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Abstract

Query Processing Using Views in Semistructured Databases

Alex-Imir Thomo

Since its introduction, XML, the eXtensible Markup Language, has quickly emerged
as the universal format for publishing and exchanging data in the World Wide Web.
As a result, data sources, including object-relational databases, are now faced with a
new class of users: clients and customers who would like to deal directly with XML
data rather than being forced to deal with the data source particular schema and
query languages. XML is also rapidly becoming popular for representing web data
as it brings a finely granulated structure to the web information and exposes the
semantics of the web content. In all these web applications including electronic com-
merce and intelligent agents, view mechanisms are recognized as critical and are being
widely employed to represent users’ specific interests. Rewriting the user queries us-
ing views is a powerful technique in the above described applications, which can be
categorized as data integration, data warehousing and query optimization. In this
study we identify some difficulties with currently known methods for using rewrit-
ings in XML-like “semistructured” databases. We study the problem in two realistic
scenarios. The first one is related to information integration systems such as the
Information Manifold, in which the data sources are modelled as sound views over a
global schema. The second scenario, is query optimization using cached views. In this
setting we propose two kinds of algebraic rewritings that focus on extracting as much
information as possible from the views for the purpose of optimizing regular path
queries, which are the building block of all the query languages for semistructured
data.
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Chapter 1

Introduction

1.1 Preamble

Until a few years ago the publication of electronic data was limited to a few scientific
and technical areas. [t is now becoming universal. Most people see such data as
Web documents, but these documents, rather than being manually composed, are
increasingly generated automatically from databases. It is possible to publish enor-
mous volumes of data in this way, and we are now starting to see the development
of software that extracts structured data from Web pages that were generated to be
readable by humans. The emergence of XML (Extended Markup Language) as a
standard for data representation on the Web is expected greatly to facilitate the pub-
lication of electronic data by providing a simple syntax for data that is both human
and machine-readable.

Since its introduction, XML, the eXtended Markup Language, has quickly emerged
as the universal format for publishing and exchanging data in the World Wide Web.
As a result, data sources, including object-relational databases, are now faced with a
new class of users: clients and customers who would like to deal directly with XML
data rather than being forced to deal with the data source particular schema and
query languages. XML is also rapidly becoming popular for representing web data
as it brings a finely granulated structure to the web information and exposes the
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semantics of the web content.

XML versus HTML. Consider the following example of a common situation in
the data exchange in the Web. An organisation publishes data about books, articles
and software. The source for this data is a relational database, and the Web pages
are generated on demand by invoking an SQL query and formatting its output into
HTML. A second organisation wants to obtain some product analyses of this data
but has only access to the HTML page(s). Here, the only solution is to write software
to parse the HTML and convert it into a structure suitable for the analysis software.
This solution has a serious defect: It is brittle, since a minor (text) formatting change
in the source could break the parsing program.

In XML, the schema information is stored with the data. Structured values are

called elements and attributes, or element names, are called tags. For instance

<person><name>Ullman</name><address>Stanford</address></person>

is well-formed XML. Thus, XML data is self-describing and can naturally model irreg-
ularities that cannot be modeled by relational or object-oriented data. For example,
data items may have missing elements or multiple occurrences of the same element;
elements may have atomic values in some data items and structured values in others;

and collections of elements can have heterogeneous structure.

XML as a graph. We can consider an XML database to be an edge labelled
graph. In this graph model we view the nodes of the database graph to represent
the objects and the edges to represent the attributes of the objects, or relationships
between the objects.

For an example suppose we are given the following XML file.



<BOOK bookId="ds"™>
<TITLE>Distributed Systems</TITLE>
<AUTHOR authorld="smith">
<NAME>Dan Smith</NAME>
<EMAIL>ds@cs.mcgill.ca</EMAIL>
</AUTHOR>
<AUTHOR authorId="bouret">
<NAME>Emil Bouret</NAME>
<EMAIL>bouret@alpha.net</EMAIL>
</AUTHOR>
</BOOK>

<ARTICLE articleld="xml">
<JOURNAL>ACM J. 2000-12</JOURNAL>
<TITLE>XML Programming</TITLE>
CAUTHOR authorId="smith"/>
<REF refld="ds"/>

</ARTICLE>

<ARTICLE articleld="vb">
<JOURNAL>PCWorld 2000-12</JOURNAL>
<TITLE>VBScript Integration</TITLE>
<AUTHOR anthorld="Bouret"/>
<REF refld="xml"/>

</ARTICLE>

<SOFTWARE>
<COMPANY>Microsoft</COMPARY>
<PRODUCT>Ms(0££1ice</PRODUCT>
<SOFTWARE>

<PRODUCT>MS Acceas 97</PRODUCT>

</SOFTWARE>
<SOFTWARE>

<PRODUCT>MS PowerPaint 97</PRODUCT>

</SOFTWARE>

<SOFTWARE>
<PRODUCT>Word</PRODUCT>
<SOUFTWARE>

<SOFTWARE>
<COMPANY>Borland</COMPANY>
<PRODUCT>Borland C++</PRODUCT>
<CATEGORY>Programming</CATEGORY>
</SOFTWARE>

<PRODUCT>MS Equations</PRODUCT>
<CATEGORY>Mathematics</CATEGORY>

</SOFTWARE>
</SOFTWARE>
</SOFTWARE>

<SUFTWARE>
<COMPANY>Microsoft</COMPANY>
<PRODUCT>MsPaint</PRODUCT>
<CATEGORY>Images</CATEGORY>
</SOFTWARE>



Emil Bouret bouret@cs.mgill.ca

Equations  mathematics

Figure 1: XML as a graph.

Intuitively, this XML database can be represented as the graph of Figure 1. Consid-
ering the graph abstraction of XML, instead of XML text, makes it more convenient
to study the theoretical database relevant properties and to establish powerful query
languages.



1.2 Semistructured Databases and Regular Path

Queries

As mentioned before, we abstract the XML data by a data-graph which is the visual
representation of the so called semistructured data model. Semistructured data is
a self-describing collection, whose structure can naturally model irregularities that
cannot be captured by relational or object-oriented data models [ABS99]. Semi-
structured data is usually best formalized in terms of labelled graphs, where the
graphs represent data found in many useful applications such as web information
systems, XML data repositories, digital libraries, communication networks, and so
on.

Formally, let A be a finite alphabet, called the database alphabet. Elements of A will
be denoted R.S, T, R',S',.... R, 5, ..., etc. :

Now, assume that we have a universe of objects D. Objects will be denoted a. b,c,d’, ¥,
wevy @y, bo,.... and so on. A database DB over (D, ) is a pair (N, E), where N C D
is a set of nodes and E C N x A x N is a set of directed edges labelled with symbols
from A. Figure 2 contains an example of a graph database.

In order to traverse arbitrarily long paths in graph databases, almost all the query
languages for semistructured data provide a facility to the user to query through
regular path queries, which are queries represented by regular expressions. The design
of regular path queries is based on the observation that many of th. recursive queries
that arise in practice amount to graph traversals. These queries are in essence graph
patterns and the answers to the query are subgraphs of the database that match the
given pattern [MW95, FLS98, CGLV99, CGLV2000]. For example, the regular path
query (_* - article) - (_* - ref - * - (ullman + widom)) specifies all the paths having at
some point an edge labelled article, followed by any number of other edges then by
an edge labelled ref and finally by an edge labelled with ullmaen or widom.

Formally, we consider a (user) query Q to be a finite or infinite regular language over
A. We denote by re(Q) a regular expression describing the regular language Q.



a oy

T
S S
[ o, .
d R

Figure 2: An example of a graph database

If there is a path labelled R, R,, ..., R from a node a to a node b we write

Ri.Ry..R
a =5

Let Q be a query and DB = (N, E) a database. Then the answer to Q on DB is
defined as

ans(Q,DB) = {(a,b): {a.b} C N anda 5 b for some W € Q}.

Example 1 For instance, if DB is the graph in Figure 2, and Q = {SR, T}, then
ans(Q, DB) = {(b,d),(d,b),(c.a)}.

In semistructured data. as well as in data integration, data warehousing and query
optimization, the problem of query rewriting using views is well known [LMSS95,
Ul97, CGLV99, Lev99]. Simply stated, the problem is: Given a query @ and a set of
views {V},...,V,}, find a representation of Q by means of the views and then answer
the query on the basis of this representation.

Query rewriting in relational databases is by now rather well investigated. Several
papers investigate this problem for the case of conjunctive queries [LMSS95, UlI97,
CSS99, PV99]. These methods are based on query containment and the fact that the
number of subgoals in the minimal rewriting is bounded from above by the number

of subgoals in the query.

However, in the framework of semistructured data the problem of rewriting has

received much less attention. In this thesis we identify some difficulties with currently
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known methods for using rewritings in semistructured databases and deal with the
problem in two realistic scenarios.

The first one is related to information integration systems such as the Information
Manifold, in which the data sources are modelled as sound views over a global schema.
We give in this setting a new rewriting, which we call the possibility rewriting, that
can be used in pruning the search space when answering queries using views. The
possibility rewriting can be computed in time polynomial in the size of the original
query and the view definitions. Finally, we show by means of a realistic example that

our method can reduce the search space by an order of magnitude.

The second scenario, is query optimization using cached views. In this setting we
propose two kinds of algebraic rewritings that focus on extracting as much informa-
tion as possible from the views for the purpose of optimizing regular path queries. The
cases when we can find a complete exact rewriting of a query using a set a views are
very “ideal.” However, there is always information available in the views, even if this
information is only partial. We introduce “lower” and “possibility” partial rewritings
and provide algorithms for computing them. These rewritings are algebraic in their
nature, i.e. we use only the algebraic view definitions for computing the rewritings.
This fact makes them a main memory product which can be used for reducing sec-
ondary memory and remote access. We give two algorithms for utilizing the partial
lower and partial possibility rewritings in the context of query optimization.



Chapter 2

Rewriting of Regular Path Queries

2.1 Introduction

It is obvious that a method for rewriting of regular path queries requires a technique
for the rewriting of regular expressions, i.e. given a regular expression E and a set of
regular expressions E|, Es, ..., E, one wants to compute a function f(E}, Ea, ..., En)
which approximates E.

Example 2 Let E = (R+ S)* and E; = RS, E; = SR, E3 = R. Then the best
approzimation of E using E,, E; and E3 is

E' = (Ey + Eo + Ea)'.

As far as the author knows, there are two methods for computing such a function f
which best approximates E from below. The first one of Conway [ConTl] is based
on the derivatives of regular expressions introduced by Brzozowski [Brzo64], which
provide the ground for the development of an algebraic theory of factorization in the
regular algebra [BL80] which in turn gives the tools for computing the approximating
function. The second method by Calvanese et. al. [CGLV99] is automata based.
Both methods are equivalent in the sense that they compute the same rewriting,
which is the largest subset of the query, that can be represented by the views.

8



In the next section we formalize the problem of query rewriting using views and
shortly present the query rewriting proposed by Calvanese et. al. [CGLV99], which
is called l-rewriting (lower-rewriting) in the sequel. The complexity of computing the
I-rewriting is double exponential in the worst case and is discussed at the end of the
section.

2.2 L-Rewriting of Regular Path Queries.

Let V = {V},..., V,.} be a set of view definitions, with each V; being a finite or infinite
regular language over A. Associated with each view definition V; is a view name v;.
We call the set Q = {vy,...,v,} the outer alphabet, or view alphabet. For each v; € Q,
we set def (v;) = V;. The substitution def associates with each view name v; in the Q
alphabet the language V;. The substitution def is applied to words, languages, and
regular expressions in the usual way (see e. g. [HU79]).

A lower-rewriting (l-rewriting) of a user query @ using V is a language Q' over €2,
such that

def (@) € Q.

If for any l-rewriting Q" of Q using V, it holds that def(Q") C def(Q') we say
that Q' is mazimal. If def(Q’) = Q we say that the rewriting Q' is ezact.

Calvanese et. al. [CGLV99] have given a method for constructing an l-rewriting @’
from Q and V. Their method is guaranteed to always find the maximal l-rewriting, and
it turns out that the maximal l-rewriting is always regular. An exact rewriting might
not exist, while a maximal rewriting always exists, although there is no guarantee on
the lower bound. For an extreme example, if V = 0, then the maximal rewriting of
any query is 0.

Their algorithm is:

1. Construct a DFA Ag(A, S, so, p, F) such that Q = L(Ag).



2. Construct automaton B = (Q, S, so, ¢/, S — F), where s; € p/(s;,v) iff IW e V
such that s; € p*(s;, W).

3. The maximal l-rewriting is the Q language accepted by complementing the B
automaton.

Step 2, says: Consider each pair of states. If they are connected in Aq by a walk
labeled with a word in V;, put an edge v; between them in B.

DFA Ag NFA B

Figure 3: The DFA for the query and the corresponding “view” automaton.

Example 3 Let Q = (RS)" be the reqular path query and Vi = R+ 5%, V2 = §,
Vs = SR, Vi = (RS)? the regular path views. Then the minimal' DFA Aq for the
query Q is given in Figure 3, left and the corresponding B automaton with view
symbols is given in in Figure 4, right. The resulting complement automaton B is

given in Figure {. Note that the “garbage” and unreachable states have been removed

Figure 4: The resulting l-rewriting given by DFA B.

1The constructed DFA for the query does not need to be minimal.
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Observe that, if B accepts an Q-word v, - - - U,, then there exist n A-words W1, ...,
W, such that W; € V; for i = 1,...,n and such that the A-word W, ... W, is rejected
by Ag. On the other hand if there exists a A-word W, ... W, that is rejected by Aq
such that W; € V; fori = 1,...,n, then the Q-word v, - - - v, is accepted by B. That is
B accepts an Q-word v, - - - v, if and only if there is a A-word in def({v, - --v,}) that
is rejected by Aqg. Hence, B being the complement of B accepts an §2-word if and
only if all A-words W = W, ... W, such that W; € V; for i = 1,...,n, are accepted
by Aq.

2.3 Complexity of Computing the L-Rewriting

Unfortunately, the complexity of computing the l-rewriting of a regular path query @
given a set V = {V},...,V,} of view definitions is very high as the following results
in [CGLV99] show.

Theorem 1 The problem of generating the Q-mazimal rewriting of a regular path
query with respect to a set V. = {V,....V,} of regular path view definitions is in
EXPTIME.

In order to use the l-rewriting Q' of a query Q alone for query answering, the
rewriting should be algebraically exact (see [CGLV99)), i.e. def(Q') = Q. So before
talking how the rewritings can be utilized for answering the query (Chapter 3), let
us shortly show an optimal algorithm for exactness testing, which is presented in
[CGLV99].

Their algorithm for testing if an {2 rewriting of query @ is exact is as follows.
1. Construct an automaton B = (A, Sg,sgo, P8, Fg) that accepts def(Q'), by
replacing each edge labeled by v; in the automaton for @', say Aq, by an

automaton A; such that L(4;) = def(v;) for ¢ = 1,....n. Each edge labeled
by v; is replaced by a fresh copy of 4;. We assume without loss of generality,

11



that A; has unique start state and accepting state, which are identified with
the source and target of the edge respectively. Observe that, since @ is an
l-rewriting of Q, L(B) C Q = L(Aq)-

9. Check whether L(Aqg) C L(B), that is, check whether L(Aq N B) = 0.

Theorem 2 The l-rewriting Q' is an ezact rewriting of the query Q with respect to
a set V of reqular view definitions, if and only if L(Aq N B) =0.

Corollary 1 An ezact rewriting of Q with respect to V exists if and only if L(4gN
B)=0.

Theorem 3 The problem of verifying the ezistence of an ezact rewriting of a regular
path query Q with respect to a set V of regular view definitions, is in 2EXPSPACE.

Observe that, if we construct L(Ag N B) = 0., we get a cost of SEEXPTIME, since
B is of triply exponential size with respect to the size of the input. However, we
can construct B “on the fiy"; whenever the non-emptiness algorithm wants to move
from a state s, of the intersection of Ag and B to a state s,, the algorithm guesses
s, and checks that it is directly connected to s;. Once this has been verified, the
algorithm can discard s;. Thus, at each step the algorithm needs to keep in memory
at most two states and there is no need to generate all of B at any single step of the
algorithm.

In [CGLV99] it is shown that the complexity bounds established in the previous
theorems are essentially optimal.

Theorem 4 The problem of checking whether there is a non-empty rewriting of a
reqular path query Q with respect to a set V of reqular view definitions, is EXPSPACE-
complete.

Note that Theorem 4 implies that the upper bound established in Theorem 1 is
essentially optimal. If we can generate maximal rewritings in, say, EXPTIME, then
we could test emptiness in PSPACE, which impossible by Theorem 4.

12



Chapter 3

Query Processing in Information

Integration Systems

3.1 Introduction

Much of the work on answering queries using views has been spurred because of its
application to data integration systems. A data integration system provides a uniform
query interface to a multitude of autonomous hetereogeneuos data sources. Prime
examples of data integration systems include enterprise integration, querying multiple
sources in the World Wide Web, and integration of data from distributed scientific
experiments. The sources in such an application may be traditional databases, legacy
systems, or even structured files. The goal of data integration is to free the user from
having to find the data sources relevant to the query, interact with each source in

isolation, and manually combine data from the different sources.

To provide a uniform interface, a data integration system exposes to the user a
mediated schema. A mediated schema is set of virtual relations, in the sense that they
are not stored anywhere. The mediated schema is designed manually for a particular
data integration application. To be able to answer the queries tbe system must also

contain a set of source descriptions that specify the contents of the data sources.
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One of the approaches that has been adopted in several systems, is to describe the
contents of a source as a view over the mediated schema. In order to answer a query, a
data integration system needs to translate a query formulated on the mediated schema
into one that refers directly to the schemas in data sources. Since the contents of the
data sources are described as views, the translation problem amounts to finding a

way to answer a query using a set of views.

We illustrate the problem with the following example, where the mediated schema
exposed to the user is our bookstore database graph of Figure 1 with the binary
relations specified by the edge labels in the graph.

Suppose, we have the following three data sources. The first provides us a listing
of each pair (z, y) of objects such that z is an article that refers to the article or book

y. This source can be described by the following view definition.
ArticleRefArticle: ref.

The second source is supposed to contain all the pairs (z,y) of objects such that r is
a book and y is either a book. article or software referred to, directly or indirectly, in
the book. This source can be described by the following view definition.

BookRefs: ref* + ref’.software.

And the third source contains all the pairs (z,y) of objects such that y is a sub-
software of z. This source can be described by the following view definition.

SoftwareAndSubs: software’

If we were to ask now, “which objects are somehow related to some other objects”,
and we have only the contents of the above data sources available then we would be

able to answer this query using the following regular expression.

Q: ArticleRe f Article® + BookRefs.SoftwareAndSubs + Software AndSubs.

It is important here to note that this formulation of the query is to be answered

against the so called “view graph” which consists of nodes representing the objects

14



SoftAndSubs

Figure 5: An example of a view graph

found in the data sources and edges labeled with view names. An edge labeled for
example with BookRef between the objects r and y shows that the pair (z,y) is in
the data source described by the second view definition. An example of a view graph

is given in Figure 5.

In the previous chapter we showed what is a lower or contained rewriting of a
regular path query with respect to a set of regular view definitions, and how to
compute a maximal l-rewriting. Posed in the framework of {GM99], we show that
the answer to the query that we get if we use the (maximal) l-rewriting only, is a
(sometimes strict) subset of the certain rewriting. If we want to be able to produce
the complete certain answer, the only alternative left is then to apply an extremely
intractable decision procedure of Calvanese et. al. [CGLV2000] for all pairs of objects
(nodes) found in the views. One of the contributions of this thesis is an algorithm for
computing a regular rewriting that will produce a superset of the certain answer. The
use of this rewriting in query optimization is that it restricts the space of possible
pairs needed to be fed to the decision procedure of Calvanese ef. al. We show by
means of a realistic example that our algorithm can reduce the number of candidate

pairs by an order of magnitude.

The outline of the chapter is as follows. In Section 3.3 we formalize the problem of
query rewriting using views in a commonly occurring setting, proposed in information
integration systems, in which the data sources are modelled as sound views over a
global schema. We give some results about the applicability of previous work in this
setting, and discuss further possibilities of optimization. At the end of Section 3.3 we
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give an algorithm for utilizing simultaneously the “subset” and a “superset” rewriting
in query answering using views. In Section 3.4 we present our main results. First we
give an algebraic characterization of a rewriting that we call the possibility rewriting
and then we prove that the answer computed using this rewriting is a superset of the
certain answer of the query, even when algebraically the rewriting does not contain
the query. Section 3.5 is devoted to the computation of the possibility rewriting. It
amounts to finding the transduction of a regular language and we give the appropriate
automata-theoretic constructions for these computations.

3.2 Warm-Up

Let the user query be Q = R3Ry + R3R; + R\ Ry + Rz Rs and suppose that we have
the following data sources available.

V, = R ext(Vl) = {(a.b)}
V, = Ro+Rs with ext(Va) = {(a.b)}
Vi = Ry+Rs ext(Vy) = {(b.0)}

These data sources can graphically represented as the view-graph! S in Figure 6.
It is easy to see that, the only contained rewriting of Q using the views is Q' =0, and

o9
K VI VZ - . -
b® ¢

Figure 6: View graph S

therefore ans(@',S) = 0.

I'We will use interchangebly the terms “view graph” and “source collection” throughout this
thesis.
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However, what about the rewriting

Q" = V\Vi+VaVa, with
ans(Q",8) = {(a)}.

If we examine all the possible databases we can see that the pair (a,c) belongs
always to the answer of the query (see Figure 7). We say that the pair (a,c) is a

certain answer to the query, and observe that it is contained in ans(Q",S).

3.3 Formal Background

Views and answering queries using views. Let Q = {vi,...vn} be the view
alphabet and let V = {V],...,V,} be a set of view definitions as before. Then a
source collection S over (V,Q) is a database over (D.Q). A source collection S
defines a set poss(S) of databases over (D, A) as follows (cf. [GM99)):

poss(S) = (DB :Sc |J {(a vib):(ab) € ans(V;, DB)}}.

Suppose now the user gives a query Q in the database alphabet A, but we only
have a source collection S available. This situation is the basic scenario in information
integration (see e.g. [U1197, LMSS95, GM99] ). The best we can do is to approximate
Q by

(| ans(Q,DB).

D Beposs(S)
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Figure 8: A query and a source collection.

This approximation is called the certain answer for Q using S. Calvanese et. al.
[CGLV2000], in a follow-up paper to [CGLV99| describe an algorithm Aq s(a.b) that
returns “yes” or “no” depending on whether given pair (a,b) is in the certain answer
for Q or not. This problem is coNP-complete in the number of objects in S (data
complexity), and if we are to compute the certain answer, we need to run the algorithm
for every pair of objects in the source collection. A brute force implementation of the
algorithm runs in time exponential in the number of objects in S. From a practical

point of view it is thus important to invoke algorithm Ag s for as few pairs as possible.

Restricting the number of input pairs is not considered by Calvanese et. al. In-
stead they briefly discuss the possibility of using rewritings of regular queries in
answering queries using views. Since rewritings have proved to be highly successful
in attacking the corresponding problem for relational databases {Lev99], one might
hope that the same technique could be used for semistructured databases. Indeed,
when the exact rewriting of a query Q using V exists, Calvanese ef. al. show that,
under the “exact view assumption” the rewriting can be used to answer Q using S.

Unfortunately, under the more realistic “sound view assumption® ” adopted in this

21f all views are relational projections, the exact view assumption corresponds to the pure uni-
versal relation assumption, and the sound view assumption corresponds to the weak instance as-
sumption. For an explanation of the relational assumptions, see [Var8§].
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chapter we are only guaranteed to get a subset of the certain answer. The following
propositions hold:

Theorem 5 Let Q' be an l-rewriting of Q using V. Then for any source collection
S overV,

ans(@,S)C () ans(Q.DB).

D Beposs(S)

Proof. Let (a,b) € Q'(S) and let DB be an arbitrary database in poss(S). Since
(a,b) € Q'(S) there exist objects c;, ...c; and a path av;¢;, ...c;v;,,,b in S such

that v;, ... v;,,, € Q. Since DB € poss(S), there must be a path a Wi c;, ...c; Wi, b
in DB, where W; € def(v;), for j € {1,....k + 1}. Furthermore we have that
Wi, ... W;, € def(Q) C Q. In other words, (a,b) € ans(Q, DB). [ ]

Theorem 6 There is a query Q and a set of view definitions V., such that there is an
ezact rewriting Q' of Q using V, but for some source collections S, the set ans(Q', S)

is a proper subset of N\pBpeposs(s) 31$(Q, DB).

The data-complexity for using the rewriting is NLOGSPACE, which is a consid-
erable improvement from coNP. There is an EXSPACE price to pay though. At the
compilation time finding the rewriting requires exponential amount of space mea-
sured in the size of the regular expressions used to represent the query and the view
definitions (expression complexity). Nevertheless, it usually pays to sacrifice expres-
sion complexity for data complexity. The problem is however that the l-rewriting is
guaranteed only to produce a subset of the certain answer. We would like to avoid
running the testing algorithm Ag s for all other pairs of objects in S.

In the next section we describe a “possibility” rewriting (p-rewriting) Q" of @
using V, such that for all source collections S:

ans(@,8)2 [\ ans(Q DB).

DBeposstS)

The p-rewriting Q" can be used in optimizing the computation of the certain
answer as follows:
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1. Compute @' and Q" from Q using V.
2. Compute ans(@’,S) and ans(@”,S). Output ans(Q’, S)

3. Compute Ag s(a, b), for each (a,b) € ans(Q”,S) \ ans(Q'.S). Output those
pairs (a,b) for which Ag s(a.b) answers “yes.”

3.4 P-Rewriting

As discussed in the previous section, the rewriting @' of a query Q is only guaranteed
to be a contained rewriting. From Propositions 5 and 6 it follows that if we use Q' to
evaluate the query, we are only guaranteed to get a subset of the certain answer (recall
that the certain answer itself is an approximation from below). In this section we will
give an algorithm for computing a rewriting Q" that satisfies the relation ans(@Q".S) 2
NDBepossis) 8n5(Q, DB). Our rewriting is related to the inverse substitution of regular

languages and as consequence it will be a regular language.

Definition 1 Let L be a language over Q*. Then L is a p-rewriting of a query Q,
using V., iffor all v;, ...v;,, € L, there exists W;, ... W;, € Qsuchthat W, € def(vi, ).
for j € {1,...,m}, and there are no other words in " with this property.

The intuition behind this definition is that we include in the p-rewriting all the
words in the view alphabet ©, such that their substitution by def contains a word in

Q. The p-rewriting has the following desirable property:

Theorem 7 Let Q" be a p-rewriting of Q using V. Then

ans(@",5)2 () ans(Q.DB),
DBeposs(S)

for any source collection S.

Proof. Assume that there exists a source collection S and a pair

(a,b)e [) ans(Q, DB),
DBeposs(S)
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Figure 9: Visualisation of the proof for Theorem 7.

such that (a,b) & ans(Q”,S). Since the pair (a,b) is in the certain answer of the query
Q, it follows that for each database DB € poss(S) there is a path a Y, b, where
W € Q. Now, we will construct from S a database DBs such that ans(Q, DBs) 3
(a,b). For each edge labelled v; from one object z to another object y in S we choose
an arbitrary word W; € def (v;) and put in DBs the “new” objects ¢y, ..., Ck-1, where
k is the length of W;, and a path z.cy,...,ck—1. ¥ labelled with the word W;. Each
time we introduce “new” objects, so all the constructed paths are disjoint. Obviously,
DBs € poss(S). It is easy to see that ans(Q, DBs) ¥ (a,b) because otherwise there
would be a path v;, ...v;, in S from a to b such that def(v;, ... v, ) NQ # @, that is
v, ...V, €Q" and (a.b) € ans(Q”,S). From the fact that ans(Q, DBs) # (a,b) it
then follows that Nppepossis) 3n8(Q@, DB) Z (a,b); a contradiction. For a visulalisation
of the proof see Figure 9. [ |

It is worth noting here that the Theorem 7 shows that ans(Q",S) contains the
certain answer to the query Q even when algebraically def(Q") 2 Q.
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Figure 10: A finite transducer T’

3.5 Computing the P-Rewriting

Recall that the definition of a view name v; € Q is a regular language def(V;) over A.
Thus def is in effect a substitution from Q to 24° The tnverse of this substitution is
defined by, for each W € A*,

def~ (W) = {U € Q" : W € def(U)}.

It is now easy to see that a p-rewriting Q" of Q using V equals def -1(Q). This
suggests that Q" can be computed using finite transducers.

A finite transducer (see e.g. [Yu97]) T = (S,1,0.4,s. F) consists of a finite set
of states S, an input alphabet I, and output alphabet O, a starting state s. a set of
final states F, and a transition-output relation § C S x I* x § x O*. An example of
a finite transducer ({qo, q1,q2}. {v1,va}, {R, S}, 4. {g2}) is shown in Figure 10.

Intuitively, for instance (go,v2,q. SRS) € & means that if the transducer is in
state qo and reads word v, it can go to state ¢; and emit the word SRS. For a given
word U € I, we say that a word W € O~ is an output of T for U if there exists a
sequence (s,Uy,q1, W) € 0, (q1,U2, 42, W2) €6, ..., (gn-1, Un, Gn, Wy) € 6 of state
transitions of T, such that g, € F, U =U,...U € "', and W = W, ... W, € o~
We write W € T(U), where T(U) denotes the set of all outputs of T for the input
word U. For a language L C I'*, we define T(L) = Uye, T(U)-

A finite transducer T = (S, 1,0, 4, s, F) is said to be in the standard form. if dis
a relation in S x (I U {€}) x § x (O U {e}). Intuitively. the standard form restricts
the input and output of each transition to be only a single letter or €. It is known

that any finite transducer is equivalent to a finite transducer in standard form (see

[Yu97]).
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Figure 12: Decomposing a “macro” transducer IL

From the above definitions, it is easy to see that a substitution can be characterized
by a finite transducer. Start with one node representing both the starting state and
the final state. Then build a “macro-transducer” by putting a self-loop corresponding
to each v; € Q on the sole state. In each such self-loop we first have the view symbol
v; as input and a regular expression representing the substitution of v; as output.
After that, we transform the “macro-transducer” into an ordinary one in standard
form. The transformation is done by applying recursively the following three steps.
First, replace each edge v/(E) + ...+ En), n > 1, by the n edges v/E\, ..., v/En.
Second, for each edge of the form v/E; ... Ex from a node p to a node g (Figure 11,
left), we introduce k — 1 new nodes ry, ... and replace the edge v/E, ... Ex by
the edges v/E, from p to ry, ¢/E; from ry to 7o, ..., ¢/ Ej from r¢_, to ¢ (Figure 11,
right). Third, we get rid of “macro-transitions” of the form v/E*. Suppose we have
an edge labelled v/E* from p to g in the “macro-transducer.” (See Figure 12, left).
We introduce a new node r and replace the edge v/E* by the edges v/e from p to T,
¢/E from r to r, and ¢/e from r to g, as shown in Figure 12, right.

By interchanging the input and output of the finite transducer, we see that the

inverse of a substitution can also be characterized by a finite transducer.

We now describe an algorithm that given a regular language L and finite trans-
ducer T constructs a finite state automaton that accepts the language T(L). Let
A = (P, I,64,50, Fa) be an e-free NFA that accepts L, andlet T = (S, I, 0, 1, po, Fr)
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be a transducer in standard form. We construct an NFA:
A = (P X S,O, Jy (PO: QO), R4 X FT)y

where ¢ is defined by,

§ = {((pq),v,(P.q)) : (p, R,P)) € 64 and (g, R, ¢, v) € é7}
U {((p.9),v.(0,q)) : (g,€.4,v) € o7}

Theorem 8 The automaton A accepts exactly the language T(L).

Collecting the results together, we now have the following methodology.

Corollary 2 Let V = {V},.... V,.} be a set of view definitions, such the def (vi) = V;,
for all v; € Q, and let Q be a query over A. Then there is an effectively characterizable
regular language Q" over Q that is the p-rewriting of Q using V. [ |

Example 4 Let the query be Q = {(RS)" : n > 0} and the views be vy, vz, vs,and vy,
where def(v;) = {R,SS}, def(v:) = {S}, def(v3) = {SR}, and def(v,) = {RSRS}.
The DFA® A accepting the query Q is given in Figure 13 (left), and the transducer
characterizing the substitution def is given in Figure 13 (right). We transform the
transducer into standard form (Figure 14, left), and then interchange the input with
output to get the transducer characterizing the inverse substitution (Figure 14, right).
The constructed automaton A is shown in Figure 15, where rq = (po, g0), "1 = (P1, %),

ra = (po, g2) and the inaccessible and garbage states have been removed.

Our algorithm computes the p-rewriting Q” represented by (vy + viv3v2)", and
the algorithm of Calvanese et. al. {CGLV99] computes the l-rewriting @’ represented
by vj. Suppose that the the source collection S, is induced by the following set of
labelled edges:

{(G,v1,@5) : 1 <i<n—1}U
3An e-free NFA would do as well.
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Figure 13: Query automaton and macro transducer.

Figure 14: Transducers for the substitution and inverse substitution.
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Figure 15: Automaton of the p-rewriting.
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{(gi,v2,i+1):1<i<n~1}U
{(ai,v3,0501) : 1 <i<n—1}U
{G,v,i+2):1<i<n -2}

The above source collection is visualised in Figure 16.
We can now compute

ans(Q",Sx) = {(i,j): 1 <i<n—-1i<j<n}

and
ans(Q',Sn) = {(i,.2k) : 1 <i<n-1,0< k <n/2}.

Then we have that the cardinality of

Hans(Q".Su)ll = n+...+2
n—-1
= ) (i+1)
1=l
n(n —1)
= -1
2
)

and the cardinality of

n-1 :
lans(@. 81l = X(*5=|+D
~ nfn—1)-n tn
4
n?
Yy
Thus the cardinality of ans(Q”, S,)\ans(Q’, S,) is approximately n?/2—n?/4 = n?/4,
that is 16 times better that (2n)? which the number of all the possible pairs. [ |

Now let us calculate the cost of our algorithm for computing the “possibility”
regular rewriting.

Theorem 9 The automaton characterizing Q" can be built in time polynomial in the
size of the regular expression representing @ and the size of the regular ezpressions
representing V. [ |
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Figure 16: Source collection for Example 4
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We note that the above analysis is wrt expression and not data complexity. Since
the decision procedure of [CGLV2000] is coNP-complete wrt data complexity, reducing
the set of candidate pairs is very desirable.
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Chapter 4

Cached View Query Processing

Through Partial Rewritings

4.1 Preamble

As mentioned before, rewriting queries using views is a powerful technique that has
applications in query optimization, data integration, data warehousing etc. In this
chapter we focus on extracting as much information as possible from algebraic rewrit-
ings for the purpose of optimizing regular path queries. The cases when we can find
a complete exact rewriting of a query using a set of views are very “ideal.” However,
there is always information available in the views, even if this information is only
partial. We introduce “lower” and “possibility” partial rewritings and provide algo-
rithms for computing them. These rewritings are algebraic in their nature, i.e. we
use only the algebraic view definitions for computing the rewritings. This fact makes
them a main memory product which can be used for reducing secondary memory
and remote access. We give two algorithms for utilizing the partial lower and partial
possibility rewritings in the context of query optimization.
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4.2 Introduction

Almost all the query languages for semi-structured data provide the possibility for
the user to query the database through regular expressions. The design of query
languages using regular path expressions is based on the observation that many of
the recursive queries that arise in practice amount to graph traversals. These queries
are in essence graph patterns and the answers to the query are subgraphs of the
database that match the given pattern [MW95, FLS98, CGLV99, CGLV2000].

For example, for answering a query containing in it the regular expression (-* -
article) - (* - ref - .* - (ullman + widom)) one should find all the paths having at some
point an edge labelled article, followed by any number of other edges then by an edge
ref and finally by an edge labelled with ullman or widom.

Based on practical observations. the most expensive part of answering queries on
semistructured data is finding these graph patterns described by regular expressions.
This is, because a regular expression can describe arbitrary long paths in the database
which means in turn an arbitrary number of physical accesses. Hence it is clear that.
having a good optimizer for answering regular path (sub)queries is very important.
This optimizer will take into consideration the already answered queries and try to
answer the new query using the information available from the “old” queries or views.
It is clear that such an optimizer can be used for the broader class of full fledged query
languages for semistructured data.

In Chapter 2 we discussed the l-rewritings and introduced the p-rewritings in
Chapter 3. The maximal l-rewriting @' of a query @ with respect to a set of views,
in a cached views scenario, can be used for query answering, only when it is an exact
rewriting (see [CGLV2000]). On the other hand the p — rewriting Q" can be used
always to produce a superset of the answer to the query. We also gave in Chapters
2 and 3 optimal methods to compute the maximal l-rewriting and the p-rewriting
respectively, of a query.

However, these methods model -using views— only full paths of the database, i.e.
paths whose labels spell a word belonging to the regular language of the query. But
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in practice, the cases in which we can infer from the views full paths for the query
are very “ideal.” The views can cover partial paths which can be satisfactory long for
using them in optimization but if they are not complete paths, they are ignored by the
above mentioned methods. So, it would probably be better to give a partial rewriting
in order to capture all the information provided by the views. The information
provided by the views is always useful, even if it is partial and not complete. The
problem of a partial rewriting is touched upon briefly in [CGLV99]. However, there
this problem is considered only as an extension of the complete rewriting, enriching
the set of the views with new elementary one-symbol views, and materializing them
before query evaluation. The choice of the new elementary views to be materialized

is done in a brute force way, using some cost criteria depending on the application.

In this thesis we use a very different approach. For each word in the regular
language of the query we do the best possible using views. If the word contains
a sub-path that a view has traversed before, we use that view for evaluation. We
present generalized query answering algorithms that access the database only when
necessary. For the "been there” subpaths our algorithms use the views. Note that
we do not materialize any new views, we only consult the database "on the fly,” as
needed.

The outline of the chapter is as follows. In Section 4.3 we formalize the problem of
query rewriting using views in the realistic framework of cached views and available
database. Then we discuss the utility of algebraic rewritings. We illustrate through
an example that the complete rewritings can be empty for a particular query, while
the partial information provided by the views is no less than 99% of the complete
“missing” information. In Section 4.4 we introduce and formally define a new alge-
braic, formal-language operator, the ezhaustive replacement. Simply described, given
two languages L; and L,, the result of the exhaustive replacement of L, in L; is the
replacement, by a special symbol, of all the words of L, that occur as sub-words in
the words of L;. Then we give a theorem showing that the result of the exhaustive
replacement can be represented as an intersection of a rational transduction and a
regular language. The proof of the theorem is constructive and provides an algo-
rithm for computing the exhaustive replacement operator. In Section 4.5 we present

the partial possibility rewriting that is a generalization of the previously introduced

31



exhaustive replacement operator. In Section 4.6 we define a partial lower rewriting.
It is the largest subset of words in the partial possibility rewriting such that their
expansions to the the database alphabet are contained in the query language. In
Section 4.7 we review a typical query answering algorithm for regular path queries
and show how two modify it into two other “lazy” algorithms for utilizing the partial
lower and possibility rewritings respectively. The computational complexity is stud-
ied in Section 4.8. We show that, although exponential, the algorithms proposed for
computing the partial possibility and partial lower rewritings are essentially optimal.

4.3 Background

Rewriting of regular queries revisited. If we look from a word problem per-
spective to the l-rewriting ' and p-rewriting Q" of a query Q with respect to a
set V = {V},...,V,} of view definitions, we realize the following facts about the
rewritings.

A mazimal lower rewriting (l-rewriting) of a user query Q using V is a language
Q' over ©, that includes all the words v;, ...v;, € Q, such that

def(vil .. 'vik) g Q'

A mazimal possibility rewriting (p-rewriting) of a user query Q using V is a lan-
guage Q" over Q, that includes all the words v;, ... v;, € Q, such that

def(vy ... v) N Q # 0.

For instance, if re(Q) is (RS)*, and we have the views V}, V5, V3 and V] available,
with re(V}) = R+ SS, re(V3) = S, re(V3) = SR and re(V;) = (RS)? respectively, the
l-rewriting is v] and the p-rewriting is (vs + viviva)*.

There are cases when the l-rewriting and p-rewriting can be empty, even if the
desired answer is not. Suppose for example that query @ is re(Q) = R;... R0
and we have available two views V| and V5. where re(V}) = R, ... Rys and re(V2) =
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Rs; ... Rige- It is easy to see that both the l-rewriting and p-rewriting are empty.
However, depending on the application, a “partial rewriting” such as v; Rsqv2 could
be useful. In the next section we develop a formal algebraic framework for the partial
rewritings. This framework is flexible enough and can be easily tailored to the specific
needs of the various applications. In Section 4.7 we demonstrate the usability of the
partial rewritings in query optimization.

4.4 Replacement — A New Algebraic Operator

In this section we introduce and study a new algebraic operation, the exhaustive
replacement in words and languages. It is similar in spirit to the deletion and insertion
language operations studied in [Kari91].

Let W be a word, and M a e-free language over some alphabet, and let { be a
symbol outside that alphabet. Then we define

{WiW3 : 3 W, € M such that W = W, W,W3} if non-empty

W)=
ou(W) {{W} otherwise.

Furthermore, let L be a set of words over the same alphabet as M. Then define
pm(L) = Uwer prr(W). We can now define the powers of pys as follows:

oM ({W}) = pu (W), 255 ({W}) = pue (b ({W)))-
Let k be the smallest integer such that o57'({W}) = o5, ({W}). We then set
psr(W) = g ({W}).

(It is clear that k is at most the number of symbols in W'.)

The ezhaustive replacement of a e-free language M in a language L, using a special
symbol { not in the alphabet, can be simply defined as
Lo M= pu(W).
weL
Intuitively, the exhaustive replacement L > M replaces in every word W € L the

non-overlapping occurrences of words from M with the special symbol {. Moreover,
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between two occurrences of words of M that have been replaced, no word from M
remains as a subword.

Example 5 Let L = {RSRSRSR, RRSRSR, RSRRSRRSR}, M = {RSR}. Then
Lo M = {{St, RS{SR, R{SR, RRSt, 11t}
being the union of the sets:

pirsmy(RSRSRSR) = {1St, RStSR},
PER.?R}(RRSRSR) = {R{SR,RRSt},
pirsry(RSRRSRRSR) = {tt1}.

Computing the Replacement Operation. To this end, we will give first a char-
acterization of the > operator. The construction in the proof of our characterization
provides the basic algorithm for computing the result of the > operator on given
languages. The construction is based on finite transducers.

Theorem 10 Let L and M be regular languages over an alphabet \. There ezists a
finite transducer T and a regular language M' such that:

L>M=T(L)NM.

Proof. Let A = (S, A, 4, s, F) be a nondeterministic finite automaton that accepts
the language M. Let us consider the finite transducer:

T =(SU{sp}.A.T,¥,s5 {sp})-

where I' = AU {}}, and, written as a relation,

& = {(s,R,s,¢):(s,R.s) €d}uU

34



{(sh,R,5), R): Re A}u

{(sg, R, s,€) : (s0, R,8) € 6} U

{(sg, R, 35, 1) : (S0, R,s)€dand s € F} U
{(s,R,sp, 1) : (s,R,s') € 6 and §' € F}.

Intuitively, transitions in the first set of ¢’ are the transitions of the “old” automaton
modified so as to produce € as output. Transitions in the second set mean that “if
we like, we can leave everyvthing unchanged,” i.e. each symbol gives itself as output.
Transitions in the third set are for jumping non-deterministically from the new initial
state sg to the states of the old automaton A, that are reachable in one step from the
old initial state sg. These transitions give € as output. Transitions in the fourth set
are for handling special cases. when from the old initial state g, an old final state
can be reached in one step. In these cases we can replace the one symbol words
accepted by A with the special symbol . Finally, the transitions of the fifth set are
the most significant. Their meaning is: in a state, where the old automaton has a
transition by a symbol, say R, to an old final state, in the transducer there will be an
additional transition R/t to s, which is also the (only) final state of T. Observe that
if the transducer T decides to leave the state sy while a suffix U of the input string
is unscanned, and enter the old automaton A, then it can return back only if there is
a prefix U’ of U, such U’ € L(A). In this case the transducer replaces [’, which is a
subword of the input string, by the special symbol {.

Given a word of W € L as input, the finite transducer T replaces arbitrary many
occurences of words of M in W with the special symbol symbol {.

For an example, suppose M is R(SR)* + RST. Then an automaton that accepts
this language is given in Figure 17 drawn with solid arrows. The corresponding finite
transducer is shown in the same figure on the right. It consists of the automaton
A, whose transitions now produce as output ¢, plus the state s; and the additional
transitions drawn with dashed arrows.

It is easy to see that

T(L) =LU {Ui{Ust...1Us : for some U in L and words W; in M,
U= UlvleQVVQ cee "Vk-lUk}-
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Figure 17: An example of the construction of a replacement transducer

From the transduction T(L) we get all the words of L having replaced in them an
arbitrary number of words from M. What we need is not an arbitrary but an exhaus-
tive replacement of words from M. To achive this goal we will intersect the language
T(L) with a regular language M’ which will serve as a “mask” for the words of L> M.
We set

M = ("MT™)°.

Now M’ guarantees that no other candidate for replacing occurs inside the words of
the final result. [ |

4.5 Partial P-Rewritings

We can give a natural generalization of the definition of the replacement operator for
the case when we like to exhaustively replace subwords not from one language only,
but from a finite set of languages (such as a finite set of view definitions). For this
purpose, let W be a word and M = {M,,..., M, } be a set of languages over some
aplhabet, and let {f,,...,1,} be a set of symbols outside that alphabet. Now we
define

(W) = {W11,W3 : 3 Wy € M; such that W = W W,W3} if non-empty
W} otherwise.

Then, py; is defined similarly to p},.

The generalized ezhaustive replacement of M = {M,,..., M,} in a language L,
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by the corresponding special symbols f,, ..., {,, is

LoM= |J (W)
wWelL

In the following we will define the notion of the partial p-rewriting of a database
query Q using a set V = {V;,...,V;;} of view definitions.

Definition 2 The partial p-rewriting of a query Q over A usingaset V = {Vi....,V,}
of view definitions over A is
Q>V,

with Q = {vy,...,v,} as the corresponding set of special symbols.

As a generalization of Theorem 10 we can give the following result about the partial
p-rewriting of a query @ over A using aset V = {Vi....,V,} of view definitions over
A.

Theorem 11 The partial p-rewriting Q >V can be effectively computed.

Proof. Let A; = (S;, A, 0;, soi, F}). for i € [1, n] be n nondeterministic finite automata
that accept the corresponding V; languages. Let us consider the finite transducer:

T=(SU...US.U{sh}. A, AU Q,¥, sq, {sp}):
where

& = {(s,R,5'.¢):(s,R. &) €8, ie(l,n]}uU
{(sh, R, sh, R) : Re A}U
{(sh, R, 5,¢€) : (s0i, R, s) € &, i € [l.n]} U
{(sh, R, 5g:T:) : (Soi» R.s) €d;and s € Fy, 1 € [1,n]}u
{(s,R,sh,};) : (s, R,§') €6; and ' € F;, i € [L,n]}.

The transducer T performs the following task: given a word of @ as input, it re-
places nondeterministically some words of V; U ...U V; from the input with the
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corresponding special symbols. The proof of this claim is similar as in the previous
theorem.

From the transduction T(Q) we get all the words of @ having replaced in them
an arbitrary number of words from V; U...UV;. But what we want is the exhaustive

replacement Q> V. For this we intersect the language T'(Q) with the regular language
(AuQ)* (Viu...u¥R)(AuUQ)),

which will serve as a mask for extracting the words in the exhaustive replacement.
|

We note here that the partial p-rewriting of a query is a generalization of the p-
rewriting. Indeed, consider the the substitution from QU A that maps each v; € Q to
the corresponding regular view language V; and each database symbol R € A to itself.
This substitution is the extension of the def substitution to the A alphabet and we
call it def’. Then the partial p-rewriting is the set of all the words W on QU A, with
no subwords in any of V7, ..., V;, such that def’'(WW) has a non empty intersection
with Q. The conceptual similarity of the partial p-rewriting with p-rewriting can also
be observed in another way; change the above mask to Q* and the result will be the

p-rewriting, as opposed to the partial p-rewriting.

4.6 Partial L-Rewritings

We defined the l-rewriting of a query Q given a set of view definitions V = {V1,..., 3}
as the set of all the words W on the view alphabet Q such that def(¥V') is contained
in the query language Q. In the same spirit we will define the partial l-rewriting. It
will be the set of all “mixed” words W on the alphabet Q U A, with no subword in
ViU---UV,, such that their substitution by the extended def’ is contained in the
query Q. The condition that there is no subword in V; U --- UV, says that in fact
the partial l-rewriting is a subset of the partial p-rewriting.

Definition 3 The partial I-rewriting of a query @ on A is the language @' on QU A
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given by
Q ={We(@b>V): def' (W) C Q).

We now give a method for computing the partial l-rewriting, given a query Q and
aset V= {Vi,...,V,} of view definitions as input.

Algorithm 1 1. Compute the complement Q° of the query.

2. Construct the transducer T used for the partial p-rewriting. Then compute the
transduction T (QF).

3. Compute the complement (T (Q°))° of the previous transduction.

4. Intersect the complement (T (Q°))° with the mask

M=((AUuQ) (Vu...ul)(Au))*

Denote with Q' the result. [ ]

Theorem 12 The mized QU A language Q' gives ezactly the partial l-rewriting of
Q.

Proof. “C”. T(Q) is the set of all words W on QU A such that def' (W) N Q* # 0.
Hence, (T (Q°))°, being the complement of this set. will contain only QUA words such
that all the A-words in their substitution by def’ will be contained in Q. This is the
first condition for a word on QU A to be in the partial l-rewriting of Q. Furthermore,
intersecting with the mask M we keep in (T (Q¢)) only the QU A words that do not
contain A subwords in V; U---UV,. This is the second condition for a word on QUA
to be in the partial l-rewriting of Q.

“2J”_ We will prove this direction by a contradiction. First observe that both the
partial l-rewriting and the set Q' are subsets of the partial p-rewriting, that is, all

their words “pass” the mask M. In other words their words do not have subwords in
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ViU---UV,. Suppose now, that the mixed QU A-word W is in the partial l-rewriting
but not in @’. That is def’(W) C Q. On the other hand, since W ¢ Q' it follows that
W € @° which means that W € T(Q¢) U M®. But as we mentioned before, the word
W, which belongs in the partial l-rewriting, “passes” the mask M and this implies
that it cannot “pass” the complement of the mask. Therefore, W € T(Q¢). Thus
def' (W)N Q€ # 0 that is, def'(W) € Q, i.e. W cannot be in the partial I-rewriting,
a contradiction. [ |

4.7 Query Optimization Using Partial Rewritings

and Views

In this section we show how to utilize partial rewritings in query optimization in a
scenario where we have available a set of precomputed views, as well as the database
itself. The views could be materialized views in a warehouse, or locally cached results
from previous queries in a client/server environment. In this scenario the views are
assumed to be excact. and we are interested in answering the query by consulting the

views as far as possible, and by accessing the database only when necessary.

Formally, let Q = {vy,...v,} be the view alphabet and let V = {V},....V;} be a
set of view definitions as before. Given a database DB, which is a graph. where the
edges are labelled with database symbols from A, we define the view graph V over
(V,Q) to be a database over (D, ) induced by the set

U {(a,vi,b) : (a,b) € ens(V;, DB)}.

‘E{ Iy---vn}

of Q-labelled edges.

It is now straightforward to show, that if the l-rewriting Q' is exact (meaning
def (Q') = Q). then ans(Q, DB) = ans(Q’, V) (see Calvanese et. al. [CGLV2000]).

However, the cases when we are able to obtain an exact rewriting of the query
using the views would be rare in practice, in general we have in the views only part
of the information needed to answer the query. So, should we ignore this partial
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information only beacuse it is not complete? In the previous sections we showed
how this partial information can be captured algebraically by the partial rewritings.
In the following, we use the partial rewritings not to avoid completely accessing the

database, but to minimize such access as much as possible.

However, in order to be able to utilize the partial I-rewriting @', it should be
exact, i.e. we require that def' (Q') = Q. We can use for testing the exactness the
optimal algorithm of [CGLV99).

Given an exact partial l-rewriting, we can use it to evaluate the query on the view-
graph, and accessing the database in a “lazy” fashion. only when necessary. Before
describing the lazy algorithm, let us review how query answering on semistructured
databases typically works [ABS99).

Algorithm 2 We are given a regular expression for @ and a database graph DB.
First construct an automaton Aq for @. Let .V be the set of nodes in the database
graph, and s be the initial state in dg. For each node a € NV compute a set Reach,
as follows.

1. Initialize Reach, to {(a,so)}.
2. Repeat 3 until Reach, no longer changes.

3. Choose a pair (z,s) € Reach,. If there is a database symbol R. such that a
transition s — ' is in Aq and an edge z &5 7 is in the database DB, then
add the pair (z/, s') to Reach,.

Finally, set

ans(Q, DB) = {(a,b) : a € N, (b, s) € Reach,, and s is a final state in Ag}.

In the following we modify this algorithm into a lazy algorithm for answering a
query Q using its partial I-rewriting with respect to a set of cached exact views.
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Algorithm 3 We are given an automaton Aq, corresponding to an exact partial
l-rewriting Q' and the view graph V. Let V be the set nodes in V, and sq be the
initial state in Ag-. For each node a € N then compute a set Reach,.

1. Initialize Reach, to {(a, so)}, and Ezpanded, to false.

2. For each database symbol R, if there is in Ags a transition sg £, 5 from the
initial state s, then access the database and add to V the subgraph of DB
induced by the R-edges.

3. Repeat 4 until Reach, no longer changes.

4. Choose a pair (z,s) € Reach,. If there is a view or database symbol R, such

. R 4. - -
that a transition s — s is in Ag. go to 5.

5. If there is an edge a £, ' in the viewgraph, add the pair (=, a’) to Reach,.
Otherwise, if Ezpanded, = false, set Erpanded, = true, access the database
and add to V the subgraph of DB induced by all edges originating from a.

Set eval(Q',V.DB) =

{(a.b) : @ € N, (b, s) € Reach,, and s is a final state in Ag}-

It is easy to verify the following.

Theorem 13 Given a query Q and a set of ezact views, if the partial l-rewriting Q'
of Q is ezxact, then eval(Q',V, DB) = ans(Q, DB).

Next, let us discuss how to utilize the partial p-rewriting Q" of a query @ for
computing the answer set ans(Q, DB). If we use the same algorithm as in the case of
the partial l-rewriting we might get a proper superset of the answer. Note however
that, contrary to Algorithm 3. in any case the partial p-rewriting does not need to
be exact.



Theorem 14 Given a query Q and a set V of ezact views, if Q" is the partial p-
rewriting of Q using V, then ans(Q, DB) C eval(Q",V, DB).

In other words, we are not sure if all the pairs are valid. To be able to discard
false hits, suppose that the views are materialized using Algorithm 2. We can then
associate each pair (a, ) in the view graph with their derivation. That is, for each pair
(a,b) connected with an edge, say v;, in the view graph, we associate an automaton.
say Ag, with start state a and final states {b}. What is this automaton? For each
pair (a,b), we can consider the database graph as a non-deterministic automaton
DB, with initial state a and final states {b}. It is now easy to see that

Aap = DBy Ny,

where Ay; is an automaton for the view V;. We are now ready to formulate the

algorithm for using the partial p-rewriting in query answering.
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Algorithm 4

1. Compute eval(Q",V, DB) using Algorithm 3. During the execution of Algo-
rithm 3 the view graph V is extended with new edges and nodes as described.
Call the extended view graph V'.

2. Replace in V' each edge labeled with a view symbol. say v;, between two objects

a and b with the automaton A, of the derivation. Call the new graph V".

3. Set verified(Q",V, DB) = eval(Q",V,DB) N {(a,b) : ans(Q.Vyp) # 0}, where

VY, is a non-deterministic automata similar to Dgp.
It is easy verify the following.

Theorem 15 Given a query Q and a set V of ezact views, if Q" is the partial p-
rewriting of Q using V, then verified(Q".V, DB) = ans{(Q. DB).

4.8 Complexity Analysis

The following theorem establishes an upper bound for the problem of generating the

exhaustive replacement L > M, where L and M are regular languages.

Theorem 16 Generating the ezhaustive replacement of a regular language M from

another language L can be done in ezponential time.

Proof. Let us refer to the cost of the steps in the constructive proof of the Theorem
10. To construct a non-deterministic automaton for the language M and using it to
construct the transducer g is polynomial. To compute the transduction of the regular
language L, g(L), is again polynomial. But at the end. in order to compute the subset
of the words in g(L), to which no more replacement can be applied, is exponential.
This is because we intersect with a mask that is a language described by an extended

regular language containing complementation. [ |
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Theorem 17 Let I be an alphabet and A, B be regular languages over I'. Then the
problem of deciding the emptiness of AN (I'*BT*)¢ is PSPACE complete.

Proof. First, observe that

[AN(T*BI™) = 0] & [4 C "B

But, this problem is a sub-case of the problem of testing regular expression con-
tainment, which is known to be PSPACE complete [HRS76]. So, there exists an

algorithm running in polynomial space that decides the above problem.

Next, we show that the problem is PSPACE-hard. Let £ be a language that is
decided by a Turing machine M running in polynomial space n* for some constant
k. The reduction maps an input w into a pair of regular expressions explained in the
following.

Denote with I the alphabet consisting of all symbols that may appear in a compu-
tation history. If ¥ and Q are the M's tape alphabet and states. then T = EUQU{#}.
We assume that all configurations have length n* and are padded on the right by
blank symbols if they otherwise would be too short. Let’s suppose for a moment that
we have organized some configurations in a tableau where each row of the tableau
contains a configuration and we mark the begining and the end of each one by the
marker #. Now, in this organization we consider all the 2 x 3 windows. A window
is legal if that window does not violate the actions specified by the M’s transition
function. In other words, a window is legal if it might appear when each configuration
correctly follows another. By a proved claim in the proof of the Cook-Levin Theorem
we know that, if the top row of the table is the start configuration and every window
in the table is legal, each row of the table is a configuration that legally follows the
preceding one. We encode a set of configurations C} ...C; as a single string, with the
configurations separated from each other by the # symbol as shown in the following
figure.

#___H#F___#F--#

L g N’
cy Cy C

#
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Now, we can describe the set of words in ['* with at least one illegal window with
the following regular expression.
"Bl
where

B= |J abel™ def.
bad(abe,de f)

Clearly, the set of configuration sequences with no illegal windows is described by

(C* BT

What we need now, is be able to extract from the set of sequences of this form. an
accepting computation history for the input w. We already have assured that there is
not any illegal window. After that. we need two more things: the start configuration
C, must be

#qw, ... waU.. . UF#.

nt-n
where w = w;...w,, and there must appear a symbel ggecepe- We encapture the

condition about C, by the regular expression
A = #quy .. wa U T HE

and the condition that there should be an accepting configuration by the regular
expresion

A =T QGcceptr’ -

Putting 4, and A4, together we have the following regular expression
A=A N Ay = #qowr. . W U™ " # T Gaceepel™-
Summarising, there is an accepting computation of M on input w if and only if
AN(C*BIH) #0.

We finish the proof by emphasizing that the size of the above expression is polynomial.
|

We are now in a position to prove the following result.
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Theorem 18 There ezist reqular languages L and M, such that the ezhaustive re-
placement Lt>M cannot be computed in polynomial time, unless PTIME = PSPACE. -

Proof. Suppose that given two regular expressions 4 and B on alphabet [ we like
to test the emptiness of AN ([*BT*). Without loss of generality let us assume that
there exists one symbol in A that does not not appear in B. To see why even with this
restriction the above problem of emptiness is still PSPACE complete, imagine that
we can simply have a tape symbol which does not appear at all in the definition of the
transition function of the Turing machine. Then this symbol will appear in the above
set A but not in B (see Appendix). Let us denote this special symbol with {. We
substitute the { symbol in A with the regular expression B. The result will be another
regular expression .\’ which has polynomial size. Clearly, AN(I*BI*)¢ = AN(4'> B).

As a conclusion. if we had a polynomial time algorithm producing a polynomial
size representation for A'> B, we could polynomially construct an NFA for AN(A'> B).
Then we could check in NLOGSPACE the emptiness of this NFA. This means that.
the emptiness of AN (I'*BI*)° could be checked in PTIME, which is a contradiction,
unless PTIME=PSPACE. |

Corollary 3 The algorithm in the proof of Theorem 11 for computing the partial p-

optimal.

Theorem 19 Given a query Q and a set V = {V1,.... V.} of view definitions, the
partial l-rewriting can be computed in 2EXPTIME.

Proof. Let us refer to the constructive proof of the Theorem 12. To compute the
complement Q¢ of the query is exponential. To transduce it to T(Q¢) is polynomial.
To complement again is exponential. So, in total we have 2EXPTIME. To com-
pute the mask is EXPTIME and to intersect is polynomial. Finally, 9EXPTIME +
EXPTIME = 2EXPTIME. [ |

For the partial lower rewriting we have the following.
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Theorem 20 Algorithm 1 for computing the partial l-rewriting of a query Q using a

set V.={W,...,Va} of view definitions, is essentially optimal.

Proof. Polynomially intersect the partial l-rewriting with Q* and get the l-rewriting
of [CGLV99]. But, the l-rewriting is optimally computed in doubly exponential time
in [CGLV99], so our algorithm is essentially optimal. |
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Chapter 5

Conclusions and Future Directions

5.1 Contributions

In this thesis we study the problem of query rewriting using views for semistructured
data. The corresponding problem for relational data has already received very much
attention. However, in the context of semistructured data the first results on the topic
are those of [CGLV99,CGLV2000]. We studied the problem in two realistic scenarios.
The first one is related to information integration systems. in which the data sources
are modelled as sound views over a global schema. Our contribution in this setting
is the establishment of the connections between algebraic approximations and
answers. Since, computing the answer of the query is polynomial, using rewritings,

we can use them for optimized data integration. Namely,

e We prove that in the case of sound views, the answer to the query, computed

using the rewriting of Calvanese et. al., is a subset of the certain answer.

e We give a polynomial algorithm for computing a regular rewriting that will

produce a superset of the certain answer.

e The use of this rewriting in query optimization is that it restricts the space

of the possible pairs needed to be fed to the intractable decision procedure of
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Calvanese et. al.

The second scenario, is query optimization using cached views and existing database.
In this setting we propose two kinds of algebraic rewritings that focus on extracting
as much information as possible from the views, for the purpose of optimizing regular

path queries. Sumarizing, our contributions in this setting are:

e We propose algorithms for query answering that make use of all the information
provided by the cached views.

e Although extracting all the information from the views is very expensive. the

complexity is limited in the length of the view and query expression only.

e Since the data complexity for using the rewritings is polynomial, we reduce data

complexity into expression complexity.

5.2 Future Work

We are often willing to live with structural information that is approximate. In
other words the semistructured data represented by a graph database can be an
approximation of the real world rather than an exact representation. On the other
hand the user by himself can have an approximate idea and/or knowledge about
the world, and this has as a consequence a need for non exact information to be
exctracted from the database. In both cases the conclusion is that we need to deal
with approximate queries and databases, and give approximate answers to the user

queries.

If we consider the database graph to be the Web-graph then the current search
engines already deal with approximate matching of specific words or sentences against
the HTML text of the nodes. The result is usually ranked with regard to the degree
of proximity and then presented to the user. However, consider a scenario where the
links in the HTML pages are labeled by some predicates, and we like to find not
only specific HTML pages containg some given text, but also we want these pages to
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be linked by a path on which the link label sequence conforms to a given language.
Current search engines do not give the user the option to approximately query the
Web-graph through regular expressions. The same is true also for the query languages
for semistructured data; they do provide means to specify paths of edge labels through

regular expressions, but they do not have capabilities to specify approximate paths.

One of our future research directions will be to establish a general framework for
approximate reasoning in semi-structured databases. This general framework should
be flexible enough to be tailored to the specific demands of the users or applications

and should tackle both approximate queries and approximate databases.
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