INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comner and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI






SOFTWARE REENGINEERING
SYSTEM VISUALIZER

ZUTONG SUN

A MAJOR REPORT
IN

THE DEPARTMENT
OF

COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

AUGUST 2000
© ZUTONG SUN, 2000



| Lg |

National Library
of Canada

Anqruisitions_ and
Bibliographic Services
385 Waellington Street

Ottawa ON K1A ON4
Canada

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4
Canada
Your fils Votre réidrence

Our Sle Notre rikirance

The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la

National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the ~ L’auteur conserve la propriété du
copyright in this thesis. Neither the  droit d’auteur qui protége cette these.
thesis nor substantial extracts from it  Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-59355-X

Canada



Abstract

Software Reengineering: System Visualizer

Zutong Sun

With recent advent of hardware accelerators for threc dimension graphics in appear, the
question of how to support them has become a hot topic. OpenGL, designed as a
streamlined, hardware-independent interface is the right choice for most graphics
programmer who could enjoy real interactive 3D images. In this major report, the author
applies the principles of software te-engineering to the System Visualizer and successfully
replaces the display module implemented by PEX with OpenGL. The new System Visualizer
still retains the original algorithm, data structures and the parser, but incorporates the
lighting, texture mapping, alpha blending, antialiasing, animation and hidden surface removal
into the display module which the original system missing. OpenGL enables the System
Visualizer run on both NT and X platform and removes the limitation of platform

dependence.

iii



Acknowledgements

I would like to express my deepest gratitude to my supervisor Dr. Peter
Grogono for his guidance and wvaluable insight throughout this work. His

encouragement and patience made this report possible.

I also thank the Computer Science staff for the help they offered over the
years. Special thanks to Ms. Halina Monkiewicz for her time and help during my

graduate studies.

This work is dedicated to my parents, my mother-in-law, my wife and my son

with great love and gratefulness.



Table of Contents

LIST OF FIGURES

1. INTRODUCTION

1.1. DEFINITION

1.2. PROGRAM UNDERSTANDING.

1.3. RESTRUCTURING

1.4. REVERSE ENGINEERING

2. REVIEW OF OPENGL

2.1. BAasic OPENGL OPERATION

2.2. CHARACTERISTIC

2.3. DETAILED DESCRIPTION OF OPENGL

2.4. INTRODUCTION TO THE SOFTWARE LIBRARIES

3. REVIEW OF KIM THANG VU’S THESIS

3.1. REQUIREMENTS OF SYSTEM VISUALIZER

3.2. DESIGN OF SYSTEM VISUALIZER

3.3. IMPLEMENTATION OF SYSTEM VISUALIZER

3.3.1. Data Structures

3.3.2. The parser

3.3.3. The display module

14
16
20
20
21
22

4. SYSTEM VISUALIZER DESIGN AND IMPLEMENTATION BY OPENGL...25

4.1. THE DIFFERENCE BETWEEN PEX AND OPENGL,

4.2. OVERALL DESIGN BY OPENGL

4.3. USER INTERFACE

4.4. DETAILED DESIGN, IMPLEMENT AND INTEGRATION PROCESS
4.4. EXTRA FEATURES.

5. CONCLUSION

25
27
27
29
33

36

5.1. SUMMARY
5.2 FUTURE WORK

REFERENCES

APPENDIX —-SYSTEM VISUALIZER SOURCE CODE

36
36

38
39

A.1. CREATE_TREE.H.

A.2. CREATE_TREE.C

A.3. TEXTURE.H

A4 VISUALIZER.C.

39
40
46
52



List of Figures

FIGURE 1. BLOCK DIAGRAM OF QPENGL 7
FIGURE 2. FLAT LINKED LIST DATA STRUCTURE 17
FIGURE 3. VISUALIZATION OF A SIMPLE TREE 19
FIGURE 4. COMPUTING THE LINE BETWEEN TWO SPHERES 19
FIGURE 5. AN EXAMPLE OF A TREE STRUCTURE WITH DUPLICATED SUBTREES .......cccceorunees 22

FIGURE 6. THE VISUALIZATION OF THE TREE STRUCTURE WITH DUPLICATED SUBTREES ....24
FIGURE 7. AN ILLUSTRATION OF THE USER INTERFACE 28




1. Introduction

Today, new developed software is evolving fast and maintaining aging software
systems that are constructed to run on a variety of hardware types is becoming a critical task
for many organizations. Some of the aging software is programmed in obsolete languages,
and suffers from the disorganization that results from prolonged maintenance. As software

ages, the task of maintaining it becomes more complex and more expensive.

1.1. Definition

Software Reengineering is the right way to solve the above problems. Software
reengineering is the process of understanding existing software and improving it,
reconstituting it in a new form and the subsequent implementation of the new form.
Software Reengineering can increase or enhance software system functionality, better
maintainability, configurability, and reusability. The process involves recovering existing

software artifacts and organizing them as a basis for future evolution of the software system.

1.2. Program understanding

This definition divides software reengineering into two sets of activities. The first set
of activities are supporting program understanding, such as reverse engineering, so as to
understanding the cxisting system. The second set of activities include full restructuring

using new specification and knowledge of the old system obtained from reverse engineering.

Better understanding of a program could help to perform corrective maintenance,
reenginecr, and keep documentation up to date. In order to minimize the likelihood of errors

introduced during the subsequent change process, the software enginecr must understand



the system sufficiently well so that changes made to the source code have predictable
consequences. The difficulty is to recover a legacy system after many years of operation.
Usually, there are three actions that can be taken to understand a program: read
documentation; read source codes; and run the program. The requirements and architectural
design can be examined by carefully analysis of existing documentation, the source code is
usually the primary source of information, but observing the dynamic behavior of an
executing program is very useful to improve understanding by shbwing up program

characteristics that cannot be achieved from reading the source code alone.

The strategies for program understanding can be divided into top-down and bottom-
up interactive processes. Bottom-up strategy constructs mappings from the implementation
domain to the problem domain; software components with similar or related attributes or
properties are aggregated to form higher-level conceptual subsystems. Bottom-up strategy is
particularly suited for redocumentation purposes and portfolio analyses. Top-down strategy
constructs mappings starting from the application domain and moving towards the
implementation domain. There may be several intermediate levels of representation, top-
down strategy is suited for goal-directed program understanding (e.g., for a given

maintenance task).

1.3. Restructuring

Software restructuring is transformation of the system from one representation to
another at the same relative abstraction level [Arnold 1993]. In this process, the system's
functionality and semantics is preserved. But, the system's internal design and

implementation structure is modified so that the system is more efficient. One example is to

2



rewrite old *“spaghetti” code into structured forms. Software restructuring not only concerns
the observable software structurc, but is also concemned with people’s perceptions of
software structure. The idea is to modify software so that the software engineer can
understand it and control it easily in the future. Software restructuring potentially reduces
software complexity, increased interchangeability of people maintaining software and
reduces the amount of time needed for maintenance programmers to become familiar with a
system, making the system easier to document and easier to test. Some of the techniques
most used are coding style standardization. These approaches modify code to make it easier

to understand, often without altering control structure or data structure.

1.4. Reverse Engineering

Program understanding is essential for software reengineering and evolution, reverse
engineering technology can significantly aid software understanding [Amold 1993]. Reverse
engineering is the process of understanding different unknown and hidden information
about a software system. Because maintenance cannot be performed without a complete
understanding of the subject system, reverse engineeting plays a very significant role in
software maintenance and is an indispensable part of software maintenance. Reverse
engineering does not change the existing system. It is a process of examination, not a
process of change or replication. The software development process follows from high-level
abstraction to more detailed design and concrete implementation. A reverse engineer has to
move backward and create an abstract representation of the implementation from the mass
of concrete details. Current reverse engincering technology is typically based on program

analysis methods such as parsing and data-flow analysis. The domain analysis approach has



been devised as an altemative methodology. Redocumentation and design recovery are most

widely discussed among many sub-areas of reverse engineering.

Documentation is often the first place programmers tum to before modifying code.
Documentation helps the programmer understand code, plan and perform testing.
Unfortunately, documentation often goes out of date and is never referred to.
Redocumentation focuses on the redevelopment or adaptation of existing representations of
the system. The resulting forms of representation are usually considered alternate views (for

example, dataflow, data structure, and control flow) for an intended audience.

Design recovery is the process of recreating design level documentations not only
from source code, but also from a combination of code, existing design documentation,
personal experience, and general knowledge about problem and appliéadon domains. Design
recovery reproduces all of the information required for a person to fully understand existing

software application.

Most approaches in reverse engineering are semi-automatic in nature. Tools extract
information, but people have to guide the tools and decide what information to look for.
Efforts are underway for developing more automated tools. But, Reverse engineering tools
are badly nceded to make the transition over paradigm shifts quicker, easier and cheaper.
Since software is greatly influenced by human cognitive process and only human can
understand the mental models and intuitions guiding a particular software development,

provision should be there for human intervention to guide rcverse engineering process.



There will always be old software to be re-modeled, re-designed and re-implemented, good

reverse and reengineering tools will always be in demand.



2. Review of OpenGL

OpenGL (“GL” for “Graphics Library”) is a powerful software interface to graphics
hardware that allows graphics programmers to produce high-quality color images of 3D
objects [Woo e¢f al, 1998]. This interfaces enable programmers to build geometric models
and, view models interactively in 3D space, control color and lighting, manipulate pixels, and
petform such tasks as alpha blending, antialiasing, creating atmospheric effects, and texture
mapping. Since its introduction in 1992, OpenGL is the only truly open, vendor-neutral,
multiplatform graphics standard and has become the industry’s most widely used and
supported 2D and 3D graphics application programming interface (API). Application
developers are assured consistent display results regardless of the platform implementation

of the -OpenGL eavironment.

The well-specified OpenGL standard has language bindings for C, C++, Fortran,
Ada, and Java™. All licensed OpenGL implementations come from a single specification
and language-binding document and are required to pass a set of conformance tests.
Applications utilizing OpenGL functions are easily portable across a wide array of platforms

for maximized programmer productivity and shorter time-to-market.



2.1. Basic OpenGL Operation

Figure 1 shows a schematic diagram of OpenGL. Commands enter OpenGL on the
left and pass through a series of processing stages named the OpenGL rendering pipeline.
Most commands may be accumulated in a display list for processing at a later time.

Otherwise, commands are effectively sent through a processing pipeline.

Par-Varoes
varsy | Oparetisns
Daw -J Evelustae ¥ Prinidve
Assembly L Per-
o w" ) ::l:"" & Fregmanc Pemaebulin
—l | Qparadens |
Plus! Plsal t
Deu T Oparatisns Tasure
*1 Mamory
[3
[

Figure 1. Block diagram of OpenGL

Geometric data (vertices, lines, and polygons) passes the evaluators and per-vertex
operations, then undergo the rasterization and per-fragment operations, and finally is written

into the framebuffer.

The first stage (Evaluators) provides an efficient means for approximating curve and
surface geometry by evaluating polynomial functions of input values, since all geometric
primitives are eventually described by vertices, parametric curves and surfaces may be
initially represented by control points and polynomial functions. Evaluator provides a

method to derive the vertices used to describe the surface from the control points.



The next stage converts the vertices into primitives. 4x4 floating-point matrices
transform some vertex data, while spatial coordinates are projected for a position in the 3D
wortld to a position on his screen. The primitives are clipped to a viewing volume in

preparation for the next stage, rasterization.

The rasterizer produces a series of framebuffer addresses and fragments using a two-
dimensional description of a point, line segment, or polygon. Each fragment square
corresponds to a pixel in the framebuffer. A series of operations maybe performed on the
fragments before values are stored into the framebuffer. These operations include
conditional updates into the framebuffer based on incoming and previously stored depth
values (to effect depth buffering), blending of incoming fragment colors with stored colors,

as well as masking and other logical operations on fragment values.

Finally, Pixel data (pixels, images, and bitmaps) bypass the vertex processing portion
of the pipeline to send a block of fragments directly through rasterization to the individual

fragment operations, eventually causing a block of pixels to be written to the framebuffer.

2.2. Characteristic

e Stable. OpenGL implementations have been available for more than seven years
on a wide variety of platforms. Additions to the specification are well controlled,

and proposed updates are announced in time for developers to adopt changes.



Backward compatibility requirements ensure that existing applications do not

become obsolete.

Evolving, Because of its thorough and forward-looking design, OpenGL allows
new hardware innovations to be accessible through the API via the OpenGL
extension mechanism. In this way, innovations appear in the API in a timely
fashion, letting application developers and hardware vendors incorporate new

features into their normal product release cycles.

Scalable. Although the OpenGL specification defines a particular graphics-
processing pipeline, platform vendors have the freedom to tailor a particular
OpenGL implementation to meet unique system cost and performance
objectives. Individual calls can be executed on dedicated hardware, run as
software routines on the standard system CPU, or implemented as a combination
of both dedicated hardware and software routines. This implementation
flexibility means that OpeaGL hardware acceleration can range from simple
rendering to full geometry and is widely available on everything from low-cost
PCs to high-end workstations and supercomputers. Application developers are
assured consistent display results regardless of the platform implementation of

the OpenGL environment.

Easy to use. OpenGL is well structured with an inmitive design and logical

commands. Efficient OpenGL routines typically result in applications with fewer



lines of code than those that make up programs generated using other graphics
libraries or packages. In addition, OpenGL drivers encapsulate information
about the undetlying hardware, freeing the application developer from having to

design for specific hardware features.

OpenGL routines simplify the development of graphics software—from
rendering a simple geometric point, line, or filled polygon to the creation of the
most complex lighted and texture-mapped NURBS curved surface. OpenGL
gives software developers access to geometric and image primitives, display lists,
modeling transformations, lighting and texturing, antialiasing, blending, and

many other features.

Well-documented. Numerous books have been published about OpenGL, and a
great deal of sample code is readily available, making information about OpenGL

inexpensive and easy to obtain.

Client/Server. OpenGL functions in a client/server environment. That is, the
application program producing the graphics may run on a machine other than
the one on which the graphics are displayed. The server part of OpenGL can
access whatever physical graphics device or frame buffer is available on the
machine where the graphics are displayed. This makes OpenGL a software

interface to the actual hardware.

10



2.3. Detailed Description of OpenGL

OpenGL functions (which are called commands) are designed to provide 2D and 3D
graphics with the emphasis on 3D. The program is fully functional, including everything that

users usually want from 3D graphics. This includes:

e 3D modeling

e transformations

e color

o lightng

e Gouraud shading

® texture mapping

e non-uniform rational B-spline (NURBS) curves and surfaces
e ammospheric fog

e alpha blending

® motion blur

OpenGL creates images from models that are constructed from geometric
primitives-poiats, lines, and polygons that are specified by their vertices and provides direct
control over the fundamental operations of 3D and 2D graphics. This includes
transformation matrices, lighting equation coefficients, antialiasing methods, and pixel
update operators. However, OpenGL does not provide mechanisms to describe the complex

models themselves but instead provides mechanism to describe how complex geometric

11



objects are to be rendered. This means that you can tell the program to draw points, lines,
and polygons, and you have to build more complex models upon these. However, there are
no special-purpose functions that you can call to create graphs, contour plots, and maps.
That is why OpenGL could offer "real" 3D graphics, shading, lighting, texture mapping

which other graphics libraries or packagés lack.

Geometric primitives are defined by a group of one or more vertices. A vertex
defines a point, an endpoint of an edge, or a comer of a polygon where two edges meet.
Data (consisting of positional coordinates, colors, normals, and texture coordinates) are
associated with a vertex and each vertex is processed independently. There is only one
exception that to this rule, the group of vertices must be clipped so that the indicated
primitive fits within a specified region; in this case vertex data may be modified and new

vertices created.

OpenGL draws primitives into a framebuffer subject to a number of selectable
modes. Each primitive is a point, line segment, polygon, pixel rectangle, or bitmap. Each
mode may be changed independently; the setting of one does oot affect the settings of
others (although many modes may interact to determine what eventually ends up in the
framebuffer). In OpenGL, modes are set, primitives are specified, and other OpenGL

operations are represented by sending commands in the form of function or procedure calls.

OpenGL also supports advanced rendering features in either immediate mode or

display list mode. With OpenGL, any commands that you issue arc executed immediately.

12



That is, when you tell the program to draw something, it does it right away. You also have
the option of putting commands into display lists, which is a non-editable list of OpenGL
commands stored for later exccution. But you can execute the same display list more than
once. For instance, you can use display lists to redraw the graphics whenever the user resizes
the window. You can also use a display list to draw the same shape more than once if it

repeats as an element of the picture.

2.4, Introduction to the softwarc libraries

Mesa is a 3-D graphics library based on OpenGL. It was written by Brian Paul of the
University of Wisconsin at Madison, and it is extremely similar to OpenGL. One major
difference between Mesa and OpenGL is that Mesa uses regular X Windows graphics on
Unix machines and is therefore not a software interface to any specific hardware graphics
devices. Mesa wotks on most Unix platforms that have X11, including recently added Linux.

There are drivers for Microsoft Windows, Mac OS.

13



3. Review of Kim Thang Vu’s Thesis

Today, software engineering consists of constructing a large software application
[Sommerville, 1995]. Such a large application requires more people and time to involve and
usually is teamwork. Subsequent maintainance and enhancement are also critical. In order to
better maintain big software applications that often consists of hundreds of modules, the
demand for software tools grows faster. The traditional tools mainly use computer graphics
and animation to help illustrate and present computer programs, processes, and algorithms.
The limitation is the space of a window, since there is only limited room for a certain
number of nodes on the screen. In order to solve some of the limitation associated with
two-dimensional display, Kim Thang Vu developed a 3D software visualization tool called
System Visualizer [Vu, 1997]. In Vu’s thesis, a 3D image can be viewed from different
directions. Consequently, a 3D image that may look confusing from one direction may look
very clear from another direction. Larger objects that are farther from our eyes appear

smaller in the computer screen. Therefore, 2 3D image is more compreheansible than 2D

image.

3.1. Requirements of System Visualizer

The goal of System Visualizer tool is to be able to display a set of C or C++ modules
in a large software system and their uses relationships as three-dimensional structure. This
will help a software engineer understand the large software system quickly by looking at the
system visually. In Vu’s thesis, System Visualizer displays 2 module as a sphere and 2 use
relationship between two modules as a linc between two spheres. Two questions are

addressed: The first question is to determine the relationships between all modules of a

14



system. This is done by assuming a typical software system that is developed by use of C
programming language, the software system must have a main module which is a .c file, the
c file contains thé main () function and this main module normally has an associated .h
header file. In fact, every module of a software system has an associated header file that is
included in the .c file for the module. When a module uses another module of the software
system, it includes the header file of that module in its header file. Thus, the uses
relationships between each module of the software system can be inferred by starting from
the main module. The second question addressed in Vu’s thesis is how to graphically display
theses modules and their relationships as spheres and lines in three-dimensional space. Kim
solved this problem by looking at the treelike structure of the relationships between modules
of a system, for example, if module A uses modules B and C. Modules B in tumn uses
modules D, E and F, then module A will be the root of the tree which has two children B
and C where C is a leaf of the tree. B in turn has three children D, E and F which all are
leaves. Thus, modules and their relationships can be displayed as tree, each module is
represented as a sphere and the relationship between two modules is an edge between the
spheres. It is noted that in three-dimension space, the children of 2 module M are put on the
surface of a cone with its vertex at M. Therefore the tetm cone free is used in the Vu’s thesis to

refer to this kind of tree.

In Vu’s thesis, the System Visualizer displays a cone trec of at most 3 levels to avoid
very deep cone tree in a limited computer screen. The tool allows the user to select any non-
leaf modules and display the cone tree starting from the selected module. The tool also
provides different colours for leaf nodes and non-leafs nodes in order to distinguish these

two different nodes for the user. Moreover, the tool provides the user with capability to view

15



the cone tree from six different positions, so that overlapped the spheres in the computer

screen can be distinguished.
3.2. Design of System Visualizer

In the design phase of System Visualizer, two major components have been built up.
The first component is the parser that reads the header files of the software system under
study. Then the parser infers module relationships. The second component is the diplay
module that uses the information obtained by the parser to build modules and their
relationships into three-dimensional image on the computer screen. The module
relationships extracted have to be stored into somewhere, so that the display module can
retrieved them for drawing. Thus, Vu proposed to use a collection of data structures in the
thesis (see figure 2). The data structure is a flat linked list. Since a module may use a list of
other modules, the data structure has the module name and a pointer to a list of other

modules. It is very easy and efficient to traverse a flat linked list.

By being given a name of the main module M, the parser will first build up a subtree
node which module M is the root of the subtree. After extracting module M uses
information stored in the data structure, the parser creates a linked list of edges and each
edge points to a leaf node that represents a module used by the root. The parser uses a
recursive technique to construct the cone tree as follows: For each non-leaf nodes, the parser
will build up a subtree which has the non-leaf node as the root and the modules it uses as the
leaves. Append the above-created subtree to the linked list of subtrees. If 2 leaf node is the
root of another subtree, then make this leaf node points to that subtree in the linked list of

subtrecs. Repeat this process for cach non-leaf node used by the root of this subtree.

16



snbtree s snbiree

ige

P

ﬁro—-

Figure 2. Flat linked list data structure

In order to illustrate the detail of the display module design principal, Kim use an
example to explain how to draw a subtree. Considered a subtree with root A module, and
module B and C as leaves, the tree can be drawn as figure 3. The sphere C in XYZ

coordinate is computed using following formula:

X = r 5in0 sing
y = r cos¢

z = rsind cosO

17



Here r is the distance from the center of sphere C to the origin. ¢ is a fixed angle,
which is greater than 90 degrees and 8 varics for spheres B and C. In order to draw the
module B and C, Vu first draw B and C in the origin, then Vu computes r, 8 and ¢ for
module B and C, finally move module B and C from the origin to their new XYZ coordinate
using the above formula. Vu uses a fixed angle to compute 8 for each leaf, here is formula

provided to compute 8 for a leafi: whichiis from 0 to N - 1.

8; = constant angle + (i X 360) /N

The last task is to draw the line to connect two spheres. Figure 4 demonstrates the
drawing process. First the length L of line was drawn along the Y axis starting at the origin,

then the line was moved up a distance R where t is the radius of the sphere. Finally the line

is rotated down through an ¢ angle and right through an angle 6.

The display module first extracts the information stored into the data structure,
starting from the current node as the root, it computes the locations of each sphere in the
subtree using the above method. Thus, all the sphere and lines connecting them to build the
subtree can be drawn. Finally the built up subtree is moved to its proper location in XYZ

coordinates. The process is repeated until there are no non-leaf nodes or maximum number

of levels is reached.

18



Figure 3. Visualization of a simple tree

Figure 4. Computing the line between two spheres

19




In Vs thesis, different types of modules are painted different colors, the leaf node
that its pointer is nil in the data structure is painted blue. The non-leaf node which is appears
once is painted yellow, otherwise is painted red. The same subtree can be drawn at the

smallest root position once only.

3.3. Implementation of System Visualizer

Corresponding to the design phase of System Visualizer, there are three parts to be
implemented for System Visualizer, namely the data structures, the parser and the display
module.

3.3.1, Data Structures

There are three major data structures for System Visualizer: subtree, edge and leaf.
The root node of a subtree is represented by the subtree data structure that contains the
fields: NodeName, nextSubtree, Uses, AppearCount, SmallestRootedLevel, Traversed, and
Drawn. Here, the field AppearCount is used to store the count of the number of times that
the non-leaf module is to appear in the cone tree; the field SmallestRootedLevel is used to
store the information to draw the instance of the subtree which has root at the smallest level.
The field drawn is used to mark a subtree as having been drawn once it is drawn at the first
time, so that subsequent occurrences of the subtree at this level will not be drawn again. The
subtree also contains a pointer Nextsubtree to the next subtree in the subtree linked list and

a pointer Uses to a linked list of edges.

20



The uses relationship between modules of a subtree is represented by the linked list
of edges. Two pointers exist in the edges linked list, zexedge points the next element of the

linked list and leaf pointing to a leaf node of the subtree.

The leaf data structure contains the Nodename that is the name of the module used
by the root of the subtree and a pointer sub_tree to the subtree node where the module itself

is the root of this subtree.

3.3.2. The parser

The main function of the parser is build_tree (). This function takes the name of the
main module A of the application software and calls the function intreelist () to check if the
subtree rooted at module A has been built. If the subtree is built up, the build_tree ()
function just returns. Otherwise, the next step is to call the function buildroot_tree_ds () to
construct the subtree rooted at module A, then call the function addsubtree () to append the
subtree of A just created to the linked list of subtrees. For each edge E in the linked lList of
edges pointed to by pointer Uses of the subtree of A, the function build_tree () is invoked
with passing in module name B, the information stored in the leaf node pointed to by Leaf of
edge E is extracted and the subtree at module B is built, the pointer sub_trec of the leaf

node B is set to point to the subtree rooted at module B.

The implementation of function build_tree () is a little complicated and described as
following: first the function takes the name of a module, then open the header file H of the
module for reading, while reading every line in the header file H, the function parses every

line to get a header file. If the module is a non-leaf module, the function allocates a subtree

21



node for it, and it also allocates an edge and cotresponding Leaf node for every header file

included in H.

3.3.3. The display module

The System Visualizer uses PEX that is a three-dimension extension of the X
window system to display structure. There are two modes for drawing in PEX, one mode is
immediate mode in which the information how to draw picture is not stored somewhere.
Every time the picture needs to be redrawn, the information should be re-created. The other
mode of drawn is to use PEX Structures. The information to how to draw the picture can
stored in the PEX structure, later on, the appﬁdﬁon can ask PEX to draw the pictures using
the information specified in the PEX structure. The display module uses this mode to
drawing the cone tree, since the Systems Visualizer needs to redraw the picture many times

depending on users input. The following tasks is performed:

A

Figure 5. An example of a tree structure with duplicated subtrees



PEX function PEXCreateStructure is invoked to create a PEX structure, and
PEXSetViewIndex is invoked to tell PEX to wuse the view. Function
ComputeSmallestRootedLevel is called to compute SmallestRootedLevel for all subtrees to
be displayed in the cone tree and function ComputeAppearCount is called to compute
AppearCount for all subtrees to be displayed in the cone tree, because the values for both
SmallestRootedLevel and AppearCount are computed first to decide how to draw the whole
cone tree. According the requirements, the level of subtree can be drawn is limited to
MaxLevelToDraw and the root level node can contains the same leaf node as shown in
figure 5 C node. The subtree at root node C can only be drawn once at the smallest root

level as shown figure 6.

The function BuildSubConeStructure is called recursively to build all subcones of the
cone tree to be drawn and store this information into the PEX structure, starting at
CurrentLevel that should be 0 and at the first subcone pointed by CurrentConeRoot. After
the subcone is built, it should be moved to its CorrectSubconeLocation as (x, v, 2) in the

XY7Z coordinate.

In summary, the System Visualizer achieves some outstanding characteristic of three-
dimensional display with the implementation of PEXIib. This includes the ability of rotate a
3D image, as a result, 2 very crowded cone tree with many nodes can be rotated until the
clear picture appear. Also, objects that are closer to our eyes appear larger and objects that
are farther from eyes appear smaller with the projection property of PEXIib. Another very
useful characteristic is the overlapped portion in three-dimensional space is hidden with the

manual control. The result of these is that 2 much more comprehensive cone tree shows up.



Figure 6. The visualization of the tree structure with duplicated subtrees

24



4. System Visualizer Design and Implementation By OpenGL

4.1. The difference between PEX and OpenGL

PEX is very tightly coupled to the X Window System, but X is not the only
significant window system on the market. For this reason, OpenGL was designed to be
window system independent, in order to have a consistent model for three-dimension across
the two window systems, we decide to use OpenGL programming language to replace PEX
to make the System Visualizer platform independent. From the above review of Vu’s thesis,
we know that original System Visualizer contains three components, data structures, the
parser and the display module that is implemented using PEX. With OpenGL, we do not need
to change the data structures and the parser, the only component we nced to replace is the
display module, thus, our new system mainly rewrites the display module with OpenGL

programming language and integrates with the parser.

PEX and OpenGL both provide a means to store commands for later execution. In
PEX, editable structures can be created. Structures may contain calls to execute other
structures allowing them to be arranged in a hierarchical fashion. Entire three-dimension
models can be constructed out of a hierarchy of structures so that a redraw requires only
retraversing the structure hierarchy, as review of Vu’s thesis, System Visualizer is

implemented in PEX structure.

OpenGL does not support structures in the same way PEX does. However, display

fists can be constructed which contains sequences of OpenGL commands. Unlike PEX

25



structures, OpenGL display lists are not editable. Once a display list is created, it is sealed
and cannot be changed. The commands in the display list can be optimized for faster
execution. Even though display lists cannot be edited, the same effect as editing can be

achieved by rewriting display lists called by other display lists.

Display lists and structures both minimize the amount of transfer overhead when
running PEX or OpenGL over a network since the commands in a structure or display list
can be executed repeatedly by only calling the display list by name. The commands
themselves need to be transferred across the network only once. In our final design of this

new system, we decide to use the display list to draw the cone tree.

PEX and OpenGL both support basic three-dimension rendering functionality. Both

allow three-dimension and two-dimension lines and polygons to be rendered using standard
modeling and viewing methods. PEX and OpenGL also supports picking, lighting, depth
cueing, and hidden line and surface removal. There are a number of sophisticated rendering
features supported by OpenGL but PEX completely lacks, such as alpha blending, texture

and environment mapping, antialiasing, accumulation buffer methods, and stencil buffering.

PEX does support features not available in OpenGL. For example, PEX has

extensive text support for stroke fonts that are fully transformable in three-dimension.

Double buffering and stereo support are built into OpenGL while PEX relies on
proprietary support or not yet nonstandardized X extensions for double buffering and

stereo.

26



4.2. Overall Design by OpenGL

The overall design of out new system is the same as original System Visualizer. First,
the parser is built using the function build_tree () with root node name as parameter. The
display modules retrieves module relationships information stored in The Parser and use this
information to construct and draw the corresponding conc tree. The application draw the
root node by calling the function build_a_subtree () which subsequently calls function
build_cone_scheme () to build the XYZ coordinate, and finally calls the function
build_sub_tree () to recursively build all subcones of the cone tree to be drawn and move

them to the appropriate locations in the three-dimension space.

4.3. User Interface

To start up System Visualizer, the executable should be run with the root module
name as the first parameter and the directory where all the header files are located as the
second parameter. The System Visualizer first parses the header files, then infers module
relationships and displays a graphic cone tree that represents each module and their
rclationships of a software application in a drawing window. Figure 7 is an image displayed
by the System Visualizer. By clicking the right button of mouse, four selections pop up:
Texture, Start Motion, Stop Motion, and Quit. Select Texture, the background of drawing
window will change to another color background; Select the Start Motion, the image will
turn around clockwise; Select Stop Motion, the motion stops; Quit is for quitting program.

There is another four-keyboard arrow for use, by pressing the T arrow, the image go towards

27



the window by use of the user as reference point and the image becomes smaller. By
pressing { arrow, the image becomes bigger and goes towards user. By pressing ¢— arrow,

the image moves counter-clockwise. By pressing the —  arrow, the image moves clockwise,

so that the crowded the spheres can be shown up.

Figure 7. An illustration of the user interface

28



4.4. Detailed Design, Implement and Integration Process

Since OpenGL is independent of any operating system or window system, it does
not contain any commands for opening windows or reading events from the keyboard or
mouse. Unfortunately, it is impossible to write a complete graphics program without at
least opening a window, and so the GLUT utility toolkit is used to opening windows and
detecting input events. GLUT was written Mark Kilgard and includes windowing
functions contains multiple windows for OpenGL rendering a simple cascading pop-up
menu facility bitmap and stroke fonts event processing. In the beginning of program entry
point of main function, the function build_tree () constructs the Parser. The maximum
level that is 3 is set up to be displayed on the computer screen. The following four

routines is used to perform window management:

glutInitWindowSize (int width, int size)
glutlnit (&argc, argy)
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA | GLUT_DEPTH)

glutCreateWindow (name)

OpenGL is a state machine, various states or modes should be set up and remain in
effect until you change them. The current display mode is a state variable. You can set the
current display mode to RGBA color mode which the hardware sets aside a certain number
of bitplanes for each of the R, G, B, and A componeats, then every object is drawn with

RGBA mode until you set the current Display Mode to color-index display mode.

29



We want a window with depth buffer, double buffering and RGBA color mode, so
ghitInitDisplayMode (GLUT_DOUBLE | GLUT_RGBA | GLUT_DEPTH) is called, In the
following paragraph, we explain the two important OpenGL characteristic of double-

buffering and hidden-surface removal.

OpenGL implementations provide double buffering to realize the graphics
animation. Double buffering provides two complete color buffers for use in drawing. The
frame in one buffer is displayed while the frame in the other buffer is bei;lg drawn. When
the drawing of a frame is complete the two buffers are swapped so that the one that was
being viewed is now used for drawing. One of another important characteristic in three-
dimensional visualization is hidden-surface removal, when two objects overlapped parts, the
object that are closer to our viewing position should be drawn, the other object behind is
obscured and should be eliminated. Hidden-surface removal means the elimination of parts
of solid objects that are obscured by others. The easiest way to achieve this is to use the
depth buffer. Since the PEX server does not support hidden-surface removal in Vu’s thesis,
Vu had to do extra work manually to make sure the order in which objects are drawn will
not obscured by another object. With OpeaGL, we just set up the Display Mode with depth

buffer.

The following program executed functons init (). Within the function init (),
program draws the cone tree structure by calling function build_a_subtree (). The display list
tree is created here to make drawn fast later on. Within the build_a_subtree () function,
function init_called_levels () is first called to initialize the called_count to O,

smallest_called_level to 911, sub_tree_drawn 0. Subsequently function compute_called_level

30



(0 is called and the value of called_count in the current tree is computed. Both
smallest_called_value and call_count should be computed ptior to drawn, so that we can
decide how to draw the cone tree. This is already discussed in the review of the Vu’s thesis.

The following paragraph explains how the function works.

The function compute_called_level () takes a pointer to subtree A in which
recursively traverses subtree A and all subtrees under subtree A to compute
smallest_called_value for cach subtree. Starting at CurrentLevel at 0, and stopping at
MaxLevelToDraw, if smallest_called_value of A is greater than CurrentLevel (Originally,
when subtree A is allocated, smallest_called_level is set to 911), then set it to be
CurrentLevel; If CurrentLevel is less than MaxLevelToDraw, then for each non-leaf module
X used by A, increases CutrentLevel by 1, recursively call function compute_called_level (),
passing the pointer to subtree X. The value of called_count is computed after the value of
smallest_called_value is computed, becausc the algorithm to compute the value of
called_count uses the value of smallest_called_value to decide if it should traverse down a

subtree.

If the value of called_count in the current tree is greater than 1, we draw a red sphere
with GLUT function glutSolidSphere (RADIUS, 50, 50), otherwise we draw a yellow sphere
and recursively invoke function build_cone_scheme () and build_sub_tree () until reach the
leaf node. The function build_cone_scheme () builds r, ¢, and 0 values for all the nodes
within the same level of subtree and put these values into the structure. Subsequent function
build_sub_tree () is called to rotate and draw the line, then retrieve the values of r, ¢, and 6

to compute the XYZ coordinate in the three-dimensional space for drawing the sphere.

31



Finally, OpenGL implementation use the callback mechanism to register the events,

the following five functions is registered the callback functions:

GlutDisplayFunc (display);
GlutReshapeFunc (reshape);
GlutSpecialFunc (Specialkey);
GlutKeyboardFunc (keyboard);

GlutVisibilityFunc (visible);

The callback registered in ghutDisplayFunc () is executed whenever the contents of
the window need to be redisplayed, thus, we registers display () in glutDisplayFunc () for re-
render the scene which is our display list tree. On the other side, we use init () to draw cone

tree once during the program initialization.

The very last thing is call glutMainLoop (void) that triggered the event processing,

rendering the windows and the registered display callback. Once the program eaters the

loop, it is never exited until program exits.

32



4.4, Extra Features

During implementation of the display module by OpenGL, we renders a lit sphere
which the original System Visualizer could not do. In order to add lighting to the scene,
normal vectors that determine the orientation of the objects relative to the light sources is
defined for each vertex of all the objects. The normal for the sphere is defined as part of the
ghitSolidSphere (). Next, we use glLightfv (GL_LIGHT0, GL_DIFFUSE, white) and
glLightfv (GL_LIGHTO, GL_SPECULAR, white) to define light sources. Finally, lighting
mode is described, this will decide viewer of the scene is an infinite distance away or local to
the scene, whether lighting calculations is performed differently for the front and back
surfaces of objects in the scene. In our new system, the default settings--glShadeModel
(GL_SMOOTH) for lighting mode was chosen, which is an infinite viewer and one-sided
lighting. Because we never see the back of surface of the sphere, one-sided lighting is
sufficient. The last thing, we wuse functions glMaterialfv (GL_FRONT,
GL_AMBIENT_AND_DIFFUSE, red), giMaterialfr (GL_FRONT, GL_SPECULAR,
white), giMaterialfv (GL_FRONT, GL_SHINESS, polished) to define material propertics
for the objects in the scene. An object’s material properties determine how it reflects light,

this will give viewer the effect what material it seems to be made of.

In the new system, we have the start motion choice that implemented by glul.ookAt
(GLdouble eyex, GLdouble eyey, GLdouble eyez, GLdouble centerx, GLdouble centery,
GLdouble centerz, GLdouble upx, GLdouble upy, GLdouble upz). gl.ookAt is another very

useful utility. This utility allow viewer to pan across a landscape, what it does is that

33



glLookAt defines a viewing matrix derived from an eye point, a reference point indicating
the centre of the scene, and an up vector. The matrix maps the reference point to the
negative z-axis and the eye point to the origin, so that, when a typical projection matrix is
used, the centre of the scene maps to the centre of the viewport. Similarly, the direction
described by the up vector projected onto the viewing plane is mapped to the positive y-axis

so that it points upward in the viewport.

We also provide the texture mapping technique to the background of the new
system. By clicking the right button, Texture option can be selected. The screen background
is changed to another colour pattern. The principle of texture mapping is that we can
decrease the model complexity and then the computation cost decrease by scanning a photo
of the detail and paste it on objects. The first step we do is create texture objects by reading
from a file, next we specify how the texture is to be wrapped and how the colours are to be
filtered, final step we enable the texture mapping and supply both texture and geometric

coordinates for drawing the scene.

In order to have the parts of scene appear translucent, we specify a blending
function during the drawing process. We also want to reduce the aliasing of the lines with
the antialiasing techniques in the new system. Both blending and antiliasing techniques are
simple to use in OpenGL. When blending is enabled, color valucs of the fragment being
processed (source) are combined with the color values of the corresponding currently stored
pixel (destination). The function giBlendFunc (source factor, destination factor) specify how
the source and destination factors are computed and then the corresponding componeants

are added to give the final, blended RGBA values between 0 and 1. To have antialiasing the

34



lines, glEnable () must be turned on passing in GL_LINE_SMOOTH. In RGBA mode that
is currently applied in our new system, the blending should be first enabled, then with glHint
(target, hint) command passing in GL_LINE_SMOOTH_HINT and GL_DONT_CARE.
We can control the image quality and speed by specifying hint value, since the more quality
of image, the more time OpenGL need to compute. In the current system, we choose

GL_DONT_CARE to indicate no preference to both speed and image quality.

35



5. Conclusion

5.1. Summary

The new System Visualizer successfully removes the limitation of platform from
original System Visualizer by use of OpenGL. The new System Visualizer consists of the
same three major components as the original system has data structures, the parser and the
display module. The new System Visualizer uses the original algorithm to extract module
structure of a software application developed in C or C++ and to display system structure in
three-dimensional space as the cone tree. Although the System Visualizer only displays a
cone tree of maximum three levels, any number of levels conc tree can be displayed by use
of the original algorithm. The new System Visualizer not only has all the features of original
one, such as hidden surface removal and ability to rotate a 3D image, but also there are new
features in the new system which the original system complete missing. The new features
include alpha blending, antialiasing, texturc mapping, animation and rendering a lit sphere

with directional light.

5.2 Future Work

From the user interface point of view, the user interface needs to be more user-
friendly. The user can random select the interesting sphere as root note by clicking that
sphere, then the decper use relationship can be shown up as cone tree. From the algorithm

point of view, it would be better if the tool can extract the class hierarchy structure

36



developed in C++, one of example is Rationale Rose which can build up the hierarchy
relationship from a given C++ application, but that is not a graphic representation of a
system structure. Concerning the limitation of the window screen, one possible way to show
entire the system structure is to have multiple windows with scalable size and random

positions in the window screen, so that the user can see any node structure at any time by

just clicking that window.

37



References

1. Robert S. Amold. Software Reengineering, [EEE Computer Society Press, 1993.

2. Mason Woo, Jackie Neider, and Tom Davis. OpenGL Programming Guide, Second

Edition, Addison Wesley, 1998.

3. Kim Thang Vu. System Visualizer, Master thesis, Department if Computer Science,

Concordia University, March 1997.

4. Ian Sommerville. Software Engineering, Fifth Edition, Addison Wesley, 1995.

5. http:/ /www.openel. About/About.html
6. http:/ /www.sgt.com/software/o 1/plandx/intro/intro.h
7. hitp:/ /www.opengl.org/ Documentagon /Pa; .html

38



APPENDIX - System Visualizer Source Code
A.L Create_tree.h

#include <stdio.h>
#include <string.h>
#include <strings.h>

#define MAX_NAME_LEN 10
#define ARRAY_SIZE_FROM_LEAF_LEVEL 10

struct dupl_sub_tree {

int count;

int from_leaf_level|[ARRAY_SIZE_FROM_LEAF_LEVEL];
b

struct tree_t {
char node_name[MAX_NAME_LEN};

int called_count;
int smallest_called_level;
int sub_tree_drawn;

int from_leaf level;
struct tree_t *next_tree;
struct edge_t *uses;

|5

struct edge_t {
struct edge_t *next_cdge;
struct node_t *node;

b

struct node_t {
char node_namefMAX_NAME_LEN];
struct tree_t *sub_tree;

b

39



A2, Create_tree.c

#include "create_tree.h"

struct tree_t *the_tree;
extern char dir_path[80];
extern int current_level;

char *module_name(line)
char *line;

{

char *tmp, *start, *module;

if ((tmp = strstr(line, "#include™))) {
return tmp;

}

start = tmp + 8;

if ((tmp = strchr(start,™))) §
if ((tmp = strche(start,'<7)) {
return tmp;

}

start = tmp + 1;
if ((tmp = strchr(start,>")) {
return tmp;

}

*tmp = 0;
while (tmp = strtok(start, " /™)) {
start += strlen(tmp) + 1;
module = tmp;
}
}
else {
tmp++;
module = tmp;
if ((tmp = strchr(module,™))) {
return tmp;

}



*tmp = 0;
}

if ((tmp = strstr(module, ".h"))) {
return tmp;

}

else {
*mp = 0;
return module;

}

}

void init_called_levels()
{

struct tree_t *a_sub_tree;

a_sub_tree = the_tree;

while (a_sub_tree) {
a_sub_tree->called_count = 0;
a_sub_tree->sub_tree_drawn = 0;
a_sub_tree->smallest_called_level = 911;
a_sub_tree->from_leaf level = 0;

a_sub_tree = a_sub_tree->next_tree;

void compute_called_levels(root, called_level, sub_tree_count)
struct tree_t *root;

int called_level;

struct dupl_sub_tree sub_tree_count;

{

mntia

struct dupl_sub_tree t_sub_tree_count;

struct edge_t *uses;

if (called_level <= current_level) {
if (sub_tree_count.count == 0) {
root->called_count++;
}
else
for (i = 0; i < sub_tree_count.count; i++) {
sub_trce_count.from_leaf_levelfi]—;

}

t_sub_tree_count.count =0;
for (i = 0; i < sub_tree_count.count; i++) {
if (sub_tree_count.from_leaf_levelfi] > 0) {

41



t_sub_tree_count.from_leaf_level[t_sub_tree_count.count] =
sub_tree_count.from_leaf_levelli];
t_sub_tree_count.count++;

}
}

-sub_tree_count.count = t_sub_tree_count.count;
for (i = 0; i < sub_tree_count.count; i++) {
sub_tree_count.from_leaf_level[i] =
t_sub_tree_count.from_leaf_level(i];
}

}

if (root->called_count > 1) {
if (root->from_leaf_level == 0) {
root->from_leaf_level = current_level-root->smallest_called_level;

}

if (root->from_leaf_level > 0) {
sub_tree_count.from_leaf_levelfsub_tree_count.count] =
root->from_leaf_level;
sub_tree_count.count++;
}
}

if (root->smallest_called_level > called_level) {
root->smallest_called_level = called_level;

}
uses = root->uses;
while (uses) {

if (uses->node->sub_tree) {
compute_called_levels(uses->node->sub_tree, called_level+1,
sub_tree_count);
}

uses = uses->next_edge;
}
}
}

int in_tree_list(node_name, node_ptr)
char *node_name;
struct node_t *node_ptr;

{

struct tree_t *a_sub_trec;

a_sub_tree = the_tree;
while (a_sub_tree) {

42



if (stremp(a_sub_tree->node_name, node_name)) {
if (node_ptr) node_ptr->sub_tree = a_sub_tree;
return 1;
}
a_sub_tree = a_sub_tree->next_tree;
}

return 0;

}

struct tree_t *build_root_tree(node_name)
char *node_name;
{

struct tree_t *a_sub_tree;

a_sub_tree = (struct tree_t *) malloc(sizeof(struct tree_t));
strcpy(a_sub_tree->node_name, node_name);
a_sub_tree->next_tree = 0;

a_sub_tree->uses = 0;

return a_sub_tree;

}

struct node_t *ds_build_a_node(node_name)
char *node_name;

{

struct node_t *a_node;

a_node = (struct node_t *) malloc(sizeof(struct node_t));
strcpy(a_node->node_name, node_name);
a_node->sub_tree = 0;

return a_node;

}

struct tree_t *build_sub_tree_ds(node_name)

char *node_name;

{

FILE *node_fp;

char a_line[132], full_path[132], *sub_node_name;
struct tree_t *a_sub_tree;

struct edge_t *an_edge, *uses=0, *tmp_uses;
struct node_t *a_node;

sprintf(full_path, "%s/%s.h", dir_path, node_name);
if ((node_fp = fopen(full _path,"t"))) {
printf("Could not fopen %s\n", full_path);
return 0;

}

a_sub_tree = build_root_tree(node_name);

43



while ((sub_node_name = fgets(a_line, 132, node_£p))) {
if ((sub_node_name = module_name(a_line))) continue;
an_edge = (struct edge_t *) malloc(sizeof(struct edge_¢));
if ((uses)) {
tmp_uses = uses = an_edge;
}
else {
tmp_uses->next_edge = an_edge;
tmp_uses = tmp_uses->next_edge;
}
an_edge->next_edge = 0;
a_node = ds_build_a_node(sub_node_name);
an_edge->node = 2_node;
}

if (tuses) {
free(a_sub_tree);
a_sub_tree = 0;

}
else {
a_sub_tree->uses = uses;

}

fclose(node_fp);
return a_sub_tree;

}

void add_sub_tree(a_sub_tree)
struct tree_t *a_sub_tree;

{

struct tree_t *next_tree;

if (the_tree)
the_tree = a_sub_tree;
return;

}

next_tree = the_tree;

while (next_tree->next_tree) {
next_tree = next_tree->next_tree;

next_tree->next_tree = a_sub_tree;

return;

}

void build_tree(node_name, node_ptr)
char *node_name;
struct node_t *node_ptr;



{

struct tree_t *a_sub_tree;

struct edge_t *an_edge;

if (lin_tree_list(node_name, node_ptr)) {
if ((a_sub_tree = build_sub_tree_ds(node_name))) {
add_sub_tree(a_sub_tree);
if (node_ptr) node_ptr->sub_tree = a_sub_tree;

an_edge = a_sub_tree->uses;
while (an_edge) {
build_tree(an_edge->node->node_name, an_edge->node);

an_edge = an_edge->next_edge;

}
}
else {
if (the_tree) {
the_tree = build_root_tree(node_name);
}
}

}
}

45



A.3. texture.h

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void
bwtorgba(unsigned char *b,unsigned char *Lint n) {
while(n-) {
1{0] = *b;
If1] = *b;
1{2] = *b;
1{3] = Oxff;
1+=4;b++;
}
}

void
latorgba(unsigned char *b, unsigned char *a,unsigned char *Lint n) {
while(n—) {

1[0] = *b;
I[1] = *b;
1[2] = *b;
13] = *a;
1 +=4; b++;a++;
}
}
void

rgbtorgba(unsigned char *r,unsigned char *g,unsigned char *b,unsigned char *Liat n) {
while(n—) {

1[0] = £[0];
I[1] = g[0];
12} = b[0];
I[3] = Oxff;
1 += 4; c++; g++; bt++;
}
}
void



rgbatorgba(unsigned char *r,unsigned char *g,unsigned char *b,unsigned char *a,unsigned
char *Lint n) {
while(n-) {
0] = =[0};
I1] = gf0];
112} = b[0];
13] = 2[0};
1+= 4, r++; gt+; bt+;at+;
}
}

typedef struct _ImageRec {
unsigned short imagic;
unsigned short type;
unsigned short dim;
unsigned short xsize, ysize, zsize;
unsigned int min, max;
unsigned int wasteBytes;
char name(80];
unsigned long colorMap;
FILE *file;
unsigned char *tmp, *tmpR, *tmpG, *tmpB;
unsigned long rleEnd;
unsigned int *rowStart;
int *rowSize;

} ImageRec;

static void

ConvertShort(unsigned short *array, long length) {
unsigned b1, b2;
unsigned char *ptr;

ptr = (unsigned char *)array;
while (leagth-) {
bl = *ptr++;
b2 = *prt+;
*ammay++ = (b1 << 8) | (b2);
}
}

static void

ConvertLong(unsigned *array, long length) {
unsigned b1, b2, b3, bd;
unsigned char *ptr;

ptr = (unsigned char *)array;
while (length-) {
bl = *ptr++;

47



b2 = *ptrt+;
b3 = *ptrt+;
b4 = *ptrt+;
*array++ = (bl << 24) | (b2 << 16) | (b3 << 8) | (b4);
}
}

static ImageRec *ImageOpen(const char *fileName)
{

union §

~ int testWord;
char testByte[4];

} endianTest;

ImageRec *image;

int swapFlag;

int x;

endianTest.testWord = 1;

if (endianTest.testByte[0] == 1) {
swapFlag = 1;

} else {
swapFlag = 0;

image = (ImageRec *)malloc(sizeof(ImageRec));
if Gimage == NULL) {
fprintf(stderr, "Out of memory!\n");

exit(1);
}
if ((image->file = fopen(fileName, "rb")) == NULL) {
perror(fileName);
exit(1);
}
fread(image, 1, 12, image->file);
if (swapFlag) {
ConvertShort(&image->imagic, 6);
}

image->tmp = (unsigned char *)malloc(image->xsize*256);

image->tmpR = (unsigned char *)malloc(image->xsize*256);

image->tmpG = (unsigned char *)malloc(image->xsize*256);

image->tmpB = (unsigned char *)malloc(image->xsize*256);

if (image->tmp == NULL | | image->tmpR == NULL | | image->tmpG == NULL ||
image->tmpB == NULL) {
fprintf(stderr, "Out of memory!\n");
exit(1);



}

if ((image->type & 0xFF00) == 0x0100) {
X = image->ysize * image->zsize * sizeof(unsigned);
image->rowStart = (unsigned *)malloc(x);
image->rowSize = (int ¥*)malloc(x);
if (image->rowStart == NULL | | image->rowSize == NULL) {
fprintf(stderr, "Out of memory!\n");
exit(1);

image->rleEnd = 512 + (2 * x);
fseek(image->file, 512, SEEK_SET);
fread(image->rowStart, 1, x, image->file);
fread(image->rowSize, 1, x, image->file);
if (swapFlag) {
ConvertLong(image->rowStart, x/sizeof(unsigned));
ConvertLong((unsigned *)image->rowSize, x/sizeof(int));

}
}
return image;
}

static void

ImageClose(ImageRec *image) {
fclose(image->file);
free(image->tmp);
free(image->tmpR);
free(image->tmpG);
free(image->tmpB);
free(image);

}

static void

ImageGetRow(ImageRec *image, unsigned char *buf, int y, int 2) {
unsigned char *iPtr, *oPtr, pixel;
int count;

if ((image->type & 0xFF00) == 0x0100) {
fseek(image->file, image->rowStart[y+z*image->ysize], SEEK_SET);
fread(image->tmp, 1, (unsigned int)image->rowSize[y+z*image->ysize],
image->file);

1Ptr = image->tmp;

oPtr = buf;

while (1) {
pixel = *iPtr++;
count = (int)(pixel & 0x7F);
if (fcount) {

49



return;
}
if (pixel & 0x80) {
while (count-) {
*oPtr++ = *Put++;

}
} else {
pixel = *iPtr+-+;
while (count-) {
*oPtr++ = pixel;
}
}
}
} else {
fseek(image->file, 512+(y*image->xsize)+(z*image->xsize*image->ysize),
SEEK_SET);
fread(buf, 1, image->xsize, image->file);
}
}

unsigned *

read_texture(char *name, int *width, int *height, int *components) {
unsigned *base, *Iptr;
unsigned char *rbuf, *gbuf, *bbuf, *abuf;
ImageRec *image;

inty;
image = ImageOpen(name);

if(limage)
return NULL;
(*width)=image->xsize;
(*height)=image->ysize;
(*components)=i ->zsize;
base = (unsigned *)malloc(image->xsize*image->ysize*sizeof(unsigned));
tbuf = (unsigned char *)malloc(image->xsize*sizeof(unsigned char));
gbuf = (unsigned char *)malloc(image->xsize*sizeof(unsigned char));
bbuf = (unsigned char *)malloc(image->xsize*sizeof(unsigned char));
abuf = (unsigned char *)malloc(image->xsize*sizeof(unsigned char));
if(base | | lrbuf | | !gbuf | | Ibbuf)
return NULL;
Iptr = base;
for(y=0; y<image->ysize; y++) {
if(image->zsize>=4) {
ImageGetRow(image,rbuf,y,0);
ImageGetRow(image,gbuf,y,1);
ImageGetRow(image,bbuf,y,2);
ImageGetRow(image,abufyy,3);

50



rgbatorgba(rbuf gbuf bbuf abuf,(unsigned char *)Iptr,image->xsize);
Iptr += image->xsize;

} else if(image->zsize==3) {
ImageGetRow(image,rbufy,0);
ImageGetRow(image,gbuf,y,1);
ImageGetRow(image,bbuf,y,2);
rgbtorgba(rbuf,gbuf bbuf,(unsigned char *)lptr,image->zxsize);
Iptr += image->xsize;

} else if(image->zsize==2) {
ImageGetRow(image, rbufy,0);
ImageGetRow(image,abufy,1);
latorgba(rbuf,abuf,(unsigned char *)lptr,image->xsize);
Iptr += image->xsize;

else {

ImageGetRow(image,rbuf)y,0);
bwtorgba(tbuf,(unsigned char *)Iptr,image->xsize);
Iptr += image->xsize;

3

ImageClose(image);

free(rbuf);

free(gbuf);

free(bbuf);

free(abuf);

return (unsigned *) base;

51



A.4, Visualizer.c

[*#include <GL/gLh>*/

/*#include <GL/gluh>*/

#include <GL/gluth> /* OpenGL Utility Toolkit header */
#include <math.h> /* for cos(), sin() */

#include <stdlib.h>

#include <stdio.h>

#include "texture.h”

#include "create_tree.h"

/* Some <math.h> files do not define M_PI .. */
#ifndef M_P1

#Hdefine M_PI 3.14159265

#endif

/* Atom and ion dimensions, all in Angstroms */

#define DEG_TO_RAD (M_P1/180)

#define RADIUS 0.22

#define BOND 1.99

#define LENGTH (RADIUS + BOND + RADIUS)

Hdefine FIRST_ANGLE 30 /*This represents theta in degrees*/
#define LEVEL_1_WIDTH 110 /*This represents phi in degrees*/
#define NO_LEVEL_NODE 20

#define NEXT_LEVEL_DIFF 25

#define ESCAPE 27 /*This is Exc key */

#pragma warning(disable : 4305) /* stops waming about casting float to GLfloat */
extern struct tree_t *the_tree;
/* The atom locations are in spherical coordinates. */
typedef struct{
double r, ¢, p; /* radius, theta, phi */
}Sphere_point;

Sphere_point pos];
double x, y, z;

52



struct tree_t *current_tree;

unsigned int current_level;

char dir_path[80];

char err[80];

char root_node_name[MAX_NAME_LEN];
char current_node_name[MAX_NAME_LEN];

/* Indice used for display lists */
GLuint tree =1;
GLuint picture =2;

/* Variables used for control the texture mapping*/
static int useTexture= 0;

/* Pointer point to some texture images readed from some particular "*.rgb’ files */
GLubyte *pic;

/* Storages for texture arguments*/
static int components =2;
static int width[6]= {1, 1,1,1,1,1};
static int height[6]= {1,1,1,1,1,1};
static GLuint texName{7];

/* Light position and color */
GLfloat lightPosition[4] = {10, 20, 15, 1};
GLfloat lightColorf]={1.0, 1.0, 1.0, 1.0};

/* Vectors for colours and properties of materials. */
const GLfloat red[] = { 1.0,0.0,0.0,1.0 };

const GLfloat blue] = { 0.0,0.2,1.0,1.0 };

const GLfloat white{] = { 1.0, 1.0, 1.0, 1.0 };

const GLfloat yellow{] = { 1.0,1.0,0.0,1.0 };

const GLfloat polishedf] = { 100.0 };

const GLfloat dull] = { 0.0 };

/* Variable control animation redering mode */
static int moving =0;

/* Title bar name */
static char *windowNameProject= "Master Project (Visualization Tool)";

/*Global variable for viewing transformation */
static GLfloat ViewAngleY = 0.0;
static GLfloat DeltaMove = 1.0;

53



static GLfloat DeltaAngle = 15.0;

static GLfloat x_value=0.0;
static GLfloat y_value=0.0;
static GLfloat z_value=10.0;

/*
—— * /

void idle (void)
{

ViewAngleY+=30;

if( ViewAngleY >=360)

{
ViewAngleY=0;

}
} glutPostRedispiay();

void visible(int statc)

{
if (state ==GLUT_VISIBLE)
{
if (moving)
glutldleFunc(idle);

else
{
if (moving)
glutldleFunc(NULL);

}

/*

*/

void menu_select(int mode);

/* Construct menu */

void make_menu ()
{

static int top;

54



top= glutCreateMenu(menu_select);
if(useTexture==0) glutAddMenuEntry("Texture", 1);
else glutAddMenuEntry("No texture", 2);

glutAddMenuEntry("Start motion",3 /*M_Start_Motion*/);
glutAddMenuEntry("Stop motion", 4 /*M_Stop_Motion*/);
glutAddMenuEntry("Quit", 5 /*M_Quit*/);
glutAttachMenu(GLUT_RIGHT_BUTTON);

}
/*=
*/
void menu_select (int mode)
switch (mode)
case 1:
case 2:

if(useTexture ==1)

useTexture=0;
glutPostRedisplay();
}

else
{
useTexture=1;
glutPostRedisplay();

make_menu();
break;

case 3:
moving =1;
glutldleFunc(idle);
break;

case 4
moving =0;
glutldleFunc(NULL);
break;

case 5:
exit(0);
break;

55



static void usage(void)

printf("\n");

printf("usage: visualizer node_name directory_name\n");
printf("\n");

printf("display modules relationship\n");

printf(" Esc: quit\n");

printf(" > move viewpoint to left\n");
printf(" <-: move viewpoint to right\n");
printf(" up arrow key:  move viewpoint closer\n");
printf(" down arrow key: move viewpoint further\n");

printf(" page up key:  move viewpoint up\n");
prntf(" page down key: move viewpoint down\n");
printf("\a");

#ifndef EXIT_FAILURE /* should be defined by ANSIC

<stdlib.h> */

#define EXIT_FAILURE 1

Hendif
exit(EXIT_FAILURE);

[r==m=======z=cazz=== =

void SpecialKey(int key, int x, int y)

if (glutGetModifiers() != GLUT_ACTIVE_ALT)

{
switch (key) /*<ALT> is NOT being held down.*/
{

case GLUT_KEY_LEFT:
ViewAngleY -= DeltaAngle;
glutPostRedisplay();
break;

case GLUT_KEY_RIGHT:
ViewAngleY += DeltaAngle;
glutPostRedisplay();
break;

case GLUT_KEY_UP:
z_value = z_value + DeltaMove;
glLoadIdentty();
gluLookAt(x_value, y_value, z_value, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
glutPostRedisplay();
break;

56



case GLUT_KEY_DOWN:
z_value = z_value - DeltaMove;
glLoadIdentity();
gluLookAt(x_value, y_value, z_value, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
glutPostRedisplay(); .
break;

case GLUT_KEY_PAGE_UP:
x_value = x_value -DeltaMove;
y_value = y_value -DeltaMove;
giLoadIdentity();
gluLookAt(x_value, y_value, z_value, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
glutPostRedisplay();
break;

case GLUT_KEY_PAGE_DOWN:
x_value = x_value +DeltaMove;
y_value = y_value +DeltaMove;

glLoadIdentity();
gluLookAt(x_value, y_value, z_value, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
glutPostRedisplay();
break;
}
}
}
f#==s============ccccooommscoosozsssss ===
*/

void keyboard (unsigned char key, int x, int y)

if (key ==ESCAPE)
exit(0);

void init(void)

{

GLfloat valuesf2];

glClearColor (0.2f, 0.2f, 0.6f, 1.0f);

57



giShadeModel (GL_SMOOTH);
glEnable(GL_DEPTH_TEST);

glEnable(GL_LIGHTING);
glEnable(GL_LIGHTO);

glLightfv(GL_LIGHTO, GL_DIFFUSE, white);
glLightfv(GL_LIGHTO, GL_SPECULAR, white);

giGetFloatv (GL_LINE_WIDTH_GRANULARITY, values);
glGetFloatv(GL_LINE_WIDTH_RANGE, values);

/* Using Blending wiht Anti-Aliasing */

glEnable (GL_BLEND);

giBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable (GL_LINE_SMOOTH);

glEnable (GL_POINT_SMOOQOTH);
glEnable(GL_POLYGON_SMOOTH);

giHint(GL_LINE_SMOOTH_HINT, GL_DONT_CARE);
glLineWidth (1.0);

/* Draw the whole tree structure here */

giNewList(tree, GL_COMPILE);
build_a_subtree();

glEndList();

/* Create texture objects by reading from a file*/

glGenTextures(1, texName);

glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

pic=(GLubyte *)read_texture("'sample2.rgh", 8cwidth[0], &height[0}, &components);

giBindTexture(GL_TEXTURE_2D, texName(0]);

giTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);

giTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);

giTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_NEAREST);

giTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_NEAREST);

giTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);

ghuBuild2DMipmaps(GL_TEXTURE_2D, 4, width[0}, height[0], GL_RGBA,
GL_UNSIGNED_BYTE, pic);

giNewList(picture, GL_COMPILE);
giPushMatrix();
giBindTexture(GL_TEXTURE_2D, texName[0]);
glBegin(GL_QUADS);
glTexCoord2£(0.0, 0.0); glVertex3£(-200.0, -200.0, -200.0);

58



giTexCoord2£(0.0,1.0); gIVertex3£(-200.0, -200.0, -200.0);
glTexCoord2£(1.0, 1.0); g[Vertex3£( 200.0, 200.0, -200.0);
glTexCoord2£(1.0, 0.0); glVertex3£( -200.0, 200.0, -200.0);
glEnd();
giPopMatrix();
glEndList();

/* Initialize menu bar */
make_menu();

}

/*

*/

/* dsiplay() function uses the global variables to draw the scene */
void display (void)

{

giClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

/* Control the light in the redering mode */
/*glLightfv(GL_LIGHTO, GL_POSITION, lightPosition);
*olPushMatrix();
*gIDisable(GL_LIGHTING);
*glTranslatef(lightPosition[0}, lightPosition(1], lightPosition[2]);
*olEnable(GL_LIGHTING);
*glPopMatrix();
*

/

/* Draw the whole tree structure created by display list */
glPushMatrix();

glRotatef(ViewAngleY, 0.0, 1.0 ,0.0);

glCallList(tree);

glPopMatrix();

/* Draw a textured background */
glPushMatrix();
if(useTexture)

{
glEnable(GL_TEXTURE_2D);
glDisable(GL_LIGHTING);
glCallList(picture);

if(useTexture)

{
glDisable(GL_TEXTURE_2D);
glEnable(GL_LIGHTING);

}
glPopMatrix();

59



glutSwapBuffers();
glFlush();

}

[r==
-— sk /
void reshape(int width, int height)

double y = (double) height/(double) width;

glViewport (0, 0, (GLsizei) width, (GLsizei) height);
gMarrixMode(GL_PROJECTION);

glLoadldentity();

y = (double) height / (double) width;

gluPerspective(60.0, (GLfloat) width/(GLfloat) height, 0.5, 520.0);

giMatrixMode(GL_MODELVIEW),

glLoadlIdentity();

gluLookAt(0.0, 0.0, 10.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
}
[r======= ===

*/

build_a_subtree()
{

struct dupl_sub_tree sub_tree_count;

int i

int pos_size;
Sphere_point pos[NO_LEVEL_NODE];
char *p;

init_called_levels();
sub_tree_count.count =0;
compute_called_levels(current_tree, 0, sub_tree_count);

if (current_tree->called_count >1)

/* printf("called_count=%d\n", current_tree->called_count);*/

/* display a red sphere */

giMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, red);
gMaterialfv(GL_FRONT, GL_SPECULAR, white);
gMaterialfr(GL_FRONT, GL_SHININESS, polished);

60



glTranslatef(0.0, 3.0, 0.0);
glutSolidSphere(RADIUS, 50, 50);

glPushMatrix();
giDisable(GL_LIGHTING);
giTranslatef(0.0 RADIUS, 0.0);
giScalef(0.003,0.003,0.003);
glColor3£(1.0, 1.0, 0.0);

for (p = current_node_name; *p; p++)
glutStrokeCharacter(GLUT_STROKE_ROMAN, *p);

glEnable(GL_LIGHTING);
glPopMatrix();

}
else

{

/* display a yellow sphere */

glColor3£(1.0, 1.0, 0.0);

giMatenialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, yellow);
giMaterialfr(GL_FRONT, GL_SPECULAR, white);
giMaterialfv(GL_FRONT, GL_SHININESS, polished);

glTranslatef(0.0, 3.0, 0.0);
glutSolidSphere(RADIUS, 50, 50);

glPushMatrix();
giDisable(GL_LIGHTING);
glTranslatef(0.0,RADIUS, 0.0);
glScalef(0.003,0.003,0.003);
glColor3£(1.0, 1.0, 0.0);

for (p = current_node_name; *p; p++)
glutStrokeCharacter(GLUT_STROKE_ROMAN, *p);

glEnable(GL_LIGHTING);
glPopMatrix();
}
/* Recursive function call */
build_cone_scheme(pos, &pos_size, LEVEL_1_WIDTH, current_tree);
build_sub_tree(pos,pos_size,current_node_name,1,current_tree, LEVEL_1_WIDTH);

build_cone_scheme(pos, pos_size, width, cur_tree)
Spherc_point posf];

61



int *pos_size;

int width;
struct tree_t *cur_tree;
int

IR
struct edge_t *uses;

(*pos_size)=0;

if (cur_tree)
{
uses = cur_tree->uses;
while (uses)

(*pos_size)++;
uses = uses->next_edge;
}
}

for (i =0; i< (*pos_size); i++)
posfi]. = LENGTH;

pos[i].t =(FIRST_ANGLE + i*(360/(*pos_size))) * DEG_TO_RAD;
pos[i].p =width * DEG_TO_RAD;

}
}
/*
*/
build_sub_tree(pos, pos_size, root_name, level, cur_tree, level_width)
Sphere_point pos{l;
int pos_size;
char *root_name;
int level;
struct tree_t *cur_tree;
int level_width;
{ - -
int i
int A
int next_pos_size;
struct edge ¢t *uses;
Sphere_point next_pos[NO_LEVEL_NODE];
char *p;

if (fcur_tree) return;

62



/*printf("build_sub_tree: root%s no leafs= %d\n", cur_tree->node_name, \
pos_size);

*printf("sub_tree_drawn=%d\nsmallest_called_level=%d\nlevel=%d\n",\
cur_tree->sub_tree_drawn, cur_tree->smallest_called_level, level);

*printf("called_count=%d\n", cur_tree->called_count);

¥
/

if (cur_tree->sub_tree_drawn | | cur_tree->smallest_called_level+1 |=level)
return;

cur_tree->sub_tree_drawn = 1;

if(level<current_level+1)

{

uses= cur_tree->uses;

for (i=0; i<pos_size; i++)

{
glColor3£(1.0, 0.0, 0.0);

glPushMatrix();

giDisable(GL_LIGHTING);
glRotatef((FIRST_ANGLE+i*(360/pos_size)), 0.0, 1.0, 0.0);
glRotatef(level_width, 1.0, 0.0, 0.0);

glTranslatef(0.0, RADIUS, 0.0);

glBegin(GL_LINES);

glVertex3£(0.0, 0.0, 0.0);
glVertex3£(0.0, BOND, 0.0);

glEad();
glEnable(GL_LIGHTING);
glPopMatrix();

x = pos[i].r*sin(pos(i].t)*sin(pos[i]-p);
y = posfi}.c*cos(posfi].p);
z = posl[i}.c*sin(posfi].p)*cos(pos]i].t);

if (uses->node->sub_tree)

{

if (uses->node->sub_tree->called_count >1)

{
/* printf("uses->node->sub_tree->called_count=%d\n",\
uses->node->sub_tree->called_count);*/

/* display a red sphere */
glColor3£(1.0, 0.0, 0.0);

63



glPushMatrix();

giTranslatef(x, y,2);

giMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, red);
gMaterialfv(GL_FRONT, GL_SPECULAR, white);
giMaterialfr(GL_FRONT, GL_SHININESS, polished);

ghutSolidSphere(RADIUS, 50, 50);
/*display the stroke cahracter*/
glPushMatrix();
glDisable(GL_LIGHTING);
glTranslatef(0.0,RADIUS, 0.0);
glScalef(0.003,0.003,0.003);
glColor3£(1.0, 1.0, 0.0);

for (p = uses->node->node_name; *p; p++)
glutStrokeCharacter(GLUT_STROKE_ROMAN, *p);
/*finishing stroke at here */

glEnable(GL_LIGHTING);
glPopMatrix();

glPopMatrix();

/* display a yellow sphere */
glColor3(1.0, 1.0, 0.0);

glPushMatrix();
glTranslatef(, y,z);

giMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, yellow);

giMaterialfv(GL_FRONT, GL_SPECULAR, white);
giMaterialfv(GL_FRONT, GL_SHININESS, polished);

glutSolidSphere(RADIUS, 50, 50);

/*stroking character at here*/
glPushMatrix();
giDisable(GL_LIGHTING);
glTranslatef(0.0,RADIUS, 0.0);
glScalef(0.003,0.003,0.003);
glColor3£(1.0, 1.0, 0.0);



for (p =uses->node->node_name; *p; p++)
glutStrokeCharacter(GLUT_STROKE_ROMAN, *p);

glEnable(GL_LIGHTING);
glPopMatrix();
/*finishing at here*/

glPopMatrix();

else

{
/* display a blue sphere */

glColor3£(0.0, 1.0, 1.0);

glPushMatrix();
glTranslatef(x, y,z);

giMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, blue);
giMaterialfv(GL_FRONT, GL_SPECULAR, white);
giMaterialfv(GL_FRONT, GL_SHININESS, polished);
glutSolidSphere(RADIUS, 50, 50);

glPushMatrix();

glDisable(GL_LIGHTING);

glTranslatef(0.0,RADIUS, 0.0);

glScalef(0.003,0.003,0.003);

glColor3£(1.0, 1.0, 0.0);

for (p = uses->node->node_name; *p; p++)
glutStrokeCharacter(GLUT_STROKE_ROMAN, *p);

glEnable(GL_LIGHTING);
glPopMatrix();

glPopMatrix();

uses = uses->next_edge;
}/*for*/

uses=cur_tree->uses;

for 1=0; 1<pos_size; i++)

65



[*printf("pos_size=%d\n", pos_size);*/

x = posfi].r*sin{pos[i}.t)*sin(posfi].p);
y = posl[i].r*cos(posfi].p);
z = posfi].r*sin(posl[i].p)*cos(posfi].t);

build_cone_scheme(next_pos, &next_pos_size,
level_width+NEXT_LEVEL_DIFF, uses->node->sub_tree);

glPushMatrix();

giTranslatef(x, y, 2);

build_sub_tree(next_pos, next_pos_size, uses->node->node_name,\
level+1, uses->node->sub_tree, level_width+NEXT_LEVEL_DIFF);

glPopMatrix();

uses= uses->next_edge;

}

/*

*/
int main (int argc, char **argv)

int SIZE = 500;
char *name;

if (arge 1=3)
{

printf("Please enter correct parametersi\n");
usage();

clse
{

/* build up the parser */
the_tree =0;
strcpy(root_node_name, argv{1]);
strcpy(dir_path, argv(2]);
build_tree(root_node_name, 0);
strepy(current_node_name, root_node_name);
current_trec = the_tree;

66



current_level =3;

/* Initialize */

glutInitWindowSize(SIZE, SIZE);

glutlnit(&argc, argv);

glutlnitDisplayMode(GLUT_DOUBLE | GLUT_RGBA | GLUT_DEPTH);
name = windowNameProject;

ghutCreateWindow(name);

init();

/* Register the callback function display */
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutSpecialFunc(SpecialKey);
glutKeyboardFunc(keyboard);
ghutVisibilityFunc(visible);

ghitMainLoop();
}

rewrn 0;  /* ANSI C requires main to return int. */

}

67





