations simultaneously, C, , are given by,

1. _20-yB-0)f(2) +B +af(z) (3.20)
2 2JB+of(2))2+4(1-o—B)f(z)

CI,Z =

where C; and C, are taken with the negative and positive signs respectively.

Thus X(k) and B(k) have been determined.
3.2.1.3 Determining H(k), G(k), H(k) and G(k)

1. Difference equations of H(k), G(k), H(k) and G(k)

We will show by using induction that H(k), G(k), H(k) and é(k) satisfy the follow-

ing difference equations,
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H(k+1) = cH(k) + 1—;—"G(k) k>0 (3.21a)

G(k+1) = (1—y)H(k)+§G(k) k=0 (3.21b)
H(k+1) = cH(k) + (1 - 6)G(k) k>0 (3.21¢)
Gk+1) = (1 -v)H(k) +YG(k) k=0 (3.21d)

i) First, we consider H(k). For k£ = 0, the difference equation in (3.21a)

gives,
H(1) = oH(0)+-1—;9G(0) = o+(1-0) = o+(1-0)R

Clearly it conforms to (3.15a) and from (3.17a) we note that (3.13a) also gives the

same result. Next let us assume that (3.21a) is true for k and show that it will also
be true for k+1 . For k+ 1, (3.13a) yields,
H(k+2) = HL)Hk+1)|,_y

then substituting (3.21a) for H(k +1) in the above equation, we have,

H(k+2) = H(DHK+1)| _, = H(l)[oH(k) +l;—°G(k)]

r=V
1-
Z

= GH(DH®)|, _y + —SH(1)G(K)|, _

= GH(k+1)+ 1—;90(k+ 1)
which conforms to (3.21a) for k + 1. This completes the proof of (3.21a).

if) Next, let us consider G(k). For £ = 0, the difference equation in (3.21b)

gives,
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G(1) = (I—Y)H(0)+§G<0) = I-y+YR

Clearly it conforms to (3.15b) and from (3.17b) we note that (3.13b) also gives the
same result. Next let us assume that (3.21b) is true for & and show that it will also
be true for k +1 . For k+ 1, (3.13b) yields,

G(k+2) = H(1)G(k+1)| _,

then substituting (3.21b) for G(k + 1) in the above equation, we have,

G(k+2) = H(1)G(k+1)| _, = H(1)[(1-y)H(k)+1Z’-G(k)]

r=V

= (L-NHWH®),_y+ THOG®),

= (L—v)H(k+1) +§G(k+ 1)
which conforms to (3.21b) for k + 1. This completes the proof of (3.21b).

iii) Next, let us consider H(k). For k = 0, the difference equation in (3.21¢)
gives,

H(1) = cH(0)+(1-06)G(0) = 6+ (1 —0)r
Clearly it conforms to (3.15¢). Next we assume that (3.21c¢) is true for & and show
that it will also be true for k+1 . For k+ 1, (3.13¢) yields,

H(k+2) = H)HK+1)|, -y
then substituting (3.21c) for H(k + 1) in the above equation, we have,

H(k+2) = H)H(k+1)| _, = H(1)[GH(k) + (1 -0)G®)]|,_

= 0H()H(k)|, .y + (1 - 0)H(1)G(K)|, _
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=ocH(k+1)+(1-0)G(k+1)

which conforms to (3.21c¢) for £ + 1. This completes the proof of (3.21c).

iv) Finally, we consider G(k). For k = 0, the difference equation in (3.21d)
gives,

G(l) = (1-Y)H(0) +YG(0) = 1~y +yr
Clearly it conforms to (3.15d). Next let us assume that (3.21d) is true for £ and

show that it will also be true for k+ 1 . For k+ 1, (3.13d) yields,
G(k+2) = H1)G(k+1)|,_, |
then substituting (3.21d) for G(k + 1) in the above equation, we have,
Gk+2) = H()G(k+1)| _, = HI-V)HE) +YGE)], -y
=1 -7)H(1)H(k)|, . v +YH(1)GK)|, _y
=(1-v)Hk+1)+yGk+1)
which conforms to (3.21d) for k£ + 1. This completes the proof of (3.21d).
Up to now we have obtained the expressions of H(k+1), G(k+1), H (k+1)

and H(k+ 1) in terms of H(k) and G(k).

2. Solution of the difference equations

Next, we will determine the solutions of difference equations (3.21a-d). First let us

define the following transforms of H(k) and G(k) with respect to discrete-time %,
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oo

H(w) = ¥ H(k)ok (3.22a)
k=0

oo (3.22b)
G(w) = > G(k)ok

k=0
Taking transforms of both sides of (3.21a) with respect to k£ and taking into account

the above definition, we have,

k — k k
Y H(k+ 1)of = c Y H(k)ok+ > Y Ghw
k=0 k=0 k=0

= ocH(®) + -l——ggG((n) (3.23)

Let i = k+ 1, substituting into the left-hand side (LHS) of (3.23), we have,

Y H(k+1o* = Y H@o ! | (3.24)
k=0 i=1
Since ) H()oi-! = (lo Y H(i)w?
i=11 - i=é
= al:;()H(i)m"— _OH(z‘)ml]

=1 -
= cl)[H(w) H(0)]
substituting above into (3.24), we have,

S H(k+ ok = é[H(co) ~ H(0)]
k=0
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The above equation and (3.23) results in,
1 l-o
c_o[H(w) ~H(0)] = cH(®w) + TG((») (3.25)

Changing the form of (3.25) gives,
(l-0)o
(1-cw)H(w) = H(O) +—T—G(m) (3.26)
Similarly, taking transforms of both sides of (3.21b) with respect to k and

taking into account definitions from (3.22) we have,

Y Gle+ ok = (1-v) ¥ Hket+L'S Gryo* (3.27)
k=0 k=0 zk=0

= (1—Y>H<w)+§G(m)

Let i = k+1 , substituting into the LHS of (3.27), we have,

Y Gk+ ot = Y G()wi-! (3.28)
k=0 i=1
Since ;1 G(i)wi-! = %;Ic;(i)mi
(= , - i —0
= (—0[2 G(i)w! - G(i)mi]
i=0 i=0

2[G(@) - G(0)]

substituting above into (3.28), we have,

SIG(@) -GO)] = (1-NH() +L6(w) (3.29)



Changing the form of (3.29) gives,

1

1Y@
z

G(w) = [G(O) + (1 -y)wH(®)] (3.30)

Substituting H(0) = 1, G(0) = r from definition (3.14), (3.26) and (3.30) change

to,
(1-0)o
(l-cw)H(w) = 1+ ——Z—G(m) (3.31a)
G(w) = lvw [r+ (1 —y)0H(®)] (3.31b)
Tz

The simultaneous solutions of (3.31a) and (3.31b) give,

G(®) = (1-yY)o+(l-cw)r (3.32a)
o Do

1_m+.(L___c)_(_D_C

H(®) = z z (3.32b)
e
Let D(w) = 1-— (o + Qm - (1—_1——0}02 (3.33)

Then (3.32) can be rewritten as,

G(w) = 4 ‘Y)“’D‘ZO(); —ow0)r (3.34a)

j-Ye (d-oc)or

H(w) = 2 @) z (3.34b)

Next we will apply partial fraction expansion in the above expressions. First
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let us determine the roots of the denominator D(w) . Defining 41, 9, respectively

as,

N
et

|
N

|

Q

q1=0'+ , q2=

thus D(w) can be written as,

The roots of the above are given by,

where o, and w, are taken with the negative and positive sign respectively. Next

A = 4, F Jqt +44q, _ y+cz:FJy2+0'222+22(2—27—20'+0'y) 3.35
3,4 - 2 - 2z ( ° )

Now we can write (3.34) as,

_(l=v)o+(l-cw)r
G(w) = (T-A0) (1 —h0) (3.36a)

I_YLD_‘_(I—O')(DI'

_ Zz Z
H®) = 5= KBy —T) (3.36b)

Applying the partial fraction expansion, G(w) and H(w) in (3.36) can be

expressed as,

c
G(w) = + (3.37a)
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HO) = {3+ o (3.37b)
where,
c. = I=Nw+(-co)r _ri;+l-y-or
3= — = _
c - (1-Ne+(l-cw)r _rAg+l-y-or
o=1/A,

Substituting A, , from (3.35) in above two equations we obtain C,, C, as,

c, = r 2(l-y-or)z+r(y +06z) (3.38a)
2 2Jy+o0z2)2+4(l-y—0)z

r, 2(l—y—-or)z+r(y +0z) (3.38b)
2 2J(y+062)2+4(l—y-0)z

Cq

Cs and C4 may also be determined from the initial conditions, however as will be

shown later on, these constants are not needed for the steady-state analysis and

they will not be given here.

Inverting G(w) and H(w) gives,

Il

G(k) = Cihs+C Ak (3.39a)
37%3 4/~4

H(k) = Cshs+Cohk (3.39b)

Now that we have determined G(k) (3.39a) and H(k) (3.39b), together

with (3.21c&d) which are repeated here,
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H(k+1) = cH(k) + (1 -0)G(k) k=0
Gk+1) = (1 —=y)H(K) +YG(k) k>0

we can also determine H(k) and G(k).

3.2.1.4 Determining special values of A; and C;

Next, we will present all the values of A;, C; and some of their derivatives that will

be needed later on.

First let us define,

X __y+o'z-1=~/(y+oz)2+4(l—y—0')z
3,4 = >

then because of (3.35) we have,

A.3=

NS

Also we define,

Ci = Cilr:l,y:l

with C; as given in (3.20) and (3.38), we have,

& =L _20-B-0)f(z) +B+af(z)

2 2J(B+of(x))2+4(1—a-PB)f(2)
&, = L, 2(1-B-a)f(z) +B+af(z)

2 2./(B+af(2)?+4(1-a-B)f(z)
C,=L1__2(0-Y-0)z+(y+02)

2 2J(y+02)2+4(l—y-0)z
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2(1-y-0)z+ (Y +02) (3.43e)
2J(y +62)2+4(l -y —0)z

-~ _ 1
C4 = 3 +
Next we calculate Ci| _ . Ay, , and A3,4|,_, based on the results from
= 1Lz = =

(3.43), (3.18) and (3.40),

ol R e o
62|z=1 = %+2A/?éi“£2-+°‘:;li;°_‘ = _ %+% =1 (3.44b)
o R e o
S~ ET R
}"1IZ=1 _ B+a—A/(l3+022+4(1—a—B) = 0+B-1 (3.44€)
}‘zlz=1 _ B+a+«/(B+a§2+4(1—a—B) ~ 1 (3.440
Al _ =Y+°‘“’(22’Y‘°)2=y+c—1 (3.44g)
Aol _, = Y*‘”“’(zz‘Y‘“)z =1 (3.44h)
By substituting z=1 into (3.20), we can have,
.= (lz’fzx(i[;y) (3.453)
Colyy oo = Lotll —BB)y (3.45b)
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then, we substitute z=1 and r=1 into (3.38) and have,

G| =0

z=1r=1

i
[

C4|

z=1r=1

Next, substituting z=1 and y =1 into (3.20) gives,

C1|z=1,y=l =0

I
[

C2|z= L,y=1

Again, substituting z =1 into (3.38) results in,

- d-v)(r—-1)
C3[z=1,y= - 2—'Y—G
C _(d-y)+r(l-o0)
4[z=1,y=l 2-y—0

Also from (3.44e-f) we obtain,

xllz=l,r=1 =a+p-1
}\'le=1,r=l =1
X3|z=1,r=1 =y+o-1
X4|z=l,r=l =1

as well as,
}"llz=1,y=1 =a+p-1
)\'2|z=l,y=1 =1
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(3.46d)
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(3.47d)
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l3| =v+o-1 (3.48¢c)

z=1lLy=1
x4|z_ Ly =1 (3.48d)
dh A dC dC, o
Next let us consider —2 s &‘ , -2 and ——, . First differ-
dz z=1 dz z=1 dz =1 dz z=1

entiating A, from (3.18) with respect to z we have,

-2

dz

_ {af( )+ 1 2B+ @ @)+ 401 o~ B)f’(Z)} (3.49a)
V(B +af(2))2 +4(1 -0~ B)f(2)

substituting z =1 in (3.49a) we have,

d)»z
dz z=

_ {af(1)+1 2(B+0)af (1) +4(1 -~ B)f'(l)}
1 JB+a)2+4(1-0—B)

but f = f(1), which is-the average number of the packets generated by an On

source during a slot. Also substituting for the square root, we obtain 2—}? as,
z=1
‘%2 . { ( 1a Bé (3.49b)
Now we differentiate A, with respect to z from (3.40),
dhs _ 1{c+1 26(Y +6z) + 4(1 —y - 0')} (3.50a)
dz 2 2 Jy+toz)2+4(l-y-0)z
substituting z =1 in (3.50a) we obtain ;;4 . as,
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dha _ 1{0+1_2c(y+c)+4(1—y—o)}
dzl,-1 20 2 Jy+o)+a(l-v-o0)
dha -y
or, == = 3.50b
dz =1 2-y-0 ( )

Next let us differentiate C, from (3.44b) with respect to z,

dCs _ 2[2(1 -B—0)f(2) + of (D)]I(B +0f (2))? + 4(1 — o — B)f(2)
dz

4[(B + af(2))2 +4(1 -0 ~B) f(2)]

__20-B-)f()+B+af(z)  2(B+af(z))af(z) +4(1-a-B)f(2)
4[B+0f(2))2+4(1~a~-B)f ()]  JB+af(2)2+4(1-a-B)f(z)

(38.51a)

substituting z =1 in (3.51a) we have,

dCy|  _ 2[2(1-B-a)f (1) +of (DIN(B+a)?+4(1—a—P)
dz | _, A[(B+ )2 +4(l-—a-B)]

__2(1-B-a)+B+a  2B+a)of(1)+4(1-a—B)f (1)
4[(B+ )2 +4(1 -0 -PB)] JB+o)2+4(1-o—B)

but £ = f(1), also substituting for the square root, we have,

dC; F-B)(1-o-B)

o e (3.51b)

Finally differentiating C, from (3.44d) with respect to z we have,

dCs _ 2[2(1-y-0)+0lJ(¥ +0)2+4(1 -y —0) (3.52a)
dz 4[(y +02)2 +4(1 —y — 0)z] '

__2(1-y-0)z+(y+0z) 2(y+oz)o+4(l-y-o0)
4[(v +02)2+4(1-Y-0)z] [y +02)2 +4(l -y —0)z
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substituting z =1 in (3.52a) we have,

dCy
dz

_ 2[2(1~y-0) +0l(y +0)2+4(1 -y -0)
4[(y +0)2 +4(l-y-0)]

z=1
__2(1-y-0o)+(y+0) 2(y+o)o+4(l-y-o0)
4[(y+0)*+4(1~y-0)] [fiy+0)2+4(l-y-0)

SO we have,
dCs| _ (1-v)(1-y-0)
dZ z=1 (Z—Y_G)z

(3.52b)

By differentiating (3.49a), (3.50a) and substituting z =1 in the resulting expressions

we obtain,
h|  _ 20-w-pya+B-1(H?, 1-F()
dz? |, _, 2-a-Pp)3 2-a—PB
dhal  _20-m)(1-0)y+o-1)
dz? |, _, (2-y-0)3

3.2.2 Transformation of the Functional Equation

(3.53)

(3.54)

Now we are ready to transform the functional equation obtained in (3.10) into

another form. Taking into consideration the definitions of B(1), H(1) G(1), H (1) and

G(1) from (3.11b) and (3.14), the functional equation (3.10) may be written as,

Q. 1(zry) = BH(1)Q(z, V, Y) + B(L)[H(1) - H(1)1p,(0, 0, 0) + B(1)[G(1) - G(1)1p,(0, 1,0) (3.55)

By expanding Q, , ;(z, r, y) in (3.55) for the first few values of £, we can prove by

recurrence the following major result.
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k k
0u(z ry) = BRHKE + Y BUVAG) ~H(Npe_0,0,0)+ ¥, BHIG() - G(N]ps- (0, 1,0) (3.56)
i=1 j=1

Proof:

Since we have modeled the system as a Markov chain, the steady-state of the
system will be independent of the initial conditions. We are only interested in the

steady-state behavior of the system, therefore we will choose an initial condition
that simplifies the analysis. We assume,

Qo(z,ry) =1 (3.57a)
which corresponds to zero queue length, Bad channel and zero number of On

sources. Thus we also have,

Qo(za V: Y) = 1 (3.57b)
Next, we will show that (3.56) holds for the first few values of k.
i) For k=0, (3.55) yields,

Q[(Z: r, )’)

= B(1)H(1)Qy(z, V, Y)

+ B(1)[H(1) —H(1)]1py(0,0,0) +B(1)[G(1) -G(1)1pe(0, 1,0)

= B(1)H(1) + B(1)[H(1) - H(1)1po(0, 0, 0) + B(1)[G(1) - G(1)]1po(0, 1, 0)

(3.58)
Equation (3.56) also gives the same result for k = 0.

ii) For & = 1, we will still calculate Q,(z, r, y) from (3.55).

First, by substituting r= vV and y = Yin (3.58) we have,
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0,(z V,¥) = BQ)|,_ yH)|, _,+BD)|,_ [HD|, _,~HD)|,_,1po(0;0,0)

+ B(D)], _y[G()],_ = G(D)], _ 1Po(0; 1,0) (3.59)
Substituting k£ = 1 into (3.55) yields,

QZ(Z: r, }’)

= B(1)H(1)Q,(z, V, Y)

+ B(1)[A(1) - H(1)1p(0, 0, 0) + B(1)[G(1) -~ G(1)1p{(0, L, 0)

Substituting Q,(z, V, Y) from (3.59) into the above 'equation gives,
0,(z 1, y) = BUDHW{B(), _ ,H(D)]|, _y
+ B, _ LA, -, —H(D)|, _ y1po(0, 0,0) + B(L)], _ ,IG(1)], _,~G(1)], _ ,1Po(0, 1,0)}
+ B(L)[H(1) - H(1)1p(0,0,0)+ B(1)[G(1) - G(1)1p,(0, 1,0)
= B(B(L)|, _ yH(DHD), _,

+ B(l)B(1)|y=YH(I)fI(l)lr=Vpo(0, 0,0) - B(1)B(1)|, _ (H(LH(1)[, _ ,£0(0, 0,0)

+ B(1)B(D)|, _ MG, _ ,Po(0, 1,0) -B(1)B()|, _ yH(1)G(1)|, _ ,pe(0, 1,0)

+ B(1)[H(1)-H(1)1p4(0, 0, 0) + B(1)[G(1) - G(1)1p,(0, 1,0)

= B(2)H(2) + B(2)[H(2) — H(2)1py(0, 0, 0) + B(2)[G(2) — G(2)1py(0, 1, 0)

+ B(1)[A(1)~H(1)1p(0,0,0) + B(1)[G(1)-G(1)1p,(0, 1,0)

(3.60)
we can see that (3.56) will also give the same result as (3.60) for k= 1.

iii) For k = 2. Similarly, first we substitute r=V and y = Yin (3.60) and have,
0,(z V. Y) = BQ2)|,_ H(2)|,_y
+ B)|, _ IA@)|, _ = H@)|, . ,1po(0,0,0) + BQ2)|, _ ,[G(2)|, _ , - G(2)|, _,1Po(0, 1,0)

+ B, _ LA, _ = HD|, _ 1p1(0,0,0) + B(D|, _ G, _ ,~G(1)|,_ 17,0, 1,0)
(3.61)
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Substituting £ = 2 into (3.55) yields,
Q3(z, r, y)

= B(1)H(1)Q(z, V, Y)

+ B(1)[H(1) - H(1)]p5(0, 0, 0) + B(1)[G(1) — G(1)1p,(0, 1, 0)

Substituting Q,(z, V, Y) from (3.61) into the above equation gives,

Q3(z ry) = BILH(I}{B(2)|,_ yH(2)|, -y

+ BQ),_ IAQ)|, _,~H®)|, _ ,1p0(0,0,0) + B)|, _ ,[E(2)|, ., = G2, _ ,176(0, 1 O)
+ BQ)|,_ JHQ)|, _,~H(2)|,_,1p\(0,0,0)+ BQ)|, _ G (2], ~G(2)], . y1p1(0,1,0)}

+ B(1)[H(1)- H(1)1p,(0, 0, 0) + B(1)[G(1) - G(1)1p,(0, 1, 0)

= B(LBQ)|, _ H(DHQ)|, _
+ B(LBQ)|, _ [H(DAQ)|, _ - HH(2)|, _ ,}po(0, 0,0)
+ BB, _ JH(GQ), - H(1)GQ)|, - ,1Po(0, 1,0)
+ BLBQ)|, _ [HWAW), _,~HMA)], . ,17,(0,0,0)
+ B(DBQ)|, _ [LH(DEGW)], .~ HGD), _ 1710, 1,0)

+ B(1)H(1) - H(1)1p,(0, 0,0) + B(1)[G(1) - G(1)]p,(0, 0, 0)

= B(3)H(3)
+ B3)H(3) - H(3)1po(0, 0, 0) + B(3)[H(3) - G(3)1p,(0, 1, 0)
+ B(2)[H(2) - H(2)]p,(0, 0,0) + B(2)[G(2) - G(2)1p,(0, 1, 0)

+ B(1)[H(1) - H(1)1p,(0, 0,0) + B(1)[G(1) - G(1)1p,(0, 1,0)

we can see that (3.56) will also give the same result as (3.62) for k = 2.
Therefore (3.56) is verified for k=0, 1, 2. Next let us assume that (3.56) is

true for the order of %, i.e.,
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k
Oz, 1,y) = B(k)H(k)+ Y B(HIH() - H(/)1p,_ ;(0,0,0) (3.62)
ji=1
k -~
+ 3 BOIG) - G()NIpe_ 0, 1,0)
j=1

Next we will prove that it is also true for the order of k+1. First let us substi-

tute y=Y r=V in equation (3.62),

Qk(zi Va Y) = B(k)ly= YH(k)lr=V
k

+ X B, = yHD|, =y =HW, = y1Pi- 10,0, 0)
j=1

k
+ X B, - ylGW)|, - =G|, _ 1Pk 40, 1,0)
ji=1

Next, substituting the above equation into (3.55) and taking into account (3.12a)

and (3.13) gives,

Or+e1(zrny) = Blk+1)H(k+1)
k+1

+ ¥ B()HG) - H(j)1p;_ (0, 0,0)
j=1
k+1 _

+ ¥ B(HIGU)-G()1pe_;0,1,0) (3.63)
ji=1

This shows that (3.63) is consistent with (3.56). This completes the proof of (3.56).

3.3 Solution of the Functional Equation

In this section, we present the solution of the functional equation. The objective is
to determine the joint steady-state PGF of the queue length, state of the channel

and the number of On-sources in the system by applying the final value theorem.
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From this result we will determine the marginal PGF of the queue length and con-

sequently the mean queue length and the mean delay.

First let us define the transforms of Q,(z, r,y), p.(0, 0,0) and p,(0, 1,0),

with respect to discrete-time k as follows,

Q(Z: r,y (D) = Z Qk(z’ r, }’)(Dk (364)
k=0
Py(w) = D pu(0,0,0)wk (3.65a)
k=0
Pi(w) = Y pi(0, 1,0)mF (8.65b)
k=0

Substituting Q,(z, r,y) from (3.56) into O(z, r, y, ) defined in (3.64),
oo s k

Oz ry.0) = 3 BlHMEe + Y ¥ BGIEG) - H()1pe- (0,0, 0)*
k=0 k=0j=1

o Kk
+ X 3 BOIGH) - G(N)]p,_ 0, 1, 0)wk
k=0j=1

Let us interchange the order of summations in the second and the third terms in

above,

Oz r.y,®) = ¥ BHK0 + 3 3 BG)IHG) - H()1pg_ 0,0, 0)wk
k=0 j=lk=j

(- - B - -

+ > Y BIIGU) - GNP, (0, 1, 0)wk

j=lk=j
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Letting n = k- j, and substituting in the above equation gives,

Q(z,r,y, ©) = Y, B(HK) + Y B(HIH)-H()]w/ Y, p,(0,0,0)w"
k=0 j=1 n=0

+ 2 BDOIGH) -Gl Y, p,(0,1,0)wn
j=1 n=0

substituting Py(w) and P,(w) defined in (3.65a&b) for the innermost summations

of the last two terms in the above equation,

Oz r,y, ) = Y, BOHK)0k+Py(w) ¥ BGHIAG) - H(j)lw/
k=0 j=1

+ Py(@) Y, B(HIG() - Gl (3.66)
i=1

Next, we will determine each of the terms in (3.66).

i) First, let us consider the first term 2 B(k)H (k)w* in the RHS of (3.66).
k=0

Substituting for B(k) from (3.19b) and H(k) from (3.39b), we can write the first term

in the RHS of (3.66) as follows,

BH(K)wF = ¥ (C/AL + CA5"(CsAs + Cor ok
k=0 k=0

Substituting the Binomial expansion we have,

T BHm® = 3 T (T (eprh" e+ cahot
k=0 k=0i=0

59



Interchanging the order of summations in the above,

¥ BroHm* = 3 (T cy™ ™ 0D A5 cpf + capo’
k=0 i=0 k=0

= > (’?)(Cl)"(cz)”“" T [Cs(MAT ™ Ry 0)  + Co(AiAS A @) ]
i=0 k=0

Evaluating the infinite summations gives,

- - i m—i C C
Y B(k)H(k)ok = Y (’;‘)(cl) (Cy) [ — O ]

(3.67)

ii) Next, let us consider the second term Py(w) ¥, B(j)[H(j) - H(j)lw/ in
ji=1

the RHS of equation (3.66). Since we have obtained the following results in

(8.21a&c) and (3.39a),
H(k) = 0H(k—1)+l;—oG(k—1)

H(k) = 6H(k—1)+(1 —6)G(k~-1)
G(k) = C3)5 + C Mk

we can determine the difference appearing in the second term of the RHS of

(3.66) as,

H(j)-H(j) = (1—6)(1—%)(C3l§_1+C4}\.£—I) j=1
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Thus, by substituting the above and B(k) from (3.19b) the second term becomes,

Py(w) Y B()HIH() - H(j)lw/
j=1

=(1- 0')(1 - -)Po(m) Z €M+ M)y C M+ Al Yo
j=1
Next, substituting the Binomial expansion we have,

Py(0) ¥ B()HLH() - H(j)lwi
i=1

=(1- c)(l——)Po(m) Z z(m)(c A (A" e + Al o

j=1i=0

Changing the order of the summations,

Py(w) ¥ BOHIH () - H(j)]w!
j=1

= (1- c)(l——)Po(m) 2( )(c y(Cy)™" ‘2 A orYelica it e cad™h
The inner summation in the above can be simplified as,

Z(M) Aol e e el ™Y
i=1

=2

ji=1

[c3(x ‘AT Asw)’ +c4(x‘;xg“"x3m)']
4

As A

Cy(MAT " A0) . C, (A AT A 0)
As(1=ATAY " Aam) A (1l -ASAT A ,w)

) CAAT . CAN ‘o
1I-AAT Mo 1-A AT e
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Substituting the above for the inner summation in the second term results in,

Py(w) ¥ B(HIH() - H()]w/
ji=1

= (- o)1- %)Po(w)é('?)(Cl)"(cz)”“"[

CAA @ . c4x‘;x’2'""m]
1-AMAT e 1-AAT Ao

(3.68)

i) Finally, let us consider the third term P,(w) 2 B( j)[é( N -G(Nlw/ in
j=1

the RHS of equation (3.66). Since we have obtained the following results in

(3.21b&d),

G(k) = (1-y)H(k-1) +§G(k— 1)

G(k) = (1-Y)H(k—1) +YG(k—1)
similarly, by substituting G(k) from (3.39a), we may determine the difference

appearing in the third term as,
- ) 1 - - .
GN-6) =y(1-)CHMTTcly sz

substituting the above and B(k) from (3.18b) into the third term and following the

steps in the derivation of the second term, we have,

Pi(0) Y B(HIG())-G()lw
j=1

- y(l - %)Pl(a)) Y (€ M+ M) e v e Yol
j=1
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1 - < N3 jom—i i—1 F—1 .
= y(1—2)1>1(w) 3 Zo(';‘)(clx{) ()" e v o Yo
li=

j=

(1—-) 1(w)2( )(C)(Cz)m ’20»1) A Yolea d v oA

=1

meil CAAT CAA '
1Yo (et | STe_cobi ]
1-MAZ2 %0 1-2A7 20

(3.69)

Finally, substituting (3.67), (3.68) and (3.69) into (3.66), we derive
Q(z, r, y, ®) as,

Q(z,ry,0) = 5_‘, B(k)H(k)w¥ + Py(w) 2 BHIHG) - H()1w' + Py (w) }j B()HIG() - G()lw’
k=0 j=1 j=1

- - C C,
Z( )(C)(CZ) { i r:-i + i ::-i ]
i=0 1= A0 1-2A, A0

o c C li m—im
+ (- o‘)(l——)Po(m)Z( e [ 2 ‘: :m+1 ‘;,-if.,-l m]
=M 4

i c }.ilm_i C Ai m-im
Y(l--)P (m)E( )(Cx)(cz) l: 3i1m2—im * 4‘11’\"2". jl
1 -lllz }-30-) 1 _A'IA'Z 140.)

i=0

(3.70)

Equation (3.70) gives the discrete-time transform of the joint PGF of the
queue length, the state of the channel and the number of On sources. Our objec-
tive is to determine the steady-state joint PGF. Thus we need to apply the final
value theorem [45] to (3.70),

Q(z: r, }’) = (Dﬁ—I?l(l—m)Q(z, Yy, (D) (3'71)
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Substituting (3.70) into (3.71) we have,

- i . m—i C C
Q(z,r,y) = lim (l“w)Z(’;’)(Cl)(CZ) [ i nf-i * i r:—i ]
st 2 - e 1-AAp A

- m-il C A_i m=i Cc Ai m—im
+ Jim (1-rpg(xt-o)1- 1) 3 (T [ by @ | Cidy ]
i=0

1-MA "0 1-AA0 Ao
I [Czl‘;}"zn_im . C@'ilé’"‘}o]

. m i m—i
* mhfl(l—m)P‘(w)Y(l-Z)l_é( i)(cl) ) 1-AAT R0 1-AA] "R ,0

(3.72)

In Q(z, r, y, ®) the first term is transient while the second and the third term

result in the steady-state PGF. Also since,

lim (1-@)Po(0) = p.(0,0,0) = p(0,0,0) (3.73a)

lim (1-©)Py(0) = p(0,1,0) = p(0, 1,0) (3.73b)

substituting (3.73a&b) into (3.72) gives,

m ; i C lilm-i C fam—i
0z r,y) = [(1-9)p(0,0,0)+1p(0, 1,0)Y(1-1) T (T)ecpyiccy) L 1,.‘1,2:_,.1 + ;,.;:,,?_,.l
i=0 1 3 M

(3.74)

Substituting A; and A, from (3.41), (3.74) becomes,

_ m ; I zc li m—i C ).i m—i
0z ry) = [(1-0)p(0,0,0+1p(0, 1, OYEH) T (F)ccnieey [z iy, 20 ‘,ﬁ’_r}
R z=MA TA3 z-AAT A

m

; i C A.i m—i C li m~i
= [(1-0)p(0,0,0)+1p(0, 1, 0I(z- 1) ¥ (T)ecpyi(cy) [ e | Chidy ]
Z 4,

=0 —MAT TRy z-AAmTR

(3.75)

So equation (3.75) is the steady-state joint PGF of the queue-length, state

of the channel and the number of On sources. We note that the above result still



contains the unknowns p(0,0,0) and p(0, 1, 0), which will be determined in the

following section.

3.4 Steady-State Analysis

In this section, we determine the marginal distributions of the queue length, the
number of On sources and the state of the channel at the steady-state. From the
steady-state PGF of queue length, mean queue length and mean delay are also

calculated.

3.4.1 Steady-State Queue Length Distribution

in this section we will determine the steady-state distribution of the queue length.

Let us define the marginal PGF of the queue length distribution, P(z), as,
P(z) = Qzry),_q,-1 (3.76)

Then from (3.70), we have,

i ng i, =~ m~i é é
P(2) = [(1-0)p(0,0,0) +1p(0, 1, )]z~ 1) I (T)(€i2 (o) [ et —— ‘;_,.-J
i=0 z-MA, A3z z-AA, A

(3.77)
where C; = Cily=1.,= 1 2s defined in (3.42).
From (3.77) we see that p(0, 0, 0) and p(0, 1, 0) are the only terms that we

need to fully characterize the steady-state marginal PGF of the queue length. We

have to derive two equations to determine these unknown probabilities. We obtain

the first equation from the normalization condition, P(z)| .=1- Letus rewrite P(z)
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from (3.77) as follows,

- C C,
P(2) = [(1-0)p(0,0,0) +yp(0, 1,0)}(z—1)(C )’"[ 2__ J
¢ TR ‘ 22 e-AThs z-ATA

- -~ i = m—i é C.
+ [(1-06)p(0,0,0) +vp(0, 1,0)](z—1 MYV(CA) (Cohy) [ 3.4 L]
(L=p(0.0,0+1200, 1,0z 1) 3 (7 ik Gy v by
(3.78)
It is convenient to rewrite the steady-state PGF of the queue length from

(8.78) as follows:

P@2) = [(1-0)p(0,0,0) +1p(0, 1, 0))(z - L[ ED) + F(2) + 2—_1‘%%)2—)] (3.79)

where,

- -~ i, - m—i é &
EQ@ = 3 ()@@t [ A M 1 -,-~] (3.80a)

i=1
Py = E(C2ha) (3.80b)
z—-A5A3
M(z) = (C21y)" Cs (3.80¢)
S(z) = AyAg (3.80d)

We note that the Ilimit of (z—=1D)[E()+F(z)] is zero, while that of

(z=-1)M(z)

Z2—5(2) becomes of the form 0/0 as z— 1. Thus we need to apply

LHopital's rule to determine P(z)[Z _1
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Equation (3.79) is equivalent to,
P(z)(z~5(2)) = [(1-06)p.(0,0,0) +7p(0, I,0)](z- 1)[E(z)(z— S(2)) + F(z)(z~ S(2)) + M()] (3.81)

Differentiating both sides of (3.81) with respect to z yields:

P'(2)(z~S(2)) + P(2)(1-5"(2)) = [(1=06)p(0,0,0) +Yp(0, 1, O){[E(2)(z—S(2)) + F(2)(z~S(2)) + M(2)]
+ (2= DIE@)(@-5(2)) + E(2)(1 - §°(2)) + F'(2)(z - S(2)) + F(2)(1- §'(2)) + M ()1}
(3.82)

We note that E(1) = F(1) =0 and P(1) = M(1) = S(1) = 1. Then
substituting z = 1 in (3.82) yields,
1 _S’(l) = (1 —'G)p(oa 01 0) +YP(O’ 1: 0) (3’83)

In order to obtain S’(1) and M’(l), first we differentiate (3.80c&d) with respect

to z,
V4 —- m-— ldA-Z- mdx4
S(z) = m?xz —El4 + A‘Z -FZ— (3.84)
, = m—1 d&z ~ d}\rz ~ ~ md&,;
M(2) = ()" (A2 4 Ea 2] Ca + (Cady) " (3.85)

Substituting z = 1 as well as taking into account the following results from

(3.44b,d,f&h),
C2L=1 =1, C4|z=1 =1
Ao _, =L, hal _, =1
we obtain,
dA. A
§(1) = m—z' 492
dz =1 dz z=1
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dC,

M’(1) = dhs
() =m-Z7

]+d66
z=1 dz z=1 dz

Substituting for the derivatives in the RHS from (3.49b), (3.50b), (3.51b) and

z=1

(3.52b), we determine S’(1) and M’(1) as follows,

1y = 2| L dh|  _mFO-B), 1-v
S(l)_m_d?z=1+7i?z=1— B 375 (3.86a)
.o (a&, dA, dCy
M(I)—m(z_z=l+72-2=l)+72—z=1
- [ fA-B)  FO-B)1-a-B)], (1-¥)1-Y=-0)
‘m[z-a-s*” R |+ op—— (3.86b)

Substituting $’(1) from (3.86a) into (3.83) gives us the first equation that relates
p(0,0,0) and p(0, 1, 0),

mf(1-B) (1-v)
" 2-0-p 2-y-o (3.87)

(1-0)p(0,0,0) +yp(0,1,0) = 1

Next we determine the second equation relating p(0,0,0) and p(0, 1, 0)
by using stability condition of the system. The state of the system given by (2.6)

can be rewritten as,

) L= Meoy+bp g i,>0
zk+1={ A (3.88)

b1 =0
It is convenient to introduce shifted discrete unit step function,

1 x>0

v = {o x<0

Applying this definition to (3.88), we may summarize the state dynamics in the fol-
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lowing equation,

Ipe1 = =UGIn, , +bpi (3.89)
Provided that the system is stable, the embedded Markov chain described by
(3.89) is ergodic and a steady-state probability distribution exists. We take expec-
tations on both sides of (3.89),

Elig, ] = E[i]-E[U@n, , 1 +E[b; ] (3.90)
Since the random variable n, _ ; is independent of U(i.), (3.90) is equal to

Eliy 1] = E[Q ] - ELUi)1EIng 4 1]+ E[by 4 1] (3.91)
Under the assumption that a steady-state solution exists,

Jlim Efi,,] = lim E[f] = E[i]

Jim E[U(ip)] = ELU()

Jim E(n,,,] = E[7]

lim E[bg, 4] = E[b]
Then, taking limit of (3.91) as £ — = we have,

E[i] = E[i]- E[U(D)]E[#] + E[b]
which yields,

E[U(D)IE[R] = E[b] (3.92)

Next we determine each of the quantities in (3.92). From the definition of

expectation, E[U(i)] is given by,
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E[U()] = 0-Pr[i=0]+1-Pr[i>0] = Pr[i>0] (3.93)

Now we determine E[b]. Let,

Tig(k) = Pr (a source is Off during slot k at the steady state)
71, (k) = Pr (a source is On during slot & at the steady state)
and also let,
Ty = kli_r)n“no(k) . T, = kli_r)nmnl(k)
From the definition given in Chapter 2 for the two-state Markov source, we have,

To+my =1
{no(l—ﬁ) = (l-a)

which gives us,

Ty = —-l;i— T, = _.]'_:.B__
07" 2_a-PB’ 17 2_a-B
Defining a = klim a, , then the expected number of On sources at the steady-state
—> co
is given by,
31 = - m(1-B)
Ela]l = mm; = TGP

The expected number of packets generated during a slot at the steady state is

given by,

Eb] = Ea] - F = ®1=B)f (3.94)

Next let us determine E[n]. An analysis similar to the derivation of E[E]

gives,
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E[n] = Pr (the channel is Good at the steady-state)

l-o

R - (3.95)
Substituting (3.93-3.95) into (3.92) results in,
Prii>0] = 2;:"”;(_15?35 (3.96)
So we have,
Pr [System is empty] = p(0, 0, 0) + p(0, 1, 0)
= Pr[i=0] = 1 - Pr{i>0]
—1_2-Y-c m( —-B)f
-0 2-B-«
which results in,
p(0,0,0)+p(0, 1,0) = 1-2=Y=0 m(L-B)f (3.97)

l-o 2-B-a
Thus (3.87) together with (3.97) gives us two equations that we may use to deter-

mine the unknown probabilities p(0, 0,0) and p(0, 1, 0), which result in,

_ -y m(-BU-y)f

p(0,0,0) = oyl ey e (3.98a)
_ l-oc m(1-B)f

p(0,1,0) = 5" B2 (3.98b)

The above completes the derivation of the PGF of the queue length. Since we are
dealing with a single-server system, also from the definition of the utilization factor

p (traffic load), we have,

Pr[i>0] =Pr [System is busy] = p
thus,

_2-y-0 m(1-B)f

P="T_¢ 2-B-o (3.99)
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3.4.2 Steady-State Mean of the Queue Length

Let N denote the steady-state mean of the queue length. By differentiating the
equation (3.81) with respect to z and substituting z =1 in the resulting expression,

we obtain the average queue length as,

= ., B S”(l) ,
N =P (Z)IZ=1 = m‘l’M(l) (3.100)

The only unknown in (3.100) is §”(1). Differentiate $”(z) further from (3.84) and

have,
), dhy di,  dry, dPhg
“(z) = -1)| =2 2 M o 2 8 .101
S7(2) m(m 1)[ dz] +m pra +m 2 + 12 (3.101)
Substituting z=1in (3.101),
2 = 2 27
S”(1) = m(m—l)[ii_}\_? ] | I/ IR Y B oy
dZ z=1 dZ z=1 dZ z=1 dz2 z=1 de z=1

Substituting (3.49b), (3.50b), (3.53) and (3.54) in the above we have,

m(m—1)(1 ~B)3(H)? , 2m(1 —o)(1-B) (o +B-1)(H)?  m(1-B)f(1)

S = T TRy (2-a-B)? 2-a-
m(1-B)1-Y)f _,2(1-y)(1-o)y+c-1)
te-a-pa—y-o " 27-0) (3.102)

From (3.86a) and (3.86b) we have S’(1) and M’(1), together with (3.102)

we will be able to determine the steady-state mean of the queue length N .
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3.4.3 Steady-State Mean of Packet Delay
From Little’s result, the mean packet delay in the number of slots is given by,

N _N@2-c-§) (3.103)
E[b] m(1-B)f

(NN

3.4.4 Steady-State Analysis of the Number of On Sources

In this section we will determine the steady-state distribution of the number of On

sources.
Let A(y) denotes the marginal PGF of the number of On sources,
AY) = &y, o, o (3.104)

Substituting Q(z, r, y) from (3.70) we have,

- { m-—i C C
A) = [(1-0)p(0,0,0)+1p(0, 1,0)I(z= 1) T (T)(C1dy)'(Ch) [ 3 :,_,.-]
i=0 z=Ahy A3 z—AAy A

z=1lLr=1

(3.105)

In Section 3.2.1.3, we have obtained the following results in (3.45) and

(3.47),
Cil,ep,er = “;_Bz,fig”, A 1-;;(3_—{36»
C3lz=1,r=1 =0, C4lz=l,r=1 =1,
Kllz:l,r:l = o+f-1, AZ’z:l,r:l =1
X3lz=1,r=l =Y+o-1, X“lz:l,r:l =1
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In A(y), since we have a factor of (z— 1), when we substitute z = 1, all the

terms under the summation in (3.77) become zero except for i = 0, thus,

A®y) = [(1-0)p(0,0,0) +vp(0, 1,0)](z~ 1)(CA,)™ — + —
A3 z-AJhs

z=1,r=1
Also since G| Lt = 0, we note that the term with C; disappears and it
z=1,r=
resuits in,
Cy
A®y) = [(1-06)p(0,0,0) +7p(0, 1,0)](z— L)(Cyhp)"——— (3.106)
z=1lr=1
Since Am2X4| . L= 1 , direct substitution results indeterminacy in the form of
z=1,r=

0/0, thus we have to apply LHopitals’ rule in (3.106),

[(1-0)p(0, 1, 0) +Yp(0, 1, 0))(C,2,)"C,

dA
l-m A-z 1_7‘2 4_l;ldz4

A(y) =

z=1l,r=1

[(1-5)p(0, 0, 0) +yp(O, 1, 0)](z— 1)[m(c2A2)m lc4(xzd—+c2d \+(c2x2)m ]

di
Lem A'2 l}“zl“_l‘?d_;

+

z=1l,r=1
The second term in the above goes to zero as z— 1. Substituting S$’(z) from
(3.84) in the denominator of the first term gives,

[(1-0)p(0,0,0) +vp(0, 1,0)I(C,A;)"C,

Ay) = 1-5@

z=1r=1

since le =1,C, = 1 as given above, we have,

z=1Lr=1 z=1r=1

[(1-0)p(0,0,0)+Yp(0, LOXC,| _, )"
A(y) = 1-5°(1)
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since 1-S5°(1) = (1-0)p(0,0,0) +Yp(0, 1,0) from (3.83), A(y) is further simpli-
fied to,

A = (G| _ ., )"

Finally, substituting the value of C2| . presented above gives the steady-

z=1l,r=

state distribution of the number of On-sources as,

AQY) = [Zi;‘_"_ 5+ 2y(—1a—-61)3] = 1y +m,yIm (3.107)

l-o 1-B

where, Ty = T, =

T 2-a-B’
Therefore, in steady-state, the number of On-sources follows a Binomial

distribution with mean mm;. Since each source generates, on the average, f

packets per On slot, then the average number of packet arrivals during a slot

(packet arrival rate) is given by,

This conforms with equation (3.94), thus provides a further proof on the correct-

ness of the functional equation we have obtained earlier.

3.4.5 Steady-State Analysis of the State of the Channel

In this section we will determine the steady-state distribution of the state of the

channel.

Let B(r) denotes the marginal PGF of the state of the channel, then,

B(r) = Q(z, 1, y)| (3.108)

z=1,y=1
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Substituting Q(z, r, y) from (3.70) we have,

“ 3 m—i C C.
B(r) = [(1-0)p(0,0,0) +Yp(0, 1,0)](z— 1) Z(’;‘)(clxl)r(czxz) [ JL"AE'"X + x"x;:"‘"ij
Z—N 3 Z—Aq

i=0 z=1l,y=1
(3.109)
From equation (3.45) and (3.48) in Section 3.3.1, we have obtained,
Cllz:[,y.—.l = O’ C2|z=1,y=1 = 1
- d-7)(r-1) _{d-v)+r(l1-o0)
C3lz=l,y=1 - 2-y-o0 '’ C4|z=1,y=1 2-y-o0
Allz:l,y:l =a+pB-1, x2|z=1,y=l =1
A3|z=l,y=1 = Y+o-—1' )\""z:l,y:l = 1

Similar to the derivation of A(y), in B(r) all the terms under the summation

in (3.109) become zero except for i = 0, thus we can simplify B(r) as,

Cs C,
B(r) = [(1-0)p(0,0,0) +vp(0, 1,0)1(z— 1)(CrA,)™ — + —

z=Ly=1
Since )»"'2}:3| . L 1, the term with C, disappears and results in,
Z=1,y=
Cy
B(r) = [(1-0)p.(0,0,0) +Yp(0, 1,0)](z— 1)(CoA))"———= (3.110)
— A2

z Ay

z=1,y=1
Since )\’"qul L= 1 , direct substitution will result in the form of 0/0, thus we
z=

have to apply LHopitals’ rule again to the equation (3.110) and have,
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B(ry = [(1=0)2(0,0,0)+%p(0, 1, ONC,A)"C,|

m—Idlz" mdxd
1-mi, 7214—}\-2—4,; e=ly=1
dc d dc
[(1-05)p(0,0,0) +vp(0, 1,0)1(z— l)[m(Czl.z)’"- lq(xzd_zz + ngtz) + (Czlz)""gf]

B “19h  mdAs
1-mAy ™' 2R g
dz }‘7 dz z=Ly=1

The second term in the above goes to zero as z— 1. Substituting S’(z) from
(3.84) in the denominator of the first term gives,

B(r) = [(1-0)p(0,0, 0} +vp(0, 1, 0)}(C;A,)™C,

1-5(2) z=1,y=1
since Azl =1, C, = 1 as given above, we have
.z=1,y=1 z:l,y:l
[(1-0)p(0,0,0) +¥p(0, 1,O)IC,| _
B(r) = Pa) .y (8.111)
but 1 -S7(1) = (1-0)p(0,0,0)+yp(0, 1,0), and substituting
C4, = 1=y+r(1-0) given above into (3.111) we obtain the steady-
z=1Ly=1 2—-y-0

state distribution of the state of the channel as,

B(r) = Y ,(1-0) (3.112)

2-y-06 2-y-o0

Therefore, in the steady-state, the state of the channel follows a Bernoulli

1-0o

T-v—o which is the mean time that the channel is in

distribution with mean

Good state. This conforms with (3.95), and provides again another proof on the

correctness of our analysis.

We note that the case of y = 1 corresponds to the channel that is always
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Good. This is the case that has been analyzed in [44, 45], and the results
obtained in this thesis reduce to those of [44, 45]. This provides some assurance
that the foregoing analysis is correct. Of course this is a necessary but not suffi-

cient condition for the correctness of the foregoing analysis.

3.4.6 Autocovariance of the Channel State vs. Performance

From Figure 2.2, the transition probability matrix for the channel state n, can be

set up as,

P = Poo Po1| _ [ o 1—0] (3.113)
Pio P11 l-y ¥

It is possible to show that [48],

k
Pre . l-vl-0 (y#o-1) Jl-c0o-11 (311
2-Y=0 |[1-y1-o| 2-Y-C |y-11-y
thus,
imP*= —L .|l-v1l-0 (3.115)
k—>oo 2-Y-0 |-y 1l-0o
Equation (3.115) results in,
Pr [channel state n, =1 at the steady state]
. l1-0
= limPn,=1] = ——2 3.11
Paiel (e =11 2-y-0 &118)

which is the same as (3.95).
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The autocovariance of the state of the channel », can be expressed as,
R (i) = El(ng—Elm ) (npy - Elng ;D]

= Elmgny - E[n]

l1-c 2
= Pln =L, ;=1] -(2—_;_—6)

1-c \?
= P[nk= 1]P[nk+i= 1/nk= 1]—(m

Since (3.114) and (3.116), the autocovariance of the state of the channel at the

steady-state is,

2-y-0 |2-y-0 2-y-0
_1-na-0)(y+o-1) (3.117)
2-y-0)?

We note that if the probability of the channel being in Good state

Pln, = 1]= z_i%gg is given, zi—;z—c can be found. Also in reality, it is not prac-

tical that y and o are smaller than 0.5, thus we can see from (3.117) that
wheny + o6 > 1, the narrower the autocovariance R(i), the smaller the value of ¢
(or v), and if we consider the frequency domain, a narrower autocovariance

implies a wider power density spectrum.

In Section 3.4.2 we obtained the steady-state mean queue length, which is

repeated here as,
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N==—3U0 a1 (3.118)

2(1-57(1))
where,
sy - mf(1—B) Ly
S(1) = B i (3.119a)
, _ [f1-B) , FA-B)d-a-B)], (1-y)(1-Y-0)
M(l)—m[z_a_ﬁ+ G py ]+ = (3.119b)
s7(1y = Mm=1)(=BY(F)?  2m(1-)(1 -B)(a+B - 1)(HH? m(1-B)f (1)
(2-o-PB)? 2-a-PB)3 2-0—-PB
m(1-B)Y1-Y)f _ 2(0-y)(1-o0)y+o-1)
Z-a-B)Z2-v-0) 2-7-0)? (3.119¢)

l-oc 1-vy

3 y-06'2-y-05" S’(1) as well as all

We note under given m, £, f*(1),e.B and

the terms except the last term in M’(1) and $”(1) are also given. It is possible to
show that N can be expressed as,

N = A+(1—Y)(l—0')(Y+0—§)+B+(1—Y)(1—Y;0) (3.120)
(L-S(1)(2-y-0) (2-y-0)

where A and B are unchanged terms,

m(m~1)(1-B)*(f)*  2m(1-o)(1-B)(c+P— D(H)? , m(1-B)f(1)
(2-a-B)? (2-a-B)? 2-o—B

m(1-B)1-v)f ,
+(2_a_6)(2_y_6)]/[2(1 ~57(1))]

A=

_ [f-B)  fFA-B)d-o-B)
B_m[Z—OL—B+ (2-a-B)2 ]

according to (3.118) and (3.119). Further we may define x and y which are

unchanged terms,
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mfl-B) ,_ _1-0_ (3.121)

*= 2—o—-B° 2-y-o

Thus (3.120) can be written as,

Voo o4 2=y yto-1 5 . o y+o-1

N=A+ - 2—Y—0+B (1-y) 2—v—o

_ _y)- (2 _q1).¥Y+o-1

=A+B+(1-y) (y_x 1) T—v—o

—A+p+Y*to-l x(1-y) 3.122)

2-Yy-0 y-—x
Under condition that the traffic load p = §< 1, we have,

X(l—y)>0
y—x

From (3.122) we see that when vy +o6 > 1, since x(1-y) >0, A and B are given,
the smaller the value of o (or v), the smaller the queue length N .

We have concluded earlier on that when y + 6 > 1, the smaller the value of

¢ (or y ), the wider the power density spectrum.Thus from the above analysis we

can conclude that the wider the power density spectrum, the smaller the value of

G (ory ), the smaller the queue length N, which means a better performance.
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Chapter 4

Numerical Results

In this section we present some numerical examples regarding the results of this
thesis. The objective is to study the effect of different wireless link error character-

istics on the behavior of ATM multiplexing system.

The different wireless channel characteristics are represented by the
parameters y and o, where 1 —y and 1- o are the probability of transition from
Good to Bad state and the probability of transition from Bad to Good state for the
channel at the end of each time slot, respectively. In the following, the mean time
that the channel spends in Good and Bad states will also be referred as mean
good duration and mean fade duration for the wireless link respectively. We
assume that T is the length of a time slot corresponding to the transmission time
of one ATM cell (53 bytes), thus the mean good and fade durations can be
expressed as T/(1-vy) and T/(1 - o). Similarly, since the binary Markov source

has been chosen as the model of input traffic, different traffic characteristics have

been represented by different values of parameters o and 8, and the mean dura-

82



tions of a source being in On state and Off state are T/(1-o) and T/(1-B),

respectively. It is also assumed that each On source generates a single packet
during a slot, i.e., f(z) = z.

First we consider voice traffic (Figures 4.1 - 4.8). We choose the mean talk

spurt as 1.32s and silence spurt as 1.82s [49]. Now we need to match these val-
ues to parameters o and B.

We assume that an active voice source generates information at the rate of
64 kbits/s. Thus during a talkspurt a voice source generates a total of
64 x 1.32 = 84.48 kbits, which is equivalent to 220 ATM cells. Since ATM is a very
high speed network, clearly, a voice source does not generate enough information
to fill a cell every slot. However, the presented analysis assumes that an On
source generates at least a single cell every slot. Therefore, we will assume that a
voice source generates on average 220 ATM cells consecutively and then it
spends the remaining time in a cycle in the Off period. As a result, a voice source
will spend on average 220 - T seconds in On period, and (1.82 + 1.32-220-T)
seconds in Off period. Since the modeled ATM muitiplexer will experience the

same load as the one in practice, we expect that it will give close results.

T _9.T => o = 0.995454
-

T

= 3.14-220-T
1-B

Thus we determine a = 0.995454 and different B’s for different transmis-
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sion rates.

In Figures 4.1 - 4.5, we plot the steady-state mean of the queue length in
number of packets as a function of the number of sources m, with mean fade and
mean good durations as parameters. As may be seen, for the same number of
sources, different mean queue lengths are obtained for different wireless link error
rates. From Figures 4.1, 4.2, as the mean fade period increases from 1ms to
20ms, the corresponding steady-state mean of the queue length also increases.
This is expected, since the longer the fade duration, the longer that the channel is

in Bad state, during which the queue builds up.

In Figures 4.3 - 4.5, we observe the effect of transmission rate on the
queue length for two error characteristics. In Figure 4.3, we have three sets of
curves for transmission rates of 800kbps, 2Mbps and 5Mbps, which are relatively
low. We see that, for a given transmission rate, the mean queue length varies little
with mean fade and mean good durations when we keep their ratio constant. On
the other hand., as the transmission rate increases the mean queue length drops
down for a given number of sources and constant mean good to fade duration
ratio. Figure 4.4, 4.5 give the results for transmission rates of 10Mbps and
100Mbps, respectively, which are higher rates than those in Figure 4.3. We see
that even though we keep the mean fade to mean good duration ratio constant, as
the fade duration increases, the mean queue length increases. This reflects the
fact that for the higher transmission rate, during the fade periods, the queue builds

up faster than for the lower rates case under the same traffic load.

Also in Figure 4.4, since the ratio of mean fade and mean good durations is
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given, which means that at the steady state, the probability that the channel is in
Good (or Bad) state is given. Figure 4.4A shows the channel autocovariance for
the two error characteristics in Figure 4.4, and the corresponding power density
spectrums for channel state are showed in Figure 4.4B and Figure 4.4C. We note
that the performance is better (when ¢ = 0.9576, the queue length is smaller) for
a wider power density spectrum (the curve in Figure 4.4C when ¢ = 0.9576),
which is equivalent to a narrower autocovariance (the curve in Figure 4.4A when

o = 0.9576). This result conforms with the conclusion obtained in Section 3.4.6.

Table 3: Number of users (m ) the system can accommodate
under fixed mean delay of d = 200ms (0. = 0.995454)

Mean Fade | Mean Good B m
lms 10ms 0.9998255 24
lms 10ms 0.9999315 61
lms 10ms 0.9999728 153

10ms 100ms 0.9998255 24
10ms 100ms 0.9999315 60
10ms 100ms 0.9999728 152

Figures 4.6, 4.7 present the mean packet delay in number of time slots as a
function of the traffic load p , with the number of sources in the system, m, as
parameter. In Figure 4.6 the results are given for the mean fade duration of 1ms,
mean good duration of 10 ms, and the number of sources, m =- 2,5,10 and 100. As
may be seen, for any given load, an increase in m leads to a rise in the mean

packet delay. We note that under given channel error characteristic, if we have
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QoS requirement in terms of delay constraint, we can determine how many users
the system can accommodate in order to meet the performance requirement, as

shown in Table 3, for example.

In Figure 4.7, the results are given for the mean good duration of 100ms,
mean fade durations of Ims and 10ms, and the number of sources, m = 2 and 20.
For each value of m , two mean delay curves have been plotted, which correspond
to mean good to mean fade duration ratios of 100 and 10 respectively. It is
observed that as the ratio decreases the mean delay curves shift upwards. The

magnitude of the shift appears to be independent of the number of sources in the

system.

From Figures 4.1 - 4.7, we also note that under heavy loading, there is a
sharp increase in the mean queue length and the mean packet delay. This is the
reason why we did not keep the part of the curves corresponding to loads higher

than 0.8.

Figure 4.8 presents the approximate probabilities of buffer overflow under
different buffer sizes. These probabilities correspond to the probabilities that the
queue length will be greater than the chosen buffer size in the infinite queue
length system that we have studied. This gives an upper bound to the correspond-
ing finite buffer size system. As expected, for any given level of traffic, the proba-
bility of overflow decreases as the fade length decreases. Unfortunately, because
of the finite precision problems we could not obtain probabilities of buffer overflow

for systems with larger buffer sizes.
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Figures 4.9 - 4.13 correspond to video input traffic. We have used the video
source model from [19], which consists of the superposition of a number of ‘mini-
sources’, where each mini-source consists of independent and identical On/Off
sources. The number of mini-sources required for a good approximation of a video
source was found experimentally to be 20 [19]. Based on these assumptions, we
determine a = 0.99873445 and we use different value of B’s for different trans-
mission rates. From Figures 4.9 - 4.13 we obtain conclusions for the video traffic

similar to those for voice traffic.

Figures 4.14 - 4.19 correspond to data traffic. The source parameter values
are chosen from Table 2 in Chapter 1. We chose the mean burst length in number
of cells as 200, and the a\./erage cell arrival rate as 700 kbits/s. This results in
o = 0.995 and again we use different values of B’s for different transmission
rates. From the Figures 4.14 - 4.19 we obtain conclusions for the data traffic simi-

lar to those for the voice and video traffic.
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Figure 4.1 Steady-state mean of the queue length versus the number of sources,

m, when the mean good duration = 200ms, voice traffic.
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Figure 4.2 Steady-state mean of the queue length versus the number of sources,

m, when the mean good duration = 100ms, voice traffic.
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Figure 4.3 Steady-state mean of the queue length versus the number of sources,
m, under different transmission rates for two error characteristics,

voice traffic.
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Figure 4.4 Steady-state mean of the queue length versus the number of sources,
m, when transmission rate = 10Mbps for two error characteristics,

voice traffic.
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Figure 4.4A The autocovariance of the channel state corresponding to the two

error characteristics in Figure 4.4.
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Figure 4.4B The corresponding power density spectrum of the channel
autocovariance in Figure 4.4A when ¢=0.99788
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Figure 4.4C The corresponding power density spectrum of the channel
autocovariance in Figure 4.4A when 6=0.9576
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Figure 4.5 Steady-state mean of the queue length versus the number of sources,
m, when transmission rate = 100Mbps for two error characteristics,

voice traffic.
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Figure 4.6 Mean packet delay in number of slots versus traffic load with different

number of sources, under certain channel error condition, voice traffic.
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Figure 4.7 Mean packet delay in number of slots versus traffic load with different

number of sources, under different channel error conditions, voice

traffic.

96



Probability of Overflow

0.07 T T —T T T T ~T

0.065[. -
A
\ -
0.06 L\ o = 0.995454, mean good = 1s .
VO - meanfade = 1ms
LAy v -. mean fade =2ms |
0055 NN N -- mean fade = 5ms
NN ... mean fade = 10ms
0.05}
0.045
0.041
0.035
0.03f
0.025 -
0.02 1 A 1 I 1 | y
0 10 20 30 40 50 60 70

Buffer Size
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m, when the mean good duration = 200ms, video traffic.
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Figure 4.10 Steady-state mean of the queue length versus the number of sources,

m, when the mean good duration = 100ms, video traffic.
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Figure 4.12 Mean packet delay in number of slots versus traffic load with different

number of sources, under certain channel error condition,video traffic.
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Figure 4.13 Mean packet delay in number of slots versus traffic load with different
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Figure 4.14 Steady-state mean of the queue length versus the number of

sources, m, when the mean good duration = 200ms, data traffic

103



1200 T T T T T T T T T
1000 -
Mean Length | Legend
Fade | Good
20ms [100ms| —
g 800F 10ms | 100ms | —— ]
§ 5ms | 100ms | ——.—
g 1ms 100ms .........
o]
3
O 600
(0]
£
k]
g
3+
(]
=

400

200

Figure 4.15

4 5 6 7 8 9 10
Number of the Sources, m

Steady-state mean of the queue length versus the number of

sources, m, when the mean good duration = 100ms, data traffic

104



600 LB T T I L i T T T

500
Mean Length | Legend
Fade | Good
20ms | 200ms

400 ims | 10ms| —-——

Mean of the Queue Length
&
o

N
o
(=)

100

0 1 2 3 4 5 6 7 8 9
Number of the Sources, m

Figure 4.16 Steady-state mean of the queue length versus the number of
sources, m, when transmission rate = 10Mbps for two error
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Figure 4.17 Steady-state mean of the queue length versus the number of
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number of sources, under certain channel error condition, data traffic.
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Chapter 5

Conclusion

In this thesis, we have studied the effects of wireless channel errors on the ATM
multiplexing system by presenting a discrete-time queuing analysis of the consid-
ered wireless ATM system with a two-state Markov channel and a correlated
arrival process, which consists of the superposition of independent binary Markov

On/Off sources.

In the analysis, we focused on the combined effects of the arrival and
channel statistics on the discrete-time queuing performance. Through some math-
ematical manipulations we rewrote the joint probability generating function (PGF)
of the system into a suitable form that lends itself to a solution. Then took trans-
form with respect to discrete-time, and applied the final value theorem to extract
the steady-state joint PGF of the buffer occupancy distribution, the number of the
On sources and the state of the channel. After this, the expressions for some
steady-state performance measures, such as mean queue length and mean

packet delay were derived with ease.

The numerical results have shown that the channel error characteristics

have substantial effect on the steady-state mean queue length and mean packet
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delay. Furthermore, when the transmission rate is higher, the channel errors have
more effect on the queuing behavior. For a given transmission rate which is not
very high, the mean queue length varies little with mean fade and mean good
durations when we keep their ratio constant. On the other hand, at high transmis-
sion rate for a given mean good and fade durations ratio, the performance is better
for a wider power density spectrum of the number of slots the channel spends in

Good and Bad states, which is equivalent to a narrower autocovariance.

We also conclude that when the number of sources is large, the channel
errors affect the performance more under a given traffic load. From this result we
note that under a given channel error characteristic, if we have QoS requirement
in terms of delay constraint, we can determine how many users the system can

accommodate in order to meet the performance requirement.
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