INFORMATION TO USERS

This manuscript has been reproduced from the microfim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMl a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9” black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Infformation and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Investigations on User Interface for Online Shopping:
Towards a RealThing Based Design Approach

RAZIBUL HAQUE

A MAJOR REPORT
IN

THE DEPARTMENT
OF

COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE

CoNCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

AUGUST 2000

© RAZIBUL HAQUE, 2000

i~

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence

Our file Notre réfdrence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protege cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-54333-1

Canadi

Abstract

Investigations on User Interface for Online Shopping: Towards a RealThing

Based Design Approach

Razibul Haque

E.ComKit is a collection of RealThing widgets that aims to make the design
and prototyping of user interfaces for an online shopping mall significantly
easier while supporting a new real world-based user interface model.
E.ComKit widgets include shelves, product, product viewer, bag, cash,
payment, delivery, etc. For making virtual shopping over the Internet, the
user can manipulate and interact directly with these widgets as he does in a
real-world shopping mall. Each widget dynamically and automatically varies
its iook-and-feel according to the cultural environment and user stereotype.
Our objectives were to develop a prototype of E.ComKit based online
eBookStore, and evaluate its usability compared to current online

eBookStore, as well as to build specification of E.ComKit.

iii

To my children: Zarin-Tasnim, Rifaa-Samiha, and Taqi-Tahmid Haque

iv

Acknowledgments

I am grateful to my supervisor Dr Ahmed Seffah for his valuable advice
and guidance in my study, and research work at Concordia University.
Also I express my sincere thanks to all of my colleagues of Research and
Development group of Dr Ahmed Seffah for working together in a
friendly environment. I dedicate my love and affectionate to my wife
“Mrs Showkat-Ara Minoti”” and my lovely children “Zarin Tasnim, Rifaa
Samiha, and Taqi Tahamid Haque” for providing me their support by
maintaining high patience, while I was working at the University to
achieve success of my study, and research work. I express special
gratitude to my respected mother “Mrs Rezia Begum”, who had given me

the valuable advice of my future life.

I render my gratitude to Dr T. D. Bui, Graduate Programme Director, Dr
V.S. Alagar, Dr J. Opatrny, Dr W. Jaworski, and all of my Professors at
Concordia University, who had given me an advice during study at
Concordia to achieve success of my study. My respects, best wishes, and
gratitude to Dr Hasan Jamil, who encouraged me to apply at Concordia

University for admission to get higher education in Computer Science.

I express my gratitude and best wishes to Dr Rilling Juergen, who
examines my research paper. Finally, I render my gratitude to the Chair
of the Department of the Computer Science, and Dean of the Faculty of
Engineering and Computer Science for their supports to study in friendly
atmosphere to carry-on and pursue my studies in the Department of

Computer Science.

Contents
List of Tables

List of Figures

Chapter-1

1. Introduction and Project Motivation
1.1 Limits of Windows, Icons, Menus, and Pointers (WIMP)
1.2 The Case of Web-Applications
1.3 RealThing-Based Design Approach for Web Application
1.3.1 Focus on Content, and not in Control
1.4 Current Web Development Tools

1.5 Objectives of this Research

Chapter-2

2. E.ComkKit Concepts, Foundations and Widgets
2.1 Introduction
2.2 E.ComKit Design Anticipation
2.3 RealThing Widgets in E.ComKit
2.4 Discussion and Description of E.ComKit Widgets

vi

X

11

2.5 RealWorld Interaction Style in a physical shopping mall
2.6 Direct manipulation of buying product(s) over an Internet

2.7 Context of Use Pluggable Look-and-Feel
Chapter-3

3. An online eBookStore Prototype
3.1 Introduction
3.2 Design layout of an online eBookStore
3.3 E.ComKit based user interface of an online eBookStore

3.4 Traditional GUI based User Interface of an online eBookStore

3.5 Evaluations of Traditional GUI based, and E.ComKit based eBookStores
according to Norman Principles

3.6 Feedback and comments after evaluating both eBookStore interfaces

Chapter-4

4. E.ComKit based eBookStore OO Modeling
4.1 Introduction
4.2 Component-based E.ComKit RealThings User Interface

4.3 The E.ComKit Modeling for an online eBookStore

vil

24

25

28

31

31

31

33

35

40

42

42

43

43

4.4 E.ComKit Object-Orientation

4.5

4.4.1 Assumptions
4.4.2 Generalization and Specialization
4.4.3 Product to Cash

4.4.4 E.ComKit based an eBookStore Class Details

E.ComKit based an eBookStore library and relationship between classes
1. Promotion shelf [Product(s) Shelf]
2. User Shelf [Product(s) Shelf]
3. Shelf of shelves (Main Shelves)
4. Shelf of Product [Sub shelves, Products shelf]
5. Product to display details information in a window.
6. Interactive ToolBars (Interactive container)
6.1 Bag:
6.2 Cash:
6.3 Invoice:
6.4 Payment:
6.5 Bill:

6.6 Delivery:

viil

45

46

47

50

50

50

51

51

51

52

52

53

53

53

53

6.7 Advisor:
6.8 Shopping Record:
6.9 User Data:

4.6 An eBookStore Object Oriented Class Diagram

Chapter-5

5. Lessons Learned and Perspectives
5.1 Conclusion and future work
5.1.1 Customization of an online shopping environments
5.1.2 Changing Look and Feel of RealThing Interface Object

5.2 Discussions and Achievements

ix

54

54

54

54

56

56

57

59

61

List of Tables:

1. E.ComKit based an online eBookStore widget’s look and feel
2. Context of Use pluggable Look-and-Feel and its behavior

3 Evaluation of Amazon.com, and E.ComKit based eBookStore

List of Figures:

[

. Shopping interaction styles in a physical shopping mall

2. “Drag and drop actions” for buying products

W

. Context of use pluggable look-and-feel examples

4. Design layout of an eBookStore shopping mall

5. E.ComKit based an online eBookStore

6. Traditional GUI based an online eBookStore such as Amazon.com
7. Shelf is a generalization

8. Product to cash

9. An eBookStore OO class diagram

10. Changing look and feel of RealThing objects

11. E.ComKit based an eBookStore model

12. List of Objects of eBookStore model

10

29

40

24

27

30

32

34

35

45

46

55

60

62

63

Appendix-A
1. E.ComKit based an eBookStore Model

2. Each Widget is an object of an eBookStore Model

Appendix-B
1. Java source codes (as sample examples) of an online eBookStore

2. HTML, DHTML and Java scripting languages (as sample examples)
to develop an online eBookStore prototype interface

Reference

62

62

63

64

102

113

Chapter-1

1. Introduction and Project Motivation

1.1 Limits of Windows, Icons, Menus, and Pointers (WIMP)

The user interfaces of today are dominated by the so-called WIMP UI Model
- Windows, Icons, Menus, and Pointers. While there is no denying the
success of these interfaces in bringing desktop computing to millions of
users across the world, the GUI has grown to be a cluttered, discordant

world of clashing icons and wasted screen space.

In the WIMP world, objects (or more usually, widgets) are presented in
rectangular windows. They do not look real, or even bear more than an
occasional passing resemblance to anything in our real world outside the
computer. And amongst the visual noise and clutter, are hidden the clues
necessary to make the cognitive leap to accommodate a metaphor which
relies on the idea that 'windows' can exist on a 'desktop.’ Objects and
applications alike are represented by icons. But these icons only show a
gross level of information - they indicate the class of object, but rarely
impart status information or make important properties apparent. All icons

are the same relative size, and pretty much the same shape.

In the WIMP world, menu bars and tool bars proliferate. Users spend much
of their time 'mining' menus or hovering over buttons waiting for help. As
the user fumbles through the interface in search of particular functions, the

clutter and visual pollution detracts from the content or task that should be

the user's main concern. In such cases, the user interface itself distracts and

intimidates the user rather than helping.

1.2 The Case of Web-Applications

If 'suite-bloat’ is one driver towards a clearer, more accessible world for the
users, the World Wide Web is another. The Web is content-based, and that
content assumes only the relatively limited built-in function of a Browser.
Any other functionality has to be provided intrinsic to the content. Often this
function takes the form of pseudo-menus and pick-lists, but even this
exhibits a freedom and a freshness of design. This is partly because of the
fact that the content is freed from the software and mental constraints of the

standard UI tools and widgets provided by the underlying platform.

It is also partly due to the democratization of content. The pages of content
on the Web are often put together by designers and novices with little or no
previous computer design or programming experience. But, in fact, these are
people who are psychologically more able to communicate with the
‘common user'. Their designs are not polluted by the design constraints that

the UI designer used to have to deal with.

The most interesting design emerging from the Web, though, is where
function is intrinsic to content, - where objects (for want of a better term)
exhibit exactly the behavior that their visual appearance suggests; where
function is in support of task; where form suggests purpose; where

interaction is apparent from visual appearance.

By transfering Web to WIMPs, It is hardly surprising that there is a general
move to incorporate web-like interfaces in the WIMP world. But generally,
this is a patchy solution that combines two fundamentally incompatible

styles of UL

1.3 RealThing-Based Design Approach for Web Application

In many respects, the way to forward for today’s content-centric world 1is
obvious. Cut down on the visual clutter and pollution and focus instead on
the content. This will have the bonus effect of making that content seem
more like the 'real world' content as traditional design methodologies and
experience can be brought to bear. An escape from the constraints of the
rectangular world of the WIMP interface can only bring the UI closer to the

world that the user already knows and understands.

In fact, we can already see the start of a reaction against the cluttered WIMP
world. Lotus SmartSuite, for example, provided tool bars according to
context, rather than present every conceivable function for every possible

circumstance.

More interesting is the Ul demonstrated by Lotus Organizer, where most
operations can be performed in place without resorting to menus or tool bars.
Users are presented with and or/ by UI that resembles something these are
already be understandable - a book. The Smart Center drawers for Calendar
and address are also a natural and very usable extension of this philosophy.
They are unobtrusive yet accessible - combining the value of pull-down
menus with real objects that provides valuable, but not over-comprehensive,

function for standard and frequent tasks to the user.

1.3.1 Focus on Content, and not in Control

While the general movement is in the right direction, the progression is still
quite slow. We can take these notions further still, and the key to, this is
IBM RealThings [8] based on easy-of-use. RealThings exhibit a new, real-
world user interface style. They set a new direction in making user interfaces
more approachable for novice and casual users. At its simplest, the
RealThings philosophy is to make software constructs and applications
appear as they would if they existed in the real world outside the computer.
Object mechanisms are presented in context, and actions are surfaced in

more natural ways.

The key for making RealThings works as the next major stage in the
development of ease of use system, and to have a knowledge transfer from
the real world to virtual world. In such cases the computer user feels more
natural and can adapt the system easily by interact a RealThing based

interface object.

By making the behavior of virtual objects more natural and intuitive - more
like the user expects from his or her experience from the RealWorld object
by doing a physical interaction - we make it more accessible, less daunting,
easier to comprehend and to use. In short, rather than expecting the user to
learn what is in effect a new language, we leverage what the user already
knows. And in doing so, we shift the focus away from controls and back on

to content.

1.4 Current Web Development Tools

Presently, the available current tools for web application such as
CyberStudio, FrontPage, and PageMill etc are using to design HTML based
web pages that vary the degrees of success, and most HTML editors offer
tools that enable you to create tables. The drawback is that their interfaces
will slow you down, making your editing sessions less productive than they
could be [16]. And the current web tool has limitations to match the real-
world object, while the user makes interaction to the interface object over

the Internet as he or/ she does shopping in the RealWorld shopping mall.

The facts of web applications including eCommerce are content-oriented.
And we find that the traditional GUI widgets using for online shopping are
inappropriate because it has several GUIs limitations. For example, it is
necessary to incorporate a special button in shopping carts (or/ bag) to
remove a product. In such cases the user cannot be assumed to understand
that they can ignored (or/ cancel) a purchase by buying a quantity of zero
product (although this technique can also be supported, since it does not
interfere with users unless they decide to use it on their own initiative) [2].
Mostly, the current web or/ eCommerce applications are being developed by
using traditional GUI widgets like menus, scrollbars, buttons and text input
field etc. And it is very difficult to follow the user attitude, behavior over the
Internet using traditional current tool, unless the user interface object could

match the RealThing object in a RealWorld shopping mall.

The design difficulties also vary based on different reasons:

- Narrowly focused on small devices for using Internet based any
application, and cannot be supported full range of features because of

lack of screen space or/ low bandwidth.

- The use of different guidelines for a web application with multiple user

interfaces are not acceptable.

1.5 Objectives of this Research

The aim of this research is to make the RealThing based design for an online
shopping significantly easier, while it supports the following innovative user

interface paradigms:

- Similar to a real-world shopping approach, virtual shopping takes in
place of culture that defines expectation desires, policies, values,

preferences, etc.

- The virtual shopping should be developed in such a way that it can be
interacted easily by the user, and automatically adapted to different

cultures and user stereotypes.

- The virtual shopping should be matched with a RealWorld shopping that
the user does in a real shopping mall, in such cases the user will feel

more natural, and will satisfy by doing shopping over the internet.

- The user can interact with a number of high-level built-in functions to the
Web or/ eCommerce application, including display products, and drag &
drop mechanism, and controlling the user interface of cultural pluggable

look and feel etc.

Chapter-2

2. E.ComKit Concepts, Foundations and Widgets

2.1 Introduction

The E.ComKit (Table-1) is a set of RealThings widgets that exhibit a new
real-world user interface style. The RealThings widgets aims to make the
user interfaces more approachable for novice and casual users. The key to
make RealThings work is transferring knowledge from the real world to
virtual world. And this approach introduced by IBM research as a solution of
GUTIs limitations.

In the E.ComKit approach, the virtual shopping takes place in a context that
defines expectations, desires, policies, values, preferences etc. Therefore, a
virtual shopping environment and especially its interface should be
developed in such a way that it can be automatically and easily adapted, by
the system or/ by user, to the different context of use as per technical,
cultural and social dimensions etc. It is important that the eCommerce or/
web application will be so successful if everyone can customize interface of
virtual shopping mall easily to make a RealThing based virtual shopping
over the Internet. Therefore, the aim of E.ComKit is to make interaction
easily to web interfaces for customization of virtual shopping mall, and or/
by creating his /her own user interface, or/ redesign or/ reorganize interfaces,
and changing look and feel based on cultural environment, and user
stereotype. The E.ComKit approach defines to make it possible for users to

customize interface easily over an Internet browser.

2.2 E.ComKit Design Anticipation

The E.ComKit aims to:
- Develop rapidly different design solutions,

- Help non-expert designer to design and implement RealThing-based

interfaces,
- Facilitate the portability of user interface in different environment,
- Help to evaluate the user interface,
- Improve easy-to-use interfaces, easy-to-learning, easy-to-adapt,

- Bring facilitate customization of user interface by redesigning, or/
reorganizing, or/ creating a new one, or/ changing pluggable look-and-
feel according to the context of use and user stereotype (Table-2 and

Figure-3)

2.3 RealThing Widgets in E.ComKit

At its simplest, the RealThings philosophy is to make a virtual shopping

mall appears as it currently exists in the real world outside the computer.

Products are presented in context, and interactions are surfaced in more
natural ways. By making the behavior of user interface widgets more natural
— more like what users expect from their experience of the world — we

render it more accessible, less daunting and easier to comprehend and use.

However, RealThings are more than simply copying the real world concept
with its inherent limitations; and it provides navigation techniques in natural
way that enhance the real world, as well as offer mechanisms and interaction

cues that are easily recognizable and understandable.

The user interface is a collection of widget(s). At its current moment, the

E.ComKit propose a set of RealThing widgets in Table-1, which are used for

an online eBookStore prototype development as follows.

RealThings | Look-and-Feel from | RealThings | Look-and-Feel from
Object an Onling eBookstore Object an Online aBookstore
1. Product 2. Producr
Viewer
5 Skl of TIB]| |
Shelves Product(s) | Eoncit

5. User Shelf

6. Promotion

Shelf
7. Bag 8. Cash
9. Invoice 710. Payment
11. Bill 12. Delivery
13. Advisor 14. Shopping
Record

15. User

Data

Table 1: E.ComKit based an online eBookStore widget’s look and feel

10

2.4 Discussion and Description of E.ComKit Widgets

A RealThing widget has two states, generally a close state, which means that
the widget is not active (i.e. the interaction has not been done on it yet by the
user). The open state means that the widget is active (i.e. the interaction has
been done by the user). That means, when the user interacts on any widget
with a mouse pointer, its change the state i.e. from closing state to an open

state and vice versa.

The following are the list of E.ComKit widgets for an online eBookStore.

1. A Product is anything that the users need to purchase. For an online
eBookStore, it can be a book, magazine, newsletter etc. The user moves the
mouse pointer over the product or/ drag and drop product to a product

viewer for displaying product’s details.

List of Products

11

2. A Product Viewer displays product information (i.e. Product Title, author,
description of product, and price, etc.) in a window by using different
formats and medium, such as HTML, PDF, Video, etc. The user needs to
drag and drop the product to a product viewer to display detailed product’s

information in different format.

>
Display text

3. A Shelf of Shelves means in turn it contains different sub shelves, and
with each one (sub-shelf) is representing a specific domain area, such as
Computer Science Shelf, which contains Object Oriented Programming
shelf, Artificial Intelligence shelf etc.

Shelf of
Shelves

12

4. A Shelf of Products organized by subject is a collection of products. The
shelf is the only way to organize a group of products. Each shelf is related to
a specific subject, such as Object Oriented Programming shelf contains all

books related to its subject area i.e. Java, C++ Programming etc.

1 0. *

P

Mouse click to
Display

Shelf of Products

5. A User Shelf is a specialized shelf. It contains a collection of products that
is created, or/ selected on the fly by the users. A User Shelf is an example,
that the user can customize an online shopping mall by creating or/ changing

its ook and feel.

1 0..*

VIouse clicK to
Display

4’

User Shelf

13

6. A Promotion Shelf is a shelf that contains a collection of products on sale
and/or related to the user’s preferences. When Iconized, the promotion shelf
looks like a banner of an online shopping mall. When open, it looks like any
other shelf that contains product(s). The eBookStore manager decides which
products are on sale according to preferences entered by the user or

automatically captured from shopping record by the system.

1 0.*

Mouse click
to Display

Promotion Shelf Products are in Promotion Shelf

14

7. A Bag is an unordered temporary shelf that contains list of products that
the user has selected for buying. The user can add or/ remove product(s) to
or/ from bag using drag and drop mechanism. The method is applied to the
bag that adds or/ remove the specific product to or/ from a bag using drag
and drops mechanism, and displays the products that are now available in a

bag instantly.

Z~Pp>HZON

Java builder Guide . . . Sk

[VRML . . 122.080 8]
Java Developers) 200.440 f

' Gold Fusion . 100.100 600.600F}
| Tango . 82.100 656.800 &
- JBulider . 82.230 82.230
i 21.400 85.600 5]

Products are in a Bag

15

8. A Cash is a register machine that counts and cumulates the product’s
price. When the bag is dragged and dropped into a Cash, its counts and

cumulates prices, and generates an invoice automatically.

Cash

Generate Invoice

16

9. An Invoice is a list of products that the user already selected for buying
over an internet and it includes product title, ISBN, price, cumulative total,
applicable taxes, grand total price, customer name, address etc. Drag and

drop an Invoice into a payment widget to pay the product price.

Mouse click to
Display

17

10. An online Payment is required to have the detailed information of card
(or/ eCash or/ Interact) to buy product(s) over an Internet. For example
credit card type, card no, expired date, name of cardholder etc. And as soon

as the payment is donme, it generates a bill automatically for product(s)

delivery. Payment

e

e
2N

Generate Bill

i

18

ludes customer ID, name, address,

inc

is a receipt of payment that

11. A Bill

and product return policy. By doing

list of products, method of payment, etc.

drag and drop ofa b

dget, the user can complete a

i

livery w

idget into a de
list of products to the customer specific

1w

1

duct or/ a

b for delivering a pro

address.

Jo

Bill
OJ

lick t

lay

Mouse ¢
Disp

Bdl Information

AN

i) b
Tnnlais

19

12. A Delivery uses a bill with the user’s delivery address and personal data
to arrange a delivery scheduling.

Make an arrangement

[E perven

15}. —;ﬁ'ﬁ:ﬁw o

T T oy
s | E
T

ST sEaorrores

Y

Sk
SE har et

20

13. The Advisor is an online agent, who can assist users to find and select
product(s) from an online shopping mall for buying easily and or/ provides

other online help, if the user needs it over the Internet.

Advisor

21

14. The Shopping Record contains a list of invoices, bills and the user
preferences of buying product(s) over an Internet. It helps the user to make

new shopping easier.

Shopping Record

Contain

e
Sl
p s s P

[P S e AN R ag Tt D R e D RIS
R S R S BN R

22

15. The User Data (for an example of Razibul image) includes customer
information such as name, postal address, telephone numbers etc. User Data

is used to arrange for delivery and or/ generate an invoice and or/ bill.

ey

rediy

o

23

2.5 RealWorld Interaction Style in a physical shopping mall

In real shopping mall, the people are tempted to pick-up product(s) from a
shelf, and put-into a bag or/ cart for buying, i.e. the customer chooses
product(s) and pick-up product(s) from a shelf and put-into a bag, then bring
bag into a cash for buying (Figure-1).

Product(s) is in
product shelf

Pick-up and put
into a bag

Bring bag to a cash

Figure-1: Shopping interaction styles in a physical shopping mall

24

2.6 Direct manipulation of buying product(s) over an Internet

For an online virtual shopping mall, products are displayed in a window by
an open product shelf. The user can drag and drop product into a bag, And
drag and drop bag into a cash and so on.

For example - to buy product(s) from an online eBookStore, the user can
follow the dragging and dropping mechanism by using mouse pointer:

- To buy product(s) from different shelves, including promotion shelf and

user shelf, the user used mouse click to the product shelf for displaying

product(s) image in a window.

- To know the detailed information about the product the user needs to
move the mouse pointer over the product image, or/ drag product image

and drop into a product viewer (Figure-2)

- Choose or/ select product by using mouse pointer, and drag and drop

product(s) into a bag (Figure-2)

- Product(s) that is already in the bag, then dragging and dropping bag into
a cash to generate an invoice automatically (Figure-2), and mouse click

on an invoice to display details invoice information.

- Dragging and dropping an invoice into a payment to generate a bill
automatically (Figure-2), and mouse click on a bill to display details bill

information.

25

- While the payment is done, the bill is generated automatically, and
dragging and dropping a bill into a delivery widget to make the order
completed, and prepares delivery time scheduling, and print user’s

delivery address to the delivery order sheet for delivery on time, Figure-2

- To get details about specific product(s) of any time that have already
been in purchased, (or/ user preferences), used mouse click on shopping

record widget to get an user’s shopping record (Figure-2)

So, the important feature of E.ComKit approach is that the user can
manipulate and interact directly with the RealThing widgets by using direct
dragging and dropping mechanism to buy product(s) over the Internet.

26

Figure 2 Illustrates the various kinds of interactions that the user can follow
to complete actions for buying product(s) over the Internet by using
dragging and dropping RealThings widgets with the mouse pointer, [like the
user used to habituate in Real World shopping mall to buy a product(s)].

N
' Prometions
w
Promotion
Shelf
4- Get an
nrsxa @ invoice

1- Build/create a
user shelf widget

4- Get an invoice)
S- Buy a list

of product(s)
S- Buy a list E‘
of product(s) : % l
3- Select Zex: o S S - ‘
i3 product(s) ; A 6- products Shopping
= P . that have been Record
Shelf Bag Paylment previously
I purchased
2- Display |
product details }
i
|
Bill
7- Prepare
delivery time $
schedule Bill
;
i 8- Print User Data to the
! delivery scheduling
Product 4 :)
Viewer —— User actions

———>> Output object (i.e. to provide
or/ get automatically)

Figure 2:“Drag and Drop Actions” for buying products

27

2.7 Context of Use Pluggable Look-and-Feel

The context of use pluggable look-and-feel is an extension and
generalization of the pluggable look-and-feel introduced by Java Swing
[VValrath—99]. This mechanism allows an interactive application to choose
the appearance and behavior (i.e. look-and-feel) of UI components according
to the technical environment including hardware and operating system and

its social and cultural dimension, where application will run.

Context of use pluggable look-and-feel provides essential information to
user, who is involved in creating or/-redesigning or/-reorganizing user
interface. In particular, the E.ComKit research work offers to user how to
redesign and changing the pluggable look and feel of user interface widget,

as per context of use and user stereotype over an Internet.

With the context of use pluggable look-and-feel, the user interface varies
according to user characteristics, attitude, tasks based on social and cultural

dimension as well as technical environment (Table-2).

By clicking any of the interface objects, it display a set of RealThing
widgets that the user can select one as per context of use and user stereotype
to change the existing one. Here are the main components of context of use

in general as follows (Table-2):

Components Attributes Example of values
Bebavioral Preferences Buying books
Hobby Reading Nobel
Gender Male/ Female
Disable Need WheelChair
NotDisable Car and or/ Can Walk
Age Childern, Adnlt, Oldage

28

Technical environment

Operating systemn
Hardware

Windows/INT
Unix, Linux
PC Pentium

Social dimension

Environment

Home

Offece

School

Market
Community center
Industry

Village

Town or/ cty

Cultural dimension

Language
Semaphore (symbol)
Color

Religion

English
French

Arab

Bangla
Chinese
Persian
Continent
Country
Green, Red ete.
Lslam, Christianism,
Judaism etc

Table 2: Context of Use plaggable Look-and-Feel and its behavior

To change pluggable look-and-feel as per the context of use, the E.ComKit

maintain the following principles as follows:

- Even if the appearance of the E.ComKit widgets changes, it must retain

the same functionality.

- Each widget

responsibilities.

handles its own

29

individual

view-and-controller

- Each widget delegates the look-and-feel-specific aspects of its
responsibilities to whatever context of use object the currently installed to

provide new look-and-feel appearance.

- Users may also add or/ remove the context of use attributes, and values
by executing a component based on agent program to customize his or/

her interface for displaying a new look and feel of widget appearance.

An E.ComKit-based user interface exploits one simple and well-defined
conceptual model. For example, a cart or/ a basket (Figure 3) can represent
abag. And the look-and-feel for payment can be credit card, e-cheques or

e-cash (Interact payment).

Context of use

|
I ;
I : Language :
l E Culture .
: Country : Look-and-Feel
E.ComKit based an I % Computer H
online Widget I'.... .l.....'.. :
I >
|
Bag I
Appearance |
Contents

Drag Product to Bag
Drag Bag to Cash
Drag Cash to Payment

Bangladesh

Figure 3: Context of use pluggable look-and-feel examples

30

Chapter-3

3. An online eBookStore Prototype

3.1 Introduction

Generally, the current online eBookStore (such as Amazon.com) is
developed based on traditional GUI for an online shopping (i.e. menus,
scrollbars, buttons, and text-input field etc). Which are inappropriate
because it has several GUI limitations, and it is very difficult to incorporate
in traditional GUI appearance as per user’s attitude, user stereotype, and

context of use pluggable look and feel and so on.

A RealThing based an online eBookStore (such as E.ComKit based
eBookStore) is an interactive interface, which are able to responds to a
sequence of users actions (or/ interaction). And the interface is devoted to a
large list of efforts to process user actions (or/ interaction). Therefore, the
E.ComKit based eBookStore prototype interface is representing the user
attitude, behavior, and tasks, those who wants to buy Books, Articles etc

over the Internet.
3.2 Design layout of an online eBookStore

An eBookStore is an online virtual shopping mall. The layout of an online
eBookStore is 640 pixels by 480 pixels, which fit all standards type display
screen for displaying interface appropriately. In E.ComKit based
eBookStore prototype interface, the user can interact with the interface, and

buy books, articles etc over the Internet easily using any standard size of

31

computer display screen. Here are the design layouts the user can display

product in a window by using mouse click to a product’s shelf, and the user

can buy product(s) by using drag and drop mechanism with mouse pointer.

- By clicking a Promotion shelf, or/ User shelf, or/ any shelf of products to

display product(s) in a window. (SubTable-5 of Figure-4)

- By clicking a Shelf of shelves to display the products shelves in a small

layout window as per domain subject area (SubTable-4 of Figure-4)

- By using product drag and drop mechanism, the user can select

product(s) and add to the bag or/ user shelf for buying.

- For buying any product, the user drags and drops into a bag, or/ user

shelf, or/ product into a cash, drags and drops invoice into a payment and

SO Oon.
Main-Table 600 pixels
SubTable-1 Sub Table-6 for ToolBars (Delivery, Bill, Payment, Invoice, Cash,
4 Promotion shelf \ Bag, ProdViewer, Advisor, ShoppingRecorrd, UserData)
0 Y\
0 \
SubTable-2 p
p Usershelf |\ SubTablg-4 for products shelf (SubShelves)
I \\ \ /W’
\\ \)(v E
7 \ ‘\ (
L /// \\\‘ : -
S SubTable-3 W\ Sub Table-5 for Product(s) display
MainShelves T roduct image)

Figure- 4: Design layout of an eBookStore Shopping Mall

32

3.3 E.ComKit based user interface of an online eBookStore

Figure 5 shows the main user interface for an online eBookStore prototype
interface that we have developed using E.ComKit based design approach.
This early prototype was developed using HTML, DHTML, Java applets,
and JavaScript. And later, we have developed this eBookStore prototype by
using Java Development Kits (JDK) including Java Swing Components.

This eBookStore prototype has been developed followed by user preferences
and satisfaction, which helps the user to interact it, as per easy-of-use, easy-

of-learn, and easy-of-adapt etc.

The eBookStore prototype interface is included RealThing widgets such as
shelf, product, user data, shopping record, product viewer, bag, cash,
payment, and delivery etc. And the user using mouse pointer, drag and drop
mechanism etc for doing all interactions over an online eBookStore site.
Such as to click a product shelf to display product in a window, and drag and

drop product into a bag or/ user shelf for buying.

For changing a cultural pluggable look and feel of RealThing widget
(interface object), move the mouse pointer over the RealThing widget (such
as bag, cash etc). And click on right button of mouse to display a list of
widgets related to the property of current interface object and as per cultural
pluggable look and feel. Then the user can choose and select to display, and
change the current RealThing based widget on the eBookStore interface as

the user can satisfy his preferences and cultural pluggable look and feel.

33

Mouse click
on eBook -
Store banner
or promotion
shelf to
display
product(s)
image that
are on sale

E& Yo Go

Customer toolbar including delivery, bill, payment,
invoice, cash, bag, product viewer, online advisor,
shopping record and user-data represented by the
customer picture (Razibul picture is an example here)

Mricrosott lnte tne:t | A[lh et

User shelf
containing
product(s)
selected by
the end-user
for buying

Shelves of
product
shelves
contain
many
product
shelves and
organized by
domain
category

Shelf of
products
organized
by domain
topic that
related to a
specific
subject area

Click on
specific
product(s)
shelf to
display
product(s)
imagein a
window

|
18] Want to view the content of the bag?

Figure 5:

Move the mouse
pomtcr to the product
image (mouse pointer
hovers) ordragand
drops productto the
product viewerto
view the qulck
product details -
information ina
window instantly,

i.e product title, author,
editor, year, ISBN,
price, and abstract etc

Core Java 2, Volume 1: Fundamentals
Cay S. Horstmann and Gary Cornell

Price: $30.09

Prentice Hall; ISBN: 0130819336

Abstract: With the release of Core
Java2, developers have access to
cross-platform functionality oot
previously available under the
earlier iteration of the language.
Whether you want an introductory
tutorial—-or a specialized book on
subjects such as GUI design or
patternos in Java roundup.

E.ComKit based an online eBookStore

34

3.4 Traditional GUI based User Interface an online eBookStore

Figure 6 shows the main user interface for an online eBookStore that has
been developed using traditional GUI based design approach such as
Amazon.Com. And it is very difficult to incorporate user attitude,

stereotype, and context of use pluggable look and feel to the traditional GUI
based web application.

% Amazon com Buoks Netscape [{8 x]
Ble E® VYVew Go Communicator Help . o i
'_} ‘f Bookmarks ,&gLocamIhna:l/wwwmmmwmdwma/hmm//bookmﬁlrd-qw_m_h_br_bo_znwmsdmﬂ o je’w:aw :ﬂ
T YTy . —— —
amazoncom. . < | wee =

ST

: ARF & LA and(TROLS i youg A(COUNT'
AUCTIONS | equiFeniates lzsncﬂl‘"!ﬁ", PANG | HARD, aﬂ

~ -
uusc{ ow {noeo mc’umncs[sa-r-mz 10eg s | & beairy | (e

© 77 SEAHCH: - BAOWSE ' mgmﬁs _FEAIUREDIN. © AWABD - COMPUTERS . CHLDREN'S _ BUSIESS® . - . -~ . .
..} BOOXS SUDIECTS i THEMEDIA | “WINNERS ; - &INYERMET 3.~ DOOKS. - ;” INVESTING - -~ .

@ '1‘1 - :'::1 E . Election 2000 Staore
Aamazzn.com 3a0ks /iy, FOllow the
campaign all the

Hello. Already a customar? Sign . New to Amazon.com? Find out hgw tg grdar. ;a;/u:o_'!:_e ’Whi:e House
Slzgtion 2000
Q E [c s m‘ - -
EATTIGERBTEEEEE SOorn on the Bayou
ar An_h - ’m) s BPurpla Cane Aoad marks the latest appearance of Louisiana gumshoe Dave Bestsallers in
Arg & architactyre "' . - e b . car ey b <
PR AYt¥r] Robicheawx This time, James Lee Burke's ragin’ Cajun is determined to solve the Rusiness & [nvesting
Audig Downloads e riddle of his mother's murder, and soon finds himself up to his neck in Crescent City 1. Rich Dad Paar
3argdin Books —W5] squalor. 2ag
ingraohe Mamair: » Racant Editors’ Suggastions by Robert T.
gysinass & [nvasting Kiyasaki, Sharon
Childran's Bogks L. Lechter
Ghnstian 3ggks (Contributar)
oot rars e WA . Whg Mgyeg My
Cegking _Food % Wina on ?ale 3 . Cheasa?
Entarranment Looking for top-drawer titles at rock-bottom prices? We're selling Betty Holcomb's ‘ by Spencer
Gav & Lesbuan Not Graltv! The Cood News About Woriang Mothers for T6% off the list price. m@ - Johnsan
Haalth, Mind & Body].“: - 3. ch Dad's Guida
History Plus: Qe to Invasung
dome & Garden - 8. Food: Smply Chocslata by Art Gsburg-67% off SR by Robert T.
;—Qm'g - Svarvkedy Dras by Lawrence Block~72% off - Kiyaski, Sharon L.
=drga Pnnt P py Lechter
jtarature & Ficticn - Incax Your Way 1o bevastmane Sucegss by Walter R Good and Roy W. (Contributar)
Mystary & Thnilars Hermansen—80% off
Nonfigtion » Mors Bargain 8ooks » More Bestsallers
Qgrah@®
Qutdoors & Mature
2arenting & Famiias Ihe Amazon.com 100
| Brofassignal A Tachncal ITtErVIews, Articles & More I =
Gt D= Oocument Done g e 1B ;SCD [-Q ~Z
SRStart| Ty Microsolt Word - Master_T.| [Amazon. cous Books - . [K3Inbo - Netscapa Folder | K LS L

Figure-6: Traditional GUI based an online eBookstore such as Amazon.com

35

3.5 Evaluations of Traditional GUI based, and E.ComKit
based eBookStores according to Norman Principles

The evaluations have been done between traditional based Amazon.com

eBookStore (Figurer-6) and E.ComKit based eBookStore (Figure-5) as

conformance of Norman Principles (Table-3).

Provide indications of
making understanding
easily by the user.

i.e. What to do next?

How to use it?

properties are traditional GUI
based interfaces, and are not
determined easily by the user

that how the object is nsed?

1t does not match the
RealThing based RealWorld
bebavior, and it has not a
good affordance that can be
understands easily by the user.
It needs to changes pages to
feind detail description of

interface bebaviors and action.

Norman's Traditional based E.ComKit
Principles eBookStore Based
Such as eBookStore
Amazon.com
Affordance: The perceived and external The perceived and external

properties are E.ComKit
RealThing based widgets and
are determined eastly that how
the object(s) is used based on its
visual look and feel.

RealThing based eBookS'tore
widgets does represent good
affordance for understanding by
the user, because its look and

feel matches the real world
object. It does not need to know
the detail description of

bebaviors for an action.

36

Norman’s Traditional based E.ComKit
Principles eBookStore Based
Such as EbookStore
Amazon.com
Mapping: In traditional based GUI user | In eBookStore all Reallhing

Something that can be
measurable and
understandable based
on the set of possible
relations between
obyects.

interface such as Amagon.com
does not relate 100%
RealWorld behaviour fo keeps
the same status and
functionality in all pages, if its
change pages. To many
information in every page and
diffscult to determine a good

measnrable mapping status.

It is not a good measurable
and understandable by the
user easily, because it has no
natural relationships between

GUI objects and RealWorld

objects.

based user interface widgets are
dynamic, but it keeps the same
status and functionalsty,
though its changes the look
and feel of pages, and it
matches the same bebaviour
like RealWorld objects. It is
meastrable and
understandable by the user
easily because it has natural
relationships between
eBookStore widgets and
RealWorld objects.

37

Norman’s Traditional based E.ComKit
Principles eBookStore Based
Such as EbookStore
Amazon.com
Conceptual The Amazon.com is designed | The eBookStore is designed to
Model: to develop @ GUI Interface as | develop a RealThing Interface
Tt is il
inZengZa;;on el | P traditional GUI based based on E.ComKit design
How the operating design approach. Which does | approach, which are refer to
77.
‘Z Zje ;Jz'yZ:bléazozz/of/wZow not refer mental model. The the RealT hing widgels that
[functionality works. user may difficulties to can satisfy mental model
understand all the GUL appropriately. The user may
interfaces of its bebaviour, and | understand easily all the
[unctionality. widgets behaviours and
[functionalities.
Causality: By clicking a GUI interface | What happens immediately
The result bhappened, its change the page, and lost | following an action in

or/ occured right after
doing an action, and it
provides clear context-
oriented and
interpretable ‘feedback”
after each action.

or/ bide the previous page.
Then the user needs to
remember something to take
an action on the next page

otherwise the user will lost
completely.
Remembering information by

the user is not good causality.

E.ComKit based eBookStore
is to be caused that, as soon as
the user click any Reallhing
interface, it will view the
information in the same page.
Or if the mouse pointer places
a product image into a bag,
Just its changes the appearance
of Bag in the same page and
change from empty bag state to
non-empty bag state etc.

38

Norman's Traditional based E.ComKit
Principles eBookStore Based
Such as EbookStore
Amazon.com
Visible The actions should be The actions should be
g‘;n;:;/eal;’:atls: percezved from the GUL perceived from the RealT hing
measurable for one interfaces that the user does widget’s look-and-feel that the
direction. not able to make interfaces user is able to make the
visible, because every click or/ | interface visible because every
an action, it change the pages. | click or/ an action, it does not
In the most case the visible change pages, and it remain in
cOnstraint is ankNown. the same page. Constrainis are
Rnown in most cases.
Population All idioms of GUI interface All idioms associated with
Stereotypes: works in different way. In E.ComKit widget work in

Learn idioms that
work in a certain way
will satisfy every user’s
culture and social
Stereotypes.

most cases it does not refer the
real world environment, and
does not change interface look
and feel based on context of
dse (i.e. as per culture and
social dimension), and

preferences.

same way that they do act in -
real world environment. In
ReallWorld different culture
and society are acted in
different way for each and
every possible action. The
eBookS tore RealT hing widget
changes its look and feel based
on culture and social
dimension. Because it has
natural relationship between
RealThing based widget and
RealWorld object.

39

Norman's Traditional based E.ComKit
Principles eBookStore Based
Such as EbooksStore
Amazon.com
Transfer I acts some times as positive | The eBookS'tore has positive
effect: transfer effects, and some times | transfer effect, learning all by
Has both learning and

expectations, .« based
on

- Positive fransfer or

- INegative transfer

negative transfer effects that
can be learned by using mouse
pointer, and by doing
interaction. And it needs to
learn some functionalities prior
o use, because in most cases
the user does not know what is

happening in next step.

using mouse pointer and
interaction. But does not need
to learn any functionality prior
fo use i1, because the user
already know the RealWorld
based RealThing behavionr.

Table-3: Evaluation of Amazon.com, and E.ComKit based eBookStore

3.6 Feedback and comments after evaluating
both eBookStore interfaces

After examination of both eBookStores interfaces (“the Amazon.com, and

E.ComKit based eBookStore interfaces™), we find differences (Table-3) as

per Norman’s Principles to satisfy the user preferences that how easy to use,

and how easy to interact, and so on.

40

These investigation helps to determine, whether the user understand easily
or/ not by interacting web interface, that how to use it, and how to interact

with efficiently and effectively to get a useful results.

If the user perceives the RealThing based user interface components, or/ the
traditional based user interface components, and or/ to find out if there is

anything offensive in the product.

The traditional based an online eBookStore user interface look and feel does
not satisfy the RealThing based design (such as Amazon.com), and does not
widely understood interface elements (i.e. Image, icons, and windows) to

interact over the Internet.

But the E.ComKit based an online eBookStore user interface look and feel to
satisfy the RealThing design, and widely understood interface elements (i.e.
Image, icons, and windows) to interact over the Internet. The user can find a
specific product from a large list of products and obtain information about it
quickly and easily. And the user can accomplishes all these tasks just by

using mouse pointer with dragging and dropping mechanism.

In complex shopping tasks in E.ComKit based an online eBookStore, such
as checkout and delivery are more natural and intuitive. The users can
customize the shopping mall by creating own interface (as example of user-
shelf), and or/ by redesigning, and or/ by reorganizing existing widgets, and
or/ changing pluggable look and feel of an interface object (i.e. widget) as
per context of use and user stereotypes. And the user can re-used or/
interacts the component-based E.ComKit widgets by unlimited number of

times in virtual shopping environment.

41

Chapter-4

4. E.ComKit based eBookStore OO Modeling

4.1 Introduction

Developing a model for an industrial-strength software system prior to its
construction or/ renovation is as essential as having a blueprint for building
[OMG-news]. The Object Oriented Modeling is an integrated approach to
analysis, design and implementation. It provides a novel method to solve
software problems using models organized around the Real-World concepts.
And it is a technique based on modular decomposition of a system for
system manipulates. The OO analysis defines domain problems i.e. to define
the Real-World objects and it’s associate properties. The objects are required
to build the model will be identified, and a system will be developed that its
simulates the Real-World model. Each of the object will be acted
independently and managed its own interaction-and data. And one or more
objects needed to be included in the system to manage its interface. The
model allows the user to specify how many object interactions should
include to a given run. The E.ComKit based an online eBookStore Modeling
represents all objects that are needed to analysis, design and implementation

of an online eBookStore over the Internet.

42

4.2 Component-based E.ComKit RealThings User Interface:

Component-based E.ComKit RealThings user interface is providing the
advantages to re-use widgets in the virtual shopping environment. (i.e. Bag,
Cash etc) and it can be re-used by an unlimited number of interactions. A
component-based E.ComKit RealThings user interface is a collection of
widget(s) that are used to interact by the user and a realization of a set of
widgets in general. All components are task-oriented classes in E.ComKit
for any eCommerce virtual shopping or/ web environment i.e. A Bag is a
container that contains list of product(s) for buying. Cash is a widget to
count product(s) and cumulates prices to generate an invoice. An Invoice is a

widget that contains products tile, price, cumulative total price and so on.

4.3 The E.ComKit Modeling for an online eBookStore

OO modeling approach helps to understand the overall system interactions
and functionality, and typically the system is specifying the object(s) to
produce another object(s) followed by user interaction. In the following
structure of E.ComKit model, it describes the site map of an object(s), and
interaction(s) to display product image, which is book image compared to
the real-world object as per user cultural pluggable look and feel. The
interaction mechanisms of an online eBookStore are more natural and
intuitive, because its use mouse pointer and drag and drop mechanism for an
interaction to the RealThing object i.e. MouseOver, MouseClick, Mouse

Drag and Mouse Drop and so on.

43

4.4 E.ComKit Object-Orientation

A class is set of objects that share the same attributes, methods, relationships
and semantics. A class is rendered as a rectangle usually including class
identifier, which is name of class, attributes, and operations that could
implement interface object. And an interface is a collection of operations
that specify a service of class or/ component. The Object Oriented model
records the entities and their relationships. The entities are organized into

classes. It includes physical entities and concepts.

In the E.ComKit based an online eBookStore Object Oriented Classes are
the Shelf, Promotion Shelf, User Shelf, Product Viewer, Bag, Cash,
Payment, and Delivery etc. Each of individuals is working independently but

may have relationship with other classes.

4.4.1 Assumptions

It assumed that the each shelf contains many shelves (or/ products). And it
will be display the shelf of product(s) [or product(s)] at the user’s site right
after interacts (click) on it by mouse pointer. So we can exclude the
concurrency between interacts or/ request due to the specific characteristics
of an online application for each user. Because there is only one mouse
pointer to click on the interface object for one specific user, and only one

input event will be generated at a time.

4.4.2 Generalization and Specialization

A shelf of shelves, or/- promoticn shelf, or/-user shelf, and or/-bag is a part
of shelf. So a shelf is a generalization of an online eBookStore application.

Or a shelf of shelves, or/ promotion shelf, or/ user shelf, and or/ bag is a

specialization of shelf.

A shelf is an open or/ a close state, if opened state then an interaction has
been done by a mouse pointer on it for displaying shelves of product(s) [or/

product(s)]. Or if the shelf is a close state that means the interaction has not

been done yet.

Shelf

Shelf of
Shelves

Promotion
Shelf

User Shelf

Bag

Figure-7: Shelf is a generalization

45

4.4.3 Product to Cash

Product(s)

drag and Drop

User Shelf

drag and drop

) .
-y

Bag

drag and drop

Cash

Figure-8 : Product to Cash

46

4.4.4 E.ComKit based an eBookStore Class Details

Shelf

Look_Feel
Images_List[]
Color
Product_List
Product_group

Shelf() //Constructor
addImages();

setl.ook();

setColor();

getlmages();
Select_Group();
Change_look();
Change_Caolor();
Add_New_GroupProduct();
Remove_GropeProduct();
Open_Product_List();

Date_Purchase[]

Special_Price[]

UserShelf PromotionShelf Bag
List_Product[] ListProduct(] Empty
User_name Start Total_Amount
User_info Finish Payment

UserShelf(); //Constructor
Empty();

getImage();

getInfo();

getDate();

setImage();

setInfo();

setDate()

Open_List();

PromotionSheif();
setStart();
setFinish();
setSpecialPrice();
getStart();
getFinish();
getSpecialPrice();
Empty(;

Add();

Bag() //Constructor
Empty()

AddQ

Open()

Remove()

Close()

Delete_all()

Move()

Drag_Drop()
Calculate()

47

Cash

generate

Bag_info;
Total_amount

Cash();

Empty();

Open();

Close(Q;
Remove_prodact();
Drag_Drop();
Calculate();

Drag and dro

Payment

Invoice

Invoice_info;
Product_part_no;
Product_name;
Price;

Invoice();
Create();
Calculate();
Total();
Open();
Close();

generate

Cash_info;
Bill_info
Payment_kind

Payment();
Empty(

Open()

Close()

Drag Drop(Q
Pament_select()
SetPayment()

>

Bill

Cash_info
Bag_info
BillNumber
Billing_date
Delivery_ charge
Bill_list[]

Bill();
Empty()
Drag_Drop(Q)
setBill()
getBill()

Drag and drop

Delivery

Bill_info
Delivery_date

Order();
Time_Scheduling();
setDelivery()
getDelivery()

48

Mouse Over to display text
details

Drag and Drop
Product Product_Viewer
Image_No; Empty
Image_Name; Info_File
Text;
Select() Viewer();
Mouse_over() Empty();
Mouse_Drag_Drop() setInfo_File();
View(); getInfo_File();
Text_Details(Q): updatelnfo_File();
DisplayAnswer();
Advisor
User_Question
Empty
Index_File
Dala_File
Advisor();
Assiste();
Empty();
setIndex_File();
setData_File();
getQuestion();
getIndex_Fiel();
getData_File();
updateIndex_File();
updateData_File();
SearchIndex_File();
SearchData_File();
DisplayAnswer();
Shopping Record User-Data
Record; ID;
Preference; Name;
Satisfaction; Address;
Telephone;
Record(); Credit_Card;
Preference()
Satisfaction()

49

Preferences();
Credit_Card_process();

4.5 E.ComKit based an eBookStore library and relationship
between classes

A typical E.ComKit toolkit “an eBookStore object oriented library” is
included interactive object oriented classes and relationships between classes

are as follows:
1. Promotion shelf [Product(s) Shelf]

The promotion shelf contains zero or many products in it, when interact on it
by the mouse pointer, its display product images into a window, which are

on sale or/ promotion of products.

R 1 Contains 0.*
Promotion_Shelf Product(s)

2. User Shelf [Product(s) Shelf]

The User shelf contains zero or many products in it, when interact on it by
the mouse pointer, its display product images into a window. Which are
selected by the user for buying and drag product(s) from the product’s

window of different shelves, and drop into the User shelf.

1 Contains 0..*
User_Shelf Product(s)

50

3. Shelf of shelves (Main Shelves)

A shelf of shelves is related to one or many product shelves. i.e. The Shelf of

Shelves composed of one or many shelves, when interact on it by the mouse

pointer, its display all products shelves into a panel window.

Shelf of shelives

1

Composed

=

4. Shelf of Product [Sub shelves, Products shelf]

The shelf of product contains zero or many products in it, when interact on it

Products shelves

by the mouse pointer, its display products images into a window.

Shelf of Products

Contains

0._*

5. Product to display details information in a window. The user can move

mouse pointer over the product image or/ drag and drop product image to

Products

product viewer to display product details in a window.

Product

Mouse over or/ click to view

product details.

1| view product details.

Product Viewer

Drag and drop to product viewer to

51

6. Interactive ToolBars (Interactive container)

A toolbar is an interactive container, which contains many interface objects.

All interface objects are the RealThing based widgets.

Delivery Bill Payment Invoice Cash Bag Product Advisor Shopping User

Viewer Record Data
K/ Drag and drop mechanism

Association

6.1 Bag: A bag is a temporary shelf that it contains a zero or many list of

products that the user can store product(s) for buying using drag and drop
mechanism. Every time the product is added to the bag, its update a list of

products automatically. It displays a list of products, when the mouse clicks

on it.

1 Contains 0..*
Bag Product(s)

6.2 Cash: A cash generates an invoice, when product(s) is drag and drop

into a cash, it’s generated an invoice automatically.

1 Generate 1 X
Cash Invoice

52

6.3 Invoice: An invoice is a list of products that are being processed for

buying, the invoice needs to drag and drop into a payment for paying.

R 1 Drag and drop 1
Invoice Payment

6.4 Payment: A payment accepts in different way of payment (i.e. credit

card, eCash etc payment) and generates a bill, when payment is done, it’s

generated a bill automatically.

1 Generate 1 X
Payment Bill

6.5 Bill: A bill is a receipt of payment, the bill needs to drag and drop into

a delivery to deliver product(s) to the customer’s address.

N L Drag and drop 1 X
Bill Delivery

6.6 Delivery: A delivery arranges to delivery a product(s) as per specific
time scheduling, it includes customer delivery address to delivery a

product(s).

- 1 Send product(s) 1 Customer
Delivery Address

53

6.7 Advisor: An advisor is an online agent, who assists user overt the

Internet, if the use needs any.

~ 1 Assists 1
Advisor User

6.8 Shopping Record: A shopping record is a list of product(s), or/ user

preferences, in which the user already has bought product(s) over the

Internet.

1 C i 1
Shopping Record ontarns Product Info

6.9 User Data: A user data contains all personal information of user, in

which the user needs to use it to buy and delivery product(s) over an

Internet.

1 Contains 1
User Data User Info

4.6 An eBookStore Object Oriented Class Diagram

Class diagram is the backbone of nearly all Object Oriented modeling, and it
comprises the maximum efforts of modeling the Object Oriented system. It
describes the types of objects in the system that includes a set of interface
objects. And its collaborations and their relationships to address the static

design view of an online eBookStore that shows a collection of declarative

54

objects. The E.ComKit based eBookStore OO class diagram (Figure-9)
presents a set of RealThing OO classes that are invoked independently right

after interact by the mouse pointer.

<User_Interface>
eBookStore
Inheritance
Promotion User_Shelf Shelf of ToolBar
Shelf Shelves
' &
1
O'_*
Product Shelf of
o0.* Contain 1 Product
_________________________ ! V2
Delivery Bill Payment Invoice Cash Product Advisor Shopping UserData
Viewer Record

N~ 7

\/ Drag and drop mechanism

Association

Figure- 9 : An eBookStore Object Oriented Class Diagram

55

Chapter-35

5. Lessons Learned and Perspectives
5.1 Conclusion and future work

In this work, we have presented and outlined a toolkit for developing a new
generation of user interfaces for eCommerce or/web applications. It is an
alternative approach to current GUI and HTML-based web designs
approaches. The E.ComKit introduces a list of real-world widgets whose
look-and-feel (widget) varies according to the culture and user stereotype.
Each widget delegates the look-and-feel-specific aspects of its
responsibilities to whatever context of use is currently installed. The context
of use includes information about the user behavioral, tasks, as well as the

technical (operating system and hardware), social and cultural environments.

The evaluations and preliminary tests we carried out have led us to enhance
E.ComKit initial approach and to complete its specification. Another key
direction in our work is to extend E.ComKit to support development of
multiple user interfaces, particularly for personal digital assistants (PDA) for

an eCommerce or/ web application.

Examples of look-and-feel were provided throughout this research work to
further illustrate this principle. Users and developers alike must define the
look-and-feel to represent the best culture and stereotype of future users. The
look-and-feel of the different widgets should be developed according to the
example of Norman’s principles that make the design cognitively

respectable [3].

56

5.1.1 Customization of an online shopping environments

For customization of virtual shopping mall, the interface look and feel need
to be changed dynamically according to the context of use, and user
preferences. The context of use is dependable to the culture, society,
country, and geographical area etc. The RealThing based E.ComKit
approach will be useful to customize an online shopping environment and it
can satisfy the needs of user, especially in the context of international

audience.

Therefore, it becomes a necessity that users can redesign, and or/ reorganize,
and or/ create their own interface. It is an important reason why the World
Wide Web will be so successful, because everyone can redesign, or/
reorganize, or/ create his/her own interface on the web as per preferences by

using E.ComKit approach.

Developing user interface by using E.ComKit design approach, allows users
to accomplish the following functionalities on the fly:

- Change the look-and-feel of interface widget as per user preferences.

- Customize shelf of product(s) by dragging and dropping products from
existing shelves to a user shelf, which he or/ she can create as per

preference.

57

- Create new widgets. For example, a customer wishes to create a bag and
payment for a friend, who wants to make shopping over the Internet. To
make a payment, the user right-clicks and selects Create Payment from

the contextual menu.

- A new payment widget will appear. The customer enters the necessary
information (i.e. card number, expiry date and name of cardholder) to

Iconize for payment.

In E.ComKit approach, the user can also design interface over the internet, is
the part of the underlying toolkit, as recommended by Myers [1] and needs

to be implemented in user design and programming environments [5].

58

5.1.2 Changing Look and Feel of RealThing Interface Object

The RealThing widget look and feel can vary according to context of use
and user stereotype. If the user redesigns his or/ her own interfaces on the
fly, then the RealThing based interface look and feel will be changed

automatically.

The user can add a new property to the context of use as per user stereotype,
if needed. The User Design, RealThing approach, and Context of use are
highly coupled and co-related modules (Figure-10). If anything is changed
as per user preferences and satisfaction from any part of the three modules,
i.e. User Design, RealRhing approach, and Context of use, the other will be
updated accordingly. By changing anything from any module, the other two

modules will be changed automatically.

So, the User Design, RealThing approach, and Context of use can be
customized by developping its E.ComKit approach, and or/ changing look
and feel of RealThing interface object.

59

User Design

Customizatiof by

changing look and feel CustomizAtion by

changing 1§ok and feel

Context of Use

Changing look and feel
dynamically

Figure-10: Changing look and feel of RealThing objects

60

5.2 Discussions and Achievements

A recent report released by Creative Good estimates in 1999 [17] that $6
billion was lost due to poor web experiences. As per usability the web
application needs to be redesigned to meet the user preferences and
satisfaction i.e. the web application needs to be focused on ease of use, ease
of learn and ease to adapt. For instance, the importance of usability was
proved when IBM gathered experience at 400% increase of sales, right after
redesigning the website as per usability in mind. Presently, ease of use is a
critical important issue to get more users interact on the eCommerce or/ web

application.

The RealThing based widgets of any web, or/ eCommerce shopping mall are
a list of Usability templates in E.ComKit as per end-user view. And a
RealThing-based E.ComKit UI approach brings distinction between novice,
causal and expert users, and takes into account both users to provide
usability guideline with effectively and efficiently. The quantitative and
qualitative achievements of E.ComKit RealThing widgets are easy-to-learn,
easy-to-adapt and easy-to-use by both users. And the qualitative and
quantitative achievements of E.ComKit RealThing widgets are the
satisfaction with a certain number of percentage from O to 10 dependable on
the type of users, i.e. effectiveness, efficiency, enjoyability, simplicity,

consistency.

In general E.ComKit RealThing approaches have the high level objectives to
reach the goal or/ quality to satisfy the user requirements in respect to

efficiency, effectiveness, learn-ability, and adaptability and so on.

61

Appendix-A

1. E.ComKit based of an eBookStore Model

Main Window
Promotion ToolBar MainShelves
\S/display products(s) image /\ \E/
Product(s) SubShelves
MouseOver to display details P. information \;/ display products(s) image
Product(s)

MouseOver to display details P. information

Shopping UserData
Record

Product Advisor

Delivery l Bil Payment Invoice Cash
Viewer

N

Used Drag & drop mechanisms

Information
& drop
Assists

UserShelf

Drag & drop

Product(s)

Drag & drop Drag & drop to ProductViewer
to display details Information

Draganddrop ~ - > Flow

V > Association
<———> (directed)

Association

Figure- 11: E.ComKit based eBookStore Model

62

2. Each Widget is an object of an eBookStore Model:

Gh

Invoice

Product
Viewer

v

7
'

rd
7
vd
Shopping ﬁmem

Records k

AN

~.
\\
N \
~
(Bm
User
User Data Delivery

Figure- 12 : List of objects of eBookStore Model

Appendix-B
1. Java source codes (as sample examples) of an online eBookStore:

1.1. eBookStore.java

// RealThing based eBookStore pirototype Interface
import java.awt.*;

import java.awt.event.*;

import java.awt.image.*;

import javax.swing.*;

public class eBookStore extends JFrame({
JScrollPane scrollPane = new JScrollPane();
JTextField status;
TableOne tOne;
ButtonTableTwo tTwo;
TableThree tThree;
TableFour tFour;
TableFiveSix tSix;
TableSeven tSeven;
BarOne barOne;
BarTwo barTwo;
JPanel buttonPanel;
JButton back;
JButton next;

public eBookStore(){ // Constructor
setTitle("EBookStore");
setResizable(true);
setSize(600,400);
setFont(new Font("SansSerif",Font. BOLD, 14));
setBackground(SystemColor.window);
addWindowListener(new WindowAdapter()

{

public void windowClosing(WindowEvent e){System.exit(0); }
) .

Toolkit tk = Toolkit.getDefaultToolkit();

Dimension d = tk.getScreenSize();

int screenHeight = d.height;

int screenWidth = d.width;
setLocation(screenWidth/4,screenHeight/4);

Container contentPanel = getContentPane();

64

Image [] images = {
tk.getImage("Images/abook]1.gif"),
tk.getImage("Images/abook2.gif"),
tk.getImage("Images/abook3.gif"),
tk.getlmage("Images/abook4.gif™"),
tk.getImage("Images/abook5.gif"),
tk.getimage("Images/abook7.gif"),
K

Image [] face = {

tk.getImage("CsOOPproducts/oop7.gif"),
tk.getImage("CsOOPproducts/oop6.gif"),
tk.getImage("CsOOPproducts/oop5.gif"),
tk.getimage("CsOOPproducts/oop4.gif™),
tk.getImage("CsOOPproducts/oop3.gif™),
tk.getImage("CsOOPproducts/oop2.gif™),
tk.getImage("CsOOPproducts/oop1.gif™),
tk.getImage("CsOOPproducts/oop5.gif™),
tk.getImage("CsOOPproducts/oop7.gif"),
tk.getImage("CsOOPproducts/oop6.gif™),
tk.getImage("CsOOPproducts/oop3.gif™),
tk.getimage("CsOOPproducts/oop2.gif™),
tk.getImage("CsOOPproducts/oop4.gif™),
tk.getImage("CsOOPproducts/oop1.gif™),
tk.getImage("CsOOPproducts/oop4.gif™),
tk.getImage("CsOOPproducts/oop1.gif™),

b

Image barOnelmage = tk.getImage("Images/Tutorial.gif");
Image barTwolmage = tk.getImage("Images/Tutorial.gif");
barOne = new BarOne(barOnelmage);

barTwo = new BarTwo(barTwolmage);

tSix = new TableFiveSix(face,this);

tOne = new TableOne("Home_EBook_1.gif",tSix);

tTwo = new ButtonTableTwo();

tFour = new TableFour(images,tSix);

tThree = new TableThree(tFour,barOne,barTwo,tSix);
tSeven = new TableSeven();

Box windowBox = Box.createVerticalBox();

Box bottomBox = Box.createHorizontalBox();

Box firetBox = Box.createHorizontalBox();

Box secondBox = Box.createVerticalBox();

Box thirdBox = Box.createVerticalBox();

65

firstBox.add(tOne);

firstBox.add(tTwo);

secondBox.add(tSeven);
secondBox.add(tThree);
thirdBox.add(barTwo);

thirdBox.add(tFour);

thirdBox.add(tSix);
bottomBox.add(secondBox);
bottomBox.add(barOne);
bottomBox.add(thirdBox);
windowBox.add(firstBox);
//windowBox.add(Box.createVerticalStrut(10));
windowBox.add(bottomBox);

JPanel statusPanel = new JPanel();
contentPanel.add(statusPanel,BorderLayout.SOUTH);
scrollPane = new JScrollPane(windowBox);
contentPanel.add(scrollPane,"Center");

}

public static void main(String[Jargv){
eBookStore testFrame = new eBookStore();
testFrame.show();

1.2 TableOne.java

import java.awt.*;

import java.awt.event.*;
import java.awt.image.*;
import javax.swing.*;
import javax.swing.border.*;
import java.io.*;

public class TableOne extends JPanel implements MouseMotionListener {
JButton button = null;
JPanel buttonPanel;
Icon icon = null;
Border buttonBorder;
boolean in;
TableFiveSix picArea,
Toolkit tk = Toolkit.getDefaultToolkit();
Image [] str = {

66

tk.getImage("PromotionProducts/Promo1.jpg"),
tk.getImage("PromotionProducts/Promo2.jpg"),
tk.getImage("PromotionProducts/Promo3.jpg"),
tk.getImage("'PromotionProducts/Promo4.jpg"),
tk.getImage("PromotionProducts/Promo5.jpg"),
tk.getImage("PromotionProducts/Promo6.jpg"),
tk.getImage("'PromotionProducts/Promo7.jpg"),
tk.getImage("PromotionProducts/Promo1l.jpg"),
tk.getImage("'PromotionProducts/Promo2.jpg"),
tk.getImage(""PromotionProducts/Promo3.jpg"),
tk.getImage(*'PromotionProducts/Promo4.jpg"),
tk.getImage("PromotionProducts/Promo35.jpg"),
tk.getImage("'PromotionPreducts/Promo6.jpg"),

s

public TableOne(String s, TableFiveSix drawArea){
//setLayout(new BorderLayout());
setBackground(SystemColor.activeCaptionBorder);
buttonPanel = new JPanel();
buttonBorder = BorderFactory.createLineBorder(Color.white);
icon = new Imagelcon("Images/"+s);
button = new JButton(icon);
buttonPanel.add(button);
button.setBorder(buttonBorder);
add(buttonPanel,FlowLayout. LEFT);
button.add ActionListener(new ShowProduct());
picArea = drawArea;
addMouseMotionListener(this);

}

class ShowProduct implements ActionListener({
public void actionPerformed(ActionEvent e){
picArea.setOtherImage(str);

}
}

public void mouseMoved(MouseEvent evt){
int x = evt.getX();
int y = evt.getY();
in = inImage(x,y);
if(in == true)

67

setCursor(Cursor.getPredeﬁnedCursor(Cursor.HAND_CURSOR));
else
setCursor(Cursor.getDefaultCursor());

}

public void mouseDragged(MouseEvent evt){}
public boolean inlmage(int x,int y){
Point coordinates = buttonPanel.getLocation();
int xOrdinate = coordinates.x;
int yOrdinate = coordinates.y;
Dimension size = button.getSize();
int buttonWidth = size.width;
int buttonHeight = size.height;
int boundWidth = xOrdinate + buttonWidth;
int boundHeight = yOrdinate + buttonHeight;
if((x<=boundWidth)&&(y<=boundHeight))
return true;
else
return false;

}

}//end of class Pictures

1.3 TableThree.java

import java.awt.*;

import java.awt.event.*;
import java.awt.image.*;
import javax.swing.*;
import javax.swing.border.*;

//class for vertical 5 pictures
class TableThree extends JPanel{
Toolkit tk = Toolkit.getDefaultToolkit();
Icon [] images ={
new Imagelcon("Images/"+"Cs_shelf_l.gif"),
new Imagelcon("Images/ "+"Engineering_Shelf_1.gif"),
new Imagelcon("Images/ "+"Medicine_Shelf_1.gif"),
new Imagelcon("Images/"+"Chemistry_shelf_1. gif™),
new Imagelcon("Images/"+"Geology_Shelf_1.gif"),
new Imagelcon("Images/"+"History_Shelf_1 .gif"),
new ImageIcon("Images/Philosophy_Shelf_l.gif"),

s

68

Icon [] tabImages ={
new Imagelcon("Images/"+"Cs_Tab_2.gif"),
new Imagelcon("Images/"+"Engineering_Tab_2.gif"),
new Imagelcon("Images/"+"Medicine_Tab_1.gif"),
new Imagelcon("Images/"+"Chemistry_Tab_1.gif"),
new Imagelcon("Images/"+"Geology_Tab_1.gif"),
new Imagelcon(*Images/"+"History_Tab_1.gif"),
new Imagelcon("Images/Philosophy_Tab_1.gif"),

s

JButton [] buttons = new JButton[images.length];
Image [] compImages ={

tk.getImage("'Images/"+"OOP_Shelf_1.jpg"),
tk.getImage("'Images/"+"AI_Shelf_1.jpg"),
tk.getImage("Images/"+"HCI_Shelf_1.jpg").
tk.getImage("Images/ "+"User_Sheif.jpg"),

|3

Image [] engineeringImages ={
tk.getImage("Images/"+"User_Shelf jpg"),
tk.getlmage("Images/"+"User_Shelf.jpg"),
tk.getImage("'Images/"+"User_Shelf.jpg"),
tk.getImage("Images/"+"User_Shelf.jpg"),

};

Image [] mathImages ={tk.getImage("Images/welcomeb.gif"), };

Image [] mathProducts ={

tk.getImage("Images/officebook.gif™),
|

Image [] barImages = {
tk.getImage("Images/VerComputerBar.gif"),
tk.getImage("'Images/HorComputerBar.gif"),
tk.getImage("Images/VerGreenBar.gif").//en gineering
tk.getImage("Images/HorGreenBar.gif"),
tk.getImage("Images/VerPinkBar.gif").//medicine
tk.getimage("'Images/HorPinkBar.gif"),
tk.getImage("Images/VerChemistryBar.gif"),
tk.getImage("Images/HorChemistryBar.gif"),
tk.getImage("Images/VerGeologyBar.gif"),
tk.getImage("Images/HorGeologyBar. gif™),
tk.getImage("Images/VerHistoryBar. gif™),

69

tk.getImage("Images/HorHistoryBar.gif"),

tk.getImage("Images/VerPhilosophyBar.gif"),

tk.getImage("Images/HorPhilosophyBar.gif"),
b

TableFour showShelves = null;
BarOne barl = null;
BarTwo bar2 = null;
JPanel holdPanel = new JPanel(new GridLayout(images.length,1,0,0));
Border buttonBorder = BorderFactory.createEmptyBorder();
TableFiveSix product;
public TableThree(TableFour subshelves,BarOne barOne,
BarTwo barTwo,TableFiveSix pro){
holdPanel.setBackground(SystemColor.activeCaptionBorder);
for(int i =0;i<images.length;++i){
buttons[i] = new JButton(images[i]);
}
showShelves = subshelves;
barl = barOne;
bar2 = barTwo;
for(int i=0; i<images.length; ++i){
holdPanel.add(buttons[i]);
buttons[i].setVertical Alignment(JButton. TOP);
buttons[i].setHorizontal Alignment(JButton.LEFT);
buttons[i].addActionListener(new showShelf());
buttons[i].setBorder(buttonBorder);
buttons[i].setPressedIcon(tabImages{i]);
add(holdPanel);
}
product = pro;

}

class showShelf implements ActionListener{

public void actionPerformed(ActionEvent e){

if(e.getSource()== buttons[0]){
showShelves.setImagesIcon(compImages);
barl.setNewImage(barImages[0]);
bar2.setNewImage(barImages{1]);

}

else if(e.getSource() == buttons[1]){
showShelves.setImagesIcon(engineeringlmages);
barl.setNewImage(barImages[2]);
bar2.setNewImage(barImages[3]);

}
else if(e.getSource() == buttons[2]){

70

}
}

}/end of class

showShelves.setlmagesIcon(mathImages);
product.setOtherImage(mathProducts);
barl.setNewImage(barlmages[4]);
bar2.setNewImage(barlmages[5]);

}

else if(e.getSource() == buttons[3]){
showShelves.setlmagesIcon(engineeringImages);
barl.setNewImage(barImages[6]);
bar2.setNewImage(barImages[7]);

}

else if(e.getSource() == buttons[4]){
showShelves.setImagesIcon(complmages);
barl.setNewImage(barImages[8]);
bar2.setNewImage(barImages[9]);

}

else if(e.getSource() == buttons[5]){
showShelves.setimagesIcon(engineeringImages);
barl.setNewImage(barImages[10]);
bar2.setNewImage(barImages[11]);

}

else if(e.getSource() == buttons[6]){
showShelves.setImagesIcon(engineeringImages);
barl.setNewImage(barImages[12]);
bar2.setNewImage(barImages[13]);

}

1.4 TableFour.java

import java.awt.*;

import java.awt.event.*;
import java.awt.image.*;
import javax.swing.*;

import javax.swing.border.*;
import java.io.*;

public class TableFour extends JPanel implements MouseMotionListener{

Toolkit tk = Toolkit.getDefaultToolkit();

Image [] images;

Image leftArrow = tk.getImage("Images/Arrow_Left.gif");
Image rightArrow = tk.getImage("Images/Right_Arrow2.gif");
Point [] position;

TableFiveSix product;

Image [] oop = {

71

tk.getImage("CsOOPproducts/oop1.gif™),
tk.getImage("CsOOPproducts/oop2.gif™),
tk.getimage("CsOOPproducts/oop3.gif™),
tk.getImage("CsOOPproducts/oop4.gif™),
tk.getimage("CsOOPproducts/oop5.gif™),
tk.getimage("CsOOPproducts/oop6.gif™),
tk.getImage("CsOOPproducts/oop7.gif"),
tk.getImage("CsOOPproducts/oop1.gif™),
tk.getImage("CsOOPproducts/oop2.gif"),
tk.getImage("CsOOPproducts/oop3.gif"),
tk.getImage("CsOOPproducts/oop4.gif"),
tk.getImage("CsOOPproducts/oop5.gif™),
tk.getImage("CsOOPproducts/oop6.gif™),
tk.getImage("CsOOPproducts/oop7.gif"),

b

public TableFour(Image [] shelves,TableFiveSix showProduct){
this.setPreferredSize(new Dimension(360,100));
images = shelves;
product = showProduct;
position = new Point[images.length];
addMouseListener(new MouseAdapter()

{
int in = 0;
int press =0;
public void mousePressed(MouseEvent evt)
{
int x = evt.getX();
int y = evt.getY();
in = findImage(x,y);
if(in ==0)
product.setOtherImage(oop);
}
b;

addMouseMotionListener(this);

}

public void paintComponent(Graphics g){
super.paintComponent(g);
int xPosition = this.getLocation().x+10;
int yPosition = this.getLocation().y;
for (int i=0;i<images.length;++i){

72

g.drawlmage(images[i],xPosition,yPosition,this);
position[i] = new Point(xPosition,yPosition);
xPosition += 100;

}
}
public void mouseMoved(MouseEvent evt)
{

int x = evt.getX();
int y = evt.getY();
if(findImage(x,y)>=0)

setCursor(Cursor.getPredefinedCursor
(Cursor. HAND_CURSOR));

else

setCursor(Cursor.getDefaultCursor());

}

public void mouseDragged(MouseEvent evt){ }
public void setlmagesIcon(Image [] otherImages){
images = otherlmages;
repaint();

}

public int findImage(int x, int y){
for(int i=0;i<images.length;++i){
if((position[i].x <= x)&&(x <=
position[i].x+images[i].getWidth(this))
&&(position[il.y <= y)&&(y <=
position[i].y+images[i].getHeight(this)))
return i;

return -1;

}

}//end of class

73

1.5 ToolBar.java

// RealThing based ToolBar.java
import java.awt.*;

import java.awt.event.*;

import java.awt.image.*;

import javax.swing.*;

import javax.swing.border.*;

public class ToolBar extends JPanel{
Imagelcon [] pictures = {
new Imagelcon("Images/deliv.gif"),
new Imagelcon("Images/Payment.gif"),
new Imagelcon("Images/master_card.gif"),
new Imagelcon("Images/newInvoice.jpg"),
new Imagelcon("Images/cash.gif"),
new Imagelcon("'Images/Bag.gif"),
new Imagelcon("'Images/product_View.jpg"),
new Imagelcon("Images/adviser.gif"),
new Imagelcon("Images/userPref.gif"),
new Imagelcon("Images/Tool_Razibul.gif"),

};

String [] names = {"Delivery","Bill","Payment","Invoice","Cash","Bag",
"Viewer","Advisor","Shopping Record","User"};

JL abel [] labels = new JLabel[names.length];

JButton {] buttons = new JButton{pictures.length];

Border buttonBorder = BorderFactory.createEmptyBorder();

Box deliveryLabel = Box.createVerticalBox();

Box billLabel = Box.createVerticalBox();

Box paymentLabel = Box.createVerticalBox();

Box invoiceLabel = Box.createVerticalBox();

Box cashLabel = Box.createVerticalBox();

Box bagLabel = Box.createVerticalBox();

Box viewLabel = Box.createVerticalBox();

Box advisorLabel = Box.createVerticalBox();

Box recordLabel = Box.createVerticalBox();

Box userLabel = Box.createVerticalBox();

public ToolBar(){
setBackground(SystemColor.activeCaptionBorder);
for(int i=0;i<pictures.length;++i){
buttons[i] = new JButton(pictures[i]);
buttons[i].setBorder(buttonBorder);

buttons[i].setB ackground(SystemColor.activeCaptionBorder);

74

}
}

buttons[i].addActionListener(new Purchase());

labels[i] = new JLabel(names[i],SwingConstants.RIGHT);
switch(i){

case 0: addButtonLabel(deliveryLabel,buttons [i],labels[i]);break;
case 1: addButtonLabel(billLabel,buttons[i],labels[i]);brea.k;
case 2: addButtonLabel(paymentLabel,buttons[i],labels[i]);break;
case 3: addButtonLabel(invoiceLabel,buttons[i],labels[i]);break;
case 4: addButtonLabel(cashLabel,buttons[i],labels[i]);break;
case 5: addButtonLabel(bagLabel,buttons[i],labels[i]);brea.k;
case 6: addButtonLabel(viewLabel,buttons[i],labels[i]);break;
case 7: addButtonLabel(advisorLabel,buttons[i],labels[i]);break;
case 8: addButtonLabel(recordLabel,buttons[i],Iabels[i]);break;
case 9: addButtonLabel(userLabel,buttons[i],labels[i]);break;

}

void addButtonLabel(Box box,JButton button,JLabel label) {
box.add(button);

label.setVertical TextPosition(JLabel. BOTTOM);
label.setHorizontal TextPosition(JLabel. CENTER);
box.add(label);

add(box);

}

public class Purchase implements ActionListener{
public void actionPerformed(ActionEvent e){
if (e.getSource() == buttons [pictures.length-1]){

UserDataFrame user = new UserDataFrame();
user.show();

}

else if(e.getSource() == buttons[0]){
DeliveryFrame delivery = new DeliveryFrame();
delivery.show();

}

else if(e.getSource() == buttons[1]){

BillFrame bill = new BillFrame();

bill.show();

}
else if(e.getSource() == buttons[2]){

PaymentFrame payment = new PaymentFrame();
payment.show();

}

else if(e.getSource() == buttons[3]){
InvoiceFrame invoice = new InvoiceFrame();
invoice.show();

}

75

else if(e.getSource() == buttons{4]){

CashFrame cash = new CashFrame();

cash.show();

}

else if(e.getSource() == buttons[5]){

IconBagListTable bagFrame = new IconBagListTable();

}

else if(e.getSource() == buttons[6]){

ProductViewerFrame viewer = new ProductViewerFrame();
viewer.show();

}

else if(e.getSource() == buttons[7]){

AdvisorFrame advisor = new AdvisorFrame();
advisor.show();

}

else if(e.getSource() == buttons[8]){
ShoppingRecordFrame record = new ShoppingRecordFrame();
record.show();

}
}

public static void main(String [] args){
JFrame frame = new JFrame();
ToolBar tbt = new ButtonTableTwo();
frame.getContentPane().add(tbt);
frame.show();

}
}//end of class

1.6 Imagelcon.java

import java.awt.*;

import java.awt.event.*;
import java.awt.image.*;
import javax.swing.*;
import java.io.*;

import javax.swing.border.*;

public class Imagelcon extends JPanel{
Toolkit tk = Toolkit.getDefaultToolkit();
JButton text;
JButton changeButton;
JButton previous;
JButton next;

76

JPanel buttonPanel;

int maxImages = 100;

Image [] imas;

int [] imageWidth;

int [J imageHeight;

boolean change = false;

boolean isText = false;

int totalPages = O;

int currentPage = 1;

int beginBook = 1;

final int numOfDispOnce = 8; //8 books will be displayed once
JFrame dialogFrame;

static Icon rightArrow = new Imagelcon("Images/Forward.gif");
static Icon leftArrow = new Imagelcon("Images/Backward.gif");

public Imagelcon(Image [] images,JFrame frame){
setBackground(SystemColor.activeCaptionBorder);
this.setPreferredSize(new Dimension(360,200));
setLayout(new BorderLayout());
buttonPanel = new JPanel();
buttonPanel.setBackground(SystemColor.activeCaptionBorder);
text = new JButton("Text/Image");
text.setBackground(SystemColor.activeCaptionBorder);
text.addActionListener(new ChangeToText());

changeButton = new JButton("Icon/Image");

changeButton.setBackground(SystemColor.activeCaptionBorder);
changeButton.addActionListener(new ChangeImagelcon());

77

previous = new JButton("Back",leftArrow);
previous.setBackground(SystemColor.activeCaptionBorder);
previous.addActionListener(new ShowPreltems());
next = new JButton("Forward" rightArrow);
next.setBackground(SystemColor.activeCaptionBorder);
next.add ActionListener(new ShowMoreltems());
buttonPanel.add(text,FlowLayout.LEFT);
buttonPanel.add(changeButton);
buttonPanel.add(previous);
buttonPanel.add(next);
add(buttonPanel,"North");
imas = images;
dialogFrame = frame;
imageWidth = new int[imas.length];
imageHeight = new int[imas.length];
if(imas.length%numOfDispOnce == 0)

totalPages = imas.length/numOfDispOnce;
else

totalPages = imas.length/numOfDispOnce+1;

public void setOtherImage(Image [] anotherIma){

imas = anotherIma;
repaint();

public void paintComponent(Graphics g){

super.paintComponent(g);
//int xPosition = text.getLocation().x-50;//50
int xPosition = this.getLocation().x+20;
int yPosition = 50;
if(isText == false){
if(change == false){
for (int i=0;i<imas.length;++i){
imageWidth[i] = imas{i].getWidth(this);
imageHeight[i] = imas[i].getHeight(this);

78

else{
for (int i=0;i<imas.length;++i){
imageWidth[i] = imas[i].getWidth(this)/2;
imageHeight[i] = imas[i].getHeight(this)/2;

for(beginBook = (currentPage-1)*8+1;

((beginBook <= imas.length)&&(beginBook
<=currentPage*8));++beginBook){
if((((currentPage-1)*8+1) <= beginBook)&&
(beginBook <= ((currentPage-1)*8+4))){

g.drawImage(imas

[beginBook-1],

xPosition,yPosition,imageWidth

[beginBook—l],imageHeight[beginBook-l],this);
xPosition +=110;

}

if(((currentPage-1)*8+5) == beginBook){
//xPosition = text.getLocation().x-50;
xPosition = this.getLocation().x+20;
yPosition = 200;
g.drawImage(imas[beginBook-1],
xPosition,yPosition,imageWidth
[beginBook-1],imageHeight[beginBook-1] ,this);

}

if((((currentPage-1)*8+5) < beginBook)& &

(beginBook <= ((currentPage-1)*8+8))){

xPosition += 110;
g.drawImage(imas[beginBook-1],
xPosition,yPosition,imageWidth
[beginBook-1],imageHeight[beginBook-1],this);

}

}/end of for
}lend of if
else
g.drawString("Core Java 2,Volume 1:
Fundamentals...” xPosition,yPosition);

}//end of paintComponent()

79

class ChangeToText implements ActionListener{
public void actionPerformed(ActionEvent €){

if(isText == false){
isText = true;
text.setLabel("Images");

}

else{
isText = false;
text.setLabel("Text");
}
repaint();

}

class ChangeImagelcon implements ActionListener{
public void actionPerformed(ActionEvent e){
if(change == false){
change = true;
changeButton.setLabel("Image");

}

else{
change = false;
changeButton.setLabel("Icon");
}
repaint();

}
}//end of listener class

class ShowMoreltems implements ActionListener{
public void actionPerformed(ActionEvent e){

if(currentPage < totalPages){
++currentPage;
repaint();

}

else{
FinishDialog fini = new FinishDialog(dialogFrame);
fini.show();
}//end of else
}//end of function

}//end of class

80

class FinishDialog extends JDialog{

public FinishDialog(JFrame parent){
super(parent,"Finish" true);
JTLabel finish = new JLabel("The End",JLabel.CENTER);
getContentPane().add(finish,"Center");
JPanel okPanel = new JPanel();
JButton ok = new JButton("Ok");
okPanel.add(ok);
getContentPane().add(okPanel,"South");
ok.addActionListener(new ActionListener()
{public void actionPerformed(ActionEvent ¢€)

{setVisible(false); }

b;
setSize(250,150);

}//end of constructor

}//end of FinishDialog class

class ShowPreltems implements ActionListener{
public void actionPerformed(ActionEvent e){
if(currentPage != 1){
--currentPage;
repaint();
}
else{
FinishDialog fini = new FinishDialog(dialogFrame);
fini.show();
}//end of else
}//end of function
}//end of class
}//end of class

1.7 UserShelfListTable.java

import javax.swing.*;
import javax.swing.table.*;
import java.awt.*;

import java.awt.event.*;

public class UserShelfListTable {
public void userShelf(){
JFrame f = new JFrame("'User Shelf Table");
JTable tbl = new JTable(new UserShelfTableModel());
tbl.setDefaultRenderer(java.lang. Number.class,
new FractionCellRenderer(20, 3, SwingConstants.RIGHT));

81

TableColumnModel tcm = tbl.getColumnModel();
tcm.getColumn(0).setPreferredWidth(150);
tcm.getColumn(0).setMinWidth(150);

TextWithIconCellRenderer renderer = new TextWithIconCellRenderer();
tcm.getColumn(0).setCellRenderer(renderer);

tbl.setAutoResizeMode(JTable. AUTO_RESIZE_OFF);
tbl.setPreferredScrollableViewportSize(tbl.getPreferredSizeO);

JScrollPane sp =new J ScroliPane(tbl);
f.getContentPane().add(sp, "Center");

f.pack(;
f.setVisible(true);

}

public UserShelfListTable(){
userShelf();

}

1.8 BagList.java

import javax.swing.*;
import javax.swing.table. AbstractTableModel;

public class BagList extends AbstractTableModel {
protected String[] columnNames =
{"ProductName", "Quantity", "Price", "Total" };

public BagList() {
for (int i = 0; i < data.length; i++) {
data[i][DIFF_COLUMN] =
new Double(((Double)datali] [NEW_RATE_COLUMN]).
doubleValue() * ((Double)data[i]
[OLD_RATE_COLUMN]).doubleValue());
}

}

public int getRowCount() {
return data.length;

}

public int getColumnCount() {
return COLUMN_COUNT;

82

}

public Object getValueAt(int row, int column) {
return datafrow][column];

}

public Class getColumnClass(int column) {
return (data[0][column]).getClass();

}

public String getColumnName(int column) {
return columnNames{column];

}

protected static final int OLD_RATE_COLUMN = 1;

protected static final int NEW_RATE_COLUMN = 2;

protected static final int DIFF_COLUMN = 3;

protected static final int COLUMN_COUNT = 4;

protected static final Class thisClass = BagList.class;

protected Object[][] data = new Object[][] {

{ new DataWithIcon("Java builder Guide",

new Imagelcon(thisClass.getResource("images/Promoll. gif™))),
new Double(1), new Double(37.65), null },

{ new DataWithIcon("VRML",

new ImageIcon(thisClass.getResource("images/Promo22.gif "N,
new Double(2), new Double(61.04), null },

{ new DataWithIcon("Java Developers",

new ImageIcon(thisClass.getRcsource("images/Promo33.gif"))),
new Double(4), new Double(50.11), null },

{ new DataWithIcon("Gold Fusion",

new Imagelcon(thisClass.getResource("images/Promo44.gif ")),
new Double(6), new Double(100.1) , null },

{ new DataWithIcon("Tango",

new Imagelcon(thisClass. getResource("images/Promo55.gif))),
new Double(8), new Double(82.1), null },

{ new DataWithIcon("JBulider",

new ImageIcon(thisClass.getResource("images/Prom066.gif)N
new Double(1), new Double(82.23), null },

{ new DataWithIcon("Power Bulider",

new ImageIcon(thisClass.getResource("images/Promo77.gif"))),
new Double(4), new Double(21.4), null }

|

83

1.9 InvoiceTable.java

import java.awt.*;

import java.awt.event.*;
import javax.swing.*;
import javax.swing.table.*;
import javax.swing.border.*;

class InvoiceTable extends AbstractTableModel{

private String [] columnNames = {"Product Name","ISBN","
Unit Price","Quantity”,"Cumulative total","TPS(7%)","
TVQ(7.5%)","Grand Total"};

Object []{] data ={

{"Core Java","0130819336",new Double(30.09),new Integer(1),

new Double(30.09),new Double(2.11),new Double(2.26),

new Double(34.46)},

{"Core Java","0130819336",new Double(30.09),new Integer(1),

new Double(30.09),new Double(2.11),new Double(2.26),

new Double(34.46)},

{"Core Java","0130819336",new Double(30.09),new Integer(1),

new Double(30.09),new Double(2.11),new Double(2.26),

new Double(34.46)},

{"Core Java","0130819336",new Double(30.09),new Integer(1),

new Double(30.09),new Double(2.11),new Double(2.26),

new Double(34.46)},

b

public int getRowCount(){
return data.length;

}

public int getColumnCount(){
return columnNames.length;

}
public String getColumnName(int c){

return columnNames[c];

}

public boolean isCellEditable(int row, inf. col) {
return false;

}
public Object getValueAt(int r,int c){

return data[r][c];

}

84

public void setValueAt(Object val,int row,int col){
datafrow][col] = val;
fireTableCellUpdated(row, col);

}

public class InvoiceFrame extends JFrame implements ActionListener{
Box winBox = Box.createVerticalBox();
Box infoBox = Box.createHorizontalBox();
JPanel buttonPanel;
JButton ok;
JButton cancel;

JLabel [] labels = {
new JLabel("Customer Name",SwingConstants. RIGHT),
new JLabel("Customer Address",S wingConstants.RIGHT),

b

JTextField nameField;

JTextField addressField;

JPanel labelPanel;

JPanel textPanel;

JPanel [] textPanels = new JPanel[labels.length];

Border topBorder = BorderFactory.createLineBorder(Color.white);
JLabel id;

JTextField idField;

JButton goButton;

public InvoiceFrame() {
setTitle("Invoice Information");
setSize(400,300);

buttonPanel = new JPanel();
ok = new JButton("Ok");
cancel = new JButton("Cancel");

labelPanel = new JPanel(new GridLayout(labels.length,1,0,0));
textPanel = new JPanel(new GridLayout(labels.length,1,0,0));

nameField = new JTextField(20);
addressField = new JTextField(20);

JPanel firstPanel = new JPanel();
Border buttonBorder = BorderFactory.createEmptyBorder();

85

id = new JLabel("Customer ID");
idField = new JTextField(8);
Icon go = new Imagelcon("Images/rightarrow.gif");
goButton = new JButton(go);
//goButton.add ActionListener(new FindCustomer());
goButton.setBorder(buttonBorder);
firstPanel.add(id,FlowLayout.LEFT);
firstPanel.add(idField);
firstPanel.add(goButton);
firstPanel.setBorder(topBorder);
getContentPaneO.add(ﬁrstPanel,"North");

for(int i=0;i<labels.length;++i)
labelPanel.add(labels[i]);

for(int i=0;i<labels.length;++i)
textPanels[i] = new JPanel();

textPanels[0].add(nameField);
textPanel.add(textPanels{0]);

textPanels[1].add(addressField);
textPanel.add(textPanels[1]);

infoBox.add(labelPanel);
infoBox.add(textPanel);
winBox.add(infoBox);

InvoiceTable invoiceTableModel = new InvoiceTable();

JTable invoiceTable = new JTable(invoiceTableModel);
invoiceTable.setAutoResizeMode(J Table. AUTO_RESIZE_OFF);
invoiceTable.setPreferredScrollableViewportSize
(invoiceTable.getPreferredSize());

winBox.add(new J ScrollPane(invoiceTable),"Center");
getContentPane().add(winBox,"Center");

buttonPanel.add(ok);
buttonPanel.add(cancel);
ok.addActionListener(this);
cancel.addActionListener(this);
getContentPaneO.add(buttonPanel,"South");

}
public void actionPerformed(ActionEvent €){

setVisible(false);
}

86

public static void main(String [] args){
InvoiceFrame r = new InvoiceFrame();
r.show();

}

}//end of class

1.10 UserlInfo.java

import java.awt.*;
import java.awt.event.*;
import java.awt.image.*;
import javax.swing.*;

class UserInfo{
private Name nm;
private Address ad;
private Telephone phone;
private int customerld;
private char [] pwd;

//this array is temporty.it is used to anoly a DB for the password check
int [] temp = {1,2,3,4,5,6,7,8,9};

//constructors
public UserInfo(Name na,Address addr, Telephone tel,int id,char [] pd){
nm = na;
ad = addr;
phone = tel;
customerld = id;
pwd = pd;
}
public UserInfo(Name na,Address addr, Telephone tel,char [] pd){
nm = na;
ad = addr;
phone = tel;
pwd = pd;
}

public Name getName() {return nm; }

public Address getAddress(){return ad;}

public Telephone getPhone() {return phone;}
public int getCustomerId({return customerld;}

87

17

1.11 UserDataFrame.java

import java.awt.*;

import java.awt.event.*;
import java.awt.image.*;
import javax.swing.*;
import javax.swing.event.*;
import java.io.*;

public class UserDataFrame extends JFrame
implements ActionListener{
private JFrame userData;
private Box userInforBox;

JPanel leftPanel;

JPanel rightPanel;
private JLabel lastName;
private JLabel firstName;
private JLabel midName;
private JLabel street;
private JLabel cityState;
private JLabel country;
private JLabel postCode;
private JLabel areaCode;
private JLabel number;
private JButton ok;
private JButton cancel;
private JLabel id;

private JLabel sin;
private JLabel newSin;

private JPasswordField password;
private JPasswordField secondPassword,;
private UserInfo data;

Name tempName;

Address tempAddr;

Telephone tempTel;

/[Telephone alterTel;

char [] tempPassword,

char [] rePassword;

JTextField [] field;

JPanel [] fieldPanel;

88

public UserDataFrame(){

setTitle("UserInformation");

setResizable(true);

setSize(400,500);

setFont(new Font("SansSerif",Font. BOLD, 14));

userInforBox = Box.createHorizontalBox();

JLabel [] labels = {
new JLabel("First Name",SwingConstants. RIGHT),
new JLabel("Middle Name",SwingConstants.RIGHT),
new JLabel("Last Name",SwingConstants.RIGHT),
new JLabel("Street",SwingConstants. RIGHT),

new JLabel("City/State/Province",SwingConstants.RIGHT),

new JLabel("Country",SwingConstants.RIGHT),
new JLabel("Post Code",SwingConstants.RIGHT),
new JLabel("Area Code",SwingConstants. RIGHT),

new JLabel("Telephone Number”,SwingConstants.RIGHT),
//new JLabel("Alternate Telephone",SwingConstants.RIGHT),

new JLabel("Password",SwingConstants.RIGHT),

new JLabel("Reenter Password",SwingConstants.RIGHT),

s

leftPanel = new JPanel(new GridLayout(labels.length,1,0,0));
rightPanel = new JPanel(new GridLayout(labels.length, 1,0,0));
for(int i=0;i<labels.length;++i)

leftPanel.add(labels[i]);

fieldPanel = new JPanel[labels.length];
for(int i=0;i<labels.length;++i)
fieldPanel[i] = new JPanel();
field = new JTextField[labels.length];
for(int i=0;i<labels.length-2;++i)
field[i] = new JTextField(15);

password = new JPasswordField(15);

secondPassword = new JPasswordField(15);

int i;

for(i=0;i<labels.length-2;++i){
fieldPanel[i].add(field[i],FlowLayout. LEFT);
rightPanel.add(fieldPanel(i]);

}

fieldPanel{i].add(password,FlowLayout. LEFT);
rightPanel.add(fieldPanel[i]);

89

fieldPanel[++i].add(secondPassword,FlowLayout. LEFT);
rightPanel.add(fieldPanell[i]);
JPanel buttonPanel = new JPanel();
ok = new JButton{"Ok");
buttonPanel.add(ok);
cancel = new JButton("Cancel");
buttonPanel.add(cancel);
ok.add ActionListener(this);
cancel.addActionListener(this);
userInforBox.add(leftPanel);
userInforBox.add(rightPanel);
Box winBox = Box.createVerticalBox();
winBox.add(userInforBox);
winBox.add(buttonPanel);
getContentPane().add(winBox);

}//end of constructor

public static void main(String [] args){
UserDataFrame user = new UserDataFrame();
user.show();

}

public void initialize() {
tempName = new Name(field[0].getText().trim(),
field[1].getText().trim(),field[2].getText().trim());
tempAddr = new Address(field[3].getText().trim(),

field{4].getText().trim(),field[5].getText().trim(),field[6]. getText().trim());

int area = Integer.parselnt(field[7].getText().trim());

int telNum = Integer.parseInt(field[8].getText(.trim());
tempTel = new Telephone(area,telNum);

/ftempCustomerld = Integer.parselnt(field[9].getText().trim());
tempPassword = password.getPassword();

rePassword = secondPassword.getPassword();

int i;

for(i=0;i<tempPassword.length;++i) {

if(tempPassword[i] == rePassword[i])
continue;

else
break;

}

if(i != tempPassword.length){
MessageDialog wrongMessage = new MessageDialog(this);
wrongMessage.show();

else{

90

OutputStream out;

try{

out = new FileOutputStream("userdata.dat",true);
out.write(tempName.getName().getBytes());
out.write(";".getBytes());
out.write(tempAddr.getAddress().getBytes());
out.write(";".getBytes());
out.write(tempTel.getTel().getBytes();
out.write(("#"+"\r").getBytesQ);

out.close();

}catch(IOException €){ }

public void actionPerformed(ActionEvent e){
if(e.getSource() == ok){
initialize();
data = new UserInfo(tcmpName,tempAddr,tempTel,rePassword);
setVisible(false);

}

else if(e.getSource() == cancel)
setVisible(false);

}//end of actionPerformed()
}

class MessageDialog extends JDialog{

public MessageDialog(JFrame parent){
super(parent,"Finish",true);
JLabel finish = new JLabel("Wrong

Password",JLabel. CENTER);

getContentPane().add(finish,"Center");
JPanel okPanel = new JPanel();
JButton ok = new JButton("Ok");
okPanel.add(ok);
getContentPane().add(okPanel,“South");
ok.addActionListener(new ActionListener()
{public void actionPerformed(ActionEvent e)

{
}

setVisible(false);

91

D;
setSize(250,150);
}//end of constructor

1.12 ShoppingRecord.java

import java.awt.*;

import java.awt.event.*;
import javax.swing.*;
import javax.swing.table.*;
import java.io.*;

import javax.swing.border.¥;

class ShoppingRecord{
private static final int maxEntry = 200;
private long [] customerld;
private Date [] buyDate = new Date[maxEntry];
private String [] bookName = new String[maxEntry];
private float [] amount = new float[maxEntry];
private int [] quantity = new int{maxEntry];
private String [] payMethod = new String[maxEntry];
private String [] status = new
String[maxEntry]; //delivering,processing,unpaid,etc.
private int entryNum = O; //should be O,to show the table,
/fassume already has 10 rows
private int numOfAccess = 0;//keeps tracks of the number of accesses of one user

public ShoppingRecord(int id,Date d,String nm,float money,
int q,String how,String s){

customerld[entryNum-++] = id;
buyDate[entryNum++] =d;
bookName[entryNum-++] = nm;
quantity[entryNum++] = q;
amount[entryNum++] = money;
payMethod[entryNum++] = how;
status[entryNum++] = s;

}
public long getId(int i){return customerlId[i]; }

public Date getDate(int i){return buyDate[il; }
public String getBookName(int i) {return bookNamel[i]; }

92

public int getQuantity(int i){return quantityfi];}

public float getAmount(int i){return amount[i]; }

public String getPayMethod(int i) {return payMethod[i]; }
public String getStatus(int i){return status[i];}

public int getAccessNumber() { return numOfAccess; }
public void incrementNumOfAccess() { ++numOfAccess; }
public int getEntryNumber() {return entryNum; }

class RecordTable extends AbstractTableModel{
private String [] columnNames = {"Customer ID","Buy Date",”
Books","Quantity","Total Amount","Payment”,"Status"};

Object [1[] data ={
{"12345","12 June,2000","Core Java"," 1","$30.09","Visa","on delivery"},

{"12345","12 June,2000","Core Java","1","$30.09","Visa","on delivery"},
{"12345","12 June,2000","Core J ava","1","$30.09","Visa","on delivery"},
{"12345","12 June,2000","Core Java","1","$30.09","Visa","on delivery"},
{"12345","12 June,2000","Core Java","1","$30.09","Visa","on delivery"},
{"12345","12 June,2000","Core Java","1","$30.09","Visa","on delivery"},
{"12345","12 June,2000","Core I ava","1","$30.09","Visa","on delivery"},
{"12345","12 June,2000","Core Java","1","$30.09","Visa","on delivery"},
{"12345","12 June,2000","Core Java","1","$30.09","Visa","on delivery"},
{"12345","12 June,2000","Core Java","1","$30.09","Visa","on delivery"},

b

public int getRowCount({
return data.length;

}

public int getColumnCount(){
return columnNames.length;

}
public String getColumnName(int c){

return columnNames[c];

}

public boolean isCellEditable(int row, int col) {
return false;

}
public Object getValueAt(int r,int ¢){

return data[r][c];

}

public void setValue At(Object val,int row,int col){
data[row][col] = val;

93

fireTableCellUpdated(row, col);

}

public class ShoppingRecordFrame extends JFrame{
JPanel idPanel;
JLabel idLabel;
JTextField idField;
JButton goButton;
RecordTable recordTableModel;
JTable recordTable;

public ShoppingRecordFrame(){
setTitle("Shopping Record");
setSize(500,300);

idPanel = new JPanel();

Border buttonBorder = BorderFactory.createEmptyBorder();
idLabel = new JLabel("Customer ID");

idField = new JTextField("Input ID",10);

Icon go = new Imagelcon("Images/rightarrow.gif");
goButton = new JButton(go);
goButton.addActionListener(new FindRecord());
goButton.setBorder(buttonBorder);
idPanel.add(idLabel FlowLayout.LEFT);
idPanel.add(idField);

idPanel.add(goButton);
getContentPane().add(idPanel,"North");

recordTableModel = new RecordTable();
recordTable = new JTable(recordTableModel);
recordTable.setPreferredScrollableViewportSize

(new Dimension(500, 50));
getContentPane().add(new J ScrollPane(recordTable),"Center");

}//end of constructor

public void clearAlIQ{
for(int i =0;i<recordTable.getRowCount();++i){
for(int j=0;j<recordTable.getColumnCount();++j)
recordTable.setValueAt(" ".i,j);

}
} .

class FindRecord implements ActionListener{

94

public void actionPerformed(ActionEvent evt){

if(evt.getSource() == goButton){

clearAll();

InputStream in;

String buffer;

String id;

String date;

String name;

String quantity;

String amount;

String payment;

String status;

int start=0;

int position=0;

int col = 0;

int row = 0;

try{

in = new FileInputStream("Record.txt");

BufferedReader d = new BufferedReader
(new InputStreamReader(in));
buffer=d.readLine();
while(buffer!=null){

position = buffer.indexOf(";",start);
id = buffer.substring(start, position);

String s = idField.getText().trim();

if(s.equals(id)){

recordTable.setValueAt(id,row,col++);

start = position+1;

position = buffer.indexOf(";",start);

date = buffer.substring(start,position);

recordTable.setValueAt(date,row,col++);

start = position+1;

position = buffer.indexOf(";",start);

name = buffer.substring(start,position);

recordTable.setValueAt(name,row,col++);

start = position+1;

position = buffer.indexOf(";" start);

quantity = buffer.substring(start,position);

recordTable.setValueAt(quantity,
row,col++);

start = position+1;

95

position = buffer.indexOf(";",start);
amount = buffer.substring(start,position);
recordTable.setValue At(amount,row,col++);

start = position+1;

position = buffer.indexOf(";",start);

payment = buffer.substring(start,position);

recordTable.setValue At(payment,
row,col++);

start = position+1;
position = buffer.indexOf("#",start);
status = buffer.substring(start,position);
recordTable.setValue At(status,row,col++);
++row;
col =0;
}/fend of inner if
buffer = d.readLine();

start = 0;
position = 0;
}//end of while

in.close();
}catch(IOException e){ }

}//end of outer if

}//end of function
}
public static void main(String [] args){
ShoppingRecordFrame r = new ShoppingRecordFrame();
r.show();
}
}//end of class

1.13 Delivery.java

import java.awt.*;

import java.awt.event.*;
import java.awt.image.*;
import javax.swing.*;

import javax.swing.event.*;
import javax.swing.border.*;
import java.io.*;

96

class Delivery({

private DeliverList dList;
private Invoice receipt;

public Delivery(DeliverList list, Invoice rp){

dL.ist = list;
receipt = rp;

}

public Invoice getInvoice(){return receipt;}
public DeliverList getDeliverList() {(return dList;}

public class DeliveryFrame extends JFrame implements ActionListener({
Box winBox = Box.createHorizontalBox();

JPanel buttonPanel = new JPanel():;
JButton ok = new JButton("Ok"):;
JButton cancel = new JButton("Cancel”);

JLabel [] labels = {
new JLabel ("Customer Name", SwingConstants.RIGHT),
new JLabel ("Telephone", SwingConstants.RIGHT) .
new JLabel ("Alternate
Telephone", SwingConstants .RIGHT) ,
new JLabel ("Customer Address",SwingConstants.RIGHT),
new JLabel ("Delivery Date",SwingConstants.RIGHT),
new JLabel ("Delivery Time",SwingConstants.RIGHT),
new JLabel ("Delivery Method", SwingConstants.RIGHT),
new JLabel ("Different Address", SwingConstants.RIGHT),
Yi

JPanel labelPanel = new JPanel (new
GridLayout (labels.length,1,0,0));

JPanel textPanel = new JPanel (new
GridLayout (labels.length,1,0,0));

JTextField nameField = new JTextField(20);
JTextField telField = new JTextField(20);
JTextField alterTelField = new JTextField(20) ;
JTextField addressField = new JTextField(20);
JTextField dayField = new JTextField("Day",6):;
JTextField minField = new JTextField("Minute",6);
JTextField secondAddr = new JTextField("".20);

JPanel [] textPanels = new JPanel[labels.lengthl];

JComboBox month;
JComboBox year;

97

JComboBox hour;
JComboBox ampm;
JComboBox shipMethod;
Border topBorder =
BorderFactory.createLineBorder (Color.white);
JLabel id;
JTextField idField;
JButton goButton;

public DeliveryFrame() {
setTitle(“UserInformation®);
setResizable(true) ;
setSize(500,400);
setFont (new Font ("SansSerif",Font.BOLD,14));

JPanel firstPanel = new JPanel():;
Border buttonBorder = BorderFactory.createEmptyBorder () ;
id = new JLabel ("Customer ID"):;
idField = new JTextField(8);
Icon go = new ImageIcon("Images/rightarrow.gif“);
goButton = new JButton(go) ;
goButton.addActionListener (new FindCustomer()):
goButton.setBorder (buttonBorder) ;
firstPanel.add(id, FlowLayout .LEFT) ;
firstPanel .add(idField) ;
firstPanel.add(goButton) ;
firstPanel .setBorder (topBorder) ;
getContentPane(),add(firstPanel,“North");

for(int i=0;i<labels.length;++i)
labelPanel.add{labels[il]) ;

for (int i=0;i<labels.length;++i)
textPanels[i] = new JPanel();

month = new JComboBox() ;
month.addItem("January"”)
month.addItem("Febuary")
month.addItem("March") ;
month.addItem("April");
month.addItem("May") ;
month.addItem("June”}) ;
monith.addItem("July"):
month.addItem("August”):
month.addItem("September"};
month.addItem("October") ;
month.addItem("November") ;
month.addItem("December"”) ;

r
2

yvear = new JComboBox();
vear .addItem("1999") ;
yvear .addItem("2000");
vear.addItem("2001");
year.addItem("2002");
vear .addItem("2003");

98

year.addItem("2004");
year.addItem("2005");
year.setEditable(true);

hour = new JComboBox({) ;
hour.addItem("0") ;
hour.addItem("1")
hour.addItem("2")
hour.addItem("3")
hour.addItem("4"
hour.addItem("S
hour.addItem("6
hour.addItem("7
hour.addItem("8") ;
hour.addItem("9") ;
hour.addItem("10")
)
)

ETIEC TR PR 1Y

.

")

")

")
)

hour.addItem("11"
hour.addItem("12"

ampm = new JComboBox() ;
ampm.addItem("AM"} ;
ampm.addItem("PM") ;

shipMethod = new JComboBox():
shipMethod.addItem("Pick up at the store®);:
shipMethod.addItem("Express Post--By fast mail");
shipMethod.addItem("Purolator--Available

for delivery 8:00AM-5:PM")};

textPanels[0] .add (nameField) ;
textPanel .add (textPanels{0]) ;

textPanels([1l] .add(telField):;
textPanel .add (textPanels[1]) ;

textPanels([2] .add(alterTelField);
textPanel .add (textPanels[2]) ;

textPanels (3] .add(addressField);
textPanel .add (textPanels (3]) ;

textPanels [4] .add (month, FlowLayout .LEFT) ;
textPanels{4] .add(dayField) ;
textPanels[4] .add (year) ;
textPanel .add (textPanels [4]) ;

textPanels (5] .add (hour, FlowLayout.LEFT) ;
textPanels[5] .add(minField) ;
textPanels[5] .add (ampm) ;
textPanel .add (textPanels(51]1);

textPanels[6] .add(shipMethod, FlowLayout .LEFT) ;
textPanel.add (textPanels([61]);

textPanels[7] .add (secondAddr) ;
textPanel .add (textPanels(7]) ;

99

winBox.add (labelPanel) ;
winBox.add (textPanel) ;

getContentPane () .add (winBox, "Center") ;
buttonPanel.add(ok) ;
buttonPanel.add(cancel) ;
ok.addActionListener (this);

cancel .addActionlListener (this) ;
getContentPane () .add (buttonPanel, "South") ;

}
public void actionPerformed(ActionEvent evt) {

if (evt.getSource() == ok){
QutputStream out;
String s;
try({
out = new
FileOutputStream("Delivery.txt", true);

out . .write(idField.getText () .getBytes()):
out.write(";" .getBytes());

out.write(nameField.getText () .getBytes()):
out.write(";" .getBytes());

out.write(telField.getText () .getBytes()):;
out . .write(" ;" .getBytes()):

out.write(alterTelField.getText () .getBytes());
out.write(";" .getBytes());

out.write(addressField.getText () .getBytes());
ocut.write(";" .getBytes()):

s = (String)month.getSelectedItem():;
out.write(s.getBytes());

out.write(" ".getBytes()):;

out.write(dayField.getText () .getBytes());
out.write("," .getBytes());

s = (String)year.getSelectedItem();
out.write(s.getBytes());
out.write(" ;" .getBytes());

s = (String)hour.getSelectedItem() ;
out.write(s.getBytes()):

out.write(":" .getBytes()):

out . .write(minField.getText () .getBytes());
out.write("," .getBytes());

s = (String)ampm.getSelectedItem():
out.write(s.getBytes()):

out.write(";" .getBytes());

s =(String)shipMethod.getSelectedItem()
out.write(s.getBytes()):

out.write(";" .getBytes()):

100

if(!secondAddr.getText () .trim() .equals(""))

out .write(secondAddr.getText () .getBytes()) :
out.write((*#"+"\r") .getBytes{());
out.close();

}catch (IOException e) {1}

setVisible(false) ;

}//endif

else

setVisible(false) ;

}

public static void main(String [] args){
JFrame f = new DeliveryFrame() ;
f.show():;

}

class FindCustomer implements ActionlListener{
public void actionPerformed(ActionEvent evt) (
if(evt.getSource(}) == goButton) {

InputStream in;

String buffer;

String id;

String name;

String tel;

String sTel;

String addr;

int start=0;

int position=0;

txry{

in = new FileInputStream("CustomerID.txt"):

BufferedReader d = new BufferedReader

(new InputStreamReader (in)) ;

buffer=d.readLine () ;
while(buffer!=null) {

position = buffer.indexOf(";",start);
id = buffer.substring(start, position);
start = position+1l;

if(idField.getText () .trim() .equals(id)) {

position = buffer.indexOf(";",start);
name = buffer.substring(start,position);
nameField.setText (name) ;

start = position+l;

position = buffer.indexOf(";",start):;
tel = buffer.substring(start,position):;
telField.setText{tel) ;

start = position+l;
position = buffer.indexOf(";",start);

101

sTel = buffer.substring(start,position):
alterTelField.setText (sTel);

start = position+l;
position = buffer.indexOf("#", start);
addr = buffer.substring(start,position);
addressField.setText (addr) ;
}//end of inner if
buffer=d.readLine();
start = 0;
position = 0;
}//end of while
in.close();
}catch (IOException e) {}

}//end of outer if
}//end of function
}//end of inner class
}//end of class

2. HTML, DHTML and Java scripting languages (as sample examples)
to develop an online eBookStore prototype interface:

<htmi>
<head>
<title>eBookStore</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<!__ ********************Nav Bar*** -
<script language="javascript">

bagPic = new Array();

var picNo = 0;

up =new Array();

dn =new Array();

ov =new Array();

alt =new Array();

stat =new Array();

href =new ArrayQ;

up[0] =".././unused.gif";

dn[0] ="../../unused.gif";
ov[0] ="./../unused.gif";
alt[0] ="";

stat[0] ="";

href[0] = "#"

up(1] ="../../CS.gif";
dn[1] ="././CSD.gif";
ov[l] ="././CSO.gif";

alt{1] = "go to the CS department";
stat[1] = "view books related to computer science”;
href[1] = "../../CS/CS.htm";

102

up[2] =".././ENG.gif";

dn[2] ="././ENGD.gif";

ov[2] ="././ENGO.gif";

alt{2] ="go to the engeneering department”;
stat[2] = "view books related to engeneering";
href{2] = ".././ENG/ENG.htm";

up[3] ="././MAT.gif";

dn[3] ="././MATD.gif";

ov[3] ="././MATO.gif";

alt[3] = "go to the Mathematics department";
stat[3] = "view books related to Mathematics";
href(3] = ".././MAT/MAT htm";

up(4] ="././MED.gif";

dn{4] ="././MEDD.gif";

ov[4] ="././MEDO.gif";

alt[4] = "go to the Medicine department”;
stat[4] = "view books related to Medicine";
href[4] = "const.htm";

up(5] ="././BIO.gif";

dn[5] ="././BIOD.gif";

ov[5] ="././BIOO.gif";

alt[5] = "go to the Biology department";
stat[S] = "view books related to Biology";
href[5] = "const.htm";

up[6] ="././GEO.gif";

dnf{6] ="././GEOD.gif";

ov[6] ="././GEOO.gif";

alt[6] = "go to the Geology department”;
stat[6] = "view books related to Geology";
href{6] = "const.htm";

up[7] ="././CHE.gif";

dn[7] ="././CHED.gif";

ov[7] ="././CHEO.gif";

alt[7] ="go to the Chemistry department";
stat[7] = "view books related to Chemistry";
href[7] = "const.htm";

up[8] ="././PHY gif";

dn[8} ="././PHYD.gif";

ov[8] ="././PHYO.gif";

alt[8] = "go to the Physics department";
stat[8] = "view books related to Physics";
href[8] = "const.htm";

up[9] ="././LAN.gif";

dn[9] ="././LAND.gif";

ov[9] ="././LANO.gif";

alt[9] = "go to the Languages department”;
stat{9] = "view books related to languages";
href[9] = "const.htm";

up{10] ="././PHILgif";

dn[10] =".././PHID.gif";

103

k4

ov[10] ="././PHIO.gif";

alt[10] = "go to the Philosophy department";
stat[10] = "view books related to philosophy";
href[10] = "const.htm";

up(11] =".././HIS.gif";

dn[11] =".././HISD.gif";

ov[i1l] ="././HISO.gif";

alt{11] = "go to the History department”;
stat[11] = "view books related to History";
href[11] = "const.htm";

up[12] ="././EDU gif";

dn[12] ="././EDUD.gif";

ov[12] ="././EDUO.gif";

alt[12] = "go to the Education department”;
stat[12] = "view books related to Education”;
href[12] = "const.htm";

up(13] ="././PSY.gif";

dn[13] ="././PSYD.gif";

ov[13] ="././PSYO.gif";

alt[13] = "go to the Psychology department";
stat[13] = "view books related to Psychology";
href[13] = "const.htm";

up{14] ="././POL.gif";

dn{14] ="././POLD.gif";

ov[14] =".././POLO.gif";

alt[14] = "go to the Politics department";
stat[14] = "view books related to Politics";
href[14] = “const.htm";

up[15] ="././REL.gif";

dnf15] ="././RELD.gif";

ov[15] ="././RELO.gif";

alt[15] = "go to the Religion department"”;
stat[15] = "view books related to Religion";
href[15] = "const.htm";

up[16] ="././SOC.gif";

dn[16] ="././SOCD.gif";

ov[16] =".././SOCO.gif";

alt[16] = "go to the Sociology department";
stat[16] = "view books related to Sociology”;
href{16] = "const.htm";

up(17] ="././LAW gif";

dn{17] ="././LAWD.gif";

ov[17] ="././LAWO.gif";

alt[17] = "go to the Law department”;
stat[17] = "view books related to law";
href[17] = "const.htm";

up[18] ="././BUS.gif";

dn[18] =".././BUSD.gif";

ov[18] =".././BUSO.gif";

alt[18] = "go to the Business department";
stat[18] = "view books related to Business";

104

href[18] = "const.htm";

up[19] ="././ECO.gif";

dn[19] ="./.JECOD.gif";

ov[19] ="././ECOO.gif";

alt[19] = "go to the Economics department"”;
stat[19] = "view books related to Economics";
href{19] = "const.htm";

up[20] ="./.JACC.gif";

dn[20] ="././ACCD.gif";

ov[20] ="././ACCO.gif";

alt[20] = "go to the Accountancy department”;
stat[20] = "view books related to Accountancy";
href[20] = "const.htm";

upf21] ="././ART.gif";
dn[21] ="./.JARTD.gif";
ov[21] ="./.J/ARTO.gif";

alt[21] = "go to the Arts department”;
stat[21] = "view books related to Arts";
hreff21] = "const.htm";

up[22] ="././SPO.gif";

dn[22] ="././SPOD.gif";

ov[22] ="././SPOO.gif";

alt[22] = "go to the Sports department”;
stat[22] = "view books related to Sports";
href[22] = "const.htm";

upf23] ="././OTH.gif";

dn[23] =".././OTHD.gif";

ov[23] ="././OTHO.gif";

alt[23] = "go to others subjects”;

stat[23] = "view books not related to any of the other subjects”;
href[23] = "const.htm";

Tabup = new Array();

Tabdn = new Array();

Tabov = new Array();

Tabalt = new Array();

Tabstat = new Array();

Tabhref = new Array();

var curr = 0; //down is done on load

var nbBars = §;

var nbNav = href.length/nbBars; //— 23/8;

function HH_updateTabs(event) {
var i, image, action;
if (event && event == 'down’){
curr=(curr+1)%nbNav;
}else if (event && event == 'up’){
curr=(curr-1+nbNav)Z%nbNav;
}else if (event && event == "init){;

}

105

for(i=1; i<=nbBars; i++) {
image = MM_findObj('Tab'+i);
action = MM_findObj('Tab'+i+'a’);
if(i+(curr*nbBars)<href.length) {
image.src = up[i+(curr*nbBars)];
image.alt = alt[i+(curr*nbBars)];
Tabov[i] = ov[i+(curr*nbBars)];
Tabstat[i] = stat{i+(curr*nbBars)];
action.href = href[i+(curr*nbBars)];
} else { //unused
image.src = upf0];
image.alt = alt[0];
Tabov{i] =ov[0];
Tabstat[i]= stat{0];
action.href= href[0];
}

image.MM_up = image.src;
}
}
//—></script>

<!_ ********************Shelves BaI**‘
<script language="javascript">

sup =new Array();

sdn =new Array();

sov =new Array();

salt =new Array();

sstat =new Array();

shref =new Array();

sup[0] ="../unused.gif";
sdn[0] ="../unused.gif";
sov[0] ="../unused.gif";
salt[0] ="";

sstat[0] ="";

shref[0] = "#";

supfl] ="./HCLgif";
sdn{1] ="../HCID.gif";
sov[l] ="./HCIO.gif";

salt[1] ="go to the HCI department”;
sstat{1] = "view books related to HCI";
shref[1] = "HCI/HCLhtm";

sup[2] ="./ALgif";

sdn[2] ="./AID.gif";

sov[2] ="./AIO.gif";

salt[2] = "go to Al shelf";

sstat[2] = "view books related to AI";
shref[2] = "AI/ALhtm";

sup[3] ="./OO0P.gif";

sdn[3] ="../OOPD.gif";

sov[3] ="./OO0OPO.gif";

106

salt{3] = "go to the OOP shelf™;
sstat[3] = "view books related to OOP";
shref[3] = "OOP/OOP.htm";

sup[4] ="./MED.gif";

sdn[4] ="./MEDD.gif";

sov[4] ="./MEDO.gif";

sait[4] = "go to the Medicine department”;
sstat[4] = "view books related to Medicine";
shref[4] = "const.htm";

sup[5] ="./BIO.gif";

sdn[5] ="./BIOD.gif";

sov[5] ="./BIOO.gif";

salt[5] = "go to the Biology department”;
sstat[S] = "view books related to Biology";
shref[S] = "const.htm";

sup[6] ="./GEO.gif";

sdn[6] ="./GEOD.gif";

sov[6] ="./GEOO.gif";

salt[6] = "go to the Geology department”;
sstat[6] = "view books related to Geology";
shref[6] = "const.htm";

sup[7] ="./CHE.gif";

sdn[7] ="./CHED.gif";

sov[7] ="./CHEO.gif";

salt[7] = "go to the Chemistry department"”;
sstat[7] = "view books related to Chemistry";
shref[7] = "const.htm";

sup[8] ="./PHY.gif";

sdn[8] ="./PHYD.gif";

sov[8] ="./PHYO.gif";

salt[8] = "go to the Physics department";
sstat[8] = "view books related to Physics";
shref[8] = "const.htm";

sup[9] ="./LAN.gif";

sdn[9] ="./LAND.gif";

sov[9] ="./LANO.gif";

salt[9] = "go to the Languages department"”;
sstat[9] = "view books related to languages”;
shref[9] = "const.htm";

sup[10] ="../PHLgif";

sdn[10] ="../PHID.gif";

sov[10] ="./PHIO.gif";

salt[10] = "go to the Philosophy department”;
sstat[10] = "view books related to philosophy";
shref[10] = "const.htm";

sup{11] ="./HIS.gif";

sdn(11] ="./HISD.gif";

sov[11] ="./HISO.gif";

salt[11] ="go to the History department"”;
sstat[11] = "view books related to History";
shref[11] = "const.htm";

107

sTabov = new Array();
sTabstat = new Array();
var scurr = 0; //down is done on load
var snbBars = 7;
var snbNav = shref.length/snbBars;
var oldJS = 0;
var startFlag = true;
var done = false;
function HH_updatesTabs(event){
var i, image, action;

if (event && event = 'left’){

1 curr=(curr+1)%nbNav;
}else if (event && event == 'right){
1/ curr=(curr-1+nbNav)%nbNav;

}else if (event && event == 'init'){;

}

for(i=1; i<=snbBars; i++) {
image = MM_findObj('sTab'+i);
action = MM_findObj('sTab'+i+'a’);
if(i+(curr*nbBars)<href.length) {
image.src = sup[i+(curr*nbBars)];
image.alt = salt[i+(curr*nbBars)];
sTabov[i] = sov[i+(curr*nbBars)];
sTabstat[i] = sstat[i+(curr*nbBars)];
action.href = shref[i+(curr*nbBars)];
} else { /funused
image.src = sup[0];
image.alt = salt{O];
sTabov{[i] =sov[0];
sTabstat{i] = sstat[0];
action.href= shreff0];

}

function MM_preloadImages() { //v3.0
var d=document; if(d.images){ if(\d.MM_p) d.MM_p=new Array();
var i,j=d.MM_p.length,a=MM_preloadImages.arguments; for(i=0; i<a.length; i++)
if (a[i].indexOf("#")!=0){ d.MM_p[j]=new Image; d.MM_p[j++].src=ali]; } }
}
function MM_ findObj(n, d) { //v3.0
var p,1,x; if(!d) d=document; if((p=n.index0f("?"))>0&&parent.frames.length) {
d=parent.frames[n.substring(p+1)].document; n=n.substring(0,p); }
if({(x=d[n])&&d.all) x=d.all[n]; for (i=0;1x& &i<d.forms.length;i++) x=d.forms[i][n];
for(i=0;!x&&d.layers&&i<d.layers.length;i++) x=MM_findObj(n,d.layers[i].document);
return Xx;

}

108

function MM_updateXY(doc,l,t,w,h)

{
if (doc.left)
doc.left =1;
if (doc.top)
doc.top = t;
if (doc.width)
doc.width = w;
if (doc.height)
doc.height = h;
}

function MM_nbGroup(event, grpName) { //v3.0
var i,img,nbArr,args=MM_nbGroup.arguments;
if (event == "init" && args.length > 2) {
if ((img = MM_findObj(args([2])) != null && limg. MM_init) {
img. MM_init = true; img.MM_up = args[3]; img. MM_dn = img.src;
if ((nbArr = document[grpName]) == null) nbArr = document[grpName] = new Array();
nbArr[nbArr.length] = img;
for (i=4; i < args.length-1; i+=2) if ((img = MM_findObj(args[i])) != null) {
if ({img. MM _up) img.MM_up = img.sIc;
img.src = img.MM_dn = args[i+1];
nbArr[nbArr.length] = img;
H}
} else if (event == "over") {
document. MM_nbOver = nbArr = new Array();
for (i=1; i < args.length-1; i+=3) if ((img = MM_findObj(args[i})) != null) {
if (!img.MM_up) img.MM_up = img.sIc;
img.src = (img.MM_dn && args[i+2]) ? args(i+2] : args[i+1];
nbArr[nbArr.length] = img;
}
} else if (event == "out") {
for (i=0; i < document. MM_nbOver.length; i++) {
img = document. MM_nbOver[i]; img.src = (img.MM_dn) ? img.MM_dn : img.MM_up; }
} else if (event == "down") {
if ((nbArr = document{grpName]) != null)
for (i=0; i < nbArr.length; i++) { img=nbArr[i]; img.src = img. MM_up; img.MM_dn = 0; }
document[grpName] = nbArr = new Array();
for (i=2; i < args.length-1; i+=2) if ((img = MM_findObij(args[i])) != null) {
if (!{img.MM_up) img.MM_up = img.sIc;
img.src = img.MM_dn = args[i+1];
nbArr[nbArr.length] = img;
}
}
}

function MM _showHideLayers() { //v3.0
var i,p,v,obj,args=MM_showHideLayers.arguments;
for (i=0; i<(args.length-2); i+=3) if ((obj=MM_findObj(args[i]))!=null) { v=args[i+2];
if (obj.style) { obj=obj.style; v=(v=="show")?'visible':(v="hide") ?'hidden":v; }

109

obj.visibility=v; }
}

function
MM_dragLayer(oijame,x,hL,hT,hW,hH,toFront,dropBack,cU,cD,cL,cR,targL,targT,tol,dropJ S,
et,drag]S) { //v3.0
/[Copyright 1998 Macromedia, Inc. All rights reserved.
var i,j ,aLayer,retVal,curDrag=null,NS=(navigator.appName=’Netscape'), curLeft, curTop;
//alert(‘'dropJD' + dropJS);
if ('document.all && !document.layers) return false;
retVal = true; if(INS && event) event.returnValue = true;
if (MM _draglayer.arguments.length > 1) {
curDrag = MM_findObj(objName); if (lcurDrag) return false;
if ('document.allLayers) { document.allLayers = new Array();
with (document) if (NS) { for (i=0; i<layers.length; i++) allLayers[i]=layers[il];
for (i=0; i<allLayers.length; i++) if (allLayers[i].document &&
allLayers[i].document.layers)
with (allLayers[i].document) for (j=0; j<layers.length; j++)
allLayers[allLayers.length]=layers[j];
} else for (i=0;i<all.length;i++) if (all[i].style&&all[i].style.position)
allLayers[allLayers.length]=all[i];}
curDrag. MM __dragOk=true; curDrag. MM _targl =targl; curDrag. MM _targT=targT;
curDrag. MM _tol=Math.pow(tol,2); curDrag. MM_hLeft=hL; curDrag. MM _hTop=hT;
curDrag MM_hWidth=hW; curDrag.MM_hHeight=hH; curDrag MM _toFront=toFront;
curDrag. MM _dropBack=dropBack; curDrag. MM _dropJS=dropJS;
curDrag. MM _everyTime=et; curDrag. MM _dragJS=dragJS;
curDrag MM_oldZ = (NS)?curDrag.zIndex:curDrag.style.zIndex;
curLeft= (NS)?curDrag.left:curDrag.style.pixelLeft; curDrag. MM_startL = curLeft;
curTop = (NS)?curDrag.top:curDrag.style.pixel Top; curDrag. MM _startT = curTop;
curDrag. MM_bL=(cL<0)?null:curLeft-cL; curDrag. MM _bT=(cU<0)null:curTop -cU;
curDrag. MM_bR=(cR<0)?null:curLeft+cR; curDrag.MM_bB=(cD<0)null:curTop +cD;
curDrag. MM_LEFTRIGHT=0; curDrag. MM_UPDOWN=0; curDrag. MM_SNAPPED=false;
/Nuse in your JS!
document.onmousedown = MM_dragLayer; document.onmouseup = MM_draglayer;
if (NS) document.captureEvents(Event.MOUSEDOWNlEvent.MOUSEUP);
} else {
var theEvent = ((NS)?objName.type:event.type);
if (theEvent = 'mousedown') {
var mouseX = (NS)?objName.pageX : event.clientX + document.body.scrollLeft;
var mouseY = (NS)?objName.pageY : event.clientY + document.body.scrollTop;
var maxDragZ=null; document. MM_maxZ = 0;
for (i=0; i<document.allLayers.length; i++) { aLayer = document.allLayers[i];
var alLayerZ = (NS)?alayer.zIndex:alayer.style.zIndex;
if (al.ayerZ > document. MM_maxZ) document. MM_maxZ = al ayerZ;
var isVisible = (N S)?aLayer.visibility:aLayer.style.visibility).indexOf('hid’) ==-1);
if (aLayer. MM _dragOk !=null && isVisible) with (alLayer) {
var parentL=0; var parentT=0;
if (INS) { parentLayer = aLayer.parentElement;
while (parentLayer != null && parentLayer.style.position) {
parentL += parentLayer.offsetLeft; parentT += parentLayer.offsetTop;
parentLayer = parentLayer.parentElement; }}

110

var tmpX=mouseX-(((N S)?pageX:style.pixelLeft+parentL)+MM_hLeft);
var tmpY=mouseY-(((NS)?page Y :style.pixel Top +parentT)+MM_hTop);
var tmpW = MM_hWidth; if (tmpW <=0) tmpW += ((NS)?clip.width :offsetWidth);
var tmpH = MM_hHeight; if (tmpH <= 0) tmpH += ((NS)2clip.height:offsetHeight);
if ((0 <= tmpX && tmpX < tmpW && 0 <=tmpY && tmpY < tmpH) &&
(maxDragZ == null
| maxDragZ <= aLayerZ)) { curDrag = aLayer; maxDragZ = alayerZ; } } }
if (curDrag) {
document.onmousemove = MM_dragLayer; if (NS)
document.captureEvents(Event. MOUSEMOVE);
curLeft = (NS)?curDrag.left:curDrag.style.pixelLeft;
curTop = (NS)?curDrag.top:curDrag.style.pixelTop;
MM_oldX = mouseX - curLeft; MM_oldY = mouseY - curTop;
document.MM_curDrag = curDrag; curDrag. MM_SNAPPED=false;
if(curDrag. MM _toFront) {
eval(‘curDrag.'+((NS)?":'style.)+'zIndex=document. MM_maxZ+1°);
if (tcurDrag. MM_dropBack) document. MM_maxZ++; }
retVal = false; if(INS) event.returnValue = false;
} } else if (theEvent == 'mousemove’) {
if (document. MM_curDrag) with (document. MM_curDrag) {
var mouseX = (NS)?objName.pageX : event.clientX + document.body.scrollLeft;
var mouseY = (NS)?objName.pageY : event.clientY + document.body.scrollTop;
newLeft = mouseX-MM_oldX; newTop = mouseY-MM_oldY;
if (MM_bL!=null) newLeft = Math.max(newLeft, MM_bL);
if (MM_bR!=null) newLeft = Math.min(newLeft, MM_bR);
if (MM_bT!=null) newTop = Math.max(newTop ,MM_bT);
if (MM_bB!=null) newTop = Math.min(newTop ,MM_bB);
MM _LEFTRIGHT = newLeft-MM_startL; MM_UPDOWN = newTop-MM_startT;
if (NS) {left = newLeft; top = newTop;}
else {style.pixelLeft = newLeft; style.pixelTop = newTop;}
if (MM _dragJS) eval(MM_drag]S);
retVal = false; if(INS) event.returnValue = false;
} } else if (theEvent == 'mouseup’) {
document.onmousemove = null;
if (NS) document.releaseEvents(Event MOUSEMOVE);
if (NS) document.captureEvents(Event. MOUSEDOWN); //for mac NS
if (document. MM_curDrag) with (document. MM_curDrag) {
/falert('style.pixelLeft = + style.pixelLeft);
if (typeof MM_targl. =='number' && typeof MM_targT == number’ &&
(Math.pow(MM_targl-((NS)?left:style.pixelLeft),2)+
Math.pow(MM_targT-((NS)?top:style.pixel Top),2))<=MM_tol) {
if (NS) {left = MM_targL; top = MM _targT;}
else {style.pixelLeft = MM_targL; style.pixelTop = MM_targT;}
MM_SNAPPED = true; MM_LEFTRIGHT = MM _startL-MM_targl; MM_UPDOWN =
MM_startT-MM_targT; }
if (MM _everyTime | MM_SNAPPED)

{

/1if (MM _SNAPPED)
/ alert(MM_SNAP");
/fif (MM _everyTime)
// alert(MM_every');

111

eval(MM_drop]S);
}

if(MM_dropBack) {if (NS) zIndex = MM_oldZ; else style.zIndex = MM_oldZ;}
retVal = false; if(INS) event.returnValue = false; }
document. MM _curDrag = null;

if (NS) document.routeEvent(objName);
}

return retVal;

}
{staff deleted}

<p> </p>

<hr size="2">
<p> problems? contact webmaster

last modification: 30 April, 2000 </p>
</td>
</tr>
</table>
</body>
</html>

112

Reference

Myers, B.A. User Interface Software Tools. ACM Transactions on
Computer Human Interaction 2(1), 1995, pp. 64-103.

Nielsen J. Designing Web Usability: The Practice of Simplicity. New
Riders Publishing1999

Norman, D.A. The Design of Everyday Things. 1990

Rader, C., G. Cherry, C. Brand, A. Repining and C. Lewis. Designing

Mixed Textual and Iconic Programming Languages for Novice Users.
http://www.cs.colorado.eduw/homes/crader/public_html/VL.98/VIL.98.himl

Smith, D.C., A. Cypher and L. Tesler. Novice Programming Comes of
Age. In Communications of the ACM, 43(3), March 2000, pp. 75-81.
Walrath, K., Campione, M. The JFC Swing Tutorial: A Guide to
Constructing GUIs. Addison-Wesley Pub Co. 1999

Robert M. Mulligan, Mark W. Altom and David K. Simkin, “User

interface design in the trenches: some tips on shooting from the hip”
http=//www_acm.org/pubs/articles/proceedings/chi/108844/p232mulligan/ p232-mulligan.pdf
John Mullaly, “IBM RealThings”

http://www.acm.ore/pubs/articles/proceedings/chi/286498/p 1 3-mullaly/p1 3-mullaly.pdf
Brad A. Myers, Richard G. McDaniel, Robert C. Miller, Alan S.

Ferrency, Andrew Faulring, Bruce D. Kyle, Andrew Mickish, Alex
Klimovitski and Patrick Doane. "The Amulet Environment: New Models
for Effective User Interface Software Development,” IEEE Transactions
on Software Engineering, Vol. 23, no. 6. June, 1997. pp. 347-365.

http://www.artis.uni-oldenburg.de/Books/Java_GuideLines/hige.htm

10-[WebSite] See the E-CO System Project website at http:/eco.eit.com
11-G. Booch, J. Rumbaugh, I. Jacobson “The Unified Modelling Language

User Guide, Addison Wesley Pub Co. 1999

12-Martin Fowler, Kendall Scott, UML Distilled-Applying the standard

Object modeling language, Addison-Wesley Pub Co. 1997

13-Stefano Ceri & Piero Fraternali's WebML:

a modeling Language and Tool Suite http:/www.webml.org

14-IBM's Websphere Commerce Server —

Service Provider Edition http://www.ibm.software.com

15-Mercantec's Softcart Solution

htm://www.mercantec.corn/solutions/index.html
Intershop - http://www.intershop.com

16-Macworld, Web Publisher's Essential Tool Kit

hutp://bondiboard.macpublishing.net/1998/05/features/4282.html

17-Creative Good, http://www.creativegood.com/

http ://www.creativegood.com/creativegood-whitegager.gdf

113

