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Abstract

On The Principle of MINQUE For The Estimation
of

Variance And Covariance Components

Prosanta Kumar Mondal

In this thesis, we describe the method of MINQUE (C. R. Rao (1970)) and its various
generalizations (C. R. Rao (1971, 1972), Chaubey (1977), P. S. R. S. Rao and Chaubey
(1978)). This method can be used if some information about the variance components is
available in the form of an a priori guess. Chaubey (1977) outlines the extension for
estimating the elements of a covariance matrix using this principle. The method extends
easily for the case when no a priori guess of the covariance matrix is assumed. However,
for incorporating the a priori guess for estimating the distinct elements of a covariance
matrix, we may need to consider a related but different minimization problem, whose
solution is provided. A special case of the general model is considered for the numerical

tllustration.
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Chapter 1

Introduction

1.1. General Introduction.

In the usual analysis of variance model, interest lies mainly in estimating (and testing
hypothesis about ) linear functions of the effects in the models. These effects are called fixed
effects, and the models containing these effects are called fixed effects models. There are,
however, situations where we have no interest in linear functions of effects but where, by the
nature of the data and their derivation, the prime interest concerning the effects are
variances. Effects of this nature are called random effects, and certain of the models
involving them are called random effects models. The variances associated with random
effects are called variance components. A linear model may involve some fixed effects and
some random effects. Such a model is called variance components model. The objective of
using such models is to estimate the variance components. A linear regression model with a
diagonal covariance matrix is a special case of the variance components model (described in
Chapter 3 ).

The general variance components model is given by

Y=XB+U&1+ -+ Uik (1.1.1)

where Y is an n-vector of observations, X is an (n x p) design matrix, B is a p-vector of
unknown parameters, U; is a given (n x ¢;) matrix and &; is a c;-vector such that

E(:) =0,D(i) =0Heixe; » i=1,2,.,k. and cov(&i,&) =0 i=+j

Let U= (U :--:U) and & = (&1 --- I &) then the model (1.1.1) can be written in a

compact form as

Y=XB+U§ (1.1.2)



From (1.1.2)

E(Y) = XB (1.1.3)

DY) = o3V +--- +02Vi (1.1.4)

where V; = U;U, . The parameters ¢, ..., o2, are called the variance components .

There is considerable literature on the subject of estimation of variance components in
linear models. Anscombe and Tukey (1963) suggested an unbiased variance estimator based
on residuals in the case of an additive two-way classification model with one-way variances,
but the estimates they obtained are sometimes negative. Mandel (1964) presented a variance
estimator for a general two-way model with one-way variances which was derived from a
generalization of the estimator of Anscombe and Tukey, and it is always nonnegative.
Hartley, Rao, and Kiefer (1969) presented an unbiased variance estimator which could be
used with only one unit per stratum. It was very similar to the estimator of Anscombe and
Tukey. The same special estimator was used by Duncan and Carroll (1962), discussed again
by Duncan (1966), and extended in new ways by Chew (1970). None of these authors
discussed optimality properties of their methods.

Rao (1970) introduced the method of minimum norm quadratic estimation
( MINQUE ) for regression models with heteroscedastic variances and later ( 1971a, 1971b,
1972 ) generalized it for variance and covariance components models. J.N.K. Rao (1971,
1973 ) has compared MINQUE and modified MINQUE ( which is just the average of the
squared residuals ) estimators of heteroscedastic variances with the usual sample variances in
the case of replicated data.

P. S. R. S. Rao and Chaubey (1978) considered some modifications of MINQUE and
gave generalizations. These authors made it possible to estimate the distinct elements of the
covariance matrix using similar methods as MINQUE in univariate as well as multivariate
situations. The novelty behind this method of MINQUE is that it lays down a new optimality

criterion of estimators and yields explicit estimators in complicated situations (cf. Rao, 1972



). Chaubey (1980b) used this method to estimate the variances and covariances arising from

an unbalanced regression with residuals having a covariance matrix of intraclass form.

1.2. Outline of the thesis.

C. R. Rao (1970) introduced the method of MINQUE and the principles for this method.
In Chapter 2 we discuss these principles. There is a major drawback of MINQUE that it may
give negative values for estimates of non-negative variances, this was noted by J. N. K. Rao
and Subrahmanium (1971), Hartley and Jayatillake (1971), J. N. K. Rao (1973), Horn, Horn
and Duncan (1975). Horn, Horn and Duncan (1975) proposed another method for a simple
replicated regression model and called it the Almost Unbiased Estimation ( AUE ). P.S.R.S.
Rao and Chaubey (1978) derived the AUE and the Average of Squared Residuals ( ASR )
through modifications of the MINQUE principles for the unequal variances in a linear
regression model. In Chapter 2 we discuss this ASR method and the related optimality
principle. In this chapter we also discuss MINQUE and MINQE using apriori weights for the
variance components model, called weighted MINQUE and MINQE.

P.S.R.S. Rao and Chaubey (1978) extended the principle of MINQUE for estimating the
distinct elements of a covariance matrix of a linear model. They showed that the arguments
involved in the principle of MINQUE for estimating the variance components can easily be
adapted for the above problem by decomposing the covariance matrix into its distinct
elements. They illustrated this technique by considering a specific model. The resulting
minimization problem is similar to that discussed in C. R. Rao (1971, 1972), however this
may not carry through in the weighted case, in general. In Chapter 3 we consider estimating
the elements of a covariance matrix in a covariance component model.

Chaubey (1980b) used the method of MINQUIE to estimate the variances and covariances
arising from an unbalanced regression with residuals having a covariance matrix of intraclass
form. In Chapter 4 we discuss intraclass correlation models and estimated weighted

MINQUE, MINQE from the data given in Wiorkowski (1975).



Chapter 2

Minimum Norm Quadratic Estimation in Variance
Components Model.

2.1. The Principles of MINQUE in Linear Models.

C.R. Rao (1971a) considered the estimation of a linear function of the variance

components
pi0} + -+ + pio (2.1.1)

by a quadratic function Y'AY of the random variable Y in (1.1.2). He developed the

following criteria for determinig the matrix A .

1. Invariance under translation of the f parameter:
Instead of B, consider y = 8 — B¢ as the unknown parameter, where By is fixed. Then the

model (1.1.2) becomes
Y—XBo =Xy + U& (2.1.2)
and the estimator of ) _pic? is
(Y = XBo)'A(Y - XBo). (2.13)

But (2.1.3) should have the same numerical value as Y'AY whatever B may be. In fact

(2.1.3) is
YAY - 2B,X AY + BoX AXBo. (2.1.4)
Thus (2.1.3) will have the same numerical value as Y’AY under the restriction

AX =0. (2.1.5)



2. Unbiasedness:

We can write

YAY = (XB + UE)'A(XP + UE)
= BXAXB+2B' X AUt + £' U AUE. (2.1.6)

Now by (2.1.5) we get
YAY = EUAUE 2.1.7)

in terms of the hypothetical vector variable &. Y'AY is an unbiased estimator of Y pic? for

E(YAY) = E(§ UAUE) = _ pict. (2.1.8)

But
E(YAY) = E(£'UAUE)
k
=Y E(&UAUE)
=1

k
=3 o {UAUE(EE) )
=1
k
- Z c?tr(U:-AUi>
=1

k
=3 o2rav.. 2.1.9)
=l
So, equation (2.1.8) becomes

k k
D GHIAV: = ) pic? (2.1.10)
=1

=]

which implies



trAV; = Di, i=1,2,------ k (2.1.11)

3. Minimum norm:
If the hypothetical variable £ were known, then a natural unbiased estimator of Zp;c?
would be
Bleigiv -+ Bhglr, = £'AL, 2.1.12)
where A = diag(Z-1,,.............. £1.,). But the proposed estimator is E'UAUE, and the
difference is
§'(UAU-A). (2.1.13)

Therefore, we would like to choose A such that the difference &'(U'AU — A)E be small.

Since & is unknown, equation (2.1.13) can be made small in some sense by minimizing
|vAU-A]. (2.1.14)

where [[.|| denotes the norm of a matrix. We may now state the principle of estimation as
follows. The quadratic form Y'AY is said to be the MINQUE (minimum norm quadratic

unbiased estimator) of 3, P;c} if the matrix A is determined such that [[U'AU~A|| isa

minimum subject to the conditions

AX =0 (2.1.15)
trAV: = pi, i=1,2, -k

We may choose the Euclidean norm
| UAU~A|? = i(U'AU - AYU'AU - A). (2.1.16)

Under the condition in (2.1.11), we get

k
rU'AUA = rAUAU" = trA Y, ELU UL
i=1



That is,
k -
trU'AUA = Z %trAV,—
=1

k
- pi
Ci
=1
= trAA (2.1.17)

and hence

tr(U'AU - A)Y(U'AU - A) = trU AUU'AU - 2trU' AUA + trAA
= trUAUU'AU — trAA
= rAVAV — trAA, (2.1.18)
where V= UU = 2; U:U; = Z; Vi. Since trAA does not involve A, the problem of
MINQUE reduces to minimizing tr(AVAV) subject to conditions (2.1.15). If V is

non-singular, then the solution of A is given by the following theorem.

Theorem 2.1 (C.R.Rao (1972)):

Let A be a symmetric matrix and V be a symmetric and invertible matrix. Then the

minimum of tr(AVAV) subject to the condition (2.1.15) is attained at

k
A =) LRVR, (2.1.19)
=

where

R=V-Qy = QyV-
Qv=I-Py
Py =Xx(X'vix) X' v

with A = (Ay,---,Ax)’ obtained from
SA=p

where p = (py, -+~ ,px)" and the (i,j)th element of S is tr( @V V:V-1QuV;).



The MINQUE of >_p;c?is

YAY = ) 4, QuVV,V'Qvy
=Y A ViV;V-le

= Z l,-uj

=A'u
= p'Slu, (2.1.20)
where e = QvY, uj = e V-'V;V-'eand u = (uy,------ ,ug)'. We can write
p'c =p'S'u, (2.1.21)

' 2 2, . .
where ¢ = (G, ---,0%) is a solution of

2.2. Principle of MINQE

P.S.R.S. Rao and Chaubey (1976) showed that the Average of Squared Residuals (ASR)
can be derived as a quadratic estimator for the case of the regression model through the
arguments of MINQUE by dropping the unbiasedness condition from this principle. Such a
principle can be called MINQE (minimum norm quadratic estimation). Thus Y’AY is the
MINQE of »  pic? where A is determined such that the trace in (2.1.16) is minimized
subject to the condition AX = 0. Again since A is given, this minimization is equivalent to
minimizing

tr(AVAV) — 2tr(U'AUA), 2.2.1)

subject to the condition AX = 0.



Theorem 2.2 (P. S. R. S. Rao and Chaubey):
Let A be a symmetric matrix and V be a symmetric and invertible matrix. Then the

minimum of tr(AVAV) — 2trAVAV subject to the condition AX = O is attained at
A = QLVIUAU' V-1 Qy.

Proof :

To prove the above theorem we have to minimize
® = tr(AVAV) — 2tr(U'AUA) - 2trMAX,

where M is a (p x n) matrix of Lagrange multipliers. Differentiating ® with respect to A and

equating the derivative to zero results
VAV = UAU' + —é—(XM+ M'X"). (2.2.2)

Since AX =0 < Q,AQv =A and Q,V-'X = VX — V-IX(X'V-'X)"X'V-1X =0. The
solution of A from (2.2.2) is A = Q,V-'UAU'V-'Qy. This proves Theorem 2.2. Therefore,
the MINQE of X" p;o? is

YAY = YQ,V-! UAU'V-'QyY
= 'V-IUAU V- le

k
=Y BLe'viuuiv-te
=l

k
=Y BLe'vivivte (2.2.3)
=1
and the MINQE of ¢? is
—_ ry-1y.y-1
o2 = iXTIZ_e' (2.2.4)



2.3. MINQUE and MINQE with a priori weights.
If some information about 62, in terms of their relative magnitudes, is available, it can be
incorporated in the model through reparameterization. Let A3, ------ ,AZ be a priori weights

reflecting the relative magnitudes of o%,---,c%. Thus the model (1.1.1) can be written as

Y=XB+ AT'U 1 + -+ A7 Ui
=XB +U.n (2.3.1)

where U, = (U;- @ ------ : Ug), Ui = A7'U;, i = Aiéi and
n'=(ny - im).

We discussed in Section 2.1 that C.R.Rao considered a quadratic form Y’AY as an
estimator of Zil pic? and that this quadratic form should be unbiased and invariant under
translations of the B parameter. From these two criteria we again get the following

conditions:

trAV; = p; i=1,2,---,k (2.3.2)

AX =0. (2.3.3)
The natural unbiased estimator in terms of 77 is
D Bhgisi = £ar = n'ATAATY, (2.3.4)

where

A = diag(Z-I,,------ £L1.) and A = diag(A7* e, -+ JAPL).

* Ck

Also the quadratic form Y'AY in terms of n using (2.1.7) is

Y'AY = g’ ATU'AUATY. (2.3.5)
Hence the problem of norm-minimization leads to minimization of

tr(AT(U'AU -~ A)AT)?, (2.3.6)

10



which can be written as

trAV. AV, — 2rAU. ATAATU. + trAAAA, 2.3.7)

-L
where U, = ATU = (A{2Uy-AgTUs) and V. = U.U, = X APV .

One may verify again that

trAU ATAATU, = trAAAA, (2.3.8)
because
k -
rAU.ATAATU, = trA Y BLAY,
=1
k -
= Z LA AV,
k
= ” Bi g4 (2.3.9)
=1 ¢
and
244
trAAAA = ZC,A_4 41 Z it (2.3.10)
=1
Therefore the expression in (2.3.7) becomes
trAV,AV. — trAAAA. (2.3.11)

Since A and A are given, the minimization of tr(AT(U'AU—A)AT)? is same as the
minimization of #rAV.AV.. The resulting estimator, known as weighted MINQUE, can be

given by using Theorem 2.1, as
p'es =Au=p'Siu, (2.3.12)

where (i,j)th element of S, is r(QyHV:HQOHV;) , QO =I1-XX'HX)"'X'H and
H=V!, uj=e'HV;He and e = QgY . Then the weighted MINQUE of ¢ is

11



o. =— S7lu.

To get the MINQE, we have to minimize the equation

® = trAV.AV. — 2rAU. ATAATU"..

In this case we get the solution of A from Theorem 2.2 as

A = OLHU.ATAATU.HQpy

k
= QH (Z %A#V.-)HQH.
=1

Thus the MINQE of 3¢ p:io? is

and that of c?is

k
YAY =Y Q'HH(Z %‘_’A:‘*V,-)HQHY
=1

k
=D BEAF e HViHe
=1
g e'HV;He
! ciA}

12
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(2.3.15)

(2.3.16)
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Chapter 3

Distinct Elements of a Covariance Matrix in
Covariance Components Model

3.1. Introduction

C.R.Rao (1971b, 1972) extended the principle of MINQUE to more general models

involving hypothetical variables with unknown covariances. He considered the model
Y= XB+U1§1+"'+UI¢§[¢, (3.1.1)

where Y,X and B are as described in model (1.1.1), U; is a given (n x g) matrix and &; is a
g- vector such that E(&;) = 0, E(&;, &) =0 forj =) andD(&) =2 , j=1,2,----- k.
To formulate the MINQUE procedure for model (3.1.1), C.R.Rao (1971b, 1972) assumed
that all the variances and covariances in ¥ are distinct. Thus this formulation can not be
adapted to model (3.1.2) when some of the variances and/or covariances are equal. Chaubey
(1977) considered a special case of the model (3.1.1) withk =1,g=n, Uy =, and &, = ¢

giving a non-homoscedastic linear model
Y=XB+¢. (3-1.2)

where E(e) = 0 and D(g) = £ . He showed that the principle of MINQE and MINQE is
adapted to this case by replacing 6? by a; and V; by T;. P.S.R.S. Rao and Chaubey (1978)
described the method of MINQUE and MINQE with a priori weights for the variance
components model and indicated that its adaptation goes through for estimating the

variances and covariances of a non-diagonal covariance matrix Z by decomposing it as
S=a T+ -~ +aqTy, (3.1.3)

where «a;.... a4 are d distinct elements of Z and T',.... T4 are (n x n) matrices having zeros and

unities as elements at the appropriate places. However, we note here that this may not hold

13



in general for the weighted case, and the solution is provided.

In the next section we show the adaptation of the principle of MINQUE (without any a
priori weights) for the estimation of the distinct elements «;....aqs of £ considering the

general model (3.1.1).

3.2. Unweighted MINQUE

Consider the model (3.1.1) , where
E(Y) = XP,

D(Y) = D(Ug) = UD(EU

T 0 0 U,
. ) 0 = 0 U,
= Uy - 1 Up) . 2
0 O z U
k
= Z U,-ZU,'-. 3.2.1)
=l
Let us consider € = U§, then we can write
D(e) = > UBU; (3.2.2)
J
and X as
d
=Yl i=12--d, (32.3)
i=l
where ay,...... ,aq are the d distinct elements of £ and T, ---, Ty are specific to the model.
The problem is to estimate the distinct elements a1, ------ ,aq. From (3.2.2), we can write

14



=Yy, (3.24)

where T7 = 3. U;T:U;.
To estimate «;, i = 1,2,---,d. , we may consider the estimation of a linear function

pi1a; + --- + paag of the elements a1, ---,aq4 by a quadratic function Y’ AY of the observation

vector Y.

To determine the matrix A , from the invariance principle under translations of the 8

parameter we get the condition
AX =0 3.2.5)
and from the principle of unbiasedness we get the condition
trAT} =p; ; i=1,---,d., (3.2.6)
as
k
E(rar) = 3 E(5UAUE)
=t
k
=2 (AU E(&8))
1
k d
= Z tr((/;A(f,) Z a;T;
=1 i=1
d 3
= Z a,-trA Z((/_;T,U,)
i=1 =1

d
= > aitrAT . (3.2.7)

=1

15



& T:&; is a natural unbiased estimator (NUE) of a;s; , where s; is the number of I’s in T ,

based on £; . Combining the information from all §;’s for j = 1,2,------ k, we get a NUE of

d
Zi=[ pil; as

d k k d
S elS s - Z;’-(Z %T")‘ff
=1 =l =l !

= &.B&;, (3.2.8)
where
2T; 0
po| 0 TET 0
0 0 22T

This follows because,

EJ,‘]'T,Z_,: 7= tr(T:X)
= a;s; +0.
Our proposed estimator is YAY = E'U'AUE. Thus we have to choose A such that the
difference 5'(U’ AU — B)& is minimized. This difference can be made small in some sense by
minimizing

|vAU-B] .

We may now state the principle of estimation as follows.

The quadratic form Y'AY = & U AUE is said to be a MINQUE (minimum norm quadratic
unbiased estimator) of 3 p:a; if the matrix A is determined such that | U'AU - B | isa
minimum subject to the conditions AX = 0 and tr(AT?) = pi,i=1,2,---,d.

In particular, with the Euclidean norm, the matrix A of the quadratic form Y'AY should be

determined by minimizing

16



|UAU-B|* = r(UAU-B)?

= tr(AUUAUU') — 2tr(U'AUB) + tr(B?).

We can show that tr(U'AUB) = tr(B?). To show this, note that

X 2
v (L)
=ky L tr(T’)-i-kZ P'Pf et
(ks: )2
By definition
T} = ZjZkT,-}k = 2% Tk = si,
and

0Ty = T 5% TsTir
= Zrstir:I}m-

But if T[r_y = 1 Py I}r_y = 0 fOI' i ij M hCnCC ErZsTirgI}r_\' = 0 and
2
mB?) = - > &

Si

Also

tr(U'AUB) = tr(AUBU")

- YU (3 Lr)y,
j 3
> %T(Z U,-T,-U,'.).

That is, we get

17
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(3.2.10)

(3.2.11)

(3.2.12)



tr(U'AUB) =Y -%trAT{
- B

since trAT? = p; . Using equations (3.2.11) and (3.2.12) we get
trU'AUB = trB?, (3.2.13)
hence
tr(UAU-B)* = r(AUUAUU') —tr(B?) = tr(AVAV) —tr(B?)  (3.2.14)

where V= UU = UU; =3 V..
Since #r(B?) does not involve A, the problem of MINQUE reduces to minimizing tr(AVAV)

subject to the conditions,

AX =0 (3.2.15)

trAT;) =p: ; i=1,---d. (3.2.16)

If V is non-singular, then the solution of A is obtained by Theorem 2.1 and thus the MINQUE

Pa

r for r = p'a, where @ = (ay,---,a4) is given by

r=2Au
= p' Wy, 3.2.17)

where the (i,/)th element of W is tr(QyV™'T;V'QvT}) and u; = ¢'V-'T; V~'e . Therefore

a=wlu (3.2.18)

18



3.3. Unweighted MINQE

To get the MINQE we are to minimize

® = tr(AVAV) — 2tr(U'AUB) (3.3.1)
subjectto AX = 0. The solution for A using Theorem 2.2 is
A = QyVUBU'V-Qy (33.2)
and
YAY = ¢'V'UBU'V-le. (3.3.3)
Now
=l 0 0 7
UBU' = (Uy © -} Us) 0 —’2— i 0 %
0 0 ¥ % ; o
= U[-}C-Z{:—:T,-U’[ + Uz%Z;L:T.-U’z TR +Uk7£-2%T;UL
-2 w(Z‘ LT) U;
J i
= Ly &> ()
i Jj
= L5T
(3.3.4)
Therefore

19



YAY = 1 > Be'viT vt

= % Z {;-;; (3.3.5)
where u; = e'V~'TtV-!e. Therefore the MINQE of r = 3 p;a; is given by
SRS
and that of a; is given by

i (3.3.7)

3.4. Weighted MINQUE

Let §; be a priori estimate of «;, then from Section 3.1 we have an a priori estimate of
D(¢)as 32, 8:T:= Aoand thatof D(¥) =3¢ &TF, j=1,2,.k
—L
Using the a priori estimate Ao, we consider the error terms 77; = Ay ? £ which should be

L L
more homogeneous. This gives U = U,n where U, = UA?, n = A«*& and

Ao O 0
0 Ag -~ O
Ac=| 0T T, (3.4.1)
0 O Ao
which gives
YAY = n'U AU, 1. (3.4.2)
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The natural unbiased estimator &'B & can be written as
L L
EBE=q'AZBAIn (3.4.3)
and we are led to minimize

y) 4 1)? i i -’I’- +\?
tr(U*AU* _AFBA? ) = AU ULAU.U.) + tr(A; BAZ )

L 1
_ 2tr( TBAZ U'*AU*) . (3.4.4)
L Ly2 L 1
But tr(As BAZ ) = tr(BA.)? and tr(AE BAZ ULAU*) — trBALU'AUA., hence
1 1\2
tr(ULA U. ~ ATBAZ ) — IH(AV.AV.) + tr(BA.)? — 2tr(BALU'AUA.),

3.4.5)

where V. = U.U.,. This can be simplified as
k
Ve =D UiAoUj
=l

k d
= Z U; Z 8:T:U;
U =l

d
=D &T; (3.4.6)

i=1

where T7 = ij=1 UiT.U; fori=1,2,---,d and j =1,2,------ k.
We have seen in the unweighted case that the product term #rAUA.BA.U'does not
appear in the minimization problem, however, for the weighted case, this may not hold,

because, in general
trAUABA.U' # tr(BA.L)? . 3.4.7)

We will see in Chapter 4, that the equality holds in the intraclass correlation model .

In (3.4.5), put UA.BA.U' = D, then minimize
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® = trAV,AV, — 2trAD, (3.4.8)

subject to the conditions

AX =0, (3.4.9)

tr(ATY) = p;  i=1,2,-----,d. (3.4.10)

This minimization problem is similar to that in Theorem 2.2 except that the extra
condition (given by Equation 3.4.10) for unbiasedness is also required. Hence, a new result

for this minimization problem is required. The following theorem provides the solution.

Theorem 3.1
Let A be a symmetric matrix and V. be a symmetric and invertible matrix, then the
minimum of (trAV.AV. — 2trAD), subject to the conditions (3.4.9),(3.4.10) is attained at
A = Qy, V'DV'Qv, + ZA;RT}R, (3.4.11)

where R = Q. V! = V'Ov., Qv. =I—-Py., Py. = XX'VX)"'X'V;! and

A= (11,...,Aq)" is determined from
W.l=p—gq, (3.4.12)

with Wy = tr(Qy, V' T VIIQv.T}).
A direct proof of this theorem using the method of Lagrange multipliers is as follows:
Minimizing the expression in (3.4.8) subject to the conditions (3.4.9), (3.4.10) is equivalent

to minimizing

@ = tr(AV.AV.) — 2tr(AD) =2, A;(tr(AT; — P;)) — 2r(MAX),  (3.4.13)

J

subject to the conditions in (3.4.9) and (3.4.10) where M is a (p x n) matrix of Lagrange
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multipliers. Differentiating ® with respect to A and equating the derivative to zero results in

the equation
V.AV. = D+ SA;TS + %(XM+M’X’). (3.4.14)
Now since AX = 0 QV.AQv. =Aand Q) V;'X = VX -
VIIX(X'ViiIX)~1X'V;!X = 0. The solution of A from (3.4.14) is
A = 0y VI'DVIQy, + Z4;Qy, VI T V' Qy.. (3.4.15)
Using (3.4.10) we have,

rQy VIIDVIQv. T +ZatrQy V' T} V' Qv T} = p:
=>Wil=p—gq,
where q; = trQy VI'DVIQv.Tr, A = (A1,---,42)' , p=(p1,---,ps)’ and the
(i.))th element of W, is tr(Q, V;'T; V' Qv, T}). This completes the proof.
Now the weighted MINQUE becomes
YAY = Y Q. VIDVIIQy.Y + A Y0y, VI‘T}‘VIle. Y

= e'V;IDVile + Z}Lje'V:lT;‘V:le

='V;'DV;le + ZAju;

=e'V;'DVle+ A'u, (3.4.16)
where e = Qv.Y, u;j = e'Vi'TrV'e and u' = (u;,...,uq) . Hence the weighted MINQUE
,7» for r = p'a is given by

Fo=€eVIDVile+A'u
=e'V;'DVile+ (p — q)' Wilu. (3.4.17)

3.5. Weighted MINQE

To get weighted MINQE we have to minimize equation (3.4.8) subject to the condition
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AX =0
This minimization is equevalent to minimizing
® =1tr(AV.AV,) - 2tr(AD). 3.5.1)

The solution for A is obtained from Theorem 2.2, i.e

A= Qy VDV Qy.. (3.5.2)
We get
D = UABAU'
Ao 0 - 0 Ao 0 - 0 '
: : 0 Ao - O 0 Ao -~ O :
SR C/EREETEE /5] I )| v
0 o Ao 0 0 Ao U,
k
= D UjAoBAoU;
i1
k d )
- 3o 3 £ v
=1 i=1
k d )
-3 3 femion o
=1 =1
That means
d -
D=1 &, (35.3)

=1

where T9 = ij:l UiAoT:AU; for i=1,2,---,d. Therefore, the weighted MINQE of

Zpia;is
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YAY = -2ELY Q) VIV Qv Y
= Lsiovinvite

k
= sp Ve liVee, (3.54)
and that of «a;is
aF = ks_L[e’V:ll‘,?V:‘e . (3.5.5)
In the unweighted case, i.e when
Ao =1,
then
tr(BA.)? = tr(BA U AU.A). 35.7)

However this may not hold in general except in some special cases (see P. S. R. S. Rao &

Chaubey (1978)).

In the next chapter, we consider X with an intraclass correlation structure and apply the

results obtained in this section.
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Chapter 4
Intraclass Correlation Model

4.1. Introduction

The intraclass correlation model is given by

Y=XB+e, 4.1.1)
where
E@) =0 4.1.2)
and
2
DY) =D(e) = = =D a:Tx (4.1.3)
=

This can be seen to be a special case (see Chaubey (1978)) of model (3.1.1) where
k= 1) Ul =I’an’ d=2
and

Tl = Inxn, TZ = E"‘Inxn,

where

1 1 1

1 1 1}
E= ]

1 1 1

nxn

Here T? =T;fori = 1,2 , hence

il
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2
Ve=Ao = Z&'Ti

=1

= 51T1 + 62T2
=6+ 52(E—[)
= (61— 82)I+6:E (4.1.4)
and
D =V.BV,, “4.1.5)

with given values of &, and 2 such that V., is non singular for

B=ELi+ B2 (E-1I)
= (BB B2 (4.1.6)

Now we verify that in the case of intraclass correlation models the expression in (3.4.7)

does not hold, i.e
tr(BV.)?* = trAV.BV.,. “4.1.7
From (4.1.4) and (4.1.6) we get

BV. = (81— 82) (5 - B2 )1+n8:B2E+ (61— 6,) BLE+ 6,(EL - 22)E

= a11+a2E,
(4.1.8)
where
= (61— 62) (‘?Tl - % 4.1.9)
and
—n& +(51— 52)L+ 52(L L
= (6,- 6:)E% o 52{%-&-(}1— 12z 2} (4.1.10)
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We get

(BV.)? = o+ a3E? + 2a1a2E
—alI+na E+2a1azE (4.1.11)

and

tr(BV.)? = na? + n2a? + 2na,as
= C15%+C25%+C125152. 4.1.12)

For the co-efficient of 6% in tr(BV.)? we get

o= n(B-B2) wn e By BE(BL - 22)

S 52

- npi _ 2npip> + 2 *p3 + np3 + 2np\p2 2np3
2 2
= —’-lp2—1+-p72(n2+n-—2n)
51 52
np? 2
- le 2Pz . (n?—n)
n (n* —n)
2 2
Pi P2
=m tT2 4.1.13
n (nl_n) ( )
The co-efficient of 83 in tr(BV.)? is
2 D3 2
cr=n(Bh-B) et B (B - 0B - (B o122} ]

e 5 (5 -8) -(‘s’%—%){%ﬂn—l)@—;}]
2
= Bluan®=2m) + Z-dnsn + (= 1) = 202 = 1) =2+ 200~ 1))
+ %{—2n+2n2(n— 1)-2n2+2n-2n(n—1) +2n)

= —2l—n(n— 1)+—§2i[—3n+n2{(n— 1)2=2(m—1)+1} +2n?]
2

+ %%(m3 —2n% —2n% —2n% + 2n + 2n),

ie
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2
-1+ i—g-{—Bn +n2(n—2)%+2n2) + BI82(2p3 _ 6p2 4 4n)

(4.1.14)

c2 = =) n(n 5152
p%(nn_ D * n2(np§ 1)? (Bn+n®—4n® +4n® +2n%) + 2;%;&("2 —3n+2)
_BHSD) (53 o 6+ —2PIP2_(n_ [)(n—2)
n*(n—1) n‘*(n—1)
_ P?f(’ln— 1 ., 21'11P2 (n—2) +(—p_21)—2(n —4n? +6n - 3)
= pl(nn—l) llpz(n 2)+(—2—T(n —3n+3).
The co-efficient of §,5> in tr(BV.)? is
Ciz = n{—Z(;LII- ) } 2n pz { +(n— 2
el 2 )+<s:—%>{f;—:+<n—l>%}]
= on[(BL-B2) + ZBL - MPR DLy (no1)B2Y)
Lr(5-52)- (L EACGRI

2 2 2
"P pip2 _ 2p3 | pipa P3
( ) S152 - s% + S152 +(n—1)—s%]

(l+n—n2+n— 2+n—1)+ﬁ;’;;(l—n+1+2—n—2):l

-+3n—2)—21’—‘-’9—2(n—1)]

2
P2
2
53
E_
2 S15
§5 192

= 2n|:;%l(n ~Dn-2)+ —B—E——zslls; (n— 1):|
- Zn[ pi(n—1)(n-2) + 2pipa(n—1) :l

n%(n-1)2 nxn(n-—1)
_o| PA(n=2)  2pip
‘2[ nn-1) * '112]‘

Now find trAV.BV, , we get
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where

Note that

Here

and

while

V.BV. =[ (81— 82)[+68,E]BV.

=a[(61 e 62)I+a2(61 - 52)E+a162E+a2 52E2
= 01(5[ — 52)[-*- {a2(51 - 52) +a152 + nae, 52}E
=[3[[+ﬁ2E

Bi=ai (61— 82)

ﬂz = a2(51 - 52) +a16> +na; 61.

trAT,

= trAl = p,

trAT> = trA(E—-1) = p,

= trAE = p| + p».

d

|
|
+

_rt

= Bip1 + (p1 +p2)B2
= d15%+d25%+d1261527
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Co-efficient of 8% in trAV,BV.,
=r (5 -5) reer (&

_Pwp2
52

2

22 Py
S hY
2 2

(4.1.16)

4.1.17)

(4.1.18)



d» = Co-efficient of 82 in trAV.BV.,
=pi (- ;" +(Pr+p) B2 -{BL+ (n-1)EE} -

( _np2 , np: J2 - ’!PZ]
52 S1 52 52
— g 2 2 2 P1 _npips +p1p2 P_%__i_ pip2
sl Si 52 S1 §2
npip2 np} + ’p1p2 _npip> Pz _pPip2 np3 +

Sz St 52 52 Sz S 52

2 2
2122 + P2 Pz _np; , npip2 + 2 2p3 __ hp5
Sz 52 S| 52 S2

=P_L;j(_w1+1—n+n2—n)+ﬂs‘;&(—1-1+n)+
p3 2 pt
F(l_”'*'“'l_""'" —n)+s—(—1+n)
2
= P2 (n2 3n42) + 222 (n—2) 4 Bh(n2 - ~3n+3)+EL(n-1)

=%(n—1)(n-2)+ﬂ,{’—2-(n-2)+

2
= Bl(n— 1)+ 2222y

p3 2 p}
-n—(-n_—l)-(n —3n+3)+—n—(n—l)

2
D3 2_
Y (n"—3n+3)

n(n
= C2.
4.1.19)
Finally
di2 = D1 co-efficient of 6,63 in ﬂl + (Pl +p2) co-efficient of ;65 in ﬁz
_ 1 2 2p2 1 P2
=p[2(5--E2) ]+ rep) -2 + {EL + (n- 1)L} +
(.ﬂ_ — PL) + f&
- 2P2 2p1pa pi npp2 P1P2 1P2
p[ ]— 52 +#+ 52 52 sl LL'*‘
1P2 2P2 + 2132 4+ P2 ”Pz 2 p2 Pz an
Sz 2 S1 52

= P_l(_2+1+1)+—l(—2+n—1—1+n)+£—§f—2(1+1)+
i

LP2(2-2+n-1-1+n)

p3 _ 2pip2 . pip2 _
————n( (2= 4) + 22 o DAL (o0~ 2)

2p3
" ey D

That means that
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diz = cia. (4.1.20)
Thus from equations (4.1.18), (4.1.19), (4.1.20) , we can say that
tr(BV.)? = trAV,BV,

and therefore using Theorem 2.1 we get the weighted MINQUE of p'a as

s
s
re=Au

=p'Z (4.1.21)

where the (i,j)th element of Z, Z;; = tr(Qy, V3'T;V;'Qv.T}) and u; = €'V;IT;V;!e.
Using Theorem 2.2 we get the weighted MINQE of Y_p;a; as

YAY = ¢'Be
= sp[&Lie 4.1.22
= PI[T] (4.1.22)
and the weighted MINQE of «; is
!
E_l: - e g;ie

4.2. Numerical Illustration
4.2.1. The Data and The Model

The following data is taken from Wiorkowski (1975) and is about the biological activity
of adenosine triphosphate (ATP) in red blood cells, measured in the parents and male
progeny of fourteen randomly selected families. The objective of this study was to find if the
ATP levels conformed to a simple genetic model which would be equivalent to the observed
trial being controlled by a large number of statistically independent loci, each making a

small additive contribution to the final observed level of ATP. The model used is given by,
yij = Bo + Bixii + Baxai + &4, (4.2.1)

J=L12,.,n; i=1,..,k where y; denotes the ATP level of the jth progeny in the ith
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family, x; denotes the ATP level of the father and x»; denotes that of the mother in the ith
family. Here, number of families, £ = 14. The observations in a family are supposed to have

an intraclass structure, i.e.
Z = o?[(1 - p) + pE] 4.2.1)

where p denotes the intraclass correlation coefficient. It is of interest to find if the intraclass
correlation coeeficient is zero and contribution of the mother and father is equal, i.e., we may
be interested in testing p =0 and B, = 0.5, 8, = 0.5. The data is provided in Table 4.1

below.

Table 4.1. Adenosine Tri Phosphate Activity Level

Family Father Mother Male Progeny
1 3.72 443 4.18 4.81

2 454 3.79 4.72

3 5.05 4.66 498 5.03 5.16

4 410 542 5.30 448 4.85

5 426 4.39 4.87 399 4.19 428 5.15
6 409 5.29 474 4.10

7 483 4.99 4.53 477 4.77

8 424 438 3.72 4.12

9 543 4.73 4.65 4.62

10 523 534 5.83 6.03

11 456 5.29 4.86 5.58 5.99

12 5.16 4.71 544 434 543

13 377 5.13 470 5.00 4.63

14 4.15 4.18 482 4.14
4.2.2. Calculations and Results

In the model above, the MINQUE and MINQE can be obtained with the parametrization

a; =o%a; =c?p
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as described in previous sections. We used SAS (Statistical Analysis System) IML
procedures for matrix computations. We confirm the numerical results obtained in Chaubey
(1980b). The covariance matrix of the estimators is obtained using the formulae given in
Chaubey (1980b). These are given in Table 4.2 and those for unweighted MINQE are given
in Table 4.3.

Table 4.2 Unweighted MINQUE and Their Estimated Covariance Matrix

[ @ [ 0217417 |
@ 0.0292862
Bo |=| 03929127
By 0.4084862
5 | 05343059 |
Bo [ 13861233 —0.115021 -0.179056 0 0 ]
| B ~0.115021 0.0272305 -0.001588 0 0
Cov| 55 |=| -0.179056 -0.001588 0.0387455 0 0
N 0 0 0 0.0031423 0.0012038
& 0 0 0 0.0012038 0.0024708 |

Table 4.3 Unweighted MINQE Their Estimated Covariance Matrix

@ | [ o.1951973 ]
73 0.000387
B |=| 03477224
B 0.4061869

| B2 | | os460642
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B | [ 10471448 008654 -0.135713 0 o |
R _0.08654 0.0203289 -0.001025 O 0
Cov| B |=| -0135713 -0.001025 00291933 0 0
a7 0 0 0 00023442 0.0002286
R I 0 0 00002286 0.0014362 |

To see the effect of weights, we use the above estimates as a priori weights in computing the

corresponding weighted estimators. These are given in Tables 4.4 and 4.5.

Table 4.4 Weighted MINQUE and Their Estimated Covatiance Matrix

(Weights @7, @3 )

ar [ 0.2171987
oz 0.0278557
Bo |=| 03905864
Bl 0.4083858
5 | 0.5348881 |
Bo [ 13747989 —0.114033 ~0.177639 0 0 ]
X B ~0.114033 0.0269847 -0.001562 0 0
Cov| B |=| -0.177639 -0.001562 0.03842490 0 0
it 0 0 0 0.0031094 0.0011334
a5 i 0 0 0 0.0011334 0.0024038 |
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Table 4.5 MINQE and their estimated variances and covariances (Weights @7, @37 )

r- /_M ] p— c—
% 0.1951973
—N—
a2 0.0003872
Bo =| 03477227
5T 0.4061869
o 0.5460641
B A ] re— —
Bo 1.0471463 —0.08654 -0.135713 0 0
B —0.08654 0.020329 -0.001025 0 0
Cov| -~ |=| -0.135713 -0.001025 0.0291933 0 0
—— 0 0 0 0.0023441 0.0002283
1
| L 0 0 0 0.0002283 0.0014355 |

4.3. Summary and Discussion

This thesis reviews the principle of MINQUE and MINQE for estimation of variance and
covariance components and fills in the gap by providing the solution in the weighted case in
general for estimating the distinct elements of a covaiance matrix with some a priori
information. The estimates are computed for a real example, which illustrates that the
substitution of proper quantities in the original MINQUE/MINQE principles without any
weights may provide the solution in some special cases.

This example also illustrates that the principle of MINQE and MINQUE present credible
alternatives to numerically cumbersome maximum likelihood method. In the computations
of Wiorkowski (1975), to have stable search for the maxima of the likelihood function, the
observations from family 5 had to be deleted. However, for MINQUE and MINQE, such

problems did not arise in the weighted and unweighted case. In the present example,
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weighted and unweighted estimators are not very different from each other. However, to see
the effects of weights, in general, it would be a good idea to consider iterative estimators by
using the new estimators as a priori values in the next iteration. The property of unbisedness

may be lost in this scheme and a thorough investigation may be necessary.
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